]> gcc.gnu.org Git - gcc.git/blob - gcc/local-alloc.c
langhooks.c: Fix formatting.
[gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "tm_p.h"
66 #include "flags.h"
67 #include "hard-reg-set.h"
68 #include "basic-block.h"
69 #include "regs.h"
70 #include "function.h"
71 #include "insn-config.h"
72 #include "insn-attr.h"
73 #include "recog.h"
74 #include "output.h"
75 #include "toplev.h"
76 #include "except.h"
77 #include "integrate.h"
78 \f
79 /* Next quantity number available for allocation. */
80
81 static int next_qty;
82
83 /* Information we maintain about each quantity. */
84 struct qty
85 {
86 /* The number of refs to quantity Q. */
87
88 int n_refs;
89
90 /* The frequency of uses of quantity Q. */
91
92 int freq;
93
94 /* Insn number (counting from head of basic block)
95 where quantity Q was born. -1 if birth has not been recorded. */
96
97 int birth;
98
99 /* Insn number (counting from head of basic block)
100 where given quantity died. Due to the way tying is done,
101 and the fact that we consider in this pass only regs that die but once,
102 a quantity can die only once. Each quantity's life span
103 is a set of consecutive insns. -1 if death has not been recorded. */
104
105 int death;
106
107 /* Number of words needed to hold the data in given quantity.
108 This depends on its machine mode. It is used for these purposes:
109 1. It is used in computing the relative importances of qtys,
110 which determines the order in which we look for regs for them.
111 2. It is used in rules that prevent tying several registers of
112 different sizes in a way that is geometrically impossible
113 (see combine_regs). */
114
115 int size;
116
117 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
118
119 int n_calls_crossed;
120
121 /* The register number of one pseudo register whose reg_qty value is Q.
122 This register should be the head of the chain
123 maintained in reg_next_in_qty. */
124
125 int first_reg;
126
127 /* Reg class contained in (smaller than) the preferred classes of all
128 the pseudo regs that are tied in given quantity.
129 This is the preferred class for allocating that quantity. */
130
131 enum reg_class min_class;
132
133 /* Register class within which we allocate given qty if we can't get
134 its preferred class. */
135
136 enum reg_class alternate_class;
137
138 /* This holds the mode of the registers that are tied to given qty,
139 or VOIDmode if registers with differing modes are tied together. */
140
141 enum machine_mode mode;
142
143 /* the hard reg number chosen for given quantity,
144 or -1 if none was found. */
145
146 short phys_reg;
147
148 /* Nonzero if this quantity has been used in a SUBREG in some
149 way that is illegal. */
150
151 char changes_mode;
152
153 };
154
155 static struct qty *qty;
156
157 /* These fields are kept separately to speedup their clearing. */
158
159 /* We maintain two hard register sets that indicate suggested hard registers
160 for each quantity. The first, phys_copy_sugg, contains hard registers
161 that are tied to the quantity by a simple copy. The second contains all
162 hard registers that are tied to the quantity via an arithmetic operation.
163
164 The former register set is given priority for allocation. This tends to
165 eliminate copy insns. */
166
167 /* Element Q is a set of hard registers that are suggested for quantity Q by
168 copy insns. */
169
170 static HARD_REG_SET *qty_phys_copy_sugg;
171
172 /* Element Q is a set of hard registers that are suggested for quantity Q by
173 arithmetic insns. */
174
175 static HARD_REG_SET *qty_phys_sugg;
176
177 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
178
179 static short *qty_phys_num_copy_sugg;
180
181 /* Element Q is the number of suggested registers in qty_phys_sugg. */
182
183 static short *qty_phys_num_sugg;
184
185 /* If (REG N) has been assigned a quantity number, is a register number
186 of another register assigned the same quantity number, or -1 for the
187 end of the chain. qty->first_reg point to the head of this chain. */
188
189 static int *reg_next_in_qty;
190
191 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
192 if it is >= 0,
193 of -1 if this register cannot be allocated by local-alloc,
194 or -2 if not known yet.
195
196 Note that if we see a use or death of pseudo register N with
197 reg_qty[N] == -2, register N must be local to the current block. If
198 it were used in more than one block, we would have reg_qty[N] == -1.
199 This relies on the fact that if reg_basic_block[N] is >= 0, register N
200 will not appear in any other block. We save a considerable number of
201 tests by exploiting this.
202
203 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
204 be referenced. */
205
206 static int *reg_qty;
207
208 /* The offset (in words) of register N within its quantity.
209 This can be nonzero if register N is SImode, and has been tied
210 to a subreg of a DImode register. */
211
212 static char *reg_offset;
213
214 /* Vector of substitutions of register numbers,
215 used to map pseudo regs into hardware regs.
216 This is set up as a result of register allocation.
217 Element N is the hard reg assigned to pseudo reg N,
218 or is -1 if no hard reg was assigned.
219 If N is a hard reg number, element N is N. */
220
221 short *reg_renumber;
222
223 /* Set of hard registers live at the current point in the scan
224 of the instructions in a basic block. */
225
226 static HARD_REG_SET regs_live;
227
228 /* Each set of hard registers indicates registers live at a particular
229 point in the basic block. For N even, regs_live_at[N] says which
230 hard registers are needed *after* insn N/2 (i.e., they may not
231 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
232
233 If an object is to conflict with the inputs of insn J but not the
234 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
235 if it is to conflict with the outputs of insn J but not the inputs of
236 insn J + 1, it is said to die at index J*2 + 1. */
237
238 static HARD_REG_SET *regs_live_at;
239
240 /* Communicate local vars `insn_number' and `insn'
241 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
242 static int this_insn_number;
243 static rtx this_insn;
244
245 struct equivalence
246 {
247 /* Set when an attempt should be made to replace a register
248 with the associated src_p entry. */
249
250 char replace;
251
252 /* Set when a REG_EQUIV note is found or created. Use to
253 keep track of what memory accesses might be created later,
254 e.g. by reload. */
255
256 rtx replacement;
257
258 rtx *src_p;
259
260 /* Loop depth is used to recognize equivalences which appear
261 to be present within the same loop (or in an inner loop). */
262
263 int loop_depth;
264
265 /* The list of each instruction which initializes this register. */
266
267 rtx init_insns;
268 };
269
270 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
271 structure for that register. */
272
273 static struct equivalence *reg_equiv;
274
275 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
276 static int recorded_label_ref;
277
278 static void alloc_qty PARAMS ((int, enum machine_mode, int, int));
279 static void validate_equiv_mem_from_store PARAMS ((rtx, rtx, void *));
280 static int validate_equiv_mem PARAMS ((rtx, rtx, rtx));
281 static int equiv_init_varies_p PARAMS ((rtx));
282 static int equiv_init_movable_p PARAMS ((rtx, int));
283 static int contains_replace_regs PARAMS ((rtx));
284 static int memref_referenced_p PARAMS ((rtx, rtx));
285 static int memref_used_between_p PARAMS ((rtx, rtx, rtx));
286 static void update_equiv_regs PARAMS ((void));
287 static void no_equiv PARAMS ((rtx, rtx, void *));
288 static void block_alloc PARAMS ((int));
289 static int qty_sugg_compare PARAMS ((int, int));
290 static int qty_sugg_compare_1 PARAMS ((const PTR, const PTR));
291 static int qty_compare PARAMS ((int, int));
292 static int qty_compare_1 PARAMS ((const PTR, const PTR));
293 static int combine_regs PARAMS ((rtx, rtx, int, int, rtx, int));
294 static int reg_meets_class_p PARAMS ((int, enum reg_class));
295 static void update_qty_class PARAMS ((int, int));
296 static void reg_is_set PARAMS ((rtx, rtx, void *));
297 static void reg_is_born PARAMS ((rtx, int));
298 static void wipe_dead_reg PARAMS ((rtx, int));
299 static int find_free_reg PARAMS ((enum reg_class, enum machine_mode,
300 int, int, int, int, int));
301 static void mark_life PARAMS ((int, enum machine_mode, int));
302 static void post_mark_life PARAMS ((int, enum machine_mode, int, int, int));
303 static int no_conflict_p PARAMS ((rtx, rtx, rtx));
304 static int requires_inout PARAMS ((const char *));
305 \f
306 /* Allocate a new quantity (new within current basic block)
307 for register number REGNO which is born at index BIRTH
308 within the block. MODE and SIZE are info on reg REGNO. */
309
310 static void
311 alloc_qty (regno, mode, size, birth)
312 int regno;
313 enum machine_mode mode;
314 int size, birth;
315 {
316 int qtyno = next_qty++;
317
318 reg_qty[regno] = qtyno;
319 reg_offset[regno] = 0;
320 reg_next_in_qty[regno] = -1;
321
322 qty[qtyno].first_reg = regno;
323 qty[qtyno].size = size;
324 qty[qtyno].mode = mode;
325 qty[qtyno].birth = birth;
326 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
327 qty[qtyno].min_class = reg_preferred_class (regno);
328 qty[qtyno].alternate_class = reg_alternate_class (regno);
329 qty[qtyno].n_refs = REG_N_REFS (regno);
330 qty[qtyno].freq = REG_FREQ (regno);
331 qty[qtyno].changes_mode = REG_CHANGES_MODE (regno);
332 }
333 \f
334 /* Main entry point of this file. */
335
336 int
337 local_alloc ()
338 {
339 int i;
340 int max_qty;
341 basic_block b;
342
343 /* We need to keep track of whether or not we recorded a LABEL_REF so
344 that we know if the jump optimizer needs to be rerun. */
345 recorded_label_ref = 0;
346
347 /* Leaf functions and non-leaf functions have different needs.
348 If defined, let the machine say what kind of ordering we
349 should use. */
350 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
351 ORDER_REGS_FOR_LOCAL_ALLOC;
352 #endif
353
354 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
355 registers. */
356 if (optimize)
357 update_equiv_regs ();
358
359 /* This sets the maximum number of quantities we can have. Quantity
360 numbers start at zero and we can have one for each pseudo. */
361 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
362
363 /* Allocate vectors of temporary data.
364 See the declarations of these variables, above,
365 for what they mean. */
366
367 qty = (struct qty *) xmalloc (max_qty * sizeof (struct qty));
368 qty_phys_copy_sugg
369 = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
370 qty_phys_num_copy_sugg = (short *) xmalloc (max_qty * sizeof (short));
371 qty_phys_sugg = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
372 qty_phys_num_sugg = (short *) xmalloc (max_qty * sizeof (short));
373
374 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
375 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
376 reg_next_in_qty = (int *) xmalloc (max_regno * sizeof (int));
377
378 /* Determine which pseudo-registers can be allocated by local-alloc.
379 In general, these are the registers used only in a single block and
380 which only die once.
381
382 We need not be concerned with which block actually uses the register
383 since we will never see it outside that block. */
384
385 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
386 {
387 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
388 reg_qty[i] = -2;
389 else
390 reg_qty[i] = -1;
391 }
392
393 /* Force loop below to initialize entire quantity array. */
394 next_qty = max_qty;
395
396 /* Allocate each block's local registers, block by block. */
397
398 FOR_EACH_BB (b)
399 {
400 /* NEXT_QTY indicates which elements of the `qty_...'
401 vectors might need to be initialized because they were used
402 for the previous block; it is set to the entire array before
403 block 0. Initialize those, with explicit loop if there are few,
404 else with bzero and bcopy. Do not initialize vectors that are
405 explicit set by `alloc_qty'. */
406
407 if (next_qty < 6)
408 {
409 for (i = 0; i < next_qty; i++)
410 {
411 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
412 qty_phys_num_copy_sugg[i] = 0;
413 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
414 qty_phys_num_sugg[i] = 0;
415 }
416 }
417 else
418 {
419 #define CLEAR(vector) \
420 memset ((char *) (vector), 0, (sizeof (*(vector))) * next_qty);
421
422 CLEAR (qty_phys_copy_sugg);
423 CLEAR (qty_phys_num_copy_sugg);
424 CLEAR (qty_phys_sugg);
425 CLEAR (qty_phys_num_sugg);
426 }
427
428 next_qty = 0;
429
430 block_alloc (b->index);
431 }
432
433 free (qty);
434 free (qty_phys_copy_sugg);
435 free (qty_phys_num_copy_sugg);
436 free (qty_phys_sugg);
437 free (qty_phys_num_sugg);
438
439 free (reg_qty);
440 free (reg_offset);
441 free (reg_next_in_qty);
442
443 return recorded_label_ref;
444 }
445 \f
446 /* Used for communication between the following two functions: contains
447 a MEM that we wish to ensure remains unchanged. */
448 static rtx equiv_mem;
449
450 /* Set nonzero if EQUIV_MEM is modified. */
451 static int equiv_mem_modified;
452
453 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
454 Called via note_stores. */
455
456 static void
457 validate_equiv_mem_from_store (dest, set, data)
458 rtx dest;
459 rtx set ATTRIBUTE_UNUSED;
460 void *data ATTRIBUTE_UNUSED;
461 {
462 if ((GET_CODE (dest) == REG
463 && reg_overlap_mentioned_p (dest, equiv_mem))
464 || (GET_CODE (dest) == MEM
465 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
466 equiv_mem_modified = 1;
467 }
468
469 /* Verify that no store between START and the death of REG invalidates
470 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
471 by storing into an overlapping memory location, or with a non-const
472 CALL_INSN.
473
474 Return 1 if MEMREF remains valid. */
475
476 static int
477 validate_equiv_mem (start, reg, memref)
478 rtx start;
479 rtx reg;
480 rtx memref;
481 {
482 rtx insn;
483 rtx note;
484
485 equiv_mem = memref;
486 equiv_mem_modified = 0;
487
488 /* If the memory reference has side effects or is volatile, it isn't a
489 valid equivalence. */
490 if (side_effects_p (memref))
491 return 0;
492
493 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
494 {
495 if (! INSN_P (insn))
496 continue;
497
498 if (find_reg_note (insn, REG_DEAD, reg))
499 return 1;
500
501 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
502 && ! CONST_OR_PURE_CALL_P (insn))
503 return 0;
504
505 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
506
507 /* If a register mentioned in MEMREF is modified via an
508 auto-increment, we lose the equivalence. Do the same if one
509 dies; although we could extend the life, it doesn't seem worth
510 the trouble. */
511
512 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
513 if ((REG_NOTE_KIND (note) == REG_INC
514 || REG_NOTE_KIND (note) == REG_DEAD)
515 && GET_CODE (XEXP (note, 0)) == REG
516 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
517 return 0;
518 }
519
520 return 0;
521 }
522
523 /* Returns zero if X is known to be invariant. */
524
525 static int
526 equiv_init_varies_p (x)
527 rtx x;
528 {
529 RTX_CODE code = GET_CODE (x);
530 int i;
531 const char *fmt;
532
533 switch (code)
534 {
535 case MEM:
536 return ! RTX_UNCHANGING_P (x) || equiv_init_varies_p (XEXP (x, 0));
537
538 case QUEUED:
539 return 1;
540
541 case CONST:
542 case CONST_INT:
543 case CONST_DOUBLE:
544 case CONST_VECTOR:
545 case SYMBOL_REF:
546 case LABEL_REF:
547 return 0;
548
549 case REG:
550 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
551
552 case ASM_OPERANDS:
553 if (MEM_VOLATILE_P (x))
554 return 1;
555
556 /* FALLTHROUGH */
557
558 default:
559 break;
560 }
561
562 fmt = GET_RTX_FORMAT (code);
563 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
564 if (fmt[i] == 'e')
565 {
566 if (equiv_init_varies_p (XEXP (x, i)))
567 return 1;
568 }
569 else if (fmt[i] == 'E')
570 {
571 int j;
572 for (j = 0; j < XVECLEN (x, i); j++)
573 if (equiv_init_varies_p (XVECEXP (x, i, j)))
574 return 1;
575 }
576
577 return 0;
578 }
579
580 /* Returns non-zero if X (used to initialize register REGNO) is movable.
581 X is only movable if the registers it uses have equivalent initializations
582 which appear to be within the same loop (or in an inner loop) and movable
583 or if they are not candidates for local_alloc and don't vary. */
584
585 static int
586 equiv_init_movable_p (x, regno)
587 rtx x;
588 int regno;
589 {
590 int i, j;
591 const char *fmt;
592 enum rtx_code code = GET_CODE (x);
593
594 switch (code)
595 {
596 case SET:
597 return equiv_init_movable_p (SET_SRC (x), regno);
598
599 case CC0:
600 case CLOBBER:
601 return 0;
602
603 case PRE_INC:
604 case PRE_DEC:
605 case POST_INC:
606 case POST_DEC:
607 case PRE_MODIFY:
608 case POST_MODIFY:
609 return 0;
610
611 case REG:
612 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
613 && reg_equiv[REGNO (x)].replace)
614 || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
615
616 case UNSPEC_VOLATILE:
617 return 0;
618
619 case ASM_OPERANDS:
620 if (MEM_VOLATILE_P (x))
621 return 0;
622
623 /* FALLTHROUGH */
624
625 default:
626 break;
627 }
628
629 fmt = GET_RTX_FORMAT (code);
630 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
631 switch (fmt[i])
632 {
633 case 'e':
634 if (! equiv_init_movable_p (XEXP (x, i), regno))
635 return 0;
636 break;
637 case 'E':
638 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
639 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
640 return 0;
641 break;
642 }
643
644 return 1;
645 }
646
647 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
648
649 static int
650 contains_replace_regs (x)
651 rtx x;
652 {
653 int i, j;
654 const char *fmt;
655 enum rtx_code code = GET_CODE (x);
656
657 switch (code)
658 {
659 case CONST_INT:
660 case CONST:
661 case LABEL_REF:
662 case SYMBOL_REF:
663 case CONST_DOUBLE:
664 case CONST_VECTOR:
665 case PC:
666 case CC0:
667 case HIGH:
668 return 0;
669
670 case REG:
671 return reg_equiv[REGNO (x)].replace;
672
673 default:
674 break;
675 }
676
677 fmt = GET_RTX_FORMAT (code);
678 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
679 switch (fmt[i])
680 {
681 case 'e':
682 if (contains_replace_regs (XEXP (x, i)))
683 return 1;
684 break;
685 case 'E':
686 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
687 if (contains_replace_regs (XVECEXP (x, i, j)))
688 return 1;
689 break;
690 }
691
692 return 0;
693 }
694 \f
695 /* TRUE if X references a memory location that would be affected by a store
696 to MEMREF. */
697
698 static int
699 memref_referenced_p (memref, x)
700 rtx x;
701 rtx memref;
702 {
703 int i, j;
704 const char *fmt;
705 enum rtx_code code = GET_CODE (x);
706
707 switch (code)
708 {
709 case CONST_INT:
710 case CONST:
711 case LABEL_REF:
712 case SYMBOL_REF:
713 case CONST_DOUBLE:
714 case CONST_VECTOR:
715 case PC:
716 case CC0:
717 case HIGH:
718 case LO_SUM:
719 return 0;
720
721 case REG:
722 return (reg_equiv[REGNO (x)].replacement
723 && memref_referenced_p (memref,
724 reg_equiv[REGNO (x)].replacement));
725
726 case MEM:
727 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
728 return 1;
729 break;
730
731 case SET:
732 /* If we are setting a MEM, it doesn't count (its address does), but any
733 other SET_DEST that has a MEM in it is referencing the MEM. */
734 if (GET_CODE (SET_DEST (x)) == MEM)
735 {
736 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
737 return 1;
738 }
739 else if (memref_referenced_p (memref, SET_DEST (x)))
740 return 1;
741
742 return memref_referenced_p (memref, SET_SRC (x));
743
744 default:
745 break;
746 }
747
748 fmt = GET_RTX_FORMAT (code);
749 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
750 switch (fmt[i])
751 {
752 case 'e':
753 if (memref_referenced_p (memref, XEXP (x, i)))
754 return 1;
755 break;
756 case 'E':
757 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
758 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
759 return 1;
760 break;
761 }
762
763 return 0;
764 }
765
766 /* TRUE if some insn in the range (START, END] references a memory location
767 that would be affected by a store to MEMREF. */
768
769 static int
770 memref_used_between_p (memref, start, end)
771 rtx memref;
772 rtx start;
773 rtx end;
774 {
775 rtx insn;
776
777 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
778 insn = NEXT_INSN (insn))
779 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
780 return 1;
781
782 return 0;
783 }
784 \f
785 /* Return nonzero if the rtx X is invariant over the current function. */
786 /* ??? Actually, the places this is used in reload expect exactly what
787 is tested here, and not everything that is function invariant. In
788 particular, the frame pointer and arg pointer are special cased;
789 pic_offset_table_rtx is not, and this will cause aborts when we
790 go to spill these things to memory. */
791
792 int
793 function_invariant_p (x)
794 rtx x;
795 {
796 if (CONSTANT_P (x))
797 return 1;
798 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
799 return 1;
800 if (GET_CODE (x) == PLUS
801 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
802 && CONSTANT_P (XEXP (x, 1)))
803 return 1;
804 return 0;
805 }
806
807 /* Find registers that are equivalent to a single value throughout the
808 compilation (either because they can be referenced in memory or are set once
809 from a single constant). Lower their priority for a register.
810
811 If such a register is only referenced once, try substituting its value
812 into the using insn. If it succeeds, we can eliminate the register
813 completely. */
814
815 static void
816 update_equiv_regs ()
817 {
818 rtx insn;
819 basic_block bb;
820 int loop_depth;
821 regset_head cleared_regs;
822 int clear_regnos = 0;
823
824 reg_equiv = (struct equivalence *) xcalloc (max_regno, sizeof *reg_equiv);
825 INIT_REG_SET (&cleared_regs);
826
827 init_alias_analysis ();
828
829 /* Scan the insns and find which registers have equivalences. Do this
830 in a separate scan of the insns because (due to -fcse-follow-jumps)
831 a register can be set below its use. */
832 FOR_EACH_BB (bb)
833 {
834 loop_depth = bb->loop_depth;
835
836 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = NEXT_INSN (insn))
837 {
838 rtx note;
839 rtx set;
840 rtx dest, src;
841 int regno;
842
843 if (! INSN_P (insn))
844 continue;
845
846 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
847 if (REG_NOTE_KIND (note) == REG_INC)
848 no_equiv (XEXP (note, 0), note, NULL);
849
850 set = single_set (insn);
851
852 /* If this insn contains more (or less) than a single SET,
853 only mark all destinations as having no known equivalence. */
854 if (set == 0)
855 {
856 note_stores (PATTERN (insn), no_equiv, NULL);
857 continue;
858 }
859 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
860 {
861 int i;
862
863 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
864 {
865 rtx part = XVECEXP (PATTERN (insn), 0, i);
866 if (part != set)
867 note_stores (part, no_equiv, NULL);
868 }
869 }
870
871 dest = SET_DEST (set);
872 src = SET_SRC (set);
873
874 /* If this sets a MEM to the contents of a REG that is only used
875 in a single basic block, see if the register is always equivalent
876 to that memory location and if moving the store from INSN to the
877 insn that set REG is safe. If so, put a REG_EQUIV note on the
878 initializing insn.
879
880 Don't add a REG_EQUIV note if the insn already has one. The existing
881 REG_EQUIV is likely more useful than the one we are adding.
882
883 If one of the regs in the address has reg_equiv[REGNO].replace set,
884 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
885 optimization may move the set of this register immediately before
886 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
887 the mention in the REG_EQUIV note would be to an uninitialized
888 pseudo. */
889 /* ????? This test isn't good enough; we might see a MEM with a use of
890 a pseudo register before we see its setting insn that will cause
891 reg_equiv[].replace for that pseudo to be set.
892 Equivalences to MEMs should be made in another pass, after the
893 reg_equiv[].replace information has been gathered. */
894
895 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
896 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
897 && REG_BASIC_BLOCK (regno) >= 0
898 && REG_N_SETS (regno) == 1
899 && reg_equiv[regno].init_insns != 0
900 && reg_equiv[regno].init_insns != const0_rtx
901 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
902 REG_EQUIV, NULL_RTX)
903 && ! contains_replace_regs (XEXP (dest, 0)))
904 {
905 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
906 if (validate_equiv_mem (init_insn, src, dest)
907 && ! memref_used_between_p (dest, init_insn, insn))
908 REG_NOTES (init_insn)
909 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
910 }
911
912 /* We only handle the case of a pseudo register being set
913 once, or always to the same value. */
914 /* ??? The mn10200 port breaks if we add equivalences for
915 values that need an ADDRESS_REGS register and set them equivalent
916 to a MEM of a pseudo. The actual problem is in the over-conservative
917 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
918 calculate_needs, but we traditionally work around this problem
919 here by rejecting equivalences when the destination is in a register
920 that's likely spilled. This is fragile, of course, since the
921 preferred class of a pseudo depends on all instructions that set
922 or use it. */
923
924 if (GET_CODE (dest) != REG
925 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
926 || reg_equiv[regno].init_insns == const0_rtx
927 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
928 && GET_CODE (src) == MEM))
929 {
930 /* This might be seting a SUBREG of a pseudo, a pseudo that is
931 also set somewhere else to a constant. */
932 note_stores (set, no_equiv, NULL);
933 continue;
934 }
935
936 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
937
938 /* cse sometimes generates function invariants, but doesn't put a
939 REG_EQUAL note on the insn. Since this note would be redundant,
940 there's no point creating it earlier than here. */
941 if (! note && ! rtx_varies_p (src, 0))
942 note = set_unique_reg_note (insn, REG_EQUAL, src);
943
944 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
945 since it represents a function call */
946 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
947 note = NULL_RTX;
948
949 if (REG_N_SETS (regno) != 1
950 && (! note
951 || rtx_varies_p (XEXP (note, 0), 0)
952 || (reg_equiv[regno].replacement
953 && ! rtx_equal_p (XEXP (note, 0),
954 reg_equiv[regno].replacement))))
955 {
956 no_equiv (dest, set, NULL);
957 continue;
958 }
959 /* Record this insn as initializing this register. */
960 reg_equiv[regno].init_insns
961 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
962
963 /* If this register is known to be equal to a constant, record that
964 it is always equivalent to the constant. */
965 if (note && ! rtx_varies_p (XEXP (note, 0), 0))
966 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
967
968 /* If this insn introduces a "constant" register, decrease the priority
969 of that register. Record this insn if the register is only used once
970 more and the equivalence value is the same as our source.
971
972 The latter condition is checked for two reasons: First, it is an
973 indication that it may be more efficient to actually emit the insn
974 as written (if no registers are available, reload will substitute
975 the equivalence). Secondly, it avoids problems with any registers
976 dying in this insn whose death notes would be missed.
977
978 If we don't have a REG_EQUIV note, see if this insn is loading
979 a register used only in one basic block from a MEM. If so, and the
980 MEM remains unchanged for the life of the register, add a REG_EQUIV
981 note. */
982
983 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
984
985 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
986 && GET_CODE (SET_SRC (set)) == MEM
987 && validate_equiv_mem (insn, dest, SET_SRC (set)))
988 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
989 REG_NOTES (insn));
990
991 if (note)
992 {
993 int regno = REGNO (dest);
994
995 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
996 We might end up substituting the LABEL_REF for uses of the
997 pseudo here or later. That kind of transformation may turn an
998 indirect jump into a direct jump, in which case we must rerun the
999 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
1000 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
1001 || (GET_CODE (XEXP (note, 0)) == CONST
1002 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
1003 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
1004 == LABEL_REF)))
1005 recorded_label_ref = 1;
1006
1007 reg_equiv[regno].replacement = XEXP (note, 0);
1008 reg_equiv[regno].src_p = &SET_SRC (set);
1009 reg_equiv[regno].loop_depth = loop_depth;
1010
1011 /* Don't mess with things live during setjmp. */
1012 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
1013 {
1014 /* Note that the statement below does not affect the priority
1015 in local-alloc! */
1016 REG_LIVE_LENGTH (regno) *= 2;
1017
1018
1019 /* If the register is referenced exactly twice, meaning it is
1020 set once and used once, indicate that the reference may be
1021 replaced by the equivalence we computed above. Do this
1022 even if the register is only used in one block so that
1023 dependencies can be handled where the last register is
1024 used in a different block (i.e. HIGH / LO_SUM sequences)
1025 and to reduce the number of registers alive across
1026 calls. */
1027
1028 if (REG_N_REFS (regno) == 2
1029 && (rtx_equal_p (XEXP (note, 0), src)
1030 || ! equiv_init_varies_p (src))
1031 && GET_CODE (insn) == INSN
1032 && equiv_init_movable_p (PATTERN (insn), regno))
1033 reg_equiv[regno].replace = 1;
1034 }
1035 }
1036 }
1037 }
1038
1039 /* Now scan all regs killed in an insn to see if any of them are
1040 registers only used that once. If so, see if we can replace the
1041 reference with the equivalent from. If we can, delete the
1042 initializing reference and this register will go away. If we
1043 can't replace the reference, and the initialzing reference is
1044 within the same loop (or in an inner loop), then move the register
1045 initialization just before the use, so that they are in the same
1046 basic block. */
1047 FOR_EACH_BB_REVERSE (bb)
1048 {
1049 loop_depth = bb->loop_depth;
1050 for (insn = bb->end; insn != PREV_INSN (bb->head); insn = PREV_INSN (insn))
1051 {
1052 rtx link;
1053
1054 if (! INSN_P (insn))
1055 continue;
1056
1057 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1058 {
1059 if (REG_NOTE_KIND (link) == REG_DEAD
1060 /* Make sure this insn still refers to the register. */
1061 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1062 {
1063 int regno = REGNO (XEXP (link, 0));
1064 rtx equiv_insn;
1065
1066 if (! reg_equiv[regno].replace
1067 || reg_equiv[regno].loop_depth < loop_depth)
1068 continue;
1069
1070 /* reg_equiv[REGNO].replace gets set only when
1071 REG_N_REFS[REGNO] is 2, i.e. the register is set
1072 once and used once. (If it were only set, but not used,
1073 flow would have deleted the setting insns.) Hence
1074 there can only be one insn in reg_equiv[REGNO].init_insns. */
1075 if (reg_equiv[regno].init_insns == NULL_RTX
1076 || XEXP (reg_equiv[regno].init_insns, 1) != NULL_RTX)
1077 abort ();
1078 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1079
1080 /* We may not move instructions that can throw, since
1081 that changes basic block boundaries and we are not
1082 prepared to adjust the CFG to match. */
1083 if (can_throw_internal (equiv_insn))
1084 continue;
1085
1086 if (asm_noperands (PATTERN (equiv_insn)) < 0
1087 && validate_replace_rtx (regno_reg_rtx[regno],
1088 *(reg_equiv[regno].src_p), insn))
1089 {
1090 rtx equiv_link;
1091 rtx last_link;
1092 rtx note;
1093
1094 /* Find the last note. */
1095 for (last_link = link; XEXP (last_link, 1);
1096 last_link = XEXP (last_link, 1))
1097 ;
1098
1099 /* Append the REG_DEAD notes from equiv_insn. */
1100 equiv_link = REG_NOTES (equiv_insn);
1101 while (equiv_link)
1102 {
1103 note = equiv_link;
1104 equiv_link = XEXP (equiv_link, 1);
1105 if (REG_NOTE_KIND (note) == REG_DEAD)
1106 {
1107 remove_note (equiv_insn, note);
1108 XEXP (last_link, 1) = note;
1109 XEXP (note, 1) = NULL_RTX;
1110 last_link = note;
1111 }
1112 }
1113
1114 remove_death (regno, insn);
1115 REG_N_REFS (regno) = 0;
1116 REG_FREQ (regno) = 0;
1117 delete_insn (equiv_insn);
1118
1119 reg_equiv[regno].init_insns
1120 = XEXP (reg_equiv[regno].init_insns, 1);
1121 }
1122 /* Move the initialization of the register to just before
1123 INSN. Update the flow information. */
1124 else if (PREV_INSN (insn) != equiv_insn)
1125 {
1126 rtx new_insn;
1127
1128 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1129 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1130 REG_NOTES (equiv_insn) = 0;
1131
1132 /* Make sure this insn is recognized before reload begins,
1133 otherwise eliminate_regs_in_insn will abort. */
1134 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1135
1136 delete_insn (equiv_insn);
1137
1138 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1139
1140 REG_BASIC_BLOCK (regno) = bb->index;
1141 REG_N_CALLS_CROSSED (regno) = 0;
1142 REG_LIVE_LENGTH (regno) = 2;
1143
1144 if (insn == bb->head)
1145 bb->head = PREV_INSN (insn);
1146
1147 /* Remember to clear REGNO from all basic block's live
1148 info. */
1149 SET_REGNO_REG_SET (&cleared_regs, regno);
1150 clear_regnos++;
1151 }
1152 }
1153 }
1154 }
1155 }
1156
1157 /* Clear all dead REGNOs from all basic block's live info. */
1158 if (clear_regnos)
1159 {
1160 int j;
1161 if (clear_regnos > 8)
1162 {
1163 FOR_EACH_BB (bb)
1164 {
1165 AND_COMPL_REG_SET (bb->global_live_at_start, &cleared_regs);
1166 AND_COMPL_REG_SET (bb->global_live_at_end, &cleared_regs);
1167 }
1168 }
1169 else
1170 EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j,
1171 {
1172 FOR_EACH_BB (bb)
1173 {
1174 CLEAR_REGNO_REG_SET (bb->global_live_at_start, j);
1175 CLEAR_REGNO_REG_SET (bb->global_live_at_end, j);
1176 }
1177 });
1178 }
1179
1180 /* Clean up. */
1181 end_alias_analysis ();
1182 CLEAR_REG_SET (&cleared_regs);
1183 free (reg_equiv);
1184 }
1185
1186 /* Mark REG as having no known equivalence.
1187 Some instructions might have been proceessed before and furnished
1188 with REG_EQUIV notes for this register; these notes will have to be
1189 removed.
1190 STORE is the piece of RTL that does the non-constant / conflicting
1191 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1192 but needs to be there because this function is called from note_stores. */
1193 static void
1194 no_equiv (reg, store, data)
1195 rtx reg, store ATTRIBUTE_UNUSED;
1196 void *data ATTRIBUTE_UNUSED;
1197 {
1198 int regno;
1199 rtx list;
1200
1201 if (GET_CODE (reg) != REG)
1202 return;
1203 regno = REGNO (reg);
1204 list = reg_equiv[regno].init_insns;
1205 if (list == const0_rtx)
1206 return;
1207 for (; list; list = XEXP (list, 1))
1208 {
1209 rtx insn = XEXP (list, 0);
1210 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1211 }
1212 reg_equiv[regno].init_insns = const0_rtx;
1213 reg_equiv[regno].replacement = NULL_RTX;
1214 }
1215 \f
1216 /* Allocate hard regs to the pseudo regs used only within block number B.
1217 Only the pseudos that die but once can be handled. */
1218
1219 static void
1220 block_alloc (b)
1221 int b;
1222 {
1223 int i, q;
1224 rtx insn;
1225 rtx note, hard_reg;
1226 int insn_number = 0;
1227 int insn_count = 0;
1228 int max_uid = get_max_uid ();
1229 int *qty_order;
1230 int no_conflict_combined_regno = -1;
1231
1232 /* Count the instructions in the basic block. */
1233
1234 insn = BLOCK_END (b);
1235 while (1)
1236 {
1237 if (GET_CODE (insn) != NOTE)
1238 if (++insn_count > max_uid)
1239 abort ();
1240 if (insn == BLOCK_HEAD (b))
1241 break;
1242 insn = PREV_INSN (insn);
1243 }
1244
1245 /* +2 to leave room for a post_mark_life at the last insn and for
1246 the birth of a CLOBBER in the first insn. */
1247 regs_live_at = (HARD_REG_SET *) xcalloc ((2 * insn_count + 2),
1248 sizeof (HARD_REG_SET));
1249
1250 /* Initialize table of hardware registers currently live. */
1251
1252 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1253
1254 /* This loop scans the instructions of the basic block
1255 and assigns quantities to registers.
1256 It computes which registers to tie. */
1257
1258 insn = BLOCK_HEAD (b);
1259 while (1)
1260 {
1261 if (GET_CODE (insn) != NOTE)
1262 insn_number++;
1263
1264 if (INSN_P (insn))
1265 {
1266 rtx link, set;
1267 int win = 0;
1268 rtx r0, r1 = NULL_RTX;
1269 int combined_regno = -1;
1270 int i;
1271
1272 this_insn_number = insn_number;
1273 this_insn = insn;
1274
1275 extract_insn (insn);
1276 which_alternative = -1;
1277
1278 /* Is this insn suitable for tying two registers?
1279 If so, try doing that.
1280 Suitable insns are those with at least two operands and where
1281 operand 0 is an output that is a register that is not
1282 earlyclobber.
1283
1284 We can tie operand 0 with some operand that dies in this insn.
1285 First look for operands that are required to be in the same
1286 register as operand 0. If we find such, only try tying that
1287 operand or one that can be put into that operand if the
1288 operation is commutative. If we don't find an operand
1289 that is required to be in the same register as operand 0,
1290 we can tie with any operand.
1291
1292 Subregs in place of regs are also ok.
1293
1294 If tying is done, WIN is set nonzero. */
1295
1296 if (optimize
1297 && recog_data.n_operands > 1
1298 && recog_data.constraints[0][0] == '='
1299 && recog_data.constraints[0][1] != '&')
1300 {
1301 /* If non-negative, is an operand that must match operand 0. */
1302 int must_match_0 = -1;
1303 /* Counts number of alternatives that require a match with
1304 operand 0. */
1305 int n_matching_alts = 0;
1306
1307 for (i = 1; i < recog_data.n_operands; i++)
1308 {
1309 const char *p = recog_data.constraints[i];
1310 int this_match = requires_inout (p);
1311
1312 n_matching_alts += this_match;
1313 if (this_match == recog_data.n_alternatives)
1314 must_match_0 = i;
1315 }
1316
1317 r0 = recog_data.operand[0];
1318 for (i = 1; i < recog_data.n_operands; i++)
1319 {
1320 /* Skip this operand if we found an operand that
1321 must match operand 0 and this operand isn't it
1322 and can't be made to be it by commutativity. */
1323
1324 if (must_match_0 >= 0 && i != must_match_0
1325 && ! (i == must_match_0 + 1
1326 && recog_data.constraints[i-1][0] == '%')
1327 && ! (i == must_match_0 - 1
1328 && recog_data.constraints[i][0] == '%'))
1329 continue;
1330
1331 /* Likewise if each alternative has some operand that
1332 must match operand zero. In that case, skip any
1333 operand that doesn't list operand 0 since we know that
1334 the operand always conflicts with operand 0. We
1335 ignore commutatity in this case to keep things simple. */
1336 if (n_matching_alts == recog_data.n_alternatives
1337 && 0 == requires_inout (recog_data.constraints[i]))
1338 continue;
1339
1340 r1 = recog_data.operand[i];
1341
1342 /* If the operand is an address, find a register in it.
1343 There may be more than one register, but we only try one
1344 of them. */
1345 if (recog_data.constraints[i][0] == 'p')
1346 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1347 r1 = XEXP (r1, 0);
1348
1349 /* Avoid making a call-saved register unnecessarily
1350 clobbered. */
1351 hard_reg = get_hard_reg_initial_reg (cfun, r1);
1352 if (hard_reg != NULL_RTX)
1353 {
1354 if (GET_CODE (hard_reg) == REG
1355 && IN_RANGE (REGNO (hard_reg),
1356 0, FIRST_PSEUDO_REGISTER - 1)
1357 && ! call_used_regs[REGNO (hard_reg)])
1358 continue;
1359 }
1360
1361 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1362 {
1363 /* We have two priorities for hard register preferences.
1364 If we have a move insn or an insn whose first input
1365 can only be in the same register as the output, give
1366 priority to an equivalence found from that insn. */
1367 int may_save_copy
1368 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1369
1370 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1371 win = combine_regs (r1, r0, may_save_copy,
1372 insn_number, insn, 0);
1373 }
1374 if (win)
1375 break;
1376 }
1377 }
1378
1379 /* Recognize an insn sequence with an ultimate result
1380 which can safely overlap one of the inputs.
1381 The sequence begins with a CLOBBER of its result,
1382 and ends with an insn that copies the result to itself
1383 and has a REG_EQUAL note for an equivalent formula.
1384 That note indicates what the inputs are.
1385 The result and the input can overlap if each insn in
1386 the sequence either doesn't mention the input
1387 or has a REG_NO_CONFLICT note to inhibit the conflict.
1388
1389 We do the combining test at the CLOBBER so that the
1390 destination register won't have had a quantity number
1391 assigned, since that would prevent combining. */
1392
1393 if (optimize
1394 && GET_CODE (PATTERN (insn)) == CLOBBER
1395 && (r0 = XEXP (PATTERN (insn), 0),
1396 GET_CODE (r0) == REG)
1397 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1398 && XEXP (link, 0) != 0
1399 && GET_CODE (XEXP (link, 0)) == INSN
1400 && (set = single_set (XEXP (link, 0))) != 0
1401 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1402 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1403 NULL_RTX)) != 0)
1404 {
1405 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1406 /* Check that we have such a sequence. */
1407 && no_conflict_p (insn, r0, r1))
1408 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1409 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1410 && (r1 = XEXP (XEXP (note, 0), 0),
1411 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1412 && no_conflict_p (insn, r0, r1))
1413 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1414
1415 /* Here we care if the operation to be computed is
1416 commutative. */
1417 else if ((GET_CODE (XEXP (note, 0)) == EQ
1418 || GET_CODE (XEXP (note, 0)) == NE
1419 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1420 && (r1 = XEXP (XEXP (note, 0), 1),
1421 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1422 && no_conflict_p (insn, r0, r1))
1423 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1424
1425 /* If we did combine something, show the register number
1426 in question so that we know to ignore its death. */
1427 if (win)
1428 no_conflict_combined_regno = REGNO (r1);
1429 }
1430
1431 /* If registers were just tied, set COMBINED_REGNO
1432 to the number of the register used in this insn
1433 that was tied to the register set in this insn.
1434 This register's qty should not be "killed". */
1435
1436 if (win)
1437 {
1438 while (GET_CODE (r1) == SUBREG)
1439 r1 = SUBREG_REG (r1);
1440 combined_regno = REGNO (r1);
1441 }
1442
1443 /* Mark the death of everything that dies in this instruction,
1444 except for anything that was just combined. */
1445
1446 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1447 if (REG_NOTE_KIND (link) == REG_DEAD
1448 && GET_CODE (XEXP (link, 0)) == REG
1449 && combined_regno != (int) REGNO (XEXP (link, 0))
1450 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1451 || ! find_reg_note (insn, REG_NO_CONFLICT,
1452 XEXP (link, 0))))
1453 wipe_dead_reg (XEXP (link, 0), 0);
1454
1455 /* Allocate qty numbers for all registers local to this block
1456 that are born (set) in this instruction.
1457 A pseudo that already has a qty is not changed. */
1458
1459 note_stores (PATTERN (insn), reg_is_set, NULL);
1460
1461 /* If anything is set in this insn and then unused, mark it as dying
1462 after this insn, so it will conflict with our outputs. This
1463 can't match with something that combined, and it doesn't matter
1464 if it did. Do this after the calls to reg_is_set since these
1465 die after, not during, the current insn. */
1466
1467 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1468 if (REG_NOTE_KIND (link) == REG_UNUSED
1469 && GET_CODE (XEXP (link, 0)) == REG)
1470 wipe_dead_reg (XEXP (link, 0), 1);
1471
1472 /* If this is an insn that has a REG_RETVAL note pointing at a
1473 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1474 block, so clear any register number that combined within it. */
1475 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1476 && GET_CODE (XEXP (note, 0)) == INSN
1477 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1478 no_conflict_combined_regno = -1;
1479 }
1480
1481 /* Set the registers live after INSN_NUMBER. Note that we never
1482 record the registers live before the block's first insn, since no
1483 pseudos we care about are live before that insn. */
1484
1485 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1486 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1487
1488 if (insn == BLOCK_END (b))
1489 break;
1490
1491 insn = NEXT_INSN (insn);
1492 }
1493
1494 /* Now every register that is local to this basic block
1495 should have been given a quantity, or else -1 meaning ignore it.
1496 Every quantity should have a known birth and death.
1497
1498 Order the qtys so we assign them registers in order of the
1499 number of suggested registers they need so we allocate those with
1500 the most restrictive needs first. */
1501
1502 qty_order = (int *) xmalloc (next_qty * sizeof (int));
1503 for (i = 0; i < next_qty; i++)
1504 qty_order[i] = i;
1505
1506 #define EXCHANGE(I1, I2) \
1507 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1508
1509 switch (next_qty)
1510 {
1511 case 3:
1512 /* Make qty_order[2] be the one to allocate last. */
1513 if (qty_sugg_compare (0, 1) > 0)
1514 EXCHANGE (0, 1);
1515 if (qty_sugg_compare (1, 2) > 0)
1516 EXCHANGE (2, 1);
1517
1518 /* ... Fall through ... */
1519 case 2:
1520 /* Put the best one to allocate in qty_order[0]. */
1521 if (qty_sugg_compare (0, 1) > 0)
1522 EXCHANGE (0, 1);
1523
1524 /* ... Fall through ... */
1525
1526 case 1:
1527 case 0:
1528 /* Nothing to do here. */
1529 break;
1530
1531 default:
1532 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1533 }
1534
1535 /* Try to put each quantity in a suggested physical register, if it has one.
1536 This may cause registers to be allocated that otherwise wouldn't be, but
1537 this seems acceptable in local allocation (unlike global allocation). */
1538 for (i = 0; i < next_qty; i++)
1539 {
1540 q = qty_order[i];
1541 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1542 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1543 0, 1, qty[q].birth, qty[q].death);
1544 else
1545 qty[q].phys_reg = -1;
1546 }
1547
1548 /* Order the qtys so we assign them registers in order of
1549 decreasing length of life. Normally call qsort, but if we
1550 have only a very small number of quantities, sort them ourselves. */
1551
1552 for (i = 0; i < next_qty; i++)
1553 qty_order[i] = i;
1554
1555 #define EXCHANGE(I1, I2) \
1556 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1557
1558 switch (next_qty)
1559 {
1560 case 3:
1561 /* Make qty_order[2] be the one to allocate last. */
1562 if (qty_compare (0, 1) > 0)
1563 EXCHANGE (0, 1);
1564 if (qty_compare (1, 2) > 0)
1565 EXCHANGE (2, 1);
1566
1567 /* ... Fall through ... */
1568 case 2:
1569 /* Put the best one to allocate in qty_order[0]. */
1570 if (qty_compare (0, 1) > 0)
1571 EXCHANGE (0, 1);
1572
1573 /* ... Fall through ... */
1574
1575 case 1:
1576 case 0:
1577 /* Nothing to do here. */
1578 break;
1579
1580 default:
1581 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1582 }
1583
1584 /* Now for each qty that is not a hardware register,
1585 look for a hardware register to put it in.
1586 First try the register class that is cheapest for this qty,
1587 if there is more than one class. */
1588
1589 for (i = 0; i < next_qty; i++)
1590 {
1591 q = qty_order[i];
1592 if (qty[q].phys_reg < 0)
1593 {
1594 #ifdef INSN_SCHEDULING
1595 /* These values represent the adjusted lifetime of a qty so
1596 that it conflicts with qtys which appear near the start/end
1597 of this qty's lifetime.
1598
1599 The purpose behind extending the lifetime of this qty is to
1600 discourage the register allocator from creating false
1601 dependencies.
1602
1603 The adjustment value is chosen to indicate that this qty
1604 conflicts with all the qtys in the instructions immediately
1605 before and after the lifetime of this qty.
1606
1607 Experiments have shown that higher values tend to hurt
1608 overall code performance.
1609
1610 If allocation using the extended lifetime fails we will try
1611 again with the qty's unadjusted lifetime. */
1612 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1613 int fake_death = MIN (insn_number * 2 + 1,
1614 qty[q].death + 2 - qty[q].death % 2);
1615 #endif
1616
1617 if (N_REG_CLASSES > 1)
1618 {
1619 #ifdef INSN_SCHEDULING
1620 /* We try to avoid using hard registers allocated to qtys which
1621 are born immediately after this qty or die immediately before
1622 this qty.
1623
1624 This optimization is only appropriate when we will run
1625 a scheduling pass after reload and we are not optimizing
1626 for code size. */
1627 if (flag_schedule_insns_after_reload
1628 && !optimize_size
1629 && !SMALL_REGISTER_CLASSES)
1630 {
1631 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1632 qty[q].mode, q, 0, 0,
1633 fake_birth, fake_death);
1634 if (qty[q].phys_reg >= 0)
1635 continue;
1636 }
1637 #endif
1638 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1639 qty[q].mode, q, 0, 0,
1640 qty[q].birth, qty[q].death);
1641 if (qty[q].phys_reg >= 0)
1642 continue;
1643 }
1644
1645 #ifdef INSN_SCHEDULING
1646 /* Similarly, avoid false dependencies. */
1647 if (flag_schedule_insns_after_reload
1648 && !optimize_size
1649 && !SMALL_REGISTER_CLASSES
1650 && qty[q].alternate_class != NO_REGS)
1651 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1652 qty[q].mode, q, 0, 0,
1653 fake_birth, fake_death);
1654 #endif
1655 if (qty[q].alternate_class != NO_REGS)
1656 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1657 qty[q].mode, q, 0, 0,
1658 qty[q].birth, qty[q].death);
1659 }
1660 }
1661
1662 /* Now propagate the register assignments
1663 to the pseudo regs belonging to the qtys. */
1664
1665 for (q = 0; q < next_qty; q++)
1666 if (qty[q].phys_reg >= 0)
1667 {
1668 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1669 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1670 }
1671
1672 /* Clean up. */
1673 free (regs_live_at);
1674 free (qty_order);
1675 }
1676 \f
1677 /* Compare two quantities' priority for getting real registers.
1678 We give shorter-lived quantities higher priority.
1679 Quantities with more references are also preferred, as are quantities that
1680 require multiple registers. This is the identical prioritization as
1681 done by global-alloc.
1682
1683 We used to give preference to registers with *longer* lives, but using
1684 the same algorithm in both local- and global-alloc can speed up execution
1685 of some programs by as much as a factor of three! */
1686
1687 /* Note that the quotient will never be bigger than
1688 the value of floor_log2 times the maximum number of
1689 times a register can occur in one insn (surely less than 100)
1690 weighted by frequency (max REG_FREQ_MAX).
1691 Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1692 QTY_CMP_PRI is also used by qty_sugg_compare. */
1693
1694 #define QTY_CMP_PRI(q) \
1695 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1696 / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1697
1698 static int
1699 qty_compare (q1, q2)
1700 int q1, q2;
1701 {
1702 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1703 }
1704
1705 static int
1706 qty_compare_1 (q1p, q2p)
1707 const PTR q1p;
1708 const PTR q2p;
1709 {
1710 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1711 int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1712
1713 if (tem != 0)
1714 return tem;
1715
1716 /* If qtys are equally good, sort by qty number,
1717 so that the results of qsort leave nothing to chance. */
1718 return q1 - q2;
1719 }
1720 \f
1721 /* Compare two quantities' priority for getting real registers. This version
1722 is called for quantities that have suggested hard registers. First priority
1723 goes to quantities that have copy preferences, then to those that have
1724 normal preferences. Within those groups, quantities with the lower
1725 number of preferences have the highest priority. Of those, we use the same
1726 algorithm as above. */
1727
1728 #define QTY_CMP_SUGG(q) \
1729 (qty_phys_num_copy_sugg[q] \
1730 ? qty_phys_num_copy_sugg[q] \
1731 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1732
1733 static int
1734 qty_sugg_compare (q1, q2)
1735 int q1, q2;
1736 {
1737 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1738
1739 if (tem != 0)
1740 return tem;
1741
1742 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1743 }
1744
1745 static int
1746 qty_sugg_compare_1 (q1p, q2p)
1747 const PTR q1p;
1748 const PTR q2p;
1749 {
1750 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1751 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1752
1753 if (tem != 0)
1754 return tem;
1755
1756 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1757 if (tem != 0)
1758 return tem;
1759
1760 /* If qtys are equally good, sort by qty number,
1761 so that the results of qsort leave nothing to chance. */
1762 return q1 - q2;
1763 }
1764
1765 #undef QTY_CMP_SUGG
1766 #undef QTY_CMP_PRI
1767 \f
1768 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1769 Returns 1 if have done so, or 0 if cannot.
1770
1771 Combining registers means marking them as having the same quantity
1772 and adjusting the offsets within the quantity if either of
1773 them is a SUBREG).
1774
1775 We don't actually combine a hard reg with a pseudo; instead
1776 we just record the hard reg as the suggestion for the pseudo's quantity.
1777 If we really combined them, we could lose if the pseudo lives
1778 across an insn that clobbers the hard reg (eg, movstr).
1779
1780 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1781 there is no REG_DEAD note on INSN. This occurs during the processing
1782 of REG_NO_CONFLICT blocks.
1783
1784 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1785 SETREG or if the input and output must share a register.
1786 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1787
1788 There are elaborate checks for the validity of combining. */
1789
1790 static int
1791 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1792 rtx usedreg, setreg;
1793 int may_save_copy;
1794 int insn_number;
1795 rtx insn;
1796 int already_dead;
1797 {
1798 int ureg, sreg;
1799 int offset = 0;
1800 int usize, ssize;
1801 int sqty;
1802
1803 /* Determine the numbers and sizes of registers being used. If a subreg
1804 is present that does not change the entire register, don't consider
1805 this a copy insn. */
1806
1807 while (GET_CODE (usedreg) == SUBREG)
1808 {
1809 rtx subreg = SUBREG_REG (usedreg);
1810
1811 if (GET_CODE (subreg) == REG)
1812 {
1813 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1814 may_save_copy = 0;
1815
1816 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1817 offset += subreg_regno_offset (REGNO (subreg),
1818 GET_MODE (subreg),
1819 SUBREG_BYTE (usedreg),
1820 GET_MODE (usedreg));
1821 else
1822 offset += (SUBREG_BYTE (usedreg)
1823 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1824 }
1825
1826 usedreg = subreg;
1827 }
1828
1829 if (GET_CODE (usedreg) != REG)
1830 return 0;
1831
1832 ureg = REGNO (usedreg);
1833 if (ureg < FIRST_PSEUDO_REGISTER)
1834 usize = HARD_REGNO_NREGS (ureg, GET_MODE (usedreg));
1835 else
1836 usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1837 + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1838 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1839
1840 while (GET_CODE (setreg) == SUBREG)
1841 {
1842 rtx subreg = SUBREG_REG (setreg);
1843
1844 if (GET_CODE (subreg) == REG)
1845 {
1846 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1847 may_save_copy = 0;
1848
1849 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1850 offset -= subreg_regno_offset (REGNO (subreg),
1851 GET_MODE (subreg),
1852 SUBREG_BYTE (setreg),
1853 GET_MODE (setreg));
1854 else
1855 offset -= (SUBREG_BYTE (setreg)
1856 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1857 }
1858
1859 setreg = subreg;
1860 }
1861
1862 if (GET_CODE (setreg) != REG)
1863 return 0;
1864
1865 sreg = REGNO (setreg);
1866 if (sreg < FIRST_PSEUDO_REGISTER)
1867 ssize = HARD_REGNO_NREGS (sreg, GET_MODE (setreg));
1868 else
1869 ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1870 + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1871 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1872
1873 /* If UREG is a pseudo-register that hasn't already been assigned a
1874 quantity number, it means that it is not local to this block or dies
1875 more than once. In either event, we can't do anything with it. */
1876 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1877 /* Do not combine registers unless one fits within the other. */
1878 || (offset > 0 && usize + offset > ssize)
1879 || (offset < 0 && usize + offset < ssize)
1880 /* Do not combine with a smaller already-assigned object
1881 if that smaller object is already combined with something bigger. */
1882 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1883 && usize < qty[reg_qty[ureg]].size)
1884 /* Can't combine if SREG is not a register we can allocate. */
1885 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1886 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1887 These have already been taken care of. This probably wouldn't
1888 combine anyway, but don't take any chances. */
1889 || (ureg >= FIRST_PSEUDO_REGISTER
1890 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1891 /* Don't tie something to itself. In most cases it would make no
1892 difference, but it would screw up if the reg being tied to itself
1893 also dies in this insn. */
1894 || ureg == sreg
1895 /* Don't try to connect two different hardware registers. */
1896 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1897 /* Don't connect two different machine modes if they have different
1898 implications as to which registers may be used. */
1899 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1900 return 0;
1901
1902 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1903 qty_phys_sugg for the pseudo instead of tying them.
1904
1905 Return "failure" so that the lifespan of UREG is terminated here;
1906 that way the two lifespans will be disjoint and nothing will prevent
1907 the pseudo reg from being given this hard reg. */
1908
1909 if (ureg < FIRST_PSEUDO_REGISTER)
1910 {
1911 /* Allocate a quantity number so we have a place to put our
1912 suggestions. */
1913 if (reg_qty[sreg] == -2)
1914 reg_is_born (setreg, 2 * insn_number);
1915
1916 if (reg_qty[sreg] >= 0)
1917 {
1918 if (may_save_copy
1919 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1920 {
1921 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1922 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1923 }
1924 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1925 {
1926 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1927 qty_phys_num_sugg[reg_qty[sreg]]++;
1928 }
1929 }
1930 return 0;
1931 }
1932
1933 /* Similarly for SREG a hard register and UREG a pseudo register. */
1934
1935 if (sreg < FIRST_PSEUDO_REGISTER)
1936 {
1937 if (may_save_copy
1938 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1939 {
1940 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1941 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1942 }
1943 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1944 {
1945 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1946 qty_phys_num_sugg[reg_qty[ureg]]++;
1947 }
1948 return 0;
1949 }
1950
1951 /* At this point we know that SREG and UREG are both pseudos.
1952 Do nothing if SREG already has a quantity or is a register that we
1953 don't allocate. */
1954 if (reg_qty[sreg] >= -1
1955 /* If we are not going to let any regs live across calls,
1956 don't tie a call-crossing reg to a non-call-crossing reg. */
1957 || (current_function_has_nonlocal_label
1958 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1959 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1960 return 0;
1961
1962 /* We don't already know about SREG, so tie it to UREG
1963 if this is the last use of UREG, provided the classes they want
1964 are compatible. */
1965
1966 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1967 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1968 {
1969 /* Add SREG to UREG's quantity. */
1970 sqty = reg_qty[ureg];
1971 reg_qty[sreg] = sqty;
1972 reg_offset[sreg] = reg_offset[ureg] + offset;
1973 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1974 qty[sqty].first_reg = sreg;
1975
1976 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1977 update_qty_class (sqty, sreg);
1978
1979 /* Update info about quantity SQTY. */
1980 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1981 qty[sqty].n_refs += REG_N_REFS (sreg);
1982 qty[sqty].freq += REG_FREQ (sreg);
1983 if (usize < ssize)
1984 {
1985 int i;
1986
1987 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
1988 reg_offset[i] -= offset;
1989
1990 qty[sqty].size = ssize;
1991 qty[sqty].mode = GET_MODE (setreg);
1992 }
1993 }
1994 else
1995 return 0;
1996
1997 return 1;
1998 }
1999 \f
2000 /* Return 1 if the preferred class of REG allows it to be tied
2001 to a quantity or register whose class is CLASS.
2002 True if REG's reg class either contains or is contained in CLASS. */
2003
2004 static int
2005 reg_meets_class_p (reg, class)
2006 int reg;
2007 enum reg_class class;
2008 {
2009 enum reg_class rclass = reg_preferred_class (reg);
2010 return (reg_class_subset_p (rclass, class)
2011 || reg_class_subset_p (class, rclass));
2012 }
2013
2014 /* Update the class of QTYNO assuming that REG is being tied to it. */
2015
2016 static void
2017 update_qty_class (qtyno, reg)
2018 int qtyno;
2019 int reg;
2020 {
2021 enum reg_class rclass = reg_preferred_class (reg);
2022 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
2023 qty[qtyno].min_class = rclass;
2024
2025 rclass = reg_alternate_class (reg);
2026 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
2027 qty[qtyno].alternate_class = rclass;
2028
2029 if (REG_CHANGES_MODE (reg))
2030 qty[qtyno].changes_mode = 1;
2031 }
2032 \f
2033 /* Handle something which alters the value of an rtx REG.
2034
2035 REG is whatever is set or clobbered. SETTER is the rtx that
2036 is modifying the register.
2037
2038 If it is not really a register, we do nothing.
2039 The file-global variables `this_insn' and `this_insn_number'
2040 carry info from `block_alloc'. */
2041
2042 static void
2043 reg_is_set (reg, setter, data)
2044 rtx reg;
2045 rtx setter;
2046 void *data ATTRIBUTE_UNUSED;
2047 {
2048 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2049 a hard register. These may actually not exist any more. */
2050
2051 if (GET_CODE (reg) != SUBREG
2052 && GET_CODE (reg) != REG)
2053 return;
2054
2055 /* Mark this register as being born. If it is used in a CLOBBER, mark
2056 it as being born halfway between the previous insn and this insn so that
2057 it conflicts with our inputs but not the outputs of the previous insn. */
2058
2059 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2060 }
2061 \f
2062 /* Handle beginning of the life of register REG.
2063 BIRTH is the index at which this is happening. */
2064
2065 static void
2066 reg_is_born (reg, birth)
2067 rtx reg;
2068 int birth;
2069 {
2070 int regno;
2071
2072 if (GET_CODE (reg) == SUBREG)
2073 {
2074 regno = REGNO (SUBREG_REG (reg));
2075 if (regno < FIRST_PSEUDO_REGISTER)
2076 regno = subreg_hard_regno (reg, 1);
2077 }
2078 else
2079 regno = REGNO (reg);
2080
2081 if (regno < FIRST_PSEUDO_REGISTER)
2082 {
2083 mark_life (regno, GET_MODE (reg), 1);
2084
2085 /* If the register was to have been born earlier that the present
2086 insn, mark it as live where it is actually born. */
2087 if (birth < 2 * this_insn_number)
2088 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2089 }
2090 else
2091 {
2092 if (reg_qty[regno] == -2)
2093 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2094
2095 /* If this register has a quantity number, show that it isn't dead. */
2096 if (reg_qty[regno] >= 0)
2097 qty[reg_qty[regno]].death = -1;
2098 }
2099 }
2100
2101 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
2102 REG is an output that is dying (i.e., it is never used), otherwise it
2103 is an input (the normal case).
2104 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2105
2106 static void
2107 wipe_dead_reg (reg, output_p)
2108 rtx reg;
2109 int output_p;
2110 {
2111 int regno = REGNO (reg);
2112
2113 /* If this insn has multiple results,
2114 and the dead reg is used in one of the results,
2115 extend its life to after this insn,
2116 so it won't get allocated together with any other result of this insn.
2117
2118 It is unsafe to use !single_set here since it will ignore an unused
2119 output. Just because an output is unused does not mean the compiler
2120 can assume the side effect will not occur. Consider if REG appears
2121 in the address of an output and we reload the output. If we allocate
2122 REG to the same hard register as an unused output we could set the hard
2123 register before the output reload insn. */
2124 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2125 && multiple_sets (this_insn))
2126 {
2127 int i;
2128 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2129 {
2130 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2131 if (GET_CODE (set) == SET
2132 && GET_CODE (SET_DEST (set)) != REG
2133 && !rtx_equal_p (reg, SET_DEST (set))
2134 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2135 output_p = 1;
2136 }
2137 }
2138
2139 /* If this register is used in an auto-increment address, then extend its
2140 life to after this insn, so that it won't get allocated together with
2141 the result of this insn. */
2142 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2143 output_p = 1;
2144
2145 if (regno < FIRST_PSEUDO_REGISTER)
2146 {
2147 mark_life (regno, GET_MODE (reg), 0);
2148
2149 /* If a hard register is dying as an output, mark it as in use at
2150 the beginning of this insn (the above statement would cause this
2151 not to happen). */
2152 if (output_p)
2153 post_mark_life (regno, GET_MODE (reg), 1,
2154 2 * this_insn_number, 2 * this_insn_number + 1);
2155 }
2156
2157 else if (reg_qty[regno] >= 0)
2158 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2159 }
2160 \f
2161 /* Find a block of SIZE words of hard regs in reg_class CLASS
2162 that can hold something of machine-mode MODE
2163 (but actually we test only the first of the block for holding MODE)
2164 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2165 and return the number of the first of them.
2166 Return -1 if such a block cannot be found.
2167 If QTYNO crosses calls, insist on a register preserved by calls,
2168 unless ACCEPT_CALL_CLOBBERED is nonzero.
2169
2170 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
2171 register is available. If not, return -1. */
2172
2173 static int
2174 find_free_reg (class, mode, qtyno, accept_call_clobbered, just_try_suggested,
2175 born_index, dead_index)
2176 enum reg_class class;
2177 enum machine_mode mode;
2178 int qtyno;
2179 int accept_call_clobbered;
2180 int just_try_suggested;
2181 int born_index, dead_index;
2182 {
2183 int i, ins;
2184 #ifdef HARD_REG_SET
2185 /* Declare it register if it's a scalar. */
2186 register
2187 #endif
2188 HARD_REG_SET used, first_used;
2189 #ifdef ELIMINABLE_REGS
2190 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2191 #endif
2192
2193 /* Validate our parameters. */
2194 if (born_index < 0 || born_index > dead_index)
2195 abort ();
2196
2197 /* Don't let a pseudo live in a reg across a function call
2198 if we might get a nonlocal goto. */
2199 if (current_function_has_nonlocal_label
2200 && qty[qtyno].n_calls_crossed > 0)
2201 return -1;
2202
2203 if (accept_call_clobbered)
2204 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2205 else if (qty[qtyno].n_calls_crossed == 0)
2206 COPY_HARD_REG_SET (used, fixed_reg_set);
2207 else
2208 COPY_HARD_REG_SET (used, call_used_reg_set);
2209
2210 if (accept_call_clobbered)
2211 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2212
2213 for (ins = born_index; ins < dead_index; ins++)
2214 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2215
2216 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2217
2218 /* Don't use the frame pointer reg in local-alloc even if
2219 we may omit the frame pointer, because if we do that and then we
2220 need a frame pointer, reload won't know how to move the pseudo
2221 to another hard reg. It can move only regs made by global-alloc.
2222
2223 This is true of any register that can be eliminated. */
2224 #ifdef ELIMINABLE_REGS
2225 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2226 SET_HARD_REG_BIT (used, eliminables[i].from);
2227 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2228 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2229 that it might be eliminated into. */
2230 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2231 #endif
2232 #else
2233 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2234 #endif
2235
2236 #ifdef CLASS_CANNOT_CHANGE_MODE
2237 if (qty[qtyno].changes_mode)
2238 IOR_HARD_REG_SET (used,
2239 reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE]);
2240 #endif
2241
2242 /* Normally, the registers that can be used for the first register in
2243 a multi-register quantity are the same as those that can be used for
2244 subsequent registers. However, if just trying suggested registers,
2245 restrict our consideration to them. If there are copy-suggested
2246 register, try them. Otherwise, try the arithmetic-suggested
2247 registers. */
2248 COPY_HARD_REG_SET (first_used, used);
2249
2250 if (just_try_suggested)
2251 {
2252 if (qty_phys_num_copy_sugg[qtyno] != 0)
2253 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2254 else
2255 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2256 }
2257
2258 /* If all registers are excluded, we can't do anything. */
2259 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2260
2261 /* If at least one would be suitable, test each hard reg. */
2262
2263 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2264 {
2265 #ifdef REG_ALLOC_ORDER
2266 int regno = reg_alloc_order[i];
2267 #else
2268 int regno = i;
2269 #endif
2270 if (! TEST_HARD_REG_BIT (first_used, regno)
2271 && HARD_REGNO_MODE_OK (regno, mode)
2272 && (qty[qtyno].n_calls_crossed == 0
2273 || accept_call_clobbered
2274 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2275 {
2276 int j;
2277 int size1 = HARD_REGNO_NREGS (regno, mode);
2278 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2279 if (j == size1)
2280 {
2281 /* Mark that this register is in use between its birth and death
2282 insns. */
2283 post_mark_life (regno, mode, 1, born_index, dead_index);
2284 return regno;
2285 }
2286 #ifndef REG_ALLOC_ORDER
2287 /* Skip starting points we know will lose. */
2288 i += j;
2289 #endif
2290 }
2291 }
2292
2293 fail:
2294 /* If we are just trying suggested register, we have just tried copy-
2295 suggested registers, and there are arithmetic-suggested registers,
2296 try them. */
2297
2298 /* If it would be profitable to allocate a call-clobbered register
2299 and save and restore it around calls, do that. */
2300 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2301 && qty_phys_num_sugg[qtyno] != 0)
2302 {
2303 /* Don't try the copy-suggested regs again. */
2304 qty_phys_num_copy_sugg[qtyno] = 0;
2305 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2306 born_index, dead_index);
2307 }
2308
2309 /* We need not check to see if the current function has nonlocal
2310 labels because we don't put any pseudos that are live over calls in
2311 registers in that case. */
2312
2313 if (! accept_call_clobbered
2314 && flag_caller_saves
2315 && ! just_try_suggested
2316 && qty[qtyno].n_calls_crossed != 0
2317 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2318 qty[qtyno].n_calls_crossed))
2319 {
2320 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2321 if (i >= 0)
2322 caller_save_needed = 1;
2323 return i;
2324 }
2325 return -1;
2326 }
2327 \f
2328 /* Mark that REGNO with machine-mode MODE is live starting from the current
2329 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2330 is zero). */
2331
2332 static void
2333 mark_life (regno, mode, life)
2334 int regno;
2335 enum machine_mode mode;
2336 int life;
2337 {
2338 int j = HARD_REGNO_NREGS (regno, mode);
2339 if (life)
2340 while (--j >= 0)
2341 SET_HARD_REG_BIT (regs_live, regno + j);
2342 else
2343 while (--j >= 0)
2344 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2345 }
2346
2347 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2348 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2349 to insn number DEATH (exclusive). */
2350
2351 static void
2352 post_mark_life (regno, mode, life, birth, death)
2353 int regno;
2354 enum machine_mode mode;
2355 int life, birth, death;
2356 {
2357 int j = HARD_REGNO_NREGS (regno, mode);
2358 #ifdef HARD_REG_SET
2359 /* Declare it register if it's a scalar. */
2360 register
2361 #endif
2362 HARD_REG_SET this_reg;
2363
2364 CLEAR_HARD_REG_SET (this_reg);
2365 while (--j >= 0)
2366 SET_HARD_REG_BIT (this_reg, regno + j);
2367
2368 if (life)
2369 while (birth < death)
2370 {
2371 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2372 birth++;
2373 }
2374 else
2375 while (birth < death)
2376 {
2377 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2378 birth++;
2379 }
2380 }
2381 \f
2382 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2383 is the register being clobbered, and R1 is a register being used in
2384 the equivalent expression.
2385
2386 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2387 in which it is used, return 1.
2388
2389 Otherwise, return 0. */
2390
2391 static int
2392 no_conflict_p (insn, r0, r1)
2393 rtx insn, r0 ATTRIBUTE_UNUSED, r1;
2394 {
2395 int ok = 0;
2396 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2397 rtx p, last;
2398
2399 /* If R1 is a hard register, return 0 since we handle this case
2400 when we scan the insns that actually use it. */
2401
2402 if (note == 0
2403 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2404 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2405 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2406 return 0;
2407
2408 last = XEXP (note, 0);
2409
2410 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2411 if (INSN_P (p))
2412 {
2413 if (find_reg_note (p, REG_DEAD, r1))
2414 ok = 1;
2415
2416 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2417 some earlier optimization pass has inserted instructions into
2418 the sequence, and it is not safe to perform this optimization.
2419 Note that emit_no_conflict_block always ensures that this is
2420 true when these sequences are created. */
2421 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2422 return 0;
2423 }
2424
2425 return ok;
2426 }
2427 \f
2428 /* Return the number of alternatives for which the constraint string P
2429 indicates that the operand must be equal to operand 0 and that no register
2430 is acceptable. */
2431
2432 static int
2433 requires_inout (p)
2434 const char *p;
2435 {
2436 char c;
2437 int found_zero = 0;
2438 int reg_allowed = 0;
2439 int num_matching_alts = 0;
2440
2441 while ((c = *p++))
2442 switch (c)
2443 {
2444 case '=': case '+': case '?':
2445 case '#': case '&': case '!':
2446 case '*': case '%':
2447 case 'm': case '<': case '>': case 'V': case 'o':
2448 case 'E': case 'F': case 'G': case 'H':
2449 case 's': case 'i': case 'n':
2450 case 'I': case 'J': case 'K': case 'L':
2451 case 'M': case 'N': case 'O': case 'P':
2452 case 'X':
2453 /* These don't say anything we care about. */
2454 break;
2455
2456 case ',':
2457 if (found_zero && ! reg_allowed)
2458 num_matching_alts++;
2459
2460 found_zero = reg_allowed = 0;
2461 break;
2462
2463 case '0':
2464 found_zero = 1;
2465 break;
2466
2467 case '1': case '2': case '3': case '4': case '5':
2468 case '6': case '7': case '8': case '9':
2469 /* Skip the balance of the matching constraint. */
2470 while (ISDIGIT (*p))
2471 p++;
2472 break;
2473
2474 default:
2475 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
2476 break;
2477 /* FALLTHRU */
2478 case 'p':
2479 case 'g': case 'r':
2480 reg_allowed = 1;
2481 break;
2482 }
2483
2484 if (found_zero && ! reg_allowed)
2485 num_matching_alts++;
2486
2487 return num_matching_alts;
2488 }
2489 \f
2490 void
2491 dump_local_alloc (file)
2492 FILE *file;
2493 {
2494 int i;
2495 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2496 if (reg_renumber[i] != -1)
2497 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2498 }
This page took 0.159624 seconds and 5 git commands to generate.