]> gcc.gnu.org Git - gcc.git/blob - gcc/libgcc2.c
libgcc2.c (__bb_exit_func): Remove unused variable.
[gcc.git] / gcc / libgcc2.c
1 /* More subroutines needed by GCC output code on some machines. */
2 /* Compile this one with gcc. */
3 /* Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 In addition to the permissions in the GNU General Public License, the
14 Free Software Foundation gives you unlimited permission to link the
15 compiled version of this file into combinations with other programs,
16 and to distribute those combinations without any restriction coming
17 from the use of this file. (The General Public License restrictions
18 do apply in other respects; for example, they cover modification of
19 the file, and distribution when not linked into a combine
20 executable.)
21
22 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
23 WARRANTY; without even the implied warranty of MERCHANTABILITY or
24 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
25 for more details.
26
27 You should have received a copy of the GNU General Public License
28 along with GCC; see the file COPYING. If not, write to the Free
29 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
30 02111-1307, USA. */
31
32 /* It is incorrect to include config.h here, because this file is being
33 compiled for the target, and hence definitions concerning only the host
34 do not apply. */
35
36 #include "tconfig.h"
37 #include "tsystem.h"
38
39 #include "machmode.h"
40
41 /* Don't use `fancy_abort' here even if config.h says to use it. */
42 #ifdef abort
43 #undef abort
44 #endif
45
46 #include "libgcc2.h"
47 \f
48 #if defined (L_negdi2) || defined (L_divdi3) || defined (L_moddi3)
49 #if defined (L_divdi3) || defined (L_moddi3)
50 static inline
51 #endif
52 DWtype
53 __negdi2 (DWtype u)
54 {
55 DWunion w;
56 DWunion uu;
57
58 uu.ll = u;
59
60 w.s.low = -uu.s.low;
61 w.s.high = -uu.s.high - ((UWtype) w.s.low > 0);
62
63 return w.ll;
64 }
65 #endif
66
67 #ifdef L_addvsi3
68 Wtype
69 __addvsi3 (Wtype a, Wtype b)
70 {
71 Wtype w;
72
73 w = a + b;
74
75 if (b >= 0 ? w < a : w > a)
76 abort ();
77
78 return w;
79 }
80 #endif
81 \f
82 #ifdef L_addvdi3
83 DWtype
84 __addvdi3 (DWtype a, DWtype b)
85 {
86 DWtype w;
87
88 w = a + b;
89
90 if (b >= 0 ? w < a : w > a)
91 abort ();
92
93 return w;
94 }
95 #endif
96 \f
97 #ifdef L_subvsi3
98 Wtype
99 __subvsi3 (Wtype a, Wtype b)
100 {
101 #ifdef L_addvsi3
102 return __addvsi3 (a, (-b));
103 #else
104 DWtype w;
105
106 w = a - b;
107
108 if (b >= 0 ? w > a : w < a)
109 abort ();
110
111 return w;
112 #endif
113 }
114 #endif
115 \f
116 #ifdef L_subvdi3
117 DWtype
118 __subvdi3 (DWtype a, DWtype b)
119 {
120 #ifdef L_addvdi3
121 return (a, (-b));
122 #else
123 DWtype w;
124
125 w = a - b;
126
127 if (b >= 0 ? w > a : w < a)
128 abort ();
129
130 return w;
131 #endif
132 }
133 #endif
134 \f
135 #ifdef L_mulvsi3
136 Wtype
137 __mulvsi3 (Wtype a, Wtype b)
138 {
139 DWtype w;
140
141 w = a * b;
142
143 if (((a >= 0) == (b >= 0)) ? w < 0 : w > 0)
144 abort ();
145
146 return w;
147 }
148 #endif
149 \f
150 #ifdef L_negvsi2
151 Wtype
152 __negvsi2 (Wtype a)
153 {
154 Wtype w;
155
156 w = -a;
157
158 if (a >= 0 ? w > 0 : w < 0)
159 abort ();
160
161 return w;
162 }
163 #endif
164 \f
165 #ifdef L_negvdi2
166 DWtype
167 __negvdi2 (DWtype a)
168 {
169 DWtype w;
170
171 w = -a;
172
173 if (a >= 0 ? w > 0 : w < 0)
174 abort ();
175
176 return w;
177 }
178 #endif
179 \f
180 #ifdef L_absvsi2
181 Wtype
182 __absvsi2 (Wtype a)
183 {
184 Wtype w = a;
185
186 if (a < 0)
187 #ifdef L_negvsi2
188 w = __negvsi2 (a);
189 #else
190 w = -a;
191
192 if (w < 0)
193 abort ();
194 #endif
195
196 return w;
197 }
198 #endif
199 \f
200 #ifdef L_absvdi2
201 DWtype
202 __absvdi2 (DWtype a)
203 {
204 DWtype w = a;
205
206 if (a < 0)
207 #ifdef L_negvsi2
208 w = __negvsi2 (a);
209 #else
210 w = -a;
211
212 if (w < 0)
213 abort ();
214 #endif
215
216 return w;
217 }
218 #endif
219 \f
220 #ifdef L_mulvdi3
221 DWtype
222 __mulvdi3 (DWtype u, DWtype v)
223 {
224 DWtype w;
225
226 w = u * v;
227
228 if (((u >= 0) == (v >= 0)) ? w < 0 : w > 0)
229 abort ();
230
231 return w;
232 }
233 #endif
234 \f
235
236 /* Unless shift functions are defined whith full ANSI prototypes,
237 parameter b will be promoted to int if word_type is smaller than an int. */
238 #ifdef L_lshrdi3
239 DWtype
240 __lshrdi3 (DWtype u, word_type b)
241 {
242 DWunion w;
243 word_type bm;
244 DWunion uu;
245
246 if (b == 0)
247 return u;
248
249 uu.ll = u;
250
251 bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
252 if (bm <= 0)
253 {
254 w.s.high = 0;
255 w.s.low = (UWtype) uu.s.high >> -bm;
256 }
257 else
258 {
259 UWtype carries = (UWtype) uu.s.high << bm;
260
261 w.s.high = (UWtype) uu.s.high >> b;
262 w.s.low = ((UWtype) uu.s.low >> b) | carries;
263 }
264
265 return w.ll;
266 }
267 #endif
268
269 #ifdef L_ashldi3
270 DWtype
271 __ashldi3 (DWtype u, word_type b)
272 {
273 DWunion w;
274 word_type bm;
275 DWunion uu;
276
277 if (b == 0)
278 return u;
279
280 uu.ll = u;
281
282 bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
283 if (bm <= 0)
284 {
285 w.s.low = 0;
286 w.s.high = (UWtype) uu.s.low << -bm;
287 }
288 else
289 {
290 UWtype carries = (UWtype) uu.s.low >> bm;
291
292 w.s.low = (UWtype) uu.s.low << b;
293 w.s.high = ((UWtype) uu.s.high << b) | carries;
294 }
295
296 return w.ll;
297 }
298 #endif
299
300 #ifdef L_ashrdi3
301 DWtype
302 __ashrdi3 (DWtype u, word_type b)
303 {
304 DWunion w;
305 word_type bm;
306 DWunion uu;
307
308 if (b == 0)
309 return u;
310
311 uu.ll = u;
312
313 bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
314 if (bm <= 0)
315 {
316 /* w.s.high = 1..1 or 0..0 */
317 w.s.high = uu.s.high >> (sizeof (Wtype) * BITS_PER_UNIT - 1);
318 w.s.low = uu.s.high >> -bm;
319 }
320 else
321 {
322 UWtype carries = (UWtype) uu.s.high << bm;
323
324 w.s.high = uu.s.high >> b;
325 w.s.low = ((UWtype) uu.s.low >> b) | carries;
326 }
327
328 return w.ll;
329 }
330 #endif
331 \f
332 #ifdef L_ffsdi2
333 DWtype
334 __ffsdi2 (DWtype u)
335 {
336 DWunion uu;
337 UWtype word, count, add;
338
339 uu.ll = u;
340 if (uu.s.low != 0)
341 word = uu.s.low, add = 0;
342 else if (uu.s.high != 0)
343 word = uu.s.high, add = BITS_PER_UNIT * sizeof (Wtype);
344 else
345 return 0;
346
347 count_trailing_zeros (count, word);
348 return count + add + 1;
349 }
350 #endif
351 \f
352 #ifdef L_muldi3
353 DWtype
354 __muldi3 (DWtype u, DWtype v)
355 {
356 DWunion w;
357 DWunion uu, vv;
358
359 uu.ll = u,
360 vv.ll = v;
361
362 w.ll = __umulsidi3 (uu.s.low, vv.s.low);
363 w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
364 + (UWtype) uu.s.high * (UWtype) vv.s.low);
365
366 return w.ll;
367 }
368 #endif
369 \f
370 #ifdef L_udiv_w_sdiv
371 #if defined (sdiv_qrnnd)
372 UWtype
373 __udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
374 {
375 UWtype q, r;
376 UWtype c0, c1, b1;
377
378 if ((Wtype) d >= 0)
379 {
380 if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
381 {
382 /* dividend, divisor, and quotient are nonnegative */
383 sdiv_qrnnd (q, r, a1, a0, d);
384 }
385 else
386 {
387 /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d */
388 sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
389 /* Divide (c1*2^32 + c0) by d */
390 sdiv_qrnnd (q, r, c1, c0, d);
391 /* Add 2^31 to quotient */
392 q += (UWtype) 1 << (W_TYPE_SIZE - 1);
393 }
394 }
395 else
396 {
397 b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */
398 c1 = a1 >> 1; /* A/2 */
399 c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);
400
401 if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */
402 {
403 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
404
405 r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */
406 if ((d & 1) != 0)
407 {
408 if (r >= q)
409 r = r - q;
410 else if (q - r <= d)
411 {
412 r = r - q + d;
413 q--;
414 }
415 else
416 {
417 r = r - q + 2*d;
418 q -= 2;
419 }
420 }
421 }
422 else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */
423 {
424 c1 = (b1 - 1) - c1;
425 c0 = ~c0; /* logical NOT */
426
427 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
428
429 q = ~q; /* (A/2)/b1 */
430 r = (b1 - 1) - r;
431
432 r = 2*r + (a0 & 1); /* A/(2*b1) */
433
434 if ((d & 1) != 0)
435 {
436 if (r >= q)
437 r = r - q;
438 else if (q - r <= d)
439 {
440 r = r - q + d;
441 q--;
442 }
443 else
444 {
445 r = r - q + 2*d;
446 q -= 2;
447 }
448 }
449 }
450 else /* Implies c1 = b1 */
451 { /* Hence a1 = d - 1 = 2*b1 - 1 */
452 if (a0 >= -d)
453 {
454 q = -1;
455 r = a0 + d;
456 }
457 else
458 {
459 q = -2;
460 r = a0 + 2*d;
461 }
462 }
463 }
464
465 *rp = r;
466 return q;
467 }
468 #else
469 /* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */
470 UWtype
471 __udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
472 UWtype a1 __attribute__ ((__unused__)),
473 UWtype a0 __attribute__ ((__unused__)),
474 UWtype d __attribute__ ((__unused__)))
475 {
476 return 0;
477 }
478 #endif
479 #endif
480 \f
481 #if (defined (L_udivdi3) || defined (L_divdi3) || \
482 defined (L_umoddi3) || defined (L_moddi3))
483 #define L_udivmoddi4
484 #endif
485
486 #ifdef L_clz
487 const UQItype __clz_tab[] =
488 {
489 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
490 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
491 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
492 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
493 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
494 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
495 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
496 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
497 };
498 #endif
499
500 #ifdef L_udivmoddi4
501
502 #if (defined (L_udivdi3) || defined (L_divdi3) || \
503 defined (L_umoddi3) || defined (L_moddi3))
504 static inline
505 #endif
506 UDWtype
507 __udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
508 {
509 DWunion ww;
510 DWunion nn, dd;
511 DWunion rr;
512 UWtype d0, d1, n0, n1, n2;
513 UWtype q0, q1;
514 UWtype b, bm;
515
516 nn.ll = n;
517 dd.ll = d;
518
519 d0 = dd.s.low;
520 d1 = dd.s.high;
521 n0 = nn.s.low;
522 n1 = nn.s.high;
523
524 #if !UDIV_NEEDS_NORMALIZATION
525 if (d1 == 0)
526 {
527 if (d0 > n1)
528 {
529 /* 0q = nn / 0D */
530
531 udiv_qrnnd (q0, n0, n1, n0, d0);
532 q1 = 0;
533
534 /* Remainder in n0. */
535 }
536 else
537 {
538 /* qq = NN / 0d */
539
540 if (d0 == 0)
541 d0 = 1 / d0; /* Divide intentionally by zero. */
542
543 udiv_qrnnd (q1, n1, 0, n1, d0);
544 udiv_qrnnd (q0, n0, n1, n0, d0);
545
546 /* Remainder in n0. */
547 }
548
549 if (rp != 0)
550 {
551 rr.s.low = n0;
552 rr.s.high = 0;
553 *rp = rr.ll;
554 }
555 }
556
557 #else /* UDIV_NEEDS_NORMALIZATION */
558
559 if (d1 == 0)
560 {
561 if (d0 > n1)
562 {
563 /* 0q = nn / 0D */
564
565 count_leading_zeros (bm, d0);
566
567 if (bm != 0)
568 {
569 /* Normalize, i.e. make the most significant bit of the
570 denominator set. */
571
572 d0 = d0 << bm;
573 n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
574 n0 = n0 << bm;
575 }
576
577 udiv_qrnnd (q0, n0, n1, n0, d0);
578 q1 = 0;
579
580 /* Remainder in n0 >> bm. */
581 }
582 else
583 {
584 /* qq = NN / 0d */
585
586 if (d0 == 0)
587 d0 = 1 / d0; /* Divide intentionally by zero. */
588
589 count_leading_zeros (bm, d0);
590
591 if (bm == 0)
592 {
593 /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
594 conclude (the most significant bit of n1 is set) /\ (the
595 leading quotient digit q1 = 1).
596
597 This special case is necessary, not an optimization.
598 (Shifts counts of W_TYPE_SIZE are undefined.) */
599
600 n1 -= d0;
601 q1 = 1;
602 }
603 else
604 {
605 /* Normalize. */
606
607 b = W_TYPE_SIZE - bm;
608
609 d0 = d0 << bm;
610 n2 = n1 >> b;
611 n1 = (n1 << bm) | (n0 >> b);
612 n0 = n0 << bm;
613
614 udiv_qrnnd (q1, n1, n2, n1, d0);
615 }
616
617 /* n1 != d0... */
618
619 udiv_qrnnd (q0, n0, n1, n0, d0);
620
621 /* Remainder in n0 >> bm. */
622 }
623
624 if (rp != 0)
625 {
626 rr.s.low = n0 >> bm;
627 rr.s.high = 0;
628 *rp = rr.ll;
629 }
630 }
631 #endif /* UDIV_NEEDS_NORMALIZATION */
632
633 else
634 {
635 if (d1 > n1)
636 {
637 /* 00 = nn / DD */
638
639 q0 = 0;
640 q1 = 0;
641
642 /* Remainder in n1n0. */
643 if (rp != 0)
644 {
645 rr.s.low = n0;
646 rr.s.high = n1;
647 *rp = rr.ll;
648 }
649 }
650 else
651 {
652 /* 0q = NN / dd */
653
654 count_leading_zeros (bm, d1);
655 if (bm == 0)
656 {
657 /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
658 conclude (the most significant bit of n1 is set) /\ (the
659 quotient digit q0 = 0 or 1).
660
661 This special case is necessary, not an optimization. */
662
663 /* The condition on the next line takes advantage of that
664 n1 >= d1 (true due to program flow). */
665 if (n1 > d1 || n0 >= d0)
666 {
667 q0 = 1;
668 sub_ddmmss (n1, n0, n1, n0, d1, d0);
669 }
670 else
671 q0 = 0;
672
673 q1 = 0;
674
675 if (rp != 0)
676 {
677 rr.s.low = n0;
678 rr.s.high = n1;
679 *rp = rr.ll;
680 }
681 }
682 else
683 {
684 UWtype m1, m0;
685 /* Normalize. */
686
687 b = W_TYPE_SIZE - bm;
688
689 d1 = (d1 << bm) | (d0 >> b);
690 d0 = d0 << bm;
691 n2 = n1 >> b;
692 n1 = (n1 << bm) | (n0 >> b);
693 n0 = n0 << bm;
694
695 udiv_qrnnd (q0, n1, n2, n1, d1);
696 umul_ppmm (m1, m0, q0, d0);
697
698 if (m1 > n1 || (m1 == n1 && m0 > n0))
699 {
700 q0--;
701 sub_ddmmss (m1, m0, m1, m0, d1, d0);
702 }
703
704 q1 = 0;
705
706 /* Remainder in (n1n0 - m1m0) >> bm. */
707 if (rp != 0)
708 {
709 sub_ddmmss (n1, n0, n1, n0, m1, m0);
710 rr.s.low = (n1 << b) | (n0 >> bm);
711 rr.s.high = n1 >> bm;
712 *rp = rr.ll;
713 }
714 }
715 }
716 }
717
718 ww.s.low = q0;
719 ww.s.high = q1;
720 return ww.ll;
721 }
722 #endif
723
724 #ifdef L_divdi3
725 DWtype
726 __divdi3 (DWtype u, DWtype v)
727 {
728 word_type c = 0;
729 DWunion uu, vv;
730 DWtype w;
731
732 uu.ll = u;
733 vv.ll = v;
734
735 if (uu.s.high < 0)
736 c = ~c,
737 uu.ll = __negdi2 (uu.ll);
738 if (vv.s.high < 0)
739 c = ~c,
740 vv.ll = __negdi2 (vv.ll);
741
742 w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
743 if (c)
744 w = __negdi2 (w);
745
746 return w;
747 }
748 #endif
749
750 #ifdef L_moddi3
751 DWtype
752 __moddi3 (DWtype u, DWtype v)
753 {
754 word_type c = 0;
755 DWunion uu, vv;
756 DWtype w;
757
758 uu.ll = u;
759 vv.ll = v;
760
761 if (uu.s.high < 0)
762 c = ~c,
763 uu.ll = __negdi2 (uu.ll);
764 if (vv.s.high < 0)
765 vv.ll = __negdi2 (vv.ll);
766
767 (void) __udivmoddi4 (uu.ll, vv.ll, &w);
768 if (c)
769 w = __negdi2 (w);
770
771 return w;
772 }
773 #endif
774
775 #ifdef L_umoddi3
776 UDWtype
777 __umoddi3 (UDWtype u, UDWtype v)
778 {
779 UDWtype w;
780
781 (void) __udivmoddi4 (u, v, &w);
782
783 return w;
784 }
785 #endif
786
787 #ifdef L_udivdi3
788 UDWtype
789 __udivdi3 (UDWtype n, UDWtype d)
790 {
791 return __udivmoddi4 (n, d, (UDWtype *) 0);
792 }
793 #endif
794 \f
795 #ifdef L_cmpdi2
796 word_type
797 __cmpdi2 (DWtype a, DWtype b)
798 {
799 DWunion au, bu;
800
801 au.ll = a, bu.ll = b;
802
803 if (au.s.high < bu.s.high)
804 return 0;
805 else if (au.s.high > bu.s.high)
806 return 2;
807 if ((UWtype) au.s.low < (UWtype) bu.s.low)
808 return 0;
809 else if ((UWtype) au.s.low > (UWtype) bu.s.low)
810 return 2;
811 return 1;
812 }
813 #endif
814
815 #ifdef L_ucmpdi2
816 word_type
817 __ucmpdi2 (DWtype a, DWtype b)
818 {
819 DWunion au, bu;
820
821 au.ll = a, bu.ll = b;
822
823 if ((UWtype) au.s.high < (UWtype) bu.s.high)
824 return 0;
825 else if ((UWtype) au.s.high > (UWtype) bu.s.high)
826 return 2;
827 if ((UWtype) au.s.low < (UWtype) bu.s.low)
828 return 0;
829 else if ((UWtype) au.s.low > (UWtype) bu.s.low)
830 return 2;
831 return 1;
832 }
833 #endif
834 \f
835 #if defined(L_fixunstfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128)
836 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
837 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
838
839 DWtype
840 __fixunstfDI (TFtype a)
841 {
842 TFtype b;
843 UDWtype v;
844
845 if (a < 0)
846 return 0;
847
848 /* Compute high word of result, as a flonum. */
849 b = (a / HIGH_WORD_COEFF);
850 /* Convert that to fixed (but not to DWtype!),
851 and shift it into the high word. */
852 v = (UWtype) b;
853 v <<= WORD_SIZE;
854 /* Remove high part from the TFtype, leaving the low part as flonum. */
855 a -= (TFtype)v;
856 /* Convert that to fixed (but not to DWtype!) and add it in.
857 Sometimes A comes out negative. This is significant, since
858 A has more bits than a long int does. */
859 if (a < 0)
860 v -= (UWtype) (- a);
861 else
862 v += (UWtype) a;
863 return v;
864 }
865 #endif
866
867 #if defined(L_fixtfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128)
868 DWtype
869 __fixtfdi (TFtype a)
870 {
871 if (a < 0)
872 return - __fixunstfDI (-a);
873 return __fixunstfDI (a);
874 }
875 #endif
876
877 #if defined(L_fixunsxfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96)
878 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
879 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
880
881 DWtype
882 __fixunsxfDI (XFtype a)
883 {
884 XFtype b;
885 UDWtype v;
886
887 if (a < 0)
888 return 0;
889
890 /* Compute high word of result, as a flonum. */
891 b = (a / HIGH_WORD_COEFF);
892 /* Convert that to fixed (but not to DWtype!),
893 and shift it into the high word. */
894 v = (UWtype) b;
895 v <<= WORD_SIZE;
896 /* Remove high part from the XFtype, leaving the low part as flonum. */
897 a -= (XFtype)v;
898 /* Convert that to fixed (but not to DWtype!) and add it in.
899 Sometimes A comes out negative. This is significant, since
900 A has more bits than a long int does. */
901 if (a < 0)
902 v -= (UWtype) (- a);
903 else
904 v += (UWtype) a;
905 return v;
906 }
907 #endif
908
909 #if defined(L_fixxfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96)
910 DWtype
911 __fixxfdi (XFtype a)
912 {
913 if (a < 0)
914 return - __fixunsxfDI (-a);
915 return __fixunsxfDI (a);
916 }
917 #endif
918
919 #ifdef L_fixunsdfdi
920 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
921 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
922
923 DWtype
924 __fixunsdfDI (DFtype a)
925 {
926 DFtype b;
927 UDWtype v;
928
929 if (a < 0)
930 return 0;
931
932 /* Compute high word of result, as a flonum. */
933 b = (a / HIGH_WORD_COEFF);
934 /* Convert that to fixed (but not to DWtype!),
935 and shift it into the high word. */
936 v = (UWtype) b;
937 v <<= WORD_SIZE;
938 /* Remove high part from the DFtype, leaving the low part as flonum. */
939 a -= (DFtype)v;
940 /* Convert that to fixed (but not to DWtype!) and add it in.
941 Sometimes A comes out negative. This is significant, since
942 A has more bits than a long int does. */
943 if (a < 0)
944 v -= (UWtype) (- a);
945 else
946 v += (UWtype) a;
947 return v;
948 }
949 #endif
950
951 #ifdef L_fixdfdi
952 DWtype
953 __fixdfdi (DFtype a)
954 {
955 if (a < 0)
956 return - __fixunsdfDI (-a);
957 return __fixunsdfDI (a);
958 }
959 #endif
960
961 #ifdef L_fixunssfdi
962 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
963 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
964
965 DWtype
966 __fixunssfDI (SFtype original_a)
967 {
968 /* Convert the SFtype to a DFtype, because that is surely not going
969 to lose any bits. Some day someone else can write a faster version
970 that avoids converting to DFtype, and verify it really works right. */
971 DFtype a = original_a;
972 DFtype b;
973 UDWtype v;
974
975 if (a < 0)
976 return 0;
977
978 /* Compute high word of result, as a flonum. */
979 b = (a / HIGH_WORD_COEFF);
980 /* Convert that to fixed (but not to DWtype!),
981 and shift it into the high word. */
982 v = (UWtype) b;
983 v <<= WORD_SIZE;
984 /* Remove high part from the DFtype, leaving the low part as flonum. */
985 a -= (DFtype) v;
986 /* Convert that to fixed (but not to DWtype!) and add it in.
987 Sometimes A comes out negative. This is significant, since
988 A has more bits than a long int does. */
989 if (a < 0)
990 v -= (UWtype) (- a);
991 else
992 v += (UWtype) a;
993 return v;
994 }
995 #endif
996
997 #ifdef L_fixsfdi
998 DWtype
999 __fixsfdi (SFtype a)
1000 {
1001 if (a < 0)
1002 return - __fixunssfDI (-a);
1003 return __fixunssfDI (a);
1004 }
1005 #endif
1006
1007 #if defined(L_floatdixf) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96)
1008 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
1009 #define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2))
1010 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
1011
1012 XFtype
1013 __floatdixf (DWtype u)
1014 {
1015 XFtype d;
1016
1017 d = (Wtype) (u >> WORD_SIZE);
1018 d *= HIGH_HALFWORD_COEFF;
1019 d *= HIGH_HALFWORD_COEFF;
1020 d += (UWtype) (u & (HIGH_WORD_COEFF - 1));
1021
1022 return d;
1023 }
1024 #endif
1025
1026 #if defined(L_floatditf) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128)
1027 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
1028 #define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2))
1029 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
1030
1031 TFtype
1032 __floatditf (DWtype u)
1033 {
1034 TFtype d;
1035
1036 d = (Wtype) (u >> WORD_SIZE);
1037 d *= HIGH_HALFWORD_COEFF;
1038 d *= HIGH_HALFWORD_COEFF;
1039 d += (UWtype) (u & (HIGH_WORD_COEFF - 1));
1040
1041 return d;
1042 }
1043 #endif
1044
1045 #ifdef L_floatdidf
1046 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
1047 #define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2))
1048 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
1049
1050 DFtype
1051 __floatdidf (DWtype u)
1052 {
1053 DFtype d;
1054
1055 d = (Wtype) (u >> WORD_SIZE);
1056 d *= HIGH_HALFWORD_COEFF;
1057 d *= HIGH_HALFWORD_COEFF;
1058 d += (UWtype) (u & (HIGH_WORD_COEFF - 1));
1059
1060 return d;
1061 }
1062 #endif
1063
1064 #ifdef L_floatdisf
1065 #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT)
1066 #define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2))
1067 #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE)
1068 #define DI_SIZE (sizeof (DWtype) * BITS_PER_UNIT)
1069
1070 /* Define codes for all the float formats that we know of. Note
1071 that this is copied from real.h. */
1072
1073 #define UNKNOWN_FLOAT_FORMAT 0
1074 #define IEEE_FLOAT_FORMAT 1
1075 #define VAX_FLOAT_FORMAT 2
1076 #define IBM_FLOAT_FORMAT 3
1077
1078 /* Default to IEEE float if not specified. Nearly all machines use it. */
1079 #ifndef HOST_FLOAT_FORMAT
1080 #define HOST_FLOAT_FORMAT IEEE_FLOAT_FORMAT
1081 #endif
1082
1083 #if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
1084 #define DF_SIZE 53
1085 #define SF_SIZE 24
1086 #endif
1087
1088 #if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT
1089 #define DF_SIZE 56
1090 #define SF_SIZE 24
1091 #endif
1092
1093 #if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT
1094 #define DF_SIZE 56
1095 #define SF_SIZE 24
1096 #endif
1097
1098 SFtype
1099 __floatdisf (DWtype u)
1100 {
1101 /* Do the calculation in DFmode
1102 so that we don't lose any of the precision of the high word
1103 while multiplying it. */
1104 DFtype f;
1105
1106 /* Protect against double-rounding error.
1107 Represent any low-order bits, that might be truncated in DFmode,
1108 by a bit that won't be lost. The bit can go in anywhere below the
1109 rounding position of the SFmode. A fixed mask and bit position
1110 handles all usual configurations. It doesn't handle the case
1111 of 128-bit DImode, however. */
1112 if (DF_SIZE < DI_SIZE
1113 && DF_SIZE > (DI_SIZE - DF_SIZE + SF_SIZE))
1114 {
1115 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - DF_SIZE))
1116 if (! (- ((DWtype) 1 << DF_SIZE) < u
1117 && u < ((DWtype) 1 << DF_SIZE)))
1118 {
1119 if ((UDWtype) u & (REP_BIT - 1))
1120 u |= REP_BIT;
1121 }
1122 }
1123 f = (Wtype) (u >> WORD_SIZE);
1124 f *= HIGH_HALFWORD_COEFF;
1125 f *= HIGH_HALFWORD_COEFF;
1126 f += (UWtype) (u & (HIGH_WORD_COEFF - 1));
1127
1128 return (SFtype) f;
1129 }
1130 #endif
1131
1132 #if defined(L_fixunsxfsi) && LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96
1133 /* Reenable the normal types, in case limits.h needs them. */
1134 #undef char
1135 #undef short
1136 #undef int
1137 #undef long
1138 #undef unsigned
1139 #undef float
1140 #undef double
1141 #undef MIN
1142 #undef MAX
1143 #include <limits.h>
1144
1145 UWtype
1146 __fixunsxfSI (XFtype a)
1147 {
1148 if (a >= - (DFtype) Wtype_MIN)
1149 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1150 return (Wtype) a;
1151 }
1152 #endif
1153
1154 #ifdef L_fixunsdfsi
1155 /* Reenable the normal types, in case limits.h needs them. */
1156 #undef char
1157 #undef short
1158 #undef int
1159 #undef long
1160 #undef unsigned
1161 #undef float
1162 #undef double
1163 #undef MIN
1164 #undef MAX
1165 #include <limits.h>
1166
1167 UWtype
1168 __fixunsdfSI (DFtype a)
1169 {
1170 if (a >= - (DFtype) Wtype_MIN)
1171 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1172 return (Wtype) a;
1173 }
1174 #endif
1175
1176 #ifdef L_fixunssfsi
1177 /* Reenable the normal types, in case limits.h needs them. */
1178 #undef char
1179 #undef short
1180 #undef int
1181 #undef long
1182 #undef unsigned
1183 #undef float
1184 #undef double
1185 #undef MIN
1186 #undef MAX
1187 #include <limits.h>
1188
1189 UWtype
1190 __fixunssfSI (SFtype a)
1191 {
1192 if (a >= - (SFtype) Wtype_MIN)
1193 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1194 return (Wtype) a;
1195 }
1196 #endif
1197 \f
1198 /* From here on down, the routines use normal data types. */
1199
1200 #define SItype bogus_type
1201 #define USItype bogus_type
1202 #define DItype bogus_type
1203 #define UDItype bogus_type
1204 #define SFtype bogus_type
1205 #define DFtype bogus_type
1206 #undef Wtype
1207 #undef UWtype
1208 #undef HWtype
1209 #undef UHWtype
1210 #undef DWtype
1211 #undef UDWtype
1212
1213 #undef char
1214 #undef short
1215 #undef int
1216 #undef long
1217 #undef unsigned
1218 #undef float
1219 #undef double
1220 \f
1221 #ifdef L__gcc_bcmp
1222
1223 /* Like bcmp except the sign is meaningful.
1224 Result is negative if S1 is less than S2,
1225 positive if S1 is greater, 0 if S1 and S2 are equal. */
1226
1227 int
1228 __gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
1229 {
1230 while (size > 0)
1231 {
1232 unsigned char c1 = *s1++, c2 = *s2++;
1233 if (c1 != c2)
1234 return c1 - c2;
1235 size--;
1236 }
1237 return 0;
1238 }
1239
1240 #endif
1241 \f
1242 /* __eprintf used to be used by GCC's private version of <assert.h>.
1243 We no longer provide that header, but this routine remains in libgcc.a
1244 for binary backward compatibility. Note that it is not included in
1245 the shared version of libgcc. */
1246 #ifdef L_eprintf
1247 #ifndef inhibit_libc
1248
1249 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
1250 #include <stdio.h>
1251
1252 void
1253 __eprintf (const char *string, const char *expression,
1254 unsigned int line, const char *filename)
1255 {
1256 fprintf (stderr, string, expression, line, filename);
1257 fflush (stderr);
1258 abort ();
1259 }
1260
1261 #endif
1262 #endif
1263
1264 #ifdef L_bb
1265
1266 #if LONG_TYPE_SIZE == GCOV_TYPE_SIZE
1267 typedef long gcov_type;
1268 #else
1269 typedef long long gcov_type;
1270 #endif
1271
1272
1273 /* Structure emitted by -a */
1274 struct bb
1275 {
1276 long zero_word;
1277 const char *filename;
1278 gcov_type *counts;
1279 long ncounts;
1280 struct bb *next;
1281 const unsigned long *addresses;
1282
1283 /* Older GCC's did not emit these fields. */
1284 long nwords;
1285 const char **functions;
1286 const long *line_nums;
1287 const char **filenames;
1288 char *flags;
1289 };
1290
1291 #ifdef BLOCK_PROFILER_CODE
1292 BLOCK_PROFILER_CODE
1293 #else
1294 #ifndef inhibit_libc
1295
1296 /* Simple minded basic block profiling output dumper for
1297 systems that don't provide tcov support. At present,
1298 it requires atexit and stdio. */
1299
1300 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
1301 #include <stdio.h>
1302
1303 #include "gbl-ctors.h"
1304 #include "gcov-io.h"
1305 #include <string.h>
1306 #ifdef TARGET_HAS_F_SETLKW
1307 #include <fcntl.h>
1308 #include <errno.h>
1309 #endif
1310
1311 static struct bb *bb_head;
1312
1313 void
1314 __bb_exit_func (void)
1315 {
1316 FILE *da_file;
1317 int i;
1318 struct bb *ptr;
1319
1320 if (bb_head == 0)
1321 return;
1322
1323 i = strlen (bb_head->filename) - 3;
1324
1325
1326 for (ptr = bb_head; ptr != (struct bb *) 0; ptr = ptr->next)
1327 {
1328 int firstchar;
1329
1330 /* Make sure the output file exists -
1331 but don't clobber exiting data. */
1332 if ((da_file = fopen (ptr->filename, "a")) != 0)
1333 fclose (da_file);
1334
1335 /* Need to re-open in order to be able to write from the start. */
1336 da_file = fopen (ptr->filename, "r+b");
1337 /* Some old systems might not allow the 'b' mode modifier.
1338 Therefore, try to open without it. This can lead to a race
1339 condition so that when you delete and re-create the file, the
1340 file might be opened in text mode, but then, you shouldn't
1341 delete the file in the first place. */
1342 if (da_file == 0)
1343 da_file = fopen (ptr->filename, "r+");
1344 if (da_file == 0)
1345 {
1346 fprintf (stderr, "arc profiling: Can't open output file %s.\n",
1347 ptr->filename);
1348 continue;
1349 }
1350
1351 /* After a fork, another process might try to read and/or write
1352 the same file simultanously. So if we can, lock the file to
1353 avoid race conditions. */
1354 #if defined (TARGET_HAS_F_SETLKW)
1355 {
1356 struct flock s_flock;
1357
1358 s_flock.l_type = F_WRLCK;
1359 s_flock.l_whence = SEEK_SET;
1360 s_flock.l_start = 0;
1361 s_flock.l_len = 1;
1362 s_flock.l_pid = getpid ();
1363
1364 while (fcntl (fileno (da_file), F_SETLKW, &s_flock)
1365 && errno == EINTR);
1366 }
1367 #endif
1368
1369 /* If the file is not empty, and the number of counts in it is the
1370 same, then merge them in. */
1371 firstchar = fgetc (da_file);
1372 if (firstchar == EOF)
1373 {
1374 if (ferror (da_file))
1375 {
1376 fprintf (stderr, "arc profiling: Can't read output file ");
1377 perror (ptr->filename);
1378 }
1379 }
1380 else
1381 {
1382 long n_counts = 0;
1383
1384 if (ungetc (firstchar, da_file) == EOF)
1385 rewind (da_file);
1386 if (__read_long (&n_counts, da_file, 8) != 0)
1387 {
1388 fprintf (stderr, "arc profiling: Can't read output file %s.\n",
1389 ptr->filename);
1390 continue;
1391 }
1392
1393 if (n_counts == ptr->ncounts)
1394 {
1395 int i;
1396
1397 for (i = 0; i < n_counts; i++)
1398 {
1399 gcov_type v = 0;
1400
1401 if (__read_gcov_type (&v, da_file, 8) != 0)
1402 {
1403 fprintf (stderr,
1404 "arc profiling: Can't read output file %s.\n",
1405 ptr->filename);
1406 break;
1407 }
1408 ptr->counts[i] += v;
1409 }
1410 }
1411
1412 }
1413
1414 rewind (da_file);
1415
1416 /* ??? Should first write a header to the file. Preferably, a 4 byte
1417 magic number, 4 bytes containing the time the program was
1418 compiled, 4 bytes containing the last modification time of the
1419 source file, and 4 bytes indicating the compiler options used.
1420
1421 That way we can easily verify that the proper source/executable/
1422 data file combination is being used from gcov. */
1423
1424 if (__write_gcov_type (ptr->ncounts, da_file, 8) != 0)
1425 {
1426
1427 fprintf (stderr, "arc profiling: Error writing output file %s.\n",
1428 ptr->filename);
1429 }
1430 else
1431 {
1432 int j;
1433 gcov_type *count_ptr = ptr->counts;
1434 int ret = 0;
1435 for (j = ptr->ncounts; j > 0; j--)
1436 {
1437 if (__write_gcov_type (*count_ptr, da_file, 8) != 0)
1438 {
1439 ret = 1;
1440 break;
1441 }
1442 count_ptr++;
1443 }
1444 if (ret)
1445 fprintf (stderr, "arc profiling: Error writing output file %s.\n",
1446 ptr->filename);
1447 }
1448
1449 if (fclose (da_file) == EOF)
1450 fprintf (stderr, "arc profiling: Error closing output file %s.\n",
1451 ptr->filename);
1452 }
1453
1454 return;
1455 }
1456
1457 void
1458 __bb_init_func (struct bb *blocks)
1459 {
1460 /* User is supposed to check whether the first word is non-0,
1461 but just in case.... */
1462
1463 if (blocks->zero_word)
1464 return;
1465
1466 /* Initialize destructor. */
1467 if (!bb_head)
1468 atexit (__bb_exit_func);
1469
1470 /* Set up linked list. */
1471 blocks->zero_word = 1;
1472 blocks->next = bb_head;
1473 bb_head = blocks;
1474 }
1475
1476 /* Called before fork or exec - write out profile information gathered so
1477 far and reset it to zero. This avoids duplication or loss of the
1478 profile information gathered so far. */
1479 void
1480 __bb_fork_func (void)
1481 {
1482 struct bb *ptr;
1483
1484 __bb_exit_func ();
1485 for (ptr = bb_head; ptr != (struct bb *) 0; ptr = ptr->next)
1486 {
1487 long i;
1488 for (i = ptr->ncounts - 1; i >= 0; i--)
1489 ptr->counts[i] = 0;
1490 }
1491 }
1492
1493 #endif /* not inhibit_libc */
1494 #endif /* not BLOCK_PROFILER_CODE */
1495 #endif /* L_bb */
1496 \f
1497 #ifdef L_clear_cache
1498 /* Clear part of an instruction cache. */
1499
1500 #define INSN_CACHE_PLANE_SIZE (INSN_CACHE_SIZE / INSN_CACHE_DEPTH)
1501
1502 void
1503 __clear_cache (char *beg __attribute__((__unused__)),
1504 char *end __attribute__((__unused__)))
1505 {
1506 #ifdef CLEAR_INSN_CACHE
1507 CLEAR_INSN_CACHE (beg, end);
1508 #else
1509 #ifdef INSN_CACHE_SIZE
1510 static char array[INSN_CACHE_SIZE + INSN_CACHE_PLANE_SIZE + INSN_CACHE_LINE_WIDTH];
1511 static int initialized;
1512 int offset;
1513 void *start_addr
1514 void *end_addr;
1515 typedef (*function_ptr) (void);
1516
1517 #if (INSN_CACHE_SIZE / INSN_CACHE_LINE_WIDTH) < 16
1518 /* It's cheaper to clear the whole cache.
1519 Put in a series of jump instructions so that calling the beginning
1520 of the cache will clear the whole thing. */
1521
1522 if (! initialized)
1523 {
1524 int ptr = (((int) array + INSN_CACHE_LINE_WIDTH - 1)
1525 & -INSN_CACHE_LINE_WIDTH);
1526 int end_ptr = ptr + INSN_CACHE_SIZE;
1527
1528 while (ptr < end_ptr)
1529 {
1530 *(INSTRUCTION_TYPE *)ptr
1531 = JUMP_AHEAD_INSTRUCTION + INSN_CACHE_LINE_WIDTH;
1532 ptr += INSN_CACHE_LINE_WIDTH;
1533 }
1534 *(INSTRUCTION_TYPE *) (ptr - INSN_CACHE_LINE_WIDTH) = RETURN_INSTRUCTION;
1535
1536 initialized = 1;
1537 }
1538
1539 /* Call the beginning of the sequence. */
1540 (((function_ptr) (((int) array + INSN_CACHE_LINE_WIDTH - 1)
1541 & -INSN_CACHE_LINE_WIDTH))
1542 ());
1543
1544 #else /* Cache is large. */
1545
1546 if (! initialized)
1547 {
1548 int ptr = (((int) array + INSN_CACHE_LINE_WIDTH - 1)
1549 & -INSN_CACHE_LINE_WIDTH);
1550
1551 while (ptr < (int) array + sizeof array)
1552 {
1553 *(INSTRUCTION_TYPE *)ptr = RETURN_INSTRUCTION;
1554 ptr += INSN_CACHE_LINE_WIDTH;
1555 }
1556
1557 initialized = 1;
1558 }
1559
1560 /* Find the location in array that occupies the same cache line as BEG. */
1561
1562 offset = ((int) beg & -INSN_CACHE_LINE_WIDTH) & (INSN_CACHE_PLANE_SIZE - 1);
1563 start_addr = (((int) (array + INSN_CACHE_PLANE_SIZE - 1)
1564 & -INSN_CACHE_PLANE_SIZE)
1565 + offset);
1566
1567 /* Compute the cache alignment of the place to stop clearing. */
1568 #if 0 /* This is not needed for gcc's purposes. */
1569 /* If the block to clear is bigger than a cache plane,
1570 we clear the entire cache, and OFFSET is already correct. */
1571 if (end < beg + INSN_CACHE_PLANE_SIZE)
1572 #endif
1573 offset = (((int) (end + INSN_CACHE_LINE_WIDTH - 1)
1574 & -INSN_CACHE_LINE_WIDTH)
1575 & (INSN_CACHE_PLANE_SIZE - 1));
1576
1577 #if INSN_CACHE_DEPTH > 1
1578 end_addr = (start_addr & -INSN_CACHE_PLANE_SIZE) + offset;
1579 if (end_addr <= start_addr)
1580 end_addr += INSN_CACHE_PLANE_SIZE;
1581
1582 for (plane = 0; plane < INSN_CACHE_DEPTH; plane++)
1583 {
1584 int addr = start_addr + plane * INSN_CACHE_PLANE_SIZE;
1585 int stop = end_addr + plane * INSN_CACHE_PLANE_SIZE;
1586
1587 while (addr != stop)
1588 {
1589 /* Call the return instruction at ADDR. */
1590 ((function_ptr) addr) ();
1591
1592 addr += INSN_CACHE_LINE_WIDTH;
1593 }
1594 }
1595 #else /* just one plane */
1596 do
1597 {
1598 /* Call the return instruction at START_ADDR. */
1599 ((function_ptr) start_addr) ();
1600
1601 start_addr += INSN_CACHE_LINE_WIDTH;
1602 }
1603 while ((start_addr % INSN_CACHE_SIZE) != offset);
1604 #endif /* just one plane */
1605 #endif /* Cache is large */
1606 #endif /* Cache exists */
1607 #endif /* CLEAR_INSN_CACHE */
1608 }
1609
1610 #endif /* L_clear_cache */
1611 \f
1612 #ifdef L_trampoline
1613
1614 /* Jump to a trampoline, loading the static chain address. */
1615
1616 #if defined(WINNT) && ! defined(__CYGWIN__) && ! defined (_UWIN)
1617
1618 long
1619 getpagesize (void)
1620 {
1621 #ifdef _ALPHA_
1622 return 8192;
1623 #else
1624 return 4096;
1625 #endif
1626 }
1627
1628 #ifdef __i386__
1629 extern int VirtualProtect (char *, int, int, int *) __attribute__((stdcall));
1630 #endif
1631
1632 int
1633 mprotect (char *addr, int len, int prot)
1634 {
1635 int np, op;
1636
1637 if (prot == 7)
1638 np = 0x40;
1639 else if (prot == 5)
1640 np = 0x20;
1641 else if (prot == 4)
1642 np = 0x10;
1643 else if (prot == 3)
1644 np = 0x04;
1645 else if (prot == 1)
1646 np = 0x02;
1647 else if (prot == 0)
1648 np = 0x01;
1649
1650 if (VirtualProtect (addr, len, np, &op))
1651 return 0;
1652 else
1653 return -1;
1654 }
1655
1656 #endif /* WINNT && ! __CYGWIN__ && ! _UWIN */
1657
1658 #ifdef TRANSFER_FROM_TRAMPOLINE
1659 TRANSFER_FROM_TRAMPOLINE
1660 #endif
1661
1662 #if defined (NeXT) && defined (__MACH__)
1663
1664 /* Make stack executable so we can call trampolines on stack.
1665 This is called from INITIALIZE_TRAMPOLINE in next.h. */
1666 #ifdef NeXTStep21
1667 #include <mach.h>
1668 #else
1669 #include <mach/mach.h>
1670 #endif
1671
1672 void
1673 __enable_execute_stack (char *addr)
1674 {
1675 kern_return_t r;
1676 char *eaddr = addr + TRAMPOLINE_SIZE;
1677 vm_address_t a = (vm_address_t) addr;
1678
1679 /* turn on execute access on stack */
1680 r = vm_protect (task_self (), a, TRAMPOLINE_SIZE, FALSE, VM_PROT_ALL);
1681 if (r != KERN_SUCCESS)
1682 {
1683 mach_error("vm_protect VM_PROT_ALL", r);
1684 exit(1);
1685 }
1686
1687 /* We inline the i-cache invalidation for speed */
1688
1689 #ifdef CLEAR_INSN_CACHE
1690 CLEAR_INSN_CACHE (addr, eaddr);
1691 #else
1692 __clear_cache ((int) addr, (int) eaddr);
1693 #endif
1694 }
1695
1696 #endif /* defined (NeXT) && defined (__MACH__) */
1697
1698 #ifdef __convex__
1699
1700 /* Make stack executable so we can call trampolines on stack.
1701 This is called from INITIALIZE_TRAMPOLINE in convex.h. */
1702
1703 #include <sys/mman.h>
1704 #include <sys/vmparam.h>
1705 #include <machine/machparam.h>
1706
1707 void
1708 __enable_execute_stack (void)
1709 {
1710 int fp;
1711 static unsigned lowest = USRSTACK;
1712 unsigned current = (unsigned) &fp & -NBPG;
1713
1714 if (lowest > current)
1715 {
1716 unsigned len = lowest - current;
1717 mremap (current, &len, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE);
1718 lowest = current;
1719 }
1720
1721 /* Clear instruction cache in case an old trampoline is in it. */
1722 asm ("pich");
1723 }
1724 #endif /* __convex__ */
1725
1726 #ifdef __sysV88__
1727
1728 /* Modified from the convex -code above. */
1729
1730 #include <sys/param.h>
1731 #include <errno.h>
1732 #include <sys/m88kbcs.h>
1733
1734 void
1735 __enable_execute_stack (void)
1736 {
1737 int save_errno;
1738 static unsigned long lowest = USRSTACK;
1739 unsigned long current = (unsigned long) &save_errno & -NBPC;
1740
1741 /* Ignore errno being set. memctl sets errno to EINVAL whenever the
1742 address is seen as 'negative'. That is the case with the stack. */
1743
1744 save_errno=errno;
1745 if (lowest > current)
1746 {
1747 unsigned len=lowest-current;
1748 memctl(current,len,MCT_TEXT);
1749 lowest = current;
1750 }
1751 else
1752 memctl(current,NBPC,MCT_TEXT);
1753 errno=save_errno;
1754 }
1755
1756 #endif /* __sysV88__ */
1757
1758 #ifdef __sysV68__
1759
1760 #include <sys/signal.h>
1761 #include <errno.h>
1762
1763 /* Motorola forgot to put memctl.o in the libp version of libc881.a,
1764 so define it here, because we need it in __clear_insn_cache below */
1765 /* On older versions of this OS, no memctl or MCT_TEXT are defined;
1766 hence we enable this stuff only if MCT_TEXT is #define'd. */
1767
1768 #ifdef MCT_TEXT
1769 asm("\n\
1770 global memctl\n\
1771 memctl:\n\
1772 movq &75,%d0\n\
1773 trap &0\n\
1774 bcc.b noerror\n\
1775 jmp cerror%\n\
1776 noerror:\n\
1777 movq &0,%d0\n\
1778 rts");
1779 #endif
1780
1781 /* Clear instruction cache so we can call trampolines on stack.
1782 This is called from FINALIZE_TRAMPOLINE in mot3300.h. */
1783
1784 void
1785 __clear_insn_cache (void)
1786 {
1787 #ifdef MCT_TEXT
1788 int save_errno;
1789
1790 /* Preserve errno, because users would be surprised to have
1791 errno changing without explicitly calling any system-call. */
1792 save_errno = errno;
1793
1794 /* Keep it simple : memctl (MCT_TEXT) always fully clears the insn cache.
1795 No need to use an address derived from _start or %sp, as 0 works also. */
1796 memctl(0, 4096, MCT_TEXT);
1797 errno = save_errno;
1798 #endif
1799 }
1800
1801 #endif /* __sysV68__ */
1802
1803 #ifdef __pyr__
1804
1805 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
1806 #include <stdio.h>
1807 #include <sys/mman.h>
1808 #include <sys/types.h>
1809 #include <sys/param.h>
1810 #include <sys/vmmac.h>
1811
1812 /* Modified from the convex -code above.
1813 mremap promises to clear the i-cache. */
1814
1815 void
1816 __enable_execute_stack (void)
1817 {
1818 int fp;
1819 if (mprotect (((unsigned int)&fp/PAGSIZ)*PAGSIZ, PAGSIZ,
1820 PROT_READ|PROT_WRITE|PROT_EXEC))
1821 {
1822 perror ("mprotect in __enable_execute_stack");
1823 fflush (stderr);
1824 abort ();
1825 }
1826 }
1827 #endif /* __pyr__ */
1828
1829 #if defined (sony_news) && defined (SYSTYPE_BSD)
1830
1831 #include <stdio.h>
1832 #include <sys/types.h>
1833 #include <sys/param.h>
1834 #include <syscall.h>
1835 #include <machine/sysnews.h>
1836
1837 /* cacheflush function for NEWS-OS 4.2.
1838 This function is called from trampoline-initialize code
1839 defined in config/mips/mips.h. */
1840
1841 void
1842 cacheflush (char *beg, int size, int flag)
1843 {
1844 if (syscall (SYS_sysnews, NEWS_CACHEFLUSH, beg, size, FLUSH_BCACHE))
1845 {
1846 perror ("cache_flush");
1847 fflush (stderr);
1848 abort ();
1849 }
1850 }
1851
1852 #endif /* sony_news */
1853 #endif /* L_trampoline */
1854 \f
1855 #ifndef __CYGWIN__
1856 #ifdef L__main
1857
1858 #include "gbl-ctors.h"
1859 /* Some systems use __main in a way incompatible with its use in gcc, in these
1860 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
1861 give the same symbol without quotes for an alternative entry point. You
1862 must define both, or neither. */
1863 #ifndef NAME__MAIN
1864 #define NAME__MAIN "__main"
1865 #define SYMBOL__MAIN __main
1866 #endif
1867
1868 #ifdef INIT_SECTION_ASM_OP
1869 #undef HAS_INIT_SECTION
1870 #define HAS_INIT_SECTION
1871 #endif
1872
1873 #if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
1874
1875 /* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
1876 code to run constructors. In that case, we need to handle EH here, too. */
1877
1878 #ifdef EH_FRAME_SECTION_NAME
1879 #include "unwind-dw2-fde.h"
1880 extern unsigned char __EH_FRAME_BEGIN__[];
1881 #endif
1882
1883 /* Run all the global destructors on exit from the program. */
1884
1885 void
1886 __do_global_dtors (void)
1887 {
1888 #ifdef DO_GLOBAL_DTORS_BODY
1889 DO_GLOBAL_DTORS_BODY;
1890 #else
1891 static func_ptr *p = __DTOR_LIST__ + 1;
1892 while (*p)
1893 {
1894 p++;
1895 (*(p-1)) ();
1896 }
1897 #endif
1898 #if defined (EH_FRAME_SECTION_NAME) && !defined (HAS_INIT_SECTION)
1899 {
1900 static int completed = 0;
1901 if (! completed)
1902 {
1903 completed = 1;
1904 __deregister_frame_info (__EH_FRAME_BEGIN__);
1905 }
1906 }
1907 #endif
1908 }
1909 #endif
1910
1911 #ifndef HAS_INIT_SECTION
1912 /* Run all the global constructors on entry to the program. */
1913
1914 void
1915 __do_global_ctors (void)
1916 {
1917 #ifdef EH_FRAME_SECTION_NAME
1918 {
1919 static struct object object;
1920 __register_frame_info (__EH_FRAME_BEGIN__, &object);
1921 }
1922 #endif
1923 DO_GLOBAL_CTORS_BODY;
1924 atexit (__do_global_dtors);
1925 }
1926 #endif /* no HAS_INIT_SECTION */
1927
1928 #if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
1929 /* Subroutine called automatically by `main'.
1930 Compiling a global function named `main'
1931 produces an automatic call to this function at the beginning.
1932
1933 For many systems, this routine calls __do_global_ctors.
1934 For systems which support a .init section we use the .init section
1935 to run __do_global_ctors, so we need not do anything here. */
1936
1937 void
1938 SYMBOL__MAIN ()
1939 {
1940 /* Support recursive calls to `main': run initializers just once. */
1941 static int initialized;
1942 if (! initialized)
1943 {
1944 initialized = 1;
1945 __do_global_ctors ();
1946 }
1947 }
1948 #endif /* no HAS_INIT_SECTION or INVOKE__main */
1949
1950 #endif /* L__main */
1951 #endif /* __CYGWIN__ */
1952 \f
1953 #ifdef L_ctors
1954
1955 #include "gbl-ctors.h"
1956
1957 /* Provide default definitions for the lists of constructors and
1958 destructors, so that we don't get linker errors. These symbols are
1959 intentionally bss symbols, so that gld and/or collect will provide
1960 the right values. */
1961
1962 /* We declare the lists here with two elements each,
1963 so that they are valid empty lists if no other definition is loaded.
1964
1965 If we are using the old "set" extensions to have the gnu linker
1966 collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
1967 must be in the bss/common section.
1968
1969 Long term no port should use those extensions. But many still do. */
1970 #if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY)
1971 #if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
1972 func_ptr __CTOR_LIST__[2] = {0, 0};
1973 func_ptr __DTOR_LIST__[2] = {0, 0};
1974 #else
1975 func_ptr __CTOR_LIST__[2];
1976 func_ptr __DTOR_LIST__[2];
1977 #endif
1978 #endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */
1979 #endif /* L_ctors */
1980 \f
1981 #ifdef L_exit
1982
1983 #include "gbl-ctors.h"
1984
1985 #ifdef NEED_ATEXIT
1986
1987 #ifndef ON_EXIT
1988
1989 # include <errno.h>
1990
1991 static func_ptr *atexit_chain = 0;
1992 static long atexit_chain_length = 0;
1993 static volatile long last_atexit_chain_slot = -1;
1994
1995 int
1996 atexit (func_ptr func)
1997 {
1998 if (++last_atexit_chain_slot == atexit_chain_length)
1999 {
2000 atexit_chain_length += 32;
2001 if (atexit_chain)
2002 atexit_chain = (func_ptr *) realloc (atexit_chain, atexit_chain_length
2003 * sizeof (func_ptr));
2004 else
2005 atexit_chain = (func_ptr *) malloc (atexit_chain_length
2006 * sizeof (func_ptr));
2007 if (! atexit_chain)
2008 {
2009 atexit_chain_length = 0;
2010 last_atexit_chain_slot = -1;
2011 errno = ENOMEM;
2012 return (-1);
2013 }
2014 }
2015 atexit_chain[last_atexit_chain_slot] = func;
2016 return (0);
2017 }
2018
2019 extern void _cleanup (void);
2020 extern void _exit (int) __attribute__ ((__noreturn__));
2021
2022 void
2023 exit (int status)
2024 {
2025 if (atexit_chain)
2026 {
2027 for ( ; last_atexit_chain_slot-- >= 0; )
2028 {
2029 (*atexit_chain[last_atexit_chain_slot + 1]) ();
2030 atexit_chain[last_atexit_chain_slot + 1] = 0;
2031 }
2032 free (atexit_chain);
2033 atexit_chain = 0;
2034 }
2035 #ifdef EXIT_BODY
2036 EXIT_BODY;
2037 #else
2038 _cleanup ();
2039 #endif
2040 _exit (status);
2041 }
2042
2043 #else /* ON_EXIT */
2044
2045 /* Simple; we just need a wrapper for ON_EXIT. */
2046 int
2047 atexit (func_ptr func)
2048 {
2049 return ON_EXIT (func);
2050 }
2051
2052 #endif /* ON_EXIT */
2053 #endif /* NEED_ATEXIT */
2054
2055 #endif /* L_exit */
This page took 0.200891 seconds and 5 git commands to generate.