]> gcc.gnu.org Git - gcc.git/blob - gcc/jump.c
(delete_computation): reg_referenced_p wants body, not insn.
[gcc.git] / gcc / jump.c
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* This is the jump-optimization pass of the compiler.
22 It is run two or three times: once before cse, sometimes once after cse,
23 and once after reload (before final).
24
25 jump_optimize deletes unreachable code and labels that are not used.
26 It also deletes jumps that jump to the following insn,
27 and simplifies jumps around unconditional jumps and jumps
28 to unconditional jumps.
29
30 Each CODE_LABEL has a count of the times it is used
31 stored in the LABEL_NUSES internal field, and each JUMP_INSN
32 has one label that it refers to stored in the
33 JUMP_LABEL internal field. With this we can detect labels that
34 become unused because of the deletion of all the jumps that
35 formerly used them. The JUMP_LABEL info is sometimes looked
36 at by later passes.
37
38 Optionally, cross-jumping can be done. Currently it is done
39 only the last time (when after reload and before final).
40 In fact, the code for cross-jumping now assumes that register
41 allocation has been done, since it uses `rtx_renumbered_equal_p'.
42
43 Jump optimization is done after cse when cse's constant-propagation
44 causes jumps to become unconditional or to be deleted.
45
46 Unreachable loops are not detected here, because the labels
47 have references and the insns appear reachable from the labels.
48 find_basic_blocks in flow.c finds and deletes such loops.
49
50 The subroutines delete_insn, redirect_jump, and invert_jump are used
51 from other passes as well. */
52
53 #include "config.h"
54 #include "rtl.h"
55 #include "flags.h"
56 #include "hard-reg-set.h"
57 #include "regs.h"
58 #include "expr.h"
59 #include "insn-config.h"
60 #include "insn-flags.h"
61 #include "real.h"
62
63 /* ??? Eventually must record somehow the labels used by jumps
64 from nested functions. */
65 /* Pre-record the next or previous real insn for each label?
66 No, this pass is very fast anyway. */
67 /* Condense consecutive labels?
68 This would make life analysis faster, maybe. */
69 /* Optimize jump y; x: ... y: jumpif... x?
70 Don't know if it is worth bothering with. */
71 /* Optimize two cases of conditional jump to conditional jump?
72 This can never delete any instruction or make anything dead,
73 or even change what is live at any point.
74 So perhaps let combiner do it. */
75
76 /* Vector indexed by uid.
77 For each CODE_LABEL, index by its uid to get first unconditional jump
78 that jumps to the label.
79 For each JUMP_INSN, index by its uid to get the next unconditional jump
80 that jumps to the same label.
81 Element 0 is the start of a chain of all return insns.
82 (It is safe to use element 0 because insn uid 0 is not used. */
83
84 static rtx *jump_chain;
85
86 /* List of labels referred to from initializers.
87 These can never be deleted. */
88 rtx forced_labels;
89
90 /* Maximum index in jump_chain. */
91
92 static int max_jump_chain;
93
94 /* Set nonzero by jump_optimize if control can fall through
95 to the end of the function. */
96 int can_reach_end;
97
98 /* Indicates whether death notes are significant in cross jump analysis.
99 Normally they are not significant, because of A and B jump to C,
100 and R dies in A, it must die in B. But this might not be true after
101 stack register conversion, and we must compare death notes in that
102 case. */
103
104 static int cross_jump_death_matters = 0;
105
106 static int duplicate_loop_exit_test ();
107 void redirect_tablejump ();
108 static int delete_labelref_insn ();
109 static void mark_jump_label ();
110 void delete_jump ();
111 void delete_computation ();
112 static void delete_from_jump_chain ();
113 static int tension_vector_labels ();
114 static void find_cross_jump ();
115 static void do_cross_jump ();
116 static int jump_back_p ();
117
118 extern rtx gen_jump ();
119 \f
120 /* Delete no-op jumps and optimize jumps to jumps
121 and jumps around jumps.
122 Delete unused labels and unreachable code.
123
124 If CROSS_JUMP is 1, detect matching code
125 before a jump and its destination and unify them.
126 If CROSS_JUMP is 2, do cross-jumping, but pay attention to death notes.
127
128 If NOOP_MOVES is nonzero, delete no-op move insns.
129
130 If AFTER_REGSCAN is nonzero, then this jump pass is being run immediately
131 after regscan, and it is safe to use regno_first_uid and regno_last_uid.
132
133 If `optimize' is zero, don't change any code,
134 just determine whether control drops off the end of the function.
135 This case occurs when we have -W and not -O.
136 It works because `delete_insn' checks the value of `optimize'
137 and refrains from actually deleting when that is 0. */
138
139 void
140 jump_optimize (f, cross_jump, noop_moves, after_regscan)
141 rtx f;
142 int cross_jump;
143 int noop_moves;
144 int after_regscan;
145 {
146 register rtx insn, next;
147 int changed;
148 int first = 1;
149 int max_uid = 0;
150 rtx last_insn;
151
152 cross_jump_death_matters = (cross_jump == 2);
153
154 /* Initialize LABEL_NUSES and JUMP_LABEL fields. */
155
156 for (insn = f; insn; insn = NEXT_INSN (insn))
157 {
158 if (GET_CODE (insn) == CODE_LABEL)
159 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
160 else if (GET_CODE (insn) == JUMP_INSN)
161 JUMP_LABEL (insn) = 0;
162 if (INSN_UID (insn) > max_uid)
163 max_uid = INSN_UID (insn);
164 }
165
166 max_uid++;
167
168 /* Delete insns following barriers, up to next label. */
169
170 for (insn = f; insn;)
171 {
172 if (GET_CODE (insn) == BARRIER)
173 {
174 insn = NEXT_INSN (insn);
175 while (insn != 0 && GET_CODE (insn) != CODE_LABEL)
176 {
177 if (GET_CODE (insn) == NOTE
178 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)
179 insn = NEXT_INSN (insn);
180 else
181 insn = delete_insn (insn);
182 }
183 /* INSN is now the code_label. */
184 }
185 else
186 insn = NEXT_INSN (insn);
187 }
188
189 /* Leave some extra room for labels and duplicate exit test insns
190 we make. */
191 max_jump_chain = max_uid * 14 / 10;
192 jump_chain = (rtx *) alloca (max_jump_chain * sizeof (rtx));
193 bzero (jump_chain, max_jump_chain * sizeof (rtx));
194
195 /* Mark the label each jump jumps to.
196 Combine consecutive labels, and count uses of labels.
197
198 For each label, make a chain (using `jump_chain')
199 of all the *unconditional* jumps that jump to it;
200 also make a chain of all returns. */
201
202 for (insn = f; insn; insn = NEXT_INSN (insn))
203 if ((GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == INSN
204 || GET_CODE (insn) == CALL_INSN)
205 && ! INSN_DELETED_P (insn))
206 {
207 mark_jump_label (PATTERN (insn), insn, cross_jump);
208 if (GET_CODE (insn) == JUMP_INSN)
209 {
210 if (JUMP_LABEL (insn) != 0 && simplejump_p (insn))
211 {
212 jump_chain[INSN_UID (insn)]
213 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
214 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
215 }
216 if (GET_CODE (PATTERN (insn)) == RETURN)
217 {
218 jump_chain[INSN_UID (insn)] = jump_chain[0];
219 jump_chain[0] = insn;
220 }
221 }
222 }
223
224 /* Keep track of labels used from static data;
225 they cannot ever be deleted. */
226
227 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
228 LABEL_NUSES (XEXP (insn, 0))++;
229
230 /* Delete all labels already not referenced.
231 Also find the last insn. */
232
233 last_insn = 0;
234 for (insn = f; insn; )
235 {
236 if (GET_CODE (insn) == CODE_LABEL && LABEL_NUSES (insn) == 0)
237 insn = delete_insn (insn);
238 else
239 {
240 last_insn = insn;
241 insn = NEXT_INSN (insn);
242 }
243 }
244
245 if (!optimize)
246 {
247 /* See if there is still a NOTE_INSN_FUNCTION_END in this function.
248 If so record that this function can drop off the end. */
249
250 insn = last_insn;
251 {
252 int n_labels = 1;
253 while (insn
254 /* One label can follow the end-note: the return label. */
255 && ((GET_CODE (insn) == CODE_LABEL && n_labels-- > 0)
256 /* Ordinary insns can follow it if returning a structure. */
257 || GET_CODE (insn) == INSN
258 /* If machine uses explicit RETURN insns, no epilogue,
259 then one of them follows the note. */
260 || (GET_CODE (insn) == JUMP_INSN
261 && GET_CODE (PATTERN (insn)) == RETURN)
262 /* Other kinds of notes can follow also. */
263 || (GET_CODE (insn) == NOTE
264 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)))
265 insn = PREV_INSN (insn);
266 }
267
268 /* Report if control can fall through at the end of the function. */
269 if (insn && GET_CODE (insn) == NOTE
270 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END
271 && ! INSN_DELETED_P (insn))
272 can_reach_end = 1;
273
274 /* Zero the "deleted" flag of all the "deleted" insns. */
275 for (insn = f; insn; insn = NEXT_INSN (insn))
276 INSN_DELETED_P (insn) = 0;
277 return;
278 }
279
280 #ifdef HAVE_return
281 if (HAVE_return)
282 {
283 /* If we fall through to the epilogue, see if we can insert a RETURN insn
284 in front of it. If the machine allows it at this point (we might be
285 after reload for a leaf routine), it will improve optimization for it
286 to be there. */
287 insn = get_last_insn ();
288 while (insn && GET_CODE (insn) == NOTE)
289 insn = PREV_INSN (insn);
290
291 if (insn && GET_CODE (insn) != BARRIER)
292 {
293 emit_jump_insn (gen_return ());
294 emit_barrier ();
295 }
296 }
297 #endif
298
299 if (noop_moves)
300 for (insn = f; insn; )
301 {
302 next = NEXT_INSN (insn);
303
304 if (GET_CODE (insn) == INSN)
305 {
306 register rtx body = PATTERN (insn);
307
308 /* Combine stack_adjusts with following push_insns. */
309 #ifdef PUSH_ROUNDING
310 if (GET_CODE (body) == SET
311 && SET_DEST (body) == stack_pointer_rtx
312 && GET_CODE (SET_SRC (body)) == PLUS
313 && XEXP (SET_SRC (body), 0) == stack_pointer_rtx
314 && GET_CODE (XEXP (SET_SRC (body), 1)) == CONST_INT
315 && INTVAL (XEXP (SET_SRC (body), 1)) > 0)
316 {
317 rtx p;
318 rtx stack_adjust_insn = insn;
319 int stack_adjust_amount = INTVAL (XEXP (SET_SRC (body), 1));
320 int total_pushed = 0;
321 int pushes = 0;
322
323 /* Find all successive push insns. */
324 p = insn;
325 /* Don't convert more than three pushes;
326 that starts adding too many displaced addresses
327 and the whole thing starts becoming a losing
328 proposition. */
329 while (pushes < 3)
330 {
331 rtx pbody, dest;
332 p = next_nonnote_insn (p);
333 if (p == 0 || GET_CODE (p) != INSN)
334 break;
335 pbody = PATTERN (p);
336 if (GET_CODE (pbody) != SET)
337 break;
338 dest = SET_DEST (pbody);
339 /* Allow a no-op move between the adjust and the push. */
340 if (GET_CODE (dest) == REG
341 && GET_CODE (SET_SRC (pbody)) == REG
342 && REGNO (dest) == REGNO (SET_SRC (pbody)))
343 continue;
344 if (! (GET_CODE (dest) == MEM
345 && GET_CODE (XEXP (dest, 0)) == POST_INC
346 && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx))
347 break;
348 pushes++;
349 if (total_pushed + GET_MODE_SIZE (SET_DEST (pbody))
350 > stack_adjust_amount)
351 break;
352 total_pushed += GET_MODE_SIZE (SET_DEST (pbody));
353 }
354
355 /* Discard the amount pushed from the stack adjust;
356 maybe eliminate it entirely. */
357 if (total_pushed >= stack_adjust_amount)
358 {
359 delete_insn (stack_adjust_insn);
360 total_pushed = stack_adjust_amount;
361 }
362 else
363 XEXP (SET_SRC (PATTERN (stack_adjust_insn)), 1)
364 = GEN_INT (stack_adjust_amount - total_pushed);
365
366 /* Change the appropriate push insns to ordinary stores. */
367 p = insn;
368 while (total_pushed > 0)
369 {
370 rtx pbody, dest;
371 p = next_nonnote_insn (p);
372 if (GET_CODE (p) != INSN)
373 break;
374 pbody = PATTERN (p);
375 if (GET_CODE (pbody) == SET)
376 break;
377 dest = SET_DEST (pbody);
378 if (! (GET_CODE (dest) == MEM
379 && GET_CODE (XEXP (dest, 0)) == POST_INC
380 && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx))
381 break;
382 total_pushed -= GET_MODE_SIZE (SET_DEST (pbody));
383 /* If this push doesn't fully fit in the space
384 of the stack adjust that we deleted,
385 make another stack adjust here for what we
386 didn't use up. There should be peepholes
387 to recognize the resulting sequence of insns. */
388 if (total_pushed < 0)
389 {
390 emit_insn_before (gen_add2_insn (stack_pointer_rtx,
391 GEN_INT (- total_pushed)),
392 p);
393 break;
394 }
395 XEXP (dest, 0)
396 = plus_constant (stack_pointer_rtx, total_pushed);
397 }
398 }
399 #endif
400
401 /* Detect and delete no-op move instructions
402 resulting from not allocating a parameter in a register. */
403
404 if (GET_CODE (body) == SET
405 && (SET_DEST (body) == SET_SRC (body)
406 || (GET_CODE (SET_DEST (body)) == MEM
407 && GET_CODE (SET_SRC (body)) == MEM
408 && rtx_equal_p (SET_SRC (body), SET_DEST (body))))
409 && ! (GET_CODE (SET_DEST (body)) == MEM
410 && MEM_VOLATILE_P (SET_DEST (body)))
411 && ! (GET_CODE (SET_SRC (body)) == MEM
412 && MEM_VOLATILE_P (SET_SRC (body))))
413 delete_insn (insn);
414
415 /* Detect and ignore no-op move instructions
416 resulting from smart or fortuitous register allocation. */
417
418 else if (GET_CODE (body) == SET)
419 {
420 int sreg = true_regnum (SET_SRC (body));
421 int dreg = true_regnum (SET_DEST (body));
422
423 if (sreg == dreg && sreg >= 0)
424 delete_insn (insn);
425 else if (sreg >= 0 && dreg >= 0)
426 {
427 rtx trial;
428 rtx tem = find_equiv_reg (NULL_RTX, insn, 0,
429 sreg, NULL_PTR, dreg,
430 GET_MODE (SET_SRC (body)));
431
432 #ifdef PRESERVE_DEATH_INFO_REGNO_P
433 /* Deleting insn could lose a death-note for SREG or DREG
434 so don't do it if final needs accurate death-notes. */
435 if (! PRESERVE_DEATH_INFO_REGNO_P (sreg)
436 && ! PRESERVE_DEATH_INFO_REGNO_P (dreg))
437 #endif
438 {
439 /* DREG may have been the target of a REG_DEAD note in
440 the insn which makes INSN redundant. If so, reorg
441 would still think it is dead. So search for such a
442 note and delete it if we find it. */
443 for (trial = prev_nonnote_insn (insn);
444 trial && GET_CODE (trial) != CODE_LABEL;
445 trial = prev_nonnote_insn (trial))
446 if (find_regno_note (trial, REG_DEAD, dreg))
447 {
448 remove_death (dreg, trial);
449 break;
450 }
451
452 if (tem != 0
453 && GET_MODE (tem) == GET_MODE (SET_DEST (body)))
454 delete_insn (insn);
455 }
456 }
457 else if (dreg >= 0 && CONSTANT_P (SET_SRC (body))
458 && find_equiv_reg (SET_SRC (body), insn, 0, dreg,
459 NULL_PTR, 0,
460 GET_MODE (SET_DEST (body))))
461 {
462 /* This handles the case where we have two consecutive
463 assignments of the same constant to pseudos that didn't
464 get a hard reg. Each SET from the constant will be
465 converted into a SET of the spill register and an
466 output reload will be made following it. This produces
467 two loads of the same constant into the same spill
468 register. */
469
470 rtx in_insn = insn;
471
472 /* Look back for a death note for the first reg.
473 If there is one, it is no longer accurate. */
474 while (in_insn && GET_CODE (in_insn) != CODE_LABEL)
475 {
476 if ((GET_CODE (in_insn) == INSN
477 || GET_CODE (in_insn) == JUMP_INSN)
478 && find_regno_note (in_insn, REG_DEAD, dreg))
479 {
480 remove_death (dreg, in_insn);
481 break;
482 }
483 in_insn = PREV_INSN (in_insn);
484 }
485
486 /* Delete the second load of the value. */
487 delete_insn (insn);
488 }
489 }
490 else if (GET_CODE (body) == PARALLEL)
491 {
492 /* If each part is a set between two identical registers or
493 a USE or CLOBBER, delete the insn. */
494 int i, sreg, dreg;
495 rtx tem;
496
497 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
498 {
499 tem = XVECEXP (body, 0, i);
500 if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
501 continue;
502
503 if (GET_CODE (tem) != SET
504 || (sreg = true_regnum (SET_SRC (tem))) < 0
505 || (dreg = true_regnum (SET_DEST (tem))) < 0
506 || dreg != sreg)
507 break;
508 }
509
510 if (i < 0)
511 delete_insn (insn);
512 }
513 #if !BYTES_BIG_ENDIAN /* Not worth the hair to detect this
514 in the big-endian case. */
515 /* Also delete insns to store bit fields if they are no-ops. */
516 else if (GET_CODE (body) == SET
517 && GET_CODE (SET_DEST (body)) == ZERO_EXTRACT
518 && XEXP (SET_DEST (body), 2) == const0_rtx
519 && XEXP (SET_DEST (body), 0) == SET_SRC (body)
520 && ! (GET_CODE (SET_SRC (body)) == MEM
521 && MEM_VOLATILE_P (SET_SRC (body))))
522 delete_insn (insn);
523 #endif /* not BYTES_BIG_ENDIAN */
524 }
525 insn = next;
526 }
527
528 /* If we haven't yet gotten to reload and we have just run regscan,
529 delete any insn that sets a register that isn't used elsewhere.
530 This helps some of the optimizations below by having less insns
531 being jumped around. */
532
533 if (! reload_completed && after_regscan)
534 for (insn = f; insn; insn = next)
535 {
536 rtx set = single_set (insn);
537
538 next = NEXT_INSN (insn);
539
540 if (set && GET_CODE (SET_DEST (set)) == REG
541 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
542 && regno_first_uid[REGNO (SET_DEST (set))] == INSN_UID (insn)
543 && regno_last_uid[REGNO (SET_DEST (set))] == INSN_UID (insn)
544 && ! side_effects_p (SET_SRC (set)))
545 delete_insn (insn);
546 }
547
548 /* Now iterate optimizing jumps until nothing changes over one pass. */
549 changed = 1;
550 while (changed)
551 {
552 changed = 0;
553
554 for (insn = f; insn; insn = next)
555 {
556 rtx reallabelprev;
557 rtx temp, temp1, temp2, temp3, temp4, temp5, temp6;
558 rtx nlabel;
559 int this_is_simplejump, this_is_condjump, reversep;
560 #if 0
561 /* If NOT the first iteration, if this is the last jump pass
562 (just before final), do the special peephole optimizations.
563 Avoiding the first iteration gives ordinary jump opts
564 a chance to work before peephole opts. */
565
566 if (reload_completed && !first && !flag_no_peephole)
567 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
568 peephole (insn);
569 #endif
570
571 /* That could have deleted some insns after INSN, so check now
572 what the following insn is. */
573
574 next = NEXT_INSN (insn);
575
576 /* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
577 jump. Try to optimize by duplicating the loop exit test if so.
578 This is only safe immediately after regscan, because it uses
579 the values of regno_first_uid and regno_last_uid. */
580 if (after_regscan && GET_CODE (insn) == NOTE
581 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
582 && (temp1 = next_nonnote_insn (insn)) != 0
583 && simplejump_p (temp1))
584 {
585 temp = PREV_INSN (insn);
586 if (duplicate_loop_exit_test (insn))
587 {
588 changed = 1;
589 next = NEXT_INSN (temp);
590 continue;
591 }
592 }
593
594 if (GET_CODE (insn) != JUMP_INSN)
595 continue;
596
597 this_is_simplejump = simplejump_p (insn);
598 this_is_condjump = condjump_p (insn);
599
600 /* Tension the labels in dispatch tables. */
601
602 if (GET_CODE (PATTERN (insn)) == ADDR_VEC)
603 changed |= tension_vector_labels (PATTERN (insn), 0);
604 if (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
605 changed |= tension_vector_labels (PATTERN (insn), 1);
606
607 /* If a dispatch table always goes to the same place,
608 get rid of it and replace the insn that uses it. */
609
610 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
611 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
612 {
613 int i;
614 rtx pat = PATTERN (insn);
615 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
616 int len = XVECLEN (pat, diff_vec_p);
617 rtx dispatch = prev_real_insn (insn);
618
619 for (i = 0; i < len; i++)
620 if (XEXP (XVECEXP (pat, diff_vec_p, i), 0)
621 != XEXP (XVECEXP (pat, diff_vec_p, 0), 0))
622 break;
623 if (i == len
624 && dispatch != 0
625 && GET_CODE (dispatch) == JUMP_INSN
626 && JUMP_LABEL (dispatch) != 0
627 /* Don't mess with a casesi insn. */
628 && !(GET_CODE (PATTERN (dispatch)) == SET
629 && (GET_CODE (SET_SRC (PATTERN (dispatch)))
630 == IF_THEN_ELSE))
631 && next_real_insn (JUMP_LABEL (dispatch)) == insn)
632 {
633 redirect_tablejump (dispatch,
634 XEXP (XVECEXP (pat, diff_vec_p, 0), 0));
635 changed = 1;
636 }
637 }
638
639 reallabelprev = prev_active_insn (JUMP_LABEL (insn));
640
641 /* If a jump references the end of the function, try to turn
642 it into a RETURN insn, possibly a conditional one. */
643 if (JUMP_LABEL (insn)
644 && next_active_insn (JUMP_LABEL (insn)) == 0)
645 changed |= redirect_jump (insn, NULL_RTX);
646
647 /* Detect jump to following insn. */
648 if (reallabelprev == insn && condjump_p (insn))
649 {
650 delete_jump (insn);
651 changed = 1;
652 continue;
653 }
654
655 /* If we have an unconditional jump preceded by a USE, try to put
656 the USE before the target and jump there. This simplifies many
657 of the optimizations below since we don't have to worry about
658 dealing with these USE insns. We only do this if the label
659 being branch to already has the identical USE or if code
660 never falls through to that label. */
661
662 if (this_is_simplejump
663 && (temp = prev_nonnote_insn (insn)) != 0
664 && GET_CODE (temp) == INSN && GET_CODE (PATTERN (temp)) == USE
665 && (temp1 = prev_nonnote_insn (JUMP_LABEL (insn))) != 0
666 && (GET_CODE (temp1) == BARRIER
667 || (GET_CODE (temp1) == INSN
668 && rtx_equal_p (PATTERN (temp), PATTERN (temp1)))))
669 {
670 if (GET_CODE (temp1) == BARRIER)
671 {
672 emit_insn_after (PATTERN (temp), temp1);
673 temp1 = NEXT_INSN (temp1);
674 }
675
676 delete_insn (temp);
677 redirect_jump (insn, get_label_before (temp1));
678 reallabelprev = prev_real_insn (temp1);
679 changed = 1;
680 }
681
682 /* Simplify if (...) x = a; else x = b; by converting it
683 to x = b; if (...) x = a;
684 if B is sufficiently simple, the test doesn't involve X,
685 and nothing in the test modifies B or X.
686
687 If we have small register classes, we also can't do this if X
688 is a hard register.
689
690 If the "x = b;" insn has any REG_NOTES, we don't do this because
691 of the possibility that we are running after CSE and there is a
692 REG_EQUAL note that is only valid if the branch has already been
693 taken. If we move the insn with the REG_EQUAL note, we may
694 fold the comparison to always be false in a later CSE pass.
695 (We could also delete the REG_NOTES when moving the insn, but it
696 seems simpler to not move it.) An exception is that we can move
697 the insn if the only note is a REG_EQUAL or REG_EQUIV whose
698 value is the same as "b".
699
700 INSN is the branch over the `else' part.
701
702 We set:
703
704 TEMP to the jump insn preceding "x = a;"
705 TEMP1 to X
706 TEMP2 to the insn that sets "x = b;"
707 TEMP3 to the insn that sets "x = a;"
708 TEMP4 to the set of "x = b"; */
709
710 if (this_is_simplejump
711 && (temp3 = prev_active_insn (insn)) != 0
712 && GET_CODE (temp3) == INSN
713 && (temp4 = single_set (temp3)) != 0
714 && GET_CODE (temp1 = SET_DEST (temp4)) == REG
715 #ifdef SMALL_REGISTER_CLASSES
716 && REGNO (temp1) >= FIRST_PSEUDO_REGISTER
717 #endif
718 && (temp2 = next_active_insn (insn)) != 0
719 && GET_CODE (temp2) == INSN
720 && (temp4 = single_set (temp2)) != 0
721 && rtx_equal_p (SET_DEST (temp4), temp1)
722 && (GET_CODE (SET_SRC (temp4)) == REG
723 || GET_CODE (SET_SRC (temp4)) == SUBREG
724 || CONSTANT_P (SET_SRC (temp4)))
725 && (REG_NOTES (temp2) == 0
726 || ((REG_NOTE_KIND (REG_NOTES (temp2)) == REG_EQUAL
727 || REG_NOTE_KIND (REG_NOTES (temp2)) == REG_EQUIV)
728 && XEXP (REG_NOTES (temp2), 1) == 0
729 && rtx_equal_p (XEXP (REG_NOTES (temp2), 0),
730 SET_SRC (temp4))))
731 && (temp = prev_active_insn (temp3)) != 0
732 && condjump_p (temp) && ! simplejump_p (temp)
733 /* TEMP must skip over the "x = a;" insn */
734 && prev_real_insn (JUMP_LABEL (temp)) == insn
735 && no_labels_between_p (insn, JUMP_LABEL (temp))
736 /* There must be no other entries to the "x = b;" insn. */
737 && no_labels_between_p (JUMP_LABEL (temp), temp2)
738 /* INSN must either branch to the insn after TEMP2 or the insn
739 after TEMP2 must branch to the same place as INSN. */
740 && (reallabelprev == temp2
741 || ((temp5 = next_active_insn (temp2)) != 0
742 && simplejump_p (temp5)
743 && JUMP_LABEL (temp5) == JUMP_LABEL (insn))))
744 {
745 /* The test expression, X, may be a complicated test with
746 multiple branches. See if we can find all the uses of
747 the label that TEMP branches to without hitting a CALL_INSN
748 or a jump to somewhere else. */
749 rtx target = JUMP_LABEL (temp);
750 int nuses = LABEL_NUSES (target);
751 rtx p, q;
752
753 /* Set P to the first jump insn that goes around "x = a;". */
754 for (p = temp; nuses && p; p = prev_nonnote_insn (p))
755 {
756 if (GET_CODE (p) == JUMP_INSN)
757 {
758 if (condjump_p (p) && ! simplejump_p (p)
759 && JUMP_LABEL (p) == target)
760 {
761 nuses--;
762 if (nuses == 0)
763 break;
764 }
765 else
766 break;
767 }
768 else if (GET_CODE (p) == CALL_INSN)
769 break;
770 }
771
772 #ifdef HAVE_cc0
773 /* We cannot insert anything between a set of cc and its use
774 so if P uses cc0, we must back up to the previous insn. */
775 q = prev_nonnote_insn (p);
776 if (q && GET_RTX_CLASS (GET_CODE (q)) == 'i'
777 && sets_cc0_p (PATTERN (q)))
778 p = q;
779 #endif
780
781 if (p)
782 p = PREV_INSN (p);
783
784 /* If we found all the uses and there was no data conflict, we
785 can move the assignment unless we can branch into the middle
786 from somewhere. */
787 if (nuses == 0 && p
788 && no_labels_between_p (p, insn)
789 && ! reg_referenced_between_p (temp1, p, NEXT_INSN (temp3))
790 && ! reg_set_between_p (temp1, p, temp3)
791 && (GET_CODE (SET_SRC (temp4)) == CONST_INT
792 || ! reg_set_between_p (SET_SRC (temp4), p, temp2)))
793 {
794 emit_insn_after_with_line_notes (PATTERN (temp2), p, temp2);
795 delete_insn (temp2);
796
797 /* Set NEXT to an insn that we know won't go away. */
798 next = next_active_insn (insn);
799
800 /* Delete the jump around the set. Note that we must do
801 this before we redirect the test jumps so that it won't
802 delete the code immediately following the assignment
803 we moved (which might be a jump). */
804
805 delete_insn (insn);
806
807 /* We either have two consecutive labels or a jump to
808 a jump, so adjust all the JUMP_INSNs to branch to where
809 INSN branches to. */
810 for (p = NEXT_INSN (p); p != next; p = NEXT_INSN (p))
811 if (GET_CODE (p) == JUMP_INSN)
812 redirect_jump (p, target);
813
814 changed = 1;
815 continue;
816 }
817 }
818
819 #ifndef HAVE_cc0
820 /* If we have if (...) x = exp; and branches are expensive,
821 EXP is a single insn, does not have any side effects, cannot
822 trap, and is not too costly, convert this to
823 t = exp; if (...) x = t;
824
825 Don't do this when we have CC0 because it is unlikely to help
826 and we'd need to worry about where to place the new insn and
827 the potential for conflicts. We also can't do this when we have
828 notes on the insn for the same reason as above.
829
830 We set:
831
832 TEMP to the "x = exp;" insn.
833 TEMP1 to the single set in the "x = exp; insn.
834 TEMP2 to "x". */
835
836 if (! reload_completed
837 && this_is_condjump && ! this_is_simplejump
838 && BRANCH_COST >= 3
839 && (temp = next_nonnote_insn (insn)) != 0
840 && GET_CODE (temp) == INSN
841 && REG_NOTES (temp) == 0
842 && (reallabelprev == temp
843 || ((temp2 = next_active_insn (temp)) != 0
844 && simplejump_p (temp2)
845 && JUMP_LABEL (temp2) == JUMP_LABEL (insn)))
846 && (temp1 = single_set (temp)) != 0
847 && (temp2 = SET_DEST (temp1), GET_CODE (temp2) == REG)
848 && GET_MODE_CLASS (GET_MODE (temp2)) == MODE_INT
849 #ifdef SMALL_REGISTER_CLASSES
850 && REGNO (temp2) >= FIRST_PSEUDO_REGISTER
851 #endif
852 && GET_CODE (SET_SRC (temp1)) != REG
853 && GET_CODE (SET_SRC (temp1)) != SUBREG
854 && GET_CODE (SET_SRC (temp1)) != CONST_INT
855 && ! side_effects_p (SET_SRC (temp1))
856 && ! may_trap_p (SET_SRC (temp1))
857 && rtx_cost (SET_SRC (temp1)) < 10)
858 {
859 rtx new = gen_reg_rtx (GET_MODE (temp2));
860
861 if (validate_change (temp, &SET_DEST (temp1), new, 0))
862 {
863 next = emit_insn_after (gen_move_insn (temp2, new), insn);
864 emit_insn_after_with_line_notes (PATTERN (temp),
865 PREV_INSN (insn), temp);
866 delete_insn (temp);
867 }
868 }
869
870 /* Similarly, if it takes two insns to compute EXP but they
871 have the same destination. Here TEMP3 will be the second
872 insn and TEMP4 the SET from that insn. */
873
874 if (! reload_completed
875 && this_is_condjump && ! this_is_simplejump
876 && BRANCH_COST >= 4
877 && (temp = next_nonnote_insn (insn)) != 0
878 && GET_CODE (temp) == INSN
879 && REG_NOTES (temp) == 0
880 && (temp3 = next_nonnote_insn (temp)) != 0
881 && GET_CODE (temp3) == INSN
882 && REG_NOTES (temp3) == 0
883 && (reallabelprev == temp3
884 || ((temp2 = next_active_insn (temp3)) != 0
885 && simplejump_p (temp2)
886 && JUMP_LABEL (temp2) == JUMP_LABEL (insn)))
887 && (temp1 = single_set (temp)) != 0
888 && (temp2 = SET_DEST (temp1), GET_CODE (temp2) == REG)
889 && GET_MODE_CLASS (GET_MODE (temp2)) == MODE_INT
890 #ifdef SMALL_REGISTER_CLASSES
891 && REGNO (temp2) >= FIRST_PSEUDO_REGISTER
892 #endif
893 && ! side_effects_p (SET_SRC (temp1))
894 && ! may_trap_p (SET_SRC (temp1))
895 && rtx_cost (SET_SRC (temp1)) < 10
896 && (temp4 = single_set (temp3)) != 0
897 && rtx_equal_p (SET_DEST (temp4), temp2)
898 && ! side_effects_p (SET_SRC (temp4))
899 && ! may_trap_p (SET_SRC (temp4))
900 && rtx_cost (SET_SRC (temp4)) < 10)
901 {
902 rtx new = gen_reg_rtx (GET_MODE (temp2));
903
904 if (validate_change (temp, &SET_DEST (temp1), new, 0))
905 {
906 next = emit_insn_after (gen_move_insn (temp2, new), insn);
907 emit_insn_after_with_line_notes (PATTERN (temp),
908 PREV_INSN (insn), temp);
909 emit_insn_after_with_line_notes
910 (replace_rtx (PATTERN (temp3), temp2, new),
911 PREV_INSN (insn), temp3);
912 delete_insn (temp);
913 delete_insn (temp3);
914 }
915 }
916
917 /* Finally, handle the case where two insns are used to
918 compute EXP but a temporary register is used. Here we must
919 ensure that the temporary register is not used anywhere else. */
920
921 if (! reload_completed
922 && after_regscan
923 && this_is_condjump && ! this_is_simplejump
924 && BRANCH_COST >= 4
925 && (temp = next_nonnote_insn (insn)) != 0
926 && GET_CODE (temp) == INSN
927 && REG_NOTES (temp) == 0
928 && (temp3 = next_nonnote_insn (temp)) != 0
929 && GET_CODE (temp3) == INSN
930 && REG_NOTES (temp3) == 0
931 && (reallabelprev == temp3
932 || ((temp2 = next_active_insn (temp3)) != 0
933 && simplejump_p (temp2)
934 && JUMP_LABEL (temp2) == JUMP_LABEL (insn)))
935 && (temp1 = single_set (temp)) != 0
936 && (temp5 = SET_DEST (temp1), GET_CODE (temp5) == REG)
937 && REGNO (temp5) >= FIRST_PSEUDO_REGISTER
938 && regno_first_uid[REGNO (temp5)] == INSN_UID (temp)
939 && regno_last_uid[REGNO (temp5)] == INSN_UID (temp3)
940 && ! side_effects_p (SET_SRC (temp1))
941 && ! may_trap_p (SET_SRC (temp1))
942 && rtx_cost (SET_SRC (temp1)) < 10
943 && (temp4 = single_set (temp3)) != 0
944 && (temp2 = SET_DEST (temp4), GET_CODE (temp2) == REG)
945 && GET_MODE_CLASS (GET_MODE (temp2)) == MODE_INT
946 #ifdef SMALL_REGISTER_CLASSES
947 && REGNO (temp2) >= FIRST_PSEUDO_REGISTER
948 #endif
949 && rtx_equal_p (SET_DEST (temp4), temp2)
950 && ! side_effects_p (SET_SRC (temp4))
951 && ! may_trap_p (SET_SRC (temp4))
952 && rtx_cost (SET_SRC (temp4)) < 10)
953 {
954 rtx new = gen_reg_rtx (GET_MODE (temp2));
955
956 if (validate_change (temp3, &SET_DEST (temp4), new, 0))
957 {
958 next = emit_insn_after (gen_move_insn (temp2, new), insn);
959 emit_insn_after_with_line_notes (PATTERN (temp),
960 PREV_INSN (insn), temp);
961 emit_insn_after_with_line_notes (PATTERN (temp3),
962 PREV_INSN (insn), temp3);
963 delete_insn (temp);
964 delete_insn (temp3);
965 }
966 }
967 #endif /* HAVE_cc0 */
968
969 /* We deal with four cases:
970
971 1) x = a; if (...) x = b; and either A or B is zero,
972 2) if (...) x = 0; and jumps are expensive,
973 3) x = a; if (...) x = b; and A and B are constants where all the
974 set bits in A are also set in B and jumps are expensive, and
975 4) x = a; if (...) x = b; and A and B non-zero, and jumps are
976 more expensive.
977 5) if (...) x = b; if jumps are even more expensive.
978
979 In each of these try to use a store-flag insn to avoid the jump.
980 (If the jump would be faster, the machine should not have
981 defined the scc insns!). These cases are often made by the
982 previous optimization.
983
984 INSN here is the jump around the store. We set:
985
986 TEMP to the "x = b;" insn.
987 TEMP1 to X.
988 TEMP2 to B (const0_rtx in the second case).
989 TEMP3 to A (X in the second case).
990 TEMP4 to the condition being tested.
991 TEMP5 to the earliest insn used to find the condition. */
992
993 if (/* We can't do this after reload has completed. */
994 ! reload_completed
995 && this_is_condjump && ! this_is_simplejump
996 /* Set TEMP to the "x = b;" insn. */
997 && (temp = next_nonnote_insn (insn)) != 0
998 && GET_CODE (temp) == INSN
999 && GET_CODE (PATTERN (temp)) == SET
1000 && GET_CODE (temp1 = SET_DEST (PATTERN (temp))) == REG
1001 #ifdef SMALL_REGISTER_CLASSES
1002 && REGNO (temp1) >= FIRST_PSEUDO_REGISTER
1003 #endif
1004 && GET_MODE_CLASS (GET_MODE (temp1)) == MODE_INT
1005 && (GET_CODE (temp2 = SET_SRC (PATTERN (temp))) == REG
1006 || GET_CODE (temp2) == SUBREG
1007 || GET_CODE (temp2) == CONST_INT)
1008 /* Allow either form, but prefer the former if both apply.
1009 There is no point in using the old value of TEMP1 if
1010 it is a register, since cse will alias them. It can
1011 lose if the old value were a hard register since CSE
1012 won't replace hard registers. */
1013 && (((temp3 = reg_set_last (temp1, insn)) != 0
1014 && GET_CODE (temp3) == CONST_INT)
1015 /* Make the latter case look like x = x; if (...) x = 0; */
1016 || (temp3 = temp1,
1017 ((BRANCH_COST >= 2
1018 && temp2 == const0_rtx)
1019 || BRANCH_COST >= 3)))
1020 /* INSN must either branch to the insn after TEMP or the insn
1021 after TEMP must branch to the same place as INSN. */
1022 && (reallabelprev == temp
1023 || ((temp4 = next_active_insn (temp)) != 0
1024 && simplejump_p (temp4)
1025 && JUMP_LABEL (temp4) == JUMP_LABEL (insn)))
1026 && (temp4 = get_condition (insn, &temp5)) != 0
1027 /* We must be comparing objects whose modes imply the size.
1028 We could handle BLKmode if (1) emit_store_flag could
1029 and (2) we could find the size reliably. */
1030 && GET_MODE (XEXP (temp4, 0)) != BLKmode
1031
1032 /* If B is zero, OK; if A is zero, can only do (1) if we
1033 can reverse the condition. See if (3) applies possibly
1034 by reversing the condition. Prefer reversing to (4) when
1035 branches are very expensive. */
1036 && ((reversep = 0, temp2 == const0_rtx)
1037 || (temp3 == const0_rtx
1038 && (reversep = can_reverse_comparison_p (temp4, insn)))
1039 || (BRANCH_COST >= 2
1040 && GET_CODE (temp2) == CONST_INT
1041 && GET_CODE (temp3) == CONST_INT
1042 && ((INTVAL (temp2) & INTVAL (temp3)) == INTVAL (temp2)
1043 || ((INTVAL (temp2) & INTVAL (temp3)) == INTVAL (temp3)
1044 && (reversep = can_reverse_comparison_p (temp4,
1045 insn)))))
1046 || BRANCH_COST >= 3)
1047 #ifdef HAVE_cc0
1048 /* If the previous insn sets CC0 and something else, we can't
1049 do this since we are going to delete that insn. */
1050
1051 && ! ((temp6 = prev_nonnote_insn (insn)) != 0
1052 && GET_CODE (temp6) == INSN
1053 && (sets_cc0_p (PATTERN (temp6)) == -1
1054 || (sets_cc0_p (PATTERN (temp6)) == 1
1055 && FIND_REG_INC_NOTE (temp6, NULL_RTX))))
1056 #endif
1057 )
1058 {
1059 enum rtx_code code = GET_CODE (temp4);
1060 rtx uval, cval, var = temp1;
1061 int normalizep;
1062 rtx target;
1063
1064 /* If necessary, reverse the condition. */
1065 if (reversep)
1066 code = reverse_condition (code), uval = temp2, cval = temp3;
1067 else
1068 uval = temp3, cval = temp2;
1069
1070 /* See if we can do this with a store-flag insn. */
1071 start_sequence ();
1072
1073 /* If CVAL is non-zero, normalize to -1. Otherwise,
1074 if UVAL is the constant 1, it is best to just compute
1075 the result directly. If UVAL is constant and STORE_FLAG_VALUE
1076 includes all of its bits, it is best to compute the flag
1077 value unnormalized and `and' it with UVAL. Otherwise,
1078 normalize to -1 and `and' with UVAL. */
1079 normalizep = (cval != const0_rtx ? -1
1080 : (uval == const1_rtx ? 1
1081 : (GET_CODE (uval) == CONST_INT
1082 && (INTVAL (uval) & ~STORE_FLAG_VALUE) == 0)
1083 ? 0 : -1));
1084
1085 /* We will be putting the store-flag insn immediately in
1086 front of the comparison that was originally being done,
1087 so we know all the variables in TEMP4 will be valid.
1088 However, this might be in front of the assignment of
1089 A to VAR. If it is, it would clobber the store-flag
1090 we will be emitting.
1091
1092 Therefore, emit into a temporary which will be copied to
1093 VAR immediately after TEMP. */
1094
1095 target = emit_store_flag (gen_reg_rtx (GET_MODE (var)), code,
1096 XEXP (temp4, 0), XEXP (temp4, 1),
1097 VOIDmode,
1098 (code == LTU || code == LEU
1099 || code == GEU || code == GTU),
1100 normalizep);
1101 if (target)
1102 {
1103 rtx before = insn;
1104 rtx seq;
1105
1106 /* Put the store-flag insns in front of the first insn
1107 used to compute the condition to ensure that we
1108 use the same values of them as the current
1109 comparison. However, the remainder of the insns we
1110 generate will be placed directly in front of the
1111 jump insn, in case any of the pseudos we use
1112 are modified earlier. */
1113
1114 seq = get_insns ();
1115 end_sequence ();
1116
1117 emit_insns_before (seq, temp5);
1118
1119 start_sequence ();
1120
1121 /* Both CVAL and UVAL are non-zero. */
1122 if (cval != const0_rtx && uval != const0_rtx)
1123 {
1124 rtx tem1, tem2;
1125
1126 tem1 = expand_and (uval, target, NULL_RTX);
1127 if (GET_CODE (cval) == CONST_INT
1128 && GET_CODE (uval) == CONST_INT
1129 && (INTVAL (cval) & INTVAL (uval)) == INTVAL (cval))
1130 tem2 = cval;
1131 else
1132 {
1133 tem2 = expand_unop (GET_MODE (var), one_cmpl_optab,
1134 target, NULL_RTX, 0);
1135 tem2 = expand_and (cval, tem2,
1136 (GET_CODE (tem2) == REG
1137 ? tem2 : 0));
1138 }
1139
1140 /* If we usually make new pseudos, do so here. This
1141 turns out to help machines that have conditional
1142 move insns. */
1143
1144 if (flag_expensive_optimizations)
1145 target = 0;
1146
1147 target = expand_binop (GET_MODE (var), ior_optab,
1148 tem1, tem2, target,
1149 1, OPTAB_WIDEN);
1150 }
1151 else if (normalizep != 1)
1152 target = expand_and (uval, target,
1153 (GET_CODE (target) == REG
1154 && ! preserve_subexpressions_p ()
1155 ? target : NULL_RTX));
1156
1157 emit_move_insn (var, target);
1158 seq = get_insns ();
1159 end_sequence ();
1160
1161 #ifdef HAVE_cc0
1162 /* If INSN uses CC0, we must not separate it from the
1163 insn that sets cc0. */
1164
1165 if (reg_mentioned_p (cc0_rtx, PATTERN (before)))
1166 before = prev_nonnote_insn (before);
1167 #endif
1168
1169 emit_insns_before (seq, before);
1170
1171 delete_insn (temp);
1172 next = NEXT_INSN (insn);
1173
1174 delete_jump (insn);
1175 changed = 1;
1176 continue;
1177 }
1178 else
1179 end_sequence ();
1180 }
1181
1182 /* If branches are expensive, convert
1183 if (foo) bar++; to bar += (foo != 0);
1184 and similarly for "bar--;"
1185
1186 INSN is the conditional branch around the arithmetic. We set:
1187
1188 TEMP is the arithmetic insn.
1189 TEMP1 is the SET doing the arithmetic.
1190 TEMP2 is the operand being incremented or decremented.
1191 TEMP3 to the condition being tested.
1192 TEMP4 to the earliest insn used to find the condition. */
1193
1194 if (BRANCH_COST >= 2
1195 && ! reload_completed
1196 && this_is_condjump && ! this_is_simplejump
1197 && (temp = next_nonnote_insn (insn)) != 0
1198 && (temp1 = single_set (temp)) != 0
1199 && (temp2 = SET_DEST (temp1),
1200 GET_MODE_CLASS (GET_MODE (temp2)) == MODE_INT)
1201 && GET_CODE (SET_SRC (temp1)) == PLUS
1202 && (XEXP (SET_SRC (temp1), 1) == const1_rtx
1203 || XEXP (SET_SRC (temp1), 1) == constm1_rtx)
1204 && rtx_equal_p (temp2, XEXP (SET_SRC (temp1), 0))
1205 /* INSN must either branch to the insn after TEMP or the insn
1206 after TEMP must branch to the same place as INSN. */
1207 && (reallabelprev == temp
1208 || ((temp3 = next_active_insn (temp)) != 0
1209 && simplejump_p (temp3)
1210 && JUMP_LABEL (temp3) == JUMP_LABEL (insn)))
1211 && (temp3 = get_condition (insn, &temp4)) != 0
1212 /* We must be comparing objects whose modes imply the size.
1213 We could handle BLKmode if (1) emit_store_flag could
1214 and (2) we could find the size reliably. */
1215 && GET_MODE (XEXP (temp3, 0)) != BLKmode
1216 && can_reverse_comparison_p (temp3, insn))
1217 {
1218 rtx temp6, target = 0, seq, init_insn = 0, init = temp2;
1219 enum rtx_code code = reverse_condition (GET_CODE (temp3));
1220
1221 start_sequence ();
1222
1223 /* It must be the case that TEMP2 is not modified in the range
1224 [TEMP4, INSN). The one exception we make is if the insn
1225 before INSN sets TEMP2 to something which is also unchanged
1226 in that range. In that case, we can move the initialization
1227 into our sequence. */
1228
1229 if ((temp5 = prev_active_insn (insn)) != 0
1230 && GET_CODE (temp5) == INSN
1231 && (temp6 = single_set (temp5)) != 0
1232 && rtx_equal_p (temp2, SET_DEST (temp6))
1233 && (CONSTANT_P (SET_SRC (temp6))
1234 || GET_CODE (SET_SRC (temp6)) == REG
1235 || GET_CODE (SET_SRC (temp6)) == SUBREG))
1236 {
1237 emit_insn (PATTERN (temp5));
1238 init_insn = temp5;
1239 init = SET_SRC (temp6);
1240 }
1241
1242 if (CONSTANT_P (init)
1243 || ! reg_set_between_p (init, PREV_INSN (temp4), insn))
1244 target = emit_store_flag (gen_reg_rtx (GET_MODE (temp2)), code,
1245 XEXP (temp3, 0), XEXP (temp3, 1),
1246 VOIDmode,
1247 (code == LTU || code == LEU
1248 || code == GTU || code == GEU), 1);
1249
1250 /* If we can do the store-flag, do the addition or
1251 subtraction. */
1252
1253 if (target)
1254 target = expand_binop (GET_MODE (temp2),
1255 (XEXP (SET_SRC (temp1), 1) == const1_rtx
1256 ? add_optab : sub_optab),
1257 temp2, target, temp2, OPTAB_WIDEN);
1258
1259 if (target != 0)
1260 {
1261 /* Put the result back in temp2 in case it isn't already.
1262 Then replace the jump, possible a CC0-setting insn in
1263 front of the jump, and TEMP, with the sequence we have
1264 made. */
1265
1266 if (target != temp2)
1267 emit_move_insn (temp2, target);
1268
1269 seq = get_insns ();
1270 end_sequence ();
1271
1272 emit_insns_before (seq, temp4);
1273 delete_insn (temp);
1274
1275 if (init_insn)
1276 delete_insn (init_insn);
1277
1278 next = NEXT_INSN (insn);
1279 #ifdef HAVE_cc0
1280 delete_insn (prev_nonnote_insn (insn));
1281 #endif
1282 delete_insn (insn);
1283 changed = 1;
1284 continue;
1285 }
1286 else
1287 end_sequence ();
1288 }
1289
1290 /* Simplify if (...) x = 1; else {...} if (x) ...
1291 We recognize this case scanning backwards as well.
1292
1293 TEMP is the assignment to x;
1294 TEMP1 is the label at the head of the second if. */
1295 /* ?? This should call get_condition to find the values being
1296 compared, instead of looking for a COMPARE insn when HAVE_cc0
1297 is not defined. This would allow it to work on the m88k. */
1298 /* ?? This optimization is only safe before cse is run if HAVE_cc0
1299 is not defined and the condition is tested by a separate compare
1300 insn. This is because the code below assumes that the result
1301 of the compare dies in the following branch.
1302
1303 Not only that, but there might be other insns between the
1304 compare and branch whose results are live. Those insns need
1305 to be executed.
1306
1307 A way to fix this is to move the insns at JUMP_LABEL (insn)
1308 to before INSN. If we are running before flow, they will
1309 be deleted if they aren't needed. But this doesn't work
1310 well after flow.
1311
1312 This is really a special-case of jump threading, anyway. The
1313 right thing to do is to replace this and jump threading with
1314 much simpler code in cse.
1315
1316 This code has been turned off in the non-cc0 case in the
1317 meantime. */
1318
1319 #ifdef HAVE_cc0
1320 else if (this_is_simplejump
1321 /* Safe to skip USE and CLOBBER insns here
1322 since they will not be deleted. */
1323 && (temp = prev_active_insn (insn))
1324 && no_labels_between_p (temp, insn)
1325 && GET_CODE (temp) == INSN
1326 && GET_CODE (PATTERN (temp)) == SET
1327 && GET_CODE (SET_DEST (PATTERN (temp))) == REG
1328 && CONSTANT_P (SET_SRC (PATTERN (temp)))
1329 && (temp1 = next_active_insn (JUMP_LABEL (insn)))
1330 /* If we find that the next value tested is `x'
1331 (TEMP1 is the insn where this happens), win. */
1332 && GET_CODE (temp1) == INSN
1333 && GET_CODE (PATTERN (temp1)) == SET
1334 #ifdef HAVE_cc0
1335 /* Does temp1 `tst' the value of x? */
1336 && SET_SRC (PATTERN (temp1)) == SET_DEST (PATTERN (temp))
1337 && SET_DEST (PATTERN (temp1)) == cc0_rtx
1338 && (temp1 = next_nonnote_insn (temp1))
1339 #else
1340 /* Does temp1 compare the value of x against zero? */
1341 && GET_CODE (SET_SRC (PATTERN (temp1))) == COMPARE
1342 && XEXP (SET_SRC (PATTERN (temp1)), 1) == const0_rtx
1343 && (XEXP (SET_SRC (PATTERN (temp1)), 0)
1344 == SET_DEST (PATTERN (temp)))
1345 && GET_CODE (SET_DEST (PATTERN (temp1))) == REG
1346 && (temp1 = find_next_ref (SET_DEST (PATTERN (temp1)), temp1))
1347 #endif
1348 && condjump_p (temp1))
1349 {
1350 /* Get the if_then_else from the condjump. */
1351 rtx choice = SET_SRC (PATTERN (temp1));
1352 if (GET_CODE (choice) == IF_THEN_ELSE)
1353 {
1354 enum rtx_code code = GET_CODE (XEXP (choice, 0));
1355 rtx val = SET_SRC (PATTERN (temp));
1356 rtx cond
1357 = simplify_relational_operation (code, GET_MODE (SET_DEST (PATTERN (temp))),
1358 val, const0_rtx);
1359 rtx ultimate;
1360
1361 if (cond == const_true_rtx)
1362 ultimate = XEXP (choice, 1);
1363 else if (cond == const0_rtx)
1364 ultimate = XEXP (choice, 2);
1365 else
1366 ultimate = 0;
1367
1368 if (ultimate == pc_rtx)
1369 ultimate = get_label_after (temp1);
1370 else if (ultimate && GET_CODE (ultimate) != RETURN)
1371 ultimate = XEXP (ultimate, 0);
1372
1373 if (ultimate)
1374 changed |= redirect_jump (insn, ultimate);
1375 }
1376 }
1377 #endif
1378
1379 #if 0
1380 /* @@ This needs a bit of work before it will be right.
1381
1382 Any type of comparison can be accepted for the first and
1383 second compare. When rewriting the first jump, we must
1384 compute the what conditions can reach label3, and use the
1385 appropriate code. We can not simply reverse/swap the code
1386 of the first jump. In some cases, the second jump must be
1387 rewritten also.
1388
1389 For example,
1390 < == converts to > ==
1391 < != converts to == >
1392 etc.
1393
1394 If the code is written to only accept an '==' test for the second
1395 compare, then all that needs to be done is to swap the condition
1396 of the first branch.
1397
1398 It is questionable whether we want this optimization anyways,
1399 since if the user wrote code like this because he/she knew that
1400 the jump to label1 is taken most of the time, then rewriting
1401 this gives slower code. */
1402 /* @@ This should call get_condition to find the values being
1403 compared, instead of looking for a COMPARE insn when HAVE_cc0
1404 is not defined. This would allow it to work on the m88k. */
1405 /* @@ This optimization is only safe before cse is run if HAVE_cc0
1406 is not defined and the condition is tested by a separate compare
1407 insn. This is because the code below assumes that the result
1408 of the compare dies in the following branch. */
1409
1410 /* Simplify test a ~= b
1411 condjump label1;
1412 test a == b
1413 condjump label2;
1414 jump label3;
1415 label1:
1416
1417 rewriting as
1418 test a ~~= b
1419 condjump label3
1420 test a == b
1421 condjump label2
1422 label1:
1423
1424 where ~= is an inequality, e.g. >, and ~~= is the swapped
1425 inequality, e.g. <.
1426
1427 We recognize this case scanning backwards.
1428
1429 TEMP is the conditional jump to `label2';
1430 TEMP1 is the test for `a == b';
1431 TEMP2 is the conditional jump to `label1';
1432 TEMP3 is the test for `a ~= b'. */
1433 else if (this_is_simplejump
1434 && (temp = prev_active_insn (insn))
1435 && no_labels_between_p (temp, insn)
1436 && condjump_p (temp)
1437 && (temp1 = prev_active_insn (temp))
1438 && no_labels_between_p (temp1, temp)
1439 && GET_CODE (temp1) == INSN
1440 && GET_CODE (PATTERN (temp1)) == SET
1441 #ifdef HAVE_cc0
1442 && sets_cc0_p (PATTERN (temp1)) == 1
1443 #else
1444 && GET_CODE (SET_SRC (PATTERN (temp1))) == COMPARE
1445 && GET_CODE (SET_DEST (PATTERN (temp1))) == REG
1446 && (temp == find_next_ref (SET_DEST (PATTERN (temp1)), temp1))
1447 #endif
1448 && (temp2 = prev_active_insn (temp1))
1449 && no_labels_between_p (temp2, temp1)
1450 && condjump_p (temp2)
1451 && JUMP_LABEL (temp2) == next_nonnote_insn (NEXT_INSN (insn))
1452 && (temp3 = prev_active_insn (temp2))
1453 && no_labels_between_p (temp3, temp2)
1454 && GET_CODE (PATTERN (temp3)) == SET
1455 && rtx_equal_p (SET_DEST (PATTERN (temp3)),
1456 SET_DEST (PATTERN (temp1)))
1457 && rtx_equal_p (SET_SRC (PATTERN (temp1)),
1458 SET_SRC (PATTERN (temp3)))
1459 && ! inequality_comparisons_p (PATTERN (temp))
1460 && inequality_comparisons_p (PATTERN (temp2)))
1461 {
1462 rtx fallthrough_label = JUMP_LABEL (temp2);
1463
1464 ++LABEL_NUSES (fallthrough_label);
1465 if (swap_jump (temp2, JUMP_LABEL (insn)))
1466 {
1467 delete_insn (insn);
1468 changed = 1;
1469 }
1470
1471 if (--LABEL_NUSES (fallthrough_label) == 0)
1472 delete_insn (fallthrough_label);
1473 }
1474 #endif
1475 /* Simplify if (...) {... x = 1;} if (x) ...
1476
1477 We recognize this case backwards.
1478
1479 TEMP is the test of `x';
1480 TEMP1 is the assignment to `x' at the end of the
1481 previous statement. */
1482 /* @@ This should call get_condition to find the values being
1483 compared, instead of looking for a COMPARE insn when HAVE_cc0
1484 is not defined. This would allow it to work on the m88k. */
1485 /* @@ This optimization is only safe before cse is run if HAVE_cc0
1486 is not defined and the condition is tested by a separate compare
1487 insn. This is because the code below assumes that the result
1488 of the compare dies in the following branch. */
1489
1490 /* ??? This has to be turned off. The problem is that the
1491 unconditional jump might indirectly end up branching to the
1492 label between TEMP1 and TEMP. We can't detect this, in general,
1493 since it may become a jump to there after further optimizations.
1494 If that jump is done, it will be deleted, so we will retry
1495 this optimization in the next pass, thus an infinite loop.
1496
1497 The present code prevents this by putting the jump after the
1498 label, but this is not logically correct. */
1499 #if 0
1500 else if (this_is_condjump
1501 /* Safe to skip USE and CLOBBER insns here
1502 since they will not be deleted. */
1503 && (temp = prev_active_insn (insn))
1504 && no_labels_between_p (temp, insn)
1505 && GET_CODE (temp) == INSN
1506 && GET_CODE (PATTERN (temp)) == SET
1507 #ifdef HAVE_cc0
1508 && sets_cc0_p (PATTERN (temp)) == 1
1509 && GET_CODE (SET_SRC (PATTERN (temp))) == REG
1510 #else
1511 /* Temp must be a compare insn, we can not accept a register
1512 to register move here, since it may not be simply a
1513 tst insn. */
1514 && GET_CODE (SET_SRC (PATTERN (temp))) == COMPARE
1515 && XEXP (SET_SRC (PATTERN (temp)), 1) == const0_rtx
1516 && GET_CODE (XEXP (SET_SRC (PATTERN (temp)), 0)) == REG
1517 && GET_CODE (SET_DEST (PATTERN (temp))) == REG
1518 && insn == find_next_ref (SET_DEST (PATTERN (temp)), temp)
1519 #endif
1520 /* May skip USE or CLOBBER insns here
1521 for checking for opportunity, since we
1522 take care of them later. */
1523 && (temp1 = prev_active_insn (temp))
1524 && GET_CODE (temp1) == INSN
1525 && GET_CODE (PATTERN (temp1)) == SET
1526 #ifdef HAVE_cc0
1527 && SET_SRC (PATTERN (temp)) == SET_DEST (PATTERN (temp1))
1528 #else
1529 && (XEXP (SET_SRC (PATTERN (temp)), 0)
1530 == SET_DEST (PATTERN (temp1)))
1531 #endif
1532 && CONSTANT_P (SET_SRC (PATTERN (temp1)))
1533 /* If this isn't true, cse will do the job. */
1534 && ! no_labels_between_p (temp1, temp))
1535 {
1536 /* Get the if_then_else from the condjump. */
1537 rtx choice = SET_SRC (PATTERN (insn));
1538 if (GET_CODE (choice) == IF_THEN_ELSE
1539 && (GET_CODE (XEXP (choice, 0)) == EQ
1540 || GET_CODE (XEXP (choice, 0)) == NE))
1541 {
1542 int want_nonzero = (GET_CODE (XEXP (choice, 0)) == NE);
1543 rtx last_insn;
1544 rtx ultimate;
1545 rtx p;
1546
1547 /* Get the place that condjump will jump to
1548 if it is reached from here. */
1549 if ((SET_SRC (PATTERN (temp1)) != const0_rtx)
1550 == want_nonzero)
1551 ultimate = XEXP (choice, 1);
1552 else
1553 ultimate = XEXP (choice, 2);
1554 /* Get it as a CODE_LABEL. */
1555 if (ultimate == pc_rtx)
1556 ultimate = get_label_after (insn);
1557 else
1558 /* Get the label out of the LABEL_REF. */
1559 ultimate = XEXP (ultimate, 0);
1560
1561 /* Insert the jump immediately before TEMP, specifically
1562 after the label that is between TEMP1 and TEMP. */
1563 last_insn = PREV_INSN (temp);
1564
1565 /* If we would be branching to the next insn, the jump
1566 would immediately be deleted and the re-inserted in
1567 a subsequent pass over the code. So don't do anything
1568 in that case. */
1569 if (next_active_insn (last_insn)
1570 != next_active_insn (ultimate))
1571 {
1572 emit_barrier_after (last_insn);
1573 p = emit_jump_insn_after (gen_jump (ultimate),
1574 last_insn);
1575 JUMP_LABEL (p) = ultimate;
1576 ++LABEL_NUSES (ultimate);
1577 if (INSN_UID (ultimate) < max_jump_chain
1578 && INSN_CODE (p) < max_jump_chain)
1579 {
1580 jump_chain[INSN_UID (p)]
1581 = jump_chain[INSN_UID (ultimate)];
1582 jump_chain[INSN_UID (ultimate)] = p;
1583 }
1584 changed = 1;
1585 continue;
1586 }
1587 }
1588 }
1589 #endif
1590 /* Detect a conditional jump going to the same place
1591 as an immediately following unconditional jump. */
1592 else if (this_is_condjump
1593 && (temp = next_active_insn (insn)) != 0
1594 && simplejump_p (temp)
1595 && (next_active_insn (JUMP_LABEL (insn))
1596 == next_active_insn (JUMP_LABEL (temp))))
1597 {
1598 delete_jump (insn);
1599 changed = 1;
1600 continue;
1601 }
1602 /* Detect a conditional jump jumping over an unconditional jump. */
1603
1604 else if (this_is_condjump && ! this_is_simplejump
1605 && reallabelprev != 0
1606 && GET_CODE (reallabelprev) == JUMP_INSN
1607 && prev_active_insn (reallabelprev) == insn
1608 && no_labels_between_p (insn, reallabelprev)
1609 && simplejump_p (reallabelprev))
1610 {
1611 /* When we invert the unconditional jump, we will be
1612 decrementing the usage count of its old label.
1613 Make sure that we don't delete it now because that
1614 might cause the following code to be deleted. */
1615 rtx prev_uses = prev_nonnote_insn (reallabelprev);
1616 rtx prev_label = JUMP_LABEL (insn);
1617
1618 ++LABEL_NUSES (prev_label);
1619
1620 if (invert_jump (insn, JUMP_LABEL (reallabelprev)))
1621 {
1622 /* It is very likely that if there are USE insns before
1623 this jump, they hold REG_DEAD notes. These REG_DEAD
1624 notes are no longer valid due to this optimization,
1625 and will cause the life-analysis that following passes
1626 (notably delayed-branch scheduling) to think that
1627 these registers are dead when they are not.
1628
1629 To prevent this trouble, we just remove the USE insns
1630 from the insn chain. */
1631
1632 while (prev_uses && GET_CODE (prev_uses) == INSN
1633 && GET_CODE (PATTERN (prev_uses)) == USE)
1634 {
1635 rtx useless = prev_uses;
1636 prev_uses = prev_nonnote_insn (prev_uses);
1637 delete_insn (useless);
1638 }
1639
1640 delete_insn (reallabelprev);
1641 next = insn;
1642 changed = 1;
1643 }
1644
1645 /* We can now safely delete the label if it is unreferenced
1646 since the delete_insn above has deleted the BARRIER. */
1647 if (--LABEL_NUSES (prev_label) == 0)
1648 delete_insn (prev_label);
1649 continue;
1650 }
1651 else
1652 {
1653 /* Detect a jump to a jump. */
1654
1655 nlabel = follow_jumps (JUMP_LABEL (insn));
1656 if (nlabel != JUMP_LABEL (insn)
1657 && redirect_jump (insn, nlabel))
1658 {
1659 changed = 1;
1660 next = insn;
1661 }
1662
1663 /* Look for if (foo) bar; else break; */
1664 /* The insns look like this:
1665 insn = condjump label1;
1666 ...range1 (some insns)...
1667 jump label2;
1668 label1:
1669 ...range2 (some insns)...
1670 jump somewhere unconditionally
1671 label2: */
1672 {
1673 rtx label1 = next_label (insn);
1674 rtx range1end = label1 ? prev_active_insn (label1) : 0;
1675 /* Don't do this optimization on the first round, so that
1676 jump-around-a-jump gets simplified before we ask here
1677 whether a jump is unconditional.
1678
1679 Also don't do it when we are called after reload since
1680 it will confuse reorg. */
1681 if (! first
1682 && (reload_completed ? ! flag_delayed_branch : 1)
1683 /* Make sure INSN is something we can invert. */
1684 && condjump_p (insn)
1685 && label1 != 0
1686 && JUMP_LABEL (insn) == label1
1687 && LABEL_NUSES (label1) == 1
1688 && GET_CODE (range1end) == JUMP_INSN
1689 && simplejump_p (range1end))
1690 {
1691 rtx label2 = next_label (label1);
1692 rtx range2end = label2 ? prev_active_insn (label2) : 0;
1693 if (range1end != range2end
1694 && JUMP_LABEL (range1end) == label2
1695 && GET_CODE (range2end) == JUMP_INSN
1696 && GET_CODE (NEXT_INSN (range2end)) == BARRIER
1697 /* Invert the jump condition, so we
1698 still execute the same insns in each case. */
1699 && invert_jump (insn, label1))
1700 {
1701 rtx range1beg = next_active_insn (insn);
1702 rtx range2beg = next_active_insn (label1);
1703 rtx range1after, range2after;
1704 rtx range1before, range2before;
1705
1706 /* Include in each range any line number before it. */
1707 while (PREV_INSN (range1beg)
1708 && GET_CODE (PREV_INSN (range1beg)) == NOTE
1709 && NOTE_LINE_NUMBER (PREV_INSN (range1beg)) > 0)
1710 range1beg = PREV_INSN (range1beg);
1711
1712 while (PREV_INSN (range2beg)
1713 && GET_CODE (PREV_INSN (range2beg)) == NOTE
1714 && NOTE_LINE_NUMBER (PREV_INSN (range2beg)) > 0)
1715 range2beg = PREV_INSN (range2beg);
1716
1717 /* Don't move NOTEs for blocks or loops; shift them
1718 outside the ranges, where they'll stay put. */
1719 range1beg = squeeze_notes (range1beg, range1end);
1720 range2beg = squeeze_notes (range2beg, range2end);
1721
1722 /* Get current surrounds of the 2 ranges. */
1723 range1before = PREV_INSN (range1beg);
1724 range2before = PREV_INSN (range2beg);
1725 range1after = NEXT_INSN (range1end);
1726 range2after = NEXT_INSN (range2end);
1727
1728 /* Splice range2 where range1 was. */
1729 NEXT_INSN (range1before) = range2beg;
1730 PREV_INSN (range2beg) = range1before;
1731 NEXT_INSN (range2end) = range1after;
1732 PREV_INSN (range1after) = range2end;
1733 /* Splice range1 where range2 was. */
1734 NEXT_INSN (range2before) = range1beg;
1735 PREV_INSN (range1beg) = range2before;
1736 NEXT_INSN (range1end) = range2after;
1737 PREV_INSN (range2after) = range1end;
1738 changed = 1;
1739 continue;
1740 }
1741 }
1742 }
1743
1744 /* Now that the jump has been tensioned,
1745 try cross jumping: check for identical code
1746 before the jump and before its target label. */
1747
1748 /* First, cross jumping of conditional jumps: */
1749
1750 if (cross_jump && condjump_p (insn))
1751 {
1752 rtx newjpos, newlpos;
1753 rtx x = prev_real_insn (JUMP_LABEL (insn));
1754
1755 /* A conditional jump may be crossjumped
1756 only if the place it jumps to follows
1757 an opposing jump that comes back here. */
1758
1759 if (x != 0 && ! jump_back_p (x, insn))
1760 /* We have no opposing jump;
1761 cannot cross jump this insn. */
1762 x = 0;
1763
1764 newjpos = 0;
1765 /* TARGET is nonzero if it is ok to cross jump
1766 to code before TARGET. If so, see if matches. */
1767 if (x != 0)
1768 find_cross_jump (insn, x, 2,
1769 &newjpos, &newlpos);
1770
1771 if (newjpos != 0)
1772 {
1773 do_cross_jump (insn, newjpos, newlpos);
1774 /* Make the old conditional jump
1775 into an unconditional one. */
1776 SET_SRC (PATTERN (insn))
1777 = gen_rtx (LABEL_REF, VOIDmode, JUMP_LABEL (insn));
1778 INSN_CODE (insn) = -1;
1779 emit_barrier_after (insn);
1780 /* Add to jump_chain unless this is a new label
1781 whose UID is too large. */
1782 if (INSN_UID (JUMP_LABEL (insn)) < max_jump_chain)
1783 {
1784 jump_chain[INSN_UID (insn)]
1785 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
1786 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
1787 }
1788 changed = 1;
1789 next = insn;
1790 }
1791 }
1792
1793 /* Cross jumping of unconditional jumps:
1794 a few differences. */
1795
1796 if (cross_jump && simplejump_p (insn))
1797 {
1798 rtx newjpos, newlpos;
1799 rtx target;
1800
1801 newjpos = 0;
1802
1803 /* TARGET is nonzero if it is ok to cross jump
1804 to code before TARGET. If so, see if matches. */
1805 find_cross_jump (insn, JUMP_LABEL (insn), 1,
1806 &newjpos, &newlpos);
1807
1808 /* If cannot cross jump to code before the label,
1809 see if we can cross jump to another jump to
1810 the same label. */
1811 /* Try each other jump to this label. */
1812 if (INSN_UID (JUMP_LABEL (insn)) < max_uid)
1813 for (target = jump_chain[INSN_UID (JUMP_LABEL (insn))];
1814 target != 0 && newjpos == 0;
1815 target = jump_chain[INSN_UID (target)])
1816 if (target != insn
1817 && JUMP_LABEL (target) == JUMP_LABEL (insn)
1818 /* Ignore TARGET if it's deleted. */
1819 && ! INSN_DELETED_P (target))
1820 find_cross_jump (insn, target, 2,
1821 &newjpos, &newlpos);
1822
1823 if (newjpos != 0)
1824 {
1825 do_cross_jump (insn, newjpos, newlpos);
1826 changed = 1;
1827 next = insn;
1828 }
1829 }
1830
1831 /* This code was dead in the previous jump.c! */
1832 if (cross_jump && GET_CODE (PATTERN (insn)) == RETURN)
1833 {
1834 /* Return insns all "jump to the same place"
1835 so we can cross-jump between any two of them. */
1836
1837 rtx newjpos, newlpos, target;
1838
1839 newjpos = 0;
1840
1841 /* If cannot cross jump to code before the label,
1842 see if we can cross jump to another jump to
1843 the same label. */
1844 /* Try each other jump to this label. */
1845 for (target = jump_chain[0];
1846 target != 0 && newjpos == 0;
1847 target = jump_chain[INSN_UID (target)])
1848 if (target != insn
1849 && ! INSN_DELETED_P (target)
1850 && GET_CODE (PATTERN (target)) == RETURN)
1851 find_cross_jump (insn, target, 2,
1852 &newjpos, &newlpos);
1853
1854 if (newjpos != 0)
1855 {
1856 do_cross_jump (insn, newjpos, newlpos);
1857 changed = 1;
1858 next = insn;
1859 }
1860 }
1861 }
1862 }
1863
1864 first = 0;
1865 }
1866
1867 /* Delete extraneous line number notes.
1868 Note that two consecutive notes for different lines are not really
1869 extraneous. There should be some indication where that line belonged,
1870 even if it became empty. */
1871
1872 {
1873 rtx last_note = 0;
1874
1875 for (insn = f; insn; insn = NEXT_INSN (insn))
1876 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0)
1877 {
1878 /* Delete this note if it is identical to previous note. */
1879 if (last_note
1880 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
1881 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note))
1882 {
1883 delete_insn (insn);
1884 continue;
1885 }
1886
1887 last_note = insn;
1888 }
1889 }
1890
1891 /* See if there is still a NOTE_INSN_FUNCTION_END in this function.
1892 If so, delete it, and record that this function can drop off the end. */
1893
1894 insn = last_insn;
1895 {
1896 int n_labels = 1;
1897 while (insn
1898 /* One label can follow the end-note: the return label. */
1899 && ((GET_CODE (insn) == CODE_LABEL && n_labels-- > 0)
1900 /* Ordinary insns can follow it if returning a structure. */
1901 || GET_CODE (insn) == INSN
1902 /* If machine uses explicit RETURN insns, no epilogue,
1903 then one of them follows the note. */
1904 || (GET_CODE (insn) == JUMP_INSN
1905 && GET_CODE (PATTERN (insn)) == RETURN)
1906 /* Other kinds of notes can follow also. */
1907 || (GET_CODE (insn) == NOTE
1908 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)))
1909 insn = PREV_INSN (insn);
1910 }
1911
1912 /* Report if control can fall through at the end of the function. */
1913 if (insn && GET_CODE (insn) == NOTE
1914 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END)
1915 {
1916 can_reach_end = 1;
1917 delete_insn (insn);
1918 }
1919
1920 /* Show JUMP_CHAIN no longer valid. */
1921 jump_chain = 0;
1922 }
1923 \f
1924 /* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
1925 jump. Assume that this unconditional jump is to the exit test code. If
1926 the code is sufficiently simple, make a copy of it before INSN,
1927 followed by a jump to the exit of the loop. Then delete the unconditional
1928 jump after INSN.
1929
1930 Note that it is possible we can get confused here if the jump immediately
1931 after the loop start branches outside the loop but within an outer loop.
1932 If we are near the exit of that loop, we will copy its exit test. This
1933 will not generate incorrect code, but could suppress some optimizations.
1934 However, such cases are degenerate loops anyway.
1935
1936 Return 1 if we made the change, else 0.
1937
1938 This is only safe immediately after a regscan pass because it uses the
1939 values of regno_first_uid and regno_last_uid. */
1940
1941 static int
1942 duplicate_loop_exit_test (loop_start)
1943 rtx loop_start;
1944 {
1945 rtx insn, set, p;
1946 rtx copy, link;
1947 int num_insns = 0;
1948 rtx exitcode = NEXT_INSN (JUMP_LABEL (next_nonnote_insn (loop_start)));
1949 rtx lastexit;
1950 int max_reg = max_reg_num ();
1951 rtx *reg_map = 0;
1952
1953 /* Scan the exit code. We do not perform this optimization if any insn:
1954
1955 is a CALL_INSN
1956 is a CODE_LABEL
1957 has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
1958 is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
1959 is a NOTE_INSN_BLOCK_{BEG,END} because duplicating these notes
1960 are not valid
1961
1962 Also, don't do this if the exit code is more than 20 insns. */
1963
1964 for (insn = exitcode;
1965 insn
1966 && ! (GET_CODE (insn) == NOTE
1967 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
1968 insn = NEXT_INSN (insn))
1969 {
1970 switch (GET_CODE (insn))
1971 {
1972 case CODE_LABEL:
1973 case CALL_INSN:
1974 return 0;
1975 case NOTE:
1976 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1977 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1978 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
1979 return 0;
1980 break;
1981 case JUMP_INSN:
1982 case INSN:
1983 if (++num_insns > 20
1984 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1985 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
1986 return 0;
1987 break;
1988 }
1989 }
1990
1991 /* Unless INSN is zero, we can do the optimization. */
1992 if (insn == 0)
1993 return 0;
1994
1995 lastexit = insn;
1996
1997 /* See if any insn sets a register only used in the loop exit code and
1998 not a user variable. If so, replace it with a new register. */
1999 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
2000 if (GET_CODE (insn) == INSN
2001 && (set = single_set (insn)) != 0
2002 && GET_CODE (SET_DEST (set)) == REG
2003 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
2004 && regno_first_uid[REGNO (SET_DEST (set))] == INSN_UID (insn))
2005 {
2006 for (p = NEXT_INSN (insn); p != lastexit; p = NEXT_INSN (p))
2007 if (regno_last_uid[REGNO (SET_DEST (set))] == INSN_UID (p))
2008 break;
2009
2010 if (p != lastexit)
2011 {
2012 /* We can do the replacement. Allocate reg_map if this is the
2013 first replacement we found. */
2014 if (reg_map == 0)
2015 {
2016 reg_map = (rtx *) alloca (max_reg * sizeof (rtx));
2017 bzero (reg_map, max_reg * sizeof (rtx));
2018 }
2019
2020 REG_LOOP_TEST_P (SET_DEST (set)) = 1;
2021
2022 reg_map[REGNO (SET_DEST (set))]
2023 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
2024 }
2025 }
2026
2027 /* Now copy each insn. */
2028 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
2029 switch (GET_CODE (insn))
2030 {
2031 case BARRIER:
2032 copy = emit_barrier_before (loop_start);
2033 break;
2034 case NOTE:
2035 /* Only copy line-number notes. */
2036 if (NOTE_LINE_NUMBER (insn) >= 0)
2037 {
2038 copy = emit_note_before (NOTE_LINE_NUMBER (insn), loop_start);
2039 NOTE_SOURCE_FILE (copy) = NOTE_SOURCE_FILE (insn);
2040 }
2041 break;
2042
2043 case INSN:
2044 copy = emit_insn_before (copy_rtx (PATTERN (insn)), loop_start);
2045 if (reg_map)
2046 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
2047
2048 mark_jump_label (PATTERN (copy), copy, 0);
2049
2050 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
2051 make them. */
2052 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2053 if (REG_NOTE_KIND (link) != REG_LABEL)
2054 REG_NOTES (copy)
2055 = copy_rtx (gen_rtx (EXPR_LIST, REG_NOTE_KIND (link),
2056 XEXP (link, 0), REG_NOTES (copy)));
2057 if (reg_map && REG_NOTES (copy))
2058 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
2059 break;
2060
2061 case JUMP_INSN:
2062 copy = emit_jump_insn_before (copy_rtx (PATTERN (insn)), loop_start);
2063 if (reg_map)
2064 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
2065 mark_jump_label (PATTERN (copy), copy, 0);
2066 if (REG_NOTES (insn))
2067 {
2068 REG_NOTES (copy) = copy_rtx (REG_NOTES (insn));
2069 if (reg_map)
2070 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
2071 }
2072
2073 /* If this is a simple jump, add it to the jump chain. */
2074
2075 if (INSN_UID (copy) < max_jump_chain && JUMP_LABEL (copy)
2076 && simplejump_p (copy))
2077 {
2078 jump_chain[INSN_UID (copy)]
2079 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
2080 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
2081 }
2082 break;
2083
2084 default:
2085 abort ();
2086 }
2087
2088 /* Now clean up by emitting a jump to the end label and deleting the jump
2089 at the start of the loop. */
2090 if (GET_CODE (copy) != BARRIER)
2091 {
2092 copy = emit_jump_insn_before (gen_jump (get_label_after (insn)),
2093 loop_start);
2094 mark_jump_label (PATTERN (copy), copy, 0);
2095 if (INSN_UID (copy) < max_jump_chain
2096 && INSN_UID (JUMP_LABEL (copy)) < max_jump_chain)
2097 {
2098 jump_chain[INSN_UID (copy)]
2099 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
2100 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
2101 }
2102 emit_barrier_before (loop_start);
2103 }
2104
2105 delete_insn (next_nonnote_insn (loop_start));
2106
2107 /* Mark the exit code as the virtual top of the converted loop. */
2108 emit_note_before (NOTE_INSN_LOOP_VTOP, exitcode);
2109
2110 return 1;
2111 }
2112 \f
2113 /* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, and
2114 loop-end notes between START and END out before START. Assume that
2115 END is not such a note. START may be such a note. Returns the value
2116 of the new starting insn, which may be different if the original start
2117 was such a note. */
2118
2119 rtx
2120 squeeze_notes (start, end)
2121 rtx start, end;
2122 {
2123 rtx insn;
2124 rtx next;
2125
2126 for (insn = start; insn != end; insn = next)
2127 {
2128 next = NEXT_INSN (insn);
2129 if (GET_CODE (insn) == NOTE
2130 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
2131 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2132 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
2133 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
2134 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT
2135 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP))
2136 {
2137 if (insn == start)
2138 start = next;
2139 else
2140 {
2141 rtx prev = PREV_INSN (insn);
2142 PREV_INSN (insn) = PREV_INSN (start);
2143 NEXT_INSN (insn) = start;
2144 NEXT_INSN (PREV_INSN (insn)) = insn;
2145 PREV_INSN (NEXT_INSN (insn)) = insn;
2146 NEXT_INSN (prev) = next;
2147 PREV_INSN (next) = prev;
2148 }
2149 }
2150 }
2151
2152 return start;
2153 }
2154 \f
2155 /* Compare the instructions before insn E1 with those before E2
2156 to find an opportunity for cross jumping.
2157 (This means detecting identical sequences of insns followed by
2158 jumps to the same place, or followed by a label and a jump
2159 to that label, and replacing one with a jump to the other.)
2160
2161 Assume E1 is a jump that jumps to label E2
2162 (that is not always true but it might as well be).
2163 Find the longest possible equivalent sequences
2164 and store the first insns of those sequences into *F1 and *F2.
2165 Store zero there if no equivalent preceding instructions are found.
2166
2167 We give up if we find a label in stream 1.
2168 Actually we could transfer that label into stream 2. */
2169
2170 static void
2171 find_cross_jump (e1, e2, minimum, f1, f2)
2172 rtx e1, e2;
2173 int minimum;
2174 rtx *f1, *f2;
2175 {
2176 register rtx i1 = e1, i2 = e2;
2177 register rtx p1, p2;
2178 int lose = 0;
2179
2180 rtx last1 = 0, last2 = 0;
2181 rtx afterlast1 = 0, afterlast2 = 0;
2182 rtx prev1;
2183
2184 *f1 = 0;
2185 *f2 = 0;
2186
2187 while (1)
2188 {
2189 i1 = prev_nonnote_insn (i1);
2190
2191 i2 = PREV_INSN (i2);
2192 while (i2 && (GET_CODE (i2) == NOTE || GET_CODE (i2) == CODE_LABEL))
2193 i2 = PREV_INSN (i2);
2194
2195 if (i1 == 0)
2196 break;
2197
2198 /* Don't allow the range of insns preceding E1 or E2
2199 to include the other (E2 or E1). */
2200 if (i2 == e1 || i1 == e2)
2201 break;
2202
2203 /* If we will get to this code by jumping, those jumps will be
2204 tensioned to go directly to the new label (before I2),
2205 so this cross-jumping won't cost extra. So reduce the minimum. */
2206 if (GET_CODE (i1) == CODE_LABEL)
2207 {
2208 --minimum;
2209 break;
2210 }
2211
2212 if (i2 == 0 || GET_CODE (i1) != GET_CODE (i2))
2213 break;
2214
2215 p1 = PATTERN (i1);
2216 p2 = PATTERN (i2);
2217
2218 #ifdef STACK_REGS
2219 /* If cross_jump_death_matters is not 0, the insn's mode
2220 indicates whether or not the insn contains any stack-like
2221 regs. */
2222
2223 if (cross_jump_death_matters && GET_MODE (i1) == QImode)
2224 {
2225 /* If register stack conversion has already been done, then
2226 death notes must also be compared before it is certain that
2227 the two instruction streams match. */
2228
2229 rtx note;
2230 HARD_REG_SET i1_regset, i2_regset;
2231
2232 CLEAR_HARD_REG_SET (i1_regset);
2233 CLEAR_HARD_REG_SET (i2_regset);
2234
2235 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
2236 if (REG_NOTE_KIND (note) == REG_DEAD
2237 && STACK_REG_P (XEXP (note, 0)))
2238 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
2239
2240 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
2241 if (REG_NOTE_KIND (note) == REG_DEAD
2242 && STACK_REG_P (XEXP (note, 0)))
2243 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
2244
2245 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
2246
2247 lose = 1;
2248
2249 done:
2250 ;
2251 }
2252 #endif
2253
2254 if (lose || GET_CODE (p1) != GET_CODE (p2)
2255 || ! rtx_renumbered_equal_p (p1, p2))
2256 {
2257 /* The following code helps take care of G++ cleanups. */
2258 rtx equiv1;
2259 rtx equiv2;
2260
2261 if (!lose && GET_CODE (p1) == GET_CODE (p2)
2262 && ((equiv1 = find_reg_note (i1, REG_EQUAL, NULL_RTX)) != 0
2263 || (equiv1 = find_reg_note (i1, REG_EQUIV, NULL_RTX)) != 0)
2264 && ((equiv2 = find_reg_note (i2, REG_EQUAL, NULL_RTX)) != 0
2265 || (equiv2 = find_reg_note (i2, REG_EQUIV, NULL_RTX)) != 0)
2266 /* If the equivalences are not to a constant, they may
2267 reference pseudos that no longer exist, so we can't
2268 use them. */
2269 && CONSTANT_P (XEXP (equiv1, 0))
2270 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
2271 {
2272 rtx s1 = single_set (i1);
2273 rtx s2 = single_set (i2);
2274 if (s1 != 0 && s2 != 0
2275 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
2276 {
2277 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
2278 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
2279 if (! rtx_renumbered_equal_p (p1, p2))
2280 cancel_changes (0);
2281 else if (apply_change_group ())
2282 goto win;
2283 }
2284 }
2285
2286 /* Insns fail to match; cross jumping is limited to the following
2287 insns. */
2288
2289 #ifdef HAVE_cc0
2290 /* Don't allow the insn after a compare to be shared by
2291 cross-jumping unless the compare is also shared.
2292 Here, if either of these non-matching insns is a compare,
2293 exclude the following insn from possible cross-jumping. */
2294 if (sets_cc0_p (p1) || sets_cc0_p (p2))
2295 last1 = afterlast1, last2 = afterlast2, ++minimum;
2296 #endif
2297
2298 /* If cross-jumping here will feed a jump-around-jump
2299 optimization, this jump won't cost extra, so reduce
2300 the minimum. */
2301 if (GET_CODE (i1) == JUMP_INSN
2302 && JUMP_LABEL (i1)
2303 && prev_real_insn (JUMP_LABEL (i1)) == e1)
2304 --minimum;
2305 break;
2306 }
2307
2308 win:
2309 if (GET_CODE (p1) != USE && GET_CODE (p1) != CLOBBER)
2310 {
2311 /* Ok, this insn is potentially includable in a cross-jump here. */
2312 afterlast1 = last1, afterlast2 = last2;
2313 last1 = i1, last2 = i2, --minimum;
2314 }
2315 }
2316
2317 /* We have to be careful that we do not cross-jump into the middle of
2318 USE-CALL_INSN-CLOBBER sequence. This sequence is used instead of
2319 putting the USE and CLOBBERs inside the CALL_INSN. The delay slot
2320 scheduler needs to know what registers are used and modified by the
2321 CALL_INSN and needs the adjacent USE and CLOBBERs to do so.
2322
2323 ??? At some point we should probably change this so that these are
2324 part of the CALL_INSN. The way we are doing it now is a kludge that
2325 is now causing trouble. */
2326
2327 if (last1 != 0 && GET_CODE (last1) == CALL_INSN
2328 && (prev1 = prev_nonnote_insn (last1))
2329 && GET_CODE (prev1) == INSN
2330 && GET_CODE (PATTERN (prev1)) == USE)
2331 {
2332 /* Remove this CALL_INSN from the range we can cross-jump. */
2333 last1 = next_real_insn (last1);
2334 last2 = next_real_insn (last2);
2335
2336 minimum++;
2337 }
2338
2339 /* Skip past CLOBBERS since they may be right after a CALL_INSN. It
2340 isn't worth checking for the CALL_INSN. */
2341 while (last1 != 0 && GET_CODE (PATTERN (last1)) == CLOBBER)
2342 last1 = next_real_insn (last1), last2 = next_real_insn (last2);
2343
2344 if (minimum <= 0 && last1 != 0 && last1 != e1)
2345 *f1 = last1, *f2 = last2;
2346 }
2347
2348 static void
2349 do_cross_jump (insn, newjpos, newlpos)
2350 rtx insn, newjpos, newlpos;
2351 {
2352 /* Find an existing label at this point
2353 or make a new one if there is none. */
2354 register rtx label = get_label_before (newlpos);
2355
2356 /* Make the same jump insn jump to the new point. */
2357 if (GET_CODE (PATTERN (insn)) == RETURN)
2358 {
2359 /* Remove from jump chain of returns. */
2360 delete_from_jump_chain (insn);
2361 /* Change the insn. */
2362 PATTERN (insn) = gen_jump (label);
2363 INSN_CODE (insn) = -1;
2364 JUMP_LABEL (insn) = label;
2365 LABEL_NUSES (label)++;
2366 /* Add to new the jump chain. */
2367 if (INSN_UID (label) < max_jump_chain
2368 && INSN_UID (insn) < max_jump_chain)
2369 {
2370 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (label)];
2371 jump_chain[INSN_UID (label)] = insn;
2372 }
2373 }
2374 else
2375 redirect_jump (insn, label);
2376
2377 /* Delete the matching insns before the jump. Also, remove any REG_EQUAL
2378 or REG_EQUIV note in the NEWLPOS stream that isn't also present in
2379 the NEWJPOS stream. */
2380
2381 while (newjpos != insn)
2382 {
2383 rtx lnote;
2384
2385 for (lnote = REG_NOTES (newlpos); lnote; lnote = XEXP (lnote, 1))
2386 if ((REG_NOTE_KIND (lnote) == REG_EQUAL
2387 || REG_NOTE_KIND (lnote) == REG_EQUIV)
2388 && ! find_reg_note (newjpos, REG_EQUAL, XEXP (lnote, 0))
2389 && ! find_reg_note (newjpos, REG_EQUIV, XEXP (lnote, 0)))
2390 remove_note (newlpos, lnote);
2391
2392 delete_insn (newjpos);
2393 newjpos = next_real_insn (newjpos);
2394 newlpos = next_real_insn (newlpos);
2395 }
2396 }
2397 \f
2398 /* Return the label before INSN, or put a new label there. */
2399
2400 rtx
2401 get_label_before (insn)
2402 rtx insn;
2403 {
2404 rtx label;
2405
2406 /* Find an existing label at this point
2407 or make a new one if there is none. */
2408 label = prev_nonnote_insn (insn);
2409
2410 if (label == 0 || GET_CODE (label) != CODE_LABEL)
2411 {
2412 rtx prev = PREV_INSN (insn);
2413
2414 /* Don't put a label between a CALL_INSN and USE insns that precede
2415 it. */
2416
2417 if (GET_CODE (insn) == CALL_INSN
2418 || (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE
2419 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN))
2420 while (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == USE)
2421 prev = PREV_INSN (prev);
2422
2423 label = gen_label_rtx ();
2424 emit_label_after (label, prev);
2425 LABEL_NUSES (label) = 0;
2426 }
2427 return label;
2428 }
2429
2430 /* Return the label after INSN, or put a new label there. */
2431
2432 rtx
2433 get_label_after (insn)
2434 rtx insn;
2435 {
2436 rtx label;
2437
2438 /* Find an existing label at this point
2439 or make a new one if there is none. */
2440 label = next_nonnote_insn (insn);
2441
2442 if (label == 0 || GET_CODE (label) != CODE_LABEL)
2443 {
2444 /* Don't put a label between a CALL_INSN and CLOBBER insns
2445 following it. */
2446
2447 if (GET_CODE (insn) == CALL_INSN
2448 || (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE
2449 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN))
2450 while (GET_CODE (NEXT_INSN (insn)) == INSN
2451 && GET_CODE (PATTERN (NEXT_INSN (insn))) == CLOBBER)
2452 insn = NEXT_INSN (insn);
2453
2454 label = gen_label_rtx ();
2455 emit_label_after (label, insn);
2456 LABEL_NUSES (label) = 0;
2457 }
2458 return label;
2459 }
2460 \f
2461 /* Return 1 if INSN is a jump that jumps to right after TARGET
2462 only on the condition that TARGET itself would drop through.
2463 Assumes that TARGET is a conditional jump. */
2464
2465 static int
2466 jump_back_p (insn, target)
2467 rtx insn, target;
2468 {
2469 rtx cinsn, ctarget;
2470 enum rtx_code codei, codet;
2471
2472 if (simplejump_p (insn) || ! condjump_p (insn)
2473 || simplejump_p (target)
2474 || target != prev_real_insn (JUMP_LABEL (insn)))
2475 return 0;
2476
2477 cinsn = XEXP (SET_SRC (PATTERN (insn)), 0);
2478 ctarget = XEXP (SET_SRC (PATTERN (target)), 0);
2479
2480 codei = GET_CODE (cinsn);
2481 codet = GET_CODE (ctarget);
2482
2483 if (XEXP (SET_SRC (PATTERN (insn)), 1) == pc_rtx)
2484 {
2485 if (! can_reverse_comparison_p (cinsn, insn))
2486 return 0;
2487 codei = reverse_condition (codei);
2488 }
2489
2490 if (XEXP (SET_SRC (PATTERN (target)), 2) == pc_rtx)
2491 {
2492 if (! can_reverse_comparison_p (ctarget, target))
2493 return 0;
2494 codet = reverse_condition (codet);
2495 }
2496
2497 return (codei == codet
2498 && rtx_renumbered_equal_p (XEXP (cinsn, 0), XEXP (ctarget, 0))
2499 && rtx_renumbered_equal_p (XEXP (cinsn, 1), XEXP (ctarget, 1)));
2500 }
2501 \f
2502 /* Given a comparison, COMPARISON, inside a conditional jump insn, INSN,
2503 return non-zero if it is safe to reverse this comparison. It is if our
2504 floating-point is not IEEE, if this is an NE or EQ comparison, or if
2505 this is known to be an integer comparison. */
2506
2507 int
2508 can_reverse_comparison_p (comparison, insn)
2509 rtx comparison;
2510 rtx insn;
2511 {
2512 rtx arg0;
2513
2514 /* If this is not actually a comparison, we can't reverse it. */
2515 if (GET_RTX_CLASS (GET_CODE (comparison)) != '<')
2516 return 0;
2517
2518 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
2519 /* If this is an NE comparison, it is safe to reverse it to an EQ
2520 comparison and vice versa, even for floating point. If no operands
2521 are NaNs, the reversal is valid. If some operand is a NaN, EQ is
2522 always false and NE is always true, so the reversal is also valid. */
2523 || GET_CODE (comparison) == NE
2524 || GET_CODE (comparison) == EQ)
2525 return 1;
2526
2527 arg0 = XEXP (comparison, 0);
2528
2529 /* Make sure ARG0 is one of the actual objects being compared. If we
2530 can't do this, we can't be sure the comparison can be reversed.
2531
2532 Handle cc0 and a MODE_CC register. */
2533 if ((GET_CODE (arg0) == REG && GET_MODE_CLASS (GET_MODE (arg0)) == MODE_CC)
2534 #ifdef HAVE_cc0
2535 || arg0 == cc0_rtx
2536 #endif
2537 )
2538 {
2539 rtx prev = prev_nonnote_insn (insn);
2540 rtx set = single_set (prev);
2541
2542 if (set == 0 || SET_DEST (set) != arg0)
2543 return 0;
2544
2545 arg0 = SET_SRC (set);
2546
2547 if (GET_CODE (arg0) == COMPARE)
2548 arg0 = XEXP (arg0, 0);
2549 }
2550
2551 /* We can reverse this if ARG0 is a CONST_INT or if its mode is
2552 not VOIDmode and neither a MODE_CC nor MODE_FLOAT type. */
2553 return (GET_CODE (arg0) == CONST_INT
2554 || (GET_MODE (arg0) != VOIDmode
2555 && GET_MODE_CLASS (GET_MODE (arg0)) != MODE_CC
2556 && GET_MODE_CLASS (GET_MODE (arg0)) != MODE_FLOAT));
2557 }
2558
2559 /* Given an rtx-code for a comparison, return the code
2560 for the negated comparison.
2561 WATCH OUT! reverse_condition is not safe to use on a jump
2562 that might be acting on the results of an IEEE floating point comparison,
2563 because of the special treatment of non-signaling nans in comparisons.
2564 Use can_reverse_comparison_p to be sure. */
2565
2566 enum rtx_code
2567 reverse_condition (code)
2568 enum rtx_code code;
2569 {
2570 switch (code)
2571 {
2572 case EQ:
2573 return NE;
2574
2575 case NE:
2576 return EQ;
2577
2578 case GT:
2579 return LE;
2580
2581 case GE:
2582 return LT;
2583
2584 case LT:
2585 return GE;
2586
2587 case LE:
2588 return GT;
2589
2590 case GTU:
2591 return LEU;
2592
2593 case GEU:
2594 return LTU;
2595
2596 case LTU:
2597 return GEU;
2598
2599 case LEU:
2600 return GTU;
2601
2602 default:
2603 abort ();
2604 return UNKNOWN;
2605 }
2606 }
2607
2608 /* Similar, but return the code when two operands of a comparison are swapped.
2609 This IS safe for IEEE floating-point. */
2610
2611 enum rtx_code
2612 swap_condition (code)
2613 enum rtx_code code;
2614 {
2615 switch (code)
2616 {
2617 case EQ:
2618 case NE:
2619 return code;
2620
2621 case GT:
2622 return LT;
2623
2624 case GE:
2625 return LE;
2626
2627 case LT:
2628 return GT;
2629
2630 case LE:
2631 return GE;
2632
2633 case GTU:
2634 return LTU;
2635
2636 case GEU:
2637 return LEU;
2638
2639 case LTU:
2640 return GTU;
2641
2642 case LEU:
2643 return GEU;
2644
2645 default:
2646 abort ();
2647 return UNKNOWN;
2648 }
2649 }
2650
2651 /* Given a comparison CODE, return the corresponding unsigned comparison.
2652 If CODE is an equality comparison or already an unsigned comparison,
2653 CODE is returned. */
2654
2655 enum rtx_code
2656 unsigned_condition (code)
2657 enum rtx_code code;
2658 {
2659 switch (code)
2660 {
2661 case EQ:
2662 case NE:
2663 case GTU:
2664 case GEU:
2665 case LTU:
2666 case LEU:
2667 return code;
2668
2669 case GT:
2670 return GTU;
2671
2672 case GE:
2673 return GEU;
2674
2675 case LT:
2676 return LTU;
2677
2678 case LE:
2679 return LEU;
2680
2681 default:
2682 abort ();
2683 }
2684 }
2685
2686 /* Similarly, return the signed version of a comparison. */
2687
2688 enum rtx_code
2689 signed_condition (code)
2690 enum rtx_code code;
2691 {
2692 switch (code)
2693 {
2694 case EQ:
2695 case NE:
2696 case GT:
2697 case GE:
2698 case LT:
2699 case LE:
2700 return code;
2701
2702 case GTU:
2703 return GT;
2704
2705 case GEU:
2706 return GE;
2707
2708 case LTU:
2709 return LT;
2710
2711 case LEU:
2712 return LE;
2713
2714 default:
2715 abort ();
2716 }
2717 }
2718 \f
2719 /* Return non-zero if CODE1 is more strict than CODE2, i.e., if the
2720 truth of CODE1 implies the truth of CODE2. */
2721
2722 int
2723 comparison_dominates_p (code1, code2)
2724 enum rtx_code code1, code2;
2725 {
2726 if (code1 == code2)
2727 return 1;
2728
2729 switch (code1)
2730 {
2731 case EQ:
2732 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU)
2733 return 1;
2734 break;
2735
2736 case LT:
2737 if (code2 == LE)
2738 return 1;
2739 break;
2740
2741 case GT:
2742 if (code2 == GE)
2743 return 1;
2744 break;
2745
2746 case LTU:
2747 if (code2 == LEU)
2748 return 1;
2749 break;
2750
2751 case GTU:
2752 if (code2 == GEU)
2753 return 1;
2754 break;
2755 }
2756
2757 return 0;
2758 }
2759 \f
2760 /* Return 1 if INSN is an unconditional jump and nothing else. */
2761
2762 int
2763 simplejump_p (insn)
2764 rtx insn;
2765 {
2766 return (GET_CODE (insn) == JUMP_INSN
2767 && GET_CODE (PATTERN (insn)) == SET
2768 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
2769 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
2770 }
2771
2772 /* Return nonzero if INSN is a (possibly) conditional jump
2773 and nothing more. */
2774
2775 int
2776 condjump_p (insn)
2777 rtx insn;
2778 {
2779 register rtx x = PATTERN (insn);
2780 if (GET_CODE (x) != SET)
2781 return 0;
2782 if (GET_CODE (SET_DEST (x)) != PC)
2783 return 0;
2784 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
2785 return 1;
2786 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
2787 return 0;
2788 if (XEXP (SET_SRC (x), 2) == pc_rtx
2789 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
2790 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
2791 return 1;
2792 if (XEXP (SET_SRC (x), 1) == pc_rtx
2793 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
2794 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
2795 return 1;
2796 return 0;
2797 }
2798
2799 /* Return 1 if X is an RTX that does nothing but set the condition codes
2800 and CLOBBER or USE registers.
2801 Return -1 if X does explicitly set the condition codes,
2802 but also does other things. */
2803
2804 int
2805 sets_cc0_p (x)
2806 rtx x;
2807 {
2808 #ifdef HAVE_cc0
2809 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
2810 return 1;
2811 if (GET_CODE (x) == PARALLEL)
2812 {
2813 int i;
2814 int sets_cc0 = 0;
2815 int other_things = 0;
2816 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2817 {
2818 if (GET_CODE (XVECEXP (x, 0, i)) == SET
2819 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
2820 sets_cc0 = 1;
2821 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
2822 other_things = 1;
2823 }
2824 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
2825 }
2826 return 0;
2827 #else
2828 abort ();
2829 #endif
2830 }
2831 \f
2832 /* Follow any unconditional jump at LABEL;
2833 return the ultimate label reached by any such chain of jumps.
2834 If LABEL is not followed by a jump, return LABEL.
2835 If the chain loops or we can't find end, return LABEL,
2836 since that tells caller to avoid changing the insn.
2837
2838 If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
2839 a USE or CLOBBER. */
2840
2841 rtx
2842 follow_jumps (label)
2843 rtx label;
2844 {
2845 register rtx insn;
2846 register rtx next;
2847 register rtx value = label;
2848 register int depth;
2849
2850 for (depth = 0;
2851 (depth < 10
2852 && (insn = next_active_insn (value)) != 0
2853 && GET_CODE (insn) == JUMP_INSN
2854 && (JUMP_LABEL (insn) != 0 || GET_CODE (PATTERN (insn)) == RETURN)
2855 && (next = NEXT_INSN (insn))
2856 && GET_CODE (next) == BARRIER);
2857 depth++)
2858 {
2859 /* Don't chain through the insn that jumps into a loop
2860 from outside the loop,
2861 since that would create multiple loop entry jumps
2862 and prevent loop optimization. */
2863 rtx tem;
2864 if (!reload_completed)
2865 for (tem = value; tem != insn; tem = NEXT_INSN (tem))
2866 if (GET_CODE (tem) == NOTE
2867 && NOTE_LINE_NUMBER (tem) == NOTE_INSN_LOOP_BEG)
2868 return value;
2869
2870 /* If we have found a cycle, make the insn jump to itself. */
2871 if (JUMP_LABEL (insn) == label)
2872 return label;
2873 value = JUMP_LABEL (insn);
2874 }
2875 if (depth == 10)
2876 return label;
2877 return value;
2878 }
2879
2880 /* Assuming that field IDX of X is a vector of label_refs,
2881 replace each of them by the ultimate label reached by it.
2882 Return nonzero if a change is made.
2883 If IGNORE_LOOPS is 0, we do not chain across a NOTE_INSN_LOOP_BEG. */
2884
2885 static int
2886 tension_vector_labels (x, idx)
2887 register rtx x;
2888 register int idx;
2889 {
2890 int changed = 0;
2891 register int i;
2892 for (i = XVECLEN (x, idx) - 1; i >= 0; i--)
2893 {
2894 register rtx olabel = XEXP (XVECEXP (x, idx, i), 0);
2895 register rtx nlabel = follow_jumps (olabel);
2896 if (nlabel && nlabel != olabel)
2897 {
2898 XEXP (XVECEXP (x, idx, i), 0) = nlabel;
2899 ++LABEL_NUSES (nlabel);
2900 if (--LABEL_NUSES (olabel) == 0)
2901 delete_insn (olabel);
2902 changed = 1;
2903 }
2904 }
2905 return changed;
2906 }
2907 \f
2908 /* Find all CODE_LABELs referred to in X, and increment their use counts.
2909 If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
2910 in INSN, then store one of them in JUMP_LABEL (INSN).
2911 If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
2912 referenced in INSN, add a REG_LABEL note containing that label to INSN.
2913 Also, when there are consecutive labels, canonicalize on the last of them.
2914
2915 Note that two labels separated by a loop-beginning note
2916 must be kept distinct if we have not yet done loop-optimization,
2917 because the gap between them is where loop-optimize
2918 will want to move invariant code to. CROSS_JUMP tells us
2919 that loop-optimization is done with.
2920
2921 Once reload has completed (CROSS_JUMP non-zero), we need not consider
2922 two labels distinct if they are separated by only USE or CLOBBER insns. */
2923
2924 static void
2925 mark_jump_label (x, insn, cross_jump)
2926 register rtx x;
2927 rtx insn;
2928 int cross_jump;
2929 {
2930 register RTX_CODE code = GET_CODE (x);
2931 register int i;
2932 register char *fmt;
2933
2934 switch (code)
2935 {
2936 case PC:
2937 case CC0:
2938 case REG:
2939 case SUBREG:
2940 case CONST_INT:
2941 case SYMBOL_REF:
2942 case CONST_DOUBLE:
2943 case CLOBBER:
2944 case CALL:
2945 return;
2946
2947 case MEM:
2948 /* If this is a constant-pool reference, see if it is a label. */
2949 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2950 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
2951 mark_jump_label (get_pool_constant (XEXP (x, 0)), insn, cross_jump);
2952 break;
2953
2954 case LABEL_REF:
2955 {
2956 register rtx label = XEXP (x, 0);
2957 register rtx next;
2958 if (GET_CODE (label) != CODE_LABEL)
2959 abort ();
2960 /* Ignore references to labels of containing functions. */
2961 if (LABEL_REF_NONLOCAL_P (x))
2962 break;
2963 /* If there are other labels following this one,
2964 replace it with the last of the consecutive labels. */
2965 for (next = NEXT_INSN (label); next; next = NEXT_INSN (next))
2966 {
2967 if (GET_CODE (next) == CODE_LABEL)
2968 label = next;
2969 else if (cross_jump && GET_CODE (next) == INSN
2970 && (GET_CODE (PATTERN (next)) == USE
2971 || GET_CODE (PATTERN (next)) == CLOBBER))
2972 continue;
2973 else if (GET_CODE (next) != NOTE)
2974 break;
2975 else if (! cross_jump
2976 && (NOTE_LINE_NUMBER (next) == NOTE_INSN_LOOP_BEG
2977 || NOTE_LINE_NUMBER (next) == NOTE_INSN_FUNCTION_END))
2978 break;
2979 }
2980 XEXP (x, 0) = label;
2981 ++LABEL_NUSES (label);
2982 if (insn)
2983 {
2984 if (GET_CODE (insn) == JUMP_INSN)
2985 JUMP_LABEL (insn) = label;
2986 else if (! find_reg_note (insn, REG_LABEL, label))
2987 {
2988 rtx next = next_real_insn (label);
2989 /* Don't record labels that refer to dispatch tables.
2990 This is not necessary, since the tablejump
2991 references the same label.
2992 And if we did record them, flow.c would make worse code. */
2993 if (next == 0
2994 || ! (GET_CODE (next) == JUMP_INSN
2995 && (GET_CODE (PATTERN (next)) == ADDR_VEC
2996 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)))
2997 {
2998 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL, label,
2999 REG_NOTES (insn));
3000 /* Record in the note whether label is nonlocal. */
3001 LABEL_REF_NONLOCAL_P (REG_NOTES (insn))
3002 = LABEL_REF_NONLOCAL_P (x);
3003 }
3004 }
3005 }
3006 return;
3007 }
3008
3009 /* Do walk the labels in a vector, but not the first operand of an
3010 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
3011 case ADDR_VEC:
3012 case ADDR_DIFF_VEC:
3013 {
3014 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
3015
3016 for (i = 0; i < XVECLEN (x, eltnum); i++)
3017 mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX, cross_jump);
3018 return;
3019 }
3020 }
3021
3022 fmt = GET_RTX_FORMAT (code);
3023 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3024 {
3025 if (fmt[i] == 'e')
3026 mark_jump_label (XEXP (x, i), insn, cross_jump);
3027 else if (fmt[i] == 'E')
3028 {
3029 register int j;
3030 for (j = 0; j < XVECLEN (x, i); j++)
3031 mark_jump_label (XVECEXP (x, i, j), insn, cross_jump);
3032 }
3033 }
3034 }
3035
3036 /* If all INSN does is set the pc, delete it,
3037 and delete the insn that set the condition codes for it
3038 if that's what the previous thing was. */
3039
3040 void
3041 delete_jump (insn)
3042 rtx insn;
3043 {
3044 register rtx set = single_set (insn);
3045
3046 if (set && GET_CODE (SET_DEST (set)) == PC)
3047 delete_computation (insn);
3048 }
3049
3050 /* Delete INSN and recursively delete insns that compute values used only
3051 by INSN. This uses the REG_DEAD notes computed during flow analysis.
3052 If we are running before flow.c, we need do nothing since flow.c will
3053 delete dead code. We also can't know if the registers being used are
3054 dead or not at this point.
3055
3056 Otherwise, look at all our REG_DEAD notes. If a previous insn does
3057 nothing other than set a register that dies in this insn, we can delete
3058 that insn as well.
3059
3060 On machines with CC0, if CC0 is used in this insn, we may be able to
3061 delete the insn that set it. */
3062
3063 void
3064 delete_computation (insn)
3065 rtx insn;
3066 {
3067 rtx note, next;
3068
3069 #ifdef HAVE_cc0
3070 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
3071 {
3072 rtx prev = prev_nonnote_insn (insn);
3073 /* We assume that at this stage
3074 CC's are always set explicitly
3075 and always immediately before the jump that
3076 will use them. So if the previous insn
3077 exists to set the CC's, delete it
3078 (unless it performs auto-increments, etc.). */
3079 if (prev && GET_CODE (prev) == INSN
3080 && sets_cc0_p (PATTERN (prev)))
3081 {
3082 if (sets_cc0_p (PATTERN (prev)) > 0
3083 && !FIND_REG_INC_NOTE (prev, NULL_RTX))
3084 delete_computation (prev);
3085 else
3086 /* Otherwise, show that cc0 won't be used. */
3087 REG_NOTES (prev) = gen_rtx (EXPR_LIST, REG_UNUSED,
3088 cc0_rtx, REG_NOTES (prev));
3089 }
3090 }
3091 #endif
3092
3093 for (note = REG_NOTES (insn); note; note = next)
3094 {
3095 rtx our_prev;
3096
3097 next = XEXP (note, 1);
3098
3099 if (REG_NOTE_KIND (note) != REG_DEAD
3100 /* Verify that the REG_NOTE is legitimate. */
3101 || GET_CODE (XEXP (note, 0)) != REG)
3102 continue;
3103
3104 for (our_prev = prev_nonnote_insn (insn);
3105 our_prev && GET_CODE (our_prev) == INSN;
3106 our_prev = prev_nonnote_insn (our_prev))
3107 {
3108 /* If we reach a SEQUENCE, it is too complex to try to
3109 do anything with it, so give up. */
3110 if (GET_CODE (PATTERN (our_prev)) == SEQUENCE)
3111 break;
3112
3113 if (GET_CODE (PATTERN (our_prev)) == USE
3114 && GET_CODE (XEXP (PATTERN (our_prev), 0)) == INSN)
3115 /* reorg creates USEs that look like this. We leave them
3116 alone because reorg needs them for its own purposes. */
3117 break;
3118
3119 if (reg_set_p (XEXP (note, 0), PATTERN (our_prev)))
3120 {
3121 if (FIND_REG_INC_NOTE (our_prev, NULL_RTX))
3122 break;
3123
3124 if (GET_CODE (PATTERN (our_prev)) == PARALLEL)
3125 {
3126 /* If we find a SET of something else, we can't
3127 delete the insn. */
3128
3129 int i;
3130
3131 for (i = 0; i < XVECLEN (PATTERN (our_prev), 0); i++)
3132 {
3133 rtx part = XVECEXP (PATTERN (our_prev), 0, i);
3134
3135 if (GET_CODE (part) == SET
3136 && SET_DEST (part) != XEXP (note, 0))
3137 break;
3138 }
3139
3140 if (i == XVECLEN (PATTERN (our_prev), 0))
3141 delete_computation (our_prev);
3142 }
3143 else if (GET_CODE (PATTERN (our_prev)) == SET
3144 && SET_DEST (PATTERN (our_prev)) == XEXP (note, 0))
3145 delete_computation (our_prev);
3146
3147 break;
3148 }
3149
3150 /* If OUR_PREV references the register that dies here, it is an
3151 additional use. Hence any prior SET isn't dead. However, this
3152 insn becomes the new place for the REG_DEAD note. */
3153 if (reg_overlap_mentioned_p (XEXP (note, 0),
3154 PATTERN (our_prev)))
3155 {
3156 XEXP (note, 1) = REG_NOTES (our_prev);
3157 REG_NOTES (our_prev) = note;
3158 break;
3159 }
3160 }
3161 }
3162
3163 delete_insn (insn);
3164 }
3165 \f
3166 /* Delete insn INSN from the chain of insns and update label ref counts.
3167 May delete some following insns as a consequence; may even delete
3168 a label elsewhere and insns that follow it.
3169
3170 Returns the first insn after INSN that was not deleted. */
3171
3172 rtx
3173 delete_insn (insn)
3174 register rtx insn;
3175 {
3176 register rtx next = NEXT_INSN (insn);
3177 register rtx prev = PREV_INSN (insn);
3178 register int was_code_label = (GET_CODE (insn) == CODE_LABEL);
3179 register int dont_really_delete = 0;
3180
3181 while (next && INSN_DELETED_P (next))
3182 next = NEXT_INSN (next);
3183
3184 /* This insn is already deleted => return first following nondeleted. */
3185 if (INSN_DELETED_P (insn))
3186 return next;
3187
3188 /* Don't delete user-declared labels. Convert them to special NOTEs
3189 instead. */
3190 if (was_code_label && LABEL_NAME (insn) != 0
3191 && optimize && ! dont_really_delete)
3192 {
3193 PUT_CODE (insn, NOTE);
3194 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
3195 NOTE_SOURCE_FILE (insn) = 0;
3196 dont_really_delete = 1;
3197 }
3198 else
3199 /* Mark this insn as deleted. */
3200 INSN_DELETED_P (insn) = 1;
3201
3202 /* If this is an unconditional jump, delete it from the jump chain. */
3203 if (simplejump_p (insn))
3204 delete_from_jump_chain (insn);
3205
3206 /* If instruction is followed by a barrier,
3207 delete the barrier too. */
3208
3209 if (next != 0 && GET_CODE (next) == BARRIER)
3210 {
3211 INSN_DELETED_P (next) = 1;
3212 next = NEXT_INSN (next);
3213 }
3214
3215 /* Patch out INSN (and the barrier if any) */
3216
3217 if (optimize && ! dont_really_delete)
3218 {
3219 if (prev)
3220 {
3221 NEXT_INSN (prev) = next;
3222 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3223 NEXT_INSN (XVECEXP (PATTERN (prev), 0,
3224 XVECLEN (PATTERN (prev), 0) - 1)) = next;
3225 }
3226
3227 if (next)
3228 {
3229 PREV_INSN (next) = prev;
3230 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3231 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3232 }
3233
3234 if (prev && NEXT_INSN (prev) == 0)
3235 set_last_insn (prev);
3236 }
3237
3238 /* If deleting a jump, decrement the count of the label,
3239 and delete the label if it is now unused. */
3240
3241 if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
3242 if (--LABEL_NUSES (JUMP_LABEL (insn)) == 0)
3243 {
3244 /* This can delete NEXT or PREV,
3245 either directly if NEXT is JUMP_LABEL (INSN),
3246 or indirectly through more levels of jumps. */
3247 delete_insn (JUMP_LABEL (insn));
3248 /* I feel a little doubtful about this loop,
3249 but I see no clean and sure alternative way
3250 to find the first insn after INSN that is not now deleted.
3251 I hope this works. */
3252 while (next && INSN_DELETED_P (next))
3253 next = NEXT_INSN (next);
3254 return next;
3255 }
3256
3257 while (prev && (INSN_DELETED_P (prev) || GET_CODE (prev) == NOTE))
3258 prev = PREV_INSN (prev);
3259
3260 /* If INSN was a label and a dispatch table follows it,
3261 delete the dispatch table. The tablejump must have gone already.
3262 It isn't useful to fall through into a table. */
3263
3264 if (was_code_label
3265 && NEXT_INSN (insn) != 0
3266 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
3267 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
3268 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
3269 next = delete_insn (NEXT_INSN (insn));
3270
3271 /* If INSN was a label, delete insns following it if now unreachable. */
3272
3273 if (was_code_label && prev && GET_CODE (prev) == BARRIER)
3274 {
3275 register RTX_CODE code;
3276 while (next != 0
3277 && ((code = GET_CODE (next)) == INSN
3278 || code == JUMP_INSN || code == CALL_INSN
3279 || code == NOTE
3280 || (code == CODE_LABEL && INSN_DELETED_P (next))))
3281 {
3282 if (code == NOTE
3283 && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
3284 next = NEXT_INSN (next);
3285 /* Keep going past other deleted labels to delete what follows. */
3286 else if (code == CODE_LABEL && INSN_DELETED_P (next))
3287 next = NEXT_INSN (next);
3288 else
3289 /* Note: if this deletes a jump, it can cause more
3290 deletion of unreachable code, after a different label.
3291 As long as the value from this recursive call is correct,
3292 this invocation functions correctly. */
3293 next = delete_insn (next);
3294 }
3295 }
3296
3297 return next;
3298 }
3299
3300 /* Advance from INSN till reaching something not deleted
3301 then return that. May return INSN itself. */
3302
3303 rtx
3304 next_nondeleted_insn (insn)
3305 rtx insn;
3306 {
3307 while (INSN_DELETED_P (insn))
3308 insn = NEXT_INSN (insn);
3309 return insn;
3310 }
3311 \f
3312 /* Delete a range of insns from FROM to TO, inclusive.
3313 This is for the sake of peephole optimization, so assume
3314 that whatever these insns do will still be done by a new
3315 peephole insn that will replace them. */
3316
3317 void
3318 delete_for_peephole (from, to)
3319 register rtx from, to;
3320 {
3321 register rtx insn = from;
3322
3323 while (1)
3324 {
3325 register rtx next = NEXT_INSN (insn);
3326 register rtx prev = PREV_INSN (insn);
3327
3328 if (GET_CODE (insn) != NOTE)
3329 {
3330 INSN_DELETED_P (insn) = 1;
3331
3332 /* Patch this insn out of the chain. */
3333 /* We don't do this all at once, because we
3334 must preserve all NOTEs. */
3335 if (prev)
3336 NEXT_INSN (prev) = next;
3337
3338 if (next)
3339 PREV_INSN (next) = prev;
3340 }
3341
3342 if (insn == to)
3343 break;
3344 insn = next;
3345 }
3346
3347 /* Note that if TO is an unconditional jump
3348 we *do not* delete the BARRIER that follows,
3349 since the peephole that replaces this sequence
3350 is also an unconditional jump in that case. */
3351 }
3352 \f
3353 /* Invert the condition of the jump JUMP, and make it jump
3354 to label NLABEL instead of where it jumps now. */
3355
3356 int
3357 invert_jump (jump, nlabel)
3358 rtx jump, nlabel;
3359 {
3360 register rtx olabel = JUMP_LABEL (jump);
3361
3362 /* We have to either invert the condition and change the label or
3363 do neither. Either operation could fail. We first try to invert
3364 the jump. If that succeeds, we try changing the label. If that fails,
3365 we invert the jump back to what it was. */
3366
3367 if (! invert_exp (PATTERN (jump), jump))
3368 return 0;
3369
3370 if (redirect_jump (jump, nlabel))
3371 return 1;
3372
3373 if (! invert_exp (PATTERN (jump), jump))
3374 /* This should just be putting it back the way it was. */
3375 abort ();
3376
3377 return 0;
3378 }
3379
3380 /* Invert the jump condition of rtx X contained in jump insn, INSN.
3381
3382 Return 1 if we can do so, 0 if we cannot find a way to do so that
3383 matches a pattern. */
3384
3385 int
3386 invert_exp (x, insn)
3387 rtx x;
3388 rtx insn;
3389 {
3390 register RTX_CODE code;
3391 register int i;
3392 register char *fmt;
3393
3394 code = GET_CODE (x);
3395
3396 if (code == IF_THEN_ELSE)
3397 {
3398 register rtx comp = XEXP (x, 0);
3399 register rtx tem;
3400
3401 /* We can do this in two ways: The preferable way, which can only
3402 be done if this is not an integer comparison, is to reverse
3403 the comparison code. Otherwise, swap the THEN-part and ELSE-part
3404 of the IF_THEN_ELSE. If we can't do either, fail. */
3405
3406 if (can_reverse_comparison_p (comp, insn)
3407 && validate_change (insn, &XEXP (x, 0),
3408 gen_rtx (reverse_condition (GET_CODE (comp)),
3409 GET_MODE (comp), XEXP (comp, 0),
3410 XEXP (comp, 1)), 0))
3411 return 1;
3412
3413 tem = XEXP (x, 1);
3414 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
3415 validate_change (insn, &XEXP (x, 2), tem, 1);
3416 return apply_change_group ();
3417 }
3418
3419 fmt = GET_RTX_FORMAT (code);
3420 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3421 {
3422 if (fmt[i] == 'e')
3423 if (! invert_exp (XEXP (x, i), insn))
3424 return 0;
3425 if (fmt[i] == 'E')
3426 {
3427 register int j;
3428 for (j = 0; j < XVECLEN (x, i); j++)
3429 if (!invert_exp (XVECEXP (x, i, j), insn))
3430 return 0;
3431 }
3432 }
3433
3434 return 1;
3435 }
3436 \f
3437 /* Make jump JUMP jump to label NLABEL instead of where it jumps now.
3438 If the old jump target label is unused as a result,
3439 it and the code following it may be deleted.
3440
3441 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
3442 RETURN insn.
3443
3444 The return value will be 1 if the change was made, 0 if it wasn't (this
3445 can only occur for NLABEL == 0). */
3446
3447 int
3448 redirect_jump (jump, nlabel)
3449 rtx jump, nlabel;
3450 {
3451 register rtx olabel = JUMP_LABEL (jump);
3452
3453 if (nlabel == olabel)
3454 return 1;
3455
3456 if (! redirect_exp (&PATTERN (jump), olabel, nlabel, jump))
3457 return 0;
3458
3459 /* If this is an unconditional branch, delete it from the jump_chain of
3460 OLABEL and add it to the jump_chain of NLABEL (assuming both labels
3461 have UID's in range and JUMP_CHAIN is valid). */
3462 if (jump_chain && (simplejump_p (jump)
3463 || GET_CODE (PATTERN (jump)) == RETURN))
3464 {
3465 int label_index = nlabel ? INSN_UID (nlabel) : 0;
3466
3467 delete_from_jump_chain (jump);
3468 if (label_index < max_jump_chain
3469 && INSN_UID (jump) < max_jump_chain)
3470 {
3471 jump_chain[INSN_UID (jump)] = jump_chain[label_index];
3472 jump_chain[label_index] = jump;
3473 }
3474 }
3475
3476 JUMP_LABEL (jump) = nlabel;
3477 if (nlabel)
3478 ++LABEL_NUSES (nlabel);
3479
3480 if (olabel && --LABEL_NUSES (olabel) == 0)
3481 delete_insn (olabel);
3482
3483 return 1;
3484 }
3485
3486 /* Delete the instruction JUMP from any jump chain it might be on. */
3487
3488 static void
3489 delete_from_jump_chain (jump)
3490 rtx jump;
3491 {
3492 int index;
3493 rtx olabel = JUMP_LABEL (jump);
3494
3495 /* Handle unconditional jumps. */
3496 if (jump_chain && olabel != 0
3497 && INSN_UID (olabel) < max_jump_chain
3498 && simplejump_p (jump))
3499 index = INSN_UID (olabel);
3500 /* Handle return insns. */
3501 else if (jump_chain && GET_CODE (PATTERN (jump)) == RETURN)
3502 index = 0;
3503 else return;
3504
3505 if (jump_chain[index] == jump)
3506 jump_chain[index] = jump_chain[INSN_UID (jump)];
3507 else
3508 {
3509 rtx insn;
3510
3511 for (insn = jump_chain[index];
3512 insn != 0;
3513 insn = jump_chain[INSN_UID (insn)])
3514 if (jump_chain[INSN_UID (insn)] == jump)
3515 {
3516 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (jump)];
3517 break;
3518 }
3519 }
3520 }
3521
3522 /* If NLABEL is nonzero, throughout the rtx at LOC,
3523 alter (LABEL_REF OLABEL) to (LABEL_REF NLABEL). If OLABEL is
3524 zero, alter (RETURN) to (LABEL_REF NLABEL).
3525
3526 If NLABEL is zero, alter (LABEL_REF OLABEL) to (RETURN) and check
3527 validity with validate_change. Convert (set (pc) (label_ref olabel))
3528 to (return).
3529
3530 Return 0 if we found a change we would like to make but it is invalid.
3531 Otherwise, return 1. */
3532
3533 int
3534 redirect_exp (loc, olabel, nlabel, insn)
3535 rtx *loc;
3536 rtx olabel, nlabel;
3537 rtx insn;
3538 {
3539 register rtx x = *loc;
3540 register RTX_CODE code = GET_CODE (x);
3541 register int i;
3542 register char *fmt;
3543
3544 if (code == LABEL_REF)
3545 {
3546 if (XEXP (x, 0) == olabel)
3547 {
3548 if (nlabel)
3549 XEXP (x, 0) = nlabel;
3550 else
3551 return validate_change (insn, loc, gen_rtx (RETURN, VOIDmode), 0);
3552 return 1;
3553 }
3554 }
3555 else if (code == RETURN && olabel == 0)
3556 {
3557 x = gen_rtx (LABEL_REF, VOIDmode, nlabel);
3558 if (loc == &PATTERN (insn))
3559 x = gen_rtx (SET, VOIDmode, pc_rtx, x);
3560 return validate_change (insn, loc, x, 0);
3561 }
3562
3563 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
3564 && GET_CODE (SET_SRC (x)) == LABEL_REF
3565 && XEXP (SET_SRC (x), 0) == olabel)
3566 return validate_change (insn, loc, gen_rtx (RETURN, VOIDmode), 0);
3567
3568 fmt = GET_RTX_FORMAT (code);
3569 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3570 {
3571 if (fmt[i] == 'e')
3572 if (! redirect_exp (&XEXP (x, i), olabel, nlabel, insn))
3573 return 0;
3574 if (fmt[i] == 'E')
3575 {
3576 register int j;
3577 for (j = 0; j < XVECLEN (x, i); j++)
3578 if (! redirect_exp (&XVECEXP (x, i, j), olabel, nlabel, insn))
3579 return 0;
3580 }
3581 }
3582
3583 return 1;
3584 }
3585 \f
3586 /* Make jump JUMP jump to label NLABEL, assuming it used to be a tablejump.
3587
3588 If the old jump target label (before the dispatch table) becomes unused,
3589 it and the dispatch table may be deleted. In that case, find the insn
3590 before the jump references that label and delete it and logical successors
3591 too. */
3592
3593 void
3594 redirect_tablejump (jump, nlabel)
3595 rtx jump, nlabel;
3596 {
3597 register rtx olabel = JUMP_LABEL (jump);
3598
3599 /* Add this jump to the jump_chain of NLABEL. */
3600 if (jump_chain && INSN_UID (nlabel) < max_jump_chain
3601 && INSN_UID (jump) < max_jump_chain)
3602 {
3603 jump_chain[INSN_UID (jump)] = jump_chain[INSN_UID (nlabel)];
3604 jump_chain[INSN_UID (nlabel)] = jump;
3605 }
3606
3607 PATTERN (jump) = gen_jump (nlabel);
3608 JUMP_LABEL (jump) = nlabel;
3609 ++LABEL_NUSES (nlabel);
3610 INSN_CODE (jump) = -1;
3611
3612 if (--LABEL_NUSES (olabel) == 0)
3613 {
3614 delete_labelref_insn (jump, olabel, 0);
3615 delete_insn (olabel);
3616 }
3617 }
3618
3619 /* Find the insn referencing LABEL that is a logical predecessor of INSN.
3620 If we found one, delete it and then delete this insn if DELETE_THIS is
3621 non-zero. Return non-zero if INSN or a predecessor references LABEL. */
3622
3623 static int
3624 delete_labelref_insn (insn, label, delete_this)
3625 rtx insn, label;
3626 int delete_this;
3627 {
3628 int deleted = 0;
3629 rtx link;
3630
3631 if (GET_CODE (insn) != NOTE
3632 && reg_mentioned_p (label, PATTERN (insn)))
3633 {
3634 if (delete_this)
3635 {
3636 delete_insn (insn);
3637 deleted = 1;
3638 }
3639 else
3640 return 1;
3641 }
3642
3643 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
3644 if (delete_labelref_insn (XEXP (link, 0), label, 1))
3645 {
3646 if (delete_this)
3647 {
3648 delete_insn (insn);
3649 deleted = 1;
3650 }
3651 else
3652 return 1;
3653 }
3654
3655 return deleted;
3656 }
3657 \f
3658 /* Like rtx_equal_p except that it considers two REGs as equal
3659 if they renumber to the same value. */
3660
3661 int
3662 rtx_renumbered_equal_p (x, y)
3663 rtx x, y;
3664 {
3665 register int i;
3666 register RTX_CODE code = GET_CODE (x);
3667 register char *fmt;
3668
3669 if (x == y)
3670 return 1;
3671 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
3672 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
3673 && GET_CODE (SUBREG_REG (y)) == REG)))
3674 {
3675 register int j;
3676
3677 if (GET_MODE (x) != GET_MODE (y))
3678 return 0;
3679
3680 /* If we haven't done any renumbering, don't
3681 make any assumptions. */
3682 if (reg_renumber == 0)
3683 return rtx_equal_p (x, y);
3684
3685 if (code == SUBREG)
3686 {
3687 i = REGNO (SUBREG_REG (x));
3688 if (reg_renumber[i] >= 0)
3689 i = reg_renumber[i];
3690 i += SUBREG_WORD (x);
3691 }
3692 else
3693 {
3694 i = REGNO (x);
3695 if (reg_renumber[i] >= 0)
3696 i = reg_renumber[i];
3697 }
3698 if (GET_CODE (y) == SUBREG)
3699 {
3700 j = REGNO (SUBREG_REG (y));
3701 if (reg_renumber[j] >= 0)
3702 j = reg_renumber[j];
3703 j += SUBREG_WORD (y);
3704 }
3705 else
3706 {
3707 j = REGNO (y);
3708 if (reg_renumber[j] >= 0)
3709 j = reg_renumber[j];
3710 }
3711 return i == j;
3712 }
3713 /* Now we have disposed of all the cases
3714 in which different rtx codes can match. */
3715 if (code != GET_CODE (y))
3716 return 0;
3717 switch (code)
3718 {
3719 case PC:
3720 case CC0:
3721 case ADDR_VEC:
3722 case ADDR_DIFF_VEC:
3723 return 0;
3724
3725 case CONST_INT:
3726 return XINT (x, 0) == XINT (y, 0);
3727
3728 case LABEL_REF:
3729 /* We can't assume nonlocal labels have their following insns yet. */
3730 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
3731 return XEXP (x, 0) == XEXP (y, 0);
3732 /* Two label-refs are equivalent if they point at labels
3733 in the same position in the instruction stream. */
3734 return (next_real_insn (XEXP (x, 0))
3735 == next_real_insn (XEXP (y, 0)));
3736
3737 case SYMBOL_REF:
3738 return XSTR (x, 0) == XSTR (y, 0);
3739 }
3740
3741 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
3742
3743 if (GET_MODE (x) != GET_MODE (y))
3744 return 0;
3745
3746 /* Compare the elements. If any pair of corresponding elements
3747 fail to match, return 0 for the whole things. */
3748
3749 fmt = GET_RTX_FORMAT (code);
3750 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3751 {
3752 register int j;
3753 switch (fmt[i])
3754 {
3755 case 'w':
3756 if (XWINT (x, i) != XWINT (y, i))
3757 return 0;
3758 break;
3759
3760 case 'i':
3761 if (XINT (x, i) != XINT (y, i))
3762 return 0;
3763 break;
3764
3765 case 's':
3766 if (strcmp (XSTR (x, i), XSTR (y, i)))
3767 return 0;
3768 break;
3769
3770 case 'e':
3771 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
3772 return 0;
3773 break;
3774
3775 case 'u':
3776 if (XEXP (x, i) != XEXP (y, i))
3777 return 0;
3778 /* fall through. */
3779 case '0':
3780 break;
3781
3782 case 'E':
3783 if (XVECLEN (x, i) != XVECLEN (y, i))
3784 return 0;
3785 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3786 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
3787 return 0;
3788 break;
3789
3790 default:
3791 abort ();
3792 }
3793 }
3794 return 1;
3795 }
3796 \f
3797 /* If X is a hard register or equivalent to one or a subregister of one,
3798 return the hard register number. If X is a pseudo register that was not
3799 assigned a hard register, return the pseudo register number. Otherwise,
3800 return -1. Any rtx is valid for X. */
3801
3802 int
3803 true_regnum (x)
3804 rtx x;
3805 {
3806 if (GET_CODE (x) == REG)
3807 {
3808 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
3809 return reg_renumber[REGNO (x)];
3810 return REGNO (x);
3811 }
3812 if (GET_CODE (x) == SUBREG)
3813 {
3814 int base = true_regnum (SUBREG_REG (x));
3815 if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
3816 return SUBREG_WORD (x) + base;
3817 }
3818 return -1;
3819 }
3820 \f
3821 /* Optimize code of the form:
3822
3823 for (x = a[i]; x; ...)
3824 ...
3825 for (x = a[i]; x; ...)
3826 ...
3827 foo:
3828
3829 Loop optimize will change the above code into
3830
3831 if (x = a[i])
3832 for (;;)
3833 { ...; if (! (x = ...)) break; }
3834 if (x = a[i])
3835 for (;;)
3836 { ...; if (! (x = ...)) break; }
3837 foo:
3838
3839 In general, if the first test fails, the program can branch
3840 directly to `foo' and skip the second try which is doomed to fail.
3841 We run this after loop optimization and before flow analysis. */
3842
3843 /* When comparing the insn patterns, we track the fact that different
3844 pseudo-register numbers may have been used in each computation.
3845 The following array stores an equivalence -- same_regs[I] == J means
3846 that pseudo register I was used in the first set of tests in a context
3847 where J was used in the second set. We also count the number of such
3848 pending equivalences. If nonzero, the expressions really aren't the
3849 same. */
3850
3851 static short *same_regs;
3852
3853 static int num_same_regs;
3854
3855 /* Track any registers modified between the target of the first jump and
3856 the second jump. They never compare equal. */
3857
3858 static char *modified_regs;
3859
3860 /* Record if memory was modified. */
3861
3862 static int modified_mem;
3863
3864 /* Called via note_stores on each insn between the target of the first
3865 branch and the second branch. It marks any changed registers. */
3866
3867 static void
3868 mark_modified_reg (dest, x)
3869 rtx dest;
3870 rtx x;
3871 {
3872 int regno, i;
3873
3874 if (GET_CODE (dest) == SUBREG)
3875 dest = SUBREG_REG (dest);
3876
3877 if (GET_CODE (dest) == MEM)
3878 modified_mem = 1;
3879
3880 if (GET_CODE (dest) != REG)
3881 return;
3882
3883 regno = REGNO (dest);
3884 if (regno >= FIRST_PSEUDO_REGISTER)
3885 modified_regs[regno] = 1;
3886 else
3887 for (i = 0; i < HARD_REGNO_NREGS (regno, GET_MODE (dest)); i++)
3888 modified_regs[regno + i] = 1;
3889 }
3890
3891 /* F is the first insn in the chain of insns. */
3892
3893 void
3894 thread_jumps (f, max_reg, verbose)
3895 rtx f;
3896 int max_reg;
3897 int verbose;
3898 {
3899 /* Basic algorithm is to find a conditional branch,
3900 the label it may branch to, and the branch after
3901 that label. If the two branches test the same condition,
3902 walk back from both branch paths until the insn patterns
3903 differ, or code labels are hit. If we make it back to
3904 the target of the first branch, then we know that the first branch
3905 will either always succeed or always fail depending on the relative
3906 senses of the two branches. So adjust the first branch accordingly
3907 in this case. */
3908
3909 rtx label, b1, b2, t1, t2;
3910 enum rtx_code code1, code2;
3911 rtx b1op0, b1op1, b2op0, b2op1;
3912 int changed = 1;
3913 int i;
3914 short *all_reset;
3915
3916 /* Allocate register tables and quick-reset table. */
3917 modified_regs = (char *) alloca (max_reg * sizeof (char));
3918 same_regs = (short *) alloca (max_reg * sizeof (short));
3919 all_reset = (short *) alloca (max_reg * sizeof (short));
3920 for (i = 0; i < max_reg; i++)
3921 all_reset[i] = -1;
3922
3923 while (changed)
3924 {
3925 changed = 0;
3926
3927 for (b1 = f; b1; b1 = NEXT_INSN (b1))
3928 {
3929 /* Get to a candidate branch insn. */
3930 if (GET_CODE (b1) != JUMP_INSN
3931 || ! condjump_p (b1) || simplejump_p (b1)
3932 || JUMP_LABEL (b1) == 0)
3933 continue;
3934
3935 bzero (modified_regs, max_reg * sizeof (char));
3936 modified_mem = 0;
3937
3938 bcopy (all_reset, same_regs, max_reg * sizeof (short));
3939 num_same_regs = 0;
3940
3941 label = JUMP_LABEL (b1);
3942
3943 /* Look for a branch after the target. Record any registers and
3944 memory modified between the target and the branch. Stop when we
3945 get to a label since we can't know what was changed there. */
3946 for (b2 = NEXT_INSN (label); b2; b2 = NEXT_INSN (b2))
3947 {
3948 if (GET_CODE (b2) == CODE_LABEL)
3949 break;
3950
3951 else if (GET_CODE (b2) == JUMP_INSN)
3952 {
3953 /* If this is an unconditional jump and is the only use of
3954 its target label, we can follow it. */
3955 if (simplejump_p (b2)
3956 && JUMP_LABEL (b2) != 0
3957 && LABEL_NUSES (JUMP_LABEL (b2)) == 1)
3958 {
3959 b2 = JUMP_LABEL (b2);
3960 continue;
3961 }
3962 else
3963 break;
3964 }
3965
3966 if (GET_CODE (b2) != CALL_INSN && GET_CODE (b2) != INSN)
3967 continue;
3968
3969 if (GET_CODE (b2) == CALL_INSN)
3970 {
3971 modified_mem = 1;
3972 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3973 if (call_used_regs[i] && ! fixed_regs[i]
3974 && i != STACK_POINTER_REGNUM
3975 && i != FRAME_POINTER_REGNUM
3976 && i != ARG_POINTER_REGNUM)
3977 modified_regs[i] = 1;
3978 }
3979
3980 note_stores (PATTERN (b2), mark_modified_reg);
3981 }
3982
3983 /* Check the next candidate branch insn from the label
3984 of the first. */
3985 if (b2 == 0
3986 || GET_CODE (b2) != JUMP_INSN
3987 || b2 == b1
3988 || ! condjump_p (b2)
3989 || simplejump_p (b2))
3990 continue;
3991
3992 /* Get the comparison codes and operands, reversing the
3993 codes if appropriate. If we don't have comparison codes,
3994 we can't do anything. */
3995 b1op0 = XEXP (XEXP (SET_SRC (PATTERN (b1)), 0), 0);
3996 b1op1 = XEXP (XEXP (SET_SRC (PATTERN (b1)), 0), 1);
3997 code1 = GET_CODE (XEXP (SET_SRC (PATTERN (b1)), 0));
3998 if (XEXP (SET_SRC (PATTERN (b1)), 1) == pc_rtx)
3999 code1 = reverse_condition (code1);
4000
4001 b2op0 = XEXP (XEXP (SET_SRC (PATTERN (b2)), 0), 0);
4002 b2op1 = XEXP (XEXP (SET_SRC (PATTERN (b2)), 0), 1);
4003 code2 = GET_CODE (XEXP (SET_SRC (PATTERN (b2)), 0));
4004 if (XEXP (SET_SRC (PATTERN (b2)), 1) == pc_rtx)
4005 code2 = reverse_condition (code2);
4006
4007 /* If they test the same things and knowing that B1 branches
4008 tells us whether or not B2 branches, check if we
4009 can thread the branch. */
4010 if (rtx_equal_for_thread_p (b1op0, b2op0, b2)
4011 && rtx_equal_for_thread_p (b1op1, b2op1, b2)
4012 && (comparison_dominates_p (code1, code2)
4013 || comparison_dominates_p (code1, reverse_condition (code2))))
4014 {
4015 t1 = prev_nonnote_insn (b1);
4016 t2 = prev_nonnote_insn (b2);
4017
4018 while (t1 != 0 && t2 != 0)
4019 {
4020 if (t1 == 0 || t2 == 0)
4021 break;
4022
4023 if (t2 == label)
4024 {
4025 /* We have reached the target of the first branch.
4026 If there are no pending register equivalents,
4027 we know that this branch will either always
4028 succeed (if the senses of the two branches are
4029 the same) or always fail (if not). */
4030 rtx new_label;
4031
4032 if (num_same_regs != 0)
4033 break;
4034
4035 if (comparison_dominates_p (code1, code2))
4036 new_label = JUMP_LABEL (b2);
4037 else
4038 new_label = get_label_after (b2);
4039
4040 if (JUMP_LABEL (b1) != new_label
4041 && redirect_jump (b1, new_label))
4042 changed = 1;
4043 break;
4044 }
4045
4046 /* If either of these is not a normal insn (it might be
4047 a JUMP_INSN, CALL_INSN, or CODE_LABEL) we fail. (NOTEs
4048 have already been skipped above.) Similarly, fail
4049 if the insns are different. */
4050 if (GET_CODE (t1) != INSN || GET_CODE (t2) != INSN
4051 || recog_memoized (t1) != recog_memoized (t2)
4052 || ! rtx_equal_for_thread_p (PATTERN (t1),
4053 PATTERN (t2), t2))
4054 break;
4055
4056 t1 = prev_nonnote_insn (t1);
4057 t2 = prev_nonnote_insn (t2);
4058 }
4059 }
4060 }
4061 }
4062 }
4063 \f
4064 /* This is like RTX_EQUAL_P except that it knows about our handling of
4065 possibly equivalent registers and knows to consider volatile and
4066 modified objects as not equal.
4067
4068 YINSN is the insn containing Y. */
4069
4070 int
4071 rtx_equal_for_thread_p (x, y, yinsn)
4072 rtx x, y;
4073 rtx yinsn;
4074 {
4075 register int i;
4076 register int j;
4077 register enum rtx_code code;
4078 register char *fmt;
4079
4080 code = GET_CODE (x);
4081 /* Rtx's of different codes cannot be equal. */
4082 if (code != GET_CODE (y))
4083 return 0;
4084
4085 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
4086 (REG:SI x) and (REG:HI x) are NOT equivalent. */
4087
4088 if (GET_MODE (x) != GET_MODE (y))
4089 return 0;
4090
4091 /* Handle special-cases first. */
4092 switch (code)
4093 {
4094 case REG:
4095 if (REGNO (x) == REGNO (y) && ! modified_regs[REGNO (x)])
4096 return 1;
4097
4098 /* If neither is user variable or hard register, check for possible
4099 equivalence. */
4100 if (REG_USERVAR_P (x) || REG_USERVAR_P (y)
4101 || REGNO (x) < FIRST_PSEUDO_REGISTER
4102 || REGNO (y) < FIRST_PSEUDO_REGISTER)
4103 return 0;
4104
4105 if (same_regs[REGNO (x)] == -1)
4106 {
4107 same_regs[REGNO (x)] = REGNO (y);
4108 num_same_regs++;
4109
4110 /* If this is the first time we are seeing a register on the `Y'
4111 side, see if it is the last use. If not, we can't thread the
4112 jump, so mark it as not equivalent. */
4113 if (regno_last_uid[REGNO (y)] != INSN_UID (yinsn))
4114 return 0;
4115
4116 return 1;
4117 }
4118 else
4119 return (same_regs[REGNO (x)] == REGNO (y));
4120
4121 break;
4122
4123 case MEM:
4124 /* If memory modified or either volatile, not equivalent.
4125 Else, check address. */
4126 if (modified_mem || MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
4127 return 0;
4128
4129 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
4130
4131 case ASM_INPUT:
4132 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
4133 return 0;
4134
4135 break;
4136
4137 case SET:
4138 /* Cancel a pending `same_regs' if setting equivalenced registers.
4139 Then process source. */
4140 if (GET_CODE (SET_DEST (x)) == REG
4141 && GET_CODE (SET_DEST (y)) == REG)
4142 {
4143 if (same_regs[REGNO (SET_DEST (x))] == REGNO (SET_DEST (y)))
4144 {
4145 same_regs[REGNO (SET_DEST (x))] = -1;
4146 num_same_regs--;
4147 }
4148 else if (REGNO (SET_DEST (x)) != REGNO (SET_DEST (y)))
4149 return 0;
4150 }
4151 else
4152 if (rtx_equal_for_thread_p (SET_DEST (x), SET_DEST (y), yinsn) == 0)
4153 return 0;
4154
4155 return rtx_equal_for_thread_p (SET_SRC (x), SET_SRC (y), yinsn);
4156
4157 case LABEL_REF:
4158 return XEXP (x, 0) == XEXP (y, 0);
4159
4160 case SYMBOL_REF:
4161 return XSTR (x, 0) == XSTR (y, 0);
4162 }
4163
4164 if (x == y)
4165 return 1;
4166
4167 fmt = GET_RTX_FORMAT (code);
4168 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4169 {
4170 switch (fmt[i])
4171 {
4172 case 'w':
4173 if (XWINT (x, i) != XWINT (y, i))
4174 return 0;
4175 break;
4176
4177 case 'n':
4178 case 'i':
4179 if (XINT (x, i) != XINT (y, i))
4180 return 0;
4181 break;
4182
4183 case 'V':
4184 case 'E':
4185 /* Two vectors must have the same length. */
4186 if (XVECLEN (x, i) != XVECLEN (y, i))
4187 return 0;
4188
4189 /* And the corresponding elements must match. */
4190 for (j = 0; j < XVECLEN (x, i); j++)
4191 if (rtx_equal_for_thread_p (XVECEXP (x, i, j),
4192 XVECEXP (y, i, j), yinsn) == 0)
4193 return 0;
4194 break;
4195
4196 case 'e':
4197 if (rtx_equal_for_thread_p (XEXP (x, i), XEXP (y, i), yinsn) == 0)
4198 return 0;
4199 break;
4200
4201 case 'S':
4202 case 's':
4203 if (strcmp (XSTR (x, i), XSTR (y, i)))
4204 return 0;
4205 break;
4206
4207 case 'u':
4208 /* These are just backpointers, so they don't matter. */
4209 break;
4210
4211 case '0':
4212 break;
4213
4214 /* It is believed that rtx's at this level will never
4215 contain anything but integers and other rtx's,
4216 except for within LABEL_REFs and SYMBOL_REFs. */
4217 default:
4218 abort ();
4219 }
4220 }
4221 return 1;
4222 }
This page took 0.240676 seconds and 6 git commands to generate.