1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
21 /* This is the jump-optimization pass of the compiler.
22 It is run two or three times: once before cse, sometimes once after cse,
23 and once after reload (before final).
25 jump_optimize deletes unreachable code and labels that are not used.
26 It also deletes jumps that jump to the following insn,
27 and simplifies jumps around unconditional jumps and jumps
28 to unconditional jumps.
30 Each CODE_LABEL has a count of the times it is used
31 stored in the LABEL_NUSES internal field, and each JUMP_INSN
32 has one label that it refers to stored in the
33 JUMP_LABEL internal field. With this we can detect labels that
34 become unused because of the deletion of all the jumps that
35 formerly used them. The JUMP_LABEL info is sometimes looked
38 Optionally, cross-jumping can be done. Currently it is done
39 only the last time (when after reload and before final).
40 In fact, the code for cross-jumping now assumes that register
41 allocation has been done, since it uses `rtx_renumbered_equal_p'.
43 Jump optimization is done after cse when cse's constant-propagation
44 causes jumps to become unconditional or to be deleted.
46 Unreachable loops are not detected here, because the labels
47 have references and the insns appear reachable from the labels.
48 find_basic_blocks in flow.c finds and deletes such loops.
50 The subroutines delete_insn, redirect_jump, and invert_jump are used
51 from other passes as well. */
56 #include "hard-reg-set.h"
59 #include "insn-config.h"
60 #include "insn-flags.h"
63 /* ??? Eventually must record somehow the labels used by jumps
64 from nested functions. */
65 /* Pre-record the next or previous real insn for each label?
66 No, this pass is very fast anyway. */
67 /* Condense consecutive labels?
68 This would make life analysis faster, maybe. */
69 /* Optimize jump y; x: ... y: jumpif... x?
70 Don't know if it is worth bothering with. */
71 /* Optimize two cases of conditional jump to conditional jump?
72 This can never delete any instruction or make anything dead,
73 or even change what is live at any point.
74 So perhaps let combiner do it. */
76 /* Vector indexed by uid.
77 For each CODE_LABEL, index by its uid to get first unconditional jump
78 that jumps to the label.
79 For each JUMP_INSN, index by its uid to get the next unconditional jump
80 that jumps to the same label.
81 Element 0 is the start of a chain of all return insns.
82 (It is safe to use element 0 because insn uid 0 is not used. */
84 static rtx
*jump_chain
;
86 /* List of labels referred to from initializers.
87 These can never be deleted. */
90 /* Maximum index in jump_chain. */
92 static int max_jump_chain
;
94 /* Set nonzero by jump_optimize if control can fall through
95 to the end of the function. */
98 /* Indicates whether death notes are significant in cross jump analysis.
99 Normally they are not significant, because of A and B jump to C,
100 and R dies in A, it must die in B. But this might not be true after
101 stack register conversion, and we must compare death notes in that
104 static int cross_jump_death_matters
= 0;
106 static int duplicate_loop_exit_test ();
107 void redirect_tablejump ();
108 static int delete_labelref_insn ();
109 static void mark_jump_label ();
111 void delete_computation ();
112 static void delete_from_jump_chain ();
113 static int tension_vector_labels ();
114 static void find_cross_jump ();
115 static void do_cross_jump ();
116 static int jump_back_p ();
118 extern rtx
gen_jump ();
120 /* Delete no-op jumps and optimize jumps to jumps
121 and jumps around jumps.
122 Delete unused labels and unreachable code.
124 If CROSS_JUMP is 1, detect matching code
125 before a jump and its destination and unify them.
126 If CROSS_JUMP is 2, do cross-jumping, but pay attention to death notes.
128 If NOOP_MOVES is nonzero, delete no-op move insns.
130 If AFTER_REGSCAN is nonzero, then this jump pass is being run immediately
131 after regscan, and it is safe to use regno_first_uid and regno_last_uid.
133 If `optimize' is zero, don't change any code,
134 just determine whether control drops off the end of the function.
135 This case occurs when we have -W and not -O.
136 It works because `delete_insn' checks the value of `optimize'
137 and refrains from actually deleting when that is 0. */
140 jump_optimize (f
, cross_jump
, noop_moves
, after_regscan
)
146 register rtx insn
, next
;
152 cross_jump_death_matters
= (cross_jump
== 2);
154 /* Initialize LABEL_NUSES and JUMP_LABEL fields. */
156 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
158 if (GET_CODE (insn
) == CODE_LABEL
)
159 LABEL_NUSES (insn
) = (LABEL_PRESERVE_P (insn
) != 0);
160 else if (GET_CODE (insn
) == JUMP_INSN
)
161 JUMP_LABEL (insn
) = 0;
162 if (INSN_UID (insn
) > max_uid
)
163 max_uid
= INSN_UID (insn
);
168 /* Delete insns following barriers, up to next label. */
170 for (insn
= f
; insn
;)
172 if (GET_CODE (insn
) == BARRIER
)
174 insn
= NEXT_INSN (insn
);
175 while (insn
!= 0 && GET_CODE (insn
) != CODE_LABEL
)
177 if (GET_CODE (insn
) == NOTE
178 && NOTE_LINE_NUMBER (insn
) != NOTE_INSN_FUNCTION_END
)
179 insn
= NEXT_INSN (insn
);
181 insn
= delete_insn (insn
);
183 /* INSN is now the code_label. */
186 insn
= NEXT_INSN (insn
);
189 /* Leave some extra room for labels and duplicate exit test insns
191 max_jump_chain
= max_uid
* 14 / 10;
192 jump_chain
= (rtx
*) alloca (max_jump_chain
* sizeof (rtx
));
193 bzero (jump_chain
, max_jump_chain
* sizeof (rtx
));
195 /* Mark the label each jump jumps to.
196 Combine consecutive labels, and count uses of labels.
198 For each label, make a chain (using `jump_chain')
199 of all the *unconditional* jumps that jump to it;
200 also make a chain of all returns. */
202 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
203 if ((GET_CODE (insn
) == JUMP_INSN
|| GET_CODE (insn
) == INSN
204 || GET_CODE (insn
) == CALL_INSN
)
205 && ! INSN_DELETED_P (insn
))
207 mark_jump_label (PATTERN (insn
), insn
, cross_jump
);
208 if (GET_CODE (insn
) == JUMP_INSN
)
210 if (JUMP_LABEL (insn
) != 0 && simplejump_p (insn
))
212 jump_chain
[INSN_UID (insn
)]
213 = jump_chain
[INSN_UID (JUMP_LABEL (insn
))];
214 jump_chain
[INSN_UID (JUMP_LABEL (insn
))] = insn
;
216 if (GET_CODE (PATTERN (insn
)) == RETURN
)
218 jump_chain
[INSN_UID (insn
)] = jump_chain
[0];
219 jump_chain
[0] = insn
;
224 /* Keep track of labels used from static data;
225 they cannot ever be deleted. */
227 for (insn
= forced_labels
; insn
; insn
= XEXP (insn
, 1))
228 LABEL_NUSES (XEXP (insn
, 0))++;
230 /* Delete all labels already not referenced.
231 Also find the last insn. */
234 for (insn
= f
; insn
; )
236 if (GET_CODE (insn
) == CODE_LABEL
&& LABEL_NUSES (insn
) == 0)
237 insn
= delete_insn (insn
);
241 insn
= NEXT_INSN (insn
);
247 /* See if there is still a NOTE_INSN_FUNCTION_END in this function.
248 If so record that this function can drop off the end. */
254 /* One label can follow the end-note: the return label. */
255 && ((GET_CODE (insn
) == CODE_LABEL
&& n_labels
-- > 0)
256 /* Ordinary insns can follow it if returning a structure. */
257 || GET_CODE (insn
) == INSN
258 /* If machine uses explicit RETURN insns, no epilogue,
259 then one of them follows the note. */
260 || (GET_CODE (insn
) == JUMP_INSN
261 && GET_CODE (PATTERN (insn
)) == RETURN
)
262 /* Other kinds of notes can follow also. */
263 || (GET_CODE (insn
) == NOTE
264 && NOTE_LINE_NUMBER (insn
) != NOTE_INSN_FUNCTION_END
)))
265 insn
= PREV_INSN (insn
);
268 /* Report if control can fall through at the end of the function. */
269 if (insn
&& GET_CODE (insn
) == NOTE
270 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_FUNCTION_END
271 && ! INSN_DELETED_P (insn
))
274 /* Zero the "deleted" flag of all the "deleted" insns. */
275 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
276 INSN_DELETED_P (insn
) = 0;
283 /* If we fall through to the epilogue, see if we can insert a RETURN insn
284 in front of it. If the machine allows it at this point (we might be
285 after reload for a leaf routine), it will improve optimization for it
287 insn
= get_last_insn ();
288 while (insn
&& GET_CODE (insn
) == NOTE
)
289 insn
= PREV_INSN (insn
);
291 if (insn
&& GET_CODE (insn
) != BARRIER
)
293 emit_jump_insn (gen_return ());
300 for (insn
= f
; insn
; )
302 next
= NEXT_INSN (insn
);
304 if (GET_CODE (insn
) == INSN
)
306 register rtx body
= PATTERN (insn
);
308 /* Combine stack_adjusts with following push_insns. */
310 if (GET_CODE (body
) == SET
311 && SET_DEST (body
) == stack_pointer_rtx
312 && GET_CODE (SET_SRC (body
)) == PLUS
313 && XEXP (SET_SRC (body
), 0) == stack_pointer_rtx
314 && GET_CODE (XEXP (SET_SRC (body
), 1)) == CONST_INT
315 && INTVAL (XEXP (SET_SRC (body
), 1)) > 0)
318 rtx stack_adjust_insn
= insn
;
319 int stack_adjust_amount
= INTVAL (XEXP (SET_SRC (body
), 1));
320 int total_pushed
= 0;
323 /* Find all successive push insns. */
325 /* Don't convert more than three pushes;
326 that starts adding too many displaced addresses
327 and the whole thing starts becoming a losing
332 p
= next_nonnote_insn (p
);
333 if (p
== 0 || GET_CODE (p
) != INSN
)
336 if (GET_CODE (pbody
) != SET
)
338 dest
= SET_DEST (pbody
);
339 /* Allow a no-op move between the adjust and the push. */
340 if (GET_CODE (dest
) == REG
341 && GET_CODE (SET_SRC (pbody
)) == REG
342 && REGNO (dest
) == REGNO (SET_SRC (pbody
)))
344 if (! (GET_CODE (dest
) == MEM
345 && GET_CODE (XEXP (dest
, 0)) == POST_INC
346 && XEXP (XEXP (dest
, 0), 0) == stack_pointer_rtx
))
349 if (total_pushed
+ GET_MODE_SIZE (SET_DEST (pbody
))
350 > stack_adjust_amount
)
352 total_pushed
+= GET_MODE_SIZE (SET_DEST (pbody
));
355 /* Discard the amount pushed from the stack adjust;
356 maybe eliminate it entirely. */
357 if (total_pushed
>= stack_adjust_amount
)
359 delete_insn (stack_adjust_insn
);
360 total_pushed
= stack_adjust_amount
;
363 XEXP (SET_SRC (PATTERN (stack_adjust_insn
)), 1)
364 = GEN_INT (stack_adjust_amount
- total_pushed
);
366 /* Change the appropriate push insns to ordinary stores. */
368 while (total_pushed
> 0)
371 p
= next_nonnote_insn (p
);
372 if (GET_CODE (p
) != INSN
)
375 if (GET_CODE (pbody
) == SET
)
377 dest
= SET_DEST (pbody
);
378 if (! (GET_CODE (dest
) == MEM
379 && GET_CODE (XEXP (dest
, 0)) == POST_INC
380 && XEXP (XEXP (dest
, 0), 0) == stack_pointer_rtx
))
382 total_pushed
-= GET_MODE_SIZE (SET_DEST (pbody
));
383 /* If this push doesn't fully fit in the space
384 of the stack adjust that we deleted,
385 make another stack adjust here for what we
386 didn't use up. There should be peepholes
387 to recognize the resulting sequence of insns. */
388 if (total_pushed
< 0)
390 emit_insn_before (gen_add2_insn (stack_pointer_rtx
,
391 GEN_INT (- total_pushed
)),
396 = plus_constant (stack_pointer_rtx
, total_pushed
);
401 /* Detect and delete no-op move instructions
402 resulting from not allocating a parameter in a register. */
404 if (GET_CODE (body
) == SET
405 && (SET_DEST (body
) == SET_SRC (body
)
406 || (GET_CODE (SET_DEST (body
)) == MEM
407 && GET_CODE (SET_SRC (body
)) == MEM
408 && rtx_equal_p (SET_SRC (body
), SET_DEST (body
))))
409 && ! (GET_CODE (SET_DEST (body
)) == MEM
410 && MEM_VOLATILE_P (SET_DEST (body
)))
411 && ! (GET_CODE (SET_SRC (body
)) == MEM
412 && MEM_VOLATILE_P (SET_SRC (body
))))
415 /* Detect and ignore no-op move instructions
416 resulting from smart or fortuitous register allocation. */
418 else if (GET_CODE (body
) == SET
)
420 int sreg
= true_regnum (SET_SRC (body
));
421 int dreg
= true_regnum (SET_DEST (body
));
423 if (sreg
== dreg
&& sreg
>= 0)
425 else if (sreg
>= 0 && dreg
>= 0)
428 rtx tem
= find_equiv_reg (NULL_RTX
, insn
, 0,
429 sreg
, NULL_PTR
, dreg
,
430 GET_MODE (SET_SRC (body
)));
432 #ifdef PRESERVE_DEATH_INFO_REGNO_P
433 /* Deleting insn could lose a death-note for SREG or DREG
434 so don't do it if final needs accurate death-notes. */
435 if (! PRESERVE_DEATH_INFO_REGNO_P (sreg
)
436 && ! PRESERVE_DEATH_INFO_REGNO_P (dreg
))
439 /* DREG may have been the target of a REG_DEAD note in
440 the insn which makes INSN redundant. If so, reorg
441 would still think it is dead. So search for such a
442 note and delete it if we find it. */
443 for (trial
= prev_nonnote_insn (insn
);
444 trial
&& GET_CODE (trial
) != CODE_LABEL
;
445 trial
= prev_nonnote_insn (trial
))
446 if (find_regno_note (trial
, REG_DEAD
, dreg
))
448 remove_death (dreg
, trial
);
453 && GET_MODE (tem
) == GET_MODE (SET_DEST (body
)))
457 else if (dreg
>= 0 && CONSTANT_P (SET_SRC (body
))
458 && find_equiv_reg (SET_SRC (body
), insn
, 0, dreg
,
460 GET_MODE (SET_DEST (body
))))
462 /* This handles the case where we have two consecutive
463 assignments of the same constant to pseudos that didn't
464 get a hard reg. Each SET from the constant will be
465 converted into a SET of the spill register and an
466 output reload will be made following it. This produces
467 two loads of the same constant into the same spill
472 /* Look back for a death note for the first reg.
473 If there is one, it is no longer accurate. */
474 while (in_insn
&& GET_CODE (in_insn
) != CODE_LABEL
)
476 if ((GET_CODE (in_insn
) == INSN
477 || GET_CODE (in_insn
) == JUMP_INSN
)
478 && find_regno_note (in_insn
, REG_DEAD
, dreg
))
480 remove_death (dreg
, in_insn
);
483 in_insn
= PREV_INSN (in_insn
);
486 /* Delete the second load of the value. */
490 else if (GET_CODE (body
) == PARALLEL
)
492 /* If each part is a set between two identical registers or
493 a USE or CLOBBER, delete the insn. */
497 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
499 tem
= XVECEXP (body
, 0, i
);
500 if (GET_CODE (tem
) == USE
|| GET_CODE (tem
) == CLOBBER
)
503 if (GET_CODE (tem
) != SET
504 || (sreg
= true_regnum (SET_SRC (tem
))) < 0
505 || (dreg
= true_regnum (SET_DEST (tem
))) < 0
513 #if !BYTES_BIG_ENDIAN /* Not worth the hair to detect this
514 in the big-endian case. */
515 /* Also delete insns to store bit fields if they are no-ops. */
516 else if (GET_CODE (body
) == SET
517 && GET_CODE (SET_DEST (body
)) == ZERO_EXTRACT
518 && XEXP (SET_DEST (body
), 2) == const0_rtx
519 && XEXP (SET_DEST (body
), 0) == SET_SRC (body
)
520 && ! (GET_CODE (SET_SRC (body
)) == MEM
521 && MEM_VOLATILE_P (SET_SRC (body
))))
523 #endif /* not BYTES_BIG_ENDIAN */
528 /* If we haven't yet gotten to reload and we have just run regscan,
529 delete any insn that sets a register that isn't used elsewhere.
530 This helps some of the optimizations below by having less insns
531 being jumped around. */
533 if (! reload_completed
&& after_regscan
)
534 for (insn
= f
; insn
; insn
= next
)
536 rtx set
= single_set (insn
);
538 next
= NEXT_INSN (insn
);
540 if (set
&& GET_CODE (SET_DEST (set
)) == REG
541 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
542 && regno_first_uid
[REGNO (SET_DEST (set
))] == INSN_UID (insn
)
543 && regno_last_uid
[REGNO (SET_DEST (set
))] == INSN_UID (insn
)
544 && ! side_effects_p (SET_SRC (set
)))
548 /* Now iterate optimizing jumps until nothing changes over one pass. */
554 for (insn
= f
; insn
; insn
= next
)
557 rtx temp
, temp1
, temp2
, temp3
, temp4
, temp5
, temp6
;
559 int this_is_simplejump
, this_is_condjump
, reversep
;
561 /* If NOT the first iteration, if this is the last jump pass
562 (just before final), do the special peephole optimizations.
563 Avoiding the first iteration gives ordinary jump opts
564 a chance to work before peephole opts. */
566 if (reload_completed
&& !first
&& !flag_no_peephole
)
567 if (GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == JUMP_INSN
)
571 /* That could have deleted some insns after INSN, so check now
572 what the following insn is. */
574 next
= NEXT_INSN (insn
);
576 /* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
577 jump. Try to optimize by duplicating the loop exit test if so.
578 This is only safe immediately after regscan, because it uses
579 the values of regno_first_uid and regno_last_uid. */
580 if (after_regscan
&& GET_CODE (insn
) == NOTE
581 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
582 && (temp1
= next_nonnote_insn (insn
)) != 0
583 && simplejump_p (temp1
))
585 temp
= PREV_INSN (insn
);
586 if (duplicate_loop_exit_test (insn
))
589 next
= NEXT_INSN (temp
);
594 if (GET_CODE (insn
) != JUMP_INSN
)
597 this_is_simplejump
= simplejump_p (insn
);
598 this_is_condjump
= condjump_p (insn
);
600 /* Tension the labels in dispatch tables. */
602 if (GET_CODE (PATTERN (insn
)) == ADDR_VEC
)
603 changed
|= tension_vector_labels (PATTERN (insn
), 0);
604 if (GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
605 changed
|= tension_vector_labels (PATTERN (insn
), 1);
607 /* If a dispatch table always goes to the same place,
608 get rid of it and replace the insn that uses it. */
610 if (GET_CODE (PATTERN (insn
)) == ADDR_VEC
611 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
614 rtx pat
= PATTERN (insn
);
615 int diff_vec_p
= GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
;
616 int len
= XVECLEN (pat
, diff_vec_p
);
617 rtx dispatch
= prev_real_insn (insn
);
619 for (i
= 0; i
< len
; i
++)
620 if (XEXP (XVECEXP (pat
, diff_vec_p
, i
), 0)
621 != XEXP (XVECEXP (pat
, diff_vec_p
, 0), 0))
625 && GET_CODE (dispatch
) == JUMP_INSN
626 && JUMP_LABEL (dispatch
) != 0
627 /* Don't mess with a casesi insn. */
628 && !(GET_CODE (PATTERN (dispatch
)) == SET
629 && (GET_CODE (SET_SRC (PATTERN (dispatch
)))
631 && next_real_insn (JUMP_LABEL (dispatch
)) == insn
)
633 redirect_tablejump (dispatch
,
634 XEXP (XVECEXP (pat
, diff_vec_p
, 0), 0));
639 reallabelprev
= prev_active_insn (JUMP_LABEL (insn
));
641 /* If a jump references the end of the function, try to turn
642 it into a RETURN insn, possibly a conditional one. */
643 if (JUMP_LABEL (insn
)
644 && next_active_insn (JUMP_LABEL (insn
)) == 0)
645 changed
|= redirect_jump (insn
, NULL_RTX
);
647 /* Detect jump to following insn. */
648 if (reallabelprev
== insn
&& condjump_p (insn
))
655 /* If we have an unconditional jump preceded by a USE, try to put
656 the USE before the target and jump there. This simplifies many
657 of the optimizations below since we don't have to worry about
658 dealing with these USE insns. We only do this if the label
659 being branch to already has the identical USE or if code
660 never falls through to that label. */
662 if (this_is_simplejump
663 && (temp
= prev_nonnote_insn (insn
)) != 0
664 && GET_CODE (temp
) == INSN
&& GET_CODE (PATTERN (temp
)) == USE
665 && (temp1
= prev_nonnote_insn (JUMP_LABEL (insn
))) != 0
666 && (GET_CODE (temp1
) == BARRIER
667 || (GET_CODE (temp1
) == INSN
668 && rtx_equal_p (PATTERN (temp
), PATTERN (temp1
)))))
670 if (GET_CODE (temp1
) == BARRIER
)
672 emit_insn_after (PATTERN (temp
), temp1
);
673 temp1
= NEXT_INSN (temp1
);
677 redirect_jump (insn
, get_label_before (temp1
));
678 reallabelprev
= prev_real_insn (temp1
);
682 /* Simplify if (...) x = a; else x = b; by converting it
683 to x = b; if (...) x = a;
684 if B is sufficiently simple, the test doesn't involve X,
685 and nothing in the test modifies B or X.
687 If we have small register classes, we also can't do this if X
690 If the "x = b;" insn has any REG_NOTES, we don't do this because
691 of the possibility that we are running after CSE and there is a
692 REG_EQUAL note that is only valid if the branch has already been
693 taken. If we move the insn with the REG_EQUAL note, we may
694 fold the comparison to always be false in a later CSE pass.
695 (We could also delete the REG_NOTES when moving the insn, but it
696 seems simpler to not move it.) An exception is that we can move
697 the insn if the only note is a REG_EQUAL or REG_EQUIV whose
698 value is the same as "b".
700 INSN is the branch over the `else' part.
704 TEMP to the jump insn preceding "x = a;"
706 TEMP2 to the insn that sets "x = b;"
707 TEMP3 to the insn that sets "x = a;"
708 TEMP4 to the set of "x = b"; */
710 if (this_is_simplejump
711 && (temp3
= prev_active_insn (insn
)) != 0
712 && GET_CODE (temp3
) == INSN
713 && (temp4
= single_set (temp3
)) != 0
714 && GET_CODE (temp1
= SET_DEST (temp4
)) == REG
715 #ifdef SMALL_REGISTER_CLASSES
716 && REGNO (temp1
) >= FIRST_PSEUDO_REGISTER
718 && (temp2
= next_active_insn (insn
)) != 0
719 && GET_CODE (temp2
) == INSN
720 && (temp4
= single_set (temp2
)) != 0
721 && rtx_equal_p (SET_DEST (temp4
), temp1
)
722 && (GET_CODE (SET_SRC (temp4
)) == REG
723 || GET_CODE (SET_SRC (temp4
)) == SUBREG
724 || CONSTANT_P (SET_SRC (temp4
)))
725 && (REG_NOTES (temp2
) == 0
726 || ((REG_NOTE_KIND (REG_NOTES (temp2
)) == REG_EQUAL
727 || REG_NOTE_KIND (REG_NOTES (temp2
)) == REG_EQUIV
)
728 && XEXP (REG_NOTES (temp2
), 1) == 0
729 && rtx_equal_p (XEXP (REG_NOTES (temp2
), 0),
731 && (temp
= prev_active_insn (temp3
)) != 0
732 && condjump_p (temp
) && ! simplejump_p (temp
)
733 /* TEMP must skip over the "x = a;" insn */
734 && prev_real_insn (JUMP_LABEL (temp
)) == insn
735 && no_labels_between_p (insn
, JUMP_LABEL (temp
))
736 /* There must be no other entries to the "x = b;" insn. */
737 && no_labels_between_p (JUMP_LABEL (temp
), temp2
)
738 /* INSN must either branch to the insn after TEMP2 or the insn
739 after TEMP2 must branch to the same place as INSN. */
740 && (reallabelprev
== temp2
741 || ((temp5
= next_active_insn (temp2
)) != 0
742 && simplejump_p (temp5
)
743 && JUMP_LABEL (temp5
) == JUMP_LABEL (insn
))))
745 /* The test expression, X, may be a complicated test with
746 multiple branches. See if we can find all the uses of
747 the label that TEMP branches to without hitting a CALL_INSN
748 or a jump to somewhere else. */
749 rtx target
= JUMP_LABEL (temp
);
750 int nuses
= LABEL_NUSES (target
);
753 /* Set P to the first jump insn that goes around "x = a;". */
754 for (p
= temp
; nuses
&& p
; p
= prev_nonnote_insn (p
))
756 if (GET_CODE (p
) == JUMP_INSN
)
758 if (condjump_p (p
) && ! simplejump_p (p
)
759 && JUMP_LABEL (p
) == target
)
768 else if (GET_CODE (p
) == CALL_INSN
)
773 /* We cannot insert anything between a set of cc and its use
774 so if P uses cc0, we must back up to the previous insn. */
775 q
= prev_nonnote_insn (p
);
776 if (q
&& GET_RTX_CLASS (GET_CODE (q
)) == 'i'
777 && sets_cc0_p (PATTERN (q
)))
784 /* If we found all the uses and there was no data conflict, we
785 can move the assignment unless we can branch into the middle
788 && no_labels_between_p (p
, insn
)
789 && ! reg_referenced_between_p (temp1
, p
, NEXT_INSN (temp3
))
790 && ! reg_set_between_p (temp1
, p
, temp3
)
791 && (GET_CODE (SET_SRC (temp4
)) == CONST_INT
792 || ! reg_set_between_p (SET_SRC (temp4
), p
, temp2
)))
794 emit_insn_after_with_line_notes (PATTERN (temp2
), p
, temp2
);
797 /* Set NEXT to an insn that we know won't go away. */
798 next
= next_active_insn (insn
);
800 /* Delete the jump around the set. Note that we must do
801 this before we redirect the test jumps so that it won't
802 delete the code immediately following the assignment
803 we moved (which might be a jump). */
807 /* We either have two consecutive labels or a jump to
808 a jump, so adjust all the JUMP_INSNs to branch to where
810 for (p
= NEXT_INSN (p
); p
!= next
; p
= NEXT_INSN (p
))
811 if (GET_CODE (p
) == JUMP_INSN
)
812 redirect_jump (p
, target
);
820 /* If we have if (...) x = exp; and branches are expensive,
821 EXP is a single insn, does not have any side effects, cannot
822 trap, and is not too costly, convert this to
823 t = exp; if (...) x = t;
825 Don't do this when we have CC0 because it is unlikely to help
826 and we'd need to worry about where to place the new insn and
827 the potential for conflicts. We also can't do this when we have
828 notes on the insn for the same reason as above.
832 TEMP to the "x = exp;" insn.
833 TEMP1 to the single set in the "x = exp; insn.
836 if (! reload_completed
837 && this_is_condjump
&& ! this_is_simplejump
839 && (temp
= next_nonnote_insn (insn
)) != 0
840 && GET_CODE (temp
) == INSN
841 && REG_NOTES (temp
) == 0
842 && (reallabelprev
== temp
843 || ((temp2
= next_active_insn (temp
)) != 0
844 && simplejump_p (temp2
)
845 && JUMP_LABEL (temp2
) == JUMP_LABEL (insn
)))
846 && (temp1
= single_set (temp
)) != 0
847 && (temp2
= SET_DEST (temp1
), GET_CODE (temp2
) == REG
)
848 && GET_MODE_CLASS (GET_MODE (temp2
)) == MODE_INT
849 #ifdef SMALL_REGISTER_CLASSES
850 && REGNO (temp2
) >= FIRST_PSEUDO_REGISTER
852 && GET_CODE (SET_SRC (temp1
)) != REG
853 && GET_CODE (SET_SRC (temp1
)) != SUBREG
854 && GET_CODE (SET_SRC (temp1
)) != CONST_INT
855 && ! side_effects_p (SET_SRC (temp1
))
856 && ! may_trap_p (SET_SRC (temp1
))
857 && rtx_cost (SET_SRC (temp1
)) < 10)
859 rtx
new = gen_reg_rtx (GET_MODE (temp2
));
861 if (validate_change (temp
, &SET_DEST (temp1
), new, 0))
863 next
= emit_insn_after (gen_move_insn (temp2
, new), insn
);
864 emit_insn_after_with_line_notes (PATTERN (temp
),
865 PREV_INSN (insn
), temp
);
870 /* Similarly, if it takes two insns to compute EXP but they
871 have the same destination. Here TEMP3 will be the second
872 insn and TEMP4 the SET from that insn. */
874 if (! reload_completed
875 && this_is_condjump
&& ! this_is_simplejump
877 && (temp
= next_nonnote_insn (insn
)) != 0
878 && GET_CODE (temp
) == INSN
879 && REG_NOTES (temp
) == 0
880 && (temp3
= next_nonnote_insn (temp
)) != 0
881 && GET_CODE (temp3
) == INSN
882 && REG_NOTES (temp3
) == 0
883 && (reallabelprev
== temp3
884 || ((temp2
= next_active_insn (temp3
)) != 0
885 && simplejump_p (temp2
)
886 && JUMP_LABEL (temp2
) == JUMP_LABEL (insn
)))
887 && (temp1
= single_set (temp
)) != 0
888 && (temp2
= SET_DEST (temp1
), GET_CODE (temp2
) == REG
)
889 && GET_MODE_CLASS (GET_MODE (temp2
)) == MODE_INT
890 #ifdef SMALL_REGISTER_CLASSES
891 && REGNO (temp2
) >= FIRST_PSEUDO_REGISTER
893 && ! side_effects_p (SET_SRC (temp1
))
894 && ! may_trap_p (SET_SRC (temp1
))
895 && rtx_cost (SET_SRC (temp1
)) < 10
896 && (temp4
= single_set (temp3
)) != 0
897 && rtx_equal_p (SET_DEST (temp4
), temp2
)
898 && ! side_effects_p (SET_SRC (temp4
))
899 && ! may_trap_p (SET_SRC (temp4
))
900 && rtx_cost (SET_SRC (temp4
)) < 10)
902 rtx
new = gen_reg_rtx (GET_MODE (temp2
));
904 if (validate_change (temp
, &SET_DEST (temp1
), new, 0))
906 next
= emit_insn_after (gen_move_insn (temp2
, new), insn
);
907 emit_insn_after_with_line_notes (PATTERN (temp
),
908 PREV_INSN (insn
), temp
);
909 emit_insn_after_with_line_notes
910 (replace_rtx (PATTERN (temp3
), temp2
, new),
911 PREV_INSN (insn
), temp3
);
917 /* Finally, handle the case where two insns are used to
918 compute EXP but a temporary register is used. Here we must
919 ensure that the temporary register is not used anywhere else. */
921 if (! reload_completed
923 && this_is_condjump
&& ! this_is_simplejump
925 && (temp
= next_nonnote_insn (insn
)) != 0
926 && GET_CODE (temp
) == INSN
927 && REG_NOTES (temp
) == 0
928 && (temp3
= next_nonnote_insn (temp
)) != 0
929 && GET_CODE (temp3
) == INSN
930 && REG_NOTES (temp3
) == 0
931 && (reallabelprev
== temp3
932 || ((temp2
= next_active_insn (temp3
)) != 0
933 && simplejump_p (temp2
)
934 && JUMP_LABEL (temp2
) == JUMP_LABEL (insn
)))
935 && (temp1
= single_set (temp
)) != 0
936 && (temp5
= SET_DEST (temp1
), GET_CODE (temp5
) == REG
)
937 && REGNO (temp5
) >= FIRST_PSEUDO_REGISTER
938 && regno_first_uid
[REGNO (temp5
)] == INSN_UID (temp
)
939 && regno_last_uid
[REGNO (temp5
)] == INSN_UID (temp3
)
940 && ! side_effects_p (SET_SRC (temp1
))
941 && ! may_trap_p (SET_SRC (temp1
))
942 && rtx_cost (SET_SRC (temp1
)) < 10
943 && (temp4
= single_set (temp3
)) != 0
944 && (temp2
= SET_DEST (temp4
), GET_CODE (temp2
) == REG
)
945 && GET_MODE_CLASS (GET_MODE (temp2
)) == MODE_INT
946 #ifdef SMALL_REGISTER_CLASSES
947 && REGNO (temp2
) >= FIRST_PSEUDO_REGISTER
949 && rtx_equal_p (SET_DEST (temp4
), temp2
)
950 && ! side_effects_p (SET_SRC (temp4
))
951 && ! may_trap_p (SET_SRC (temp4
))
952 && rtx_cost (SET_SRC (temp4
)) < 10)
954 rtx
new = gen_reg_rtx (GET_MODE (temp2
));
956 if (validate_change (temp3
, &SET_DEST (temp4
), new, 0))
958 next
= emit_insn_after (gen_move_insn (temp2
, new), insn
);
959 emit_insn_after_with_line_notes (PATTERN (temp
),
960 PREV_INSN (insn
), temp
);
961 emit_insn_after_with_line_notes (PATTERN (temp3
),
962 PREV_INSN (insn
), temp3
);
967 #endif /* HAVE_cc0 */
969 /* We deal with four cases:
971 1) x = a; if (...) x = b; and either A or B is zero,
972 2) if (...) x = 0; and jumps are expensive,
973 3) x = a; if (...) x = b; and A and B are constants where all the
974 set bits in A are also set in B and jumps are expensive, and
975 4) x = a; if (...) x = b; and A and B non-zero, and jumps are
977 5) if (...) x = b; if jumps are even more expensive.
979 In each of these try to use a store-flag insn to avoid the jump.
980 (If the jump would be faster, the machine should not have
981 defined the scc insns!). These cases are often made by the
982 previous optimization.
984 INSN here is the jump around the store. We set:
986 TEMP to the "x = b;" insn.
988 TEMP2 to B (const0_rtx in the second case).
989 TEMP3 to A (X in the second case).
990 TEMP4 to the condition being tested.
991 TEMP5 to the earliest insn used to find the condition. */
993 if (/* We can't do this after reload has completed. */
995 && this_is_condjump
&& ! this_is_simplejump
996 /* Set TEMP to the "x = b;" insn. */
997 && (temp
= next_nonnote_insn (insn
)) != 0
998 && GET_CODE (temp
) == INSN
999 && GET_CODE (PATTERN (temp
)) == SET
1000 && GET_CODE (temp1
= SET_DEST (PATTERN (temp
))) == REG
1001 #ifdef SMALL_REGISTER_CLASSES
1002 && REGNO (temp1
) >= FIRST_PSEUDO_REGISTER
1004 && GET_MODE_CLASS (GET_MODE (temp1
)) == MODE_INT
1005 && (GET_CODE (temp2
= SET_SRC (PATTERN (temp
))) == REG
1006 || GET_CODE (temp2
) == SUBREG
1007 || GET_CODE (temp2
) == CONST_INT
)
1008 /* Allow either form, but prefer the former if both apply.
1009 There is no point in using the old value of TEMP1 if
1010 it is a register, since cse will alias them. It can
1011 lose if the old value were a hard register since CSE
1012 won't replace hard registers. */
1013 && (((temp3
= reg_set_last (temp1
, insn
)) != 0
1014 && GET_CODE (temp3
) == CONST_INT
)
1015 /* Make the latter case look like x = x; if (...) x = 0; */
1018 && temp2
== const0_rtx
)
1019 || BRANCH_COST
>= 3)))
1020 /* INSN must either branch to the insn after TEMP or the insn
1021 after TEMP must branch to the same place as INSN. */
1022 && (reallabelprev
== temp
1023 || ((temp4
= next_active_insn (temp
)) != 0
1024 && simplejump_p (temp4
)
1025 && JUMP_LABEL (temp4
) == JUMP_LABEL (insn
)))
1026 && (temp4
= get_condition (insn
, &temp5
)) != 0
1027 /* We must be comparing objects whose modes imply the size.
1028 We could handle BLKmode if (1) emit_store_flag could
1029 and (2) we could find the size reliably. */
1030 && GET_MODE (XEXP (temp4
, 0)) != BLKmode
1032 /* If B is zero, OK; if A is zero, can only do (1) if we
1033 can reverse the condition. See if (3) applies possibly
1034 by reversing the condition. Prefer reversing to (4) when
1035 branches are very expensive. */
1036 && ((reversep
= 0, temp2
== const0_rtx
)
1037 || (temp3
== const0_rtx
1038 && (reversep
= can_reverse_comparison_p (temp4
, insn
)))
1039 || (BRANCH_COST
>= 2
1040 && GET_CODE (temp2
) == CONST_INT
1041 && GET_CODE (temp3
) == CONST_INT
1042 && ((INTVAL (temp2
) & INTVAL (temp3
)) == INTVAL (temp2
)
1043 || ((INTVAL (temp2
) & INTVAL (temp3
)) == INTVAL (temp3
)
1044 && (reversep
= can_reverse_comparison_p (temp4
,
1046 || BRANCH_COST
>= 3)
1048 /* If the previous insn sets CC0 and something else, we can't
1049 do this since we are going to delete that insn. */
1051 && ! ((temp6
= prev_nonnote_insn (insn
)) != 0
1052 && GET_CODE (temp6
) == INSN
1053 && (sets_cc0_p (PATTERN (temp6
)) == -1
1054 || (sets_cc0_p (PATTERN (temp6
)) == 1
1055 && FIND_REG_INC_NOTE (temp6
, NULL_RTX
))))
1059 enum rtx_code code
= GET_CODE (temp4
);
1060 rtx uval
, cval
, var
= temp1
;
1064 /* If necessary, reverse the condition. */
1066 code
= reverse_condition (code
), uval
= temp2
, cval
= temp3
;
1068 uval
= temp3
, cval
= temp2
;
1070 /* See if we can do this with a store-flag insn. */
1073 /* If CVAL is non-zero, normalize to -1. Otherwise,
1074 if UVAL is the constant 1, it is best to just compute
1075 the result directly. If UVAL is constant and STORE_FLAG_VALUE
1076 includes all of its bits, it is best to compute the flag
1077 value unnormalized and `and' it with UVAL. Otherwise,
1078 normalize to -1 and `and' with UVAL. */
1079 normalizep
= (cval
!= const0_rtx
? -1
1080 : (uval
== const1_rtx
? 1
1081 : (GET_CODE (uval
) == CONST_INT
1082 && (INTVAL (uval
) & ~STORE_FLAG_VALUE
) == 0)
1085 /* We will be putting the store-flag insn immediately in
1086 front of the comparison that was originally being done,
1087 so we know all the variables in TEMP4 will be valid.
1088 However, this might be in front of the assignment of
1089 A to VAR. If it is, it would clobber the store-flag
1090 we will be emitting.
1092 Therefore, emit into a temporary which will be copied to
1093 VAR immediately after TEMP. */
1095 target
= emit_store_flag (gen_reg_rtx (GET_MODE (var
)), code
,
1096 XEXP (temp4
, 0), XEXP (temp4
, 1),
1098 (code
== LTU
|| code
== LEU
1099 || code
== GEU
|| code
== GTU
),
1106 /* Put the store-flag insns in front of the first insn
1107 used to compute the condition to ensure that we
1108 use the same values of them as the current
1109 comparison. However, the remainder of the insns we
1110 generate will be placed directly in front of the
1111 jump insn, in case any of the pseudos we use
1112 are modified earlier. */
1117 emit_insns_before (seq
, temp5
);
1121 /* Both CVAL and UVAL are non-zero. */
1122 if (cval
!= const0_rtx
&& uval
!= const0_rtx
)
1126 tem1
= expand_and (uval
, target
, NULL_RTX
);
1127 if (GET_CODE (cval
) == CONST_INT
1128 && GET_CODE (uval
) == CONST_INT
1129 && (INTVAL (cval
) & INTVAL (uval
)) == INTVAL (cval
))
1133 tem2
= expand_unop (GET_MODE (var
), one_cmpl_optab
,
1134 target
, NULL_RTX
, 0);
1135 tem2
= expand_and (cval
, tem2
,
1136 (GET_CODE (tem2
) == REG
1140 /* If we usually make new pseudos, do so here. This
1141 turns out to help machines that have conditional
1144 if (flag_expensive_optimizations
)
1147 target
= expand_binop (GET_MODE (var
), ior_optab
,
1151 else if (normalizep
!= 1)
1152 target
= expand_and (uval
, target
,
1153 (GET_CODE (target
) == REG
1154 && ! preserve_subexpressions_p ()
1155 ? target
: NULL_RTX
));
1157 emit_move_insn (var
, target
);
1162 /* If INSN uses CC0, we must not separate it from the
1163 insn that sets cc0. */
1165 if (reg_mentioned_p (cc0_rtx
, PATTERN (before
)))
1166 before
= prev_nonnote_insn (before
);
1169 emit_insns_before (seq
, before
);
1172 next
= NEXT_INSN (insn
);
1182 /* If branches are expensive, convert
1183 if (foo) bar++; to bar += (foo != 0);
1184 and similarly for "bar--;"
1186 INSN is the conditional branch around the arithmetic. We set:
1188 TEMP is the arithmetic insn.
1189 TEMP1 is the SET doing the arithmetic.
1190 TEMP2 is the operand being incremented or decremented.
1191 TEMP3 to the condition being tested.
1192 TEMP4 to the earliest insn used to find the condition. */
1194 if (BRANCH_COST
>= 2
1195 && ! reload_completed
1196 && this_is_condjump
&& ! this_is_simplejump
1197 && (temp
= next_nonnote_insn (insn
)) != 0
1198 && (temp1
= single_set (temp
)) != 0
1199 && (temp2
= SET_DEST (temp1
),
1200 GET_MODE_CLASS (GET_MODE (temp2
)) == MODE_INT
)
1201 && GET_CODE (SET_SRC (temp1
)) == PLUS
1202 && (XEXP (SET_SRC (temp1
), 1) == const1_rtx
1203 || XEXP (SET_SRC (temp1
), 1) == constm1_rtx
)
1204 && rtx_equal_p (temp2
, XEXP (SET_SRC (temp1
), 0))
1205 /* INSN must either branch to the insn after TEMP or the insn
1206 after TEMP must branch to the same place as INSN. */
1207 && (reallabelprev
== temp
1208 || ((temp3
= next_active_insn (temp
)) != 0
1209 && simplejump_p (temp3
)
1210 && JUMP_LABEL (temp3
) == JUMP_LABEL (insn
)))
1211 && (temp3
= get_condition (insn
, &temp4
)) != 0
1212 /* We must be comparing objects whose modes imply the size.
1213 We could handle BLKmode if (1) emit_store_flag could
1214 and (2) we could find the size reliably. */
1215 && GET_MODE (XEXP (temp3
, 0)) != BLKmode
1216 && can_reverse_comparison_p (temp3
, insn
))
1218 rtx temp6
, target
= 0, seq
, init_insn
= 0, init
= temp2
;
1219 enum rtx_code code
= reverse_condition (GET_CODE (temp3
));
1223 /* It must be the case that TEMP2 is not modified in the range
1224 [TEMP4, INSN). The one exception we make is if the insn
1225 before INSN sets TEMP2 to something which is also unchanged
1226 in that range. In that case, we can move the initialization
1227 into our sequence. */
1229 if ((temp5
= prev_active_insn (insn
)) != 0
1230 && GET_CODE (temp5
) == INSN
1231 && (temp6
= single_set (temp5
)) != 0
1232 && rtx_equal_p (temp2
, SET_DEST (temp6
))
1233 && (CONSTANT_P (SET_SRC (temp6
))
1234 || GET_CODE (SET_SRC (temp6
)) == REG
1235 || GET_CODE (SET_SRC (temp6
)) == SUBREG
))
1237 emit_insn (PATTERN (temp5
));
1239 init
= SET_SRC (temp6
);
1242 if (CONSTANT_P (init
)
1243 || ! reg_set_between_p (init
, PREV_INSN (temp4
), insn
))
1244 target
= emit_store_flag (gen_reg_rtx (GET_MODE (temp2
)), code
,
1245 XEXP (temp3
, 0), XEXP (temp3
, 1),
1247 (code
== LTU
|| code
== LEU
1248 || code
== GTU
|| code
== GEU
), 1);
1250 /* If we can do the store-flag, do the addition or
1254 target
= expand_binop (GET_MODE (temp2
),
1255 (XEXP (SET_SRC (temp1
), 1) == const1_rtx
1256 ? add_optab
: sub_optab
),
1257 temp2
, target
, temp2
, OPTAB_WIDEN
);
1261 /* Put the result back in temp2 in case it isn't already.
1262 Then replace the jump, possible a CC0-setting insn in
1263 front of the jump, and TEMP, with the sequence we have
1266 if (target
!= temp2
)
1267 emit_move_insn (temp2
, target
);
1272 emit_insns_before (seq
, temp4
);
1276 delete_insn (init_insn
);
1278 next
= NEXT_INSN (insn
);
1280 delete_insn (prev_nonnote_insn (insn
));
1290 /* Simplify if (...) x = 1; else {...} if (x) ...
1291 We recognize this case scanning backwards as well.
1293 TEMP is the assignment to x;
1294 TEMP1 is the label at the head of the second if. */
1295 /* ?? This should call get_condition to find the values being
1296 compared, instead of looking for a COMPARE insn when HAVE_cc0
1297 is not defined. This would allow it to work on the m88k. */
1298 /* ?? This optimization is only safe before cse is run if HAVE_cc0
1299 is not defined and the condition is tested by a separate compare
1300 insn. This is because the code below assumes that the result
1301 of the compare dies in the following branch.
1303 Not only that, but there might be other insns between the
1304 compare and branch whose results are live. Those insns need
1307 A way to fix this is to move the insns at JUMP_LABEL (insn)
1308 to before INSN. If we are running before flow, they will
1309 be deleted if they aren't needed. But this doesn't work
1312 This is really a special-case of jump threading, anyway. The
1313 right thing to do is to replace this and jump threading with
1314 much simpler code in cse.
1316 This code has been turned off in the non-cc0 case in the
1320 else if (this_is_simplejump
1321 /* Safe to skip USE and CLOBBER insns here
1322 since they will not be deleted. */
1323 && (temp
= prev_active_insn (insn
))
1324 && no_labels_between_p (temp
, insn
)
1325 && GET_CODE (temp
) == INSN
1326 && GET_CODE (PATTERN (temp
)) == SET
1327 && GET_CODE (SET_DEST (PATTERN (temp
))) == REG
1328 && CONSTANT_P (SET_SRC (PATTERN (temp
)))
1329 && (temp1
= next_active_insn (JUMP_LABEL (insn
)))
1330 /* If we find that the next value tested is `x'
1331 (TEMP1 is the insn where this happens), win. */
1332 && GET_CODE (temp1
) == INSN
1333 && GET_CODE (PATTERN (temp1
)) == SET
1335 /* Does temp1 `tst' the value of x? */
1336 && SET_SRC (PATTERN (temp1
)) == SET_DEST (PATTERN (temp
))
1337 && SET_DEST (PATTERN (temp1
)) == cc0_rtx
1338 && (temp1
= next_nonnote_insn (temp1
))
1340 /* Does temp1 compare the value of x against zero? */
1341 && GET_CODE (SET_SRC (PATTERN (temp1
))) == COMPARE
1342 && XEXP (SET_SRC (PATTERN (temp1
)), 1) == const0_rtx
1343 && (XEXP (SET_SRC (PATTERN (temp1
)), 0)
1344 == SET_DEST (PATTERN (temp
)))
1345 && GET_CODE (SET_DEST (PATTERN (temp1
))) == REG
1346 && (temp1
= find_next_ref (SET_DEST (PATTERN (temp1
)), temp1
))
1348 && condjump_p (temp1
))
1350 /* Get the if_then_else from the condjump. */
1351 rtx choice
= SET_SRC (PATTERN (temp1
));
1352 if (GET_CODE (choice
) == IF_THEN_ELSE
)
1354 enum rtx_code code
= GET_CODE (XEXP (choice
, 0));
1355 rtx val
= SET_SRC (PATTERN (temp
));
1357 = simplify_relational_operation (code
, GET_MODE (SET_DEST (PATTERN (temp
))),
1361 if (cond
== const_true_rtx
)
1362 ultimate
= XEXP (choice
, 1);
1363 else if (cond
== const0_rtx
)
1364 ultimate
= XEXP (choice
, 2);
1368 if (ultimate
== pc_rtx
)
1369 ultimate
= get_label_after (temp1
);
1370 else if (ultimate
&& GET_CODE (ultimate
) != RETURN
)
1371 ultimate
= XEXP (ultimate
, 0);
1374 changed
|= redirect_jump (insn
, ultimate
);
1380 /* @@ This needs a bit of work before it will be right.
1382 Any type of comparison can be accepted for the first and
1383 second compare. When rewriting the first jump, we must
1384 compute the what conditions can reach label3, and use the
1385 appropriate code. We can not simply reverse/swap the code
1386 of the first jump. In some cases, the second jump must be
1390 < == converts to > ==
1391 < != converts to == >
1394 If the code is written to only accept an '==' test for the second
1395 compare, then all that needs to be done is to swap the condition
1396 of the first branch.
1398 It is questionable whether we want this optimization anyways,
1399 since if the user wrote code like this because he/she knew that
1400 the jump to label1 is taken most of the time, then rewriting
1401 this gives slower code. */
1402 /* @@ This should call get_condition to find the values being
1403 compared, instead of looking for a COMPARE insn when HAVE_cc0
1404 is not defined. This would allow it to work on the m88k. */
1405 /* @@ This optimization is only safe before cse is run if HAVE_cc0
1406 is not defined and the condition is tested by a separate compare
1407 insn. This is because the code below assumes that the result
1408 of the compare dies in the following branch. */
1410 /* Simplify test a ~= b
1424 where ~= is an inequality, e.g. >, and ~~= is the swapped
1427 We recognize this case scanning backwards.
1429 TEMP is the conditional jump to `label2';
1430 TEMP1 is the test for `a == b';
1431 TEMP2 is the conditional jump to `label1';
1432 TEMP3 is the test for `a ~= b'. */
1433 else if (this_is_simplejump
1434 && (temp
= prev_active_insn (insn
))
1435 && no_labels_between_p (temp
, insn
)
1436 && condjump_p (temp
)
1437 && (temp1
= prev_active_insn (temp
))
1438 && no_labels_between_p (temp1
, temp
)
1439 && GET_CODE (temp1
) == INSN
1440 && GET_CODE (PATTERN (temp1
)) == SET
1442 && sets_cc0_p (PATTERN (temp1
)) == 1
1444 && GET_CODE (SET_SRC (PATTERN (temp1
))) == COMPARE
1445 && GET_CODE (SET_DEST (PATTERN (temp1
))) == REG
1446 && (temp
== find_next_ref (SET_DEST (PATTERN (temp1
)), temp1
))
1448 && (temp2
= prev_active_insn (temp1
))
1449 && no_labels_between_p (temp2
, temp1
)
1450 && condjump_p (temp2
)
1451 && JUMP_LABEL (temp2
) == next_nonnote_insn (NEXT_INSN (insn
))
1452 && (temp3
= prev_active_insn (temp2
))
1453 && no_labels_between_p (temp3
, temp2
)
1454 && GET_CODE (PATTERN (temp3
)) == SET
1455 && rtx_equal_p (SET_DEST (PATTERN (temp3
)),
1456 SET_DEST (PATTERN (temp1
)))
1457 && rtx_equal_p (SET_SRC (PATTERN (temp1
)),
1458 SET_SRC (PATTERN (temp3
)))
1459 && ! inequality_comparisons_p (PATTERN (temp
))
1460 && inequality_comparisons_p (PATTERN (temp2
)))
1462 rtx fallthrough_label
= JUMP_LABEL (temp2
);
1464 ++LABEL_NUSES (fallthrough_label
);
1465 if (swap_jump (temp2
, JUMP_LABEL (insn
)))
1471 if (--LABEL_NUSES (fallthrough_label
) == 0)
1472 delete_insn (fallthrough_label
);
1475 /* Simplify if (...) {... x = 1;} if (x) ...
1477 We recognize this case backwards.
1479 TEMP is the test of `x';
1480 TEMP1 is the assignment to `x' at the end of the
1481 previous statement. */
1482 /* @@ This should call get_condition to find the values being
1483 compared, instead of looking for a COMPARE insn when HAVE_cc0
1484 is not defined. This would allow it to work on the m88k. */
1485 /* @@ This optimization is only safe before cse is run if HAVE_cc0
1486 is not defined and the condition is tested by a separate compare
1487 insn. This is because the code below assumes that the result
1488 of the compare dies in the following branch. */
1490 /* ??? This has to be turned off. The problem is that the
1491 unconditional jump might indirectly end up branching to the
1492 label between TEMP1 and TEMP. We can't detect this, in general,
1493 since it may become a jump to there after further optimizations.
1494 If that jump is done, it will be deleted, so we will retry
1495 this optimization in the next pass, thus an infinite loop.
1497 The present code prevents this by putting the jump after the
1498 label, but this is not logically correct. */
1500 else if (this_is_condjump
1501 /* Safe to skip USE and CLOBBER insns here
1502 since they will not be deleted. */
1503 && (temp
= prev_active_insn (insn
))
1504 && no_labels_between_p (temp
, insn
)
1505 && GET_CODE (temp
) == INSN
1506 && GET_CODE (PATTERN (temp
)) == SET
1508 && sets_cc0_p (PATTERN (temp
)) == 1
1509 && GET_CODE (SET_SRC (PATTERN (temp
))) == REG
1511 /* Temp must be a compare insn, we can not accept a register
1512 to register move here, since it may not be simply a
1514 && GET_CODE (SET_SRC (PATTERN (temp
))) == COMPARE
1515 && XEXP (SET_SRC (PATTERN (temp
)), 1) == const0_rtx
1516 && GET_CODE (XEXP (SET_SRC (PATTERN (temp
)), 0)) == REG
1517 && GET_CODE (SET_DEST (PATTERN (temp
))) == REG
1518 && insn
== find_next_ref (SET_DEST (PATTERN (temp
)), temp
)
1520 /* May skip USE or CLOBBER insns here
1521 for checking for opportunity, since we
1522 take care of them later. */
1523 && (temp1
= prev_active_insn (temp
))
1524 && GET_CODE (temp1
) == INSN
1525 && GET_CODE (PATTERN (temp1
)) == SET
1527 && SET_SRC (PATTERN (temp
)) == SET_DEST (PATTERN (temp1
))
1529 && (XEXP (SET_SRC (PATTERN (temp
)), 0)
1530 == SET_DEST (PATTERN (temp1
)))
1532 && CONSTANT_P (SET_SRC (PATTERN (temp1
)))
1533 /* If this isn't true, cse will do the job. */
1534 && ! no_labels_between_p (temp1
, temp
))
1536 /* Get the if_then_else from the condjump. */
1537 rtx choice
= SET_SRC (PATTERN (insn
));
1538 if (GET_CODE (choice
) == IF_THEN_ELSE
1539 && (GET_CODE (XEXP (choice
, 0)) == EQ
1540 || GET_CODE (XEXP (choice
, 0)) == NE
))
1542 int want_nonzero
= (GET_CODE (XEXP (choice
, 0)) == NE
);
1547 /* Get the place that condjump will jump to
1548 if it is reached from here. */
1549 if ((SET_SRC (PATTERN (temp1
)) != const0_rtx
)
1551 ultimate
= XEXP (choice
, 1);
1553 ultimate
= XEXP (choice
, 2);
1554 /* Get it as a CODE_LABEL. */
1555 if (ultimate
== pc_rtx
)
1556 ultimate
= get_label_after (insn
);
1558 /* Get the label out of the LABEL_REF. */
1559 ultimate
= XEXP (ultimate
, 0);
1561 /* Insert the jump immediately before TEMP, specifically
1562 after the label that is between TEMP1 and TEMP. */
1563 last_insn
= PREV_INSN (temp
);
1565 /* If we would be branching to the next insn, the jump
1566 would immediately be deleted and the re-inserted in
1567 a subsequent pass over the code. So don't do anything
1569 if (next_active_insn (last_insn
)
1570 != next_active_insn (ultimate
))
1572 emit_barrier_after (last_insn
);
1573 p
= emit_jump_insn_after (gen_jump (ultimate
),
1575 JUMP_LABEL (p
) = ultimate
;
1576 ++LABEL_NUSES (ultimate
);
1577 if (INSN_UID (ultimate
) < max_jump_chain
1578 && INSN_CODE (p
) < max_jump_chain
)
1580 jump_chain
[INSN_UID (p
)]
1581 = jump_chain
[INSN_UID (ultimate
)];
1582 jump_chain
[INSN_UID (ultimate
)] = p
;
1590 /* Detect a conditional jump going to the same place
1591 as an immediately following unconditional jump. */
1592 else if (this_is_condjump
1593 && (temp
= next_active_insn (insn
)) != 0
1594 && simplejump_p (temp
)
1595 && (next_active_insn (JUMP_LABEL (insn
))
1596 == next_active_insn (JUMP_LABEL (temp
))))
1602 /* Detect a conditional jump jumping over an unconditional jump. */
1604 else if (this_is_condjump
&& ! this_is_simplejump
1605 && reallabelprev
!= 0
1606 && GET_CODE (reallabelprev
) == JUMP_INSN
1607 && prev_active_insn (reallabelprev
) == insn
1608 && no_labels_between_p (insn
, reallabelprev
)
1609 && simplejump_p (reallabelprev
))
1611 /* When we invert the unconditional jump, we will be
1612 decrementing the usage count of its old label.
1613 Make sure that we don't delete it now because that
1614 might cause the following code to be deleted. */
1615 rtx prev_uses
= prev_nonnote_insn (reallabelprev
);
1616 rtx prev_label
= JUMP_LABEL (insn
);
1618 ++LABEL_NUSES (prev_label
);
1620 if (invert_jump (insn
, JUMP_LABEL (reallabelprev
)))
1622 /* It is very likely that if there are USE insns before
1623 this jump, they hold REG_DEAD notes. These REG_DEAD
1624 notes are no longer valid due to this optimization,
1625 and will cause the life-analysis that following passes
1626 (notably delayed-branch scheduling) to think that
1627 these registers are dead when they are not.
1629 To prevent this trouble, we just remove the USE insns
1630 from the insn chain. */
1632 while (prev_uses
&& GET_CODE (prev_uses
) == INSN
1633 && GET_CODE (PATTERN (prev_uses
)) == USE
)
1635 rtx useless
= prev_uses
;
1636 prev_uses
= prev_nonnote_insn (prev_uses
);
1637 delete_insn (useless
);
1640 delete_insn (reallabelprev
);
1645 /* We can now safely delete the label if it is unreferenced
1646 since the delete_insn above has deleted the BARRIER. */
1647 if (--LABEL_NUSES (prev_label
) == 0)
1648 delete_insn (prev_label
);
1653 /* Detect a jump to a jump. */
1655 nlabel
= follow_jumps (JUMP_LABEL (insn
));
1656 if (nlabel
!= JUMP_LABEL (insn
)
1657 && redirect_jump (insn
, nlabel
))
1663 /* Look for if (foo) bar; else break; */
1664 /* The insns look like this:
1665 insn = condjump label1;
1666 ...range1 (some insns)...
1669 ...range2 (some insns)...
1670 jump somewhere unconditionally
1673 rtx label1
= next_label (insn
);
1674 rtx range1end
= label1
? prev_active_insn (label1
) : 0;
1675 /* Don't do this optimization on the first round, so that
1676 jump-around-a-jump gets simplified before we ask here
1677 whether a jump is unconditional.
1679 Also don't do it when we are called after reload since
1680 it will confuse reorg. */
1682 && (reload_completed
? ! flag_delayed_branch
: 1)
1683 /* Make sure INSN is something we can invert. */
1684 && condjump_p (insn
)
1686 && JUMP_LABEL (insn
) == label1
1687 && LABEL_NUSES (label1
) == 1
1688 && GET_CODE (range1end
) == JUMP_INSN
1689 && simplejump_p (range1end
))
1691 rtx label2
= next_label (label1
);
1692 rtx range2end
= label2
? prev_active_insn (label2
) : 0;
1693 if (range1end
!= range2end
1694 && JUMP_LABEL (range1end
) == label2
1695 && GET_CODE (range2end
) == JUMP_INSN
1696 && GET_CODE (NEXT_INSN (range2end
)) == BARRIER
1697 /* Invert the jump condition, so we
1698 still execute the same insns in each case. */
1699 && invert_jump (insn
, label1
))
1701 rtx range1beg
= next_active_insn (insn
);
1702 rtx range2beg
= next_active_insn (label1
);
1703 rtx range1after
, range2after
;
1704 rtx range1before
, range2before
;
1706 /* Include in each range any line number before it. */
1707 while (PREV_INSN (range1beg
)
1708 && GET_CODE (PREV_INSN (range1beg
)) == NOTE
1709 && NOTE_LINE_NUMBER (PREV_INSN (range1beg
)) > 0)
1710 range1beg
= PREV_INSN (range1beg
);
1712 while (PREV_INSN (range2beg
)
1713 && GET_CODE (PREV_INSN (range2beg
)) == NOTE
1714 && NOTE_LINE_NUMBER (PREV_INSN (range2beg
)) > 0)
1715 range2beg
= PREV_INSN (range2beg
);
1717 /* Don't move NOTEs for blocks or loops; shift them
1718 outside the ranges, where they'll stay put. */
1719 range1beg
= squeeze_notes (range1beg
, range1end
);
1720 range2beg
= squeeze_notes (range2beg
, range2end
);
1722 /* Get current surrounds of the 2 ranges. */
1723 range1before
= PREV_INSN (range1beg
);
1724 range2before
= PREV_INSN (range2beg
);
1725 range1after
= NEXT_INSN (range1end
);
1726 range2after
= NEXT_INSN (range2end
);
1728 /* Splice range2 where range1 was. */
1729 NEXT_INSN (range1before
) = range2beg
;
1730 PREV_INSN (range2beg
) = range1before
;
1731 NEXT_INSN (range2end
) = range1after
;
1732 PREV_INSN (range1after
) = range2end
;
1733 /* Splice range1 where range2 was. */
1734 NEXT_INSN (range2before
) = range1beg
;
1735 PREV_INSN (range1beg
) = range2before
;
1736 NEXT_INSN (range1end
) = range2after
;
1737 PREV_INSN (range2after
) = range1end
;
1744 /* Now that the jump has been tensioned,
1745 try cross jumping: check for identical code
1746 before the jump and before its target label. */
1748 /* First, cross jumping of conditional jumps: */
1750 if (cross_jump
&& condjump_p (insn
))
1752 rtx newjpos
, newlpos
;
1753 rtx x
= prev_real_insn (JUMP_LABEL (insn
));
1755 /* A conditional jump may be crossjumped
1756 only if the place it jumps to follows
1757 an opposing jump that comes back here. */
1759 if (x
!= 0 && ! jump_back_p (x
, insn
))
1760 /* We have no opposing jump;
1761 cannot cross jump this insn. */
1765 /* TARGET is nonzero if it is ok to cross jump
1766 to code before TARGET. If so, see if matches. */
1768 find_cross_jump (insn
, x
, 2,
1769 &newjpos
, &newlpos
);
1773 do_cross_jump (insn
, newjpos
, newlpos
);
1774 /* Make the old conditional jump
1775 into an unconditional one. */
1776 SET_SRC (PATTERN (insn
))
1777 = gen_rtx (LABEL_REF
, VOIDmode
, JUMP_LABEL (insn
));
1778 INSN_CODE (insn
) = -1;
1779 emit_barrier_after (insn
);
1780 /* Add to jump_chain unless this is a new label
1781 whose UID is too large. */
1782 if (INSN_UID (JUMP_LABEL (insn
)) < max_jump_chain
)
1784 jump_chain
[INSN_UID (insn
)]
1785 = jump_chain
[INSN_UID (JUMP_LABEL (insn
))];
1786 jump_chain
[INSN_UID (JUMP_LABEL (insn
))] = insn
;
1793 /* Cross jumping of unconditional jumps:
1794 a few differences. */
1796 if (cross_jump
&& simplejump_p (insn
))
1798 rtx newjpos
, newlpos
;
1803 /* TARGET is nonzero if it is ok to cross jump
1804 to code before TARGET. If so, see if matches. */
1805 find_cross_jump (insn
, JUMP_LABEL (insn
), 1,
1806 &newjpos
, &newlpos
);
1808 /* If cannot cross jump to code before the label,
1809 see if we can cross jump to another jump to
1811 /* Try each other jump to this label. */
1812 if (INSN_UID (JUMP_LABEL (insn
)) < max_uid
)
1813 for (target
= jump_chain
[INSN_UID (JUMP_LABEL (insn
))];
1814 target
!= 0 && newjpos
== 0;
1815 target
= jump_chain
[INSN_UID (target
)])
1817 && JUMP_LABEL (target
) == JUMP_LABEL (insn
)
1818 /* Ignore TARGET if it's deleted. */
1819 && ! INSN_DELETED_P (target
))
1820 find_cross_jump (insn
, target
, 2,
1821 &newjpos
, &newlpos
);
1825 do_cross_jump (insn
, newjpos
, newlpos
);
1831 /* This code was dead in the previous jump.c! */
1832 if (cross_jump
&& GET_CODE (PATTERN (insn
)) == RETURN
)
1834 /* Return insns all "jump to the same place"
1835 so we can cross-jump between any two of them. */
1837 rtx newjpos
, newlpos
, target
;
1841 /* If cannot cross jump to code before the label,
1842 see if we can cross jump to another jump to
1844 /* Try each other jump to this label. */
1845 for (target
= jump_chain
[0];
1846 target
!= 0 && newjpos
== 0;
1847 target
= jump_chain
[INSN_UID (target
)])
1849 && ! INSN_DELETED_P (target
)
1850 && GET_CODE (PATTERN (target
)) == RETURN
)
1851 find_cross_jump (insn
, target
, 2,
1852 &newjpos
, &newlpos
);
1856 do_cross_jump (insn
, newjpos
, newlpos
);
1867 /* Delete extraneous line number notes.
1868 Note that two consecutive notes for different lines are not really
1869 extraneous. There should be some indication where that line belonged,
1870 even if it became empty. */
1875 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
1876 if (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) >= 0)
1878 /* Delete this note if it is identical to previous note. */
1880 && NOTE_SOURCE_FILE (insn
) == NOTE_SOURCE_FILE (last_note
)
1881 && NOTE_LINE_NUMBER (insn
) == NOTE_LINE_NUMBER (last_note
))
1891 /* See if there is still a NOTE_INSN_FUNCTION_END in this function.
1892 If so, delete it, and record that this function can drop off the end. */
1898 /* One label can follow the end-note: the return label. */
1899 && ((GET_CODE (insn
) == CODE_LABEL
&& n_labels
-- > 0)
1900 /* Ordinary insns can follow it if returning a structure. */
1901 || GET_CODE (insn
) == INSN
1902 /* If machine uses explicit RETURN insns, no epilogue,
1903 then one of them follows the note. */
1904 || (GET_CODE (insn
) == JUMP_INSN
1905 && GET_CODE (PATTERN (insn
)) == RETURN
)
1906 /* Other kinds of notes can follow also. */
1907 || (GET_CODE (insn
) == NOTE
1908 && NOTE_LINE_NUMBER (insn
) != NOTE_INSN_FUNCTION_END
)))
1909 insn
= PREV_INSN (insn
);
1912 /* Report if control can fall through at the end of the function. */
1913 if (insn
&& GET_CODE (insn
) == NOTE
1914 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_FUNCTION_END
)
1920 /* Show JUMP_CHAIN no longer valid. */
1924 /* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
1925 jump. Assume that this unconditional jump is to the exit test code. If
1926 the code is sufficiently simple, make a copy of it before INSN,
1927 followed by a jump to the exit of the loop. Then delete the unconditional
1930 Note that it is possible we can get confused here if the jump immediately
1931 after the loop start branches outside the loop but within an outer loop.
1932 If we are near the exit of that loop, we will copy its exit test. This
1933 will not generate incorrect code, but could suppress some optimizations.
1934 However, such cases are degenerate loops anyway.
1936 Return 1 if we made the change, else 0.
1938 This is only safe immediately after a regscan pass because it uses the
1939 values of regno_first_uid and regno_last_uid. */
1942 duplicate_loop_exit_test (loop_start
)
1948 rtx exitcode
= NEXT_INSN (JUMP_LABEL (next_nonnote_insn (loop_start
)));
1950 int max_reg
= max_reg_num ();
1953 /* Scan the exit code. We do not perform this optimization if any insn:
1957 has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
1958 is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
1959 is a NOTE_INSN_BLOCK_{BEG,END} because duplicating these notes
1962 Also, don't do this if the exit code is more than 20 insns. */
1964 for (insn
= exitcode
;
1966 && ! (GET_CODE (insn
) == NOTE
1967 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
);
1968 insn
= NEXT_INSN (insn
))
1970 switch (GET_CODE (insn
))
1976 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
1977 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_BEG
1978 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_END
)
1983 if (++num_insns
> 20
1984 || find_reg_note (insn
, REG_RETVAL
, NULL_RTX
)
1985 || find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))
1991 /* Unless INSN is zero, we can do the optimization. */
1997 /* See if any insn sets a register only used in the loop exit code and
1998 not a user variable. If so, replace it with a new register. */
1999 for (insn
= exitcode
; insn
!= lastexit
; insn
= NEXT_INSN (insn
))
2000 if (GET_CODE (insn
) == INSN
2001 && (set
= single_set (insn
)) != 0
2002 && GET_CODE (SET_DEST (set
)) == REG
2003 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
2004 && regno_first_uid
[REGNO (SET_DEST (set
))] == INSN_UID (insn
))
2006 for (p
= NEXT_INSN (insn
); p
!= lastexit
; p
= NEXT_INSN (p
))
2007 if (regno_last_uid
[REGNO (SET_DEST (set
))] == INSN_UID (p
))
2012 /* We can do the replacement. Allocate reg_map if this is the
2013 first replacement we found. */
2016 reg_map
= (rtx
*) alloca (max_reg
* sizeof (rtx
));
2017 bzero (reg_map
, max_reg
* sizeof (rtx
));
2020 REG_LOOP_TEST_P (SET_DEST (set
)) = 1;
2022 reg_map
[REGNO (SET_DEST (set
))]
2023 = gen_reg_rtx (GET_MODE (SET_DEST (set
)));
2027 /* Now copy each insn. */
2028 for (insn
= exitcode
; insn
!= lastexit
; insn
= NEXT_INSN (insn
))
2029 switch (GET_CODE (insn
))
2032 copy
= emit_barrier_before (loop_start
);
2035 /* Only copy line-number notes. */
2036 if (NOTE_LINE_NUMBER (insn
) >= 0)
2038 copy
= emit_note_before (NOTE_LINE_NUMBER (insn
), loop_start
);
2039 NOTE_SOURCE_FILE (copy
) = NOTE_SOURCE_FILE (insn
);
2044 copy
= emit_insn_before (copy_rtx (PATTERN (insn
)), loop_start
);
2046 replace_regs (PATTERN (copy
), reg_map
, max_reg
, 1);
2048 mark_jump_label (PATTERN (copy
), copy
, 0);
2050 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
2052 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2053 if (REG_NOTE_KIND (link
) != REG_LABEL
)
2055 = copy_rtx (gen_rtx (EXPR_LIST
, REG_NOTE_KIND (link
),
2056 XEXP (link
, 0), REG_NOTES (copy
)));
2057 if (reg_map
&& REG_NOTES (copy
))
2058 replace_regs (REG_NOTES (copy
), reg_map
, max_reg
, 1);
2062 copy
= emit_jump_insn_before (copy_rtx (PATTERN (insn
)), loop_start
);
2064 replace_regs (PATTERN (copy
), reg_map
, max_reg
, 1);
2065 mark_jump_label (PATTERN (copy
), copy
, 0);
2066 if (REG_NOTES (insn
))
2068 REG_NOTES (copy
) = copy_rtx (REG_NOTES (insn
));
2070 replace_regs (REG_NOTES (copy
), reg_map
, max_reg
, 1);
2073 /* If this is a simple jump, add it to the jump chain. */
2075 if (INSN_UID (copy
) < max_jump_chain
&& JUMP_LABEL (copy
)
2076 && simplejump_p (copy
))
2078 jump_chain
[INSN_UID (copy
)]
2079 = jump_chain
[INSN_UID (JUMP_LABEL (copy
))];
2080 jump_chain
[INSN_UID (JUMP_LABEL (copy
))] = copy
;
2088 /* Now clean up by emitting a jump to the end label and deleting the jump
2089 at the start of the loop. */
2090 if (GET_CODE (copy
) != BARRIER
)
2092 copy
= emit_jump_insn_before (gen_jump (get_label_after (insn
)),
2094 mark_jump_label (PATTERN (copy
), copy
, 0);
2095 if (INSN_UID (copy
) < max_jump_chain
2096 && INSN_UID (JUMP_LABEL (copy
)) < max_jump_chain
)
2098 jump_chain
[INSN_UID (copy
)]
2099 = jump_chain
[INSN_UID (JUMP_LABEL (copy
))];
2100 jump_chain
[INSN_UID (JUMP_LABEL (copy
))] = copy
;
2102 emit_barrier_before (loop_start
);
2105 delete_insn (next_nonnote_insn (loop_start
));
2107 /* Mark the exit code as the virtual top of the converted loop. */
2108 emit_note_before (NOTE_INSN_LOOP_VTOP
, exitcode
);
2113 /* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, and
2114 loop-end notes between START and END out before START. Assume that
2115 END is not such a note. START may be such a note. Returns the value
2116 of the new starting insn, which may be different if the original start
2120 squeeze_notes (start
, end
)
2126 for (insn
= start
; insn
!= end
; insn
= next
)
2128 next
= NEXT_INSN (insn
);
2129 if (GET_CODE (insn
) == NOTE
2130 && (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_END
2131 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_BEG
2132 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
2133 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
2134 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_CONT
2135 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_VTOP
))
2141 rtx prev
= PREV_INSN (insn
);
2142 PREV_INSN (insn
) = PREV_INSN (start
);
2143 NEXT_INSN (insn
) = start
;
2144 NEXT_INSN (PREV_INSN (insn
)) = insn
;
2145 PREV_INSN (NEXT_INSN (insn
)) = insn
;
2146 NEXT_INSN (prev
) = next
;
2147 PREV_INSN (next
) = prev
;
2155 /* Compare the instructions before insn E1 with those before E2
2156 to find an opportunity for cross jumping.
2157 (This means detecting identical sequences of insns followed by
2158 jumps to the same place, or followed by a label and a jump
2159 to that label, and replacing one with a jump to the other.)
2161 Assume E1 is a jump that jumps to label E2
2162 (that is not always true but it might as well be).
2163 Find the longest possible equivalent sequences
2164 and store the first insns of those sequences into *F1 and *F2.
2165 Store zero there if no equivalent preceding instructions are found.
2167 We give up if we find a label in stream 1.
2168 Actually we could transfer that label into stream 2. */
2171 find_cross_jump (e1
, e2
, minimum
, f1
, f2
)
2176 register rtx i1
= e1
, i2
= e2
;
2177 register rtx p1
, p2
;
2180 rtx last1
= 0, last2
= 0;
2181 rtx afterlast1
= 0, afterlast2
= 0;
2189 i1
= prev_nonnote_insn (i1
);
2191 i2
= PREV_INSN (i2
);
2192 while (i2
&& (GET_CODE (i2
) == NOTE
|| GET_CODE (i2
) == CODE_LABEL
))
2193 i2
= PREV_INSN (i2
);
2198 /* Don't allow the range of insns preceding E1 or E2
2199 to include the other (E2 or E1). */
2200 if (i2
== e1
|| i1
== e2
)
2203 /* If we will get to this code by jumping, those jumps will be
2204 tensioned to go directly to the new label (before I2),
2205 so this cross-jumping won't cost extra. So reduce the minimum. */
2206 if (GET_CODE (i1
) == CODE_LABEL
)
2212 if (i2
== 0 || GET_CODE (i1
) != GET_CODE (i2
))
2219 /* If cross_jump_death_matters is not 0, the insn's mode
2220 indicates whether or not the insn contains any stack-like
2223 if (cross_jump_death_matters
&& GET_MODE (i1
) == QImode
)
2225 /* If register stack conversion has already been done, then
2226 death notes must also be compared before it is certain that
2227 the two instruction streams match. */
2230 HARD_REG_SET i1_regset
, i2_regset
;
2232 CLEAR_HARD_REG_SET (i1_regset
);
2233 CLEAR_HARD_REG_SET (i2_regset
);
2235 for (note
= REG_NOTES (i1
); note
; note
= XEXP (note
, 1))
2236 if (REG_NOTE_KIND (note
) == REG_DEAD
2237 && STACK_REG_P (XEXP (note
, 0)))
2238 SET_HARD_REG_BIT (i1_regset
, REGNO (XEXP (note
, 0)));
2240 for (note
= REG_NOTES (i2
); note
; note
= XEXP (note
, 1))
2241 if (REG_NOTE_KIND (note
) == REG_DEAD
2242 && STACK_REG_P (XEXP (note
, 0)))
2243 SET_HARD_REG_BIT (i2_regset
, REGNO (XEXP (note
, 0)));
2245 GO_IF_HARD_REG_EQUAL (i1_regset
, i2_regset
, done
);
2254 if (lose
|| GET_CODE (p1
) != GET_CODE (p2
)
2255 || ! rtx_renumbered_equal_p (p1
, p2
))
2257 /* The following code helps take care of G++ cleanups. */
2261 if (!lose
&& GET_CODE (p1
) == GET_CODE (p2
)
2262 && ((equiv1
= find_reg_note (i1
, REG_EQUAL
, NULL_RTX
)) != 0
2263 || (equiv1
= find_reg_note (i1
, REG_EQUIV
, NULL_RTX
)) != 0)
2264 && ((equiv2
= find_reg_note (i2
, REG_EQUAL
, NULL_RTX
)) != 0
2265 || (equiv2
= find_reg_note (i2
, REG_EQUIV
, NULL_RTX
)) != 0)
2266 /* If the equivalences are not to a constant, they may
2267 reference pseudos that no longer exist, so we can't
2269 && CONSTANT_P (XEXP (equiv1
, 0))
2270 && rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))
2272 rtx s1
= single_set (i1
);
2273 rtx s2
= single_set (i2
);
2274 if (s1
!= 0 && s2
!= 0
2275 && rtx_renumbered_equal_p (SET_DEST (s1
), SET_DEST (s2
)))
2277 validate_change (i1
, &SET_SRC (s1
), XEXP (equiv1
, 0), 1);
2278 validate_change (i2
, &SET_SRC (s2
), XEXP (equiv2
, 0), 1);
2279 if (! rtx_renumbered_equal_p (p1
, p2
))
2281 else if (apply_change_group ())
2286 /* Insns fail to match; cross jumping is limited to the following
2290 /* Don't allow the insn after a compare to be shared by
2291 cross-jumping unless the compare is also shared.
2292 Here, if either of these non-matching insns is a compare,
2293 exclude the following insn from possible cross-jumping. */
2294 if (sets_cc0_p (p1
) || sets_cc0_p (p2
))
2295 last1
= afterlast1
, last2
= afterlast2
, ++minimum
;
2298 /* If cross-jumping here will feed a jump-around-jump
2299 optimization, this jump won't cost extra, so reduce
2301 if (GET_CODE (i1
) == JUMP_INSN
2303 && prev_real_insn (JUMP_LABEL (i1
)) == e1
)
2309 if (GET_CODE (p1
) != USE
&& GET_CODE (p1
) != CLOBBER
)
2311 /* Ok, this insn is potentially includable in a cross-jump here. */
2312 afterlast1
= last1
, afterlast2
= last2
;
2313 last1
= i1
, last2
= i2
, --minimum
;
2317 /* We have to be careful that we do not cross-jump into the middle of
2318 USE-CALL_INSN-CLOBBER sequence. This sequence is used instead of
2319 putting the USE and CLOBBERs inside the CALL_INSN. The delay slot
2320 scheduler needs to know what registers are used and modified by the
2321 CALL_INSN and needs the adjacent USE and CLOBBERs to do so.
2323 ??? At some point we should probably change this so that these are
2324 part of the CALL_INSN. The way we are doing it now is a kludge that
2325 is now causing trouble. */
2327 if (last1
!= 0 && GET_CODE (last1
) == CALL_INSN
2328 && (prev1
= prev_nonnote_insn (last1
))
2329 && GET_CODE (prev1
) == INSN
2330 && GET_CODE (PATTERN (prev1
)) == USE
)
2332 /* Remove this CALL_INSN from the range we can cross-jump. */
2333 last1
= next_real_insn (last1
);
2334 last2
= next_real_insn (last2
);
2339 /* Skip past CLOBBERS since they may be right after a CALL_INSN. It
2340 isn't worth checking for the CALL_INSN. */
2341 while (last1
!= 0 && GET_CODE (PATTERN (last1
)) == CLOBBER
)
2342 last1
= next_real_insn (last1
), last2
= next_real_insn (last2
);
2344 if (minimum
<= 0 && last1
!= 0 && last1
!= e1
)
2345 *f1
= last1
, *f2
= last2
;
2349 do_cross_jump (insn
, newjpos
, newlpos
)
2350 rtx insn
, newjpos
, newlpos
;
2352 /* Find an existing label at this point
2353 or make a new one if there is none. */
2354 register rtx label
= get_label_before (newlpos
);
2356 /* Make the same jump insn jump to the new point. */
2357 if (GET_CODE (PATTERN (insn
)) == RETURN
)
2359 /* Remove from jump chain of returns. */
2360 delete_from_jump_chain (insn
);
2361 /* Change the insn. */
2362 PATTERN (insn
) = gen_jump (label
);
2363 INSN_CODE (insn
) = -1;
2364 JUMP_LABEL (insn
) = label
;
2365 LABEL_NUSES (label
)++;
2366 /* Add to new the jump chain. */
2367 if (INSN_UID (label
) < max_jump_chain
2368 && INSN_UID (insn
) < max_jump_chain
)
2370 jump_chain
[INSN_UID (insn
)] = jump_chain
[INSN_UID (label
)];
2371 jump_chain
[INSN_UID (label
)] = insn
;
2375 redirect_jump (insn
, label
);
2377 /* Delete the matching insns before the jump. Also, remove any REG_EQUAL
2378 or REG_EQUIV note in the NEWLPOS stream that isn't also present in
2379 the NEWJPOS stream. */
2381 while (newjpos
!= insn
)
2385 for (lnote
= REG_NOTES (newlpos
); lnote
; lnote
= XEXP (lnote
, 1))
2386 if ((REG_NOTE_KIND (lnote
) == REG_EQUAL
2387 || REG_NOTE_KIND (lnote
) == REG_EQUIV
)
2388 && ! find_reg_note (newjpos
, REG_EQUAL
, XEXP (lnote
, 0))
2389 && ! find_reg_note (newjpos
, REG_EQUIV
, XEXP (lnote
, 0)))
2390 remove_note (newlpos
, lnote
);
2392 delete_insn (newjpos
);
2393 newjpos
= next_real_insn (newjpos
);
2394 newlpos
= next_real_insn (newlpos
);
2398 /* Return the label before INSN, or put a new label there. */
2401 get_label_before (insn
)
2406 /* Find an existing label at this point
2407 or make a new one if there is none. */
2408 label
= prev_nonnote_insn (insn
);
2410 if (label
== 0 || GET_CODE (label
) != CODE_LABEL
)
2412 rtx prev
= PREV_INSN (insn
);
2414 /* Don't put a label between a CALL_INSN and USE insns that precede
2417 if (GET_CODE (insn
) == CALL_INSN
2418 || (GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == SEQUENCE
2419 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == CALL_INSN
))
2420 while (GET_CODE (prev
) == INSN
&& GET_CODE (PATTERN (prev
)) == USE
)
2421 prev
= PREV_INSN (prev
);
2423 label
= gen_label_rtx ();
2424 emit_label_after (label
, prev
);
2425 LABEL_NUSES (label
) = 0;
2430 /* Return the label after INSN, or put a new label there. */
2433 get_label_after (insn
)
2438 /* Find an existing label at this point
2439 or make a new one if there is none. */
2440 label
= next_nonnote_insn (insn
);
2442 if (label
== 0 || GET_CODE (label
) != CODE_LABEL
)
2444 /* Don't put a label between a CALL_INSN and CLOBBER insns
2447 if (GET_CODE (insn
) == CALL_INSN
2448 || (GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == SEQUENCE
2449 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == CALL_INSN
))
2450 while (GET_CODE (NEXT_INSN (insn
)) == INSN
2451 && GET_CODE (PATTERN (NEXT_INSN (insn
))) == CLOBBER
)
2452 insn
= NEXT_INSN (insn
);
2454 label
= gen_label_rtx ();
2455 emit_label_after (label
, insn
);
2456 LABEL_NUSES (label
) = 0;
2461 /* Return 1 if INSN is a jump that jumps to right after TARGET
2462 only on the condition that TARGET itself would drop through.
2463 Assumes that TARGET is a conditional jump. */
2466 jump_back_p (insn
, target
)
2470 enum rtx_code codei
, codet
;
2472 if (simplejump_p (insn
) || ! condjump_p (insn
)
2473 || simplejump_p (target
)
2474 || target
!= prev_real_insn (JUMP_LABEL (insn
)))
2477 cinsn
= XEXP (SET_SRC (PATTERN (insn
)), 0);
2478 ctarget
= XEXP (SET_SRC (PATTERN (target
)), 0);
2480 codei
= GET_CODE (cinsn
);
2481 codet
= GET_CODE (ctarget
);
2483 if (XEXP (SET_SRC (PATTERN (insn
)), 1) == pc_rtx
)
2485 if (! can_reverse_comparison_p (cinsn
, insn
))
2487 codei
= reverse_condition (codei
);
2490 if (XEXP (SET_SRC (PATTERN (target
)), 2) == pc_rtx
)
2492 if (! can_reverse_comparison_p (ctarget
, target
))
2494 codet
= reverse_condition (codet
);
2497 return (codei
== codet
2498 && rtx_renumbered_equal_p (XEXP (cinsn
, 0), XEXP (ctarget
, 0))
2499 && rtx_renumbered_equal_p (XEXP (cinsn
, 1), XEXP (ctarget
, 1)));
2502 /* Given a comparison, COMPARISON, inside a conditional jump insn, INSN,
2503 return non-zero if it is safe to reverse this comparison. It is if our
2504 floating-point is not IEEE, if this is an NE or EQ comparison, or if
2505 this is known to be an integer comparison. */
2508 can_reverse_comparison_p (comparison
, insn
)
2514 /* If this is not actually a comparison, we can't reverse it. */
2515 if (GET_RTX_CLASS (GET_CODE (comparison
)) != '<')
2518 if (TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
2519 /* If this is an NE comparison, it is safe to reverse it to an EQ
2520 comparison and vice versa, even for floating point. If no operands
2521 are NaNs, the reversal is valid. If some operand is a NaN, EQ is
2522 always false and NE is always true, so the reversal is also valid. */
2523 || GET_CODE (comparison
) == NE
2524 || GET_CODE (comparison
) == EQ
)
2527 arg0
= XEXP (comparison
, 0);
2529 /* Make sure ARG0 is one of the actual objects being compared. If we
2530 can't do this, we can't be sure the comparison can be reversed.
2532 Handle cc0 and a MODE_CC register. */
2533 if ((GET_CODE (arg0
) == REG
&& GET_MODE_CLASS (GET_MODE (arg0
)) == MODE_CC
)
2539 rtx prev
= prev_nonnote_insn (insn
);
2540 rtx set
= single_set (prev
);
2542 if (set
== 0 || SET_DEST (set
) != arg0
)
2545 arg0
= SET_SRC (set
);
2547 if (GET_CODE (arg0
) == COMPARE
)
2548 arg0
= XEXP (arg0
, 0);
2551 /* We can reverse this if ARG0 is a CONST_INT or if its mode is
2552 not VOIDmode and neither a MODE_CC nor MODE_FLOAT type. */
2553 return (GET_CODE (arg0
) == CONST_INT
2554 || (GET_MODE (arg0
) != VOIDmode
2555 && GET_MODE_CLASS (GET_MODE (arg0
)) != MODE_CC
2556 && GET_MODE_CLASS (GET_MODE (arg0
)) != MODE_FLOAT
));
2559 /* Given an rtx-code for a comparison, return the code
2560 for the negated comparison.
2561 WATCH OUT! reverse_condition is not safe to use on a jump
2562 that might be acting on the results of an IEEE floating point comparison,
2563 because of the special treatment of non-signaling nans in comparisons.
2564 Use can_reverse_comparison_p to be sure. */
2567 reverse_condition (code
)
2608 /* Similar, but return the code when two operands of a comparison are swapped.
2609 This IS safe for IEEE floating-point. */
2612 swap_condition (code
)
2651 /* Given a comparison CODE, return the corresponding unsigned comparison.
2652 If CODE is an equality comparison or already an unsigned comparison,
2653 CODE is returned. */
2656 unsigned_condition (code
)
2686 /* Similarly, return the signed version of a comparison. */
2689 signed_condition (code
)
2719 /* Return non-zero if CODE1 is more strict than CODE2, i.e., if the
2720 truth of CODE1 implies the truth of CODE2. */
2723 comparison_dominates_p (code1
, code2
)
2724 enum rtx_code code1
, code2
;
2732 if (code2
== LE
|| code2
== LEU
|| code2
== GE
|| code2
== GEU
)
2760 /* Return 1 if INSN is an unconditional jump and nothing else. */
2766 return (GET_CODE (insn
) == JUMP_INSN
2767 && GET_CODE (PATTERN (insn
)) == SET
2768 && GET_CODE (SET_DEST (PATTERN (insn
))) == PC
2769 && GET_CODE (SET_SRC (PATTERN (insn
))) == LABEL_REF
);
2772 /* Return nonzero if INSN is a (possibly) conditional jump
2773 and nothing more. */
2779 register rtx x
= PATTERN (insn
);
2780 if (GET_CODE (x
) != SET
)
2782 if (GET_CODE (SET_DEST (x
)) != PC
)
2784 if (GET_CODE (SET_SRC (x
)) == LABEL_REF
)
2786 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
2788 if (XEXP (SET_SRC (x
), 2) == pc_rtx
2789 && (GET_CODE (XEXP (SET_SRC (x
), 1)) == LABEL_REF
2790 || GET_CODE (XEXP (SET_SRC (x
), 1)) == RETURN
))
2792 if (XEXP (SET_SRC (x
), 1) == pc_rtx
2793 && (GET_CODE (XEXP (SET_SRC (x
), 2)) == LABEL_REF
2794 || GET_CODE (XEXP (SET_SRC (x
), 2)) == RETURN
))
2799 /* Return 1 if X is an RTX that does nothing but set the condition codes
2800 and CLOBBER or USE registers.
2801 Return -1 if X does explicitly set the condition codes,
2802 but also does other things. */
2809 if (GET_CODE (x
) == SET
&& SET_DEST (x
) == cc0_rtx
)
2811 if (GET_CODE (x
) == PARALLEL
)
2815 int other_things
= 0;
2816 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
2818 if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
2819 && SET_DEST (XVECEXP (x
, 0, i
)) == cc0_rtx
)
2821 else if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
)
2824 return ! sets_cc0
? 0 : other_things
? -1 : 1;
2832 /* Follow any unconditional jump at LABEL;
2833 return the ultimate label reached by any such chain of jumps.
2834 If LABEL is not followed by a jump, return LABEL.
2835 If the chain loops or we can't find end, return LABEL,
2836 since that tells caller to avoid changing the insn.
2838 If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
2839 a USE or CLOBBER. */
2842 follow_jumps (label
)
2847 register rtx value
= label
;
2852 && (insn
= next_active_insn (value
)) != 0
2853 && GET_CODE (insn
) == JUMP_INSN
2854 && (JUMP_LABEL (insn
) != 0 || GET_CODE (PATTERN (insn
)) == RETURN
)
2855 && (next
= NEXT_INSN (insn
))
2856 && GET_CODE (next
) == BARRIER
);
2859 /* Don't chain through the insn that jumps into a loop
2860 from outside the loop,
2861 since that would create multiple loop entry jumps
2862 and prevent loop optimization. */
2864 if (!reload_completed
)
2865 for (tem
= value
; tem
!= insn
; tem
= NEXT_INSN (tem
))
2866 if (GET_CODE (tem
) == NOTE
2867 && NOTE_LINE_NUMBER (tem
) == NOTE_INSN_LOOP_BEG
)
2870 /* If we have found a cycle, make the insn jump to itself. */
2871 if (JUMP_LABEL (insn
) == label
)
2873 value
= JUMP_LABEL (insn
);
2880 /* Assuming that field IDX of X is a vector of label_refs,
2881 replace each of them by the ultimate label reached by it.
2882 Return nonzero if a change is made.
2883 If IGNORE_LOOPS is 0, we do not chain across a NOTE_INSN_LOOP_BEG. */
2886 tension_vector_labels (x
, idx
)
2892 for (i
= XVECLEN (x
, idx
) - 1; i
>= 0; i
--)
2894 register rtx olabel
= XEXP (XVECEXP (x
, idx
, i
), 0);
2895 register rtx nlabel
= follow_jumps (olabel
);
2896 if (nlabel
&& nlabel
!= olabel
)
2898 XEXP (XVECEXP (x
, idx
, i
), 0) = nlabel
;
2899 ++LABEL_NUSES (nlabel
);
2900 if (--LABEL_NUSES (olabel
) == 0)
2901 delete_insn (olabel
);
2908 /* Find all CODE_LABELs referred to in X, and increment their use counts.
2909 If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
2910 in INSN, then store one of them in JUMP_LABEL (INSN).
2911 If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
2912 referenced in INSN, add a REG_LABEL note containing that label to INSN.
2913 Also, when there are consecutive labels, canonicalize on the last of them.
2915 Note that two labels separated by a loop-beginning note
2916 must be kept distinct if we have not yet done loop-optimization,
2917 because the gap between them is where loop-optimize
2918 will want to move invariant code to. CROSS_JUMP tells us
2919 that loop-optimization is done with.
2921 Once reload has completed (CROSS_JUMP non-zero), we need not consider
2922 two labels distinct if they are separated by only USE or CLOBBER insns. */
2925 mark_jump_label (x
, insn
, cross_jump
)
2930 register RTX_CODE code
= GET_CODE (x
);
2948 /* If this is a constant-pool reference, see if it is a label. */
2949 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
2950 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)))
2951 mark_jump_label (get_pool_constant (XEXP (x
, 0)), insn
, cross_jump
);
2956 register rtx label
= XEXP (x
, 0);
2958 if (GET_CODE (label
) != CODE_LABEL
)
2960 /* Ignore references to labels of containing functions. */
2961 if (LABEL_REF_NONLOCAL_P (x
))
2963 /* If there are other labels following this one,
2964 replace it with the last of the consecutive labels. */
2965 for (next
= NEXT_INSN (label
); next
; next
= NEXT_INSN (next
))
2967 if (GET_CODE (next
) == CODE_LABEL
)
2969 else if (cross_jump
&& GET_CODE (next
) == INSN
2970 && (GET_CODE (PATTERN (next
)) == USE
2971 || GET_CODE (PATTERN (next
)) == CLOBBER
))
2973 else if (GET_CODE (next
) != NOTE
)
2975 else if (! cross_jump
2976 && (NOTE_LINE_NUMBER (next
) == NOTE_INSN_LOOP_BEG
2977 || NOTE_LINE_NUMBER (next
) == NOTE_INSN_FUNCTION_END
))
2980 XEXP (x
, 0) = label
;
2981 ++LABEL_NUSES (label
);
2984 if (GET_CODE (insn
) == JUMP_INSN
)
2985 JUMP_LABEL (insn
) = label
;
2986 else if (! find_reg_note (insn
, REG_LABEL
, label
))
2988 rtx next
= next_real_insn (label
);
2989 /* Don't record labels that refer to dispatch tables.
2990 This is not necessary, since the tablejump
2991 references the same label.
2992 And if we did record them, flow.c would make worse code. */
2994 || ! (GET_CODE (next
) == JUMP_INSN
2995 && (GET_CODE (PATTERN (next
)) == ADDR_VEC
2996 || GET_CODE (PATTERN (next
)) == ADDR_DIFF_VEC
)))
2998 REG_NOTES (insn
) = gen_rtx (EXPR_LIST
, REG_LABEL
, label
,
3000 /* Record in the note whether label is nonlocal. */
3001 LABEL_REF_NONLOCAL_P (REG_NOTES (insn
))
3002 = LABEL_REF_NONLOCAL_P (x
);
3009 /* Do walk the labels in a vector, but not the first operand of an
3010 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
3014 int eltnum
= code
== ADDR_DIFF_VEC
? 1 : 0;
3016 for (i
= 0; i
< XVECLEN (x
, eltnum
); i
++)
3017 mark_jump_label (XVECEXP (x
, eltnum
, i
), NULL_RTX
, cross_jump
);
3022 fmt
= GET_RTX_FORMAT (code
);
3023 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3026 mark_jump_label (XEXP (x
, i
), insn
, cross_jump
);
3027 else if (fmt
[i
] == 'E')
3030 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3031 mark_jump_label (XVECEXP (x
, i
, j
), insn
, cross_jump
);
3036 /* If all INSN does is set the pc, delete it,
3037 and delete the insn that set the condition codes for it
3038 if that's what the previous thing was. */
3044 register rtx set
= single_set (insn
);
3046 if (set
&& GET_CODE (SET_DEST (set
)) == PC
)
3047 delete_computation (insn
);
3050 /* Delete INSN and recursively delete insns that compute values used only
3051 by INSN. This uses the REG_DEAD notes computed during flow analysis.
3052 If we are running before flow.c, we need do nothing since flow.c will
3053 delete dead code. We also can't know if the registers being used are
3054 dead or not at this point.
3056 Otherwise, look at all our REG_DEAD notes. If a previous insn does
3057 nothing other than set a register that dies in this insn, we can delete
3060 On machines with CC0, if CC0 is used in this insn, we may be able to
3061 delete the insn that set it. */
3064 delete_computation (insn
)
3070 if (reg_referenced_p (cc0_rtx
, PATTERN (insn
)))
3072 rtx prev
= prev_nonnote_insn (insn
);
3073 /* We assume that at this stage
3074 CC's are always set explicitly
3075 and always immediately before the jump that
3076 will use them. So if the previous insn
3077 exists to set the CC's, delete it
3078 (unless it performs auto-increments, etc.). */
3079 if (prev
&& GET_CODE (prev
) == INSN
3080 && sets_cc0_p (PATTERN (prev
)))
3082 if (sets_cc0_p (PATTERN (prev
)) > 0
3083 && !FIND_REG_INC_NOTE (prev
, NULL_RTX
))
3084 delete_computation (prev
);
3086 /* Otherwise, show that cc0 won't be used. */
3087 REG_NOTES (prev
) = gen_rtx (EXPR_LIST
, REG_UNUSED
,
3088 cc0_rtx
, REG_NOTES (prev
));
3093 for (note
= REG_NOTES (insn
); note
; note
= next
)
3097 next
= XEXP (note
, 1);
3099 if (REG_NOTE_KIND (note
) != REG_DEAD
3100 /* Verify that the REG_NOTE is legitimate. */
3101 || GET_CODE (XEXP (note
, 0)) != REG
)
3104 for (our_prev
= prev_nonnote_insn (insn
);
3105 our_prev
&& GET_CODE (our_prev
) == INSN
;
3106 our_prev
= prev_nonnote_insn (our_prev
))
3108 /* If we reach a SEQUENCE, it is too complex to try to
3109 do anything with it, so give up. */
3110 if (GET_CODE (PATTERN (our_prev
)) == SEQUENCE
)
3113 if (GET_CODE (PATTERN (our_prev
)) == USE
3114 && GET_CODE (XEXP (PATTERN (our_prev
), 0)) == INSN
)
3115 /* reorg creates USEs that look like this. We leave them
3116 alone because reorg needs them for its own purposes. */
3119 if (reg_set_p (XEXP (note
, 0), PATTERN (our_prev
)))
3121 if (FIND_REG_INC_NOTE (our_prev
, NULL_RTX
))
3124 if (GET_CODE (PATTERN (our_prev
)) == PARALLEL
)
3126 /* If we find a SET of something else, we can't
3131 for (i
= 0; i
< XVECLEN (PATTERN (our_prev
), 0); i
++)
3133 rtx part
= XVECEXP (PATTERN (our_prev
), 0, i
);
3135 if (GET_CODE (part
) == SET
3136 && SET_DEST (part
) != XEXP (note
, 0))
3140 if (i
== XVECLEN (PATTERN (our_prev
), 0))
3141 delete_computation (our_prev
);
3143 else if (GET_CODE (PATTERN (our_prev
)) == SET
3144 && SET_DEST (PATTERN (our_prev
)) == XEXP (note
, 0))
3145 delete_computation (our_prev
);
3150 /* If OUR_PREV references the register that dies here, it is an
3151 additional use. Hence any prior SET isn't dead. However, this
3152 insn becomes the new place for the REG_DEAD note. */
3153 if (reg_overlap_mentioned_p (XEXP (note
, 0),
3154 PATTERN (our_prev
)))
3156 XEXP (note
, 1) = REG_NOTES (our_prev
);
3157 REG_NOTES (our_prev
) = note
;
3166 /* Delete insn INSN from the chain of insns and update label ref counts.
3167 May delete some following insns as a consequence; may even delete
3168 a label elsewhere and insns that follow it.
3170 Returns the first insn after INSN that was not deleted. */
3176 register rtx next
= NEXT_INSN (insn
);
3177 register rtx prev
= PREV_INSN (insn
);
3178 register int was_code_label
= (GET_CODE (insn
) == CODE_LABEL
);
3179 register int dont_really_delete
= 0;
3181 while (next
&& INSN_DELETED_P (next
))
3182 next
= NEXT_INSN (next
);
3184 /* This insn is already deleted => return first following nondeleted. */
3185 if (INSN_DELETED_P (insn
))
3188 /* Don't delete user-declared labels. Convert them to special NOTEs
3190 if (was_code_label
&& LABEL_NAME (insn
) != 0
3191 && optimize
&& ! dont_really_delete
)
3193 PUT_CODE (insn
, NOTE
);
3194 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED_LABEL
;
3195 NOTE_SOURCE_FILE (insn
) = 0;
3196 dont_really_delete
= 1;
3199 /* Mark this insn as deleted. */
3200 INSN_DELETED_P (insn
) = 1;
3202 /* If this is an unconditional jump, delete it from the jump chain. */
3203 if (simplejump_p (insn
))
3204 delete_from_jump_chain (insn
);
3206 /* If instruction is followed by a barrier,
3207 delete the barrier too. */
3209 if (next
!= 0 && GET_CODE (next
) == BARRIER
)
3211 INSN_DELETED_P (next
) = 1;
3212 next
= NEXT_INSN (next
);
3215 /* Patch out INSN (and the barrier if any) */
3217 if (optimize
&& ! dont_really_delete
)
3221 NEXT_INSN (prev
) = next
;
3222 if (GET_CODE (prev
) == INSN
&& GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3223 NEXT_INSN (XVECEXP (PATTERN (prev
), 0,
3224 XVECLEN (PATTERN (prev
), 0) - 1)) = next
;
3229 PREV_INSN (next
) = prev
;
3230 if (GET_CODE (next
) == INSN
&& GET_CODE (PATTERN (next
)) == SEQUENCE
)
3231 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3234 if (prev
&& NEXT_INSN (prev
) == 0)
3235 set_last_insn (prev
);
3238 /* If deleting a jump, decrement the count of the label,
3239 and delete the label if it is now unused. */
3241 if (GET_CODE (insn
) == JUMP_INSN
&& JUMP_LABEL (insn
))
3242 if (--LABEL_NUSES (JUMP_LABEL (insn
)) == 0)
3244 /* This can delete NEXT or PREV,
3245 either directly if NEXT is JUMP_LABEL (INSN),
3246 or indirectly through more levels of jumps. */
3247 delete_insn (JUMP_LABEL (insn
));
3248 /* I feel a little doubtful about this loop,
3249 but I see no clean and sure alternative way
3250 to find the first insn after INSN that is not now deleted.
3251 I hope this works. */
3252 while (next
&& INSN_DELETED_P (next
))
3253 next
= NEXT_INSN (next
);
3257 while (prev
&& (INSN_DELETED_P (prev
) || GET_CODE (prev
) == NOTE
))
3258 prev
= PREV_INSN (prev
);
3260 /* If INSN was a label and a dispatch table follows it,
3261 delete the dispatch table. The tablejump must have gone already.
3262 It isn't useful to fall through into a table. */
3265 && NEXT_INSN (insn
) != 0
3266 && GET_CODE (NEXT_INSN (insn
)) == JUMP_INSN
3267 && (GET_CODE (PATTERN (NEXT_INSN (insn
))) == ADDR_VEC
3268 || GET_CODE (PATTERN (NEXT_INSN (insn
))) == ADDR_DIFF_VEC
))
3269 next
= delete_insn (NEXT_INSN (insn
));
3271 /* If INSN was a label, delete insns following it if now unreachable. */
3273 if (was_code_label
&& prev
&& GET_CODE (prev
) == BARRIER
)
3275 register RTX_CODE code
;
3277 && ((code
= GET_CODE (next
)) == INSN
3278 || code
== JUMP_INSN
|| code
== CALL_INSN
3280 || (code
== CODE_LABEL
&& INSN_DELETED_P (next
))))
3283 && NOTE_LINE_NUMBER (next
) != NOTE_INSN_FUNCTION_END
)
3284 next
= NEXT_INSN (next
);
3285 /* Keep going past other deleted labels to delete what follows. */
3286 else if (code
== CODE_LABEL
&& INSN_DELETED_P (next
))
3287 next
= NEXT_INSN (next
);
3289 /* Note: if this deletes a jump, it can cause more
3290 deletion of unreachable code, after a different label.
3291 As long as the value from this recursive call is correct,
3292 this invocation functions correctly. */
3293 next
= delete_insn (next
);
3300 /* Advance from INSN till reaching something not deleted
3301 then return that. May return INSN itself. */
3304 next_nondeleted_insn (insn
)
3307 while (INSN_DELETED_P (insn
))
3308 insn
= NEXT_INSN (insn
);
3312 /* Delete a range of insns from FROM to TO, inclusive.
3313 This is for the sake of peephole optimization, so assume
3314 that whatever these insns do will still be done by a new
3315 peephole insn that will replace them. */
3318 delete_for_peephole (from
, to
)
3319 register rtx from
, to
;
3321 register rtx insn
= from
;
3325 register rtx next
= NEXT_INSN (insn
);
3326 register rtx prev
= PREV_INSN (insn
);
3328 if (GET_CODE (insn
) != NOTE
)
3330 INSN_DELETED_P (insn
) = 1;
3332 /* Patch this insn out of the chain. */
3333 /* We don't do this all at once, because we
3334 must preserve all NOTEs. */
3336 NEXT_INSN (prev
) = next
;
3339 PREV_INSN (next
) = prev
;
3347 /* Note that if TO is an unconditional jump
3348 we *do not* delete the BARRIER that follows,
3349 since the peephole that replaces this sequence
3350 is also an unconditional jump in that case. */
3353 /* Invert the condition of the jump JUMP, and make it jump
3354 to label NLABEL instead of where it jumps now. */
3357 invert_jump (jump
, nlabel
)
3360 register rtx olabel
= JUMP_LABEL (jump
);
3362 /* We have to either invert the condition and change the label or
3363 do neither. Either operation could fail. We first try to invert
3364 the jump. If that succeeds, we try changing the label. If that fails,
3365 we invert the jump back to what it was. */
3367 if (! invert_exp (PATTERN (jump
), jump
))
3370 if (redirect_jump (jump
, nlabel
))
3373 if (! invert_exp (PATTERN (jump
), jump
))
3374 /* This should just be putting it back the way it was. */
3380 /* Invert the jump condition of rtx X contained in jump insn, INSN.
3382 Return 1 if we can do so, 0 if we cannot find a way to do so that
3383 matches a pattern. */
3386 invert_exp (x
, insn
)
3390 register RTX_CODE code
;
3394 code
= GET_CODE (x
);
3396 if (code
== IF_THEN_ELSE
)
3398 register rtx comp
= XEXP (x
, 0);
3401 /* We can do this in two ways: The preferable way, which can only
3402 be done if this is not an integer comparison, is to reverse
3403 the comparison code. Otherwise, swap the THEN-part and ELSE-part
3404 of the IF_THEN_ELSE. If we can't do either, fail. */
3406 if (can_reverse_comparison_p (comp
, insn
)
3407 && validate_change (insn
, &XEXP (x
, 0),
3408 gen_rtx (reverse_condition (GET_CODE (comp
)),
3409 GET_MODE (comp
), XEXP (comp
, 0),
3410 XEXP (comp
, 1)), 0))
3414 validate_change (insn
, &XEXP (x
, 1), XEXP (x
, 2), 1);
3415 validate_change (insn
, &XEXP (x
, 2), tem
, 1);
3416 return apply_change_group ();
3419 fmt
= GET_RTX_FORMAT (code
);
3420 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3423 if (! invert_exp (XEXP (x
, i
), insn
))
3428 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3429 if (!invert_exp (XVECEXP (x
, i
, j
), insn
))
3437 /* Make jump JUMP jump to label NLABEL instead of where it jumps now.
3438 If the old jump target label is unused as a result,
3439 it and the code following it may be deleted.
3441 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
3444 The return value will be 1 if the change was made, 0 if it wasn't (this
3445 can only occur for NLABEL == 0). */
3448 redirect_jump (jump
, nlabel
)
3451 register rtx olabel
= JUMP_LABEL (jump
);
3453 if (nlabel
== olabel
)
3456 if (! redirect_exp (&PATTERN (jump
), olabel
, nlabel
, jump
))
3459 /* If this is an unconditional branch, delete it from the jump_chain of
3460 OLABEL and add it to the jump_chain of NLABEL (assuming both labels
3461 have UID's in range and JUMP_CHAIN is valid). */
3462 if (jump_chain
&& (simplejump_p (jump
)
3463 || GET_CODE (PATTERN (jump
)) == RETURN
))
3465 int label_index
= nlabel
? INSN_UID (nlabel
) : 0;
3467 delete_from_jump_chain (jump
);
3468 if (label_index
< max_jump_chain
3469 && INSN_UID (jump
) < max_jump_chain
)
3471 jump_chain
[INSN_UID (jump
)] = jump_chain
[label_index
];
3472 jump_chain
[label_index
] = jump
;
3476 JUMP_LABEL (jump
) = nlabel
;
3478 ++LABEL_NUSES (nlabel
);
3480 if (olabel
&& --LABEL_NUSES (olabel
) == 0)
3481 delete_insn (olabel
);
3486 /* Delete the instruction JUMP from any jump chain it might be on. */
3489 delete_from_jump_chain (jump
)
3493 rtx olabel
= JUMP_LABEL (jump
);
3495 /* Handle unconditional jumps. */
3496 if (jump_chain
&& olabel
!= 0
3497 && INSN_UID (olabel
) < max_jump_chain
3498 && simplejump_p (jump
))
3499 index
= INSN_UID (olabel
);
3500 /* Handle return insns. */
3501 else if (jump_chain
&& GET_CODE (PATTERN (jump
)) == RETURN
)
3505 if (jump_chain
[index
] == jump
)
3506 jump_chain
[index
] = jump_chain
[INSN_UID (jump
)];
3511 for (insn
= jump_chain
[index
];
3513 insn
= jump_chain
[INSN_UID (insn
)])
3514 if (jump_chain
[INSN_UID (insn
)] == jump
)
3516 jump_chain
[INSN_UID (insn
)] = jump_chain
[INSN_UID (jump
)];
3522 /* If NLABEL is nonzero, throughout the rtx at LOC,
3523 alter (LABEL_REF OLABEL) to (LABEL_REF NLABEL). If OLABEL is
3524 zero, alter (RETURN) to (LABEL_REF NLABEL).
3526 If NLABEL is zero, alter (LABEL_REF OLABEL) to (RETURN) and check
3527 validity with validate_change. Convert (set (pc) (label_ref olabel))
3530 Return 0 if we found a change we would like to make but it is invalid.
3531 Otherwise, return 1. */
3534 redirect_exp (loc
, olabel
, nlabel
, insn
)
3539 register rtx x
= *loc
;
3540 register RTX_CODE code
= GET_CODE (x
);
3544 if (code
== LABEL_REF
)
3546 if (XEXP (x
, 0) == olabel
)
3549 XEXP (x
, 0) = nlabel
;
3551 return validate_change (insn
, loc
, gen_rtx (RETURN
, VOIDmode
), 0);
3555 else if (code
== RETURN
&& olabel
== 0)
3557 x
= gen_rtx (LABEL_REF
, VOIDmode
, nlabel
);
3558 if (loc
== &PATTERN (insn
))
3559 x
= gen_rtx (SET
, VOIDmode
, pc_rtx
, x
);
3560 return validate_change (insn
, loc
, x
, 0);
3563 if (code
== SET
&& nlabel
== 0 && SET_DEST (x
) == pc_rtx
3564 && GET_CODE (SET_SRC (x
)) == LABEL_REF
3565 && XEXP (SET_SRC (x
), 0) == olabel
)
3566 return validate_change (insn
, loc
, gen_rtx (RETURN
, VOIDmode
), 0);
3568 fmt
= GET_RTX_FORMAT (code
);
3569 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3572 if (! redirect_exp (&XEXP (x
, i
), olabel
, nlabel
, insn
))
3577 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3578 if (! redirect_exp (&XVECEXP (x
, i
, j
), olabel
, nlabel
, insn
))
3586 /* Make jump JUMP jump to label NLABEL, assuming it used to be a tablejump.
3588 If the old jump target label (before the dispatch table) becomes unused,
3589 it and the dispatch table may be deleted. In that case, find the insn
3590 before the jump references that label and delete it and logical successors
3594 redirect_tablejump (jump
, nlabel
)
3597 register rtx olabel
= JUMP_LABEL (jump
);
3599 /* Add this jump to the jump_chain of NLABEL. */
3600 if (jump_chain
&& INSN_UID (nlabel
) < max_jump_chain
3601 && INSN_UID (jump
) < max_jump_chain
)
3603 jump_chain
[INSN_UID (jump
)] = jump_chain
[INSN_UID (nlabel
)];
3604 jump_chain
[INSN_UID (nlabel
)] = jump
;
3607 PATTERN (jump
) = gen_jump (nlabel
);
3608 JUMP_LABEL (jump
) = nlabel
;
3609 ++LABEL_NUSES (nlabel
);
3610 INSN_CODE (jump
) = -1;
3612 if (--LABEL_NUSES (olabel
) == 0)
3614 delete_labelref_insn (jump
, olabel
, 0);
3615 delete_insn (olabel
);
3619 /* Find the insn referencing LABEL that is a logical predecessor of INSN.
3620 If we found one, delete it and then delete this insn if DELETE_THIS is
3621 non-zero. Return non-zero if INSN or a predecessor references LABEL. */
3624 delete_labelref_insn (insn
, label
, delete_this
)
3631 if (GET_CODE (insn
) != NOTE
3632 && reg_mentioned_p (label
, PATTERN (insn
)))
3643 for (link
= LOG_LINKS (insn
); link
; link
= XEXP (link
, 1))
3644 if (delete_labelref_insn (XEXP (link
, 0), label
, 1))
3658 /* Like rtx_equal_p except that it considers two REGs as equal
3659 if they renumber to the same value. */
3662 rtx_renumbered_equal_p (x
, y
)
3666 register RTX_CODE code
= GET_CODE (x
);
3671 if ((code
== REG
|| (code
== SUBREG
&& GET_CODE (SUBREG_REG (x
)) == REG
))
3672 && (GET_CODE (y
) == REG
|| (GET_CODE (y
) == SUBREG
3673 && GET_CODE (SUBREG_REG (y
)) == REG
)))
3677 if (GET_MODE (x
) != GET_MODE (y
))
3680 /* If we haven't done any renumbering, don't
3681 make any assumptions. */
3682 if (reg_renumber
== 0)
3683 return rtx_equal_p (x
, y
);
3687 i
= REGNO (SUBREG_REG (x
));
3688 if (reg_renumber
[i
] >= 0)
3689 i
= reg_renumber
[i
];
3690 i
+= SUBREG_WORD (x
);
3695 if (reg_renumber
[i
] >= 0)
3696 i
= reg_renumber
[i
];
3698 if (GET_CODE (y
) == SUBREG
)
3700 j
= REGNO (SUBREG_REG (y
));
3701 if (reg_renumber
[j
] >= 0)
3702 j
= reg_renumber
[j
];
3703 j
+= SUBREG_WORD (y
);
3708 if (reg_renumber
[j
] >= 0)
3709 j
= reg_renumber
[j
];
3713 /* Now we have disposed of all the cases
3714 in which different rtx codes can match. */
3715 if (code
!= GET_CODE (y
))
3726 return XINT (x
, 0) == XINT (y
, 0);
3729 /* We can't assume nonlocal labels have their following insns yet. */
3730 if (LABEL_REF_NONLOCAL_P (x
) || LABEL_REF_NONLOCAL_P (y
))
3731 return XEXP (x
, 0) == XEXP (y
, 0);
3732 /* Two label-refs are equivalent if they point at labels
3733 in the same position in the instruction stream. */
3734 return (next_real_insn (XEXP (x
, 0))
3735 == next_real_insn (XEXP (y
, 0)));
3738 return XSTR (x
, 0) == XSTR (y
, 0);
3741 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
3743 if (GET_MODE (x
) != GET_MODE (y
))
3746 /* Compare the elements. If any pair of corresponding elements
3747 fail to match, return 0 for the whole things. */
3749 fmt
= GET_RTX_FORMAT (code
);
3750 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3756 if (XWINT (x
, i
) != XWINT (y
, i
))
3761 if (XINT (x
, i
) != XINT (y
, i
))
3766 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
3771 if (! rtx_renumbered_equal_p (XEXP (x
, i
), XEXP (y
, i
)))
3776 if (XEXP (x
, i
) != XEXP (y
, i
))
3783 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
3785 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3786 if (!rtx_renumbered_equal_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
)))
3797 /* If X is a hard register or equivalent to one or a subregister of one,
3798 return the hard register number. If X is a pseudo register that was not
3799 assigned a hard register, return the pseudo register number. Otherwise,
3800 return -1. Any rtx is valid for X. */
3806 if (GET_CODE (x
) == REG
)
3808 if (REGNO (x
) >= FIRST_PSEUDO_REGISTER
&& reg_renumber
[REGNO (x
)] >= 0)
3809 return reg_renumber
[REGNO (x
)];
3812 if (GET_CODE (x
) == SUBREG
)
3814 int base
= true_regnum (SUBREG_REG (x
));
3815 if (base
>= 0 && base
< FIRST_PSEUDO_REGISTER
)
3816 return SUBREG_WORD (x
) + base
;
3821 /* Optimize code of the form:
3823 for (x = a[i]; x; ...)
3825 for (x = a[i]; x; ...)
3829 Loop optimize will change the above code into
3833 { ...; if (! (x = ...)) break; }
3836 { ...; if (! (x = ...)) break; }
3839 In general, if the first test fails, the program can branch
3840 directly to `foo' and skip the second try which is doomed to fail.
3841 We run this after loop optimization and before flow analysis. */
3843 /* When comparing the insn patterns, we track the fact that different
3844 pseudo-register numbers may have been used in each computation.
3845 The following array stores an equivalence -- same_regs[I] == J means
3846 that pseudo register I was used in the first set of tests in a context
3847 where J was used in the second set. We also count the number of such
3848 pending equivalences. If nonzero, the expressions really aren't the
3851 static short *same_regs
;
3853 static int num_same_regs
;
3855 /* Track any registers modified between the target of the first jump and
3856 the second jump. They never compare equal. */
3858 static char *modified_regs
;
3860 /* Record if memory was modified. */
3862 static int modified_mem
;
3864 /* Called via note_stores on each insn between the target of the first
3865 branch and the second branch. It marks any changed registers. */
3868 mark_modified_reg (dest
, x
)
3874 if (GET_CODE (dest
) == SUBREG
)
3875 dest
= SUBREG_REG (dest
);
3877 if (GET_CODE (dest
) == MEM
)
3880 if (GET_CODE (dest
) != REG
)
3883 regno
= REGNO (dest
);
3884 if (regno
>= FIRST_PSEUDO_REGISTER
)
3885 modified_regs
[regno
] = 1;
3887 for (i
= 0; i
< HARD_REGNO_NREGS (regno
, GET_MODE (dest
)); i
++)
3888 modified_regs
[regno
+ i
] = 1;
3891 /* F is the first insn in the chain of insns. */
3894 thread_jumps (f
, max_reg
, verbose
)
3899 /* Basic algorithm is to find a conditional branch,
3900 the label it may branch to, and the branch after
3901 that label. If the two branches test the same condition,
3902 walk back from both branch paths until the insn patterns
3903 differ, or code labels are hit. If we make it back to
3904 the target of the first branch, then we know that the first branch
3905 will either always succeed or always fail depending on the relative
3906 senses of the two branches. So adjust the first branch accordingly
3909 rtx label
, b1
, b2
, t1
, t2
;
3910 enum rtx_code code1
, code2
;
3911 rtx b1op0
, b1op1
, b2op0
, b2op1
;
3916 /* Allocate register tables and quick-reset table. */
3917 modified_regs
= (char *) alloca (max_reg
* sizeof (char));
3918 same_regs
= (short *) alloca (max_reg
* sizeof (short));
3919 all_reset
= (short *) alloca (max_reg
* sizeof (short));
3920 for (i
= 0; i
< max_reg
; i
++)
3927 for (b1
= f
; b1
; b1
= NEXT_INSN (b1
))
3929 /* Get to a candidate branch insn. */
3930 if (GET_CODE (b1
) != JUMP_INSN
3931 || ! condjump_p (b1
) || simplejump_p (b1
)
3932 || JUMP_LABEL (b1
) == 0)
3935 bzero (modified_regs
, max_reg
* sizeof (char));
3938 bcopy (all_reset
, same_regs
, max_reg
* sizeof (short));
3941 label
= JUMP_LABEL (b1
);
3943 /* Look for a branch after the target. Record any registers and
3944 memory modified between the target and the branch. Stop when we
3945 get to a label since we can't know what was changed there. */
3946 for (b2
= NEXT_INSN (label
); b2
; b2
= NEXT_INSN (b2
))
3948 if (GET_CODE (b2
) == CODE_LABEL
)
3951 else if (GET_CODE (b2
) == JUMP_INSN
)
3953 /* If this is an unconditional jump and is the only use of
3954 its target label, we can follow it. */
3955 if (simplejump_p (b2
)
3956 && JUMP_LABEL (b2
) != 0
3957 && LABEL_NUSES (JUMP_LABEL (b2
)) == 1)
3959 b2
= JUMP_LABEL (b2
);
3966 if (GET_CODE (b2
) != CALL_INSN
&& GET_CODE (b2
) != INSN
)
3969 if (GET_CODE (b2
) == CALL_INSN
)
3972 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3973 if (call_used_regs
[i
] && ! fixed_regs
[i
]
3974 && i
!= STACK_POINTER_REGNUM
3975 && i
!= FRAME_POINTER_REGNUM
3976 && i
!= ARG_POINTER_REGNUM
)
3977 modified_regs
[i
] = 1;
3980 note_stores (PATTERN (b2
), mark_modified_reg
);
3983 /* Check the next candidate branch insn from the label
3986 || GET_CODE (b2
) != JUMP_INSN
3988 || ! condjump_p (b2
)
3989 || simplejump_p (b2
))
3992 /* Get the comparison codes and operands, reversing the
3993 codes if appropriate. If we don't have comparison codes,
3994 we can't do anything. */
3995 b1op0
= XEXP (XEXP (SET_SRC (PATTERN (b1
)), 0), 0);
3996 b1op1
= XEXP (XEXP (SET_SRC (PATTERN (b1
)), 0), 1);
3997 code1
= GET_CODE (XEXP (SET_SRC (PATTERN (b1
)), 0));
3998 if (XEXP (SET_SRC (PATTERN (b1
)), 1) == pc_rtx
)
3999 code1
= reverse_condition (code1
);
4001 b2op0
= XEXP (XEXP (SET_SRC (PATTERN (b2
)), 0), 0);
4002 b2op1
= XEXP (XEXP (SET_SRC (PATTERN (b2
)), 0), 1);
4003 code2
= GET_CODE (XEXP (SET_SRC (PATTERN (b2
)), 0));
4004 if (XEXP (SET_SRC (PATTERN (b2
)), 1) == pc_rtx
)
4005 code2
= reverse_condition (code2
);
4007 /* If they test the same things and knowing that B1 branches
4008 tells us whether or not B2 branches, check if we
4009 can thread the branch. */
4010 if (rtx_equal_for_thread_p (b1op0
, b2op0
, b2
)
4011 && rtx_equal_for_thread_p (b1op1
, b2op1
, b2
)
4012 && (comparison_dominates_p (code1
, code2
)
4013 || comparison_dominates_p (code1
, reverse_condition (code2
))))
4015 t1
= prev_nonnote_insn (b1
);
4016 t2
= prev_nonnote_insn (b2
);
4018 while (t1
!= 0 && t2
!= 0)
4020 if (t1
== 0 || t2
== 0)
4025 /* We have reached the target of the first branch.
4026 If there are no pending register equivalents,
4027 we know that this branch will either always
4028 succeed (if the senses of the two branches are
4029 the same) or always fail (if not). */
4032 if (num_same_regs
!= 0)
4035 if (comparison_dominates_p (code1
, code2
))
4036 new_label
= JUMP_LABEL (b2
);
4038 new_label
= get_label_after (b2
);
4040 if (JUMP_LABEL (b1
) != new_label
4041 && redirect_jump (b1
, new_label
))
4046 /* If either of these is not a normal insn (it might be
4047 a JUMP_INSN, CALL_INSN, or CODE_LABEL) we fail. (NOTEs
4048 have already been skipped above.) Similarly, fail
4049 if the insns are different. */
4050 if (GET_CODE (t1
) != INSN
|| GET_CODE (t2
) != INSN
4051 || recog_memoized (t1
) != recog_memoized (t2
)
4052 || ! rtx_equal_for_thread_p (PATTERN (t1
),
4056 t1
= prev_nonnote_insn (t1
);
4057 t2
= prev_nonnote_insn (t2
);
4064 /* This is like RTX_EQUAL_P except that it knows about our handling of
4065 possibly equivalent registers and knows to consider volatile and
4066 modified objects as not equal.
4068 YINSN is the insn containing Y. */
4071 rtx_equal_for_thread_p (x
, y
, yinsn
)
4077 register enum rtx_code code
;
4080 code
= GET_CODE (x
);
4081 /* Rtx's of different codes cannot be equal. */
4082 if (code
!= GET_CODE (y
))
4085 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
4086 (REG:SI x) and (REG:HI x) are NOT equivalent. */
4088 if (GET_MODE (x
) != GET_MODE (y
))
4091 /* Handle special-cases first. */
4095 if (REGNO (x
) == REGNO (y
) && ! modified_regs
[REGNO (x
)])
4098 /* If neither is user variable or hard register, check for possible
4100 if (REG_USERVAR_P (x
) || REG_USERVAR_P (y
)
4101 || REGNO (x
) < FIRST_PSEUDO_REGISTER
4102 || REGNO (y
) < FIRST_PSEUDO_REGISTER
)
4105 if (same_regs
[REGNO (x
)] == -1)
4107 same_regs
[REGNO (x
)] = REGNO (y
);
4110 /* If this is the first time we are seeing a register on the `Y'
4111 side, see if it is the last use. If not, we can't thread the
4112 jump, so mark it as not equivalent. */
4113 if (regno_last_uid
[REGNO (y
)] != INSN_UID (yinsn
))
4119 return (same_regs
[REGNO (x
)] == REGNO (y
));
4124 /* If memory modified or either volatile, not equivalent.
4125 Else, check address. */
4126 if (modified_mem
|| MEM_VOLATILE_P (x
) || MEM_VOLATILE_P (y
))
4129 return rtx_equal_for_thread_p (XEXP (x
, 0), XEXP (y
, 0), yinsn
);
4132 if (MEM_VOLATILE_P (x
) || MEM_VOLATILE_P (y
))
4138 /* Cancel a pending `same_regs' if setting equivalenced registers.
4139 Then process source. */
4140 if (GET_CODE (SET_DEST (x
)) == REG
4141 && GET_CODE (SET_DEST (y
)) == REG
)
4143 if (same_regs
[REGNO (SET_DEST (x
))] == REGNO (SET_DEST (y
)))
4145 same_regs
[REGNO (SET_DEST (x
))] = -1;
4148 else if (REGNO (SET_DEST (x
)) != REGNO (SET_DEST (y
)))
4152 if (rtx_equal_for_thread_p (SET_DEST (x
), SET_DEST (y
), yinsn
) == 0)
4155 return rtx_equal_for_thread_p (SET_SRC (x
), SET_SRC (y
), yinsn
);
4158 return XEXP (x
, 0) == XEXP (y
, 0);
4161 return XSTR (x
, 0) == XSTR (y
, 0);
4167 fmt
= GET_RTX_FORMAT (code
);
4168 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4173 if (XWINT (x
, i
) != XWINT (y
, i
))
4179 if (XINT (x
, i
) != XINT (y
, i
))
4185 /* Two vectors must have the same length. */
4186 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
4189 /* And the corresponding elements must match. */
4190 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
4191 if (rtx_equal_for_thread_p (XVECEXP (x
, i
, j
),
4192 XVECEXP (y
, i
, j
), yinsn
) == 0)
4197 if (rtx_equal_for_thread_p (XEXP (x
, i
), XEXP (y
, i
), yinsn
) == 0)
4203 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
4208 /* These are just backpointers, so they don't matter. */
4214 /* It is believed that rtx's at this level will never
4215 contain anything but integers and other rtx's,
4216 except for within LABEL_REFs and SYMBOL_REFs. */