]> gcc.gnu.org Git - gcc.git/blob - gcc/jump.c
(stamp-proto): Pass LOCAL_INCLUDE_DIR based on local_prefix.
[gcc.git] / gcc / jump.c
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* This is the jump-optimization pass of the compiler.
22 It is run two or three times: once before cse, sometimes once after cse,
23 and once after reload (before final).
24
25 jump_optimize deletes unreachable code and labels that are not used.
26 It also deletes jumps that jump to the following insn,
27 and simplifies jumps around unconditional jumps and jumps
28 to unconditional jumps.
29
30 Each CODE_LABEL has a count of the times it is used
31 stored in the LABEL_NUSES internal field, and each JUMP_INSN
32 has one label that it refers to stored in the
33 JUMP_LABEL internal field. With this we can detect labels that
34 become unused because of the deletion of all the jumps that
35 formerly used them. The JUMP_LABEL info is sometimes looked
36 at by later passes.
37
38 Optionally, cross-jumping can be done. Currently it is done
39 only the last time (when after reload and before final).
40 In fact, the code for cross-jumping now assumes that register
41 allocation has been done, since it uses `rtx_renumbered_equal_p'.
42
43 Jump optimization is done after cse when cse's constant-propagation
44 causes jumps to become unconditional or to be deleted.
45
46 Unreachable loops are not detected here, because the labels
47 have references and the insns appear reachable from the labels.
48 find_basic_blocks in flow.c finds and deletes such loops.
49
50 The subroutines delete_insn, redirect_jump, and invert_jump are used
51 from other passes as well. */
52
53 #include "config.h"
54 #include "rtl.h"
55 #include "flags.h"
56 #include "hard-reg-set.h"
57 #include "regs.h"
58 #include "expr.h"
59 #include "insn-config.h"
60 #include "insn-flags.h"
61 #include "real.h"
62
63 /* ??? Eventually must record somehow the labels used by jumps
64 from nested functions. */
65 /* Pre-record the next or previous real insn for each label?
66 No, this pass is very fast anyway. */
67 /* Condense consecutive labels?
68 This would make life analysis faster, maybe. */
69 /* Optimize jump y; x: ... y: jumpif... x?
70 Don't know if it is worth bothering with. */
71 /* Optimize two cases of conditional jump to conditional jump?
72 This can never delete any instruction or make anything dead,
73 or even change what is live at any point.
74 So perhaps let combiner do it. */
75
76 /* Vector indexed by uid.
77 For each CODE_LABEL, index by its uid to get first unconditional jump
78 that jumps to the label.
79 For each JUMP_INSN, index by its uid to get the next unconditional jump
80 that jumps to the same label.
81 Element 0 is the start of a chain of all return insns.
82 (It is safe to use element 0 because insn uid 0 is not used. */
83
84 static rtx *jump_chain;
85
86 /* List of labels referred to from initializers.
87 These can never be deleted. */
88 rtx forced_labels;
89
90 /* Maximum index in jump_chain. */
91
92 static int max_jump_chain;
93
94 /* Set nonzero by jump_optimize if control can fall through
95 to the end of the function. */
96 int can_reach_end;
97
98 /* Indicates whether death notes are significant in cross jump analysis.
99 Normally they are not significant, because of A and B jump to C,
100 and R dies in A, it must die in B. But this might not be true after
101 stack register conversion, and we must compare death notes in that
102 case. */
103
104 static int cross_jump_death_matters = 0;
105
106 static int duplicate_loop_exit_test ();
107 void redirect_tablejump ();
108 static int delete_labelref_insn ();
109 static void mark_jump_label ();
110 void delete_jump ();
111 void delete_computation ();
112 static void delete_from_jump_chain ();
113 static int tension_vector_labels ();
114 static void find_cross_jump ();
115 static void do_cross_jump ();
116 static int jump_back_p ();
117
118 extern rtx gen_jump ();
119 \f
120 /* Delete no-op jumps and optimize jumps to jumps
121 and jumps around jumps.
122 Delete unused labels and unreachable code.
123
124 If CROSS_JUMP is 1, detect matching code
125 before a jump and its destination and unify them.
126 If CROSS_JUMP is 2, do cross-jumping, but pay attention to death notes.
127
128 If NOOP_MOVES is nonzero, delete no-op move insns.
129
130 If AFTER_REGSCAN is nonzero, then this jump pass is being run immediately
131 after regscan, and it is safe to use regno_first_uid and regno_last_uid.
132
133 If `optimize' is zero, don't change any code,
134 just determine whether control drops off the end of the function.
135 This case occurs when we have -W and not -O.
136 It works because `delete_insn' checks the value of `optimize'
137 and refrains from actually deleting when that is 0. */
138
139 void
140 jump_optimize (f, cross_jump, noop_moves, after_regscan)
141 rtx f;
142 int cross_jump;
143 int noop_moves;
144 int after_regscan;
145 {
146 register rtx insn, next;
147 int changed;
148 int first = 1;
149 int max_uid = 0;
150 rtx last_insn;
151
152 cross_jump_death_matters = (cross_jump == 2);
153
154 /* Initialize LABEL_NUSES and JUMP_LABEL fields. */
155
156 for (insn = f; insn; insn = NEXT_INSN (insn))
157 {
158 if (GET_CODE (insn) == CODE_LABEL)
159 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
160 else if (GET_CODE (insn) == JUMP_INSN)
161 JUMP_LABEL (insn) = 0;
162 if (INSN_UID (insn) > max_uid)
163 max_uid = INSN_UID (insn);
164 }
165
166 max_uid++;
167
168 /* Delete insns following barriers, up to next label. */
169
170 for (insn = f; insn;)
171 {
172 if (GET_CODE (insn) == BARRIER)
173 {
174 insn = NEXT_INSN (insn);
175 while (insn != 0 && GET_CODE (insn) != CODE_LABEL)
176 {
177 if (GET_CODE (insn) == NOTE
178 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)
179 insn = NEXT_INSN (insn);
180 else
181 insn = delete_insn (insn);
182 }
183 /* INSN is now the code_label. */
184 }
185 else
186 insn = NEXT_INSN (insn);
187 }
188
189 /* Leave some extra room for labels and duplicate exit test insns
190 we make. */
191 max_jump_chain = max_uid * 14 / 10;
192 jump_chain = (rtx *) alloca (max_jump_chain * sizeof (rtx));
193 bzero (jump_chain, max_jump_chain * sizeof (rtx));
194
195 /* Mark the label each jump jumps to.
196 Combine consecutive labels, and count uses of labels.
197
198 For each label, make a chain (using `jump_chain')
199 of all the *unconditional* jumps that jump to it;
200 also make a chain of all returns. */
201
202 for (insn = f; insn; insn = NEXT_INSN (insn))
203 if ((GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == INSN
204 || GET_CODE (insn) == CALL_INSN)
205 && ! INSN_DELETED_P (insn))
206 {
207 mark_jump_label (PATTERN (insn), insn, cross_jump);
208 if (GET_CODE (insn) == JUMP_INSN)
209 {
210 if (JUMP_LABEL (insn) != 0 && simplejump_p (insn))
211 {
212 jump_chain[INSN_UID (insn)]
213 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
214 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
215 }
216 if (GET_CODE (PATTERN (insn)) == RETURN)
217 {
218 jump_chain[INSN_UID (insn)] = jump_chain[0];
219 jump_chain[0] = insn;
220 }
221 }
222 }
223
224 /* Keep track of labels used from static data;
225 they cannot ever be deleted. */
226
227 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
228 LABEL_NUSES (XEXP (insn, 0))++;
229
230 /* Delete all labels already not referenced.
231 Also find the last insn. */
232
233 last_insn = 0;
234 for (insn = f; insn; )
235 {
236 if (GET_CODE (insn) == CODE_LABEL && LABEL_NUSES (insn) == 0)
237 insn = delete_insn (insn);
238 else
239 {
240 last_insn = insn;
241 insn = NEXT_INSN (insn);
242 }
243 }
244
245 if (!optimize)
246 {
247 /* See if there is still a NOTE_INSN_FUNCTION_END in this function.
248 If so record that this function can drop off the end. */
249
250 insn = last_insn;
251 {
252 int n_labels = 1;
253 while (insn
254 /* One label can follow the end-note: the return label. */
255 && ((GET_CODE (insn) == CODE_LABEL && n_labels-- > 0)
256 /* Ordinary insns can follow it if returning a structure. */
257 || GET_CODE (insn) == INSN
258 /* If machine uses explicit RETURN insns, no epilogue,
259 then one of them follows the note. */
260 || (GET_CODE (insn) == JUMP_INSN
261 && GET_CODE (PATTERN (insn)) == RETURN)
262 /* Other kinds of notes can follow also. */
263 || (GET_CODE (insn) == NOTE
264 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)))
265 insn = PREV_INSN (insn);
266 }
267
268 /* Report if control can fall through at the end of the function. */
269 if (insn && GET_CODE (insn) == NOTE
270 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END
271 && ! INSN_DELETED_P (insn))
272 can_reach_end = 1;
273
274 /* Zero the "deleted" flag of all the "deleted" insns. */
275 for (insn = f; insn; insn = NEXT_INSN (insn))
276 INSN_DELETED_P (insn) = 0;
277 return;
278 }
279
280 #ifdef HAVE_return
281 if (HAVE_return)
282 {
283 /* If we fall through to the epilogue, see if we can insert a RETURN insn
284 in front of it. If the machine allows it at this point (we might be
285 after reload for a leaf routine), it will improve optimization for it
286 to be there. */
287 insn = get_last_insn ();
288 while (insn && GET_CODE (insn) == NOTE)
289 insn = PREV_INSN (insn);
290
291 if (insn && GET_CODE (insn) != BARRIER)
292 {
293 emit_jump_insn (gen_return ());
294 emit_barrier ();
295 }
296 }
297 #endif
298
299 if (noop_moves)
300 for (insn = f; insn; )
301 {
302 next = NEXT_INSN (insn);
303
304 if (GET_CODE (insn) == INSN)
305 {
306 register rtx body = PATTERN (insn);
307
308 /* Combine stack_adjusts with following push_insns. */
309 #ifdef PUSH_ROUNDING
310 if (GET_CODE (body) == SET
311 && SET_DEST (body) == stack_pointer_rtx
312 && GET_CODE (SET_SRC (body)) == PLUS
313 && XEXP (SET_SRC (body), 0) == stack_pointer_rtx
314 && GET_CODE (XEXP (SET_SRC (body), 1)) == CONST_INT
315 && INTVAL (XEXP (SET_SRC (body), 1)) > 0)
316 {
317 rtx p;
318 rtx stack_adjust_insn = insn;
319 int stack_adjust_amount = INTVAL (XEXP (SET_SRC (body), 1));
320 int total_pushed = 0;
321 int pushes = 0;
322
323 /* Find all successive push insns. */
324 p = insn;
325 /* Don't convert more than three pushes;
326 that starts adding too many displaced addresses
327 and the whole thing starts becoming a losing
328 proposition. */
329 while (pushes < 3)
330 {
331 rtx pbody, dest;
332 p = next_nonnote_insn (p);
333 if (p == 0 || GET_CODE (p) != INSN)
334 break;
335 pbody = PATTERN (p);
336 if (GET_CODE (pbody) != SET)
337 break;
338 dest = SET_DEST (pbody);
339 /* Allow a no-op move between the adjust and the push. */
340 if (GET_CODE (dest) == REG
341 && GET_CODE (SET_SRC (pbody)) == REG
342 && REGNO (dest) == REGNO (SET_SRC (pbody)))
343 continue;
344 if (! (GET_CODE (dest) == MEM
345 && GET_CODE (XEXP (dest, 0)) == POST_INC
346 && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx))
347 break;
348 pushes++;
349 if (total_pushed + GET_MODE_SIZE (SET_DEST (pbody))
350 > stack_adjust_amount)
351 break;
352 total_pushed += GET_MODE_SIZE (SET_DEST (pbody));
353 }
354
355 /* Discard the amount pushed from the stack adjust;
356 maybe eliminate it entirely. */
357 if (total_pushed >= stack_adjust_amount)
358 {
359 delete_insn (stack_adjust_insn);
360 total_pushed = stack_adjust_amount;
361 }
362 else
363 XEXP (SET_SRC (PATTERN (stack_adjust_insn)), 1)
364 = GEN_INT (stack_adjust_amount - total_pushed);
365
366 /* Change the appropriate push insns to ordinary stores. */
367 p = insn;
368 while (total_pushed > 0)
369 {
370 rtx pbody, dest;
371 p = next_nonnote_insn (p);
372 if (GET_CODE (p) != INSN)
373 break;
374 pbody = PATTERN (p);
375 if (GET_CODE (pbody) == SET)
376 break;
377 dest = SET_DEST (pbody);
378 if (! (GET_CODE (dest) == MEM
379 && GET_CODE (XEXP (dest, 0)) == POST_INC
380 && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx))
381 break;
382 total_pushed -= GET_MODE_SIZE (SET_DEST (pbody));
383 /* If this push doesn't fully fit in the space
384 of the stack adjust that we deleted,
385 make another stack adjust here for what we
386 didn't use up. There should be peepholes
387 to recognize the resulting sequence of insns. */
388 if (total_pushed < 0)
389 {
390 emit_insn_before (gen_add2_insn (stack_pointer_rtx,
391 GEN_INT (- total_pushed)),
392 p);
393 break;
394 }
395 XEXP (dest, 0)
396 = plus_constant (stack_pointer_rtx, total_pushed);
397 }
398 }
399 #endif
400
401 /* Detect and delete no-op move instructions
402 resulting from not allocating a parameter in a register. */
403
404 if (GET_CODE (body) == SET
405 && (SET_DEST (body) == SET_SRC (body)
406 || (GET_CODE (SET_DEST (body)) == MEM
407 && GET_CODE (SET_SRC (body)) == MEM
408 && rtx_equal_p (SET_SRC (body), SET_DEST (body))))
409 && ! (GET_CODE (SET_DEST (body)) == MEM
410 && MEM_VOLATILE_P (SET_DEST (body)))
411 && ! (GET_CODE (SET_SRC (body)) == MEM
412 && MEM_VOLATILE_P (SET_SRC (body))))
413 delete_insn (insn);
414
415 /* Detect and ignore no-op move instructions
416 resulting from smart or fortuitous register allocation. */
417
418 else if (GET_CODE (body) == SET)
419 {
420 int sreg = true_regnum (SET_SRC (body));
421 int dreg = true_regnum (SET_DEST (body));
422
423 if (sreg == dreg && sreg >= 0)
424 delete_insn (insn);
425 else if (sreg >= 0 && dreg >= 0)
426 {
427 rtx trial;
428 rtx tem = find_equiv_reg (NULL_RTX, insn, 0,
429 sreg, NULL_PTR, dreg,
430 GET_MODE (SET_SRC (body)));
431
432 #ifdef PRESERVE_DEATH_INFO_REGNO_P
433 /* Deleting insn could lose a death-note for SREG or DREG
434 so don't do it if final needs accurate death-notes. */
435 if (! PRESERVE_DEATH_INFO_REGNO_P (sreg)
436 && ! PRESERVE_DEATH_INFO_REGNO_P (dreg))
437 #endif
438 {
439 /* DREG may have been the target of a REG_DEAD note in
440 the insn which makes INSN redundant. If so, reorg
441 would still think it is dead. So search for such a
442 note and delete it if we find it. */
443 for (trial = prev_nonnote_insn (insn);
444 trial && GET_CODE (trial) != CODE_LABEL;
445 trial = prev_nonnote_insn (trial))
446 if (find_regno_note (trial, REG_DEAD, dreg))
447 {
448 remove_death (dreg, trial);
449 break;
450 }
451
452 if (tem != 0
453 && GET_MODE (tem) == GET_MODE (SET_DEST (body)))
454 delete_insn (insn);
455 }
456 }
457 else if (dreg >= 0 && CONSTANT_P (SET_SRC (body))
458 && find_equiv_reg (SET_SRC (body), insn, 0, dreg,
459 NULL_PTR, 0,
460 GET_MODE (SET_DEST (body))))
461 {
462 /* This handles the case where we have two consecutive
463 assignments of the same constant to pseudos that didn't
464 get a hard reg. Each SET from the constant will be
465 converted into a SET of the spill register and an
466 output reload will be made following it. This produces
467 two loads of the same constant into the same spill
468 register. */
469
470 rtx in_insn = insn;
471
472 /* Look back for a death note for the first reg.
473 If there is one, it is no longer accurate. */
474 while (in_insn && GET_CODE (in_insn) != CODE_LABEL)
475 {
476 if ((GET_CODE (in_insn) == INSN
477 || GET_CODE (in_insn) == JUMP_INSN)
478 && find_regno_note (in_insn, REG_DEAD, dreg))
479 {
480 remove_death (dreg, in_insn);
481 break;
482 }
483 in_insn = PREV_INSN (in_insn);
484 }
485
486 /* Delete the second load of the value. */
487 delete_insn (insn);
488 }
489 }
490 else if (GET_CODE (body) == PARALLEL)
491 {
492 /* If each part is a set between two identical registers or
493 a USE or CLOBBER, delete the insn. */
494 int i, sreg, dreg;
495 rtx tem;
496
497 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
498 {
499 tem = XVECEXP (body, 0, i);
500 if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
501 continue;
502
503 if (GET_CODE (tem) != SET
504 || (sreg = true_regnum (SET_SRC (tem))) < 0
505 || (dreg = true_regnum (SET_DEST (tem))) < 0
506 || dreg != sreg)
507 break;
508 }
509
510 if (i < 0)
511 delete_insn (insn);
512 }
513 #if !BYTES_BIG_ENDIAN /* Not worth the hair to detect this
514 in the big-endian case. */
515 /* Also delete insns to store bit fields if they are no-ops. */
516 else if (GET_CODE (body) == SET
517 && GET_CODE (SET_DEST (body)) == ZERO_EXTRACT
518 && XEXP (SET_DEST (body), 2) == const0_rtx
519 && XEXP (SET_DEST (body), 0) == SET_SRC (body)
520 && ! (GET_CODE (SET_SRC (body)) == MEM
521 && MEM_VOLATILE_P (SET_SRC (body))))
522 delete_insn (insn);
523 #endif /* not BYTES_BIG_ENDIAN */
524 }
525 insn = next;
526 }
527
528 /* If we haven't yet gotten to reload and we have just run regscan,
529 delete any insn that sets a register that isn't used elsewhere.
530 This helps some of the optimizations below by having less insns
531 being jumped around. */
532
533 if (! reload_completed && after_regscan)
534 for (insn = f; insn; insn = next)
535 {
536 rtx set = single_set (insn);
537
538 next = NEXT_INSN (insn);
539
540 if (set && GET_CODE (SET_DEST (set)) == REG
541 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
542 && regno_first_uid[REGNO (SET_DEST (set))] == INSN_UID (insn)
543 && regno_last_uid[REGNO (SET_DEST (set))] == INSN_UID (insn)
544 && ! side_effects_p (SET_SRC (set)))
545 delete_insn (insn);
546 }
547
548 /* Now iterate optimizing jumps until nothing changes over one pass. */
549 changed = 1;
550 while (changed)
551 {
552 changed = 0;
553
554 for (insn = f; insn; insn = next)
555 {
556 rtx reallabelprev;
557 rtx temp, temp1, temp2, temp3, temp4, temp5, temp6;
558 rtx nlabel;
559 int this_is_simplejump, this_is_condjump, reversep;
560 #if 0
561 /* If NOT the first iteration, if this is the last jump pass
562 (just before final), do the special peephole optimizations.
563 Avoiding the first iteration gives ordinary jump opts
564 a chance to work before peephole opts. */
565
566 if (reload_completed && !first && !flag_no_peephole)
567 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
568 peephole (insn);
569 #endif
570
571 /* That could have deleted some insns after INSN, so check now
572 what the following insn is. */
573
574 next = NEXT_INSN (insn);
575
576 /* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
577 jump. Try to optimize by duplicating the loop exit test if so.
578 This is only safe immediately after regscan, because it uses
579 the values of regno_first_uid and regno_last_uid. */
580 if (after_regscan && GET_CODE (insn) == NOTE
581 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
582 && (temp1 = next_nonnote_insn (insn)) != 0
583 && simplejump_p (temp1))
584 {
585 temp = PREV_INSN (insn);
586 if (duplicate_loop_exit_test (insn))
587 {
588 changed = 1;
589 next = NEXT_INSN (temp);
590 continue;
591 }
592 }
593
594 if (GET_CODE (insn) != JUMP_INSN)
595 continue;
596
597 this_is_simplejump = simplejump_p (insn);
598 this_is_condjump = condjump_p (insn);
599
600 /* Tension the labels in dispatch tables. */
601
602 if (GET_CODE (PATTERN (insn)) == ADDR_VEC)
603 changed |= tension_vector_labels (PATTERN (insn), 0);
604 if (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
605 changed |= tension_vector_labels (PATTERN (insn), 1);
606
607 /* If a dispatch table always goes to the same place,
608 get rid of it and replace the insn that uses it. */
609
610 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
611 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
612 {
613 int i;
614 rtx pat = PATTERN (insn);
615 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
616 int len = XVECLEN (pat, diff_vec_p);
617 rtx dispatch = prev_real_insn (insn);
618
619 for (i = 0; i < len; i++)
620 if (XEXP (XVECEXP (pat, diff_vec_p, i), 0)
621 != XEXP (XVECEXP (pat, diff_vec_p, 0), 0))
622 break;
623 if (i == len
624 && dispatch != 0
625 && GET_CODE (dispatch) == JUMP_INSN
626 && JUMP_LABEL (dispatch) != 0
627 /* Don't mess with a casesi insn. */
628 && !(GET_CODE (PATTERN (dispatch)) == SET
629 && (GET_CODE (SET_SRC (PATTERN (dispatch)))
630 == IF_THEN_ELSE))
631 && next_real_insn (JUMP_LABEL (dispatch)) == insn)
632 {
633 redirect_tablejump (dispatch,
634 XEXP (XVECEXP (pat, diff_vec_p, 0), 0));
635 changed = 1;
636 }
637 }
638
639 reallabelprev = prev_active_insn (JUMP_LABEL (insn));
640
641 /* If a jump references the end of the function, try to turn
642 it into a RETURN insn, possibly a conditional one. */
643 if (JUMP_LABEL (insn)
644 && next_active_insn (JUMP_LABEL (insn)) == 0)
645 changed |= redirect_jump (insn, NULL_RTX);
646
647 /* Detect jump to following insn. */
648 if (reallabelprev == insn && condjump_p (insn))
649 {
650 delete_jump (insn);
651 changed = 1;
652 continue;
653 }
654
655 /* If we have an unconditional jump preceded by a USE, try to put
656 the USE before the target and jump there. This simplifies many
657 of the optimizations below since we don't have to worry about
658 dealing with these USE insns. We only do this if the label
659 being branch to already has the identical USE or if code
660 never falls through to that label. */
661
662 if (this_is_simplejump
663 && (temp = prev_nonnote_insn (insn)) != 0
664 && GET_CODE (temp) == INSN && GET_CODE (PATTERN (temp)) == USE
665 && (temp1 = prev_nonnote_insn (JUMP_LABEL (insn))) != 0
666 && (GET_CODE (temp1) == BARRIER
667 || (GET_CODE (temp1) == INSN
668 && rtx_equal_p (PATTERN (temp), PATTERN (temp1)))))
669 {
670 if (GET_CODE (temp1) == BARRIER)
671 {
672 emit_insn_after (PATTERN (temp), temp1);
673 temp1 = NEXT_INSN (temp1);
674 }
675
676 delete_insn (temp);
677 redirect_jump (insn, get_label_before (temp1));
678 reallabelprev = prev_real_insn (temp1);
679 changed = 1;
680 }
681
682 /* Simplify if (...) x = a; else x = b; by converting it
683 to x = b; if (...) x = a;
684 if B is sufficiently simple, the test doesn't involve X,
685 and nothing in the test modifies B or X.
686
687 If we have small register classes, we also can't do this if X
688 is a hard register.
689
690 If the "x = b;" insn has any REG_NOTES, we don't do this because
691 of the possibility that we are running after CSE and there is a
692 REG_EQUAL note that is only valid if the branch has already been
693 taken. If we move the insn with the REG_EQUAL note, we may
694 fold the comparison to always be false in a later CSE pass.
695 (We could also delete the REG_NOTES when moving the insn, but it
696 seems simpler to not move it.) An exception is that we can move
697 the insn if the only note is a REG_EQUAL or REG_EQUIV whose
698 value is the same as "b".
699
700 INSN is the branch over the `else' part.
701
702 We set:
703
704 TEMP to the jump insn preceding "x = a;"
705 TEMP1 to X
706 TEMP2 to the insn that sets "x = b;"
707 TEMP3 to the insn that sets "x = a;"
708 TEMP4 to the set of "x = b"; */
709
710 if (this_is_simplejump
711 && (temp3 = prev_active_insn (insn)) != 0
712 && GET_CODE (temp3) == INSN
713 && (temp4 = single_set (temp3)) != 0
714 && GET_CODE (temp1 = SET_DEST (temp4)) == REG
715 #ifdef SMALL_REGISTER_CLASSES
716 && REGNO (temp1) >= FIRST_PSEUDO_REGISTER
717 #endif
718 && (temp2 = next_active_insn (insn)) != 0
719 && GET_CODE (temp2) == INSN
720 && (temp4 = single_set (temp2)) != 0
721 && rtx_equal_p (SET_DEST (temp4), temp1)
722 && (GET_CODE (SET_SRC (temp4)) == REG
723 || GET_CODE (SET_SRC (temp4)) == SUBREG
724 || CONSTANT_P (SET_SRC (temp4)))
725 && (REG_NOTES (temp2) == 0
726 || ((REG_NOTE_KIND (REG_NOTES (temp2)) == REG_EQUAL
727 || REG_NOTE_KIND (REG_NOTES (temp2)) == REG_EQUIV)
728 && XEXP (REG_NOTES (temp2), 1) == 0
729 && rtx_equal_p (XEXP (REG_NOTES (temp2), 0),
730 SET_SRC (temp4))))
731 && (temp = prev_active_insn (temp3)) != 0
732 && condjump_p (temp) && ! simplejump_p (temp)
733 /* TEMP must skip over the "x = a;" insn */
734 && prev_real_insn (JUMP_LABEL (temp)) == insn
735 && no_labels_between_p (insn, JUMP_LABEL (temp))
736 /* There must be no other entries to the "x = b;" insn. */
737 && no_labels_between_p (JUMP_LABEL (temp), temp2)
738 /* INSN must either branch to the insn after TEMP2 or the insn
739 after TEMP2 must branch to the same place as INSN. */
740 && (reallabelprev == temp2
741 || ((temp5 = next_active_insn (temp2)) != 0
742 && simplejump_p (temp5)
743 && JUMP_LABEL (temp5) == JUMP_LABEL (insn))))
744 {
745 /* The test expression, X, may be a complicated test with
746 multiple branches. See if we can find all the uses of
747 the label that TEMP branches to without hitting a CALL_INSN
748 or a jump to somewhere else. */
749 rtx target = JUMP_LABEL (temp);
750 int nuses = LABEL_NUSES (target);
751 rtx p, q;
752
753 /* Set P to the first jump insn that goes around "x = a;". */
754 for (p = temp; nuses && p; p = prev_nonnote_insn (p))
755 {
756 if (GET_CODE (p) == JUMP_INSN)
757 {
758 if (condjump_p (p) && ! simplejump_p (p)
759 && JUMP_LABEL (p) == target)
760 {
761 nuses--;
762 if (nuses == 0)
763 break;
764 }
765 else
766 break;
767 }
768 else if (GET_CODE (p) == CALL_INSN)
769 break;
770 }
771
772 #ifdef HAVE_cc0
773 /* We cannot insert anything between a set of cc and its use
774 so if P uses cc0, we must back up to the previous insn. */
775 q = prev_nonnote_insn (p);
776 if (q && GET_RTX_CLASS (GET_CODE (q)) == 'i'
777 && sets_cc0_p (PATTERN (q)))
778 p = q;
779 #endif
780
781 if (p)
782 p = PREV_INSN (p);
783
784 /* If we found all the uses and there was no data conflict, we
785 can move the assignment unless we can branch into the middle
786 from somewhere. */
787 if (nuses == 0 && p
788 && no_labels_between_p (p, insn)
789 && ! reg_referenced_between_p (temp1, p, NEXT_INSN (temp3))
790 && ! reg_set_between_p (temp1, p, temp3)
791 && (GET_CODE (SET_SRC (temp4)) == CONST_INT
792 || ! reg_set_between_p (SET_SRC (temp4), p, temp2)))
793 {
794 emit_insn_after_with_line_notes (PATTERN (temp2), p, temp2);
795 delete_insn (temp2);
796
797 /* Set NEXT to an insn that we know won't go away. */
798 next = next_active_insn (insn);
799
800 /* Delete the jump around the set. Note that we must do
801 this before we redirect the test jumps so that it won't
802 delete the code immediately following the assignment
803 we moved (which might be a jump). */
804
805 delete_insn (insn);
806
807 /* We either have two consecutive labels or a jump to
808 a jump, so adjust all the JUMP_INSNs to branch to where
809 INSN branches to. */
810 for (p = NEXT_INSN (p); p != next; p = NEXT_INSN (p))
811 if (GET_CODE (p) == JUMP_INSN)
812 redirect_jump (p, target);
813
814 changed = 1;
815 continue;
816 }
817 }
818
819 #ifndef HAVE_cc0
820 /* If we have if (...) x = exp; and branches are expensive,
821 EXP is a single insn, does not have any side effects, cannot
822 trap, and is not too costly, convert this to
823 t = exp; if (...) x = t;
824
825 Don't do this when we have CC0 because it is unlikely to help
826 and we'd need to worry about where to place the new insn and
827 the potential for conflicts. We also can't do this when we have
828 notes on the insn for the same reason as above.
829
830 We set:
831
832 TEMP to the "x = exp;" insn.
833 TEMP1 to the single set in the "x = exp; insn.
834 TEMP2 to "x". */
835
836 if (! reload_completed
837 && this_is_condjump && ! this_is_simplejump
838 && BRANCH_COST >= 3
839 && (temp = next_nonnote_insn (insn)) != 0
840 && GET_CODE (temp) == INSN
841 && REG_NOTES (temp) == 0
842 && (reallabelprev == temp
843 || ((temp2 = next_active_insn (temp)) != 0
844 && simplejump_p (temp2)
845 && JUMP_LABEL (temp2) == JUMP_LABEL (insn)))
846 && (temp1 = single_set (temp)) != 0
847 && (temp2 = SET_DEST (temp1), GET_CODE (temp2) == REG)
848 && GET_MODE_CLASS (GET_MODE (temp2)) == MODE_INT
849 #ifdef SMALL_REGISTER_CLASSES
850 && REGNO (temp2) >= FIRST_PSEUDO_REGISTER
851 #endif
852 && GET_CODE (SET_SRC (temp1)) != REG
853 && GET_CODE (SET_SRC (temp1)) != SUBREG
854 && GET_CODE (SET_SRC (temp1)) != CONST_INT
855 && ! side_effects_p (SET_SRC (temp1))
856 && ! may_trap_p (SET_SRC (temp1))
857 && rtx_cost (SET_SRC (temp1)) < 10)
858 {
859 rtx new = gen_reg_rtx (GET_MODE (temp2));
860
861 if (validate_change (temp, &SET_DEST (temp1), new, 0))
862 {
863 next = emit_insn_after (gen_move_insn (temp2, new), insn);
864 emit_insn_after_with_line_notes (PATTERN (temp),
865 PREV_INSN (insn), temp);
866 delete_insn (temp);
867 }
868 }
869
870 /* Similarly, if it takes two insns to compute EXP but they
871 have the same destination. Here TEMP3 will be the second
872 insn and TEMP4 the SET from that insn. */
873
874 if (! reload_completed
875 && this_is_condjump && ! this_is_simplejump
876 && BRANCH_COST >= 4
877 && (temp = next_nonnote_insn (insn)) != 0
878 && GET_CODE (temp) == INSN
879 && REG_NOTES (temp) == 0
880 && (temp3 = next_nonnote_insn (temp)) != 0
881 && GET_CODE (temp3) == INSN
882 && REG_NOTES (temp3) == 0
883 && (reallabelprev == temp3
884 || ((temp2 = next_active_insn (temp3)) != 0
885 && simplejump_p (temp2)
886 && JUMP_LABEL (temp2) == JUMP_LABEL (insn)))
887 && (temp1 = single_set (temp)) != 0
888 && (temp2 = SET_DEST (temp1), GET_CODE (temp2) == REG)
889 && GET_MODE_CLASS (GET_MODE (temp2)) == MODE_INT
890 #ifdef SMALL_REGISTER_CLASSES
891 && REGNO (temp2) >= FIRST_PSEUDO_REGISTER
892 #endif
893 && ! side_effects_p (SET_SRC (temp1))
894 && ! may_trap_p (SET_SRC (temp1))
895 && rtx_cost (SET_SRC (temp1)) < 10
896 && (temp4 = single_set (temp3)) != 0
897 && rtx_equal_p (SET_DEST (temp4), temp2)
898 && ! side_effects_p (SET_SRC (temp4))
899 && ! may_trap_p (SET_SRC (temp4))
900 && rtx_cost (SET_SRC (temp4)) < 10)
901 {
902 rtx new = gen_reg_rtx (GET_MODE (temp2));
903
904 if (validate_change (temp, &SET_DEST (temp1), new, 0))
905 {
906 next = emit_insn_after (gen_move_insn (temp2, new), insn);
907 emit_insn_after_with_line_notes (PATTERN (temp),
908 PREV_INSN (insn), temp);
909 emit_insn_after_with_line_notes
910 (replace_rtx (PATTERN (temp3), temp2, new),
911 PREV_INSN (insn), temp3);
912 delete_insn (temp);
913 delete_insn (temp3);
914 }
915 }
916
917 /* Finally, handle the case where two insns are used to
918 compute EXP but a temporary register is used. Here we must
919 ensure that the temporary register is not used anywhere else. */
920
921 if (! reload_completed
922 && after_regscan
923 && this_is_condjump && ! this_is_simplejump
924 && BRANCH_COST >= 4
925 && (temp = next_nonnote_insn (insn)) != 0
926 && GET_CODE (temp) == INSN
927 && REG_NOTES (temp) == 0
928 && (temp3 = next_nonnote_insn (temp)) != 0
929 && GET_CODE (temp3) == INSN
930 && REG_NOTES (temp3) == 0
931 && (reallabelprev == temp3
932 || ((temp2 = next_active_insn (temp3)) != 0
933 && simplejump_p (temp2)
934 && JUMP_LABEL (temp2) == JUMP_LABEL (insn)))
935 && (temp1 = single_set (temp)) != 0
936 && (temp5 = SET_DEST (temp1), GET_CODE (temp5) == REG)
937 && REGNO (temp5) >= FIRST_PSEUDO_REGISTER
938 && regno_first_uid[REGNO (temp5)] == INSN_UID (temp)
939 && regno_last_uid[REGNO (temp5)] == INSN_UID (temp3)
940 && ! side_effects_p (SET_SRC (temp1))
941 && ! may_trap_p (SET_SRC (temp1))
942 && rtx_cost (SET_SRC (temp1)) < 10
943 && (temp4 = single_set (temp3)) != 0
944 && (temp2 = SET_DEST (temp4), GET_CODE (temp2) == REG)
945 && GET_MODE_CLASS (GET_MODE (temp2)) == MODE_INT
946 #ifdef SMALL_REGISTER_CLASSES
947 && REGNO (temp2) >= FIRST_PSEUDO_REGISTER
948 #endif
949 && rtx_equal_p (SET_DEST (temp4), temp2)
950 && ! side_effects_p (SET_SRC (temp4))
951 && ! may_trap_p (SET_SRC (temp4))
952 && rtx_cost (SET_SRC (temp4)) < 10)
953 {
954 rtx new = gen_reg_rtx (GET_MODE (temp2));
955
956 if (validate_change (temp3, &SET_DEST (temp4), new, 0))
957 {
958 next = emit_insn_after (gen_move_insn (temp2, new), insn);
959 emit_insn_after_with_line_notes (PATTERN (temp),
960 PREV_INSN (insn), temp);
961 emit_insn_after_with_line_notes (PATTERN (temp3),
962 PREV_INSN (insn), temp3);
963 delete_insn (temp);
964 delete_insn (temp3);
965 }
966 }
967 #endif /* HAVE_cc0 */
968
969 /* We deal with four cases:
970
971 1) x = a; if (...) x = b; and either A or B is zero,
972 2) if (...) x = 0; and jumps are expensive,
973 3) x = a; if (...) x = b; and A and B are constants where all the
974 set bits in A are also set in B and jumps are expensive, and
975 4) x = a; if (...) x = b; and A and B non-zero, and jumps are
976 more expensive.
977 5) if (...) x = b; if jumps are even more expensive.
978
979 In each of these try to use a store-flag insn to avoid the jump.
980 (If the jump would be faster, the machine should not have
981 defined the scc insns!). These cases are often made by the
982 previous optimization.
983
984 INSN here is the jump around the store. We set:
985
986 TEMP to the "x = b;" insn.
987 TEMP1 to X.
988 TEMP2 to B (const0_rtx in the second case).
989 TEMP3 to A (X in the second case).
990 TEMP4 to the condition being tested.
991 TEMP5 to the earliest insn used to find the condition. */
992
993 if (/* We can't do this after reload has completed. */
994 ! reload_completed
995 && this_is_condjump && ! this_is_simplejump
996 /* Set TEMP to the "x = b;" insn. */
997 && (temp = next_nonnote_insn (insn)) != 0
998 && GET_CODE (temp) == INSN
999 && GET_CODE (PATTERN (temp)) == SET
1000 && GET_CODE (temp1 = SET_DEST (PATTERN (temp))) == REG
1001 #ifdef SMALL_REGISTER_CLASSES
1002 && REGNO (temp1) >= FIRST_PSEUDO_REGISTER
1003 #endif
1004 && GET_MODE_CLASS (GET_MODE (temp1)) == MODE_INT
1005 && (GET_CODE (temp2 = SET_SRC (PATTERN (temp))) == REG
1006 || GET_CODE (temp2) == SUBREG
1007 || GET_CODE (temp2) == CONST_INT)
1008 /* Allow either form, but prefer the former if both apply.
1009 There is no point in using the old value of TEMP1 if
1010 it is a register, since cse will alias them. It can
1011 lose if the old value were a hard register since CSE
1012 won't replace hard registers. */
1013 && (((temp3 = reg_set_last (temp1, insn)) != 0
1014 && GET_CODE (temp3) == CONST_INT)
1015 /* Make the latter case look like x = x; if (...) x = 0; */
1016 || (temp3 = temp1,
1017 ((BRANCH_COST >= 2
1018 && temp2 == const0_rtx)
1019 #ifdef HAVE_conditional_move
1020 || 1
1021 #endif
1022 || BRANCH_COST >= 3)))
1023 /* INSN must either branch to the insn after TEMP or the insn
1024 after TEMP must branch to the same place as INSN. */
1025 && (reallabelprev == temp
1026 || ((temp4 = next_active_insn (temp)) != 0
1027 && simplejump_p (temp4)
1028 && JUMP_LABEL (temp4) == JUMP_LABEL (insn)))
1029 && (temp4 = get_condition (insn, &temp5)) != 0
1030 /* We must be comparing objects whose modes imply the size.
1031 We could handle BLKmode if (1) emit_store_flag could
1032 and (2) we could find the size reliably. */
1033 && GET_MODE (XEXP (temp4, 0)) != BLKmode
1034
1035 /* If B is zero, OK; if A is zero, can only do (1) if we
1036 can reverse the condition. See if (3) applies possibly
1037 by reversing the condition. Prefer reversing to (4) when
1038 branches are very expensive. */
1039 && ((reversep = 0, temp2 == const0_rtx)
1040 || (temp3 == const0_rtx
1041 && (reversep = can_reverse_comparison_p (temp4, insn)))
1042 || (BRANCH_COST >= 2
1043 && GET_CODE (temp2) == CONST_INT
1044 && GET_CODE (temp3) == CONST_INT
1045 && ((INTVAL (temp2) & INTVAL (temp3)) == INTVAL (temp2)
1046 || ((INTVAL (temp2) & INTVAL (temp3)) == INTVAL (temp3)
1047 && (reversep = can_reverse_comparison_p (temp4,
1048 insn)))))
1049 #ifdef HAVE_conditional_move
1050 || 1
1051 #endif
1052 || BRANCH_COST >= 3)
1053 #ifdef HAVE_cc0
1054 /* If the previous insn sets CC0 and something else, we can't
1055 do this since we are going to delete that insn. */
1056
1057 && ! ((temp6 = prev_nonnote_insn (insn)) != 0
1058 && GET_CODE (temp6) == INSN
1059 && (sets_cc0_p (PATTERN (temp6)) == -1
1060 || (sets_cc0_p (PATTERN (temp6)) == 1
1061 && FIND_REG_INC_NOTE (temp6, NULL_RTX))))
1062 #endif
1063 )
1064 {
1065 enum rtx_code code = GET_CODE (temp4);
1066 rtx uval, cval, var = temp1;
1067 int normalizep;
1068 rtx target;
1069
1070 /* If necessary, reverse the condition. */
1071 if (reversep)
1072 code = reverse_condition (code), uval = temp2, cval = temp3;
1073 else
1074 uval = temp3, cval = temp2;
1075
1076 /* See if we can do this with a store-flag insn. */
1077 start_sequence ();
1078
1079 /* If CVAL is non-zero, normalize to -1. Otherwise,
1080 if UVAL is the constant 1, it is best to just compute
1081 the result directly. If UVAL is constant and STORE_FLAG_VALUE
1082 includes all of its bits, it is best to compute the flag
1083 value unnormalized and `and' it with UVAL. Otherwise,
1084 normalize to -1 and `and' with UVAL. */
1085 normalizep = (cval != const0_rtx ? -1
1086 : (uval == const1_rtx ? 1
1087 : (GET_CODE (uval) == CONST_INT
1088 && (INTVAL (uval) & ~STORE_FLAG_VALUE) == 0)
1089 ? 0 : -1));
1090
1091 /* We will be putting the store-flag insn immediately in
1092 front of the comparison that was originally being done,
1093 so we know all the variables in TEMP4 will be valid.
1094 However, this might be in front of the assignment of
1095 A to VAR. If it is, it would clobber the store-flag
1096 we will be emitting.
1097
1098 Therefore, emit into a temporary which will be copied to
1099 VAR immediately after TEMP. */
1100
1101 target = emit_store_flag (gen_reg_rtx (GET_MODE (var)), code,
1102 XEXP (temp4, 0), XEXP (temp4, 1),
1103 VOIDmode,
1104 (code == LTU || code == LEU
1105 || code == GEU || code == GTU),
1106 normalizep);
1107 if (target)
1108 {
1109 rtx before = insn;
1110 rtx seq;
1111
1112 /* Put the store-flag insns in front of the first insn
1113 used to compute the condition to ensure that we
1114 use the same values of them as the current
1115 comparison. However, the remainder of the insns we
1116 generate will be placed directly in front of the
1117 jump insn, in case any of the pseudos we use
1118 are modified earlier. */
1119
1120 seq = get_insns ();
1121 end_sequence ();
1122
1123 emit_insns_before (seq, temp5);
1124
1125 start_sequence ();
1126
1127 /* Both CVAL and UVAL are non-zero. */
1128 if (cval != const0_rtx && uval != const0_rtx)
1129 {
1130 rtx tem1, tem2;
1131
1132 tem1 = expand_and (uval, target, NULL_RTX);
1133 if (GET_CODE (cval) == CONST_INT
1134 && GET_CODE (uval) == CONST_INT
1135 && (INTVAL (cval) & INTVAL (uval)) == INTVAL (cval))
1136 tem2 = cval;
1137 else
1138 {
1139 tem2 = expand_unop (GET_MODE (var), one_cmpl_optab,
1140 target, NULL_RTX, 0);
1141 tem2 = expand_and (cval, tem2,
1142 (GET_CODE (tem2) == REG
1143 ? tem2 : 0));
1144 }
1145
1146 /* If we usually make new pseudos, do so here. This
1147 turns out to help machines that have conditional
1148 move insns. */
1149
1150 if (flag_expensive_optimizations)
1151 target = 0;
1152
1153 target = expand_binop (GET_MODE (var), ior_optab,
1154 tem1, tem2, target,
1155 1, OPTAB_WIDEN);
1156 }
1157 else if (normalizep != 1)
1158 target = expand_and (uval, target,
1159 (GET_CODE (target) == REG
1160 && ! preserve_subexpressions_p ()
1161 ? target : NULL_RTX));
1162
1163 emit_move_insn (var, target);
1164 seq = get_insns ();
1165 end_sequence ();
1166
1167 #ifdef HAVE_cc0
1168 /* If INSN uses CC0, we must not separate it from the
1169 insn that sets cc0. */
1170
1171 if (reg_mentioned_p (cc0_rtx, PATTERN (before)))
1172 before = prev_nonnote_insn (before);
1173 #endif
1174
1175 emit_insns_before (seq, before);
1176
1177 delete_insn (temp);
1178 next = NEXT_INSN (insn);
1179
1180 delete_jump (insn);
1181 changed = 1;
1182 continue;
1183 }
1184 else
1185 end_sequence ();
1186 }
1187
1188 /* If branches are expensive, convert
1189 if (foo) bar++; to bar += (foo != 0);
1190 and similarly for "bar--;"
1191
1192 INSN is the conditional branch around the arithmetic. We set:
1193
1194 TEMP is the arithmetic insn.
1195 TEMP1 is the SET doing the arithmetic.
1196 TEMP2 is the operand being incremented or decremented.
1197 TEMP3 to the condition being tested.
1198 TEMP4 to the earliest insn used to find the condition. */
1199
1200 if ((BRANCH_COST >= 2
1201 #ifdef HAVE_incscc
1202 || HAVE_incscc
1203 #endif
1204 #ifdef HAVE_decscc
1205 || HAVE_decscc
1206 #endif
1207 )
1208 && ! reload_completed
1209 && this_is_condjump && ! this_is_simplejump
1210 && (temp = next_nonnote_insn (insn)) != 0
1211 && (temp1 = single_set (temp)) != 0
1212 && (temp2 = SET_DEST (temp1),
1213 GET_MODE_CLASS (GET_MODE (temp2)) == MODE_INT)
1214 && GET_CODE (SET_SRC (temp1)) == PLUS
1215 && (XEXP (SET_SRC (temp1), 1) == const1_rtx
1216 || XEXP (SET_SRC (temp1), 1) == constm1_rtx)
1217 && rtx_equal_p (temp2, XEXP (SET_SRC (temp1), 0))
1218 /* INSN must either branch to the insn after TEMP or the insn
1219 after TEMP must branch to the same place as INSN. */
1220 && (reallabelprev == temp
1221 || ((temp3 = next_active_insn (temp)) != 0
1222 && simplejump_p (temp3)
1223 && JUMP_LABEL (temp3) == JUMP_LABEL (insn)))
1224 && (temp3 = get_condition (insn, &temp4)) != 0
1225 /* We must be comparing objects whose modes imply the size.
1226 We could handle BLKmode if (1) emit_store_flag could
1227 and (2) we could find the size reliably. */
1228 && GET_MODE (XEXP (temp3, 0)) != BLKmode
1229 && can_reverse_comparison_p (temp3, insn))
1230 {
1231 rtx temp6, target = 0, seq, init_insn = 0, init = temp2;
1232 enum rtx_code code = reverse_condition (GET_CODE (temp3));
1233
1234 start_sequence ();
1235
1236 /* It must be the case that TEMP2 is not modified in the range
1237 [TEMP4, INSN). The one exception we make is if the insn
1238 before INSN sets TEMP2 to something which is also unchanged
1239 in that range. In that case, we can move the initialization
1240 into our sequence. */
1241
1242 if ((temp5 = prev_active_insn (insn)) != 0
1243 && GET_CODE (temp5) == INSN
1244 && (temp6 = single_set (temp5)) != 0
1245 && rtx_equal_p (temp2, SET_DEST (temp6))
1246 && (CONSTANT_P (SET_SRC (temp6))
1247 || GET_CODE (SET_SRC (temp6)) == REG
1248 || GET_CODE (SET_SRC (temp6)) == SUBREG))
1249 {
1250 emit_insn (PATTERN (temp5));
1251 init_insn = temp5;
1252 init = SET_SRC (temp6);
1253 }
1254
1255 if (CONSTANT_P (init)
1256 || ! reg_set_between_p (init, PREV_INSN (temp4), insn))
1257 target = emit_store_flag (gen_reg_rtx (GET_MODE (temp2)), code,
1258 XEXP (temp3, 0), XEXP (temp3, 1),
1259 VOIDmode,
1260 (code == LTU || code == LEU
1261 || code == GTU || code == GEU), 1);
1262
1263 /* If we can do the store-flag, do the addition or
1264 subtraction. */
1265
1266 if (target)
1267 target = expand_binop (GET_MODE (temp2),
1268 (XEXP (SET_SRC (temp1), 1) == const1_rtx
1269 ? add_optab : sub_optab),
1270 temp2, target, temp2, 0, OPTAB_WIDEN);
1271
1272 if (target != 0)
1273 {
1274 /* Put the result back in temp2 in case it isn't already.
1275 Then replace the jump, possible a CC0-setting insn in
1276 front of the jump, and TEMP, with the sequence we have
1277 made. */
1278
1279 if (target != temp2)
1280 emit_move_insn (temp2, target);
1281
1282 seq = get_insns ();
1283 end_sequence ();
1284
1285 emit_insns_before (seq, temp4);
1286 delete_insn (temp);
1287
1288 if (init_insn)
1289 delete_insn (init_insn);
1290
1291 next = NEXT_INSN (insn);
1292 #ifdef HAVE_cc0
1293 delete_insn (prev_nonnote_insn (insn));
1294 #endif
1295 delete_insn (insn);
1296 changed = 1;
1297 continue;
1298 }
1299 else
1300 end_sequence ();
1301 }
1302
1303 /* Simplify if (...) x = 1; else {...} if (x) ...
1304 We recognize this case scanning backwards as well.
1305
1306 TEMP is the assignment to x;
1307 TEMP1 is the label at the head of the second if. */
1308 /* ?? This should call get_condition to find the values being
1309 compared, instead of looking for a COMPARE insn when HAVE_cc0
1310 is not defined. This would allow it to work on the m88k. */
1311 /* ?? This optimization is only safe before cse is run if HAVE_cc0
1312 is not defined and the condition is tested by a separate compare
1313 insn. This is because the code below assumes that the result
1314 of the compare dies in the following branch.
1315
1316 Not only that, but there might be other insns between the
1317 compare and branch whose results are live. Those insns need
1318 to be executed.
1319
1320 A way to fix this is to move the insns at JUMP_LABEL (insn)
1321 to before INSN. If we are running before flow, they will
1322 be deleted if they aren't needed. But this doesn't work
1323 well after flow.
1324
1325 This is really a special-case of jump threading, anyway. The
1326 right thing to do is to replace this and jump threading with
1327 much simpler code in cse.
1328
1329 This code has been turned off in the non-cc0 case in the
1330 meantime. */
1331
1332 #ifdef HAVE_cc0
1333 else if (this_is_simplejump
1334 /* Safe to skip USE and CLOBBER insns here
1335 since they will not be deleted. */
1336 && (temp = prev_active_insn (insn))
1337 && no_labels_between_p (temp, insn)
1338 && GET_CODE (temp) == INSN
1339 && GET_CODE (PATTERN (temp)) == SET
1340 && GET_CODE (SET_DEST (PATTERN (temp))) == REG
1341 && CONSTANT_P (SET_SRC (PATTERN (temp)))
1342 && (temp1 = next_active_insn (JUMP_LABEL (insn)))
1343 /* If we find that the next value tested is `x'
1344 (TEMP1 is the insn where this happens), win. */
1345 && GET_CODE (temp1) == INSN
1346 && GET_CODE (PATTERN (temp1)) == SET
1347 #ifdef HAVE_cc0
1348 /* Does temp1 `tst' the value of x? */
1349 && SET_SRC (PATTERN (temp1)) == SET_DEST (PATTERN (temp))
1350 && SET_DEST (PATTERN (temp1)) == cc0_rtx
1351 && (temp1 = next_nonnote_insn (temp1))
1352 #else
1353 /* Does temp1 compare the value of x against zero? */
1354 && GET_CODE (SET_SRC (PATTERN (temp1))) == COMPARE
1355 && XEXP (SET_SRC (PATTERN (temp1)), 1) == const0_rtx
1356 && (XEXP (SET_SRC (PATTERN (temp1)), 0)
1357 == SET_DEST (PATTERN (temp)))
1358 && GET_CODE (SET_DEST (PATTERN (temp1))) == REG
1359 && (temp1 = find_next_ref (SET_DEST (PATTERN (temp1)), temp1))
1360 #endif
1361 && condjump_p (temp1))
1362 {
1363 /* Get the if_then_else from the condjump. */
1364 rtx choice = SET_SRC (PATTERN (temp1));
1365 if (GET_CODE (choice) == IF_THEN_ELSE)
1366 {
1367 enum rtx_code code = GET_CODE (XEXP (choice, 0));
1368 rtx val = SET_SRC (PATTERN (temp));
1369 rtx cond
1370 = simplify_relational_operation (code, GET_MODE (SET_DEST (PATTERN (temp))),
1371 val, const0_rtx);
1372 rtx ultimate;
1373
1374 if (cond == const_true_rtx)
1375 ultimate = XEXP (choice, 1);
1376 else if (cond == const0_rtx)
1377 ultimate = XEXP (choice, 2);
1378 else
1379 ultimate = 0;
1380
1381 if (ultimate == pc_rtx)
1382 ultimate = get_label_after (temp1);
1383 else if (ultimate && GET_CODE (ultimate) != RETURN)
1384 ultimate = XEXP (ultimate, 0);
1385
1386 if (ultimate)
1387 changed |= redirect_jump (insn, ultimate);
1388 }
1389 }
1390 #endif
1391
1392 #if 0
1393 /* @@ This needs a bit of work before it will be right.
1394
1395 Any type of comparison can be accepted for the first and
1396 second compare. When rewriting the first jump, we must
1397 compute the what conditions can reach label3, and use the
1398 appropriate code. We can not simply reverse/swap the code
1399 of the first jump. In some cases, the second jump must be
1400 rewritten also.
1401
1402 For example,
1403 < == converts to > ==
1404 < != converts to == >
1405 etc.
1406
1407 If the code is written to only accept an '==' test for the second
1408 compare, then all that needs to be done is to swap the condition
1409 of the first branch.
1410
1411 It is questionable whether we want this optimization anyways,
1412 since if the user wrote code like this because he/she knew that
1413 the jump to label1 is taken most of the time, then rewriting
1414 this gives slower code. */
1415 /* @@ This should call get_condition to find the values being
1416 compared, instead of looking for a COMPARE insn when HAVE_cc0
1417 is not defined. This would allow it to work on the m88k. */
1418 /* @@ This optimization is only safe before cse is run if HAVE_cc0
1419 is not defined and the condition is tested by a separate compare
1420 insn. This is because the code below assumes that the result
1421 of the compare dies in the following branch. */
1422
1423 /* Simplify test a ~= b
1424 condjump label1;
1425 test a == b
1426 condjump label2;
1427 jump label3;
1428 label1:
1429
1430 rewriting as
1431 test a ~~= b
1432 condjump label3
1433 test a == b
1434 condjump label2
1435 label1:
1436
1437 where ~= is an inequality, e.g. >, and ~~= is the swapped
1438 inequality, e.g. <.
1439
1440 We recognize this case scanning backwards.
1441
1442 TEMP is the conditional jump to `label2';
1443 TEMP1 is the test for `a == b';
1444 TEMP2 is the conditional jump to `label1';
1445 TEMP3 is the test for `a ~= b'. */
1446 else if (this_is_simplejump
1447 && (temp = prev_active_insn (insn))
1448 && no_labels_between_p (temp, insn)
1449 && condjump_p (temp)
1450 && (temp1 = prev_active_insn (temp))
1451 && no_labels_between_p (temp1, temp)
1452 && GET_CODE (temp1) == INSN
1453 && GET_CODE (PATTERN (temp1)) == SET
1454 #ifdef HAVE_cc0
1455 && sets_cc0_p (PATTERN (temp1)) == 1
1456 #else
1457 && GET_CODE (SET_SRC (PATTERN (temp1))) == COMPARE
1458 && GET_CODE (SET_DEST (PATTERN (temp1))) == REG
1459 && (temp == find_next_ref (SET_DEST (PATTERN (temp1)), temp1))
1460 #endif
1461 && (temp2 = prev_active_insn (temp1))
1462 && no_labels_between_p (temp2, temp1)
1463 && condjump_p (temp2)
1464 && JUMP_LABEL (temp2) == next_nonnote_insn (NEXT_INSN (insn))
1465 && (temp3 = prev_active_insn (temp2))
1466 && no_labels_between_p (temp3, temp2)
1467 && GET_CODE (PATTERN (temp3)) == SET
1468 && rtx_equal_p (SET_DEST (PATTERN (temp3)),
1469 SET_DEST (PATTERN (temp1)))
1470 && rtx_equal_p (SET_SRC (PATTERN (temp1)),
1471 SET_SRC (PATTERN (temp3)))
1472 && ! inequality_comparisons_p (PATTERN (temp))
1473 && inequality_comparisons_p (PATTERN (temp2)))
1474 {
1475 rtx fallthrough_label = JUMP_LABEL (temp2);
1476
1477 ++LABEL_NUSES (fallthrough_label);
1478 if (swap_jump (temp2, JUMP_LABEL (insn)))
1479 {
1480 delete_insn (insn);
1481 changed = 1;
1482 }
1483
1484 if (--LABEL_NUSES (fallthrough_label) == 0)
1485 delete_insn (fallthrough_label);
1486 }
1487 #endif
1488 /* Simplify if (...) {... x = 1;} if (x) ...
1489
1490 We recognize this case backwards.
1491
1492 TEMP is the test of `x';
1493 TEMP1 is the assignment to `x' at the end of the
1494 previous statement. */
1495 /* @@ This should call get_condition to find the values being
1496 compared, instead of looking for a COMPARE insn when HAVE_cc0
1497 is not defined. This would allow it to work on the m88k. */
1498 /* @@ This optimization is only safe before cse is run if HAVE_cc0
1499 is not defined and the condition is tested by a separate compare
1500 insn. This is because the code below assumes that the result
1501 of the compare dies in the following branch. */
1502
1503 /* ??? This has to be turned off. The problem is that the
1504 unconditional jump might indirectly end up branching to the
1505 label between TEMP1 and TEMP. We can't detect this, in general,
1506 since it may become a jump to there after further optimizations.
1507 If that jump is done, it will be deleted, so we will retry
1508 this optimization in the next pass, thus an infinite loop.
1509
1510 The present code prevents this by putting the jump after the
1511 label, but this is not logically correct. */
1512 #if 0
1513 else if (this_is_condjump
1514 /* Safe to skip USE and CLOBBER insns here
1515 since they will not be deleted. */
1516 && (temp = prev_active_insn (insn))
1517 && no_labels_between_p (temp, insn)
1518 && GET_CODE (temp) == INSN
1519 && GET_CODE (PATTERN (temp)) == SET
1520 #ifdef HAVE_cc0
1521 && sets_cc0_p (PATTERN (temp)) == 1
1522 && GET_CODE (SET_SRC (PATTERN (temp))) == REG
1523 #else
1524 /* Temp must be a compare insn, we can not accept a register
1525 to register move here, since it may not be simply a
1526 tst insn. */
1527 && GET_CODE (SET_SRC (PATTERN (temp))) == COMPARE
1528 && XEXP (SET_SRC (PATTERN (temp)), 1) == const0_rtx
1529 && GET_CODE (XEXP (SET_SRC (PATTERN (temp)), 0)) == REG
1530 && GET_CODE (SET_DEST (PATTERN (temp))) == REG
1531 && insn == find_next_ref (SET_DEST (PATTERN (temp)), temp)
1532 #endif
1533 /* May skip USE or CLOBBER insns here
1534 for checking for opportunity, since we
1535 take care of them later. */
1536 && (temp1 = prev_active_insn (temp))
1537 && GET_CODE (temp1) == INSN
1538 && GET_CODE (PATTERN (temp1)) == SET
1539 #ifdef HAVE_cc0
1540 && SET_SRC (PATTERN (temp)) == SET_DEST (PATTERN (temp1))
1541 #else
1542 && (XEXP (SET_SRC (PATTERN (temp)), 0)
1543 == SET_DEST (PATTERN (temp1)))
1544 #endif
1545 && CONSTANT_P (SET_SRC (PATTERN (temp1)))
1546 /* If this isn't true, cse will do the job. */
1547 && ! no_labels_between_p (temp1, temp))
1548 {
1549 /* Get the if_then_else from the condjump. */
1550 rtx choice = SET_SRC (PATTERN (insn));
1551 if (GET_CODE (choice) == IF_THEN_ELSE
1552 && (GET_CODE (XEXP (choice, 0)) == EQ
1553 || GET_CODE (XEXP (choice, 0)) == NE))
1554 {
1555 int want_nonzero = (GET_CODE (XEXP (choice, 0)) == NE);
1556 rtx last_insn;
1557 rtx ultimate;
1558 rtx p;
1559
1560 /* Get the place that condjump will jump to
1561 if it is reached from here. */
1562 if ((SET_SRC (PATTERN (temp1)) != const0_rtx)
1563 == want_nonzero)
1564 ultimate = XEXP (choice, 1);
1565 else
1566 ultimate = XEXP (choice, 2);
1567 /* Get it as a CODE_LABEL. */
1568 if (ultimate == pc_rtx)
1569 ultimate = get_label_after (insn);
1570 else
1571 /* Get the label out of the LABEL_REF. */
1572 ultimate = XEXP (ultimate, 0);
1573
1574 /* Insert the jump immediately before TEMP, specifically
1575 after the label that is between TEMP1 and TEMP. */
1576 last_insn = PREV_INSN (temp);
1577
1578 /* If we would be branching to the next insn, the jump
1579 would immediately be deleted and the re-inserted in
1580 a subsequent pass over the code. So don't do anything
1581 in that case. */
1582 if (next_active_insn (last_insn)
1583 != next_active_insn (ultimate))
1584 {
1585 emit_barrier_after (last_insn);
1586 p = emit_jump_insn_after (gen_jump (ultimate),
1587 last_insn);
1588 JUMP_LABEL (p) = ultimate;
1589 ++LABEL_NUSES (ultimate);
1590 if (INSN_UID (ultimate) < max_jump_chain
1591 && INSN_CODE (p) < max_jump_chain)
1592 {
1593 jump_chain[INSN_UID (p)]
1594 = jump_chain[INSN_UID (ultimate)];
1595 jump_chain[INSN_UID (ultimate)] = p;
1596 }
1597 changed = 1;
1598 continue;
1599 }
1600 }
1601 }
1602 #endif
1603 /* Detect a conditional jump going to the same place
1604 as an immediately following unconditional jump. */
1605 else if (this_is_condjump
1606 && (temp = next_active_insn (insn)) != 0
1607 && simplejump_p (temp)
1608 && (next_active_insn (JUMP_LABEL (insn))
1609 == next_active_insn (JUMP_LABEL (temp))))
1610 {
1611 delete_jump (insn);
1612 changed = 1;
1613 continue;
1614 }
1615 /* Detect a conditional jump jumping over an unconditional jump. */
1616
1617 else if (this_is_condjump && ! this_is_simplejump
1618 && reallabelprev != 0
1619 && GET_CODE (reallabelprev) == JUMP_INSN
1620 && prev_active_insn (reallabelprev) == insn
1621 && no_labels_between_p (insn, reallabelprev)
1622 && simplejump_p (reallabelprev))
1623 {
1624 /* When we invert the unconditional jump, we will be
1625 decrementing the usage count of its old label.
1626 Make sure that we don't delete it now because that
1627 might cause the following code to be deleted. */
1628 rtx prev_uses = prev_nonnote_insn (reallabelprev);
1629 rtx prev_label = JUMP_LABEL (insn);
1630
1631 ++LABEL_NUSES (prev_label);
1632
1633 if (invert_jump (insn, JUMP_LABEL (reallabelprev)))
1634 {
1635 /* It is very likely that if there are USE insns before
1636 this jump, they hold REG_DEAD notes. These REG_DEAD
1637 notes are no longer valid due to this optimization,
1638 and will cause the life-analysis that following passes
1639 (notably delayed-branch scheduling) to think that
1640 these registers are dead when they are not.
1641
1642 To prevent this trouble, we just remove the USE insns
1643 from the insn chain. */
1644
1645 while (prev_uses && GET_CODE (prev_uses) == INSN
1646 && GET_CODE (PATTERN (prev_uses)) == USE)
1647 {
1648 rtx useless = prev_uses;
1649 prev_uses = prev_nonnote_insn (prev_uses);
1650 delete_insn (useless);
1651 }
1652
1653 delete_insn (reallabelprev);
1654 next = insn;
1655 changed = 1;
1656 }
1657
1658 /* We can now safely delete the label if it is unreferenced
1659 since the delete_insn above has deleted the BARRIER. */
1660 if (--LABEL_NUSES (prev_label) == 0)
1661 delete_insn (prev_label);
1662 continue;
1663 }
1664 else
1665 {
1666 /* Detect a jump to a jump. */
1667
1668 nlabel = follow_jumps (JUMP_LABEL (insn));
1669 if (nlabel != JUMP_LABEL (insn)
1670 && redirect_jump (insn, nlabel))
1671 {
1672 changed = 1;
1673 next = insn;
1674 }
1675
1676 /* Look for if (foo) bar; else break; */
1677 /* The insns look like this:
1678 insn = condjump label1;
1679 ...range1 (some insns)...
1680 jump label2;
1681 label1:
1682 ...range2 (some insns)...
1683 jump somewhere unconditionally
1684 label2: */
1685 {
1686 rtx label1 = next_label (insn);
1687 rtx range1end = label1 ? prev_active_insn (label1) : 0;
1688 /* Don't do this optimization on the first round, so that
1689 jump-around-a-jump gets simplified before we ask here
1690 whether a jump is unconditional.
1691
1692 Also don't do it when we are called after reload since
1693 it will confuse reorg. */
1694 if (! first
1695 && (reload_completed ? ! flag_delayed_branch : 1)
1696 /* Make sure INSN is something we can invert. */
1697 && condjump_p (insn)
1698 && label1 != 0
1699 && JUMP_LABEL (insn) == label1
1700 && LABEL_NUSES (label1) == 1
1701 && GET_CODE (range1end) == JUMP_INSN
1702 && simplejump_p (range1end))
1703 {
1704 rtx label2 = next_label (label1);
1705 rtx range2end = label2 ? prev_active_insn (label2) : 0;
1706 if (range1end != range2end
1707 && JUMP_LABEL (range1end) == label2
1708 && GET_CODE (range2end) == JUMP_INSN
1709 && GET_CODE (NEXT_INSN (range2end)) == BARRIER
1710 /* Invert the jump condition, so we
1711 still execute the same insns in each case. */
1712 && invert_jump (insn, label1))
1713 {
1714 rtx range1beg = next_active_insn (insn);
1715 rtx range2beg = next_active_insn (label1);
1716 rtx range1after, range2after;
1717 rtx range1before, range2before;
1718
1719 /* Include in each range any line number before it. */
1720 while (PREV_INSN (range1beg)
1721 && GET_CODE (PREV_INSN (range1beg)) == NOTE
1722 && NOTE_LINE_NUMBER (PREV_INSN (range1beg)) > 0)
1723 range1beg = PREV_INSN (range1beg);
1724
1725 while (PREV_INSN (range2beg)
1726 && GET_CODE (PREV_INSN (range2beg)) == NOTE
1727 && NOTE_LINE_NUMBER (PREV_INSN (range2beg)) > 0)
1728 range2beg = PREV_INSN (range2beg);
1729
1730 /* Don't move NOTEs for blocks or loops; shift them
1731 outside the ranges, where they'll stay put. */
1732 range1beg = squeeze_notes (range1beg, range1end);
1733 range2beg = squeeze_notes (range2beg, range2end);
1734
1735 /* Get current surrounds of the 2 ranges. */
1736 range1before = PREV_INSN (range1beg);
1737 range2before = PREV_INSN (range2beg);
1738 range1after = NEXT_INSN (range1end);
1739 range2after = NEXT_INSN (range2end);
1740
1741 /* Splice range2 where range1 was. */
1742 NEXT_INSN (range1before) = range2beg;
1743 PREV_INSN (range2beg) = range1before;
1744 NEXT_INSN (range2end) = range1after;
1745 PREV_INSN (range1after) = range2end;
1746 /* Splice range1 where range2 was. */
1747 NEXT_INSN (range2before) = range1beg;
1748 PREV_INSN (range1beg) = range2before;
1749 NEXT_INSN (range1end) = range2after;
1750 PREV_INSN (range2after) = range1end;
1751 changed = 1;
1752 continue;
1753 }
1754 }
1755 }
1756
1757 /* Now that the jump has been tensioned,
1758 try cross jumping: check for identical code
1759 before the jump and before its target label. */
1760
1761 /* First, cross jumping of conditional jumps: */
1762
1763 if (cross_jump && condjump_p (insn))
1764 {
1765 rtx newjpos, newlpos;
1766 rtx x = prev_real_insn (JUMP_LABEL (insn));
1767
1768 /* A conditional jump may be crossjumped
1769 only if the place it jumps to follows
1770 an opposing jump that comes back here. */
1771
1772 if (x != 0 && ! jump_back_p (x, insn))
1773 /* We have no opposing jump;
1774 cannot cross jump this insn. */
1775 x = 0;
1776
1777 newjpos = 0;
1778 /* TARGET is nonzero if it is ok to cross jump
1779 to code before TARGET. If so, see if matches. */
1780 if (x != 0)
1781 find_cross_jump (insn, x, 2,
1782 &newjpos, &newlpos);
1783
1784 if (newjpos != 0)
1785 {
1786 do_cross_jump (insn, newjpos, newlpos);
1787 /* Make the old conditional jump
1788 into an unconditional one. */
1789 SET_SRC (PATTERN (insn))
1790 = gen_rtx (LABEL_REF, VOIDmode, JUMP_LABEL (insn));
1791 INSN_CODE (insn) = -1;
1792 emit_barrier_after (insn);
1793 /* Add to jump_chain unless this is a new label
1794 whose UID is too large. */
1795 if (INSN_UID (JUMP_LABEL (insn)) < max_jump_chain)
1796 {
1797 jump_chain[INSN_UID (insn)]
1798 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
1799 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
1800 }
1801 changed = 1;
1802 next = insn;
1803 }
1804 }
1805
1806 /* Cross jumping of unconditional jumps:
1807 a few differences. */
1808
1809 if (cross_jump && simplejump_p (insn))
1810 {
1811 rtx newjpos, newlpos;
1812 rtx target;
1813
1814 newjpos = 0;
1815
1816 /* TARGET is nonzero if it is ok to cross jump
1817 to code before TARGET. If so, see if matches. */
1818 find_cross_jump (insn, JUMP_LABEL (insn), 1,
1819 &newjpos, &newlpos);
1820
1821 /* If cannot cross jump to code before the label,
1822 see if we can cross jump to another jump to
1823 the same label. */
1824 /* Try each other jump to this label. */
1825 if (INSN_UID (JUMP_LABEL (insn)) < max_uid)
1826 for (target = jump_chain[INSN_UID (JUMP_LABEL (insn))];
1827 target != 0 && newjpos == 0;
1828 target = jump_chain[INSN_UID (target)])
1829 if (target != insn
1830 && JUMP_LABEL (target) == JUMP_LABEL (insn)
1831 /* Ignore TARGET if it's deleted. */
1832 && ! INSN_DELETED_P (target))
1833 find_cross_jump (insn, target, 2,
1834 &newjpos, &newlpos);
1835
1836 if (newjpos != 0)
1837 {
1838 do_cross_jump (insn, newjpos, newlpos);
1839 changed = 1;
1840 next = insn;
1841 }
1842 }
1843
1844 /* This code was dead in the previous jump.c! */
1845 if (cross_jump && GET_CODE (PATTERN (insn)) == RETURN)
1846 {
1847 /* Return insns all "jump to the same place"
1848 so we can cross-jump between any two of them. */
1849
1850 rtx newjpos, newlpos, target;
1851
1852 newjpos = 0;
1853
1854 /* If cannot cross jump to code before the label,
1855 see if we can cross jump to another jump to
1856 the same label. */
1857 /* Try each other jump to this label. */
1858 for (target = jump_chain[0];
1859 target != 0 && newjpos == 0;
1860 target = jump_chain[INSN_UID (target)])
1861 if (target != insn
1862 && ! INSN_DELETED_P (target)
1863 && GET_CODE (PATTERN (target)) == RETURN)
1864 find_cross_jump (insn, target, 2,
1865 &newjpos, &newlpos);
1866
1867 if (newjpos != 0)
1868 {
1869 do_cross_jump (insn, newjpos, newlpos);
1870 changed = 1;
1871 next = insn;
1872 }
1873 }
1874 }
1875 }
1876
1877 first = 0;
1878 }
1879
1880 /* Delete extraneous line number notes.
1881 Note that two consecutive notes for different lines are not really
1882 extraneous. There should be some indication where that line belonged,
1883 even if it became empty. */
1884
1885 {
1886 rtx last_note = 0;
1887
1888 for (insn = f; insn; insn = NEXT_INSN (insn))
1889 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0)
1890 {
1891 /* Delete this note if it is identical to previous note. */
1892 if (last_note
1893 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
1894 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note))
1895 {
1896 delete_insn (insn);
1897 continue;
1898 }
1899
1900 last_note = insn;
1901 }
1902 }
1903
1904 /* See if there is still a NOTE_INSN_FUNCTION_END in this function.
1905 If so, delete it, and record that this function can drop off the end. */
1906
1907 insn = last_insn;
1908 {
1909 int n_labels = 1;
1910 while (insn
1911 /* One label can follow the end-note: the return label. */
1912 && ((GET_CODE (insn) == CODE_LABEL && n_labels-- > 0)
1913 /* Ordinary insns can follow it if returning a structure. */
1914 || GET_CODE (insn) == INSN
1915 /* If machine uses explicit RETURN insns, no epilogue,
1916 then one of them follows the note. */
1917 || (GET_CODE (insn) == JUMP_INSN
1918 && GET_CODE (PATTERN (insn)) == RETURN)
1919 /* Other kinds of notes can follow also. */
1920 || (GET_CODE (insn) == NOTE
1921 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)))
1922 insn = PREV_INSN (insn);
1923 }
1924
1925 /* Report if control can fall through at the end of the function. */
1926 if (insn && GET_CODE (insn) == NOTE
1927 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END)
1928 {
1929 can_reach_end = 1;
1930 delete_insn (insn);
1931 }
1932
1933 /* Show JUMP_CHAIN no longer valid. */
1934 jump_chain = 0;
1935 }
1936 \f
1937 /* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
1938 jump. Assume that this unconditional jump is to the exit test code. If
1939 the code is sufficiently simple, make a copy of it before INSN,
1940 followed by a jump to the exit of the loop. Then delete the unconditional
1941 jump after INSN.
1942
1943 Note that it is possible we can get confused here if the jump immediately
1944 after the loop start branches outside the loop but within an outer loop.
1945 If we are near the exit of that loop, we will copy its exit test. This
1946 will not generate incorrect code, but could suppress some optimizations.
1947 However, such cases are degenerate loops anyway.
1948
1949 Return 1 if we made the change, else 0.
1950
1951 This is only safe immediately after a regscan pass because it uses the
1952 values of regno_first_uid and regno_last_uid. */
1953
1954 static int
1955 duplicate_loop_exit_test (loop_start)
1956 rtx loop_start;
1957 {
1958 rtx insn, set, p;
1959 rtx copy, link;
1960 int num_insns = 0;
1961 rtx exitcode = NEXT_INSN (JUMP_LABEL (next_nonnote_insn (loop_start)));
1962 rtx lastexit;
1963 int max_reg = max_reg_num ();
1964 rtx *reg_map = 0;
1965
1966 /* Scan the exit code. We do not perform this optimization if any insn:
1967
1968 is a CALL_INSN
1969 is a CODE_LABEL
1970 has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
1971 is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
1972 is a NOTE_INSN_BLOCK_{BEG,END} because duplicating these notes
1973 are not valid
1974
1975 Also, don't do this if the exit code is more than 20 insns. */
1976
1977 for (insn = exitcode;
1978 insn
1979 && ! (GET_CODE (insn) == NOTE
1980 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
1981 insn = NEXT_INSN (insn))
1982 {
1983 switch (GET_CODE (insn))
1984 {
1985 case CODE_LABEL:
1986 case CALL_INSN:
1987 return 0;
1988 case NOTE:
1989 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1990 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1991 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
1992 return 0;
1993 break;
1994 case JUMP_INSN:
1995 case INSN:
1996 if (++num_insns > 20
1997 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1998 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
1999 return 0;
2000 break;
2001 }
2002 }
2003
2004 /* Unless INSN is zero, we can do the optimization. */
2005 if (insn == 0)
2006 return 0;
2007
2008 lastexit = insn;
2009
2010 /* See if any insn sets a register only used in the loop exit code and
2011 not a user variable. If so, replace it with a new register. */
2012 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
2013 if (GET_CODE (insn) == INSN
2014 && (set = single_set (insn)) != 0
2015 && GET_CODE (SET_DEST (set)) == REG
2016 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
2017 && regno_first_uid[REGNO (SET_DEST (set))] == INSN_UID (insn))
2018 {
2019 for (p = NEXT_INSN (insn); p != lastexit; p = NEXT_INSN (p))
2020 if (regno_last_uid[REGNO (SET_DEST (set))] == INSN_UID (p))
2021 break;
2022
2023 if (p != lastexit)
2024 {
2025 /* We can do the replacement. Allocate reg_map if this is the
2026 first replacement we found. */
2027 if (reg_map == 0)
2028 {
2029 reg_map = (rtx *) alloca (max_reg * sizeof (rtx));
2030 bzero (reg_map, max_reg * sizeof (rtx));
2031 }
2032
2033 REG_LOOP_TEST_P (SET_DEST (set)) = 1;
2034
2035 reg_map[REGNO (SET_DEST (set))]
2036 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
2037 }
2038 }
2039
2040 /* Now copy each insn. */
2041 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
2042 switch (GET_CODE (insn))
2043 {
2044 case BARRIER:
2045 copy = emit_barrier_before (loop_start);
2046 break;
2047 case NOTE:
2048 /* Only copy line-number notes. */
2049 if (NOTE_LINE_NUMBER (insn) >= 0)
2050 {
2051 copy = emit_note_before (NOTE_LINE_NUMBER (insn), loop_start);
2052 NOTE_SOURCE_FILE (copy) = NOTE_SOURCE_FILE (insn);
2053 }
2054 break;
2055
2056 case INSN:
2057 copy = emit_insn_before (copy_rtx (PATTERN (insn)), loop_start);
2058 if (reg_map)
2059 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
2060
2061 mark_jump_label (PATTERN (copy), copy, 0);
2062
2063 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
2064 make them. */
2065 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2066 if (REG_NOTE_KIND (link) != REG_LABEL)
2067 REG_NOTES (copy)
2068 = copy_rtx (gen_rtx (EXPR_LIST, REG_NOTE_KIND (link),
2069 XEXP (link, 0), REG_NOTES (copy)));
2070 if (reg_map && REG_NOTES (copy))
2071 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
2072 break;
2073
2074 case JUMP_INSN:
2075 copy = emit_jump_insn_before (copy_rtx (PATTERN (insn)), loop_start);
2076 if (reg_map)
2077 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
2078 mark_jump_label (PATTERN (copy), copy, 0);
2079 if (REG_NOTES (insn))
2080 {
2081 REG_NOTES (copy) = copy_rtx (REG_NOTES (insn));
2082 if (reg_map)
2083 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
2084 }
2085
2086 /* If this is a simple jump, add it to the jump chain. */
2087
2088 if (INSN_UID (copy) < max_jump_chain && JUMP_LABEL (copy)
2089 && simplejump_p (copy))
2090 {
2091 jump_chain[INSN_UID (copy)]
2092 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
2093 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
2094 }
2095 break;
2096
2097 default:
2098 abort ();
2099 }
2100
2101 /* Now clean up by emitting a jump to the end label and deleting the jump
2102 at the start of the loop. */
2103 if (GET_CODE (copy) != BARRIER)
2104 {
2105 copy = emit_jump_insn_before (gen_jump (get_label_after (insn)),
2106 loop_start);
2107 mark_jump_label (PATTERN (copy), copy, 0);
2108 if (INSN_UID (copy) < max_jump_chain
2109 && INSN_UID (JUMP_LABEL (copy)) < max_jump_chain)
2110 {
2111 jump_chain[INSN_UID (copy)]
2112 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
2113 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
2114 }
2115 emit_barrier_before (loop_start);
2116 }
2117
2118 delete_insn (next_nonnote_insn (loop_start));
2119
2120 /* Mark the exit code as the virtual top of the converted loop. */
2121 emit_note_before (NOTE_INSN_LOOP_VTOP, exitcode);
2122
2123 return 1;
2124 }
2125 \f
2126 /* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, and
2127 loop-end notes between START and END out before START. Assume that
2128 END is not such a note. START may be such a note. Returns the value
2129 of the new starting insn, which may be different if the original start
2130 was such a note. */
2131
2132 rtx
2133 squeeze_notes (start, end)
2134 rtx start, end;
2135 {
2136 rtx insn;
2137 rtx next;
2138
2139 for (insn = start; insn != end; insn = next)
2140 {
2141 next = NEXT_INSN (insn);
2142 if (GET_CODE (insn) == NOTE
2143 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
2144 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2145 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
2146 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
2147 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT
2148 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP))
2149 {
2150 if (insn == start)
2151 start = next;
2152 else
2153 {
2154 rtx prev = PREV_INSN (insn);
2155 PREV_INSN (insn) = PREV_INSN (start);
2156 NEXT_INSN (insn) = start;
2157 NEXT_INSN (PREV_INSN (insn)) = insn;
2158 PREV_INSN (NEXT_INSN (insn)) = insn;
2159 NEXT_INSN (prev) = next;
2160 PREV_INSN (next) = prev;
2161 }
2162 }
2163 }
2164
2165 return start;
2166 }
2167 \f
2168 /* Compare the instructions before insn E1 with those before E2
2169 to find an opportunity for cross jumping.
2170 (This means detecting identical sequences of insns followed by
2171 jumps to the same place, or followed by a label and a jump
2172 to that label, and replacing one with a jump to the other.)
2173
2174 Assume E1 is a jump that jumps to label E2
2175 (that is not always true but it might as well be).
2176 Find the longest possible equivalent sequences
2177 and store the first insns of those sequences into *F1 and *F2.
2178 Store zero there if no equivalent preceding instructions are found.
2179
2180 We give up if we find a label in stream 1.
2181 Actually we could transfer that label into stream 2. */
2182
2183 static void
2184 find_cross_jump (e1, e2, minimum, f1, f2)
2185 rtx e1, e2;
2186 int minimum;
2187 rtx *f1, *f2;
2188 {
2189 register rtx i1 = e1, i2 = e2;
2190 register rtx p1, p2;
2191 int lose = 0;
2192
2193 rtx last1 = 0, last2 = 0;
2194 rtx afterlast1 = 0, afterlast2 = 0;
2195 rtx prev1;
2196
2197 *f1 = 0;
2198 *f2 = 0;
2199
2200 while (1)
2201 {
2202 i1 = prev_nonnote_insn (i1);
2203
2204 i2 = PREV_INSN (i2);
2205 while (i2 && (GET_CODE (i2) == NOTE || GET_CODE (i2) == CODE_LABEL))
2206 i2 = PREV_INSN (i2);
2207
2208 if (i1 == 0)
2209 break;
2210
2211 /* Don't allow the range of insns preceding E1 or E2
2212 to include the other (E2 or E1). */
2213 if (i2 == e1 || i1 == e2)
2214 break;
2215
2216 /* If we will get to this code by jumping, those jumps will be
2217 tensioned to go directly to the new label (before I2),
2218 so this cross-jumping won't cost extra. So reduce the minimum. */
2219 if (GET_CODE (i1) == CODE_LABEL)
2220 {
2221 --minimum;
2222 break;
2223 }
2224
2225 if (i2 == 0 || GET_CODE (i1) != GET_CODE (i2))
2226 break;
2227
2228 p1 = PATTERN (i1);
2229 p2 = PATTERN (i2);
2230
2231 #ifdef STACK_REGS
2232 /* If cross_jump_death_matters is not 0, the insn's mode
2233 indicates whether or not the insn contains any stack-like
2234 regs. */
2235
2236 if (cross_jump_death_matters && GET_MODE (i1) == QImode)
2237 {
2238 /* If register stack conversion has already been done, then
2239 death notes must also be compared before it is certain that
2240 the two instruction streams match. */
2241
2242 rtx note;
2243 HARD_REG_SET i1_regset, i2_regset;
2244
2245 CLEAR_HARD_REG_SET (i1_regset);
2246 CLEAR_HARD_REG_SET (i2_regset);
2247
2248 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
2249 if (REG_NOTE_KIND (note) == REG_DEAD
2250 && STACK_REG_P (XEXP (note, 0)))
2251 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
2252
2253 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
2254 if (REG_NOTE_KIND (note) == REG_DEAD
2255 && STACK_REG_P (XEXP (note, 0)))
2256 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
2257
2258 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
2259
2260 lose = 1;
2261
2262 done:
2263 ;
2264 }
2265 #endif
2266
2267 if (lose || GET_CODE (p1) != GET_CODE (p2)
2268 || ! rtx_renumbered_equal_p (p1, p2))
2269 {
2270 /* The following code helps take care of G++ cleanups. */
2271 rtx equiv1;
2272 rtx equiv2;
2273
2274 if (!lose && GET_CODE (p1) == GET_CODE (p2)
2275 && ((equiv1 = find_reg_note (i1, REG_EQUAL, NULL_RTX)) != 0
2276 || (equiv1 = find_reg_note (i1, REG_EQUIV, NULL_RTX)) != 0)
2277 && ((equiv2 = find_reg_note (i2, REG_EQUAL, NULL_RTX)) != 0
2278 || (equiv2 = find_reg_note (i2, REG_EQUIV, NULL_RTX)) != 0)
2279 /* If the equivalences are not to a constant, they may
2280 reference pseudos that no longer exist, so we can't
2281 use them. */
2282 && CONSTANT_P (XEXP (equiv1, 0))
2283 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
2284 {
2285 rtx s1 = single_set (i1);
2286 rtx s2 = single_set (i2);
2287 if (s1 != 0 && s2 != 0
2288 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
2289 {
2290 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
2291 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
2292 if (! rtx_renumbered_equal_p (p1, p2))
2293 cancel_changes (0);
2294 else if (apply_change_group ())
2295 goto win;
2296 }
2297 }
2298
2299 /* Insns fail to match; cross jumping is limited to the following
2300 insns. */
2301
2302 #ifdef HAVE_cc0
2303 /* Don't allow the insn after a compare to be shared by
2304 cross-jumping unless the compare is also shared.
2305 Here, if either of these non-matching insns is a compare,
2306 exclude the following insn from possible cross-jumping. */
2307 if (sets_cc0_p (p1) || sets_cc0_p (p2))
2308 last1 = afterlast1, last2 = afterlast2, ++minimum;
2309 #endif
2310
2311 /* If cross-jumping here will feed a jump-around-jump
2312 optimization, this jump won't cost extra, so reduce
2313 the minimum. */
2314 if (GET_CODE (i1) == JUMP_INSN
2315 && JUMP_LABEL (i1)
2316 && prev_real_insn (JUMP_LABEL (i1)) == e1)
2317 --minimum;
2318 break;
2319 }
2320
2321 win:
2322 if (GET_CODE (p1) != USE && GET_CODE (p1) != CLOBBER)
2323 {
2324 /* Ok, this insn is potentially includable in a cross-jump here. */
2325 afterlast1 = last1, afterlast2 = last2;
2326 last1 = i1, last2 = i2, --minimum;
2327 }
2328 }
2329
2330 /* We have to be careful that we do not cross-jump into the middle of
2331 USE-CALL_INSN-CLOBBER sequence. This sequence is used instead of
2332 putting the USE and CLOBBERs inside the CALL_INSN. The delay slot
2333 scheduler needs to know what registers are used and modified by the
2334 CALL_INSN and needs the adjacent USE and CLOBBERs to do so.
2335
2336 ??? At some point we should probably change this so that these are
2337 part of the CALL_INSN. The way we are doing it now is a kludge that
2338 is now causing trouble. */
2339
2340 if (last1 != 0 && GET_CODE (last1) == CALL_INSN
2341 && (prev1 = prev_nonnote_insn (last1))
2342 && GET_CODE (prev1) == INSN
2343 && GET_CODE (PATTERN (prev1)) == USE)
2344 {
2345 /* Remove this CALL_INSN from the range we can cross-jump. */
2346 last1 = next_real_insn (last1);
2347 last2 = next_real_insn (last2);
2348
2349 minimum++;
2350 }
2351
2352 /* Skip past CLOBBERS since they may be right after a CALL_INSN. It
2353 isn't worth checking for the CALL_INSN. */
2354 while (last1 != 0 && GET_CODE (PATTERN (last1)) == CLOBBER)
2355 last1 = next_real_insn (last1), last2 = next_real_insn (last2);
2356
2357 if (minimum <= 0 && last1 != 0 && last1 != e1)
2358 *f1 = last1, *f2 = last2;
2359 }
2360
2361 static void
2362 do_cross_jump (insn, newjpos, newlpos)
2363 rtx insn, newjpos, newlpos;
2364 {
2365 /* Find an existing label at this point
2366 or make a new one if there is none. */
2367 register rtx label = get_label_before (newlpos);
2368
2369 /* Make the same jump insn jump to the new point. */
2370 if (GET_CODE (PATTERN (insn)) == RETURN)
2371 {
2372 /* Remove from jump chain of returns. */
2373 delete_from_jump_chain (insn);
2374 /* Change the insn. */
2375 PATTERN (insn) = gen_jump (label);
2376 INSN_CODE (insn) = -1;
2377 JUMP_LABEL (insn) = label;
2378 LABEL_NUSES (label)++;
2379 /* Add to new the jump chain. */
2380 if (INSN_UID (label) < max_jump_chain
2381 && INSN_UID (insn) < max_jump_chain)
2382 {
2383 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (label)];
2384 jump_chain[INSN_UID (label)] = insn;
2385 }
2386 }
2387 else
2388 redirect_jump (insn, label);
2389
2390 /* Delete the matching insns before the jump. Also, remove any REG_EQUAL
2391 or REG_EQUIV note in the NEWLPOS stream that isn't also present in
2392 the NEWJPOS stream. */
2393
2394 while (newjpos != insn)
2395 {
2396 rtx lnote;
2397
2398 for (lnote = REG_NOTES (newlpos); lnote; lnote = XEXP (lnote, 1))
2399 if ((REG_NOTE_KIND (lnote) == REG_EQUAL
2400 || REG_NOTE_KIND (lnote) == REG_EQUIV)
2401 && ! find_reg_note (newjpos, REG_EQUAL, XEXP (lnote, 0))
2402 && ! find_reg_note (newjpos, REG_EQUIV, XEXP (lnote, 0)))
2403 remove_note (newlpos, lnote);
2404
2405 delete_insn (newjpos);
2406 newjpos = next_real_insn (newjpos);
2407 newlpos = next_real_insn (newlpos);
2408 }
2409 }
2410 \f
2411 /* Return the label before INSN, or put a new label there. */
2412
2413 rtx
2414 get_label_before (insn)
2415 rtx insn;
2416 {
2417 rtx label;
2418
2419 /* Find an existing label at this point
2420 or make a new one if there is none. */
2421 label = prev_nonnote_insn (insn);
2422
2423 if (label == 0 || GET_CODE (label) != CODE_LABEL)
2424 {
2425 rtx prev = PREV_INSN (insn);
2426
2427 /* Don't put a label between a CALL_INSN and USE insns that precede
2428 it. */
2429
2430 if (GET_CODE (insn) == CALL_INSN
2431 || (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE
2432 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN))
2433 while (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == USE)
2434 prev = PREV_INSN (prev);
2435
2436 label = gen_label_rtx ();
2437 emit_label_after (label, prev);
2438 LABEL_NUSES (label) = 0;
2439 }
2440 return label;
2441 }
2442
2443 /* Return the label after INSN, or put a new label there. */
2444
2445 rtx
2446 get_label_after (insn)
2447 rtx insn;
2448 {
2449 rtx label;
2450
2451 /* Find an existing label at this point
2452 or make a new one if there is none. */
2453 label = next_nonnote_insn (insn);
2454
2455 if (label == 0 || GET_CODE (label) != CODE_LABEL)
2456 {
2457 /* Don't put a label between a CALL_INSN and CLOBBER insns
2458 following it. */
2459
2460 if (GET_CODE (insn) == CALL_INSN
2461 || (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE
2462 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN))
2463 while (GET_CODE (NEXT_INSN (insn)) == INSN
2464 && GET_CODE (PATTERN (NEXT_INSN (insn))) == CLOBBER)
2465 insn = NEXT_INSN (insn);
2466
2467 label = gen_label_rtx ();
2468 emit_label_after (label, insn);
2469 LABEL_NUSES (label) = 0;
2470 }
2471 return label;
2472 }
2473 \f
2474 /* Return 1 if INSN is a jump that jumps to right after TARGET
2475 only on the condition that TARGET itself would drop through.
2476 Assumes that TARGET is a conditional jump. */
2477
2478 static int
2479 jump_back_p (insn, target)
2480 rtx insn, target;
2481 {
2482 rtx cinsn, ctarget;
2483 enum rtx_code codei, codet;
2484
2485 if (simplejump_p (insn) || ! condjump_p (insn)
2486 || simplejump_p (target)
2487 || target != prev_real_insn (JUMP_LABEL (insn)))
2488 return 0;
2489
2490 cinsn = XEXP (SET_SRC (PATTERN (insn)), 0);
2491 ctarget = XEXP (SET_SRC (PATTERN (target)), 0);
2492
2493 codei = GET_CODE (cinsn);
2494 codet = GET_CODE (ctarget);
2495
2496 if (XEXP (SET_SRC (PATTERN (insn)), 1) == pc_rtx)
2497 {
2498 if (! can_reverse_comparison_p (cinsn, insn))
2499 return 0;
2500 codei = reverse_condition (codei);
2501 }
2502
2503 if (XEXP (SET_SRC (PATTERN (target)), 2) == pc_rtx)
2504 {
2505 if (! can_reverse_comparison_p (ctarget, target))
2506 return 0;
2507 codet = reverse_condition (codet);
2508 }
2509
2510 return (codei == codet
2511 && rtx_renumbered_equal_p (XEXP (cinsn, 0), XEXP (ctarget, 0))
2512 && rtx_renumbered_equal_p (XEXP (cinsn, 1), XEXP (ctarget, 1)));
2513 }
2514 \f
2515 /* Given a comparison, COMPARISON, inside a conditional jump insn, INSN,
2516 return non-zero if it is safe to reverse this comparison. It is if our
2517 floating-point is not IEEE, if this is an NE or EQ comparison, or if
2518 this is known to be an integer comparison. */
2519
2520 int
2521 can_reverse_comparison_p (comparison, insn)
2522 rtx comparison;
2523 rtx insn;
2524 {
2525 rtx arg0;
2526
2527 /* If this is not actually a comparison, we can't reverse it. */
2528 if (GET_RTX_CLASS (GET_CODE (comparison)) != '<')
2529 return 0;
2530
2531 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
2532 /* If this is an NE comparison, it is safe to reverse it to an EQ
2533 comparison and vice versa, even for floating point. If no operands
2534 are NaNs, the reversal is valid. If some operand is a NaN, EQ is
2535 always false and NE is always true, so the reversal is also valid. */
2536 || GET_CODE (comparison) == NE
2537 || GET_CODE (comparison) == EQ)
2538 return 1;
2539
2540 arg0 = XEXP (comparison, 0);
2541
2542 /* Make sure ARG0 is one of the actual objects being compared. If we
2543 can't do this, we can't be sure the comparison can be reversed.
2544
2545 Handle cc0 and a MODE_CC register. */
2546 if ((GET_CODE (arg0) == REG && GET_MODE_CLASS (GET_MODE (arg0)) == MODE_CC)
2547 #ifdef HAVE_cc0
2548 || arg0 == cc0_rtx
2549 #endif
2550 )
2551 {
2552 rtx prev = prev_nonnote_insn (insn);
2553 rtx set = single_set (prev);
2554
2555 if (set == 0 || SET_DEST (set) != arg0)
2556 return 0;
2557
2558 arg0 = SET_SRC (set);
2559
2560 if (GET_CODE (arg0) == COMPARE)
2561 arg0 = XEXP (arg0, 0);
2562 }
2563
2564 /* We can reverse this if ARG0 is a CONST_INT or if its mode is
2565 not VOIDmode and neither a MODE_CC nor MODE_FLOAT type. */
2566 return (GET_CODE (arg0) == CONST_INT
2567 || (GET_MODE (arg0) != VOIDmode
2568 && GET_MODE_CLASS (GET_MODE (arg0)) != MODE_CC
2569 && GET_MODE_CLASS (GET_MODE (arg0)) != MODE_FLOAT));
2570 }
2571
2572 /* Given an rtx-code for a comparison, return the code
2573 for the negated comparison.
2574 WATCH OUT! reverse_condition is not safe to use on a jump
2575 that might be acting on the results of an IEEE floating point comparison,
2576 because of the special treatment of non-signaling nans in comparisons.
2577 Use can_reverse_comparison_p to be sure. */
2578
2579 enum rtx_code
2580 reverse_condition (code)
2581 enum rtx_code code;
2582 {
2583 switch (code)
2584 {
2585 case EQ:
2586 return NE;
2587
2588 case NE:
2589 return EQ;
2590
2591 case GT:
2592 return LE;
2593
2594 case GE:
2595 return LT;
2596
2597 case LT:
2598 return GE;
2599
2600 case LE:
2601 return GT;
2602
2603 case GTU:
2604 return LEU;
2605
2606 case GEU:
2607 return LTU;
2608
2609 case LTU:
2610 return GEU;
2611
2612 case LEU:
2613 return GTU;
2614
2615 default:
2616 abort ();
2617 return UNKNOWN;
2618 }
2619 }
2620
2621 /* Similar, but return the code when two operands of a comparison are swapped.
2622 This IS safe for IEEE floating-point. */
2623
2624 enum rtx_code
2625 swap_condition (code)
2626 enum rtx_code code;
2627 {
2628 switch (code)
2629 {
2630 case EQ:
2631 case NE:
2632 return code;
2633
2634 case GT:
2635 return LT;
2636
2637 case GE:
2638 return LE;
2639
2640 case LT:
2641 return GT;
2642
2643 case LE:
2644 return GE;
2645
2646 case GTU:
2647 return LTU;
2648
2649 case GEU:
2650 return LEU;
2651
2652 case LTU:
2653 return GTU;
2654
2655 case LEU:
2656 return GEU;
2657
2658 default:
2659 abort ();
2660 return UNKNOWN;
2661 }
2662 }
2663
2664 /* Given a comparison CODE, return the corresponding unsigned comparison.
2665 If CODE is an equality comparison or already an unsigned comparison,
2666 CODE is returned. */
2667
2668 enum rtx_code
2669 unsigned_condition (code)
2670 enum rtx_code code;
2671 {
2672 switch (code)
2673 {
2674 case EQ:
2675 case NE:
2676 case GTU:
2677 case GEU:
2678 case LTU:
2679 case LEU:
2680 return code;
2681
2682 case GT:
2683 return GTU;
2684
2685 case GE:
2686 return GEU;
2687
2688 case LT:
2689 return LTU;
2690
2691 case LE:
2692 return LEU;
2693
2694 default:
2695 abort ();
2696 }
2697 }
2698
2699 /* Similarly, return the signed version of a comparison. */
2700
2701 enum rtx_code
2702 signed_condition (code)
2703 enum rtx_code code;
2704 {
2705 switch (code)
2706 {
2707 case EQ:
2708 case NE:
2709 case GT:
2710 case GE:
2711 case LT:
2712 case LE:
2713 return code;
2714
2715 case GTU:
2716 return GT;
2717
2718 case GEU:
2719 return GE;
2720
2721 case LTU:
2722 return LT;
2723
2724 case LEU:
2725 return LE;
2726
2727 default:
2728 abort ();
2729 }
2730 }
2731 \f
2732 /* Return non-zero if CODE1 is more strict than CODE2, i.e., if the
2733 truth of CODE1 implies the truth of CODE2. */
2734
2735 int
2736 comparison_dominates_p (code1, code2)
2737 enum rtx_code code1, code2;
2738 {
2739 if (code1 == code2)
2740 return 1;
2741
2742 switch (code1)
2743 {
2744 case EQ:
2745 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU)
2746 return 1;
2747 break;
2748
2749 case LT:
2750 if (code2 == LE)
2751 return 1;
2752 break;
2753
2754 case GT:
2755 if (code2 == GE)
2756 return 1;
2757 break;
2758
2759 case LTU:
2760 if (code2 == LEU)
2761 return 1;
2762 break;
2763
2764 case GTU:
2765 if (code2 == GEU)
2766 return 1;
2767 break;
2768 }
2769
2770 return 0;
2771 }
2772 \f
2773 /* Return 1 if INSN is an unconditional jump and nothing else. */
2774
2775 int
2776 simplejump_p (insn)
2777 rtx insn;
2778 {
2779 return (GET_CODE (insn) == JUMP_INSN
2780 && GET_CODE (PATTERN (insn)) == SET
2781 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
2782 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
2783 }
2784
2785 /* Return nonzero if INSN is a (possibly) conditional jump
2786 and nothing more. */
2787
2788 int
2789 condjump_p (insn)
2790 rtx insn;
2791 {
2792 register rtx x = PATTERN (insn);
2793 if (GET_CODE (x) != SET)
2794 return 0;
2795 if (GET_CODE (SET_DEST (x)) != PC)
2796 return 0;
2797 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
2798 return 1;
2799 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
2800 return 0;
2801 if (XEXP (SET_SRC (x), 2) == pc_rtx
2802 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
2803 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
2804 return 1;
2805 if (XEXP (SET_SRC (x), 1) == pc_rtx
2806 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
2807 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
2808 return 1;
2809 return 0;
2810 }
2811
2812 /* Return 1 if X is an RTX that does nothing but set the condition codes
2813 and CLOBBER or USE registers.
2814 Return -1 if X does explicitly set the condition codes,
2815 but also does other things. */
2816
2817 int
2818 sets_cc0_p (x)
2819 rtx x;
2820 {
2821 #ifdef HAVE_cc0
2822 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
2823 return 1;
2824 if (GET_CODE (x) == PARALLEL)
2825 {
2826 int i;
2827 int sets_cc0 = 0;
2828 int other_things = 0;
2829 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2830 {
2831 if (GET_CODE (XVECEXP (x, 0, i)) == SET
2832 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
2833 sets_cc0 = 1;
2834 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
2835 other_things = 1;
2836 }
2837 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
2838 }
2839 return 0;
2840 #else
2841 abort ();
2842 #endif
2843 }
2844 \f
2845 /* Follow any unconditional jump at LABEL;
2846 return the ultimate label reached by any such chain of jumps.
2847 If LABEL is not followed by a jump, return LABEL.
2848 If the chain loops or we can't find end, return LABEL,
2849 since that tells caller to avoid changing the insn.
2850
2851 If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
2852 a USE or CLOBBER. */
2853
2854 rtx
2855 follow_jumps (label)
2856 rtx label;
2857 {
2858 register rtx insn;
2859 register rtx next;
2860 register rtx value = label;
2861 register int depth;
2862
2863 for (depth = 0;
2864 (depth < 10
2865 && (insn = next_active_insn (value)) != 0
2866 && GET_CODE (insn) == JUMP_INSN
2867 && (JUMP_LABEL (insn) != 0 || GET_CODE (PATTERN (insn)) == RETURN)
2868 && (next = NEXT_INSN (insn))
2869 && GET_CODE (next) == BARRIER);
2870 depth++)
2871 {
2872 /* Don't chain through the insn that jumps into a loop
2873 from outside the loop,
2874 since that would create multiple loop entry jumps
2875 and prevent loop optimization. */
2876 rtx tem;
2877 if (!reload_completed)
2878 for (tem = value; tem != insn; tem = NEXT_INSN (tem))
2879 if (GET_CODE (tem) == NOTE
2880 && NOTE_LINE_NUMBER (tem) == NOTE_INSN_LOOP_BEG)
2881 return value;
2882
2883 /* If we have found a cycle, make the insn jump to itself. */
2884 if (JUMP_LABEL (insn) == label)
2885 return label;
2886 value = JUMP_LABEL (insn);
2887 }
2888 if (depth == 10)
2889 return label;
2890 return value;
2891 }
2892
2893 /* Assuming that field IDX of X is a vector of label_refs,
2894 replace each of them by the ultimate label reached by it.
2895 Return nonzero if a change is made.
2896 If IGNORE_LOOPS is 0, we do not chain across a NOTE_INSN_LOOP_BEG. */
2897
2898 static int
2899 tension_vector_labels (x, idx)
2900 register rtx x;
2901 register int idx;
2902 {
2903 int changed = 0;
2904 register int i;
2905 for (i = XVECLEN (x, idx) - 1; i >= 0; i--)
2906 {
2907 register rtx olabel = XEXP (XVECEXP (x, idx, i), 0);
2908 register rtx nlabel = follow_jumps (olabel);
2909 if (nlabel && nlabel != olabel)
2910 {
2911 XEXP (XVECEXP (x, idx, i), 0) = nlabel;
2912 ++LABEL_NUSES (nlabel);
2913 if (--LABEL_NUSES (olabel) == 0)
2914 delete_insn (olabel);
2915 changed = 1;
2916 }
2917 }
2918 return changed;
2919 }
2920 \f
2921 /* Find all CODE_LABELs referred to in X, and increment their use counts.
2922 If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
2923 in INSN, then store one of them in JUMP_LABEL (INSN).
2924 If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
2925 referenced in INSN, add a REG_LABEL note containing that label to INSN.
2926 Also, when there are consecutive labels, canonicalize on the last of them.
2927
2928 Note that two labels separated by a loop-beginning note
2929 must be kept distinct if we have not yet done loop-optimization,
2930 because the gap between them is where loop-optimize
2931 will want to move invariant code to. CROSS_JUMP tells us
2932 that loop-optimization is done with.
2933
2934 Once reload has completed (CROSS_JUMP non-zero), we need not consider
2935 two labels distinct if they are separated by only USE or CLOBBER insns. */
2936
2937 static void
2938 mark_jump_label (x, insn, cross_jump)
2939 register rtx x;
2940 rtx insn;
2941 int cross_jump;
2942 {
2943 register RTX_CODE code = GET_CODE (x);
2944 register int i;
2945 register char *fmt;
2946
2947 switch (code)
2948 {
2949 case PC:
2950 case CC0:
2951 case REG:
2952 case SUBREG:
2953 case CONST_INT:
2954 case SYMBOL_REF:
2955 case CONST_DOUBLE:
2956 case CLOBBER:
2957 case CALL:
2958 return;
2959
2960 case MEM:
2961 /* If this is a constant-pool reference, see if it is a label. */
2962 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2963 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
2964 mark_jump_label (get_pool_constant (XEXP (x, 0)), insn, cross_jump);
2965 break;
2966
2967 case LABEL_REF:
2968 {
2969 register rtx label = XEXP (x, 0);
2970 register rtx next;
2971 if (GET_CODE (label) != CODE_LABEL)
2972 abort ();
2973 /* Ignore references to labels of containing functions. */
2974 if (LABEL_REF_NONLOCAL_P (x))
2975 break;
2976 /* If there are other labels following this one,
2977 replace it with the last of the consecutive labels. */
2978 for (next = NEXT_INSN (label); next; next = NEXT_INSN (next))
2979 {
2980 if (GET_CODE (next) == CODE_LABEL)
2981 label = next;
2982 else if (cross_jump && GET_CODE (next) == INSN
2983 && (GET_CODE (PATTERN (next)) == USE
2984 || GET_CODE (PATTERN (next)) == CLOBBER))
2985 continue;
2986 else if (GET_CODE (next) != NOTE)
2987 break;
2988 else if (! cross_jump
2989 && (NOTE_LINE_NUMBER (next) == NOTE_INSN_LOOP_BEG
2990 || NOTE_LINE_NUMBER (next) == NOTE_INSN_FUNCTION_END))
2991 break;
2992 }
2993 XEXP (x, 0) = label;
2994 ++LABEL_NUSES (label);
2995 if (insn)
2996 {
2997 if (GET_CODE (insn) == JUMP_INSN)
2998 JUMP_LABEL (insn) = label;
2999 else if (! find_reg_note (insn, REG_LABEL, label))
3000 {
3001 rtx next = next_real_insn (label);
3002 /* Don't record labels that refer to dispatch tables.
3003 This is not necessary, since the tablejump
3004 references the same label.
3005 And if we did record them, flow.c would make worse code. */
3006 if (next == 0
3007 || ! (GET_CODE (next) == JUMP_INSN
3008 && (GET_CODE (PATTERN (next)) == ADDR_VEC
3009 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)))
3010 {
3011 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL, label,
3012 REG_NOTES (insn));
3013 /* Record in the note whether label is nonlocal. */
3014 LABEL_REF_NONLOCAL_P (REG_NOTES (insn))
3015 = LABEL_REF_NONLOCAL_P (x);
3016 }
3017 }
3018 }
3019 return;
3020 }
3021
3022 /* Do walk the labels in a vector, but not the first operand of an
3023 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
3024 case ADDR_VEC:
3025 case ADDR_DIFF_VEC:
3026 {
3027 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
3028
3029 for (i = 0; i < XVECLEN (x, eltnum); i++)
3030 mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX, cross_jump);
3031 return;
3032 }
3033 }
3034
3035 fmt = GET_RTX_FORMAT (code);
3036 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3037 {
3038 if (fmt[i] == 'e')
3039 mark_jump_label (XEXP (x, i), insn, cross_jump);
3040 else if (fmt[i] == 'E')
3041 {
3042 register int j;
3043 for (j = 0; j < XVECLEN (x, i); j++)
3044 mark_jump_label (XVECEXP (x, i, j), insn, cross_jump);
3045 }
3046 }
3047 }
3048
3049 /* If all INSN does is set the pc, delete it,
3050 and delete the insn that set the condition codes for it
3051 if that's what the previous thing was. */
3052
3053 void
3054 delete_jump (insn)
3055 rtx insn;
3056 {
3057 register rtx set = single_set (insn);
3058
3059 if (set && GET_CODE (SET_DEST (set)) == PC)
3060 delete_computation (insn);
3061 }
3062
3063 /* Delete INSN and recursively delete insns that compute values used only
3064 by INSN. This uses the REG_DEAD notes computed during flow analysis.
3065 If we are running before flow.c, we need do nothing since flow.c will
3066 delete dead code. We also can't know if the registers being used are
3067 dead or not at this point.
3068
3069 Otherwise, look at all our REG_DEAD notes. If a previous insn does
3070 nothing other than set a register that dies in this insn, we can delete
3071 that insn as well.
3072
3073 On machines with CC0, if CC0 is used in this insn, we may be able to
3074 delete the insn that set it. */
3075
3076 void
3077 delete_computation (insn)
3078 rtx insn;
3079 {
3080 rtx note, next;
3081
3082 #ifdef HAVE_cc0
3083 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
3084 {
3085 rtx prev = prev_nonnote_insn (insn);
3086 /* We assume that at this stage
3087 CC's are always set explicitly
3088 and always immediately before the jump that
3089 will use them. So if the previous insn
3090 exists to set the CC's, delete it
3091 (unless it performs auto-increments, etc.). */
3092 if (prev && GET_CODE (prev) == INSN
3093 && sets_cc0_p (PATTERN (prev)))
3094 {
3095 if (sets_cc0_p (PATTERN (prev)) > 0
3096 && !FIND_REG_INC_NOTE (prev, NULL_RTX))
3097 delete_computation (prev);
3098 else
3099 /* Otherwise, show that cc0 won't be used. */
3100 REG_NOTES (prev) = gen_rtx (EXPR_LIST, REG_UNUSED,
3101 cc0_rtx, REG_NOTES (prev));
3102 }
3103 }
3104 #endif
3105
3106 for (note = REG_NOTES (insn); note; note = next)
3107 {
3108 rtx our_prev;
3109
3110 next = XEXP (note, 1);
3111
3112 if (REG_NOTE_KIND (note) != REG_DEAD
3113 /* Verify that the REG_NOTE is legitimate. */
3114 || GET_CODE (XEXP (note, 0)) != REG)
3115 continue;
3116
3117 for (our_prev = prev_nonnote_insn (insn);
3118 our_prev && GET_CODE (our_prev) == INSN;
3119 our_prev = prev_nonnote_insn (our_prev))
3120 {
3121 /* If we reach a SEQUENCE, it is too complex to try to
3122 do anything with it, so give up. */
3123 if (GET_CODE (PATTERN (our_prev)) == SEQUENCE)
3124 break;
3125
3126 if (GET_CODE (PATTERN (our_prev)) == USE
3127 && GET_CODE (XEXP (PATTERN (our_prev), 0)) == INSN)
3128 /* reorg creates USEs that look like this. We leave them
3129 alone because reorg needs them for its own purposes. */
3130 break;
3131
3132 if (reg_set_p (XEXP (note, 0), PATTERN (our_prev)))
3133 {
3134 if (FIND_REG_INC_NOTE (our_prev, NULL_RTX))
3135 break;
3136
3137 if (GET_CODE (PATTERN (our_prev)) == PARALLEL)
3138 {
3139 /* If we find a SET of something else, we can't
3140 delete the insn. */
3141
3142 int i;
3143
3144 for (i = 0; i < XVECLEN (PATTERN (our_prev), 0); i++)
3145 {
3146 rtx part = XVECEXP (PATTERN (our_prev), 0, i);
3147
3148 if (GET_CODE (part) == SET
3149 && SET_DEST (part) != XEXP (note, 0))
3150 break;
3151 }
3152
3153 if (i == XVECLEN (PATTERN (our_prev), 0))
3154 delete_computation (our_prev);
3155 }
3156 else if (GET_CODE (PATTERN (our_prev)) == SET
3157 && SET_DEST (PATTERN (our_prev)) == XEXP (note, 0))
3158 delete_computation (our_prev);
3159
3160 break;
3161 }
3162
3163 /* If OUR_PREV references the register that dies here, it is an
3164 additional use. Hence any prior SET isn't dead. However, this
3165 insn becomes the new place for the REG_DEAD note. */
3166 if (reg_overlap_mentioned_p (XEXP (note, 0),
3167 PATTERN (our_prev)))
3168 {
3169 XEXP (note, 1) = REG_NOTES (our_prev);
3170 REG_NOTES (our_prev) = note;
3171 break;
3172 }
3173 }
3174 }
3175
3176 delete_insn (insn);
3177 }
3178 \f
3179 /* Delete insn INSN from the chain of insns and update label ref counts.
3180 May delete some following insns as a consequence; may even delete
3181 a label elsewhere and insns that follow it.
3182
3183 Returns the first insn after INSN that was not deleted. */
3184
3185 rtx
3186 delete_insn (insn)
3187 register rtx insn;
3188 {
3189 register rtx next = NEXT_INSN (insn);
3190 register rtx prev = PREV_INSN (insn);
3191 register int was_code_label = (GET_CODE (insn) == CODE_LABEL);
3192 register int dont_really_delete = 0;
3193
3194 while (next && INSN_DELETED_P (next))
3195 next = NEXT_INSN (next);
3196
3197 /* This insn is already deleted => return first following nondeleted. */
3198 if (INSN_DELETED_P (insn))
3199 return next;
3200
3201 /* Don't delete user-declared labels. Convert them to special NOTEs
3202 instead. */
3203 if (was_code_label && LABEL_NAME (insn) != 0
3204 && optimize && ! dont_really_delete)
3205 {
3206 PUT_CODE (insn, NOTE);
3207 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
3208 NOTE_SOURCE_FILE (insn) = 0;
3209 dont_really_delete = 1;
3210 }
3211 else
3212 /* Mark this insn as deleted. */
3213 INSN_DELETED_P (insn) = 1;
3214
3215 /* If this is an unconditional jump, delete it from the jump chain. */
3216 if (simplejump_p (insn))
3217 delete_from_jump_chain (insn);
3218
3219 /* If instruction is followed by a barrier,
3220 delete the barrier too. */
3221
3222 if (next != 0 && GET_CODE (next) == BARRIER)
3223 {
3224 INSN_DELETED_P (next) = 1;
3225 next = NEXT_INSN (next);
3226 }
3227
3228 /* Patch out INSN (and the barrier if any) */
3229
3230 if (optimize && ! dont_really_delete)
3231 {
3232 if (prev)
3233 {
3234 NEXT_INSN (prev) = next;
3235 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3236 NEXT_INSN (XVECEXP (PATTERN (prev), 0,
3237 XVECLEN (PATTERN (prev), 0) - 1)) = next;
3238 }
3239
3240 if (next)
3241 {
3242 PREV_INSN (next) = prev;
3243 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3244 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3245 }
3246
3247 if (prev && NEXT_INSN (prev) == 0)
3248 set_last_insn (prev);
3249 }
3250
3251 /* If deleting a jump, decrement the count of the label,
3252 and delete the label if it is now unused. */
3253
3254 if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
3255 if (--LABEL_NUSES (JUMP_LABEL (insn)) == 0)
3256 {
3257 /* This can delete NEXT or PREV,
3258 either directly if NEXT is JUMP_LABEL (INSN),
3259 or indirectly through more levels of jumps. */
3260 delete_insn (JUMP_LABEL (insn));
3261 /* I feel a little doubtful about this loop,
3262 but I see no clean and sure alternative way
3263 to find the first insn after INSN that is not now deleted.
3264 I hope this works. */
3265 while (next && INSN_DELETED_P (next))
3266 next = NEXT_INSN (next);
3267 return next;
3268 }
3269
3270 while (prev && (INSN_DELETED_P (prev) || GET_CODE (prev) == NOTE))
3271 prev = PREV_INSN (prev);
3272
3273 /* If INSN was a label and a dispatch table follows it,
3274 delete the dispatch table. The tablejump must have gone already.
3275 It isn't useful to fall through into a table. */
3276
3277 if (was_code_label
3278 && NEXT_INSN (insn) != 0
3279 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
3280 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
3281 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
3282 next = delete_insn (NEXT_INSN (insn));
3283
3284 /* If INSN was a label, delete insns following it if now unreachable. */
3285
3286 if (was_code_label && prev && GET_CODE (prev) == BARRIER)
3287 {
3288 register RTX_CODE code;
3289 while (next != 0
3290 && ((code = GET_CODE (next)) == INSN
3291 || code == JUMP_INSN || code == CALL_INSN
3292 || code == NOTE
3293 || (code == CODE_LABEL && INSN_DELETED_P (next))))
3294 {
3295 if (code == NOTE
3296 && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
3297 next = NEXT_INSN (next);
3298 /* Keep going past other deleted labels to delete what follows. */
3299 else if (code == CODE_LABEL && INSN_DELETED_P (next))
3300 next = NEXT_INSN (next);
3301 else
3302 /* Note: if this deletes a jump, it can cause more
3303 deletion of unreachable code, after a different label.
3304 As long as the value from this recursive call is correct,
3305 this invocation functions correctly. */
3306 next = delete_insn (next);
3307 }
3308 }
3309
3310 return next;
3311 }
3312
3313 /* Advance from INSN till reaching something not deleted
3314 then return that. May return INSN itself. */
3315
3316 rtx
3317 next_nondeleted_insn (insn)
3318 rtx insn;
3319 {
3320 while (INSN_DELETED_P (insn))
3321 insn = NEXT_INSN (insn);
3322 return insn;
3323 }
3324 \f
3325 /* Delete a range of insns from FROM to TO, inclusive.
3326 This is for the sake of peephole optimization, so assume
3327 that whatever these insns do will still be done by a new
3328 peephole insn that will replace them. */
3329
3330 void
3331 delete_for_peephole (from, to)
3332 register rtx from, to;
3333 {
3334 register rtx insn = from;
3335
3336 while (1)
3337 {
3338 register rtx next = NEXT_INSN (insn);
3339 register rtx prev = PREV_INSN (insn);
3340
3341 if (GET_CODE (insn) != NOTE)
3342 {
3343 INSN_DELETED_P (insn) = 1;
3344
3345 /* Patch this insn out of the chain. */
3346 /* We don't do this all at once, because we
3347 must preserve all NOTEs. */
3348 if (prev)
3349 NEXT_INSN (prev) = next;
3350
3351 if (next)
3352 PREV_INSN (next) = prev;
3353 }
3354
3355 if (insn == to)
3356 break;
3357 insn = next;
3358 }
3359
3360 /* Note that if TO is an unconditional jump
3361 we *do not* delete the BARRIER that follows,
3362 since the peephole that replaces this sequence
3363 is also an unconditional jump in that case. */
3364 }
3365 \f
3366 /* Invert the condition of the jump JUMP, and make it jump
3367 to label NLABEL instead of where it jumps now. */
3368
3369 int
3370 invert_jump (jump, nlabel)
3371 rtx jump, nlabel;
3372 {
3373 register rtx olabel = JUMP_LABEL (jump);
3374
3375 /* We have to either invert the condition and change the label or
3376 do neither. Either operation could fail. We first try to invert
3377 the jump. If that succeeds, we try changing the label. If that fails,
3378 we invert the jump back to what it was. */
3379
3380 if (! invert_exp (PATTERN (jump), jump))
3381 return 0;
3382
3383 if (redirect_jump (jump, nlabel))
3384 return 1;
3385
3386 if (! invert_exp (PATTERN (jump), jump))
3387 /* This should just be putting it back the way it was. */
3388 abort ();
3389
3390 return 0;
3391 }
3392
3393 /* Invert the jump condition of rtx X contained in jump insn, INSN.
3394
3395 Return 1 if we can do so, 0 if we cannot find a way to do so that
3396 matches a pattern. */
3397
3398 int
3399 invert_exp (x, insn)
3400 rtx x;
3401 rtx insn;
3402 {
3403 register RTX_CODE code;
3404 register int i;
3405 register char *fmt;
3406
3407 code = GET_CODE (x);
3408
3409 if (code == IF_THEN_ELSE)
3410 {
3411 register rtx comp = XEXP (x, 0);
3412 register rtx tem;
3413
3414 /* We can do this in two ways: The preferable way, which can only
3415 be done if this is not an integer comparison, is to reverse
3416 the comparison code. Otherwise, swap the THEN-part and ELSE-part
3417 of the IF_THEN_ELSE. If we can't do either, fail. */
3418
3419 if (can_reverse_comparison_p (comp, insn)
3420 && validate_change (insn, &XEXP (x, 0),
3421 gen_rtx (reverse_condition (GET_CODE (comp)),
3422 GET_MODE (comp), XEXP (comp, 0),
3423 XEXP (comp, 1)), 0))
3424 return 1;
3425
3426 tem = XEXP (x, 1);
3427 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
3428 validate_change (insn, &XEXP (x, 2), tem, 1);
3429 return apply_change_group ();
3430 }
3431
3432 fmt = GET_RTX_FORMAT (code);
3433 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3434 {
3435 if (fmt[i] == 'e')
3436 if (! invert_exp (XEXP (x, i), insn))
3437 return 0;
3438 if (fmt[i] == 'E')
3439 {
3440 register int j;
3441 for (j = 0; j < XVECLEN (x, i); j++)
3442 if (!invert_exp (XVECEXP (x, i, j), insn))
3443 return 0;
3444 }
3445 }
3446
3447 return 1;
3448 }
3449 \f
3450 /* Make jump JUMP jump to label NLABEL instead of where it jumps now.
3451 If the old jump target label is unused as a result,
3452 it and the code following it may be deleted.
3453
3454 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
3455 RETURN insn.
3456
3457 The return value will be 1 if the change was made, 0 if it wasn't (this
3458 can only occur for NLABEL == 0). */
3459
3460 int
3461 redirect_jump (jump, nlabel)
3462 rtx jump, nlabel;
3463 {
3464 register rtx olabel = JUMP_LABEL (jump);
3465
3466 if (nlabel == olabel)
3467 return 1;
3468
3469 if (! redirect_exp (&PATTERN (jump), olabel, nlabel, jump))
3470 return 0;
3471
3472 /* If this is an unconditional branch, delete it from the jump_chain of
3473 OLABEL and add it to the jump_chain of NLABEL (assuming both labels
3474 have UID's in range and JUMP_CHAIN is valid). */
3475 if (jump_chain && (simplejump_p (jump)
3476 || GET_CODE (PATTERN (jump)) == RETURN))
3477 {
3478 int label_index = nlabel ? INSN_UID (nlabel) : 0;
3479
3480 delete_from_jump_chain (jump);
3481 if (label_index < max_jump_chain
3482 && INSN_UID (jump) < max_jump_chain)
3483 {
3484 jump_chain[INSN_UID (jump)] = jump_chain[label_index];
3485 jump_chain[label_index] = jump;
3486 }
3487 }
3488
3489 JUMP_LABEL (jump) = nlabel;
3490 if (nlabel)
3491 ++LABEL_NUSES (nlabel);
3492
3493 if (olabel && --LABEL_NUSES (olabel) == 0)
3494 delete_insn (olabel);
3495
3496 return 1;
3497 }
3498
3499 /* Delete the instruction JUMP from any jump chain it might be on. */
3500
3501 static void
3502 delete_from_jump_chain (jump)
3503 rtx jump;
3504 {
3505 int index;
3506 rtx olabel = JUMP_LABEL (jump);
3507
3508 /* Handle unconditional jumps. */
3509 if (jump_chain && olabel != 0
3510 && INSN_UID (olabel) < max_jump_chain
3511 && simplejump_p (jump))
3512 index = INSN_UID (olabel);
3513 /* Handle return insns. */
3514 else if (jump_chain && GET_CODE (PATTERN (jump)) == RETURN)
3515 index = 0;
3516 else return;
3517
3518 if (jump_chain[index] == jump)
3519 jump_chain[index] = jump_chain[INSN_UID (jump)];
3520 else
3521 {
3522 rtx insn;
3523
3524 for (insn = jump_chain[index];
3525 insn != 0;
3526 insn = jump_chain[INSN_UID (insn)])
3527 if (jump_chain[INSN_UID (insn)] == jump)
3528 {
3529 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (jump)];
3530 break;
3531 }
3532 }
3533 }
3534
3535 /* If NLABEL is nonzero, throughout the rtx at LOC,
3536 alter (LABEL_REF OLABEL) to (LABEL_REF NLABEL). If OLABEL is
3537 zero, alter (RETURN) to (LABEL_REF NLABEL).
3538
3539 If NLABEL is zero, alter (LABEL_REF OLABEL) to (RETURN) and check
3540 validity with validate_change. Convert (set (pc) (label_ref olabel))
3541 to (return).
3542
3543 Return 0 if we found a change we would like to make but it is invalid.
3544 Otherwise, return 1. */
3545
3546 int
3547 redirect_exp (loc, olabel, nlabel, insn)
3548 rtx *loc;
3549 rtx olabel, nlabel;
3550 rtx insn;
3551 {
3552 register rtx x = *loc;
3553 register RTX_CODE code = GET_CODE (x);
3554 register int i;
3555 register char *fmt;
3556
3557 if (code == LABEL_REF)
3558 {
3559 if (XEXP (x, 0) == olabel)
3560 {
3561 if (nlabel)
3562 XEXP (x, 0) = nlabel;
3563 else
3564 return validate_change (insn, loc, gen_rtx (RETURN, VOIDmode), 0);
3565 return 1;
3566 }
3567 }
3568 else if (code == RETURN && olabel == 0)
3569 {
3570 x = gen_rtx (LABEL_REF, VOIDmode, nlabel);
3571 if (loc == &PATTERN (insn))
3572 x = gen_rtx (SET, VOIDmode, pc_rtx, x);
3573 return validate_change (insn, loc, x, 0);
3574 }
3575
3576 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
3577 && GET_CODE (SET_SRC (x)) == LABEL_REF
3578 && XEXP (SET_SRC (x), 0) == olabel)
3579 return validate_change (insn, loc, gen_rtx (RETURN, VOIDmode), 0);
3580
3581 fmt = GET_RTX_FORMAT (code);
3582 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3583 {
3584 if (fmt[i] == 'e')
3585 if (! redirect_exp (&XEXP (x, i), olabel, nlabel, insn))
3586 return 0;
3587 if (fmt[i] == 'E')
3588 {
3589 register int j;
3590 for (j = 0; j < XVECLEN (x, i); j++)
3591 if (! redirect_exp (&XVECEXP (x, i, j), olabel, nlabel, insn))
3592 return 0;
3593 }
3594 }
3595
3596 return 1;
3597 }
3598 \f
3599 /* Make jump JUMP jump to label NLABEL, assuming it used to be a tablejump.
3600
3601 If the old jump target label (before the dispatch table) becomes unused,
3602 it and the dispatch table may be deleted. In that case, find the insn
3603 before the jump references that label and delete it and logical successors
3604 too. */
3605
3606 void
3607 redirect_tablejump (jump, nlabel)
3608 rtx jump, nlabel;
3609 {
3610 register rtx olabel = JUMP_LABEL (jump);
3611
3612 /* Add this jump to the jump_chain of NLABEL. */
3613 if (jump_chain && INSN_UID (nlabel) < max_jump_chain
3614 && INSN_UID (jump) < max_jump_chain)
3615 {
3616 jump_chain[INSN_UID (jump)] = jump_chain[INSN_UID (nlabel)];
3617 jump_chain[INSN_UID (nlabel)] = jump;
3618 }
3619
3620 PATTERN (jump) = gen_jump (nlabel);
3621 JUMP_LABEL (jump) = nlabel;
3622 ++LABEL_NUSES (nlabel);
3623 INSN_CODE (jump) = -1;
3624
3625 if (--LABEL_NUSES (olabel) == 0)
3626 {
3627 delete_labelref_insn (jump, olabel, 0);
3628 delete_insn (olabel);
3629 }
3630 }
3631
3632 /* Find the insn referencing LABEL that is a logical predecessor of INSN.
3633 If we found one, delete it and then delete this insn if DELETE_THIS is
3634 non-zero. Return non-zero if INSN or a predecessor references LABEL. */
3635
3636 static int
3637 delete_labelref_insn (insn, label, delete_this)
3638 rtx insn, label;
3639 int delete_this;
3640 {
3641 int deleted = 0;
3642 rtx link;
3643
3644 if (GET_CODE (insn) != NOTE
3645 && reg_mentioned_p (label, PATTERN (insn)))
3646 {
3647 if (delete_this)
3648 {
3649 delete_insn (insn);
3650 deleted = 1;
3651 }
3652 else
3653 return 1;
3654 }
3655
3656 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
3657 if (delete_labelref_insn (XEXP (link, 0), label, 1))
3658 {
3659 if (delete_this)
3660 {
3661 delete_insn (insn);
3662 deleted = 1;
3663 }
3664 else
3665 return 1;
3666 }
3667
3668 return deleted;
3669 }
3670 \f
3671 /* Like rtx_equal_p except that it considers two REGs as equal
3672 if they renumber to the same value. */
3673
3674 int
3675 rtx_renumbered_equal_p (x, y)
3676 rtx x, y;
3677 {
3678 register int i;
3679 register RTX_CODE code = GET_CODE (x);
3680 register char *fmt;
3681
3682 if (x == y)
3683 return 1;
3684 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
3685 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
3686 && GET_CODE (SUBREG_REG (y)) == REG)))
3687 {
3688 register int j;
3689
3690 if (GET_MODE (x) != GET_MODE (y))
3691 return 0;
3692
3693 /* If we haven't done any renumbering, don't
3694 make any assumptions. */
3695 if (reg_renumber == 0)
3696 return rtx_equal_p (x, y);
3697
3698 if (code == SUBREG)
3699 {
3700 i = REGNO (SUBREG_REG (x));
3701 if (reg_renumber[i] >= 0)
3702 i = reg_renumber[i];
3703 i += SUBREG_WORD (x);
3704 }
3705 else
3706 {
3707 i = REGNO (x);
3708 if (reg_renumber[i] >= 0)
3709 i = reg_renumber[i];
3710 }
3711 if (GET_CODE (y) == SUBREG)
3712 {
3713 j = REGNO (SUBREG_REG (y));
3714 if (reg_renumber[j] >= 0)
3715 j = reg_renumber[j];
3716 j += SUBREG_WORD (y);
3717 }
3718 else
3719 {
3720 j = REGNO (y);
3721 if (reg_renumber[j] >= 0)
3722 j = reg_renumber[j];
3723 }
3724 return i == j;
3725 }
3726 /* Now we have disposed of all the cases
3727 in which different rtx codes can match. */
3728 if (code != GET_CODE (y))
3729 return 0;
3730 switch (code)
3731 {
3732 case PC:
3733 case CC0:
3734 case ADDR_VEC:
3735 case ADDR_DIFF_VEC:
3736 return 0;
3737
3738 case CONST_INT:
3739 return XINT (x, 0) == XINT (y, 0);
3740
3741 case LABEL_REF:
3742 /* We can't assume nonlocal labels have their following insns yet. */
3743 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
3744 return XEXP (x, 0) == XEXP (y, 0);
3745 /* Two label-refs are equivalent if they point at labels
3746 in the same position in the instruction stream. */
3747 return (next_real_insn (XEXP (x, 0))
3748 == next_real_insn (XEXP (y, 0)));
3749
3750 case SYMBOL_REF:
3751 return XSTR (x, 0) == XSTR (y, 0);
3752 }
3753
3754 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
3755
3756 if (GET_MODE (x) != GET_MODE (y))
3757 return 0;
3758
3759 /* Compare the elements. If any pair of corresponding elements
3760 fail to match, return 0 for the whole things. */
3761
3762 fmt = GET_RTX_FORMAT (code);
3763 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3764 {
3765 register int j;
3766 switch (fmt[i])
3767 {
3768 case 'w':
3769 if (XWINT (x, i) != XWINT (y, i))
3770 return 0;
3771 break;
3772
3773 case 'i':
3774 if (XINT (x, i) != XINT (y, i))
3775 return 0;
3776 break;
3777
3778 case 's':
3779 if (strcmp (XSTR (x, i), XSTR (y, i)))
3780 return 0;
3781 break;
3782
3783 case 'e':
3784 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
3785 return 0;
3786 break;
3787
3788 case 'u':
3789 if (XEXP (x, i) != XEXP (y, i))
3790 return 0;
3791 /* fall through. */
3792 case '0':
3793 break;
3794
3795 case 'E':
3796 if (XVECLEN (x, i) != XVECLEN (y, i))
3797 return 0;
3798 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3799 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
3800 return 0;
3801 break;
3802
3803 default:
3804 abort ();
3805 }
3806 }
3807 return 1;
3808 }
3809 \f
3810 /* If X is a hard register or equivalent to one or a subregister of one,
3811 return the hard register number. If X is a pseudo register that was not
3812 assigned a hard register, return the pseudo register number. Otherwise,
3813 return -1. Any rtx is valid for X. */
3814
3815 int
3816 true_regnum (x)
3817 rtx x;
3818 {
3819 if (GET_CODE (x) == REG)
3820 {
3821 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
3822 return reg_renumber[REGNO (x)];
3823 return REGNO (x);
3824 }
3825 if (GET_CODE (x) == SUBREG)
3826 {
3827 int base = true_regnum (SUBREG_REG (x));
3828 if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
3829 return SUBREG_WORD (x) + base;
3830 }
3831 return -1;
3832 }
3833 \f
3834 /* Optimize code of the form:
3835
3836 for (x = a[i]; x; ...)
3837 ...
3838 for (x = a[i]; x; ...)
3839 ...
3840 foo:
3841
3842 Loop optimize will change the above code into
3843
3844 if (x = a[i])
3845 for (;;)
3846 { ...; if (! (x = ...)) break; }
3847 if (x = a[i])
3848 for (;;)
3849 { ...; if (! (x = ...)) break; }
3850 foo:
3851
3852 In general, if the first test fails, the program can branch
3853 directly to `foo' and skip the second try which is doomed to fail.
3854 We run this after loop optimization and before flow analysis. */
3855
3856 /* When comparing the insn patterns, we track the fact that different
3857 pseudo-register numbers may have been used in each computation.
3858 The following array stores an equivalence -- same_regs[I] == J means
3859 that pseudo register I was used in the first set of tests in a context
3860 where J was used in the second set. We also count the number of such
3861 pending equivalences. If nonzero, the expressions really aren't the
3862 same. */
3863
3864 static int *same_regs;
3865
3866 static int num_same_regs;
3867
3868 /* Track any registers modified between the target of the first jump and
3869 the second jump. They never compare equal. */
3870
3871 static char *modified_regs;
3872
3873 /* Record if memory was modified. */
3874
3875 static int modified_mem;
3876
3877 /* Called via note_stores on each insn between the target of the first
3878 branch and the second branch. It marks any changed registers. */
3879
3880 static void
3881 mark_modified_reg (dest, x)
3882 rtx dest;
3883 rtx x;
3884 {
3885 int regno, i;
3886
3887 if (GET_CODE (dest) == SUBREG)
3888 dest = SUBREG_REG (dest);
3889
3890 if (GET_CODE (dest) == MEM)
3891 modified_mem = 1;
3892
3893 if (GET_CODE (dest) != REG)
3894 return;
3895
3896 regno = REGNO (dest);
3897 if (regno >= FIRST_PSEUDO_REGISTER)
3898 modified_regs[regno] = 1;
3899 else
3900 for (i = 0; i < HARD_REGNO_NREGS (regno, GET_MODE (dest)); i++)
3901 modified_regs[regno + i] = 1;
3902 }
3903
3904 /* F is the first insn in the chain of insns. */
3905
3906 void
3907 thread_jumps (f, max_reg, verbose)
3908 rtx f;
3909 int max_reg;
3910 int verbose;
3911 {
3912 /* Basic algorithm is to find a conditional branch,
3913 the label it may branch to, and the branch after
3914 that label. If the two branches test the same condition,
3915 walk back from both branch paths until the insn patterns
3916 differ, or code labels are hit. If we make it back to
3917 the target of the first branch, then we know that the first branch
3918 will either always succeed or always fail depending on the relative
3919 senses of the two branches. So adjust the first branch accordingly
3920 in this case. */
3921
3922 rtx label, b1, b2, t1, t2;
3923 enum rtx_code code1, code2;
3924 rtx b1op0, b1op1, b2op0, b2op1;
3925 int changed = 1;
3926 int i;
3927 int *all_reset;
3928
3929 /* Allocate register tables and quick-reset table. */
3930 modified_regs = (char *) alloca (max_reg * sizeof (char));
3931 same_regs = (int *) alloca (max_reg * sizeof (int));
3932 all_reset = (int *) alloca (max_reg * sizeof (int));
3933 for (i = 0; i < max_reg; i++)
3934 all_reset[i] = -1;
3935
3936 while (changed)
3937 {
3938 changed = 0;
3939
3940 for (b1 = f; b1; b1 = NEXT_INSN (b1))
3941 {
3942 /* Get to a candidate branch insn. */
3943 if (GET_CODE (b1) != JUMP_INSN
3944 || ! condjump_p (b1) || simplejump_p (b1)
3945 || JUMP_LABEL (b1) == 0)
3946 continue;
3947
3948 bzero (modified_regs, max_reg * sizeof (char));
3949 modified_mem = 0;
3950
3951 bcopy (all_reset, same_regs, max_reg * sizeof (int));
3952 num_same_regs = 0;
3953
3954 label = JUMP_LABEL (b1);
3955
3956 /* Look for a branch after the target. Record any registers and
3957 memory modified between the target and the branch. Stop when we
3958 get to a label since we can't know what was changed there. */
3959 for (b2 = NEXT_INSN (label); b2; b2 = NEXT_INSN (b2))
3960 {
3961 if (GET_CODE (b2) == CODE_LABEL)
3962 break;
3963
3964 else if (GET_CODE (b2) == JUMP_INSN)
3965 {
3966 /* If this is an unconditional jump and is the only use of
3967 its target label, we can follow it. */
3968 if (simplejump_p (b2)
3969 && JUMP_LABEL (b2) != 0
3970 && LABEL_NUSES (JUMP_LABEL (b2)) == 1)
3971 {
3972 b2 = JUMP_LABEL (b2);
3973 continue;
3974 }
3975 else
3976 break;
3977 }
3978
3979 if (GET_CODE (b2) != CALL_INSN && GET_CODE (b2) != INSN)
3980 continue;
3981
3982 if (GET_CODE (b2) == CALL_INSN)
3983 {
3984 modified_mem = 1;
3985 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3986 if (call_used_regs[i] && ! fixed_regs[i]
3987 && i != STACK_POINTER_REGNUM
3988 && i != FRAME_POINTER_REGNUM
3989 && i != ARG_POINTER_REGNUM)
3990 modified_regs[i] = 1;
3991 }
3992
3993 note_stores (PATTERN (b2), mark_modified_reg);
3994 }
3995
3996 /* Check the next candidate branch insn from the label
3997 of the first. */
3998 if (b2 == 0
3999 || GET_CODE (b2) != JUMP_INSN
4000 || b2 == b1
4001 || ! condjump_p (b2)
4002 || simplejump_p (b2))
4003 continue;
4004
4005 /* Get the comparison codes and operands, reversing the
4006 codes if appropriate. If we don't have comparison codes,
4007 we can't do anything. */
4008 b1op0 = XEXP (XEXP (SET_SRC (PATTERN (b1)), 0), 0);
4009 b1op1 = XEXP (XEXP (SET_SRC (PATTERN (b1)), 0), 1);
4010 code1 = GET_CODE (XEXP (SET_SRC (PATTERN (b1)), 0));
4011 if (XEXP (SET_SRC (PATTERN (b1)), 1) == pc_rtx)
4012 code1 = reverse_condition (code1);
4013
4014 b2op0 = XEXP (XEXP (SET_SRC (PATTERN (b2)), 0), 0);
4015 b2op1 = XEXP (XEXP (SET_SRC (PATTERN (b2)), 0), 1);
4016 code2 = GET_CODE (XEXP (SET_SRC (PATTERN (b2)), 0));
4017 if (XEXP (SET_SRC (PATTERN (b2)), 1) == pc_rtx)
4018 code2 = reverse_condition (code2);
4019
4020 /* If they test the same things and knowing that B1 branches
4021 tells us whether or not B2 branches, check if we
4022 can thread the branch. */
4023 if (rtx_equal_for_thread_p (b1op0, b2op0, b2)
4024 && rtx_equal_for_thread_p (b1op1, b2op1, b2)
4025 && (comparison_dominates_p (code1, code2)
4026 || comparison_dominates_p (code1, reverse_condition (code2))))
4027 {
4028 t1 = prev_nonnote_insn (b1);
4029 t2 = prev_nonnote_insn (b2);
4030
4031 while (t1 != 0 && t2 != 0)
4032 {
4033 if (t1 == 0 || t2 == 0)
4034 break;
4035
4036 if (t2 == label)
4037 {
4038 /* We have reached the target of the first branch.
4039 If there are no pending register equivalents,
4040 we know that this branch will either always
4041 succeed (if the senses of the two branches are
4042 the same) or always fail (if not). */
4043 rtx new_label;
4044
4045 if (num_same_regs != 0)
4046 break;
4047
4048 if (comparison_dominates_p (code1, code2))
4049 new_label = JUMP_LABEL (b2);
4050 else
4051 new_label = get_label_after (b2);
4052
4053 if (JUMP_LABEL (b1) != new_label
4054 && redirect_jump (b1, new_label))
4055 changed = 1;
4056 break;
4057 }
4058
4059 /* If either of these is not a normal insn (it might be
4060 a JUMP_INSN, CALL_INSN, or CODE_LABEL) we fail. (NOTEs
4061 have already been skipped above.) Similarly, fail
4062 if the insns are different. */
4063 if (GET_CODE (t1) != INSN || GET_CODE (t2) != INSN
4064 || recog_memoized (t1) != recog_memoized (t2)
4065 || ! rtx_equal_for_thread_p (PATTERN (t1),
4066 PATTERN (t2), t2))
4067 break;
4068
4069 t1 = prev_nonnote_insn (t1);
4070 t2 = prev_nonnote_insn (t2);
4071 }
4072 }
4073 }
4074 }
4075 }
4076 \f
4077 /* This is like RTX_EQUAL_P except that it knows about our handling of
4078 possibly equivalent registers and knows to consider volatile and
4079 modified objects as not equal.
4080
4081 YINSN is the insn containing Y. */
4082
4083 int
4084 rtx_equal_for_thread_p (x, y, yinsn)
4085 rtx x, y;
4086 rtx yinsn;
4087 {
4088 register int i;
4089 register int j;
4090 register enum rtx_code code;
4091 register char *fmt;
4092
4093 code = GET_CODE (x);
4094 /* Rtx's of different codes cannot be equal. */
4095 if (code != GET_CODE (y))
4096 return 0;
4097
4098 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
4099 (REG:SI x) and (REG:HI x) are NOT equivalent. */
4100
4101 if (GET_MODE (x) != GET_MODE (y))
4102 return 0;
4103
4104 /* Handle special-cases first. */
4105 switch (code)
4106 {
4107 case REG:
4108 if (REGNO (x) == REGNO (y) && ! modified_regs[REGNO (x)])
4109 return 1;
4110
4111 /* If neither is user variable or hard register, check for possible
4112 equivalence. */
4113 if (REG_USERVAR_P (x) || REG_USERVAR_P (y)
4114 || REGNO (x) < FIRST_PSEUDO_REGISTER
4115 || REGNO (y) < FIRST_PSEUDO_REGISTER)
4116 return 0;
4117
4118 if (same_regs[REGNO (x)] == -1)
4119 {
4120 same_regs[REGNO (x)] = REGNO (y);
4121 num_same_regs++;
4122
4123 /* If this is the first time we are seeing a register on the `Y'
4124 side, see if it is the last use. If not, we can't thread the
4125 jump, so mark it as not equivalent. */
4126 if (regno_last_uid[REGNO (y)] != INSN_UID (yinsn))
4127 return 0;
4128
4129 return 1;
4130 }
4131 else
4132 return (same_regs[REGNO (x)] == REGNO (y));
4133
4134 break;
4135
4136 case MEM:
4137 /* If memory modified or either volatile, not equivalent.
4138 Else, check address. */
4139 if (modified_mem || MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
4140 return 0;
4141
4142 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
4143
4144 case ASM_INPUT:
4145 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
4146 return 0;
4147
4148 break;
4149
4150 case SET:
4151 /* Cancel a pending `same_regs' if setting equivalenced registers.
4152 Then process source. */
4153 if (GET_CODE (SET_DEST (x)) == REG
4154 && GET_CODE (SET_DEST (y)) == REG)
4155 {
4156 if (same_regs[REGNO (SET_DEST (x))] == REGNO (SET_DEST (y)))
4157 {
4158 same_regs[REGNO (SET_DEST (x))] = -1;
4159 num_same_regs--;
4160 }
4161 else if (REGNO (SET_DEST (x)) != REGNO (SET_DEST (y)))
4162 return 0;
4163 }
4164 else
4165 if (rtx_equal_for_thread_p (SET_DEST (x), SET_DEST (y), yinsn) == 0)
4166 return 0;
4167
4168 return rtx_equal_for_thread_p (SET_SRC (x), SET_SRC (y), yinsn);
4169
4170 case LABEL_REF:
4171 return XEXP (x, 0) == XEXP (y, 0);
4172
4173 case SYMBOL_REF:
4174 return XSTR (x, 0) == XSTR (y, 0);
4175 }
4176
4177 if (x == y)
4178 return 1;
4179
4180 fmt = GET_RTX_FORMAT (code);
4181 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4182 {
4183 switch (fmt[i])
4184 {
4185 case 'w':
4186 if (XWINT (x, i) != XWINT (y, i))
4187 return 0;
4188 break;
4189
4190 case 'n':
4191 case 'i':
4192 if (XINT (x, i) != XINT (y, i))
4193 return 0;
4194 break;
4195
4196 case 'V':
4197 case 'E':
4198 /* Two vectors must have the same length. */
4199 if (XVECLEN (x, i) != XVECLEN (y, i))
4200 return 0;
4201
4202 /* And the corresponding elements must match. */
4203 for (j = 0; j < XVECLEN (x, i); j++)
4204 if (rtx_equal_for_thread_p (XVECEXP (x, i, j),
4205 XVECEXP (y, i, j), yinsn) == 0)
4206 return 0;
4207 break;
4208
4209 case 'e':
4210 if (rtx_equal_for_thread_p (XEXP (x, i), XEXP (y, i), yinsn) == 0)
4211 return 0;
4212 break;
4213
4214 case 'S':
4215 case 's':
4216 if (strcmp (XSTR (x, i), XSTR (y, i)))
4217 return 0;
4218 break;
4219
4220 case 'u':
4221 /* These are just backpointers, so they don't matter. */
4222 break;
4223
4224 case '0':
4225 break;
4226
4227 /* It is believed that rtx's at this level will never
4228 contain anything but integers and other rtx's,
4229 except for within LABEL_REFs and SYMBOL_REFs. */
4230 default:
4231 abort ();
4232 }
4233 }
4234 return 1;
4235 }
This page took 0.387717 seconds and 5 git commands to generate.