]> gcc.gnu.org Git - gcc.git/blob - gcc/ira.c
[AArch64] Implement usadv16qi and ssadv16qi standard names
[gcc.git] / gcc / ira.c
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2018 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
30
31 Major IRA notions are:
32
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
39
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
50
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
58
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
64
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
76
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
85
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
96
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
108
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
113
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
130
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
143
144 IRA major passes are:
145
146 o Building IRA internal representation which consists of the
147 following subpasses:
148
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
151
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
155
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
160
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
163
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
167
168 * IRA creates all caps (file ira-build.c).
169
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
175
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
179
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
188
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
203
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
215
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
234
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
246
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
253
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
263
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
276
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
302
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
308
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
315
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
319
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
322
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
325
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
329
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.c.
332
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
339
340 Literature is worth to read for better understanding the code:
341
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
344
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
347
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
351
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
354
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
357
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
359
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
362
363 */
364
365
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "memmodel.h"
375 #include "tm_p.h"
376 #include "insn-config.h"
377 #include "regs.h"
378 #include "ira.h"
379 #include "ira-int.h"
380 #include "diagnostic-core.h"
381 #include "cfgrtl.h"
382 #include "cfgbuild.h"
383 #include "cfgcleanup.h"
384 #include "expr.h"
385 #include "tree-pass.h"
386 #include "output.h"
387 #include "reload.h"
388 #include "cfgloop.h"
389 #include "lra.h"
390 #include "dce.h"
391 #include "dbgcnt.h"
392 #include "rtl-iter.h"
393 #include "shrink-wrap.h"
394 #include "print-rtl.h"
395
396 struct target_ira default_target_ira;
397 struct target_ira_int default_target_ira_int;
398 #if SWITCHABLE_TARGET
399 struct target_ira *this_target_ira = &default_target_ira;
400 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
401 #endif
402
403 /* A modified value of flag `-fira-verbose' used internally. */
404 int internal_flag_ira_verbose;
405
406 /* Dump file of the allocator if it is not NULL. */
407 FILE *ira_dump_file;
408
409 /* The number of elements in the following array. */
410 int ira_spilled_reg_stack_slots_num;
411
412 /* The following array contains info about spilled pseudo-registers
413 stack slots used in current function so far. */
414 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
415
416 /* Correspondingly overall cost of the allocation, overall cost before
417 reload, cost of the allocnos assigned to hard-registers, cost of
418 the allocnos assigned to memory, cost of loads, stores and register
419 move insns generated for pseudo-register live range splitting (see
420 ira-emit.c). */
421 int64_t ira_overall_cost, overall_cost_before;
422 int64_t ira_reg_cost, ira_mem_cost;
423 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
424 int ira_move_loops_num, ira_additional_jumps_num;
425
426 /* All registers that can be eliminated. */
427
428 HARD_REG_SET eliminable_regset;
429
430 /* Value of max_reg_num () before IRA work start. This value helps
431 us to recognize a situation when new pseudos were created during
432 IRA work. */
433 static int max_regno_before_ira;
434
435 /* Temporary hard reg set used for a different calculation. */
436 static HARD_REG_SET temp_hard_regset;
437
438 #define last_mode_for_init_move_cost \
439 (this_target_ira_int->x_last_mode_for_init_move_cost)
440 \f
441
442 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
443 static void
444 setup_reg_mode_hard_regset (void)
445 {
446 int i, m, hard_regno;
447
448 for (m = 0; m < NUM_MACHINE_MODES; m++)
449 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
450 {
451 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
452 for (i = hard_regno_nregs (hard_regno, (machine_mode) m) - 1;
453 i >= 0; i--)
454 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
455 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
456 hard_regno + i);
457 }
458 }
459
460 \f
461 #define no_unit_alloc_regs \
462 (this_target_ira_int->x_no_unit_alloc_regs)
463
464 /* The function sets up the three arrays declared above. */
465 static void
466 setup_class_hard_regs (void)
467 {
468 int cl, i, hard_regno, n;
469 HARD_REG_SET processed_hard_reg_set;
470
471 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
472 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
473 {
474 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
475 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
476 CLEAR_HARD_REG_SET (processed_hard_reg_set);
477 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
478 {
479 ira_non_ordered_class_hard_regs[cl][i] = -1;
480 ira_class_hard_reg_index[cl][i] = -1;
481 }
482 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
483 {
484 #ifdef REG_ALLOC_ORDER
485 hard_regno = reg_alloc_order[i];
486 #else
487 hard_regno = i;
488 #endif
489 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
490 continue;
491 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
492 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
493 ira_class_hard_reg_index[cl][hard_regno] = -1;
494 else
495 {
496 ira_class_hard_reg_index[cl][hard_regno] = n;
497 ira_class_hard_regs[cl][n++] = hard_regno;
498 }
499 }
500 ira_class_hard_regs_num[cl] = n;
501 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
502 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
503 ira_non_ordered_class_hard_regs[cl][n++] = i;
504 ira_assert (ira_class_hard_regs_num[cl] == n);
505 }
506 }
507
508 /* Set up global variables defining info about hard registers for the
509 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
510 that we can use the hard frame pointer for the allocation. */
511 static void
512 setup_alloc_regs (bool use_hard_frame_p)
513 {
514 #ifdef ADJUST_REG_ALLOC_ORDER
515 ADJUST_REG_ALLOC_ORDER;
516 #endif
517 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_nonglobal_reg_set);
518 if (! use_hard_frame_p)
519 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
520 setup_class_hard_regs ();
521 }
522
523 \f
524
525 #define alloc_reg_class_subclasses \
526 (this_target_ira_int->x_alloc_reg_class_subclasses)
527
528 /* Initialize the table of subclasses of each reg class. */
529 static void
530 setup_reg_subclasses (void)
531 {
532 int i, j;
533 HARD_REG_SET temp_hard_regset2;
534
535 for (i = 0; i < N_REG_CLASSES; i++)
536 for (j = 0; j < N_REG_CLASSES; j++)
537 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
538
539 for (i = 0; i < N_REG_CLASSES; i++)
540 {
541 if (i == (int) NO_REGS)
542 continue;
543
544 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
545 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
546 if (hard_reg_set_empty_p (temp_hard_regset))
547 continue;
548 for (j = 0; j < N_REG_CLASSES; j++)
549 if (i != j)
550 {
551 enum reg_class *p;
552
553 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
554 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
555 if (! hard_reg_set_subset_p (temp_hard_regset,
556 temp_hard_regset2))
557 continue;
558 p = &alloc_reg_class_subclasses[j][0];
559 while (*p != LIM_REG_CLASSES) p++;
560 *p = (enum reg_class) i;
561 }
562 }
563 }
564
565 \f
566
567 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
568 static void
569 setup_class_subset_and_memory_move_costs (void)
570 {
571 int cl, cl2, mode, cost;
572 HARD_REG_SET temp_hard_regset2;
573
574 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
575 ira_memory_move_cost[mode][NO_REGS][0]
576 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
577 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
578 {
579 if (cl != (int) NO_REGS)
580 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
581 {
582 ira_max_memory_move_cost[mode][cl][0]
583 = ira_memory_move_cost[mode][cl][0]
584 = memory_move_cost ((machine_mode) mode,
585 (reg_class_t) cl, false);
586 ira_max_memory_move_cost[mode][cl][1]
587 = ira_memory_move_cost[mode][cl][1]
588 = memory_move_cost ((machine_mode) mode,
589 (reg_class_t) cl, true);
590 /* Costs for NO_REGS are used in cost calculation on the
591 1st pass when the preferred register classes are not
592 known yet. In this case we take the best scenario. */
593 if (ira_memory_move_cost[mode][NO_REGS][0]
594 > ira_memory_move_cost[mode][cl][0])
595 ira_max_memory_move_cost[mode][NO_REGS][0]
596 = ira_memory_move_cost[mode][NO_REGS][0]
597 = ira_memory_move_cost[mode][cl][0];
598 if (ira_memory_move_cost[mode][NO_REGS][1]
599 > ira_memory_move_cost[mode][cl][1])
600 ira_max_memory_move_cost[mode][NO_REGS][1]
601 = ira_memory_move_cost[mode][NO_REGS][1]
602 = ira_memory_move_cost[mode][cl][1];
603 }
604 }
605 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
606 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
607 {
608 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
609 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
610 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
611 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
612 ira_class_subset_p[cl][cl2]
613 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
614 if (! hard_reg_set_empty_p (temp_hard_regset2)
615 && hard_reg_set_subset_p (reg_class_contents[cl2],
616 reg_class_contents[cl]))
617 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
618 {
619 cost = ira_memory_move_cost[mode][cl2][0];
620 if (cost > ira_max_memory_move_cost[mode][cl][0])
621 ira_max_memory_move_cost[mode][cl][0] = cost;
622 cost = ira_memory_move_cost[mode][cl2][1];
623 if (cost > ira_max_memory_move_cost[mode][cl][1])
624 ira_max_memory_move_cost[mode][cl][1] = cost;
625 }
626 }
627 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
628 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
629 {
630 ira_memory_move_cost[mode][cl][0]
631 = ira_max_memory_move_cost[mode][cl][0];
632 ira_memory_move_cost[mode][cl][1]
633 = ira_max_memory_move_cost[mode][cl][1];
634 }
635 setup_reg_subclasses ();
636 }
637
638 \f
639
640 /* Define the following macro if allocation through malloc if
641 preferable. */
642 #define IRA_NO_OBSTACK
643
644 #ifndef IRA_NO_OBSTACK
645 /* Obstack used for storing all dynamic data (except bitmaps) of the
646 IRA. */
647 static struct obstack ira_obstack;
648 #endif
649
650 /* Obstack used for storing all bitmaps of the IRA. */
651 static struct bitmap_obstack ira_bitmap_obstack;
652
653 /* Allocate memory of size LEN for IRA data. */
654 void *
655 ira_allocate (size_t len)
656 {
657 void *res;
658
659 #ifndef IRA_NO_OBSTACK
660 res = obstack_alloc (&ira_obstack, len);
661 #else
662 res = xmalloc (len);
663 #endif
664 return res;
665 }
666
667 /* Free memory ADDR allocated for IRA data. */
668 void
669 ira_free (void *addr ATTRIBUTE_UNUSED)
670 {
671 #ifndef IRA_NO_OBSTACK
672 /* do nothing */
673 #else
674 free (addr);
675 #endif
676 }
677
678
679 /* Allocate and returns bitmap for IRA. */
680 bitmap
681 ira_allocate_bitmap (void)
682 {
683 return BITMAP_ALLOC (&ira_bitmap_obstack);
684 }
685
686 /* Free bitmap B allocated for IRA. */
687 void
688 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
689 {
690 /* do nothing */
691 }
692
693 \f
694
695 /* Output information about allocation of all allocnos (except for
696 caps) into file F. */
697 void
698 ira_print_disposition (FILE *f)
699 {
700 int i, n, max_regno;
701 ira_allocno_t a;
702 basic_block bb;
703
704 fprintf (f, "Disposition:");
705 max_regno = max_reg_num ();
706 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
707 for (a = ira_regno_allocno_map[i];
708 a != NULL;
709 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
710 {
711 if (n % 4 == 0)
712 fprintf (f, "\n");
713 n++;
714 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
715 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
716 fprintf (f, "b%-3d", bb->index);
717 else
718 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
719 if (ALLOCNO_HARD_REGNO (a) >= 0)
720 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
721 else
722 fprintf (f, " mem");
723 }
724 fprintf (f, "\n");
725 }
726
727 /* Outputs information about allocation of all allocnos into
728 stderr. */
729 void
730 ira_debug_disposition (void)
731 {
732 ira_print_disposition (stderr);
733 }
734
735 \f
736
737 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
738 register class containing stack registers or NO_REGS if there are
739 no stack registers. To find this class, we iterate through all
740 register pressure classes and choose the first register pressure
741 class containing all the stack registers and having the biggest
742 size. */
743 static void
744 setup_stack_reg_pressure_class (void)
745 {
746 ira_stack_reg_pressure_class = NO_REGS;
747 #ifdef STACK_REGS
748 {
749 int i, best, size;
750 enum reg_class cl;
751 HARD_REG_SET temp_hard_regset2;
752
753 CLEAR_HARD_REG_SET (temp_hard_regset);
754 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
755 SET_HARD_REG_BIT (temp_hard_regset, i);
756 best = 0;
757 for (i = 0; i < ira_pressure_classes_num; i++)
758 {
759 cl = ira_pressure_classes[i];
760 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
761 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
762 size = hard_reg_set_size (temp_hard_regset2);
763 if (best < size)
764 {
765 best = size;
766 ira_stack_reg_pressure_class = cl;
767 }
768 }
769 }
770 #endif
771 }
772
773 /* Find pressure classes which are register classes for which we
774 calculate register pressure in IRA, register pressure sensitive
775 insn scheduling, and register pressure sensitive loop invariant
776 motion.
777
778 To make register pressure calculation easy, we always use
779 non-intersected register pressure classes. A move of hard
780 registers from one register pressure class is not more expensive
781 than load and store of the hard registers. Most likely an allocno
782 class will be a subset of a register pressure class and in many
783 cases a register pressure class. That makes usage of register
784 pressure classes a good approximation to find a high register
785 pressure. */
786 static void
787 setup_pressure_classes (void)
788 {
789 int cost, i, n, curr;
790 int cl, cl2;
791 enum reg_class pressure_classes[N_REG_CLASSES];
792 int m;
793 HARD_REG_SET temp_hard_regset2;
794 bool insert_p;
795
796 if (targetm.compute_pressure_classes)
797 n = targetm.compute_pressure_classes (pressure_classes);
798 else
799 {
800 n = 0;
801 for (cl = 0; cl < N_REG_CLASSES; cl++)
802 {
803 if (ira_class_hard_regs_num[cl] == 0)
804 continue;
805 if (ira_class_hard_regs_num[cl] != 1
806 /* A register class without subclasses may contain a few
807 hard registers and movement between them is costly
808 (e.g. SPARC FPCC registers). We still should consider it
809 as a candidate for a pressure class. */
810 && alloc_reg_class_subclasses[cl][0] < cl)
811 {
812 /* Check that the moves between any hard registers of the
813 current class are not more expensive for a legal mode
814 than load/store of the hard registers of the current
815 class. Such class is a potential candidate to be a
816 register pressure class. */
817 for (m = 0; m < NUM_MACHINE_MODES; m++)
818 {
819 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
820 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
821 AND_COMPL_HARD_REG_SET (temp_hard_regset,
822 ira_prohibited_class_mode_regs[cl][m]);
823 if (hard_reg_set_empty_p (temp_hard_regset))
824 continue;
825 ira_init_register_move_cost_if_necessary ((machine_mode) m);
826 cost = ira_register_move_cost[m][cl][cl];
827 if (cost <= ira_max_memory_move_cost[m][cl][1]
828 || cost <= ira_max_memory_move_cost[m][cl][0])
829 break;
830 }
831 if (m >= NUM_MACHINE_MODES)
832 continue;
833 }
834 curr = 0;
835 insert_p = true;
836 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
837 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
838 /* Remove so far added pressure classes which are subset of the
839 current candidate class. Prefer GENERAL_REGS as a pressure
840 register class to another class containing the same
841 allocatable hard registers. We do this because machine
842 dependent cost hooks might give wrong costs for the latter
843 class but always give the right cost for the former class
844 (GENERAL_REGS). */
845 for (i = 0; i < n; i++)
846 {
847 cl2 = pressure_classes[i];
848 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
849 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
850 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
851 && (! hard_reg_set_equal_p (temp_hard_regset,
852 temp_hard_regset2)
853 || cl2 == (int) GENERAL_REGS))
854 {
855 pressure_classes[curr++] = (enum reg_class) cl2;
856 insert_p = false;
857 continue;
858 }
859 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
860 && (! hard_reg_set_equal_p (temp_hard_regset2,
861 temp_hard_regset)
862 || cl == (int) GENERAL_REGS))
863 continue;
864 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
865 insert_p = false;
866 pressure_classes[curr++] = (enum reg_class) cl2;
867 }
868 /* If the current candidate is a subset of a so far added
869 pressure class, don't add it to the list of the pressure
870 classes. */
871 if (insert_p)
872 pressure_classes[curr++] = (enum reg_class) cl;
873 n = curr;
874 }
875 }
876 #ifdef ENABLE_IRA_CHECKING
877 {
878 HARD_REG_SET ignore_hard_regs;
879
880 /* Check pressure classes correctness: here we check that hard
881 registers from all register pressure classes contains all hard
882 registers available for the allocation. */
883 CLEAR_HARD_REG_SET (temp_hard_regset);
884 CLEAR_HARD_REG_SET (temp_hard_regset2);
885 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
886 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
887 {
888 /* For some targets (like MIPS with MD_REGS), there are some
889 classes with hard registers available for allocation but
890 not able to hold value of any mode. */
891 for (m = 0; m < NUM_MACHINE_MODES; m++)
892 if (contains_reg_of_mode[cl][m])
893 break;
894 if (m >= NUM_MACHINE_MODES)
895 {
896 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
897 continue;
898 }
899 for (i = 0; i < n; i++)
900 if ((int) pressure_classes[i] == cl)
901 break;
902 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
903 if (i < n)
904 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
905 }
906 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
907 /* Some targets (like SPARC with ICC reg) have allocatable regs
908 for which no reg class is defined. */
909 if (REGNO_REG_CLASS (i) == NO_REGS)
910 SET_HARD_REG_BIT (ignore_hard_regs, i);
911 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
912 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
913 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
914 }
915 #endif
916 ira_pressure_classes_num = 0;
917 for (i = 0; i < n; i++)
918 {
919 cl = (int) pressure_classes[i];
920 ira_reg_pressure_class_p[cl] = true;
921 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
922 }
923 setup_stack_reg_pressure_class ();
924 }
925
926 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
927 whose register move cost between any registers of the class is the
928 same as for all its subclasses. We use the data to speed up the
929 2nd pass of calculations of allocno costs. */
930 static void
931 setup_uniform_class_p (void)
932 {
933 int i, cl, cl2, m;
934
935 for (cl = 0; cl < N_REG_CLASSES; cl++)
936 {
937 ira_uniform_class_p[cl] = false;
938 if (ira_class_hard_regs_num[cl] == 0)
939 continue;
940 /* We can not use alloc_reg_class_subclasses here because move
941 cost hooks does not take into account that some registers are
942 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
943 is element of alloc_reg_class_subclasses for GENERAL_REGS
944 because SSE regs are unavailable. */
945 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
946 {
947 if (ira_class_hard_regs_num[cl2] == 0)
948 continue;
949 for (m = 0; m < NUM_MACHINE_MODES; m++)
950 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
951 {
952 ira_init_register_move_cost_if_necessary ((machine_mode) m);
953 if (ira_register_move_cost[m][cl][cl]
954 != ira_register_move_cost[m][cl2][cl2])
955 break;
956 }
957 if (m < NUM_MACHINE_MODES)
958 break;
959 }
960 if (cl2 == LIM_REG_CLASSES)
961 ira_uniform_class_p[cl] = true;
962 }
963 }
964
965 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
966 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
967
968 Target may have many subtargets and not all target hard registers can
969 be used for allocation, e.g. x86 port in 32-bit mode can not use
970 hard registers introduced in x86-64 like r8-r15). Some classes
971 might have the same allocatable hard registers, e.g. INDEX_REGS
972 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
973 calculations efforts we introduce allocno classes which contain
974 unique non-empty sets of allocatable hard-registers.
975
976 Pseudo class cost calculation in ira-costs.c is very expensive.
977 Therefore we are trying to decrease number of classes involved in
978 such calculation. Register classes used in the cost calculation
979 are called important classes. They are allocno classes and other
980 non-empty classes whose allocatable hard register sets are inside
981 of an allocno class hard register set. From the first sight, it
982 looks like that they are just allocno classes. It is not true. In
983 example of x86-port in 32-bit mode, allocno classes will contain
984 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
985 registers are the same for the both classes). The important
986 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
987 because a machine description insn constraint may refers for
988 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
989 of the insn constraints. */
990 static void
991 setup_allocno_and_important_classes (void)
992 {
993 int i, j, n, cl;
994 bool set_p;
995 HARD_REG_SET temp_hard_regset2;
996 static enum reg_class classes[LIM_REG_CLASSES + 1];
997
998 n = 0;
999 /* Collect classes which contain unique sets of allocatable hard
1000 registers. Prefer GENERAL_REGS to other classes containing the
1001 same set of hard registers. */
1002 for (i = 0; i < LIM_REG_CLASSES; i++)
1003 {
1004 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
1005 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1006 for (j = 0; j < n; j++)
1007 {
1008 cl = classes[j];
1009 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1010 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1011 no_unit_alloc_regs);
1012 if (hard_reg_set_equal_p (temp_hard_regset,
1013 temp_hard_regset2))
1014 break;
1015 }
1016 if (j >= n || targetm.additional_allocno_class_p (i))
1017 classes[n++] = (enum reg_class) i;
1018 else if (i == GENERAL_REGS)
1019 /* Prefer general regs. For i386 example, it means that
1020 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1021 (all of them consists of the same available hard
1022 registers). */
1023 classes[j] = (enum reg_class) i;
1024 }
1025 classes[n] = LIM_REG_CLASSES;
1026
1027 /* Set up classes which can be used for allocnos as classes
1028 containing non-empty unique sets of allocatable hard
1029 registers. */
1030 ira_allocno_classes_num = 0;
1031 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1032 if (ira_class_hard_regs_num[cl] > 0)
1033 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1034 ira_important_classes_num = 0;
1035 /* Add non-allocno classes containing to non-empty set of
1036 allocatable hard regs. */
1037 for (cl = 0; cl < N_REG_CLASSES; cl++)
1038 if (ira_class_hard_regs_num[cl] > 0)
1039 {
1040 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1041 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1042 set_p = false;
1043 for (j = 0; j < ira_allocno_classes_num; j++)
1044 {
1045 COPY_HARD_REG_SET (temp_hard_regset2,
1046 reg_class_contents[ira_allocno_classes[j]]);
1047 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1048 if ((enum reg_class) cl == ira_allocno_classes[j])
1049 break;
1050 else if (hard_reg_set_subset_p (temp_hard_regset,
1051 temp_hard_regset2))
1052 set_p = true;
1053 }
1054 if (set_p && j >= ira_allocno_classes_num)
1055 ira_important_classes[ira_important_classes_num++]
1056 = (enum reg_class) cl;
1057 }
1058 /* Now add allocno classes to the important classes. */
1059 for (j = 0; j < ira_allocno_classes_num; j++)
1060 ira_important_classes[ira_important_classes_num++]
1061 = ira_allocno_classes[j];
1062 for (cl = 0; cl < N_REG_CLASSES; cl++)
1063 {
1064 ira_reg_allocno_class_p[cl] = false;
1065 ira_reg_pressure_class_p[cl] = false;
1066 }
1067 for (j = 0; j < ira_allocno_classes_num; j++)
1068 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1069 setup_pressure_classes ();
1070 setup_uniform_class_p ();
1071 }
1072
1073 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1074 given by array CLASSES of length CLASSES_NUM. The function is used
1075 make translation any reg class to an allocno class or to an
1076 pressure class. This translation is necessary for some
1077 calculations when we can use only allocno or pressure classes and
1078 such translation represents an approximate representation of all
1079 classes.
1080
1081 The translation in case when allocatable hard register set of a
1082 given class is subset of allocatable hard register set of a class
1083 in CLASSES is pretty simple. We use smallest classes from CLASSES
1084 containing a given class. If allocatable hard register set of a
1085 given class is not a subset of any corresponding set of a class
1086 from CLASSES, we use the cheapest (with load/store point of view)
1087 class from CLASSES whose set intersects with given class set. */
1088 static void
1089 setup_class_translate_array (enum reg_class *class_translate,
1090 int classes_num, enum reg_class *classes)
1091 {
1092 int cl, mode;
1093 enum reg_class aclass, best_class, *cl_ptr;
1094 int i, cost, min_cost, best_cost;
1095
1096 for (cl = 0; cl < N_REG_CLASSES; cl++)
1097 class_translate[cl] = NO_REGS;
1098
1099 for (i = 0; i < classes_num; i++)
1100 {
1101 aclass = classes[i];
1102 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1103 (cl = *cl_ptr) != LIM_REG_CLASSES;
1104 cl_ptr++)
1105 if (class_translate[cl] == NO_REGS)
1106 class_translate[cl] = aclass;
1107 class_translate[aclass] = aclass;
1108 }
1109 /* For classes which are not fully covered by one of given classes
1110 (in other words covered by more one given class), use the
1111 cheapest class. */
1112 for (cl = 0; cl < N_REG_CLASSES; cl++)
1113 {
1114 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1115 continue;
1116 best_class = NO_REGS;
1117 best_cost = INT_MAX;
1118 for (i = 0; i < classes_num; i++)
1119 {
1120 aclass = classes[i];
1121 COPY_HARD_REG_SET (temp_hard_regset,
1122 reg_class_contents[aclass]);
1123 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1124 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1125 if (! hard_reg_set_empty_p (temp_hard_regset))
1126 {
1127 min_cost = INT_MAX;
1128 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1129 {
1130 cost = (ira_memory_move_cost[mode][aclass][0]
1131 + ira_memory_move_cost[mode][aclass][1]);
1132 if (min_cost > cost)
1133 min_cost = cost;
1134 }
1135 if (best_class == NO_REGS || best_cost > min_cost)
1136 {
1137 best_class = aclass;
1138 best_cost = min_cost;
1139 }
1140 }
1141 }
1142 class_translate[cl] = best_class;
1143 }
1144 }
1145
1146 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1147 IRA_PRESSURE_CLASS_TRANSLATE. */
1148 static void
1149 setup_class_translate (void)
1150 {
1151 setup_class_translate_array (ira_allocno_class_translate,
1152 ira_allocno_classes_num, ira_allocno_classes);
1153 setup_class_translate_array (ira_pressure_class_translate,
1154 ira_pressure_classes_num, ira_pressure_classes);
1155 }
1156
1157 /* Order numbers of allocno classes in original target allocno class
1158 array, -1 for non-allocno classes. */
1159 static int allocno_class_order[N_REG_CLASSES];
1160
1161 /* The function used to sort the important classes. */
1162 static int
1163 comp_reg_classes_func (const void *v1p, const void *v2p)
1164 {
1165 enum reg_class cl1 = *(const enum reg_class *) v1p;
1166 enum reg_class cl2 = *(const enum reg_class *) v2p;
1167 enum reg_class tcl1, tcl2;
1168 int diff;
1169
1170 tcl1 = ira_allocno_class_translate[cl1];
1171 tcl2 = ira_allocno_class_translate[cl2];
1172 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1173 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1174 return diff;
1175 return (int) cl1 - (int) cl2;
1176 }
1177
1178 /* For correct work of function setup_reg_class_relation we need to
1179 reorder important classes according to the order of their allocno
1180 classes. It places important classes containing the same
1181 allocatable hard register set adjacent to each other and allocno
1182 class with the allocatable hard register set right after the other
1183 important classes with the same set.
1184
1185 In example from comments of function
1186 setup_allocno_and_important_classes, it places LEGACY_REGS and
1187 GENERAL_REGS close to each other and GENERAL_REGS is after
1188 LEGACY_REGS. */
1189 static void
1190 reorder_important_classes (void)
1191 {
1192 int i;
1193
1194 for (i = 0; i < N_REG_CLASSES; i++)
1195 allocno_class_order[i] = -1;
1196 for (i = 0; i < ira_allocno_classes_num; i++)
1197 allocno_class_order[ira_allocno_classes[i]] = i;
1198 qsort (ira_important_classes, ira_important_classes_num,
1199 sizeof (enum reg_class), comp_reg_classes_func);
1200 for (i = 0; i < ira_important_classes_num; i++)
1201 ira_important_class_nums[ira_important_classes[i]] = i;
1202 }
1203
1204 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1205 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1206 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1207 please see corresponding comments in ira-int.h. */
1208 static void
1209 setup_reg_class_relations (void)
1210 {
1211 int i, cl1, cl2, cl3;
1212 HARD_REG_SET intersection_set, union_set, temp_set2;
1213 bool important_class_p[N_REG_CLASSES];
1214
1215 memset (important_class_p, 0, sizeof (important_class_p));
1216 for (i = 0; i < ira_important_classes_num; i++)
1217 important_class_p[ira_important_classes[i]] = true;
1218 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1219 {
1220 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1221 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1222 {
1223 ira_reg_classes_intersect_p[cl1][cl2] = false;
1224 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1225 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1226 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1227 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1228 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1229 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1230 if (hard_reg_set_empty_p (temp_hard_regset)
1231 && hard_reg_set_empty_p (temp_set2))
1232 {
1233 /* The both classes have no allocatable hard registers
1234 -- take all class hard registers into account and use
1235 reg_class_subunion and reg_class_superunion. */
1236 for (i = 0;; i++)
1237 {
1238 cl3 = reg_class_subclasses[cl1][i];
1239 if (cl3 == LIM_REG_CLASSES)
1240 break;
1241 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1242 (enum reg_class) cl3))
1243 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1244 }
1245 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1246 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1247 continue;
1248 }
1249 ira_reg_classes_intersect_p[cl1][cl2]
1250 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1251 if (important_class_p[cl1] && important_class_p[cl2]
1252 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1253 {
1254 /* CL1 and CL2 are important classes and CL1 allocatable
1255 hard register set is inside of CL2 allocatable hard
1256 registers -- make CL1 a superset of CL2. */
1257 enum reg_class *p;
1258
1259 p = &ira_reg_class_super_classes[cl1][0];
1260 while (*p != LIM_REG_CLASSES)
1261 p++;
1262 *p++ = (enum reg_class) cl2;
1263 *p = LIM_REG_CLASSES;
1264 }
1265 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1266 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1267 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1268 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1269 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1270 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1271 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1272 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1273 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1274 {
1275 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1276 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1277 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1278 {
1279 /* CL3 allocatable hard register set is inside of
1280 intersection of allocatable hard register sets
1281 of CL1 and CL2. */
1282 if (important_class_p[cl3])
1283 {
1284 COPY_HARD_REG_SET
1285 (temp_set2,
1286 reg_class_contents
1287 [(int) ira_reg_class_intersect[cl1][cl2]]);
1288 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1289 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1290 /* If the allocatable hard register sets are
1291 the same, prefer GENERAL_REGS or the
1292 smallest class for debugging
1293 purposes. */
1294 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1295 && (cl3 == GENERAL_REGS
1296 || ((ira_reg_class_intersect[cl1][cl2]
1297 != GENERAL_REGS)
1298 && hard_reg_set_subset_p
1299 (reg_class_contents[cl3],
1300 reg_class_contents
1301 [(int)
1302 ira_reg_class_intersect[cl1][cl2]])))))
1303 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1304 }
1305 COPY_HARD_REG_SET
1306 (temp_set2,
1307 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1308 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1309 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1310 /* Ignore unavailable hard registers and prefer
1311 smallest class for debugging purposes. */
1312 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1313 && hard_reg_set_subset_p
1314 (reg_class_contents[cl3],
1315 reg_class_contents
1316 [(int) ira_reg_class_subset[cl1][cl2]])))
1317 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1318 }
1319 if (important_class_p[cl3]
1320 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1321 {
1322 /* CL3 allocatable hard register set is inside of
1323 union of allocatable hard register sets of CL1
1324 and CL2. */
1325 COPY_HARD_REG_SET
1326 (temp_set2,
1327 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1328 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1329 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1330 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1331
1332 && (! hard_reg_set_equal_p (temp_set2,
1333 temp_hard_regset)
1334 || cl3 == GENERAL_REGS
1335 /* If the allocatable hard register sets are the
1336 same, prefer GENERAL_REGS or the smallest
1337 class for debugging purposes. */
1338 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1339 && hard_reg_set_subset_p
1340 (reg_class_contents[cl3],
1341 reg_class_contents
1342 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1343 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1344 }
1345 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1346 {
1347 /* CL3 allocatable hard register set contains union
1348 of allocatable hard register sets of CL1 and
1349 CL2. */
1350 COPY_HARD_REG_SET
1351 (temp_set2,
1352 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1353 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1354 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1355 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1356
1357 && (! hard_reg_set_equal_p (temp_set2,
1358 temp_hard_regset)
1359 || cl3 == GENERAL_REGS
1360 /* If the allocatable hard register sets are the
1361 same, prefer GENERAL_REGS or the smallest
1362 class for debugging purposes. */
1363 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1364 && hard_reg_set_subset_p
1365 (reg_class_contents[cl3],
1366 reg_class_contents
1367 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1368 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1369 }
1370 }
1371 }
1372 }
1373 }
1374
1375 /* Output all uniform and important classes into file F. */
1376 static void
1377 print_uniform_and_important_classes (FILE *f)
1378 {
1379 int i, cl;
1380
1381 fprintf (f, "Uniform classes:\n");
1382 for (cl = 0; cl < N_REG_CLASSES; cl++)
1383 if (ira_uniform_class_p[cl])
1384 fprintf (f, " %s", reg_class_names[cl]);
1385 fprintf (f, "\nImportant classes:\n");
1386 for (i = 0; i < ira_important_classes_num; i++)
1387 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1388 fprintf (f, "\n");
1389 }
1390
1391 /* Output all possible allocno or pressure classes and their
1392 translation map into file F. */
1393 static void
1394 print_translated_classes (FILE *f, bool pressure_p)
1395 {
1396 int classes_num = (pressure_p
1397 ? ira_pressure_classes_num : ira_allocno_classes_num);
1398 enum reg_class *classes = (pressure_p
1399 ? ira_pressure_classes : ira_allocno_classes);
1400 enum reg_class *class_translate = (pressure_p
1401 ? ira_pressure_class_translate
1402 : ira_allocno_class_translate);
1403 int i;
1404
1405 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1406 for (i = 0; i < classes_num; i++)
1407 fprintf (f, " %s", reg_class_names[classes[i]]);
1408 fprintf (f, "\nClass translation:\n");
1409 for (i = 0; i < N_REG_CLASSES; i++)
1410 fprintf (f, " %s -> %s\n", reg_class_names[i],
1411 reg_class_names[class_translate[i]]);
1412 }
1413
1414 /* Output all possible allocno and translation classes and the
1415 translation maps into stderr. */
1416 void
1417 ira_debug_allocno_classes (void)
1418 {
1419 print_uniform_and_important_classes (stderr);
1420 print_translated_classes (stderr, false);
1421 print_translated_classes (stderr, true);
1422 }
1423
1424 /* Set up different arrays concerning class subsets, allocno and
1425 important classes. */
1426 static void
1427 find_reg_classes (void)
1428 {
1429 setup_allocno_and_important_classes ();
1430 setup_class_translate ();
1431 reorder_important_classes ();
1432 setup_reg_class_relations ();
1433 }
1434
1435 \f
1436
1437 /* Set up the array above. */
1438 static void
1439 setup_hard_regno_aclass (void)
1440 {
1441 int i;
1442
1443 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1444 {
1445 #if 1
1446 ira_hard_regno_allocno_class[i]
1447 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1448 ? NO_REGS
1449 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1450 #else
1451 int j;
1452 enum reg_class cl;
1453 ira_hard_regno_allocno_class[i] = NO_REGS;
1454 for (j = 0; j < ira_allocno_classes_num; j++)
1455 {
1456 cl = ira_allocno_classes[j];
1457 if (ira_class_hard_reg_index[cl][i] >= 0)
1458 {
1459 ira_hard_regno_allocno_class[i] = cl;
1460 break;
1461 }
1462 }
1463 #endif
1464 }
1465 }
1466
1467 \f
1468
1469 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1470 static void
1471 setup_reg_class_nregs (void)
1472 {
1473 int i, cl, cl2, m;
1474
1475 for (m = 0; m < MAX_MACHINE_MODE; m++)
1476 {
1477 for (cl = 0; cl < N_REG_CLASSES; cl++)
1478 ira_reg_class_max_nregs[cl][m]
1479 = ira_reg_class_min_nregs[cl][m]
1480 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1481 for (cl = 0; cl < N_REG_CLASSES; cl++)
1482 for (i = 0;
1483 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1484 i++)
1485 if (ira_reg_class_min_nregs[cl2][m]
1486 < ira_reg_class_min_nregs[cl][m])
1487 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1488 }
1489 }
1490
1491 \f
1492
1493 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1494 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1495 static void
1496 setup_prohibited_class_mode_regs (void)
1497 {
1498 int j, k, hard_regno, cl, last_hard_regno, count;
1499
1500 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1501 {
1502 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1503 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1504 for (j = 0; j < NUM_MACHINE_MODES; j++)
1505 {
1506 count = 0;
1507 last_hard_regno = -1;
1508 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1509 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1510 {
1511 hard_regno = ira_class_hard_regs[cl][k];
1512 if (!targetm.hard_regno_mode_ok (hard_regno, (machine_mode) j))
1513 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1514 hard_regno);
1515 else if (in_hard_reg_set_p (temp_hard_regset,
1516 (machine_mode) j, hard_regno))
1517 {
1518 last_hard_regno = hard_regno;
1519 count++;
1520 }
1521 }
1522 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1523 }
1524 }
1525 }
1526
1527 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1528 spanning from one register pressure class to another one. It is
1529 called after defining the pressure classes. */
1530 static void
1531 clarify_prohibited_class_mode_regs (void)
1532 {
1533 int j, k, hard_regno, cl, pclass, nregs;
1534
1535 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1536 for (j = 0; j < NUM_MACHINE_MODES; j++)
1537 {
1538 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1539 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1540 {
1541 hard_regno = ira_class_hard_regs[cl][k];
1542 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1543 continue;
1544 nregs = hard_regno_nregs (hard_regno, (machine_mode) j);
1545 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1546 {
1547 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1548 hard_regno);
1549 continue;
1550 }
1551 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1552 for (nregs-- ;nregs >= 0; nregs--)
1553 if (((enum reg_class) pclass
1554 != ira_pressure_class_translate[REGNO_REG_CLASS
1555 (hard_regno + nregs)]))
1556 {
1557 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1558 hard_regno);
1559 break;
1560 }
1561 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1562 hard_regno))
1563 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1564 (machine_mode) j, hard_regno);
1565 }
1566 }
1567 }
1568 \f
1569 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1570 and IRA_MAY_MOVE_OUT_COST for MODE. */
1571 void
1572 ira_init_register_move_cost (machine_mode mode)
1573 {
1574 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1575 bool all_match = true;
1576 unsigned int cl1, cl2;
1577
1578 ira_assert (ira_register_move_cost[mode] == NULL
1579 && ira_may_move_in_cost[mode] == NULL
1580 && ira_may_move_out_cost[mode] == NULL);
1581 /* Note that we might be asked about the move costs of modes that
1582 cannot be stored in any hard register, for example if an inline
1583 asm tries to create a register operand with an impossible mode.
1584 We therefore can't assert have_regs_of_mode[mode] here. */
1585 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1586 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1587 {
1588 int cost;
1589 if (!contains_reg_of_mode[cl1][mode]
1590 || !contains_reg_of_mode[cl2][mode])
1591 {
1592 if ((ira_reg_class_max_nregs[cl1][mode]
1593 > ira_class_hard_regs_num[cl1])
1594 || (ira_reg_class_max_nregs[cl2][mode]
1595 > ira_class_hard_regs_num[cl2]))
1596 cost = 65535;
1597 else
1598 cost = (ira_memory_move_cost[mode][cl1][0]
1599 + ira_memory_move_cost[mode][cl2][1]) * 2;
1600 }
1601 else
1602 {
1603 cost = register_move_cost (mode, (enum reg_class) cl1,
1604 (enum reg_class) cl2);
1605 ira_assert (cost < 65535);
1606 }
1607 all_match &= (last_move_cost[cl1][cl2] == cost);
1608 last_move_cost[cl1][cl2] = cost;
1609 }
1610 if (all_match && last_mode_for_init_move_cost != -1)
1611 {
1612 ira_register_move_cost[mode]
1613 = ira_register_move_cost[last_mode_for_init_move_cost];
1614 ira_may_move_in_cost[mode]
1615 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1616 ira_may_move_out_cost[mode]
1617 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1618 return;
1619 }
1620 last_mode_for_init_move_cost = mode;
1621 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1622 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1623 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1624 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1625 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1626 {
1627 int cost;
1628 enum reg_class *p1, *p2;
1629
1630 if (last_move_cost[cl1][cl2] == 65535)
1631 {
1632 ira_register_move_cost[mode][cl1][cl2] = 65535;
1633 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1634 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1635 }
1636 else
1637 {
1638 cost = last_move_cost[cl1][cl2];
1639
1640 for (p2 = &reg_class_subclasses[cl2][0];
1641 *p2 != LIM_REG_CLASSES; p2++)
1642 if (ira_class_hard_regs_num[*p2] > 0
1643 && (ira_reg_class_max_nregs[*p2][mode]
1644 <= ira_class_hard_regs_num[*p2]))
1645 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1646
1647 for (p1 = &reg_class_subclasses[cl1][0];
1648 *p1 != LIM_REG_CLASSES; p1++)
1649 if (ira_class_hard_regs_num[*p1] > 0
1650 && (ira_reg_class_max_nregs[*p1][mode]
1651 <= ira_class_hard_regs_num[*p1]))
1652 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1653
1654 ira_assert (cost <= 65535);
1655 ira_register_move_cost[mode][cl1][cl2] = cost;
1656
1657 if (ira_class_subset_p[cl1][cl2])
1658 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1659 else
1660 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1661
1662 if (ira_class_subset_p[cl2][cl1])
1663 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1664 else
1665 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1666 }
1667 }
1668 }
1669
1670 \f
1671
1672 /* This is called once during compiler work. It sets up
1673 different arrays whose values don't depend on the compiled
1674 function. */
1675 void
1676 ira_init_once (void)
1677 {
1678 ira_init_costs_once ();
1679 lra_init_once ();
1680
1681 ira_use_lra_p = targetm.lra_p ();
1682 }
1683
1684 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1685 ira_may_move_out_cost for each mode. */
1686 void
1687 target_ira_int::free_register_move_costs (void)
1688 {
1689 int mode, i;
1690
1691 /* Reset move_cost and friends, making sure we only free shared
1692 table entries once. */
1693 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1694 if (x_ira_register_move_cost[mode])
1695 {
1696 for (i = 0;
1697 i < mode && (x_ira_register_move_cost[i]
1698 != x_ira_register_move_cost[mode]);
1699 i++)
1700 ;
1701 if (i == mode)
1702 {
1703 free (x_ira_register_move_cost[mode]);
1704 free (x_ira_may_move_in_cost[mode]);
1705 free (x_ira_may_move_out_cost[mode]);
1706 }
1707 }
1708 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1709 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1710 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1711 last_mode_for_init_move_cost = -1;
1712 }
1713
1714 target_ira_int::~target_ira_int ()
1715 {
1716 free_ira_costs ();
1717 free_register_move_costs ();
1718 }
1719
1720 /* This is called every time when register related information is
1721 changed. */
1722 void
1723 ira_init (void)
1724 {
1725 this_target_ira_int->free_register_move_costs ();
1726 setup_reg_mode_hard_regset ();
1727 setup_alloc_regs (flag_omit_frame_pointer != 0);
1728 setup_class_subset_and_memory_move_costs ();
1729 setup_reg_class_nregs ();
1730 setup_prohibited_class_mode_regs ();
1731 find_reg_classes ();
1732 clarify_prohibited_class_mode_regs ();
1733 setup_hard_regno_aclass ();
1734 ira_init_costs ();
1735 }
1736
1737 \f
1738 #define ira_prohibited_mode_move_regs_initialized_p \
1739 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1740
1741 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1742 static void
1743 setup_prohibited_mode_move_regs (void)
1744 {
1745 int i, j;
1746 rtx test_reg1, test_reg2, move_pat;
1747 rtx_insn *move_insn;
1748
1749 if (ira_prohibited_mode_move_regs_initialized_p)
1750 return;
1751 ira_prohibited_mode_move_regs_initialized_p = true;
1752 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1753 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1754 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1755 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1756 for (i = 0; i < NUM_MACHINE_MODES; i++)
1757 {
1758 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1759 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1760 {
1761 if (!targetm.hard_regno_mode_ok (j, (machine_mode) i))
1762 continue;
1763 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1764 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1765 INSN_CODE (move_insn) = -1;
1766 recog_memoized (move_insn);
1767 if (INSN_CODE (move_insn) < 0)
1768 continue;
1769 extract_insn (move_insn);
1770 /* We don't know whether the move will be in code that is optimized
1771 for size or speed, so consider all enabled alternatives. */
1772 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1773 continue;
1774 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1775 }
1776 }
1777 }
1778
1779 \f
1780
1781 /* Setup possible alternatives in ALTS for INSN. */
1782 void
1783 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1784 {
1785 /* MAP nalt * nop -> start of constraints for given operand and
1786 alternative. */
1787 static vec<const char *> insn_constraints;
1788 int nop, nalt;
1789 bool curr_swapped;
1790 const char *p;
1791 int commutative = -1;
1792
1793 extract_insn (insn);
1794 alternative_mask preferred = get_preferred_alternatives (insn);
1795 CLEAR_HARD_REG_SET (alts);
1796 insn_constraints.release ();
1797 insn_constraints.safe_grow_cleared (recog_data.n_operands
1798 * recog_data.n_alternatives + 1);
1799 /* Check that the hard reg set is enough for holding all
1800 alternatives. It is hard to imagine the situation when the
1801 assertion is wrong. */
1802 ira_assert (recog_data.n_alternatives
1803 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1804 FIRST_PSEUDO_REGISTER));
1805 for (curr_swapped = false;; curr_swapped = true)
1806 {
1807 /* Calculate some data common for all alternatives to speed up the
1808 function. */
1809 for (nop = 0; nop < recog_data.n_operands; nop++)
1810 {
1811 for (nalt = 0, p = recog_data.constraints[nop];
1812 nalt < recog_data.n_alternatives;
1813 nalt++)
1814 {
1815 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1816 while (*p && *p != ',')
1817 {
1818 /* We only support one commutative marker, the first
1819 one. We already set commutative above. */
1820 if (*p == '%' && commutative < 0)
1821 commutative = nop;
1822 p++;
1823 }
1824 if (*p)
1825 p++;
1826 }
1827 }
1828 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1829 {
1830 if (!TEST_BIT (preferred, nalt)
1831 || TEST_HARD_REG_BIT (alts, nalt))
1832 continue;
1833
1834 for (nop = 0; nop < recog_data.n_operands; nop++)
1835 {
1836 int c, len;
1837
1838 rtx op = recog_data.operand[nop];
1839 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1840 if (*p == 0 || *p == ',')
1841 continue;
1842
1843 do
1844 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1845 {
1846 case '#':
1847 case ',':
1848 c = '\0';
1849 /* FALLTHRU */
1850 case '\0':
1851 len = 0;
1852 break;
1853
1854 case '%':
1855 /* The commutative modifier is handled above. */
1856 break;
1857
1858 case '0': case '1': case '2': case '3': case '4':
1859 case '5': case '6': case '7': case '8': case '9':
1860 goto op_success;
1861 break;
1862
1863 case 'g':
1864 goto op_success;
1865 break;
1866
1867 default:
1868 {
1869 enum constraint_num cn = lookup_constraint (p);
1870 switch (get_constraint_type (cn))
1871 {
1872 case CT_REGISTER:
1873 if (reg_class_for_constraint (cn) != NO_REGS)
1874 goto op_success;
1875 break;
1876
1877 case CT_CONST_INT:
1878 if (CONST_INT_P (op)
1879 && (insn_const_int_ok_for_constraint
1880 (INTVAL (op), cn)))
1881 goto op_success;
1882 break;
1883
1884 case CT_ADDRESS:
1885 case CT_MEMORY:
1886 case CT_SPECIAL_MEMORY:
1887 goto op_success;
1888
1889 case CT_FIXED_FORM:
1890 if (constraint_satisfied_p (op, cn))
1891 goto op_success;
1892 break;
1893 }
1894 break;
1895 }
1896 }
1897 while (p += len, c);
1898 break;
1899 op_success:
1900 ;
1901 }
1902 if (nop >= recog_data.n_operands)
1903 SET_HARD_REG_BIT (alts, nalt);
1904 }
1905 if (commutative < 0)
1906 break;
1907 /* Swap forth and back to avoid changing recog_data. */
1908 std::swap (recog_data.operand[commutative],
1909 recog_data.operand[commutative + 1]);
1910 if (curr_swapped)
1911 break;
1912 }
1913 }
1914
1915 /* Return the number of the output non-early clobber operand which
1916 should be the same in any case as operand with number OP_NUM (or
1917 negative value if there is no such operand). The function takes
1918 only really possible alternatives into consideration. */
1919 int
1920 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1921 {
1922 int curr_alt, c, original, dup;
1923 bool ignore_p, use_commut_op_p;
1924 const char *str;
1925
1926 if (op_num < 0 || recog_data.n_alternatives == 0)
1927 return -1;
1928 /* We should find duplications only for input operands. */
1929 if (recog_data.operand_type[op_num] != OP_IN)
1930 return -1;
1931 str = recog_data.constraints[op_num];
1932 use_commut_op_p = false;
1933 for (;;)
1934 {
1935 rtx op = recog_data.operand[op_num];
1936
1937 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1938 original = -1;;)
1939 {
1940 c = *str;
1941 if (c == '\0')
1942 break;
1943 if (c == '#')
1944 ignore_p = true;
1945 else if (c == ',')
1946 {
1947 curr_alt++;
1948 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1949 }
1950 else if (! ignore_p)
1951 switch (c)
1952 {
1953 case 'g':
1954 goto fail;
1955 default:
1956 {
1957 enum constraint_num cn = lookup_constraint (str);
1958 enum reg_class cl = reg_class_for_constraint (cn);
1959 if (cl != NO_REGS
1960 && !targetm.class_likely_spilled_p (cl))
1961 goto fail;
1962 if (constraint_satisfied_p (op, cn))
1963 goto fail;
1964 break;
1965 }
1966
1967 case '0': case '1': case '2': case '3': case '4':
1968 case '5': case '6': case '7': case '8': case '9':
1969 if (original != -1 && original != c)
1970 goto fail;
1971 original = c;
1972 break;
1973 }
1974 str += CONSTRAINT_LEN (c, str);
1975 }
1976 if (original == -1)
1977 goto fail;
1978 dup = -1;
1979 for (ignore_p = false, str = recog_data.constraints[original - '0'];
1980 *str != 0;
1981 str++)
1982 if (ignore_p)
1983 {
1984 if (*str == ',')
1985 ignore_p = false;
1986 }
1987 else if (*str == '#')
1988 ignore_p = true;
1989 else if (! ignore_p)
1990 {
1991 if (*str == '=')
1992 dup = original - '0';
1993 /* It is better ignore an alternative with early clobber. */
1994 else if (*str == '&')
1995 goto fail;
1996 }
1997 if (dup >= 0)
1998 return dup;
1999 fail:
2000 if (use_commut_op_p)
2001 break;
2002 use_commut_op_p = true;
2003 if (recog_data.constraints[op_num][0] == '%')
2004 str = recog_data.constraints[op_num + 1];
2005 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
2006 str = recog_data.constraints[op_num - 1];
2007 else
2008 break;
2009 }
2010 return -1;
2011 }
2012
2013 \f
2014
2015 /* Search forward to see if the source register of a copy insn dies
2016 before either it or the destination register is modified, but don't
2017 scan past the end of the basic block. If so, we can replace the
2018 source with the destination and let the source die in the copy
2019 insn.
2020
2021 This will reduce the number of registers live in that range and may
2022 enable the destination and the source coalescing, thus often saving
2023 one register in addition to a register-register copy. */
2024
2025 static void
2026 decrease_live_ranges_number (void)
2027 {
2028 basic_block bb;
2029 rtx_insn *insn;
2030 rtx set, src, dest, dest_death, note;
2031 rtx_insn *p, *q;
2032 int sregno, dregno;
2033
2034 if (! flag_expensive_optimizations)
2035 return;
2036
2037 if (ira_dump_file)
2038 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2039
2040 FOR_EACH_BB_FN (bb, cfun)
2041 FOR_BB_INSNS (bb, insn)
2042 {
2043 set = single_set (insn);
2044 if (! set)
2045 continue;
2046 src = SET_SRC (set);
2047 dest = SET_DEST (set);
2048 if (! REG_P (src) || ! REG_P (dest)
2049 || find_reg_note (insn, REG_DEAD, src))
2050 continue;
2051 sregno = REGNO (src);
2052 dregno = REGNO (dest);
2053
2054 /* We don't want to mess with hard regs if register classes
2055 are small. */
2056 if (sregno == dregno
2057 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2058 && (sregno < FIRST_PSEUDO_REGISTER
2059 || dregno < FIRST_PSEUDO_REGISTER))
2060 /* We don't see all updates to SP if they are in an
2061 auto-inc memory reference, so we must disallow this
2062 optimization on them. */
2063 || sregno == STACK_POINTER_REGNUM
2064 || dregno == STACK_POINTER_REGNUM)
2065 continue;
2066
2067 dest_death = NULL_RTX;
2068
2069 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2070 {
2071 if (! INSN_P (p))
2072 continue;
2073 if (BLOCK_FOR_INSN (p) != bb)
2074 break;
2075
2076 if (reg_set_p (src, p) || reg_set_p (dest, p)
2077 /* If SRC is an asm-declared register, it must not be
2078 replaced in any asm. Unfortunately, the REG_EXPR
2079 tree for the asm variable may be absent in the SRC
2080 rtx, so we can't check the actual register
2081 declaration easily (the asm operand will have it,
2082 though). To avoid complicating the test for a rare
2083 case, we just don't perform register replacement
2084 for a hard reg mentioned in an asm. */
2085 || (sregno < FIRST_PSEUDO_REGISTER
2086 && asm_noperands (PATTERN (p)) >= 0
2087 && reg_overlap_mentioned_p (src, PATTERN (p)))
2088 /* Don't change hard registers used by a call. */
2089 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2090 && find_reg_fusage (p, USE, src))
2091 /* Don't change a USE of a register. */
2092 || (GET_CODE (PATTERN (p)) == USE
2093 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2094 break;
2095
2096 /* See if all of SRC dies in P. This test is slightly
2097 more conservative than it needs to be. */
2098 if ((note = find_regno_note (p, REG_DEAD, sregno))
2099 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2100 {
2101 int failed = 0;
2102
2103 /* We can do the optimization. Scan forward from INSN
2104 again, replacing regs as we go. Set FAILED if a
2105 replacement can't be done. In that case, we can't
2106 move the death note for SRC. This should be
2107 rare. */
2108
2109 /* Set to stop at next insn. */
2110 for (q = next_real_insn (insn);
2111 q != next_real_insn (p);
2112 q = next_real_insn (q))
2113 {
2114 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2115 {
2116 /* If SRC is a hard register, we might miss
2117 some overlapping registers with
2118 validate_replace_rtx, so we would have to
2119 undo it. We can't if DEST is present in
2120 the insn, so fail in that combination of
2121 cases. */
2122 if (sregno < FIRST_PSEUDO_REGISTER
2123 && reg_mentioned_p (dest, PATTERN (q)))
2124 failed = 1;
2125
2126 /* Attempt to replace all uses. */
2127 else if (!validate_replace_rtx (src, dest, q))
2128 failed = 1;
2129
2130 /* If this succeeded, but some part of the
2131 register is still present, undo the
2132 replacement. */
2133 else if (sregno < FIRST_PSEUDO_REGISTER
2134 && reg_overlap_mentioned_p (src, PATTERN (q)))
2135 {
2136 validate_replace_rtx (dest, src, q);
2137 failed = 1;
2138 }
2139 }
2140
2141 /* If DEST dies here, remove the death note and
2142 save it for later. Make sure ALL of DEST dies
2143 here; again, this is overly conservative. */
2144 if (! dest_death
2145 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2146 {
2147 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2148 remove_note (q, dest_death);
2149 else
2150 {
2151 failed = 1;
2152 dest_death = 0;
2153 }
2154 }
2155 }
2156
2157 if (! failed)
2158 {
2159 /* Move death note of SRC from P to INSN. */
2160 remove_note (p, note);
2161 XEXP (note, 1) = REG_NOTES (insn);
2162 REG_NOTES (insn) = note;
2163 }
2164
2165 /* DEST is also dead if INSN has a REG_UNUSED note for
2166 DEST. */
2167 if (! dest_death
2168 && (dest_death
2169 = find_regno_note (insn, REG_UNUSED, dregno)))
2170 {
2171 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2172 remove_note (insn, dest_death);
2173 }
2174
2175 /* Put death note of DEST on P if we saw it die. */
2176 if (dest_death)
2177 {
2178 XEXP (dest_death, 1) = REG_NOTES (p);
2179 REG_NOTES (p) = dest_death;
2180 }
2181 break;
2182 }
2183
2184 /* If SRC is a hard register which is set or killed in
2185 some other way, we can't do this optimization. */
2186 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2187 break;
2188 }
2189 }
2190 }
2191
2192 \f
2193
2194 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2195 static bool
2196 ira_bad_reload_regno_1 (int regno, rtx x)
2197 {
2198 int x_regno, n, i;
2199 ira_allocno_t a;
2200 enum reg_class pref;
2201
2202 /* We only deal with pseudo regs. */
2203 if (! x || GET_CODE (x) != REG)
2204 return false;
2205
2206 x_regno = REGNO (x);
2207 if (x_regno < FIRST_PSEUDO_REGISTER)
2208 return false;
2209
2210 /* If the pseudo prefers REGNO explicitly, then do not consider
2211 REGNO a bad spill choice. */
2212 pref = reg_preferred_class (x_regno);
2213 if (reg_class_size[pref] == 1)
2214 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2215
2216 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2217 poor choice for a reload regno. */
2218 a = ira_regno_allocno_map[x_regno];
2219 n = ALLOCNO_NUM_OBJECTS (a);
2220 for (i = 0; i < n; i++)
2221 {
2222 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2223 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2224 return true;
2225 }
2226 return false;
2227 }
2228
2229 /* Return nonzero if REGNO is a particularly bad choice for reloading
2230 IN or OUT. */
2231 bool
2232 ira_bad_reload_regno (int regno, rtx in, rtx out)
2233 {
2234 return (ira_bad_reload_regno_1 (regno, in)
2235 || ira_bad_reload_regno_1 (regno, out));
2236 }
2237
2238 /* Add register clobbers from asm statements. */
2239 static void
2240 compute_regs_asm_clobbered (void)
2241 {
2242 basic_block bb;
2243
2244 FOR_EACH_BB_FN (bb, cfun)
2245 {
2246 rtx_insn *insn;
2247 FOR_BB_INSNS_REVERSE (bb, insn)
2248 {
2249 df_ref def;
2250
2251 if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
2252 FOR_EACH_INSN_DEF (def, insn)
2253 {
2254 unsigned int dregno = DF_REF_REGNO (def);
2255 if (HARD_REGISTER_NUM_P (dregno))
2256 add_to_hard_reg_set (&crtl->asm_clobbers,
2257 GET_MODE (DF_REF_REAL_REG (def)),
2258 dregno);
2259 }
2260 }
2261 }
2262 }
2263
2264
2265 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2266 REGS_EVER_LIVE. */
2267 void
2268 ira_setup_eliminable_regset (void)
2269 {
2270 int i;
2271 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2272
2273 /* Setup is_leaf as frame_pointer_required may use it. This function
2274 is called by sched_init before ira if scheduling is enabled. */
2275 crtl->is_leaf = leaf_function_p ();
2276
2277 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2278 sp for alloca. So we can't eliminate the frame pointer in that
2279 case. At some point, we should improve this by emitting the
2280 sp-adjusting insns for this case. */
2281 frame_pointer_needed
2282 = (! flag_omit_frame_pointer
2283 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2284 /* We need the frame pointer to catch stack overflow exceptions if
2285 the stack pointer is moving (as for the alloca case just above). */
2286 || (STACK_CHECK_MOVING_SP
2287 && flag_stack_check
2288 && flag_exceptions
2289 && cfun->can_throw_non_call_exceptions)
2290 || crtl->accesses_prior_frames
2291 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2292 || targetm.frame_pointer_required ());
2293
2294 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2295 RTL is very small. So if we use frame pointer for RA and RTL
2296 actually prevents this, we will spill pseudos assigned to the
2297 frame pointer in LRA. */
2298
2299 if (frame_pointer_needed)
2300 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2301
2302 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2303 CLEAR_HARD_REG_SET (eliminable_regset);
2304
2305 compute_regs_asm_clobbered ();
2306
2307 /* Build the regset of all eliminable registers and show we can't
2308 use those that we already know won't be eliminated. */
2309 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2310 {
2311 bool cannot_elim
2312 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2313 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2314
2315 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2316 {
2317 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2318
2319 if (cannot_elim)
2320 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2321 }
2322 else if (cannot_elim)
2323 error ("%s cannot be used in asm here",
2324 reg_names[eliminables[i].from]);
2325 else
2326 df_set_regs_ever_live (eliminables[i].from, true);
2327 }
2328 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2329 {
2330 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2331 {
2332 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2333 if (frame_pointer_needed)
2334 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2335 }
2336 else if (frame_pointer_needed)
2337 error ("%s cannot be used in asm here",
2338 reg_names[HARD_FRAME_POINTER_REGNUM]);
2339 else
2340 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2341 }
2342 }
2343
2344 \f
2345
2346 /* Vector of substitutions of register numbers,
2347 used to map pseudo regs into hardware regs.
2348 This is set up as a result of register allocation.
2349 Element N is the hard reg assigned to pseudo reg N,
2350 or is -1 if no hard reg was assigned.
2351 If N is a hard reg number, element N is N. */
2352 short *reg_renumber;
2353
2354 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2355 the allocation found by IRA. */
2356 static void
2357 setup_reg_renumber (void)
2358 {
2359 int regno, hard_regno;
2360 ira_allocno_t a;
2361 ira_allocno_iterator ai;
2362
2363 caller_save_needed = 0;
2364 FOR_EACH_ALLOCNO (a, ai)
2365 {
2366 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2367 continue;
2368 /* There are no caps at this point. */
2369 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2370 if (! ALLOCNO_ASSIGNED_P (a))
2371 /* It can happen if A is not referenced but partially anticipated
2372 somewhere in a region. */
2373 ALLOCNO_ASSIGNED_P (a) = true;
2374 ira_free_allocno_updated_costs (a);
2375 hard_regno = ALLOCNO_HARD_REGNO (a);
2376 regno = ALLOCNO_REGNO (a);
2377 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2378 if (hard_regno >= 0)
2379 {
2380 int i, nwords;
2381 enum reg_class pclass;
2382 ira_object_t obj;
2383
2384 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2385 nwords = ALLOCNO_NUM_OBJECTS (a);
2386 for (i = 0; i < nwords; i++)
2387 {
2388 obj = ALLOCNO_OBJECT (a, i);
2389 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2390 reg_class_contents[pclass]);
2391 }
2392 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2393 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2394 call_used_reg_set))
2395 {
2396 ira_assert (!optimize || flag_caller_saves
2397 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2398 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2399 || regno >= ira_reg_equiv_len
2400 || ira_equiv_no_lvalue_p (regno));
2401 caller_save_needed = 1;
2402 }
2403 }
2404 }
2405 }
2406
2407 /* Set up allocno assignment flags for further allocation
2408 improvements. */
2409 static void
2410 setup_allocno_assignment_flags (void)
2411 {
2412 int hard_regno;
2413 ira_allocno_t a;
2414 ira_allocno_iterator ai;
2415
2416 FOR_EACH_ALLOCNO (a, ai)
2417 {
2418 if (! ALLOCNO_ASSIGNED_P (a))
2419 /* It can happen if A is not referenced but partially anticipated
2420 somewhere in a region. */
2421 ira_free_allocno_updated_costs (a);
2422 hard_regno = ALLOCNO_HARD_REGNO (a);
2423 /* Don't assign hard registers to allocnos which are destination
2424 of removed store at the end of loop. It has no sense to keep
2425 the same value in different hard registers. It is also
2426 impossible to assign hard registers correctly to such
2427 allocnos because the cost info and info about intersected
2428 calls are incorrect for them. */
2429 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2430 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2431 || (ALLOCNO_MEMORY_COST (a)
2432 - ALLOCNO_CLASS_COST (a)) < 0);
2433 ira_assert
2434 (hard_regno < 0
2435 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2436 reg_class_contents[ALLOCNO_CLASS (a)]));
2437 }
2438 }
2439
2440 /* Evaluate overall allocation cost and the costs for using hard
2441 registers and memory for allocnos. */
2442 static void
2443 calculate_allocation_cost (void)
2444 {
2445 int hard_regno, cost;
2446 ira_allocno_t a;
2447 ira_allocno_iterator ai;
2448
2449 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2450 FOR_EACH_ALLOCNO (a, ai)
2451 {
2452 hard_regno = ALLOCNO_HARD_REGNO (a);
2453 ira_assert (hard_regno < 0
2454 || (ira_hard_reg_in_set_p
2455 (hard_regno, ALLOCNO_MODE (a),
2456 reg_class_contents[ALLOCNO_CLASS (a)])));
2457 if (hard_regno < 0)
2458 {
2459 cost = ALLOCNO_MEMORY_COST (a);
2460 ira_mem_cost += cost;
2461 }
2462 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2463 {
2464 cost = (ALLOCNO_HARD_REG_COSTS (a)
2465 [ira_class_hard_reg_index
2466 [ALLOCNO_CLASS (a)][hard_regno]]);
2467 ira_reg_cost += cost;
2468 }
2469 else
2470 {
2471 cost = ALLOCNO_CLASS_COST (a);
2472 ira_reg_cost += cost;
2473 }
2474 ira_overall_cost += cost;
2475 }
2476
2477 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2478 {
2479 fprintf (ira_dump_file,
2480 "+++Costs: overall %" PRId64
2481 ", reg %" PRId64
2482 ", mem %" PRId64
2483 ", ld %" PRId64
2484 ", st %" PRId64
2485 ", move %" PRId64,
2486 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2487 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2488 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2489 ira_move_loops_num, ira_additional_jumps_num);
2490 }
2491
2492 }
2493
2494 #ifdef ENABLE_IRA_CHECKING
2495 /* Check the correctness of the allocation. We do need this because
2496 of complicated code to transform more one region internal
2497 representation into one region representation. */
2498 static void
2499 check_allocation (void)
2500 {
2501 ira_allocno_t a;
2502 int hard_regno, nregs, conflict_nregs;
2503 ira_allocno_iterator ai;
2504
2505 FOR_EACH_ALLOCNO (a, ai)
2506 {
2507 int n = ALLOCNO_NUM_OBJECTS (a);
2508 int i;
2509
2510 if (ALLOCNO_CAP_MEMBER (a) != NULL
2511 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2512 continue;
2513 nregs = hard_regno_nregs (hard_regno, ALLOCNO_MODE (a));
2514 if (nregs == 1)
2515 /* We allocated a single hard register. */
2516 n = 1;
2517 else if (n > 1)
2518 /* We allocated multiple hard registers, and we will test
2519 conflicts in a granularity of single hard regs. */
2520 nregs = 1;
2521
2522 for (i = 0; i < n; i++)
2523 {
2524 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2525 ira_object_t conflict_obj;
2526 ira_object_conflict_iterator oci;
2527 int this_regno = hard_regno;
2528 if (n > 1)
2529 {
2530 if (REG_WORDS_BIG_ENDIAN)
2531 this_regno += n - i - 1;
2532 else
2533 this_regno += i;
2534 }
2535 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2536 {
2537 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2538 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2539 if (conflict_hard_regno < 0)
2540 continue;
2541
2542 conflict_nregs = hard_regno_nregs (conflict_hard_regno,
2543 ALLOCNO_MODE (conflict_a));
2544
2545 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2546 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2547 {
2548 if (REG_WORDS_BIG_ENDIAN)
2549 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2550 - OBJECT_SUBWORD (conflict_obj) - 1);
2551 else
2552 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2553 conflict_nregs = 1;
2554 }
2555
2556 if ((conflict_hard_regno <= this_regno
2557 && this_regno < conflict_hard_regno + conflict_nregs)
2558 || (this_regno <= conflict_hard_regno
2559 && conflict_hard_regno < this_regno + nregs))
2560 {
2561 fprintf (stderr, "bad allocation for %d and %d\n",
2562 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2563 gcc_unreachable ();
2564 }
2565 }
2566 }
2567 }
2568 }
2569 #endif
2570
2571 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2572 be already calculated. */
2573 static void
2574 setup_reg_equiv_init (void)
2575 {
2576 int i;
2577 int max_regno = max_reg_num ();
2578
2579 for (i = 0; i < max_regno; i++)
2580 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2581 }
2582
2583 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2584 are insns which were generated for such movement. It is assumed
2585 that FROM_REGNO and TO_REGNO always have the same value at the
2586 point of any move containing such registers. This function is used
2587 to update equiv info for register shuffles on the region borders
2588 and for caller save/restore insns. */
2589 void
2590 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2591 {
2592 rtx_insn *insn;
2593 rtx x, note;
2594
2595 if (! ira_reg_equiv[from_regno].defined_p
2596 && (! ira_reg_equiv[to_regno].defined_p
2597 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2598 && ! MEM_READONLY_P (x))))
2599 return;
2600 insn = insns;
2601 if (NEXT_INSN (insn) != NULL_RTX)
2602 {
2603 if (! ira_reg_equiv[to_regno].defined_p)
2604 {
2605 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2606 return;
2607 }
2608 ira_reg_equiv[to_regno].defined_p = false;
2609 ira_reg_equiv[to_regno].memory
2610 = ira_reg_equiv[to_regno].constant
2611 = ira_reg_equiv[to_regno].invariant
2612 = ira_reg_equiv[to_regno].init_insns = NULL;
2613 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2614 fprintf (ira_dump_file,
2615 " Invalidating equiv info for reg %d\n", to_regno);
2616 return;
2617 }
2618 /* It is possible that FROM_REGNO still has no equivalence because
2619 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2620 insn was not processed yet. */
2621 if (ira_reg_equiv[from_regno].defined_p)
2622 {
2623 ira_reg_equiv[to_regno].defined_p = true;
2624 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2625 {
2626 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2627 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2628 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2629 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2630 ira_reg_equiv[to_regno].memory = x;
2631 if (! MEM_READONLY_P (x))
2632 /* We don't add the insn to insn init list because memory
2633 equivalence is just to say what memory is better to use
2634 when the pseudo is spilled. */
2635 return;
2636 }
2637 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2638 {
2639 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2640 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2641 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2642 ira_reg_equiv[to_regno].constant = x;
2643 }
2644 else
2645 {
2646 x = ira_reg_equiv[from_regno].invariant;
2647 ira_assert (x != NULL_RTX);
2648 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2649 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2650 ira_reg_equiv[to_regno].invariant = x;
2651 }
2652 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2653 {
2654 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (x));
2655 gcc_assert (note != NULL_RTX);
2656 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2657 {
2658 fprintf (ira_dump_file,
2659 " Adding equiv note to insn %u for reg %d ",
2660 INSN_UID (insn), to_regno);
2661 dump_value_slim (ira_dump_file, x, 1);
2662 fprintf (ira_dump_file, "\n");
2663 }
2664 }
2665 }
2666 ira_reg_equiv[to_regno].init_insns
2667 = gen_rtx_INSN_LIST (VOIDmode, insn,
2668 ira_reg_equiv[to_regno].init_insns);
2669 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2670 fprintf (ira_dump_file,
2671 " Adding equiv init move insn %u to reg %d\n",
2672 INSN_UID (insn), to_regno);
2673 }
2674
2675 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2676 by IRA. */
2677 static void
2678 fix_reg_equiv_init (void)
2679 {
2680 int max_regno = max_reg_num ();
2681 int i, new_regno, max;
2682 rtx set;
2683 rtx_insn_list *x, *next, *prev;
2684 rtx_insn *insn;
2685
2686 if (max_regno_before_ira < max_regno)
2687 {
2688 max = vec_safe_length (reg_equivs);
2689 grow_reg_equivs ();
2690 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2691 for (prev = NULL, x = reg_equiv_init (i);
2692 x != NULL_RTX;
2693 x = next)
2694 {
2695 next = x->next ();
2696 insn = x->insn ();
2697 set = single_set (insn);
2698 ira_assert (set != NULL_RTX
2699 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2700 if (REG_P (SET_DEST (set))
2701 && ((int) REGNO (SET_DEST (set)) == i
2702 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2703 new_regno = REGNO (SET_DEST (set));
2704 else if (REG_P (SET_SRC (set))
2705 && ((int) REGNO (SET_SRC (set)) == i
2706 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2707 new_regno = REGNO (SET_SRC (set));
2708 else
2709 gcc_unreachable ();
2710 if (new_regno == i)
2711 prev = x;
2712 else
2713 {
2714 /* Remove the wrong list element. */
2715 if (prev == NULL_RTX)
2716 reg_equiv_init (i) = next;
2717 else
2718 XEXP (prev, 1) = next;
2719 XEXP (x, 1) = reg_equiv_init (new_regno);
2720 reg_equiv_init (new_regno) = x;
2721 }
2722 }
2723 }
2724 }
2725
2726 #ifdef ENABLE_IRA_CHECKING
2727 /* Print redundant memory-memory copies. */
2728 static void
2729 print_redundant_copies (void)
2730 {
2731 int hard_regno;
2732 ira_allocno_t a;
2733 ira_copy_t cp, next_cp;
2734 ira_allocno_iterator ai;
2735
2736 FOR_EACH_ALLOCNO (a, ai)
2737 {
2738 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2739 /* It is a cap. */
2740 continue;
2741 hard_regno = ALLOCNO_HARD_REGNO (a);
2742 if (hard_regno >= 0)
2743 continue;
2744 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2745 if (cp->first == a)
2746 next_cp = cp->next_first_allocno_copy;
2747 else
2748 {
2749 next_cp = cp->next_second_allocno_copy;
2750 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2751 && cp->insn != NULL_RTX
2752 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2753 fprintf (ira_dump_file,
2754 " Redundant move from %d(freq %d):%d\n",
2755 INSN_UID (cp->insn), cp->freq, hard_regno);
2756 }
2757 }
2758 }
2759 #endif
2760
2761 /* Setup preferred and alternative classes for new pseudo-registers
2762 created by IRA starting with START. */
2763 static void
2764 setup_preferred_alternate_classes_for_new_pseudos (int start)
2765 {
2766 int i, old_regno;
2767 int max_regno = max_reg_num ();
2768
2769 for (i = start; i < max_regno; i++)
2770 {
2771 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2772 ira_assert (i != old_regno);
2773 setup_reg_classes (i, reg_preferred_class (old_regno),
2774 reg_alternate_class (old_regno),
2775 reg_allocno_class (old_regno));
2776 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2777 fprintf (ira_dump_file,
2778 " New r%d: setting preferred %s, alternative %s\n",
2779 i, reg_class_names[reg_preferred_class (old_regno)],
2780 reg_class_names[reg_alternate_class (old_regno)]);
2781 }
2782 }
2783
2784 \f
2785 /* The number of entries allocated in reg_info. */
2786 static int allocated_reg_info_size;
2787
2788 /* Regional allocation can create new pseudo-registers. This function
2789 expands some arrays for pseudo-registers. */
2790 static void
2791 expand_reg_info (void)
2792 {
2793 int i;
2794 int size = max_reg_num ();
2795
2796 resize_reg_info ();
2797 for (i = allocated_reg_info_size; i < size; i++)
2798 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2799 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2800 allocated_reg_info_size = size;
2801 }
2802
2803 /* Return TRUE if there is too high register pressure in the function.
2804 It is used to decide when stack slot sharing is worth to do. */
2805 static bool
2806 too_high_register_pressure_p (void)
2807 {
2808 int i;
2809 enum reg_class pclass;
2810
2811 for (i = 0; i < ira_pressure_classes_num; i++)
2812 {
2813 pclass = ira_pressure_classes[i];
2814 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2815 return true;
2816 }
2817 return false;
2818 }
2819
2820 \f
2821
2822 /* Indicate that hard register number FROM was eliminated and replaced with
2823 an offset from hard register number TO. The status of hard registers live
2824 at the start of a basic block is updated by replacing a use of FROM with
2825 a use of TO. */
2826
2827 void
2828 mark_elimination (int from, int to)
2829 {
2830 basic_block bb;
2831 bitmap r;
2832
2833 FOR_EACH_BB_FN (bb, cfun)
2834 {
2835 r = DF_LR_IN (bb);
2836 if (bitmap_bit_p (r, from))
2837 {
2838 bitmap_clear_bit (r, from);
2839 bitmap_set_bit (r, to);
2840 }
2841 if (! df_live)
2842 continue;
2843 r = DF_LIVE_IN (bb);
2844 if (bitmap_bit_p (r, from))
2845 {
2846 bitmap_clear_bit (r, from);
2847 bitmap_set_bit (r, to);
2848 }
2849 }
2850 }
2851
2852 \f
2853
2854 /* The length of the following array. */
2855 int ira_reg_equiv_len;
2856
2857 /* Info about equiv. info for each register. */
2858 struct ira_reg_equiv_s *ira_reg_equiv;
2859
2860 /* Expand ira_reg_equiv if necessary. */
2861 void
2862 ira_expand_reg_equiv (void)
2863 {
2864 int old = ira_reg_equiv_len;
2865
2866 if (ira_reg_equiv_len > max_reg_num ())
2867 return;
2868 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2869 ira_reg_equiv
2870 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2871 ira_reg_equiv_len
2872 * sizeof (struct ira_reg_equiv_s));
2873 gcc_assert (old < ira_reg_equiv_len);
2874 memset (ira_reg_equiv + old, 0,
2875 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2876 }
2877
2878 static void
2879 init_reg_equiv (void)
2880 {
2881 ira_reg_equiv_len = 0;
2882 ira_reg_equiv = NULL;
2883 ira_expand_reg_equiv ();
2884 }
2885
2886 static void
2887 finish_reg_equiv (void)
2888 {
2889 free (ira_reg_equiv);
2890 }
2891
2892 \f
2893
2894 struct equivalence
2895 {
2896 /* Set when a REG_EQUIV note is found or created. Use to
2897 keep track of what memory accesses might be created later,
2898 e.g. by reload. */
2899 rtx replacement;
2900 rtx *src_p;
2901
2902 /* The list of each instruction which initializes this register.
2903
2904 NULL indicates we know nothing about this register's equivalence
2905 properties.
2906
2907 An INSN_LIST with a NULL insn indicates this pseudo is already
2908 known to not have a valid equivalence. */
2909 rtx_insn_list *init_insns;
2910
2911 /* Loop depth is used to recognize equivalences which appear
2912 to be present within the same loop (or in an inner loop). */
2913 short loop_depth;
2914 /* Nonzero if this had a preexisting REG_EQUIV note. */
2915 unsigned char is_arg_equivalence : 1;
2916 /* Set when an attempt should be made to replace a register
2917 with the associated src_p entry. */
2918 unsigned char replace : 1;
2919 /* Set if this register has no known equivalence. */
2920 unsigned char no_equiv : 1;
2921 /* Set if this register is mentioned in a paradoxical subreg. */
2922 unsigned char pdx_subregs : 1;
2923 };
2924
2925 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2926 structure for that register. */
2927 static struct equivalence *reg_equiv;
2928
2929 /* Used for communication between the following two functions. */
2930 struct equiv_mem_data
2931 {
2932 /* A MEM that we wish to ensure remains unchanged. */
2933 rtx equiv_mem;
2934
2935 /* Set true if EQUIV_MEM is modified. */
2936 bool equiv_mem_modified;
2937 };
2938
2939 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2940 Called via note_stores. */
2941 static void
2942 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2943 void *data)
2944 {
2945 struct equiv_mem_data *info = (struct equiv_mem_data *) data;
2946
2947 if ((REG_P (dest)
2948 && reg_overlap_mentioned_p (dest, info->equiv_mem))
2949 || (MEM_P (dest)
2950 && anti_dependence (info->equiv_mem, dest)))
2951 info->equiv_mem_modified = true;
2952 }
2953
2954 enum valid_equiv { valid_none, valid_combine, valid_reload };
2955
2956 /* Verify that no store between START and the death of REG invalidates
2957 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2958 by storing into an overlapping memory location, or with a non-const
2959 CALL_INSN.
2960
2961 Return VALID_RELOAD if MEMREF remains valid for both reload and
2962 combine_and_move insns, VALID_COMBINE if only valid for
2963 combine_and_move_insns, and VALID_NONE otherwise. */
2964 static enum valid_equiv
2965 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2966 {
2967 rtx_insn *insn;
2968 rtx note;
2969 struct equiv_mem_data info = { memref, false };
2970 enum valid_equiv ret = valid_reload;
2971
2972 /* If the memory reference has side effects or is volatile, it isn't a
2973 valid equivalence. */
2974 if (side_effects_p (memref))
2975 return valid_none;
2976
2977 for (insn = start; insn; insn = NEXT_INSN (insn))
2978 {
2979 if (!INSN_P (insn))
2980 continue;
2981
2982 if (find_reg_note (insn, REG_DEAD, reg))
2983 return ret;
2984
2985 if (CALL_P (insn))
2986 {
2987 /* We can combine a reg def from one insn into a reg use in
2988 another over a call if the memory is readonly or the call
2989 const/pure. However, we can't set reg_equiv notes up for
2990 reload over any call. The problem is the equivalent form
2991 may reference a pseudo which gets assigned a call
2992 clobbered hard reg. When we later replace REG with its
2993 equivalent form, the value in the call-clobbered reg has
2994 been changed and all hell breaks loose. */
2995 ret = valid_combine;
2996 if (!MEM_READONLY_P (memref)
2997 && !RTL_CONST_OR_PURE_CALL_P (insn))
2998 return valid_none;
2999 }
3000
3001 note_stores (PATTERN (insn), validate_equiv_mem_from_store, &info);
3002 if (info.equiv_mem_modified)
3003 return valid_none;
3004
3005 /* If a register mentioned in MEMREF is modified via an
3006 auto-increment, we lose the equivalence. Do the same if one
3007 dies; although we could extend the life, it doesn't seem worth
3008 the trouble. */
3009
3010 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3011 if ((REG_NOTE_KIND (note) == REG_INC
3012 || REG_NOTE_KIND (note) == REG_DEAD)
3013 && REG_P (XEXP (note, 0))
3014 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3015 return valid_none;
3016 }
3017
3018 return valid_none;
3019 }
3020
3021 /* Returns zero if X is known to be invariant. */
3022 static int
3023 equiv_init_varies_p (rtx x)
3024 {
3025 RTX_CODE code = GET_CODE (x);
3026 int i;
3027 const char *fmt;
3028
3029 switch (code)
3030 {
3031 case MEM:
3032 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3033
3034 case CONST:
3035 CASE_CONST_ANY:
3036 case SYMBOL_REF:
3037 case LABEL_REF:
3038 return 0;
3039
3040 case REG:
3041 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3042
3043 case ASM_OPERANDS:
3044 if (MEM_VOLATILE_P (x))
3045 return 1;
3046
3047 /* Fall through. */
3048
3049 default:
3050 break;
3051 }
3052
3053 fmt = GET_RTX_FORMAT (code);
3054 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3055 if (fmt[i] == 'e')
3056 {
3057 if (equiv_init_varies_p (XEXP (x, i)))
3058 return 1;
3059 }
3060 else if (fmt[i] == 'E')
3061 {
3062 int j;
3063 for (j = 0; j < XVECLEN (x, i); j++)
3064 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3065 return 1;
3066 }
3067
3068 return 0;
3069 }
3070
3071 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3072 X is only movable if the registers it uses have equivalent initializations
3073 which appear to be within the same loop (or in an inner loop) and movable
3074 or if they are not candidates for local_alloc and don't vary. */
3075 static int
3076 equiv_init_movable_p (rtx x, int regno)
3077 {
3078 int i, j;
3079 const char *fmt;
3080 enum rtx_code code = GET_CODE (x);
3081
3082 switch (code)
3083 {
3084 case SET:
3085 return equiv_init_movable_p (SET_SRC (x), regno);
3086
3087 case CC0:
3088 case CLOBBER:
3089 return 0;
3090
3091 case PRE_INC:
3092 case PRE_DEC:
3093 case POST_INC:
3094 case POST_DEC:
3095 case PRE_MODIFY:
3096 case POST_MODIFY:
3097 return 0;
3098
3099 case REG:
3100 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3101 && reg_equiv[REGNO (x)].replace)
3102 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3103 && ! rtx_varies_p (x, 0)));
3104
3105 case UNSPEC_VOLATILE:
3106 return 0;
3107
3108 case ASM_OPERANDS:
3109 if (MEM_VOLATILE_P (x))
3110 return 0;
3111
3112 /* Fall through. */
3113
3114 default:
3115 break;
3116 }
3117
3118 fmt = GET_RTX_FORMAT (code);
3119 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3120 switch (fmt[i])
3121 {
3122 case 'e':
3123 if (! equiv_init_movable_p (XEXP (x, i), regno))
3124 return 0;
3125 break;
3126 case 'E':
3127 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3128 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3129 return 0;
3130 break;
3131 }
3132
3133 return 1;
3134 }
3135
3136 /* TRUE if X references a memory location that would be affected by a store
3137 to MEMREF. */
3138 static int
3139 memref_referenced_p (rtx memref, rtx x)
3140 {
3141 int i, j;
3142 const char *fmt;
3143 enum rtx_code code = GET_CODE (x);
3144
3145 switch (code)
3146 {
3147 case CONST:
3148 case LABEL_REF:
3149 case SYMBOL_REF:
3150 CASE_CONST_ANY:
3151 case PC:
3152 case CC0:
3153 case HIGH:
3154 case LO_SUM:
3155 return 0;
3156
3157 case REG:
3158 return (reg_equiv[REGNO (x)].replacement
3159 && memref_referenced_p (memref,
3160 reg_equiv[REGNO (x)].replacement));
3161
3162 case MEM:
3163 if (true_dependence (memref, VOIDmode, x))
3164 return 1;
3165 break;
3166
3167 case SET:
3168 /* If we are setting a MEM, it doesn't count (its address does), but any
3169 other SET_DEST that has a MEM in it is referencing the MEM. */
3170 if (MEM_P (SET_DEST (x)))
3171 {
3172 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3173 return 1;
3174 }
3175 else if (memref_referenced_p (memref, SET_DEST (x)))
3176 return 1;
3177
3178 return memref_referenced_p (memref, SET_SRC (x));
3179
3180 default:
3181 break;
3182 }
3183
3184 fmt = GET_RTX_FORMAT (code);
3185 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3186 switch (fmt[i])
3187 {
3188 case 'e':
3189 if (memref_referenced_p (memref, XEXP (x, i)))
3190 return 1;
3191 break;
3192 case 'E':
3193 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3194 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3195 return 1;
3196 break;
3197 }
3198
3199 return 0;
3200 }
3201
3202 /* TRUE if some insn in the range (START, END] references a memory location
3203 that would be affected by a store to MEMREF.
3204
3205 Callers should not call this routine if START is after END in the
3206 RTL chain. */
3207
3208 static int
3209 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3210 {
3211 rtx_insn *insn;
3212
3213 for (insn = NEXT_INSN (start);
3214 insn && insn != NEXT_INSN (end);
3215 insn = NEXT_INSN (insn))
3216 {
3217 if (!NONDEBUG_INSN_P (insn))
3218 continue;
3219
3220 if (memref_referenced_p (memref, PATTERN (insn)))
3221 return 1;
3222
3223 /* Nonconst functions may access memory. */
3224 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3225 return 1;
3226 }
3227
3228 gcc_assert (insn == NEXT_INSN (end));
3229 return 0;
3230 }
3231
3232 /* Mark REG as having no known equivalence.
3233 Some instructions might have been processed before and furnished
3234 with REG_EQUIV notes for this register; these notes will have to be
3235 removed.
3236 STORE is the piece of RTL that does the non-constant / conflicting
3237 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3238 but needs to be there because this function is called from note_stores. */
3239 static void
3240 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3241 void *data ATTRIBUTE_UNUSED)
3242 {
3243 int regno;
3244 rtx_insn_list *list;
3245
3246 if (!REG_P (reg))
3247 return;
3248 regno = REGNO (reg);
3249 reg_equiv[regno].no_equiv = 1;
3250 list = reg_equiv[regno].init_insns;
3251 if (list && list->insn () == NULL)
3252 return;
3253 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3254 reg_equiv[regno].replacement = NULL_RTX;
3255 /* This doesn't matter for equivalences made for argument registers, we
3256 should keep their initialization insns. */
3257 if (reg_equiv[regno].is_arg_equivalence)
3258 return;
3259 ira_reg_equiv[regno].defined_p = false;
3260 ira_reg_equiv[regno].init_insns = NULL;
3261 for (; list; list = list->next ())
3262 {
3263 rtx_insn *insn = list->insn ();
3264 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3265 }
3266 }
3267
3268 /* Check whether the SUBREG is a paradoxical subreg and set the result
3269 in PDX_SUBREGS. */
3270
3271 static void
3272 set_paradoxical_subreg (rtx_insn *insn)
3273 {
3274 subrtx_iterator::array_type array;
3275 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3276 {
3277 const_rtx subreg = *iter;
3278 if (GET_CODE (subreg) == SUBREG)
3279 {
3280 const_rtx reg = SUBREG_REG (subreg);
3281 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3282 reg_equiv[REGNO (reg)].pdx_subregs = true;
3283 }
3284 }
3285 }
3286
3287 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3288 equivalent replacement. */
3289
3290 static rtx
3291 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3292 {
3293 if (REG_P (loc))
3294 {
3295 bitmap cleared_regs = (bitmap) data;
3296 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3297 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3298 NULL_RTX, adjust_cleared_regs, data);
3299 }
3300 return NULL_RTX;
3301 }
3302
3303 /* Given register REGNO is set only once, return true if the defining
3304 insn dominates all uses. */
3305
3306 static bool
3307 def_dominates_uses (int regno)
3308 {
3309 df_ref def = DF_REG_DEF_CHAIN (regno);
3310
3311 struct df_insn_info *def_info = DF_REF_INSN_INFO (def);
3312 /* If this is an artificial def (eh handler regs, hard frame pointer
3313 for non-local goto, regs defined on function entry) then def_info
3314 is NULL and the reg is always live before any use. We might
3315 reasonably return true in that case, but since the only call
3316 of this function is currently here in ira.c when we are looking
3317 at a defining insn we can't have an artificial def as that would
3318 bump DF_REG_DEF_COUNT. */
3319 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && def_info != NULL);
3320
3321 rtx_insn *def_insn = DF_REF_INSN (def);
3322 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3323
3324 for (df_ref use = DF_REG_USE_CHAIN (regno);
3325 use;
3326 use = DF_REF_NEXT_REG (use))
3327 {
3328 struct df_insn_info *use_info = DF_REF_INSN_INFO (use);
3329 /* Only check real uses, not artificial ones. */
3330 if (use_info)
3331 {
3332 rtx_insn *use_insn = DF_REF_INSN (use);
3333 if (!DEBUG_INSN_P (use_insn))
3334 {
3335 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3336 if (use_bb != def_bb
3337 ? !dominated_by_p (CDI_DOMINATORS, use_bb, def_bb)
3338 : DF_INSN_INFO_LUID (use_info) < DF_INSN_INFO_LUID (def_info))
3339 return false;
3340 }
3341 }
3342 }
3343 return true;
3344 }
3345
3346 /* Find registers that are equivalent to a single value throughout the
3347 compilation (either because they can be referenced in memory or are
3348 set once from a single constant). Lower their priority for a
3349 register.
3350
3351 If such a register is only referenced once, try substituting its
3352 value into the using insn. If it succeeds, we can eliminate the
3353 register completely.
3354
3355 Initialize init_insns in ira_reg_equiv array. */
3356 static void
3357 update_equiv_regs (void)
3358 {
3359 rtx_insn *insn;
3360 basic_block bb;
3361
3362 /* Scan insns and set pdx_subregs if the reg is used in a
3363 paradoxical subreg. Don't set such reg equivalent to a mem,
3364 because lra will not substitute such equiv memory in order to
3365 prevent access beyond allocated memory for paradoxical memory subreg. */
3366 FOR_EACH_BB_FN (bb, cfun)
3367 FOR_BB_INSNS (bb, insn)
3368 if (NONDEBUG_INSN_P (insn))
3369 set_paradoxical_subreg (insn);
3370
3371 /* Scan the insns and find which registers have equivalences. Do this
3372 in a separate scan of the insns because (due to -fcse-follow-jumps)
3373 a register can be set below its use. */
3374 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3375 FOR_EACH_BB_FN (bb, cfun)
3376 {
3377 int loop_depth = bb_loop_depth (bb);
3378
3379 for (insn = BB_HEAD (bb);
3380 insn != NEXT_INSN (BB_END (bb));
3381 insn = NEXT_INSN (insn))
3382 {
3383 rtx note;
3384 rtx set;
3385 rtx dest, src;
3386 int regno;
3387
3388 if (! INSN_P (insn))
3389 continue;
3390
3391 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3392 if (REG_NOTE_KIND (note) == REG_INC)
3393 no_equiv (XEXP (note, 0), note, NULL);
3394
3395 set = single_set (insn);
3396
3397 /* If this insn contains more (or less) than a single SET,
3398 only mark all destinations as having no known equivalence. */
3399 if (set == NULL_RTX
3400 || side_effects_p (SET_SRC (set)))
3401 {
3402 note_stores (PATTERN (insn), no_equiv, NULL);
3403 continue;
3404 }
3405 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3406 {
3407 int i;
3408
3409 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3410 {
3411 rtx part = XVECEXP (PATTERN (insn), 0, i);
3412 if (part != set)
3413 note_stores (part, no_equiv, NULL);
3414 }
3415 }
3416
3417 dest = SET_DEST (set);
3418 src = SET_SRC (set);
3419
3420 /* See if this is setting up the equivalence between an argument
3421 register and its stack slot. */
3422 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3423 if (note)
3424 {
3425 gcc_assert (REG_P (dest));
3426 regno = REGNO (dest);
3427
3428 /* Note that we don't want to clear init_insns in
3429 ira_reg_equiv even if there are multiple sets of this
3430 register. */
3431 reg_equiv[regno].is_arg_equivalence = 1;
3432
3433 /* The insn result can have equivalence memory although
3434 the equivalence is not set up by the insn. We add
3435 this insn to init insns as it is a flag for now that
3436 regno has an equivalence. We will remove the insn
3437 from init insn list later. */
3438 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3439 ira_reg_equiv[regno].init_insns
3440 = gen_rtx_INSN_LIST (VOIDmode, insn,
3441 ira_reg_equiv[regno].init_insns);
3442
3443 /* Continue normally in case this is a candidate for
3444 replacements. */
3445 }
3446
3447 if (!optimize)
3448 continue;
3449
3450 /* We only handle the case of a pseudo register being set
3451 once, or always to the same value. */
3452 /* ??? The mn10200 port breaks if we add equivalences for
3453 values that need an ADDRESS_REGS register and set them equivalent
3454 to a MEM of a pseudo. The actual problem is in the over-conservative
3455 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3456 calculate_needs, but we traditionally work around this problem
3457 here by rejecting equivalences when the destination is in a register
3458 that's likely spilled. This is fragile, of course, since the
3459 preferred class of a pseudo depends on all instructions that set
3460 or use it. */
3461
3462 if (!REG_P (dest)
3463 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3464 || (reg_equiv[regno].init_insns
3465 && reg_equiv[regno].init_insns->insn () == NULL)
3466 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3467 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3468 {
3469 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3470 also set somewhere else to a constant. */
3471 note_stores (set, no_equiv, NULL);
3472 continue;
3473 }
3474
3475 /* Don't set reg mentioned in a paradoxical subreg
3476 equivalent to a mem. */
3477 if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
3478 {
3479 note_stores (set, no_equiv, NULL);
3480 continue;
3481 }
3482
3483 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3484
3485 /* cse sometimes generates function invariants, but doesn't put a
3486 REG_EQUAL note on the insn. Since this note would be redundant,
3487 there's no point creating it earlier than here. */
3488 if (! note && ! rtx_varies_p (src, 0))
3489 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3490
3491 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3492 since it represents a function call. */
3493 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3494 note = NULL_RTX;
3495
3496 if (DF_REG_DEF_COUNT (regno) != 1)
3497 {
3498 bool equal_p = true;
3499 rtx_insn_list *list;
3500
3501 /* If we have already processed this pseudo and determined it
3502 can not have an equivalence, then honor that decision. */
3503 if (reg_equiv[regno].no_equiv)
3504 continue;
3505
3506 if (! note
3507 || rtx_varies_p (XEXP (note, 0), 0)
3508 || (reg_equiv[regno].replacement
3509 && ! rtx_equal_p (XEXP (note, 0),
3510 reg_equiv[regno].replacement)))
3511 {
3512 no_equiv (dest, set, NULL);
3513 continue;
3514 }
3515
3516 list = reg_equiv[regno].init_insns;
3517 for (; list; list = list->next ())
3518 {
3519 rtx note_tmp;
3520 rtx_insn *insn_tmp;
3521
3522 insn_tmp = list->insn ();
3523 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3524 gcc_assert (note_tmp);
3525 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3526 {
3527 equal_p = false;
3528 break;
3529 }
3530 }
3531
3532 if (! equal_p)
3533 {
3534 no_equiv (dest, set, NULL);
3535 continue;
3536 }
3537 }
3538
3539 /* Record this insn as initializing this register. */
3540 reg_equiv[regno].init_insns
3541 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3542
3543 /* If this register is known to be equal to a constant, record that
3544 it is always equivalent to the constant.
3545 Note that it is possible to have a register use before
3546 the def in loops (see gcc.c-torture/execute/pr79286.c)
3547 where the reg is undefined on first use. If the def insn
3548 won't trap we can use it as an equivalence, effectively
3549 choosing the "undefined" value for the reg to be the
3550 same as the value set by the def. */
3551 if (DF_REG_DEF_COUNT (regno) == 1
3552 && note
3553 && !rtx_varies_p (XEXP (note, 0), 0)
3554 && (!may_trap_or_fault_p (XEXP (note, 0))
3555 || def_dominates_uses (regno)))
3556 {
3557 rtx note_value = XEXP (note, 0);
3558 remove_note (insn, note);
3559 set_unique_reg_note (insn, REG_EQUIV, note_value);
3560 }
3561
3562 /* If this insn introduces a "constant" register, decrease the priority
3563 of that register. Record this insn if the register is only used once
3564 more and the equivalence value is the same as our source.
3565
3566 The latter condition is checked for two reasons: First, it is an
3567 indication that it may be more efficient to actually emit the insn
3568 as written (if no registers are available, reload will substitute
3569 the equivalence). Secondly, it avoids problems with any registers
3570 dying in this insn whose death notes would be missed.
3571
3572 If we don't have a REG_EQUIV note, see if this insn is loading
3573 a register used only in one basic block from a MEM. If so, and the
3574 MEM remains unchanged for the life of the register, add a REG_EQUIV
3575 note. */
3576 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3577
3578 rtx replacement = NULL_RTX;
3579 if (note)
3580 replacement = XEXP (note, 0);
3581 else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3582 && MEM_P (SET_SRC (set)))
3583 {
3584 enum valid_equiv validity;
3585 validity = validate_equiv_mem (insn, dest, SET_SRC (set));
3586 if (validity != valid_none)
3587 {
3588 replacement = copy_rtx (SET_SRC (set));
3589 if (validity == valid_reload)
3590 note = set_unique_reg_note (insn, REG_EQUIV, replacement);
3591 }
3592 }
3593
3594 /* If we haven't done so, record for reload that this is an
3595 equivalencing insn. */
3596 if (note && !reg_equiv[regno].is_arg_equivalence)
3597 ira_reg_equiv[regno].init_insns
3598 = gen_rtx_INSN_LIST (VOIDmode, insn,
3599 ira_reg_equiv[regno].init_insns);
3600
3601 if (replacement)
3602 {
3603 reg_equiv[regno].replacement = replacement;
3604 reg_equiv[regno].src_p = &SET_SRC (set);
3605 reg_equiv[regno].loop_depth = (short) loop_depth;
3606
3607 /* Don't mess with things live during setjmp. */
3608 if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
3609 {
3610 /* If the register is referenced exactly twice, meaning it is
3611 set once and used once, indicate that the reference may be
3612 replaced by the equivalence we computed above. Do this
3613 even if the register is only used in one block so that
3614 dependencies can be handled where the last register is
3615 used in a different block (i.e. HIGH / LO_SUM sequences)
3616 and to reduce the number of registers alive across
3617 calls. */
3618
3619 if (REG_N_REFS (regno) == 2
3620 && (rtx_equal_p (replacement, src)
3621 || ! equiv_init_varies_p (src))
3622 && NONJUMP_INSN_P (insn)
3623 && equiv_init_movable_p (PATTERN (insn), regno))
3624 reg_equiv[regno].replace = 1;
3625 }
3626 }
3627 }
3628 }
3629 }
3630
3631 /* For insns that set a MEM to the contents of a REG that is only used
3632 in a single basic block, see if the register is always equivalent
3633 to that memory location and if moving the store from INSN to the
3634 insn that sets REG is safe. If so, put a REG_EQUIV note on the
3635 initializing insn. */
3636 static void
3637 add_store_equivs (void)
3638 {
3639 auto_bitmap seen_insns;
3640
3641 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3642 {
3643 rtx set, src, dest;
3644 unsigned regno;
3645 rtx_insn *init_insn;
3646
3647 bitmap_set_bit (seen_insns, INSN_UID (insn));
3648
3649 if (! INSN_P (insn))
3650 continue;
3651
3652 set = single_set (insn);
3653 if (! set)
3654 continue;
3655
3656 dest = SET_DEST (set);
3657 src = SET_SRC (set);
3658
3659 /* Don't add a REG_EQUIV note if the insn already has one. The existing
3660 REG_EQUIV is likely more useful than the one we are adding. */
3661 if (MEM_P (dest) && REG_P (src)
3662 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3663 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3664 && DF_REG_DEF_COUNT (regno) == 1
3665 && ! reg_equiv[regno].pdx_subregs
3666 && reg_equiv[regno].init_insns != NULL
3667 && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
3668 && bitmap_bit_p (seen_insns, INSN_UID (init_insn))
3669 && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
3670 && validate_equiv_mem (init_insn, src, dest) == valid_reload
3671 && ! memref_used_between_p (dest, init_insn, insn)
3672 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3673 multiple sets. */
3674 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3675 {
3676 /* This insn makes the equivalence, not the one initializing
3677 the register. */
3678 ira_reg_equiv[regno].init_insns
3679 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3680 df_notes_rescan (init_insn);
3681 if (dump_file)
3682 fprintf (dump_file,
3683 "Adding REG_EQUIV to insn %d for source of insn %d\n",
3684 INSN_UID (init_insn),
3685 INSN_UID (insn));
3686 }
3687 }
3688 }
3689
3690 /* Scan all regs killed in an insn to see if any of them are registers
3691 only used that once. If so, see if we can replace the reference
3692 with the equivalent form. If we can, delete the initializing
3693 reference and this register will go away. If we can't replace the
3694 reference, and the initializing reference is within the same loop
3695 (or in an inner loop), then move the register initialization just
3696 before the use, so that they are in the same basic block. */
3697 static void
3698 combine_and_move_insns (void)
3699 {
3700 auto_bitmap cleared_regs;
3701 int max = max_reg_num ();
3702
3703 for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
3704 {
3705 if (!reg_equiv[regno].replace)
3706 continue;
3707
3708 rtx_insn *use_insn = 0;
3709 for (df_ref use = DF_REG_USE_CHAIN (regno);
3710 use;
3711 use = DF_REF_NEXT_REG (use))
3712 if (DF_REF_INSN_INFO (use))
3713 {
3714 if (DEBUG_INSN_P (DF_REF_INSN (use)))
3715 continue;
3716 gcc_assert (!use_insn);
3717 use_insn = DF_REF_INSN (use);
3718 }
3719 gcc_assert (use_insn);
3720
3721 /* Don't substitute into jumps. indirect_jump_optimize does
3722 this for anything we are prepared to handle. */
3723 if (JUMP_P (use_insn))
3724 continue;
3725
3726 /* Also don't substitute into a conditional trap insn -- it can become
3727 an unconditional trap, and that is a flow control insn. */
3728 if (GET_CODE (PATTERN (use_insn)) == TRAP_IF)
3729 continue;
3730
3731 df_ref def = DF_REG_DEF_CHAIN (regno);
3732 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
3733 rtx_insn *def_insn = DF_REF_INSN (def);
3734
3735 /* We may not move instructions that can throw, since that
3736 changes basic block boundaries and we are not prepared to
3737 adjust the CFG to match. */
3738 if (can_throw_internal (def_insn))
3739 continue;
3740
3741 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3742 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3743 if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
3744 continue;
3745
3746 if (asm_noperands (PATTERN (def_insn)) < 0
3747 && validate_replace_rtx (regno_reg_rtx[regno],
3748 *reg_equiv[regno].src_p, use_insn))
3749 {
3750 rtx link;
3751 /* Append the REG_DEAD notes from def_insn. */
3752 for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
3753 {
3754 if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
3755 {
3756 *p = XEXP (link, 1);
3757 XEXP (link, 1) = REG_NOTES (use_insn);
3758 REG_NOTES (use_insn) = link;
3759 }
3760 else
3761 p = &XEXP (link, 1);
3762 }
3763
3764 remove_death (regno, use_insn);
3765 SET_REG_N_REFS (regno, 0);
3766 REG_FREQ (regno) = 0;
3767 df_ref use;
3768 FOR_EACH_INSN_USE (use, def_insn)
3769 {
3770 unsigned int use_regno = DF_REF_REGNO (use);
3771 if (!HARD_REGISTER_NUM_P (use_regno))
3772 reg_equiv[use_regno].replace = 0;
3773 }
3774
3775 delete_insn (def_insn);
3776
3777 reg_equiv[regno].init_insns = NULL;
3778 ira_reg_equiv[regno].init_insns = NULL;
3779 bitmap_set_bit (cleared_regs, regno);
3780 }
3781
3782 /* Move the initialization of the register to just before
3783 USE_INSN. Update the flow information. */
3784 else if (prev_nondebug_insn (use_insn) != def_insn)
3785 {
3786 rtx_insn *new_insn;
3787
3788 new_insn = emit_insn_before (PATTERN (def_insn), use_insn);
3789 REG_NOTES (new_insn) = REG_NOTES (def_insn);
3790 REG_NOTES (def_insn) = 0;
3791 /* Rescan it to process the notes. */
3792 df_insn_rescan (new_insn);
3793
3794 /* Make sure this insn is recognized before reload begins,
3795 otherwise eliminate_regs_in_insn will die. */
3796 INSN_CODE (new_insn) = INSN_CODE (def_insn);
3797
3798 delete_insn (def_insn);
3799
3800 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3801
3802 REG_BASIC_BLOCK (regno) = use_bb->index;
3803 REG_N_CALLS_CROSSED (regno) = 0;
3804
3805 if (use_insn == BB_HEAD (use_bb))
3806 BB_HEAD (use_bb) = new_insn;
3807
3808 /* We know regno dies in use_insn, but inside a loop
3809 REG_DEAD notes might be missing when def_insn was in
3810 another basic block. However, when we move def_insn into
3811 this bb we'll definitely get a REG_DEAD note and reload
3812 will see the death. It's possible that update_equiv_regs
3813 set up an equivalence referencing regno for a reg set by
3814 use_insn, when regno was seen as non-local. Now that
3815 regno is local to this block, and dies, such an
3816 equivalence is invalid. */
3817 if (find_reg_note (use_insn, REG_EQUIV, regno_reg_rtx[regno]))
3818 {
3819 rtx set = single_set (use_insn);
3820 if (set && REG_P (SET_DEST (set)))
3821 no_equiv (SET_DEST (set), set, NULL);
3822 }
3823
3824 ira_reg_equiv[regno].init_insns
3825 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3826 bitmap_set_bit (cleared_regs, regno);
3827 }
3828 }
3829
3830 if (!bitmap_empty_p (cleared_regs))
3831 {
3832 basic_block bb;
3833
3834 FOR_EACH_BB_FN (bb, cfun)
3835 {
3836 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3837 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3838 if (!df_live)
3839 continue;
3840 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3841 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3842 }
3843
3844 /* Last pass - adjust debug insns referencing cleared regs. */
3845 if (MAY_HAVE_DEBUG_BIND_INSNS)
3846 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3847 if (DEBUG_BIND_INSN_P (insn))
3848 {
3849 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3850 INSN_VAR_LOCATION_LOC (insn)
3851 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3852 adjust_cleared_regs,
3853 (void *) cleared_regs);
3854 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3855 df_insn_rescan (insn);
3856 }
3857 }
3858 }
3859
3860 /* A pass over indirect jumps, converting simple cases to direct jumps.
3861 Combine does this optimization too, but only within a basic block. */
3862 static void
3863 indirect_jump_optimize (void)
3864 {
3865 basic_block bb;
3866 bool rebuild_p = false;
3867
3868 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3869 {
3870 rtx_insn *insn = BB_END (bb);
3871 if (!JUMP_P (insn)
3872 || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3873 continue;
3874
3875 rtx x = pc_set (insn);
3876 if (!x || !REG_P (SET_SRC (x)))
3877 continue;
3878
3879 int regno = REGNO (SET_SRC (x));
3880 if (DF_REG_DEF_COUNT (regno) == 1)
3881 {
3882 df_ref def = DF_REG_DEF_CHAIN (regno);
3883 if (!DF_REF_IS_ARTIFICIAL (def))
3884 {
3885 rtx_insn *def_insn = DF_REF_INSN (def);
3886 rtx lab = NULL_RTX;
3887 rtx set = single_set (def_insn);
3888 if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
3889 lab = SET_SRC (set);
3890 else
3891 {
3892 rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
3893 if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
3894 lab = XEXP (eqnote, 0);
3895 }
3896 if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
3897 rebuild_p = true;
3898 }
3899 }
3900 }
3901
3902 if (rebuild_p)
3903 {
3904 timevar_push (TV_JUMP);
3905 rebuild_jump_labels (get_insns ());
3906 if (purge_all_dead_edges ())
3907 delete_unreachable_blocks ();
3908 timevar_pop (TV_JUMP);
3909 }
3910 }
3911 \f
3912 /* Set up fields memory, constant, and invariant from init_insns in
3913 the structures of array ira_reg_equiv. */
3914 static void
3915 setup_reg_equiv (void)
3916 {
3917 int i;
3918 rtx_insn_list *elem, *prev_elem, *next_elem;
3919 rtx_insn *insn;
3920 rtx set, x;
3921
3922 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3923 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3924 elem;
3925 prev_elem = elem, elem = next_elem)
3926 {
3927 next_elem = elem->next ();
3928 insn = elem->insn ();
3929 set = single_set (insn);
3930
3931 /* Init insns can set up equivalence when the reg is a destination or
3932 a source (in this case the destination is memory). */
3933 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3934 {
3935 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3936 {
3937 x = XEXP (x, 0);
3938 if (REG_P (SET_DEST (set))
3939 && REGNO (SET_DEST (set)) == (unsigned int) i
3940 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3941 {
3942 /* This insn reporting the equivalence but
3943 actually not setting it. Remove it from the
3944 list. */
3945 if (prev_elem == NULL)
3946 ira_reg_equiv[i].init_insns = next_elem;
3947 else
3948 XEXP (prev_elem, 1) = next_elem;
3949 elem = prev_elem;
3950 }
3951 }
3952 else if (REG_P (SET_DEST (set))
3953 && REGNO (SET_DEST (set)) == (unsigned int) i)
3954 x = SET_SRC (set);
3955 else
3956 {
3957 gcc_assert (REG_P (SET_SRC (set))
3958 && REGNO (SET_SRC (set)) == (unsigned int) i);
3959 x = SET_DEST (set);
3960 }
3961 if (! function_invariant_p (x)
3962 || ! flag_pic
3963 /* A function invariant is often CONSTANT_P but may
3964 include a register. We promise to only pass
3965 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3966 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3967 {
3968 /* It can happen that a REG_EQUIV note contains a MEM
3969 that is not a legitimate memory operand. As later
3970 stages of reload assume that all addresses found in
3971 the lra_regno_equiv_* arrays were originally
3972 legitimate, we ignore such REG_EQUIV notes. */
3973 if (memory_operand (x, VOIDmode))
3974 {
3975 ira_reg_equiv[i].defined_p = true;
3976 ira_reg_equiv[i].memory = x;
3977 continue;
3978 }
3979 else if (function_invariant_p (x))
3980 {
3981 machine_mode mode;
3982
3983 mode = GET_MODE (SET_DEST (set));
3984 if (GET_CODE (x) == PLUS
3985 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3986 /* This is PLUS of frame pointer and a constant,
3987 or fp, or argp. */
3988 ira_reg_equiv[i].invariant = x;
3989 else if (targetm.legitimate_constant_p (mode, x))
3990 ira_reg_equiv[i].constant = x;
3991 else
3992 {
3993 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3994 if (ira_reg_equiv[i].memory == NULL_RTX)
3995 {
3996 ira_reg_equiv[i].defined_p = false;
3997 ira_reg_equiv[i].init_insns = NULL;
3998 break;
3999 }
4000 }
4001 ira_reg_equiv[i].defined_p = true;
4002 continue;
4003 }
4004 }
4005 }
4006 ira_reg_equiv[i].defined_p = false;
4007 ira_reg_equiv[i].init_insns = NULL;
4008 break;
4009 }
4010 }
4011
4012 \f
4013
4014 /* Print chain C to FILE. */
4015 static void
4016 print_insn_chain (FILE *file, struct insn_chain *c)
4017 {
4018 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
4019 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4020 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4021 }
4022
4023
4024 /* Print all reload_insn_chains to FILE. */
4025 static void
4026 print_insn_chains (FILE *file)
4027 {
4028 struct insn_chain *c;
4029 for (c = reload_insn_chain; c ; c = c->next)
4030 print_insn_chain (file, c);
4031 }
4032
4033 /* Return true if pseudo REGNO should be added to set live_throughout
4034 or dead_or_set of the insn chains for reload consideration. */
4035 static bool
4036 pseudo_for_reload_consideration_p (int regno)
4037 {
4038 /* Consider spilled pseudos too for IRA because they still have a
4039 chance to get hard-registers in the reload when IRA is used. */
4040 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4041 }
4042
4043 /* Return true if we can track the individual bytes of subreg X.
4044 When returning true, set *OUTER_SIZE to the number of bytes in
4045 X itself, *INNER_SIZE to the number of bytes in the inner register
4046 and *START to the offset of the first byte. */
4047 static bool
4048 get_subreg_tracking_sizes (rtx x, HOST_WIDE_INT *outer_size,
4049 HOST_WIDE_INT *inner_size, HOST_WIDE_INT *start)
4050 {
4051 rtx reg = regno_reg_rtx[REGNO (SUBREG_REG (x))];
4052 return (GET_MODE_SIZE (GET_MODE (x)).is_constant (outer_size)
4053 && GET_MODE_SIZE (GET_MODE (reg)).is_constant (inner_size)
4054 && SUBREG_BYTE (x).is_constant (start));
4055 }
4056
4057 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] for
4058 a register with SIZE bytes, making the register live if INIT_VALUE. */
4059 static void
4060 init_live_subregs (bool init_value, sbitmap *live_subregs,
4061 bitmap live_subregs_used, int allocnum, int size)
4062 {
4063 gcc_assert (size > 0);
4064
4065 /* Been there, done that. */
4066 if (bitmap_bit_p (live_subregs_used, allocnum))
4067 return;
4068
4069 /* Create a new one. */
4070 if (live_subregs[allocnum] == NULL)
4071 live_subregs[allocnum] = sbitmap_alloc (size);
4072
4073 /* If the entire reg was live before blasting into subregs, we need
4074 to init all of the subregs to ones else init to 0. */
4075 if (init_value)
4076 bitmap_ones (live_subregs[allocnum]);
4077 else
4078 bitmap_clear (live_subregs[allocnum]);
4079
4080 bitmap_set_bit (live_subregs_used, allocnum);
4081 }
4082
4083 /* Walk the insns of the current function and build reload_insn_chain,
4084 and record register life information. */
4085 static void
4086 build_insn_chain (void)
4087 {
4088 unsigned int i;
4089 struct insn_chain **p = &reload_insn_chain;
4090 basic_block bb;
4091 struct insn_chain *c = NULL;
4092 struct insn_chain *next = NULL;
4093 auto_bitmap live_relevant_regs;
4094 auto_bitmap elim_regset;
4095 /* live_subregs is a vector used to keep accurate information about
4096 which hardregs are live in multiword pseudos. live_subregs and
4097 live_subregs_used are indexed by pseudo number. The live_subreg
4098 entry for a particular pseudo is only used if the corresponding
4099 element is non zero in live_subregs_used. The sbitmap size of
4100 live_subreg[allocno] is number of bytes that the pseudo can
4101 occupy. */
4102 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4103 auto_bitmap live_subregs_used;
4104
4105 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4106 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4107 bitmap_set_bit (elim_regset, i);
4108 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4109 {
4110 bitmap_iterator bi;
4111 rtx_insn *insn;
4112
4113 CLEAR_REG_SET (live_relevant_regs);
4114 bitmap_clear (live_subregs_used);
4115
4116 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4117 {
4118 if (i >= FIRST_PSEUDO_REGISTER)
4119 break;
4120 bitmap_set_bit (live_relevant_regs, i);
4121 }
4122
4123 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4124 FIRST_PSEUDO_REGISTER, i, bi)
4125 {
4126 if (pseudo_for_reload_consideration_p (i))
4127 bitmap_set_bit (live_relevant_regs, i);
4128 }
4129
4130 FOR_BB_INSNS_REVERSE (bb, insn)
4131 {
4132 if (!NOTE_P (insn) && !BARRIER_P (insn))
4133 {
4134 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4135 df_ref def, use;
4136
4137 c = new_insn_chain ();
4138 c->next = next;
4139 next = c;
4140 *p = c;
4141 p = &c->prev;
4142
4143 c->insn = insn;
4144 c->block = bb->index;
4145
4146 if (NONDEBUG_INSN_P (insn))
4147 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4148 {
4149 unsigned int regno = DF_REF_REGNO (def);
4150
4151 /* Ignore may clobbers because these are generated
4152 from calls. However, every other kind of def is
4153 added to dead_or_set. */
4154 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4155 {
4156 if (regno < FIRST_PSEUDO_REGISTER)
4157 {
4158 if (!fixed_regs[regno])
4159 bitmap_set_bit (&c->dead_or_set, regno);
4160 }
4161 else if (pseudo_for_reload_consideration_p (regno))
4162 bitmap_set_bit (&c->dead_or_set, regno);
4163 }
4164
4165 if ((regno < FIRST_PSEUDO_REGISTER
4166 || reg_renumber[regno] >= 0
4167 || ira_conflicts_p)
4168 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4169 {
4170 rtx reg = DF_REF_REG (def);
4171 HOST_WIDE_INT outer_size, inner_size, start;
4172
4173 /* We can usually track the liveness of individual
4174 bytes within a subreg. The only exceptions are
4175 subregs wrapped in ZERO_EXTRACTs and subregs whose
4176 size is not known; in those cases we need to be
4177 conservative and treat the definition as a partial
4178 definition of the full register rather than a full
4179 definition of a specific part of the register. */
4180 if (GET_CODE (reg) == SUBREG
4181 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT)
4182 && get_subreg_tracking_sizes (reg, &outer_size,
4183 &inner_size, &start))
4184 {
4185 HOST_WIDE_INT last = start + outer_size;
4186
4187 init_live_subregs
4188 (bitmap_bit_p (live_relevant_regs, regno),
4189 live_subregs, live_subregs_used, regno,
4190 inner_size);
4191
4192 if (!DF_REF_FLAGS_IS_SET
4193 (def, DF_REF_STRICT_LOW_PART))
4194 {
4195 /* Expand the range to cover entire words.
4196 Bytes added here are "don't care". */
4197 start
4198 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4199 last = ((last + UNITS_PER_WORD - 1)
4200 / UNITS_PER_WORD * UNITS_PER_WORD);
4201 }
4202
4203 /* Ignore the paradoxical bits. */
4204 if (last > SBITMAP_SIZE (live_subregs[regno]))
4205 last = SBITMAP_SIZE (live_subregs[regno]);
4206
4207 while (start < last)
4208 {
4209 bitmap_clear_bit (live_subregs[regno], start);
4210 start++;
4211 }
4212
4213 if (bitmap_empty_p (live_subregs[regno]))
4214 {
4215 bitmap_clear_bit (live_subregs_used, regno);
4216 bitmap_clear_bit (live_relevant_regs, regno);
4217 }
4218 else
4219 /* Set live_relevant_regs here because
4220 that bit has to be true to get us to
4221 look at the live_subregs fields. */
4222 bitmap_set_bit (live_relevant_regs, regno);
4223 }
4224 else
4225 {
4226 /* DF_REF_PARTIAL is generated for
4227 subregs, STRICT_LOW_PART, and
4228 ZERO_EXTRACT. We handle the subreg
4229 case above so here we have to keep from
4230 modeling the def as a killing def. */
4231 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4232 {
4233 bitmap_clear_bit (live_subregs_used, regno);
4234 bitmap_clear_bit (live_relevant_regs, regno);
4235 }
4236 }
4237 }
4238 }
4239
4240 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4241 bitmap_copy (&c->live_throughout, live_relevant_regs);
4242
4243 if (NONDEBUG_INSN_P (insn))
4244 FOR_EACH_INSN_INFO_USE (use, insn_info)
4245 {
4246 unsigned int regno = DF_REF_REGNO (use);
4247 rtx reg = DF_REF_REG (use);
4248
4249 /* DF_REF_READ_WRITE on a use means that this use
4250 is fabricated from a def that is a partial set
4251 to a multiword reg. Here, we only model the
4252 subreg case that is not wrapped in ZERO_EXTRACT
4253 precisely so we do not need to look at the
4254 fabricated use. */
4255 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4256 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4257 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4258 continue;
4259
4260 /* Add the last use of each var to dead_or_set. */
4261 if (!bitmap_bit_p (live_relevant_regs, regno))
4262 {
4263 if (regno < FIRST_PSEUDO_REGISTER)
4264 {
4265 if (!fixed_regs[regno])
4266 bitmap_set_bit (&c->dead_or_set, regno);
4267 }
4268 else if (pseudo_for_reload_consideration_p (regno))
4269 bitmap_set_bit (&c->dead_or_set, regno);
4270 }
4271
4272 if (regno < FIRST_PSEUDO_REGISTER
4273 || pseudo_for_reload_consideration_p (regno))
4274 {
4275 HOST_WIDE_INT outer_size, inner_size, start;
4276 if (GET_CODE (reg) == SUBREG
4277 && !DF_REF_FLAGS_IS_SET (use,
4278 DF_REF_SIGN_EXTRACT
4279 | DF_REF_ZERO_EXTRACT)
4280 && get_subreg_tracking_sizes (reg, &outer_size,
4281 &inner_size, &start))
4282 {
4283 HOST_WIDE_INT last = start + outer_size;
4284
4285 init_live_subregs
4286 (bitmap_bit_p (live_relevant_regs, regno),
4287 live_subregs, live_subregs_used, regno,
4288 inner_size);
4289
4290 /* Ignore the paradoxical bits. */
4291 if (last > SBITMAP_SIZE (live_subregs[regno]))
4292 last = SBITMAP_SIZE (live_subregs[regno]);
4293
4294 while (start < last)
4295 {
4296 bitmap_set_bit (live_subregs[regno], start);
4297 start++;
4298 }
4299 }
4300 else
4301 /* Resetting the live_subregs_used is
4302 effectively saying do not use the subregs
4303 because we are reading the whole
4304 pseudo. */
4305 bitmap_clear_bit (live_subregs_used, regno);
4306 bitmap_set_bit (live_relevant_regs, regno);
4307 }
4308 }
4309 }
4310 }
4311
4312 /* FIXME!! The following code is a disaster. Reload needs to see the
4313 labels and jump tables that are just hanging out in between
4314 the basic blocks. See pr33676. */
4315 insn = BB_HEAD (bb);
4316
4317 /* Skip over the barriers and cruft. */
4318 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4319 || BLOCK_FOR_INSN (insn) == bb))
4320 insn = PREV_INSN (insn);
4321
4322 /* While we add anything except barriers and notes, the focus is
4323 to get the labels and jump tables into the
4324 reload_insn_chain. */
4325 while (insn)
4326 {
4327 if (!NOTE_P (insn) && !BARRIER_P (insn))
4328 {
4329 if (BLOCK_FOR_INSN (insn))
4330 break;
4331
4332 c = new_insn_chain ();
4333 c->next = next;
4334 next = c;
4335 *p = c;
4336 p = &c->prev;
4337
4338 /* The block makes no sense here, but it is what the old
4339 code did. */
4340 c->block = bb->index;
4341 c->insn = insn;
4342 bitmap_copy (&c->live_throughout, live_relevant_regs);
4343 }
4344 insn = PREV_INSN (insn);
4345 }
4346 }
4347
4348 reload_insn_chain = c;
4349 *p = NULL;
4350
4351 for (i = 0; i < (unsigned int) max_regno; i++)
4352 if (live_subregs[i] != NULL)
4353 sbitmap_free (live_subregs[i]);
4354 free (live_subregs);
4355
4356 if (dump_file)
4357 print_insn_chains (dump_file);
4358 }
4359 \f
4360 /* Examine the rtx found in *LOC, which is read or written to as determined
4361 by TYPE. Return false if we find a reason why an insn containing this
4362 rtx should not be moved (such as accesses to non-constant memory), true
4363 otherwise. */
4364 static bool
4365 rtx_moveable_p (rtx *loc, enum op_type type)
4366 {
4367 const char *fmt;
4368 rtx x = *loc;
4369 enum rtx_code code = GET_CODE (x);
4370 int i, j;
4371
4372 code = GET_CODE (x);
4373 switch (code)
4374 {
4375 case CONST:
4376 CASE_CONST_ANY:
4377 case SYMBOL_REF:
4378 case LABEL_REF:
4379 return true;
4380
4381 case PC:
4382 return type == OP_IN;
4383
4384 case CC0:
4385 return false;
4386
4387 case REG:
4388 if (x == frame_pointer_rtx)
4389 return true;
4390 if (HARD_REGISTER_P (x))
4391 return false;
4392
4393 return true;
4394
4395 case MEM:
4396 if (type == OP_IN && MEM_READONLY_P (x))
4397 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4398 return false;
4399
4400 case SET:
4401 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4402 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4403
4404 case STRICT_LOW_PART:
4405 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4406
4407 case ZERO_EXTRACT:
4408 case SIGN_EXTRACT:
4409 return (rtx_moveable_p (&XEXP (x, 0), type)
4410 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4411 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4412
4413 case CLOBBER:
4414 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4415
4416 case UNSPEC_VOLATILE:
4417 /* It is a bad idea to consider insns with such rtl
4418 as moveable ones. The insn scheduler also considers them as barrier
4419 for a reason. */
4420 return false;
4421
4422 case ASM_OPERANDS:
4423 /* The same is true for volatile asm: it has unknown side effects, it
4424 cannot be moved at will. */
4425 if (MEM_VOLATILE_P (x))
4426 return false;
4427
4428 default:
4429 break;
4430 }
4431
4432 fmt = GET_RTX_FORMAT (code);
4433 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4434 {
4435 if (fmt[i] == 'e')
4436 {
4437 if (!rtx_moveable_p (&XEXP (x, i), type))
4438 return false;
4439 }
4440 else if (fmt[i] == 'E')
4441 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4442 {
4443 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4444 return false;
4445 }
4446 }
4447 return true;
4448 }
4449
4450 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4451 to give dominance relationships between two insns I1 and I2. */
4452 static bool
4453 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4454 {
4455 basic_block bb1 = BLOCK_FOR_INSN (i1);
4456 basic_block bb2 = BLOCK_FOR_INSN (i2);
4457
4458 if (bb1 == bb2)
4459 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4460 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4461 }
4462
4463 /* Record the range of register numbers added by find_moveable_pseudos. */
4464 int first_moveable_pseudo, last_moveable_pseudo;
4465
4466 /* These two vectors hold data for every register added by
4467 find_movable_pseudos, with index 0 holding data for the
4468 first_moveable_pseudo. */
4469 /* The original home register. */
4470 static vec<rtx> pseudo_replaced_reg;
4471
4472 /* Look for instances where we have an instruction that is known to increase
4473 register pressure, and whose result is not used immediately. If it is
4474 possible to move the instruction downwards to just before its first use,
4475 split its lifetime into two ranges. We create a new pseudo to compute the
4476 value, and emit a move instruction just before the first use. If, after
4477 register allocation, the new pseudo remains unallocated, the function
4478 move_unallocated_pseudos then deletes the move instruction and places
4479 the computation just before the first use.
4480
4481 Such a move is safe and profitable if all the input registers remain live
4482 and unchanged between the original computation and its first use. In such
4483 a situation, the computation is known to increase register pressure, and
4484 moving it is known to at least not worsen it.
4485
4486 We restrict moves to only those cases where a register remains unallocated,
4487 in order to avoid interfering too much with the instruction schedule. As
4488 an exception, we may move insns which only modify their input register
4489 (typically induction variables), as this increases the freedom for our
4490 intended transformation, and does not limit the second instruction
4491 scheduler pass. */
4492
4493 static void
4494 find_moveable_pseudos (void)
4495 {
4496 unsigned i;
4497 int max_regs = max_reg_num ();
4498 int max_uid = get_max_uid ();
4499 basic_block bb;
4500 int *uid_luid = XNEWVEC (int, max_uid);
4501 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4502 /* A set of registers which are live but not modified throughout a block. */
4503 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4504 last_basic_block_for_fn (cfun));
4505 /* A set of registers which only exist in a given basic block. */
4506 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4507 last_basic_block_for_fn (cfun));
4508 /* A set of registers which are set once, in an instruction that can be
4509 moved freely downwards, but are otherwise transparent to a block. */
4510 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4511 last_basic_block_for_fn (cfun));
4512 auto_bitmap live, used, set, interesting, unusable_as_input;
4513 bitmap_iterator bi;
4514
4515 first_moveable_pseudo = max_regs;
4516 pseudo_replaced_reg.release ();
4517 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4518
4519 df_analyze ();
4520 calculate_dominance_info (CDI_DOMINATORS);
4521
4522 i = 0;
4523 FOR_EACH_BB_FN (bb, cfun)
4524 {
4525 rtx_insn *insn;
4526 bitmap transp = bb_transp_live + bb->index;
4527 bitmap moveable = bb_moveable_reg_sets + bb->index;
4528 bitmap local = bb_local + bb->index;
4529
4530 bitmap_initialize (local, 0);
4531 bitmap_initialize (transp, 0);
4532 bitmap_initialize (moveable, 0);
4533 bitmap_copy (live, df_get_live_out (bb));
4534 bitmap_and_into (live, df_get_live_in (bb));
4535 bitmap_copy (transp, live);
4536 bitmap_clear (moveable);
4537 bitmap_clear (live);
4538 bitmap_clear (used);
4539 bitmap_clear (set);
4540 FOR_BB_INSNS (bb, insn)
4541 if (NONDEBUG_INSN_P (insn))
4542 {
4543 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4544 df_ref def, use;
4545
4546 uid_luid[INSN_UID (insn)] = i++;
4547
4548 def = df_single_def (insn_info);
4549 use = df_single_use (insn_info);
4550 if (use
4551 && def
4552 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4553 && !bitmap_bit_p (set, DF_REF_REGNO (use))
4554 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4555 {
4556 unsigned regno = DF_REF_REGNO (use);
4557 bitmap_set_bit (moveable, regno);
4558 bitmap_set_bit (set, regno);
4559 bitmap_set_bit (used, regno);
4560 bitmap_clear_bit (transp, regno);
4561 continue;
4562 }
4563 FOR_EACH_INSN_INFO_USE (use, insn_info)
4564 {
4565 unsigned regno = DF_REF_REGNO (use);
4566 bitmap_set_bit (used, regno);
4567 if (bitmap_clear_bit (moveable, regno))
4568 bitmap_clear_bit (transp, regno);
4569 }
4570
4571 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4572 {
4573 unsigned regno = DF_REF_REGNO (def);
4574 bitmap_set_bit (set, regno);
4575 bitmap_clear_bit (transp, regno);
4576 bitmap_clear_bit (moveable, regno);
4577 }
4578 }
4579 }
4580
4581 FOR_EACH_BB_FN (bb, cfun)
4582 {
4583 bitmap local = bb_local + bb->index;
4584 rtx_insn *insn;
4585
4586 FOR_BB_INSNS (bb, insn)
4587 if (NONDEBUG_INSN_P (insn))
4588 {
4589 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4590 rtx_insn *def_insn;
4591 rtx closest_use, note;
4592 df_ref def, use;
4593 unsigned regno;
4594 bool all_dominated, all_local;
4595 machine_mode mode;
4596
4597 def = df_single_def (insn_info);
4598 /* There must be exactly one def in this insn. */
4599 if (!def || !single_set (insn))
4600 continue;
4601 /* This must be the only definition of the reg. We also limit
4602 which modes we deal with so that we can assume we can generate
4603 move instructions. */
4604 regno = DF_REF_REGNO (def);
4605 mode = GET_MODE (DF_REF_REG (def));
4606 if (DF_REG_DEF_COUNT (regno) != 1
4607 || !DF_REF_INSN_INFO (def)
4608 || HARD_REGISTER_NUM_P (regno)
4609 || DF_REG_EQ_USE_COUNT (regno) > 0
4610 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4611 continue;
4612 def_insn = DF_REF_INSN (def);
4613
4614 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4615 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4616 break;
4617
4618 if (note)
4619 {
4620 if (dump_file)
4621 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4622 regno);
4623 bitmap_set_bit (unusable_as_input, regno);
4624 continue;
4625 }
4626
4627 use = DF_REG_USE_CHAIN (regno);
4628 all_dominated = true;
4629 all_local = true;
4630 closest_use = NULL_RTX;
4631 for (; use; use = DF_REF_NEXT_REG (use))
4632 {
4633 rtx_insn *insn;
4634 if (!DF_REF_INSN_INFO (use))
4635 {
4636 all_dominated = false;
4637 all_local = false;
4638 break;
4639 }
4640 insn = DF_REF_INSN (use);
4641 if (DEBUG_INSN_P (insn))
4642 continue;
4643 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4644 all_local = false;
4645 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4646 all_dominated = false;
4647 if (closest_use != insn && closest_use != const0_rtx)
4648 {
4649 if (closest_use == NULL_RTX)
4650 closest_use = insn;
4651 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4652 closest_use = insn;
4653 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4654 closest_use = const0_rtx;
4655 }
4656 }
4657 if (!all_dominated)
4658 {
4659 if (dump_file)
4660 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4661 regno);
4662 continue;
4663 }
4664 if (all_local)
4665 bitmap_set_bit (local, regno);
4666 if (closest_use == const0_rtx || closest_use == NULL
4667 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4668 {
4669 if (dump_file)
4670 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4671 closest_use == const0_rtx || closest_use == NULL
4672 ? " (no unique first use)" : "");
4673 continue;
4674 }
4675 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4676 {
4677 if (dump_file)
4678 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4679 regno);
4680 continue;
4681 }
4682
4683 bitmap_set_bit (interesting, regno);
4684 /* If we get here, we know closest_use is a non-NULL insn
4685 (as opposed to const_0_rtx). */
4686 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4687
4688 if (dump_file && (all_local || all_dominated))
4689 {
4690 fprintf (dump_file, "Reg %u:", regno);
4691 if (all_local)
4692 fprintf (dump_file, " local to bb %d", bb->index);
4693 if (all_dominated)
4694 fprintf (dump_file, " def dominates all uses");
4695 if (closest_use != const0_rtx)
4696 fprintf (dump_file, " has unique first use");
4697 fputs ("\n", dump_file);
4698 }
4699 }
4700 }
4701
4702 EXECUTE_IF_SET_IN_BITMAP (interesting, 0, i, bi)
4703 {
4704 df_ref def = DF_REG_DEF_CHAIN (i);
4705 rtx_insn *def_insn = DF_REF_INSN (def);
4706 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4707 bitmap def_bb_local = bb_local + def_block->index;
4708 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4709 bitmap def_bb_transp = bb_transp_live + def_block->index;
4710 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4711 rtx_insn *use_insn = closest_uses[i];
4712 df_ref use;
4713 bool all_ok = true;
4714 bool all_transp = true;
4715
4716 if (!REG_P (DF_REF_REG (def)))
4717 continue;
4718
4719 if (!local_to_bb_p)
4720 {
4721 if (dump_file)
4722 fprintf (dump_file, "Reg %u not local to one basic block\n",
4723 i);
4724 continue;
4725 }
4726 if (reg_equiv_init (i) != NULL_RTX)
4727 {
4728 if (dump_file)
4729 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4730 i);
4731 continue;
4732 }
4733 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4734 {
4735 if (dump_file)
4736 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4737 INSN_UID (def_insn), i);
4738 continue;
4739 }
4740 if (dump_file)
4741 fprintf (dump_file, "Examining insn %d, def for %d\n",
4742 INSN_UID (def_insn), i);
4743 FOR_EACH_INSN_USE (use, def_insn)
4744 {
4745 unsigned regno = DF_REF_REGNO (use);
4746 if (bitmap_bit_p (unusable_as_input, regno))
4747 {
4748 all_ok = false;
4749 if (dump_file)
4750 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4751 break;
4752 }
4753 if (!bitmap_bit_p (def_bb_transp, regno))
4754 {
4755 if (bitmap_bit_p (def_bb_moveable, regno)
4756 && !control_flow_insn_p (use_insn)
4757 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4758 {
4759 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4760 {
4761 rtx_insn *x = NEXT_INSN (def_insn);
4762 while (!modified_in_p (DF_REF_REG (use), x))
4763 {
4764 gcc_assert (x != use_insn);
4765 x = NEXT_INSN (x);
4766 }
4767 if (dump_file)
4768 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4769 regno, INSN_UID (x));
4770 emit_insn_after (PATTERN (x), use_insn);
4771 set_insn_deleted (x);
4772 }
4773 else
4774 {
4775 if (dump_file)
4776 fprintf (dump_file, " input reg %u modified between def and use\n",
4777 regno);
4778 all_transp = false;
4779 }
4780 }
4781 else
4782 all_transp = false;
4783 }
4784 }
4785 if (!all_ok)
4786 continue;
4787 if (!dbg_cnt (ira_move))
4788 break;
4789 if (dump_file)
4790 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4791
4792 if (all_transp)
4793 {
4794 rtx def_reg = DF_REF_REG (def);
4795 rtx newreg = ira_create_new_reg (def_reg);
4796 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4797 {
4798 unsigned nregno = REGNO (newreg);
4799 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4800 nregno -= max_regs;
4801 pseudo_replaced_reg[nregno] = def_reg;
4802 }
4803 }
4804 }
4805
4806 FOR_EACH_BB_FN (bb, cfun)
4807 {
4808 bitmap_clear (bb_local + bb->index);
4809 bitmap_clear (bb_transp_live + bb->index);
4810 bitmap_clear (bb_moveable_reg_sets + bb->index);
4811 }
4812 free (uid_luid);
4813 free (closest_uses);
4814 free (bb_local);
4815 free (bb_transp_live);
4816 free (bb_moveable_reg_sets);
4817
4818 last_moveable_pseudo = max_reg_num ();
4819
4820 fix_reg_equiv_init ();
4821 expand_reg_info ();
4822 regstat_free_n_sets_and_refs ();
4823 regstat_free_ri ();
4824 regstat_init_n_sets_and_refs ();
4825 regstat_compute_ri ();
4826 free_dominance_info (CDI_DOMINATORS);
4827 }
4828
4829 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4830 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4831 the destination. Otherwise return NULL. */
4832
4833 static rtx
4834 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4835 {
4836 rtx src = SET_SRC (set);
4837 rtx dest = SET_DEST (set);
4838 if (!REG_P (src) || !HARD_REGISTER_P (src)
4839 || !REG_P (dest) || HARD_REGISTER_P (dest)
4840 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4841 return NULL;
4842 return dest;
4843 }
4844
4845 /* If insn is interesting for parameter range-splitting shrink-wrapping
4846 preparation, i.e. it is a single set from a hard register to a pseudo, which
4847 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4848 parallel statement with only one such statement, return the destination.
4849 Otherwise return NULL. */
4850
4851 static rtx
4852 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4853 {
4854 if (!INSN_P (insn))
4855 return NULL;
4856 rtx pat = PATTERN (insn);
4857 if (GET_CODE (pat) == SET)
4858 return interesting_dest_for_shprep_1 (pat, call_dom);
4859
4860 if (GET_CODE (pat) != PARALLEL)
4861 return NULL;
4862 rtx ret = NULL;
4863 for (int i = 0; i < XVECLEN (pat, 0); i++)
4864 {
4865 rtx sub = XVECEXP (pat, 0, i);
4866 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4867 continue;
4868 if (GET_CODE (sub) != SET
4869 || side_effects_p (sub))
4870 return NULL;
4871 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4872 if (dest && ret)
4873 return NULL;
4874 if (dest)
4875 ret = dest;
4876 }
4877 return ret;
4878 }
4879
4880 /* Split live ranges of pseudos that are loaded from hard registers in the
4881 first BB in a BB that dominates all non-sibling call if such a BB can be
4882 found and is not in a loop. Return true if the function has made any
4883 changes. */
4884
4885 static bool
4886 split_live_ranges_for_shrink_wrap (void)
4887 {
4888 basic_block bb, call_dom = NULL;
4889 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4890 rtx_insn *insn, *last_interesting_insn = NULL;
4891 auto_bitmap need_new, reachable;
4892 vec<basic_block> queue;
4893
4894 if (!SHRINK_WRAPPING_ENABLED)
4895 return false;
4896
4897 queue.create (n_basic_blocks_for_fn (cfun));
4898
4899 FOR_EACH_BB_FN (bb, cfun)
4900 FOR_BB_INSNS (bb, insn)
4901 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4902 {
4903 if (bb == first)
4904 {
4905 queue.release ();
4906 return false;
4907 }
4908
4909 bitmap_set_bit (need_new, bb->index);
4910 bitmap_set_bit (reachable, bb->index);
4911 queue.quick_push (bb);
4912 break;
4913 }
4914
4915 if (queue.is_empty ())
4916 {
4917 queue.release ();
4918 return false;
4919 }
4920
4921 while (!queue.is_empty ())
4922 {
4923 edge e;
4924 edge_iterator ei;
4925
4926 bb = queue.pop ();
4927 FOR_EACH_EDGE (e, ei, bb->succs)
4928 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4929 && bitmap_set_bit (reachable, e->dest->index))
4930 queue.quick_push (e->dest);
4931 }
4932 queue.release ();
4933
4934 FOR_BB_INSNS (first, insn)
4935 {
4936 rtx dest = interesting_dest_for_shprep (insn, NULL);
4937 if (!dest)
4938 continue;
4939
4940 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4941 return false;
4942
4943 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4944 use;
4945 use = DF_REF_NEXT_REG (use))
4946 {
4947 int ubbi = DF_REF_BB (use)->index;
4948 if (bitmap_bit_p (reachable, ubbi))
4949 bitmap_set_bit (need_new, ubbi);
4950 }
4951 last_interesting_insn = insn;
4952 }
4953
4954 if (!last_interesting_insn)
4955 return false;
4956
4957 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, need_new);
4958 if (call_dom == first)
4959 return false;
4960
4961 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4962 while (bb_loop_depth (call_dom) > 0)
4963 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4964 loop_optimizer_finalize ();
4965
4966 if (call_dom == first)
4967 return false;
4968
4969 calculate_dominance_info (CDI_POST_DOMINATORS);
4970 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4971 {
4972 free_dominance_info (CDI_POST_DOMINATORS);
4973 return false;
4974 }
4975 free_dominance_info (CDI_POST_DOMINATORS);
4976
4977 if (dump_file)
4978 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4979 call_dom->index);
4980
4981 bool ret = false;
4982 FOR_BB_INSNS (first, insn)
4983 {
4984 rtx dest = interesting_dest_for_shprep (insn, call_dom);
4985 if (!dest || dest == pic_offset_table_rtx)
4986 continue;
4987
4988 bool need_newreg = false;
4989 df_ref use, next;
4990 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
4991 {
4992 rtx_insn *uin = DF_REF_INSN (use);
4993 next = DF_REF_NEXT_REG (use);
4994
4995 if (DEBUG_INSN_P (uin))
4996 continue;
4997
4998 basic_block ubb = BLOCK_FOR_INSN (uin);
4999 if (ubb == call_dom
5000 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5001 {
5002 need_newreg = true;
5003 break;
5004 }
5005 }
5006
5007 if (need_newreg)
5008 {
5009 rtx newreg = ira_create_new_reg (dest);
5010
5011 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5012 {
5013 rtx_insn *uin = DF_REF_INSN (use);
5014 next = DF_REF_NEXT_REG (use);
5015
5016 basic_block ubb = BLOCK_FOR_INSN (uin);
5017 if (ubb == call_dom
5018 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5019 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
5020 }
5021
5022 rtx_insn *new_move = gen_move_insn (newreg, dest);
5023 emit_insn_after (new_move, bb_note (call_dom));
5024 if (dump_file)
5025 {
5026 fprintf (dump_file, "Split live-range of register ");
5027 print_rtl_single (dump_file, dest);
5028 }
5029 ret = true;
5030 }
5031
5032 if (insn == last_interesting_insn)
5033 break;
5034 }
5035 apply_change_group ();
5036 return ret;
5037 }
5038
5039 /* Perform the second half of the transformation started in
5040 find_moveable_pseudos. We look for instances where the newly introduced
5041 pseudo remains unallocated, and remove it by moving the definition to
5042 just before its use, replacing the move instruction generated by
5043 find_moveable_pseudos. */
5044 static void
5045 move_unallocated_pseudos (void)
5046 {
5047 int i;
5048 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5049 if (reg_renumber[i] < 0)
5050 {
5051 int idx = i - first_moveable_pseudo;
5052 rtx other_reg = pseudo_replaced_reg[idx];
5053 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5054 /* The use must follow all definitions of OTHER_REG, so we can
5055 insert the new definition immediately after any of them. */
5056 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5057 rtx_insn *move_insn = DF_REF_INSN (other_def);
5058 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5059 rtx set;
5060 int success;
5061
5062 if (dump_file)
5063 fprintf (dump_file, "moving def of %d (insn %d now) ",
5064 REGNO (other_reg), INSN_UID (def_insn));
5065
5066 delete_insn (move_insn);
5067 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5068 delete_insn (DF_REF_INSN (other_def));
5069 delete_insn (def_insn);
5070
5071 set = single_set (newinsn);
5072 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5073 gcc_assert (success);
5074 if (dump_file)
5075 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5076 INSN_UID (newinsn), i);
5077 SET_REG_N_REFS (i, 0);
5078 }
5079 }
5080 \f
5081 /* If the backend knows where to allocate pseudos for hard
5082 register initial values, register these allocations now. */
5083 static void
5084 allocate_initial_values (void)
5085 {
5086 if (targetm.allocate_initial_value)
5087 {
5088 rtx hreg, preg, x;
5089 int i, regno;
5090
5091 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5092 {
5093 if (! initial_value_entry (i, &hreg, &preg))
5094 break;
5095
5096 x = targetm.allocate_initial_value (hreg);
5097 regno = REGNO (preg);
5098 if (x && REG_N_SETS (regno) <= 1)
5099 {
5100 if (MEM_P (x))
5101 reg_equiv_memory_loc (regno) = x;
5102 else
5103 {
5104 basic_block bb;
5105 int new_regno;
5106
5107 gcc_assert (REG_P (x));
5108 new_regno = REGNO (x);
5109 reg_renumber[regno] = new_regno;
5110 /* Poke the regno right into regno_reg_rtx so that even
5111 fixed regs are accepted. */
5112 SET_REGNO (preg, new_regno);
5113 /* Update global register liveness information. */
5114 FOR_EACH_BB_FN (bb, cfun)
5115 {
5116 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5117 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5118 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5119 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5120 }
5121 }
5122 }
5123 }
5124
5125 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5126 &hreg, &preg));
5127 }
5128 }
5129 \f
5130
5131 /* True when we use LRA instead of reload pass for the current
5132 function. */
5133 bool ira_use_lra_p;
5134
5135 /* True if we have allocno conflicts. It is false for non-optimized
5136 mode or when the conflict table is too big. */
5137 bool ira_conflicts_p;
5138
5139 /* Saved between IRA and reload. */
5140 static int saved_flag_ira_share_spill_slots;
5141
5142 /* This is the main entry of IRA. */
5143 static void
5144 ira (FILE *f)
5145 {
5146 bool loops_p;
5147 int ira_max_point_before_emit;
5148 bool saved_flag_caller_saves = flag_caller_saves;
5149 enum ira_region saved_flag_ira_region = flag_ira_region;
5150
5151 clear_bb_flags ();
5152
5153 /* Determine if the current function is a leaf before running IRA
5154 since this can impact optimizations done by the prologue and
5155 epilogue thus changing register elimination offsets.
5156 Other target callbacks may use crtl->is_leaf too, including
5157 SHRINK_WRAPPING_ENABLED, so initialize as early as possible. */
5158 crtl->is_leaf = leaf_function_p ();
5159
5160 /* Perform target specific PIC register initialization. */
5161 targetm.init_pic_reg ();
5162
5163 ira_conflicts_p = optimize > 0;
5164
5165 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5166 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5167 use simplified and faster algorithms in LRA. */
5168 lra_simple_p
5169 = (ira_use_lra_p
5170 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5171 if (lra_simple_p)
5172 {
5173 /* It permits to skip live range splitting in LRA. */
5174 flag_caller_saves = false;
5175 /* There is no sense to do regional allocation when we use
5176 simplified LRA. */
5177 flag_ira_region = IRA_REGION_ONE;
5178 ira_conflicts_p = false;
5179 }
5180
5181 #ifndef IRA_NO_OBSTACK
5182 gcc_obstack_init (&ira_obstack);
5183 #endif
5184 bitmap_obstack_initialize (&ira_bitmap_obstack);
5185
5186 /* LRA uses its own infrastructure to handle caller save registers. */
5187 if (flag_caller_saves && !ira_use_lra_p)
5188 init_caller_save ();
5189
5190 if (flag_ira_verbose < 10)
5191 {
5192 internal_flag_ira_verbose = flag_ira_verbose;
5193 ira_dump_file = f;
5194 }
5195 else
5196 {
5197 internal_flag_ira_verbose = flag_ira_verbose - 10;
5198 ira_dump_file = stderr;
5199 }
5200
5201 setup_prohibited_mode_move_regs ();
5202 decrease_live_ranges_number ();
5203 df_note_add_problem ();
5204
5205 /* DF_LIVE can't be used in the register allocator, too many other
5206 parts of the compiler depend on using the "classic" liveness
5207 interpretation of the DF_LR problem. See PR38711.
5208 Remove the problem, so that we don't spend time updating it in
5209 any of the df_analyze() calls during IRA/LRA. */
5210 if (optimize > 1)
5211 df_remove_problem (df_live);
5212 gcc_checking_assert (df_live == NULL);
5213
5214 if (flag_checking)
5215 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5216
5217 df_analyze ();
5218
5219 init_reg_equiv ();
5220 if (ira_conflicts_p)
5221 {
5222 calculate_dominance_info (CDI_DOMINATORS);
5223
5224 if (split_live_ranges_for_shrink_wrap ())
5225 df_analyze ();
5226
5227 free_dominance_info (CDI_DOMINATORS);
5228 }
5229
5230 df_clear_flags (DF_NO_INSN_RESCAN);
5231
5232 indirect_jump_optimize ();
5233 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5234 df_analyze ();
5235
5236 regstat_init_n_sets_and_refs ();
5237 regstat_compute_ri ();
5238
5239 /* If we are not optimizing, then this is the only place before
5240 register allocation where dataflow is done. And that is needed
5241 to generate these warnings. */
5242 if (warn_clobbered)
5243 generate_setjmp_warnings ();
5244
5245 if (resize_reg_info () && flag_ira_loop_pressure)
5246 ira_set_pseudo_classes (true, ira_dump_file);
5247
5248 init_alias_analysis ();
5249 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5250 reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
5251 update_equiv_regs ();
5252
5253 /* Don't move insns if live range shrinkage or register
5254 pressure-sensitive scheduling were done because it will not
5255 improve allocation but likely worsen insn scheduling. */
5256 if (optimize
5257 && !flag_live_range_shrinkage
5258 && !(flag_sched_pressure && flag_schedule_insns))
5259 combine_and_move_insns ();
5260
5261 /* Gather additional equivalences with memory. */
5262 if (optimize)
5263 add_store_equivs ();
5264
5265 loop_optimizer_finalize ();
5266 free_dominance_info (CDI_DOMINATORS);
5267 end_alias_analysis ();
5268 free (reg_equiv);
5269
5270 setup_reg_equiv ();
5271 grow_reg_equivs ();
5272 setup_reg_equiv_init ();
5273
5274 allocated_reg_info_size = max_reg_num ();
5275
5276 /* It is not worth to do such improvement when we use a simple
5277 allocation because of -O0 usage or because the function is too
5278 big. */
5279 if (ira_conflicts_p)
5280 find_moveable_pseudos ();
5281
5282 max_regno_before_ira = max_reg_num ();
5283 ira_setup_eliminable_regset ();
5284
5285 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5286 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5287 ira_move_loops_num = ira_additional_jumps_num = 0;
5288
5289 ira_assert (current_loops == NULL);
5290 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5291 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5292
5293 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5294 fprintf (ira_dump_file, "Building IRA IR\n");
5295 loops_p = ira_build ();
5296
5297 ira_assert (ira_conflicts_p || !loops_p);
5298
5299 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5300 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5301 /* It is just wasting compiler's time to pack spilled pseudos into
5302 stack slots in this case -- prohibit it. We also do this if
5303 there is setjmp call because a variable not modified between
5304 setjmp and longjmp the compiler is required to preserve its
5305 value and sharing slots does not guarantee it. */
5306 flag_ira_share_spill_slots = FALSE;
5307
5308 ira_color ();
5309
5310 ira_max_point_before_emit = ira_max_point;
5311
5312 ira_initiate_emit_data ();
5313
5314 ira_emit (loops_p);
5315
5316 max_regno = max_reg_num ();
5317 if (ira_conflicts_p)
5318 {
5319 if (! loops_p)
5320 {
5321 if (! ira_use_lra_p)
5322 ira_initiate_assign ();
5323 }
5324 else
5325 {
5326 expand_reg_info ();
5327
5328 if (ira_use_lra_p)
5329 {
5330 ira_allocno_t a;
5331 ira_allocno_iterator ai;
5332
5333 FOR_EACH_ALLOCNO (a, ai)
5334 {
5335 int old_regno = ALLOCNO_REGNO (a);
5336 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5337
5338 ALLOCNO_REGNO (a) = new_regno;
5339
5340 if (old_regno != new_regno)
5341 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5342 reg_alternate_class (old_regno),
5343 reg_allocno_class (old_regno));
5344 }
5345 }
5346 else
5347 {
5348 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5349 fprintf (ira_dump_file, "Flattening IR\n");
5350 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5351 }
5352 /* New insns were generated: add notes and recalculate live
5353 info. */
5354 df_analyze ();
5355
5356 /* ??? Rebuild the loop tree, but why? Does the loop tree
5357 change if new insns were generated? Can that be handled
5358 by updating the loop tree incrementally? */
5359 loop_optimizer_finalize ();
5360 free_dominance_info (CDI_DOMINATORS);
5361 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5362 | LOOPS_HAVE_RECORDED_EXITS);
5363
5364 if (! ira_use_lra_p)
5365 {
5366 setup_allocno_assignment_flags ();
5367 ira_initiate_assign ();
5368 ira_reassign_conflict_allocnos (max_regno);
5369 }
5370 }
5371 }
5372
5373 ira_finish_emit_data ();
5374
5375 setup_reg_renumber ();
5376
5377 calculate_allocation_cost ();
5378
5379 #ifdef ENABLE_IRA_CHECKING
5380 if (ira_conflicts_p && ! ira_use_lra_p)
5381 /* Opposite to reload pass, LRA does not use any conflict info
5382 from IRA. We don't rebuild conflict info for LRA (through
5383 ira_flattening call) and can not use the check here. We could
5384 rebuild this info for LRA in the check mode but there is a risk
5385 that code generated with the check and without it will be a bit
5386 different. Calling ira_flattening in any mode would be a
5387 wasting CPU time. So do not check the allocation for LRA. */
5388 check_allocation ();
5389 #endif
5390
5391 if (max_regno != max_regno_before_ira)
5392 {
5393 regstat_free_n_sets_and_refs ();
5394 regstat_free_ri ();
5395 regstat_init_n_sets_and_refs ();
5396 regstat_compute_ri ();
5397 }
5398
5399 overall_cost_before = ira_overall_cost;
5400 if (! ira_conflicts_p)
5401 grow_reg_equivs ();
5402 else
5403 {
5404 fix_reg_equiv_init ();
5405
5406 #ifdef ENABLE_IRA_CHECKING
5407 print_redundant_copies ();
5408 #endif
5409 if (! ira_use_lra_p)
5410 {
5411 ira_spilled_reg_stack_slots_num = 0;
5412 ira_spilled_reg_stack_slots
5413 = ((struct ira_spilled_reg_stack_slot *)
5414 ira_allocate (max_regno
5415 * sizeof (struct ira_spilled_reg_stack_slot)));
5416 memset (ira_spilled_reg_stack_slots, 0,
5417 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5418 }
5419 }
5420 allocate_initial_values ();
5421
5422 /* See comment for find_moveable_pseudos call. */
5423 if (ira_conflicts_p)
5424 move_unallocated_pseudos ();
5425
5426 /* Restore original values. */
5427 if (lra_simple_p)
5428 {
5429 flag_caller_saves = saved_flag_caller_saves;
5430 flag_ira_region = saved_flag_ira_region;
5431 }
5432 }
5433
5434 static void
5435 do_reload (void)
5436 {
5437 basic_block bb;
5438 bool need_dce;
5439 unsigned pic_offset_table_regno = INVALID_REGNUM;
5440
5441 if (flag_ira_verbose < 10)
5442 ira_dump_file = dump_file;
5443
5444 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5445 after reload to avoid possible wrong usages of hard reg assigned
5446 to it. */
5447 if (pic_offset_table_rtx
5448 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5449 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5450
5451 timevar_push (TV_RELOAD);
5452 if (ira_use_lra_p)
5453 {
5454 if (current_loops != NULL)
5455 {
5456 loop_optimizer_finalize ();
5457 free_dominance_info (CDI_DOMINATORS);
5458 }
5459 FOR_ALL_BB_FN (bb, cfun)
5460 bb->loop_father = NULL;
5461 current_loops = NULL;
5462
5463 ira_destroy ();
5464
5465 lra (ira_dump_file);
5466 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5467 LRA. */
5468 vec_free (reg_equivs);
5469 reg_equivs = NULL;
5470 need_dce = false;
5471 }
5472 else
5473 {
5474 df_set_flags (DF_NO_INSN_RESCAN);
5475 build_insn_chain ();
5476
5477 need_dce = reload (get_insns (), ira_conflicts_p);
5478 }
5479
5480 timevar_pop (TV_RELOAD);
5481
5482 timevar_push (TV_IRA);
5483
5484 if (ira_conflicts_p && ! ira_use_lra_p)
5485 {
5486 ira_free (ira_spilled_reg_stack_slots);
5487 ira_finish_assign ();
5488 }
5489
5490 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5491 && overall_cost_before != ira_overall_cost)
5492 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5493 ira_overall_cost);
5494
5495 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5496
5497 if (! ira_use_lra_p)
5498 {
5499 ira_destroy ();
5500 if (current_loops != NULL)
5501 {
5502 loop_optimizer_finalize ();
5503 free_dominance_info (CDI_DOMINATORS);
5504 }
5505 FOR_ALL_BB_FN (bb, cfun)
5506 bb->loop_father = NULL;
5507 current_loops = NULL;
5508
5509 regstat_free_ri ();
5510 regstat_free_n_sets_and_refs ();
5511 }
5512
5513 if (optimize)
5514 cleanup_cfg (CLEANUP_EXPENSIVE);
5515
5516 finish_reg_equiv ();
5517
5518 bitmap_obstack_release (&ira_bitmap_obstack);
5519 #ifndef IRA_NO_OBSTACK
5520 obstack_free (&ira_obstack, NULL);
5521 #endif
5522
5523 /* The code after the reload has changed so much that at this point
5524 we might as well just rescan everything. Note that
5525 df_rescan_all_insns is not going to help here because it does not
5526 touch the artificial uses and defs. */
5527 df_finish_pass (true);
5528 df_scan_alloc (NULL);
5529 df_scan_blocks ();
5530
5531 if (optimize > 1)
5532 {
5533 df_live_add_problem ();
5534 df_live_set_all_dirty ();
5535 }
5536
5537 if (optimize)
5538 df_analyze ();
5539
5540 if (need_dce && optimize)
5541 run_fast_dce ();
5542
5543 /* Diagnose uses of the hard frame pointer when it is used as a global
5544 register. Often we can get away with letting the user appropriate
5545 the frame pointer, but we should let them know when code generation
5546 makes that impossible. */
5547 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5548 {
5549 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5550 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5551 "frame pointer required, but reserved");
5552 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5553 }
5554
5555 /* If we are doing generic stack checking, give a warning if this
5556 function's frame size is larger than we expect. */
5557 if (flag_stack_check == GENERIC_STACK_CHECK)
5558 {
5559 poly_int64 size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
5560
5561 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5562 if (df_regs_ever_live_p (i) && !fixed_regs[i] && call_used_regs[i])
5563 size += UNITS_PER_WORD;
5564
5565 if (constant_lower_bound (size) > STACK_CHECK_MAX_FRAME_SIZE)
5566 warning (0, "frame size too large for reliable stack checking");
5567 }
5568
5569 if (pic_offset_table_regno != INVALID_REGNUM)
5570 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5571
5572 timevar_pop (TV_IRA);
5573 }
5574 \f
5575 /* Run the integrated register allocator. */
5576
5577 namespace {
5578
5579 const pass_data pass_data_ira =
5580 {
5581 RTL_PASS, /* type */
5582 "ira", /* name */
5583 OPTGROUP_NONE, /* optinfo_flags */
5584 TV_IRA, /* tv_id */
5585 0, /* properties_required */
5586 0, /* properties_provided */
5587 0, /* properties_destroyed */
5588 0, /* todo_flags_start */
5589 TODO_do_not_ggc_collect, /* todo_flags_finish */
5590 };
5591
5592 class pass_ira : public rtl_opt_pass
5593 {
5594 public:
5595 pass_ira (gcc::context *ctxt)
5596 : rtl_opt_pass (pass_data_ira, ctxt)
5597 {}
5598
5599 /* opt_pass methods: */
5600 virtual bool gate (function *)
5601 {
5602 return !targetm.no_register_allocation;
5603 }
5604 virtual unsigned int execute (function *)
5605 {
5606 ira (dump_file);
5607 return 0;
5608 }
5609
5610 }; // class pass_ira
5611
5612 } // anon namespace
5613
5614 rtl_opt_pass *
5615 make_pass_ira (gcc::context *ctxt)
5616 {
5617 return new pass_ira (ctxt);
5618 }
5619
5620 namespace {
5621
5622 const pass_data pass_data_reload =
5623 {
5624 RTL_PASS, /* type */
5625 "reload", /* name */
5626 OPTGROUP_NONE, /* optinfo_flags */
5627 TV_RELOAD, /* tv_id */
5628 0, /* properties_required */
5629 0, /* properties_provided */
5630 0, /* properties_destroyed */
5631 0, /* todo_flags_start */
5632 0, /* todo_flags_finish */
5633 };
5634
5635 class pass_reload : public rtl_opt_pass
5636 {
5637 public:
5638 pass_reload (gcc::context *ctxt)
5639 : rtl_opt_pass (pass_data_reload, ctxt)
5640 {}
5641
5642 /* opt_pass methods: */
5643 virtual bool gate (function *)
5644 {
5645 return !targetm.no_register_allocation;
5646 }
5647 virtual unsigned int execute (function *)
5648 {
5649 do_reload ();
5650 return 0;
5651 }
5652
5653 }; // class pass_reload
5654
5655 } // anon namespace
5656
5657 rtl_opt_pass *
5658 make_pass_reload (gcc::context *ctxt)
5659 {
5660 return new pass_reload (ctxt);
5661 }
This page took 0.284822 seconds and 5 git commands to generate.