]> gcc.gnu.org Git - gcc.git/blob - gcc/ifcvt.c
LANGUAGES: Fix typos.
[gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010,
3 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "rtl.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "except.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "expr.h"
37 #include "output.h"
38 #include "optabs.h"
39 #include "diagnostic-core.h"
40 #include "tm_p.h"
41 #include "cfgloop.h"
42 #include "target.h"
43 #include "timevar.h"
44 #include "tree-pass.h"
45 #include "df.h"
46 #include "vec.h"
47 #include "vecprim.h"
48 #include "dbgcnt.h"
49
50 #ifndef HAVE_conditional_move
51 #define HAVE_conditional_move 0
52 #endif
53 #ifndef HAVE_incscc
54 #define HAVE_incscc 0
55 #endif
56 #ifndef HAVE_decscc
57 #define HAVE_decscc 0
58 #endif
59 #ifndef HAVE_trap
60 #define HAVE_trap 0
61 #endif
62
63 #ifndef MAX_CONDITIONAL_EXECUTE
64 #define MAX_CONDITIONAL_EXECUTE \
65 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
66 + 1)
67 #endif
68
69 #define IFCVT_MULTIPLE_DUMPS 1
70
71 #define NULL_BLOCK ((basic_block) NULL)
72
73 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
74 static int num_possible_if_blocks;
75
76 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77 execution. */
78 static int num_updated_if_blocks;
79
80 /* # of changes made. */
81 static int num_true_changes;
82
83 /* Whether conditional execution changes were made. */
84 static int cond_exec_changed_p;
85
86 /* Forward references. */
87 static int count_bb_insns (const_basic_block);
88 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
89 static rtx first_active_insn (basic_block);
90 static rtx last_active_insn (basic_block, int);
91 static rtx find_active_insn_before (basic_block, rtx);
92 static rtx find_active_insn_after (basic_block, rtx);
93 static basic_block block_fallthru (basic_block);
94 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
95 static rtx cond_exec_get_condition (rtx);
96 static rtx noce_get_condition (rtx, rtx *, bool);
97 static int noce_operand_ok (const_rtx);
98 static void merge_if_block (ce_if_block_t *);
99 static int find_cond_trap (basic_block, edge, edge);
100 static basic_block find_if_header (basic_block, int);
101 static int block_jumps_and_fallthru_p (basic_block, basic_block);
102 static int noce_find_if_block (basic_block, edge, edge, int);
103 static int cond_exec_find_if_block (ce_if_block_t *);
104 static int find_if_case_1 (basic_block, edge, edge);
105 static int find_if_case_2 (basic_block, edge, edge);
106 static int dead_or_predicable (basic_block, basic_block, basic_block,
107 edge, int);
108 static void noce_emit_move_insn (rtx, rtx);
109 static rtx block_has_only_trap (basic_block);
110 \f
111 /* Count the number of non-jump active insns in BB. */
112
113 static int
114 count_bb_insns (const_basic_block bb)
115 {
116 int count = 0;
117 rtx insn = BB_HEAD (bb);
118
119 while (1)
120 {
121 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
122 count++;
123
124 if (insn == BB_END (bb))
125 break;
126 insn = NEXT_INSN (insn);
127 }
128
129 return count;
130 }
131
132 /* Determine whether the total insn_rtx_cost on non-jump insns in
133 basic block BB is less than MAX_COST. This function returns
134 false if the cost of any instruction could not be estimated.
135
136 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
137 as those insns are being speculated. MAX_COST is scaled with SCALE
138 plus a small fudge factor. */
139
140 static bool
141 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
142 {
143 int count = 0;
144 rtx insn = BB_HEAD (bb);
145 bool speed = optimize_bb_for_speed_p (bb);
146
147 /* Our branch probability/scaling factors are just estimates and don't
148 account for cases where we can get speculation for free and other
149 secondary benefits. So we fudge the scale factor to make speculating
150 appear a little more profitable. */
151 scale += REG_BR_PROB_BASE / 8;
152 max_cost *= scale;
153
154 while (1)
155 {
156 if (NONJUMP_INSN_P (insn))
157 {
158 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
159 if (cost == 0)
160 return false;
161
162 /* If this instruction is the load or set of a "stack" register,
163 such as a floating point register on x87, then the cost of
164 speculatively executing this insn may need to include
165 the additional cost of popping its result off of the
166 register stack. Unfortunately, correctly recognizing and
167 accounting for this additional overhead is tricky, so for
168 now we simply prohibit such speculative execution. */
169 #ifdef STACK_REGS
170 {
171 rtx set = single_set (insn);
172 if (set && STACK_REG_P (SET_DEST (set)))
173 return false;
174 }
175 #endif
176
177 count += cost;
178 if (count >= max_cost)
179 return false;
180 }
181 else if (CALL_P (insn))
182 return false;
183
184 if (insn == BB_END (bb))
185 break;
186 insn = NEXT_INSN (insn);
187 }
188
189 return true;
190 }
191
192 /* Return the first non-jump active insn in the basic block. */
193
194 static rtx
195 first_active_insn (basic_block bb)
196 {
197 rtx insn = BB_HEAD (bb);
198
199 if (LABEL_P (insn))
200 {
201 if (insn == BB_END (bb))
202 return NULL_RTX;
203 insn = NEXT_INSN (insn);
204 }
205
206 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
207 {
208 if (insn == BB_END (bb))
209 return NULL_RTX;
210 insn = NEXT_INSN (insn);
211 }
212
213 if (JUMP_P (insn))
214 return NULL_RTX;
215
216 return insn;
217 }
218
219 /* Return the last non-jump active (non-jump) insn in the basic block. */
220
221 static rtx
222 last_active_insn (basic_block bb, int skip_use_p)
223 {
224 rtx insn = BB_END (bb);
225 rtx head = BB_HEAD (bb);
226
227 while (NOTE_P (insn)
228 || JUMP_P (insn)
229 || DEBUG_INSN_P (insn)
230 || (skip_use_p
231 && NONJUMP_INSN_P (insn)
232 && GET_CODE (PATTERN (insn)) == USE))
233 {
234 if (insn == head)
235 return NULL_RTX;
236 insn = PREV_INSN (insn);
237 }
238
239 if (LABEL_P (insn))
240 return NULL_RTX;
241
242 return insn;
243 }
244
245 /* Return the active insn before INSN inside basic block CURR_BB. */
246
247 static rtx
248 find_active_insn_before (basic_block curr_bb, rtx insn)
249 {
250 if (!insn || insn == BB_HEAD (curr_bb))
251 return NULL_RTX;
252
253 while ((insn = PREV_INSN (insn)) != NULL_RTX)
254 {
255 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
256 break;
257
258 /* No other active insn all the way to the start of the basic block. */
259 if (insn == BB_HEAD (curr_bb))
260 return NULL_RTX;
261 }
262
263 return insn;
264 }
265
266 /* Return the active insn after INSN inside basic block CURR_BB. */
267
268 static rtx
269 find_active_insn_after (basic_block curr_bb, rtx insn)
270 {
271 if (!insn || insn == BB_END (curr_bb))
272 return NULL_RTX;
273
274 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
275 {
276 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
277 break;
278
279 /* No other active insn all the way to the end of the basic block. */
280 if (insn == BB_END (curr_bb))
281 return NULL_RTX;
282 }
283
284 return insn;
285 }
286
287 /* Return the basic block reached by falling though the basic block BB. */
288
289 static basic_block
290 block_fallthru (basic_block bb)
291 {
292 edge e = find_fallthru_edge (bb->succs);
293
294 return (e) ? e->dest : NULL_BLOCK;
295 }
296 \f
297 /* Go through a bunch of insns, converting them to conditional
298 execution format if possible. Return TRUE if all of the non-note
299 insns were processed. */
300
301 static int
302 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
303 /* if block information */rtx start,
304 /* first insn to look at */rtx end,
305 /* last insn to look at */rtx test,
306 /* conditional execution test */rtx prob_val,
307 /* probability of branch taken. */int mod_ok)
308 {
309 int must_be_last = FALSE;
310 rtx insn;
311 rtx xtest;
312 rtx pattern;
313
314 if (!start || !end)
315 return FALSE;
316
317 for (insn = start; ; insn = NEXT_INSN (insn))
318 {
319 /* dwarf2out can't cope with conditional prologues. */
320 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
321 return FALSE;
322
323 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
324 goto insn_done;
325
326 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
327
328 /* Remove USE insns that get in the way. */
329 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
330 {
331 /* ??? Ug. Actually unlinking the thing is problematic,
332 given what we'd have to coordinate with our callers. */
333 SET_INSN_DELETED (insn);
334 goto insn_done;
335 }
336
337 /* Last insn wasn't last? */
338 if (must_be_last)
339 return FALSE;
340
341 if (modified_in_p (test, insn))
342 {
343 if (!mod_ok)
344 return FALSE;
345 must_be_last = TRUE;
346 }
347
348 /* Now build the conditional form of the instruction. */
349 pattern = PATTERN (insn);
350 xtest = copy_rtx (test);
351
352 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
353 two conditions. */
354 if (GET_CODE (pattern) == COND_EXEC)
355 {
356 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
357 return FALSE;
358
359 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
360 COND_EXEC_TEST (pattern));
361 pattern = COND_EXEC_CODE (pattern);
362 }
363
364 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
365
366 /* If the machine needs to modify the insn being conditionally executed,
367 say for example to force a constant integer operand into a temp
368 register, do so here. */
369 #ifdef IFCVT_MODIFY_INSN
370 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
371 if (! pattern)
372 return FALSE;
373 #endif
374
375 validate_change (insn, &PATTERN (insn), pattern, 1);
376
377 if (CALL_P (insn) && prob_val)
378 validate_change (insn, &REG_NOTES (insn),
379 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
380 REG_NOTES (insn)), 1);
381
382 insn_done:
383 if (insn == end)
384 break;
385 }
386
387 return TRUE;
388 }
389
390 /* Return the condition for a jump. Do not do any special processing. */
391
392 static rtx
393 cond_exec_get_condition (rtx jump)
394 {
395 rtx test_if, cond;
396
397 if (any_condjump_p (jump))
398 test_if = SET_SRC (pc_set (jump));
399 else
400 return NULL_RTX;
401 cond = XEXP (test_if, 0);
402
403 /* If this branches to JUMP_LABEL when the condition is false,
404 reverse the condition. */
405 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
406 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
407 {
408 enum rtx_code rev = reversed_comparison_code (cond, jump);
409 if (rev == UNKNOWN)
410 return NULL_RTX;
411
412 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
413 XEXP (cond, 1));
414 }
415
416 return cond;
417 }
418
419 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
420 to conditional execution. Return TRUE if we were successful at
421 converting the block. */
422
423 static int
424 cond_exec_process_if_block (ce_if_block_t * ce_info,
425 /* if block information */int do_multiple_p)
426 {
427 basic_block test_bb = ce_info->test_bb; /* last test block */
428 basic_block then_bb = ce_info->then_bb; /* THEN */
429 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
430 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
431 rtx then_start; /* first insn in THEN block */
432 rtx then_end; /* last insn + 1 in THEN block */
433 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
434 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
435 int max; /* max # of insns to convert. */
436 int then_mod_ok; /* whether conditional mods are ok in THEN */
437 rtx true_expr; /* test for else block insns */
438 rtx false_expr; /* test for then block insns */
439 rtx true_prob_val; /* probability of else block */
440 rtx false_prob_val; /* probability of then block */
441 rtx then_last_head = NULL_RTX; /* Last match at the head of THEN */
442 rtx else_last_head = NULL_RTX; /* Last match at the head of ELSE */
443 rtx then_first_tail = NULL_RTX; /* First match at the tail of THEN */
444 rtx else_first_tail = NULL_RTX; /* First match at the tail of ELSE */
445 int then_n_insns, else_n_insns, n_insns;
446 enum rtx_code false_code;
447
448 /* If test is comprised of && or || elements, and we've failed at handling
449 all of them together, just use the last test if it is the special case of
450 && elements without an ELSE block. */
451 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
452 {
453 if (else_bb || ! ce_info->and_and_p)
454 return FALSE;
455
456 ce_info->test_bb = test_bb = ce_info->last_test_bb;
457 ce_info->num_multiple_test_blocks = 0;
458 ce_info->num_and_and_blocks = 0;
459 ce_info->num_or_or_blocks = 0;
460 }
461
462 /* Find the conditional jump to the ELSE or JOIN part, and isolate
463 the test. */
464 test_expr = cond_exec_get_condition (BB_END (test_bb));
465 if (! test_expr)
466 return FALSE;
467
468 /* If the conditional jump is more than just a conditional jump,
469 then we can not do conditional execution conversion on this block. */
470 if (! onlyjump_p (BB_END (test_bb)))
471 return FALSE;
472
473 /* Collect the bounds of where we're to search, skipping any labels, jumps
474 and notes at the beginning and end of the block. Then count the total
475 number of insns and see if it is small enough to convert. */
476 then_start = first_active_insn (then_bb);
477 then_end = last_active_insn (then_bb, TRUE);
478 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
479 n_insns = then_n_insns;
480 max = MAX_CONDITIONAL_EXECUTE;
481
482 if (else_bb)
483 {
484 int n_matching;
485
486 max *= 2;
487 else_start = first_active_insn (else_bb);
488 else_end = last_active_insn (else_bb, TRUE);
489 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
490 n_insns += else_n_insns;
491
492 /* Look for matching sequences at the head and tail of the two blocks,
493 and limit the range of insns to be converted if possible. */
494 n_matching = flow_find_cross_jump (then_bb, else_bb,
495 &then_first_tail, &else_first_tail,
496 NULL);
497 if (then_first_tail == BB_HEAD (then_bb))
498 then_start = then_end = NULL_RTX;
499 if (else_first_tail == BB_HEAD (else_bb))
500 else_start = else_end = NULL_RTX;
501
502 if (n_matching > 0)
503 {
504 if (then_end)
505 then_end = find_active_insn_before (then_bb, then_first_tail);
506 if (else_end)
507 else_end = find_active_insn_before (else_bb, else_first_tail);
508 n_insns -= 2 * n_matching;
509 }
510
511 if (then_start && else_start)
512 {
513 int longest_match = MIN (then_n_insns - n_matching,
514 else_n_insns - n_matching);
515 n_matching
516 = flow_find_head_matching_sequence (then_bb, else_bb,
517 &then_last_head,
518 &else_last_head,
519 longest_match);
520
521 if (n_matching > 0)
522 {
523 rtx insn;
524
525 /* We won't pass the insns in the head sequence to
526 cond_exec_process_insns, so we need to test them here
527 to make sure that they don't clobber the condition. */
528 for (insn = BB_HEAD (then_bb);
529 insn != NEXT_INSN (then_last_head);
530 insn = NEXT_INSN (insn))
531 if (!LABEL_P (insn) && !NOTE_P (insn)
532 && !DEBUG_INSN_P (insn)
533 && modified_in_p (test_expr, insn))
534 return FALSE;
535 }
536
537 if (then_last_head == then_end)
538 then_start = then_end = NULL_RTX;
539 if (else_last_head == else_end)
540 else_start = else_end = NULL_RTX;
541
542 if (n_matching > 0)
543 {
544 if (then_start)
545 then_start = find_active_insn_after (then_bb, then_last_head);
546 if (else_start)
547 else_start = find_active_insn_after (else_bb, else_last_head);
548 n_insns -= 2 * n_matching;
549 }
550 }
551 }
552
553 if (n_insns > max)
554 return FALSE;
555
556 /* Map test_expr/test_jump into the appropriate MD tests to use on
557 the conditionally executed code. */
558
559 true_expr = test_expr;
560
561 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
562 if (false_code != UNKNOWN)
563 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
564 XEXP (true_expr, 0), XEXP (true_expr, 1));
565 else
566 false_expr = NULL_RTX;
567
568 #ifdef IFCVT_MODIFY_TESTS
569 /* If the machine description needs to modify the tests, such as setting a
570 conditional execution register from a comparison, it can do so here. */
571 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
572
573 /* See if the conversion failed. */
574 if (!true_expr || !false_expr)
575 goto fail;
576 #endif
577
578 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
579 if (true_prob_val)
580 {
581 true_prob_val = XEXP (true_prob_val, 0);
582 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
583 }
584 else
585 false_prob_val = NULL_RTX;
586
587 /* If we have && or || tests, do them here. These tests are in the adjacent
588 blocks after the first block containing the test. */
589 if (ce_info->num_multiple_test_blocks > 0)
590 {
591 basic_block bb = test_bb;
592 basic_block last_test_bb = ce_info->last_test_bb;
593
594 if (! false_expr)
595 goto fail;
596
597 do
598 {
599 rtx start, end;
600 rtx t, f;
601 enum rtx_code f_code;
602
603 bb = block_fallthru (bb);
604 start = first_active_insn (bb);
605 end = last_active_insn (bb, TRUE);
606 if (start
607 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
608 false_prob_val, FALSE))
609 goto fail;
610
611 /* If the conditional jump is more than just a conditional jump, then
612 we can not do conditional execution conversion on this block. */
613 if (! onlyjump_p (BB_END (bb)))
614 goto fail;
615
616 /* Find the conditional jump and isolate the test. */
617 t = cond_exec_get_condition (BB_END (bb));
618 if (! t)
619 goto fail;
620
621 f_code = reversed_comparison_code (t, BB_END (bb));
622 if (f_code == UNKNOWN)
623 goto fail;
624
625 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
626 if (ce_info->and_and_p)
627 {
628 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
629 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
630 }
631 else
632 {
633 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
634 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
635 }
636
637 /* If the machine description needs to modify the tests, such as
638 setting a conditional execution register from a comparison, it can
639 do so here. */
640 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
641 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
642
643 /* See if the conversion failed. */
644 if (!t || !f)
645 goto fail;
646 #endif
647
648 true_expr = t;
649 false_expr = f;
650 }
651 while (bb != last_test_bb);
652 }
653
654 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
655 on then THEN block. */
656 then_mod_ok = (else_bb == NULL_BLOCK);
657
658 /* Go through the THEN and ELSE blocks converting the insns if possible
659 to conditional execution. */
660
661 if (then_end
662 && (! false_expr
663 || ! cond_exec_process_insns (ce_info, then_start, then_end,
664 false_expr, false_prob_val,
665 then_mod_ok)))
666 goto fail;
667
668 if (else_bb && else_end
669 && ! cond_exec_process_insns (ce_info, else_start, else_end,
670 true_expr, true_prob_val, TRUE))
671 goto fail;
672
673 /* If we cannot apply the changes, fail. Do not go through the normal fail
674 processing, since apply_change_group will call cancel_changes. */
675 if (! apply_change_group ())
676 {
677 #ifdef IFCVT_MODIFY_CANCEL
678 /* Cancel any machine dependent changes. */
679 IFCVT_MODIFY_CANCEL (ce_info);
680 #endif
681 return FALSE;
682 }
683
684 #ifdef IFCVT_MODIFY_FINAL
685 /* Do any machine dependent final modifications. */
686 IFCVT_MODIFY_FINAL (ce_info);
687 #endif
688
689 /* Conversion succeeded. */
690 if (dump_file)
691 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
692 n_insns, (n_insns == 1) ? " was" : "s were");
693
694 /* Merge the blocks! If we had matching sequences, make sure to delete one
695 copy at the appropriate location first: delete the copy in the THEN branch
696 for a tail sequence so that the remaining one is executed last for both
697 branches, and delete the copy in the ELSE branch for a head sequence so
698 that the remaining one is executed first for both branches. */
699 if (then_first_tail)
700 {
701 rtx from = then_first_tail;
702 if (!INSN_P (from))
703 from = find_active_insn_after (then_bb, from);
704 delete_insn_chain (from, BB_END (then_bb), false);
705 }
706 if (else_last_head)
707 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
708
709 merge_if_block (ce_info);
710 cond_exec_changed_p = TRUE;
711 return TRUE;
712
713 fail:
714 #ifdef IFCVT_MODIFY_CANCEL
715 /* Cancel any machine dependent changes. */
716 IFCVT_MODIFY_CANCEL (ce_info);
717 #endif
718
719 cancel_changes (0);
720 return FALSE;
721 }
722 \f
723 /* Used by noce_process_if_block to communicate with its subroutines.
724
725 The subroutines know that A and B may be evaluated freely. They
726 know that X is a register. They should insert new instructions
727 before cond_earliest. */
728
729 struct noce_if_info
730 {
731 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
732 basic_block test_bb, then_bb, else_bb, join_bb;
733
734 /* The jump that ends TEST_BB. */
735 rtx jump;
736
737 /* The jump condition. */
738 rtx cond;
739
740 /* New insns should be inserted before this one. */
741 rtx cond_earliest;
742
743 /* Insns in the THEN and ELSE block. There is always just this
744 one insns in those blocks. The insns are single_set insns.
745 If there was no ELSE block, INSN_B is the last insn before
746 COND_EARLIEST, or NULL_RTX. In the former case, the insn
747 operands are still valid, as if INSN_B was moved down below
748 the jump. */
749 rtx insn_a, insn_b;
750
751 /* The SET_SRC of INSN_A and INSN_B. */
752 rtx a, b;
753
754 /* The SET_DEST of INSN_A. */
755 rtx x;
756
757 /* True if this if block is not canonical. In the canonical form of
758 if blocks, the THEN_BB is the block reached via the fallthru edge
759 from TEST_BB. For the noce transformations, we allow the symmetric
760 form as well. */
761 bool then_else_reversed;
762
763 /* Estimated cost of the particular branch instruction. */
764 int branch_cost;
765 };
766
767 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
768 static int noce_try_move (struct noce_if_info *);
769 static int noce_try_store_flag (struct noce_if_info *);
770 static int noce_try_addcc (struct noce_if_info *);
771 static int noce_try_store_flag_constants (struct noce_if_info *);
772 static int noce_try_store_flag_mask (struct noce_if_info *);
773 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
774 rtx, rtx, rtx);
775 static int noce_try_cmove (struct noce_if_info *);
776 static int noce_try_cmove_arith (struct noce_if_info *);
777 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
778 static int noce_try_minmax (struct noce_if_info *);
779 static int noce_try_abs (struct noce_if_info *);
780 static int noce_try_sign_mask (struct noce_if_info *);
781
782 /* Helper function for noce_try_store_flag*. */
783
784 static rtx
785 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
786 int normalize)
787 {
788 rtx cond = if_info->cond;
789 int cond_complex;
790 enum rtx_code code;
791
792 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
793 || ! general_operand (XEXP (cond, 1), VOIDmode));
794
795 /* If earliest == jump, or when the condition is complex, try to
796 build the store_flag insn directly. */
797
798 if (cond_complex)
799 {
800 rtx set = pc_set (if_info->jump);
801 cond = XEXP (SET_SRC (set), 0);
802 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
803 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
804 reversep = !reversep;
805 if (if_info->then_else_reversed)
806 reversep = !reversep;
807 }
808
809 if (reversep)
810 code = reversed_comparison_code (cond, if_info->jump);
811 else
812 code = GET_CODE (cond);
813
814 if ((if_info->cond_earliest == if_info->jump || cond_complex)
815 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
816 {
817 rtx tmp;
818
819 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
820 XEXP (cond, 1));
821 tmp = gen_rtx_SET (VOIDmode, x, tmp);
822
823 start_sequence ();
824 tmp = emit_insn (tmp);
825
826 if (recog_memoized (tmp) >= 0)
827 {
828 tmp = get_insns ();
829 end_sequence ();
830 emit_insn (tmp);
831
832 if_info->cond_earliest = if_info->jump;
833
834 return x;
835 }
836
837 end_sequence ();
838 }
839
840 /* Don't even try if the comparison operands or the mode of X are weird. */
841 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
842 return NULL_RTX;
843
844 return emit_store_flag (x, code, XEXP (cond, 0),
845 XEXP (cond, 1), VOIDmode,
846 (code == LTU || code == LEU
847 || code == GEU || code == GTU), normalize);
848 }
849
850 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
851 X is the destination/target and Y is the value to copy. */
852
853 static void
854 noce_emit_move_insn (rtx x, rtx y)
855 {
856 enum machine_mode outmode;
857 rtx outer, inner;
858 int bitpos;
859
860 if (GET_CODE (x) != STRICT_LOW_PART)
861 {
862 rtx seq, insn, target;
863 optab ot;
864
865 start_sequence ();
866 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
867 otherwise construct a suitable SET pattern ourselves. */
868 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
869 ? emit_move_insn (x, y)
870 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
871 seq = get_insns ();
872 end_sequence ();
873
874 if (recog_memoized (insn) <= 0)
875 {
876 if (GET_CODE (x) == ZERO_EXTRACT)
877 {
878 rtx op = XEXP (x, 0);
879 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
880 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
881
882 /* store_bit_field expects START to be relative to
883 BYTES_BIG_ENDIAN and adjusts this value for machines with
884 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
885 invoke store_bit_field again it is necessary to have the START
886 value from the first call. */
887 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
888 {
889 if (MEM_P (op))
890 start = BITS_PER_UNIT - start - size;
891 else
892 {
893 gcc_assert (REG_P (op));
894 start = BITS_PER_WORD - start - size;
895 }
896 }
897
898 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
899 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y);
900 return;
901 }
902
903 switch (GET_RTX_CLASS (GET_CODE (y)))
904 {
905 case RTX_UNARY:
906 ot = code_to_optab[GET_CODE (y)];
907 if (ot)
908 {
909 start_sequence ();
910 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
911 if (target != NULL_RTX)
912 {
913 if (target != x)
914 emit_move_insn (x, target);
915 seq = get_insns ();
916 }
917 end_sequence ();
918 }
919 break;
920
921 case RTX_BIN_ARITH:
922 case RTX_COMM_ARITH:
923 ot = code_to_optab[GET_CODE (y)];
924 if (ot)
925 {
926 start_sequence ();
927 target = expand_binop (GET_MODE (y), ot,
928 XEXP (y, 0), XEXP (y, 1),
929 x, 0, OPTAB_DIRECT);
930 if (target != NULL_RTX)
931 {
932 if (target != x)
933 emit_move_insn (x, target);
934 seq = get_insns ();
935 }
936 end_sequence ();
937 }
938 break;
939
940 default:
941 break;
942 }
943 }
944
945 emit_insn (seq);
946 return;
947 }
948
949 outer = XEXP (x, 0);
950 inner = XEXP (outer, 0);
951 outmode = GET_MODE (outer);
952 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
953 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
954 0, 0, outmode, y);
955 }
956
957 /* Return sequence of instructions generated by if conversion. This
958 function calls end_sequence() to end the current stream, ensures
959 that are instructions are unshared, recognizable non-jump insns.
960 On failure, this function returns a NULL_RTX. */
961
962 static rtx
963 end_ifcvt_sequence (struct noce_if_info *if_info)
964 {
965 rtx insn;
966 rtx seq = get_insns ();
967
968 set_used_flags (if_info->x);
969 set_used_flags (if_info->cond);
970 unshare_all_rtl_in_chain (seq);
971 end_sequence ();
972
973 /* Make sure that all of the instructions emitted are recognizable,
974 and that we haven't introduced a new jump instruction.
975 As an exercise for the reader, build a general mechanism that
976 allows proper placement of required clobbers. */
977 for (insn = seq; insn; insn = NEXT_INSN (insn))
978 if (JUMP_P (insn)
979 || recog_memoized (insn) == -1)
980 return NULL_RTX;
981
982 return seq;
983 }
984
985 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
986 "if (a == b) x = a; else x = b" into "x = b". */
987
988 static int
989 noce_try_move (struct noce_if_info *if_info)
990 {
991 rtx cond = if_info->cond;
992 enum rtx_code code = GET_CODE (cond);
993 rtx y, seq;
994
995 if (code != NE && code != EQ)
996 return FALSE;
997
998 /* This optimization isn't valid if either A or B could be a NaN
999 or a signed zero. */
1000 if (HONOR_NANS (GET_MODE (if_info->x))
1001 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1002 return FALSE;
1003
1004 /* Check whether the operands of the comparison are A and in
1005 either order. */
1006 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1007 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1008 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1009 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1010 {
1011 y = (code == EQ) ? if_info->a : if_info->b;
1012
1013 /* Avoid generating the move if the source is the destination. */
1014 if (! rtx_equal_p (if_info->x, y))
1015 {
1016 start_sequence ();
1017 noce_emit_move_insn (if_info->x, y);
1018 seq = end_ifcvt_sequence (if_info);
1019 if (!seq)
1020 return FALSE;
1021
1022 emit_insn_before_setloc (seq, if_info->jump,
1023 INSN_LOCATOR (if_info->insn_a));
1024 }
1025 return TRUE;
1026 }
1027 return FALSE;
1028 }
1029
1030 /* Convert "if (test) x = 1; else x = 0".
1031
1032 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1033 tried in noce_try_store_flag_constants after noce_try_cmove has had
1034 a go at the conversion. */
1035
1036 static int
1037 noce_try_store_flag (struct noce_if_info *if_info)
1038 {
1039 int reversep;
1040 rtx target, seq;
1041
1042 if (CONST_INT_P (if_info->b)
1043 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1044 && if_info->a == const0_rtx)
1045 reversep = 0;
1046 else if (if_info->b == const0_rtx
1047 && CONST_INT_P (if_info->a)
1048 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1049 && (reversed_comparison_code (if_info->cond, if_info->jump)
1050 != UNKNOWN))
1051 reversep = 1;
1052 else
1053 return FALSE;
1054
1055 start_sequence ();
1056
1057 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1058 if (target)
1059 {
1060 if (target != if_info->x)
1061 noce_emit_move_insn (if_info->x, target);
1062
1063 seq = end_ifcvt_sequence (if_info);
1064 if (! seq)
1065 return FALSE;
1066
1067 emit_insn_before_setloc (seq, if_info->jump,
1068 INSN_LOCATOR (if_info->insn_a));
1069 return TRUE;
1070 }
1071 else
1072 {
1073 end_sequence ();
1074 return FALSE;
1075 }
1076 }
1077
1078 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1079
1080 static int
1081 noce_try_store_flag_constants (struct noce_if_info *if_info)
1082 {
1083 rtx target, seq;
1084 int reversep;
1085 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1086 int normalize, can_reverse;
1087 enum machine_mode mode;
1088
1089 if (CONST_INT_P (if_info->a)
1090 && CONST_INT_P (if_info->b))
1091 {
1092 mode = GET_MODE (if_info->x);
1093 ifalse = INTVAL (if_info->a);
1094 itrue = INTVAL (if_info->b);
1095
1096 /* Make sure we can represent the difference between the two values. */
1097 if ((itrue - ifalse > 0)
1098 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1099 return FALSE;
1100
1101 diff = trunc_int_for_mode (itrue - ifalse, mode);
1102
1103 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1104 != UNKNOWN);
1105
1106 reversep = 0;
1107 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1108 normalize = 0;
1109 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1110 && (STORE_FLAG_VALUE == 1
1111 || if_info->branch_cost >= 2))
1112 normalize = 1;
1113 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1114 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1115 normalize = 1, reversep = 1;
1116 else if (itrue == -1
1117 && (STORE_FLAG_VALUE == -1
1118 || if_info->branch_cost >= 2))
1119 normalize = -1;
1120 else if (ifalse == -1 && can_reverse
1121 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1122 normalize = -1, reversep = 1;
1123 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1124 || if_info->branch_cost >= 3)
1125 normalize = -1;
1126 else
1127 return FALSE;
1128
1129 if (reversep)
1130 {
1131 tmp = itrue; itrue = ifalse; ifalse = tmp;
1132 diff = trunc_int_for_mode (-diff, mode);
1133 }
1134
1135 start_sequence ();
1136 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1137 if (! target)
1138 {
1139 end_sequence ();
1140 return FALSE;
1141 }
1142
1143 /* if (test) x = 3; else x = 4;
1144 => x = 3 + (test == 0); */
1145 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1146 {
1147 target = expand_simple_binop (mode,
1148 (diff == STORE_FLAG_VALUE
1149 ? PLUS : MINUS),
1150 GEN_INT (ifalse), target, if_info->x, 0,
1151 OPTAB_WIDEN);
1152 }
1153
1154 /* if (test) x = 8; else x = 0;
1155 => x = (test != 0) << 3; */
1156 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1157 {
1158 target = expand_simple_binop (mode, ASHIFT,
1159 target, GEN_INT (tmp), if_info->x, 0,
1160 OPTAB_WIDEN);
1161 }
1162
1163 /* if (test) x = -1; else x = b;
1164 => x = -(test != 0) | b; */
1165 else if (itrue == -1)
1166 {
1167 target = expand_simple_binop (mode, IOR,
1168 target, GEN_INT (ifalse), if_info->x, 0,
1169 OPTAB_WIDEN);
1170 }
1171
1172 /* if (test) x = a; else x = b;
1173 => x = (-(test != 0) & (b - a)) + a; */
1174 else
1175 {
1176 target = expand_simple_binop (mode, AND,
1177 target, GEN_INT (diff), if_info->x, 0,
1178 OPTAB_WIDEN);
1179 if (target)
1180 target = expand_simple_binop (mode, PLUS,
1181 target, GEN_INT (ifalse),
1182 if_info->x, 0, OPTAB_WIDEN);
1183 }
1184
1185 if (! target)
1186 {
1187 end_sequence ();
1188 return FALSE;
1189 }
1190
1191 if (target != if_info->x)
1192 noce_emit_move_insn (if_info->x, target);
1193
1194 seq = end_ifcvt_sequence (if_info);
1195 if (!seq)
1196 return FALSE;
1197
1198 emit_insn_before_setloc (seq, if_info->jump,
1199 INSN_LOCATOR (if_info->insn_a));
1200 return TRUE;
1201 }
1202
1203 return FALSE;
1204 }
1205
1206 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1207 similarly for "foo--". */
1208
1209 static int
1210 noce_try_addcc (struct noce_if_info *if_info)
1211 {
1212 rtx target, seq;
1213 int subtract, normalize;
1214
1215 if (GET_CODE (if_info->a) == PLUS
1216 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1217 && (reversed_comparison_code (if_info->cond, if_info->jump)
1218 != UNKNOWN))
1219 {
1220 rtx cond = if_info->cond;
1221 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1222
1223 /* First try to use addcc pattern. */
1224 if (general_operand (XEXP (cond, 0), VOIDmode)
1225 && general_operand (XEXP (cond, 1), VOIDmode))
1226 {
1227 start_sequence ();
1228 target = emit_conditional_add (if_info->x, code,
1229 XEXP (cond, 0),
1230 XEXP (cond, 1),
1231 VOIDmode,
1232 if_info->b,
1233 XEXP (if_info->a, 1),
1234 GET_MODE (if_info->x),
1235 (code == LTU || code == GEU
1236 || code == LEU || code == GTU));
1237 if (target)
1238 {
1239 if (target != if_info->x)
1240 noce_emit_move_insn (if_info->x, target);
1241
1242 seq = end_ifcvt_sequence (if_info);
1243 if (!seq)
1244 return FALSE;
1245
1246 emit_insn_before_setloc (seq, if_info->jump,
1247 INSN_LOCATOR (if_info->insn_a));
1248 return TRUE;
1249 }
1250 end_sequence ();
1251 }
1252
1253 /* If that fails, construct conditional increment or decrement using
1254 setcc. */
1255 if (if_info->branch_cost >= 2
1256 && (XEXP (if_info->a, 1) == const1_rtx
1257 || XEXP (if_info->a, 1) == constm1_rtx))
1258 {
1259 start_sequence ();
1260 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1261 subtract = 0, normalize = 0;
1262 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1263 subtract = 1, normalize = 0;
1264 else
1265 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1266
1267
1268 target = noce_emit_store_flag (if_info,
1269 gen_reg_rtx (GET_MODE (if_info->x)),
1270 1, normalize);
1271
1272 if (target)
1273 target = expand_simple_binop (GET_MODE (if_info->x),
1274 subtract ? MINUS : PLUS,
1275 if_info->b, target, if_info->x,
1276 0, OPTAB_WIDEN);
1277 if (target)
1278 {
1279 if (target != if_info->x)
1280 noce_emit_move_insn (if_info->x, target);
1281
1282 seq = end_ifcvt_sequence (if_info);
1283 if (!seq)
1284 return FALSE;
1285
1286 emit_insn_before_setloc (seq, if_info->jump,
1287 INSN_LOCATOR (if_info->insn_a));
1288 return TRUE;
1289 }
1290 end_sequence ();
1291 }
1292 }
1293
1294 return FALSE;
1295 }
1296
1297 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1298
1299 static int
1300 noce_try_store_flag_mask (struct noce_if_info *if_info)
1301 {
1302 rtx target, seq;
1303 int reversep;
1304
1305 reversep = 0;
1306 if ((if_info->branch_cost >= 2
1307 || STORE_FLAG_VALUE == -1)
1308 && ((if_info->a == const0_rtx
1309 && rtx_equal_p (if_info->b, if_info->x))
1310 || ((reversep = (reversed_comparison_code (if_info->cond,
1311 if_info->jump)
1312 != UNKNOWN))
1313 && if_info->b == const0_rtx
1314 && rtx_equal_p (if_info->a, if_info->x))))
1315 {
1316 start_sequence ();
1317 target = noce_emit_store_flag (if_info,
1318 gen_reg_rtx (GET_MODE (if_info->x)),
1319 reversep, -1);
1320 if (target)
1321 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1322 if_info->x,
1323 target, if_info->x, 0,
1324 OPTAB_WIDEN);
1325
1326 if (target)
1327 {
1328 if (target != if_info->x)
1329 noce_emit_move_insn (if_info->x, target);
1330
1331 seq = end_ifcvt_sequence (if_info);
1332 if (!seq)
1333 return FALSE;
1334
1335 emit_insn_before_setloc (seq, if_info->jump,
1336 INSN_LOCATOR (if_info->insn_a));
1337 return TRUE;
1338 }
1339
1340 end_sequence ();
1341 }
1342
1343 return FALSE;
1344 }
1345
1346 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1347
1348 static rtx
1349 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1350 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1351 {
1352 rtx target ATTRIBUTE_UNUSED;
1353 int unsignedp ATTRIBUTE_UNUSED;
1354
1355 /* If earliest == jump, try to build the cmove insn directly.
1356 This is helpful when combine has created some complex condition
1357 (like for alpha's cmovlbs) that we can't hope to regenerate
1358 through the normal interface. */
1359
1360 if (if_info->cond_earliest == if_info->jump)
1361 {
1362 rtx tmp;
1363
1364 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1365 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1366 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1367
1368 start_sequence ();
1369 tmp = emit_insn (tmp);
1370
1371 if (recog_memoized (tmp) >= 0)
1372 {
1373 tmp = get_insns ();
1374 end_sequence ();
1375 emit_insn (tmp);
1376
1377 return x;
1378 }
1379
1380 end_sequence ();
1381 }
1382
1383 /* Don't even try if the comparison operands are weird. */
1384 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1385 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1386 return NULL_RTX;
1387
1388 #if HAVE_conditional_move
1389 unsignedp = (code == LTU || code == GEU
1390 || code == LEU || code == GTU);
1391
1392 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1393 vtrue, vfalse, GET_MODE (x),
1394 unsignedp);
1395 if (target)
1396 return target;
1397
1398 /* We might be faced with a situation like:
1399
1400 x = (reg:M TARGET)
1401 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1402 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1403
1404 We can't do a conditional move in mode M, but it's possible that we
1405 could do a conditional move in mode N instead and take a subreg of
1406 the result.
1407
1408 If we can't create new pseudos, though, don't bother. */
1409 if (reload_completed)
1410 return NULL_RTX;
1411
1412 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1413 {
1414 rtx reg_vtrue = SUBREG_REG (vtrue);
1415 rtx reg_vfalse = SUBREG_REG (vfalse);
1416 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1417 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1418 rtx promoted_target;
1419
1420 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1421 || byte_vtrue != byte_vfalse
1422 || (SUBREG_PROMOTED_VAR_P (vtrue)
1423 != SUBREG_PROMOTED_VAR_P (vfalse))
1424 || (SUBREG_PROMOTED_UNSIGNED_P (vtrue)
1425 != SUBREG_PROMOTED_UNSIGNED_P (vfalse)))
1426 return NULL_RTX;
1427
1428 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1429
1430 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1431 VOIDmode, reg_vtrue, reg_vfalse,
1432 GET_MODE (reg_vtrue), unsignedp);
1433 /* Nope, couldn't do it in that mode either. */
1434 if (!target)
1435 return NULL_RTX;
1436
1437 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1438 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1439 SUBREG_PROMOTED_UNSIGNED_SET (target, SUBREG_PROMOTED_UNSIGNED_P (vtrue));
1440 emit_move_insn (x, target);
1441 return x;
1442 }
1443 else
1444 return NULL_RTX;
1445 #else
1446 /* We'll never get here, as noce_process_if_block doesn't call the
1447 functions involved. Ifdef code, however, should be discouraged
1448 because it leads to typos in the code not selected. However,
1449 emit_conditional_move won't exist either. */
1450 return NULL_RTX;
1451 #endif
1452 }
1453
1454 /* Try only simple constants and registers here. More complex cases
1455 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1456 has had a go at it. */
1457
1458 static int
1459 noce_try_cmove (struct noce_if_info *if_info)
1460 {
1461 enum rtx_code code;
1462 rtx target, seq;
1463
1464 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1465 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1466 {
1467 start_sequence ();
1468
1469 code = GET_CODE (if_info->cond);
1470 target = noce_emit_cmove (if_info, if_info->x, code,
1471 XEXP (if_info->cond, 0),
1472 XEXP (if_info->cond, 1),
1473 if_info->a, if_info->b);
1474
1475 if (target)
1476 {
1477 if (target != if_info->x)
1478 noce_emit_move_insn (if_info->x, target);
1479
1480 seq = end_ifcvt_sequence (if_info);
1481 if (!seq)
1482 return FALSE;
1483
1484 emit_insn_before_setloc (seq, if_info->jump,
1485 INSN_LOCATOR (if_info->insn_a));
1486 return TRUE;
1487 }
1488 else
1489 {
1490 end_sequence ();
1491 return FALSE;
1492 }
1493 }
1494
1495 return FALSE;
1496 }
1497
1498 /* Try more complex cases involving conditional_move. */
1499
1500 static int
1501 noce_try_cmove_arith (struct noce_if_info *if_info)
1502 {
1503 rtx a = if_info->a;
1504 rtx b = if_info->b;
1505 rtx x = if_info->x;
1506 rtx orig_a, orig_b;
1507 rtx insn_a, insn_b;
1508 rtx tmp, target;
1509 int is_mem = 0;
1510 int insn_cost;
1511 enum rtx_code code;
1512
1513 /* A conditional move from two memory sources is equivalent to a
1514 conditional on their addresses followed by a load. Don't do this
1515 early because it'll screw alias analysis. Note that we've
1516 already checked for no side effects. */
1517 /* ??? FIXME: Magic number 5. */
1518 if (cse_not_expected
1519 && MEM_P (a) && MEM_P (b)
1520 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1521 && if_info->branch_cost >= 5)
1522 {
1523 enum machine_mode address_mode = get_address_mode (a);
1524
1525 a = XEXP (a, 0);
1526 b = XEXP (b, 0);
1527 x = gen_reg_rtx (address_mode);
1528 is_mem = 1;
1529 }
1530
1531 /* ??? We could handle this if we knew that a load from A or B could
1532 not trap or fault. This is also true if we've already loaded
1533 from the address along the path from ENTRY. */
1534 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
1535 return FALSE;
1536
1537 /* if (test) x = a + b; else x = c - d;
1538 => y = a + b;
1539 x = c - d;
1540 if (test)
1541 x = y;
1542 */
1543
1544 code = GET_CODE (if_info->cond);
1545 insn_a = if_info->insn_a;
1546 insn_b = if_info->insn_b;
1547
1548 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1549 if insn_rtx_cost can't be estimated. */
1550 if (insn_a)
1551 {
1552 insn_cost
1553 = insn_rtx_cost (PATTERN (insn_a),
1554 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1555 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1556 return FALSE;
1557 }
1558 else
1559 insn_cost = 0;
1560
1561 if (insn_b)
1562 {
1563 insn_cost
1564 += insn_rtx_cost (PATTERN (insn_b),
1565 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1566 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1567 return FALSE;
1568 }
1569
1570 /* Possibly rearrange operands to make things come out more natural. */
1571 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1572 {
1573 int reversep = 0;
1574 if (rtx_equal_p (b, x))
1575 reversep = 1;
1576 else if (general_operand (b, GET_MODE (b)))
1577 reversep = 1;
1578
1579 if (reversep)
1580 {
1581 code = reversed_comparison_code (if_info->cond, if_info->jump);
1582 tmp = a, a = b, b = tmp;
1583 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1584 }
1585 }
1586
1587 start_sequence ();
1588
1589 orig_a = a;
1590 orig_b = b;
1591
1592 /* If either operand is complex, load it into a register first.
1593 The best way to do this is to copy the original insn. In this
1594 way we preserve any clobbers etc that the insn may have had.
1595 This is of course not possible in the IS_MEM case. */
1596 if (! general_operand (a, GET_MODE (a)))
1597 {
1598 rtx set;
1599
1600 if (is_mem)
1601 {
1602 tmp = gen_reg_rtx (GET_MODE (a));
1603 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1604 }
1605 else if (! insn_a)
1606 goto end_seq_and_fail;
1607 else
1608 {
1609 a = gen_reg_rtx (GET_MODE (a));
1610 tmp = copy_rtx (insn_a);
1611 set = single_set (tmp);
1612 SET_DEST (set) = a;
1613 tmp = emit_insn (PATTERN (tmp));
1614 }
1615 if (recog_memoized (tmp) < 0)
1616 goto end_seq_and_fail;
1617 }
1618 if (! general_operand (b, GET_MODE (b)))
1619 {
1620 rtx set, last;
1621
1622 if (is_mem)
1623 {
1624 tmp = gen_reg_rtx (GET_MODE (b));
1625 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1626 }
1627 else if (! insn_b)
1628 goto end_seq_and_fail;
1629 else
1630 {
1631 b = gen_reg_rtx (GET_MODE (b));
1632 tmp = copy_rtx (insn_b);
1633 set = single_set (tmp);
1634 SET_DEST (set) = b;
1635 tmp = PATTERN (tmp);
1636 }
1637
1638 /* If insn to set up A clobbers any registers B depends on, try to
1639 swap insn that sets up A with the one that sets up B. If even
1640 that doesn't help, punt. */
1641 last = get_last_insn ();
1642 if (last && modified_in_p (orig_b, last))
1643 {
1644 tmp = emit_insn_before (tmp, get_insns ());
1645 if (modified_in_p (orig_a, tmp))
1646 goto end_seq_and_fail;
1647 }
1648 else
1649 tmp = emit_insn (tmp);
1650
1651 if (recog_memoized (tmp) < 0)
1652 goto end_seq_and_fail;
1653 }
1654
1655 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1656 XEXP (if_info->cond, 1), a, b);
1657
1658 if (! target)
1659 goto end_seq_and_fail;
1660
1661 /* If we're handling a memory for above, emit the load now. */
1662 if (is_mem)
1663 {
1664 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1665
1666 /* Copy over flags as appropriate. */
1667 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1668 MEM_VOLATILE_P (tmp) = 1;
1669 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1670 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1671 set_mem_align (tmp,
1672 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1673
1674 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1675 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1676
1677 noce_emit_move_insn (if_info->x, tmp);
1678 }
1679 else if (target != x)
1680 noce_emit_move_insn (x, target);
1681
1682 tmp = end_ifcvt_sequence (if_info);
1683 if (!tmp)
1684 return FALSE;
1685
1686 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1687 return TRUE;
1688
1689 end_seq_and_fail:
1690 end_sequence ();
1691 return FALSE;
1692 }
1693
1694 /* For most cases, the simplified condition we found is the best
1695 choice, but this is not the case for the min/max/abs transforms.
1696 For these we wish to know that it is A or B in the condition. */
1697
1698 static rtx
1699 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1700 rtx *earliest)
1701 {
1702 rtx cond, set, insn;
1703 int reverse;
1704
1705 /* If target is already mentioned in the known condition, return it. */
1706 if (reg_mentioned_p (target, if_info->cond))
1707 {
1708 *earliest = if_info->cond_earliest;
1709 return if_info->cond;
1710 }
1711
1712 set = pc_set (if_info->jump);
1713 cond = XEXP (SET_SRC (set), 0);
1714 reverse
1715 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1716 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1717 if (if_info->then_else_reversed)
1718 reverse = !reverse;
1719
1720 /* If we're looking for a constant, try to make the conditional
1721 have that constant in it. There are two reasons why it may
1722 not have the constant we want:
1723
1724 1. GCC may have needed to put the constant in a register, because
1725 the target can't compare directly against that constant. For
1726 this case, we look for a SET immediately before the comparison
1727 that puts a constant in that register.
1728
1729 2. GCC may have canonicalized the conditional, for example
1730 replacing "if x < 4" with "if x <= 3". We can undo that (or
1731 make equivalent types of changes) to get the constants we need
1732 if they're off by one in the right direction. */
1733
1734 if (CONST_INT_P (target))
1735 {
1736 enum rtx_code code = GET_CODE (if_info->cond);
1737 rtx op_a = XEXP (if_info->cond, 0);
1738 rtx op_b = XEXP (if_info->cond, 1);
1739 rtx prev_insn;
1740
1741 /* First, look to see if we put a constant in a register. */
1742 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1743 if (prev_insn
1744 && BLOCK_FOR_INSN (prev_insn)
1745 == BLOCK_FOR_INSN (if_info->cond_earliest)
1746 && INSN_P (prev_insn)
1747 && GET_CODE (PATTERN (prev_insn)) == SET)
1748 {
1749 rtx src = find_reg_equal_equiv_note (prev_insn);
1750 if (!src)
1751 src = SET_SRC (PATTERN (prev_insn));
1752 if (CONST_INT_P (src))
1753 {
1754 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1755 op_a = src;
1756 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1757 op_b = src;
1758
1759 if (CONST_INT_P (op_a))
1760 {
1761 rtx tmp = op_a;
1762 op_a = op_b;
1763 op_b = tmp;
1764 code = swap_condition (code);
1765 }
1766 }
1767 }
1768
1769 /* Now, look to see if we can get the right constant by
1770 adjusting the conditional. */
1771 if (CONST_INT_P (op_b))
1772 {
1773 HOST_WIDE_INT desired_val = INTVAL (target);
1774 HOST_WIDE_INT actual_val = INTVAL (op_b);
1775
1776 switch (code)
1777 {
1778 case LT:
1779 if (actual_val == desired_val + 1)
1780 {
1781 code = LE;
1782 op_b = GEN_INT (desired_val);
1783 }
1784 break;
1785 case LE:
1786 if (actual_val == desired_val - 1)
1787 {
1788 code = LT;
1789 op_b = GEN_INT (desired_val);
1790 }
1791 break;
1792 case GT:
1793 if (actual_val == desired_val - 1)
1794 {
1795 code = GE;
1796 op_b = GEN_INT (desired_val);
1797 }
1798 break;
1799 case GE:
1800 if (actual_val == desired_val + 1)
1801 {
1802 code = GT;
1803 op_b = GEN_INT (desired_val);
1804 }
1805 break;
1806 default:
1807 break;
1808 }
1809 }
1810
1811 /* If we made any changes, generate a new conditional that is
1812 equivalent to what we started with, but has the right
1813 constants in it. */
1814 if (code != GET_CODE (if_info->cond)
1815 || op_a != XEXP (if_info->cond, 0)
1816 || op_b != XEXP (if_info->cond, 1))
1817 {
1818 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1819 *earliest = if_info->cond_earliest;
1820 return cond;
1821 }
1822 }
1823
1824 cond = canonicalize_condition (if_info->jump, cond, reverse,
1825 earliest, target, false, true);
1826 if (! cond || ! reg_mentioned_p (target, cond))
1827 return NULL;
1828
1829 /* We almost certainly searched back to a different place.
1830 Need to re-verify correct lifetimes. */
1831
1832 /* X may not be mentioned in the range (cond_earliest, jump]. */
1833 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1834 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1835 return NULL;
1836
1837 /* A and B may not be modified in the range [cond_earliest, jump). */
1838 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1839 if (INSN_P (insn)
1840 && (modified_in_p (if_info->a, insn)
1841 || modified_in_p (if_info->b, insn)))
1842 return NULL;
1843
1844 return cond;
1845 }
1846
1847 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1848
1849 static int
1850 noce_try_minmax (struct noce_if_info *if_info)
1851 {
1852 rtx cond, earliest, target, seq;
1853 enum rtx_code code, op;
1854 int unsignedp;
1855
1856 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1857 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1858 to get the target to tell us... */
1859 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1860 || HONOR_NANS (GET_MODE (if_info->x)))
1861 return FALSE;
1862
1863 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1864 if (!cond)
1865 return FALSE;
1866
1867 /* Verify the condition is of the form we expect, and canonicalize
1868 the comparison code. */
1869 code = GET_CODE (cond);
1870 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1871 {
1872 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1873 return FALSE;
1874 }
1875 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1876 {
1877 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1878 return FALSE;
1879 code = swap_condition (code);
1880 }
1881 else
1882 return FALSE;
1883
1884 /* Determine what sort of operation this is. Note that the code is for
1885 a taken branch, so the code->operation mapping appears backwards. */
1886 switch (code)
1887 {
1888 case LT:
1889 case LE:
1890 case UNLT:
1891 case UNLE:
1892 op = SMAX;
1893 unsignedp = 0;
1894 break;
1895 case GT:
1896 case GE:
1897 case UNGT:
1898 case UNGE:
1899 op = SMIN;
1900 unsignedp = 0;
1901 break;
1902 case LTU:
1903 case LEU:
1904 op = UMAX;
1905 unsignedp = 1;
1906 break;
1907 case GTU:
1908 case GEU:
1909 op = UMIN;
1910 unsignedp = 1;
1911 break;
1912 default:
1913 return FALSE;
1914 }
1915
1916 start_sequence ();
1917
1918 target = expand_simple_binop (GET_MODE (if_info->x), op,
1919 if_info->a, if_info->b,
1920 if_info->x, unsignedp, OPTAB_WIDEN);
1921 if (! target)
1922 {
1923 end_sequence ();
1924 return FALSE;
1925 }
1926 if (target != if_info->x)
1927 noce_emit_move_insn (if_info->x, target);
1928
1929 seq = end_ifcvt_sequence (if_info);
1930 if (!seq)
1931 return FALSE;
1932
1933 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1934 if_info->cond = cond;
1935 if_info->cond_earliest = earliest;
1936
1937 return TRUE;
1938 }
1939
1940 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1941 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1942 etc. */
1943
1944 static int
1945 noce_try_abs (struct noce_if_info *if_info)
1946 {
1947 rtx cond, earliest, target, seq, a, b, c;
1948 int negate;
1949 bool one_cmpl = false;
1950
1951 /* Reject modes with signed zeros. */
1952 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1953 return FALSE;
1954
1955 /* Recognize A and B as constituting an ABS or NABS. The canonical
1956 form is a branch around the negation, taken when the object is the
1957 first operand of a comparison against 0 that evaluates to true. */
1958 a = if_info->a;
1959 b = if_info->b;
1960 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1961 negate = 0;
1962 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1963 {
1964 c = a; a = b; b = c;
1965 negate = 1;
1966 }
1967 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
1968 {
1969 negate = 0;
1970 one_cmpl = true;
1971 }
1972 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
1973 {
1974 c = a; a = b; b = c;
1975 negate = 1;
1976 one_cmpl = true;
1977 }
1978 else
1979 return FALSE;
1980
1981 cond = noce_get_alt_condition (if_info, b, &earliest);
1982 if (!cond)
1983 return FALSE;
1984
1985 /* Verify the condition is of the form we expect. */
1986 if (rtx_equal_p (XEXP (cond, 0), b))
1987 c = XEXP (cond, 1);
1988 else if (rtx_equal_p (XEXP (cond, 1), b))
1989 {
1990 c = XEXP (cond, 0);
1991 negate = !negate;
1992 }
1993 else
1994 return FALSE;
1995
1996 /* Verify that C is zero. Search one step backward for a
1997 REG_EQUAL note or a simple source if necessary. */
1998 if (REG_P (c))
1999 {
2000 rtx set, insn = prev_nonnote_insn (earliest);
2001 if (insn
2002 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2003 && (set = single_set (insn))
2004 && rtx_equal_p (SET_DEST (set), c))
2005 {
2006 rtx note = find_reg_equal_equiv_note (insn);
2007 if (note)
2008 c = XEXP (note, 0);
2009 else
2010 c = SET_SRC (set);
2011 }
2012 else
2013 return FALSE;
2014 }
2015 if (MEM_P (c)
2016 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2017 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2018 c = get_pool_constant (XEXP (c, 0));
2019
2020 /* Work around funny ideas get_condition has wrt canonicalization.
2021 Note that these rtx constants are known to be CONST_INT, and
2022 therefore imply integer comparisons. */
2023 if (c == constm1_rtx && GET_CODE (cond) == GT)
2024 ;
2025 else if (c == const1_rtx && GET_CODE (cond) == LT)
2026 ;
2027 else if (c != CONST0_RTX (GET_MODE (b)))
2028 return FALSE;
2029
2030 /* Determine what sort of operation this is. */
2031 switch (GET_CODE (cond))
2032 {
2033 case LT:
2034 case LE:
2035 case UNLT:
2036 case UNLE:
2037 negate = !negate;
2038 break;
2039 case GT:
2040 case GE:
2041 case UNGT:
2042 case UNGE:
2043 break;
2044 default:
2045 return FALSE;
2046 }
2047
2048 start_sequence ();
2049 if (one_cmpl)
2050 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2051 if_info->x);
2052 else
2053 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2054
2055 /* ??? It's a quandary whether cmove would be better here, especially
2056 for integers. Perhaps combine will clean things up. */
2057 if (target && negate)
2058 {
2059 if (one_cmpl)
2060 target = expand_simple_unop (GET_MODE (target), NOT, target,
2061 if_info->x, 0);
2062 else
2063 target = expand_simple_unop (GET_MODE (target), NEG, target,
2064 if_info->x, 0);
2065 }
2066
2067 if (! target)
2068 {
2069 end_sequence ();
2070 return FALSE;
2071 }
2072
2073 if (target != if_info->x)
2074 noce_emit_move_insn (if_info->x, target);
2075
2076 seq = end_ifcvt_sequence (if_info);
2077 if (!seq)
2078 return FALSE;
2079
2080 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
2081 if_info->cond = cond;
2082 if_info->cond_earliest = earliest;
2083
2084 return TRUE;
2085 }
2086
2087 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2088
2089 static int
2090 noce_try_sign_mask (struct noce_if_info *if_info)
2091 {
2092 rtx cond, t, m, c, seq;
2093 enum machine_mode mode;
2094 enum rtx_code code;
2095 bool t_unconditional;
2096
2097 cond = if_info->cond;
2098 code = GET_CODE (cond);
2099 m = XEXP (cond, 0);
2100 c = XEXP (cond, 1);
2101
2102 t = NULL_RTX;
2103 if (if_info->a == const0_rtx)
2104 {
2105 if ((code == LT && c == const0_rtx)
2106 || (code == LE && c == constm1_rtx))
2107 t = if_info->b;
2108 }
2109 else if (if_info->b == const0_rtx)
2110 {
2111 if ((code == GE && c == const0_rtx)
2112 || (code == GT && c == constm1_rtx))
2113 t = if_info->a;
2114 }
2115
2116 if (! t || side_effects_p (t))
2117 return FALSE;
2118
2119 /* We currently don't handle different modes. */
2120 mode = GET_MODE (t);
2121 if (GET_MODE (m) != mode)
2122 return FALSE;
2123
2124 /* This is only profitable if T is unconditionally executed/evaluated in the
2125 original insn sequence or T is cheap. The former happens if B is the
2126 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2127 INSN_B which can happen for e.g. conditional stores to memory. For the
2128 cost computation use the block TEST_BB where the evaluation will end up
2129 after the transformation. */
2130 t_unconditional =
2131 (t == if_info->b
2132 && (if_info->insn_b == NULL_RTX
2133 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2134 if (!(t_unconditional
2135 || (set_src_cost (t, optimize_bb_for_speed_p (if_info->test_bb))
2136 < COSTS_N_INSNS (2))))
2137 return FALSE;
2138
2139 start_sequence ();
2140 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2141 "(signed) m >> 31" directly. This benefits targets with specialized
2142 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2143 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2144 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2145 : NULL_RTX;
2146
2147 if (!t)
2148 {
2149 end_sequence ();
2150 return FALSE;
2151 }
2152
2153 noce_emit_move_insn (if_info->x, t);
2154
2155 seq = end_ifcvt_sequence (if_info);
2156 if (!seq)
2157 return FALSE;
2158
2159 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
2160 return TRUE;
2161 }
2162
2163
2164 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2165 transformations. */
2166
2167 static int
2168 noce_try_bitop (struct noce_if_info *if_info)
2169 {
2170 rtx cond, x, a, result, seq;
2171 enum machine_mode mode;
2172 enum rtx_code code;
2173 int bitnum;
2174
2175 x = if_info->x;
2176 cond = if_info->cond;
2177 code = GET_CODE (cond);
2178
2179 /* Check for no else condition. */
2180 if (! rtx_equal_p (x, if_info->b))
2181 return FALSE;
2182
2183 /* Check for a suitable condition. */
2184 if (code != NE && code != EQ)
2185 return FALSE;
2186 if (XEXP (cond, 1) != const0_rtx)
2187 return FALSE;
2188 cond = XEXP (cond, 0);
2189
2190 /* ??? We could also handle AND here. */
2191 if (GET_CODE (cond) == ZERO_EXTRACT)
2192 {
2193 if (XEXP (cond, 1) != const1_rtx
2194 || !CONST_INT_P (XEXP (cond, 2))
2195 || ! rtx_equal_p (x, XEXP (cond, 0)))
2196 return FALSE;
2197 bitnum = INTVAL (XEXP (cond, 2));
2198 mode = GET_MODE (x);
2199 if (BITS_BIG_ENDIAN)
2200 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2201 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2202 return FALSE;
2203 }
2204 else
2205 return FALSE;
2206
2207 a = if_info->a;
2208 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2209 {
2210 /* Check for "if (X & C) x = x op C". */
2211 if (! rtx_equal_p (x, XEXP (a, 0))
2212 || !CONST_INT_P (XEXP (a, 1))
2213 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2214 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2215 return FALSE;
2216
2217 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2218 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2219 if (GET_CODE (a) == IOR)
2220 result = (code == NE) ? a : NULL_RTX;
2221 else if (code == NE)
2222 {
2223 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2224 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2225 result = simplify_gen_binary (IOR, mode, x, result);
2226 }
2227 else
2228 {
2229 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2230 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2231 result = simplify_gen_binary (AND, mode, x, result);
2232 }
2233 }
2234 else if (GET_CODE (a) == AND)
2235 {
2236 /* Check for "if (X & C) x &= ~C". */
2237 if (! rtx_equal_p (x, XEXP (a, 0))
2238 || !CONST_INT_P (XEXP (a, 1))
2239 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2240 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2241 return FALSE;
2242
2243 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2244 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2245 result = (code == EQ) ? a : NULL_RTX;
2246 }
2247 else
2248 return FALSE;
2249
2250 if (result)
2251 {
2252 start_sequence ();
2253 noce_emit_move_insn (x, result);
2254 seq = end_ifcvt_sequence (if_info);
2255 if (!seq)
2256 return FALSE;
2257
2258 emit_insn_before_setloc (seq, if_info->jump,
2259 INSN_LOCATOR (if_info->insn_a));
2260 }
2261 return TRUE;
2262 }
2263
2264
2265 /* Similar to get_condition, only the resulting condition must be
2266 valid at JUMP, instead of at EARLIEST.
2267
2268 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2269 THEN block of the caller, and we have to reverse the condition. */
2270
2271 static rtx
2272 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2273 {
2274 rtx cond, set, tmp;
2275 bool reverse;
2276
2277 if (! any_condjump_p (jump))
2278 return NULL_RTX;
2279
2280 set = pc_set (jump);
2281
2282 /* If this branches to JUMP_LABEL when the condition is false,
2283 reverse the condition. */
2284 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2285 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2286
2287 /* We may have to reverse because the caller's if block is not canonical,
2288 i.e. the THEN block isn't the fallthrough block for the TEST block
2289 (see find_if_header). */
2290 if (then_else_reversed)
2291 reverse = !reverse;
2292
2293 /* If the condition variable is a register and is MODE_INT, accept it. */
2294
2295 cond = XEXP (SET_SRC (set), 0);
2296 tmp = XEXP (cond, 0);
2297 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2298 && (GET_MODE (tmp) != BImode
2299 || !targetm.small_register_classes_for_mode_p (BImode)))
2300 {
2301 *earliest = jump;
2302
2303 if (reverse)
2304 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2305 GET_MODE (cond), tmp, XEXP (cond, 1));
2306 return cond;
2307 }
2308
2309 /* Otherwise, fall back on canonicalize_condition to do the dirty
2310 work of manipulating MODE_CC values and COMPARE rtx codes. */
2311 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2312 NULL_RTX, false, true);
2313
2314 /* We don't handle side-effects in the condition, like handling
2315 REG_INC notes and making sure no duplicate conditions are emitted. */
2316 if (tmp != NULL_RTX && side_effects_p (tmp))
2317 return NULL_RTX;
2318
2319 return tmp;
2320 }
2321
2322 /* Return true if OP is ok for if-then-else processing. */
2323
2324 static int
2325 noce_operand_ok (const_rtx op)
2326 {
2327 if (side_effects_p (op))
2328 return FALSE;
2329
2330 /* We special-case memories, so handle any of them with
2331 no address side effects. */
2332 if (MEM_P (op))
2333 return ! side_effects_p (XEXP (op, 0));
2334
2335 return ! may_trap_p (op);
2336 }
2337
2338 /* Return true if a write into MEM may trap or fault. */
2339
2340 static bool
2341 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2342 {
2343 rtx addr;
2344
2345 if (MEM_READONLY_P (mem))
2346 return true;
2347
2348 if (may_trap_or_fault_p (mem))
2349 return true;
2350
2351 addr = XEXP (mem, 0);
2352
2353 /* Call target hook to avoid the effects of -fpic etc.... */
2354 addr = targetm.delegitimize_address (addr);
2355
2356 while (addr)
2357 switch (GET_CODE (addr))
2358 {
2359 case CONST:
2360 case PRE_DEC:
2361 case PRE_INC:
2362 case POST_DEC:
2363 case POST_INC:
2364 case POST_MODIFY:
2365 addr = XEXP (addr, 0);
2366 break;
2367 case LO_SUM:
2368 case PRE_MODIFY:
2369 addr = XEXP (addr, 1);
2370 break;
2371 case PLUS:
2372 if (CONST_INT_P (XEXP (addr, 1)))
2373 addr = XEXP (addr, 0);
2374 else
2375 return false;
2376 break;
2377 case LABEL_REF:
2378 return true;
2379 case SYMBOL_REF:
2380 if (SYMBOL_REF_DECL (addr)
2381 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2382 return true;
2383 return false;
2384 default:
2385 return false;
2386 }
2387
2388 return false;
2389 }
2390
2391 /* Return whether we can use store speculation for MEM. TOP_BB is the
2392 basic block above the conditional block where we are considering
2393 doing the speculative store. We look for whether MEM is set
2394 unconditionally later in the function. */
2395
2396 static bool
2397 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2398 {
2399 basic_block dominator;
2400
2401 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2402 dominator != NULL;
2403 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2404 {
2405 rtx insn;
2406
2407 FOR_BB_INSNS (dominator, insn)
2408 {
2409 /* If we see something that might be a memory barrier, we
2410 have to stop looking. Even if the MEM is set later in
2411 the function, we still don't want to set it
2412 unconditionally before the barrier. */
2413 if (INSN_P (insn)
2414 && (volatile_insn_p (PATTERN (insn))
2415 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2416 return false;
2417
2418 if (memory_modified_in_insn_p (mem, insn))
2419 return true;
2420 if (modified_in_p (XEXP (mem, 0), insn))
2421 return false;
2422
2423 }
2424 }
2425
2426 return false;
2427 }
2428
2429 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2430 it without using conditional execution. Return TRUE if we were successful
2431 at converting the block. */
2432
2433 static int
2434 noce_process_if_block (struct noce_if_info *if_info)
2435 {
2436 basic_block test_bb = if_info->test_bb; /* test block */
2437 basic_block then_bb = if_info->then_bb; /* THEN */
2438 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2439 basic_block join_bb = if_info->join_bb; /* JOIN */
2440 rtx jump = if_info->jump;
2441 rtx cond = if_info->cond;
2442 rtx insn_a, insn_b;
2443 rtx set_a, set_b;
2444 rtx orig_x, x, a, b;
2445
2446 /* We're looking for patterns of the form
2447
2448 (1) if (...) x = a; else x = b;
2449 (2) x = b; if (...) x = a;
2450 (3) if (...) x = a; // as if with an initial x = x.
2451
2452 The later patterns require jumps to be more expensive.
2453
2454 ??? For future expansion, look for multiple X in such patterns. */
2455
2456 /* Look for one of the potential sets. */
2457 insn_a = first_active_insn (then_bb);
2458 if (! insn_a
2459 || insn_a != last_active_insn (then_bb, FALSE)
2460 || (set_a = single_set (insn_a)) == NULL_RTX)
2461 return FALSE;
2462
2463 x = SET_DEST (set_a);
2464 a = SET_SRC (set_a);
2465
2466 /* Look for the other potential set. Make sure we've got equivalent
2467 destinations. */
2468 /* ??? This is overconservative. Storing to two different mems is
2469 as easy as conditionally computing the address. Storing to a
2470 single mem merely requires a scratch memory to use as one of the
2471 destination addresses; often the memory immediately below the
2472 stack pointer is available for this. */
2473 set_b = NULL_RTX;
2474 if (else_bb)
2475 {
2476 insn_b = first_active_insn (else_bb);
2477 if (! insn_b
2478 || insn_b != last_active_insn (else_bb, FALSE)
2479 || (set_b = single_set (insn_b)) == NULL_RTX
2480 || ! rtx_equal_p (x, SET_DEST (set_b)))
2481 return FALSE;
2482 }
2483 else
2484 {
2485 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2486 /* We're going to be moving the evaluation of B down from above
2487 COND_EARLIEST to JUMP. Make sure the relevant data is still
2488 intact. */
2489 if (! insn_b
2490 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2491 || !NONJUMP_INSN_P (insn_b)
2492 || (set_b = single_set (insn_b)) == NULL_RTX
2493 || ! rtx_equal_p (x, SET_DEST (set_b))
2494 || ! noce_operand_ok (SET_SRC (set_b))
2495 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2496 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2497 /* Likewise with X. In particular this can happen when
2498 noce_get_condition looks farther back in the instruction
2499 stream than one might expect. */
2500 || reg_overlap_mentioned_p (x, cond)
2501 || reg_overlap_mentioned_p (x, a)
2502 || modified_between_p (x, insn_b, jump))
2503 insn_b = set_b = NULL_RTX;
2504 }
2505
2506 /* If x has side effects then only the if-then-else form is safe to
2507 convert. But even in that case we would need to restore any notes
2508 (such as REG_INC) at then end. That can be tricky if
2509 noce_emit_move_insn expands to more than one insn, so disable the
2510 optimization entirely for now if there are side effects. */
2511 if (side_effects_p (x))
2512 return FALSE;
2513
2514 b = (set_b ? SET_SRC (set_b) : x);
2515
2516 /* Only operate on register destinations, and even then avoid extending
2517 the lifetime of hard registers on small register class machines. */
2518 orig_x = x;
2519 if (!REG_P (x)
2520 || (HARD_REGISTER_P (x)
2521 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2522 {
2523 if (GET_MODE (x) == BLKmode)
2524 return FALSE;
2525
2526 if (GET_CODE (x) == ZERO_EXTRACT
2527 && (!CONST_INT_P (XEXP (x, 1))
2528 || !CONST_INT_P (XEXP (x, 2))))
2529 return FALSE;
2530
2531 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2532 ? XEXP (x, 0) : x));
2533 }
2534
2535 /* Don't operate on sources that may trap or are volatile. */
2536 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2537 return FALSE;
2538
2539 retry:
2540 /* Set up the info block for our subroutines. */
2541 if_info->insn_a = insn_a;
2542 if_info->insn_b = insn_b;
2543 if_info->x = x;
2544 if_info->a = a;
2545 if_info->b = b;
2546
2547 /* Try optimizations in some approximation of a useful order. */
2548 /* ??? Should first look to see if X is live incoming at all. If it
2549 isn't, we don't need anything but an unconditional set. */
2550
2551 /* Look and see if A and B are really the same. Avoid creating silly
2552 cmove constructs that no one will fix up later. */
2553 if (rtx_equal_p (a, b))
2554 {
2555 /* If we have an INSN_B, we don't have to create any new rtl. Just
2556 move the instruction that we already have. If we don't have an
2557 INSN_B, that means that A == X, and we've got a noop move. In
2558 that case don't do anything and let the code below delete INSN_A. */
2559 if (insn_b && else_bb)
2560 {
2561 rtx note;
2562
2563 if (else_bb && insn_b == BB_END (else_bb))
2564 BB_END (else_bb) = PREV_INSN (insn_b);
2565 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2566
2567 /* If there was a REG_EQUAL note, delete it since it may have been
2568 true due to this insn being after a jump. */
2569 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2570 remove_note (insn_b, note);
2571
2572 insn_b = NULL_RTX;
2573 }
2574 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2575 x must be executed twice. */
2576 else if (insn_b && side_effects_p (orig_x))
2577 return FALSE;
2578
2579 x = orig_x;
2580 goto success;
2581 }
2582
2583 if (!set_b && MEM_P (orig_x))
2584 {
2585 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2586 for optimizations if writing to x may trap or fault,
2587 i.e. it's a memory other than a static var or a stack slot,
2588 is misaligned on strict aligned machines or is read-only. If
2589 x is a read-only memory, then the program is valid only if we
2590 avoid the store into it. If there are stores on both the
2591 THEN and ELSE arms, then we can go ahead with the conversion;
2592 either the program is broken, or the condition is always
2593 false such that the other memory is selected. */
2594 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2595 return FALSE;
2596
2597 /* Avoid store speculation: given "if (...) x = a" where x is a
2598 MEM, we only want to do the store if x is always set
2599 somewhere in the function. This avoids cases like
2600 if (pthread_mutex_trylock(mutex))
2601 ++global_variable;
2602 where we only want global_variable to be changed if the mutex
2603 is held. FIXME: This should ideally be expressed directly in
2604 RTL somehow. */
2605 if (!noce_can_store_speculate_p (test_bb, orig_x))
2606 return FALSE;
2607 }
2608
2609 if (noce_try_move (if_info))
2610 goto success;
2611 if (noce_try_store_flag (if_info))
2612 goto success;
2613 if (noce_try_bitop (if_info))
2614 goto success;
2615 if (noce_try_minmax (if_info))
2616 goto success;
2617 if (noce_try_abs (if_info))
2618 goto success;
2619 if (HAVE_conditional_move
2620 && noce_try_cmove (if_info))
2621 goto success;
2622 if (! targetm.have_conditional_execution ())
2623 {
2624 if (noce_try_store_flag_constants (if_info))
2625 goto success;
2626 if (noce_try_addcc (if_info))
2627 goto success;
2628 if (noce_try_store_flag_mask (if_info))
2629 goto success;
2630 if (HAVE_conditional_move
2631 && noce_try_cmove_arith (if_info))
2632 goto success;
2633 if (noce_try_sign_mask (if_info))
2634 goto success;
2635 }
2636
2637 if (!else_bb && set_b)
2638 {
2639 insn_b = set_b = NULL_RTX;
2640 b = orig_x;
2641 goto retry;
2642 }
2643
2644 return FALSE;
2645
2646 success:
2647
2648 /* If we used a temporary, fix it up now. */
2649 if (orig_x != x)
2650 {
2651 rtx seq;
2652
2653 start_sequence ();
2654 noce_emit_move_insn (orig_x, x);
2655 seq = get_insns ();
2656 set_used_flags (orig_x);
2657 unshare_all_rtl_in_chain (seq);
2658 end_sequence ();
2659
2660 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATOR (insn_a));
2661 }
2662
2663 /* The original THEN and ELSE blocks may now be removed. The test block
2664 must now jump to the join block. If the test block and the join block
2665 can be merged, do so. */
2666 if (else_bb)
2667 {
2668 delete_basic_block (else_bb);
2669 num_true_changes++;
2670 }
2671 else
2672 remove_edge (find_edge (test_bb, join_bb));
2673
2674 remove_edge (find_edge (then_bb, join_bb));
2675 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2676 delete_basic_block (then_bb);
2677 num_true_changes++;
2678
2679 if (can_merge_blocks_p (test_bb, join_bb))
2680 {
2681 merge_blocks (test_bb, join_bb);
2682 num_true_changes++;
2683 }
2684
2685 num_updated_if_blocks++;
2686 return TRUE;
2687 }
2688
2689 /* Check whether a block is suitable for conditional move conversion.
2690 Every insn must be a simple set of a register to a constant or a
2691 register. For each assignment, store the value in the array VALS,
2692 indexed by register number, then store the register number in
2693 REGS. COND is the condition we will test. */
2694
2695 static int
2696 check_cond_move_block (basic_block bb, rtx *vals, VEC (int, heap) **regs,
2697 rtx cond)
2698 {
2699 rtx insn;
2700
2701 /* We can only handle simple jumps at the end of the basic block.
2702 It is almost impossible to update the CFG otherwise. */
2703 insn = BB_END (bb);
2704 if (JUMP_P (insn) && !onlyjump_p (insn))
2705 return FALSE;
2706
2707 FOR_BB_INSNS (bb, insn)
2708 {
2709 rtx set, dest, src;
2710
2711 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2712 continue;
2713 set = single_set (insn);
2714 if (!set)
2715 return FALSE;
2716
2717 dest = SET_DEST (set);
2718 src = SET_SRC (set);
2719 if (!REG_P (dest)
2720 || (HARD_REGISTER_P (dest)
2721 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2722 return FALSE;
2723
2724 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2725 return FALSE;
2726
2727 if (side_effects_p (src) || side_effects_p (dest))
2728 return FALSE;
2729
2730 if (may_trap_p (src) || may_trap_p (dest))
2731 return FALSE;
2732
2733 /* Don't try to handle this if the source register was
2734 modified earlier in the block. */
2735 if ((REG_P (src)
2736 && vals[REGNO (src)] != NULL)
2737 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2738 && vals[REGNO (SUBREG_REG (src))] != NULL))
2739 return FALSE;
2740
2741 /* Don't try to handle this if the destination register was
2742 modified earlier in the block. */
2743 if (vals[REGNO (dest)] != NULL)
2744 return FALSE;
2745
2746 /* Don't try to handle this if the condition uses the
2747 destination register. */
2748 if (reg_overlap_mentioned_p (dest, cond))
2749 return FALSE;
2750
2751 /* Don't try to handle this if the source register is modified
2752 later in the block. */
2753 if (!CONSTANT_P (src)
2754 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2755 return FALSE;
2756
2757 vals[REGNO (dest)] = src;
2758
2759 VEC_safe_push (int, heap, *regs, REGNO (dest));
2760 }
2761
2762 return TRUE;
2763 }
2764
2765 /* Given a basic block BB suitable for conditional move conversion,
2766 a condition COND, and arrays THEN_VALS and ELSE_VALS containing the
2767 register values depending on COND, emit the insns in the block as
2768 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2769 processed. The caller has started a sequence for the conversion.
2770 Return true if successful, false if something goes wrong. */
2771
2772 static bool
2773 cond_move_convert_if_block (struct noce_if_info *if_infop,
2774 basic_block bb, rtx cond,
2775 rtx *then_vals, rtx *else_vals,
2776 bool else_block_p)
2777 {
2778 enum rtx_code code;
2779 rtx insn, cond_arg0, cond_arg1;
2780
2781 code = GET_CODE (cond);
2782 cond_arg0 = XEXP (cond, 0);
2783 cond_arg1 = XEXP (cond, 1);
2784
2785 FOR_BB_INSNS (bb, insn)
2786 {
2787 rtx set, target, dest, t, e;
2788 unsigned int regno;
2789
2790 /* ??? Maybe emit conditional debug insn? */
2791 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2792 continue;
2793 set = single_set (insn);
2794 gcc_assert (set && REG_P (SET_DEST (set)));
2795
2796 dest = SET_DEST (set);
2797 regno = REGNO (dest);
2798
2799 t = then_vals[regno];
2800 e = else_vals[regno];
2801
2802 if (else_block_p)
2803 {
2804 /* If this register was set in the then block, we already
2805 handled this case there. */
2806 if (t)
2807 continue;
2808 t = dest;
2809 gcc_assert (e);
2810 }
2811 else
2812 {
2813 gcc_assert (t);
2814 if (!e)
2815 e = dest;
2816 }
2817
2818 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2819 t, e);
2820 if (!target)
2821 return false;
2822
2823 if (target != dest)
2824 noce_emit_move_insn (dest, target);
2825 }
2826
2827 return true;
2828 }
2829
2830 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2831 it using only conditional moves. Return TRUE if we were successful at
2832 converting the block. */
2833
2834 static int
2835 cond_move_process_if_block (struct noce_if_info *if_info)
2836 {
2837 basic_block test_bb = if_info->test_bb;
2838 basic_block then_bb = if_info->then_bb;
2839 basic_block else_bb = if_info->else_bb;
2840 basic_block join_bb = if_info->join_bb;
2841 rtx jump = if_info->jump;
2842 rtx cond = if_info->cond;
2843 rtx seq, loc_insn;
2844 int max_reg, size, c, reg;
2845 rtx *then_vals;
2846 rtx *else_vals;
2847 VEC (int, heap) *then_regs = NULL;
2848 VEC (int, heap) *else_regs = NULL;
2849 unsigned int i;
2850
2851 /* Build a mapping for each block to the value used for each
2852 register. */
2853 max_reg = max_reg_num ();
2854 size = (max_reg + 1) * sizeof (rtx);
2855 then_vals = (rtx *) alloca (size);
2856 else_vals = (rtx *) alloca (size);
2857 memset (then_vals, 0, size);
2858 memset (else_vals, 0, size);
2859
2860 /* Make sure the blocks are suitable. */
2861 if (!check_cond_move_block (then_bb, then_vals, &then_regs, cond)
2862 || (else_bb
2863 && !check_cond_move_block (else_bb, else_vals, &else_regs, cond)))
2864 {
2865 VEC_free (int, heap, then_regs);
2866 VEC_free (int, heap, else_regs);
2867 return FALSE;
2868 }
2869
2870 /* Make sure the blocks can be used together. If the same register
2871 is set in both blocks, and is not set to a constant in both
2872 cases, then both blocks must set it to the same register. We
2873 have already verified that if it is set to a register, that the
2874 source register does not change after the assignment. Also count
2875 the number of registers set in only one of the blocks. */
2876 c = 0;
2877 FOR_EACH_VEC_ELT (int, then_regs, i, reg)
2878 {
2879 if (!then_vals[reg] && !else_vals[reg])
2880 continue;
2881
2882 if (!else_vals[reg])
2883 ++c;
2884 else
2885 {
2886 if (!CONSTANT_P (then_vals[reg])
2887 && !CONSTANT_P (else_vals[reg])
2888 && !rtx_equal_p (then_vals[reg], else_vals[reg]))
2889 {
2890 VEC_free (int, heap, then_regs);
2891 VEC_free (int, heap, else_regs);
2892 return FALSE;
2893 }
2894 }
2895 }
2896
2897 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2898 FOR_EACH_VEC_ELT (int, else_regs, i, reg)
2899 if (!then_vals[reg])
2900 ++c;
2901
2902 /* Make sure it is reasonable to convert this block. What matters
2903 is the number of assignments currently made in only one of the
2904 branches, since if we convert we are going to always execute
2905 them. */
2906 if (c > MAX_CONDITIONAL_EXECUTE)
2907 {
2908 VEC_free (int, heap, then_regs);
2909 VEC_free (int, heap, else_regs);
2910 return FALSE;
2911 }
2912
2913 /* Try to emit the conditional moves. First do the then block,
2914 then do anything left in the else blocks. */
2915 start_sequence ();
2916 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2917 then_vals, else_vals, false)
2918 || (else_bb
2919 && !cond_move_convert_if_block (if_info, else_bb, cond,
2920 then_vals, else_vals, true)))
2921 {
2922 end_sequence ();
2923 VEC_free (int, heap, then_regs);
2924 VEC_free (int, heap, else_regs);
2925 return FALSE;
2926 }
2927 seq = end_ifcvt_sequence (if_info);
2928 if (!seq)
2929 {
2930 VEC_free (int, heap, then_regs);
2931 VEC_free (int, heap, else_regs);
2932 return FALSE;
2933 }
2934
2935 loc_insn = first_active_insn (then_bb);
2936 if (!loc_insn)
2937 {
2938 loc_insn = first_active_insn (else_bb);
2939 gcc_assert (loc_insn);
2940 }
2941 emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
2942
2943 if (else_bb)
2944 {
2945 delete_basic_block (else_bb);
2946 num_true_changes++;
2947 }
2948 else
2949 remove_edge (find_edge (test_bb, join_bb));
2950
2951 remove_edge (find_edge (then_bb, join_bb));
2952 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2953 delete_basic_block (then_bb);
2954 num_true_changes++;
2955
2956 if (can_merge_blocks_p (test_bb, join_bb))
2957 {
2958 merge_blocks (test_bb, join_bb);
2959 num_true_changes++;
2960 }
2961
2962 num_updated_if_blocks++;
2963
2964 VEC_free (int, heap, then_regs);
2965 VEC_free (int, heap, else_regs);
2966 return TRUE;
2967 }
2968
2969 \f
2970 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2971 IF-THEN-ELSE-JOIN block.
2972
2973 If so, we'll try to convert the insns to not require the branch,
2974 using only transformations that do not require conditional execution.
2975
2976 Return TRUE if we were successful at converting the block. */
2977
2978 static int
2979 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
2980 int pass)
2981 {
2982 basic_block then_bb, else_bb, join_bb;
2983 bool then_else_reversed = false;
2984 rtx jump, cond;
2985 rtx cond_earliest;
2986 struct noce_if_info if_info;
2987
2988 /* We only ever should get here before reload. */
2989 gcc_assert (!reload_completed);
2990
2991 /* Recognize an IF-THEN-ELSE-JOIN block. */
2992 if (single_pred_p (then_edge->dest)
2993 && single_succ_p (then_edge->dest)
2994 && single_pred_p (else_edge->dest)
2995 && single_succ_p (else_edge->dest)
2996 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
2997 {
2998 then_bb = then_edge->dest;
2999 else_bb = else_edge->dest;
3000 join_bb = single_succ (then_bb);
3001 }
3002 /* Recognize an IF-THEN-JOIN block. */
3003 else if (single_pred_p (then_edge->dest)
3004 && single_succ_p (then_edge->dest)
3005 && single_succ (then_edge->dest) == else_edge->dest)
3006 {
3007 then_bb = then_edge->dest;
3008 else_bb = NULL_BLOCK;
3009 join_bb = else_edge->dest;
3010 }
3011 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3012 of basic blocks in cfglayout mode does not matter, so the fallthrough
3013 edge can go to any basic block (and not just to bb->next_bb, like in
3014 cfgrtl mode). */
3015 else if (single_pred_p (else_edge->dest)
3016 && single_succ_p (else_edge->dest)
3017 && single_succ (else_edge->dest) == then_edge->dest)
3018 {
3019 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3020 To make this work, we have to invert the THEN and ELSE blocks
3021 and reverse the jump condition. */
3022 then_bb = else_edge->dest;
3023 else_bb = NULL_BLOCK;
3024 join_bb = single_succ (then_bb);
3025 then_else_reversed = true;
3026 }
3027 else
3028 /* Not a form we can handle. */
3029 return FALSE;
3030
3031 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3032 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3033 return FALSE;
3034 if (else_bb
3035 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3036 return FALSE;
3037
3038 num_possible_if_blocks++;
3039
3040 if (dump_file)
3041 {
3042 fprintf (dump_file,
3043 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3044 (else_bb) ? "-ELSE" : "",
3045 pass, test_bb->index, then_bb->index);
3046
3047 if (else_bb)
3048 fprintf (dump_file, ", else %d", else_bb->index);
3049
3050 fprintf (dump_file, ", join %d\n", join_bb->index);
3051 }
3052
3053 /* If the conditional jump is more than just a conditional
3054 jump, then we can not do if-conversion on this block. */
3055 jump = BB_END (test_bb);
3056 if (! onlyjump_p (jump))
3057 return FALSE;
3058
3059 /* If this is not a standard conditional jump, we can't parse it. */
3060 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3061 if (!cond)
3062 return FALSE;
3063
3064 /* We must be comparing objects whose modes imply the size. */
3065 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3066 return FALSE;
3067
3068 /* Initialize an IF_INFO struct to pass around. */
3069 memset (&if_info, 0, sizeof if_info);
3070 if_info.test_bb = test_bb;
3071 if_info.then_bb = then_bb;
3072 if_info.else_bb = else_bb;
3073 if_info.join_bb = join_bb;
3074 if_info.cond = cond;
3075 if_info.cond_earliest = cond_earliest;
3076 if_info.jump = jump;
3077 if_info.then_else_reversed = then_else_reversed;
3078 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3079 predictable_edge_p (then_edge));
3080
3081 /* Do the real work. */
3082
3083 if (noce_process_if_block (&if_info))
3084 return TRUE;
3085
3086 if (HAVE_conditional_move
3087 && cond_move_process_if_block (&if_info))
3088 return TRUE;
3089
3090 return FALSE;
3091 }
3092 \f
3093
3094 /* Merge the blocks and mark for local life update. */
3095
3096 static void
3097 merge_if_block (struct ce_if_block * ce_info)
3098 {
3099 basic_block test_bb = ce_info->test_bb; /* last test block */
3100 basic_block then_bb = ce_info->then_bb; /* THEN */
3101 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3102 basic_block join_bb = ce_info->join_bb; /* join block */
3103 basic_block combo_bb;
3104
3105 /* All block merging is done into the lower block numbers. */
3106
3107 combo_bb = test_bb;
3108 df_set_bb_dirty (test_bb);
3109
3110 /* Merge any basic blocks to handle && and || subtests. Each of
3111 the blocks are on the fallthru path from the predecessor block. */
3112 if (ce_info->num_multiple_test_blocks > 0)
3113 {
3114 basic_block bb = test_bb;
3115 basic_block last_test_bb = ce_info->last_test_bb;
3116 basic_block fallthru = block_fallthru (bb);
3117
3118 do
3119 {
3120 bb = fallthru;
3121 fallthru = block_fallthru (bb);
3122 merge_blocks (combo_bb, bb);
3123 num_true_changes++;
3124 }
3125 while (bb != last_test_bb);
3126 }
3127
3128 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3129 label, but it might if there were || tests. That label's count should be
3130 zero, and it normally should be removed. */
3131
3132 if (then_bb)
3133 {
3134 merge_blocks (combo_bb, then_bb);
3135 num_true_changes++;
3136 }
3137
3138 /* The ELSE block, if it existed, had a label. That label count
3139 will almost always be zero, but odd things can happen when labels
3140 get their addresses taken. */
3141 if (else_bb)
3142 {
3143 merge_blocks (combo_bb, else_bb);
3144 num_true_changes++;
3145 }
3146
3147 /* If there was no join block reported, that means it was not adjacent
3148 to the others, and so we cannot merge them. */
3149
3150 if (! join_bb)
3151 {
3152 rtx last = BB_END (combo_bb);
3153
3154 /* The outgoing edge for the current COMBO block should already
3155 be correct. Verify this. */
3156 if (EDGE_COUNT (combo_bb->succs) == 0)
3157 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3158 || (NONJUMP_INSN_P (last)
3159 && GET_CODE (PATTERN (last)) == TRAP_IF
3160 && (TRAP_CONDITION (PATTERN (last))
3161 == const_true_rtx)));
3162
3163 else
3164 /* There should still be something at the end of the THEN or ELSE
3165 blocks taking us to our final destination. */
3166 gcc_assert (JUMP_P (last)
3167 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
3168 && CALL_P (last)
3169 && SIBLING_CALL_P (last))
3170 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3171 && can_throw_internal (last)));
3172 }
3173
3174 /* The JOIN block may have had quite a number of other predecessors too.
3175 Since we've already merged the TEST, THEN and ELSE blocks, we should
3176 have only one remaining edge from our if-then-else diamond. If there
3177 is more than one remaining edge, it must come from elsewhere. There
3178 may be zero incoming edges if the THEN block didn't actually join
3179 back up (as with a call to a non-return function). */
3180 else if (EDGE_COUNT (join_bb->preds) < 2
3181 && join_bb != EXIT_BLOCK_PTR)
3182 {
3183 /* We can merge the JOIN cleanly and update the dataflow try
3184 again on this pass.*/
3185 merge_blocks (combo_bb, join_bb);
3186 num_true_changes++;
3187 }
3188 else
3189 {
3190 /* We cannot merge the JOIN. */
3191
3192 /* The outgoing edge for the current COMBO block should already
3193 be correct. Verify this. */
3194 gcc_assert (single_succ_p (combo_bb)
3195 && single_succ (combo_bb) == join_bb);
3196
3197 /* Remove the jump and cruft from the end of the COMBO block. */
3198 if (join_bb != EXIT_BLOCK_PTR)
3199 tidy_fallthru_edge (single_succ_edge (combo_bb));
3200 }
3201
3202 num_updated_if_blocks++;
3203 }
3204 \f
3205 /* Find a block ending in a simple IF condition and try to transform it
3206 in some way. When converting a multi-block condition, put the new code
3207 in the first such block and delete the rest. Return a pointer to this
3208 first block if some transformation was done. Return NULL otherwise. */
3209
3210 static basic_block
3211 find_if_header (basic_block test_bb, int pass)
3212 {
3213 ce_if_block_t ce_info;
3214 edge then_edge;
3215 edge else_edge;
3216
3217 /* The kind of block we're looking for has exactly two successors. */
3218 if (EDGE_COUNT (test_bb->succs) != 2)
3219 return NULL;
3220
3221 then_edge = EDGE_SUCC (test_bb, 0);
3222 else_edge = EDGE_SUCC (test_bb, 1);
3223
3224 if (df_get_bb_dirty (then_edge->dest))
3225 return NULL;
3226 if (df_get_bb_dirty (else_edge->dest))
3227 return NULL;
3228
3229 /* Neither edge should be abnormal. */
3230 if ((then_edge->flags & EDGE_COMPLEX)
3231 || (else_edge->flags & EDGE_COMPLEX))
3232 return NULL;
3233
3234 /* Nor exit the loop. */
3235 if ((then_edge->flags & EDGE_LOOP_EXIT)
3236 || (else_edge->flags & EDGE_LOOP_EXIT))
3237 return NULL;
3238
3239 /* The THEN edge is canonically the one that falls through. */
3240 if (then_edge->flags & EDGE_FALLTHRU)
3241 ;
3242 else if (else_edge->flags & EDGE_FALLTHRU)
3243 {
3244 edge e = else_edge;
3245 else_edge = then_edge;
3246 then_edge = e;
3247 }
3248 else
3249 /* Otherwise this must be a multiway branch of some sort. */
3250 return NULL;
3251
3252 memset (&ce_info, 0, sizeof (ce_info));
3253 ce_info.test_bb = test_bb;
3254 ce_info.then_bb = then_edge->dest;
3255 ce_info.else_bb = else_edge->dest;
3256 ce_info.pass = pass;
3257
3258 #ifdef IFCVT_INIT_EXTRA_FIELDS
3259 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
3260 #endif
3261
3262 if (!reload_completed
3263 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3264 goto success;
3265
3266 if (reload_completed
3267 && targetm.have_conditional_execution ()
3268 && cond_exec_find_if_block (&ce_info))
3269 goto success;
3270
3271 if (HAVE_trap
3272 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3273 && find_cond_trap (test_bb, then_edge, else_edge))
3274 goto success;
3275
3276 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3277 && (reload_completed || !targetm.have_conditional_execution ()))
3278 {
3279 if (find_if_case_1 (test_bb, then_edge, else_edge))
3280 goto success;
3281 if (find_if_case_2 (test_bb, then_edge, else_edge))
3282 goto success;
3283 }
3284
3285 return NULL;
3286
3287 success:
3288 if (dump_file)
3289 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3290 /* Set this so we continue looking. */
3291 cond_exec_changed_p = TRUE;
3292 return ce_info.test_bb;
3293 }
3294
3295 /* Return true if a block has two edges, one of which falls through to the next
3296 block, and the other jumps to a specific block, so that we can tell if the
3297 block is part of an && test or an || test. Returns either -1 or the number
3298 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3299
3300 static int
3301 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3302 {
3303 edge cur_edge;
3304 int fallthru_p = FALSE;
3305 int jump_p = FALSE;
3306 rtx insn;
3307 rtx end;
3308 int n_insns = 0;
3309 edge_iterator ei;
3310
3311 if (!cur_bb || !target_bb)
3312 return -1;
3313
3314 /* If no edges, obviously it doesn't jump or fallthru. */
3315 if (EDGE_COUNT (cur_bb->succs) == 0)
3316 return FALSE;
3317
3318 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3319 {
3320 if (cur_edge->flags & EDGE_COMPLEX)
3321 /* Anything complex isn't what we want. */
3322 return -1;
3323
3324 else if (cur_edge->flags & EDGE_FALLTHRU)
3325 fallthru_p = TRUE;
3326
3327 else if (cur_edge->dest == target_bb)
3328 jump_p = TRUE;
3329
3330 else
3331 return -1;
3332 }
3333
3334 if ((jump_p & fallthru_p) == 0)
3335 return -1;
3336
3337 /* Don't allow calls in the block, since this is used to group && and ||
3338 together for conditional execution support. ??? we should support
3339 conditional execution support across calls for IA-64 some day, but
3340 for now it makes the code simpler. */
3341 end = BB_END (cur_bb);
3342 insn = BB_HEAD (cur_bb);
3343
3344 while (insn != NULL_RTX)
3345 {
3346 if (CALL_P (insn))
3347 return -1;
3348
3349 if (INSN_P (insn)
3350 && !JUMP_P (insn)
3351 && !DEBUG_INSN_P (insn)
3352 && GET_CODE (PATTERN (insn)) != USE
3353 && GET_CODE (PATTERN (insn)) != CLOBBER)
3354 n_insns++;
3355
3356 if (insn == end)
3357 break;
3358
3359 insn = NEXT_INSN (insn);
3360 }
3361
3362 return n_insns;
3363 }
3364
3365 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3366 block. If so, we'll try to convert the insns to not require the branch.
3367 Return TRUE if we were successful at converting the block. */
3368
3369 static int
3370 cond_exec_find_if_block (struct ce_if_block * ce_info)
3371 {
3372 basic_block test_bb = ce_info->test_bb;
3373 basic_block then_bb = ce_info->then_bb;
3374 basic_block else_bb = ce_info->else_bb;
3375 basic_block join_bb = NULL_BLOCK;
3376 edge cur_edge;
3377 basic_block next;
3378 edge_iterator ei;
3379
3380 ce_info->last_test_bb = test_bb;
3381
3382 /* We only ever should get here after reload,
3383 and if we have conditional execution. */
3384 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3385
3386 /* Discover if any fall through predecessors of the current test basic block
3387 were && tests (which jump to the else block) or || tests (which jump to
3388 the then block). */
3389 if (single_pred_p (test_bb)
3390 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3391 {
3392 basic_block bb = single_pred (test_bb);
3393 basic_block target_bb;
3394 int max_insns = MAX_CONDITIONAL_EXECUTE;
3395 int n_insns;
3396
3397 /* Determine if the preceding block is an && or || block. */
3398 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3399 {
3400 ce_info->and_and_p = TRUE;
3401 target_bb = else_bb;
3402 }
3403 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3404 {
3405 ce_info->and_and_p = FALSE;
3406 target_bb = then_bb;
3407 }
3408 else
3409 target_bb = NULL_BLOCK;
3410
3411 if (target_bb && n_insns <= max_insns)
3412 {
3413 int total_insns = 0;
3414 int blocks = 0;
3415
3416 ce_info->last_test_bb = test_bb;
3417
3418 /* Found at least one && or || block, look for more. */
3419 do
3420 {
3421 ce_info->test_bb = test_bb = bb;
3422 total_insns += n_insns;
3423 blocks++;
3424
3425 if (!single_pred_p (bb))
3426 break;
3427
3428 bb = single_pred (bb);
3429 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3430 }
3431 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3432
3433 ce_info->num_multiple_test_blocks = blocks;
3434 ce_info->num_multiple_test_insns = total_insns;
3435
3436 if (ce_info->and_and_p)
3437 ce_info->num_and_and_blocks = blocks;
3438 else
3439 ce_info->num_or_or_blocks = blocks;
3440 }
3441 }
3442
3443 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3444 other than any || blocks which jump to the THEN block. */
3445 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3446 return FALSE;
3447
3448 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3449 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3450 {
3451 if (cur_edge->flags & EDGE_COMPLEX)
3452 return FALSE;
3453 }
3454
3455 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3456 {
3457 if (cur_edge->flags & EDGE_COMPLEX)
3458 return FALSE;
3459 }
3460
3461 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3462 if (EDGE_COUNT (then_bb->succs) > 0
3463 && (!single_succ_p (then_bb)
3464 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3465 || (epilogue_completed
3466 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3467 return FALSE;
3468
3469 /* If the THEN block has no successors, conditional execution can still
3470 make a conditional call. Don't do this unless the ELSE block has
3471 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3472 Check for the last insn of the THEN block being an indirect jump, which
3473 is listed as not having any successors, but confuses the rest of the CE
3474 code processing. ??? we should fix this in the future. */
3475 if (EDGE_COUNT (then_bb->succs) == 0)
3476 {
3477 if (single_pred_p (else_bb))
3478 {
3479 rtx last_insn = BB_END (then_bb);
3480
3481 while (last_insn
3482 && NOTE_P (last_insn)
3483 && last_insn != BB_HEAD (then_bb))
3484 last_insn = PREV_INSN (last_insn);
3485
3486 if (last_insn
3487 && JUMP_P (last_insn)
3488 && ! simplejump_p (last_insn))
3489 return FALSE;
3490
3491 join_bb = else_bb;
3492 else_bb = NULL_BLOCK;
3493 }
3494 else
3495 return FALSE;
3496 }
3497
3498 /* If the THEN block's successor is the other edge out of the TEST block,
3499 then we have an IF-THEN combo without an ELSE. */
3500 else if (single_succ (then_bb) == else_bb)
3501 {
3502 join_bb = else_bb;
3503 else_bb = NULL_BLOCK;
3504 }
3505
3506 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3507 has exactly one predecessor and one successor, and the outgoing edge
3508 is not complex, then we have an IF-THEN-ELSE combo. */
3509 else if (single_succ_p (else_bb)
3510 && single_succ (then_bb) == single_succ (else_bb)
3511 && single_pred_p (else_bb)
3512 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3513 && !(epilogue_completed
3514 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3515 join_bb = single_succ (else_bb);
3516
3517 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3518 else
3519 return FALSE;
3520
3521 num_possible_if_blocks++;
3522
3523 if (dump_file)
3524 {
3525 fprintf (dump_file,
3526 "\nIF-THEN%s block found, pass %d, start block %d "
3527 "[insn %d], then %d [%d]",
3528 (else_bb) ? "-ELSE" : "",
3529 ce_info->pass,
3530 test_bb->index,
3531 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3532 then_bb->index,
3533 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3534
3535 if (else_bb)
3536 fprintf (dump_file, ", else %d [%d]",
3537 else_bb->index,
3538 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3539
3540 fprintf (dump_file, ", join %d [%d]",
3541 join_bb->index,
3542 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3543
3544 if (ce_info->num_multiple_test_blocks > 0)
3545 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3546 ce_info->num_multiple_test_blocks,
3547 (ce_info->and_and_p) ? "&&" : "||",
3548 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3549 ce_info->last_test_bb->index,
3550 ((BB_HEAD (ce_info->last_test_bb))
3551 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3552 : -1));
3553
3554 fputc ('\n', dump_file);
3555 }
3556
3557 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3558 first condition for free, since we've already asserted that there's a
3559 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3560 we checked the FALLTHRU flag, those are already adjacent to the last IF
3561 block. */
3562 /* ??? As an enhancement, move the ELSE block. Have to deal with
3563 BLOCK notes, if by no other means than backing out the merge if they
3564 exist. Sticky enough I don't want to think about it now. */
3565 next = then_bb;
3566 if (else_bb && (next = next->next_bb) != else_bb)
3567 return FALSE;
3568 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3569 {
3570 if (else_bb)
3571 join_bb = NULL;
3572 else
3573 return FALSE;
3574 }
3575
3576 /* Do the real work. */
3577
3578 ce_info->else_bb = else_bb;
3579 ce_info->join_bb = join_bb;
3580
3581 /* If we have && and || tests, try to first handle combining the && and ||
3582 tests into the conditional code, and if that fails, go back and handle
3583 it without the && and ||, which at present handles the && case if there
3584 was no ELSE block. */
3585 if (cond_exec_process_if_block (ce_info, TRUE))
3586 return TRUE;
3587
3588 if (ce_info->num_multiple_test_blocks)
3589 {
3590 cancel_changes (0);
3591
3592 if (cond_exec_process_if_block (ce_info, FALSE))
3593 return TRUE;
3594 }
3595
3596 return FALSE;
3597 }
3598
3599 /* Convert a branch over a trap, or a branch
3600 to a trap, into a conditional trap. */
3601
3602 static int
3603 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3604 {
3605 basic_block then_bb = then_edge->dest;
3606 basic_block else_bb = else_edge->dest;
3607 basic_block other_bb, trap_bb;
3608 rtx trap, jump, cond, cond_earliest, seq;
3609 enum rtx_code code;
3610
3611 /* Locate the block with the trap instruction. */
3612 /* ??? While we look for no successors, we really ought to allow
3613 EH successors. Need to fix merge_if_block for that to work. */
3614 if ((trap = block_has_only_trap (then_bb)) != NULL)
3615 trap_bb = then_bb, other_bb = else_bb;
3616 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3617 trap_bb = else_bb, other_bb = then_bb;
3618 else
3619 return FALSE;
3620
3621 if (dump_file)
3622 {
3623 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3624 test_bb->index, trap_bb->index);
3625 }
3626
3627 /* If this is not a standard conditional jump, we can't parse it. */
3628 jump = BB_END (test_bb);
3629 cond = noce_get_condition (jump, &cond_earliest, false);
3630 if (! cond)
3631 return FALSE;
3632
3633 /* If the conditional jump is more than just a conditional jump, then
3634 we can not do if-conversion on this block. */
3635 if (! onlyjump_p (jump))
3636 return FALSE;
3637
3638 /* We must be comparing objects whose modes imply the size. */
3639 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3640 return FALSE;
3641
3642 /* Reverse the comparison code, if necessary. */
3643 code = GET_CODE (cond);
3644 if (then_bb == trap_bb)
3645 {
3646 code = reversed_comparison_code (cond, jump);
3647 if (code == UNKNOWN)
3648 return FALSE;
3649 }
3650
3651 /* Attempt to generate the conditional trap. */
3652 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3653 copy_rtx (XEXP (cond, 1)),
3654 TRAP_CODE (PATTERN (trap)));
3655 if (seq == NULL)
3656 return FALSE;
3657
3658 /* Emit the new insns before cond_earliest. */
3659 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3660
3661 /* Delete the trap block if possible. */
3662 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3663 df_set_bb_dirty (test_bb);
3664 df_set_bb_dirty (then_bb);
3665 df_set_bb_dirty (else_bb);
3666
3667 if (EDGE_COUNT (trap_bb->preds) == 0)
3668 {
3669 delete_basic_block (trap_bb);
3670 num_true_changes++;
3671 }
3672
3673 /* Wire together the blocks again. */
3674 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3675 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3676 else
3677 {
3678 rtx lab, newjump;
3679
3680 lab = JUMP_LABEL (jump);
3681 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3682 LABEL_NUSES (lab) += 1;
3683 JUMP_LABEL (newjump) = lab;
3684 emit_barrier_after (newjump);
3685 }
3686 delete_insn (jump);
3687
3688 if (can_merge_blocks_p (test_bb, other_bb))
3689 {
3690 merge_blocks (test_bb, other_bb);
3691 num_true_changes++;
3692 }
3693
3694 num_updated_if_blocks++;
3695 return TRUE;
3696 }
3697
3698 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3699 return it. */
3700
3701 static rtx
3702 block_has_only_trap (basic_block bb)
3703 {
3704 rtx trap;
3705
3706 /* We're not the exit block. */
3707 if (bb == EXIT_BLOCK_PTR)
3708 return NULL_RTX;
3709
3710 /* The block must have no successors. */
3711 if (EDGE_COUNT (bb->succs) > 0)
3712 return NULL_RTX;
3713
3714 /* The only instruction in the THEN block must be the trap. */
3715 trap = first_active_insn (bb);
3716 if (! (trap == BB_END (bb)
3717 && GET_CODE (PATTERN (trap)) == TRAP_IF
3718 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3719 return NULL_RTX;
3720
3721 return trap;
3722 }
3723
3724 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3725 transformable, but not necessarily the other. There need be no
3726 JOIN block.
3727
3728 Return TRUE if we were successful at converting the block.
3729
3730 Cases we'd like to look at:
3731
3732 (1)
3733 if (test) goto over; // x not live
3734 x = a;
3735 goto label;
3736 over:
3737
3738 becomes
3739
3740 x = a;
3741 if (! test) goto label;
3742
3743 (2)
3744 if (test) goto E; // x not live
3745 x = big();
3746 goto L;
3747 E:
3748 x = b;
3749 goto M;
3750
3751 becomes
3752
3753 x = b;
3754 if (test) goto M;
3755 x = big();
3756 goto L;
3757
3758 (3) // This one's really only interesting for targets that can do
3759 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3760 // it results in multiple branches on a cache line, which often
3761 // does not sit well with predictors.
3762
3763 if (test1) goto E; // predicted not taken
3764 x = a;
3765 if (test2) goto F;
3766 ...
3767 E:
3768 x = b;
3769 J:
3770
3771 becomes
3772
3773 x = a;
3774 if (test1) goto E;
3775 if (test2) goto F;
3776
3777 Notes:
3778
3779 (A) Don't do (2) if the branch is predicted against the block we're
3780 eliminating. Do it anyway if we can eliminate a branch; this requires
3781 that the sole successor of the eliminated block postdominate the other
3782 side of the if.
3783
3784 (B) With CE, on (3) we can steal from both sides of the if, creating
3785
3786 if (test1) x = a;
3787 if (!test1) x = b;
3788 if (test1) goto J;
3789 if (test2) goto F;
3790 ...
3791 J:
3792
3793 Again, this is most useful if J postdominates.
3794
3795 (C) CE substitutes for helpful life information.
3796
3797 (D) These heuristics need a lot of work. */
3798
3799 /* Tests for case 1 above. */
3800
3801 static int
3802 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3803 {
3804 basic_block then_bb = then_edge->dest;
3805 basic_block else_bb = else_edge->dest;
3806 basic_block new_bb;
3807 int then_bb_index, then_prob;
3808 rtx else_target = NULL_RTX;
3809
3810 /* If we are partitioning hot/cold basic blocks, we don't want to
3811 mess up unconditional or indirect jumps that cross between hot
3812 and cold sections.
3813
3814 Basic block partitioning may result in some jumps that appear to
3815 be optimizable (or blocks that appear to be mergeable), but which really
3816 must be left untouched (they are required to make it safely across
3817 partition boundaries). See the comments at the top of
3818 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3819
3820 if ((BB_END (then_bb)
3821 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3822 || (BB_END (test_bb)
3823 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3824 || (BB_END (else_bb)
3825 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3826 NULL_RTX)))
3827 return FALSE;
3828
3829 /* THEN has one successor. */
3830 if (!single_succ_p (then_bb))
3831 return FALSE;
3832
3833 /* THEN does not fall through, but is not strange either. */
3834 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3835 return FALSE;
3836
3837 /* THEN has one predecessor. */
3838 if (!single_pred_p (then_bb))
3839 return FALSE;
3840
3841 /* THEN must do something. */
3842 if (forwarder_block_p (then_bb))
3843 return FALSE;
3844
3845 num_possible_if_blocks++;
3846 if (dump_file)
3847 fprintf (dump_file,
3848 "\nIF-CASE-1 found, start %d, then %d\n",
3849 test_bb->index, then_bb->index);
3850
3851 if (then_edge->probability)
3852 then_prob = REG_BR_PROB_BASE - then_edge->probability;
3853 else
3854 then_prob = REG_BR_PROB_BASE / 2;
3855
3856 /* We're speculating from the THEN path, we want to make sure the cost
3857 of speculation is within reason. */
3858 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
3859 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3860 predictable_edge_p (then_edge)))))
3861 return FALSE;
3862
3863 if (else_bb == EXIT_BLOCK_PTR)
3864 {
3865 rtx jump = BB_END (else_edge->src);
3866 gcc_assert (JUMP_P (jump));
3867 else_target = JUMP_LABEL (jump);
3868 }
3869
3870 /* Registers set are dead, or are predicable. */
3871 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3872 single_succ_edge (then_bb), 1))
3873 return FALSE;
3874
3875 /* Conversion went ok, including moving the insns and fixing up the
3876 jump. Adjust the CFG to match. */
3877
3878 /* We can avoid creating a new basic block if then_bb is immediately
3879 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3880 through to else_bb. */
3881
3882 if (then_bb->next_bb == else_bb
3883 && then_bb->prev_bb == test_bb
3884 && else_bb != EXIT_BLOCK_PTR)
3885 {
3886 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3887 new_bb = 0;
3888 }
3889 else if (else_bb == EXIT_BLOCK_PTR)
3890 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
3891 else_bb, else_target);
3892 else
3893 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3894 else_bb);
3895
3896 df_set_bb_dirty (test_bb);
3897 df_set_bb_dirty (else_bb);
3898
3899 then_bb_index = then_bb->index;
3900 delete_basic_block (then_bb);
3901
3902 /* Make rest of code believe that the newly created block is the THEN_BB
3903 block we removed. */
3904 if (new_bb)
3905 {
3906 df_bb_replace (then_bb_index, new_bb);
3907 /* Since the fallthru edge was redirected from test_bb to new_bb,
3908 we need to ensure that new_bb is in the same partition as
3909 test bb (you can not fall through across section boundaries). */
3910 BB_COPY_PARTITION (new_bb, test_bb);
3911 }
3912
3913 num_true_changes++;
3914 num_updated_if_blocks++;
3915
3916 return TRUE;
3917 }
3918
3919 /* Test for case 2 above. */
3920
3921 static int
3922 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3923 {
3924 basic_block then_bb = then_edge->dest;
3925 basic_block else_bb = else_edge->dest;
3926 edge else_succ;
3927 int then_prob, else_prob;
3928
3929 /* We do not want to speculate (empty) loop latches. */
3930 if (current_loops
3931 && else_bb->loop_father->latch == else_bb)
3932 return FALSE;
3933
3934 /* If we are partitioning hot/cold basic blocks, we don't want to
3935 mess up unconditional or indirect jumps that cross between hot
3936 and cold sections.
3937
3938 Basic block partitioning may result in some jumps that appear to
3939 be optimizable (or blocks that appear to be mergeable), but which really
3940 must be left untouched (they are required to make it safely across
3941 partition boundaries). See the comments at the top of
3942 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3943
3944 if ((BB_END (then_bb)
3945 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3946 || (BB_END (test_bb)
3947 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3948 || (BB_END (else_bb)
3949 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3950 NULL_RTX)))
3951 return FALSE;
3952
3953 /* ELSE has one successor. */
3954 if (!single_succ_p (else_bb))
3955 return FALSE;
3956 else
3957 else_succ = single_succ_edge (else_bb);
3958
3959 /* ELSE outgoing edge is not complex. */
3960 if (else_succ->flags & EDGE_COMPLEX)
3961 return FALSE;
3962
3963 /* ELSE has one predecessor. */
3964 if (!single_pred_p (else_bb))
3965 return FALSE;
3966
3967 /* THEN is not EXIT. */
3968 if (then_bb->index < NUM_FIXED_BLOCKS)
3969 return FALSE;
3970
3971 if (else_edge->probability)
3972 {
3973 else_prob = else_edge->probability;
3974 then_prob = REG_BR_PROB_BASE - else_prob;
3975 }
3976 else
3977 {
3978 else_prob = REG_BR_PROB_BASE / 2;
3979 then_prob = REG_BR_PROB_BASE / 2;
3980 }
3981
3982 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3983 if (else_prob > then_prob)
3984 ;
3985 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3986 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3987 else_succ->dest))
3988 ;
3989 else
3990 return FALSE;
3991
3992 num_possible_if_blocks++;
3993 if (dump_file)
3994 fprintf (dump_file,
3995 "\nIF-CASE-2 found, start %d, else %d\n",
3996 test_bb->index, else_bb->index);
3997
3998 /* We're speculating from the ELSE path, we want to make sure the cost
3999 of speculation is within reason. */
4000 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
4001 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
4002 predictable_edge_p (else_edge)))))
4003 return FALSE;
4004
4005 /* Registers set are dead, or are predicable. */
4006 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4007 return FALSE;
4008
4009 /* Conversion went ok, including moving the insns and fixing up the
4010 jump. Adjust the CFG to match. */
4011
4012 df_set_bb_dirty (test_bb);
4013 df_set_bb_dirty (then_bb);
4014 delete_basic_block (else_bb);
4015
4016 num_true_changes++;
4017 num_updated_if_blocks++;
4018
4019 /* ??? We may now fallthru from one of THEN's successors into a join
4020 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4021
4022 return TRUE;
4023 }
4024
4025 /* Used by the code above to perform the actual rtl transformations.
4026 Return TRUE if successful.
4027
4028 TEST_BB is the block containing the conditional branch. MERGE_BB
4029 is the block containing the code to manipulate. DEST_EDGE is an
4030 edge representing a jump to the join block; after the conversion,
4031 TEST_BB should be branching to its destination.
4032 REVERSEP is true if the sense of the branch should be reversed. */
4033
4034 static int
4035 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4036 basic_block other_bb, edge dest_edge, int reversep)
4037 {
4038 basic_block new_dest = dest_edge->dest;
4039 rtx head, end, jump, earliest = NULL_RTX, old_dest;
4040 bitmap merge_set = NULL;
4041 /* Number of pending changes. */
4042 int n_validated_changes = 0;
4043 rtx new_dest_label = NULL_RTX;
4044
4045 jump = BB_END (test_bb);
4046
4047 /* Find the extent of the real code in the merge block. */
4048 head = BB_HEAD (merge_bb);
4049 end = BB_END (merge_bb);
4050
4051 while (DEBUG_INSN_P (end) && end != head)
4052 end = PREV_INSN (end);
4053
4054 /* If merge_bb ends with a tablejump, predicating/moving insn's
4055 into test_bb and then deleting merge_bb will result in the jumptable
4056 that follows merge_bb being removed along with merge_bb and then we
4057 get an unresolved reference to the jumptable. */
4058 if (tablejump_p (end, NULL, NULL))
4059 return FALSE;
4060
4061 if (LABEL_P (head))
4062 head = NEXT_INSN (head);
4063 while (DEBUG_INSN_P (head) && head != end)
4064 head = NEXT_INSN (head);
4065 if (NOTE_P (head))
4066 {
4067 if (head == end)
4068 {
4069 head = end = NULL_RTX;
4070 goto no_body;
4071 }
4072 head = NEXT_INSN (head);
4073 while (DEBUG_INSN_P (head) && head != end)
4074 head = NEXT_INSN (head);
4075 }
4076
4077 if (JUMP_P (end))
4078 {
4079 if (head == end)
4080 {
4081 head = end = NULL_RTX;
4082 goto no_body;
4083 }
4084 end = PREV_INSN (end);
4085 while (DEBUG_INSN_P (end) && end != head)
4086 end = PREV_INSN (end);
4087 }
4088
4089 /* Disable handling dead code by conditional execution if the machine needs
4090 to do anything funny with the tests, etc. */
4091 #ifndef IFCVT_MODIFY_TESTS
4092 if (targetm.have_conditional_execution ())
4093 {
4094 /* In the conditional execution case, we have things easy. We know
4095 the condition is reversible. We don't have to check life info
4096 because we're going to conditionally execute the code anyway.
4097 All that's left is making sure the insns involved can actually
4098 be predicated. */
4099
4100 rtx cond, prob_val;
4101
4102 cond = cond_exec_get_condition (jump);
4103 if (! cond)
4104 return FALSE;
4105
4106 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4107 if (prob_val)
4108 prob_val = XEXP (prob_val, 0);
4109
4110 if (reversep)
4111 {
4112 enum rtx_code rev = reversed_comparison_code (cond, jump);
4113 if (rev == UNKNOWN)
4114 return FALSE;
4115 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4116 XEXP (cond, 1));
4117 if (prob_val)
4118 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
4119 }
4120
4121 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4122 && verify_changes (0))
4123 n_validated_changes = num_validated_changes ();
4124 else
4125 cancel_changes (0);
4126
4127 earliest = jump;
4128 }
4129 #endif
4130
4131 /* If we allocated new pseudos (e.g. in the conditional move
4132 expander called from noce_emit_cmove), we must resize the
4133 array first. */
4134 if (max_regno < max_reg_num ())
4135 max_regno = max_reg_num ();
4136
4137 /* Try the NCE path if the CE path did not result in any changes. */
4138 if (n_validated_changes == 0)
4139 {
4140 rtx cond, insn;
4141 regset live;
4142 bool success;
4143
4144 /* In the non-conditional execution case, we have to verify that there
4145 are no trapping operations, no calls, no references to memory, and
4146 that any registers modified are dead at the branch site. */
4147
4148 if (!any_condjump_p (jump))
4149 return FALSE;
4150
4151 /* Find the extent of the conditional. */
4152 cond = noce_get_condition (jump, &earliest, false);
4153 if (!cond)
4154 return FALSE;
4155
4156 live = BITMAP_ALLOC (&reg_obstack);
4157 simulate_backwards_to_point (merge_bb, live, end);
4158 success = can_move_insns_across (head, end, earliest, jump,
4159 merge_bb, live,
4160 df_get_live_in (other_bb), NULL);
4161 BITMAP_FREE (live);
4162 if (!success)
4163 return FALSE;
4164
4165 /* Collect the set of registers set in MERGE_BB. */
4166 merge_set = BITMAP_ALLOC (&reg_obstack);
4167
4168 FOR_BB_INSNS (merge_bb, insn)
4169 if (NONDEBUG_INSN_P (insn))
4170 df_simulate_find_defs (insn, merge_set);
4171
4172 #ifdef HAVE_simple_return
4173 /* If shrink-wrapping, disable this optimization when test_bb is
4174 the first basic block and merge_bb exits. The idea is to not
4175 move code setting up a return register as that may clobber a
4176 register used to pass function parameters, which then must be
4177 saved in caller-saved regs. A caller-saved reg requires the
4178 prologue, killing a shrink-wrap opportunity. */
4179 if ((flag_shrink_wrap && HAVE_simple_return && !epilogue_completed)
4180 && ENTRY_BLOCK_PTR->next_bb == test_bb
4181 && single_succ_p (new_dest)
4182 && single_succ (new_dest) == EXIT_BLOCK_PTR
4183 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
4184 {
4185 regset return_regs;
4186 unsigned int i;
4187
4188 return_regs = BITMAP_ALLOC (&reg_obstack);
4189
4190 /* Start off with the intersection of regs used to pass
4191 params and regs used to return values. */
4192 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4193 if (FUNCTION_ARG_REGNO_P (i)
4194 && targetm.calls.function_value_regno_p (i))
4195 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
4196
4197 bitmap_and_into (return_regs, df_get_live_out (ENTRY_BLOCK_PTR));
4198 bitmap_and_into (return_regs, df_get_live_in (EXIT_BLOCK_PTR));
4199 if (!bitmap_empty_p (return_regs))
4200 {
4201 FOR_BB_INSNS_REVERSE (new_dest, insn)
4202 if (NONDEBUG_INSN_P (insn))
4203 {
4204 df_ref *def_rec;
4205 unsigned int uid = INSN_UID (insn);
4206
4207 /* If this insn sets any reg in return_regs.. */
4208 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
4209 {
4210 df_ref def = *def_rec;
4211 unsigned r = DF_REF_REGNO (def);
4212
4213 if (bitmap_bit_p (return_regs, r))
4214 break;
4215 }
4216 /* ..then add all reg uses to the set of regs
4217 we're interested in. */
4218 if (*def_rec)
4219 df_simulate_uses (insn, return_regs);
4220 }
4221 if (bitmap_intersect_p (merge_set, return_regs))
4222 {
4223 BITMAP_FREE (return_regs);
4224 BITMAP_FREE (merge_set);
4225 return FALSE;
4226 }
4227 }
4228 BITMAP_FREE (return_regs);
4229 }
4230 #endif
4231 }
4232
4233 no_body:
4234 /* We don't want to use normal invert_jump or redirect_jump because
4235 we don't want to delete_insn called. Also, we want to do our own
4236 change group management. */
4237
4238 old_dest = JUMP_LABEL (jump);
4239 if (other_bb != new_dest)
4240 {
4241 if (JUMP_P (BB_END (dest_edge->src)))
4242 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
4243 else if (new_dest == EXIT_BLOCK_PTR)
4244 new_dest_label = ret_rtx;
4245 else
4246 new_dest_label = block_label (new_dest);
4247
4248 if (reversep
4249 ? ! invert_jump_1 (jump, new_dest_label)
4250 : ! redirect_jump_1 (jump, new_dest_label))
4251 goto cancel;
4252 }
4253
4254 if (verify_changes (n_validated_changes))
4255 confirm_change_group ();
4256 else
4257 goto cancel;
4258
4259 if (other_bb != new_dest)
4260 {
4261 redirect_jump_2 (jump, old_dest, new_dest_label, 0, reversep);
4262
4263 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4264 if (reversep)
4265 {
4266 gcov_type count, probability;
4267 count = BRANCH_EDGE (test_bb)->count;
4268 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4269 FALLTHRU_EDGE (test_bb)->count = count;
4270 probability = BRANCH_EDGE (test_bb)->probability;
4271 BRANCH_EDGE (test_bb)->probability
4272 = FALLTHRU_EDGE (test_bb)->probability;
4273 FALLTHRU_EDGE (test_bb)->probability = probability;
4274 update_br_prob_note (test_bb);
4275 }
4276 }
4277
4278 /* Move the insns out of MERGE_BB to before the branch. */
4279 if (head != NULL)
4280 {
4281 rtx insn;
4282
4283 if (end == BB_END (merge_bb))
4284 BB_END (merge_bb) = PREV_INSN (head);
4285
4286 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4287 notes being moved might become invalid. */
4288 insn = head;
4289 do
4290 {
4291 rtx note, set;
4292
4293 if (! INSN_P (insn))
4294 continue;
4295 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4296 if (! note)
4297 continue;
4298 set = single_set (insn);
4299 if (!set || !function_invariant_p (SET_SRC (set))
4300 || !function_invariant_p (XEXP (note, 0)))
4301 remove_note (insn, note);
4302 } while (insn != end && (insn = NEXT_INSN (insn)));
4303
4304 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4305 notes referring to the registers being set might become invalid. */
4306 if (merge_set)
4307 {
4308 unsigned i;
4309 bitmap_iterator bi;
4310
4311 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4312 remove_reg_equal_equiv_notes_for_regno (i);
4313
4314 BITMAP_FREE (merge_set);
4315 }
4316
4317 reorder_insns (head, end, PREV_INSN (earliest));
4318 }
4319
4320 /* Remove the jump and edge if we can. */
4321 if (other_bb == new_dest)
4322 {
4323 delete_insn (jump);
4324 remove_edge (BRANCH_EDGE (test_bb));
4325 /* ??? Can't merge blocks here, as then_bb is still in use.
4326 At minimum, the merge will get done just before bb-reorder. */
4327 }
4328
4329 return TRUE;
4330
4331 cancel:
4332 cancel_changes (0);
4333
4334 if (merge_set)
4335 BITMAP_FREE (merge_set);
4336
4337 return FALSE;
4338 }
4339 \f
4340 /* Main entry point for all if-conversion. */
4341
4342 static void
4343 if_convert (void)
4344 {
4345 basic_block bb;
4346 int pass;
4347
4348 if (optimize == 1)
4349 {
4350 df_live_add_problem ();
4351 df_live_set_all_dirty ();
4352 }
4353
4354 num_possible_if_blocks = 0;
4355 num_updated_if_blocks = 0;
4356 num_true_changes = 0;
4357
4358 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4359 mark_loop_exit_edges ();
4360 loop_optimizer_finalize ();
4361 free_dominance_info (CDI_DOMINATORS);
4362
4363 /* Compute postdominators. */
4364 calculate_dominance_info (CDI_POST_DOMINATORS);
4365
4366 df_set_flags (DF_LR_RUN_DCE);
4367
4368 /* Go through each of the basic blocks looking for things to convert. If we
4369 have conditional execution, we make multiple passes to allow us to handle
4370 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4371 pass = 0;
4372 do
4373 {
4374 df_analyze ();
4375 /* Only need to do dce on the first pass. */
4376 df_clear_flags (DF_LR_RUN_DCE);
4377 cond_exec_changed_p = FALSE;
4378 pass++;
4379
4380 #ifdef IFCVT_MULTIPLE_DUMPS
4381 if (dump_file && pass > 1)
4382 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4383 #endif
4384
4385 FOR_EACH_BB (bb)
4386 {
4387 basic_block new_bb;
4388 while (!df_get_bb_dirty (bb)
4389 && (new_bb = find_if_header (bb, pass)) != NULL)
4390 bb = new_bb;
4391 }
4392
4393 #ifdef IFCVT_MULTIPLE_DUMPS
4394 if (dump_file && cond_exec_changed_p)
4395 {
4396 if (dump_flags & TDF_SLIM)
4397 print_rtl_slim_with_bb (dump_file, get_insns (), dump_flags);
4398 else
4399 print_rtl_with_bb (dump_file, get_insns ());
4400 }
4401 #endif
4402 }
4403 while (cond_exec_changed_p);
4404
4405 #ifdef IFCVT_MULTIPLE_DUMPS
4406 if (dump_file)
4407 fprintf (dump_file, "\n\n========== no more changes\n");
4408 #endif
4409
4410 free_dominance_info (CDI_POST_DOMINATORS);
4411
4412 if (dump_file)
4413 fflush (dump_file);
4414
4415 clear_aux_for_blocks ();
4416
4417 /* If we allocated new pseudos, we must resize the array for sched1. */
4418 if (max_regno < max_reg_num ())
4419 max_regno = max_reg_num ();
4420
4421 /* Write the final stats. */
4422 if (dump_file && num_possible_if_blocks > 0)
4423 {
4424 fprintf (dump_file,
4425 "\n%d possible IF blocks searched.\n",
4426 num_possible_if_blocks);
4427 fprintf (dump_file,
4428 "%d IF blocks converted.\n",
4429 num_updated_if_blocks);
4430 fprintf (dump_file,
4431 "%d true changes made.\n\n\n",
4432 num_true_changes);
4433 }
4434
4435 if (optimize == 1)
4436 df_remove_problem (df_live);
4437
4438 #ifdef ENABLE_CHECKING
4439 verify_flow_info ();
4440 #endif
4441 }
4442 \f
4443 static bool
4444 gate_handle_if_conversion (void)
4445 {
4446 return (optimize > 0)
4447 && dbg_cnt (if_conversion);
4448 }
4449
4450 /* If-conversion and CFG cleanup. */
4451 static unsigned int
4452 rest_of_handle_if_conversion (void)
4453 {
4454 if (flag_if_conversion)
4455 {
4456 if (dump_file)
4457 dump_flow_info (dump_file, dump_flags);
4458 cleanup_cfg (CLEANUP_EXPENSIVE);
4459 if_convert ();
4460 }
4461
4462 cleanup_cfg (0);
4463 return 0;
4464 }
4465
4466 struct rtl_opt_pass pass_rtl_ifcvt =
4467 {
4468 {
4469 RTL_PASS,
4470 "ce1", /* name */
4471 gate_handle_if_conversion, /* gate */
4472 rest_of_handle_if_conversion, /* execute */
4473 NULL, /* sub */
4474 NULL, /* next */
4475 0, /* static_pass_number */
4476 TV_IFCVT, /* tv_id */
4477 0, /* properties_required */
4478 0, /* properties_provided */
4479 0, /* properties_destroyed */
4480 0, /* todo_flags_start */
4481 TODO_df_finish | TODO_verify_rtl_sharing |
4482 0 /* todo_flags_finish */
4483 }
4484 };
4485
4486 static bool
4487 gate_handle_if_after_combine (void)
4488 {
4489 return optimize > 0 && flag_if_conversion
4490 && dbg_cnt (if_after_combine);
4491 }
4492
4493
4494 /* Rerun if-conversion, as combine may have simplified things enough
4495 to now meet sequence length restrictions. */
4496 static unsigned int
4497 rest_of_handle_if_after_combine (void)
4498 {
4499 if_convert ();
4500 return 0;
4501 }
4502
4503 struct rtl_opt_pass pass_if_after_combine =
4504 {
4505 {
4506 RTL_PASS,
4507 "ce2", /* name */
4508 gate_handle_if_after_combine, /* gate */
4509 rest_of_handle_if_after_combine, /* execute */
4510 NULL, /* sub */
4511 NULL, /* next */
4512 0, /* static_pass_number */
4513 TV_IFCVT, /* tv_id */
4514 0, /* properties_required */
4515 0, /* properties_provided */
4516 0, /* properties_destroyed */
4517 0, /* todo_flags_start */
4518 TODO_df_finish | TODO_verify_rtl_sharing |
4519 TODO_ggc_collect /* todo_flags_finish */
4520 }
4521 };
4522
4523
4524 static bool
4525 gate_handle_if_after_reload (void)
4526 {
4527 return optimize > 0 && flag_if_conversion2
4528 && dbg_cnt (if_after_reload);
4529 }
4530
4531 static unsigned int
4532 rest_of_handle_if_after_reload (void)
4533 {
4534 if_convert ();
4535 return 0;
4536 }
4537
4538
4539 struct rtl_opt_pass pass_if_after_reload =
4540 {
4541 {
4542 RTL_PASS,
4543 "ce3", /* name */
4544 gate_handle_if_after_reload, /* gate */
4545 rest_of_handle_if_after_reload, /* execute */
4546 NULL, /* sub */
4547 NULL, /* next */
4548 0, /* static_pass_number */
4549 TV_IFCVT2, /* tv_id */
4550 0, /* properties_required */
4551 0, /* properties_provided */
4552 0, /* properties_destroyed */
4553 0, /* todo_flags_start */
4554 TODO_df_finish | TODO_verify_rtl_sharing |
4555 TODO_ggc_collect /* todo_flags_finish */
4556 }
4557 };
This page took 0.243029 seconds and 5 git commands to generate.