]> gcc.gnu.org Git - gcc.git/blob - gcc/gimple.c
re PR middle-end/23401 (Gimplifier produces too many temporaries)
[gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright 2007, 2008 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "ggc.h"
28 #include "errors.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "gimple.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "value-prof.h"
35 #include "flags.h"
36
37 #define DEFGSCODE(SYM, NAME, STRUCT) NAME,
38 const char *const gimple_code_name[] = {
39 #include "gimple.def"
40 };
41 #undef DEFGSCODE
42
43 /* All the tuples have their operand vector at the very bottom
44 of the structure. Therefore, the offset required to find the
45 operands vector the size of the structure minus the size of the 1
46 element tree array at the end (see gimple_ops). */
47 #define DEFGSCODE(SYM, NAME, STRUCT) (sizeof (STRUCT) - sizeof (tree)),
48 const size_t gimple_ops_offset_[] = {
49 #include "gimple.def"
50 };
51 #undef DEFGSCODE
52
53 #ifdef GATHER_STATISTICS
54 /* Gimple stats. */
55
56 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
57 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
58
59 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
60 static const char * const gimple_alloc_kind_names[] = {
61 "assignments",
62 "phi nodes",
63 "conditionals",
64 "sequences",
65 "everything else"
66 };
67
68 #endif /* GATHER_STATISTICS */
69
70 /* A cache of gimple_seq objects. Sequences are created and destroyed
71 fairly often during gimplification. */
72 static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
73
74 /* Private API manipulation functions shared only with some
75 other files. */
76 extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
77 extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
78
79 /* Gimple tuple constructors.
80 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
81 be passed a NULL to start with an empty sequence. */
82
83 /* Set the code for statement G to CODE. */
84
85 static inline void
86 gimple_set_code (gimple g, enum gimple_code code)
87 {
88 g->gsbase.code = code;
89 }
90
91
92 /* Return the GSS_* identifier for the given GIMPLE statement CODE. */
93
94 static enum gimple_statement_structure_enum
95 gss_for_code (enum gimple_code code)
96 {
97 switch (code)
98 {
99 case GIMPLE_ASSIGN:
100 case GIMPLE_CALL:
101 case GIMPLE_RETURN: return GSS_WITH_MEM_OPS;
102 case GIMPLE_COND:
103 case GIMPLE_GOTO:
104 case GIMPLE_LABEL:
105 case GIMPLE_CHANGE_DYNAMIC_TYPE:
106 case GIMPLE_SWITCH: return GSS_WITH_OPS;
107 case GIMPLE_ASM: return GSS_ASM;
108 case GIMPLE_BIND: return GSS_BIND;
109 case GIMPLE_CATCH: return GSS_CATCH;
110 case GIMPLE_EH_FILTER: return GSS_EH_FILTER;
111 case GIMPLE_NOP: return GSS_BASE;
112 case GIMPLE_PHI: return GSS_PHI;
113 case GIMPLE_RESX: return GSS_RESX;
114 case GIMPLE_TRY: return GSS_TRY;
115 case GIMPLE_WITH_CLEANUP_EXPR: return GSS_WCE;
116 case GIMPLE_OMP_CRITICAL: return GSS_OMP_CRITICAL;
117 case GIMPLE_OMP_FOR: return GSS_OMP_FOR;
118 case GIMPLE_OMP_MASTER:
119 case GIMPLE_OMP_ORDERED:
120 case GIMPLE_OMP_SECTION: return GSS_OMP;
121 case GIMPLE_OMP_RETURN:
122 case GIMPLE_OMP_SECTIONS_SWITCH: return GSS_BASE;
123 case GIMPLE_OMP_CONTINUE: return GSS_OMP_CONTINUE;
124 case GIMPLE_OMP_PARALLEL: return GSS_OMP_PARALLEL;
125 case GIMPLE_OMP_TASK: return GSS_OMP_TASK;
126 case GIMPLE_OMP_SECTIONS: return GSS_OMP_SECTIONS;
127 case GIMPLE_OMP_SINGLE: return GSS_OMP_SINGLE;
128 case GIMPLE_OMP_ATOMIC_LOAD: return GSS_OMP_ATOMIC_LOAD;
129 case GIMPLE_OMP_ATOMIC_STORE: return GSS_OMP_ATOMIC_STORE;
130 case GIMPLE_PREDICT: return GSS_BASE;
131 default: gcc_unreachable ();
132 }
133 }
134
135
136 /* Return the number of bytes needed to hold a GIMPLE statement with
137 code CODE. */
138
139 static size_t
140 gimple_size (enum gimple_code code)
141 {
142 enum gimple_statement_structure_enum gss = gss_for_code (code);
143
144 if (gss == GSS_WITH_OPS)
145 return sizeof (struct gimple_statement_with_ops);
146 else if (gss == GSS_WITH_MEM_OPS)
147 return sizeof (struct gimple_statement_with_memory_ops);
148
149 switch (code)
150 {
151 case GIMPLE_ASM:
152 return sizeof (struct gimple_statement_asm);
153 case GIMPLE_NOP:
154 return sizeof (struct gimple_statement_base);
155 case GIMPLE_BIND:
156 return sizeof (struct gimple_statement_bind);
157 case GIMPLE_CATCH:
158 return sizeof (struct gimple_statement_catch);
159 case GIMPLE_EH_FILTER:
160 return sizeof (struct gimple_statement_eh_filter);
161 case GIMPLE_TRY:
162 return sizeof (struct gimple_statement_try);
163 case GIMPLE_RESX:
164 return sizeof (struct gimple_statement_resx);
165 case GIMPLE_OMP_CRITICAL:
166 return sizeof (struct gimple_statement_omp_critical);
167 case GIMPLE_OMP_FOR:
168 return sizeof (struct gimple_statement_omp_for);
169 case GIMPLE_OMP_PARALLEL:
170 return sizeof (struct gimple_statement_omp_parallel);
171 case GIMPLE_OMP_TASK:
172 return sizeof (struct gimple_statement_omp_task);
173 case GIMPLE_OMP_SECTION:
174 case GIMPLE_OMP_MASTER:
175 case GIMPLE_OMP_ORDERED:
176 return sizeof (struct gimple_statement_omp);
177 case GIMPLE_OMP_RETURN:
178 return sizeof (struct gimple_statement_base);
179 case GIMPLE_OMP_CONTINUE:
180 return sizeof (struct gimple_statement_omp_continue);
181 case GIMPLE_OMP_SECTIONS:
182 return sizeof (struct gimple_statement_omp_sections);
183 case GIMPLE_OMP_SECTIONS_SWITCH:
184 return sizeof (struct gimple_statement_base);
185 case GIMPLE_OMP_SINGLE:
186 return sizeof (struct gimple_statement_omp_single);
187 case GIMPLE_OMP_ATOMIC_LOAD:
188 return sizeof (struct gimple_statement_omp_atomic_load);
189 case GIMPLE_OMP_ATOMIC_STORE:
190 return sizeof (struct gimple_statement_omp_atomic_store);
191 case GIMPLE_WITH_CLEANUP_EXPR:
192 return sizeof (struct gimple_statement_wce);
193 case GIMPLE_CHANGE_DYNAMIC_TYPE:
194 return sizeof (struct gimple_statement_with_ops);
195 case GIMPLE_PREDICT:
196 return sizeof (struct gimple_statement_base);
197 default:
198 break;
199 }
200
201 gcc_unreachable ();
202 }
203
204
205 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
206 operands. */
207
208 #define gimple_alloc(c, n) gimple_alloc_stat (c, n MEM_STAT_INFO)
209 static gimple
210 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
211 {
212 size_t size;
213 gimple stmt;
214
215 size = gimple_size (code);
216 if (num_ops > 0)
217 size += sizeof (tree) * (num_ops - 1);
218
219 #ifdef GATHER_STATISTICS
220 {
221 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
222 gimple_alloc_counts[(int) kind]++;
223 gimple_alloc_sizes[(int) kind] += size;
224 }
225 #endif
226
227 stmt = (gimple) ggc_alloc_cleared_stat (size PASS_MEM_STAT);
228 gimple_set_code (stmt, code);
229 gimple_set_num_ops (stmt, num_ops);
230
231 /* Do not call gimple_set_modified here as it has other side
232 effects and this tuple is still not completely built. */
233 stmt->gsbase.modified = 1;
234
235 return stmt;
236 }
237
238 /* Set SUBCODE to be the code of the expression computed by statement G. */
239
240 static inline void
241 gimple_set_subcode (gimple g, unsigned subcode)
242 {
243 /* We only have 16 bits for the RHS code. Assert that we are not
244 overflowing it. */
245 gcc_assert (subcode < (1 << 16));
246 g->gsbase.subcode = subcode;
247 }
248
249
250
251 /* Build a tuple with operands. CODE is the statement to build (which
252 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
253 for the new tuple. NUM_OPS is the number of operands to allocate. */
254
255 #define gimple_build_with_ops(c, s, n) \
256 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
257
258 static gimple
259 gimple_build_with_ops_stat (enum gimple_code code, enum tree_code subcode,
260 unsigned num_ops MEM_STAT_DECL)
261 {
262 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
263 gimple_set_subcode (s, subcode);
264
265 return s;
266 }
267
268
269 /* Build a GIMPLE_RETURN statement returning RETVAL. */
270
271 gimple
272 gimple_build_return (tree retval)
273 {
274 gimple s = gimple_build_with_ops (GIMPLE_RETURN, 0, 1);
275 if (retval)
276 gimple_return_set_retval (s, retval);
277 return s;
278 }
279
280 /* Helper for gimple_build_call, gimple_build_call_vec and
281 gimple_build_call_from_tree. Build the basic components of a
282 GIMPLE_CALL statement to function FN with NARGS arguments. */
283
284 static inline gimple
285 gimple_build_call_1 (tree fn, unsigned nargs)
286 {
287 gimple s = gimple_build_with_ops (GIMPLE_CALL, 0, nargs + 3);
288 if (TREE_CODE (fn) == FUNCTION_DECL)
289 fn = build_fold_addr_expr (fn);
290 gimple_set_op (s, 1, fn);
291 return s;
292 }
293
294
295 /* Build a GIMPLE_CALL statement to function FN with the arguments
296 specified in vector ARGS. */
297
298 gimple
299 gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
300 {
301 unsigned i;
302 unsigned nargs = VEC_length (tree, args);
303 gimple call = gimple_build_call_1 (fn, nargs);
304
305 for (i = 0; i < nargs; i++)
306 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
307
308 return call;
309 }
310
311
312 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
313 arguments. The ... are the arguments. */
314
315 gimple
316 gimple_build_call (tree fn, unsigned nargs, ...)
317 {
318 va_list ap;
319 gimple call;
320 unsigned i;
321
322 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
323
324 call = gimple_build_call_1 (fn, nargs);
325
326 va_start (ap, nargs);
327 for (i = 0; i < nargs; i++)
328 gimple_call_set_arg (call, i, va_arg (ap, tree));
329 va_end (ap);
330
331 return call;
332 }
333
334
335 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
336 assumed to be in GIMPLE form already. Minimal checking is done of
337 this fact. */
338
339 gimple
340 gimple_build_call_from_tree (tree t)
341 {
342 unsigned i, nargs;
343 gimple call;
344 tree fndecl = get_callee_fndecl (t);
345
346 gcc_assert (TREE_CODE (t) == CALL_EXPR);
347
348 nargs = call_expr_nargs (t);
349 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
350
351 for (i = 0; i < nargs; i++)
352 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
353
354 gimple_set_block (call, TREE_BLOCK (t));
355
356 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
357 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
358 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
359 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
360 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
361 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
362 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
363
364 return call;
365 }
366
367
368 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
369 *OP1_P and *OP2_P respectively. */
370
371 void
372 extract_ops_from_tree (tree expr, enum tree_code *subcode_p, tree *op1_p,
373 tree *op2_p)
374 {
375 enum gimple_rhs_class grhs_class;
376
377 *subcode_p = TREE_CODE (expr);
378 grhs_class = get_gimple_rhs_class (*subcode_p);
379
380 if (grhs_class == GIMPLE_BINARY_RHS)
381 {
382 *op1_p = TREE_OPERAND (expr, 0);
383 *op2_p = TREE_OPERAND (expr, 1);
384 }
385 else if (grhs_class == GIMPLE_UNARY_RHS)
386 {
387 *op1_p = TREE_OPERAND (expr, 0);
388 *op2_p = NULL_TREE;
389 }
390 else if (grhs_class == GIMPLE_SINGLE_RHS)
391 {
392 *op1_p = expr;
393 *op2_p = NULL_TREE;
394 }
395 else
396 gcc_unreachable ();
397 }
398
399
400 /* Build a GIMPLE_ASSIGN statement.
401
402 LHS of the assignment.
403 RHS of the assignment which can be unary or binary. */
404
405 gimple
406 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
407 {
408 enum tree_code subcode;
409 tree op1, op2;
410
411 extract_ops_from_tree (rhs, &subcode, &op1, &op2);
412 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2
413 PASS_MEM_STAT);
414 }
415
416
417 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
418 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
419 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
420
421 gimple
422 gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
423 tree op2 MEM_STAT_DECL)
424 {
425 unsigned num_ops;
426 gimple p;
427
428 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
429 code). */
430 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
431
432 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, subcode, num_ops
433 PASS_MEM_STAT);
434 gimple_assign_set_lhs (p, lhs);
435 gimple_assign_set_rhs1 (p, op1);
436 if (op2)
437 {
438 gcc_assert (num_ops > 2);
439 gimple_assign_set_rhs2 (p, op2);
440 }
441
442 return p;
443 }
444
445
446 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
447
448 DST/SRC are the destination and source respectively. You can pass
449 ungimplified trees in DST or SRC, in which case they will be
450 converted to a gimple operand if necessary.
451
452 This function returns the newly created GIMPLE_ASSIGN tuple. */
453
454 inline gimple
455 gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
456 {
457 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
458 gimplify_and_add (t, seq_p);
459 ggc_free (t);
460 return gimple_seq_last_stmt (*seq_p);
461 }
462
463
464 /* Build a GIMPLE_COND statement.
465
466 PRED is the condition used to compare LHS and the RHS.
467 T_LABEL is the label to jump to if the condition is true.
468 F_LABEL is the label to jump to otherwise. */
469
470 gimple
471 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
472 tree t_label, tree f_label)
473 {
474 gimple p;
475
476 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
477 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
478 gimple_cond_set_lhs (p, lhs);
479 gimple_cond_set_rhs (p, rhs);
480 gimple_cond_set_true_label (p, t_label);
481 gimple_cond_set_false_label (p, f_label);
482 return p;
483 }
484
485
486 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
487
488 void
489 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
490 tree *lhs_p, tree *rhs_p)
491 {
492 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
493 || TREE_CODE (cond) == TRUTH_NOT_EXPR
494 || is_gimple_min_invariant (cond)
495 || SSA_VAR_P (cond));
496
497 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
498
499 /* Canonicalize conditionals of the form 'if (!VAL)'. */
500 if (*code_p == TRUTH_NOT_EXPR)
501 {
502 *code_p = EQ_EXPR;
503 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
504 *rhs_p = fold_convert (TREE_TYPE (*lhs_p), integer_zero_node);
505 }
506 /* Canonicalize conditionals of the form 'if (VAL)' */
507 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
508 {
509 *code_p = NE_EXPR;
510 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
511 *rhs_p = fold_convert (TREE_TYPE (*lhs_p), integer_zero_node);
512 }
513 }
514
515
516 /* Build a GIMPLE_COND statement from the conditional expression tree
517 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
518
519 gimple
520 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
521 {
522 enum tree_code code;
523 tree lhs, rhs;
524
525 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
526 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
527 }
528
529 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
530 boolean expression tree COND. */
531
532 void
533 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
534 {
535 enum tree_code code;
536 tree lhs, rhs;
537
538 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
539 gimple_cond_set_condition (stmt, code, lhs, rhs);
540 }
541
542 /* Build a GIMPLE_LABEL statement for LABEL. */
543
544 gimple
545 gimple_build_label (tree label)
546 {
547 gimple p = gimple_build_with_ops (GIMPLE_LABEL, 0, 1);
548 gimple_label_set_label (p, label);
549 return p;
550 }
551
552 /* Build a GIMPLE_GOTO statement to label DEST. */
553
554 gimple
555 gimple_build_goto (tree dest)
556 {
557 gimple p = gimple_build_with_ops (GIMPLE_GOTO, 0, 1);
558 gimple_goto_set_dest (p, dest);
559 return p;
560 }
561
562
563 /* Build a GIMPLE_NOP statement. */
564
565 gimple
566 gimple_build_nop (void)
567 {
568 return gimple_alloc (GIMPLE_NOP, 0);
569 }
570
571
572 /* Build a GIMPLE_BIND statement.
573 VARS are the variables in BODY.
574 BLOCK is the containing block. */
575
576 gimple
577 gimple_build_bind (tree vars, gimple_seq body, tree block)
578 {
579 gimple p = gimple_alloc (GIMPLE_BIND, 0);
580 gimple_bind_set_vars (p, vars);
581 if (body)
582 gimple_bind_set_body (p, body);
583 if (block)
584 gimple_bind_set_block (p, block);
585 return p;
586 }
587
588 /* Helper function to set the simple fields of a asm stmt.
589
590 STRING is a pointer to a string that is the asm blocks assembly code.
591 NINPUT is the number of register inputs.
592 NOUTPUT is the number of register outputs.
593 NCLOBBERS is the number of clobbered registers.
594 */
595
596 static inline gimple
597 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
598 unsigned nclobbers)
599 {
600 gimple p;
601 int size = strlen (string);
602
603 p = gimple_build_with_ops (GIMPLE_ASM, 0, ninputs + noutputs + nclobbers);
604
605 p->gimple_asm.ni = ninputs;
606 p->gimple_asm.no = noutputs;
607 p->gimple_asm.nc = nclobbers;
608 p->gimple_asm.string = ggc_alloc_string (string, size);
609
610 #ifdef GATHER_STATISTICS
611 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
612 #endif
613
614 return p;
615 }
616
617 /* Build a GIMPLE_ASM statement.
618
619 STRING is the assembly code.
620 NINPUT is the number of register inputs.
621 NOUTPUT is the number of register outputs.
622 NCLOBBERS is the number of clobbered registers.
623 INPUTS is a vector of the input register parameters.
624 OUTPUTS is a vector of the output register parameters.
625 CLOBBERS is a vector of the clobbered register parameters. */
626
627 gimple
628 gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
629 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers)
630 {
631 gimple p;
632 unsigned i;
633
634 p = gimple_build_asm_1 (string,
635 VEC_length (tree, inputs),
636 VEC_length (tree, outputs),
637 VEC_length (tree, clobbers));
638
639 for (i = 0; i < VEC_length (tree, inputs); i++)
640 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
641
642 for (i = 0; i < VEC_length (tree, outputs); i++)
643 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
644
645 for (i = 0; i < VEC_length (tree, clobbers); i++)
646 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
647
648 return p;
649 }
650
651 /* Build a GIMPLE_ASM statement.
652
653 STRING is the assembly code.
654 NINPUT is the number of register inputs.
655 NOUTPUT is the number of register outputs.
656 NCLOBBERS is the number of clobbered registers.
657 ... are trees for each input, output and clobbered register. */
658
659 gimple
660 gimple_build_asm (const char *string, unsigned ninputs, unsigned noutputs,
661 unsigned nclobbers, ...)
662 {
663 gimple p;
664 unsigned i;
665 va_list ap;
666
667 p = gimple_build_asm_1 (string, ninputs, noutputs, nclobbers);
668
669 va_start (ap, nclobbers);
670
671 for (i = 0; i < ninputs; i++)
672 gimple_asm_set_input_op (p, i, va_arg (ap, tree));
673
674 for (i = 0; i < noutputs; i++)
675 gimple_asm_set_output_op (p, i, va_arg (ap, tree));
676
677 for (i = 0; i < nclobbers; i++)
678 gimple_asm_set_clobber_op (p, i, va_arg (ap, tree));
679
680 va_end (ap);
681
682 return p;
683 }
684
685 /* Build a GIMPLE_CATCH statement.
686
687 TYPES are the catch types.
688 HANDLER is the exception handler. */
689
690 gimple
691 gimple_build_catch (tree types, gimple_seq handler)
692 {
693 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
694 gimple_catch_set_types (p, types);
695 if (handler)
696 gimple_catch_set_handler (p, handler);
697
698 return p;
699 }
700
701 /* Build a GIMPLE_EH_FILTER statement.
702
703 TYPES are the filter's types.
704 FAILURE is the filter's failure action. */
705
706 gimple
707 gimple_build_eh_filter (tree types, gimple_seq failure)
708 {
709 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
710 gimple_eh_filter_set_types (p, types);
711 if (failure)
712 gimple_eh_filter_set_failure (p, failure);
713
714 return p;
715 }
716
717 /* Build a GIMPLE_TRY statement.
718
719 EVAL is the expression to evaluate.
720 CLEANUP is the cleanup expression.
721 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
722 whether this is a try/catch or a try/finally respectively. */
723
724 gimple
725 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
726 enum gimple_try_flags kind)
727 {
728 gimple p;
729
730 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
731 p = gimple_alloc (GIMPLE_TRY, 0);
732 gimple_set_subcode (p, kind);
733 if (eval)
734 gimple_try_set_eval (p, eval);
735 if (cleanup)
736 gimple_try_set_cleanup (p, cleanup);
737
738 return p;
739 }
740
741 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
742
743 CLEANUP is the cleanup expression. */
744
745 gimple
746 gimple_build_wce (gimple_seq cleanup)
747 {
748 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
749 if (cleanup)
750 gimple_wce_set_cleanup (p, cleanup);
751
752 return p;
753 }
754
755
756 /* Build a GIMPLE_RESX statement.
757
758 REGION is the region number from which this resx causes control flow to
759 leave. */
760
761 gimple
762 gimple_build_resx (int region)
763 {
764 gimple p = gimple_alloc (GIMPLE_RESX, 0);
765 gimple_resx_set_region (p, region);
766 return p;
767 }
768
769
770 /* The helper for constructing a gimple switch statement.
771 INDEX is the switch's index.
772 NLABELS is the number of labels in the switch excluding the default.
773 DEFAULT_LABEL is the default label for the switch statement. */
774
775 static inline gimple
776 gimple_build_switch_1 (unsigned nlabels, tree index, tree default_label)
777 {
778 /* nlabels + 1 default label + 1 index. */
779 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, 0, nlabels + 1 + 1);
780 gimple_switch_set_index (p, index);
781 gimple_switch_set_default_label (p, default_label);
782 return p;
783 }
784
785
786 /* Build a GIMPLE_SWITCH statement.
787
788 INDEX is the switch's index.
789 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
790 ... are the labels excluding the default. */
791
792 gimple
793 gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
794 {
795 va_list al;
796 unsigned i;
797 gimple p;
798
799 p = gimple_build_switch_1 (nlabels, index, default_label);
800
801 /* Store the rest of the labels. */
802 va_start (al, default_label);
803 for (i = 1; i <= nlabels; i++)
804 gimple_switch_set_label (p, i, va_arg (al, tree));
805 va_end (al);
806
807 return p;
808 }
809
810
811 /* Build a GIMPLE_SWITCH statement.
812
813 INDEX is the switch's index.
814 DEFAULT_LABEL is the default label
815 ARGS is a vector of labels excluding the default. */
816
817 gimple
818 gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
819 {
820 unsigned i;
821 unsigned nlabels = VEC_length (tree, args);
822 gimple p = gimple_build_switch_1 (nlabels, index, default_label);
823
824 /* Put labels in labels[1 - (nlabels + 1)].
825 Default label is in labels[0]. */
826 for (i = 1; i <= nlabels; i++)
827 gimple_switch_set_label (p, i, VEC_index (tree, args, i - 1));
828
829 return p;
830 }
831
832
833 /* Build a GIMPLE_OMP_CRITICAL statement.
834
835 BODY is the sequence of statements for which only one thread can execute.
836 NAME is optional identifier for this critical block. */
837
838 gimple
839 gimple_build_omp_critical (gimple_seq body, tree name)
840 {
841 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
842 gimple_omp_critical_set_name (p, name);
843 if (body)
844 gimple_omp_set_body (p, body);
845
846 return p;
847 }
848
849 /* Build a GIMPLE_OMP_FOR statement.
850
851 BODY is sequence of statements inside the for loop.
852 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
853 lastprivate, reductions, ordered, schedule, and nowait.
854 COLLAPSE is the collapse count.
855 PRE_BODY is the sequence of statements that are loop invariant. */
856
857 gimple
858 gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
859 gimple_seq pre_body)
860 {
861 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
862 if (body)
863 gimple_omp_set_body (p, body);
864 gimple_omp_for_set_clauses (p, clauses);
865 p->gimple_omp_for.collapse = collapse;
866 p->gimple_omp_for.iter = GGC_CNEWVEC (struct gimple_omp_for_iter, collapse);
867 if (pre_body)
868 gimple_omp_for_set_pre_body (p, pre_body);
869
870 return p;
871 }
872
873
874 /* Build a GIMPLE_OMP_PARALLEL statement.
875
876 BODY is sequence of statements which are executed in parallel.
877 CLAUSES, are the OMP parallel construct's clauses.
878 CHILD_FN is the function created for the parallel threads to execute.
879 DATA_ARG are the shared data argument(s). */
880
881 gimple
882 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
883 tree data_arg)
884 {
885 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
886 if (body)
887 gimple_omp_set_body (p, body);
888 gimple_omp_parallel_set_clauses (p, clauses);
889 gimple_omp_parallel_set_child_fn (p, child_fn);
890 gimple_omp_parallel_set_data_arg (p, data_arg);
891
892 return p;
893 }
894
895
896 /* Build a GIMPLE_OMP_TASK statement.
897
898 BODY is sequence of statements which are executed by the explicit task.
899 CLAUSES, are the OMP parallel construct's clauses.
900 CHILD_FN is the function created for the parallel threads to execute.
901 DATA_ARG are the shared data argument(s).
902 COPY_FN is the optional function for firstprivate initialization.
903 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
904
905 gimple
906 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
907 tree data_arg, tree copy_fn, tree arg_size,
908 tree arg_align)
909 {
910 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
911 if (body)
912 gimple_omp_set_body (p, body);
913 gimple_omp_task_set_clauses (p, clauses);
914 gimple_omp_task_set_child_fn (p, child_fn);
915 gimple_omp_task_set_data_arg (p, data_arg);
916 gimple_omp_task_set_copy_fn (p, copy_fn);
917 gimple_omp_task_set_arg_size (p, arg_size);
918 gimple_omp_task_set_arg_align (p, arg_align);
919
920 return p;
921 }
922
923
924 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
925
926 BODY is the sequence of statements in the section. */
927
928 gimple
929 gimple_build_omp_section (gimple_seq body)
930 {
931 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
932 if (body)
933 gimple_omp_set_body (p, body);
934
935 return p;
936 }
937
938
939 /* Build a GIMPLE_OMP_MASTER statement.
940
941 BODY is the sequence of statements to be executed by just the master. */
942
943 gimple
944 gimple_build_omp_master (gimple_seq body)
945 {
946 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
947 if (body)
948 gimple_omp_set_body (p, body);
949
950 return p;
951 }
952
953
954 /* Build a GIMPLE_OMP_CONTINUE statement.
955
956 CONTROL_DEF is the definition of the control variable.
957 CONTROL_USE is the use of the control variable. */
958
959 gimple
960 gimple_build_omp_continue (tree control_def, tree control_use)
961 {
962 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
963 gimple_omp_continue_set_control_def (p, control_def);
964 gimple_omp_continue_set_control_use (p, control_use);
965 return p;
966 }
967
968 /* Build a GIMPLE_OMP_ORDERED statement.
969
970 BODY is the sequence of statements inside a loop that will executed in
971 sequence. */
972
973 gimple
974 gimple_build_omp_ordered (gimple_seq body)
975 {
976 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
977 if (body)
978 gimple_omp_set_body (p, body);
979
980 return p;
981 }
982
983
984 /* Build a GIMPLE_OMP_RETURN statement.
985 WAIT_P is true if this is a non-waiting return. */
986
987 gimple
988 gimple_build_omp_return (bool wait_p)
989 {
990 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
991 if (wait_p)
992 gimple_omp_return_set_nowait (p);
993
994 return p;
995 }
996
997
998 /* Build a GIMPLE_OMP_SECTIONS statement.
999
1000 BODY is a sequence of section statements.
1001 CLAUSES are any of the OMP sections contsruct's clauses: private,
1002 firstprivate, lastprivate, reduction, and nowait. */
1003
1004 gimple
1005 gimple_build_omp_sections (gimple_seq body, tree clauses)
1006 {
1007 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
1008 if (body)
1009 gimple_omp_set_body (p, body);
1010 gimple_omp_sections_set_clauses (p, clauses);
1011
1012 return p;
1013 }
1014
1015
1016 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1017
1018 gimple
1019 gimple_build_omp_sections_switch (void)
1020 {
1021 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1022 }
1023
1024
1025 /* Build a GIMPLE_OMP_SINGLE statement.
1026
1027 BODY is the sequence of statements that will be executed once.
1028 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1029 copyprivate, nowait. */
1030
1031 gimple
1032 gimple_build_omp_single (gimple_seq body, tree clauses)
1033 {
1034 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1035 if (body)
1036 gimple_omp_set_body (p, body);
1037 gimple_omp_single_set_clauses (p, clauses);
1038
1039 return p;
1040 }
1041
1042
1043 /* Build a GIMPLE_CHANGE_DYNAMIC_TYPE statement. TYPE is the new type
1044 for the location PTR. */
1045
1046 gimple
1047 gimple_build_cdt (tree type, tree ptr)
1048 {
1049 gimple p = gimple_build_with_ops (GIMPLE_CHANGE_DYNAMIC_TYPE, 0, 2);
1050 gimple_cdt_set_new_type (p, type);
1051 gimple_cdt_set_location (p, ptr);
1052
1053 return p;
1054 }
1055
1056
1057 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1058
1059 gimple
1060 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1061 {
1062 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1063 gimple_omp_atomic_load_set_lhs (p, lhs);
1064 gimple_omp_atomic_load_set_rhs (p, rhs);
1065 return p;
1066 }
1067
1068 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1069
1070 VAL is the value we are storing. */
1071
1072 gimple
1073 gimple_build_omp_atomic_store (tree val)
1074 {
1075 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1076 gimple_omp_atomic_store_set_val (p, val);
1077 return p;
1078 }
1079
1080 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1081 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1082
1083 gimple
1084 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1085 {
1086 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1087 /* Ensure all the predictors fit into the lower bits of the subcode. */
1088 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1089 gimple_predict_set_predictor (p, predictor);
1090 gimple_predict_set_outcome (p, outcome);
1091 return p;
1092 }
1093
1094 /* Return which gimple structure is used by T. The enums here are defined
1095 in gsstruct.def. */
1096
1097 enum gimple_statement_structure_enum
1098 gimple_statement_structure (gimple gs)
1099 {
1100 return gss_for_code (gimple_code (gs));
1101 }
1102
1103 #if defined ENABLE_GIMPLE_CHECKING
1104 /* Complain of a gimple type mismatch and die. */
1105
1106 void
1107 gimple_check_failed (const_gimple gs, const char *file, int line,
1108 const char *function, enum gimple_code code,
1109 enum tree_code subcode)
1110 {
1111 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1112 gimple_code_name[code],
1113 tree_code_name[subcode],
1114 gimple_code_name[gimple_code (gs)],
1115 gs->gsbase.subcode > 0
1116 ? tree_code_name[gs->gsbase.subcode]
1117 : "",
1118 function, trim_filename (file), line);
1119 }
1120 #endif /* ENABLE_GIMPLE_CHECKING */
1121
1122
1123 /* Allocate a new GIMPLE sequence in GC memory and return it. If
1124 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1125 instead. */
1126
1127 gimple_seq
1128 gimple_seq_alloc (void)
1129 {
1130 gimple_seq seq = gimple_seq_cache;
1131 if (seq)
1132 {
1133 gimple_seq_cache = gimple_seq_cache->next_free;
1134 gcc_assert (gimple_seq_cache != seq);
1135 memset (seq, 0, sizeof (*seq));
1136 }
1137 else
1138 {
1139 seq = (gimple_seq) ggc_alloc_cleared (sizeof (*seq));
1140 #ifdef GATHER_STATISTICS
1141 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1142 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1143 #endif
1144 }
1145
1146 return seq;
1147 }
1148
1149 /* Return SEQ to the free pool of GIMPLE sequences. */
1150
1151 void
1152 gimple_seq_free (gimple_seq seq)
1153 {
1154 if (seq == NULL)
1155 return;
1156
1157 gcc_assert (gimple_seq_first (seq) == NULL);
1158 gcc_assert (gimple_seq_last (seq) == NULL);
1159
1160 /* If this triggers, it's a sign that the same list is being freed
1161 twice. */
1162 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
1163
1164 /* Add SEQ to the pool of free sequences. */
1165 seq->next_free = gimple_seq_cache;
1166 gimple_seq_cache = seq;
1167 }
1168
1169
1170 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1171 *SEQ_P is NULL, a new sequence is allocated. */
1172
1173 void
1174 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1175 {
1176 gimple_stmt_iterator si;
1177
1178 if (gs == NULL)
1179 return;
1180
1181 if (*seq_p == NULL)
1182 *seq_p = gimple_seq_alloc ();
1183
1184 si = gsi_last (*seq_p);
1185 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1186 }
1187
1188
1189 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1190 NULL, a new sequence is allocated. */
1191
1192 void
1193 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1194 {
1195 gimple_stmt_iterator si;
1196
1197 if (src == NULL)
1198 return;
1199
1200 if (*dst_p == NULL)
1201 *dst_p = gimple_seq_alloc ();
1202
1203 si = gsi_last (*dst_p);
1204 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1205 }
1206
1207
1208 /* Helper function of empty_body_p. Return true if STMT is an empty
1209 statement. */
1210
1211 static bool
1212 empty_stmt_p (gimple stmt)
1213 {
1214 if (gimple_code (stmt) == GIMPLE_NOP)
1215 return true;
1216 if (gimple_code (stmt) == GIMPLE_BIND)
1217 return empty_body_p (gimple_bind_body (stmt));
1218 return false;
1219 }
1220
1221
1222 /* Return true if BODY contains nothing but empty statements. */
1223
1224 bool
1225 empty_body_p (gimple_seq body)
1226 {
1227 gimple_stmt_iterator i;
1228
1229
1230 if (gimple_seq_empty_p (body))
1231 return true;
1232 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1233 if (!empty_stmt_p (gsi_stmt (i)))
1234 return false;
1235
1236 return true;
1237 }
1238
1239
1240 /* Perform a deep copy of sequence SRC and return the result. */
1241
1242 gimple_seq
1243 gimple_seq_copy (gimple_seq src)
1244 {
1245 gimple_stmt_iterator gsi;
1246 gimple_seq new_seq = gimple_seq_alloc ();
1247 gimple stmt;
1248
1249 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1250 {
1251 stmt = gimple_copy (gsi_stmt (gsi));
1252 gimple_seq_add_stmt (&new_seq, stmt);
1253 }
1254
1255 return new_seq;
1256 }
1257
1258
1259 /* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1260 on each one. WI is as in walk_gimple_stmt.
1261
1262 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1263 value is stored in WI->CALLBACK_RESULT and the statement that
1264 produced the value is returned.
1265
1266 Otherwise, all the statements are walked and NULL returned. */
1267
1268 gimple
1269 walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1270 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1271 {
1272 gimple_stmt_iterator gsi;
1273
1274 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1275 {
1276 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1277 if (ret)
1278 {
1279 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1280 to hold it. */
1281 gcc_assert (wi);
1282 wi->callback_result = ret;
1283 return gsi_stmt (gsi);
1284 }
1285 }
1286
1287 if (wi)
1288 wi->callback_result = NULL_TREE;
1289
1290 return NULL;
1291 }
1292
1293
1294 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1295
1296 static tree
1297 walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1298 struct walk_stmt_info *wi)
1299 {
1300 tree ret;
1301 unsigned noutputs;
1302 const char **oconstraints;
1303 unsigned i;
1304 const char *constraint;
1305 bool allows_mem, allows_reg, is_inout;
1306
1307 noutputs = gimple_asm_noutputs (stmt);
1308 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1309
1310 if (wi)
1311 wi->is_lhs = true;
1312
1313 for (i = 0; i < noutputs; i++)
1314 {
1315 tree op = gimple_asm_output_op (stmt, i);
1316 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1317 oconstraints[i] = constraint;
1318 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1319 &is_inout);
1320 if (wi)
1321 wi->val_only = (allows_reg || !allows_mem);
1322 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1323 if (ret)
1324 return ret;
1325 }
1326
1327 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
1328 {
1329 tree op = gimple_asm_input_op (stmt, i);
1330 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1331 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1332 oconstraints, &allows_mem, &allows_reg);
1333 if (wi)
1334 wi->val_only = (allows_reg || !allows_mem);
1335
1336 /* Although input "m" is not really a LHS, we need a lvalue. */
1337 if (wi)
1338 wi->is_lhs = !wi->val_only;
1339 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1340 if (ret)
1341 return ret;
1342 }
1343
1344 if (wi)
1345 {
1346 wi->is_lhs = false;
1347 wi->val_only = true;
1348 }
1349
1350 return NULL_TREE;
1351 }
1352
1353
1354 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1355 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1356
1357 CALLBACK_OP is called on each operand of STMT via walk_tree.
1358 Additional parameters to walk_tree must be stored in WI. For each operand
1359 OP, walk_tree is called as:
1360
1361 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1362
1363 If CALLBACK_OP returns non-NULL for an operand, the remaining
1364 operands are not scanned.
1365
1366 The return value is that returned by the last call to walk_tree, or
1367 NULL_TREE if no CALLBACK_OP is specified. */
1368
1369 inline tree
1370 walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1371 struct walk_stmt_info *wi)
1372 {
1373 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1374 unsigned i;
1375 tree ret = NULL_TREE;
1376
1377 switch (gimple_code (stmt))
1378 {
1379 case GIMPLE_ASSIGN:
1380 /* Walk the RHS operands. A formal temporary LHS may use a
1381 COMPONENT_REF RHS. */
1382 if (wi)
1383 wi->val_only = !is_gimple_reg (gimple_assign_lhs (stmt))
1384 || !gimple_assign_single_p (stmt);
1385
1386 for (i = 1; i < gimple_num_ops (stmt); i++)
1387 {
1388 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1389 pset);
1390 if (ret)
1391 return ret;
1392 }
1393
1394 /* Walk the LHS. If the RHS is appropriate for a memory, we
1395 may use a COMPONENT_REF on the LHS. */
1396 if (wi)
1397 {
1398 /* If the RHS has more than 1 operand, it is not appropriate
1399 for the memory. */
1400 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1401 || !gimple_assign_single_p (stmt);
1402 wi->is_lhs = true;
1403 }
1404
1405 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1406 if (ret)
1407 return ret;
1408
1409 if (wi)
1410 {
1411 wi->val_only = true;
1412 wi->is_lhs = false;
1413 }
1414 break;
1415
1416 case GIMPLE_CALL:
1417 if (wi)
1418 wi->is_lhs = false;
1419
1420 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1421 if (ret)
1422 return ret;
1423
1424 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1425 if (ret)
1426 return ret;
1427
1428 for (i = 0; i < gimple_call_num_args (stmt); i++)
1429 {
1430 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1431 pset);
1432 if (ret)
1433 return ret;
1434 }
1435
1436 if (wi)
1437 wi->is_lhs = true;
1438
1439 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1440 if (ret)
1441 return ret;
1442
1443 if (wi)
1444 wi->is_lhs = false;
1445 break;
1446
1447 case GIMPLE_CATCH:
1448 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1449 pset);
1450 if (ret)
1451 return ret;
1452 break;
1453
1454 case GIMPLE_EH_FILTER:
1455 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1456 pset);
1457 if (ret)
1458 return ret;
1459 break;
1460
1461 case GIMPLE_CHANGE_DYNAMIC_TYPE:
1462 ret = walk_tree (gimple_cdt_location_ptr (stmt), callback_op, wi, pset);
1463 if (ret)
1464 return ret;
1465
1466 ret = walk_tree (gimple_cdt_new_type_ptr (stmt), callback_op, wi, pset);
1467 if (ret)
1468 return ret;
1469 break;
1470
1471 case GIMPLE_ASM:
1472 ret = walk_gimple_asm (stmt, callback_op, wi);
1473 if (ret)
1474 return ret;
1475 break;
1476
1477 case GIMPLE_OMP_CONTINUE:
1478 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1479 callback_op, wi, pset);
1480 if (ret)
1481 return ret;
1482
1483 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1484 callback_op, wi, pset);
1485 if (ret)
1486 return ret;
1487 break;
1488
1489 case GIMPLE_OMP_CRITICAL:
1490 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1491 pset);
1492 if (ret)
1493 return ret;
1494 break;
1495
1496 case GIMPLE_OMP_FOR:
1497 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1498 pset);
1499 if (ret)
1500 return ret;
1501 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1502 {
1503 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1504 wi, pset);
1505 if (ret)
1506 return ret;
1507 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1508 wi, pset);
1509 if (ret)
1510 return ret;
1511 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1512 wi, pset);
1513 if (ret)
1514 return ret;
1515 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1516 wi, pset);
1517 }
1518 if (ret)
1519 return ret;
1520 break;
1521
1522 case GIMPLE_OMP_PARALLEL:
1523 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1524 wi, pset);
1525 if (ret)
1526 return ret;
1527 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1528 wi, pset);
1529 if (ret)
1530 return ret;
1531 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1532 wi, pset);
1533 if (ret)
1534 return ret;
1535 break;
1536
1537 case GIMPLE_OMP_TASK:
1538 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1539 wi, pset);
1540 if (ret)
1541 return ret;
1542 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1543 wi, pset);
1544 if (ret)
1545 return ret;
1546 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1547 wi, pset);
1548 if (ret)
1549 return ret;
1550 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1551 wi, pset);
1552 if (ret)
1553 return ret;
1554 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1555 wi, pset);
1556 if (ret)
1557 return ret;
1558 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1559 wi, pset);
1560 if (ret)
1561 return ret;
1562 break;
1563
1564 case GIMPLE_OMP_SECTIONS:
1565 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1566 wi, pset);
1567 if (ret)
1568 return ret;
1569
1570 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1571 wi, pset);
1572 if (ret)
1573 return ret;
1574
1575 break;
1576
1577 case GIMPLE_OMP_SINGLE:
1578 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1579 pset);
1580 if (ret)
1581 return ret;
1582 break;
1583
1584 case GIMPLE_OMP_ATOMIC_LOAD:
1585 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1586 pset);
1587 if (ret)
1588 return ret;
1589
1590 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1591 pset);
1592 if (ret)
1593 return ret;
1594 break;
1595
1596 case GIMPLE_OMP_ATOMIC_STORE:
1597 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1598 wi, pset);
1599 if (ret)
1600 return ret;
1601 break;
1602
1603 /* Tuples that do not have operands. */
1604 case GIMPLE_NOP:
1605 case GIMPLE_RESX:
1606 case GIMPLE_OMP_RETURN:
1607 case GIMPLE_PREDICT:
1608 break;
1609
1610 default:
1611 {
1612 enum gimple_statement_structure_enum gss;
1613 gss = gimple_statement_structure (stmt);
1614 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1615 for (i = 0; i < gimple_num_ops (stmt); i++)
1616 {
1617 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1618 if (ret)
1619 return ret;
1620 }
1621 }
1622 break;
1623 }
1624
1625 return NULL_TREE;
1626 }
1627
1628
1629 /* Walk the current statement in GSI (optionally using traversal state
1630 stored in WI). If WI is NULL, no state is kept during traversal.
1631 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1632 that it has handled all the operands of the statement, its return
1633 value is returned. Otherwise, the return value from CALLBACK_STMT
1634 is discarded and its operands are scanned.
1635
1636 If CALLBACK_STMT is NULL or it didn't handle the operands,
1637 CALLBACK_OP is called on each operand of the statement via
1638 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1639 operand, the remaining operands are not scanned. In this case, the
1640 return value from CALLBACK_OP is returned.
1641
1642 In any other case, NULL_TREE is returned. */
1643
1644 tree
1645 walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1646 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1647 {
1648 gimple ret;
1649 tree tree_ret;
1650 gimple stmt = gsi_stmt (*gsi);
1651
1652 if (wi)
1653 wi->gsi = *gsi;
1654
1655 if (wi && wi->want_locations && gimple_has_location (stmt))
1656 input_location = gimple_location (stmt);
1657
1658 ret = NULL;
1659
1660 /* Invoke the statement callback. Return if the callback handled
1661 all of STMT operands by itself. */
1662 if (callback_stmt)
1663 {
1664 bool handled_ops = false;
1665 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1666 if (handled_ops)
1667 return tree_ret;
1668
1669 /* If CALLBACK_STMT did not handle operands, it should not have
1670 a value to return. */
1671 gcc_assert (tree_ret == NULL);
1672
1673 /* Re-read stmt in case the callback changed it. */
1674 stmt = gsi_stmt (*gsi);
1675 }
1676
1677 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1678 if (callback_op)
1679 {
1680 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1681 if (tree_ret)
1682 return tree_ret;
1683 }
1684
1685 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1686 switch (gimple_code (stmt))
1687 {
1688 case GIMPLE_BIND:
1689 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1690 callback_op, wi);
1691 if (ret)
1692 return wi->callback_result;
1693 break;
1694
1695 case GIMPLE_CATCH:
1696 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1697 callback_op, wi);
1698 if (ret)
1699 return wi->callback_result;
1700 break;
1701
1702 case GIMPLE_EH_FILTER:
1703 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1704 callback_op, wi);
1705 if (ret)
1706 return wi->callback_result;
1707 break;
1708
1709 case GIMPLE_TRY:
1710 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1711 wi);
1712 if (ret)
1713 return wi->callback_result;
1714
1715 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1716 callback_op, wi);
1717 if (ret)
1718 return wi->callback_result;
1719 break;
1720
1721 case GIMPLE_OMP_FOR:
1722 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1723 callback_op, wi);
1724 if (ret)
1725 return wi->callback_result;
1726
1727 /* FALL THROUGH. */
1728 case GIMPLE_OMP_CRITICAL:
1729 case GIMPLE_OMP_MASTER:
1730 case GIMPLE_OMP_ORDERED:
1731 case GIMPLE_OMP_SECTION:
1732 case GIMPLE_OMP_PARALLEL:
1733 case GIMPLE_OMP_TASK:
1734 case GIMPLE_OMP_SECTIONS:
1735 case GIMPLE_OMP_SINGLE:
1736 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1737 wi);
1738 if (ret)
1739 return wi->callback_result;
1740 break;
1741
1742 case GIMPLE_WITH_CLEANUP_EXPR:
1743 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1744 callback_op, wi);
1745 if (ret)
1746 return wi->callback_result;
1747 break;
1748
1749 default:
1750 gcc_assert (!gimple_has_substatements (stmt));
1751 break;
1752 }
1753
1754 return NULL;
1755 }
1756
1757
1758 /* Set sequence SEQ to be the GIMPLE body for function FN. */
1759
1760 void
1761 gimple_set_body (tree fndecl, gimple_seq seq)
1762 {
1763 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1764 if (fn == NULL)
1765 {
1766 /* If FNDECL still does not have a function structure associated
1767 with it, then it does not make sense for it to receive a
1768 GIMPLE body. */
1769 gcc_assert (seq == NULL);
1770 }
1771 else
1772 fn->gimple_body = seq;
1773 }
1774
1775
1776 /* Return the body of GIMPLE statements for function FN. */
1777
1778 gimple_seq
1779 gimple_body (tree fndecl)
1780 {
1781 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1782 return fn ? fn->gimple_body : NULL;
1783 }
1784
1785 /* Return true when FNDECL has Gimple body either in unlowered
1786 or CFG form. */
1787 bool
1788 gimple_has_body_p (tree fndecl)
1789 {
1790 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1791 return (gimple_body (fndecl) || (fn && fn->cfg));
1792 }
1793
1794 /* Detect flags from a GIMPLE_CALL. This is just like
1795 call_expr_flags, but for gimple tuples. */
1796
1797 int
1798 gimple_call_flags (const_gimple stmt)
1799 {
1800 int flags;
1801 tree decl = gimple_call_fndecl (stmt);
1802 tree t;
1803
1804 if (decl)
1805 flags = flags_from_decl_or_type (decl);
1806 else
1807 {
1808 t = TREE_TYPE (gimple_call_fn (stmt));
1809 if (t && TREE_CODE (t) == POINTER_TYPE)
1810 flags = flags_from_decl_or_type (TREE_TYPE (t));
1811 else
1812 flags = 0;
1813 }
1814
1815 return flags;
1816 }
1817
1818
1819 /* Return true if GS is a copy assignment. */
1820
1821 bool
1822 gimple_assign_copy_p (gimple gs)
1823 {
1824 return gimple_code (gs) == GIMPLE_ASSIGN
1825 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1826 == GIMPLE_SINGLE_RHS
1827 && is_gimple_val (gimple_op (gs, 1));
1828 }
1829
1830
1831 /* Return true if GS is a SSA_NAME copy assignment. */
1832
1833 bool
1834 gimple_assign_ssa_name_copy_p (gimple gs)
1835 {
1836 return (gimple_code (gs) == GIMPLE_ASSIGN
1837 && (get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1838 == GIMPLE_SINGLE_RHS)
1839 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1840 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1841 }
1842
1843
1844 /* Return true if GS is an assignment with a singleton RHS, i.e.,
1845 there is no operator associated with the assignment itself.
1846 Unlike gimple_assign_copy_p, this predicate returns true for
1847 any RHS operand, including those that perform an operation
1848 and do not have the semantics of a copy, such as COND_EXPR. */
1849
1850 bool
1851 gimple_assign_single_p (gimple gs)
1852 {
1853 return (gimple_code (gs) == GIMPLE_ASSIGN
1854 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1855 == GIMPLE_SINGLE_RHS);
1856 }
1857
1858 /* Return true if GS is an assignment with a unary RHS, but the
1859 operator has no effect on the assigned value. The logic is adapted
1860 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1861 instances in which STRIP_NOPS was previously applied to the RHS of
1862 an assignment.
1863
1864 NOTE: In the use cases that led to the creation of this function
1865 and of gimple_assign_single_p, it is typical to test for either
1866 condition and to proceed in the same manner. In each case, the
1867 assigned value is represented by the single RHS operand of the
1868 assignment. I suspect there may be cases where gimple_assign_copy_p,
1869 gimple_assign_single_p, or equivalent logic is used where a similar
1870 treatment of unary NOPs is appropriate. */
1871
1872 bool
1873 gimple_assign_unary_nop_p (gimple gs)
1874 {
1875 return (gimple_code (gs) == GIMPLE_ASSIGN
1876 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1877 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1878 && gimple_assign_rhs1 (gs) != error_mark_node
1879 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1880 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1881 }
1882
1883 /* Set BB to be the basic block holding G. */
1884
1885 void
1886 gimple_set_bb (gimple stmt, basic_block bb)
1887 {
1888 stmt->gsbase.bb = bb;
1889
1890 /* If the statement is a label, add the label to block-to-labels map
1891 so that we can speed up edge creation for GIMPLE_GOTOs. */
1892 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
1893 {
1894 tree t;
1895 int uid;
1896
1897 t = gimple_label_label (stmt);
1898 uid = LABEL_DECL_UID (t);
1899 if (uid == -1)
1900 {
1901 unsigned old_len = VEC_length (basic_block, label_to_block_map);
1902 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1903 if (old_len <= (unsigned) uid)
1904 {
1905 unsigned new_len = 3 * uid / 2;
1906
1907 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
1908 new_len);
1909 }
1910 }
1911
1912 VEC_replace (basic_block, label_to_block_map, uid, bb);
1913 }
1914 }
1915
1916
1917 /* Fold the expression computed by STMT. If the expression can be
1918 folded, return the folded result, otherwise return NULL. STMT is
1919 not modified. */
1920
1921 tree
1922 gimple_fold (const_gimple stmt)
1923 {
1924 switch (gimple_code (stmt))
1925 {
1926 case GIMPLE_COND:
1927 return fold_binary (gimple_cond_code (stmt),
1928 boolean_type_node,
1929 gimple_cond_lhs (stmt),
1930 gimple_cond_rhs (stmt));
1931
1932 case GIMPLE_ASSIGN:
1933 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
1934 {
1935 case GIMPLE_UNARY_RHS:
1936 return fold_unary (gimple_assign_rhs_code (stmt),
1937 TREE_TYPE (gimple_assign_lhs (stmt)),
1938 gimple_assign_rhs1 (stmt));
1939 case GIMPLE_BINARY_RHS:
1940 return fold_binary (gimple_assign_rhs_code (stmt),
1941 TREE_TYPE (gimple_assign_lhs (stmt)),
1942 gimple_assign_rhs1 (stmt),
1943 gimple_assign_rhs2 (stmt));
1944 case GIMPLE_SINGLE_RHS:
1945 return fold (gimple_assign_rhs1 (stmt));
1946 default:;
1947 }
1948 break;
1949
1950 case GIMPLE_SWITCH:
1951 return gimple_switch_index (stmt);
1952
1953 case GIMPLE_CALL:
1954 return NULL_TREE;
1955
1956 default:
1957 break;
1958 }
1959
1960 gcc_unreachable ();
1961 }
1962
1963
1964 /* Modify the RHS of the assignment pointed-to by GSI using the
1965 operands in the expression tree EXPR.
1966
1967 NOTE: The statement pointed-to by GSI may be reallocated if it
1968 did not have enough operand slots.
1969
1970 This function is useful to convert an existing tree expression into
1971 the flat representation used for the RHS of a GIMPLE assignment.
1972 It will reallocate memory as needed to expand or shrink the number
1973 of operand slots needed to represent EXPR.
1974
1975 NOTE: If you find yourself building a tree and then calling this
1976 function, you are most certainly doing it the slow way. It is much
1977 better to build a new assignment or to use the function
1978 gimple_assign_set_rhs_with_ops, which does not require an
1979 expression tree to be built. */
1980
1981 void
1982 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1983 {
1984 enum tree_code subcode;
1985 tree op1, op2;
1986
1987 extract_ops_from_tree (expr, &subcode, &op1, &op2);
1988 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2);
1989 }
1990
1991
1992 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1993 operands OP1 and OP2.
1994
1995 NOTE: The statement pointed-to by GSI may be reallocated if it
1996 did not have enough operand slots. */
1997
1998 void
1999 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
2000 tree op1, tree op2)
2001 {
2002 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
2003 gimple stmt = gsi_stmt (*gsi);
2004
2005 /* If the new CODE needs more operands, allocate a new statement. */
2006 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
2007 {
2008 tree lhs = gimple_assign_lhs (stmt);
2009 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
2010 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
2011 gsi_replace (gsi, new_stmt, true);
2012 stmt = new_stmt;
2013
2014 /* The LHS needs to be reset as this also changes the SSA name
2015 on the LHS. */
2016 gimple_assign_set_lhs (stmt, lhs);
2017 }
2018
2019 gimple_set_num_ops (stmt, new_rhs_ops + 1);
2020 gimple_set_subcode (stmt, code);
2021 gimple_assign_set_rhs1 (stmt, op1);
2022 if (new_rhs_ops > 1)
2023 gimple_assign_set_rhs2 (stmt, op2);
2024 }
2025
2026
2027 /* Return the LHS of a statement that performs an assignment,
2028 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2029 for a call to a function that returns no value, or for a
2030 statement other than an assignment or a call. */
2031
2032 tree
2033 gimple_get_lhs (const_gimple stmt)
2034 {
2035 enum gimple_code code = gimple_code (stmt);
2036
2037 if (code == GIMPLE_ASSIGN)
2038 return gimple_assign_lhs (stmt);
2039 else if (code == GIMPLE_CALL)
2040 return gimple_call_lhs (stmt);
2041 else
2042 return NULL_TREE;
2043 }
2044
2045
2046 /* Set the LHS of a statement that performs an assignment,
2047 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2048
2049 void
2050 gimple_set_lhs (gimple stmt, tree lhs)
2051 {
2052 enum gimple_code code = gimple_code (stmt);
2053
2054 if (code == GIMPLE_ASSIGN)
2055 gimple_assign_set_lhs (stmt, lhs);
2056 else if (code == GIMPLE_CALL)
2057 gimple_call_set_lhs (stmt, lhs);
2058 else
2059 gcc_unreachable();
2060 }
2061
2062
2063 /* Return a deep copy of statement STMT. All the operands from STMT
2064 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
2065 and VUSE operand arrays are set to empty in the new copy. */
2066
2067 gimple
2068 gimple_copy (gimple stmt)
2069 {
2070 enum gimple_code code = gimple_code (stmt);
2071 unsigned num_ops = gimple_num_ops (stmt);
2072 gimple copy = gimple_alloc (code, num_ops);
2073 unsigned i;
2074
2075 /* Shallow copy all the fields from STMT. */
2076 memcpy (copy, stmt, gimple_size (code));
2077
2078 /* If STMT has sub-statements, deep-copy them as well. */
2079 if (gimple_has_substatements (stmt))
2080 {
2081 gimple_seq new_seq;
2082 tree t;
2083
2084 switch (gimple_code (stmt))
2085 {
2086 case GIMPLE_BIND:
2087 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2088 gimple_bind_set_body (copy, new_seq);
2089 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2090 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2091 break;
2092
2093 case GIMPLE_CATCH:
2094 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2095 gimple_catch_set_handler (copy, new_seq);
2096 t = unshare_expr (gimple_catch_types (stmt));
2097 gimple_catch_set_types (copy, t);
2098 break;
2099
2100 case GIMPLE_EH_FILTER:
2101 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2102 gimple_eh_filter_set_failure (copy, new_seq);
2103 t = unshare_expr (gimple_eh_filter_types (stmt));
2104 gimple_eh_filter_set_types (copy, t);
2105 break;
2106
2107 case GIMPLE_TRY:
2108 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2109 gimple_try_set_eval (copy, new_seq);
2110 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2111 gimple_try_set_cleanup (copy, new_seq);
2112 break;
2113
2114 case GIMPLE_OMP_FOR:
2115 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2116 gimple_omp_for_set_pre_body (copy, new_seq);
2117 t = unshare_expr (gimple_omp_for_clauses (stmt));
2118 gimple_omp_for_set_clauses (copy, t);
2119 copy->gimple_omp_for.iter
2120 = GGC_NEWVEC (struct gimple_omp_for_iter,
2121 gimple_omp_for_collapse (stmt));
2122 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2123 {
2124 gimple_omp_for_set_cond (copy, i,
2125 gimple_omp_for_cond (stmt, i));
2126 gimple_omp_for_set_index (copy, i,
2127 gimple_omp_for_index (stmt, i));
2128 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2129 gimple_omp_for_set_initial (copy, i, t);
2130 t = unshare_expr (gimple_omp_for_final (stmt, i));
2131 gimple_omp_for_set_final (copy, i, t);
2132 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2133 gimple_omp_for_set_incr (copy, i, t);
2134 }
2135 goto copy_omp_body;
2136
2137 case GIMPLE_OMP_PARALLEL:
2138 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2139 gimple_omp_parallel_set_clauses (copy, t);
2140 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2141 gimple_omp_parallel_set_child_fn (copy, t);
2142 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2143 gimple_omp_parallel_set_data_arg (copy, t);
2144 goto copy_omp_body;
2145
2146 case GIMPLE_OMP_TASK:
2147 t = unshare_expr (gimple_omp_task_clauses (stmt));
2148 gimple_omp_task_set_clauses (copy, t);
2149 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2150 gimple_omp_task_set_child_fn (copy, t);
2151 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2152 gimple_omp_task_set_data_arg (copy, t);
2153 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2154 gimple_omp_task_set_copy_fn (copy, t);
2155 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2156 gimple_omp_task_set_arg_size (copy, t);
2157 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2158 gimple_omp_task_set_arg_align (copy, t);
2159 goto copy_omp_body;
2160
2161 case GIMPLE_OMP_CRITICAL:
2162 t = unshare_expr (gimple_omp_critical_name (stmt));
2163 gimple_omp_critical_set_name (copy, t);
2164 goto copy_omp_body;
2165
2166 case GIMPLE_OMP_SECTIONS:
2167 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2168 gimple_omp_sections_set_clauses (copy, t);
2169 t = unshare_expr (gimple_omp_sections_control (stmt));
2170 gimple_omp_sections_set_control (copy, t);
2171 /* FALLTHRU */
2172
2173 case GIMPLE_OMP_SINGLE:
2174 case GIMPLE_OMP_SECTION:
2175 case GIMPLE_OMP_MASTER:
2176 case GIMPLE_OMP_ORDERED:
2177 copy_omp_body:
2178 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2179 gimple_omp_set_body (copy, new_seq);
2180 break;
2181
2182 case GIMPLE_WITH_CLEANUP_EXPR:
2183 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2184 gimple_wce_set_cleanup (copy, new_seq);
2185 break;
2186
2187 default:
2188 gcc_unreachable ();
2189 }
2190 }
2191
2192 /* Make copy of operands. */
2193 if (num_ops > 0)
2194 {
2195 for (i = 0; i < num_ops; i++)
2196 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2197
2198 /* Clear out SSA operand vectors on COPY. Note that we cannot
2199 call the API functions for setting addresses_taken, stores
2200 and loads. These functions free the previous values, and we
2201 cannot do that on COPY as it will affect the original
2202 statement. */
2203 if (gimple_has_ops (stmt))
2204 {
2205 gimple_set_def_ops (copy, NULL);
2206 gimple_set_use_ops (copy, NULL);
2207 copy->gsops.opbase.addresses_taken = NULL;
2208 }
2209
2210 if (gimple_has_mem_ops (stmt))
2211 {
2212 gimple_set_vdef_ops (copy, NULL);
2213 gimple_set_vuse_ops (copy, NULL);
2214 copy->gsmem.membase.stores = NULL;
2215 copy->gsmem.membase.loads = NULL;
2216 }
2217
2218 update_stmt (copy);
2219 }
2220
2221 return copy;
2222 }
2223
2224
2225 /* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2226 a MODIFIED field. */
2227
2228 void
2229 gimple_set_modified (gimple s, bool modifiedp)
2230 {
2231 if (gimple_has_ops (s))
2232 {
2233 s->gsbase.modified = (unsigned) modifiedp;
2234
2235 if (modifiedp
2236 && cfun->gimple_df
2237 && is_gimple_call (s)
2238 && gimple_call_noreturn_p (s))
2239 VEC_safe_push (gimple, gc, MODIFIED_NORETURN_CALLS (cfun), s);
2240 }
2241 }
2242
2243
2244 /* Return true if statement S has side-effects. We consider a
2245 statement to have side effects if:
2246
2247 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2248 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2249
2250 bool
2251 gimple_has_side_effects (const_gimple s)
2252 {
2253 unsigned i;
2254
2255 /* We don't have to scan the arguments to check for
2256 volatile arguments, though, at present, we still
2257 do a scan to check for TREE_SIDE_EFFECTS. */
2258 if (gimple_has_volatile_ops (s))
2259 return true;
2260
2261 if (is_gimple_call (s))
2262 {
2263 unsigned nargs = gimple_call_num_args (s);
2264
2265 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2266 return true;
2267 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2268 /* An infinite loop is considered a side effect. */
2269 return true;
2270
2271 if (gimple_call_lhs (s)
2272 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2273 {
2274 gcc_assert (gimple_has_volatile_ops (s));
2275 return true;
2276 }
2277
2278 if (TREE_SIDE_EFFECTS (gimple_call_fn (s)))
2279 return true;
2280
2281 for (i = 0; i < nargs; i++)
2282 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2283 {
2284 gcc_assert (gimple_has_volatile_ops (s));
2285 return true;
2286 }
2287
2288 return false;
2289 }
2290 else
2291 {
2292 for (i = 0; i < gimple_num_ops (s); i++)
2293 if (TREE_SIDE_EFFECTS (gimple_op (s, i)))
2294 {
2295 gcc_assert (gimple_has_volatile_ops (s));
2296 return true;
2297 }
2298 }
2299
2300 return false;
2301 }
2302
2303 /* Return true if the RHS of statement S has side effects.
2304 We may use it to determine if it is admissable to replace
2305 an assignment or call with a copy of a previously-computed
2306 value. In such cases, side-effects due the the LHS are
2307 preserved. */
2308
2309 bool
2310 gimple_rhs_has_side_effects (const_gimple s)
2311 {
2312 unsigned i;
2313
2314 if (is_gimple_call (s))
2315 {
2316 unsigned nargs = gimple_call_num_args (s);
2317
2318 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2319 return true;
2320
2321 /* We cannot use gimple_has_volatile_ops here,
2322 because we must ignore a volatile LHS. */
2323 if (TREE_SIDE_EFFECTS (gimple_call_fn (s))
2324 || TREE_THIS_VOLATILE (gimple_call_fn (s)))
2325 {
2326 gcc_assert (gimple_has_volatile_ops (s));
2327 return true;
2328 }
2329
2330 for (i = 0; i < nargs; i++)
2331 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2332 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2333 return true;
2334
2335 return false;
2336 }
2337 else if (is_gimple_assign (s))
2338 {
2339 /* Skip the first operand, the LHS. */
2340 for (i = 1; i < gimple_num_ops (s); i++)
2341 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2342 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2343 {
2344 gcc_assert (gimple_has_volatile_ops (s));
2345 return true;
2346 }
2347 }
2348 else
2349 {
2350 /* For statements without an LHS, examine all arguments. */
2351 for (i = 0; i < gimple_num_ops (s); i++)
2352 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2353 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2354 {
2355 gcc_assert (gimple_has_volatile_ops (s));
2356 return true;
2357 }
2358 }
2359
2360 return false;
2361 }
2362
2363
2364 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2365 Return true if S can trap. If INCLUDE_LHS is true and S is a
2366 GIMPLE_ASSIGN, the LHS of the assignment is also checked.
2367 Otherwise, only the RHS of the assignment is checked. */
2368
2369 static bool
2370 gimple_could_trap_p_1 (gimple s, bool include_lhs)
2371 {
2372 unsigned i, start;
2373 tree t, div = NULL_TREE;
2374 enum tree_code op;
2375
2376 start = (is_gimple_assign (s) && !include_lhs) ? 1 : 0;
2377
2378 for (i = start; i < gimple_num_ops (s); i++)
2379 if (tree_could_trap_p (gimple_op (s, i)))
2380 return true;
2381
2382 switch (gimple_code (s))
2383 {
2384 case GIMPLE_ASM:
2385 return gimple_asm_volatile_p (s);
2386
2387 case GIMPLE_CALL:
2388 t = gimple_call_fndecl (s);
2389 /* Assume that calls to weak functions may trap. */
2390 if (!t || !DECL_P (t) || DECL_WEAK (t))
2391 return true;
2392 return false;
2393
2394 case GIMPLE_ASSIGN:
2395 t = gimple_expr_type (s);
2396 op = gimple_assign_rhs_code (s);
2397 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2398 div = gimple_assign_rhs2 (s);
2399 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2400 (INTEGRAL_TYPE_P (t)
2401 && TYPE_OVERFLOW_TRAPS (t)),
2402 div));
2403
2404 default:
2405 break;
2406 }
2407
2408 return false;
2409
2410 }
2411
2412
2413 /* Return true if statement S can trap. */
2414
2415 bool
2416 gimple_could_trap_p (gimple s)
2417 {
2418 return gimple_could_trap_p_1 (s, true);
2419 }
2420
2421
2422 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2423
2424 bool
2425 gimple_assign_rhs_could_trap_p (gimple s)
2426 {
2427 gcc_assert (is_gimple_assign (s));
2428 return gimple_could_trap_p_1 (s, false);
2429 }
2430
2431
2432 /* Print debugging information for gimple stmts generated. */
2433
2434 void
2435 dump_gimple_statistics (void)
2436 {
2437 #ifdef GATHER_STATISTICS
2438 int i, total_tuples = 0, total_bytes = 0;
2439
2440 fprintf (stderr, "\nGIMPLE statements\n");
2441 fprintf (stderr, "Kind Stmts Bytes\n");
2442 fprintf (stderr, "---------------------------------------\n");
2443 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2444 {
2445 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2446 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2447 total_tuples += gimple_alloc_counts[i];
2448 total_bytes += gimple_alloc_sizes[i];
2449 }
2450 fprintf (stderr, "---------------------------------------\n");
2451 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2452 fprintf (stderr, "---------------------------------------\n");
2453 #else
2454 fprintf (stderr, "No gimple statistics\n");
2455 #endif
2456 }
2457
2458
2459 /* Deep copy SYMS into the set of symbols stored by STMT. If SYMS is
2460 NULL or empty, the storage used is freed up. */
2461
2462 void
2463 gimple_set_stored_syms (gimple stmt, bitmap syms, bitmap_obstack *obs)
2464 {
2465 gcc_assert (gimple_has_mem_ops (stmt));
2466
2467 if (syms == NULL || bitmap_empty_p (syms))
2468 BITMAP_FREE (stmt->gsmem.membase.stores);
2469 else
2470 {
2471 if (stmt->gsmem.membase.stores == NULL)
2472 stmt->gsmem.membase.stores = BITMAP_ALLOC (obs);
2473
2474 bitmap_copy (stmt->gsmem.membase.stores, syms);
2475 }
2476 }
2477
2478
2479 /* Deep copy SYMS into the set of symbols loaded by STMT. If SYMS is
2480 NULL or empty, the storage used is freed up. */
2481
2482 void
2483 gimple_set_loaded_syms (gimple stmt, bitmap syms, bitmap_obstack *obs)
2484 {
2485 gcc_assert (gimple_has_mem_ops (stmt));
2486
2487 if (syms == NULL || bitmap_empty_p (syms))
2488 BITMAP_FREE (stmt->gsmem.membase.loads);
2489 else
2490 {
2491 if (stmt->gsmem.membase.loads == NULL)
2492 stmt->gsmem.membase.loads = BITMAP_ALLOC (obs);
2493
2494 bitmap_copy (stmt->gsmem.membase.loads, syms);
2495 }
2496 }
2497
2498
2499 /* Return the number of operands needed on the RHS of a GIMPLE
2500 assignment for an expression with tree code CODE. */
2501
2502 unsigned
2503 get_gimple_rhs_num_ops (enum tree_code code)
2504 {
2505 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2506
2507 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2508 return 1;
2509 else if (rhs_class == GIMPLE_BINARY_RHS)
2510 return 2;
2511 else
2512 gcc_unreachable ();
2513 }
2514
2515 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2516 (unsigned char) \
2517 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2518 : ((TYPE) == tcc_binary \
2519 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2520 : ((TYPE) == tcc_constant \
2521 || (TYPE) == tcc_declaration \
2522 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2523 : ((SYM) == TRUTH_AND_EXPR \
2524 || (SYM) == TRUTH_OR_EXPR \
2525 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2526 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2527 : ((SYM) == COND_EXPR \
2528 || (SYM) == CONSTRUCTOR \
2529 || (SYM) == OBJ_TYPE_REF \
2530 || (SYM) == ASSERT_EXPR \
2531 || (SYM) == ADDR_EXPR \
2532 || (SYM) == WITH_SIZE_EXPR \
2533 || (SYM) == EXC_PTR_EXPR \
2534 || (SYM) == SSA_NAME \
2535 || (SYM) == FILTER_EXPR \
2536 || (SYM) == POLYNOMIAL_CHREC \
2537 || (SYM) == DOT_PROD_EXPR \
2538 || (SYM) == VEC_COND_EXPR \
2539 || (SYM) == REALIGN_LOAD_EXPR) ? GIMPLE_SINGLE_RHS \
2540 : GIMPLE_INVALID_RHS),
2541 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2542
2543 const unsigned char gimple_rhs_class_table[] = {
2544 #include "all-tree.def"
2545 };
2546
2547 #undef DEFTREECODE
2548 #undef END_OF_BASE_TREE_CODES
2549
2550 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2551
2552 /* Validation of GIMPLE expressions. */
2553
2554 /* Return true if OP is an acceptable tree node to be used as a GIMPLE
2555 operand. */
2556
2557 bool
2558 is_gimple_operand (const_tree op)
2559 {
2560 return op && get_gimple_rhs_class (TREE_CODE (op)) == GIMPLE_SINGLE_RHS;
2561 }
2562
2563 /* Returns true iff T is a valid RHS for an assignment to a renamed
2564 user -- or front-end generated artificial -- variable. */
2565
2566 bool
2567 is_gimple_reg_rhs (tree t)
2568 {
2569 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
2570 }
2571
2572 /* Returns true iff T is a valid RHS for an assignment to an un-renamed
2573 LHS, or for a call argument. */
2574
2575 bool
2576 is_gimple_mem_rhs (tree t)
2577 {
2578 /* If we're dealing with a renamable type, either source or dest must be
2579 a renamed variable. */
2580 if (is_gimple_reg_type (TREE_TYPE (t)))
2581 return is_gimple_val (t);
2582 else
2583 return is_gimple_val (t) || is_gimple_lvalue (t);
2584 }
2585
2586 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2587
2588 bool
2589 is_gimple_lvalue (tree t)
2590 {
2591 return (is_gimple_addressable (t)
2592 || TREE_CODE (t) == WITH_SIZE_EXPR
2593 /* These are complex lvalues, but don't have addresses, so they
2594 go here. */
2595 || TREE_CODE (t) == BIT_FIELD_REF);
2596 }
2597
2598 /* Return true if T is a GIMPLE condition. */
2599
2600 bool
2601 is_gimple_condexpr (tree t)
2602 {
2603 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2604 && !tree_could_trap_p (t)
2605 && is_gimple_val (TREE_OPERAND (t, 0))
2606 && is_gimple_val (TREE_OPERAND (t, 1))));
2607 }
2608
2609 /* Return true if T is something whose address can be taken. */
2610
2611 bool
2612 is_gimple_addressable (tree t)
2613 {
2614 return (is_gimple_id (t) || handled_component_p (t) || INDIRECT_REF_P (t));
2615 }
2616
2617 /* Return true if T is a valid gimple constant. */
2618
2619 bool
2620 is_gimple_constant (const_tree t)
2621 {
2622 switch (TREE_CODE (t))
2623 {
2624 case INTEGER_CST:
2625 case REAL_CST:
2626 case FIXED_CST:
2627 case STRING_CST:
2628 case COMPLEX_CST:
2629 case VECTOR_CST:
2630 return true;
2631
2632 /* Vector constant constructors are gimple invariant. */
2633 case CONSTRUCTOR:
2634 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2635 return TREE_CONSTANT (t);
2636 else
2637 return false;
2638
2639 default:
2640 return false;
2641 }
2642 }
2643
2644 /* Return true if T is a gimple address. */
2645
2646 bool
2647 is_gimple_address (const_tree t)
2648 {
2649 tree op;
2650
2651 if (TREE_CODE (t) != ADDR_EXPR)
2652 return false;
2653
2654 op = TREE_OPERAND (t, 0);
2655 while (handled_component_p (op))
2656 {
2657 if ((TREE_CODE (op) == ARRAY_REF
2658 || TREE_CODE (op) == ARRAY_RANGE_REF)
2659 && !is_gimple_val (TREE_OPERAND (op, 1)))
2660 return false;
2661
2662 op = TREE_OPERAND (op, 0);
2663 }
2664
2665 if (CONSTANT_CLASS_P (op) || INDIRECT_REF_P (op))
2666 return true;
2667
2668 switch (TREE_CODE (op))
2669 {
2670 case PARM_DECL:
2671 case RESULT_DECL:
2672 case LABEL_DECL:
2673 case FUNCTION_DECL:
2674 case VAR_DECL:
2675 case CONST_DECL:
2676 return true;
2677
2678 default:
2679 return false;
2680 }
2681 }
2682
2683 /* Strip out all handled components that produce invariant
2684 offsets. */
2685
2686 static const_tree
2687 strip_invariant_refs (const_tree op)
2688 {
2689 while (handled_component_p (op))
2690 {
2691 switch (TREE_CODE (op))
2692 {
2693 case ARRAY_REF:
2694 case ARRAY_RANGE_REF:
2695 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2696 || TREE_OPERAND (op, 2) != NULL_TREE
2697 || TREE_OPERAND (op, 3) != NULL_TREE)
2698 return NULL;
2699 break;
2700
2701 case COMPONENT_REF:
2702 if (TREE_OPERAND (op, 2) != NULL_TREE)
2703 return NULL;
2704 break;
2705
2706 default:;
2707 }
2708 op = TREE_OPERAND (op, 0);
2709 }
2710
2711 return op;
2712 }
2713
2714 /* Return true if T is a gimple invariant address. */
2715
2716 bool
2717 is_gimple_invariant_address (const_tree t)
2718 {
2719 const_tree op;
2720
2721 if (TREE_CODE (t) != ADDR_EXPR)
2722 return false;
2723
2724 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2725
2726 return op && (CONSTANT_CLASS_P (op) || decl_address_invariant_p (op));
2727 }
2728
2729 /* Return true if T is a gimple invariant address at IPA level
2730 (so addresses of variables on stack are not allowed). */
2731
2732 bool
2733 is_gimple_ip_invariant_address (const_tree t)
2734 {
2735 const_tree op;
2736
2737 if (TREE_CODE (t) != ADDR_EXPR)
2738 return false;
2739
2740 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2741
2742 return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op));
2743 }
2744
2745 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
2746 form of function invariant. */
2747
2748 bool
2749 is_gimple_min_invariant (const_tree t)
2750 {
2751 if (TREE_CODE (t) == ADDR_EXPR)
2752 return is_gimple_invariant_address (t);
2753
2754 return is_gimple_constant (t);
2755 }
2756
2757 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2758 form of gimple minimal invariant. */
2759
2760 bool
2761 is_gimple_ip_invariant (const_tree t)
2762 {
2763 if (TREE_CODE (t) == ADDR_EXPR)
2764 return is_gimple_ip_invariant_address (t);
2765
2766 return is_gimple_constant (t);
2767 }
2768
2769 /* Return true if T looks like a valid GIMPLE statement. */
2770
2771 bool
2772 is_gimple_stmt (tree t)
2773 {
2774 const enum tree_code code = TREE_CODE (t);
2775
2776 switch (code)
2777 {
2778 case NOP_EXPR:
2779 /* The only valid NOP_EXPR is the empty statement. */
2780 return IS_EMPTY_STMT (t);
2781
2782 case BIND_EXPR:
2783 case COND_EXPR:
2784 /* These are only valid if they're void. */
2785 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2786
2787 case SWITCH_EXPR:
2788 case GOTO_EXPR:
2789 case RETURN_EXPR:
2790 case LABEL_EXPR:
2791 case CASE_LABEL_EXPR:
2792 case TRY_CATCH_EXPR:
2793 case TRY_FINALLY_EXPR:
2794 case EH_FILTER_EXPR:
2795 case CATCH_EXPR:
2796 case CHANGE_DYNAMIC_TYPE_EXPR:
2797 case ASM_EXPR:
2798 case RESX_EXPR:
2799 case STATEMENT_LIST:
2800 case OMP_PARALLEL:
2801 case OMP_FOR:
2802 case OMP_SECTIONS:
2803 case OMP_SECTION:
2804 case OMP_SINGLE:
2805 case OMP_MASTER:
2806 case OMP_ORDERED:
2807 case OMP_CRITICAL:
2808 case OMP_TASK:
2809 /* These are always void. */
2810 return true;
2811
2812 case CALL_EXPR:
2813 case MODIFY_EXPR:
2814 case PREDICT_EXPR:
2815 /* These are valid regardless of their type. */
2816 return true;
2817
2818 default:
2819 return false;
2820 }
2821 }
2822
2823 /* Return true if T is a variable. */
2824
2825 bool
2826 is_gimple_variable (tree t)
2827 {
2828 return (TREE_CODE (t) == VAR_DECL
2829 || TREE_CODE (t) == PARM_DECL
2830 || TREE_CODE (t) == RESULT_DECL
2831 || TREE_CODE (t) == SSA_NAME);
2832 }
2833
2834 /* Return true if T is a GIMPLE identifier (something with an address). */
2835
2836 bool
2837 is_gimple_id (tree t)
2838 {
2839 return (is_gimple_variable (t)
2840 || TREE_CODE (t) == FUNCTION_DECL
2841 || TREE_CODE (t) == LABEL_DECL
2842 || TREE_CODE (t) == CONST_DECL
2843 /* Allow string constants, since they are addressable. */
2844 || TREE_CODE (t) == STRING_CST);
2845 }
2846
2847 /* Return true if TYPE is a suitable type for a scalar register variable. */
2848
2849 bool
2850 is_gimple_reg_type (tree type)
2851 {
2852 /* In addition to aggregate types, we also exclude complex types if not
2853 optimizing because they can be subject to partial stores in GNU C by
2854 means of the __real__ and __imag__ operators and we cannot promote
2855 them to total stores (see gimplify_modify_expr_complex_part). */
2856 return !(AGGREGATE_TYPE_P (type)
2857 || (TREE_CODE (type) == COMPLEX_TYPE && !optimize));
2858
2859 }
2860
2861 /* Return true if T is a non-aggregate register variable. */
2862
2863 bool
2864 is_gimple_reg (tree t)
2865 {
2866 if (TREE_CODE (t) == SSA_NAME)
2867 t = SSA_NAME_VAR (t);
2868
2869 if (MTAG_P (t))
2870 return false;
2871
2872 if (!is_gimple_variable (t))
2873 return false;
2874
2875 /* Complex and vector values must have been put into SSA-like form.
2876 That is, no assignments to the individual components. */
2877 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2878 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2879 return DECL_GIMPLE_REG_P (t);
2880
2881 if (!is_gimple_reg_type (TREE_TYPE (t)))
2882 return false;
2883
2884 /* A volatile decl is not acceptable because we can't reuse it as
2885 needed. We need to copy it into a temp first. */
2886 if (TREE_THIS_VOLATILE (t))
2887 return false;
2888
2889 /* We define "registers" as things that can be renamed as needed,
2890 which with our infrastructure does not apply to memory. */
2891 if (needs_to_live_in_memory (t))
2892 return false;
2893
2894 /* Hard register variables are an interesting case. For those that
2895 are call-clobbered, we don't know where all the calls are, since
2896 we don't (want to) take into account which operations will turn
2897 into libcalls at the rtl level. For those that are call-saved,
2898 we don't currently model the fact that calls may in fact change
2899 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2900 level, and so miss variable changes that might imply. All around,
2901 it seems safest to not do too much optimization with these at the
2902 tree level at all. We'll have to rely on the rtl optimizers to
2903 clean this up, as there we've got all the appropriate bits exposed. */
2904 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2905 return false;
2906
2907 return true;
2908 }
2909
2910
2911 /* Return true if T is a GIMPLE variable whose address is not needed. */
2912
2913 bool
2914 is_gimple_non_addressable (tree t)
2915 {
2916 if (TREE_CODE (t) == SSA_NAME)
2917 t = SSA_NAME_VAR (t);
2918
2919 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
2920 }
2921
2922 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2923
2924 bool
2925 is_gimple_val (tree t)
2926 {
2927 /* Make loads from volatiles and memory vars explicit. */
2928 if (is_gimple_variable (t)
2929 && is_gimple_reg_type (TREE_TYPE (t))
2930 && !is_gimple_reg (t))
2931 return false;
2932
2933 /* FIXME make these decls. That can happen only when we expose the
2934 entire landing-pad construct at the tree level. */
2935 if (TREE_CODE (t) == EXC_PTR_EXPR || TREE_CODE (t) == FILTER_EXPR)
2936 return true;
2937
2938 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2939 }
2940
2941 /* Similarly, but accept hard registers as inputs to asm statements. */
2942
2943 bool
2944 is_gimple_asm_val (tree t)
2945 {
2946 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2947 return true;
2948
2949 return is_gimple_val (t);
2950 }
2951
2952 /* Return true if T is a GIMPLE minimal lvalue. */
2953
2954 bool
2955 is_gimple_min_lval (tree t)
2956 {
2957 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
2958 return false;
2959 return (is_gimple_id (t) || TREE_CODE (t) == INDIRECT_REF);
2960 }
2961
2962 /* Return true if T is a typecast operation. */
2963
2964 bool
2965 is_gimple_cast (tree t)
2966 {
2967 return (CONVERT_EXPR_P (t)
2968 || TREE_CODE (t) == FIX_TRUNC_EXPR);
2969 }
2970
2971 /* Return true if T is a valid function operand of a CALL_EXPR. */
2972
2973 bool
2974 is_gimple_call_addr (tree t)
2975 {
2976 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
2977 }
2978
2979 /* If T makes a function call, return the corresponding CALL_EXPR operand.
2980 Otherwise, return NULL_TREE. */
2981
2982 tree
2983 get_call_expr_in (tree t)
2984 {
2985 if (TREE_CODE (t) == MODIFY_EXPR)
2986 t = TREE_OPERAND (t, 1);
2987 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2988 t = TREE_OPERAND (t, 0);
2989 if (TREE_CODE (t) == CALL_EXPR)
2990 return t;
2991 return NULL_TREE;
2992 }
2993
2994
2995 /* Given a memory reference expression T, return its base address.
2996 The base address of a memory reference expression is the main
2997 object being referenced. For instance, the base address for
2998 'array[i].fld[j]' is 'array'. You can think of this as stripping
2999 away the offset part from a memory address.
3000
3001 This function calls handled_component_p to strip away all the inner
3002 parts of the memory reference until it reaches the base object. */
3003
3004 tree
3005 get_base_address (tree t)
3006 {
3007 while (handled_component_p (t))
3008 t = TREE_OPERAND (t, 0);
3009
3010 if (SSA_VAR_P (t)
3011 || TREE_CODE (t) == STRING_CST
3012 || TREE_CODE (t) == CONSTRUCTOR
3013 || INDIRECT_REF_P (t))
3014 return t;
3015 else
3016 return NULL_TREE;
3017 }
3018
3019 void
3020 recalculate_side_effects (tree t)
3021 {
3022 enum tree_code code = TREE_CODE (t);
3023 int len = TREE_OPERAND_LENGTH (t);
3024 int i;
3025
3026 switch (TREE_CODE_CLASS (code))
3027 {
3028 case tcc_expression:
3029 switch (code)
3030 {
3031 case INIT_EXPR:
3032 case MODIFY_EXPR:
3033 case VA_ARG_EXPR:
3034 case PREDECREMENT_EXPR:
3035 case PREINCREMENT_EXPR:
3036 case POSTDECREMENT_EXPR:
3037 case POSTINCREMENT_EXPR:
3038 /* All of these have side-effects, no matter what their
3039 operands are. */
3040 return;
3041
3042 default:
3043 break;
3044 }
3045 /* Fall through. */
3046
3047 case tcc_comparison: /* a comparison expression */
3048 case tcc_unary: /* a unary arithmetic expression */
3049 case tcc_binary: /* a binary arithmetic expression */
3050 case tcc_reference: /* a reference */
3051 case tcc_vl_exp: /* a function call */
3052 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
3053 for (i = 0; i < len; ++i)
3054 {
3055 tree op = TREE_OPERAND (t, i);
3056 if (op && TREE_SIDE_EFFECTS (op))
3057 TREE_SIDE_EFFECTS (t) = 1;
3058 }
3059 break;
3060
3061 case tcc_constant:
3062 /* No side-effects. */
3063 return;
3064
3065 default:
3066 gcc_unreachable ();
3067 }
3068 }
3069
3070 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
3071 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
3072 we failed to create one. */
3073
3074 tree
3075 canonicalize_cond_expr_cond (tree t)
3076 {
3077 /* For (bool)x use x != 0. */
3078 if (TREE_CODE (t) == NOP_EXPR
3079 && TREE_TYPE (t) == boolean_type_node)
3080 {
3081 tree top0 = TREE_OPERAND (t, 0);
3082 t = build2 (NE_EXPR, TREE_TYPE (t),
3083 top0, build_int_cst (TREE_TYPE (top0), 0));
3084 }
3085 /* For !x use x == 0. */
3086 else if (TREE_CODE (t) == TRUTH_NOT_EXPR)
3087 {
3088 tree top0 = TREE_OPERAND (t, 0);
3089 t = build2 (EQ_EXPR, TREE_TYPE (t),
3090 top0, build_int_cst (TREE_TYPE (top0), 0));
3091 }
3092 /* For cmp ? 1 : 0 use cmp. */
3093 else if (TREE_CODE (t) == COND_EXPR
3094 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
3095 && integer_onep (TREE_OPERAND (t, 1))
3096 && integer_zerop (TREE_OPERAND (t, 2)))
3097 {
3098 tree top0 = TREE_OPERAND (t, 0);
3099 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
3100 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
3101 }
3102
3103 if (is_gimple_condexpr (t))
3104 return t;
3105
3106 return NULL_TREE;
3107 }
3108
3109 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
3110 the positions marked by the set ARGS_TO_SKIP. */
3111
3112 gimple
3113 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
3114 {
3115 int i;
3116 tree fn = gimple_call_fn (stmt);
3117 int nargs = gimple_call_num_args (stmt);
3118 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
3119 gimple new_stmt;
3120
3121 for (i = 0; i < nargs; i++)
3122 if (!bitmap_bit_p (args_to_skip, i))
3123 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
3124
3125 new_stmt = gimple_build_call_vec (fn, vargs);
3126 VEC_free (tree, heap, vargs);
3127 if (gimple_call_lhs (stmt))
3128 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
3129
3130 gimple_set_block (new_stmt, gimple_block (stmt));
3131 if (gimple_has_location (stmt))
3132 gimple_set_location (new_stmt, gimple_location (stmt));
3133
3134 /* Carry all the flags to the new GIMPLE_CALL. */
3135 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
3136 gimple_call_set_tail (new_stmt, gimple_call_tail_p (stmt));
3137 gimple_call_set_cannot_inline (new_stmt, gimple_call_cannot_inline_p (stmt));
3138 gimple_call_set_return_slot_opt (new_stmt, gimple_call_return_slot_opt_p (stmt));
3139 gimple_call_set_from_thunk (new_stmt, gimple_call_from_thunk_p (stmt));
3140 gimple_call_set_va_arg_pack (new_stmt, gimple_call_va_arg_pack_p (stmt));
3141 return new_stmt;
3142 }
3143
3144 #include "gt-gimple.h"
This page took 1.416316 seconds and 5 git commands to generate.