]> gcc.gnu.org Git - gcc.git/blob - gcc/gimple.c
80c2cf468315a284891940fc5c8ee9b9f275badd
[gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright 2007, 2008, 2009 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "ggc.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "gimple.h"
32 #include "toplev.h"
33 #include "diagnostic.h"
34 #include "tree-flow.h"
35 #include "value-prof.h"
36 #include "flags.h"
37 #include "alias.h"
38 #include "demangle.h"
39
40 /* Global type table. FIXME lto, it should be possible to re-use some
41 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
42 etc), but those assume that types were built with the various
43 build_*_type routines which is not the case with the streamer. */
44 static htab_t gimple_types;
45 static struct pointer_map_t *type_hash_cache;
46
47 /* Global type comparison cache. */
48 static htab_t gtc_visited;
49 static struct obstack gtc_ob;
50
51 /* All the tuples have their operand vector (if present) at the very bottom
52 of the structure. Therefore, the offset required to find the
53 operands vector the size of the structure minus the size of the 1
54 element tree array at the end (see gimple_ops). */
55 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
56 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
57 EXPORTED_CONST size_t gimple_ops_offset_[] = {
58 #include "gsstruct.def"
59 };
60 #undef DEFGSSTRUCT
61
62 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
63 static const size_t gsstruct_code_size[] = {
64 #include "gsstruct.def"
65 };
66 #undef DEFGSSTRUCT
67
68 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
69 const char *const gimple_code_name[] = {
70 #include "gimple.def"
71 };
72 #undef DEFGSCODE
73
74 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
75 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
76 #include "gimple.def"
77 };
78 #undef DEFGSCODE
79
80 #ifdef GATHER_STATISTICS
81 /* Gimple stats. */
82
83 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
84 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
85
86 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
87 static const char * const gimple_alloc_kind_names[] = {
88 "assignments",
89 "phi nodes",
90 "conditionals",
91 "sequences",
92 "everything else"
93 };
94
95 #endif /* GATHER_STATISTICS */
96
97 /* A cache of gimple_seq objects. Sequences are created and destroyed
98 fairly often during gimplification. */
99 static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
100
101 /* Private API manipulation functions shared only with some
102 other files. */
103 extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
104 extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
105
106 /* Gimple tuple constructors.
107 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
108 be passed a NULL to start with an empty sequence. */
109
110 /* Set the code for statement G to CODE. */
111
112 static inline void
113 gimple_set_code (gimple g, enum gimple_code code)
114 {
115 g->gsbase.code = code;
116 }
117
118 /* Return the number of bytes needed to hold a GIMPLE statement with
119 code CODE. */
120
121 static inline size_t
122 gimple_size (enum gimple_code code)
123 {
124 return gsstruct_code_size[gss_for_code (code)];
125 }
126
127 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
128 operands. */
129
130 gimple
131 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
132 {
133 size_t size;
134 gimple stmt;
135
136 size = gimple_size (code);
137 if (num_ops > 0)
138 size += sizeof (tree) * (num_ops - 1);
139
140 #ifdef GATHER_STATISTICS
141 {
142 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
143 gimple_alloc_counts[(int) kind]++;
144 gimple_alloc_sizes[(int) kind] += size;
145 }
146 #endif
147
148 stmt = (gimple) ggc_alloc_cleared_stat (size PASS_MEM_STAT);
149 gimple_set_code (stmt, code);
150 gimple_set_num_ops (stmt, num_ops);
151
152 /* Do not call gimple_set_modified here as it has other side
153 effects and this tuple is still not completely built. */
154 stmt->gsbase.modified = 1;
155
156 return stmt;
157 }
158
159 /* Set SUBCODE to be the code of the expression computed by statement G. */
160
161 static inline void
162 gimple_set_subcode (gimple g, unsigned subcode)
163 {
164 /* We only have 16 bits for the RHS code. Assert that we are not
165 overflowing it. */
166 gcc_assert (subcode < (1 << 16));
167 g->gsbase.subcode = subcode;
168 }
169
170
171
172 /* Build a tuple with operands. CODE is the statement to build (which
173 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
174 for the new tuple. NUM_OPS is the number of operands to allocate. */
175
176 #define gimple_build_with_ops(c, s, n) \
177 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
178
179 static gimple
180 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
181 unsigned num_ops MEM_STAT_DECL)
182 {
183 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
184 gimple_set_subcode (s, subcode);
185
186 return s;
187 }
188
189
190 /* Build a GIMPLE_RETURN statement returning RETVAL. */
191
192 gimple
193 gimple_build_return (tree retval)
194 {
195 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
196 if (retval)
197 gimple_return_set_retval (s, retval);
198 return s;
199 }
200
201 /* Helper for gimple_build_call, gimple_build_call_vec and
202 gimple_build_call_from_tree. Build the basic components of a
203 GIMPLE_CALL statement to function FN with NARGS arguments. */
204
205 static inline gimple
206 gimple_build_call_1 (tree fn, unsigned nargs)
207 {
208 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
209 if (TREE_CODE (fn) == FUNCTION_DECL)
210 fn = build_fold_addr_expr (fn);
211 gimple_set_op (s, 1, fn);
212 return s;
213 }
214
215
216 /* Build a GIMPLE_CALL statement to function FN with the arguments
217 specified in vector ARGS. */
218
219 gimple
220 gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
221 {
222 unsigned i;
223 unsigned nargs = VEC_length (tree, args);
224 gimple call = gimple_build_call_1 (fn, nargs);
225
226 for (i = 0; i < nargs; i++)
227 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
228
229 return call;
230 }
231
232
233 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
234 arguments. The ... are the arguments. */
235
236 gimple
237 gimple_build_call (tree fn, unsigned nargs, ...)
238 {
239 va_list ap;
240 gimple call;
241 unsigned i;
242
243 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
244
245 call = gimple_build_call_1 (fn, nargs);
246
247 va_start (ap, nargs);
248 for (i = 0; i < nargs; i++)
249 gimple_call_set_arg (call, i, va_arg (ap, tree));
250 va_end (ap);
251
252 return call;
253 }
254
255
256 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
257 assumed to be in GIMPLE form already. Minimal checking is done of
258 this fact. */
259
260 gimple
261 gimple_build_call_from_tree (tree t)
262 {
263 unsigned i, nargs;
264 gimple call;
265 tree fndecl = get_callee_fndecl (t);
266
267 gcc_assert (TREE_CODE (t) == CALL_EXPR);
268
269 nargs = call_expr_nargs (t);
270 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
271
272 for (i = 0; i < nargs; i++)
273 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
274
275 gimple_set_block (call, TREE_BLOCK (t));
276
277 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
278 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
279 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
280 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
281 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
282 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
283 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
284 gimple_set_no_warning (call, TREE_NO_WARNING (t));
285
286 return call;
287 }
288
289
290 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
291 *OP1_P and *OP2_P respectively. */
292
293 void
294 extract_ops_from_tree (tree expr, enum tree_code *subcode_p, tree *op1_p,
295 tree *op2_p)
296 {
297 enum gimple_rhs_class grhs_class;
298
299 *subcode_p = TREE_CODE (expr);
300 grhs_class = get_gimple_rhs_class (*subcode_p);
301
302 if (grhs_class == GIMPLE_BINARY_RHS)
303 {
304 *op1_p = TREE_OPERAND (expr, 0);
305 *op2_p = TREE_OPERAND (expr, 1);
306 }
307 else if (grhs_class == GIMPLE_UNARY_RHS)
308 {
309 *op1_p = TREE_OPERAND (expr, 0);
310 *op2_p = NULL_TREE;
311 }
312 else if (grhs_class == GIMPLE_SINGLE_RHS)
313 {
314 *op1_p = expr;
315 *op2_p = NULL_TREE;
316 }
317 else
318 gcc_unreachable ();
319 }
320
321
322 /* Build a GIMPLE_ASSIGN statement.
323
324 LHS of the assignment.
325 RHS of the assignment which can be unary or binary. */
326
327 gimple
328 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
329 {
330 enum tree_code subcode;
331 tree op1, op2;
332
333 extract_ops_from_tree (rhs, &subcode, &op1, &op2);
334 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2
335 PASS_MEM_STAT);
336 }
337
338
339 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
340 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
341 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
342
343 gimple
344 gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
345 tree op2 MEM_STAT_DECL)
346 {
347 unsigned num_ops;
348 gimple p;
349
350 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
351 code). */
352 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
353
354 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
355 PASS_MEM_STAT);
356 gimple_assign_set_lhs (p, lhs);
357 gimple_assign_set_rhs1 (p, op1);
358 if (op2)
359 {
360 gcc_assert (num_ops > 2);
361 gimple_assign_set_rhs2 (p, op2);
362 }
363
364 return p;
365 }
366
367
368 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
369
370 DST/SRC are the destination and source respectively. You can pass
371 ungimplified trees in DST or SRC, in which case they will be
372 converted to a gimple operand if necessary.
373
374 This function returns the newly created GIMPLE_ASSIGN tuple. */
375
376 gimple
377 gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
378 {
379 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
380 gimplify_and_add (t, seq_p);
381 ggc_free (t);
382 return gimple_seq_last_stmt (*seq_p);
383 }
384
385
386 /* Build a GIMPLE_COND statement.
387
388 PRED is the condition used to compare LHS and the RHS.
389 T_LABEL is the label to jump to if the condition is true.
390 F_LABEL is the label to jump to otherwise. */
391
392 gimple
393 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
394 tree t_label, tree f_label)
395 {
396 gimple p;
397
398 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
399 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
400 gimple_cond_set_lhs (p, lhs);
401 gimple_cond_set_rhs (p, rhs);
402 gimple_cond_set_true_label (p, t_label);
403 gimple_cond_set_false_label (p, f_label);
404 return p;
405 }
406
407
408 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
409
410 void
411 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
412 tree *lhs_p, tree *rhs_p)
413 {
414 location_t loc = EXPR_LOCATION (cond);
415 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
416 || TREE_CODE (cond) == TRUTH_NOT_EXPR
417 || is_gimple_min_invariant (cond)
418 || SSA_VAR_P (cond));
419
420 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
421
422 /* Canonicalize conditionals of the form 'if (!VAL)'. */
423 if (*code_p == TRUTH_NOT_EXPR)
424 {
425 *code_p = EQ_EXPR;
426 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
427 *rhs_p = fold_convert_loc (loc, TREE_TYPE (*lhs_p), integer_zero_node);
428 }
429 /* Canonicalize conditionals of the form 'if (VAL)' */
430 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
431 {
432 *code_p = NE_EXPR;
433 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
434 *rhs_p = fold_convert_loc (loc, TREE_TYPE (*lhs_p), integer_zero_node);
435 }
436 }
437
438
439 /* Build a GIMPLE_COND statement from the conditional expression tree
440 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
441
442 gimple
443 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
444 {
445 enum tree_code code;
446 tree lhs, rhs;
447
448 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
449 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
450 }
451
452 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
453 boolean expression tree COND. */
454
455 void
456 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
457 {
458 enum tree_code code;
459 tree lhs, rhs;
460
461 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
462 gimple_cond_set_condition (stmt, code, lhs, rhs);
463 }
464
465 /* Build a GIMPLE_LABEL statement for LABEL. */
466
467 gimple
468 gimple_build_label (tree label)
469 {
470 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
471 gimple_label_set_label (p, label);
472 return p;
473 }
474
475 /* Build a GIMPLE_GOTO statement to label DEST. */
476
477 gimple
478 gimple_build_goto (tree dest)
479 {
480 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
481 gimple_goto_set_dest (p, dest);
482 return p;
483 }
484
485
486 /* Build a GIMPLE_NOP statement. */
487
488 gimple
489 gimple_build_nop (void)
490 {
491 return gimple_alloc (GIMPLE_NOP, 0);
492 }
493
494
495 /* Build a GIMPLE_BIND statement.
496 VARS are the variables in BODY.
497 BLOCK is the containing block. */
498
499 gimple
500 gimple_build_bind (tree vars, gimple_seq body, tree block)
501 {
502 gimple p = gimple_alloc (GIMPLE_BIND, 0);
503 gimple_bind_set_vars (p, vars);
504 if (body)
505 gimple_bind_set_body (p, body);
506 if (block)
507 gimple_bind_set_block (p, block);
508 return p;
509 }
510
511 /* Helper function to set the simple fields of a asm stmt.
512
513 STRING is a pointer to a string that is the asm blocks assembly code.
514 NINPUT is the number of register inputs.
515 NOUTPUT is the number of register outputs.
516 NCLOBBERS is the number of clobbered registers.
517 */
518
519 static inline gimple
520 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
521 unsigned nclobbers, unsigned nlabels)
522 {
523 gimple p;
524 int size = strlen (string);
525
526 /* ASMs with labels cannot have outputs. This should have been
527 enforced by the front end. */
528 gcc_assert (nlabels == 0 || noutputs == 0);
529
530 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
531 ninputs + noutputs + nclobbers + nlabels);
532
533 p->gimple_asm.ni = ninputs;
534 p->gimple_asm.no = noutputs;
535 p->gimple_asm.nc = nclobbers;
536 p->gimple_asm.nl = nlabels;
537 p->gimple_asm.string = ggc_alloc_string (string, size);
538
539 #ifdef GATHER_STATISTICS
540 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
541 #endif
542
543 return p;
544 }
545
546 /* Build a GIMPLE_ASM statement.
547
548 STRING is the assembly code.
549 NINPUT is the number of register inputs.
550 NOUTPUT is the number of register outputs.
551 NCLOBBERS is the number of clobbered registers.
552 INPUTS is a vector of the input register parameters.
553 OUTPUTS is a vector of the output register parameters.
554 CLOBBERS is a vector of the clobbered register parameters.
555 LABELS is a vector of destination labels. */
556
557 gimple
558 gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
559 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers,
560 VEC(tree,gc)* labels)
561 {
562 gimple p;
563 unsigned i;
564
565 p = gimple_build_asm_1 (string,
566 VEC_length (tree, inputs),
567 VEC_length (tree, outputs),
568 VEC_length (tree, clobbers),
569 VEC_length (tree, labels));
570
571 for (i = 0; i < VEC_length (tree, inputs); i++)
572 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
573
574 for (i = 0; i < VEC_length (tree, outputs); i++)
575 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
576
577 for (i = 0; i < VEC_length (tree, clobbers); i++)
578 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
579
580 for (i = 0; i < VEC_length (tree, labels); i++)
581 gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i));
582
583 return p;
584 }
585
586 /* Build a GIMPLE_CATCH statement.
587
588 TYPES are the catch types.
589 HANDLER is the exception handler. */
590
591 gimple
592 gimple_build_catch (tree types, gimple_seq handler)
593 {
594 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
595 gimple_catch_set_types (p, types);
596 if (handler)
597 gimple_catch_set_handler (p, handler);
598
599 return p;
600 }
601
602 /* Build a GIMPLE_EH_FILTER statement.
603
604 TYPES are the filter's types.
605 FAILURE is the filter's failure action. */
606
607 gimple
608 gimple_build_eh_filter (tree types, gimple_seq failure)
609 {
610 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
611 gimple_eh_filter_set_types (p, types);
612 if (failure)
613 gimple_eh_filter_set_failure (p, failure);
614
615 return p;
616 }
617
618 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
619
620 gimple
621 gimple_build_eh_must_not_throw (tree decl)
622 {
623 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 1);
624
625 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
626 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
627 gimple_eh_must_not_throw_set_fndecl (p, decl);
628
629 return p;
630 }
631
632 /* Build a GIMPLE_TRY statement.
633
634 EVAL is the expression to evaluate.
635 CLEANUP is the cleanup expression.
636 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
637 whether this is a try/catch or a try/finally respectively. */
638
639 gimple
640 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
641 enum gimple_try_flags kind)
642 {
643 gimple p;
644
645 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
646 p = gimple_alloc (GIMPLE_TRY, 0);
647 gimple_set_subcode (p, kind);
648 if (eval)
649 gimple_try_set_eval (p, eval);
650 if (cleanup)
651 gimple_try_set_cleanup (p, cleanup);
652
653 return p;
654 }
655
656 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
657
658 CLEANUP is the cleanup expression. */
659
660 gimple
661 gimple_build_wce (gimple_seq cleanup)
662 {
663 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
664 if (cleanup)
665 gimple_wce_set_cleanup (p, cleanup);
666
667 return p;
668 }
669
670
671 /* Build a GIMPLE_RESX statement. */
672
673 gimple
674 gimple_build_resx (int region)
675 {
676 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
677 p->gimple_eh_ctrl.region = region;
678 return p;
679 }
680
681
682 /* The helper for constructing a gimple switch statement.
683 INDEX is the switch's index.
684 NLABELS is the number of labels in the switch excluding the default.
685 DEFAULT_LABEL is the default label for the switch statement. */
686
687 gimple
688 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
689 {
690 /* nlabels + 1 default label + 1 index. */
691 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
692 1 + (default_label != NULL) + nlabels);
693 gimple_switch_set_index (p, index);
694 if (default_label)
695 gimple_switch_set_default_label (p, default_label);
696 return p;
697 }
698
699
700 /* Build a GIMPLE_SWITCH statement.
701
702 INDEX is the switch's index.
703 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
704 ... are the labels excluding the default. */
705
706 gimple
707 gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
708 {
709 va_list al;
710 unsigned i, offset;
711 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
712
713 /* Store the rest of the labels. */
714 va_start (al, default_label);
715 offset = (default_label != NULL);
716 for (i = 0; i < nlabels; i++)
717 gimple_switch_set_label (p, i + offset, va_arg (al, tree));
718 va_end (al);
719
720 return p;
721 }
722
723
724 /* Build a GIMPLE_SWITCH statement.
725
726 INDEX is the switch's index.
727 DEFAULT_LABEL is the default label
728 ARGS is a vector of labels excluding the default. */
729
730 gimple
731 gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
732 {
733 unsigned i, offset, nlabels = VEC_length (tree, args);
734 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
735
736 /* Copy the labels from the vector to the switch statement. */
737 offset = (default_label != NULL);
738 for (i = 0; i < nlabels; i++)
739 gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i));
740
741 return p;
742 }
743
744 /* Build a GIMPLE_EH_DISPATCH statement. */
745
746 gimple
747 gimple_build_eh_dispatch (int region)
748 {
749 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
750 p->gimple_eh_ctrl.region = region;
751 return p;
752 }
753
754 /* Build a new GIMPLE_DEBUG_BIND statement.
755
756 VAR is bound to VALUE; block and location are taken from STMT. */
757
758 gimple
759 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
760 {
761 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
762 (unsigned)GIMPLE_DEBUG_BIND, 2
763 PASS_MEM_STAT);
764
765 gimple_debug_bind_set_var (p, var);
766 gimple_debug_bind_set_value (p, value);
767 if (stmt)
768 {
769 gimple_set_block (p, gimple_block (stmt));
770 gimple_set_location (p, gimple_location (stmt));
771 }
772
773 return p;
774 }
775
776
777 /* Build a GIMPLE_OMP_CRITICAL statement.
778
779 BODY is the sequence of statements for which only one thread can execute.
780 NAME is optional identifier for this critical block. */
781
782 gimple
783 gimple_build_omp_critical (gimple_seq body, tree name)
784 {
785 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
786 gimple_omp_critical_set_name (p, name);
787 if (body)
788 gimple_omp_set_body (p, body);
789
790 return p;
791 }
792
793 /* Build a GIMPLE_OMP_FOR statement.
794
795 BODY is sequence of statements inside the for loop.
796 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
797 lastprivate, reductions, ordered, schedule, and nowait.
798 COLLAPSE is the collapse count.
799 PRE_BODY is the sequence of statements that are loop invariant. */
800
801 gimple
802 gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
803 gimple_seq pre_body)
804 {
805 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
806 if (body)
807 gimple_omp_set_body (p, body);
808 gimple_omp_for_set_clauses (p, clauses);
809 p->gimple_omp_for.collapse = collapse;
810 p->gimple_omp_for.iter = GGC_CNEWVEC (struct gimple_omp_for_iter, collapse);
811 if (pre_body)
812 gimple_omp_for_set_pre_body (p, pre_body);
813
814 return p;
815 }
816
817
818 /* Build a GIMPLE_OMP_PARALLEL statement.
819
820 BODY is sequence of statements which are executed in parallel.
821 CLAUSES, are the OMP parallel construct's clauses.
822 CHILD_FN is the function created for the parallel threads to execute.
823 DATA_ARG are the shared data argument(s). */
824
825 gimple
826 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
827 tree data_arg)
828 {
829 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
830 if (body)
831 gimple_omp_set_body (p, body);
832 gimple_omp_parallel_set_clauses (p, clauses);
833 gimple_omp_parallel_set_child_fn (p, child_fn);
834 gimple_omp_parallel_set_data_arg (p, data_arg);
835
836 return p;
837 }
838
839
840 /* Build a GIMPLE_OMP_TASK statement.
841
842 BODY is sequence of statements which are executed by the explicit task.
843 CLAUSES, are the OMP parallel construct's clauses.
844 CHILD_FN is the function created for the parallel threads to execute.
845 DATA_ARG are the shared data argument(s).
846 COPY_FN is the optional function for firstprivate initialization.
847 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
848
849 gimple
850 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
851 tree data_arg, tree copy_fn, tree arg_size,
852 tree arg_align)
853 {
854 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
855 if (body)
856 gimple_omp_set_body (p, body);
857 gimple_omp_task_set_clauses (p, clauses);
858 gimple_omp_task_set_child_fn (p, child_fn);
859 gimple_omp_task_set_data_arg (p, data_arg);
860 gimple_omp_task_set_copy_fn (p, copy_fn);
861 gimple_omp_task_set_arg_size (p, arg_size);
862 gimple_omp_task_set_arg_align (p, arg_align);
863
864 return p;
865 }
866
867
868 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
869
870 BODY is the sequence of statements in the section. */
871
872 gimple
873 gimple_build_omp_section (gimple_seq body)
874 {
875 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
876 if (body)
877 gimple_omp_set_body (p, body);
878
879 return p;
880 }
881
882
883 /* Build a GIMPLE_OMP_MASTER statement.
884
885 BODY is the sequence of statements to be executed by just the master. */
886
887 gimple
888 gimple_build_omp_master (gimple_seq body)
889 {
890 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
891 if (body)
892 gimple_omp_set_body (p, body);
893
894 return p;
895 }
896
897
898 /* Build a GIMPLE_OMP_CONTINUE statement.
899
900 CONTROL_DEF is the definition of the control variable.
901 CONTROL_USE is the use of the control variable. */
902
903 gimple
904 gimple_build_omp_continue (tree control_def, tree control_use)
905 {
906 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
907 gimple_omp_continue_set_control_def (p, control_def);
908 gimple_omp_continue_set_control_use (p, control_use);
909 return p;
910 }
911
912 /* Build a GIMPLE_OMP_ORDERED statement.
913
914 BODY is the sequence of statements inside a loop that will executed in
915 sequence. */
916
917 gimple
918 gimple_build_omp_ordered (gimple_seq body)
919 {
920 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
921 if (body)
922 gimple_omp_set_body (p, body);
923
924 return p;
925 }
926
927
928 /* Build a GIMPLE_OMP_RETURN statement.
929 WAIT_P is true if this is a non-waiting return. */
930
931 gimple
932 gimple_build_omp_return (bool wait_p)
933 {
934 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
935 if (wait_p)
936 gimple_omp_return_set_nowait (p);
937
938 return p;
939 }
940
941
942 /* Build a GIMPLE_OMP_SECTIONS statement.
943
944 BODY is a sequence of section statements.
945 CLAUSES are any of the OMP sections contsruct's clauses: private,
946 firstprivate, lastprivate, reduction, and nowait. */
947
948 gimple
949 gimple_build_omp_sections (gimple_seq body, tree clauses)
950 {
951 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
952 if (body)
953 gimple_omp_set_body (p, body);
954 gimple_omp_sections_set_clauses (p, clauses);
955
956 return p;
957 }
958
959
960 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
961
962 gimple
963 gimple_build_omp_sections_switch (void)
964 {
965 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
966 }
967
968
969 /* Build a GIMPLE_OMP_SINGLE statement.
970
971 BODY is the sequence of statements that will be executed once.
972 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
973 copyprivate, nowait. */
974
975 gimple
976 gimple_build_omp_single (gimple_seq body, tree clauses)
977 {
978 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
979 if (body)
980 gimple_omp_set_body (p, body);
981 gimple_omp_single_set_clauses (p, clauses);
982
983 return p;
984 }
985
986
987 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
988
989 gimple
990 gimple_build_omp_atomic_load (tree lhs, tree rhs)
991 {
992 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
993 gimple_omp_atomic_load_set_lhs (p, lhs);
994 gimple_omp_atomic_load_set_rhs (p, rhs);
995 return p;
996 }
997
998 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
999
1000 VAL is the value we are storing. */
1001
1002 gimple
1003 gimple_build_omp_atomic_store (tree val)
1004 {
1005 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1006 gimple_omp_atomic_store_set_val (p, val);
1007 return p;
1008 }
1009
1010 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1011 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1012
1013 gimple
1014 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1015 {
1016 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1017 /* Ensure all the predictors fit into the lower bits of the subcode. */
1018 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1019 gimple_predict_set_predictor (p, predictor);
1020 gimple_predict_set_outcome (p, outcome);
1021 return p;
1022 }
1023
1024 #if defined ENABLE_GIMPLE_CHECKING
1025 /* Complain of a gimple type mismatch and die. */
1026
1027 void
1028 gimple_check_failed (const_gimple gs, const char *file, int line,
1029 const char *function, enum gimple_code code,
1030 enum tree_code subcode)
1031 {
1032 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1033 gimple_code_name[code],
1034 tree_code_name[subcode],
1035 gimple_code_name[gimple_code (gs)],
1036 gs->gsbase.subcode > 0
1037 ? tree_code_name[gs->gsbase.subcode]
1038 : "",
1039 function, trim_filename (file), line);
1040 }
1041 #endif /* ENABLE_GIMPLE_CHECKING */
1042
1043
1044 /* Allocate a new GIMPLE sequence in GC memory and return it. If
1045 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1046 instead. */
1047
1048 gimple_seq
1049 gimple_seq_alloc (void)
1050 {
1051 gimple_seq seq = gimple_seq_cache;
1052 if (seq)
1053 {
1054 gimple_seq_cache = gimple_seq_cache->next_free;
1055 gcc_assert (gimple_seq_cache != seq);
1056 memset (seq, 0, sizeof (*seq));
1057 }
1058 else
1059 {
1060 seq = (gimple_seq) ggc_alloc_cleared (sizeof (*seq));
1061 #ifdef GATHER_STATISTICS
1062 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1063 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1064 #endif
1065 }
1066
1067 return seq;
1068 }
1069
1070 /* Return SEQ to the free pool of GIMPLE sequences. */
1071
1072 void
1073 gimple_seq_free (gimple_seq seq)
1074 {
1075 if (seq == NULL)
1076 return;
1077
1078 gcc_assert (gimple_seq_first (seq) == NULL);
1079 gcc_assert (gimple_seq_last (seq) == NULL);
1080
1081 /* If this triggers, it's a sign that the same list is being freed
1082 twice. */
1083 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
1084
1085 /* Add SEQ to the pool of free sequences. */
1086 seq->next_free = gimple_seq_cache;
1087 gimple_seq_cache = seq;
1088 }
1089
1090
1091 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1092 *SEQ_P is NULL, a new sequence is allocated. */
1093
1094 void
1095 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1096 {
1097 gimple_stmt_iterator si;
1098
1099 if (gs == NULL)
1100 return;
1101
1102 if (*seq_p == NULL)
1103 *seq_p = gimple_seq_alloc ();
1104
1105 si = gsi_last (*seq_p);
1106 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1107 }
1108
1109
1110 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1111 NULL, a new sequence is allocated. */
1112
1113 void
1114 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1115 {
1116 gimple_stmt_iterator si;
1117
1118 if (src == NULL)
1119 return;
1120
1121 if (*dst_p == NULL)
1122 *dst_p = gimple_seq_alloc ();
1123
1124 si = gsi_last (*dst_p);
1125 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1126 }
1127
1128
1129 /* Helper function of empty_body_p. Return true if STMT is an empty
1130 statement. */
1131
1132 static bool
1133 empty_stmt_p (gimple stmt)
1134 {
1135 if (gimple_code (stmt) == GIMPLE_NOP)
1136 return true;
1137 if (gimple_code (stmt) == GIMPLE_BIND)
1138 return empty_body_p (gimple_bind_body (stmt));
1139 return false;
1140 }
1141
1142
1143 /* Return true if BODY contains nothing but empty statements. */
1144
1145 bool
1146 empty_body_p (gimple_seq body)
1147 {
1148 gimple_stmt_iterator i;
1149
1150 if (gimple_seq_empty_p (body))
1151 return true;
1152 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1153 if (!empty_stmt_p (gsi_stmt (i))
1154 && !is_gimple_debug (gsi_stmt (i)))
1155 return false;
1156
1157 return true;
1158 }
1159
1160
1161 /* Perform a deep copy of sequence SRC and return the result. */
1162
1163 gimple_seq
1164 gimple_seq_copy (gimple_seq src)
1165 {
1166 gimple_stmt_iterator gsi;
1167 gimple_seq new_seq = gimple_seq_alloc ();
1168 gimple stmt;
1169
1170 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1171 {
1172 stmt = gimple_copy (gsi_stmt (gsi));
1173 gimple_seq_add_stmt (&new_seq, stmt);
1174 }
1175
1176 return new_seq;
1177 }
1178
1179
1180 /* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1181 on each one. WI is as in walk_gimple_stmt.
1182
1183 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1184 value is stored in WI->CALLBACK_RESULT and the statement that
1185 produced the value is returned.
1186
1187 Otherwise, all the statements are walked and NULL returned. */
1188
1189 gimple
1190 walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1191 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1192 {
1193 gimple_stmt_iterator gsi;
1194
1195 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1196 {
1197 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1198 if (ret)
1199 {
1200 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1201 to hold it. */
1202 gcc_assert (wi);
1203 wi->callback_result = ret;
1204 return gsi_stmt (gsi);
1205 }
1206 }
1207
1208 if (wi)
1209 wi->callback_result = NULL_TREE;
1210
1211 return NULL;
1212 }
1213
1214
1215 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1216
1217 static tree
1218 walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1219 struct walk_stmt_info *wi)
1220 {
1221 tree ret, op;
1222 unsigned noutputs;
1223 const char **oconstraints;
1224 unsigned i, n;
1225 const char *constraint;
1226 bool allows_mem, allows_reg, is_inout;
1227
1228 noutputs = gimple_asm_noutputs (stmt);
1229 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1230
1231 if (wi)
1232 wi->is_lhs = true;
1233
1234 for (i = 0; i < noutputs; i++)
1235 {
1236 op = gimple_asm_output_op (stmt, i);
1237 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1238 oconstraints[i] = constraint;
1239 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1240 &is_inout);
1241 if (wi)
1242 wi->val_only = (allows_reg || !allows_mem);
1243 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1244 if (ret)
1245 return ret;
1246 }
1247
1248 n = gimple_asm_ninputs (stmt);
1249 for (i = 0; i < n; i++)
1250 {
1251 op = gimple_asm_input_op (stmt, i);
1252 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1253 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1254 oconstraints, &allows_mem, &allows_reg);
1255 if (wi)
1256 {
1257 wi->val_only = (allows_reg || !allows_mem);
1258 /* Although input "m" is not really a LHS, we need a lvalue. */
1259 wi->is_lhs = !wi->val_only;
1260 }
1261 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1262 if (ret)
1263 return ret;
1264 }
1265
1266 if (wi)
1267 {
1268 wi->is_lhs = false;
1269 wi->val_only = true;
1270 }
1271
1272 n = gimple_asm_nlabels (stmt);
1273 for (i = 0; i < n; i++)
1274 {
1275 op = gimple_asm_label_op (stmt, i);
1276 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1277 if (ret)
1278 return ret;
1279 }
1280
1281 return NULL_TREE;
1282 }
1283
1284
1285 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1286 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1287
1288 CALLBACK_OP is called on each operand of STMT via walk_tree.
1289 Additional parameters to walk_tree must be stored in WI. For each operand
1290 OP, walk_tree is called as:
1291
1292 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1293
1294 If CALLBACK_OP returns non-NULL for an operand, the remaining
1295 operands are not scanned.
1296
1297 The return value is that returned by the last call to walk_tree, or
1298 NULL_TREE if no CALLBACK_OP is specified. */
1299
1300 inline tree
1301 walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1302 struct walk_stmt_info *wi)
1303 {
1304 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1305 unsigned i;
1306 tree ret = NULL_TREE;
1307
1308 switch (gimple_code (stmt))
1309 {
1310 case GIMPLE_ASSIGN:
1311 /* Walk the RHS operands. A formal temporary LHS may use a
1312 COMPONENT_REF RHS. */
1313 if (wi)
1314 wi->val_only = !is_gimple_reg (gimple_assign_lhs (stmt))
1315 || !gimple_assign_single_p (stmt);
1316
1317 for (i = 1; i < gimple_num_ops (stmt); i++)
1318 {
1319 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1320 pset);
1321 if (ret)
1322 return ret;
1323 }
1324
1325 /* Walk the LHS. If the RHS is appropriate for a memory, we
1326 may use a COMPONENT_REF on the LHS. */
1327 if (wi)
1328 {
1329 /* If the RHS has more than 1 operand, it is not appropriate
1330 for the memory. */
1331 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1332 || !gimple_assign_single_p (stmt);
1333 wi->is_lhs = true;
1334 }
1335
1336 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1337 if (ret)
1338 return ret;
1339
1340 if (wi)
1341 {
1342 wi->val_only = true;
1343 wi->is_lhs = false;
1344 }
1345 break;
1346
1347 case GIMPLE_CALL:
1348 if (wi)
1349 wi->is_lhs = false;
1350
1351 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1352 if (ret)
1353 return ret;
1354
1355 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1356 if (ret)
1357 return ret;
1358
1359 for (i = 0; i < gimple_call_num_args (stmt); i++)
1360 {
1361 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1362 pset);
1363 if (ret)
1364 return ret;
1365 }
1366
1367 if (wi)
1368 wi->is_lhs = true;
1369
1370 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1371 if (ret)
1372 return ret;
1373
1374 if (wi)
1375 wi->is_lhs = false;
1376 break;
1377
1378 case GIMPLE_CATCH:
1379 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1380 pset);
1381 if (ret)
1382 return ret;
1383 break;
1384
1385 case GIMPLE_EH_FILTER:
1386 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1387 pset);
1388 if (ret)
1389 return ret;
1390 break;
1391
1392 case GIMPLE_ASM:
1393 ret = walk_gimple_asm (stmt, callback_op, wi);
1394 if (ret)
1395 return ret;
1396 break;
1397
1398 case GIMPLE_OMP_CONTINUE:
1399 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1400 callback_op, wi, pset);
1401 if (ret)
1402 return ret;
1403
1404 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1405 callback_op, wi, pset);
1406 if (ret)
1407 return ret;
1408 break;
1409
1410 case GIMPLE_OMP_CRITICAL:
1411 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1412 pset);
1413 if (ret)
1414 return ret;
1415 break;
1416
1417 case GIMPLE_OMP_FOR:
1418 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1419 pset);
1420 if (ret)
1421 return ret;
1422 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1423 {
1424 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1425 wi, pset);
1426 if (ret)
1427 return ret;
1428 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1429 wi, pset);
1430 if (ret)
1431 return ret;
1432 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1433 wi, pset);
1434 if (ret)
1435 return ret;
1436 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1437 wi, pset);
1438 }
1439 if (ret)
1440 return ret;
1441 break;
1442
1443 case GIMPLE_OMP_PARALLEL:
1444 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1445 wi, pset);
1446 if (ret)
1447 return ret;
1448 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1449 wi, pset);
1450 if (ret)
1451 return ret;
1452 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1453 wi, pset);
1454 if (ret)
1455 return ret;
1456 break;
1457
1458 case GIMPLE_OMP_TASK:
1459 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1460 wi, pset);
1461 if (ret)
1462 return ret;
1463 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1464 wi, pset);
1465 if (ret)
1466 return ret;
1467 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1468 wi, pset);
1469 if (ret)
1470 return ret;
1471 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1472 wi, pset);
1473 if (ret)
1474 return ret;
1475 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1476 wi, pset);
1477 if (ret)
1478 return ret;
1479 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1480 wi, pset);
1481 if (ret)
1482 return ret;
1483 break;
1484
1485 case GIMPLE_OMP_SECTIONS:
1486 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1487 wi, pset);
1488 if (ret)
1489 return ret;
1490
1491 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1492 wi, pset);
1493 if (ret)
1494 return ret;
1495
1496 break;
1497
1498 case GIMPLE_OMP_SINGLE:
1499 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1500 pset);
1501 if (ret)
1502 return ret;
1503 break;
1504
1505 case GIMPLE_OMP_ATOMIC_LOAD:
1506 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1507 pset);
1508 if (ret)
1509 return ret;
1510
1511 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1512 pset);
1513 if (ret)
1514 return ret;
1515 break;
1516
1517 case GIMPLE_OMP_ATOMIC_STORE:
1518 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1519 wi, pset);
1520 if (ret)
1521 return ret;
1522 break;
1523
1524 /* Tuples that do not have operands. */
1525 case GIMPLE_NOP:
1526 case GIMPLE_RESX:
1527 case GIMPLE_OMP_RETURN:
1528 case GIMPLE_PREDICT:
1529 break;
1530
1531 default:
1532 {
1533 enum gimple_statement_structure_enum gss;
1534 gss = gimple_statement_structure (stmt);
1535 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1536 for (i = 0; i < gimple_num_ops (stmt); i++)
1537 {
1538 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1539 if (ret)
1540 return ret;
1541 }
1542 }
1543 break;
1544 }
1545
1546 return NULL_TREE;
1547 }
1548
1549
1550 /* Walk the current statement in GSI (optionally using traversal state
1551 stored in WI). If WI is NULL, no state is kept during traversal.
1552 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1553 that it has handled all the operands of the statement, its return
1554 value is returned. Otherwise, the return value from CALLBACK_STMT
1555 is discarded and its operands are scanned.
1556
1557 If CALLBACK_STMT is NULL or it didn't handle the operands,
1558 CALLBACK_OP is called on each operand of the statement via
1559 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1560 operand, the remaining operands are not scanned. In this case, the
1561 return value from CALLBACK_OP is returned.
1562
1563 In any other case, NULL_TREE is returned. */
1564
1565 tree
1566 walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1567 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1568 {
1569 gimple ret;
1570 tree tree_ret;
1571 gimple stmt = gsi_stmt (*gsi);
1572
1573 if (wi)
1574 wi->gsi = *gsi;
1575
1576 if (wi && wi->want_locations && gimple_has_location (stmt))
1577 input_location = gimple_location (stmt);
1578
1579 ret = NULL;
1580
1581 /* Invoke the statement callback. Return if the callback handled
1582 all of STMT operands by itself. */
1583 if (callback_stmt)
1584 {
1585 bool handled_ops = false;
1586 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1587 if (handled_ops)
1588 return tree_ret;
1589
1590 /* If CALLBACK_STMT did not handle operands, it should not have
1591 a value to return. */
1592 gcc_assert (tree_ret == NULL);
1593
1594 /* Re-read stmt in case the callback changed it. */
1595 stmt = gsi_stmt (*gsi);
1596 }
1597
1598 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1599 if (callback_op)
1600 {
1601 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1602 if (tree_ret)
1603 return tree_ret;
1604 }
1605
1606 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1607 switch (gimple_code (stmt))
1608 {
1609 case GIMPLE_BIND:
1610 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1611 callback_op, wi);
1612 if (ret)
1613 return wi->callback_result;
1614 break;
1615
1616 case GIMPLE_CATCH:
1617 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1618 callback_op, wi);
1619 if (ret)
1620 return wi->callback_result;
1621 break;
1622
1623 case GIMPLE_EH_FILTER:
1624 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1625 callback_op, wi);
1626 if (ret)
1627 return wi->callback_result;
1628 break;
1629
1630 case GIMPLE_TRY:
1631 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1632 wi);
1633 if (ret)
1634 return wi->callback_result;
1635
1636 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1637 callback_op, wi);
1638 if (ret)
1639 return wi->callback_result;
1640 break;
1641
1642 case GIMPLE_OMP_FOR:
1643 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1644 callback_op, wi);
1645 if (ret)
1646 return wi->callback_result;
1647
1648 /* FALL THROUGH. */
1649 case GIMPLE_OMP_CRITICAL:
1650 case GIMPLE_OMP_MASTER:
1651 case GIMPLE_OMP_ORDERED:
1652 case GIMPLE_OMP_SECTION:
1653 case GIMPLE_OMP_PARALLEL:
1654 case GIMPLE_OMP_TASK:
1655 case GIMPLE_OMP_SECTIONS:
1656 case GIMPLE_OMP_SINGLE:
1657 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1658 wi);
1659 if (ret)
1660 return wi->callback_result;
1661 break;
1662
1663 case GIMPLE_WITH_CLEANUP_EXPR:
1664 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1665 callback_op, wi);
1666 if (ret)
1667 return wi->callback_result;
1668 break;
1669
1670 default:
1671 gcc_assert (!gimple_has_substatements (stmt));
1672 break;
1673 }
1674
1675 return NULL;
1676 }
1677
1678
1679 /* Set sequence SEQ to be the GIMPLE body for function FN. */
1680
1681 void
1682 gimple_set_body (tree fndecl, gimple_seq seq)
1683 {
1684 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1685 if (fn == NULL)
1686 {
1687 /* If FNDECL still does not have a function structure associated
1688 with it, then it does not make sense for it to receive a
1689 GIMPLE body. */
1690 gcc_assert (seq == NULL);
1691 }
1692 else
1693 fn->gimple_body = seq;
1694 }
1695
1696
1697 /* Return the body of GIMPLE statements for function FN. */
1698
1699 gimple_seq
1700 gimple_body (tree fndecl)
1701 {
1702 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1703 return fn ? fn->gimple_body : NULL;
1704 }
1705
1706 /* Return true when FNDECL has Gimple body either in unlowered
1707 or CFG form. */
1708 bool
1709 gimple_has_body_p (tree fndecl)
1710 {
1711 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1712 return (gimple_body (fndecl) || (fn && fn->cfg));
1713 }
1714
1715 /* Detect flags from a GIMPLE_CALL. This is just like
1716 call_expr_flags, but for gimple tuples. */
1717
1718 int
1719 gimple_call_flags (const_gimple stmt)
1720 {
1721 int flags;
1722 tree decl = gimple_call_fndecl (stmt);
1723 tree t;
1724
1725 if (decl)
1726 flags = flags_from_decl_or_type (decl);
1727 else
1728 {
1729 t = TREE_TYPE (gimple_call_fn (stmt));
1730 if (t && TREE_CODE (t) == POINTER_TYPE)
1731 flags = flags_from_decl_or_type (TREE_TYPE (t));
1732 else
1733 flags = 0;
1734 }
1735
1736 return flags;
1737 }
1738
1739
1740 /* Return true if GS is a copy assignment. */
1741
1742 bool
1743 gimple_assign_copy_p (gimple gs)
1744 {
1745 return gimple_code (gs) == GIMPLE_ASSIGN
1746 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1747 == GIMPLE_SINGLE_RHS
1748 && is_gimple_val (gimple_op (gs, 1));
1749 }
1750
1751
1752 /* Return true if GS is a SSA_NAME copy assignment. */
1753
1754 bool
1755 gimple_assign_ssa_name_copy_p (gimple gs)
1756 {
1757 return (gimple_code (gs) == GIMPLE_ASSIGN
1758 && (get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1759 == GIMPLE_SINGLE_RHS)
1760 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1761 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1762 }
1763
1764
1765 /* Return true if GS is an assignment with a singleton RHS, i.e.,
1766 there is no operator associated with the assignment itself.
1767 Unlike gimple_assign_copy_p, this predicate returns true for
1768 any RHS operand, including those that perform an operation
1769 and do not have the semantics of a copy, such as COND_EXPR. */
1770
1771 bool
1772 gimple_assign_single_p (gimple gs)
1773 {
1774 return (gimple_code (gs) == GIMPLE_ASSIGN
1775 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1776 == GIMPLE_SINGLE_RHS);
1777 }
1778
1779 /* Return true if GS is an assignment with a unary RHS, but the
1780 operator has no effect on the assigned value. The logic is adapted
1781 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1782 instances in which STRIP_NOPS was previously applied to the RHS of
1783 an assignment.
1784
1785 NOTE: In the use cases that led to the creation of this function
1786 and of gimple_assign_single_p, it is typical to test for either
1787 condition and to proceed in the same manner. In each case, the
1788 assigned value is represented by the single RHS operand of the
1789 assignment. I suspect there may be cases where gimple_assign_copy_p,
1790 gimple_assign_single_p, or equivalent logic is used where a similar
1791 treatment of unary NOPs is appropriate. */
1792
1793 bool
1794 gimple_assign_unary_nop_p (gimple gs)
1795 {
1796 return (gimple_code (gs) == GIMPLE_ASSIGN
1797 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1798 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1799 && gimple_assign_rhs1 (gs) != error_mark_node
1800 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1801 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1802 }
1803
1804 /* Set BB to be the basic block holding G. */
1805
1806 void
1807 gimple_set_bb (gimple stmt, basic_block bb)
1808 {
1809 stmt->gsbase.bb = bb;
1810
1811 /* If the statement is a label, add the label to block-to-labels map
1812 so that we can speed up edge creation for GIMPLE_GOTOs. */
1813 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
1814 {
1815 tree t;
1816 int uid;
1817
1818 t = gimple_label_label (stmt);
1819 uid = LABEL_DECL_UID (t);
1820 if (uid == -1)
1821 {
1822 unsigned old_len = VEC_length (basic_block, label_to_block_map);
1823 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1824 if (old_len <= (unsigned) uid)
1825 {
1826 unsigned new_len = 3 * uid / 2 + 1;
1827
1828 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
1829 new_len);
1830 }
1831 }
1832
1833 VEC_replace (basic_block, label_to_block_map, uid, bb);
1834 }
1835 }
1836
1837
1838 /* Fold the expression computed by STMT. If the expression can be
1839 folded, return the folded result, otherwise return NULL. STMT is
1840 not modified. */
1841
1842 tree
1843 gimple_fold (const_gimple stmt)
1844 {
1845 location_t loc = gimple_location (stmt);
1846 switch (gimple_code (stmt))
1847 {
1848 case GIMPLE_COND:
1849 return fold_binary_loc (loc, gimple_cond_code (stmt),
1850 boolean_type_node,
1851 gimple_cond_lhs (stmt),
1852 gimple_cond_rhs (stmt));
1853
1854 case GIMPLE_ASSIGN:
1855 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
1856 {
1857 case GIMPLE_UNARY_RHS:
1858 return fold_unary_loc (loc, gimple_assign_rhs_code (stmt),
1859 TREE_TYPE (gimple_assign_lhs (stmt)),
1860 gimple_assign_rhs1 (stmt));
1861 case GIMPLE_BINARY_RHS:
1862 return fold_binary_loc (loc, gimple_assign_rhs_code (stmt),
1863 TREE_TYPE (gimple_assign_lhs (stmt)),
1864 gimple_assign_rhs1 (stmt),
1865 gimple_assign_rhs2 (stmt));
1866 case GIMPLE_SINGLE_RHS:
1867 return fold (gimple_assign_rhs1 (stmt));
1868 default:;
1869 }
1870 break;
1871
1872 case GIMPLE_SWITCH:
1873 return gimple_switch_index (stmt);
1874
1875 case GIMPLE_CALL:
1876 return NULL_TREE;
1877
1878 default:
1879 break;
1880 }
1881
1882 gcc_unreachable ();
1883 }
1884
1885
1886 /* Modify the RHS of the assignment pointed-to by GSI using the
1887 operands in the expression tree EXPR.
1888
1889 NOTE: The statement pointed-to by GSI may be reallocated if it
1890 did not have enough operand slots.
1891
1892 This function is useful to convert an existing tree expression into
1893 the flat representation used for the RHS of a GIMPLE assignment.
1894 It will reallocate memory as needed to expand or shrink the number
1895 of operand slots needed to represent EXPR.
1896
1897 NOTE: If you find yourself building a tree and then calling this
1898 function, you are most certainly doing it the slow way. It is much
1899 better to build a new assignment or to use the function
1900 gimple_assign_set_rhs_with_ops, which does not require an
1901 expression tree to be built. */
1902
1903 void
1904 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1905 {
1906 enum tree_code subcode;
1907 tree op1, op2;
1908
1909 extract_ops_from_tree (expr, &subcode, &op1, &op2);
1910 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2);
1911 }
1912
1913
1914 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1915 operands OP1 and OP2.
1916
1917 NOTE: The statement pointed-to by GSI may be reallocated if it
1918 did not have enough operand slots. */
1919
1920 void
1921 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1922 tree op1, tree op2)
1923 {
1924 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1925 gimple stmt = gsi_stmt (*gsi);
1926
1927 /* If the new CODE needs more operands, allocate a new statement. */
1928 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1929 {
1930 tree lhs = gimple_assign_lhs (stmt);
1931 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1932 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1933 gsi_replace (gsi, new_stmt, true);
1934 stmt = new_stmt;
1935
1936 /* The LHS needs to be reset as this also changes the SSA name
1937 on the LHS. */
1938 gimple_assign_set_lhs (stmt, lhs);
1939 }
1940
1941 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1942 gimple_set_subcode (stmt, code);
1943 gimple_assign_set_rhs1 (stmt, op1);
1944 if (new_rhs_ops > 1)
1945 gimple_assign_set_rhs2 (stmt, op2);
1946 }
1947
1948
1949 /* Return the LHS of a statement that performs an assignment,
1950 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1951 for a call to a function that returns no value, or for a
1952 statement other than an assignment or a call. */
1953
1954 tree
1955 gimple_get_lhs (const_gimple stmt)
1956 {
1957 enum gimple_code code = gimple_code (stmt);
1958
1959 if (code == GIMPLE_ASSIGN)
1960 return gimple_assign_lhs (stmt);
1961 else if (code == GIMPLE_CALL)
1962 return gimple_call_lhs (stmt);
1963 else
1964 return NULL_TREE;
1965 }
1966
1967
1968 /* Set the LHS of a statement that performs an assignment,
1969 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1970
1971 void
1972 gimple_set_lhs (gimple stmt, tree lhs)
1973 {
1974 enum gimple_code code = gimple_code (stmt);
1975
1976 if (code == GIMPLE_ASSIGN)
1977 gimple_assign_set_lhs (stmt, lhs);
1978 else if (code == GIMPLE_CALL)
1979 gimple_call_set_lhs (stmt, lhs);
1980 else
1981 gcc_unreachable();
1982 }
1983
1984
1985 /* Return a deep copy of statement STMT. All the operands from STMT
1986 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1987 and VUSE operand arrays are set to empty in the new copy. */
1988
1989 gimple
1990 gimple_copy (gimple stmt)
1991 {
1992 enum gimple_code code = gimple_code (stmt);
1993 unsigned num_ops = gimple_num_ops (stmt);
1994 gimple copy = gimple_alloc (code, num_ops);
1995 unsigned i;
1996
1997 /* Shallow copy all the fields from STMT. */
1998 memcpy (copy, stmt, gimple_size (code));
1999
2000 /* If STMT has sub-statements, deep-copy them as well. */
2001 if (gimple_has_substatements (stmt))
2002 {
2003 gimple_seq new_seq;
2004 tree t;
2005
2006 switch (gimple_code (stmt))
2007 {
2008 case GIMPLE_BIND:
2009 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2010 gimple_bind_set_body (copy, new_seq);
2011 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2012 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2013 break;
2014
2015 case GIMPLE_CATCH:
2016 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2017 gimple_catch_set_handler (copy, new_seq);
2018 t = unshare_expr (gimple_catch_types (stmt));
2019 gimple_catch_set_types (copy, t);
2020 break;
2021
2022 case GIMPLE_EH_FILTER:
2023 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2024 gimple_eh_filter_set_failure (copy, new_seq);
2025 t = unshare_expr (gimple_eh_filter_types (stmt));
2026 gimple_eh_filter_set_types (copy, t);
2027 break;
2028
2029 case GIMPLE_TRY:
2030 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2031 gimple_try_set_eval (copy, new_seq);
2032 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2033 gimple_try_set_cleanup (copy, new_seq);
2034 break;
2035
2036 case GIMPLE_OMP_FOR:
2037 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2038 gimple_omp_for_set_pre_body (copy, new_seq);
2039 t = unshare_expr (gimple_omp_for_clauses (stmt));
2040 gimple_omp_for_set_clauses (copy, t);
2041 copy->gimple_omp_for.iter
2042 = GGC_NEWVEC (struct gimple_omp_for_iter,
2043 gimple_omp_for_collapse (stmt));
2044 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2045 {
2046 gimple_omp_for_set_cond (copy, i,
2047 gimple_omp_for_cond (stmt, i));
2048 gimple_omp_for_set_index (copy, i,
2049 gimple_omp_for_index (stmt, i));
2050 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2051 gimple_omp_for_set_initial (copy, i, t);
2052 t = unshare_expr (gimple_omp_for_final (stmt, i));
2053 gimple_omp_for_set_final (copy, i, t);
2054 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2055 gimple_omp_for_set_incr (copy, i, t);
2056 }
2057 goto copy_omp_body;
2058
2059 case GIMPLE_OMP_PARALLEL:
2060 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2061 gimple_omp_parallel_set_clauses (copy, t);
2062 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2063 gimple_omp_parallel_set_child_fn (copy, t);
2064 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2065 gimple_omp_parallel_set_data_arg (copy, t);
2066 goto copy_omp_body;
2067
2068 case GIMPLE_OMP_TASK:
2069 t = unshare_expr (gimple_omp_task_clauses (stmt));
2070 gimple_omp_task_set_clauses (copy, t);
2071 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2072 gimple_omp_task_set_child_fn (copy, t);
2073 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2074 gimple_omp_task_set_data_arg (copy, t);
2075 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2076 gimple_omp_task_set_copy_fn (copy, t);
2077 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2078 gimple_omp_task_set_arg_size (copy, t);
2079 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2080 gimple_omp_task_set_arg_align (copy, t);
2081 goto copy_omp_body;
2082
2083 case GIMPLE_OMP_CRITICAL:
2084 t = unshare_expr (gimple_omp_critical_name (stmt));
2085 gimple_omp_critical_set_name (copy, t);
2086 goto copy_omp_body;
2087
2088 case GIMPLE_OMP_SECTIONS:
2089 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2090 gimple_omp_sections_set_clauses (copy, t);
2091 t = unshare_expr (gimple_omp_sections_control (stmt));
2092 gimple_omp_sections_set_control (copy, t);
2093 /* FALLTHRU */
2094
2095 case GIMPLE_OMP_SINGLE:
2096 case GIMPLE_OMP_SECTION:
2097 case GIMPLE_OMP_MASTER:
2098 case GIMPLE_OMP_ORDERED:
2099 copy_omp_body:
2100 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2101 gimple_omp_set_body (copy, new_seq);
2102 break;
2103
2104 case GIMPLE_WITH_CLEANUP_EXPR:
2105 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2106 gimple_wce_set_cleanup (copy, new_seq);
2107 break;
2108
2109 default:
2110 gcc_unreachable ();
2111 }
2112 }
2113
2114 /* Make copy of operands. */
2115 if (num_ops > 0)
2116 {
2117 for (i = 0; i < num_ops; i++)
2118 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2119
2120 /* Clear out SSA operand vectors on COPY. */
2121 if (gimple_has_ops (stmt))
2122 {
2123 gimple_set_def_ops (copy, NULL);
2124 gimple_set_use_ops (copy, NULL);
2125 }
2126
2127 if (gimple_has_mem_ops (stmt))
2128 {
2129 gimple_set_vdef (copy, gimple_vdef (stmt));
2130 gimple_set_vuse (copy, gimple_vuse (stmt));
2131 }
2132
2133 /* SSA operands need to be updated. */
2134 gimple_set_modified (copy, true);
2135 }
2136
2137 return copy;
2138 }
2139
2140
2141 /* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2142 a MODIFIED field. */
2143
2144 void
2145 gimple_set_modified (gimple s, bool modifiedp)
2146 {
2147 if (gimple_has_ops (s))
2148 {
2149 s->gsbase.modified = (unsigned) modifiedp;
2150
2151 if (modifiedp
2152 && cfun->gimple_df
2153 && is_gimple_call (s)
2154 && gimple_call_noreturn_p (s))
2155 VEC_safe_push (gimple, gc, MODIFIED_NORETURN_CALLS (cfun), s);
2156 }
2157 }
2158
2159
2160 /* Return true if statement S has side-effects. We consider a
2161 statement to have side effects if:
2162
2163 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2164 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2165
2166 bool
2167 gimple_has_side_effects (const_gimple s)
2168 {
2169 unsigned i;
2170
2171 if (is_gimple_debug (s))
2172 return false;
2173
2174 /* We don't have to scan the arguments to check for
2175 volatile arguments, though, at present, we still
2176 do a scan to check for TREE_SIDE_EFFECTS. */
2177 if (gimple_has_volatile_ops (s))
2178 return true;
2179
2180 if (is_gimple_call (s))
2181 {
2182 unsigned nargs = gimple_call_num_args (s);
2183
2184 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2185 return true;
2186 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2187 /* An infinite loop is considered a side effect. */
2188 return true;
2189
2190 if (gimple_call_lhs (s)
2191 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2192 {
2193 gcc_assert (gimple_has_volatile_ops (s));
2194 return true;
2195 }
2196
2197 if (TREE_SIDE_EFFECTS (gimple_call_fn (s)))
2198 return true;
2199
2200 for (i = 0; i < nargs; i++)
2201 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2202 {
2203 gcc_assert (gimple_has_volatile_ops (s));
2204 return true;
2205 }
2206
2207 return false;
2208 }
2209 else
2210 {
2211 for (i = 0; i < gimple_num_ops (s); i++)
2212 if (TREE_SIDE_EFFECTS (gimple_op (s, i)))
2213 {
2214 gcc_assert (gimple_has_volatile_ops (s));
2215 return true;
2216 }
2217 }
2218
2219 return false;
2220 }
2221
2222 /* Return true if the RHS of statement S has side effects.
2223 We may use it to determine if it is admissable to replace
2224 an assignment or call with a copy of a previously-computed
2225 value. In such cases, side-effects due the the LHS are
2226 preserved. */
2227
2228 bool
2229 gimple_rhs_has_side_effects (const_gimple s)
2230 {
2231 unsigned i;
2232
2233 if (is_gimple_call (s))
2234 {
2235 unsigned nargs = gimple_call_num_args (s);
2236
2237 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2238 return true;
2239
2240 /* We cannot use gimple_has_volatile_ops here,
2241 because we must ignore a volatile LHS. */
2242 if (TREE_SIDE_EFFECTS (gimple_call_fn (s))
2243 || TREE_THIS_VOLATILE (gimple_call_fn (s)))
2244 {
2245 gcc_assert (gimple_has_volatile_ops (s));
2246 return true;
2247 }
2248
2249 for (i = 0; i < nargs; i++)
2250 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2251 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2252 return true;
2253
2254 return false;
2255 }
2256 else if (is_gimple_assign (s))
2257 {
2258 /* Skip the first operand, the LHS. */
2259 for (i = 1; i < gimple_num_ops (s); i++)
2260 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2261 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2262 {
2263 gcc_assert (gimple_has_volatile_ops (s));
2264 return true;
2265 }
2266 }
2267 else if (is_gimple_debug (s))
2268 return false;
2269 else
2270 {
2271 /* For statements without an LHS, examine all arguments. */
2272 for (i = 0; i < gimple_num_ops (s); i++)
2273 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2274 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2275 {
2276 gcc_assert (gimple_has_volatile_ops (s));
2277 return true;
2278 }
2279 }
2280
2281 return false;
2282 }
2283
2284
2285 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2286 Return true if S can trap. If INCLUDE_LHS is true and S is a
2287 GIMPLE_ASSIGN, the LHS of the assignment is also checked.
2288 Otherwise, only the RHS of the assignment is checked. */
2289
2290 static bool
2291 gimple_could_trap_p_1 (gimple s, bool include_lhs)
2292 {
2293 unsigned i, start;
2294 tree t, div = NULL_TREE;
2295 enum tree_code op;
2296
2297 start = (is_gimple_assign (s) && !include_lhs) ? 1 : 0;
2298
2299 for (i = start; i < gimple_num_ops (s); i++)
2300 if (tree_could_trap_p (gimple_op (s, i)))
2301 return true;
2302
2303 switch (gimple_code (s))
2304 {
2305 case GIMPLE_ASM:
2306 return gimple_asm_volatile_p (s);
2307
2308 case GIMPLE_CALL:
2309 t = gimple_call_fndecl (s);
2310 /* Assume that calls to weak functions may trap. */
2311 if (!t || !DECL_P (t) || DECL_WEAK (t))
2312 return true;
2313 return false;
2314
2315 case GIMPLE_ASSIGN:
2316 t = gimple_expr_type (s);
2317 op = gimple_assign_rhs_code (s);
2318 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2319 div = gimple_assign_rhs2 (s);
2320 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2321 (INTEGRAL_TYPE_P (t)
2322 && TYPE_OVERFLOW_TRAPS (t)),
2323 div));
2324
2325 default:
2326 break;
2327 }
2328
2329 return false;
2330
2331 }
2332
2333
2334 /* Return true if statement S can trap. */
2335
2336 bool
2337 gimple_could_trap_p (gimple s)
2338 {
2339 return gimple_could_trap_p_1 (s, true);
2340 }
2341
2342
2343 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2344
2345 bool
2346 gimple_assign_rhs_could_trap_p (gimple s)
2347 {
2348 gcc_assert (is_gimple_assign (s));
2349 return gimple_could_trap_p_1 (s, false);
2350 }
2351
2352
2353 /* Print debugging information for gimple stmts generated. */
2354
2355 void
2356 dump_gimple_statistics (void)
2357 {
2358 #ifdef GATHER_STATISTICS
2359 int i, total_tuples = 0, total_bytes = 0;
2360
2361 fprintf (stderr, "\nGIMPLE statements\n");
2362 fprintf (stderr, "Kind Stmts Bytes\n");
2363 fprintf (stderr, "---------------------------------------\n");
2364 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2365 {
2366 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2367 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2368 total_tuples += gimple_alloc_counts[i];
2369 total_bytes += gimple_alloc_sizes[i];
2370 }
2371 fprintf (stderr, "---------------------------------------\n");
2372 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2373 fprintf (stderr, "---------------------------------------\n");
2374 #else
2375 fprintf (stderr, "No gimple statistics\n");
2376 #endif
2377 }
2378
2379
2380 /* Return the number of operands needed on the RHS of a GIMPLE
2381 assignment for an expression with tree code CODE. */
2382
2383 unsigned
2384 get_gimple_rhs_num_ops (enum tree_code code)
2385 {
2386 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2387
2388 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2389 return 1;
2390 else if (rhs_class == GIMPLE_BINARY_RHS)
2391 return 2;
2392 else
2393 gcc_unreachable ();
2394 }
2395
2396 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2397 (unsigned char) \
2398 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2399 : ((TYPE) == tcc_binary \
2400 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2401 : ((TYPE) == tcc_constant \
2402 || (TYPE) == tcc_declaration \
2403 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2404 : ((SYM) == TRUTH_AND_EXPR \
2405 || (SYM) == TRUTH_OR_EXPR \
2406 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2407 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2408 : ((SYM) == COND_EXPR \
2409 || (SYM) == CONSTRUCTOR \
2410 || (SYM) == OBJ_TYPE_REF \
2411 || (SYM) == ASSERT_EXPR \
2412 || (SYM) == ADDR_EXPR \
2413 || (SYM) == WITH_SIZE_EXPR \
2414 || (SYM) == SSA_NAME \
2415 || (SYM) == POLYNOMIAL_CHREC \
2416 || (SYM) == DOT_PROD_EXPR \
2417 || (SYM) == VEC_COND_EXPR \
2418 || (SYM) == REALIGN_LOAD_EXPR) ? GIMPLE_SINGLE_RHS \
2419 : GIMPLE_INVALID_RHS),
2420 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2421
2422 const unsigned char gimple_rhs_class_table[] = {
2423 #include "all-tree.def"
2424 };
2425
2426 #undef DEFTREECODE
2427 #undef END_OF_BASE_TREE_CODES
2428
2429 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2430
2431 /* Validation of GIMPLE expressions. */
2432
2433 /* Return true if OP is an acceptable tree node to be used as a GIMPLE
2434 operand. */
2435
2436 bool
2437 is_gimple_operand (const_tree op)
2438 {
2439 return op && get_gimple_rhs_class (TREE_CODE (op)) == GIMPLE_SINGLE_RHS;
2440 }
2441
2442 /* Returns true iff T is a valid RHS for an assignment to a renamed
2443 user -- or front-end generated artificial -- variable. */
2444
2445 bool
2446 is_gimple_reg_rhs (tree t)
2447 {
2448 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
2449 }
2450
2451 /* Returns true iff T is a valid RHS for an assignment to an un-renamed
2452 LHS, or for a call argument. */
2453
2454 bool
2455 is_gimple_mem_rhs (tree t)
2456 {
2457 /* If we're dealing with a renamable type, either source or dest must be
2458 a renamed variable. */
2459 if (is_gimple_reg_type (TREE_TYPE (t)))
2460 return is_gimple_val (t);
2461 else
2462 return is_gimple_val (t) || is_gimple_lvalue (t);
2463 }
2464
2465 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2466
2467 bool
2468 is_gimple_lvalue (tree t)
2469 {
2470 return (is_gimple_addressable (t)
2471 || TREE_CODE (t) == WITH_SIZE_EXPR
2472 /* These are complex lvalues, but don't have addresses, so they
2473 go here. */
2474 || TREE_CODE (t) == BIT_FIELD_REF);
2475 }
2476
2477 /* Return true if T is a GIMPLE condition. */
2478
2479 bool
2480 is_gimple_condexpr (tree t)
2481 {
2482 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2483 && !tree_could_trap_p (t)
2484 && is_gimple_val (TREE_OPERAND (t, 0))
2485 && is_gimple_val (TREE_OPERAND (t, 1))));
2486 }
2487
2488 /* Return true if T is something whose address can be taken. */
2489
2490 bool
2491 is_gimple_addressable (tree t)
2492 {
2493 return (is_gimple_id (t) || handled_component_p (t) || INDIRECT_REF_P (t));
2494 }
2495
2496 /* Return true if T is a valid gimple constant. */
2497
2498 bool
2499 is_gimple_constant (const_tree t)
2500 {
2501 switch (TREE_CODE (t))
2502 {
2503 case INTEGER_CST:
2504 case REAL_CST:
2505 case FIXED_CST:
2506 case STRING_CST:
2507 case COMPLEX_CST:
2508 case VECTOR_CST:
2509 return true;
2510
2511 /* Vector constant constructors are gimple invariant. */
2512 case CONSTRUCTOR:
2513 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2514 return TREE_CONSTANT (t);
2515 else
2516 return false;
2517
2518 default:
2519 return false;
2520 }
2521 }
2522
2523 /* Return true if T is a gimple address. */
2524
2525 bool
2526 is_gimple_address (const_tree t)
2527 {
2528 tree op;
2529
2530 if (TREE_CODE (t) != ADDR_EXPR)
2531 return false;
2532
2533 op = TREE_OPERAND (t, 0);
2534 while (handled_component_p (op))
2535 {
2536 if ((TREE_CODE (op) == ARRAY_REF
2537 || TREE_CODE (op) == ARRAY_RANGE_REF)
2538 && !is_gimple_val (TREE_OPERAND (op, 1)))
2539 return false;
2540
2541 op = TREE_OPERAND (op, 0);
2542 }
2543
2544 if (CONSTANT_CLASS_P (op) || INDIRECT_REF_P (op))
2545 return true;
2546
2547 switch (TREE_CODE (op))
2548 {
2549 case PARM_DECL:
2550 case RESULT_DECL:
2551 case LABEL_DECL:
2552 case FUNCTION_DECL:
2553 case VAR_DECL:
2554 case CONST_DECL:
2555 return true;
2556
2557 default:
2558 return false;
2559 }
2560 }
2561
2562 /* Strip out all handled components that produce invariant
2563 offsets. */
2564
2565 static const_tree
2566 strip_invariant_refs (const_tree op)
2567 {
2568 while (handled_component_p (op))
2569 {
2570 switch (TREE_CODE (op))
2571 {
2572 case ARRAY_REF:
2573 case ARRAY_RANGE_REF:
2574 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2575 || TREE_OPERAND (op, 2) != NULL_TREE
2576 || TREE_OPERAND (op, 3) != NULL_TREE)
2577 return NULL;
2578 break;
2579
2580 case COMPONENT_REF:
2581 if (TREE_OPERAND (op, 2) != NULL_TREE)
2582 return NULL;
2583 break;
2584
2585 default:;
2586 }
2587 op = TREE_OPERAND (op, 0);
2588 }
2589
2590 return op;
2591 }
2592
2593 /* Return true if T is a gimple invariant address. */
2594
2595 bool
2596 is_gimple_invariant_address (const_tree t)
2597 {
2598 const_tree op;
2599
2600 if (TREE_CODE (t) != ADDR_EXPR)
2601 return false;
2602
2603 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2604
2605 return op && (CONSTANT_CLASS_P (op) || decl_address_invariant_p (op));
2606 }
2607
2608 /* Return true if T is a gimple invariant address at IPA level
2609 (so addresses of variables on stack are not allowed). */
2610
2611 bool
2612 is_gimple_ip_invariant_address (const_tree t)
2613 {
2614 const_tree op;
2615
2616 if (TREE_CODE (t) != ADDR_EXPR)
2617 return false;
2618
2619 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2620
2621 return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op));
2622 }
2623
2624 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
2625 form of function invariant. */
2626
2627 bool
2628 is_gimple_min_invariant (const_tree t)
2629 {
2630 if (TREE_CODE (t) == ADDR_EXPR)
2631 return is_gimple_invariant_address (t);
2632
2633 return is_gimple_constant (t);
2634 }
2635
2636 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2637 form of gimple minimal invariant. */
2638
2639 bool
2640 is_gimple_ip_invariant (const_tree t)
2641 {
2642 if (TREE_CODE (t) == ADDR_EXPR)
2643 return is_gimple_ip_invariant_address (t);
2644
2645 return is_gimple_constant (t);
2646 }
2647
2648 /* Return true if T looks like a valid GIMPLE statement. */
2649
2650 bool
2651 is_gimple_stmt (tree t)
2652 {
2653 const enum tree_code code = TREE_CODE (t);
2654
2655 switch (code)
2656 {
2657 case NOP_EXPR:
2658 /* The only valid NOP_EXPR is the empty statement. */
2659 return IS_EMPTY_STMT (t);
2660
2661 case BIND_EXPR:
2662 case COND_EXPR:
2663 /* These are only valid if they're void. */
2664 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2665
2666 case SWITCH_EXPR:
2667 case GOTO_EXPR:
2668 case RETURN_EXPR:
2669 case LABEL_EXPR:
2670 case CASE_LABEL_EXPR:
2671 case TRY_CATCH_EXPR:
2672 case TRY_FINALLY_EXPR:
2673 case EH_FILTER_EXPR:
2674 case CATCH_EXPR:
2675 case ASM_EXPR:
2676 case STATEMENT_LIST:
2677 case OMP_PARALLEL:
2678 case OMP_FOR:
2679 case OMP_SECTIONS:
2680 case OMP_SECTION:
2681 case OMP_SINGLE:
2682 case OMP_MASTER:
2683 case OMP_ORDERED:
2684 case OMP_CRITICAL:
2685 case OMP_TASK:
2686 /* These are always void. */
2687 return true;
2688
2689 case CALL_EXPR:
2690 case MODIFY_EXPR:
2691 case PREDICT_EXPR:
2692 /* These are valid regardless of their type. */
2693 return true;
2694
2695 default:
2696 return false;
2697 }
2698 }
2699
2700 /* Return true if T is a variable. */
2701
2702 bool
2703 is_gimple_variable (tree t)
2704 {
2705 return (TREE_CODE (t) == VAR_DECL
2706 || TREE_CODE (t) == PARM_DECL
2707 || TREE_CODE (t) == RESULT_DECL
2708 || TREE_CODE (t) == SSA_NAME);
2709 }
2710
2711 /* Return true if T is a GIMPLE identifier (something with an address). */
2712
2713 bool
2714 is_gimple_id (tree t)
2715 {
2716 return (is_gimple_variable (t)
2717 || TREE_CODE (t) == FUNCTION_DECL
2718 || TREE_CODE (t) == LABEL_DECL
2719 || TREE_CODE (t) == CONST_DECL
2720 /* Allow string constants, since they are addressable. */
2721 || TREE_CODE (t) == STRING_CST);
2722 }
2723
2724 /* Return true if TYPE is a suitable type for a scalar register variable. */
2725
2726 bool
2727 is_gimple_reg_type (tree type)
2728 {
2729 return !AGGREGATE_TYPE_P (type);
2730 }
2731
2732 /* Return true if T is a non-aggregate register variable. */
2733
2734 bool
2735 is_gimple_reg (tree t)
2736 {
2737 if (TREE_CODE (t) == SSA_NAME)
2738 t = SSA_NAME_VAR (t);
2739
2740 if (!is_gimple_variable (t))
2741 return false;
2742
2743 if (!is_gimple_reg_type (TREE_TYPE (t)))
2744 return false;
2745
2746 /* A volatile decl is not acceptable because we can't reuse it as
2747 needed. We need to copy it into a temp first. */
2748 if (TREE_THIS_VOLATILE (t))
2749 return false;
2750
2751 /* We define "registers" as things that can be renamed as needed,
2752 which with our infrastructure does not apply to memory. */
2753 if (needs_to_live_in_memory (t))
2754 return false;
2755
2756 /* Hard register variables are an interesting case. For those that
2757 are call-clobbered, we don't know where all the calls are, since
2758 we don't (want to) take into account which operations will turn
2759 into libcalls at the rtl level. For those that are call-saved,
2760 we don't currently model the fact that calls may in fact change
2761 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2762 level, and so miss variable changes that might imply. All around,
2763 it seems safest to not do too much optimization with these at the
2764 tree level at all. We'll have to rely on the rtl optimizers to
2765 clean this up, as there we've got all the appropriate bits exposed. */
2766 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2767 return false;
2768
2769 /* Complex and vector values must have been put into SSA-like form.
2770 That is, no assignments to the individual components. */
2771 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2772 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2773 return DECL_GIMPLE_REG_P (t);
2774
2775 return true;
2776 }
2777
2778
2779 /* Return true if T is a GIMPLE variable whose address is not needed. */
2780
2781 bool
2782 is_gimple_non_addressable (tree t)
2783 {
2784 if (TREE_CODE (t) == SSA_NAME)
2785 t = SSA_NAME_VAR (t);
2786
2787 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
2788 }
2789
2790 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2791
2792 bool
2793 is_gimple_val (tree t)
2794 {
2795 /* Make loads from volatiles and memory vars explicit. */
2796 if (is_gimple_variable (t)
2797 && is_gimple_reg_type (TREE_TYPE (t))
2798 && !is_gimple_reg (t))
2799 return false;
2800
2801 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2802 }
2803
2804 /* Similarly, but accept hard registers as inputs to asm statements. */
2805
2806 bool
2807 is_gimple_asm_val (tree t)
2808 {
2809 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2810 return true;
2811
2812 return is_gimple_val (t);
2813 }
2814
2815 /* Return true if T is a GIMPLE minimal lvalue. */
2816
2817 bool
2818 is_gimple_min_lval (tree t)
2819 {
2820 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
2821 return false;
2822 return (is_gimple_id (t) || TREE_CODE (t) == INDIRECT_REF);
2823 }
2824
2825 /* Return true if T is a typecast operation. */
2826
2827 bool
2828 is_gimple_cast (tree t)
2829 {
2830 return (CONVERT_EXPR_P (t)
2831 || TREE_CODE (t) == FIX_TRUNC_EXPR);
2832 }
2833
2834 /* Return true if T is a valid function operand of a CALL_EXPR. */
2835
2836 bool
2837 is_gimple_call_addr (tree t)
2838 {
2839 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
2840 }
2841
2842 /* If T makes a function call, return the corresponding CALL_EXPR operand.
2843 Otherwise, return NULL_TREE. */
2844
2845 tree
2846 get_call_expr_in (tree t)
2847 {
2848 if (TREE_CODE (t) == MODIFY_EXPR)
2849 t = TREE_OPERAND (t, 1);
2850 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2851 t = TREE_OPERAND (t, 0);
2852 if (TREE_CODE (t) == CALL_EXPR)
2853 return t;
2854 return NULL_TREE;
2855 }
2856
2857
2858 /* Given a memory reference expression T, return its base address.
2859 The base address of a memory reference expression is the main
2860 object being referenced. For instance, the base address for
2861 'array[i].fld[j]' is 'array'. You can think of this as stripping
2862 away the offset part from a memory address.
2863
2864 This function calls handled_component_p to strip away all the inner
2865 parts of the memory reference until it reaches the base object. */
2866
2867 tree
2868 get_base_address (tree t)
2869 {
2870 while (handled_component_p (t))
2871 t = TREE_OPERAND (t, 0);
2872
2873 if (SSA_VAR_P (t)
2874 || TREE_CODE (t) == STRING_CST
2875 || TREE_CODE (t) == CONSTRUCTOR
2876 || INDIRECT_REF_P (t))
2877 return t;
2878 else
2879 return NULL_TREE;
2880 }
2881
2882 void
2883 recalculate_side_effects (tree t)
2884 {
2885 enum tree_code code = TREE_CODE (t);
2886 int len = TREE_OPERAND_LENGTH (t);
2887 int i;
2888
2889 switch (TREE_CODE_CLASS (code))
2890 {
2891 case tcc_expression:
2892 switch (code)
2893 {
2894 case INIT_EXPR:
2895 case MODIFY_EXPR:
2896 case VA_ARG_EXPR:
2897 case PREDECREMENT_EXPR:
2898 case PREINCREMENT_EXPR:
2899 case POSTDECREMENT_EXPR:
2900 case POSTINCREMENT_EXPR:
2901 /* All of these have side-effects, no matter what their
2902 operands are. */
2903 return;
2904
2905 default:
2906 break;
2907 }
2908 /* Fall through. */
2909
2910 case tcc_comparison: /* a comparison expression */
2911 case tcc_unary: /* a unary arithmetic expression */
2912 case tcc_binary: /* a binary arithmetic expression */
2913 case tcc_reference: /* a reference */
2914 case tcc_vl_exp: /* a function call */
2915 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
2916 for (i = 0; i < len; ++i)
2917 {
2918 tree op = TREE_OPERAND (t, i);
2919 if (op && TREE_SIDE_EFFECTS (op))
2920 TREE_SIDE_EFFECTS (t) = 1;
2921 }
2922 break;
2923
2924 case tcc_constant:
2925 /* No side-effects. */
2926 return;
2927
2928 default:
2929 gcc_unreachable ();
2930 }
2931 }
2932
2933 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2934 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2935 we failed to create one. */
2936
2937 tree
2938 canonicalize_cond_expr_cond (tree t)
2939 {
2940 /* For (bool)x use x != 0. */
2941 if (TREE_CODE (t) == NOP_EXPR
2942 && TREE_TYPE (t) == boolean_type_node)
2943 {
2944 tree top0 = TREE_OPERAND (t, 0);
2945 t = build2 (NE_EXPR, TREE_TYPE (t),
2946 top0, build_int_cst (TREE_TYPE (top0), 0));
2947 }
2948 /* For !x use x == 0. */
2949 else if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2950 {
2951 tree top0 = TREE_OPERAND (t, 0);
2952 t = build2 (EQ_EXPR, TREE_TYPE (t),
2953 top0, build_int_cst (TREE_TYPE (top0), 0));
2954 }
2955 /* For cmp ? 1 : 0 use cmp. */
2956 else if (TREE_CODE (t) == COND_EXPR
2957 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2958 && integer_onep (TREE_OPERAND (t, 1))
2959 && integer_zerop (TREE_OPERAND (t, 2)))
2960 {
2961 tree top0 = TREE_OPERAND (t, 0);
2962 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2963 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2964 }
2965
2966 if (is_gimple_condexpr (t))
2967 return t;
2968
2969 return NULL_TREE;
2970 }
2971
2972 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2973 the positions marked by the set ARGS_TO_SKIP. */
2974
2975 gimple
2976 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
2977 {
2978 int i;
2979 tree fn = gimple_call_fn (stmt);
2980 int nargs = gimple_call_num_args (stmt);
2981 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
2982 gimple new_stmt;
2983
2984 for (i = 0; i < nargs; i++)
2985 if (!bitmap_bit_p (args_to_skip, i))
2986 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
2987
2988 new_stmt = gimple_build_call_vec (fn, vargs);
2989 VEC_free (tree, heap, vargs);
2990 if (gimple_call_lhs (stmt))
2991 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2992
2993 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2994 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2995
2996 gimple_set_block (new_stmt, gimple_block (stmt));
2997 if (gimple_has_location (stmt))
2998 gimple_set_location (new_stmt, gimple_location (stmt));
2999
3000 /* Carry all the flags to the new GIMPLE_CALL. */
3001 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
3002 gimple_call_set_tail (new_stmt, gimple_call_tail_p (stmt));
3003 gimple_call_set_cannot_inline (new_stmt, gimple_call_cannot_inline_p (stmt));
3004 gimple_call_set_return_slot_opt (new_stmt, gimple_call_return_slot_opt_p (stmt));
3005 gimple_call_set_from_thunk (new_stmt, gimple_call_from_thunk_p (stmt));
3006 gimple_call_set_va_arg_pack (new_stmt, gimple_call_va_arg_pack_p (stmt));
3007
3008 gimple_set_modified (new_stmt, true);
3009
3010 return new_stmt;
3011 }
3012
3013
3014 static hashval_t gimple_type_hash (const void *);
3015
3016 /* Structure used to maintain a cache of some type pairs compared by
3017 gimple_types_compatible_p when comparing aggregate types. There are
3018 four possible values for SAME_P:
3019
3020 -2: The pair (T1, T2) has just been inserted in the table.
3021 -1: The pair (T1, T2) is currently being compared.
3022 0: T1 and T2 are different types.
3023 1: T1 and T2 are the same type.
3024
3025 This table is only used when comparing aggregate types to avoid
3026 infinite recursion due to self-referential types. */
3027 struct type_pair_d
3028 {
3029 unsigned int uid1;
3030 unsigned int uid2;
3031 int same_p;
3032 };
3033 typedef struct type_pair_d *type_pair_t;
3034
3035 /* Return a hash value for the type pair pointed-to by P. */
3036
3037 static hashval_t
3038 type_pair_hash (const void *p)
3039 {
3040 const struct type_pair_d *pair = (const struct type_pair_d *) p;
3041 hashval_t val1 = pair->uid1;
3042 hashval_t val2 = pair->uid2;
3043 return (iterative_hash_hashval_t (val2, val1)
3044 ^ iterative_hash_hashval_t (val1, val2));
3045 }
3046
3047 /* Compare two type pairs pointed-to by P1 and P2. */
3048
3049 static int
3050 type_pair_eq (const void *p1, const void *p2)
3051 {
3052 const struct type_pair_d *pair1 = (const struct type_pair_d *) p1;
3053 const struct type_pair_d *pair2 = (const struct type_pair_d *) p2;
3054 return ((pair1->uid1 == pair2->uid1 && pair1->uid2 == pair2->uid2)
3055 || (pair1->uid1 == pair2->uid2 && pair1->uid2 == pair2->uid1));
3056 }
3057
3058 /* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3059 entry if none existed. */
3060
3061 static type_pair_t
3062 lookup_type_pair (tree t1, tree t2, htab_t *visited_p, struct obstack *ob_p)
3063 {
3064 struct type_pair_d pair;
3065 type_pair_t p;
3066 void **slot;
3067
3068 if (*visited_p == NULL)
3069 {
3070 *visited_p = htab_create (251, type_pair_hash, type_pair_eq, NULL);
3071 gcc_obstack_init (ob_p);
3072 }
3073
3074 pair.uid1 = TYPE_UID (t1);
3075 pair.uid2 = TYPE_UID (t2);
3076 slot = htab_find_slot (*visited_p, &pair, INSERT);
3077
3078 if (*slot)
3079 p = *((type_pair_t *) slot);
3080 else
3081 {
3082 p = XOBNEW (ob_p, struct type_pair_d);
3083 p->uid1 = TYPE_UID (t1);
3084 p->uid2 = TYPE_UID (t2);
3085 p->same_p = -2;
3086 *slot = (void *) p;
3087 }
3088
3089 return p;
3090 }
3091
3092
3093 /* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3094 true then if any type has no name return false, otherwise return
3095 true if both types have no names. */
3096
3097 static bool
3098 compare_type_names_p (tree t1, tree t2, bool for_completion_p)
3099 {
3100 tree name1 = TYPE_NAME (t1);
3101 tree name2 = TYPE_NAME (t2);
3102
3103 /* Consider anonymous types all unique for completion. */
3104 if (for_completion_p
3105 && (!name1 || !name2))
3106 return false;
3107
3108 if (name1 && TREE_CODE (name1) == TYPE_DECL)
3109 {
3110 name1 = DECL_NAME (name1);
3111 if (for_completion_p
3112 && !name1)
3113 return false;
3114 }
3115 gcc_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
3116
3117 if (name2 && TREE_CODE (name2) == TYPE_DECL)
3118 {
3119 name2 = DECL_NAME (name2);
3120 if (for_completion_p
3121 && !name2)
3122 return false;
3123 }
3124 gcc_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
3125
3126 /* Identifiers can be compared with pointer equality rather
3127 than a string comparison. */
3128 if (name1 == name2)
3129 return true;
3130
3131 return false;
3132 }
3133
3134 /* Return true if the field decls F1 and F2 are at the same offset. */
3135
3136 static bool
3137 compare_field_offset (tree f1, tree f2)
3138 {
3139 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
3140 return (operand_equal_p (DECL_FIELD_OFFSET (f1),
3141 DECL_FIELD_OFFSET (f2), 0)
3142 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3143 DECL_FIELD_BIT_OFFSET (f2)));
3144
3145 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3146 should be, so handle differing ones specially by decomposing
3147 the offset into a byte and bit offset manually. */
3148 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3149 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3150 {
3151 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3152 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3153 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3154 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3155 + bit_offset1 / BITS_PER_UNIT);
3156 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3157 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3158 + bit_offset2 / BITS_PER_UNIT);
3159 if (byte_offset1 != byte_offset2)
3160 return false;
3161 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3162 }
3163
3164 return false;
3165 }
3166
3167 /* Return 1 iff T1 and T2 are structurally identical.
3168 Otherwise, return 0. */
3169
3170 static int
3171 gimple_types_compatible_p (tree t1, tree t2)
3172 {
3173 type_pair_t p = NULL;
3174
3175 /* Check first for the obvious case of pointer identity. */
3176 if (t1 == t2)
3177 goto same_types;
3178
3179 /* Check that we have two types to compare. */
3180 if (t1 == NULL_TREE || t2 == NULL_TREE)
3181 goto different_types;
3182
3183 /* Can't be the same type if the types don't have the same code. */
3184 if (TREE_CODE (t1) != TREE_CODE (t2))
3185 goto different_types;
3186
3187 /* Void types are always the same. */
3188 if (TREE_CODE (t1) == VOID_TYPE)
3189 goto same_types;
3190
3191 /* Can't be the same type if they have different CV qualifiers. */
3192 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3193 goto different_types;
3194
3195 /* If the hash values of t1 and t2 are different the types can't
3196 possibly be the same. This helps keeping the type-pair hashtable
3197 small, only tracking comparisons for hash collisions. */
3198 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3199 return 0;
3200
3201 /* If we've visited this type pair before (in the case of aggregates
3202 with self-referential types), and we made a decision, return it. */
3203 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3204 if (p->same_p == 0 || p->same_p == 1)
3205 {
3206 /* We have already decided whether T1 and T2 are the
3207 same, return the cached result. */
3208 return p->same_p == 1;
3209 }
3210 else if (p->same_p == -1)
3211 {
3212 /* We are currently comparing this pair of types, assume
3213 that they are the same and let the caller decide. */
3214 return 1;
3215 }
3216
3217 gcc_assert (p->same_p == -2);
3218
3219 /* Mark the (T1, T2) comparison in progress. */
3220 p->same_p = -1;
3221
3222 /* If their attributes are not the same they can't be the same type. */
3223 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
3224 goto different_types;
3225
3226 /* For numerical types, the bounds must coincide. */
3227 if (INTEGRAL_TYPE_P (t1)
3228 || SCALAR_FLOAT_TYPE_P (t1)
3229 || FIXED_POINT_TYPE_P (t1))
3230 {
3231 /* Can't be the same type if they have different size, alignment,
3232 sign, precision or mode. Note that from now on, comparisons
3233 between *_CST nodes must be done using tree_int_cst_equal because
3234 we cannot assume that constants from T1 and T2 will be shared
3235 since T1 and T2 are distinct pointers. */
3236 if (!tree_int_cst_equal (TYPE_SIZE (t1), TYPE_SIZE (t2))
3237 || !tree_int_cst_equal (TYPE_SIZE_UNIT (t1), TYPE_SIZE_UNIT (t2))
3238 || TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3239 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3240 || TYPE_MODE (t1) != TYPE_MODE (t2)
3241 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3242 goto different_types;
3243
3244 /* For non-enumeral types, check type bounds. FIXME lto, we
3245 cannot check bounds on enumeral types because different front
3246 ends will produce different values. In C, enumeral types are
3247 integers, while in C++ each element will have its own
3248 symbolic value. We should decide how enums are to be
3249 represented in GIMPLE and have each front end lower to that. */
3250 if (TREE_CODE (t1) != ENUMERAL_TYPE)
3251 {
3252 tree min1 = TYPE_MIN_VALUE (t1);
3253 tree max1 = TYPE_MAX_VALUE (t1);
3254 tree min2 = TYPE_MIN_VALUE (t2);
3255 tree max2 = TYPE_MAX_VALUE (t2);
3256 bool min_equal_p = false;
3257 bool max_equal_p = false;
3258
3259 /* If either type has a minimum value, the other type must
3260 have the same. */
3261 if (min1 == NULL_TREE && min2 == NULL_TREE)
3262 min_equal_p = true;
3263 else if (min1 && min2 && operand_equal_p (min1, min2, 0))
3264 min_equal_p = true;
3265
3266 /* Likewise, if either type has a maximum value, the other
3267 type must have the same. */
3268 if (max1 == NULL_TREE && max2 == NULL_TREE)
3269 max_equal_p = true;
3270 else if (max1 && max2 && operand_equal_p (max1, max2, 0))
3271 max_equal_p = true;
3272
3273 if (!min_equal_p || !max_equal_p)
3274 goto different_types;
3275 }
3276
3277 if (TREE_CODE (t1) == INTEGER_TYPE)
3278 {
3279 if (TYPE_IS_SIZETYPE (t1) == TYPE_IS_SIZETYPE (t2)
3280 && TYPE_STRING_FLAG (t1) == TYPE_STRING_FLAG (t2))
3281 goto same_types;
3282 else
3283 goto different_types;
3284 }
3285 else if (TREE_CODE (t1) == BOOLEAN_TYPE)
3286 goto same_types;
3287 else if (TREE_CODE (t1) == REAL_TYPE)
3288 goto same_types;
3289 }
3290
3291 /* Do type-specific comparisons. */
3292 switch (TREE_CODE (t1))
3293 {
3294 case ARRAY_TYPE:
3295 /* Array types are the same if the element types are the same and
3296 the number of elements are the same. */
3297 if (!gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))
3298 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2))
3299 goto different_types;
3300 else
3301 {
3302 tree i1 = TYPE_DOMAIN (t1);
3303 tree i2 = TYPE_DOMAIN (t2);
3304
3305 /* For an incomplete external array, the type domain can be
3306 NULL_TREE. Check this condition also. */
3307 if (i1 == NULL_TREE && i2 == NULL_TREE)
3308 goto same_types;
3309 else if (i1 == NULL_TREE || i2 == NULL_TREE)
3310 goto different_types;
3311 /* If for a complete array type the possibly gimplified sizes
3312 are different the types are different. */
3313 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
3314 || (TYPE_SIZE (i1)
3315 && TYPE_SIZE (i2)
3316 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
3317 goto different_types;
3318 else
3319 {
3320 tree min1 = TYPE_MIN_VALUE (i1);
3321 tree min2 = TYPE_MIN_VALUE (i2);
3322 tree max1 = TYPE_MAX_VALUE (i1);
3323 tree max2 = TYPE_MAX_VALUE (i2);
3324
3325 /* The minimum/maximum values have to be the same. */
3326 if ((min1 == min2
3327 || (min1 && min2 && operand_equal_p (min1, min2, 0)))
3328 && (max1 == max2
3329 || (max1 && max2 && operand_equal_p (max1, max2, 0))))
3330 goto same_types;
3331 else
3332 goto different_types;
3333 }
3334 }
3335
3336 case METHOD_TYPE:
3337 /* Method types should belong to the same class. */
3338 if (!gimple_types_compatible_p (TYPE_METHOD_BASETYPE (t1),
3339 TYPE_METHOD_BASETYPE (t2)))
3340 goto different_types;
3341
3342 /* Fallthru */
3343
3344 case FUNCTION_TYPE:
3345 /* Function types are the same if the return type and arguments types
3346 are the same. */
3347 if (!gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3348 goto different_types;
3349 else
3350 {
3351 if (!targetm.comp_type_attributes (t1, t2))
3352 goto different_types;
3353
3354 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
3355 goto same_types;
3356 else
3357 {
3358 tree parms1, parms2;
3359
3360 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3361 parms1 && parms2;
3362 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
3363 {
3364 if (!gimple_types_compatible_p (TREE_VALUE (parms1),
3365 TREE_VALUE (parms2)))
3366 goto different_types;
3367 }
3368
3369 if (parms1 || parms2)
3370 goto different_types;
3371
3372 goto same_types;
3373 }
3374 }
3375
3376 case POINTER_TYPE:
3377 case REFERENCE_TYPE:
3378 {
3379 /* If the two pointers have different ref-all attributes,
3380 they can't be the same type. */
3381 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3382 goto different_types;
3383
3384 /* If one pointer points to an incomplete type variant of
3385 the other pointed-to type they are the same. */
3386 if (TREE_CODE (TREE_TYPE (t1)) == TREE_CODE (TREE_TYPE (t2))
3387 && RECORD_OR_UNION_TYPE_P (TREE_TYPE (t1))
3388 && (!COMPLETE_TYPE_P (TREE_TYPE (t1))
3389 || !COMPLETE_TYPE_P (TREE_TYPE (t2)))
3390 && compare_type_names_p (TREE_TYPE (t1), TREE_TYPE (t2), true))
3391 {
3392 /* Replace the pointed-to incomplete type with the
3393 complete one. */
3394 if (COMPLETE_TYPE_P (TREE_TYPE (t2)))
3395 TREE_TYPE (t1) = TREE_TYPE (t2);
3396 else
3397 TREE_TYPE (t2) = TREE_TYPE (t1);
3398 goto same_types;
3399 }
3400
3401 /* Otherwise, pointer and reference types are the same if the
3402 pointed-to types are the same. */
3403 if (gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3404 goto same_types;
3405
3406 goto different_types;
3407 }
3408
3409 case ENUMERAL_TYPE:
3410 {
3411 /* For enumeral types, all the values must be the same. */
3412 tree v1, v2;
3413
3414 if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
3415 goto same_types;
3416
3417 for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
3418 v1 && v2;
3419 v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
3420 {
3421 tree c1 = TREE_VALUE (v1);
3422 tree c2 = TREE_VALUE (v2);
3423
3424 if (TREE_CODE (c1) == CONST_DECL)
3425 c1 = DECL_INITIAL (c1);
3426
3427 if (TREE_CODE (c2) == CONST_DECL)
3428 c2 = DECL_INITIAL (c2);
3429
3430 if (tree_int_cst_equal (c1, c2) != 1)
3431 goto different_types;
3432 }
3433
3434 /* If one enumeration has more values than the other, they
3435 are not the same. */
3436 if (v1 || v2)
3437 goto different_types;
3438
3439 goto same_types;
3440 }
3441
3442 case RECORD_TYPE:
3443 case UNION_TYPE:
3444 case QUAL_UNION_TYPE:
3445 {
3446 tree f1, f2;
3447
3448 /* If one type requires structural equality checks and the
3449 other doesn't, do not merge the types. */
3450 if (TYPE_STRUCTURAL_EQUALITY_P (t1)
3451 != TYPE_STRUCTURAL_EQUALITY_P (t2))
3452 goto different_types;
3453
3454 /* The struct tags shall compare equal. */
3455 if (!compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3456 TYPE_MAIN_VARIANT (t2), false))
3457 goto different_types;
3458
3459 /* For aggregate types, all the fields must be the same. */
3460 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
3461 f1 && f2;
3462 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3463 {
3464 /* The fields must have the same name, offset and type. */
3465 if (DECL_NAME (f1) != DECL_NAME (f2)
3466 || !compare_field_offset (f1, f2)
3467 || !gimple_types_compatible_p (TREE_TYPE (f1),
3468 TREE_TYPE (f2)))
3469 goto different_types;
3470 }
3471
3472 /* If one aggregate has more fields than the other, they
3473 are not the same. */
3474 if (f1 || f2)
3475 goto different_types;
3476
3477 goto same_types;
3478 }
3479
3480 case VECTOR_TYPE:
3481 if (TYPE_VECTOR_SUBPARTS (t1) != TYPE_VECTOR_SUBPARTS (t2))
3482 goto different_types;
3483
3484 /* Fallthru */
3485 case COMPLEX_TYPE:
3486 if (!gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3487 goto different_types;
3488 goto same_types;
3489
3490 default:
3491 goto different_types;
3492 }
3493
3494 /* Common exit path for types that are not compatible. */
3495 different_types:
3496 if (p)
3497 p->same_p = 0;
3498 return 0;
3499
3500 /* Common exit path for types that are compatible. */
3501 same_types:
3502 if (p)
3503 p->same_p = 1;
3504 return 1;
3505 }
3506
3507
3508
3509
3510 /* Per pointer state for the SCC finding. The on_sccstack flag
3511 is not strictly required, it is true when there is no hash value
3512 recorded for the type and false otherwise. But querying that
3513 is slower. */
3514
3515 struct sccs
3516 {
3517 unsigned int dfsnum;
3518 unsigned int low;
3519 bool on_sccstack;
3520 hashval_t hash;
3521 };
3522
3523 static unsigned int next_dfs_num;
3524
3525 static hashval_t
3526 iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **,
3527 struct pointer_map_t *, struct obstack *);
3528
3529 /* DFS visit the edge from the callers type with state *STATE to T.
3530 Update the callers type hash V with the hash for T if it is not part
3531 of the SCC containing the callers type and return it.
3532 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3533
3534 static hashval_t
3535 visit (tree t, struct sccs *state, hashval_t v,
3536 VEC (tree, heap) **sccstack,
3537 struct pointer_map_t *sccstate,
3538 struct obstack *sccstate_obstack)
3539 {
3540 struct sccs *cstate = NULL;
3541 void **slot;
3542
3543 /* If there is a hash value recorded for this type then it can't
3544 possibly be part of our parent SCC. Simply mix in its hash. */
3545 if ((slot = pointer_map_contains (type_hash_cache, t)))
3546 return iterative_hash_hashval_t ((hashval_t) (size_t) *slot, v);
3547
3548 if ((slot = pointer_map_contains (sccstate, t)) != NULL)
3549 cstate = (struct sccs *)*slot;
3550 if (!cstate)
3551 {
3552 hashval_t tem;
3553 /* Not yet visited. DFS recurse. */
3554 tem = iterative_hash_gimple_type (t, v,
3555 sccstack, sccstate, sccstate_obstack);
3556 if (!cstate)
3557 cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
3558 state->low = MIN (state->low, cstate->low);
3559 /* If the type is no longer on the SCC stack and thus is not part
3560 of the parents SCC mix in its hash value. Otherwise we will
3561 ignore the type for hashing purposes and return the unaltered
3562 hash value. */
3563 if (!cstate->on_sccstack)
3564 return tem;
3565 }
3566 if (cstate->dfsnum < state->dfsnum
3567 && cstate->on_sccstack)
3568 state->low = MIN (cstate->dfsnum, state->low);
3569
3570 /* We are part of our parents SCC, skip this type during hashing
3571 and return the unaltered hash value. */
3572 return v;
3573 }
3574
3575 /* Hash NAME with the previous hash value V and return it. */
3576
3577 static hashval_t
3578 iterative_hash_name (tree name, hashval_t v)
3579 {
3580 if (!name)
3581 return v;
3582 if (TREE_CODE (name) == TYPE_DECL)
3583 name = DECL_NAME (name);
3584 if (!name)
3585 return v;
3586 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
3587 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
3588 }
3589
3590 /* Returning a hash value for gimple type TYPE combined with VAL.
3591 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
3592
3593 To hash a type we end up hashing in types that are reachable.
3594 Through pointers we can end up with cycles which messes up the
3595 required property that we need to compute the same hash value
3596 for structurally equivalent types. To avoid this we have to
3597 hash all types in a cycle (the SCC) in a commutative way. The
3598 easiest way is to not mix in the hashes of the SCC members at
3599 all. To make this work we have to delay setting the hash
3600 values of the SCC until it is complete. */
3601
3602 static hashval_t
3603 iterative_hash_gimple_type (tree type, hashval_t val,
3604 VEC(tree, heap) **sccstack,
3605 struct pointer_map_t *sccstate,
3606 struct obstack *sccstate_obstack)
3607 {
3608 hashval_t v;
3609 void **slot;
3610 struct sccs *state;
3611
3612 #ifdef ENABLE_CHECKING
3613 /* Not visited during this DFS walk nor during previous walks. */
3614 gcc_assert (!pointer_map_contains (type_hash_cache, type)
3615 && !pointer_map_contains (sccstate, type));
3616 #endif
3617 state = XOBNEW (sccstate_obstack, struct sccs);
3618 *pointer_map_insert (sccstate, type) = state;
3619
3620 VEC_safe_push (tree, heap, *sccstack, type);
3621 state->dfsnum = next_dfs_num++;
3622 state->low = state->dfsnum;
3623 state->on_sccstack = true;
3624
3625 /* Combine a few common features of types so that types are grouped into
3626 smaller sets; when searching for existing matching types to merge,
3627 only existing types having the same features as the new type will be
3628 checked. */
3629 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
3630 v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
3631 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
3632
3633 /* Do not hash the types size as this will cause differences in
3634 hash values for the complete vs. the incomplete type variant. */
3635
3636 /* Incorporate common features of numerical types. */
3637 if (INTEGRAL_TYPE_P (type)
3638 || SCALAR_FLOAT_TYPE_P (type)
3639 || FIXED_POINT_TYPE_P (type))
3640 {
3641 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
3642 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
3643 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
3644 }
3645
3646 /* For pointer and reference types, fold in information about the type
3647 pointed to but do not recurse into possibly incomplete types to
3648 avoid hash differences for complete vs. incomplete types. */
3649 if (POINTER_TYPE_P (type))
3650 {
3651 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
3652 {
3653 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
3654 v = iterative_hash_name
3655 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
3656 }
3657 else
3658 v = visit (TREE_TYPE (type), state, v,
3659 sccstack, sccstate, sccstate_obstack);
3660 }
3661
3662 /* For integer types hash the types min/max values and the string flag. */
3663 if (TREE_CODE (type) == INTEGER_TYPE)
3664 {
3665 v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
3666 v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
3667 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
3668 }
3669
3670 /* For array types hash their domain and the string flag. */
3671 if (TREE_CODE (type) == ARRAY_TYPE
3672 && TYPE_DOMAIN (type))
3673 {
3674 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
3675 v = visit (TYPE_DOMAIN (type), state, v,
3676 sccstack, sccstate, sccstate_obstack);
3677 }
3678
3679 /* Recurse for aggregates with a single element type. */
3680 if (TREE_CODE (type) == ARRAY_TYPE
3681 || TREE_CODE (type) == COMPLEX_TYPE
3682 || TREE_CODE (type) == VECTOR_TYPE)
3683 v = visit (TREE_TYPE (type), state, v,
3684 sccstack, sccstate, sccstate_obstack);
3685
3686 /* Incorporate function return and argument types. */
3687 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
3688 {
3689 unsigned na;
3690 tree p;
3691
3692 /* For method types also incorporate their parent class. */
3693 if (TREE_CODE (type) == METHOD_TYPE)
3694 v = visit (TYPE_METHOD_BASETYPE (type), state, v,
3695 sccstack, sccstate, sccstate_obstack);
3696
3697 v = visit (TREE_TYPE (type), state, v,
3698 sccstack, sccstate, sccstate_obstack);
3699
3700 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
3701 {
3702 v = visit (TREE_VALUE (p), state, v,
3703 sccstack, sccstate, sccstate_obstack);
3704 na++;
3705 }
3706
3707 v = iterative_hash_hashval_t (na, v);
3708 }
3709
3710 if (TREE_CODE (type) == RECORD_TYPE
3711 || TREE_CODE (type) == UNION_TYPE
3712 || TREE_CODE (type) == QUAL_UNION_TYPE)
3713 {
3714 unsigned nf;
3715 tree f;
3716
3717 v = iterative_hash_name (TYPE_NAME (TYPE_MAIN_VARIANT (type)), v);
3718
3719 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
3720 {
3721 v = iterative_hash_name (DECL_NAME (f), v);
3722 v = visit (TREE_TYPE (f), state, v,
3723 sccstack, sccstate, sccstate_obstack);
3724 nf++;
3725 }
3726
3727 v = iterative_hash_hashval_t (nf, v);
3728 }
3729
3730 /* Record hash for us. */
3731 state->hash = v;
3732
3733 /* See if we found an SCC. */
3734 if (state->low == state->dfsnum)
3735 {
3736 tree x;
3737
3738 /* Pop off the SCC and set its hash values. */
3739 do
3740 {
3741 struct sccs *cstate;
3742 x = VEC_pop (tree, *sccstack);
3743 gcc_assert (!pointer_map_contains (type_hash_cache, x));
3744 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
3745 cstate->on_sccstack = false;
3746 slot = pointer_map_insert (type_hash_cache, x);
3747 *slot = (void *) (size_t) cstate->hash;
3748 }
3749 while (x != type);
3750 }
3751
3752 return iterative_hash_hashval_t (v, val);
3753 }
3754
3755
3756 /* Returns a hash value for P (assumed to be a type). The hash value
3757 is computed using some distinguishing features of the type. Note
3758 that we cannot use pointer hashing here as we may be dealing with
3759 two distinct instances of the same type.
3760
3761 This function should produce the same hash value for two compatible
3762 types according to gimple_types_compatible_p. */
3763
3764 static hashval_t
3765 gimple_type_hash (const void *p)
3766 {
3767 const_tree t = (const_tree) p;
3768 VEC(tree, heap) *sccstack = NULL;
3769 struct pointer_map_t *sccstate;
3770 struct obstack sccstate_obstack;
3771 hashval_t val;
3772 void **slot;
3773
3774 if (type_hash_cache == NULL)
3775 type_hash_cache = pointer_map_create ();
3776
3777 if ((slot = pointer_map_contains (type_hash_cache, p)) != NULL)
3778 return iterative_hash_hashval_t ((hashval_t) (size_t) *slot, 0);
3779
3780 /* Perform a DFS walk and pre-hash all reachable types. */
3781 next_dfs_num = 1;
3782 sccstate = pointer_map_create ();
3783 gcc_obstack_init (&sccstate_obstack);
3784 val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
3785 &sccstack, sccstate, &sccstate_obstack);
3786 VEC_free (tree, heap, sccstack);
3787 pointer_map_destroy (sccstate);
3788 obstack_free (&sccstate_obstack, NULL);
3789
3790 return val;
3791 }
3792
3793
3794 /* Returns nonzero if P1 and P2 are equal. */
3795
3796 static int
3797 gimple_type_eq (const void *p1, const void *p2)
3798 {
3799 const_tree t1 = (const_tree) p1;
3800 const_tree t2 = (const_tree) p2;
3801 return gimple_types_compatible_p (CONST_CAST_TREE (t1), CONST_CAST_TREE (t2));
3802 }
3803
3804
3805 /* Register type T in the global type table gimple_types.
3806 If another type T', compatible with T, already existed in
3807 gimple_types then return T', otherwise return T. This is used by
3808 LTO to merge identical types read from different TUs. */
3809
3810 tree
3811 gimple_register_type (tree t)
3812 {
3813 void **slot;
3814
3815 gcc_assert (TYPE_P (t));
3816
3817 if (gimple_types == NULL)
3818 gimple_types = htab_create (16381, gimple_type_hash, gimple_type_eq, 0);
3819
3820 slot = htab_find_slot (gimple_types, t, INSERT);
3821 if (*slot
3822 && *(tree *)slot != t)
3823 {
3824 tree new_type = (tree) *((tree *) slot);
3825
3826 /* Do not merge types with different addressability. */
3827 gcc_assert (TREE_ADDRESSABLE (t) == TREE_ADDRESSABLE (new_type));
3828
3829 /* If t is not its main variant then make t unreachable from its
3830 main variant list. Otherwise we'd queue up a lot of duplicates
3831 there. */
3832 if (t != TYPE_MAIN_VARIANT (t))
3833 {
3834 tree tem = TYPE_MAIN_VARIANT (t);
3835 while (tem && TYPE_NEXT_VARIANT (tem) != t)
3836 tem = TYPE_NEXT_VARIANT (tem);
3837 if (tem)
3838 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
3839 TYPE_NEXT_VARIANT (t) = NULL_TREE;
3840 }
3841
3842 /* If we are a pointer then remove us from the pointer-to or
3843 reference-to chain. Otherwise we'd queue up a lot of duplicates
3844 there. */
3845 if (TREE_CODE (t) == POINTER_TYPE)
3846 {
3847 if (TYPE_POINTER_TO (TREE_TYPE (t)) == t)
3848 TYPE_POINTER_TO (TREE_TYPE (t)) = TYPE_NEXT_PTR_TO (t);
3849 else
3850 {
3851 tree tem = TYPE_POINTER_TO (TREE_TYPE (t));
3852 while (tem && TYPE_NEXT_PTR_TO (tem) != t)
3853 tem = TYPE_NEXT_PTR_TO (tem);
3854 if (tem)
3855 TYPE_NEXT_PTR_TO (tem) = TYPE_NEXT_PTR_TO (t);
3856 }
3857 TYPE_NEXT_PTR_TO (t) = NULL_TREE;
3858 }
3859 else if (TREE_CODE (t) == REFERENCE_TYPE)
3860 {
3861 if (TYPE_REFERENCE_TO (TREE_TYPE (t)) == t)
3862 TYPE_REFERENCE_TO (TREE_TYPE (t)) = TYPE_NEXT_REF_TO (t);
3863 else
3864 {
3865 tree tem = TYPE_REFERENCE_TO (TREE_TYPE (t));
3866 while (tem && TYPE_NEXT_REF_TO (tem) != t)
3867 tem = TYPE_NEXT_REF_TO (tem);
3868 if (tem)
3869 TYPE_NEXT_REF_TO (tem) = TYPE_NEXT_REF_TO (t);
3870 }
3871 TYPE_NEXT_REF_TO (t) = NULL_TREE;
3872 }
3873
3874 t = new_type;
3875 }
3876 else
3877 *slot = (void *) t;
3878
3879 return t;
3880 }
3881
3882
3883 /* Show statistics on references to the global type table gimple_types. */
3884
3885 void
3886 print_gimple_types_stats (void)
3887 {
3888 if (gimple_types)
3889 fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, "
3890 "%ld searches, %ld collisions (ratio: %f)\n",
3891 (long) htab_size (gimple_types),
3892 (long) htab_elements (gimple_types),
3893 (long) gimple_types->searches,
3894 (long) gimple_types->collisions,
3895 htab_collisions (gimple_types));
3896 else
3897 fprintf (stderr, "GIMPLE type table is empty\n");
3898 if (gtc_visited)
3899 fprintf (stderr, "GIMPLE type comparison table: size %ld, %ld "
3900 "elements, %ld searches, %ld collisions (ratio: %f)\n",
3901 (long) htab_size (gtc_visited),
3902 (long) htab_elements (gtc_visited),
3903 (long) gtc_visited->searches,
3904 (long) gtc_visited->collisions,
3905 htab_collisions (gtc_visited));
3906 else
3907 fprintf (stderr, "GIMPLE type comparison table is empty\n");
3908 }
3909
3910 /* Free the gimple type hashtables used for LTO type merging. */
3911
3912 void
3913 free_gimple_type_tables (void)
3914 {
3915 /* Last chance to print stats for the tables. */
3916 if (flag_lto_report)
3917 print_gimple_types_stats ();
3918
3919 if (gimple_types)
3920 {
3921 htab_delete (gimple_types);
3922 gimple_types = NULL;
3923 }
3924 if (type_hash_cache)
3925 {
3926 pointer_map_destroy (type_hash_cache);
3927 type_hash_cache = NULL;
3928 }
3929 if (gtc_visited)
3930 {
3931 htab_delete (gtc_visited);
3932 obstack_free (&gtc_ob, NULL);
3933 gtc_visited = NULL;
3934 }
3935 }
3936
3937
3938 /* Return a type the same as TYPE except unsigned or
3939 signed according to UNSIGNEDP. */
3940
3941 static tree
3942 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
3943 {
3944 tree type1;
3945
3946 type1 = TYPE_MAIN_VARIANT (type);
3947 if (type1 == signed_char_type_node
3948 || type1 == char_type_node
3949 || type1 == unsigned_char_type_node)
3950 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
3951 if (type1 == integer_type_node || type1 == unsigned_type_node)
3952 return unsignedp ? unsigned_type_node : integer_type_node;
3953 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
3954 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
3955 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
3956 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
3957 if (type1 == long_long_integer_type_node
3958 || type1 == long_long_unsigned_type_node)
3959 return unsignedp
3960 ? long_long_unsigned_type_node
3961 : long_long_integer_type_node;
3962 #if HOST_BITS_PER_WIDE_INT >= 64
3963 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
3964 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
3965 #endif
3966 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
3967 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
3968 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
3969 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
3970 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
3971 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
3972 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
3973 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
3974
3975 #define GIMPLE_FIXED_TYPES(NAME) \
3976 if (type1 == short_ ## NAME ## _type_node \
3977 || type1 == unsigned_short_ ## NAME ## _type_node) \
3978 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
3979 : short_ ## NAME ## _type_node; \
3980 if (type1 == NAME ## _type_node \
3981 || type1 == unsigned_ ## NAME ## _type_node) \
3982 return unsignedp ? unsigned_ ## NAME ## _type_node \
3983 : NAME ## _type_node; \
3984 if (type1 == long_ ## NAME ## _type_node \
3985 || type1 == unsigned_long_ ## NAME ## _type_node) \
3986 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
3987 : long_ ## NAME ## _type_node; \
3988 if (type1 == long_long_ ## NAME ## _type_node \
3989 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
3990 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
3991 : long_long_ ## NAME ## _type_node;
3992
3993 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
3994 if (type1 == NAME ## _type_node \
3995 || type1 == u ## NAME ## _type_node) \
3996 return unsignedp ? u ## NAME ## _type_node \
3997 : NAME ## _type_node;
3998
3999 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
4000 if (type1 == sat_ ## short_ ## NAME ## _type_node \
4001 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
4002 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
4003 : sat_ ## short_ ## NAME ## _type_node; \
4004 if (type1 == sat_ ## NAME ## _type_node \
4005 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
4006 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
4007 : sat_ ## NAME ## _type_node; \
4008 if (type1 == sat_ ## long_ ## NAME ## _type_node \
4009 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
4010 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
4011 : sat_ ## long_ ## NAME ## _type_node; \
4012 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
4013 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
4014 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
4015 : sat_ ## long_long_ ## NAME ## _type_node;
4016
4017 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
4018 if (type1 == sat_ ## NAME ## _type_node \
4019 || type1 == sat_ ## u ## NAME ## _type_node) \
4020 return unsignedp ? sat_ ## u ## NAME ## _type_node \
4021 : sat_ ## NAME ## _type_node;
4022
4023 GIMPLE_FIXED_TYPES (fract);
4024 GIMPLE_FIXED_TYPES_SAT (fract);
4025 GIMPLE_FIXED_TYPES (accum);
4026 GIMPLE_FIXED_TYPES_SAT (accum);
4027
4028 GIMPLE_FIXED_MODE_TYPES (qq);
4029 GIMPLE_FIXED_MODE_TYPES (hq);
4030 GIMPLE_FIXED_MODE_TYPES (sq);
4031 GIMPLE_FIXED_MODE_TYPES (dq);
4032 GIMPLE_FIXED_MODE_TYPES (tq);
4033 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
4034 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
4035 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
4036 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
4037 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
4038 GIMPLE_FIXED_MODE_TYPES (ha);
4039 GIMPLE_FIXED_MODE_TYPES (sa);
4040 GIMPLE_FIXED_MODE_TYPES (da);
4041 GIMPLE_FIXED_MODE_TYPES (ta);
4042 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
4043 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
4044 GIMPLE_FIXED_MODE_TYPES_SAT (da);
4045 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
4046
4047 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
4048 the precision; they have precision set to match their range, but
4049 may use a wider mode to match an ABI. If we change modes, we may
4050 wind up with bad conversions. For INTEGER_TYPEs in C, must check
4051 the precision as well, so as to yield correct results for
4052 bit-field types. C++ does not have these separate bit-field
4053 types, and producing a signed or unsigned variant of an
4054 ENUMERAL_TYPE may cause other problems as well. */
4055 if (!INTEGRAL_TYPE_P (type)
4056 || TYPE_UNSIGNED (type) == unsignedp)
4057 return type;
4058
4059 #define TYPE_OK(node) \
4060 (TYPE_MODE (type) == TYPE_MODE (node) \
4061 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
4062 if (TYPE_OK (signed_char_type_node))
4063 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4064 if (TYPE_OK (integer_type_node))
4065 return unsignedp ? unsigned_type_node : integer_type_node;
4066 if (TYPE_OK (short_integer_type_node))
4067 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4068 if (TYPE_OK (long_integer_type_node))
4069 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4070 if (TYPE_OK (long_long_integer_type_node))
4071 return (unsignedp
4072 ? long_long_unsigned_type_node
4073 : long_long_integer_type_node);
4074
4075 #if HOST_BITS_PER_WIDE_INT >= 64
4076 if (TYPE_OK (intTI_type_node))
4077 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4078 #endif
4079 if (TYPE_OK (intDI_type_node))
4080 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4081 if (TYPE_OK (intSI_type_node))
4082 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4083 if (TYPE_OK (intHI_type_node))
4084 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4085 if (TYPE_OK (intQI_type_node))
4086 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4087
4088 #undef GIMPLE_FIXED_TYPES
4089 #undef GIMPLE_FIXED_MODE_TYPES
4090 #undef GIMPLE_FIXED_TYPES_SAT
4091 #undef GIMPLE_FIXED_MODE_TYPES_SAT
4092 #undef TYPE_OK
4093
4094 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
4095 }
4096
4097
4098 /* Return an unsigned type the same as TYPE in other respects. */
4099
4100 tree
4101 gimple_unsigned_type (tree type)
4102 {
4103 return gimple_signed_or_unsigned_type (true, type);
4104 }
4105
4106
4107 /* Return a signed type the same as TYPE in other respects. */
4108
4109 tree
4110 gimple_signed_type (tree type)
4111 {
4112 return gimple_signed_or_unsigned_type (false, type);
4113 }
4114
4115
4116 /* Return the typed-based alias set for T, which may be an expression
4117 or a type. Return -1 if we don't do anything special. */
4118
4119 alias_set_type
4120 gimple_get_alias_set (tree t)
4121 {
4122 static bool recursing_p;
4123 tree u;
4124
4125 /* Permit type-punning when accessing a union, provided the access
4126 is directly through the union. For example, this code does not
4127 permit taking the address of a union member and then storing
4128 through it. Even the type-punning allowed here is a GCC
4129 extension, albeit a common and useful one; the C standard says
4130 that such accesses have implementation-defined behavior. */
4131 for (u = t;
4132 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
4133 u = TREE_OPERAND (u, 0))
4134 if (TREE_CODE (u) == COMPONENT_REF
4135 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
4136 return 0;
4137
4138 /* That's all the expressions we handle specially. */
4139 if (!TYPE_P (t))
4140 return -1;
4141
4142 /* For convenience, follow the C standard when dealing with
4143 character types. Any object may be accessed via an lvalue that
4144 has character type. */
4145 if (t == char_type_node
4146 || t == signed_char_type_node
4147 || t == unsigned_char_type_node)
4148 return 0;
4149
4150 /* Allow aliasing between signed and unsigned variants of the same
4151 type. We treat the signed variant as canonical. */
4152 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
4153 {
4154 tree t1 = gimple_signed_type (t);
4155
4156 /* t1 == t can happen for boolean nodes which are always unsigned. */
4157 if (t1 != t)
4158 return get_alias_set (t1);
4159 }
4160 else if (POINTER_TYPE_P (t))
4161 {
4162 tree t1;
4163
4164 /* ??? We can end up creating cycles with TYPE_MAIN_VARIANT
4165 and TYPE_CANONICAL. Avoid recursing endlessly between
4166 this langhook and get_alias_set. */
4167 if (recursing_p)
4168 return -1;
4169
4170 /* Unfortunately, there is no canonical form of a pointer type.
4171 In particular, if we have `typedef int I', then `int *', and
4172 `I *' are different types. So, we have to pick a canonical
4173 representative. We do this below.
4174
4175 Technically, this approach is actually more conservative that
4176 it needs to be. In particular, `const int *' and `int *'
4177 should be in different alias sets, according to the C and C++
4178 standard, since their types are not the same, and so,
4179 technically, an `int **' and `const int **' cannot point at
4180 the same thing.
4181
4182 But, the standard is wrong. In particular, this code is
4183 legal C++:
4184
4185 int *ip;
4186 int **ipp = &ip;
4187 const int* const* cipp = ipp;
4188 And, it doesn't make sense for that to be legal unless you
4189 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
4190 the pointed-to types. This issue has been reported to the
4191 C++ committee. */
4192 t1 = build_type_no_quals (t);
4193 if (t1 != t)
4194 {
4195 alias_set_type set;
4196 recursing_p = true;
4197 set = get_alias_set (t1);
4198 recursing_p = false;
4199 return set;
4200 }
4201 }
4202
4203 return -1;
4204 }
4205
4206
4207 /* Data structure used to count the number of dereferences to PTR
4208 inside an expression. */
4209 struct count_ptr_d
4210 {
4211 tree ptr;
4212 unsigned num_stores;
4213 unsigned num_loads;
4214 };
4215
4216 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
4217 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
4218
4219 static tree
4220 count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
4221 {
4222 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
4223 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
4224
4225 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
4226 pointer 'ptr' is *not* dereferenced, it is simply used to compute
4227 the address of 'fld' as 'ptr + offsetof(fld)'. */
4228 if (TREE_CODE (*tp) == ADDR_EXPR)
4229 {
4230 *walk_subtrees = 0;
4231 return NULL_TREE;
4232 }
4233
4234 if (INDIRECT_REF_P (*tp) && TREE_OPERAND (*tp, 0) == count_p->ptr)
4235 {
4236 if (wi_p->is_lhs)
4237 count_p->num_stores++;
4238 else
4239 count_p->num_loads++;
4240 }
4241
4242 return NULL_TREE;
4243 }
4244
4245 /* Count the number of direct and indirect uses for pointer PTR in
4246 statement STMT. The number of direct uses is stored in
4247 *NUM_USES_P. Indirect references are counted separately depending
4248 on whether they are store or load operations. The counts are
4249 stored in *NUM_STORES_P and *NUM_LOADS_P. */
4250
4251 void
4252 count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
4253 unsigned *num_loads_p, unsigned *num_stores_p)
4254 {
4255 ssa_op_iter i;
4256 tree use;
4257
4258 *num_uses_p = 0;
4259 *num_loads_p = 0;
4260 *num_stores_p = 0;
4261
4262 /* Find out the total number of uses of PTR in STMT. */
4263 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4264 if (use == ptr)
4265 (*num_uses_p)++;
4266
4267 /* Now count the number of indirect references to PTR. This is
4268 truly awful, but we don't have much choice. There are no parent
4269 pointers inside INDIRECT_REFs, so an expression like
4270 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
4271 find all the indirect and direct uses of x_1 inside. The only
4272 shortcut we can take is the fact that GIMPLE only allows
4273 INDIRECT_REFs inside the expressions below. */
4274 if (is_gimple_assign (stmt)
4275 || gimple_code (stmt) == GIMPLE_RETURN
4276 || gimple_code (stmt) == GIMPLE_ASM
4277 || is_gimple_call (stmt))
4278 {
4279 struct walk_stmt_info wi;
4280 struct count_ptr_d count;
4281
4282 count.ptr = ptr;
4283 count.num_stores = 0;
4284 count.num_loads = 0;
4285
4286 memset (&wi, 0, sizeof (wi));
4287 wi.info = &count;
4288 walk_gimple_op (stmt, count_ptr_derefs, &wi);
4289
4290 *num_stores_p = count.num_stores;
4291 *num_loads_p = count.num_loads;
4292 }
4293
4294 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
4295 }
4296
4297 /* From a tree operand OP return the base of a load or store operation
4298 or NULL_TREE if OP is not a load or a store. */
4299
4300 static tree
4301 get_base_loadstore (tree op)
4302 {
4303 while (handled_component_p (op))
4304 op = TREE_OPERAND (op, 0);
4305 if (DECL_P (op)
4306 || INDIRECT_REF_P (op)
4307 || TREE_CODE (op) == TARGET_MEM_REF)
4308 return op;
4309 return NULL_TREE;
4310 }
4311
4312 /* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
4313 VISIT_ADDR if non-NULL on loads, store and address-taken operands
4314 passing the STMT, the base of the operand and DATA to it. The base
4315 will be either a decl, an indirect reference (including TARGET_MEM_REF)
4316 or the argument of an address expression.
4317 Returns the results of these callbacks or'ed. */
4318
4319 bool
4320 walk_stmt_load_store_addr_ops (gimple stmt, void *data,
4321 bool (*visit_load)(gimple, tree, void *),
4322 bool (*visit_store)(gimple, tree, void *),
4323 bool (*visit_addr)(gimple, tree, void *))
4324 {
4325 bool ret = false;
4326 unsigned i;
4327 if (gimple_assign_single_p (stmt))
4328 {
4329 tree lhs, rhs;
4330 if (visit_store)
4331 {
4332 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
4333 if (lhs)
4334 ret |= visit_store (stmt, lhs, data);
4335 }
4336 rhs = gimple_assign_rhs1 (stmt);
4337 while (handled_component_p (rhs))
4338 rhs = TREE_OPERAND (rhs, 0);
4339 if (visit_addr)
4340 {
4341 if (TREE_CODE (rhs) == ADDR_EXPR)
4342 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4343 else if (TREE_CODE (rhs) == TARGET_MEM_REF
4344 && TMR_BASE (rhs) != NULL_TREE
4345 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
4346 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
4347 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
4348 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
4349 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
4350 0), data);
4351 lhs = gimple_assign_lhs (stmt);
4352 if (TREE_CODE (lhs) == TARGET_MEM_REF
4353 && TMR_BASE (lhs) != NULL_TREE
4354 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
4355 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
4356 }
4357 if (visit_load)
4358 {
4359 rhs = get_base_loadstore (rhs);
4360 if (rhs)
4361 ret |= visit_load (stmt, rhs, data);
4362 }
4363 }
4364 else if (visit_addr
4365 && (is_gimple_assign (stmt)
4366 || gimple_code (stmt) == GIMPLE_COND))
4367 {
4368 for (i = 0; i < gimple_num_ops (stmt); ++i)
4369 if (gimple_op (stmt, i)
4370 && TREE_CODE (gimple_op (stmt, i)) == ADDR_EXPR)
4371 ret |= visit_addr (stmt, TREE_OPERAND (gimple_op (stmt, i), 0), data);
4372 }
4373 else if (is_gimple_call (stmt))
4374 {
4375 if (visit_store)
4376 {
4377 tree lhs = gimple_call_lhs (stmt);
4378 if (lhs)
4379 {
4380 lhs = get_base_loadstore (lhs);
4381 if (lhs)
4382 ret |= visit_store (stmt, lhs, data);
4383 }
4384 }
4385 if (visit_load || visit_addr)
4386 for (i = 0; i < gimple_call_num_args (stmt); ++i)
4387 {
4388 tree rhs = gimple_call_arg (stmt, i);
4389 if (visit_addr
4390 && TREE_CODE (rhs) == ADDR_EXPR)
4391 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4392 else if (visit_load)
4393 {
4394 rhs = get_base_loadstore (rhs);
4395 if (rhs)
4396 ret |= visit_load (stmt, rhs, data);
4397 }
4398 }
4399 if (visit_addr
4400 && gimple_call_chain (stmt)
4401 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
4402 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
4403 data);
4404 if (visit_addr
4405 && gimple_call_return_slot_opt_p (stmt)
4406 && gimple_call_lhs (stmt) != NULL_TREE
4407 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
4408 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
4409 }
4410 else if (gimple_code (stmt) == GIMPLE_ASM)
4411 {
4412 unsigned noutputs;
4413 const char *constraint;
4414 const char **oconstraints;
4415 bool allows_mem, allows_reg, is_inout;
4416 noutputs = gimple_asm_noutputs (stmt);
4417 oconstraints = XALLOCAVEC (const char *, noutputs);
4418 if (visit_store || visit_addr)
4419 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
4420 {
4421 tree link = gimple_asm_output_op (stmt, i);
4422 tree op = get_base_loadstore (TREE_VALUE (link));
4423 if (op && visit_store)
4424 ret |= visit_store (stmt, op, data);
4425 if (visit_addr)
4426 {
4427 constraint = TREE_STRING_POINTER
4428 (TREE_VALUE (TREE_PURPOSE (link)));
4429 oconstraints[i] = constraint;
4430 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4431 &allows_reg, &is_inout);
4432 if (op && !allows_reg && allows_mem)
4433 ret |= visit_addr (stmt, op, data);
4434 }
4435 }
4436 if (visit_load || visit_addr)
4437 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
4438 {
4439 tree link = gimple_asm_input_op (stmt, i);
4440 tree op = TREE_VALUE (link);
4441 if (visit_addr
4442 && TREE_CODE (op) == ADDR_EXPR)
4443 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4444 else if (visit_load || visit_addr)
4445 {
4446 op = get_base_loadstore (op);
4447 if (op)
4448 {
4449 if (visit_load)
4450 ret |= visit_load (stmt, op, data);
4451 if (visit_addr)
4452 {
4453 constraint = TREE_STRING_POINTER
4454 (TREE_VALUE (TREE_PURPOSE (link)));
4455 parse_input_constraint (&constraint, 0, 0, noutputs,
4456 0, oconstraints,
4457 &allows_mem, &allows_reg);
4458 if (!allows_reg && allows_mem)
4459 ret |= visit_addr (stmt, op, data);
4460 }
4461 }
4462 }
4463 }
4464 }
4465 else if (gimple_code (stmt) == GIMPLE_RETURN)
4466 {
4467 tree op = gimple_return_retval (stmt);
4468 if (op)
4469 {
4470 if (visit_addr
4471 && TREE_CODE (op) == ADDR_EXPR)
4472 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4473 else if (visit_load)
4474 {
4475 op = get_base_loadstore (op);
4476 if (op)
4477 ret |= visit_load (stmt, op, data);
4478 }
4479 }
4480 }
4481 else if (visit_addr
4482 && gimple_code (stmt) == GIMPLE_PHI)
4483 {
4484 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
4485 {
4486 tree op = PHI_ARG_DEF (stmt, i);
4487 if (TREE_CODE (op) == ADDR_EXPR)
4488 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4489 }
4490 }
4491
4492 return ret;
4493 }
4494
4495 /* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
4496 should make a faster clone for this case. */
4497
4498 bool
4499 walk_stmt_load_store_ops (gimple stmt, void *data,
4500 bool (*visit_load)(gimple, tree, void *),
4501 bool (*visit_store)(gimple, tree, void *))
4502 {
4503 return walk_stmt_load_store_addr_ops (stmt, data,
4504 visit_load, visit_store, NULL);
4505 }
4506
4507 /* Helper for gimple_ior_addresses_taken_1. */
4508
4509 static bool
4510 gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
4511 tree addr, void *data)
4512 {
4513 bitmap addresses_taken = (bitmap)data;
4514 while (handled_component_p (addr))
4515 addr = TREE_OPERAND (addr, 0);
4516 if (DECL_P (addr))
4517 {
4518 bitmap_set_bit (addresses_taken, DECL_UID (addr));
4519 return true;
4520 }
4521 return false;
4522 }
4523
4524 /* Set the bit for the uid of all decls that have their address taken
4525 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
4526 were any in this stmt. */
4527
4528 bool
4529 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
4530 {
4531 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
4532 gimple_ior_addresses_taken_1);
4533 }
4534
4535
4536 /* Return a printable name for symbol DECL. */
4537
4538 const char *
4539 gimple_decl_printable_name (tree decl, int verbosity)
4540 {
4541 gcc_assert (decl && DECL_NAME (decl));
4542
4543 if (DECL_ASSEMBLER_NAME_SET_P (decl))
4544 {
4545 const char *str, *mangled_str;
4546 int dmgl_opts = DMGL_NO_OPTS;
4547
4548 if (verbosity >= 2)
4549 {
4550 dmgl_opts = DMGL_VERBOSE
4551 | DMGL_ANSI
4552 | DMGL_GNU_V3
4553 | DMGL_RET_POSTFIX;
4554 if (TREE_CODE (decl) == FUNCTION_DECL)
4555 dmgl_opts |= DMGL_PARAMS;
4556 }
4557
4558 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
4559 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
4560 return (str) ? str : mangled_str;
4561 }
4562
4563 return IDENTIFIER_POINTER (DECL_NAME (decl));
4564 }
4565
4566
4567 /* Fold a OBJ_TYPE_REF expression to the address of a function.
4568 KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF). Adapted
4569 from cp_fold_obj_type_ref, but it tolerates types with no binfo
4570 data. */
4571
4572 tree
4573 gimple_fold_obj_type_ref (tree ref, tree known_type)
4574 {
4575 HOST_WIDE_INT index;
4576 HOST_WIDE_INT i;
4577 tree v;
4578 tree fndecl;
4579
4580 if (TYPE_BINFO (known_type) == NULL_TREE)
4581 return NULL_TREE;
4582
4583 v = BINFO_VIRTUALS (TYPE_BINFO (known_type));
4584 index = tree_low_cst (OBJ_TYPE_REF_TOKEN (ref), 1);
4585 i = 0;
4586 while (i != index)
4587 {
4588 i += (TARGET_VTABLE_USES_DESCRIPTORS
4589 ? TARGET_VTABLE_USES_DESCRIPTORS : 1);
4590 v = TREE_CHAIN (v);
4591 }
4592
4593 fndecl = TREE_VALUE (v);
4594
4595 #ifdef ENABLE_CHECKING
4596 gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref),
4597 DECL_VINDEX (fndecl)));
4598 #endif
4599
4600 cgraph_node (fndecl)->local.vtable_method = true;
4601
4602 return build_fold_addr_expr (fndecl);
4603 }
4604
4605 #include "gt-gimple.h"
This page took 0.199958 seconds and 4 git commands to generate.