]> gcc.gnu.org Git - gcc.git/blob - gcc/ggc-page.c
re PR c++/27292 (ICE on casts on bitfields)
[gcc.git] / gcc / ggc-page.c
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "toplev.h"
30 #include "flags.h"
31 #include "ggc.h"
32 #include "timevar.h"
33 #include "params.h"
34 #include "tree-flow.h"
35 #ifdef ENABLE_VALGRIND_CHECKING
36 # ifdef HAVE_VALGRIND_MEMCHECK_H
37 # include <valgrind/memcheck.h>
38 # elif defined HAVE_MEMCHECK_H
39 # include <memcheck.h>
40 # else
41 # include <valgrind.h>
42 # endif
43 #else
44 /* Avoid #ifdef:s when we can help it. */
45 #define VALGRIND_DISCARD(x)
46 #endif
47
48 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
49 file open. Prefer either to valloc. */
50 #ifdef HAVE_MMAP_ANON
51 # undef HAVE_MMAP_DEV_ZERO
52
53 # include <sys/mman.h>
54 # ifndef MAP_FAILED
55 # define MAP_FAILED -1
56 # endif
57 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
58 # define MAP_ANONYMOUS MAP_ANON
59 # endif
60 # define USING_MMAP
61
62 #endif
63
64 #ifdef HAVE_MMAP_DEV_ZERO
65
66 # include <sys/mman.h>
67 # ifndef MAP_FAILED
68 # define MAP_FAILED -1
69 # endif
70 # define USING_MMAP
71
72 #endif
73
74 #ifndef USING_MMAP
75 #define USING_MALLOC_PAGE_GROUPS
76 #endif
77
78 /* Strategy:
79
80 This garbage-collecting allocator allocates objects on one of a set
81 of pages. Each page can allocate objects of a single size only;
82 available sizes are powers of two starting at four bytes. The size
83 of an allocation request is rounded up to the next power of two
84 (`order'), and satisfied from the appropriate page.
85
86 Each page is recorded in a page-entry, which also maintains an
87 in-use bitmap of object positions on the page. This allows the
88 allocation state of a particular object to be flipped without
89 touching the page itself.
90
91 Each page-entry also has a context depth, which is used to track
92 pushing and popping of allocation contexts. Only objects allocated
93 in the current (highest-numbered) context may be collected.
94
95 Page entries are arranged in an array of singly-linked lists. The
96 array is indexed by the allocation size, in bits, of the pages on
97 it; i.e. all pages on a list allocate objects of the same size.
98 Pages are ordered on the list such that all non-full pages precede
99 all full pages, with non-full pages arranged in order of decreasing
100 context depth.
101
102 Empty pages (of all orders) are kept on a single page cache list,
103 and are considered first when new pages are required; they are
104 deallocated at the start of the next collection if they haven't
105 been recycled by then. */
106
107 /* Define GGC_DEBUG_LEVEL to print debugging information.
108 0: No debugging output.
109 1: GC statistics only.
110 2: Page-entry allocations/deallocations as well.
111 3: Object allocations as well.
112 4: Object marks as well. */
113 #define GGC_DEBUG_LEVEL (0)
114 \f
115 #ifndef HOST_BITS_PER_PTR
116 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
117 #endif
118
119 \f
120 /* A two-level tree is used to look up the page-entry for a given
121 pointer. Two chunks of the pointer's bits are extracted to index
122 the first and second levels of the tree, as follows:
123
124 HOST_PAGE_SIZE_BITS
125 32 | |
126 msb +----------------+----+------+------+ lsb
127 | | |
128 PAGE_L1_BITS |
129 | |
130 PAGE_L2_BITS
131
132 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
133 pages are aligned on system page boundaries. The next most
134 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
135 index values in the lookup table, respectively.
136
137 For 32-bit architectures and the settings below, there are no
138 leftover bits. For architectures with wider pointers, the lookup
139 tree points to a list of pages, which must be scanned to find the
140 correct one. */
141
142 #define PAGE_L1_BITS (8)
143 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
144 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
145 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
146
147 #define LOOKUP_L1(p) \
148 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
149
150 #define LOOKUP_L2(p) \
151 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
152
153 /* The number of objects per allocation page, for objects on a page of
154 the indicated ORDER. */
155 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
156
157 /* The number of objects in P. */
158 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
159
160 /* The size of an object on a page of the indicated ORDER. */
161 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
162
163 /* For speed, we avoid doing a general integer divide to locate the
164 offset in the allocation bitmap, by precalculating numbers M, S
165 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
166 within the page which is evenly divisible by the object size Z. */
167 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
168 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
169 #define OFFSET_TO_BIT(OFFSET, ORDER) \
170 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
171
172 /* The number of extra orders, not corresponding to power-of-two sized
173 objects. */
174
175 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
176
177 #define RTL_SIZE(NSLOTS) \
178 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
179
180 #define TREE_EXP_SIZE(OPS) \
181 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
182
183 /* The Ith entry is the maximum size of an object to be stored in the
184 Ith extra order. Adding a new entry to this array is the *only*
185 thing you need to do to add a new special allocation size. */
186
187 static const size_t extra_order_size_table[] = {
188 sizeof (struct stmt_ann_d),
189 sizeof (struct tree_decl_non_common),
190 sizeof (struct tree_field_decl),
191 sizeof (struct tree_parm_decl),
192 sizeof (struct tree_var_decl),
193 sizeof (struct tree_list),
194 TREE_EXP_SIZE (2),
195 RTL_SIZE (2), /* MEM, PLUS, etc. */
196 RTL_SIZE (9), /* INSN */
197 };
198
199 /* The total number of orders. */
200
201 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
202
203 /* We use this structure to determine the alignment required for
204 allocations. For power-of-two sized allocations, that's not a
205 problem, but it does matter for odd-sized allocations. */
206
207 struct max_alignment {
208 char c;
209 union {
210 HOST_WIDEST_INT i;
211 long double d;
212 } u;
213 };
214
215 /* The biggest alignment required. */
216
217 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
218
219 /* Compute the smallest nonnegative number which when added to X gives
220 a multiple of F. */
221
222 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
223
224 /* Compute the smallest multiple of F that is >= X. */
225
226 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
227
228 /* The Ith entry is the number of objects on a page or order I. */
229
230 static unsigned objects_per_page_table[NUM_ORDERS];
231
232 /* The Ith entry is the size of an object on a page of order I. */
233
234 static size_t object_size_table[NUM_ORDERS];
235
236 /* The Ith entry is a pair of numbers (mult, shift) such that
237 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
238 for all k evenly divisible by OBJECT_SIZE(I). */
239
240 static struct
241 {
242 size_t mult;
243 unsigned int shift;
244 }
245 inverse_table[NUM_ORDERS];
246
247 /* A page_entry records the status of an allocation page. This
248 structure is dynamically sized to fit the bitmap in_use_p. */
249 typedef struct page_entry
250 {
251 /* The next page-entry with objects of the same size, or NULL if
252 this is the last page-entry. */
253 struct page_entry *next;
254
255 /* The previous page-entry with objects of the same size, or NULL if
256 this is the first page-entry. The PREV pointer exists solely to
257 keep the cost of ggc_free manageable. */
258 struct page_entry *prev;
259
260 /* The number of bytes allocated. (This will always be a multiple
261 of the host system page size.) */
262 size_t bytes;
263
264 /* The address at which the memory is allocated. */
265 char *page;
266
267 #ifdef USING_MALLOC_PAGE_GROUPS
268 /* Back pointer to the page group this page came from. */
269 struct page_group *group;
270 #endif
271
272 /* This is the index in the by_depth varray where this page table
273 can be found. */
274 unsigned long index_by_depth;
275
276 /* Context depth of this page. */
277 unsigned short context_depth;
278
279 /* The number of free objects remaining on this page. */
280 unsigned short num_free_objects;
281
282 /* A likely candidate for the bit position of a free object for the
283 next allocation from this page. */
284 unsigned short next_bit_hint;
285
286 /* The lg of size of objects allocated from this page. */
287 unsigned char order;
288
289 /* A bit vector indicating whether or not objects are in use. The
290 Nth bit is one if the Nth object on this page is allocated. This
291 array is dynamically sized. */
292 unsigned long in_use_p[1];
293 } page_entry;
294
295 #ifdef USING_MALLOC_PAGE_GROUPS
296 /* A page_group describes a large allocation from malloc, from which
297 we parcel out aligned pages. */
298 typedef struct page_group
299 {
300 /* A linked list of all extant page groups. */
301 struct page_group *next;
302
303 /* The address we received from malloc. */
304 char *allocation;
305
306 /* The size of the block. */
307 size_t alloc_size;
308
309 /* A bitmask of pages in use. */
310 unsigned int in_use;
311 } page_group;
312 #endif
313
314 #if HOST_BITS_PER_PTR <= 32
315
316 /* On 32-bit hosts, we use a two level page table, as pictured above. */
317 typedef page_entry **page_table[PAGE_L1_SIZE];
318
319 #else
320
321 /* On 64-bit hosts, we use the same two level page tables plus a linked
322 list that disambiguates the top 32-bits. There will almost always be
323 exactly one entry in the list. */
324 typedef struct page_table_chain
325 {
326 struct page_table_chain *next;
327 size_t high_bits;
328 page_entry **table[PAGE_L1_SIZE];
329 } *page_table;
330
331 #endif
332
333 /* The rest of the global variables. */
334 static struct globals
335 {
336 /* The Nth element in this array is a page with objects of size 2^N.
337 If there are any pages with free objects, they will be at the
338 head of the list. NULL if there are no page-entries for this
339 object size. */
340 page_entry *pages[NUM_ORDERS];
341
342 /* The Nth element in this array is the last page with objects of
343 size 2^N. NULL if there are no page-entries for this object
344 size. */
345 page_entry *page_tails[NUM_ORDERS];
346
347 /* Lookup table for associating allocation pages with object addresses. */
348 page_table lookup;
349
350 /* The system's page size. */
351 size_t pagesize;
352 size_t lg_pagesize;
353
354 /* Bytes currently allocated. */
355 size_t allocated;
356
357 /* Bytes currently allocated at the end of the last collection. */
358 size_t allocated_last_gc;
359
360 /* Total amount of memory mapped. */
361 size_t bytes_mapped;
362
363 /* Bit N set if any allocations have been done at context depth N. */
364 unsigned long context_depth_allocations;
365
366 /* Bit N set if any collections have been done at context depth N. */
367 unsigned long context_depth_collections;
368
369 /* The current depth in the context stack. */
370 unsigned short context_depth;
371
372 /* A file descriptor open to /dev/zero for reading. */
373 #if defined (HAVE_MMAP_DEV_ZERO)
374 int dev_zero_fd;
375 #endif
376
377 /* A cache of free system pages. */
378 page_entry *free_pages;
379
380 #ifdef USING_MALLOC_PAGE_GROUPS
381 page_group *page_groups;
382 #endif
383
384 /* The file descriptor for debugging output. */
385 FILE *debug_file;
386
387 /* Current number of elements in use in depth below. */
388 unsigned int depth_in_use;
389
390 /* Maximum number of elements that can be used before resizing. */
391 unsigned int depth_max;
392
393 /* Each element of this arry is an index in by_depth where the given
394 depth starts. This structure is indexed by that given depth we
395 are interested in. */
396 unsigned int *depth;
397
398 /* Current number of elements in use in by_depth below. */
399 unsigned int by_depth_in_use;
400
401 /* Maximum number of elements that can be used before resizing. */
402 unsigned int by_depth_max;
403
404 /* Each element of this array is a pointer to a page_entry, all
405 page_entries can be found in here by increasing depth.
406 index_by_depth in the page_entry is the index into this data
407 structure where that page_entry can be found. This is used to
408 speed up finding all page_entries at a particular depth. */
409 page_entry **by_depth;
410
411 /* Each element is a pointer to the saved in_use_p bits, if any,
412 zero otherwise. We allocate them all together, to enable a
413 better runtime data access pattern. */
414 unsigned long **save_in_use;
415
416 #ifdef ENABLE_GC_ALWAYS_COLLECT
417 /* List of free objects to be verified as actually free on the
418 next collection. */
419 struct free_object
420 {
421 void *object;
422 struct free_object *next;
423 } *free_object_list;
424 #endif
425
426 #ifdef GATHER_STATISTICS
427 struct
428 {
429 /* Total memory allocated with ggc_alloc. */
430 unsigned long long total_allocated;
431 /* Total overhead for memory to be allocated with ggc_alloc. */
432 unsigned long long total_overhead;
433
434 /* Total allocations and overhead for sizes less than 32, 64 and 128.
435 These sizes are interesting because they are typical cache line
436 sizes. */
437
438 unsigned long long total_allocated_under32;
439 unsigned long long total_overhead_under32;
440
441 unsigned long long total_allocated_under64;
442 unsigned long long total_overhead_under64;
443
444 unsigned long long total_allocated_under128;
445 unsigned long long total_overhead_under128;
446
447 /* The allocations for each of the allocation orders. */
448 unsigned long long total_allocated_per_order[NUM_ORDERS];
449
450 /* The overhead for each of the allocation orders. */
451 unsigned long long total_overhead_per_order[NUM_ORDERS];
452 } stats;
453 #endif
454 } G;
455
456 /* The size in bytes required to maintain a bitmap for the objects
457 on a page-entry. */
458 #define BITMAP_SIZE(Num_objects) \
459 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
460
461 /* Allocate pages in chunks of this size, to throttle calls to memory
462 allocation routines. The first page is used, the rest go onto the
463 free list. This cannot be larger than HOST_BITS_PER_INT for the
464 in_use bitmask for page_group. Hosts that need a different value
465 can override this by defining GGC_QUIRE_SIZE explicitly. */
466 #ifndef GGC_QUIRE_SIZE
467 # ifdef USING_MMAP
468 # define GGC_QUIRE_SIZE 256
469 # else
470 # define GGC_QUIRE_SIZE 16
471 # endif
472 #endif
473
474 /* Initial guess as to how many page table entries we might need. */
475 #define INITIAL_PTE_COUNT 128
476 \f
477 static int ggc_allocated_p (const void *);
478 static page_entry *lookup_page_table_entry (const void *);
479 static void set_page_table_entry (void *, page_entry *);
480 #ifdef USING_MMAP
481 static char *alloc_anon (char *, size_t);
482 #endif
483 #ifdef USING_MALLOC_PAGE_GROUPS
484 static size_t page_group_index (char *, char *);
485 static void set_page_group_in_use (page_group *, char *);
486 static void clear_page_group_in_use (page_group *, char *);
487 #endif
488 static struct page_entry * alloc_page (unsigned);
489 static void free_page (struct page_entry *);
490 static void release_pages (void);
491 static void clear_marks (void);
492 static void sweep_pages (void);
493 static void ggc_recalculate_in_use_p (page_entry *);
494 static void compute_inverse (unsigned);
495 static inline void adjust_depth (void);
496 static void move_ptes_to_front (int, int);
497
498 void debug_print_page_list (int);
499 static void push_depth (unsigned int);
500 static void push_by_depth (page_entry *, unsigned long *);
501
502 /* Push an entry onto G.depth. */
503
504 inline static void
505 push_depth (unsigned int i)
506 {
507 if (G.depth_in_use >= G.depth_max)
508 {
509 G.depth_max *= 2;
510 G.depth = xrealloc (G.depth, G.depth_max * sizeof (unsigned int));
511 }
512 G.depth[G.depth_in_use++] = i;
513 }
514
515 /* Push an entry onto G.by_depth and G.save_in_use. */
516
517 inline static void
518 push_by_depth (page_entry *p, unsigned long *s)
519 {
520 if (G.by_depth_in_use >= G.by_depth_max)
521 {
522 G.by_depth_max *= 2;
523 G.by_depth = xrealloc (G.by_depth,
524 G.by_depth_max * sizeof (page_entry *));
525 G.save_in_use = xrealloc (G.save_in_use,
526 G.by_depth_max * sizeof (unsigned long *));
527 }
528 G.by_depth[G.by_depth_in_use] = p;
529 G.save_in_use[G.by_depth_in_use++] = s;
530 }
531
532 #if (GCC_VERSION < 3001)
533 #define prefetch(X) ((void) X)
534 #else
535 #define prefetch(X) __builtin_prefetch (X)
536 #endif
537
538 #define save_in_use_p_i(__i) \
539 (G.save_in_use[__i])
540 #define save_in_use_p(__p) \
541 (save_in_use_p_i (__p->index_by_depth))
542
543 /* Returns nonzero if P was allocated in GC'able memory. */
544
545 static inline int
546 ggc_allocated_p (const void *p)
547 {
548 page_entry ***base;
549 size_t L1, L2;
550
551 #if HOST_BITS_PER_PTR <= 32
552 base = &G.lookup[0];
553 #else
554 page_table table = G.lookup;
555 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
556 while (1)
557 {
558 if (table == NULL)
559 return 0;
560 if (table->high_bits == high_bits)
561 break;
562 table = table->next;
563 }
564 base = &table->table[0];
565 #endif
566
567 /* Extract the level 1 and 2 indices. */
568 L1 = LOOKUP_L1 (p);
569 L2 = LOOKUP_L2 (p);
570
571 return base[L1] && base[L1][L2];
572 }
573
574 /* Traverse the page table and find the entry for a page.
575 Die (probably) if the object wasn't allocated via GC. */
576
577 static inline page_entry *
578 lookup_page_table_entry (const void *p)
579 {
580 page_entry ***base;
581 size_t L1, L2;
582
583 #if HOST_BITS_PER_PTR <= 32
584 base = &G.lookup[0];
585 #else
586 page_table table = G.lookup;
587 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
588 while (table->high_bits != high_bits)
589 table = table->next;
590 base = &table->table[0];
591 #endif
592
593 /* Extract the level 1 and 2 indices. */
594 L1 = LOOKUP_L1 (p);
595 L2 = LOOKUP_L2 (p);
596
597 return base[L1][L2];
598 }
599
600 /* Set the page table entry for a page. */
601
602 static void
603 set_page_table_entry (void *p, page_entry *entry)
604 {
605 page_entry ***base;
606 size_t L1, L2;
607
608 #if HOST_BITS_PER_PTR <= 32
609 base = &G.lookup[0];
610 #else
611 page_table table;
612 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
613 for (table = G.lookup; table; table = table->next)
614 if (table->high_bits == high_bits)
615 goto found;
616
617 /* Not found -- allocate a new table. */
618 table = xcalloc (1, sizeof(*table));
619 table->next = G.lookup;
620 table->high_bits = high_bits;
621 G.lookup = table;
622 found:
623 base = &table->table[0];
624 #endif
625
626 /* Extract the level 1 and 2 indices. */
627 L1 = LOOKUP_L1 (p);
628 L2 = LOOKUP_L2 (p);
629
630 if (base[L1] == NULL)
631 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
632
633 base[L1][L2] = entry;
634 }
635
636 /* Prints the page-entry for object size ORDER, for debugging. */
637
638 void
639 debug_print_page_list (int order)
640 {
641 page_entry *p;
642 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
643 (void *) G.page_tails[order]);
644 p = G.pages[order];
645 while (p != NULL)
646 {
647 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
648 p->num_free_objects);
649 p = p->next;
650 }
651 printf ("NULL\n");
652 fflush (stdout);
653 }
654
655 #ifdef USING_MMAP
656 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
657 (if non-null). The ifdef structure here is intended to cause a
658 compile error unless exactly one of the HAVE_* is defined. */
659
660 static inline char *
661 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size)
662 {
663 #ifdef HAVE_MMAP_ANON
664 char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
665 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
666 #endif
667 #ifdef HAVE_MMAP_DEV_ZERO
668 char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
669 MAP_PRIVATE, G.dev_zero_fd, 0);
670 #endif
671
672 if (page == (char *) MAP_FAILED)
673 {
674 perror ("virtual memory exhausted");
675 exit (FATAL_EXIT_CODE);
676 }
677
678 /* Remember that we allocated this memory. */
679 G.bytes_mapped += size;
680
681 /* Pretend we don't have access to the allocated pages. We'll enable
682 access to smaller pieces of the area in ggc_alloc. Discard the
683 handle to avoid handle leak. */
684 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (page, size));
685
686 return page;
687 }
688 #endif
689 #ifdef USING_MALLOC_PAGE_GROUPS
690 /* Compute the index for this page into the page group. */
691
692 static inline size_t
693 page_group_index (char *allocation, char *page)
694 {
695 return (size_t) (page - allocation) >> G.lg_pagesize;
696 }
697
698 /* Set and clear the in_use bit for this page in the page group. */
699
700 static inline void
701 set_page_group_in_use (page_group *group, char *page)
702 {
703 group->in_use |= 1 << page_group_index (group->allocation, page);
704 }
705
706 static inline void
707 clear_page_group_in_use (page_group *group, char *page)
708 {
709 group->in_use &= ~(1 << page_group_index (group->allocation, page));
710 }
711 #endif
712
713 /* Allocate a new page for allocating objects of size 2^ORDER,
714 and return an entry for it. The entry is not added to the
715 appropriate page_table list. */
716
717 static inline struct page_entry *
718 alloc_page (unsigned order)
719 {
720 struct page_entry *entry, *p, **pp;
721 char *page;
722 size_t num_objects;
723 size_t bitmap_size;
724 size_t page_entry_size;
725 size_t entry_size;
726 #ifdef USING_MALLOC_PAGE_GROUPS
727 page_group *group;
728 #endif
729
730 num_objects = OBJECTS_PER_PAGE (order);
731 bitmap_size = BITMAP_SIZE (num_objects + 1);
732 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
733 entry_size = num_objects * OBJECT_SIZE (order);
734 if (entry_size < G.pagesize)
735 entry_size = G.pagesize;
736
737 entry = NULL;
738 page = NULL;
739
740 /* Check the list of free pages for one we can use. */
741 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
742 if (p->bytes == entry_size)
743 break;
744
745 if (p != NULL)
746 {
747 /* Recycle the allocated memory from this page ... */
748 *pp = p->next;
749 page = p->page;
750
751 #ifdef USING_MALLOC_PAGE_GROUPS
752 group = p->group;
753 #endif
754
755 /* ... and, if possible, the page entry itself. */
756 if (p->order == order)
757 {
758 entry = p;
759 memset (entry, 0, page_entry_size);
760 }
761 else
762 free (p);
763 }
764 #ifdef USING_MMAP
765 else if (entry_size == G.pagesize)
766 {
767 /* We want just one page. Allocate a bunch of them and put the
768 extras on the freelist. (Can only do this optimization with
769 mmap for backing store.) */
770 struct page_entry *e, *f = G.free_pages;
771 int i;
772
773 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
774
775 /* This loop counts down so that the chain will be in ascending
776 memory order. */
777 for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
778 {
779 e = xcalloc (1, page_entry_size);
780 e->order = order;
781 e->bytes = G.pagesize;
782 e->page = page + (i << G.lg_pagesize);
783 e->next = f;
784 f = e;
785 }
786
787 G.free_pages = f;
788 }
789 else
790 page = alloc_anon (NULL, entry_size);
791 #endif
792 #ifdef USING_MALLOC_PAGE_GROUPS
793 else
794 {
795 /* Allocate a large block of memory and serve out the aligned
796 pages therein. This results in much less memory wastage
797 than the traditional implementation of valloc. */
798
799 char *allocation, *a, *enda;
800 size_t alloc_size, head_slop, tail_slop;
801 int multiple_pages = (entry_size == G.pagesize);
802
803 if (multiple_pages)
804 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
805 else
806 alloc_size = entry_size + G.pagesize - 1;
807 allocation = xmalloc (alloc_size);
808
809 page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
810 head_slop = page - allocation;
811 if (multiple_pages)
812 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
813 else
814 tail_slop = alloc_size - entry_size - head_slop;
815 enda = allocation + alloc_size - tail_slop;
816
817 /* We allocated N pages, which are likely not aligned, leaving
818 us with N-1 usable pages. We plan to place the page_group
819 structure somewhere in the slop. */
820 if (head_slop >= sizeof (page_group))
821 group = (page_group *)page - 1;
822 else
823 {
824 /* We magically got an aligned allocation. Too bad, we have
825 to waste a page anyway. */
826 if (tail_slop == 0)
827 {
828 enda -= G.pagesize;
829 tail_slop += G.pagesize;
830 }
831 gcc_assert (tail_slop >= sizeof (page_group));
832 group = (page_group *)enda;
833 tail_slop -= sizeof (page_group);
834 }
835
836 /* Remember that we allocated this memory. */
837 group->next = G.page_groups;
838 group->allocation = allocation;
839 group->alloc_size = alloc_size;
840 group->in_use = 0;
841 G.page_groups = group;
842 G.bytes_mapped += alloc_size;
843
844 /* If we allocated multiple pages, put the rest on the free list. */
845 if (multiple_pages)
846 {
847 struct page_entry *e, *f = G.free_pages;
848 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
849 {
850 e = xcalloc (1, page_entry_size);
851 e->order = order;
852 e->bytes = G.pagesize;
853 e->page = a;
854 e->group = group;
855 e->next = f;
856 f = e;
857 }
858 G.free_pages = f;
859 }
860 }
861 #endif
862
863 if (entry == NULL)
864 entry = xcalloc (1, page_entry_size);
865
866 entry->bytes = entry_size;
867 entry->page = page;
868 entry->context_depth = G.context_depth;
869 entry->order = order;
870 entry->num_free_objects = num_objects;
871 entry->next_bit_hint = 1;
872
873 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
874
875 #ifdef USING_MALLOC_PAGE_GROUPS
876 entry->group = group;
877 set_page_group_in_use (group, page);
878 #endif
879
880 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
881 increment the hint. */
882 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
883 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
884
885 set_page_table_entry (page, entry);
886
887 if (GGC_DEBUG_LEVEL >= 2)
888 fprintf (G.debug_file,
889 "Allocating page at %p, object size=%lu, data %p-%p\n",
890 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
891 page + entry_size - 1);
892
893 return entry;
894 }
895
896 /* Adjust the size of G.depth so that no index greater than the one
897 used by the top of the G.by_depth is used. */
898
899 static inline void
900 adjust_depth (void)
901 {
902 page_entry *top;
903
904 if (G.by_depth_in_use)
905 {
906 top = G.by_depth[G.by_depth_in_use-1];
907
908 /* Peel back indices in depth that index into by_depth, so that
909 as new elements are added to by_depth, we note the indices
910 of those elements, if they are for new context depths. */
911 while (G.depth_in_use > (size_t)top->context_depth+1)
912 --G.depth_in_use;
913 }
914 }
915
916 /* For a page that is no longer needed, put it on the free page list. */
917
918 static void
919 free_page (page_entry *entry)
920 {
921 if (GGC_DEBUG_LEVEL >= 2)
922 fprintf (G.debug_file,
923 "Deallocating page at %p, data %p-%p\n", (void *) entry,
924 entry->page, entry->page + entry->bytes - 1);
925
926 /* Mark the page as inaccessible. Discard the handle to avoid handle
927 leak. */
928 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (entry->page, entry->bytes));
929
930 set_page_table_entry (entry->page, NULL);
931
932 #ifdef USING_MALLOC_PAGE_GROUPS
933 clear_page_group_in_use (entry->group, entry->page);
934 #endif
935
936 if (G.by_depth_in_use > 1)
937 {
938 page_entry *top = G.by_depth[G.by_depth_in_use-1];
939 int i = entry->index_by_depth;
940
941 /* We cannot free a page from a context deeper than the current
942 one. */
943 gcc_assert (entry->context_depth == top->context_depth);
944
945 /* Put top element into freed slot. */
946 G.by_depth[i] = top;
947 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
948 top->index_by_depth = i;
949 }
950 --G.by_depth_in_use;
951
952 adjust_depth ();
953
954 entry->next = G.free_pages;
955 G.free_pages = entry;
956 }
957
958 /* Release the free page cache to the system. */
959
960 static void
961 release_pages (void)
962 {
963 #ifdef USING_MMAP
964 page_entry *p, *next;
965 char *start;
966 size_t len;
967
968 /* Gather up adjacent pages so they are unmapped together. */
969 p = G.free_pages;
970
971 while (p)
972 {
973 start = p->page;
974 next = p->next;
975 len = p->bytes;
976 free (p);
977 p = next;
978
979 while (p && p->page == start + len)
980 {
981 next = p->next;
982 len += p->bytes;
983 free (p);
984 p = next;
985 }
986
987 munmap (start, len);
988 G.bytes_mapped -= len;
989 }
990
991 G.free_pages = NULL;
992 #endif
993 #ifdef USING_MALLOC_PAGE_GROUPS
994 page_entry **pp, *p;
995 page_group **gp, *g;
996
997 /* Remove all pages from free page groups from the list. */
998 pp = &G.free_pages;
999 while ((p = *pp) != NULL)
1000 if (p->group->in_use == 0)
1001 {
1002 *pp = p->next;
1003 free (p);
1004 }
1005 else
1006 pp = &p->next;
1007
1008 /* Remove all free page groups, and release the storage. */
1009 gp = &G.page_groups;
1010 while ((g = *gp) != NULL)
1011 if (g->in_use == 0)
1012 {
1013 *gp = g->next;
1014 G.bytes_mapped -= g->alloc_size;
1015 free (g->allocation);
1016 }
1017 else
1018 gp = &g->next;
1019 #endif
1020 }
1021
1022 /* This table provides a fast way to determine ceil(log_2(size)) for
1023 allocation requests. The minimum allocation size is eight bytes. */
1024
1025 static unsigned char size_lookup[257] =
1026 {
1027 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1028 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1029 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1030 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1031 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1032 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1033 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1034 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1035 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1036 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1037 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1038 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1039 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1040 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1041 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1042 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1043 8
1044 };
1045
1046 /* Typed allocation function. Does nothing special in this collector. */
1047
1048 void *
1049 ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
1050 MEM_STAT_DECL)
1051 {
1052 return ggc_alloc_stat (size PASS_MEM_STAT);
1053 }
1054
1055 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1056
1057 void *
1058 ggc_alloc_stat (size_t size MEM_STAT_DECL)
1059 {
1060 size_t order, word, bit, object_offset, object_size;
1061 struct page_entry *entry;
1062 void *result;
1063
1064 if (size <= 256)
1065 {
1066 order = size_lookup[size];
1067 object_size = OBJECT_SIZE (order);
1068 }
1069 else
1070 {
1071 order = 9;
1072 while (size > (object_size = OBJECT_SIZE (order)))
1073 order++;
1074 }
1075
1076 /* If there are non-full pages for this size allocation, they are at
1077 the head of the list. */
1078 entry = G.pages[order];
1079
1080 /* If there is no page for this object size, or all pages in this
1081 context are full, allocate a new page. */
1082 if (entry == NULL || entry->num_free_objects == 0)
1083 {
1084 struct page_entry *new_entry;
1085 new_entry = alloc_page (order);
1086
1087 new_entry->index_by_depth = G.by_depth_in_use;
1088 push_by_depth (new_entry, 0);
1089
1090 /* We can skip context depths, if we do, make sure we go all the
1091 way to the new depth. */
1092 while (new_entry->context_depth >= G.depth_in_use)
1093 push_depth (G.by_depth_in_use-1);
1094
1095 /* If this is the only entry, it's also the tail. If it is not
1096 the only entry, then we must update the PREV pointer of the
1097 ENTRY (G.pages[order]) to point to our new page entry. */
1098 if (entry == NULL)
1099 G.page_tails[order] = new_entry;
1100 else
1101 entry->prev = new_entry;
1102
1103 /* Put new pages at the head of the page list. By definition the
1104 entry at the head of the list always has a NULL pointer. */
1105 new_entry->next = entry;
1106 new_entry->prev = NULL;
1107 entry = new_entry;
1108 G.pages[order] = new_entry;
1109
1110 /* For a new page, we know the word and bit positions (in the
1111 in_use bitmap) of the first available object -- they're zero. */
1112 new_entry->next_bit_hint = 1;
1113 word = 0;
1114 bit = 0;
1115 object_offset = 0;
1116 }
1117 else
1118 {
1119 /* First try to use the hint left from the previous allocation
1120 to locate a clear bit in the in-use bitmap. We've made sure
1121 that the one-past-the-end bit is always set, so if the hint
1122 has run over, this test will fail. */
1123 unsigned hint = entry->next_bit_hint;
1124 word = hint / HOST_BITS_PER_LONG;
1125 bit = hint % HOST_BITS_PER_LONG;
1126
1127 /* If the hint didn't work, scan the bitmap from the beginning. */
1128 if ((entry->in_use_p[word] >> bit) & 1)
1129 {
1130 word = bit = 0;
1131 while (~entry->in_use_p[word] == 0)
1132 ++word;
1133
1134 #if GCC_VERSION >= 3004
1135 bit = __builtin_ctzl (~entry->in_use_p[word]);
1136 #else
1137 while ((entry->in_use_p[word] >> bit) & 1)
1138 ++bit;
1139 #endif
1140
1141 hint = word * HOST_BITS_PER_LONG + bit;
1142 }
1143
1144 /* Next time, try the next bit. */
1145 entry->next_bit_hint = hint + 1;
1146
1147 object_offset = hint * object_size;
1148 }
1149
1150 /* Set the in-use bit. */
1151 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1152
1153 /* Keep a running total of the number of free objects. If this page
1154 fills up, we may have to move it to the end of the list if the
1155 next page isn't full. If the next page is full, all subsequent
1156 pages are full, so there's no need to move it. */
1157 if (--entry->num_free_objects == 0
1158 && entry->next != NULL
1159 && entry->next->num_free_objects > 0)
1160 {
1161 /* We have a new head for the list. */
1162 G.pages[order] = entry->next;
1163
1164 /* We are moving ENTRY to the end of the page table list.
1165 The new page at the head of the list will have NULL in
1166 its PREV field and ENTRY will have NULL in its NEXT field. */
1167 entry->next->prev = NULL;
1168 entry->next = NULL;
1169
1170 /* Append ENTRY to the tail of the list. */
1171 entry->prev = G.page_tails[order];
1172 G.page_tails[order]->next = entry;
1173 G.page_tails[order] = entry;
1174 }
1175
1176 /* Calculate the object's address. */
1177 result = entry->page + object_offset;
1178 #ifdef GATHER_STATISTICS
1179 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1180 result PASS_MEM_STAT);
1181 #endif
1182
1183 #ifdef ENABLE_GC_CHECKING
1184 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1185 exact same semantics in presence of memory bugs, regardless of
1186 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1187 handle to avoid handle leak. */
1188 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, object_size));
1189
1190 /* `Poison' the entire allocated object, including any padding at
1191 the end. */
1192 memset (result, 0xaf, object_size);
1193
1194 /* Make the bytes after the end of the object unaccessible. Discard the
1195 handle to avoid handle leak. */
1196 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS ((char *) result + size,
1197 object_size - size));
1198 #endif
1199
1200 /* Tell Valgrind that the memory is there, but its content isn't
1201 defined. The bytes at the end of the object are still marked
1202 unaccessible. */
1203 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, size));
1204
1205 /* Keep track of how many bytes are being allocated. This
1206 information is used in deciding when to collect. */
1207 G.allocated += object_size;
1208
1209 /* For timevar statistics. */
1210 timevar_ggc_mem_total += object_size;
1211
1212 #ifdef GATHER_STATISTICS
1213 {
1214 size_t overhead = object_size - size;
1215
1216 G.stats.total_overhead += overhead;
1217 G.stats.total_allocated += object_size;
1218 G.stats.total_overhead_per_order[order] += overhead;
1219 G.stats.total_allocated_per_order[order] += object_size;
1220
1221 if (size <= 32)
1222 {
1223 G.stats.total_overhead_under32 += overhead;
1224 G.stats.total_allocated_under32 += object_size;
1225 }
1226 if (size <= 64)
1227 {
1228 G.stats.total_overhead_under64 += overhead;
1229 G.stats.total_allocated_under64 += object_size;
1230 }
1231 if (size <= 128)
1232 {
1233 G.stats.total_overhead_under128 += overhead;
1234 G.stats.total_allocated_under128 += object_size;
1235 }
1236 }
1237 #endif
1238
1239 if (GGC_DEBUG_LEVEL >= 3)
1240 fprintf (G.debug_file,
1241 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1242 (unsigned long) size, (unsigned long) object_size, result,
1243 (void *) entry);
1244
1245 return result;
1246 }
1247
1248 /* If P is not marked, marks it and return false. Otherwise return true.
1249 P must have been allocated by the GC allocator; it mustn't point to
1250 static objects, stack variables, or memory allocated with malloc. */
1251
1252 int
1253 ggc_set_mark (const void *p)
1254 {
1255 page_entry *entry;
1256 unsigned bit, word;
1257 unsigned long mask;
1258
1259 /* Look up the page on which the object is alloced. If the object
1260 wasn't allocated by the collector, we'll probably die. */
1261 entry = lookup_page_table_entry (p);
1262 gcc_assert (entry);
1263
1264 /* Calculate the index of the object on the page; this is its bit
1265 position in the in_use_p bitmap. */
1266 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1267 word = bit / HOST_BITS_PER_LONG;
1268 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1269
1270 /* If the bit was previously set, skip it. */
1271 if (entry->in_use_p[word] & mask)
1272 return 1;
1273
1274 /* Otherwise set it, and decrement the free object count. */
1275 entry->in_use_p[word] |= mask;
1276 entry->num_free_objects -= 1;
1277
1278 if (GGC_DEBUG_LEVEL >= 4)
1279 fprintf (G.debug_file, "Marking %p\n", p);
1280
1281 return 0;
1282 }
1283
1284 /* Return 1 if P has been marked, zero otherwise.
1285 P must have been allocated by the GC allocator; it mustn't point to
1286 static objects, stack variables, or memory allocated with malloc. */
1287
1288 int
1289 ggc_marked_p (const void *p)
1290 {
1291 page_entry *entry;
1292 unsigned bit, word;
1293 unsigned long mask;
1294
1295 /* Look up the page on which the object is alloced. If the object
1296 wasn't allocated by the collector, we'll probably die. */
1297 entry = lookup_page_table_entry (p);
1298 gcc_assert (entry);
1299
1300 /* Calculate the index of the object on the page; this is its bit
1301 position in the in_use_p bitmap. */
1302 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1303 word = bit / HOST_BITS_PER_LONG;
1304 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1305
1306 return (entry->in_use_p[word] & mask) != 0;
1307 }
1308
1309 /* Return the size of the gc-able object P. */
1310
1311 size_t
1312 ggc_get_size (const void *p)
1313 {
1314 page_entry *pe = lookup_page_table_entry (p);
1315 return OBJECT_SIZE (pe->order);
1316 }
1317
1318 /* Release the memory for object P. */
1319
1320 void
1321 ggc_free (void *p)
1322 {
1323 page_entry *pe = lookup_page_table_entry (p);
1324 size_t order = pe->order;
1325 size_t size = OBJECT_SIZE (order);
1326
1327 #ifdef GATHER_STATISTICS
1328 ggc_free_overhead (p);
1329 #endif
1330
1331 if (GGC_DEBUG_LEVEL >= 3)
1332 fprintf (G.debug_file,
1333 "Freeing object, actual size=%lu, at %p on %p\n",
1334 (unsigned long) size, p, (void *) pe);
1335
1336 #ifdef ENABLE_GC_CHECKING
1337 /* Poison the data, to indicate the data is garbage. */
1338 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (p, size));
1339 memset (p, 0xa5, size);
1340 #endif
1341 /* Let valgrind know the object is free. */
1342 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (p, size));
1343
1344 #ifdef ENABLE_GC_ALWAYS_COLLECT
1345 /* In the completely-anal-checking mode, we do *not* immediately free
1346 the data, but instead verify that the data is *actually* not
1347 reachable the next time we collect. */
1348 {
1349 struct free_object *fo = XNEW (struct free_object);
1350 fo->object = p;
1351 fo->next = G.free_object_list;
1352 G.free_object_list = fo;
1353 }
1354 #else
1355 {
1356 unsigned int bit_offset, word, bit;
1357
1358 G.allocated -= size;
1359
1360 /* Mark the object not-in-use. */
1361 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1362 word = bit_offset / HOST_BITS_PER_LONG;
1363 bit = bit_offset % HOST_BITS_PER_LONG;
1364 pe->in_use_p[word] &= ~(1UL << bit);
1365
1366 if (pe->num_free_objects++ == 0)
1367 {
1368 page_entry *p, *q;
1369
1370 /* If the page is completely full, then it's supposed to
1371 be after all pages that aren't. Since we've freed one
1372 object from a page that was full, we need to move the
1373 page to the head of the list.
1374
1375 PE is the node we want to move. Q is the previous node
1376 and P is the next node in the list. */
1377 q = pe->prev;
1378 if (q && q->num_free_objects == 0)
1379 {
1380 p = pe->next;
1381
1382 q->next = p;
1383
1384 /* If PE was at the end of the list, then Q becomes the
1385 new end of the list. If PE was not the end of the
1386 list, then we need to update the PREV field for P. */
1387 if (!p)
1388 G.page_tails[order] = q;
1389 else
1390 p->prev = q;
1391
1392 /* Move PE to the head of the list. */
1393 pe->next = G.pages[order];
1394 pe->prev = NULL;
1395 G.pages[order]->prev = pe;
1396 G.pages[order] = pe;
1397 }
1398
1399 /* Reset the hint bit to point to the only free object. */
1400 pe->next_bit_hint = bit_offset;
1401 }
1402 }
1403 #endif
1404 }
1405 \f
1406 /* Subroutine of init_ggc which computes the pair of numbers used to
1407 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1408
1409 This algorithm is taken from Granlund and Montgomery's paper
1410 "Division by Invariant Integers using Multiplication"
1411 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1412 constants). */
1413
1414 static void
1415 compute_inverse (unsigned order)
1416 {
1417 size_t size, inv;
1418 unsigned int e;
1419
1420 size = OBJECT_SIZE (order);
1421 e = 0;
1422 while (size % 2 == 0)
1423 {
1424 e++;
1425 size >>= 1;
1426 }
1427
1428 inv = size;
1429 while (inv * size != 1)
1430 inv = inv * (2 - inv*size);
1431
1432 DIV_MULT (order) = inv;
1433 DIV_SHIFT (order) = e;
1434 }
1435
1436 /* Initialize the ggc-mmap allocator. */
1437 void
1438 init_ggc (void)
1439 {
1440 unsigned order;
1441
1442 G.pagesize = getpagesize();
1443 G.lg_pagesize = exact_log2 (G.pagesize);
1444
1445 #ifdef HAVE_MMAP_DEV_ZERO
1446 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1447 if (G.dev_zero_fd == -1)
1448 internal_error ("open /dev/zero: %m");
1449 #endif
1450
1451 #if 0
1452 G.debug_file = fopen ("ggc-mmap.debug", "w");
1453 #else
1454 G.debug_file = stdout;
1455 #endif
1456
1457 #ifdef USING_MMAP
1458 /* StunOS has an amazing off-by-one error for the first mmap allocation
1459 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1460 believe, is an unaligned page allocation, which would cause us to
1461 hork badly if we tried to use it. */
1462 {
1463 char *p = alloc_anon (NULL, G.pagesize);
1464 struct page_entry *e;
1465 if ((size_t)p & (G.pagesize - 1))
1466 {
1467 /* How losing. Discard this one and try another. If we still
1468 can't get something useful, give up. */
1469
1470 p = alloc_anon (NULL, G.pagesize);
1471 gcc_assert (!((size_t)p & (G.pagesize - 1)));
1472 }
1473
1474 /* We have a good page, might as well hold onto it... */
1475 e = XCNEW (struct page_entry);
1476 e->bytes = G.pagesize;
1477 e->page = p;
1478 e->next = G.free_pages;
1479 G.free_pages = e;
1480 }
1481 #endif
1482
1483 /* Initialize the object size table. */
1484 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1485 object_size_table[order] = (size_t) 1 << order;
1486 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1487 {
1488 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1489
1490 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1491 so that we're sure of getting aligned memory. */
1492 s = ROUND_UP (s, MAX_ALIGNMENT);
1493 object_size_table[order] = s;
1494 }
1495
1496 /* Initialize the objects-per-page and inverse tables. */
1497 for (order = 0; order < NUM_ORDERS; ++order)
1498 {
1499 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1500 if (objects_per_page_table[order] == 0)
1501 objects_per_page_table[order] = 1;
1502 compute_inverse (order);
1503 }
1504
1505 /* Reset the size_lookup array to put appropriately sized objects in
1506 the special orders. All objects bigger than the previous power
1507 of two, but no greater than the special size, should go in the
1508 new order. */
1509 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1510 {
1511 int o;
1512 int i;
1513
1514 o = size_lookup[OBJECT_SIZE (order)];
1515 for (i = OBJECT_SIZE (order); size_lookup [i] == o; --i)
1516 size_lookup[i] = order;
1517 }
1518
1519 G.depth_in_use = 0;
1520 G.depth_max = 10;
1521 G.depth = XNEWVEC (unsigned int, G.depth_max);
1522
1523 G.by_depth_in_use = 0;
1524 G.by_depth_max = INITIAL_PTE_COUNT;
1525 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1526 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1527 }
1528
1529 /* Start a new GGC zone. */
1530
1531 struct alloc_zone *
1532 new_ggc_zone (const char *name ATTRIBUTE_UNUSED)
1533 {
1534 return NULL;
1535 }
1536
1537 /* Destroy a GGC zone. */
1538 void
1539 destroy_ggc_zone (struct alloc_zone *zone ATTRIBUTE_UNUSED)
1540 {
1541 }
1542
1543 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1544 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1545
1546 static void
1547 ggc_recalculate_in_use_p (page_entry *p)
1548 {
1549 unsigned int i;
1550 size_t num_objects;
1551
1552 /* Because the past-the-end bit in in_use_p is always set, we
1553 pretend there is one additional object. */
1554 num_objects = OBJECTS_IN_PAGE (p) + 1;
1555
1556 /* Reset the free object count. */
1557 p->num_free_objects = num_objects;
1558
1559 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1560 for (i = 0;
1561 i < CEIL (BITMAP_SIZE (num_objects),
1562 sizeof (*p->in_use_p));
1563 ++i)
1564 {
1565 unsigned long j;
1566
1567 /* Something is in use if it is marked, or if it was in use in a
1568 context further down the context stack. */
1569 p->in_use_p[i] |= save_in_use_p (p)[i];
1570
1571 /* Decrement the free object count for every object allocated. */
1572 for (j = p->in_use_p[i]; j; j >>= 1)
1573 p->num_free_objects -= (j & 1);
1574 }
1575
1576 gcc_assert (p->num_free_objects < num_objects);
1577 }
1578 \f
1579 /* Unmark all objects. */
1580
1581 static void
1582 clear_marks (void)
1583 {
1584 unsigned order;
1585
1586 for (order = 2; order < NUM_ORDERS; order++)
1587 {
1588 page_entry *p;
1589
1590 for (p = G.pages[order]; p != NULL; p = p->next)
1591 {
1592 size_t num_objects = OBJECTS_IN_PAGE (p);
1593 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1594
1595 /* The data should be page-aligned. */
1596 gcc_assert (!((size_t) p->page & (G.pagesize - 1)));
1597
1598 /* Pages that aren't in the topmost context are not collected;
1599 nevertheless, we need their in-use bit vectors to store GC
1600 marks. So, back them up first. */
1601 if (p->context_depth < G.context_depth)
1602 {
1603 if (! save_in_use_p (p))
1604 save_in_use_p (p) = xmalloc (bitmap_size);
1605 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1606 }
1607
1608 /* Reset reset the number of free objects and clear the
1609 in-use bits. These will be adjusted by mark_obj. */
1610 p->num_free_objects = num_objects;
1611 memset (p->in_use_p, 0, bitmap_size);
1612
1613 /* Make sure the one-past-the-end bit is always set. */
1614 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1615 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1616 }
1617 }
1618 }
1619
1620 /* Free all empty pages. Partially empty pages need no attention
1621 because the `mark' bit doubles as an `unused' bit. */
1622
1623 static void
1624 sweep_pages (void)
1625 {
1626 unsigned order;
1627
1628 for (order = 2; order < NUM_ORDERS; order++)
1629 {
1630 /* The last page-entry to consider, regardless of entries
1631 placed at the end of the list. */
1632 page_entry * const last = G.page_tails[order];
1633
1634 size_t num_objects;
1635 size_t live_objects;
1636 page_entry *p, *previous;
1637 int done;
1638
1639 p = G.pages[order];
1640 if (p == NULL)
1641 continue;
1642
1643 previous = NULL;
1644 do
1645 {
1646 page_entry *next = p->next;
1647
1648 /* Loop until all entries have been examined. */
1649 done = (p == last);
1650
1651 num_objects = OBJECTS_IN_PAGE (p);
1652
1653 /* Add all live objects on this page to the count of
1654 allocated memory. */
1655 live_objects = num_objects - p->num_free_objects;
1656
1657 G.allocated += OBJECT_SIZE (order) * live_objects;
1658
1659 /* Only objects on pages in the topmost context should get
1660 collected. */
1661 if (p->context_depth < G.context_depth)
1662 ;
1663
1664 /* Remove the page if it's empty. */
1665 else if (live_objects == 0)
1666 {
1667 /* If P was the first page in the list, then NEXT
1668 becomes the new first page in the list, otherwise
1669 splice P out of the forward pointers. */
1670 if (! previous)
1671 G.pages[order] = next;
1672 else
1673 previous->next = next;
1674
1675 /* Splice P out of the back pointers too. */
1676 if (next)
1677 next->prev = previous;
1678
1679 /* Are we removing the last element? */
1680 if (p == G.page_tails[order])
1681 G.page_tails[order] = previous;
1682 free_page (p);
1683 p = previous;
1684 }
1685
1686 /* If the page is full, move it to the end. */
1687 else if (p->num_free_objects == 0)
1688 {
1689 /* Don't move it if it's already at the end. */
1690 if (p != G.page_tails[order])
1691 {
1692 /* Move p to the end of the list. */
1693 p->next = NULL;
1694 p->prev = G.page_tails[order];
1695 G.page_tails[order]->next = p;
1696
1697 /* Update the tail pointer... */
1698 G.page_tails[order] = p;
1699
1700 /* ... and the head pointer, if necessary. */
1701 if (! previous)
1702 G.pages[order] = next;
1703 else
1704 previous->next = next;
1705
1706 /* And update the backpointer in NEXT if necessary. */
1707 if (next)
1708 next->prev = previous;
1709
1710 p = previous;
1711 }
1712 }
1713
1714 /* If we've fallen through to here, it's a page in the
1715 topmost context that is neither full nor empty. Such a
1716 page must precede pages at lesser context depth in the
1717 list, so move it to the head. */
1718 else if (p != G.pages[order])
1719 {
1720 previous->next = p->next;
1721
1722 /* Update the backchain in the next node if it exists. */
1723 if (p->next)
1724 p->next->prev = previous;
1725
1726 /* Move P to the head of the list. */
1727 p->next = G.pages[order];
1728 p->prev = NULL;
1729 G.pages[order]->prev = p;
1730
1731 /* Update the head pointer. */
1732 G.pages[order] = p;
1733
1734 /* Are we moving the last element? */
1735 if (G.page_tails[order] == p)
1736 G.page_tails[order] = previous;
1737 p = previous;
1738 }
1739
1740 previous = p;
1741 p = next;
1742 }
1743 while (! done);
1744
1745 /* Now, restore the in_use_p vectors for any pages from contexts
1746 other than the current one. */
1747 for (p = G.pages[order]; p; p = p->next)
1748 if (p->context_depth != G.context_depth)
1749 ggc_recalculate_in_use_p (p);
1750 }
1751 }
1752
1753 #ifdef ENABLE_GC_CHECKING
1754 /* Clobber all free objects. */
1755
1756 static void
1757 poison_pages (void)
1758 {
1759 unsigned order;
1760
1761 for (order = 2; order < NUM_ORDERS; order++)
1762 {
1763 size_t size = OBJECT_SIZE (order);
1764 page_entry *p;
1765
1766 for (p = G.pages[order]; p != NULL; p = p->next)
1767 {
1768 size_t num_objects;
1769 size_t i;
1770
1771 if (p->context_depth != G.context_depth)
1772 /* Since we don't do any collection for pages in pushed
1773 contexts, there's no need to do any poisoning. And
1774 besides, the IN_USE_P array isn't valid until we pop
1775 contexts. */
1776 continue;
1777
1778 num_objects = OBJECTS_IN_PAGE (p);
1779 for (i = 0; i < num_objects; i++)
1780 {
1781 size_t word, bit;
1782 word = i / HOST_BITS_PER_LONG;
1783 bit = i % HOST_BITS_PER_LONG;
1784 if (((p->in_use_p[word] >> bit) & 1) == 0)
1785 {
1786 char *object = p->page + i * size;
1787
1788 /* Keep poison-by-write when we expect to use Valgrind,
1789 so the exact same memory semantics is kept, in case
1790 there are memory errors. We override this request
1791 below. */
1792 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (object, size));
1793 memset (object, 0xa5, size);
1794
1795 /* Drop the handle to avoid handle leak. */
1796 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (object, size));
1797 }
1798 }
1799 }
1800 }
1801 }
1802 #else
1803 #define poison_pages()
1804 #endif
1805
1806 #ifdef ENABLE_GC_ALWAYS_COLLECT
1807 /* Validate that the reportedly free objects actually are. */
1808
1809 static void
1810 validate_free_objects (void)
1811 {
1812 struct free_object *f, *next, *still_free = NULL;
1813
1814 for (f = G.free_object_list; f ; f = next)
1815 {
1816 page_entry *pe = lookup_page_table_entry (f->object);
1817 size_t bit, word;
1818
1819 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
1820 word = bit / HOST_BITS_PER_LONG;
1821 bit = bit % HOST_BITS_PER_LONG;
1822 next = f->next;
1823
1824 /* Make certain it isn't visible from any root. Notice that we
1825 do this check before sweep_pages merges save_in_use_p. */
1826 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
1827
1828 /* If the object comes from an outer context, then retain the
1829 free_object entry, so that we can verify that the address
1830 isn't live on the stack in some outer context. */
1831 if (pe->context_depth != G.context_depth)
1832 {
1833 f->next = still_free;
1834 still_free = f;
1835 }
1836 else
1837 free (f);
1838 }
1839
1840 G.free_object_list = still_free;
1841 }
1842 #else
1843 #define validate_free_objects()
1844 #endif
1845
1846 /* Top level mark-and-sweep routine. */
1847
1848 void
1849 ggc_collect (void)
1850 {
1851 /* Avoid frequent unnecessary work by skipping collection if the
1852 total allocations haven't expanded much since the last
1853 collection. */
1854 float allocated_last_gc =
1855 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
1856
1857 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
1858
1859 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
1860 return;
1861
1862 timevar_push (TV_GC);
1863 if (!quiet_flag)
1864 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
1865 if (GGC_DEBUG_LEVEL >= 2)
1866 fprintf (G.debug_file, "BEGIN COLLECTING\n");
1867
1868 /* Zero the total allocated bytes. This will be recalculated in the
1869 sweep phase. */
1870 G.allocated = 0;
1871
1872 /* Release the pages we freed the last time we collected, but didn't
1873 reuse in the interim. */
1874 release_pages ();
1875
1876 /* Indicate that we've seen collections at this context depth. */
1877 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
1878
1879 clear_marks ();
1880 ggc_mark_roots ();
1881 #ifdef GATHER_STATISTICS
1882 ggc_prune_overhead_list ();
1883 #endif
1884 poison_pages ();
1885 validate_free_objects ();
1886 sweep_pages ();
1887
1888 G.allocated_last_gc = G.allocated;
1889
1890 timevar_pop (TV_GC);
1891
1892 if (!quiet_flag)
1893 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
1894 if (GGC_DEBUG_LEVEL >= 2)
1895 fprintf (G.debug_file, "END COLLECTING\n");
1896 }
1897
1898 /* Print allocation statistics. */
1899 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
1900 ? (x) \
1901 : ((x) < 1024*1024*10 \
1902 ? (x) / 1024 \
1903 : (x) / (1024*1024))))
1904 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
1905
1906 void
1907 ggc_print_statistics (void)
1908 {
1909 struct ggc_statistics stats;
1910 unsigned int i;
1911 size_t total_overhead = 0;
1912
1913 /* Clear the statistics. */
1914 memset (&stats, 0, sizeof (stats));
1915
1916 /* Make sure collection will really occur. */
1917 G.allocated_last_gc = 0;
1918
1919 /* Collect and print the statistics common across collectors. */
1920 ggc_print_common_statistics (stderr, &stats);
1921
1922 /* Release free pages so that we will not count the bytes allocated
1923 there as part of the total allocated memory. */
1924 release_pages ();
1925
1926 /* Collect some information about the various sizes of
1927 allocation. */
1928 fprintf (stderr,
1929 "Memory still allocated at the end of the compilation process\n");
1930 fprintf (stderr, "%-5s %10s %10s %10s\n",
1931 "Size", "Allocated", "Used", "Overhead");
1932 for (i = 0; i < NUM_ORDERS; ++i)
1933 {
1934 page_entry *p;
1935 size_t allocated;
1936 size_t in_use;
1937 size_t overhead;
1938
1939 /* Skip empty entries. */
1940 if (!G.pages[i])
1941 continue;
1942
1943 overhead = allocated = in_use = 0;
1944
1945 /* Figure out the total number of bytes allocated for objects of
1946 this size, and how many of them are actually in use. Also figure
1947 out how much memory the page table is using. */
1948 for (p = G.pages[i]; p; p = p->next)
1949 {
1950 allocated += p->bytes;
1951 in_use +=
1952 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
1953
1954 overhead += (sizeof (page_entry) - sizeof (long)
1955 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
1956 }
1957 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
1958 (unsigned long) OBJECT_SIZE (i),
1959 SCALE (allocated), STAT_LABEL (allocated),
1960 SCALE (in_use), STAT_LABEL (in_use),
1961 SCALE (overhead), STAT_LABEL (overhead));
1962 total_overhead += overhead;
1963 }
1964 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
1965 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
1966 SCALE (G.allocated), STAT_LABEL(G.allocated),
1967 SCALE (total_overhead), STAT_LABEL (total_overhead));
1968
1969 #ifdef GATHER_STATISTICS
1970 {
1971 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
1972
1973 fprintf (stderr, "Total Overhead: %10lld\n",
1974 G.stats.total_overhead);
1975 fprintf (stderr, "Total Allocated: %10lld\n",
1976 G.stats.total_allocated);
1977
1978 fprintf (stderr, "Total Overhead under 32B: %10lld\n",
1979 G.stats.total_overhead_under32);
1980 fprintf (stderr, "Total Allocated under 32B: %10lld\n",
1981 G.stats.total_allocated_under32);
1982 fprintf (stderr, "Total Overhead under 64B: %10lld\n",
1983 G.stats.total_overhead_under64);
1984 fprintf (stderr, "Total Allocated under 64B: %10lld\n",
1985 G.stats.total_allocated_under64);
1986 fprintf (stderr, "Total Overhead under 128B: %10lld\n",
1987 G.stats.total_overhead_under128);
1988 fprintf (stderr, "Total Allocated under 128B: %10lld\n",
1989 G.stats.total_allocated_under128);
1990
1991 for (i = 0; i < NUM_ORDERS; i++)
1992 if (G.stats.total_allocated_per_order[i])
1993 {
1994 fprintf (stderr, "Total Overhead page size %7d: %10lld\n",
1995 OBJECT_SIZE (i), G.stats.total_overhead_per_order[i]);
1996 fprintf (stderr, "Total Allocated page size %7d: %10lld\n",
1997 OBJECT_SIZE (i), G.stats.total_allocated_per_order[i]);
1998 }
1999 }
2000 #endif
2001 }
2002 \f
2003 struct ggc_pch_data
2004 {
2005 struct ggc_pch_ondisk
2006 {
2007 unsigned totals[NUM_ORDERS];
2008 } d;
2009 size_t base[NUM_ORDERS];
2010 size_t written[NUM_ORDERS];
2011 };
2012
2013 struct ggc_pch_data *
2014 init_ggc_pch (void)
2015 {
2016 return XCNEW (struct ggc_pch_data);
2017 }
2018
2019 void
2020 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2021 size_t size, bool is_string ATTRIBUTE_UNUSED,
2022 enum gt_types_enum type ATTRIBUTE_UNUSED)
2023 {
2024 unsigned order;
2025
2026 if (size <= 256)
2027 order = size_lookup[size];
2028 else
2029 {
2030 order = 9;
2031 while (size > OBJECT_SIZE (order))
2032 order++;
2033 }
2034
2035 d->d.totals[order]++;
2036 }
2037
2038 size_t
2039 ggc_pch_total_size (struct ggc_pch_data *d)
2040 {
2041 size_t a = 0;
2042 unsigned i;
2043
2044 for (i = 0; i < NUM_ORDERS; i++)
2045 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2046 return a;
2047 }
2048
2049 void
2050 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2051 {
2052 size_t a = (size_t) base;
2053 unsigned i;
2054
2055 for (i = 0; i < NUM_ORDERS; i++)
2056 {
2057 d->base[i] = a;
2058 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2059 }
2060 }
2061
2062
2063 char *
2064 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2065 size_t size, bool is_string ATTRIBUTE_UNUSED,
2066 enum gt_types_enum type ATTRIBUTE_UNUSED)
2067 {
2068 unsigned order;
2069 char *result;
2070
2071 if (size <= 256)
2072 order = size_lookup[size];
2073 else
2074 {
2075 order = 9;
2076 while (size > OBJECT_SIZE (order))
2077 order++;
2078 }
2079
2080 result = (char *) d->base[order];
2081 d->base[order] += OBJECT_SIZE (order);
2082 return result;
2083 }
2084
2085 void
2086 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2087 FILE *f ATTRIBUTE_UNUSED)
2088 {
2089 /* Nothing to do. */
2090 }
2091
2092 void
2093 ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2094 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2095 size_t size, bool is_string ATTRIBUTE_UNUSED)
2096 {
2097 unsigned order;
2098 static const char emptyBytes[256];
2099
2100 if (size <= 256)
2101 order = size_lookup[size];
2102 else
2103 {
2104 order = 9;
2105 while (size > OBJECT_SIZE (order))
2106 order++;
2107 }
2108
2109 if (fwrite (x, size, 1, f) != 1)
2110 fatal_error ("can't write PCH file: %m");
2111
2112 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2113 object out to OBJECT_SIZE(order). This happens for strings. */
2114
2115 if (size != OBJECT_SIZE (order))
2116 {
2117 unsigned padding = OBJECT_SIZE(order) - size;
2118
2119 /* To speed small writes, we use a nulled-out array that's larger
2120 than most padding requests as the source for our null bytes. This
2121 permits us to do the padding with fwrite() rather than fseek(), and
2122 limits the chance the OS may try to flush any outstanding writes. */
2123 if (padding <= sizeof(emptyBytes))
2124 {
2125 if (fwrite (emptyBytes, 1, padding, f) != padding)
2126 fatal_error ("can't write PCH file");
2127 }
2128 else
2129 {
2130 /* Larger than our buffer? Just default to fseek. */
2131 if (fseek (f, padding, SEEK_CUR) != 0)
2132 fatal_error ("can't write PCH file");
2133 }
2134 }
2135
2136 d->written[order]++;
2137 if (d->written[order] == d->d.totals[order]
2138 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2139 G.pagesize),
2140 SEEK_CUR) != 0)
2141 fatal_error ("can't write PCH file: %m");
2142 }
2143
2144 void
2145 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2146 {
2147 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2148 fatal_error ("can't write PCH file: %m");
2149 free (d);
2150 }
2151
2152 /* Move the PCH PTE entries just added to the end of by_depth, to the
2153 front. */
2154
2155 static void
2156 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2157 {
2158 unsigned i;
2159
2160 /* First, we swap the new entries to the front of the varrays. */
2161 page_entry **new_by_depth;
2162 unsigned long **new_save_in_use;
2163
2164 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2165 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2166
2167 memcpy (&new_by_depth[0],
2168 &G.by_depth[count_old_page_tables],
2169 count_new_page_tables * sizeof (void *));
2170 memcpy (&new_by_depth[count_new_page_tables],
2171 &G.by_depth[0],
2172 count_old_page_tables * sizeof (void *));
2173 memcpy (&new_save_in_use[0],
2174 &G.save_in_use[count_old_page_tables],
2175 count_new_page_tables * sizeof (void *));
2176 memcpy (&new_save_in_use[count_new_page_tables],
2177 &G.save_in_use[0],
2178 count_old_page_tables * sizeof (void *));
2179
2180 free (G.by_depth);
2181 free (G.save_in_use);
2182
2183 G.by_depth = new_by_depth;
2184 G.save_in_use = new_save_in_use;
2185
2186 /* Now update all the index_by_depth fields. */
2187 for (i = G.by_depth_in_use; i > 0; --i)
2188 {
2189 page_entry *p = G.by_depth[i-1];
2190 p->index_by_depth = i-1;
2191 }
2192
2193 /* And last, we update the depth pointers in G.depth. The first
2194 entry is already 0, and context 0 entries always start at index
2195 0, so there is nothing to update in the first slot. We need a
2196 second slot, only if we have old ptes, and if we do, they start
2197 at index count_new_page_tables. */
2198 if (count_old_page_tables)
2199 push_depth (count_new_page_tables);
2200 }
2201
2202 void
2203 ggc_pch_read (FILE *f, void *addr)
2204 {
2205 struct ggc_pch_ondisk d;
2206 unsigned i;
2207 char *offs = addr;
2208 unsigned long count_old_page_tables;
2209 unsigned long count_new_page_tables;
2210
2211 count_old_page_tables = G.by_depth_in_use;
2212
2213 /* We've just read in a PCH file. So, every object that used to be
2214 allocated is now free. */
2215 clear_marks ();
2216 #ifdef ENABLE_GC_CHECKING
2217 poison_pages ();
2218 #endif
2219
2220 /* No object read from a PCH file should ever be freed. So, set the
2221 context depth to 1, and set the depth of all the currently-allocated
2222 pages to be 1 too. PCH pages will have depth 0. */
2223 gcc_assert (!G.context_depth);
2224 G.context_depth = 1;
2225 for (i = 0; i < NUM_ORDERS; i++)
2226 {
2227 page_entry *p;
2228 for (p = G.pages[i]; p != NULL; p = p->next)
2229 p->context_depth = G.context_depth;
2230 }
2231
2232 /* Allocate the appropriate page-table entries for the pages read from
2233 the PCH file. */
2234 if (fread (&d, sizeof (d), 1, f) != 1)
2235 fatal_error ("can't read PCH file: %m");
2236
2237 for (i = 0; i < NUM_ORDERS; i++)
2238 {
2239 struct page_entry *entry;
2240 char *pte;
2241 size_t bytes;
2242 size_t num_objs;
2243 size_t j;
2244
2245 if (d.totals[i] == 0)
2246 continue;
2247
2248 bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2249 num_objs = bytes / OBJECT_SIZE (i);
2250 entry = xcalloc (1, (sizeof (struct page_entry)
2251 - sizeof (long)
2252 + BITMAP_SIZE (num_objs + 1)));
2253 entry->bytes = bytes;
2254 entry->page = offs;
2255 entry->context_depth = 0;
2256 offs += bytes;
2257 entry->num_free_objects = 0;
2258 entry->order = i;
2259
2260 for (j = 0;
2261 j + HOST_BITS_PER_LONG <= num_objs + 1;
2262 j += HOST_BITS_PER_LONG)
2263 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2264 for (; j < num_objs + 1; j++)
2265 entry->in_use_p[j / HOST_BITS_PER_LONG]
2266 |= 1L << (j % HOST_BITS_PER_LONG);
2267
2268 for (pte = entry->page;
2269 pte < entry->page + entry->bytes;
2270 pte += G.pagesize)
2271 set_page_table_entry (pte, entry);
2272
2273 if (G.page_tails[i] != NULL)
2274 G.page_tails[i]->next = entry;
2275 else
2276 G.pages[i] = entry;
2277 G.page_tails[i] = entry;
2278
2279 /* We start off by just adding all the new information to the
2280 end of the varrays, later, we will move the new information
2281 to the front of the varrays, as the PCH page tables are at
2282 context 0. */
2283 push_by_depth (entry, 0);
2284 }
2285
2286 /* Now, we update the various data structures that speed page table
2287 handling. */
2288 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2289
2290 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2291
2292 /* Update the statistics. */
2293 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2294 }
This page took 0.13844 seconds and 5 git commands to generate.