]> gcc.gnu.org Git - gcc.git/blob - gcc/genrecog.c
alias.c (record_set, [...]): Use REG_P.
[gcc.git] / gcc / genrecog.c
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
27
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
34
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
43
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
46 rtl as an INSN list.
47
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in an INSN list, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
52
53 #include "bconfig.h"
54 #include "system.h"
55 #include "coretypes.h"
56 #include "tm.h"
57 #include "rtl.h"
58 #include "errors.h"
59 #include "gensupport.h"
60
61
62 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
63 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
64
65 /* Holds an array of names indexed by insn_code_number. */
66 static char **insn_name_ptr = 0;
67 static int insn_name_ptr_size = 0;
68
69 /* A listhead of decision trees. The alternatives to a node are kept
70 in a doubly-linked list so we can easily add nodes to the proper
71 place when merging. */
72
73 struct decision_head
74 {
75 struct decision *first;
76 struct decision *last;
77 };
78
79 /* A single test. The two accept types aren't tests per-se, but
80 their equality (or lack thereof) does affect tree merging so
81 it is convenient to keep them here. */
82
83 struct decision_test
84 {
85 /* A linked list through the tests attached to a node. */
86 struct decision_test *next;
87
88 /* These types are roughly in the order in which we'd like to test them. */
89 enum decision_type
90 {
91 DT_mode, DT_code, DT_veclen,
92 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
93 DT_const_int,
94 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
95 DT_accept_op, DT_accept_insn
96 } type;
97
98 union
99 {
100 enum machine_mode mode; /* Machine mode of node. */
101 RTX_CODE code; /* Code to test. */
102
103 struct
104 {
105 const char *name; /* Predicate to call. */
106 int index; /* Index into `preds' or -1. */
107 enum machine_mode mode; /* Machine mode for node. */
108 } pred;
109
110 const char *c_test; /* Additional test to perform. */
111 int veclen; /* Length of vector. */
112 int dup; /* Number of operand to compare against. */
113 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
114 int opno; /* Operand number matched. */
115
116 struct {
117 int code_number; /* Insn number matched. */
118 int lineno; /* Line number of the insn. */
119 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
120 } insn;
121 } u;
122 };
123
124 /* Data structure for decision tree for recognizing legitimate insns. */
125
126 struct decision
127 {
128 struct decision_head success; /* Nodes to test on success. */
129 struct decision *next; /* Node to test on failure. */
130 struct decision *prev; /* Node whose failure tests us. */
131 struct decision *afterward; /* Node to test on success,
132 but failure of successor nodes. */
133
134 const char *position; /* String denoting position in pattern. */
135
136 struct decision_test *tests; /* The tests for this node. */
137
138 int number; /* Node number, used for labels */
139 int subroutine_number; /* Number of subroutine this node starts */
140 int need_label; /* Label needs to be output. */
141 };
142
143 #define SUBROUTINE_THRESHOLD 100
144
145 static int next_subroutine_number;
146
147 /* We can write three types of subroutines: One for insn recognition,
148 one to split insns, and one for peephole-type optimizations. This
149 defines which type is being written. */
150
151 enum routine_type {
152 RECOG, SPLIT, PEEPHOLE2
153 };
154
155 #define IS_SPLIT(X) ((X) != RECOG)
156
157 /* Next available node number for tree nodes. */
158
159 static int next_number;
160
161 /* Next number to use as an insn_code. */
162
163 static int next_insn_code;
164
165 /* Similar, but counts all expressions in the MD file; used for
166 error messages. */
167
168 static int next_index;
169
170 /* Record the highest depth we ever have so we know how many variables to
171 allocate in each subroutine we make. */
172
173 static int max_depth;
174
175 /* The line number of the start of the pattern currently being processed. */
176 static int pattern_lineno;
177
178 /* Count of errors. */
179 static int error_count;
180 \f
181 /* This table contains a list of the rtl codes that can possibly match a
182 predicate defined in recog.c. The function `maybe_both_true' uses it to
183 deduce that there are no expressions that can be matches by certain pairs
184 of tree nodes. Also, if a predicate can match only one code, we can
185 hardwire that code into the node testing the predicate. */
186
187 static const struct pred_table
188 {
189 const char *const name;
190 const RTX_CODE codes[NUM_RTX_CODE];
191 } preds[] = {
192 {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
193 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF}},
194 #ifdef PREDICATE_CODES
195 PREDICATE_CODES
196 #endif
197 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
198 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF,
199 PLUS, MINUS, MULT}},
200 {"register_operand", {SUBREG, REG, ADDRESSOF}},
201 {"pmode_register_operand", {SUBREG, REG, ADDRESSOF}},
202 {"scratch_operand", {SCRATCH, REG}},
203 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
204 LABEL_REF}},
205 {"const_int_operand", {CONST_INT}},
206 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
207 {"nonimmediate_operand", {SUBREG, REG, MEM, ADDRESSOF}},
208 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
209 LABEL_REF, SUBREG, REG, ADDRESSOF}},
210 {"push_operand", {MEM}},
211 {"pop_operand", {MEM}},
212 {"memory_operand", {SUBREG, MEM}},
213 {"indirect_operand", {SUBREG, MEM}},
214 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU,
215 UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE,
216 UNLT, LTGT}}
217 };
218
219 #define NUM_KNOWN_PREDS ARRAY_SIZE (preds)
220
221 static const char *const special_mode_pred_table[] = {
222 #ifdef SPECIAL_MODE_PREDICATES
223 SPECIAL_MODE_PREDICATES
224 #endif
225 "pmode_register_operand"
226 };
227
228 #define NUM_SPECIAL_MODE_PREDS ARRAY_SIZE (special_mode_pred_table)
229
230 static struct decision *new_decision
231 (const char *, struct decision_head *);
232 static struct decision_test *new_decision_test
233 (enum decision_type, struct decision_test ***);
234 static rtx find_operand
235 (rtx, int, rtx);
236 static rtx find_matching_operand
237 (rtx, int);
238 static void validate_pattern
239 (rtx, rtx, rtx, int);
240 static struct decision *add_to_sequence
241 (rtx, struct decision_head *, const char *, enum routine_type, int);
242
243 static int maybe_both_true_2
244 (struct decision_test *, struct decision_test *);
245 static int maybe_both_true_1
246 (struct decision_test *, struct decision_test *);
247 static int maybe_both_true
248 (struct decision *, struct decision *, int);
249
250 static int nodes_identical_1
251 (struct decision_test *, struct decision_test *);
252 static int nodes_identical
253 (struct decision *, struct decision *);
254 static void merge_accept_insn
255 (struct decision *, struct decision *);
256 static void merge_trees
257 (struct decision_head *, struct decision_head *);
258
259 static void factor_tests
260 (struct decision_head *);
261 static void simplify_tests
262 (struct decision_head *);
263 static int break_out_subroutines
264 (struct decision_head *, int);
265 static void find_afterward
266 (struct decision_head *, struct decision *);
267
268 static void change_state
269 (const char *, const char *, struct decision *, const char *);
270 static void print_code
271 (enum rtx_code);
272 static void write_afterward
273 (struct decision *, struct decision *, const char *);
274 static struct decision *write_switch
275 (struct decision *, int);
276 static void write_cond
277 (struct decision_test *, int, enum routine_type);
278 static void write_action
279 (struct decision *, struct decision_test *, int, int,
280 struct decision *, enum routine_type);
281 static int is_unconditional
282 (struct decision_test *, enum routine_type);
283 static int write_node
284 (struct decision *, int, enum routine_type);
285 static void write_tree_1
286 (struct decision_head *, int, enum routine_type);
287 static void write_tree
288 (struct decision_head *, const char *, enum routine_type, int);
289 static void write_subroutine
290 (struct decision_head *, enum routine_type);
291 static void write_subroutines
292 (struct decision_head *, enum routine_type);
293 static void write_header
294 (void);
295
296 static struct decision_head make_insn_sequence
297 (rtx, enum routine_type);
298 static void process_tree
299 (struct decision_head *, enum routine_type);
300
301 static void record_insn_name
302 (int, const char *);
303
304 static void debug_decision_0
305 (struct decision *, int, int);
306 static void debug_decision_1
307 (struct decision *, int);
308 static void debug_decision_2
309 (struct decision_test *);
310 extern void debug_decision
311 (struct decision *);
312 extern void debug_decision_list
313 (struct decision *);
314 \f
315 /* Create a new node in sequence after LAST. */
316
317 static struct decision *
318 new_decision (const char *position, struct decision_head *last)
319 {
320 struct decision *new = xcalloc (1, sizeof (struct decision));
321
322 new->success = *last;
323 new->position = xstrdup (position);
324 new->number = next_number++;
325
326 last->first = last->last = new;
327 return new;
328 }
329
330 /* Create a new test and link it in at PLACE. */
331
332 static struct decision_test *
333 new_decision_test (enum decision_type type, struct decision_test ***pplace)
334 {
335 struct decision_test **place = *pplace;
336 struct decision_test *test;
337
338 test = xmalloc (sizeof (*test));
339 test->next = *place;
340 test->type = type;
341 *place = test;
342
343 place = &test->next;
344 *pplace = place;
345
346 return test;
347 }
348
349 /* Search for and return operand N, stop when reaching node STOP. */
350
351 static rtx
352 find_operand (rtx pattern, int n, rtx stop)
353 {
354 const char *fmt;
355 RTX_CODE code;
356 int i, j, len;
357 rtx r;
358
359 if (pattern == stop)
360 return stop;
361
362 code = GET_CODE (pattern);
363 if ((code == MATCH_SCRATCH
364 || code == MATCH_OPERAND
365 || code == MATCH_OPERATOR
366 || code == MATCH_PARALLEL)
367 && XINT (pattern, 0) == n)
368 return pattern;
369
370 fmt = GET_RTX_FORMAT (code);
371 len = GET_RTX_LENGTH (code);
372 for (i = 0; i < len; i++)
373 {
374 switch (fmt[i])
375 {
376 case 'e': case 'u':
377 if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX)
378 return r;
379 break;
380
381 case 'V':
382 if (! XVEC (pattern, i))
383 break;
384 /* Fall through. */
385
386 case 'E':
387 for (j = 0; j < XVECLEN (pattern, i); j++)
388 if ((r = find_operand (XVECEXP (pattern, i, j), n, stop))
389 != NULL_RTX)
390 return r;
391 break;
392
393 case 'i': case 'w': case '0': case 's':
394 break;
395
396 default:
397 abort ();
398 }
399 }
400
401 return NULL;
402 }
403
404 /* Search for and return operand M, such that it has a matching
405 constraint for operand N. */
406
407 static rtx
408 find_matching_operand (rtx pattern, int n)
409 {
410 const char *fmt;
411 RTX_CODE code;
412 int i, j, len;
413 rtx r;
414
415 code = GET_CODE (pattern);
416 if (code == MATCH_OPERAND
417 && (XSTR (pattern, 2)[0] == '0' + n
418 || (XSTR (pattern, 2)[0] == '%'
419 && XSTR (pattern, 2)[1] == '0' + n)))
420 return pattern;
421
422 fmt = GET_RTX_FORMAT (code);
423 len = GET_RTX_LENGTH (code);
424 for (i = 0; i < len; i++)
425 {
426 switch (fmt[i])
427 {
428 case 'e': case 'u':
429 if ((r = find_matching_operand (XEXP (pattern, i), n)))
430 return r;
431 break;
432
433 case 'V':
434 if (! XVEC (pattern, i))
435 break;
436 /* Fall through. */
437
438 case 'E':
439 for (j = 0; j < XVECLEN (pattern, i); j++)
440 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
441 return r;
442 break;
443
444 case 'i': case 'w': case '0': case 's':
445 break;
446
447 default:
448 abort ();
449 }
450 }
451
452 return NULL;
453 }
454
455
456 /* Check for various errors in patterns. SET is nonnull for a destination,
457 and is the complete set pattern. SET_CODE is '=' for normal sets, and
458 '+' within a context that requires in-out constraints. */
459
460 static void
461 validate_pattern (rtx pattern, rtx insn, rtx set, int set_code)
462 {
463 const char *fmt;
464 RTX_CODE code;
465 size_t i, len;
466 int j;
467
468 code = GET_CODE (pattern);
469 switch (code)
470 {
471 case MATCH_SCRATCH:
472 return;
473 case MATCH_DUP:
474 case MATCH_OP_DUP:
475 case MATCH_PAR_DUP:
476 if (find_operand (insn, XINT (pattern, 0), pattern) == pattern)
477 {
478 message_with_line (pattern_lineno,
479 "operand %i duplicated before defined",
480 XINT (pattern, 0));
481 error_count++;
482 }
483 break;
484 case MATCH_OPERAND:
485 case MATCH_OPERATOR:
486 {
487 const char *pred_name = XSTR (pattern, 1);
488 int allows_non_lvalue = 1, allows_non_const = 1;
489 int special_mode_pred = 0;
490 const char *c_test;
491
492 if (GET_CODE (insn) == DEFINE_INSN)
493 c_test = XSTR (insn, 2);
494 else
495 c_test = XSTR (insn, 1);
496
497 if (pred_name[0] != 0)
498 {
499 for (i = 0; i < NUM_KNOWN_PREDS; i++)
500 if (! strcmp (preds[i].name, pred_name))
501 break;
502
503 if (i < NUM_KNOWN_PREDS)
504 {
505 int j;
506
507 allows_non_lvalue = allows_non_const = 0;
508 for (j = 0; preds[i].codes[j] != 0; j++)
509 {
510 RTX_CODE c = preds[i].codes[j];
511 if (c != LABEL_REF
512 && c != SYMBOL_REF
513 && c != CONST_INT
514 && c != CONST_DOUBLE
515 && c != CONST
516 && c != HIGH)
517 allows_non_const = 1;
518
519 if (c != REG
520 && c != SUBREG
521 && c != MEM
522 && c != ADDRESSOF
523 && c != CONCAT
524 && c != PARALLEL
525 && c != STRICT_LOW_PART)
526 allows_non_lvalue = 1;
527 }
528 }
529 else
530 {
531 #ifdef PREDICATE_CODES
532 /* If the port has a list of the predicates it uses but
533 omits one, warn. */
534 message_with_line (pattern_lineno,
535 "warning: `%s' not in PREDICATE_CODES",
536 pred_name);
537 #endif
538 }
539
540 for (i = 0; i < NUM_SPECIAL_MODE_PREDS; ++i)
541 if (strcmp (pred_name, special_mode_pred_table[i]) == 0)
542 {
543 special_mode_pred = 1;
544 break;
545 }
546 }
547
548 if (code == MATCH_OPERAND)
549 {
550 const char constraints0 = XSTR (pattern, 2)[0];
551
552 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
553 don't use the MATCH_OPERAND constraint, only the predicate.
554 This is confusing to folks doing new ports, so help them
555 not make the mistake. */
556 if (GET_CODE (insn) == DEFINE_EXPAND
557 || GET_CODE (insn) == DEFINE_SPLIT
558 || GET_CODE (insn) == DEFINE_PEEPHOLE2)
559 {
560 if (constraints0)
561 message_with_line (pattern_lineno,
562 "warning: constraints not supported in %s",
563 rtx_name[GET_CODE (insn)]);
564 }
565
566 /* A MATCH_OPERAND that is a SET should have an output reload. */
567 else if (set && constraints0)
568 {
569 if (set_code == '+')
570 {
571 if (constraints0 == '+')
572 ;
573 /* If we've only got an output reload for this operand,
574 we'd better have a matching input operand. */
575 else if (constraints0 == '='
576 && find_matching_operand (insn, XINT (pattern, 0)))
577 ;
578 else
579 {
580 message_with_line (pattern_lineno,
581 "operand %d missing in-out reload",
582 XINT (pattern, 0));
583 error_count++;
584 }
585 }
586 else if (constraints0 != '=' && constraints0 != '+')
587 {
588 message_with_line (pattern_lineno,
589 "operand %d missing output reload",
590 XINT (pattern, 0));
591 error_count++;
592 }
593 }
594 }
595
596 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
597 while not likely to occur at runtime, results in less efficient
598 code from insn-recog.c. */
599 if (set
600 && pred_name[0] != '\0'
601 && allows_non_lvalue)
602 {
603 message_with_line (pattern_lineno,
604 "warning: destination operand %d allows non-lvalue",
605 XINT (pattern, 0));
606 }
607
608 /* A modeless MATCH_OPERAND can be handy when we can
609 check for multiple modes in the c_test. In most other cases,
610 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
611 and PEEP2 can FAIL within the output pattern. Exclude
612 address_operand, since its mode is related to the mode of
613 the memory not the operand. Exclude the SET_DEST of a call
614 instruction, as that is a common idiom. */
615
616 if (GET_MODE (pattern) == VOIDmode
617 && code == MATCH_OPERAND
618 && GET_CODE (insn) == DEFINE_INSN
619 && allows_non_const
620 && ! special_mode_pred
621 && pred_name[0] != '\0'
622 && strcmp (pred_name, "address_operand") != 0
623 && strstr (c_test, "operands") == NULL
624 && ! (set
625 && GET_CODE (set) == SET
626 && GET_CODE (SET_SRC (set)) == CALL))
627 {
628 message_with_line (pattern_lineno,
629 "warning: operand %d missing mode?",
630 XINT (pattern, 0));
631 }
632 return;
633 }
634
635 case SET:
636 {
637 enum machine_mode dmode, smode;
638 rtx dest, src;
639
640 dest = SET_DEST (pattern);
641 src = SET_SRC (pattern);
642
643 /* STRICT_LOW_PART is a wrapper. Its argument is the real
644 destination, and it's mode should match the source. */
645 if (GET_CODE (dest) == STRICT_LOW_PART)
646 dest = XEXP (dest, 0);
647
648 /* Find the referent for a DUP. */
649
650 if (GET_CODE (dest) == MATCH_DUP
651 || GET_CODE (dest) == MATCH_OP_DUP
652 || GET_CODE (dest) == MATCH_PAR_DUP)
653 dest = find_operand (insn, XINT (dest, 0), NULL);
654
655 if (GET_CODE (src) == MATCH_DUP
656 || GET_CODE (src) == MATCH_OP_DUP
657 || GET_CODE (src) == MATCH_PAR_DUP)
658 src = find_operand (insn, XINT (src, 0), NULL);
659
660 dmode = GET_MODE (dest);
661 smode = GET_MODE (src);
662
663 /* The mode of an ADDRESS_OPERAND is the mode of the memory
664 reference, not the mode of the address. */
665 if (GET_CODE (src) == MATCH_OPERAND
666 && ! strcmp (XSTR (src, 1), "address_operand"))
667 ;
668
669 /* The operands of a SET must have the same mode unless one
670 is VOIDmode. */
671 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
672 {
673 message_with_line (pattern_lineno,
674 "mode mismatch in set: %smode vs %smode",
675 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
676 error_count++;
677 }
678
679 /* If only one of the operands is VOIDmode, and PC or CC0 is
680 not involved, it's probably a mistake. */
681 else if (dmode != smode
682 && GET_CODE (dest) != PC
683 && GET_CODE (dest) != CC0
684 && GET_CODE (src) != PC
685 && GET_CODE (src) != CC0
686 && GET_CODE (src) != CONST_INT)
687 {
688 const char *which;
689 which = (dmode == VOIDmode ? "destination" : "source");
690 message_with_line (pattern_lineno,
691 "warning: %s missing a mode?", which);
692 }
693
694 if (dest != SET_DEST (pattern))
695 validate_pattern (dest, insn, pattern, '=');
696 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
697 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
698 return;
699 }
700
701 case CLOBBER:
702 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
703 return;
704
705 case ZERO_EXTRACT:
706 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
707 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
708 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
709 return;
710
711 case STRICT_LOW_PART:
712 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
713 return;
714
715 case LABEL_REF:
716 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
717 {
718 message_with_line (pattern_lineno,
719 "operand to label_ref %smode not VOIDmode",
720 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
721 error_count++;
722 }
723 break;
724
725 default:
726 break;
727 }
728
729 fmt = GET_RTX_FORMAT (code);
730 len = GET_RTX_LENGTH (code);
731 for (i = 0; i < len; i++)
732 {
733 switch (fmt[i])
734 {
735 case 'e': case 'u':
736 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
737 break;
738
739 case 'E':
740 for (j = 0; j < XVECLEN (pattern, i); j++)
741 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
742 break;
743
744 case 'i': case 'w': case '0': case 's':
745 break;
746
747 default:
748 abort ();
749 }
750 }
751 }
752
753 /* Create a chain of nodes to verify that an rtl expression matches
754 PATTERN.
755
756 LAST is a pointer to the listhead in the previous node in the chain (or
757 in the calling function, for the first node).
758
759 POSITION is the string representing the current position in the insn.
760
761 INSN_TYPE is the type of insn for which we are emitting code.
762
763 A pointer to the final node in the chain is returned. */
764
765 static struct decision *
766 add_to_sequence (rtx pattern, struct decision_head *last, const char *position,
767 enum routine_type insn_type, int top)
768 {
769 RTX_CODE code;
770 struct decision *this, *sub;
771 struct decision_test *test;
772 struct decision_test **place;
773 char *subpos;
774 size_t i;
775 const char *fmt;
776 int depth = strlen (position);
777 int len;
778 enum machine_mode mode;
779
780 if (depth > max_depth)
781 max_depth = depth;
782
783 subpos = xmalloc (depth + 2);
784 strcpy (subpos, position);
785 subpos[depth + 1] = 0;
786
787 sub = this = new_decision (position, last);
788 place = &this->tests;
789
790 restart:
791 mode = GET_MODE (pattern);
792 code = GET_CODE (pattern);
793
794 switch (code)
795 {
796 case PARALLEL:
797 /* Toplevel peephole pattern. */
798 if (insn_type == PEEPHOLE2 && top)
799 {
800 /* We don't need the node we just created -- unlink it. */
801 last->first = last->last = NULL;
802
803 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
804 {
805 /* Which insn we're looking at is represented by A-Z. We don't
806 ever use 'A', however; it is always implied. */
807
808 subpos[depth] = (i > 0 ? 'A' + i : 0);
809 sub = add_to_sequence (XVECEXP (pattern, 0, i),
810 last, subpos, insn_type, 0);
811 last = &sub->success;
812 }
813 goto ret;
814 }
815
816 /* Else nothing special. */
817 break;
818
819 case MATCH_PARALLEL:
820 /* The explicit patterns within a match_parallel enforce a minimum
821 length on the vector. The match_parallel predicate may allow
822 for more elements. We do need to check for this minimum here
823 or the code generated to match the internals may reference data
824 beyond the end of the vector. */
825 test = new_decision_test (DT_veclen_ge, &place);
826 test->u.veclen = XVECLEN (pattern, 2);
827 /* Fall through. */
828
829 case MATCH_OPERAND:
830 case MATCH_SCRATCH:
831 case MATCH_OPERATOR:
832 {
833 const char *pred_name;
834 RTX_CODE was_code = code;
835 int allows_const_int = 1;
836
837 if (code == MATCH_SCRATCH)
838 {
839 pred_name = "scratch_operand";
840 code = UNKNOWN;
841 }
842 else
843 {
844 pred_name = XSTR (pattern, 1);
845 if (code == MATCH_PARALLEL)
846 code = PARALLEL;
847 else
848 code = UNKNOWN;
849 }
850
851 if (pred_name[0] != 0)
852 {
853 test = new_decision_test (DT_pred, &place);
854 test->u.pred.name = pred_name;
855 test->u.pred.mode = mode;
856
857 /* See if we know about this predicate and save its number.
858 If we do, and it only accepts one code, note that fact.
859
860 If we know that the predicate does not allow CONST_INT,
861 we know that the only way the predicate can match is if
862 the modes match (here we use the kludge of relying on the
863 fact that "address_operand" accepts CONST_INT; otherwise,
864 it would have to be a special case), so we can test the
865 mode (but we need not). This fact should considerably
866 simplify the generated code. */
867
868 for (i = 0; i < NUM_KNOWN_PREDS; i++)
869 if (! strcmp (preds[i].name, pred_name))
870 break;
871
872 if (i < NUM_KNOWN_PREDS)
873 {
874 int j;
875
876 test->u.pred.index = i;
877
878 if (preds[i].codes[1] == 0 && code == UNKNOWN)
879 code = preds[i].codes[0];
880
881 allows_const_int = 0;
882 for (j = 0; preds[i].codes[j] != 0; j++)
883 if (preds[i].codes[j] == CONST_INT)
884 {
885 allows_const_int = 1;
886 break;
887 }
888 }
889 else
890 test->u.pred.index = -1;
891 }
892
893 /* Can't enforce a mode if we allow const_int. */
894 if (allows_const_int)
895 mode = VOIDmode;
896
897 /* Accept the operand, ie. record it in `operands'. */
898 test = new_decision_test (DT_accept_op, &place);
899 test->u.opno = XINT (pattern, 0);
900
901 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
902 {
903 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
904 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
905 {
906 subpos[depth] = i + base;
907 sub = add_to_sequence (XVECEXP (pattern, 2, i),
908 &sub->success, subpos, insn_type, 0);
909 }
910 }
911 goto fini;
912 }
913
914 case MATCH_OP_DUP:
915 code = UNKNOWN;
916
917 test = new_decision_test (DT_dup, &place);
918 test->u.dup = XINT (pattern, 0);
919
920 test = new_decision_test (DT_accept_op, &place);
921 test->u.opno = XINT (pattern, 0);
922
923 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
924 {
925 subpos[depth] = i + '0';
926 sub = add_to_sequence (XVECEXP (pattern, 1, i),
927 &sub->success, subpos, insn_type, 0);
928 }
929 goto fini;
930
931 case MATCH_DUP:
932 case MATCH_PAR_DUP:
933 code = UNKNOWN;
934
935 test = new_decision_test (DT_dup, &place);
936 test->u.dup = XINT (pattern, 0);
937 goto fini;
938
939 case ADDRESS:
940 pattern = XEXP (pattern, 0);
941 goto restart;
942
943 default:
944 break;
945 }
946
947 fmt = GET_RTX_FORMAT (code);
948 len = GET_RTX_LENGTH (code);
949
950 /* Do tests against the current node first. */
951 for (i = 0; i < (size_t) len; i++)
952 {
953 if (fmt[i] == 'i')
954 {
955 if (i == 0)
956 {
957 test = new_decision_test (DT_elt_zero_int, &place);
958 test->u.intval = XINT (pattern, i);
959 }
960 else if (i == 1)
961 {
962 test = new_decision_test (DT_elt_one_int, &place);
963 test->u.intval = XINT (pattern, i);
964 }
965 else
966 abort ();
967 }
968 else if (fmt[i] == 'w')
969 {
970 /* If this value actually fits in an int, we can use a switch
971 statement here, so indicate that. */
972 enum decision_type type
973 = ((int) XWINT (pattern, i) == XWINT (pattern, i))
974 ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
975
976 if (i != 0)
977 abort ();
978
979 test = new_decision_test (type, &place);
980 test->u.intval = XWINT (pattern, i);
981 }
982 else if (fmt[i] == 'E')
983 {
984 if (i != 0)
985 abort ();
986
987 test = new_decision_test (DT_veclen, &place);
988 test->u.veclen = XVECLEN (pattern, i);
989 }
990 }
991
992 /* Now test our sub-patterns. */
993 for (i = 0; i < (size_t) len; i++)
994 {
995 switch (fmt[i])
996 {
997 case 'e': case 'u':
998 subpos[depth] = '0' + i;
999 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
1000 subpos, insn_type, 0);
1001 break;
1002
1003 case 'E':
1004 {
1005 int j;
1006 for (j = 0; j < XVECLEN (pattern, i); j++)
1007 {
1008 subpos[depth] = 'a' + j;
1009 sub = add_to_sequence (XVECEXP (pattern, i, j),
1010 &sub->success, subpos, insn_type, 0);
1011 }
1012 break;
1013 }
1014
1015 case 'i': case 'w':
1016 /* Handled above. */
1017 break;
1018 case '0':
1019 break;
1020
1021 default:
1022 abort ();
1023 }
1024 }
1025
1026 fini:
1027 /* Insert nodes testing mode and code, if they're still relevant,
1028 before any of the nodes we may have added above. */
1029 if (code != UNKNOWN)
1030 {
1031 place = &this->tests;
1032 test = new_decision_test (DT_code, &place);
1033 test->u.code = code;
1034 }
1035
1036 if (mode != VOIDmode)
1037 {
1038 place = &this->tests;
1039 test = new_decision_test (DT_mode, &place);
1040 test->u.mode = mode;
1041 }
1042
1043 /* If we didn't insert any tests or accept nodes, hork. */
1044 if (this->tests == NULL)
1045 abort ();
1046
1047 ret:
1048 free (subpos);
1049 return sub;
1050 }
1051 \f
1052 /* A subroutine of maybe_both_true; examines only one test.
1053 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1054
1055 static int
1056 maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2)
1057 {
1058 if (d1->type == d2->type)
1059 {
1060 switch (d1->type)
1061 {
1062 case DT_mode:
1063 return d1->u.mode == d2->u.mode;
1064
1065 case DT_code:
1066 return d1->u.code == d2->u.code;
1067
1068 case DT_veclen:
1069 return d1->u.veclen == d2->u.veclen;
1070
1071 case DT_elt_zero_int:
1072 case DT_elt_one_int:
1073 case DT_elt_zero_wide:
1074 case DT_elt_zero_wide_safe:
1075 return d1->u.intval == d2->u.intval;
1076
1077 default:
1078 break;
1079 }
1080 }
1081
1082 /* If either has a predicate that we know something about, set
1083 things up so that D1 is the one that always has a known
1084 predicate. Then see if they have any codes in common. */
1085
1086 if (d1->type == DT_pred || d2->type == DT_pred)
1087 {
1088 if (d2->type == DT_pred)
1089 {
1090 struct decision_test *tmp;
1091 tmp = d1, d1 = d2, d2 = tmp;
1092 }
1093
1094 /* If D2 tests a mode, see if it matches D1. */
1095 if (d1->u.pred.mode != VOIDmode)
1096 {
1097 if (d2->type == DT_mode)
1098 {
1099 if (d1->u.pred.mode != d2->u.mode
1100 /* The mode of an address_operand predicate is the
1101 mode of the memory, not the operand. It can only
1102 be used for testing the predicate, so we must
1103 ignore it here. */
1104 && strcmp (d1->u.pred.name, "address_operand") != 0)
1105 return 0;
1106 }
1107 /* Don't check two predicate modes here, because if both predicates
1108 accept CONST_INT, then both can still be true even if the modes
1109 are different. If they don't accept CONST_INT, there will be a
1110 separate DT_mode that will make maybe_both_true_1 return 0. */
1111 }
1112
1113 if (d1->u.pred.index >= 0)
1114 {
1115 /* If D2 tests a code, see if it is in the list of valid
1116 codes for D1's predicate. */
1117 if (d2->type == DT_code)
1118 {
1119 const RTX_CODE *c = &preds[d1->u.pred.index].codes[0];
1120 while (*c != 0)
1121 {
1122 if (*c == d2->u.code)
1123 break;
1124 ++c;
1125 }
1126 if (*c == 0)
1127 return 0;
1128 }
1129
1130 /* Otherwise see if the predicates have any codes in common. */
1131 else if (d2->type == DT_pred && d2->u.pred.index >= 0)
1132 {
1133 const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0];
1134 int common = 0;
1135
1136 while (*c1 != 0 && !common)
1137 {
1138 const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0];
1139 while (*c2 != 0 && !common)
1140 {
1141 common = (*c1 == *c2);
1142 ++c2;
1143 }
1144 ++c1;
1145 }
1146
1147 if (!common)
1148 return 0;
1149 }
1150 }
1151 }
1152
1153 /* Tests vs veclen may be known when strict equality is involved. */
1154 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1155 return d1->u.veclen >= d2->u.veclen;
1156 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1157 return d2->u.veclen >= d1->u.veclen;
1158
1159 return -1;
1160 }
1161
1162 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1163 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1164
1165 static int
1166 maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2)
1167 {
1168 struct decision_test *t1, *t2;
1169
1170 /* A match_operand with no predicate can match anything. Recognize
1171 this by the existence of a lone DT_accept_op test. */
1172 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1173 return 1;
1174
1175 /* Eliminate pairs of tests while they can exactly match. */
1176 while (d1 && d2 && d1->type == d2->type)
1177 {
1178 if (maybe_both_true_2 (d1, d2) == 0)
1179 return 0;
1180 d1 = d1->next, d2 = d2->next;
1181 }
1182
1183 /* After that, consider all pairs. */
1184 for (t1 = d1; t1 ; t1 = t1->next)
1185 for (t2 = d2; t2 ; t2 = t2->next)
1186 if (maybe_both_true_2 (t1, t2) == 0)
1187 return 0;
1188
1189 return -1;
1190 }
1191
1192 /* Return 0 if we can prove that there is no RTL that can match both
1193 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1194 can match both or just that we couldn't prove there wasn't such an RTL).
1195
1196 TOPLEVEL is nonzero if we are to only look at the top level and not
1197 recursively descend. */
1198
1199 static int
1200 maybe_both_true (struct decision *d1, struct decision *d2,
1201 int toplevel)
1202 {
1203 struct decision *p1, *p2;
1204 int cmp;
1205
1206 /* Don't compare strings on the different positions in insn. Doing so
1207 is incorrect and results in false matches from constructs like
1208
1209 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1210 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1211 vs
1212 [(set (match_operand:HI "register_operand" "r")
1213 (match_operand:HI "register_operand" "r"))]
1214
1215 If we are presented with such, we are recursing through the remainder
1216 of a node's success nodes (from the loop at the end of this function).
1217 Skip forward until we come to a position that matches.
1218
1219 Due to the way position strings are constructed, we know that iterating
1220 forward from the lexically lower position (e.g. "00") will run into
1221 the lexically higher position (e.g. "1") and not the other way around.
1222 This saves a bit of effort. */
1223
1224 cmp = strcmp (d1->position, d2->position);
1225 if (cmp != 0)
1226 {
1227 if (toplevel)
1228 abort ();
1229
1230 /* If the d2->position was lexically lower, swap. */
1231 if (cmp > 0)
1232 p1 = d1, d1 = d2, d2 = p1;
1233
1234 if (d1->success.first == 0)
1235 return 1;
1236 for (p1 = d1->success.first; p1; p1 = p1->next)
1237 if (maybe_both_true (p1, d2, 0))
1238 return 1;
1239
1240 return 0;
1241 }
1242
1243 /* Test the current level. */
1244 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1245 if (cmp >= 0)
1246 return cmp;
1247
1248 /* We can't prove that D1 and D2 cannot both be true. If we are only
1249 to check the top level, return 1. Otherwise, see if we can prove
1250 that all choices in both successors are mutually exclusive. If
1251 either does not have any successors, we can't prove they can't both
1252 be true. */
1253
1254 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
1255 return 1;
1256
1257 for (p1 = d1->success.first; p1; p1 = p1->next)
1258 for (p2 = d2->success.first; p2; p2 = p2->next)
1259 if (maybe_both_true (p1, p2, 0))
1260 return 1;
1261
1262 return 0;
1263 }
1264
1265 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1266
1267 static int
1268 nodes_identical_1 (struct decision_test *d1, struct decision_test *d2)
1269 {
1270 switch (d1->type)
1271 {
1272 case DT_mode:
1273 return d1->u.mode == d2->u.mode;
1274
1275 case DT_code:
1276 return d1->u.code == d2->u.code;
1277
1278 case DT_pred:
1279 return (d1->u.pred.mode == d2->u.pred.mode
1280 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
1281
1282 case DT_c_test:
1283 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
1284
1285 case DT_veclen:
1286 case DT_veclen_ge:
1287 return d1->u.veclen == d2->u.veclen;
1288
1289 case DT_dup:
1290 return d1->u.dup == d2->u.dup;
1291
1292 case DT_elt_zero_int:
1293 case DT_elt_one_int:
1294 case DT_elt_zero_wide:
1295 case DT_elt_zero_wide_safe:
1296 return d1->u.intval == d2->u.intval;
1297
1298 case DT_accept_op:
1299 return d1->u.opno == d2->u.opno;
1300
1301 case DT_accept_insn:
1302 /* Differences will be handled in merge_accept_insn. */
1303 return 1;
1304
1305 default:
1306 abort ();
1307 }
1308 }
1309
1310 /* True iff the two nodes are identical (on one level only). Due
1311 to the way these lists are constructed, we shouldn't have to
1312 consider different orderings on the tests. */
1313
1314 static int
1315 nodes_identical (struct decision *d1, struct decision *d2)
1316 {
1317 struct decision_test *t1, *t2;
1318
1319 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1320 {
1321 if (t1->type != t2->type)
1322 return 0;
1323 if (! nodes_identical_1 (t1, t2))
1324 return 0;
1325 }
1326
1327 /* For success, they should now both be null. */
1328 if (t1 != t2)
1329 return 0;
1330
1331 /* Check that their subnodes are at the same position, as any one set
1332 of sibling decisions must be at the same position. Allowing this
1333 requires complications to find_afterward and when change_state is
1334 invoked. */
1335 if (d1->success.first
1336 && d2->success.first
1337 && strcmp (d1->success.first->position, d2->success.first->position))
1338 return 0;
1339
1340 return 1;
1341 }
1342
1343 /* A subroutine of merge_trees; given two nodes that have been declared
1344 identical, cope with two insn accept states. If they differ in the
1345 number of clobbers, then the conflict was created by make_insn_sequence
1346 and we can drop the with-clobbers version on the floor. If both
1347 nodes have no additional clobbers, we have found an ambiguity in the
1348 source machine description. */
1349
1350 static void
1351 merge_accept_insn (struct decision *oldd, struct decision *addd)
1352 {
1353 struct decision_test *old, *add;
1354
1355 for (old = oldd->tests; old; old = old->next)
1356 if (old->type == DT_accept_insn)
1357 break;
1358 if (old == NULL)
1359 return;
1360
1361 for (add = addd->tests; add; add = add->next)
1362 if (add->type == DT_accept_insn)
1363 break;
1364 if (add == NULL)
1365 return;
1366
1367 /* If one node is for a normal insn and the second is for the base
1368 insn with clobbers stripped off, the second node should be ignored. */
1369
1370 if (old->u.insn.num_clobbers_to_add == 0
1371 && add->u.insn.num_clobbers_to_add > 0)
1372 {
1373 /* Nothing to do here. */
1374 }
1375 else if (old->u.insn.num_clobbers_to_add > 0
1376 && add->u.insn.num_clobbers_to_add == 0)
1377 {
1378 /* In this case, replace OLD with ADD. */
1379 old->u.insn = add->u.insn;
1380 }
1381 else
1382 {
1383 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1384 get_insn_name (add->u.insn.code_number),
1385 get_insn_name (old->u.insn.code_number));
1386 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1387 get_insn_name (old->u.insn.code_number));
1388 error_count++;
1389 }
1390 }
1391
1392 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1393
1394 static void
1395 merge_trees (struct decision_head *oldh, struct decision_head *addh)
1396 {
1397 struct decision *next, *add;
1398
1399 if (addh->first == 0)
1400 return;
1401 if (oldh->first == 0)
1402 {
1403 *oldh = *addh;
1404 return;
1405 }
1406
1407 /* Trying to merge bits at different positions isn't possible. */
1408 if (strcmp (oldh->first->position, addh->first->position))
1409 abort ();
1410
1411 for (add = addh->first; add ; add = next)
1412 {
1413 struct decision *old, *insert_before = NULL;
1414
1415 next = add->next;
1416
1417 /* The semantics of pattern matching state that the tests are
1418 done in the order given in the MD file so that if an insn
1419 matches two patterns, the first one will be used. However,
1420 in practice, most, if not all, patterns are unambiguous so
1421 that their order is independent. In that case, we can merge
1422 identical tests and group all similar modes and codes together.
1423
1424 Scan starting from the end of OLDH until we reach a point
1425 where we reach the head of the list or where we pass a
1426 pattern that could also be true if NEW is true. If we find
1427 an identical pattern, we can merge them. Also, record the
1428 last node that tests the same code and mode and the last one
1429 that tests just the same mode.
1430
1431 If we have no match, place NEW after the closest match we found. */
1432
1433 for (old = oldh->last; old; old = old->prev)
1434 {
1435 if (nodes_identical (old, add))
1436 {
1437 merge_accept_insn (old, add);
1438 merge_trees (&old->success, &add->success);
1439 goto merged_nodes;
1440 }
1441
1442 if (maybe_both_true (old, add, 0))
1443 break;
1444
1445 /* Insert the nodes in DT test type order, which is roughly
1446 how expensive/important the test is. Given that the tests
1447 are also ordered within the list, examining the first is
1448 sufficient. */
1449 if ((int) add->tests->type < (int) old->tests->type)
1450 insert_before = old;
1451 }
1452
1453 if (insert_before == NULL)
1454 {
1455 add->next = NULL;
1456 add->prev = oldh->last;
1457 oldh->last->next = add;
1458 oldh->last = add;
1459 }
1460 else
1461 {
1462 if ((add->prev = insert_before->prev) != NULL)
1463 add->prev->next = add;
1464 else
1465 oldh->first = add;
1466 add->next = insert_before;
1467 insert_before->prev = add;
1468 }
1469
1470 merged_nodes:;
1471 }
1472 }
1473 \f
1474 /* Walk the tree looking for sub-nodes that perform common tests.
1475 Factor out the common test into a new node. This enables us
1476 (depending on the test type) to emit switch statements later. */
1477
1478 static void
1479 factor_tests (struct decision_head *head)
1480 {
1481 struct decision *first, *next;
1482
1483 for (first = head->first; first && first->next; first = next)
1484 {
1485 enum decision_type type;
1486 struct decision *new, *old_last;
1487
1488 type = first->tests->type;
1489 next = first->next;
1490
1491 /* Want at least two compatible sequential nodes. */
1492 if (next->tests->type != type)
1493 continue;
1494
1495 /* Don't want all node types, just those we can turn into
1496 switch statements. */
1497 if (type != DT_mode
1498 && type != DT_code
1499 && type != DT_veclen
1500 && type != DT_elt_zero_int
1501 && type != DT_elt_one_int
1502 && type != DT_elt_zero_wide_safe)
1503 continue;
1504
1505 /* If we'd been performing more than one test, create a new node
1506 below our first test. */
1507 if (first->tests->next != NULL)
1508 {
1509 new = new_decision (first->position, &first->success);
1510 new->tests = first->tests->next;
1511 first->tests->next = NULL;
1512 }
1513
1514 /* Crop the node tree off after our first test. */
1515 first->next = NULL;
1516 old_last = head->last;
1517 head->last = first;
1518
1519 /* For each compatible test, adjust to perform only one test in
1520 the top level node, then merge the node back into the tree. */
1521 do
1522 {
1523 struct decision_head h;
1524
1525 if (next->tests->next != NULL)
1526 {
1527 new = new_decision (next->position, &next->success);
1528 new->tests = next->tests->next;
1529 next->tests->next = NULL;
1530 }
1531 new = next;
1532 next = next->next;
1533 new->next = NULL;
1534 h.first = h.last = new;
1535
1536 merge_trees (head, &h);
1537 }
1538 while (next && next->tests->type == type);
1539
1540 /* After we run out of compatible tests, graft the remaining nodes
1541 back onto the tree. */
1542 if (next)
1543 {
1544 next->prev = head->last;
1545 head->last->next = next;
1546 head->last = old_last;
1547 }
1548 }
1549
1550 /* Recurse. */
1551 for (first = head->first; first; first = first->next)
1552 factor_tests (&first->success);
1553 }
1554
1555 /* After factoring, try to simplify the tests on any one node.
1556 Tests that are useful for switch statements are recognizable
1557 by having only a single test on a node -- we'll be manipulating
1558 nodes with multiple tests:
1559
1560 If we have mode tests or code tests that are redundant with
1561 predicates, remove them. */
1562
1563 static void
1564 simplify_tests (struct decision_head *head)
1565 {
1566 struct decision *tree;
1567
1568 for (tree = head->first; tree; tree = tree->next)
1569 {
1570 struct decision_test *a, *b;
1571
1572 a = tree->tests;
1573 b = a->next;
1574 if (b == NULL)
1575 continue;
1576
1577 /* Find a predicate node. */
1578 while (b && b->type != DT_pred)
1579 b = b->next;
1580 if (b)
1581 {
1582 /* Due to how these tests are constructed, we don't even need
1583 to check that the mode and code are compatible -- they were
1584 generated from the predicate in the first place. */
1585 while (a->type == DT_mode || a->type == DT_code)
1586 a = a->next;
1587 tree->tests = a;
1588 }
1589 }
1590
1591 /* Recurse. */
1592 for (tree = head->first; tree; tree = tree->next)
1593 simplify_tests (&tree->success);
1594 }
1595
1596 /* Count the number of subnodes of HEAD. If the number is high enough,
1597 make the first node in HEAD start a separate subroutine in the C code
1598 that is generated. */
1599
1600 static int
1601 break_out_subroutines (struct decision_head *head, int initial)
1602 {
1603 int size = 0;
1604 struct decision *sub;
1605
1606 for (sub = head->first; sub; sub = sub->next)
1607 size += 1 + break_out_subroutines (&sub->success, 0);
1608
1609 if (size > SUBROUTINE_THRESHOLD && ! initial)
1610 {
1611 head->first->subroutine_number = ++next_subroutine_number;
1612 size = 1;
1613 }
1614 return size;
1615 }
1616
1617 /* For each node p, find the next alternative that might be true
1618 when p is true. */
1619
1620 static void
1621 find_afterward (struct decision_head *head, struct decision *real_afterward)
1622 {
1623 struct decision *p, *q, *afterward;
1624
1625 /* We can't propagate alternatives across subroutine boundaries.
1626 This is not incorrect, merely a minor optimization loss. */
1627
1628 p = head->first;
1629 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
1630
1631 for ( ; p ; p = p->next)
1632 {
1633 /* Find the next node that might be true if this one fails. */
1634 for (q = p->next; q ; q = q->next)
1635 if (maybe_both_true (p, q, 1))
1636 break;
1637
1638 /* If we reached the end of the list without finding one,
1639 use the incoming afterward position. */
1640 if (!q)
1641 q = afterward;
1642 p->afterward = q;
1643 if (q)
1644 q->need_label = 1;
1645 }
1646
1647 /* Recurse. */
1648 for (p = head->first; p ; p = p->next)
1649 if (p->success.first)
1650 find_afterward (&p->success, p->afterward);
1651
1652 /* When we are generating a subroutine, record the real afterward
1653 position in the first node where write_tree can find it, and we
1654 can do the right thing at the subroutine call site. */
1655 p = head->first;
1656 if (p->subroutine_number > 0)
1657 p->afterward = real_afterward;
1658 }
1659 \f
1660 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1661 actions are necessary to move to NEWPOS. If we fail to move to the
1662 new state, branch to node AFTERWARD if nonzero, otherwise return.
1663
1664 Failure to move to the new state can only occur if we are trying to
1665 match multiple insns and we try to step past the end of the stream. */
1666
1667 static void
1668 change_state (const char *oldpos, const char *newpos,
1669 struct decision *afterward, const char *indent)
1670 {
1671 int odepth = strlen (oldpos);
1672 int ndepth = strlen (newpos);
1673 int depth;
1674 int old_has_insn, new_has_insn;
1675
1676 /* Pop up as many levels as necessary. */
1677 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1678 continue;
1679
1680 /* Hunt for the last [A-Z] in both strings. */
1681 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1682 if (ISUPPER (oldpos[old_has_insn]))
1683 break;
1684 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
1685 if (ISUPPER (newpos[new_has_insn]))
1686 break;
1687
1688 /* Go down to desired level. */
1689 while (depth < ndepth)
1690 {
1691 /* It's a different insn from the first one. */
1692 if (ISUPPER (newpos[depth]))
1693 {
1694 /* We can only fail if we're moving down the tree. */
1695 if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth])
1696 {
1697 printf ("%stem = peep2_next_insn (%d);\n",
1698 indent, newpos[depth] - 'A');
1699 }
1700 else
1701 {
1702 printf ("%stem = peep2_next_insn (%d);\n",
1703 indent, newpos[depth] - 'A');
1704 printf ("%sif (tem == NULL_RTX)\n", indent);
1705 if (afterward)
1706 printf ("%s goto L%d;\n", indent, afterward->number);
1707 else
1708 printf ("%s goto ret0;\n", indent);
1709 }
1710 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
1711 }
1712 else if (ISLOWER (newpos[depth]))
1713 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1714 indent, depth + 1, depth, newpos[depth] - 'a');
1715 else
1716 printf ("%sx%d = XEXP (x%d, %c);\n",
1717 indent, depth + 1, depth, newpos[depth]);
1718 ++depth;
1719 }
1720 }
1721 \f
1722 /* Print the enumerator constant for CODE -- the upcase version of
1723 the name. */
1724
1725 static void
1726 print_code (enum rtx_code code)
1727 {
1728 const char *p;
1729 for (p = GET_RTX_NAME (code); *p; p++)
1730 putchar (TOUPPER (*p));
1731 }
1732
1733 /* Emit code to cross an afterward link -- change state and branch. */
1734
1735 static void
1736 write_afterward (struct decision *start, struct decision *afterward,
1737 const char *indent)
1738 {
1739 if (!afterward || start->subroutine_number > 0)
1740 printf("%sgoto ret0;\n", indent);
1741 else
1742 {
1743 change_state (start->position, afterward->position, NULL, indent);
1744 printf ("%sgoto L%d;\n", indent, afterward->number);
1745 }
1746 }
1747
1748 /* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
1749 special care to avoid "decimal constant is so large that it is unsigned"
1750 warnings in the resulting code. */
1751
1752 static void
1753 print_host_wide_int (HOST_WIDE_INT val)
1754 {
1755 HOST_WIDE_INT min = (unsigned HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1);
1756 if (val == min)
1757 printf ("(" HOST_WIDE_INT_PRINT_DEC_C "-1)", val + 1);
1758 else
1759 printf (HOST_WIDE_INT_PRINT_DEC_C, val);
1760 }
1761
1762 /* Emit a switch statement, if possible, for an initial sequence of
1763 nodes at START. Return the first node yet untested. */
1764
1765 static struct decision *
1766 write_switch (struct decision *start, int depth)
1767 {
1768 struct decision *p = start;
1769 enum decision_type type = p->tests->type;
1770 struct decision *needs_label = NULL;
1771
1772 /* If we have two or more nodes in sequence that test the same one
1773 thing, we may be able to use a switch statement. */
1774
1775 if (!p->next
1776 || p->tests->next
1777 || p->next->tests->type != type
1778 || p->next->tests->next
1779 || nodes_identical_1 (p->tests, p->next->tests))
1780 return p;
1781
1782 /* DT_code is special in that we can do interesting things with
1783 known predicates at the same time. */
1784 if (type == DT_code)
1785 {
1786 char codemap[NUM_RTX_CODE];
1787 struct decision *ret;
1788 RTX_CODE code;
1789
1790 memset (codemap, 0, sizeof(codemap));
1791
1792 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1793 code = p->tests->u.code;
1794 do
1795 {
1796 if (p != start && p->need_label && needs_label == NULL)
1797 needs_label = p;
1798
1799 printf (" case ");
1800 print_code (code);
1801 printf (":\n goto L%d;\n", p->success.first->number);
1802 p->success.first->need_label = 1;
1803
1804 codemap[code] = 1;
1805 p = p->next;
1806 }
1807 while (p
1808 && ! p->tests->next
1809 && p->tests->type == DT_code
1810 && ! codemap[code = p->tests->u.code]);
1811
1812 /* If P is testing a predicate that we know about and we haven't
1813 seen any of the codes that are valid for the predicate, we can
1814 write a series of "case" statement, one for each possible code.
1815 Since we are already in a switch, these redundant tests are very
1816 cheap and will reduce the number of predicates called. */
1817
1818 /* Note that while we write out cases for these predicates here,
1819 we don't actually write the test here, as it gets kinda messy.
1820 It is trivial to leave this to later by telling our caller that
1821 we only processed the CODE tests. */
1822 if (needs_label != NULL)
1823 ret = needs_label;
1824 else
1825 ret = p;
1826
1827 while (p && p->tests->type == DT_pred
1828 && p->tests->u.pred.index >= 0)
1829 {
1830 const RTX_CODE *c;
1831
1832 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1833 if (codemap[(int) *c] != 0)
1834 goto pred_done;
1835
1836 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1837 {
1838 printf (" case ");
1839 print_code (*c);
1840 printf (":\n");
1841 codemap[(int) *c] = 1;
1842 }
1843
1844 printf (" goto L%d;\n", p->number);
1845 p->need_label = 1;
1846 p = p->next;
1847 }
1848
1849 pred_done:
1850 /* Make the default case skip the predicates we managed to match. */
1851
1852 printf (" default:\n");
1853 if (p != ret)
1854 {
1855 if (p)
1856 {
1857 printf (" goto L%d;\n", p->number);
1858 p->need_label = 1;
1859 }
1860 else
1861 write_afterward (start, start->afterward, " ");
1862 }
1863 else
1864 printf (" break;\n");
1865 printf (" }\n");
1866
1867 return ret;
1868 }
1869 else if (type == DT_mode
1870 || type == DT_veclen
1871 || type == DT_elt_zero_int
1872 || type == DT_elt_one_int
1873 || type == DT_elt_zero_wide_safe)
1874 {
1875 const char *indent = "";
1876
1877 /* We cast switch parameter to integer, so we must ensure that the value
1878 fits. */
1879 if (type == DT_elt_zero_wide_safe)
1880 {
1881 indent = " ";
1882 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth);
1883 }
1884 printf ("%s switch (", indent);
1885 switch (type)
1886 {
1887 case DT_mode:
1888 printf ("GET_MODE (x%d)", depth);
1889 break;
1890 case DT_veclen:
1891 printf ("XVECLEN (x%d, 0)", depth);
1892 break;
1893 case DT_elt_zero_int:
1894 printf ("XINT (x%d, 0)", depth);
1895 break;
1896 case DT_elt_one_int:
1897 printf ("XINT (x%d, 1)", depth);
1898 break;
1899 case DT_elt_zero_wide_safe:
1900 /* Convert result of XWINT to int for portability since some C
1901 compilers won't do it and some will. */
1902 printf ("(int) XWINT (x%d, 0)", depth);
1903 break;
1904 default:
1905 abort ();
1906 }
1907 printf (")\n%s {\n", indent);
1908
1909 do
1910 {
1911 /* Merge trees will not unify identical nodes if their
1912 sub-nodes are at different levels. Thus we must check
1913 for duplicate cases. */
1914 struct decision *q;
1915 for (q = start; q != p; q = q->next)
1916 if (nodes_identical_1 (p->tests, q->tests))
1917 goto case_done;
1918
1919 if (p != start && p->need_label && needs_label == NULL)
1920 needs_label = p;
1921
1922 printf ("%s case ", indent);
1923 switch (type)
1924 {
1925 case DT_mode:
1926 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
1927 break;
1928 case DT_veclen:
1929 printf ("%d", p->tests->u.veclen);
1930 break;
1931 case DT_elt_zero_int:
1932 case DT_elt_one_int:
1933 case DT_elt_zero_wide:
1934 case DT_elt_zero_wide_safe:
1935 print_host_wide_int (p->tests->u.intval);
1936 break;
1937 default:
1938 abort ();
1939 }
1940 printf (":\n%s goto L%d;\n", indent, p->success.first->number);
1941 p->success.first->need_label = 1;
1942
1943 p = p->next;
1944 }
1945 while (p && p->tests->type == type && !p->tests->next);
1946
1947 case_done:
1948 printf ("%s default:\n%s break;\n%s }\n",
1949 indent, indent, indent);
1950
1951 return needs_label != NULL ? needs_label : p;
1952 }
1953 else
1954 {
1955 /* None of the other tests are amenable. */
1956 return p;
1957 }
1958 }
1959
1960 /* Emit code for one test. */
1961
1962 static void
1963 write_cond (struct decision_test *p, int depth,
1964 enum routine_type subroutine_type)
1965 {
1966 switch (p->type)
1967 {
1968 case DT_mode:
1969 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
1970 break;
1971
1972 case DT_code:
1973 printf ("GET_CODE (x%d) == ", depth);
1974 print_code (p->u.code);
1975 break;
1976
1977 case DT_veclen:
1978 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
1979 break;
1980
1981 case DT_elt_zero_int:
1982 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
1983 break;
1984
1985 case DT_elt_one_int:
1986 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
1987 break;
1988
1989 case DT_elt_zero_wide:
1990 case DT_elt_zero_wide_safe:
1991 printf ("XWINT (x%d, 0) == ", depth);
1992 print_host_wide_int (p->u.intval);
1993 break;
1994
1995 case DT_const_int:
1996 printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
1997 depth, (int) p->u.intval);
1998 break;
1999
2000 case DT_veclen_ge:
2001 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
2002 break;
2003
2004 case DT_dup:
2005 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
2006 break;
2007
2008 case DT_pred:
2009 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
2010 GET_MODE_NAME (p->u.pred.mode));
2011 break;
2012
2013 case DT_c_test:
2014 printf ("(%s)", p->u.c_test);
2015 break;
2016
2017 case DT_accept_insn:
2018 switch (subroutine_type)
2019 {
2020 case RECOG:
2021 if (p->u.insn.num_clobbers_to_add == 0)
2022 abort ();
2023 printf ("pnum_clobbers != NULL");
2024 break;
2025
2026 default:
2027 abort ();
2028 }
2029 break;
2030
2031 default:
2032 abort ();
2033 }
2034 }
2035
2036 /* Emit code for one action. The previous tests have succeeded;
2037 TEST is the last of the chain. In the normal case we simply
2038 perform a state change. For the `accept' tests we must do more work. */
2039
2040 static void
2041 write_action (struct decision *p, struct decision_test *test,
2042 int depth, int uncond, struct decision *success,
2043 enum routine_type subroutine_type)
2044 {
2045 const char *indent;
2046 int want_close = 0;
2047
2048 if (uncond)
2049 indent = " ";
2050 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
2051 {
2052 fputs (" {\n", stdout);
2053 indent = " ";
2054 want_close = 1;
2055 }
2056 else
2057 indent = " ";
2058
2059 if (test->type == DT_accept_op)
2060 {
2061 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2062
2063 /* Only allow DT_accept_insn to follow. */
2064 if (test->next)
2065 {
2066 test = test->next;
2067 if (test->type != DT_accept_insn)
2068 abort ();
2069 }
2070 }
2071
2072 /* Sanity check that we're now at the end of the list of tests. */
2073 if (test->next)
2074 abort ();
2075
2076 if (test->type == DT_accept_insn)
2077 {
2078 switch (subroutine_type)
2079 {
2080 case RECOG:
2081 if (test->u.insn.num_clobbers_to_add != 0)
2082 printf ("%s*pnum_clobbers = %d;\n",
2083 indent, test->u.insn.num_clobbers_to_add);
2084 printf ("%sreturn %d;\n", indent, test->u.insn.code_number);
2085 break;
2086
2087 case SPLIT:
2088 printf ("%sreturn gen_split_%d (insn, operands);\n",
2089 indent, test->u.insn.code_number);
2090 break;
2091
2092 case PEEPHOLE2:
2093 {
2094 int match_len = 0, i;
2095
2096 for (i = strlen (p->position) - 1; i >= 0; --i)
2097 if (ISUPPER (p->position[i]))
2098 {
2099 match_len = p->position[i] - 'A';
2100 break;
2101 }
2102 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2103 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2104 indent, test->u.insn.code_number);
2105 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2106 }
2107 break;
2108
2109 default:
2110 abort ();
2111 }
2112 }
2113 else
2114 {
2115 printf("%sgoto L%d;\n", indent, success->number);
2116 success->need_label = 1;
2117 }
2118
2119 if (want_close)
2120 fputs (" }\n", stdout);
2121 }
2122
2123 /* Return 1 if the test is always true and has no fallthru path. Return -1
2124 if the test does have a fallthru path, but requires that the condition be
2125 terminated. Otherwise return 0 for a normal test. */
2126 /* ??? is_unconditional is a stupid name for a tri-state function. */
2127
2128 static int
2129 is_unconditional (struct decision_test *t, enum routine_type subroutine_type)
2130 {
2131 if (t->type == DT_accept_op)
2132 return 1;
2133
2134 if (t->type == DT_accept_insn)
2135 {
2136 switch (subroutine_type)
2137 {
2138 case RECOG:
2139 return (t->u.insn.num_clobbers_to_add == 0);
2140 case SPLIT:
2141 return 1;
2142 case PEEPHOLE2:
2143 return -1;
2144 default:
2145 abort ();
2146 }
2147 }
2148
2149 return 0;
2150 }
2151
2152 /* Emit code for one node -- the conditional and the accompanying action.
2153 Return true if there is no fallthru path. */
2154
2155 static int
2156 write_node (struct decision *p, int depth,
2157 enum routine_type subroutine_type)
2158 {
2159 struct decision_test *test, *last_test;
2160 int uncond;
2161
2162 /* Scan the tests and simplify comparisons against small
2163 constants. */
2164 for (test = p->tests; test; test = test->next)
2165 {
2166 if (test->type == DT_code
2167 && test->u.code == CONST_INT
2168 && test->next
2169 && test->next->type == DT_elt_zero_wide_safe
2170 && -MAX_SAVED_CONST_INT <= test->next->u.intval
2171 && test->next->u.intval <= MAX_SAVED_CONST_INT)
2172 {
2173 test->type = DT_const_int;
2174 test->u.intval = test->next->u.intval;
2175 test->next = test->next->next;
2176 }
2177 }
2178
2179 last_test = test = p->tests;
2180 uncond = is_unconditional (test, subroutine_type);
2181 if (uncond == 0)
2182 {
2183 printf (" if (");
2184 write_cond (test, depth, subroutine_type);
2185
2186 while ((test = test->next) != NULL)
2187 {
2188 last_test = test;
2189 if (is_unconditional (test, subroutine_type))
2190 break;
2191
2192 printf ("\n && ");
2193 write_cond (test, depth, subroutine_type);
2194 }
2195
2196 printf (")\n");
2197 }
2198
2199 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
2200
2201 return uncond > 0;
2202 }
2203
2204 /* Emit code for all of the sibling nodes of HEAD. */
2205
2206 static void
2207 write_tree_1 (struct decision_head *head, int depth,
2208 enum routine_type subroutine_type)
2209 {
2210 struct decision *p, *next;
2211 int uncond = 0;
2212
2213 for (p = head->first; p ; p = next)
2214 {
2215 /* The label for the first element was printed in write_tree. */
2216 if (p != head->first && p->need_label)
2217 OUTPUT_LABEL (" ", p->number);
2218
2219 /* Attempt to write a switch statement for a whole sequence. */
2220 next = write_switch (p, depth);
2221 if (p != next)
2222 uncond = 0;
2223 else
2224 {
2225 /* Failed -- fall back and write one node. */
2226 uncond = write_node (p, depth, subroutine_type);
2227 next = p->next;
2228 }
2229 }
2230
2231 /* Finished with this chain. Close a fallthru path by branching
2232 to the afterward node. */
2233 if (! uncond)
2234 write_afterward (head->last, head->last->afterward, " ");
2235 }
2236
2237 /* Write out the decision tree starting at HEAD. PREVPOS is the
2238 position at the node that branched to this node. */
2239
2240 static void
2241 write_tree (struct decision_head *head, const char *prevpos,
2242 enum routine_type type, int initial)
2243 {
2244 struct decision *p = head->first;
2245
2246 putchar ('\n');
2247 if (p->need_label)
2248 OUTPUT_LABEL (" ", p->number);
2249
2250 if (! initial && p->subroutine_number > 0)
2251 {
2252 static const char * const name_prefix[] = {
2253 "recog", "split", "peephole2"
2254 };
2255
2256 static const char * const call_suffix[] = {
2257 ", pnum_clobbers", "", ", _pmatch_len"
2258 };
2259
2260 /* This node has been broken out into a separate subroutine.
2261 Call it, test the result, and branch accordingly. */
2262
2263 if (p->afterward)
2264 {
2265 printf (" tem = %s_%d (x0, insn%s);\n",
2266 name_prefix[type], p->subroutine_number, call_suffix[type]);
2267 if (IS_SPLIT (type))
2268 printf (" if (tem != 0)\n return tem;\n");
2269 else
2270 printf (" if (tem >= 0)\n return tem;\n");
2271
2272 change_state (p->position, p->afterward->position, NULL, " ");
2273 printf (" goto L%d;\n", p->afterward->number);
2274 }
2275 else
2276 {
2277 printf (" return %s_%d (x0, insn%s);\n",
2278 name_prefix[type], p->subroutine_number, call_suffix[type]);
2279 }
2280 }
2281 else
2282 {
2283 int depth = strlen (p->position);
2284
2285 change_state (prevpos, p->position, head->last->afterward, " ");
2286 write_tree_1 (head, depth, type);
2287
2288 for (p = head->first; p; p = p->next)
2289 if (p->success.first)
2290 write_tree (&p->success, p->position, type, 0);
2291 }
2292 }
2293
2294 /* Write out a subroutine of type TYPE to do comparisons starting at
2295 node TREE. */
2296
2297 static void
2298 write_subroutine (struct decision_head *head, enum routine_type type)
2299 {
2300 int subfunction = head->first ? head->first->subroutine_number : 0;
2301 const char *s_or_e;
2302 char extension[32];
2303 int i;
2304
2305 s_or_e = subfunction ? "static " : "";
2306
2307 if (subfunction)
2308 sprintf (extension, "_%d", subfunction);
2309 else if (type == RECOG)
2310 extension[0] = '\0';
2311 else
2312 strcpy (extension, "_insns");
2313
2314 switch (type)
2315 {
2316 case RECOG:
2317 printf ("%sint\n\
2318 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e, extension);
2319 break;
2320 case SPLIT:
2321 printf ("%srtx\n\
2322 split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2323 s_or_e, extension);
2324 break;
2325 case PEEPHOLE2:
2326 printf ("%srtx\n\
2327 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2328 s_or_e, extension);
2329 break;
2330 }
2331
2332 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2333 for (i = 1; i <= max_depth; i++)
2334 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
2335
2336 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2337
2338 if (!subfunction)
2339 printf (" recog_data.insn = NULL_RTX;\n");
2340
2341 if (head->first)
2342 write_tree (head, "", type, 1);
2343 else
2344 printf (" goto ret0;\n");
2345
2346 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2347 }
2348
2349 /* In break_out_subroutines, we discovered the boundaries for the
2350 subroutines, but did not write them out. Do so now. */
2351
2352 static void
2353 write_subroutines (struct decision_head *head, enum routine_type type)
2354 {
2355 struct decision *p;
2356
2357 for (p = head->first; p ; p = p->next)
2358 if (p->success.first)
2359 write_subroutines (&p->success, type);
2360
2361 if (head->first->subroutine_number > 0)
2362 write_subroutine (head, type);
2363 }
2364
2365 /* Begin the output file. */
2366
2367 static void
2368 write_header (void)
2369 {
2370 puts ("\
2371 /* Generated automatically by the program `genrecog' from the target\n\
2372 machine description file. */\n\
2373 \n\
2374 #include \"config.h\"\n\
2375 #include \"system.h\"\n\
2376 #include \"coretypes.h\"\n\
2377 #include \"tm.h\"\n\
2378 #include \"rtl.h\"\n\
2379 #include \"tm_p.h\"\n\
2380 #include \"function.h\"\n\
2381 #include \"insn-config.h\"\n\
2382 #include \"recog.h\"\n\
2383 #include \"real.h\"\n\
2384 #include \"output.h\"\n\
2385 #include \"flags.h\"\n\
2386 #include \"hard-reg-set.h\"\n\
2387 #include \"resource.h\"\n\
2388 #include \"toplev.h\"\n\
2389 #include \"reload.h\"\n\
2390 \n");
2391
2392 puts ("\n\
2393 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2394 X0 is a valid instruction.\n\
2395 \n\
2396 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2397 returns a nonnegative number which is the insn code number for the\n\
2398 pattern that matched. This is the same as the order in the machine\n\
2399 description of the entry that matched. This number can be used as an\n\
2400 index into `insn_data' and other tables.\n");
2401 puts ("\
2402 The third argument to recog is an optional pointer to an int. If\n\
2403 present, recog will accept a pattern if it matches except for missing\n\
2404 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2405 the optional pointer will be set to the number of CLOBBERs that need\n\
2406 to be added (it should be initialized to zero by the caller). If it");
2407 puts ("\
2408 is set nonzero, the caller should allocate a PARALLEL of the\n\
2409 appropriate size, copy the initial entries, and call add_clobbers\n\
2410 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2411 ");
2412
2413 puts ("\n\
2414 The function split_insns returns 0 if the rtl could not\n\
2415 be split or the split rtl as an INSN list if it can be.\n\
2416 \n\
2417 The function peephole2_insns returns 0 if the rtl could not\n\
2418 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2419 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2420 */\n\n");
2421 }
2422
2423 \f
2424 /* Construct and return a sequence of decisions
2425 that will recognize INSN.
2426
2427 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2428
2429 static struct decision_head
2430 make_insn_sequence (rtx insn, enum routine_type type)
2431 {
2432 rtx x;
2433 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2434 int truth = maybe_eval_c_test (c_test);
2435 struct decision *last;
2436 struct decision_test *test, **place;
2437 struct decision_head head;
2438 char c_test_pos[2];
2439
2440 /* We should never see an insn whose C test is false at compile time. */
2441 if (truth == 0)
2442 abort ();
2443
2444 record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));
2445
2446 c_test_pos[0] = '\0';
2447 if (type == PEEPHOLE2)
2448 {
2449 int i, j;
2450
2451 /* peephole2 gets special treatment:
2452 - X always gets an outer parallel even if it's only one entry
2453 - we remove all traces of outer-level match_scratch and match_dup
2454 expressions here. */
2455 x = rtx_alloc (PARALLEL);
2456 PUT_MODE (x, VOIDmode);
2457 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2458 for (i = j = 0; i < XVECLEN (insn, 0); i++)
2459 {
2460 rtx tmp = XVECEXP (insn, 0, i);
2461 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2462 {
2463 XVECEXP (x, 0, j) = tmp;
2464 j++;
2465 }
2466 }
2467 XVECLEN (x, 0) = j;
2468
2469 c_test_pos[0] = 'A' + j - 1;
2470 c_test_pos[1] = '\0';
2471 }
2472 else if (XVECLEN (insn, type == RECOG) == 1)
2473 x = XVECEXP (insn, type == RECOG, 0);
2474 else
2475 {
2476 x = rtx_alloc (PARALLEL);
2477 XVEC (x, 0) = XVEC (insn, type == RECOG);
2478 PUT_MODE (x, VOIDmode);
2479 }
2480
2481 validate_pattern (x, insn, NULL_RTX, 0);
2482
2483 memset(&head, 0, sizeof(head));
2484 last = add_to_sequence (x, &head, "", type, 1);
2485
2486 /* Find the end of the test chain on the last node. */
2487 for (test = last->tests; test->next; test = test->next)
2488 continue;
2489 place = &test->next;
2490
2491 /* Skip the C test if it's known to be true at compile time. */
2492 if (truth == -1)
2493 {
2494 /* Need a new node if we have another test to add. */
2495 if (test->type == DT_accept_op)
2496 {
2497 last = new_decision (c_test_pos, &last->success);
2498 place = &last->tests;
2499 }
2500 test = new_decision_test (DT_c_test, &place);
2501 test->u.c_test = c_test;
2502 }
2503
2504 test = new_decision_test (DT_accept_insn, &place);
2505 test->u.insn.code_number = next_insn_code;
2506 test->u.insn.lineno = pattern_lineno;
2507 test->u.insn.num_clobbers_to_add = 0;
2508
2509 switch (type)
2510 {
2511 case RECOG:
2512 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2513 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2514 If so, set up to recognize the pattern without these CLOBBERs. */
2515
2516 if (GET_CODE (x) == PARALLEL)
2517 {
2518 int i;
2519
2520 /* Find the last non-clobber in the parallel. */
2521 for (i = XVECLEN (x, 0); i > 0; i--)
2522 {
2523 rtx y = XVECEXP (x, 0, i - 1);
2524 if (GET_CODE (y) != CLOBBER
2525 || (!REG_P (XEXP (y, 0))
2526 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2527 break;
2528 }
2529
2530 if (i != XVECLEN (x, 0))
2531 {
2532 rtx new;
2533 struct decision_head clobber_head;
2534
2535 /* Build a similar insn without the clobbers. */
2536 if (i == 1)
2537 new = XVECEXP (x, 0, 0);
2538 else
2539 {
2540 int j;
2541
2542 new = rtx_alloc (PARALLEL);
2543 XVEC (new, 0) = rtvec_alloc (i);
2544 for (j = i - 1; j >= 0; j--)
2545 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2546 }
2547
2548 /* Recognize it. */
2549 memset (&clobber_head, 0, sizeof(clobber_head));
2550 last = add_to_sequence (new, &clobber_head, "", type, 1);
2551
2552 /* Find the end of the test chain on the last node. */
2553 for (test = last->tests; test->next; test = test->next)
2554 continue;
2555
2556 /* We definitely have a new test to add -- create a new
2557 node if needed. */
2558 place = &test->next;
2559 if (test->type == DT_accept_op)
2560 {
2561 last = new_decision ("", &last->success);
2562 place = &last->tests;
2563 }
2564
2565 /* Skip the C test if it's known to be true at compile
2566 time. */
2567 if (truth == -1)
2568 {
2569 test = new_decision_test (DT_c_test, &place);
2570 test->u.c_test = c_test;
2571 }
2572
2573 test = new_decision_test (DT_accept_insn, &place);
2574 test->u.insn.code_number = next_insn_code;
2575 test->u.insn.lineno = pattern_lineno;
2576 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2577
2578 merge_trees (&head, &clobber_head);
2579 }
2580 }
2581 break;
2582
2583 case SPLIT:
2584 /* Define the subroutine we will call below and emit in genemit. */
2585 printf ("extern rtx gen_split_%d (rtx, rtx *);\n", next_insn_code);
2586 break;
2587
2588 case PEEPHOLE2:
2589 /* Define the subroutine we will call below and emit in genemit. */
2590 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2591 next_insn_code);
2592 break;
2593 }
2594
2595 return head;
2596 }
2597
2598 static void
2599 process_tree (struct decision_head *head, enum routine_type subroutine_type)
2600 {
2601 if (head->first == NULL)
2602 {
2603 /* We can elide peephole2_insns, but not recog or split_insns. */
2604 if (subroutine_type == PEEPHOLE2)
2605 return;
2606 }
2607 else
2608 {
2609 factor_tests (head);
2610
2611 next_subroutine_number = 0;
2612 break_out_subroutines (head, 1);
2613 find_afterward (head, NULL);
2614
2615 /* We run this after find_afterward, because find_afterward needs
2616 the redundant DT_mode tests on predicates to determine whether
2617 two tests can both be true or not. */
2618 simplify_tests(head);
2619
2620 write_subroutines (head, subroutine_type);
2621 }
2622
2623 write_subroutine (head, subroutine_type);
2624 }
2625 \f
2626 extern int main (int, char **);
2627
2628 int
2629 main (int argc, char **argv)
2630 {
2631 rtx desc;
2632 struct decision_head recog_tree, split_tree, peephole2_tree, h;
2633
2634 progname = "genrecog";
2635
2636 memset (&recog_tree, 0, sizeof recog_tree);
2637 memset (&split_tree, 0, sizeof split_tree);
2638 memset (&peephole2_tree, 0, sizeof peephole2_tree);
2639
2640 if (argc <= 1)
2641 fatal ("no input file name");
2642
2643 if (init_md_reader_args (argc, argv) != SUCCESS_EXIT_CODE)
2644 return (FATAL_EXIT_CODE);
2645
2646 next_insn_code = 0;
2647 next_index = 0;
2648
2649 write_header ();
2650
2651 /* Read the machine description. */
2652
2653 while (1)
2654 {
2655 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2656 if (desc == NULL)
2657 break;
2658
2659 if (GET_CODE (desc) == DEFINE_INSN)
2660 {
2661 h = make_insn_sequence (desc, RECOG);
2662 merge_trees (&recog_tree, &h);
2663 }
2664 else if (GET_CODE (desc) == DEFINE_SPLIT)
2665 {
2666 h = make_insn_sequence (desc, SPLIT);
2667 merge_trees (&split_tree, &h);
2668 }
2669 else if (GET_CODE (desc) == DEFINE_PEEPHOLE2)
2670 {
2671 h = make_insn_sequence (desc, PEEPHOLE2);
2672 merge_trees (&peephole2_tree, &h);
2673 }
2674
2675 next_index++;
2676 }
2677
2678 if (error_count)
2679 return FATAL_EXIT_CODE;
2680
2681 puts ("\n\n");
2682
2683 process_tree (&recog_tree, RECOG);
2684 process_tree (&split_tree, SPLIT);
2685 process_tree (&peephole2_tree, PEEPHOLE2);
2686
2687 fflush (stdout);
2688 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
2689 }
2690 \f
2691 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2692 const char *
2693 get_insn_name (int code)
2694 {
2695 if (code < insn_name_ptr_size)
2696 return insn_name_ptr[code];
2697 else
2698 return NULL;
2699 }
2700
2701 static void
2702 record_insn_name (int code, const char *name)
2703 {
2704 static const char *last_real_name = "insn";
2705 static int last_real_code = 0;
2706 char *new;
2707
2708 if (insn_name_ptr_size <= code)
2709 {
2710 int new_size;
2711 new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
2712 insn_name_ptr = xrealloc (insn_name_ptr, sizeof(char *) * new_size);
2713 memset (insn_name_ptr + insn_name_ptr_size, 0,
2714 sizeof(char *) * (new_size - insn_name_ptr_size));
2715 insn_name_ptr_size = new_size;
2716 }
2717
2718 if (!name || name[0] == '\0')
2719 {
2720 new = xmalloc (strlen (last_real_name) + 10);
2721 sprintf (new, "%s+%d", last_real_name, code - last_real_code);
2722 }
2723 else
2724 {
2725 last_real_name = new = xstrdup (name);
2726 last_real_code = code;
2727 }
2728
2729 insn_name_ptr[code] = new;
2730 }
2731 \f
2732 static void
2733 debug_decision_2 (struct decision_test *test)
2734 {
2735 switch (test->type)
2736 {
2737 case DT_mode:
2738 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2739 break;
2740 case DT_code:
2741 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2742 break;
2743 case DT_veclen:
2744 fprintf (stderr, "veclen=%d", test->u.veclen);
2745 break;
2746 case DT_elt_zero_int:
2747 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2748 break;
2749 case DT_elt_one_int:
2750 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2751 break;
2752 case DT_elt_zero_wide:
2753 fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2754 break;
2755 case DT_elt_zero_wide_safe:
2756 fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2757 break;
2758 case DT_veclen_ge:
2759 fprintf (stderr, "veclen>=%d", test->u.veclen);
2760 break;
2761 case DT_dup:
2762 fprintf (stderr, "dup=%d", test->u.dup);
2763 break;
2764 case DT_pred:
2765 fprintf (stderr, "pred=(%s,%s)",
2766 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2767 break;
2768 case DT_c_test:
2769 {
2770 char sub[16+4];
2771 strncpy (sub, test->u.c_test, sizeof(sub));
2772 memcpy (sub+16, "...", 4);
2773 fprintf (stderr, "c_test=\"%s\"", sub);
2774 }
2775 break;
2776 case DT_accept_op:
2777 fprintf (stderr, "A_op=%d", test->u.opno);
2778 break;
2779 case DT_accept_insn:
2780 fprintf (stderr, "A_insn=(%d,%d)",
2781 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2782 break;
2783
2784 default:
2785 abort ();
2786 }
2787 }
2788
2789 static void
2790 debug_decision_1 (struct decision *d, int indent)
2791 {
2792 int i;
2793 struct decision_test *test;
2794
2795 if (d == NULL)
2796 {
2797 for (i = 0; i < indent; ++i)
2798 putc (' ', stderr);
2799 fputs ("(nil)\n", stderr);
2800 return;
2801 }
2802
2803 for (i = 0; i < indent; ++i)
2804 putc (' ', stderr);
2805
2806 putc ('{', stderr);
2807 test = d->tests;
2808 if (test)
2809 {
2810 debug_decision_2 (test);
2811 while ((test = test->next) != NULL)
2812 {
2813 fputs (" + ", stderr);
2814 debug_decision_2 (test);
2815 }
2816 }
2817 fprintf (stderr, "} %d n %d a %d\n", d->number,
2818 (d->next ? d->next->number : -1),
2819 (d->afterward ? d->afterward->number : -1));
2820 }
2821
2822 static void
2823 debug_decision_0 (struct decision *d, int indent, int maxdepth)
2824 {
2825 struct decision *n;
2826 int i;
2827
2828 if (maxdepth < 0)
2829 return;
2830 if (d == NULL)
2831 {
2832 for (i = 0; i < indent; ++i)
2833 putc (' ', stderr);
2834 fputs ("(nil)\n", stderr);
2835 return;
2836 }
2837
2838 debug_decision_1 (d, indent);
2839 for (n = d->success.first; n ; n = n->next)
2840 debug_decision_0 (n, indent + 2, maxdepth - 1);
2841 }
2842
2843 void
2844 debug_decision (struct decision *d)
2845 {
2846 debug_decision_0 (d, 0, 1000000);
2847 }
2848
2849 void
2850 debug_decision_list (struct decision *d)
2851 {
2852 while (d)
2853 {
2854 debug_decision_0 (d, 0, 0);
2855 d = d->next;
2856 }
2857 }
This page took 0.170284 seconds and 6 git commands to generate.