]> gcc.gnu.org Git - gcc.git/blob - gcc/genrecog.c
reload1.c (struct elim_table): Delete MAX_OFFSET member.
[gcc.git] / gcc / genrecog.c
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 88, 92, 93, 94, 95, 97, 98 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This program is used to produce insn-recog.c, which contains
23 a function called `recog' plus its subroutines.
24 These functions contain a decision tree
25 that recognizes whether an rtx, the argument given to recog,
26 is a valid instruction.
27
28 recog returns -1 if the rtx is not valid.
29 If the rtx is valid, recog returns a nonnegative number
30 which is the insn code number for the pattern that matched.
31 This is the same as the order in the machine description of the
32 entry that matched. This number can be used as an index into various
33 insn_* tables, such as insn_template, insn_outfun, and insn_n_operands
34 (found in insn-output.c).
35
36 The third argument to recog is an optional pointer to an int.
37 If present, recog will accept a pattern if it matches except for
38 missing CLOBBER expressions at the end. In that case, the value
39 pointed to by the optional pointer will be set to the number of
40 CLOBBERs that need to be added (it should be initialized to zero by
41 the caller). If it is set nonzero, the caller should allocate a
42 PARALLEL of the appropriate size, copy the initial entries, and call
43 add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
44
45 This program also generates the function `split_insns',
46 which returns 0 if the rtl could not be split, or
47 it returns the split rtl in a SEQUENCE. */
48
49 #include "hconfig.h"
50 #include "system.h"
51 #include "rtl.h"
52 #include "obstack.h"
53
54 static struct obstack obstack;
55 struct obstack *rtl_obstack = &obstack;
56
57 #define obstack_chunk_alloc xmalloc
58 #define obstack_chunk_free free
59
60 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
61 char **insn_name_ptr = 0;
62
63 /* Data structure for a listhead of decision trees. The alternatives
64 to a node are kept in a doublely-linked list so we can easily add nodes
65 to the proper place when merging. */
66
67 struct decision_head { struct decision *first, *last; };
68
69 /* Data structure for decision tree for recognizing
70 legitimate instructions. */
71
72 struct decision
73 {
74 int number; /* Node number, used for labels */
75 char *position; /* String denoting position in pattern */
76 RTX_CODE code; /* Code to test for or UNKNOWN to suppress */
77 char ignore_code; /* If non-zero, need not test code */
78 char ignore_mode; /* If non-zero, need not test mode */
79 int veclen; /* Length of vector, if nonzero */
80 enum machine_mode mode; /* Machine mode of node */
81 char enforce_mode; /* If non-zero, test `mode' */
82 char retest_code, retest_mode; /* See write_tree_1 */
83 int test_elt_zero_int; /* Nonzero if should test XINT (rtl, 0) */
84 int elt_zero_int; /* Required value for XINT (rtl, 0) */
85 int test_elt_one_int; /* Nonzero if should test XINT (rtl, 1) */
86 int elt_one_int; /* Required value for XINT (rtl, 1) */
87 int test_elt_zero_wide; /* Nonzero if should test XWINT (rtl, 0) */
88 HOST_WIDE_INT elt_zero_wide; /* Required value for XWINT (rtl, 0) */
89 char *tests; /* If nonzero predicate to call */
90 int pred; /* `preds' index of predicate or -1 */
91 char *c_test; /* Additional test to perform */
92 struct decision_head success; /* Nodes to test on success */
93 int insn_code_number; /* Insn number matched, if success */
94 int num_clobbers_to_add; /* Number of CLOBBERs to be added to pattern */
95 struct decision *next; /* Node to test on failure */
96 struct decision *prev; /* Node whose failure tests us */
97 struct decision *afterward; /* Node to test on success, but failure of
98 successor nodes */
99 int opno; /* Operand number, if >= 0 */
100 int dupno; /* Number of operand to compare against */
101 int label_needed; /* Nonzero if label needed when writing tree */
102 int subroutine_number; /* Number of subroutine this node starts */
103 };
104
105 #define SUBROUTINE_THRESHOLD 50
106
107 static int next_subroutine_number;
108
109 /* We can write two types of subroutines: One for insn recognition and
110 one to split insns. This defines which type is being written. */
111
112 enum routine_type {RECOG, SPLIT};
113
114 /* Next available node number for tree nodes. */
115
116 static int next_number;
117
118 /* Next number to use as an insn_code. */
119
120 static int next_insn_code;
121
122 /* Similar, but counts all expressions in the MD file; used for
123 error messages. */
124
125 static int next_index;
126
127 /* Record the highest depth we ever have so we know how many variables to
128 allocate in each subroutine we make. */
129
130 static int max_depth;
131 \f
132 /* This table contains a list of the rtl codes that can possibly match a
133 predicate defined in recog.c. The function `not_both_true' uses it to
134 deduce that there are no expressions that can be matches by certain pairs
135 of tree nodes. Also, if a predicate can match only one code, we can
136 hardwire that code into the node testing the predicate. */
137
138 static struct pred_table
139 {
140 char *name;
141 RTX_CODE codes[NUM_RTX_CODE];
142 } preds[]
143 = {{"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
144 LABEL_REF, SUBREG, REG, MEM}},
145 #ifdef PREDICATE_CODES
146 PREDICATE_CODES
147 #endif
148 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
149 LABEL_REF, SUBREG, REG, MEM, PLUS, MINUS, MULT}},
150 {"register_operand", {SUBREG, REG}},
151 {"scratch_operand", {SCRATCH, REG}},
152 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
153 LABEL_REF}},
154 {"const_int_operand", {CONST_INT}},
155 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
156 {"nonimmediate_operand", {SUBREG, REG, MEM}},
157 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
158 LABEL_REF, SUBREG, REG}},
159 {"push_operand", {MEM}},
160 {"memory_operand", {SUBREG, MEM}},
161 {"indirect_operand", {SUBREG, MEM}},
162 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU}},
163 {"mode_independent_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
164 LABEL_REF, SUBREG, REG, MEM}}};
165
166 #define NUM_KNOWN_PREDS (sizeof preds / sizeof preds[0])
167
168 static struct decision_head make_insn_sequence PROTO((rtx, enum routine_type));
169 static struct decision *add_to_sequence PROTO((rtx, struct decision_head *,
170 char *));
171 static int not_both_true PROTO((struct decision *, struct decision *,
172 int));
173 static int position_merit PROTO((struct decision *, enum machine_mode,
174 enum rtx_code));
175 static struct decision_head merge_trees PROTO((struct decision_head,
176 struct decision_head));
177 static int break_out_subroutines PROTO((struct decision_head,
178 enum routine_type, int));
179 static void write_subroutine PROTO((struct decision *, enum routine_type));
180 static void write_tree_1 PROTO((struct decision *, char *,
181 struct decision *, enum routine_type));
182 static void print_code PROTO((enum rtx_code));
183 static int same_codes PROTO((struct decision *, enum rtx_code));
184 static void clear_codes PROTO((struct decision *));
185 static int same_modes PROTO((struct decision *, enum machine_mode));
186 static void clear_modes PROTO((struct decision *));
187 static void write_tree PROTO((struct decision *, char *,
188 struct decision *, int,
189 enum routine_type));
190 static void change_state PROTO((char *, char *, int));
191 static char *copystr PROTO((char *));
192 static void mybzero PROTO((char *, unsigned));
193 static void mybcopy PROTO((char *, char *, unsigned));
194 static void fatal PVPROTO((char *, ...))
195 ATTRIBUTE_PRINTF_1 ATTRIBUTE_NORETURN;
196 char *xrealloc PROTO((char *, unsigned));
197 char *xmalloc PROTO((unsigned));
198 void fancy_abort PROTO((void)) ATTRIBUTE_NORETURN;
199 \f
200 /* Construct and return a sequence of decisions
201 that will recognize INSN.
202
203 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
204
205 static struct decision_head
206 make_insn_sequence (insn, type)
207 rtx insn;
208 enum routine_type type;
209 {
210 rtx x;
211 char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
212 struct decision *last;
213 struct decision_head head;
214
215 if (XVECLEN (insn, type == RECOG) == 1)
216 x = XVECEXP (insn, type == RECOG, 0);
217 else
218 {
219 x = rtx_alloc (PARALLEL);
220 XVEC (x, 0) = XVEC (insn, type == RECOG);
221 PUT_MODE (x, VOIDmode);
222 }
223
224 last = add_to_sequence (x, &head, "");
225
226 if (c_test[0])
227 last->c_test = c_test;
228 last->insn_code_number = next_insn_code;
229 last->num_clobbers_to_add = 0;
230
231 /* If this is not a DEFINE_SPLIT and X is a PARALLEL, see if it ends with a
232 group of CLOBBERs of (hard) registers or MATCH_SCRATCHes. If so, set up
233 to recognize the pattern without these CLOBBERs. */
234
235 if (type == RECOG && GET_CODE (x) == PARALLEL)
236 {
237 int i;
238
239 for (i = XVECLEN (x, 0); i > 0; i--)
240 if (GET_CODE (XVECEXP (x, 0, i - 1)) != CLOBBER
241 || (GET_CODE (XEXP (XVECEXP (x, 0, i - 1), 0)) != REG
242 && GET_CODE (XEXP (XVECEXP (x, 0, i - 1), 0)) != MATCH_SCRATCH))
243 break;
244
245 if (i != XVECLEN (x, 0))
246 {
247 rtx new;
248 struct decision_head clobber_head;
249
250 if (i == 1)
251 new = XVECEXP (x, 0, 0);
252 else
253 {
254 int j;
255
256 new = rtx_alloc (PARALLEL);
257 XVEC (new, 0) = rtvec_alloc (i);
258 for (j = i - 1; j >= 0; j--)
259 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
260 }
261
262 last = add_to_sequence (new, &clobber_head, "");
263
264 if (c_test[0])
265 last->c_test = c_test;
266 last->insn_code_number = next_insn_code;
267 last->num_clobbers_to_add = XVECLEN (x, 0) - i;
268
269 head = merge_trees (head, clobber_head);
270 }
271 }
272
273 next_insn_code++;
274
275 if (type == SPLIT)
276 /* Define the subroutine we will call below and emit in genemit. */
277 printf ("extern rtx gen_split_%d ();\n", last->insn_code_number);
278
279 return head;
280 }
281 \f
282 /* Create a chain of nodes to verify that an rtl expression matches
283 PATTERN.
284
285 LAST is a pointer to the listhead in the previous node in the chain (or
286 in the calling function, for the first node).
287
288 POSITION is the string representing the current position in the insn.
289
290 A pointer to the final node in the chain is returned. */
291
292 static struct decision *
293 add_to_sequence (pattern, last, position)
294 rtx pattern;
295 struct decision_head *last;
296 char *position;
297 {
298 register RTX_CODE code;
299 register struct decision *new
300 = (struct decision *) xmalloc (sizeof (struct decision));
301 struct decision *this;
302 char *newpos;
303 register char *fmt;
304 register size_t i;
305 int depth = strlen (position);
306 int len;
307
308 if (depth > max_depth)
309 max_depth = depth;
310
311 new->number = next_number++;
312 new->position = copystr (position);
313 new->ignore_code = 0;
314 new->ignore_mode = 0;
315 new->enforce_mode = 1;
316 new->retest_code = new->retest_mode = 0;
317 new->veclen = 0;
318 new->test_elt_zero_int = 0;
319 new->test_elt_one_int = 0;
320 new->test_elt_zero_wide = 0;
321 new->elt_zero_int = 0;
322 new->elt_one_int = 0;
323 new->elt_zero_wide = 0;
324 new->tests = 0;
325 new->pred = -1;
326 new->c_test = 0;
327 new->success.first = new->success.last = 0;
328 new->insn_code_number = -1;
329 new->num_clobbers_to_add = 0;
330 new->next = 0;
331 new->prev = 0;
332 new->afterward = 0;
333 new->opno = -1;
334 new->dupno = -1;
335 new->label_needed = 0;
336 new->subroutine_number = 0;
337
338 this = new;
339
340 last->first = last->last = new;
341
342 newpos = (char *) alloca (depth + 2);
343 strcpy (newpos, position);
344 newpos[depth + 1] = 0;
345
346 restart:
347
348 new->mode = GET_MODE (pattern);
349 new->code = code = GET_CODE (pattern);
350
351 switch (code)
352 {
353 case MATCH_OPERAND:
354 case MATCH_SCRATCH:
355 case MATCH_OPERATOR:
356 case MATCH_PARALLEL:
357 case MATCH_INSN2:
358 new->opno = XINT (pattern, 0);
359 new->code = (code == MATCH_PARALLEL ? PARALLEL : UNKNOWN);
360 new->enforce_mode = 0;
361
362 if (code == MATCH_SCRATCH)
363 new->tests = "scratch_operand";
364 else
365 new->tests = XSTR (pattern, 1);
366
367 if (*new->tests == 0)
368 new->tests = 0;
369
370 /* See if we know about this predicate and save its number. If we do,
371 and it only accepts one code, note that fact. The predicate
372 `const_int_operand' only tests for a CONST_INT, so if we do so we
373 can avoid calling it at all.
374
375 Finally, if we know that the predicate does not allow CONST_INT, we
376 know that the only way the predicate can match is if the modes match
377 (here we use the kludge of relying on the fact that "address_operand"
378 accepts CONST_INT; otherwise, it would have to be a special case),
379 so we can test the mode (but we need not). This fact should
380 considerably simplify the generated code. */
381
382 if (new->tests)
383 {
384 for (i = 0; i < NUM_KNOWN_PREDS; i++)
385 if (! strcmp (preds[i].name, new->tests))
386 {
387 int j;
388 int allows_const_int = 0;
389
390 new->pred = i;
391
392 if (preds[i].codes[1] == 0 && new->code == UNKNOWN)
393 {
394 new->code = preds[i].codes[0];
395 if (! strcmp ("const_int_operand", new->tests))
396 new->tests = 0, new->pred = -1;
397 }
398
399 for (j = 0; j < NUM_RTX_CODE && preds[i].codes[j] != 0; j++)
400 if (preds[i].codes[j] == CONST_INT)
401 allows_const_int = 1;
402
403 if (! allows_const_int)
404 new->enforce_mode = new->ignore_mode= 1;
405
406 break;
407 }
408
409 #ifdef PREDICATE_CODES
410 /* If the port has a list of the predicates it uses but omits
411 one, warn. */
412 if (i == NUM_KNOWN_PREDS)
413 fprintf (stderr, "Warning: `%s' not in PREDICATE_CODES\n",
414 new->tests);
415 #endif
416 }
417
418 if (code == MATCH_OPERATOR || code == MATCH_PARALLEL)
419 {
420 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
421 {
422 newpos[depth] = i + (code == MATCH_OPERATOR ? '0': 'a');
423 new = add_to_sequence (XVECEXP (pattern, 2, i),
424 &new->success, newpos);
425 }
426 }
427
428 return new;
429
430 case MATCH_OP_DUP:
431 new->opno = XINT (pattern, 0);
432 new->dupno = XINT (pattern, 0);
433 new->code = UNKNOWN;
434 new->tests = 0;
435 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
436 {
437 newpos[depth] = i + '0';
438 new = add_to_sequence (XVECEXP (pattern, 1, i),
439 &new->success, newpos);
440 }
441 return new;
442
443 case MATCH_DUP:
444 case MATCH_PAR_DUP:
445 new->dupno = XINT (pattern, 0);
446 new->code = UNKNOWN;
447 new->enforce_mode = 0;
448 return new;
449
450 case ADDRESS:
451 pattern = XEXP (pattern, 0);
452 goto restart;
453
454 case SET:
455 /* The operands of a SET must have the same mode unless one is VOIDmode. */
456 if (GET_MODE (SET_SRC (pattern)) != VOIDmode
457 && GET_MODE (SET_DEST (pattern)) != VOIDmode
458 && GET_MODE (SET_SRC (pattern)) != GET_MODE (SET_DEST (pattern))
459 /* The mode of an ADDRESS_OPERAND is the mode of the memory reference,
460 not the mode of the address. */
461 && ! (GET_CODE (SET_SRC (pattern)) == MATCH_OPERAND
462 && ! strcmp (XSTR (SET_SRC (pattern), 1), "address_operand")))
463 {
464 print_rtl (stderr, pattern);
465 fputc ('\n', stderr);
466 fatal ("mode mismatch in SET");
467 }
468 newpos[depth] = '0';
469 new = add_to_sequence (SET_DEST (pattern), &new->success, newpos);
470 this->success.first->enforce_mode = 1;
471 newpos[depth] = '1';
472 new = add_to_sequence (SET_SRC (pattern), &new->success, newpos);
473
474 /* If set are setting CC0 from anything other than a COMPARE, we
475 must enforce the mode so that we do not produce ambiguous insns. */
476 if (GET_CODE (SET_DEST (pattern)) == CC0
477 && GET_CODE (SET_SRC (pattern)) != COMPARE)
478 this->success.first->enforce_mode = 1;
479 return new;
480
481 case SIGN_EXTEND:
482 case ZERO_EXTEND:
483 case STRICT_LOW_PART:
484 newpos[depth] = '0';
485 new = add_to_sequence (XEXP (pattern, 0), &new->success, newpos);
486 this->success.first->enforce_mode = 1;
487 return new;
488
489 case SUBREG:
490 this->test_elt_one_int = 1;
491 this->elt_one_int = XINT (pattern, 1);
492 newpos[depth] = '0';
493 new = add_to_sequence (XEXP (pattern, 0), &new->success, newpos);
494 this->success.first->enforce_mode = 1;
495 return new;
496
497 case ZERO_EXTRACT:
498 case SIGN_EXTRACT:
499 newpos[depth] = '0';
500 new = add_to_sequence (XEXP (pattern, 0), &new->success, newpos);
501 this->success.first->enforce_mode = 1;
502 newpos[depth] = '1';
503 new = add_to_sequence (XEXP (pattern, 1), &new->success, newpos);
504 newpos[depth] = '2';
505 new = add_to_sequence (XEXP (pattern, 2), &new->success, newpos);
506 return new;
507
508 case EQ: case NE: case LE: case LT: case GE: case GT:
509 case LEU: case LTU: case GEU: case GTU:
510 /* If the first operand is (cc0), we don't have to do anything
511 special. */
512 if (GET_CODE (XEXP (pattern, 0)) == CC0)
513 break;
514
515 /* ... fall through ... */
516
517 case COMPARE:
518 /* Enforce the mode on the first operand to avoid ambiguous insns. */
519 newpos[depth] = '0';
520 new = add_to_sequence (XEXP (pattern, 0), &new->success, newpos);
521 this->success.first->enforce_mode = 1;
522 newpos[depth] = '1';
523 new = add_to_sequence (XEXP (pattern, 1), &new->success, newpos);
524 return new;
525
526 default:
527 break;
528 }
529
530 fmt = GET_RTX_FORMAT (code);
531 len = GET_RTX_LENGTH (code);
532 for (i = 0; i < (size_t) len; i++)
533 {
534 newpos[depth] = '0' + i;
535 if (fmt[i] == 'e' || fmt[i] == 'u')
536 new = add_to_sequence (XEXP (pattern, i), &new->success, newpos);
537 else if (fmt[i] == 'i' && i == 0)
538 {
539 this->test_elt_zero_int = 1;
540 this->elt_zero_int = XINT (pattern, i);
541 }
542 else if (fmt[i] == 'i' && i == 1)
543 {
544 this->test_elt_one_int = 1;
545 this->elt_one_int = XINT (pattern, i);
546 }
547 else if (fmt[i] == 'w' && i == 0)
548 {
549 this->test_elt_zero_wide = 1;
550 this->elt_zero_wide = XWINT (pattern, i);
551 }
552 else if (fmt[i] == 'E')
553 {
554 register int j;
555 /* We do not handle a vector appearing as other than
556 the first item, just because nothing uses them
557 and by handling only the special case
558 we can use one element in newpos for either
559 the item number of a subexpression
560 or the element number in a vector. */
561 if (i != 0)
562 abort ();
563 this->veclen = XVECLEN (pattern, i);
564 for (j = 0; j < XVECLEN (pattern, i); j++)
565 {
566 newpos[depth] = 'a' + j;
567 new = add_to_sequence (XVECEXP (pattern, i, j),
568 &new->success, newpos);
569 }
570 }
571 else if (fmt[i] != '0')
572 abort ();
573 }
574 return new;
575 }
576 \f
577 /* Return 1 if we can prove that there is no RTL that can match both
578 D1 and D2. Otherwise, return 0 (it may be that there is an RTL that
579 can match both or just that we couldn't prove there wasn't such an RTL).
580
581 TOPLEVEL is non-zero if we are to only look at the top level and not
582 recursively descend. */
583
584 static int
585 not_both_true (d1, d2, toplevel)
586 struct decision *d1, *d2;
587 int toplevel;
588 {
589 struct decision *p1, *p2;
590
591 /* If they are both to test modes and the modes are different, they aren't
592 both true. Similarly for codes, integer elements, and vector lengths. */
593
594 if ((d1->enforce_mode && d2->enforce_mode
595 && d1->mode != VOIDmode && d2->mode != VOIDmode && d1->mode != d2->mode)
596 || (d1->code != UNKNOWN && d2->code != UNKNOWN && d1->code != d2->code)
597 || (d1->test_elt_zero_int && d2->test_elt_zero_int
598 && d1->elt_zero_int != d2->elt_zero_int)
599 || (d1->test_elt_one_int && d2->test_elt_one_int
600 && d1->elt_one_int != d2->elt_one_int)
601 || (d1->test_elt_zero_wide && d2->test_elt_zero_wide
602 && d1->elt_zero_wide != d2->elt_zero_wide)
603 || (d1->veclen && d2->veclen && d1->veclen != d2->veclen))
604 return 1;
605
606 /* If either is a wild-card MATCH_OPERAND without a predicate, it can match
607 absolutely anything, so we can't say that no intersection is possible.
608 This case is detected by having a zero TESTS field with a code of
609 UNKNOWN. */
610
611 if ((d1->tests == 0 && d1->code == UNKNOWN)
612 || (d2->tests == 0 && d2->code == UNKNOWN))
613 return 0;
614
615 /* If either has a predicate that we know something about, set things up so
616 that D1 is the one that always has a known predicate. Then see if they
617 have any codes in common. */
618
619 if (d1->pred >= 0 || d2->pred >= 0)
620 {
621 int i, j;
622
623 if (d2->pred >= 0)
624 p1 = d1, d1 = d2, d2 = p1;
625
626 /* If D2 tests an explicit code, see if it is in the list of valid codes
627 for D1's predicate. */
628 if (d2->code != UNKNOWN)
629 {
630 for (i = 0; i < NUM_RTX_CODE && preds[d1->pred].codes[i] != 0; i++)
631 if (preds[d1->pred].codes[i] == d2->code)
632 break;
633
634 if (preds[d1->pred].codes[i] == 0)
635 return 1;
636 }
637
638 /* Otherwise see if the predicates have any codes in common. */
639
640 else if (d2->pred >= 0)
641 {
642 for (i = 0; i < NUM_RTX_CODE && preds[d1->pred].codes[i] != 0; i++)
643 {
644 for (j = 0; j < NUM_RTX_CODE; j++)
645 if (preds[d2->pred].codes[j] == 0
646 || preds[d2->pred].codes[j] == preds[d1->pred].codes[i])
647 break;
648
649 if (preds[d2->pred].codes[j] != 0)
650 break;
651 }
652
653 if (preds[d1->pred].codes[i] == 0)
654 return 1;
655 }
656 }
657
658 /* If we got here, we can't prove that D1 and D2 cannot both be true.
659 If we are only to check the top level, return 0. Otherwise, see if
660 we can prove that all choices in both successors are mutually
661 exclusive. If either does not have any successors, we can't prove
662 they can't both be true. */
663
664 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
665 return 0;
666
667 for (p1 = d1->success.first; p1; p1 = p1->next)
668 for (p2 = d2->success.first; p2; p2 = p2->next)
669 if (! not_both_true (p1, p2, 0))
670 return 0;
671
672 return 1;
673 }
674 \f
675 /* Assuming that we can reorder all the alternatives at a specific point in
676 the tree (see discussion in merge_trees), we would prefer an ordering of
677 nodes where groups of consecutive nodes test the same mode and, within each
678 mode, groups of nodes test the same code. With this order, we can
679 construct nested switch statements, the inner one to test the code and
680 the outer one to test the mode.
681
682 We would like to list nodes testing for specific codes before those
683 that test predicates to avoid unnecessary function calls. Similarly,
684 tests for specific modes should precede nodes that allow any mode.
685
686 This function returns the merit (with 0 being the best) of inserting
687 a test involving the specified MODE and CODE after node P. If P is
688 zero, we are to determine the merit of inserting the test at the front
689 of the list. */
690
691 static int
692 position_merit (p, mode, code)
693 struct decision *p;
694 enum machine_mode mode;
695 enum rtx_code code;
696 {
697 enum machine_mode p_mode;
698
699 /* The only time the front of the list is anything other than the worst
700 position is if we are testing a mode that isn't VOIDmode. */
701 if (p == 0)
702 return mode == VOIDmode ? 3 : 2;
703
704 p_mode = p->enforce_mode ? p->mode : VOIDmode;
705
706 /* The best case is if the codes and modes both match. */
707 if (p_mode == mode && p->code== code)
708 return 0;
709
710 /* If the codes don't match, the next best case is if the modes match.
711 In that case, the best position for this node depends on whether
712 we are testing for a specific code or not. If we are, the best place
713 is after some other test for an explicit code and our mode or after
714 the last test in the previous mode if every test in our mode is for
715 an unknown code.
716
717 If we are testing for UNKNOWN, then the next best case is at the end of
718 our mode. */
719
720 if ((code != UNKNOWN
721 && ((p_mode == mode && p->code != UNKNOWN)
722 || (p_mode != mode && p->next
723 && (p->next->enforce_mode ? p->next->mode : VOIDmode) == mode
724 && (p->next->code == UNKNOWN))))
725 || (code == UNKNOWN && p_mode == mode
726 && (p->next == 0
727 || (p->next->enforce_mode ? p->next->mode : VOIDmode) != mode)))
728 return 1;
729
730 /* The third best case occurs when nothing is testing MODE. If MODE
731 is not VOIDmode, then the third best case is after something of any
732 mode that is not VOIDmode. If we are testing VOIDmode, the third best
733 place is the end of the list. */
734
735 if (p_mode != mode
736 && ((mode != VOIDmode && p_mode != VOIDmode)
737 || (mode == VOIDmode && p->next == 0)))
738 return 2;
739
740 /* Otherwise, we have the worst case. */
741 return 3;
742 }
743 \f
744 /* Merge two decision tree listheads OLDH and ADDH,
745 modifying OLDH destructively, and return the merged tree. */
746
747 static struct decision_head
748 merge_trees (oldh, addh)
749 register struct decision_head oldh, addh;
750 {
751 struct decision *add, *next;
752
753 if (oldh.first == 0)
754 return addh;
755
756 if (addh.first == 0)
757 return oldh;
758
759 /* If we are adding things at different positions, something is wrong. */
760 if (strcmp (oldh.first->position, addh.first->position))
761 abort ();
762
763 for (add = addh.first; add; add = next)
764 {
765 enum machine_mode add_mode = add->enforce_mode ? add->mode : VOIDmode;
766 struct decision *best_position = 0;
767 int best_merit = 4;
768 struct decision *old;
769
770 next = add->next;
771
772 /* The semantics of pattern matching state that the tests are done in
773 the order given in the MD file so that if an insn matches two
774 patterns, the first one will be used. However, in practice, most,
775 if not all, patterns are unambiguous so that their order is
776 independent. In that case, we can merge identical tests and
777 group all similar modes and codes together.
778
779 Scan starting from the end of OLDH until we reach a point
780 where we reach the head of the list or where we pass a pattern
781 that could also be true if NEW is true. If we find an identical
782 pattern, we can merge them. Also, record the last node that tests
783 the same code and mode and the last one that tests just the same mode.
784
785 If we have no match, place NEW after the closest match we found. */
786
787 for (old = oldh.last; old; old = old->prev)
788 {
789 int our_merit;
790
791 /* If we don't have anything to test except an additional test,
792 do not consider the two nodes equal. If we did, the test below
793 would cause an infinite recursion. */
794 if (old->tests == 0 && old->test_elt_zero_int == 0
795 && old->test_elt_one_int == 0 && old->veclen == 0
796 && old->test_elt_zero_wide == 0
797 && old->dupno == -1 && old->mode == VOIDmode
798 && old->code == UNKNOWN
799 && (old->c_test != 0 || add->c_test != 0))
800 ;
801
802 else if ((old->tests == add->tests
803 || (old->pred >= 0 && old->pred == add->pred)
804 || (old->tests && add->tests
805 && !strcmp (old->tests, add->tests)))
806 && old->test_elt_zero_int == add->test_elt_zero_int
807 && old->elt_zero_int == add->elt_zero_int
808 && old->test_elt_one_int == add->test_elt_one_int
809 && old->elt_one_int == add->elt_one_int
810 && old->test_elt_zero_wide == add->test_elt_zero_wide
811 && old->elt_zero_wide == add->elt_zero_wide
812 && old->veclen == add->veclen
813 && old->dupno == add->dupno
814 && old->opno == add->opno
815 && old->code == add->code
816 && old->enforce_mode == add->enforce_mode
817 && old->mode == add->mode)
818 {
819 /* If the additional test is not the same, split both nodes
820 into nodes that just contain all things tested before the
821 additional test and nodes that contain the additional test
822 and actions when it is true. This optimization is important
823 because of the case where we have almost identical patterns
824 with different tests on target flags. */
825
826 if (old->c_test != add->c_test
827 && ! (old->c_test && add->c_test
828 && !strcmp (old->c_test, add->c_test)))
829 {
830 if (old->insn_code_number >= 0 || old->opno >= 0)
831 {
832 struct decision *split
833 = (struct decision *) xmalloc (sizeof (struct decision));
834
835 mybcopy ((char *) old, (char *) split,
836 sizeof (struct decision));
837
838 old->success.first = old->success.last = split;
839 old->c_test = 0;
840 old->opno = -1;
841 old->insn_code_number = -1;
842 old->num_clobbers_to_add = 0;
843
844 split->number = next_number++;
845 split->next = split->prev = 0;
846 split->mode = VOIDmode;
847 split->code = UNKNOWN;
848 split->veclen = 0;
849 split->test_elt_zero_int = 0;
850 split->test_elt_one_int = 0;
851 split->test_elt_zero_wide = 0;
852 split->tests = 0;
853 split->pred = -1;
854 split->dupno = -1;
855 }
856
857 if (add->insn_code_number >= 0 || add->opno >= 0)
858 {
859 struct decision *split
860 = (struct decision *) xmalloc (sizeof (struct decision));
861
862 mybcopy ((char *) add, (char *) split,
863 sizeof (struct decision));
864
865 add->success.first = add->success.last = split;
866 add->c_test = 0;
867 add->opno = -1;
868 add->insn_code_number = -1;
869 add->num_clobbers_to_add = 0;
870
871 split->number = next_number++;
872 split->next = split->prev = 0;
873 split->mode = VOIDmode;
874 split->code = UNKNOWN;
875 split->veclen = 0;
876 split->test_elt_zero_int = 0;
877 split->test_elt_one_int = 0;
878 split->test_elt_zero_wide = 0;
879 split->tests = 0;
880 split->pred = -1;
881 split->dupno = -1;
882 }
883 }
884
885 if (old->insn_code_number >= 0 && add->insn_code_number >= 0)
886 {
887 /* If one node is for a normal insn and the second is
888 for the base insn with clobbers stripped off, the
889 second node should be ignored. */
890
891 if (old->num_clobbers_to_add == 0
892 && add->num_clobbers_to_add > 0)
893 /* Nothing to do here. */
894 ;
895 else if (old->num_clobbers_to_add > 0
896 && add->num_clobbers_to_add == 0)
897 {
898 /* In this case, replace OLD with ADD. */
899 old->insn_code_number = add->insn_code_number;
900 old->num_clobbers_to_add = 0;
901 }
902 else
903 fatal ("Two actions at one point in tree");
904 }
905
906 if (old->insn_code_number == -1)
907 old->insn_code_number = add->insn_code_number;
908 old->success = merge_trees (old->success, add->success);
909 add = 0;
910 break;
911 }
912
913 /* Unless we have already found the best possible insert point,
914 see if this position is better. If so, record it. */
915
916 if (best_merit != 0
917 && ((our_merit = position_merit (old, add_mode, add->code))
918 < best_merit))
919 best_merit = our_merit, best_position = old;
920
921 if (! not_both_true (old, add, 0))
922 break;
923 }
924
925 /* If ADD was duplicate, we are done. */
926 if (add == 0)
927 continue;
928
929 /* Otherwise, find the best place to insert ADD. Normally this is
930 BEST_POSITION. However, if we went all the way to the top of
931 the list, it might be better to insert at the top. */
932
933 if (best_position == 0)
934 abort ();
935
936 if (old == 0
937 && position_merit (NULL_PTR, add_mode, add->code) < best_merit)
938 {
939 add->prev = 0;
940 add->next = oldh.first;
941 oldh.first->prev = add;
942 oldh.first = add;
943 }
944
945 else
946 {
947 add->prev = best_position;
948 add->next = best_position->next;
949 best_position->next = add;
950 if (best_position == oldh.last)
951 oldh.last = add;
952 else
953 add->next->prev = add;
954 }
955 }
956
957 return oldh;
958 }
959 \f
960 /* Count the number of subnodes of HEAD. If the number is high enough,
961 make the first node in HEAD start a separate subroutine in the C code
962 that is generated.
963
964 TYPE gives the type of routine we are writing.
965
966 INITIAL is non-zero if this is the highest-level node. We never write
967 it out here. */
968
969 static int
970 break_out_subroutines (head, type, initial)
971 struct decision_head head;
972 enum routine_type type;
973 int initial;
974 {
975 int size = 0;
976 struct decision *sub;
977
978 for (sub = head.first; sub; sub = sub->next)
979 size += 1 + break_out_subroutines (sub->success, type, 0);
980
981 if (size > SUBROUTINE_THRESHOLD && ! initial)
982 {
983 head.first->subroutine_number = ++next_subroutine_number;
984 write_subroutine (head.first, type);
985 size = 1;
986 }
987 return size;
988 }
989 \f
990 /* Write out a subroutine of type TYPE to do comparisons starting at node
991 TREE. */
992
993 static void
994 write_subroutine (tree, type)
995 struct decision *tree;
996 enum routine_type type;
997 {
998 int i;
999
1000 if (type == SPLIT)
1001 printf ("rtx\nsplit");
1002 else
1003 printf ("int\nrecog");
1004
1005 if (tree != 0 && tree->subroutine_number > 0)
1006 printf ("_%d", tree->subroutine_number);
1007 else if (type == SPLIT)
1008 printf ("_insns");
1009
1010 printf (" (x0, insn");
1011 if (type == RECOG)
1012 printf (", pnum_clobbers");
1013
1014 printf (")\n");
1015 printf (" register rtx x0;\n rtx insn ATTRIBUTE_UNUSED;\n");
1016 if (type == RECOG)
1017 printf (" int *pnum_clobbers ATTRIBUTE_UNUSED;\n");
1018
1019 printf ("{\n");
1020 printf (" register rtx *ro = &recog_operand[0];\n");
1021
1022 printf (" register rtx ");
1023 for (i = 1; i < max_depth; i++)
1024 printf ("x%d ATTRIBUTE_UNUSED, ", i);
1025
1026 printf ("x%d ATTRIBUTE_UNUSED;\n", max_depth);
1027 printf (" %s tem ATTRIBUTE_UNUSED;\n", type == SPLIT ? "rtx" : "int");
1028 write_tree (tree, "", NULL_PTR, 1, type);
1029 printf (" ret0: return %d;\n}\n\n", type == SPLIT ? 0 : -1);
1030 }
1031 \f
1032 /* This table is used to indent the recog_* functions when we are inside
1033 conditions or switch statements. We only support small indentations
1034 and always indent at least two spaces. */
1035
1036 static char *indents[]
1037 = {" ", " ", " ", " ", " ", " ", " ", " ",
1038 "\t", "\t ", "\t ", "\t ", "\t ", "\t ", "\t ",
1039 "\t\t", "\t\t ", "\t\t ", "\t\t ", "\t\t ", "\t\t "};
1040
1041 /* Write out C code to perform the decisions in TREE for a subroutine of
1042 type TYPE. If all of the choices fail, branch to node AFTERWARD, if
1043 non-zero, otherwise return. PREVPOS is the position of the node that
1044 branched to this test.
1045
1046 When we merged all alternatives, we tried to set up a convenient order.
1047 Specifically, tests involving the same mode are all grouped together,
1048 followed by a group that does not contain a mode test. Within each group
1049 of the same mode, we also group tests with the same code, followed by a
1050 group that does not test a code.
1051
1052 Occasionally, we cannot arbitrarily reorder the tests so that multiple
1053 sequence of groups as described above are present.
1054
1055 We generate two nested switch statements, the outer statement for
1056 testing modes, and the inner switch for testing RTX codes. It is
1057 not worth optimizing cases when only a small number of modes or
1058 codes is tested, since the compiler can do that when compiling the
1059 resulting function. We do check for when every test is the same mode
1060 or code. */
1061
1062 static void
1063 write_tree_1 (tree, prevpos, afterward, type)
1064 struct decision *tree;
1065 char *prevpos;
1066 struct decision *afterward;
1067 enum routine_type type;
1068 {
1069 register struct decision *p, *p1;
1070 register int depth = tree ? strlen (tree->position) : 0;
1071 enum machine_mode switch_mode = VOIDmode;
1072 RTX_CODE switch_code = UNKNOWN;
1073 int uncond = 0;
1074 char modemap[NUM_MACHINE_MODES];
1075 char codemap[NUM_RTX_CODE];
1076 int indent = 2;
1077 int i;
1078
1079 /* One tricky area is what is the exact state when we branch to a
1080 node's label. There are two cases where we branch: when looking at
1081 successors to a node, or when a set of tests fails.
1082
1083 In the former case, we are always branching to the first node in a
1084 decision list and we want all required tests to be performed. We
1085 put the labels for such nodes in front of any switch or test statements.
1086 These branches are done without updating the position to that of the
1087 target node.
1088
1089 In the latter case, we are branching to a node that is not the first
1090 node in a decision list. We have already checked that it is possible
1091 for both the node we originally tested at this level and the node we
1092 are branching to to both match some pattern. That means that they
1093 usually will be testing the same mode and code. So it is normally safe
1094 for such labels to be inside switch statements, since the tests done
1095 by virtue of arriving at that label will usually already have been
1096 done. The exception is a branch from a node that does not test a
1097 mode or code to one that does. In such cases, we set the `retest_mode'
1098 or `retest_code' flags. That will ensure that we start a new switch
1099 at that position and put the label before the switch.
1100
1101 The branches in the latter case must set the position to that of the
1102 target node. */
1103
1104
1105 printf ("\n");
1106 if (tree && tree->subroutine_number == 0)
1107 {
1108 printf (" L%d:\n", tree->number);
1109 tree->label_needed = 0;
1110 }
1111
1112 if (tree)
1113 {
1114 change_state (prevpos, tree->position, 2);
1115 prevpos = tree->position;
1116 }
1117
1118 for (p = tree; p; p = p->next)
1119 {
1120 enum machine_mode mode = p->enforce_mode ? p->mode : VOIDmode;
1121 int need_bracket;
1122 int wrote_bracket = 0;
1123 int inner_indent;
1124
1125 if (p->success.first == 0 && p->insn_code_number < 0)
1126 abort ();
1127
1128 /* Find the next alternative to p that might be true when p is true.
1129 Test that one next if p's successors fail. */
1130
1131 for (p1 = p->next; p1 && not_both_true (p, p1, 1); p1 = p1->next)
1132 ;
1133 p->afterward = p1;
1134
1135 if (p1)
1136 {
1137 if (mode == VOIDmode && p1->enforce_mode && p1->mode != VOIDmode)
1138 p1->retest_mode = 1;
1139 if (p->code == UNKNOWN && p1->code != UNKNOWN)
1140 p1->retest_code = 1;
1141 p1->label_needed = 1;
1142 }
1143
1144 /* If we have a different code or mode than the last node and
1145 are in a switch on codes, we must either end the switch or
1146 go to another case. We must also end the switch if this
1147 node needs a label and to retest either the mode or code. */
1148
1149 if (switch_code != UNKNOWN
1150 && (switch_code != p->code || switch_mode != mode
1151 || (p->label_needed && (p->retest_mode || p->retest_code))))
1152 {
1153 enum rtx_code code = p->code;
1154
1155 /* If P is testing a predicate that we know about and we haven't
1156 seen any of the codes that are valid for the predicate, we
1157 can write a series of "case" statement, one for each possible
1158 code. Since we are already in a switch, these redundant tests
1159 are very cheap and will reduce the number of predicate called. */
1160
1161 if (p->pred >= 0)
1162 {
1163 for (i = 0; i < NUM_RTX_CODE && preds[p->pred].codes[i] != 0; i++)
1164 if (codemap[(int) preds[p->pred].codes[i]])
1165 break;
1166
1167 if (preds[p->pred].codes[i] == 0)
1168 code = MATCH_OPERAND;
1169 }
1170
1171 if (code == UNKNOWN || codemap[(int) code]
1172 || switch_mode != mode
1173 || (p->label_needed && (p->retest_mode || p->retest_code)))
1174 {
1175 printf ("%s}\n", indents[indent - 2]);
1176 switch_code = UNKNOWN;
1177 indent -= 4;
1178 }
1179 else
1180 {
1181 if (! uncond)
1182 printf ("%sbreak;\n", indents[indent]);
1183
1184 if (code == MATCH_OPERAND)
1185 {
1186 for (i = 0; i < NUM_RTX_CODE && preds[p->pred].codes[i] != 0; i++)
1187 {
1188 printf ("%scase ", indents[indent - 2]);
1189 print_code (preds[p->pred].codes[i]);
1190 printf (":\n");
1191 codemap[(int) preds[p->pred].codes[i]] = 1;
1192 }
1193 }
1194 else
1195 {
1196 printf ("%scase ", indents[indent - 2]);
1197 print_code (code);
1198 printf (":\n");
1199 codemap[(int) p->code] = 1;
1200 }
1201
1202 switch_code = code;
1203 }
1204
1205 uncond = 0;
1206 }
1207
1208 /* If we were previously in a switch on modes and now have a different
1209 mode, end at least the case, and maybe end the switch if we are
1210 not testing a mode or testing a mode whose case we already saw. */
1211
1212 if (switch_mode != VOIDmode
1213 && (switch_mode != mode || (p->label_needed && p->retest_mode)))
1214 {
1215 if (mode == VOIDmode || modemap[(int) mode]
1216 || (p->label_needed && p->retest_mode))
1217 {
1218 printf ("%s}\n", indents[indent - 2]);
1219 switch_mode = VOIDmode;
1220 indent -= 4;
1221 }
1222 else
1223 {
1224 if (! uncond)
1225 printf (" break;\n");
1226 printf (" case %smode:\n", GET_MODE_NAME (mode));
1227 switch_mode = mode;
1228 modemap[(int) mode] = 1;
1229 }
1230
1231 uncond = 0;
1232 }
1233
1234 /* If we are about to write dead code, something went wrong. */
1235 if (! p->label_needed && uncond)
1236 abort ();
1237
1238 /* If we need a label and we will want to retest the mode or code at
1239 that label, write the label now. We have already ensured that
1240 things will be valid for the test. */
1241
1242 if (p->label_needed && (p->retest_mode || p->retest_code))
1243 {
1244 printf ("%sL%d:\n", indents[indent - 2], p->number);
1245 p->label_needed = 0;
1246 }
1247
1248 uncond = 0;
1249
1250 /* If we are not in any switches, see if we can shortcut things
1251 by checking for identical modes and codes. */
1252
1253 if (switch_mode == VOIDmode && switch_code == UNKNOWN)
1254 {
1255 /* If p and its alternatives all want the same mode,
1256 reject all others at once, first, then ignore the mode. */
1257
1258 if (mode != VOIDmode && p->next && same_modes (p, mode))
1259 {
1260 printf (" if (GET_MODE (x%d) != %smode)\n",
1261 depth, GET_MODE_NAME (p->mode));
1262 if (afterward)
1263 {
1264 printf (" {\n");
1265 change_state (p->position, afterward->position, 6);
1266 printf (" goto L%d;\n }\n", afterward->number);
1267 }
1268 else
1269 printf (" goto ret0;\n");
1270 clear_modes (p);
1271 mode = VOIDmode;
1272 }
1273
1274 /* If p and its alternatives all want the same code,
1275 reject all others at once, first, then ignore the code. */
1276
1277 if (p->code != UNKNOWN && p->next && same_codes (p, p->code))
1278 {
1279 printf (" if (GET_CODE (x%d) != ", depth);
1280 print_code (p->code);
1281 printf (")\n");
1282 if (afterward)
1283 {
1284 printf (" {\n");
1285 change_state (p->position, afterward->position, indent + 4);
1286 printf (" goto L%d;\n }\n", afterward->number);
1287 }
1288 else
1289 printf (" goto ret0;\n");
1290 clear_codes (p);
1291 }
1292 }
1293
1294 /* If we are not in a mode switch and we are testing for a specific
1295 mode, start a mode switch unless we have just one node or the next
1296 node is not testing a mode (we have already tested for the case of
1297 more than one mode, but all of the same mode). */
1298
1299 if (switch_mode == VOIDmode && mode != VOIDmode && p->next != 0
1300 && p->next->enforce_mode && p->next->mode != VOIDmode)
1301 {
1302 mybzero (modemap, sizeof modemap);
1303 printf ("%sswitch (GET_MODE (x%d))\n", indents[indent], depth);
1304 printf ("%s{\n", indents[indent + 2]);
1305 indent += 4;
1306 printf ("%sdefault:\n%sbreak;\n", indents[indent - 2],
1307 indents[indent]);
1308 printf ("%scase %smode:\n", indents[indent - 2],
1309 GET_MODE_NAME (mode));
1310 modemap[(int) mode] = 1;
1311 switch_mode = mode;
1312 }
1313
1314 /* Similarly for testing codes. */
1315
1316 if (switch_code == UNKNOWN && p->code != UNKNOWN && ! p->ignore_code
1317 && p->next != 0 && p->next->code != UNKNOWN)
1318 {
1319 mybzero (codemap, sizeof codemap);
1320 printf ("%sswitch (GET_CODE (x%d))\n", indents[indent], depth);
1321 printf ("%s{\n", indents[indent + 2]);
1322 indent += 4;
1323 printf ("%sdefault:\n%sbreak;\n", indents[indent - 2],
1324 indents[indent]);
1325 printf ("%scase ", indents[indent - 2]);
1326 print_code (p->code);
1327 printf (":\n");
1328 codemap[(int) p->code] = 1;
1329 switch_code = p->code;
1330 }
1331
1332 /* Now that most mode and code tests have been done, we can write out
1333 a label for an inner node, if we haven't already. */
1334 if (p->label_needed)
1335 printf ("%sL%d:\n", indents[indent - 2], p->number);
1336
1337 inner_indent = indent;
1338
1339 /* The only way we can have to do a mode or code test here is if
1340 this node needs such a test but is the only node to be tested.
1341 In that case, we won't have started a switch. Note that this is
1342 the only way the switch and test modes can disagree. */
1343
1344 if ((mode != switch_mode && ! p->ignore_mode)
1345 || (p->code != switch_code && p->code != UNKNOWN && ! p->ignore_code)
1346 || p->test_elt_zero_int || p->test_elt_one_int
1347 || p->test_elt_zero_wide || p->veclen
1348 || p->dupno >= 0 || p->tests || p->num_clobbers_to_add)
1349 {
1350 printf ("%sif (", indents[indent]);
1351
1352 if (mode != switch_mode && ! p->ignore_mode)
1353 printf ("GET_MODE (x%d) == %smode && ",
1354 depth, GET_MODE_NAME (mode));
1355 if (p->code != switch_code && p->code != UNKNOWN && ! p->ignore_code)
1356 {
1357 printf ("GET_CODE (x%d) == ", depth);
1358 print_code (p->code);
1359 printf (" && ");
1360 }
1361
1362 if (p->test_elt_zero_int)
1363 printf ("XINT (x%d, 0) == %d && ", depth, p->elt_zero_int);
1364 if (p->test_elt_one_int)
1365 printf ("XINT (x%d, 1) == %d && ", depth, p->elt_one_int);
1366 if (p->test_elt_zero_wide)
1367 {
1368 /* Set offset to 1 iff the number might get propagated to
1369 unsigned long by ANSI C rules, else 0.
1370 Prospective hosts are required to have at least 32 bit
1371 ints, and integer constants in machine descriptions
1372 must fit in 32 bit, thus it suffices to check only
1373 for 1 << 31 . */
1374 HOST_WIDE_INT offset = p->elt_zero_wide == -2147483647 - 1;
1375 printf ("XWINT (x%d, 0) == ", depth);
1376 printf (HOST_WIDE_INT_PRINT_DEC, p->elt_zero_wide + offset);
1377 printf ("%s && ", offset ? "-1" : "");
1378 }
1379 if (p->veclen)
1380 printf ("XVECLEN (x%d, 0) == %d && ", depth, p->veclen);
1381 if (p->dupno >= 0)
1382 printf ("rtx_equal_p (x%d, ro[%d]) && ", depth, p->dupno);
1383 if (p->num_clobbers_to_add)
1384 printf ("pnum_clobbers != 0 && ");
1385 if (p->tests)
1386 printf ("%s (x%d, %smode)", p->tests, depth,
1387 GET_MODE_NAME (p->mode));
1388 else
1389 printf ("1");
1390
1391 printf (")\n");
1392 inner_indent += 2;
1393 }
1394 else
1395 uncond = 1;
1396
1397 need_bracket = ! uncond;
1398
1399 if (p->opno >= 0)
1400 {
1401 if (need_bracket)
1402 {
1403 printf ("%s{\n", indents[inner_indent]);
1404 inner_indent += 2;
1405 wrote_bracket = 1;
1406 need_bracket = 0;
1407 }
1408
1409 printf ("%sro[%d] = x%d;\n", indents[inner_indent], p->opno, depth);
1410 }
1411
1412 if (p->c_test)
1413 {
1414 printf ("%sif (%s)\n", indents[inner_indent], p->c_test);
1415 inner_indent += 2;
1416 uncond = 0;
1417 need_bracket = 1;
1418 }
1419
1420 if (p->insn_code_number >= 0)
1421 {
1422 if (type == SPLIT)
1423 printf ("%sreturn gen_split_%d (operands);\n",
1424 indents[inner_indent], p->insn_code_number);
1425 else
1426 {
1427 if (p->num_clobbers_to_add)
1428 {
1429 if (need_bracket)
1430 {
1431 printf ("%s{\n", indents[inner_indent]);
1432 inner_indent += 2;
1433 }
1434
1435 printf ("%s*pnum_clobbers = %d;\n",
1436 indents[inner_indent], p->num_clobbers_to_add);
1437 printf ("%sreturn %d;\n",
1438 indents[inner_indent], p->insn_code_number);
1439
1440 if (need_bracket)
1441 {
1442 inner_indent -= 2;
1443 printf ("%s}\n", indents[inner_indent]);
1444 }
1445 }
1446 else
1447 printf ("%sreturn %d;\n",
1448 indents[inner_indent], p->insn_code_number);
1449 }
1450 }
1451 else
1452 printf ("%sgoto L%d;\n", indents[inner_indent],
1453 p->success.first->number);
1454
1455 if (wrote_bracket)
1456 printf ("%s}\n", indents[inner_indent - 2]);
1457 }
1458
1459 /* We have now tested all alternatives. End any switches we have open
1460 and branch to the alternative node unless we know that we can't fall
1461 through to the branch. */
1462
1463 if (switch_code != UNKNOWN)
1464 {
1465 printf ("%s}\n", indents[indent - 2]);
1466 indent -= 4;
1467 uncond = 0;
1468 }
1469
1470 if (switch_mode != VOIDmode)
1471 {
1472 printf ("%s}\n", indents[indent - 2]);
1473 indent -= 4;
1474 uncond = 0;
1475 }
1476
1477 if (indent != 2)
1478 abort ();
1479
1480 if (uncond)
1481 return;
1482
1483 if (afterward)
1484 {
1485 change_state (prevpos, afterward->position, 2);
1486 printf (" goto L%d;\n", afterward->number);
1487 }
1488 else
1489 printf (" goto ret0;\n");
1490 }
1491
1492 static void
1493 print_code (code)
1494 enum rtx_code code;
1495 {
1496 register char *p1;
1497 for (p1 = GET_RTX_NAME (code); *p1; p1++)
1498 {
1499 if (*p1 >= 'a' && *p1 <= 'z')
1500 putchar (*p1 + 'A' - 'a');
1501 else
1502 putchar (*p1);
1503 }
1504 }
1505
1506 static int
1507 same_codes (p, code)
1508 register struct decision *p;
1509 register enum rtx_code code;
1510 {
1511 for (; p; p = p->next)
1512 if (p->code != code)
1513 return 0;
1514
1515 return 1;
1516 }
1517
1518 static void
1519 clear_codes (p)
1520 register struct decision *p;
1521 {
1522 for (; p; p = p->next)
1523 p->ignore_code = 1;
1524 }
1525
1526 static int
1527 same_modes (p, mode)
1528 register struct decision *p;
1529 register enum machine_mode mode;
1530 {
1531 for (; p; p = p->next)
1532 if ((p->enforce_mode ? p->mode : VOIDmode) != mode)
1533 return 0;
1534
1535 return 1;
1536 }
1537
1538 static void
1539 clear_modes (p)
1540 register struct decision *p;
1541 {
1542 for (; p; p = p->next)
1543 p->enforce_mode = 0;
1544 }
1545 \f
1546 /* Write out the decision tree starting at TREE for a subroutine of type TYPE.
1547
1548 PREVPOS is the position at the node that branched to this node.
1549
1550 INITIAL is nonzero if this is the first node we are writing in a subroutine.
1551
1552 If all nodes are false, branch to the node AFTERWARD. */
1553
1554 static void
1555 write_tree (tree, prevpos, afterward, initial, type)
1556 struct decision *tree;
1557 char *prevpos;
1558 struct decision *afterward;
1559 int initial;
1560 enum routine_type type;
1561 {
1562 register struct decision *p;
1563 char *name_prefix = (type == SPLIT ? "split" : "recog");
1564 char *call_suffix = (type == SPLIT ? "" : ", pnum_clobbers");
1565
1566 if (! initial && tree->subroutine_number > 0)
1567 {
1568 printf (" L%d:\n", tree->number);
1569
1570 if (afterward)
1571 {
1572 printf (" tem = %s_%d (x0, insn%s);\n",
1573 name_prefix, tree->subroutine_number, call_suffix);
1574 if (type == SPLIT)
1575 printf (" if (tem != 0) return tem;\n");
1576 else
1577 printf (" if (tem >= 0) return tem;\n");
1578 change_state (tree->position, afterward->position, 2);
1579 printf (" goto L%d;\n", afterward->number);
1580 }
1581 else
1582 printf (" return %s_%d (x0, insn%s);\n",
1583 name_prefix, tree->subroutine_number, call_suffix);
1584 return;
1585 }
1586
1587 write_tree_1 (tree, prevpos, afterward, type);
1588
1589 for (p = tree; p; p = p->next)
1590 if (p->success.first)
1591 write_tree (p->success.first, p->position,
1592 p->afterward ? p->afterward : afterward, 0, type);
1593 }
1594
1595 \f
1596 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1597 actions are necessary to move to NEWPOS.
1598
1599 INDENT says how many blanks to place at the front of lines. */
1600
1601 static void
1602 change_state (oldpos, newpos, indent)
1603 char *oldpos;
1604 char *newpos;
1605 int indent;
1606 {
1607 int odepth = strlen (oldpos);
1608 int depth = odepth;
1609 int ndepth = strlen (newpos);
1610
1611 /* Pop up as many levels as necessary. */
1612
1613 while (strncmp (oldpos, newpos, depth))
1614 --depth;
1615
1616 /* Go down to desired level. */
1617
1618 while (depth < ndepth)
1619 {
1620 if (newpos[depth] >= 'a' && newpos[depth] <= 'z')
1621 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1622 indents[indent], depth + 1, depth, newpos[depth] - 'a');
1623 else
1624 printf ("%sx%d = XEXP (x%d, %c);\n",
1625 indents[indent], depth + 1, depth, newpos[depth]);
1626 ++depth;
1627 }
1628 }
1629 \f
1630 static char *
1631 copystr (s1)
1632 char *s1;
1633 {
1634 register char *tem;
1635
1636 if (s1 == 0)
1637 return 0;
1638
1639 tem = (char *) xmalloc (strlen (s1) + 1);
1640 strcpy (tem, s1);
1641
1642 return tem;
1643 }
1644
1645 static void
1646 mybzero (b, length)
1647 register char *b;
1648 register unsigned length;
1649 {
1650 while (length-- > 0)
1651 *b++ = 0;
1652 }
1653
1654 static void
1655 mybcopy (in, out, length)
1656 register char *in, *out;
1657 register unsigned length;
1658 {
1659 while (length-- > 0)
1660 *out++ = *in++;
1661 }
1662
1663 char *
1664 xrealloc (ptr, size)
1665 char *ptr;
1666 unsigned size;
1667 {
1668 char *result = (char *) realloc (ptr, size);
1669 if (!result)
1670 fatal ("virtual memory exhausted");
1671 return result;
1672 }
1673
1674 char *
1675 xmalloc (size)
1676 unsigned size;
1677 {
1678 register char *val = (char *) malloc (size);
1679
1680 if (val == 0)
1681 fatal ("virtual memory exhausted");
1682 return val;
1683 }
1684
1685 static void
1686 fatal VPROTO ((char *format, ...))
1687 {
1688 #ifndef __STDC__
1689 char *format;
1690 #endif
1691 va_list ap;
1692
1693 VA_START (ap, format);
1694
1695 #ifndef __STDC__
1696 format = va_arg (ap, char *);
1697 #endif
1698
1699 fprintf (stderr, "genrecog: ");
1700 vfprintf (stderr, format, ap);
1701 va_end (ap);
1702 fprintf (stderr, "\n");
1703 fprintf (stderr, "after %d definitions\n", next_index);
1704 exit (FATAL_EXIT_CODE);
1705 }
1706
1707 /* More 'friendly' abort that prints the line and file.
1708 config.h can #define abort fancy_abort if you like that sort of thing. */
1709
1710 void
1711 fancy_abort ()
1712 {
1713 fatal ("Internal gcc abort.");
1714 }
1715 \f
1716 int
1717 main (argc, argv)
1718 int argc;
1719 char **argv;
1720 {
1721 rtx desc;
1722 struct decision_head recog_tree;
1723 struct decision_head split_tree;
1724 FILE *infile;
1725 register int c;
1726
1727 obstack_init (rtl_obstack);
1728 recog_tree.first = recog_tree.last = split_tree.first = split_tree.last = 0;
1729
1730 if (argc <= 1)
1731 fatal ("No input file name.");
1732
1733 infile = fopen (argv[1], "r");
1734 if (infile == 0)
1735 {
1736 perror (argv[1]);
1737 exit (FATAL_EXIT_CODE);
1738 }
1739
1740 init_rtl ();
1741 next_insn_code = 0;
1742 next_index = 0;
1743
1744 printf ("/* Generated automatically by the program `genrecog'\n\
1745 from the machine description file `md'. */\n\n");
1746
1747 printf ("#include \"config.h\"\n");
1748 printf ("#include \"system.h\"\n");
1749 printf ("#include \"rtl.h\"\n");
1750 printf ("#include \"insn-config.h\"\n");
1751 printf ("#include \"recog.h\"\n");
1752 printf ("#include \"real.h\"\n");
1753 printf ("#include \"output.h\"\n");
1754 printf ("#include \"flags.h\"\n");
1755 printf ("\n");
1756
1757 /* Read the machine description. */
1758
1759 while (1)
1760 {
1761 c = read_skip_spaces (infile);
1762 if (c == EOF)
1763 break;
1764 ungetc (c, infile);
1765
1766 desc = read_rtx (infile);
1767 if (GET_CODE (desc) == DEFINE_INSN)
1768 recog_tree = merge_trees (recog_tree,
1769 make_insn_sequence (desc, RECOG));
1770 else if (GET_CODE (desc) == DEFINE_SPLIT)
1771 split_tree = merge_trees (split_tree,
1772 make_insn_sequence (desc, SPLIT));
1773 if (GET_CODE (desc) == DEFINE_PEEPHOLE
1774 || GET_CODE (desc) == DEFINE_EXPAND)
1775 next_insn_code++;
1776 next_index++;
1777 }
1778
1779 printf ("\n\
1780 /* `recog' contains a decision tree\n\
1781 that recognizes whether the rtx X0 is a valid instruction.\n\
1782 \n\
1783 recog returns -1 if the rtx is not valid.\n\
1784 If the rtx is valid, recog returns a nonnegative number\n\
1785 which is the insn code number for the pattern that matched.\n");
1786 printf (" This is the same as the order in the machine description of\n\
1787 the entry that matched. This number can be used as an index into various\n\
1788 insn_* tables, such as insn_templates, insn_outfun, and insn_n_operands\n\
1789 (found in insn-output.c).\n\n");
1790 printf (" The third argument to recog is an optional pointer to an int.\n\
1791 If present, recog will accept a pattern if it matches except for\n\
1792 missing CLOBBER expressions at the end. In that case, the value\n\
1793 pointed to by the optional pointer will be set to the number of\n\
1794 CLOBBERs that need to be added (it should be initialized to zero by\n\
1795 the caller). If it is set nonzero, the caller should allocate a\n\
1796 PARALLEL of the appropriate size, copy the initial entries, and call\n\
1797 add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.");
1798
1799 if (split_tree.first)
1800 printf ("\n\n The function split_insns returns 0 if the rtl could not\n\
1801 be split or the split rtl in a SEQUENCE if it can be.");
1802
1803 printf ("*/\n\n");
1804
1805 printf ("#define operands recog_operand\n\n");
1806
1807 next_subroutine_number = 0;
1808 break_out_subroutines (recog_tree, RECOG, 1);
1809 write_subroutine (recog_tree.first, RECOG);
1810
1811 next_subroutine_number = 0;
1812 break_out_subroutines (split_tree, SPLIT, 1);
1813 write_subroutine (split_tree.first, SPLIT);
1814
1815 fflush (stdout);
1816 exit (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
1817 /* NOTREACHED */
1818 return 0;
1819 }
This page took 0.134947 seconds and 5 git commands to generate.