1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 88, 92-95, 97-99, 2000 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This program is used to produce insn-recog.c, which contains a
23 function called `recog' plus its subroutines. These functions
24 contain a decision tree that recognizes whether an rtx, the
25 argument given to recog, is a valid instruction.
27 recog returns -1 if the rtx is not valid. If the rtx is valid,
28 recog returns a nonnegative number which is the insn code number
29 for the pattern that matched. This is the same as the order in the
30 machine description of the entry that matched. This number can be
31 used as an index into various insn_* tables, such as insn_template,
32 insn_outfun, and insn_n_operands (found in insn-output.c).
34 The third argument to recog is an optional pointer to an int. If
35 present, recog will accept a pattern if it matches except for
36 missing CLOBBER expressions at the end. In that case, the value
37 pointed to by the optional pointer will be set to the number of
38 CLOBBERs that need to be added (it should be initialized to zero by
39 the caller). If it is set nonzero, the caller should allocate a
40 PARALLEL of the appropriate size, copy the initial entries, and
41 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
43 This program also generates the function `split_insns', which
44 returns 0 if the rtl could not be split, or it returns the split
47 This program also generates the function `peephole2_insns', which
48 returns 0 if the rtl could not be matched. If there was a match,
49 the new rtl is returned in a SEQUENCE, and LAST_INSN will point
50 to the last recognized insn in the old sequence. */
58 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
59 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
61 static struct obstack obstack
;
62 struct obstack
*rtl_obstack
= &obstack
;
64 #define obstack_chunk_alloc xmalloc
65 #define obstack_chunk_free free
67 /* Holds an array of names indexed by insn_code_number. */
68 static char **insn_name_ptr
= 0;
69 static int insn_name_ptr_size
= 0;
71 /* A listhead of decision trees. The alternatives to a node are kept
72 in a doublely-linked list so we can easily add nodes to the proper
73 place when merging. */
77 struct decision
*first
;
78 struct decision
*last
;
81 /* A single test. The two accept types aren't tests per-se, but
82 their equality (or lack thereof) does affect tree merging so
83 it is convenient to keep them here. */
87 /* A linked list through the tests attached to a node. */
88 struct decision_test
*next
;
90 /* These types are roughly in the order in which we'd like to test them. */
92 DT_mode
, DT_code
, DT_veclen
,
93 DT_elt_zero_int
, DT_elt_one_int
, DT_elt_zero_wide
,
94 DT_dup
, DT_pred
, DT_c_test
,
95 DT_accept_op
, DT_accept_insn
100 enum machine_mode mode
; /* Machine mode of node. */
101 RTX_CODE code
; /* Code to test. */
105 const char *name
; /* Predicate to call. */
106 int index
; /* Index into `preds' or -1. */
107 enum machine_mode mode
; /* Machine mode for node. */
110 const char *c_test
; /* Additional test to perform. */
111 int veclen
; /* Length of vector. */
112 int dup
; /* Number of operand to compare against. */
113 HOST_WIDE_INT intval
; /* Value for XINT for XWINT. */
114 int opno
; /* Operand number matched. */
117 int code_number
; /* Insn number matched. */
118 int lineno
; /* Line number of the insn. */
119 int num_clobbers_to_add
; /* Number of CLOBBERs to be added. */
124 /* Data structure for decision tree for recognizing legitimate insns. */
128 struct decision_head success
; /* Nodes to test on success. */
129 struct decision
*next
; /* Node to test on failure. */
130 struct decision
*prev
; /* Node whose failure tests us. */
131 struct decision
*afterward
; /* Node to test on success,
132 but failure of successor nodes. */
134 const char *position
; /* String denoting position in pattern. */
136 struct decision_test
*tests
; /* The tests for this node. */
138 int number
; /* Node number, used for labels */
139 int subroutine_number
; /* Number of subroutine this node starts */
140 int need_label
; /* Label needs to be output. */
143 #define SUBROUTINE_THRESHOLD 100
145 static int next_subroutine_number
;
147 /* We can write three types of subroutines: One for insn recognition,
148 one to split insns, and one for peephole-type optimizations. This
149 defines which type is being written. */
152 RECOG
, SPLIT
, PEEPHOLE2
155 #define IS_SPLIT(X) ((X) != RECOG)
157 /* Next available node number for tree nodes. */
159 static int next_number
;
161 /* Next number to use as an insn_code. */
163 static int next_insn_code
;
165 /* Similar, but counts all expressions in the MD file; used for
168 static int next_index
;
170 /* Record the highest depth we ever have so we know how many variables to
171 allocate in each subroutine we make. */
173 static int max_depth
;
175 /* The line number of the start of the pattern currently being processed. */
176 static int pattern_lineno
;
178 /* Count of errors. */
179 static int error_count
;
181 /* This table contains a list of the rtl codes that can possibly match a
182 predicate defined in recog.c. The function `maybe_both_true' uses it to
183 deduce that there are no expressions that can be matches by certain pairs
184 of tree nodes. Also, if a predicate can match only one code, we can
185 hardwire that code into the node testing the predicate. */
187 static struct pred_table
190 RTX_CODE codes
[NUM_RTX_CODE
];
192 {"general_operand", {CONST_INT
, CONST_DOUBLE
, CONST
, SYMBOL_REF
,
193 LABEL_REF
, SUBREG
, REG
, MEM
}},
194 #ifdef PREDICATE_CODES
197 {"address_operand", {CONST_INT
, CONST_DOUBLE
, CONST
, SYMBOL_REF
,
198 LABEL_REF
, SUBREG
, REG
, MEM
, PLUS
, MINUS
, MULT
}},
199 {"register_operand", {SUBREG
, REG
}},
200 {"pmode_register_operand", {SUBREG
, REG
}},
201 {"scratch_operand", {SCRATCH
, REG
}},
202 {"immediate_operand", {CONST_INT
, CONST_DOUBLE
, CONST
, SYMBOL_REF
,
204 {"const_int_operand", {CONST_INT
}},
205 {"const_double_operand", {CONST_INT
, CONST_DOUBLE
}},
206 {"nonimmediate_operand", {SUBREG
, REG
, MEM
}},
207 {"nonmemory_operand", {CONST_INT
, CONST_DOUBLE
, CONST
, SYMBOL_REF
,
208 LABEL_REF
, SUBREG
, REG
}},
209 {"push_operand", {MEM
}},
210 {"pop_operand", {MEM
}},
211 {"memory_operand", {SUBREG
, MEM
}},
212 {"indirect_operand", {SUBREG
, MEM
}},
213 {"comparison_operator", {EQ
, NE
, LE
, LT
, GE
, GT
, LEU
, LTU
, GEU
, GTU
}},
214 {"mode_independent_operand", {CONST_INT
, CONST_DOUBLE
, CONST
, SYMBOL_REF
,
215 LABEL_REF
, SUBREG
, REG
, MEM
}}
218 #define NUM_KNOWN_PREDS (sizeof preds / sizeof preds[0])
220 static const char * special_mode_pred_table
[] = {
221 #ifdef SPECIAL_MODE_PREDICATES
222 SPECIAL_MODE_PREDICATES
224 "pmode_register_operand"
227 #define NUM_SPECIAL_MODE_PREDS \
228 (sizeof (special_mode_pred_table) / sizeof (special_mode_pred_table[0]))
230 static void message_with_line
231 PARAMS ((int, const char *, ...)) ATTRIBUTE_PRINTF_2
;
233 static struct decision
*new_decision
234 PARAMS ((const char *, struct decision_head
*));
235 static struct decision_test
*new_decision_test
236 PARAMS ((enum decision_type
, struct decision_test
***));
237 static rtx find_operand
239 static void validate_pattern
240 PARAMS ((rtx
, rtx
, rtx
));
241 static struct decision
*add_to_sequence
242 PARAMS ((rtx
, struct decision_head
*, const char *, enum routine_type
, int));
244 static int maybe_both_true_2
245 PARAMS ((struct decision_test
*, struct decision_test
*));
246 static int maybe_both_true_1
247 PARAMS ((struct decision_test
*, struct decision_test
*));
248 static int maybe_both_true
249 PARAMS ((struct decision
*, struct decision
*, int));
251 static int nodes_identical_1
252 PARAMS ((struct decision_test
*, struct decision_test
*));
253 static int nodes_identical
254 PARAMS ((struct decision
*, struct decision
*));
255 static void merge_accept_insn
256 PARAMS ((struct decision
*, struct decision
*));
257 static void merge_trees
258 PARAMS ((struct decision_head
*, struct decision_head
*));
260 static void factor_tests
261 PARAMS ((struct decision_head
*));
262 static void simplify_tests
263 PARAMS ((struct decision_head
*));
264 static int break_out_subroutines
265 PARAMS ((struct decision_head
*, int));
266 static void find_afterward
267 PARAMS ((struct decision_head
*, struct decision
*));
269 static void change_state
270 PARAMS ((const char *, const char *, struct decision
*, const char *));
271 static void print_code
272 PARAMS ((enum rtx_code
));
273 static void write_afterward
274 PARAMS ((struct decision
*, struct decision
*, const char *));
275 static struct decision
*write_switch
276 PARAMS ((struct decision
*, int));
277 static void write_cond
278 PARAMS ((struct decision_test
*, int, enum routine_type
));
279 static void write_action
280 PARAMS ((struct decision_test
*, int, int, struct decision
*,
282 static int is_unconditional
283 PARAMS ((struct decision_test
*, enum routine_type
));
284 static int write_node
285 PARAMS ((struct decision
*, int, enum routine_type
));
286 static void write_tree_1
287 PARAMS ((struct decision_head
*, int, enum routine_type
));
288 static void write_tree
289 PARAMS ((struct decision_head
*, const char *, enum routine_type
, int));
290 static void write_subroutine
291 PARAMS ((struct decision_head
*, enum routine_type
));
292 static void write_subroutines
293 PARAMS ((struct decision_head
*, enum routine_type
));
294 static void write_header
297 static struct decision_head make_insn_sequence
298 PARAMS ((rtx
, enum routine_type
));
299 static void process_tree
300 PARAMS ((struct decision_head
*, enum routine_type
));
302 static void record_insn_name
303 PARAMS ((int, const char *));
305 static void debug_decision_0
306 PARAMS ((struct decision
*, int, int));
307 static void debug_decision_1
308 PARAMS ((struct decision
*, int));
309 static void debug_decision_2
310 PARAMS ((struct decision_test
*));
311 extern void debug_decision
312 PARAMS ((struct decision
*));
313 extern void debug_decision_list
314 PARAMS ((struct decision
*));
317 message_with_line
VPARAMS ((int lineno
, const char *msg
, ...))
319 #ifndef ANSI_PROTOTYPES
327 #ifndef ANSI_PROTOTYPES
328 lineno
= va_arg (ap
, int);
329 msg
= va_arg (ap
, const char *);
332 fprintf (stderr
, "%s:%d: ", read_rtx_filename
, lineno
);
333 vfprintf (stderr
, msg
, ap
);
334 fputc ('\n', stderr
);
339 /* Create a new node in sequence after LAST. */
341 static struct decision
*
342 new_decision (position
, last
)
343 const char *position
;
344 struct decision_head
*last
;
346 register struct decision
*new
347 = (struct decision
*) xmalloc (sizeof (struct decision
));
349 memset (new, 0, sizeof (*new));
350 new->success
= *last
;
351 new->position
= xstrdup (position
);
352 new->number
= next_number
++;
354 last
->first
= last
->last
= new;
358 /* Create a new test and link it in at PLACE. */
360 static struct decision_test
*
361 new_decision_test (type
, pplace
)
362 enum decision_type type
;
363 struct decision_test
***pplace
;
365 struct decision_test
**place
= *pplace
;
366 struct decision_test
*test
;
368 test
= (struct decision_test
*) xmalloc (sizeof (*test
));
379 /* Search for and return operand N. */
382 find_operand (pattern
, n
)
391 code
= GET_CODE (pattern
);
392 if ((code
== MATCH_SCRATCH
393 || code
== MATCH_INSN
394 || code
== MATCH_OPERAND
395 || code
== MATCH_OPERATOR
396 || code
== MATCH_PARALLEL
)
397 && XINT (pattern
, 0) == n
)
400 fmt
= GET_RTX_FORMAT (code
);
401 len
= GET_RTX_LENGTH (code
);
402 for (i
= 0; i
< len
; i
++)
407 if ((r
= find_operand (XEXP (pattern
, i
), n
)) != NULL_RTX
)
412 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
413 if ((r
= find_operand (XVECEXP (pattern
, i
, j
), n
)) != NULL_RTX
)
417 case 'i': case 'w': case '0': case 's':
428 /* Check for various errors in patterns. SET is nonnull for a destination,
429 and is the complete set pattern. */
432 validate_pattern (pattern
, insn
, set
)
442 code
= GET_CODE (pattern
);
452 const char *pred_name
= XSTR (pattern
, 1);
453 int allows_non_lvalue
= 1, allows_non_const
= 1;
454 int special_mode_pred
= 0;
457 if (GET_CODE (insn
) == DEFINE_INSN
)
458 c_test
= XSTR (insn
, 2);
460 c_test
= XSTR (insn
, 1);
462 if (pred_name
[0] != 0)
464 for (i
= 0; i
< NUM_KNOWN_PREDS
; i
++)
465 if (! strcmp (preds
[i
].name
, pred_name
))
468 if (i
< NUM_KNOWN_PREDS
)
472 allows_non_lvalue
= allows_non_const
= 0;
473 for (j
= 0; preds
[i
].codes
[j
] != 0; j
++)
475 RTX_CODE c
= preds
[i
].codes
[j
];
482 && c
!= CONSTANT_P_RTX
)
483 allows_non_const
= 1;
490 && c
!= STRICT_LOW_PART
)
491 allows_non_lvalue
= 1;
496 #ifdef PREDICATE_CODES
497 /* If the port has a list of the predicates it uses but
499 message_with_line (pattern_lineno
,
500 "warning: `%s' not in PREDICATE_CODES",
505 for (i
= 0; i
< NUM_SPECIAL_MODE_PREDS
; ++i
)
506 if (strcmp (pred_name
, special_mode_pred_table
[i
]) == 0)
508 special_mode_pred
= 1;
513 /* A MATCH_OPERAND that is a SET should have an output reload. */
515 && code
== MATCH_OPERAND
516 && XSTR (pattern
, 2)[0] != '\0'
517 && XSTR (pattern
, 2)[0] != '='
518 && XSTR (pattern
, 2)[0] != '+')
520 message_with_line (pattern_lineno
,
521 "operand %d missing output reload",
526 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
527 while not likely to occur at runtime, results in less efficient
528 code from insn-recog.c. */
530 && pred_name
[0] != '\0'
531 && allows_non_lvalue
)
533 message_with_line (pattern_lineno
,
534 "warning: destination operand %d allows non-lvalue",
538 /* A modeless MATCH_OPERAND can be handy when we can
539 check for multiple modes in the c_test. In most other cases,
540 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
541 and PEEP2 can FAIL within the output pattern. Exclude
542 address_operand, since its mode is related to the mode of
543 the memory not the operand. Exclude the SET_DEST of a call
544 instruction, as that is a common idiom. */
546 if (GET_MODE (pattern
) == VOIDmode
547 && code
== MATCH_OPERAND
548 && GET_CODE (insn
) == DEFINE_INSN
550 && ! special_mode_pred
551 && pred_name
[0] != '\0'
552 && strcmp (pred_name
, "address_operand") != 0
553 && strstr (c_test
, "operands") == NULL
555 && GET_CODE (set
) == SET
556 && GET_CODE (SET_SRC (set
)) == CALL
))
558 message_with_line (pattern_lineno
,
559 "warning: operand %d missing mode?",
567 enum machine_mode dmode
, smode
;
570 dest
= SET_DEST (pattern
);
571 src
= SET_SRC (pattern
);
573 /* Find the referant for a DUP. */
575 if (GET_CODE (dest
) == MATCH_DUP
576 || GET_CODE (dest
) == MATCH_OP_DUP
577 || GET_CODE (dest
) == MATCH_PAR_DUP
)
578 dest
= find_operand (insn
, XINT (dest
, 0));
580 if (GET_CODE (src
) == MATCH_DUP
581 || GET_CODE (src
) == MATCH_OP_DUP
582 || GET_CODE (src
) == MATCH_PAR_DUP
)
583 src
= find_operand (insn
, XINT (src
, 0));
585 /* STRICT_LOW_PART is a wrapper. Its argument is the real
586 destination, and it's mode should match the source. */
587 if (GET_CODE (dest
) == STRICT_LOW_PART
)
588 dest
= XEXP (dest
, 0);
590 dmode
= GET_MODE (dest
);
591 smode
= GET_MODE (src
);
593 /* The mode of an ADDRESS_OPERAND is the mode of the memory
594 reference, not the mode of the address. */
595 if (GET_CODE (src
) == MATCH_OPERAND
596 && ! strcmp (XSTR (src
, 1), "address_operand"))
599 /* The operands of a SET must have the same mode unless one
601 else if (dmode
!= VOIDmode
&& smode
!= VOIDmode
&& dmode
!= smode
)
603 message_with_line (pattern_lineno
,
604 "mode mismatch in set: %smode vs %smode",
605 GET_MODE_NAME (dmode
), GET_MODE_NAME (smode
));
609 /* If only one of the operands is VOIDmode, and PC or CC0 is
610 not involved, it's probably a mistake. */
611 else if (dmode
!= smode
612 && GET_CODE (dest
) != PC
613 && GET_CODE (dest
) != CC0
614 && GET_CODE (src
) != PC
615 && GET_CODE (src
) != CC0
616 && GET_CODE (src
) != CONST_INT
)
619 which
= (dmode
== VOIDmode
? "destination" : "source");
620 message_with_line (pattern_lineno
,
621 "warning: %s missing a mode?", which
);
624 if (dest
!= SET_DEST (pattern
))
625 validate_pattern (dest
, insn
, pattern
);
626 validate_pattern (SET_DEST (pattern
), insn
, pattern
);
627 validate_pattern (SET_SRC (pattern
), insn
, NULL_RTX
);
632 validate_pattern (SET_DEST (pattern
), insn
, pattern
);
636 if (GET_MODE (XEXP (pattern
, 0)) != VOIDmode
)
638 message_with_line (pattern_lineno
,
639 "operand to label_ref %smode not VOIDmode",
640 GET_MODE_NAME (GET_MODE (XEXP (pattern
, 0))));
649 fmt
= GET_RTX_FORMAT (code
);
650 len
= GET_RTX_LENGTH (code
);
651 for (i
= 0; i
< len
; i
++)
656 validate_pattern (XEXP (pattern
, i
), insn
, NULL_RTX
);
660 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
661 validate_pattern (XVECEXP (pattern
, i
, j
), insn
, NULL_RTX
);
664 case 'i': case 'w': case '0': case 's':
673 /* Create a chain of nodes to verify that an rtl expression matches
676 LAST is a pointer to the listhead in the previous node in the chain (or
677 in the calling function, for the first node).
679 POSITION is the string representing the current position in the insn.
681 INSN_TYPE is the type of insn for which we are emitting code.
683 A pointer to the final node in the chain is returned. */
685 static struct decision
*
686 add_to_sequence (pattern
, last
, position
, insn_type
, top
)
688 struct decision_head
*last
;
689 const char *position
;
690 enum routine_type insn_type
;
694 struct decision
*this, *sub
;
695 struct decision_test
*test
;
696 struct decision_test
**place
;
699 register const char *fmt
;
700 int depth
= strlen (position
);
702 enum machine_mode mode
;
704 if (depth
> max_depth
)
707 subpos
= (char *) alloca (depth
+ 2);
708 strcpy (subpos
, position
);
709 subpos
[depth
+ 1] = 0;
711 sub
= this = new_decision (position
, last
);
712 place
= &this->tests
;
715 mode
= GET_MODE (pattern
);
716 code
= GET_CODE (pattern
);
721 /* Toplevel peephole pattern. */
722 if (insn_type
== PEEPHOLE2
&& top
)
724 /* We don't need the node we just created -- unlink it. */
725 last
->first
= last
->last
= NULL
;
727 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 0); i
++)
729 /* Which insn we're looking at is represented by A-Z. We don't
730 ever use 'A', however; it is always implied. */
732 subpos
[depth
] = (i
> 0 ? 'A' + i
: 0);
733 sub
= add_to_sequence (XVECEXP (pattern
, 0, i
),
734 last
, subpos
, insn_type
, 0);
735 last
= &sub
->success
;
740 /* Else nothing special. */
749 const char *pred_name
;
750 RTX_CODE was_code
= code
;
751 int allows_const_int
= 1;
753 if (code
== MATCH_SCRATCH
)
755 pred_name
= "scratch_operand";
760 pred_name
= XSTR (pattern
, 1);
761 if (code
== MATCH_PARALLEL
)
767 /* We know exactly what const_int_operand matches -- any CONST_INT. */
768 if (strcmp ("const_int_operand", pred_name
) == 0)
773 else if (pred_name
[0] != 0)
775 test
= new_decision_test (DT_pred
, &place
);
776 test
->u
.pred
.name
= pred_name
;
777 test
->u
.pred
.mode
= mode
;
779 /* See if we know about this predicate and save its number. If
780 we do, and it only accepts one code, note that fact. The
781 predicate `const_int_operand' only tests for a CONST_INT, so
782 if we do so we can avoid calling it at all.
784 Finally, if we know that the predicate does not allow
785 CONST_INT, we know that the only way the predicate can match
786 is if the modes match (here we use the kludge of relying on
787 the fact that "address_operand" accepts CONST_INT; otherwise,
788 it would have to be a special case), so we can test the mode
789 (but we need not). This fact should considerably simplify the
792 for (i
= 0; i
< NUM_KNOWN_PREDS
; i
++)
793 if (! strcmp (preds
[i
].name
, pred_name
))
796 if (i
< NUM_KNOWN_PREDS
)
800 test
->u
.pred
.index
= i
;
802 if (preds
[i
].codes
[1] == 0 && code
== UNKNOWN
)
803 code
= preds
[i
].codes
[0];
805 allows_const_int
= 0;
806 for (j
= 0; preds
[i
].codes
[j
] != 0; j
++)
807 if (preds
[i
].codes
[j
] == CONST_INT
)
809 allows_const_int
= 1;
814 test
->u
.pred
.index
= -1;
817 /* Can't enforce a mode if we allow const_int. */
818 if (allows_const_int
)
821 /* Accept the operand, ie. record it in `operands'. */
822 test
= new_decision_test (DT_accept_op
, &place
);
823 test
->u
.opno
= XINT (pattern
, 0);
825 if (was_code
== MATCH_OPERATOR
|| was_code
== MATCH_PARALLEL
)
827 char base
= (was_code
== MATCH_OPERATOR
? '0' : 'a');
828 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 2); i
++)
830 subpos
[depth
] = i
+ base
;
831 sub
= add_to_sequence (XVECEXP (pattern
, 2, i
),
832 &sub
->success
, subpos
, insn_type
, 0);
841 test
= new_decision_test (DT_dup
, &place
);
842 test
->u
.dup
= XINT (pattern
, 0);
844 test
= new_decision_test (DT_accept_op
, &place
);
845 test
->u
.opno
= XINT (pattern
, 0);
847 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 1); i
++)
849 subpos
[depth
] = i
+ '0';
850 sub
= add_to_sequence (XVECEXP (pattern
, 1, i
),
851 &sub
->success
, subpos
, insn_type
, 0);
859 test
= new_decision_test (DT_dup
, &place
);
860 test
->u
.dup
= XINT (pattern
, 0);
864 pattern
= XEXP (pattern
, 0);
871 fmt
= GET_RTX_FORMAT (code
);
872 len
= GET_RTX_LENGTH (code
);
874 /* Do tests against the current node first. */
875 for (i
= 0; i
< (size_t) len
; i
++)
881 test
= new_decision_test (DT_elt_zero_int
, &place
);
882 test
->u
.intval
= XINT (pattern
, i
);
886 test
= new_decision_test (DT_elt_one_int
, &place
);
887 test
->u
.intval
= XINT (pattern
, i
);
892 else if (fmt
[i
] == 'w')
897 test
= new_decision_test (DT_elt_zero_wide
, &place
);
898 test
->u
.intval
= XWINT (pattern
, i
);
900 else if (fmt
[i
] == 'E')
905 test
= new_decision_test (DT_veclen
, &place
);
906 test
->u
.veclen
= XVECLEN (pattern
, i
);
910 /* Now test our sub-patterns. */
911 for (i
= 0; i
< (size_t) len
; i
++)
916 subpos
[depth
] = '0' + i
;
917 sub
= add_to_sequence (XEXP (pattern
, i
), &sub
->success
,
918 subpos
, insn_type
, 0);
924 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
926 subpos
[depth
] = 'a' + j
;
927 sub
= add_to_sequence (XVECEXP (pattern
, i
, j
),
928 &sub
->success
, subpos
, insn_type
, 0);
945 /* Insert nodes testing mode and code, if they're still relevant,
946 before any of the nodes we may have added above. */
949 place
= &this->tests
;
950 test
= new_decision_test (DT_code
, &place
);
954 if (mode
!= VOIDmode
)
956 place
= &this->tests
;
957 test
= new_decision_test (DT_mode
, &place
);
961 /* If we didn't insert any tests or accept nodes, hork. */
962 if (this->tests
== NULL
)
968 /* A subroutine of maybe_both_true; examines only one test.
969 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
972 maybe_both_true_2 (d1
, d2
)
973 struct decision_test
*d1
, *d2
;
975 if (d1
->type
== d2
->type
)
980 return d1
->u
.mode
== d2
->u
.mode
;
983 return d1
->u
.code
== d2
->u
.code
;
986 return d1
->u
.veclen
== d2
->u
.veclen
;
988 case DT_elt_zero_int
:
990 case DT_elt_zero_wide
:
991 return d1
->u
.intval
== d2
->u
.intval
;
998 /* If either has a predicate that we know something about, set
999 things up so that D1 is the one that always has a known
1000 predicate. Then see if they have any codes in common. */
1002 if (d1
->type
== DT_pred
|| d2
->type
== DT_pred
)
1004 if (d2
->type
== DT_pred
)
1006 struct decision_test
*tmp
;
1007 tmp
= d1
, d1
= d2
, d2
= tmp
;
1010 /* If D2 tests a mode, see if it matches D1. */
1011 if (d1
->u
.pred
.mode
!= VOIDmode
)
1013 if (d2
->type
== DT_mode
)
1015 if (d1
->u
.pred
.mode
!= d2
->u
.mode
1016 /* The mode of an address_operand predicate is the
1017 mode of the memory, not the operand. It can only
1018 be used for testing the predicate, so we must
1020 && strcmp (d1
->u
.pred
.name
, "address_operand") != 0)
1023 /* Don't check two predicate modes here, because if both predicates
1024 accept CONST_INT, then both can still be true even if the modes
1025 are different. If they don't accept CONST_INT, there will be a
1026 separate DT_mode that will make maybe_both_true_1 return 0. */
1029 if (d1
->u
.pred
.index
>= 0)
1031 /* If D2 tests a code, see if it is in the list of valid
1032 codes for D1's predicate. */
1033 if (d2
->type
== DT_code
)
1035 const RTX_CODE
*c
= &preds
[d1
->u
.pred
.index
].codes
[0];
1038 if (*c
== d2
->u
.code
)
1046 /* Otherwise see if the predicates have any codes in common. */
1047 else if (d2
->type
== DT_pred
&& d2
->u
.pred
.index
>= 0)
1049 const RTX_CODE
*c1
= &preds
[d1
->u
.pred
.index
].codes
[0];
1052 while (*c1
!= 0 && !common
)
1054 const RTX_CODE
*c2
= &preds
[d2
->u
.pred
.index
].codes
[0];
1055 while (*c2
!= 0 && !common
)
1057 common
= (*c1
== *c2
);
1072 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1073 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1076 maybe_both_true_1 (d1
, d2
)
1077 struct decision_test
*d1
, *d2
;
1079 struct decision_test
*t1
, *t2
;
1081 /* A match_operand with no predicate can match anything. Recognize
1082 this by the existance of a lone DT_accept_op test. */
1083 if (d1
->type
== DT_accept_op
|| d2
->type
== DT_accept_op
)
1086 /* Eliminate pairs of tests while they can exactly match. */
1087 while (d1
&& d2
&& d1
->type
== d2
->type
)
1089 if (maybe_both_true_2 (d1
, d2
) == 0)
1091 d1
= d1
->next
, d2
= d2
->next
;
1094 /* After that, consider all pairs. */
1095 for (t1
= d1
; t1
; t1
= t1
->next
)
1096 for (t2
= d2
; t2
; t2
= t2
->next
)
1097 if (maybe_both_true_2 (t1
, t2
) == 0)
1103 /* Return 0 if we can prove that there is no RTL that can match both
1104 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1105 can match both or just that we couldn't prove there wasn't such an RTL).
1107 TOPLEVEL is non-zero if we are to only look at the top level and not
1108 recursively descend. */
1111 maybe_both_true (d1
, d2
, toplevel
)
1112 struct decision
*d1
, *d2
;
1115 struct decision
*p1
, *p2
;
1118 /* Don't compare strings on the different positions in insn. Doing so
1119 is incorrect and results in false matches from constructs like
1121 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1122 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1124 [(set (match_operand:HI "register_operand" "r")
1125 (match_operand:HI "register_operand" "r"))]
1127 If we are presented with such, we are recursing through the remainder
1128 of a node's success nodes (from the loop at the end of this function).
1129 Skip forward until we come to a position that matches.
1131 Due to the way position strings are constructed, we know that iterating
1132 forward from the lexically lower position (e.g. "00") will run into
1133 the lexically higher position (e.g. "1") and not the other way around.
1134 This saves a bit of effort. */
1136 cmp
= strcmp (d1
->position
, d2
->position
);
1142 /* If the d2->position was lexically lower, swap. */
1144 p1
= d1
, d1
= d2
, d2
= p1
;
1146 if (d1
->success
.first
== 0)
1148 for (p1
= d1
->success
.first
; p1
; p1
= p1
->next
)
1149 if (maybe_both_true (p1
, d2
, 0))
1155 /* Test the current level. */
1156 cmp
= maybe_both_true_1 (d1
->tests
, d2
->tests
);
1160 /* We can't prove that D1 and D2 cannot both be true. If we are only
1161 to check the top level, return 1. Otherwise, see if we can prove
1162 that all choices in both successors are mutually exclusive. If
1163 either does not have any successors, we can't prove they can't both
1166 if (toplevel
|| d1
->success
.first
== 0 || d2
->success
.first
== 0)
1169 for (p1
= d1
->success
.first
; p1
; p1
= p1
->next
)
1170 for (p2
= d2
->success
.first
; p2
; p2
= p2
->next
)
1171 if (maybe_both_true (p1
, p2
, 0))
1177 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1180 nodes_identical_1 (d1
, d2
)
1181 struct decision_test
*d1
, *d2
;
1186 return d1
->u
.mode
== d2
->u
.mode
;
1189 return d1
->u
.code
== d2
->u
.code
;
1192 return (d1
->u
.pred
.mode
== d2
->u
.pred
.mode
1193 && strcmp (d1
->u
.pred
.name
, d2
->u
.pred
.name
) == 0);
1196 return strcmp (d1
->u
.c_test
, d2
->u
.c_test
) == 0;
1199 return d1
->u
.veclen
== d2
->u
.veclen
;
1202 return d1
->u
.dup
== d2
->u
.dup
;
1204 case DT_elt_zero_int
:
1205 case DT_elt_one_int
:
1206 case DT_elt_zero_wide
:
1207 return d1
->u
.intval
== d2
->u
.intval
;
1210 return d1
->u
.opno
== d2
->u
.opno
;
1212 case DT_accept_insn
:
1213 /* Differences will be handled in merge_accept_insn. */
1221 /* True iff the two nodes are identical (on one level only). Due
1222 to the way these lists are constructed, we shouldn't have to
1223 consider different orderings on the tests. */
1226 nodes_identical (d1
, d2
)
1227 struct decision
*d1
, *d2
;
1229 struct decision_test
*t1
, *t2
;
1231 for (t1
= d1
->tests
, t2
= d2
->tests
; t1
&& t2
; t1
= t1
->next
, t2
= t2
->next
)
1233 if (t1
->type
!= t2
->type
)
1235 if (! nodes_identical_1 (t1
, t2
))
1239 /* For success, they should now both be null. */
1243 /* Check that their subnodes are at the same position, as any one set
1244 of sibling decisions must be at the same position. */
1245 if (d1
->success
.first
1246 && d2
->success
.first
1247 && strcmp (d1
->success
.first
->position
, d2
->success
.first
->position
))
1253 /* A subroutine of merge_trees; given two nodes that have been declared
1254 identical, cope with two insn accept states. If they differ in the
1255 number of clobbers, then the conflict was created by make_insn_sequence
1256 and we can drop the with-clobbers version on the floor. If both
1257 nodes have no additional clobbers, we have found an ambiguity in the
1258 source machine description. */
1261 merge_accept_insn (oldd
, addd
)
1262 struct decision
*oldd
, *addd
;
1264 struct decision_test
*old
, *add
;
1266 for (old
= oldd
->tests
; old
; old
= old
->next
)
1267 if (old
->type
== DT_accept_insn
)
1272 for (add
= addd
->tests
; add
; add
= add
->next
)
1273 if (add
->type
== DT_accept_insn
)
1278 /* If one node is for a normal insn and the second is for the base
1279 insn with clobbers stripped off, the second node should be ignored. */
1281 if (old
->u
.insn
.num_clobbers_to_add
== 0
1282 && add
->u
.insn
.num_clobbers_to_add
> 0)
1284 /* Nothing to do here. */
1286 else if (old
->u
.insn
.num_clobbers_to_add
> 0
1287 && add
->u
.insn
.num_clobbers_to_add
== 0)
1289 /* In this case, replace OLD with ADD. */
1290 old
->u
.insn
= add
->u
.insn
;
1294 message_with_line (add
->u
.insn
.lineno
, "`%s' matches `%s'",
1295 get_insn_name (add
->u
.insn
.code_number
),
1296 get_insn_name (old
->u
.insn
.code_number
));
1297 message_with_line (old
->u
.insn
.lineno
, "previous definition of `%s'",
1298 get_insn_name (old
->u
.insn
.code_number
));
1303 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1306 merge_trees (oldh
, addh
)
1307 struct decision_head
*oldh
, *addh
;
1309 struct decision
*next
, *add
;
1311 if (addh
->first
== 0)
1313 if (oldh
->first
== 0)
1319 /* Trying to merge bits at different positions isn't possible. */
1320 if (strcmp (oldh
->first
->position
, addh
->first
->position
))
1323 for (add
= addh
->first
; add
; add
= next
)
1325 struct decision
*old
, *insert_before
= NULL
;
1329 /* The semantics of pattern matching state that the tests are
1330 done in the order given in the MD file so that if an insn
1331 matches two patterns, the first one will be used. However,
1332 in practice, most, if not all, patterns are unambiguous so
1333 that their order is independent. In that case, we can merge
1334 identical tests and group all similar modes and codes together.
1336 Scan starting from the end of OLDH until we reach a point
1337 where we reach the head of the list or where we pass a
1338 pattern that could also be true if NEW is true. If we find
1339 an identical pattern, we can merge them. Also, record the
1340 last node that tests the same code and mode and the last one
1341 that tests just the same mode.
1343 If we have no match, place NEW after the closest match we found. */
1345 for (old
= oldh
->last
; old
; old
= old
->prev
)
1347 if (nodes_identical (old
, add
))
1349 merge_accept_insn (old
, add
);
1350 merge_trees (&old
->success
, &add
->success
);
1354 if (maybe_both_true (old
, add
, 0))
1357 /* Insert the nodes in DT test type order, which is roughly
1358 how expensive/important the test is. Given that the tests
1359 are also ordered within the list, examining the first is
1361 if (add
->tests
->type
< old
->tests
->type
)
1362 insert_before
= old
;
1365 if (insert_before
== NULL
)
1368 add
->prev
= oldh
->last
;
1369 oldh
->last
->next
= add
;
1374 if ((add
->prev
= insert_before
->prev
) != NULL
)
1375 add
->prev
->next
= add
;
1378 add
->next
= insert_before
;
1379 insert_before
->prev
= add
;
1386 /* Walk the tree looking for sub-nodes that perform common tests.
1387 Factor out the common test into a new node. This enables us
1388 (depending on the test type) to emit switch statements later. */
1392 struct decision_head
*head
;
1394 struct decision
*first
, *next
;
1396 for (first
= head
->first
; first
&& first
->next
; first
= next
)
1398 enum decision_type type
;
1399 struct decision
*new, *old_last
;
1401 type
= first
->tests
->type
;
1404 /* Want at least two compatible sequential nodes. */
1405 if (next
->tests
->type
!= type
)
1408 /* Don't want all node types, just those we can turn into
1409 switch statements. */
1412 && type
!= DT_veclen
1413 && type
!= DT_elt_zero_int
1414 && type
!= DT_elt_one_int
1415 && type
!= DT_elt_zero_wide
)
1418 /* If we'd been performing more than one test, create a new node
1419 below our first test. */
1420 if (first
->tests
->next
!= NULL
)
1422 new = new_decision (first
->position
, &first
->success
);
1423 new->tests
= first
->tests
->next
;
1424 first
->tests
->next
= NULL
;
1427 /* Crop the node tree off after our first test. */
1429 old_last
= head
->last
;
1432 /* For each compatible test, adjust to perform only one test in
1433 the top level node, then merge the node back into the tree. */
1436 struct decision_head h
;
1438 if (next
->tests
->next
!= NULL
)
1440 new = new_decision (next
->position
, &next
->success
);
1441 new->tests
= next
->tests
->next
;
1442 next
->tests
->next
= NULL
;
1447 h
.first
= h
.last
= new;
1449 merge_trees (head
, &h
);
1451 while (next
&& next
->tests
->type
== type
);
1453 /* After we run out of compatible tests, graft the remaining nodes
1454 back onto the tree. */
1457 next
->prev
= head
->last
;
1458 head
->last
->next
= next
;
1459 head
->last
= old_last
;
1464 for (first
= head
->first
; first
; first
= first
->next
)
1465 factor_tests (&first
->success
);
1468 /* After factoring, try to simplify the tests on any one node.
1469 Tests that are useful for switch statements are recognizable
1470 by having only a single test on a node -- we'll be manipulating
1471 nodes with multiple tests:
1473 If we have mode tests or code tests that are redundant with
1474 predicates, remove them. */
1477 simplify_tests (head
)
1478 struct decision_head
*head
;
1480 struct decision
*tree
;
1482 for (tree
= head
->first
; tree
; tree
= tree
->next
)
1484 struct decision_test
*a
, *b
;
1491 /* Find a predicate node. */
1492 while (b
&& b
->type
!= DT_pred
)
1496 /* Due to how these tests are constructed, we don't even need
1497 to check that the mode and code are compatible -- they were
1498 generated from the predicate in the first place. */
1499 while (a
->type
== DT_mode
|| a
->type
== DT_code
)
1506 for (tree
= head
->first
; tree
; tree
= tree
->next
)
1507 simplify_tests (&tree
->success
);
1510 /* Count the number of subnodes of HEAD. If the number is high enough,
1511 make the first node in HEAD start a separate subroutine in the C code
1512 that is generated. */
1515 break_out_subroutines (head
, initial
)
1516 struct decision_head
*head
;
1520 struct decision
*sub
;
1522 for (sub
= head
->first
; sub
; sub
= sub
->next
)
1523 size
+= 1 + break_out_subroutines (&sub
->success
, 0);
1525 if (size
> SUBROUTINE_THRESHOLD
&& ! initial
)
1527 head
->first
->subroutine_number
= ++next_subroutine_number
;
1533 /* For each node p, find the next alternative that might be true
1537 find_afterward (head
, real_afterward
)
1538 struct decision_head
*head
;
1539 struct decision
*real_afterward
;
1541 struct decision
*p
, *q
, *afterward
;
1543 /* We can't propogate alternatives across subroutine boundaries.
1544 This is not incorrect, merely a minor optimization loss. */
1547 afterward
= (p
->subroutine_number
> 0 ? NULL
: real_afterward
);
1549 for ( ; p
; p
= p
->next
)
1551 /* Find the next node that might be true if this one fails. */
1552 for (q
= p
->next
; q
; q
= q
->next
)
1553 if (maybe_both_true (p
, q
, 1))
1556 /* If we reached the end of the list without finding one,
1557 use the incoming afterward position. */
1566 for (p
= head
->first
; p
; p
= p
->next
)
1567 if (p
->success
.first
)
1568 find_afterward (&p
->success
, p
->afterward
);
1570 /* When we are generating a subroutine, record the real afterward
1571 position in the first node where write_tree can find it, and we
1572 can do the right thing at the subroutine call site. */
1574 if (p
->subroutine_number
> 0)
1575 p
->afterward
= real_afterward
;
1578 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1579 actions are necessary to move to NEWPOS. If we fail to move to the
1580 new state, branch to node AFTERWARD if non-zero, otherwise return.
1582 Failure to move to the new state can only occur if we are trying to
1583 match multiple insns and we try to step past the end of the stream. */
1586 change_state (oldpos
, newpos
, afterward
, indent
)
1589 struct decision
*afterward
;
1592 int odepth
= strlen (oldpos
);
1593 int ndepth
= strlen (newpos
);
1595 int old_has_insn
, new_has_insn
;
1597 /* Pop up as many levels as necessary. */
1598 for (depth
= odepth
; strncmp (oldpos
, newpos
, depth
) != 0; --depth
)
1601 /* Hunt for the last [A-Z] in both strings. */
1602 for (old_has_insn
= odepth
- 1; old_has_insn
>= 0; --old_has_insn
)
1603 if (oldpos
[old_has_insn
] >= 'A' && oldpos
[old_has_insn
] <= 'Z')
1605 for (new_has_insn
= ndepth
- 1; new_has_insn
>= 0; --new_has_insn
)
1606 if (newpos
[new_has_insn
] >= 'A' && newpos
[new_has_insn
] <= 'Z')
1609 /* Make sure to reset the _last_insn pointer when popping back up. */
1610 if (old_has_insn
>= 0 && new_has_insn
< 0)
1611 printf ("%s_last_insn = insn;\n", indent
);
1613 /* Go down to desired level. */
1614 while (depth
< ndepth
)
1616 /* It's a different insn from the first one. */
1617 if (newpos
[depth
] >= 'A' && newpos
[depth
] <= 'Z')
1619 /* We can only fail if we're moving down the tree. */
1620 if (old_has_insn
>= 0 && oldpos
[old_has_insn
] >= newpos
[depth
])
1622 printf ("%s_last_insn = recog_next_insn (insn, %d);\n",
1623 indent
, newpos
[depth
] - 'A');
1627 printf ("%stem = recog_next_insn (insn, %d);\n",
1628 indent
, newpos
[depth
] - 'A');
1629 printf ("%sif (tem == NULL_RTX)\n", indent
);
1631 printf ("%s goto L%d;\n", indent
, afterward
->number
);
1633 printf ("%s goto ret0;\n", indent
);
1634 printf ("%s_last_insn = tem;\n", indent
);
1636 printf ("%sx%d = PATTERN (_last_insn);\n", indent
, depth
+ 1);
1638 else if (newpos
[depth
] >= 'a' && newpos
[depth
] <= 'z')
1639 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1640 indent
, depth
+ 1, depth
, newpos
[depth
] - 'a');
1642 printf ("%sx%d = XEXP (x%d, %c);\n",
1643 indent
, depth
+ 1, depth
, newpos
[depth
]);
1648 /* Print the enumerator constant for CODE -- the upcase version of
1655 register const char *p
;
1656 for (p
= GET_RTX_NAME (code
); *p
; p
++)
1657 putchar (TOUPPER (*p
));
1660 /* Emit code to cross an afterward link -- change state and branch. */
1663 write_afterward (start
, afterward
, indent
)
1664 struct decision
*start
;
1665 struct decision
*afterward
;
1668 if (!afterward
|| start
->subroutine_number
> 0)
1669 printf("%sgoto ret0;\n", indent
);
1672 change_state (start
->position
, afterward
->position
, NULL
, indent
);
1673 printf ("%sgoto L%d;\n", indent
, afterward
->number
);
1677 /* Emit a switch statement, if possible, for an initial sequence of
1678 nodes at START. Return the first node yet untested. */
1680 static struct decision
*
1681 write_switch (start
, depth
)
1682 struct decision
*start
;
1685 struct decision
*p
= start
;
1686 enum decision_type type
= p
->tests
->type
;
1688 /* If we have two or more nodes in sequence that test the same one
1689 thing, we may be able to use a switch statement. */
1693 || p
->next
->tests
->type
!= type
1694 || p
->next
->tests
->next
)
1697 /* DT_code is special in that we can do interesting things with
1698 known predicates at the same time. */
1699 if (type
== DT_code
)
1701 char codemap
[NUM_RTX_CODE
];
1702 struct decision
*ret
;
1705 memset (codemap
, 0, sizeof(codemap
));
1707 printf (" switch (GET_CODE (x%d))\n {\n", depth
);
1708 code
= p
->tests
->u
.code
;
1713 printf (":\n goto L%d;\n", p
->success
.first
->number
);
1714 p
->success
.first
->need_label
= 1;
1721 && p
->tests
->type
== DT_code
1722 && ! codemap
[code
= p
->tests
->u
.code
]);
1724 /* If P is testing a predicate that we know about and we haven't
1725 seen any of the codes that are valid for the predicate, we can
1726 write a series of "case" statement, one for each possible code.
1727 Since we are already in a switch, these redundant tests are very
1728 cheap and will reduce the number of predicates called. */
1730 /* Note that while we write out cases for these predicates here,
1731 we don't actually write the test here, as it gets kinda messy.
1732 It is trivial to leave this to later by telling our caller that
1733 we only processed the CODE tests. */
1736 while (p
&& p
->tests
->type
== DT_pred
1737 && p
->tests
->u
.pred
.index
>= 0)
1741 for (c
= &preds
[p
->tests
->u
.pred
.index
].codes
[0]; *c
; ++c
)
1742 if (codemap
[(int) *c
] != 0)
1745 for (c
= &preds
[p
->tests
->u
.pred
.index
].codes
[0]; *c
; ++c
)
1750 codemap
[(int) *c
] = 1;
1753 printf (" goto L%d;\n", p
->number
);
1759 /* Make the default case skip the predicates we managed to match. */
1761 printf (" default:\n");
1766 printf (" goto L%d;\n", p
->number
);
1770 write_afterward (start
, start
->afterward
, " ");
1773 printf (" break;\n");
1778 else if (type
== DT_mode
1779 || type
== DT_veclen
1780 || type
== DT_elt_zero_int
1781 || type
== DT_elt_one_int
1782 || type
== DT_elt_zero_wide
)
1784 printf (" switch (");
1788 printf("GET_MODE (x%d)", depth
);
1791 printf("XVECLEN (x%d, 0)", depth
);
1793 case DT_elt_zero_int
:
1794 printf("XINT (x%d, 0)", depth
);
1796 case DT_elt_one_int
:
1797 printf("XINT (x%d, 1)", depth
);
1799 case DT_elt_zero_wide
:
1800 printf("XWINT (x%d, 0)", depth
);
1813 printf ("%smode", GET_MODE_NAME (p
->tests
->u
.mode
));
1816 printf ("%d", p
->tests
->u
.veclen
);
1818 case DT_elt_zero_int
:
1819 case DT_elt_one_int
:
1820 case DT_elt_zero_wide
:
1821 printf (HOST_WIDE_INT_PRINT_DEC
, p
->tests
->u
.intval
);
1826 printf (":\n goto L%d;\n", p
->success
.first
->number
);
1827 p
->success
.first
->need_label
= 1;
1831 while (p
&& p
->tests
->type
== type
&& !p
->tests
->next
);
1833 printf (" default:\n break;\n }\n");
1839 /* None of the other tests are ameanable. */
1844 /* Emit code for one test. */
1847 write_cond (p
, depth
, subroutine_type
)
1848 struct decision_test
*p
;
1850 enum routine_type subroutine_type
;
1855 printf ("GET_MODE (x%d) == %smode", depth
, GET_MODE_NAME (p
->u
.mode
));
1859 printf ("GET_CODE (x%d) == ", depth
);
1860 print_code (p
->u
.code
);
1864 printf ("XVECLEN (x%d, 0) == %d", depth
, p
->u
.veclen
);
1867 case DT_elt_zero_int
:
1868 printf ("XINT (x%d, 0) == %d", depth
, (int) p
->u
.intval
);
1871 case DT_elt_one_int
:
1872 printf ("XINT (x%d, 1) == %d", depth
, (int) p
->u
.intval
);
1875 case DT_elt_zero_wide
:
1876 printf ("XWINT (x%d, 0) == ", depth
);
1877 printf (HOST_WIDE_INT_PRINT_DEC
, p
->u
.intval
);
1881 printf ("rtx_equal_p (x%d, operands[%d])", depth
, p
->u
.dup
);
1885 printf ("%s (x%d, %smode)", p
->u
.pred
.name
, depth
,
1886 GET_MODE_NAME (p
->u
.pred
.mode
));
1890 printf ("(%s)", p
->u
.c_test
);
1893 case DT_accept_insn
:
1894 switch (subroutine_type
)
1897 if (p
->u
.insn
.num_clobbers_to_add
== 0)
1899 printf ("pnum_clobbers != NULL");
1912 /* Emit code for one action. The previous tests have succeeded;
1913 TEST is the last of the chain. In the normal case we simply
1914 perform a state change. For the `accept' tests we must do more work. */
1917 write_action (test
, depth
, uncond
, success
, subroutine_type
)
1918 struct decision_test
*test
;
1920 struct decision
*success
;
1921 enum routine_type subroutine_type
;
1928 else if (test
->type
== DT_accept_op
|| test
->type
== DT_accept_insn
)
1930 fputs (" {\n", stdout
);
1937 if (test
->type
== DT_accept_op
)
1939 printf("%soperands[%d] = x%d;\n", indent
, test
->u
.opno
, depth
);
1941 /* Only allow DT_accept_insn to follow. */
1945 if (test
->type
!= DT_accept_insn
)
1950 /* Sanity check that we're now at the end of the list of tests. */
1954 if (test
->type
== DT_accept_insn
)
1956 switch (subroutine_type
)
1959 if (test
->u
.insn
.num_clobbers_to_add
!= 0)
1960 printf ("%s*pnum_clobbers = %d;\n",
1961 indent
, test
->u
.insn
.num_clobbers_to_add
);
1962 printf ("%sreturn %d;\n", indent
, test
->u
.insn
.code_number
);
1966 printf ("%sreturn gen_split_%d (operands);\n",
1967 indent
, test
->u
.insn
.code_number
);
1971 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
1972 indent
, test
->u
.insn
.code_number
);
1973 printf ("%sif (tem != 0)\n%s goto ret1;\n", indent
, indent
);
1982 printf("%sgoto L%d;\n", indent
, success
->number
);
1983 success
->need_label
= 1;
1987 fputs (" }\n", stdout
);
1990 /* Return 1 if the test is always true and has no fallthru path. Return -1
1991 if the test does have a fallthru path, but requires that the condition be
1992 terminated. Otherwise return 0 for a normal test. */
1993 /* ??? is_unconditional is a stupid name for a tri-state function. */
1996 is_unconditional (t
, subroutine_type
)
1997 struct decision_test
*t
;
1998 enum routine_type subroutine_type
;
2000 if (t
->type
== DT_accept_op
)
2003 if (t
->type
== DT_accept_insn
)
2005 switch (subroutine_type
)
2008 return (t
->u
.insn
.num_clobbers_to_add
== 0);
2021 /* Emit code for one node -- the conditional and the accompanying action.
2022 Return true if there is no fallthru path. */
2025 write_node (p
, depth
, subroutine_type
)
2028 enum routine_type subroutine_type
;
2030 struct decision_test
*test
, *last_test
;
2033 last_test
= test
= p
->tests
;
2034 uncond
= is_unconditional (test
, subroutine_type
);
2038 write_cond (test
, depth
, subroutine_type
);
2040 while ((test
= test
->next
) != NULL
)
2045 uncond2
= is_unconditional (test
, subroutine_type
);
2050 write_cond (test
, depth
, subroutine_type
);
2056 write_action (last_test
, depth
, uncond
, p
->success
.first
, subroutine_type
);
2061 /* Emit code for all of the sibling nodes of HEAD. */
2064 write_tree_1 (head
, depth
, subroutine_type
)
2065 struct decision_head
*head
;
2067 enum routine_type subroutine_type
;
2069 struct decision
*p
, *next
;
2072 for (p
= head
->first
; p
; p
= next
)
2074 /* The label for the first element was printed in write_tree. */
2075 if (p
!= head
->first
&& p
->need_label
)
2076 OUTPUT_LABEL (" ", p
->number
);
2078 /* Attempt to write a switch statement for a whole sequence. */
2079 next
= write_switch (p
, depth
);
2084 /* Failed -- fall back and write one node. */
2085 uncond
= write_node (p
, depth
, subroutine_type
);
2090 /* Finished with this chain. Close a fallthru path by branching
2091 to the afterward node. */
2093 write_afterward (head
->last
, head
->last
->afterward
, " ");
2096 /* Write out the decision tree starting at HEAD. PREVPOS is the
2097 position at the node that branched to this node. */
2100 write_tree (head
, prevpos
, type
, initial
)
2101 struct decision_head
*head
;
2102 const char *prevpos
;
2103 enum routine_type type
;
2106 register struct decision
*p
= head
->first
;
2110 OUTPUT_LABEL (" ", p
->number
);
2112 if (! initial
&& p
->subroutine_number
> 0)
2114 static const char * const name_prefix
[] = {
2115 "recog", "split", "peephole2"
2118 static const char * const call_suffix
[] = {
2119 ", pnum_clobbers", "", ", _plast_insn"
2122 /* This node has been broken out into a separate subroutine.
2123 Call it, test the result, and branch accordingly. */
2127 printf (" tem = %s_%d (x0, insn%s);\n",
2128 name_prefix
[type
], p
->subroutine_number
, call_suffix
[type
]);
2129 if (IS_SPLIT (type
))
2130 printf (" if (tem != 0)\n return tem;\n");
2132 printf (" if (tem >= 0)\n return tem;\n");
2134 change_state (p
->position
, p
->afterward
->position
, NULL
, " ");
2135 printf (" goto L%d;\n", p
->afterward
->number
);
2139 printf (" return %s_%d (x0, insn%s);\n",
2140 name_prefix
[type
], p
->subroutine_number
, call_suffix
[type
]);
2145 int depth
= strlen (p
->position
);
2147 change_state (prevpos
, p
->position
, head
->last
->afterward
, " ");
2148 write_tree_1 (head
, depth
, type
);
2150 for (p
= head
->first
; p
; p
= p
->next
)
2151 if (p
->success
.first
)
2152 write_tree (&p
->success
, p
->position
, type
, 0);
2156 /* Write out a subroutine of type TYPE to do comparisons starting at
2160 write_subroutine (head
, type
)
2161 struct decision_head
*head
;
2162 enum routine_type type
;
2164 int subfunction
= head
->first
? head
->first
->subroutine_number
: 0;
2169 s_or_e
= subfunction
? "static " : "";
2172 sprintf (extension
, "_%d", subfunction
);
2173 else if (type
== RECOG
)
2174 extension
[0] = '\0';
2176 strcpy (extension
, "_insns");
2181 printf ("%sint recog%s PARAMS ((rtx, rtx, int *));\n", s_or_e
, extension
);
2183 recog%s (x0, insn, pnum_clobbers)\n\
2185 rtx insn ATTRIBUTE_UNUSED;\n\
2186 int *pnum_clobbers ATTRIBUTE_UNUSED;\n", s_or_e
, extension
);
2189 printf ("%srtx split%s PARAMS ((rtx, rtx));\n", s_or_e
, extension
);
2191 split%s (x0, insn)\n\
2193 rtx insn ATTRIBUTE_UNUSED;\n", s_or_e
, extension
);
2196 printf ("%srtx peephole2%s PARAMS ((rtx, rtx, rtx *));\n", s_or_e
, extension
);
2198 peephole2%s (x0, insn, _plast_insn)\n\
2200 rtx insn ATTRIBUTE_UNUSED;\n\
2201 rtx *_plast_insn ATTRIBUTE_UNUSED;\n", s_or_e
, extension
);
2205 printf ("{\n register rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2206 for (i
= 1; i
<= max_depth
; i
++)
2207 printf (" register rtx x%d ATTRIBUTE_UNUSED;\n", i
);
2209 if (type
== PEEPHOLE2
)
2210 printf (" register rtx _last_insn = insn;\n");
2211 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type
) ? "rtx" : "int");
2214 write_tree (head
, "", type
, 1);
2216 printf (" goto ret0;\n");
2218 if (type
== PEEPHOLE2
)
2219 printf (" ret1:\n *_plast_insn = _last_insn;\n return tem;\n");
2220 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type
) ? 0 : -1);
2223 /* In break_out_subroutines, we discovered the boundaries for the
2224 subroutines, but did not write them out. Do so now. */
2227 write_subroutines (head
, type
)
2228 struct decision_head
*head
;
2229 enum routine_type type
;
2233 for (p
= head
->first
; p
; p
= p
->next
)
2234 if (p
->success
.first
)
2235 write_subroutines (&p
->success
, type
);
2237 if (head
->first
->subroutine_number
> 0)
2238 write_subroutine (head
, type
);
2241 /* Begin the output file. */
2247 /* Generated automatically by the program `genrecog' from the target\n\
2248 machine description file. */\n\
2250 #include \"config.h\"\n\
2251 #include \"system.h\"\n\
2252 #include \"rtl.h\"\n\
2253 #include \"tm_p.h\"\n\
2254 #include \"function.h\"\n\
2255 #include \"insn-config.h\"\n\
2256 #include \"recog.h\"\n\
2257 #include \"real.h\"\n\
2258 #include \"output.h\"\n\
2259 #include \"flags.h\"\n\
2260 #include \"hard-reg-set.h\"\n\
2261 #include \"resource.h\"\n\
2265 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2266 X0 is a valid instruction.\n\
2268 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2269 returns a nonnegative number which is the insn code number for the\n\
2270 pattern that matched. This is the same as the order in the machine\n\
2271 description of the entry that matched. This number can be used as an\n\
2272 index into `insn_data' and other tables.\n\
2274 The third argument to recog is an optional pointer to an int. If\n\
2275 present, recog will accept a pattern if it matches except for missing\n\
2276 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2277 the optional pointer will be set to the number of CLOBBERs that need\n\
2278 to be added (it should be initialized to zero by the caller). If it\n\
2279 is set nonzero, the caller should allocate a PARALLEL of the\n\
2280 appropriate size, copy the initial entries, and call add_clobbers\n\
2281 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2285 The function split_insns returns 0 if the rtl could not\n\
2286 be split or the split rtl in a SEQUENCE if it can be.\n\
2288 The function peephole2_insns returns 0 if the rtl could not\n\
2289 be matched. If there was a match, the new rtl is returned in a SEQUENCE,\n\
2290 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2295 /* Construct and return a sequence of decisions
2296 that will recognize INSN.
2298 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2300 static struct decision_head
2301 make_insn_sequence (insn
, type
)
2303 enum routine_type type
;
2306 const char *c_test
= XSTR (insn
, type
== RECOG
? 2 : 1);
2307 struct decision
*last
;
2308 struct decision_test
*test
, **place
;
2309 struct decision_head head
;
2311 record_insn_name (next_insn_code
, (type
== RECOG
? XSTR (insn
, 0) : NULL
));
2313 if (type
== PEEPHOLE2
)
2317 /* peephole2 gets special treatment:
2318 - X always gets an outer parallel even if it's only one entry
2319 - we remove all traces of outer-level match_scratch and match_dup
2320 expressions here. */
2321 x
= rtx_alloc (PARALLEL
);
2322 PUT_MODE (x
, VOIDmode
);
2323 XVEC (x
, 0) = rtvec_alloc (XVECLEN (insn
, 0));
2324 for (i
= j
= 0; i
< XVECLEN (insn
, 0); i
++)
2326 rtx tmp
= XVECEXP (insn
, 0, i
);
2327 if (GET_CODE (tmp
) != MATCH_SCRATCH
&& GET_CODE (tmp
) != MATCH_DUP
)
2329 XVECEXP (x
, 0, j
) = tmp
;
2335 else if (XVECLEN (insn
, type
== RECOG
) == 1)
2336 x
= XVECEXP (insn
, type
== RECOG
, 0);
2339 x
= rtx_alloc (PARALLEL
);
2340 XVEC (x
, 0) = XVEC (insn
, type
== RECOG
);
2341 PUT_MODE (x
, VOIDmode
);
2344 validate_pattern (x
, insn
, NULL_RTX
);
2346 memset(&head
, 0, sizeof(head
));
2347 last
= add_to_sequence (x
, &head
, "", type
, 1);
2349 /* Find the end of the test chain on the last node. */
2350 for (test
= last
->tests
; test
->next
; test
= test
->next
)
2352 place
= &test
->next
;
2356 /* Need a new node if we have another test to add. */
2357 if (test
->type
== DT_accept_op
)
2359 last
= new_decision ("", &last
->success
);
2360 place
= &last
->tests
;
2362 test
= new_decision_test (DT_c_test
, &place
);
2363 test
->u
.c_test
= c_test
;
2366 test
= new_decision_test (DT_accept_insn
, &place
);
2367 test
->u
.insn
.code_number
= next_insn_code
;
2368 test
->u
.insn
.lineno
= pattern_lineno
;
2369 test
->u
.insn
.num_clobbers_to_add
= 0;
2374 /* If this is an DEFINE_INSN and X is a PARALLEL, see if it ends
2375 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2376 If so, set up to recognize the pattern without these CLOBBERs. */
2378 if (GET_CODE (x
) == PARALLEL
)
2382 /* Find the last non-clobber in the parallel. */
2383 for (i
= XVECLEN (x
, 0); i
> 0; i
--)
2385 rtx y
= XVECEXP (x
, 0, i
- 1);
2386 if (GET_CODE (y
) != CLOBBER
2387 || (GET_CODE (XEXP (y
, 0)) != REG
2388 && GET_CODE (XEXP (y
, 0)) != MATCH_SCRATCH
))
2392 if (i
!= XVECLEN (x
, 0))
2395 struct decision_head clobber_head
;
2397 /* Build a similar insn without the clobbers. */
2399 new = XVECEXP (x
, 0, 0);
2404 new = rtx_alloc (PARALLEL
);
2405 XVEC (new, 0) = rtvec_alloc (i
);
2406 for (j
= i
- 1; j
>= 0; j
--)
2407 XVECEXP (new, 0, j
) = XVECEXP (x
, 0, j
);
2411 memset (&clobber_head
, 0, sizeof(clobber_head
));
2412 last
= add_to_sequence (new, &clobber_head
, "", type
, 1);
2414 /* Find the end of the test chain on the last node. */
2415 for (test
= last
->tests
; test
->next
; test
= test
->next
)
2418 /* We definitely have a new test to add -- create a new
2420 place
= &test
->next
;
2421 if (test
->type
== DT_accept_op
)
2423 last
= new_decision ("", &last
->success
);
2424 place
= &last
->tests
;
2429 test
= new_decision_test (DT_c_test
, &place
);
2430 test
->u
.c_test
= c_test
;
2433 test
= new_decision_test (DT_accept_insn
, &place
);
2434 test
->u
.insn
.code_number
= next_insn_code
;
2435 test
->u
.insn
.lineno
= pattern_lineno
;
2436 test
->u
.insn
.num_clobbers_to_add
= XVECLEN (x
, 0) - i
;
2438 merge_trees (&head
, &clobber_head
);
2444 /* Define the subroutine we will call below and emit in genemit. */
2445 printf ("extern rtx gen_split_%d PARAMS ((rtx *));\n", next_insn_code
);
2449 /* Define the subroutine we will call below and emit in genemit. */
2450 printf ("extern rtx gen_peephole2_%d PARAMS ((rtx, rtx *));\n",
2460 process_tree (head
, subroutine_type
)
2461 struct decision_head
*head
;
2462 enum routine_type subroutine_type
;
2464 if (head
->first
== NULL
)
2466 /* We can elide peephole2_insns, but not recog or split_insns. */
2467 if (subroutine_type
== PEEPHOLE2
)
2472 factor_tests (head
);
2474 next_subroutine_number
= 0;
2475 break_out_subroutines (head
, 1);
2476 find_afterward (head
, NULL
);
2478 /* We run this after find_afterward, because find_afterward needs
2479 the redundant DT_mode tests on predicates to determine whether
2480 two tests can both be true or not. */
2481 simplify_tests(head
);
2483 write_subroutines (head
, subroutine_type
);
2486 write_subroutine (head
, subroutine_type
);
2489 extern int main
PARAMS ((int, char **));
2497 struct decision_head recog_tree
, split_tree
, peephole2_tree
, h
;
2501 progname
= "genrecog";
2502 obstack_init (rtl_obstack
);
2504 memset (&recog_tree
, 0, sizeof recog_tree
);
2505 memset (&split_tree
, 0, sizeof split_tree
);
2506 memset (&peephole2_tree
, 0, sizeof peephole2_tree
);
2509 fatal ("No input file name.");
2511 infile
= fopen (argv
[1], "r");
2515 return FATAL_EXIT_CODE
;
2517 read_rtx_filename
= argv
[1];
2524 /* Read the machine description. */
2528 c
= read_skip_spaces (infile
);
2532 pattern_lineno
= read_rtx_lineno
;
2534 desc
= read_rtx (infile
);
2535 if (GET_CODE (desc
) == DEFINE_INSN
)
2537 h
= make_insn_sequence (desc
, RECOG
);
2538 merge_trees (&recog_tree
, &h
);
2540 else if (GET_CODE (desc
) == DEFINE_SPLIT
)
2542 h
= make_insn_sequence (desc
, SPLIT
);
2543 merge_trees (&split_tree
, &h
);
2545 else if (GET_CODE (desc
) == DEFINE_PEEPHOLE2
)
2547 h
= make_insn_sequence (desc
, PEEPHOLE2
);
2548 merge_trees (&peephole2_tree
, &h
);
2551 if (GET_CODE (desc
) == DEFINE_PEEPHOLE
2552 || GET_CODE (desc
) == DEFINE_EXPAND
)
2558 return FATAL_EXIT_CODE
;
2562 process_tree (&recog_tree
, RECOG
);
2563 process_tree (&split_tree
, SPLIT
);
2564 process_tree (&peephole2_tree
, PEEPHOLE2
);
2567 return (ferror (stdout
) != 0 ? FATAL_EXIT_CODE
: SUCCESS_EXIT_CODE
);
2570 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2572 get_insn_name (code
)
2575 if (code
< insn_name_ptr_size
)
2576 return insn_name_ptr
[code
];
2582 record_insn_name (code
, name
)
2586 static const char *last_real_name
= "insn";
2587 static int last_real_code
= 0;
2590 if (insn_name_ptr_size
<= code
)
2593 new_size
= (insn_name_ptr_size
? insn_name_ptr_size
* 2 : 512);
2595 (char **) xrealloc (insn_name_ptr
, sizeof(char *) * new_size
);
2596 memset (insn_name_ptr
+ insn_name_ptr_size
, 0,
2597 sizeof(char *) * (new_size
- insn_name_ptr_size
));
2598 insn_name_ptr_size
= new_size
;
2601 if (!name
|| name
[0] == '\0')
2603 new = xmalloc (strlen (last_real_name
) + 10);
2604 sprintf (new, "%s+%d", last_real_name
, code
- last_real_code
);
2608 last_real_name
= new = xstrdup (name
);
2609 last_real_code
= code
;
2612 insn_name_ptr
[code
] = new;
2619 register size_t len
= strlen (input
) + 1;
2620 register char *output
= xmalloc (len
);
2621 memcpy (output
, input
, len
);
2626 xrealloc (old
, size
)
2632 ptr
= (PTR
) realloc (old
, size
);
2634 ptr
= (PTR
) malloc (size
);
2636 fatal ("virtual memory exhausted");
2644 register PTR val
= (PTR
) malloc (size
);
2647 fatal ("virtual memory exhausted");
2652 debug_decision_2 (test
)
2653 struct decision_test
*test
;
2658 fprintf (stderr
, "mode=%s", GET_MODE_NAME (test
->u
.mode
));
2661 fprintf (stderr
, "code=%s", GET_RTX_NAME (test
->u
.code
));
2664 fprintf (stderr
, "veclen=%d", test
->u
.veclen
);
2666 case DT_elt_zero_int
:
2667 fprintf (stderr
, "elt0_i=%d", (int) test
->u
.intval
);
2669 case DT_elt_one_int
:
2670 fprintf (stderr
, "elt1_i=%d", (int) test
->u
.intval
);
2672 case DT_elt_zero_wide
:
2673 fprintf (stderr
, "elt0_w=");
2674 fprintf (stderr
, HOST_WIDE_INT_PRINT_DEC
, test
->u
.intval
);
2677 fprintf (stderr
, "dup=%d", test
->u
.dup
);
2680 fprintf (stderr
, "pred=(%s,%s)",
2681 test
->u
.pred
.name
, GET_MODE_NAME(test
->u
.pred
.mode
));
2686 strncpy (sub
, test
->u
.c_test
, sizeof(sub
));
2687 memcpy (sub
+16, "...", 4);
2688 fprintf (stderr
, "c_test=\"%s\"", sub
);
2692 fprintf (stderr
, "A_op=%d", test
->u
.opno
);
2694 case DT_accept_insn
:
2695 fprintf (stderr
, "A_insn=(%d,%d)",
2696 test
->u
.insn
.code_number
, test
->u
.insn
.num_clobbers_to_add
);
2705 debug_decision_1 (d
, indent
)
2710 struct decision_test
*test
;
2714 for (i
= 0; i
< indent
; ++i
)
2716 fputs ("(nil)\n", stderr
);
2720 for (i
= 0; i
< indent
; ++i
)
2727 debug_decision_2 (test
);
2728 while ((test
= test
->next
) != NULL
)
2730 fputs (" + ", stderr
);
2731 debug_decision_2 (test
);
2734 fprintf (stderr
, "} %d n %d a %d\n", d
->number
,
2735 (d
->next
? d
->next
->number
: -1),
2736 (d
->afterward
? d
->afterward
->number
: -1));
2740 debug_decision_0 (d
, indent
, maxdepth
)
2742 int indent
, maxdepth
;
2751 for (i
= 0; i
< indent
; ++i
)
2753 fputs ("(nil)\n", stderr
);
2757 debug_decision_1 (d
, indent
);
2758 for (n
= d
->success
.first
; n
; n
= n
->next
)
2759 debug_decision_0 (n
, indent
+ 2, maxdepth
- 1);
2766 debug_decision_0 (d
, 0, 1000000);
2770 debug_decision_list (d
)
2775 debug_decision_0 (d
, 0, 0);