]> gcc.gnu.org Git - gcc.git/blob - gcc/genrecog.c
reload.c: PROTO -> PARAMS.
[gcc.git] / gcc / genrecog.c
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 88, 92-95, 97-99, 2000 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This program is used to produce insn-recog.c, which contains a
23 function called `recog' plus its subroutines. These functions
24 contain a decision tree that recognizes whether an rtx, the
25 argument given to recog, is a valid instruction.
26
27 recog returns -1 if the rtx is not valid. If the rtx is valid,
28 recog returns a nonnegative number which is the insn code number
29 for the pattern that matched. This is the same as the order in the
30 machine description of the entry that matched. This number can be
31 used as an index into various insn_* tables, such as insn_template,
32 insn_outfun, and insn_n_operands (found in insn-output.c).
33
34 The third argument to recog is an optional pointer to an int. If
35 present, recog will accept a pattern if it matches except for
36 missing CLOBBER expressions at the end. In that case, the value
37 pointed to by the optional pointer will be set to the number of
38 CLOBBERs that need to be added (it should be initialized to zero by
39 the caller). If it is set nonzero, the caller should allocate a
40 PARALLEL of the appropriate size, copy the initial entries, and
41 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
42
43 This program also generates the function `split_insns', which
44 returns 0 if the rtl could not be split, or it returns the split
45 rtl in a SEQUENCE.
46
47 This program also generates the function `peephole2_insns', which
48 returns 0 if the rtl could not be matched. If there was a match,
49 the new rtl is returned in a SEQUENCE, and LAST_INSN will point
50 to the last recognized insn in the old sequence. */
51
52 #include "hconfig.h"
53 #include "system.h"
54 #include "rtl.h"
55 #include "obstack.h"
56 #include "errors.h"
57
58 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
59 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
60
61 static struct obstack obstack;
62 struct obstack *rtl_obstack = &obstack;
63
64 #define obstack_chunk_alloc xmalloc
65 #define obstack_chunk_free free
66
67 /* Holds an array of names indexed by insn_code_number. */
68 static char **insn_name_ptr = 0;
69 static int insn_name_ptr_size = 0;
70
71 /* A listhead of decision trees. The alternatives to a node are kept
72 in a doublely-linked list so we can easily add nodes to the proper
73 place when merging. */
74
75 struct decision_head
76 {
77 struct decision *first;
78 struct decision *last;
79 };
80
81 /* A single test. The two accept types aren't tests per-se, but
82 their equality (or lack thereof) does affect tree merging so
83 it is convenient to keep them here. */
84
85 struct decision_test
86 {
87 /* A linked list through the tests attached to a node. */
88 struct decision_test *next;
89
90 /* These types are roughly in the order in which we'd like to test them. */
91 enum decision_type {
92 DT_mode, DT_code, DT_veclen,
93 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide,
94 DT_dup, DT_pred, DT_c_test,
95 DT_accept_op, DT_accept_insn
96 } type;
97
98 union
99 {
100 enum machine_mode mode; /* Machine mode of node. */
101 RTX_CODE code; /* Code to test. */
102
103 struct
104 {
105 const char *name; /* Predicate to call. */
106 int index; /* Index into `preds' or -1. */
107 enum machine_mode mode; /* Machine mode for node. */
108 } pred;
109
110 const char *c_test; /* Additional test to perform. */
111 int veclen; /* Length of vector. */
112 int dup; /* Number of operand to compare against. */
113 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
114 int opno; /* Operand number matched. */
115
116 struct {
117 int code_number; /* Insn number matched. */
118 int lineno; /* Line number of the insn. */
119 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
120 } insn;
121 } u;
122 };
123
124 /* Data structure for decision tree for recognizing legitimate insns. */
125
126 struct decision
127 {
128 struct decision_head success; /* Nodes to test on success. */
129 struct decision *next; /* Node to test on failure. */
130 struct decision *prev; /* Node whose failure tests us. */
131 struct decision *afterward; /* Node to test on success,
132 but failure of successor nodes. */
133
134 const char *position; /* String denoting position in pattern. */
135
136 struct decision_test *tests; /* The tests for this node. */
137
138 int number; /* Node number, used for labels */
139 int subroutine_number; /* Number of subroutine this node starts */
140 int need_label; /* Label needs to be output. */
141 };
142
143 #define SUBROUTINE_THRESHOLD 100
144
145 static int next_subroutine_number;
146
147 /* We can write three types of subroutines: One for insn recognition,
148 one to split insns, and one for peephole-type optimizations. This
149 defines which type is being written. */
150
151 enum routine_type {
152 RECOG, SPLIT, PEEPHOLE2
153 };
154
155 #define IS_SPLIT(X) ((X) != RECOG)
156
157 /* Next available node number for tree nodes. */
158
159 static int next_number;
160
161 /* Next number to use as an insn_code. */
162
163 static int next_insn_code;
164
165 /* Similar, but counts all expressions in the MD file; used for
166 error messages. */
167
168 static int next_index;
169
170 /* Record the highest depth we ever have so we know how many variables to
171 allocate in each subroutine we make. */
172
173 static int max_depth;
174
175 /* The line number of the start of the pattern currently being processed. */
176 static int pattern_lineno;
177
178 /* Count of errors. */
179 static int error_count;
180 \f
181 /* This table contains a list of the rtl codes that can possibly match a
182 predicate defined in recog.c. The function `maybe_both_true' uses it to
183 deduce that there are no expressions that can be matches by certain pairs
184 of tree nodes. Also, if a predicate can match only one code, we can
185 hardwire that code into the node testing the predicate. */
186
187 static struct pred_table
188 {
189 const char *name;
190 RTX_CODE codes[NUM_RTX_CODE];
191 } preds[] = {
192 {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
193 LABEL_REF, SUBREG, REG, MEM}},
194 #ifdef PREDICATE_CODES
195 PREDICATE_CODES
196 #endif
197 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
198 LABEL_REF, SUBREG, REG, MEM, PLUS, MINUS, MULT}},
199 {"register_operand", {SUBREG, REG}},
200 {"pmode_register_operand", {SUBREG, REG}},
201 {"scratch_operand", {SCRATCH, REG}},
202 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
203 LABEL_REF}},
204 {"const_int_operand", {CONST_INT}},
205 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
206 {"nonimmediate_operand", {SUBREG, REG, MEM}},
207 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
208 LABEL_REF, SUBREG, REG}},
209 {"push_operand", {MEM}},
210 {"pop_operand", {MEM}},
211 {"memory_operand", {SUBREG, MEM}},
212 {"indirect_operand", {SUBREG, MEM}},
213 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU}},
214 {"mode_independent_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
215 LABEL_REF, SUBREG, REG, MEM}}
216 };
217
218 #define NUM_KNOWN_PREDS (sizeof preds / sizeof preds[0])
219
220 static const char * special_mode_pred_table[] = {
221 #ifdef SPECIAL_MODE_PREDICATES
222 SPECIAL_MODE_PREDICATES
223 #endif
224 "pmode_register_operand"
225 };
226
227 #define NUM_SPECIAL_MODE_PREDS \
228 (sizeof (special_mode_pred_table) / sizeof (special_mode_pred_table[0]))
229
230 static void message_with_line
231 PARAMS ((int, const char *, ...)) ATTRIBUTE_PRINTF_2;
232
233 static struct decision *new_decision
234 PARAMS ((const char *, struct decision_head *));
235 static struct decision_test *new_decision_test
236 PARAMS ((enum decision_type, struct decision_test ***));
237 static rtx find_operand
238 PARAMS ((rtx, int));
239 static void validate_pattern
240 PARAMS ((rtx, rtx, rtx));
241 static struct decision *add_to_sequence
242 PARAMS ((rtx, struct decision_head *, const char *, enum routine_type, int));
243
244 static int maybe_both_true_2
245 PARAMS ((struct decision_test *, struct decision_test *));
246 static int maybe_both_true_1
247 PARAMS ((struct decision_test *, struct decision_test *));
248 static int maybe_both_true
249 PARAMS ((struct decision *, struct decision *, int));
250
251 static int nodes_identical_1
252 PARAMS ((struct decision_test *, struct decision_test *));
253 static int nodes_identical
254 PARAMS ((struct decision *, struct decision *));
255 static void merge_accept_insn
256 PARAMS ((struct decision *, struct decision *));
257 static void merge_trees
258 PARAMS ((struct decision_head *, struct decision_head *));
259
260 static void factor_tests
261 PARAMS ((struct decision_head *));
262 static void simplify_tests
263 PARAMS ((struct decision_head *));
264 static int break_out_subroutines
265 PARAMS ((struct decision_head *, int));
266 static void find_afterward
267 PARAMS ((struct decision_head *, struct decision *));
268
269 static void change_state
270 PARAMS ((const char *, const char *, struct decision *, const char *));
271 static void print_code
272 PARAMS ((enum rtx_code));
273 static void write_afterward
274 PARAMS ((struct decision *, struct decision *, const char *));
275 static struct decision *write_switch
276 PARAMS ((struct decision *, int));
277 static void write_cond
278 PARAMS ((struct decision_test *, int, enum routine_type));
279 static void write_action
280 PARAMS ((struct decision_test *, int, int, struct decision *,
281 enum routine_type));
282 static int is_unconditional
283 PARAMS ((struct decision_test *, enum routine_type));
284 static int write_node
285 PARAMS ((struct decision *, int, enum routine_type));
286 static void write_tree_1
287 PARAMS ((struct decision_head *, int, enum routine_type));
288 static void write_tree
289 PARAMS ((struct decision_head *, const char *, enum routine_type, int));
290 static void write_subroutine
291 PARAMS ((struct decision_head *, enum routine_type));
292 static void write_subroutines
293 PARAMS ((struct decision_head *, enum routine_type));
294 static void write_header
295 PARAMS ((void));
296
297 static struct decision_head make_insn_sequence
298 PARAMS ((rtx, enum routine_type));
299 static void process_tree
300 PARAMS ((struct decision_head *, enum routine_type));
301
302 static void record_insn_name
303 PARAMS ((int, const char *));
304
305 static void debug_decision_0
306 PARAMS ((struct decision *, int, int));
307 static void debug_decision_1
308 PARAMS ((struct decision *, int));
309 static void debug_decision_2
310 PARAMS ((struct decision_test *));
311 extern void debug_decision
312 PARAMS ((struct decision *));
313 extern void debug_decision_list
314 PARAMS ((struct decision *));
315 \f
316 static void
317 message_with_line VPARAMS ((int lineno, const char *msg, ...))
318 {
319 #ifndef ANSI_PROTOTYPES
320 int lineno;
321 const char *msg;
322 #endif
323 va_list ap;
324
325 VA_START (ap, msg);
326
327 #ifndef ANSI_PROTOTYPES
328 lineno = va_arg (ap, int);
329 msg = va_arg (ap, const char *);
330 #endif
331
332 fprintf (stderr, "%s:%d: ", read_rtx_filename, lineno);
333 vfprintf (stderr, msg, ap);
334 fputc ('\n', stderr);
335
336 va_end (ap);
337 }
338 \f
339 /* Create a new node in sequence after LAST. */
340
341 static struct decision *
342 new_decision (position, last)
343 const char *position;
344 struct decision_head *last;
345 {
346 register struct decision *new
347 = (struct decision *) xmalloc (sizeof (struct decision));
348
349 memset (new, 0, sizeof (*new));
350 new->success = *last;
351 new->position = xstrdup (position);
352 new->number = next_number++;
353
354 last->first = last->last = new;
355 return new;
356 }
357
358 /* Create a new test and link it in at PLACE. */
359
360 static struct decision_test *
361 new_decision_test (type, pplace)
362 enum decision_type type;
363 struct decision_test ***pplace;
364 {
365 struct decision_test **place = *pplace;
366 struct decision_test *test;
367
368 test = (struct decision_test *) xmalloc (sizeof (*test));
369 test->next = *place;
370 test->type = type;
371 *place = test;
372
373 place = &test->next;
374 *pplace = place;
375
376 return test;
377 }
378
379 /* Search for and return operand N. */
380
381 static rtx
382 find_operand (pattern, n)
383 rtx pattern;
384 int n;
385 {
386 const char *fmt;
387 RTX_CODE code;
388 int i, j, len;
389 rtx r;
390
391 code = GET_CODE (pattern);
392 if ((code == MATCH_SCRATCH
393 || code == MATCH_INSN
394 || code == MATCH_OPERAND
395 || code == MATCH_OPERATOR
396 || code == MATCH_PARALLEL)
397 && XINT (pattern, 0) == n)
398 return pattern;
399
400 fmt = GET_RTX_FORMAT (code);
401 len = GET_RTX_LENGTH (code);
402 for (i = 0; i < len; i++)
403 {
404 switch (fmt[i])
405 {
406 case 'e': case 'u':
407 if ((r = find_operand (XEXP (pattern, i), n)) != NULL_RTX)
408 return r;
409 break;
410
411 case 'E':
412 for (j = 0; j < XVECLEN (pattern, i); j++)
413 if ((r = find_operand (XVECEXP (pattern, i, j), n)) != NULL_RTX)
414 return r;
415 break;
416
417 case 'i': case 'w': case '0': case 's':
418 break;
419
420 default:
421 abort ();
422 }
423 }
424
425 return NULL;
426 }
427
428 /* Check for various errors in patterns. SET is nonnull for a destination,
429 and is the complete set pattern. */
430
431 static void
432 validate_pattern (pattern, insn, set)
433 rtx pattern;
434 rtx insn;
435 rtx set;
436 {
437 const char *fmt;
438 RTX_CODE code;
439 size_t i, len;
440 int j;
441
442 code = GET_CODE (pattern);
443 switch (code)
444 {
445 case MATCH_SCRATCH:
446 return;
447
448 case MATCH_INSN:
449 case MATCH_OPERAND:
450 case MATCH_OPERATOR:
451 {
452 const char *pred_name = XSTR (pattern, 1);
453 int allows_non_lvalue = 1, allows_non_const = 1;
454 int special_mode_pred = 0;
455 const char *c_test;
456
457 if (GET_CODE (insn) == DEFINE_INSN)
458 c_test = XSTR (insn, 2);
459 else
460 c_test = XSTR (insn, 1);
461
462 if (pred_name[0] != 0)
463 {
464 for (i = 0; i < NUM_KNOWN_PREDS; i++)
465 if (! strcmp (preds[i].name, pred_name))
466 break;
467
468 if (i < NUM_KNOWN_PREDS)
469 {
470 int j;
471
472 allows_non_lvalue = allows_non_const = 0;
473 for (j = 0; preds[i].codes[j] != 0; j++)
474 {
475 RTX_CODE c = preds[i].codes[j];
476 if (c != LABEL_REF
477 && c != SYMBOL_REF
478 && c != CONST_INT
479 && c != CONST_DOUBLE
480 && c != CONST
481 && c != HIGH
482 && c != CONSTANT_P_RTX)
483 allows_non_const = 1;
484
485 if (c != REG
486 && c != SUBREG
487 && c != MEM
488 && c != CONCAT
489 && c != PARALLEL
490 && c != STRICT_LOW_PART)
491 allows_non_lvalue = 1;
492 }
493 }
494 else
495 {
496 #ifdef PREDICATE_CODES
497 /* If the port has a list of the predicates it uses but
498 omits one, warn. */
499 message_with_line (pattern_lineno,
500 "warning: `%s' not in PREDICATE_CODES",
501 pred_name);
502 #endif
503 }
504
505 for (i = 0; i < NUM_SPECIAL_MODE_PREDS; ++i)
506 if (strcmp (pred_name, special_mode_pred_table[i]) == 0)
507 {
508 special_mode_pred = 1;
509 break;
510 }
511 }
512
513 /* A MATCH_OPERAND that is a SET should have an output reload. */
514 if (set
515 && code == MATCH_OPERAND
516 && XSTR (pattern, 2)[0] != '\0'
517 && XSTR (pattern, 2)[0] != '='
518 && XSTR (pattern, 2)[0] != '+')
519 {
520 message_with_line (pattern_lineno,
521 "operand %d missing output reload",
522 XINT (pattern, 0));
523 error_count++;
524 }
525
526 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
527 while not likely to occur at runtime, results in less efficient
528 code from insn-recog.c. */
529 if (set
530 && pred_name[0] != '\0'
531 && allows_non_lvalue)
532 {
533 message_with_line (pattern_lineno,
534 "warning: destination operand %d allows non-lvalue",
535 XINT (pattern, 0));
536 }
537
538 /* A modeless MATCH_OPERAND can be handy when we can
539 check for multiple modes in the c_test. In most other cases,
540 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
541 and PEEP2 can FAIL within the output pattern. Exclude
542 address_operand, since its mode is related to the mode of
543 the memory not the operand. Exclude the SET_DEST of a call
544 instruction, as that is a common idiom. */
545
546 if (GET_MODE (pattern) == VOIDmode
547 && code == MATCH_OPERAND
548 && GET_CODE (insn) == DEFINE_INSN
549 && allows_non_const
550 && ! special_mode_pred
551 && pred_name[0] != '\0'
552 && strcmp (pred_name, "address_operand") != 0
553 && strstr (c_test, "operands") == NULL
554 && ! (set
555 && GET_CODE (set) == SET
556 && GET_CODE (SET_SRC (set)) == CALL))
557 {
558 message_with_line (pattern_lineno,
559 "warning: operand %d missing mode?",
560 XINT (pattern, 0));
561 }
562 return;
563 }
564
565 case SET:
566 {
567 enum machine_mode dmode, smode;
568 rtx dest, src;
569
570 dest = SET_DEST (pattern);
571 src = SET_SRC (pattern);
572
573 /* Find the referant for a DUP. */
574
575 if (GET_CODE (dest) == MATCH_DUP
576 || GET_CODE (dest) == MATCH_OP_DUP
577 || GET_CODE (dest) == MATCH_PAR_DUP)
578 dest = find_operand (insn, XINT (dest, 0));
579
580 if (GET_CODE (src) == MATCH_DUP
581 || GET_CODE (src) == MATCH_OP_DUP
582 || GET_CODE (src) == MATCH_PAR_DUP)
583 src = find_operand (insn, XINT (src, 0));
584
585 /* STRICT_LOW_PART is a wrapper. Its argument is the real
586 destination, and it's mode should match the source. */
587 if (GET_CODE (dest) == STRICT_LOW_PART)
588 dest = XEXP (dest, 0);
589
590 dmode = GET_MODE (dest);
591 smode = GET_MODE (src);
592
593 /* The mode of an ADDRESS_OPERAND is the mode of the memory
594 reference, not the mode of the address. */
595 if (GET_CODE (src) == MATCH_OPERAND
596 && ! strcmp (XSTR (src, 1), "address_operand"))
597 ;
598
599 /* The operands of a SET must have the same mode unless one
600 is VOIDmode. */
601 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
602 {
603 message_with_line (pattern_lineno,
604 "mode mismatch in set: %smode vs %smode",
605 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
606 error_count++;
607 }
608
609 /* If only one of the operands is VOIDmode, and PC or CC0 is
610 not involved, it's probably a mistake. */
611 else if (dmode != smode
612 && GET_CODE (dest) != PC
613 && GET_CODE (dest) != CC0
614 && GET_CODE (src) != PC
615 && GET_CODE (src) != CC0
616 && GET_CODE (src) != CONST_INT)
617 {
618 const char *which;
619 which = (dmode == VOIDmode ? "destination" : "source");
620 message_with_line (pattern_lineno,
621 "warning: %s missing a mode?", which);
622 }
623
624 if (dest != SET_DEST (pattern))
625 validate_pattern (dest, insn, pattern);
626 validate_pattern (SET_DEST (pattern), insn, pattern);
627 validate_pattern (SET_SRC (pattern), insn, NULL_RTX);
628 return;
629 }
630
631 case CLOBBER:
632 validate_pattern (SET_DEST (pattern), insn, pattern);
633 return;
634
635 case LABEL_REF:
636 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
637 {
638 message_with_line (pattern_lineno,
639 "operand to label_ref %smode not VOIDmode",
640 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
641 error_count++;
642 }
643 break;
644
645 default:
646 break;
647 }
648
649 fmt = GET_RTX_FORMAT (code);
650 len = GET_RTX_LENGTH (code);
651 for (i = 0; i < len; i++)
652 {
653 switch (fmt[i])
654 {
655 case 'e': case 'u':
656 validate_pattern (XEXP (pattern, i), insn, NULL_RTX);
657 break;
658
659 case 'E':
660 for (j = 0; j < XVECLEN (pattern, i); j++)
661 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX);
662 break;
663
664 case 'i': case 'w': case '0': case 's':
665 break;
666
667 default:
668 abort ();
669 }
670 }
671 }
672
673 /* Create a chain of nodes to verify that an rtl expression matches
674 PATTERN.
675
676 LAST is a pointer to the listhead in the previous node in the chain (or
677 in the calling function, for the first node).
678
679 POSITION is the string representing the current position in the insn.
680
681 INSN_TYPE is the type of insn for which we are emitting code.
682
683 A pointer to the final node in the chain is returned. */
684
685 static struct decision *
686 add_to_sequence (pattern, last, position, insn_type, top)
687 rtx pattern;
688 struct decision_head *last;
689 const char *position;
690 enum routine_type insn_type;
691 int top;
692 {
693 RTX_CODE code;
694 struct decision *this, *sub;
695 struct decision_test *test;
696 struct decision_test **place;
697 char *subpos;
698 register size_t i;
699 register const char *fmt;
700 int depth = strlen (position);
701 int len;
702 enum machine_mode mode;
703
704 if (depth > max_depth)
705 max_depth = depth;
706
707 subpos = (char *) alloca (depth + 2);
708 strcpy (subpos, position);
709 subpos[depth + 1] = 0;
710
711 sub = this = new_decision (position, last);
712 place = &this->tests;
713
714 restart:
715 mode = GET_MODE (pattern);
716 code = GET_CODE (pattern);
717
718 switch (code)
719 {
720 case PARALLEL:
721 /* Toplevel peephole pattern. */
722 if (insn_type == PEEPHOLE2 && top)
723 {
724 /* We don't need the node we just created -- unlink it. */
725 last->first = last->last = NULL;
726
727 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
728 {
729 /* Which insn we're looking at is represented by A-Z. We don't
730 ever use 'A', however; it is always implied. */
731
732 subpos[depth] = (i > 0 ? 'A' + i : 0);
733 sub = add_to_sequence (XVECEXP (pattern, 0, i),
734 last, subpos, insn_type, 0);
735 last = &sub->success;
736 }
737 return sub;
738 }
739
740 /* Else nothing special. */
741 break;
742
743 case MATCH_OPERAND:
744 case MATCH_SCRATCH:
745 case MATCH_OPERATOR:
746 case MATCH_PARALLEL:
747 case MATCH_INSN:
748 {
749 const char *pred_name;
750 RTX_CODE was_code = code;
751 int allows_const_int = 1;
752
753 if (code == MATCH_SCRATCH)
754 {
755 pred_name = "scratch_operand";
756 code = UNKNOWN;
757 }
758 else
759 {
760 pred_name = XSTR (pattern, 1);
761 if (code == MATCH_PARALLEL)
762 code = PARALLEL;
763 else
764 code = UNKNOWN;
765 }
766
767 /* We know exactly what const_int_operand matches -- any CONST_INT. */
768 if (strcmp ("const_int_operand", pred_name) == 0)
769 {
770 code = CONST_INT;
771 mode = VOIDmode;
772 }
773 else if (pred_name[0] != 0)
774 {
775 test = new_decision_test (DT_pred, &place);
776 test->u.pred.name = pred_name;
777 test->u.pred.mode = mode;
778
779 /* See if we know about this predicate and save its number. If
780 we do, and it only accepts one code, note that fact. The
781 predicate `const_int_operand' only tests for a CONST_INT, so
782 if we do so we can avoid calling it at all.
783
784 Finally, if we know that the predicate does not allow
785 CONST_INT, we know that the only way the predicate can match
786 is if the modes match (here we use the kludge of relying on
787 the fact that "address_operand" accepts CONST_INT; otherwise,
788 it would have to be a special case), so we can test the mode
789 (but we need not). This fact should considerably simplify the
790 generated code. */
791
792 for (i = 0; i < NUM_KNOWN_PREDS; i++)
793 if (! strcmp (preds[i].name, pred_name))
794 break;
795
796 if (i < NUM_KNOWN_PREDS)
797 {
798 int j;
799
800 test->u.pred.index = i;
801
802 if (preds[i].codes[1] == 0 && code == UNKNOWN)
803 code = preds[i].codes[0];
804
805 allows_const_int = 0;
806 for (j = 0; preds[i].codes[j] != 0; j++)
807 if (preds[i].codes[j] == CONST_INT)
808 {
809 allows_const_int = 1;
810 break;
811 }
812 }
813 else
814 test->u.pred.index = -1;
815 }
816
817 /* Can't enforce a mode if we allow const_int. */
818 if (allows_const_int)
819 mode = VOIDmode;
820
821 /* Accept the operand, ie. record it in `operands'. */
822 test = new_decision_test (DT_accept_op, &place);
823 test->u.opno = XINT (pattern, 0);
824
825 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
826 {
827 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
828 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
829 {
830 subpos[depth] = i + base;
831 sub = add_to_sequence (XVECEXP (pattern, 2, i),
832 &sub->success, subpos, insn_type, 0);
833 }
834 }
835 goto fini;
836 }
837
838 case MATCH_OP_DUP:
839 code = UNKNOWN;
840
841 test = new_decision_test (DT_dup, &place);
842 test->u.dup = XINT (pattern, 0);
843
844 test = new_decision_test (DT_accept_op, &place);
845 test->u.opno = XINT (pattern, 0);
846
847 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
848 {
849 subpos[depth] = i + '0';
850 sub = add_to_sequence (XVECEXP (pattern, 1, i),
851 &sub->success, subpos, insn_type, 0);
852 }
853 goto fini;
854
855 case MATCH_DUP:
856 case MATCH_PAR_DUP:
857 code = UNKNOWN;
858
859 test = new_decision_test (DT_dup, &place);
860 test->u.dup = XINT (pattern, 0);
861 goto fini;
862
863 case ADDRESS:
864 pattern = XEXP (pattern, 0);
865 goto restart;
866
867 default:
868 break;
869 }
870
871 fmt = GET_RTX_FORMAT (code);
872 len = GET_RTX_LENGTH (code);
873
874 /* Do tests against the current node first. */
875 for (i = 0; i < (size_t) len; i++)
876 {
877 if (fmt[i] == 'i')
878 {
879 if (i == 0)
880 {
881 test = new_decision_test (DT_elt_zero_int, &place);
882 test->u.intval = XINT (pattern, i);
883 }
884 else if (i == 1)
885 {
886 test = new_decision_test (DT_elt_one_int, &place);
887 test->u.intval = XINT (pattern, i);
888 }
889 else
890 abort ();
891 }
892 else if (fmt[i] == 'w')
893 {
894 if (i != 0)
895 abort ();
896
897 test = new_decision_test (DT_elt_zero_wide, &place);
898 test->u.intval = XWINT (pattern, i);
899 }
900 else if (fmt[i] == 'E')
901 {
902 if (i != 0)
903 abort ();
904
905 test = new_decision_test (DT_veclen, &place);
906 test->u.veclen = XVECLEN (pattern, i);
907 }
908 }
909
910 /* Now test our sub-patterns. */
911 for (i = 0; i < (size_t) len; i++)
912 {
913 switch (fmt[i])
914 {
915 case 'e': case 'u':
916 subpos[depth] = '0' + i;
917 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
918 subpos, insn_type, 0);
919 break;
920
921 case 'E':
922 {
923 register int j;
924 for (j = 0; j < XVECLEN (pattern, i); j++)
925 {
926 subpos[depth] = 'a' + j;
927 sub = add_to_sequence (XVECEXP (pattern, i, j),
928 &sub->success, subpos, insn_type, 0);
929 }
930 break;
931 }
932
933 case 'i': case 'w':
934 /* Handled above. */
935 break;
936 case '0':
937 break;
938
939 default:
940 abort ();
941 }
942 }
943
944 fini:
945 /* Insert nodes testing mode and code, if they're still relevant,
946 before any of the nodes we may have added above. */
947 if (code != UNKNOWN)
948 {
949 place = &this->tests;
950 test = new_decision_test (DT_code, &place);
951 test->u.code = code;
952 }
953
954 if (mode != VOIDmode)
955 {
956 place = &this->tests;
957 test = new_decision_test (DT_mode, &place);
958 test->u.mode = mode;
959 }
960
961 /* If we didn't insert any tests or accept nodes, hork. */
962 if (this->tests == NULL)
963 abort ();
964
965 return sub;
966 }
967 \f
968 /* A subroutine of maybe_both_true; examines only one test.
969 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
970
971 static int
972 maybe_both_true_2 (d1, d2)
973 struct decision_test *d1, *d2;
974 {
975 if (d1->type == d2->type)
976 {
977 switch (d1->type)
978 {
979 case DT_mode:
980 return d1->u.mode == d2->u.mode;
981
982 case DT_code:
983 return d1->u.code == d2->u.code;
984
985 case DT_veclen:
986 return d1->u.veclen == d2->u.veclen;
987
988 case DT_elt_zero_int:
989 case DT_elt_one_int:
990 case DT_elt_zero_wide:
991 return d1->u.intval == d2->u.intval;
992
993 default:
994 break;
995 }
996 }
997
998 /* If either has a predicate that we know something about, set
999 things up so that D1 is the one that always has a known
1000 predicate. Then see if they have any codes in common. */
1001
1002 if (d1->type == DT_pred || d2->type == DT_pred)
1003 {
1004 if (d2->type == DT_pred)
1005 {
1006 struct decision_test *tmp;
1007 tmp = d1, d1 = d2, d2 = tmp;
1008 }
1009
1010 /* If D2 tests a mode, see if it matches D1. */
1011 if (d1->u.pred.mode != VOIDmode)
1012 {
1013 if (d2->type == DT_mode)
1014 {
1015 if (d1->u.pred.mode != d2->u.mode
1016 /* The mode of an address_operand predicate is the
1017 mode of the memory, not the operand. It can only
1018 be used for testing the predicate, so we must
1019 ignore it here. */
1020 && strcmp (d1->u.pred.name, "address_operand") != 0)
1021 return 0;
1022 }
1023 /* Don't check two predicate modes here, because if both predicates
1024 accept CONST_INT, then both can still be true even if the modes
1025 are different. If they don't accept CONST_INT, there will be a
1026 separate DT_mode that will make maybe_both_true_1 return 0. */
1027 }
1028
1029 if (d1->u.pred.index >= 0)
1030 {
1031 /* If D2 tests a code, see if it is in the list of valid
1032 codes for D1's predicate. */
1033 if (d2->type == DT_code)
1034 {
1035 const RTX_CODE *c = &preds[d1->u.pred.index].codes[0];
1036 while (*c != 0)
1037 {
1038 if (*c == d2->u.code)
1039 break;
1040 ++c;
1041 }
1042 if (*c == 0)
1043 return 0;
1044 }
1045
1046 /* Otherwise see if the predicates have any codes in common. */
1047 else if (d2->type == DT_pred && d2->u.pred.index >= 0)
1048 {
1049 const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0];
1050 int common = 0;
1051
1052 while (*c1 != 0 && !common)
1053 {
1054 const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0];
1055 while (*c2 != 0 && !common)
1056 {
1057 common = (*c1 == *c2);
1058 ++c2;
1059 }
1060 ++c1;
1061 }
1062
1063 if (!common)
1064 return 0;
1065 }
1066 }
1067 }
1068
1069 return -1;
1070 }
1071
1072 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1073 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1074
1075 static int
1076 maybe_both_true_1 (d1, d2)
1077 struct decision_test *d1, *d2;
1078 {
1079 struct decision_test *t1, *t2;
1080
1081 /* A match_operand with no predicate can match anything. Recognize
1082 this by the existance of a lone DT_accept_op test. */
1083 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1084 return 1;
1085
1086 /* Eliminate pairs of tests while they can exactly match. */
1087 while (d1 && d2 && d1->type == d2->type)
1088 {
1089 if (maybe_both_true_2 (d1, d2) == 0)
1090 return 0;
1091 d1 = d1->next, d2 = d2->next;
1092 }
1093
1094 /* After that, consider all pairs. */
1095 for (t1 = d1; t1 ; t1 = t1->next)
1096 for (t2 = d2; t2 ; t2 = t2->next)
1097 if (maybe_both_true_2 (t1, t2) == 0)
1098 return 0;
1099
1100 return -1;
1101 }
1102
1103 /* Return 0 if we can prove that there is no RTL that can match both
1104 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1105 can match both or just that we couldn't prove there wasn't such an RTL).
1106
1107 TOPLEVEL is non-zero if we are to only look at the top level and not
1108 recursively descend. */
1109
1110 static int
1111 maybe_both_true (d1, d2, toplevel)
1112 struct decision *d1, *d2;
1113 int toplevel;
1114 {
1115 struct decision *p1, *p2;
1116 int cmp;
1117
1118 /* Don't compare strings on the different positions in insn. Doing so
1119 is incorrect and results in false matches from constructs like
1120
1121 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1122 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1123 vs
1124 [(set (match_operand:HI "register_operand" "r")
1125 (match_operand:HI "register_operand" "r"))]
1126
1127 If we are presented with such, we are recursing through the remainder
1128 of a node's success nodes (from the loop at the end of this function).
1129 Skip forward until we come to a position that matches.
1130
1131 Due to the way position strings are constructed, we know that iterating
1132 forward from the lexically lower position (e.g. "00") will run into
1133 the lexically higher position (e.g. "1") and not the other way around.
1134 This saves a bit of effort. */
1135
1136 cmp = strcmp (d1->position, d2->position);
1137 if (cmp != 0)
1138 {
1139 if (toplevel)
1140 abort();
1141
1142 /* If the d2->position was lexically lower, swap. */
1143 if (cmp > 0)
1144 p1 = d1, d1 = d2, d2 = p1;
1145
1146 if (d1->success.first == 0)
1147 return 0;
1148 for (p1 = d1->success.first; p1; p1 = p1->next)
1149 if (maybe_both_true (p1, d2, 0))
1150 return 1;
1151
1152 return 0;
1153 }
1154
1155 /* Test the current level. */
1156 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1157 if (cmp >= 0)
1158 return cmp;
1159
1160 /* We can't prove that D1 and D2 cannot both be true. If we are only
1161 to check the top level, return 1. Otherwise, see if we can prove
1162 that all choices in both successors are mutually exclusive. If
1163 either does not have any successors, we can't prove they can't both
1164 be true. */
1165
1166 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
1167 return 1;
1168
1169 for (p1 = d1->success.first; p1; p1 = p1->next)
1170 for (p2 = d2->success.first; p2; p2 = p2->next)
1171 if (maybe_both_true (p1, p2, 0))
1172 return 1;
1173
1174 return 0;
1175 }
1176
1177 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1178
1179 static int
1180 nodes_identical_1 (d1, d2)
1181 struct decision_test *d1, *d2;
1182 {
1183 switch (d1->type)
1184 {
1185 case DT_mode:
1186 return d1->u.mode == d2->u.mode;
1187
1188 case DT_code:
1189 return d1->u.code == d2->u.code;
1190
1191 case DT_pred:
1192 return (d1->u.pred.mode == d2->u.pred.mode
1193 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
1194
1195 case DT_c_test:
1196 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
1197
1198 case DT_veclen:
1199 return d1->u.veclen == d2->u.veclen;
1200
1201 case DT_dup:
1202 return d1->u.dup == d2->u.dup;
1203
1204 case DT_elt_zero_int:
1205 case DT_elt_one_int:
1206 case DT_elt_zero_wide:
1207 return d1->u.intval == d2->u.intval;
1208
1209 case DT_accept_op:
1210 return d1->u.opno == d2->u.opno;
1211
1212 case DT_accept_insn:
1213 /* Differences will be handled in merge_accept_insn. */
1214 return 1;
1215
1216 default:
1217 abort ();
1218 }
1219 }
1220
1221 /* True iff the two nodes are identical (on one level only). Due
1222 to the way these lists are constructed, we shouldn't have to
1223 consider different orderings on the tests. */
1224
1225 static int
1226 nodes_identical (d1, d2)
1227 struct decision *d1, *d2;
1228 {
1229 struct decision_test *t1, *t2;
1230
1231 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1232 {
1233 if (t1->type != t2->type)
1234 return 0;
1235 if (! nodes_identical_1 (t1, t2))
1236 return 0;
1237 }
1238
1239 /* For success, they should now both be null. */
1240 if (t1 != t2)
1241 return 0;
1242
1243 /* Check that their subnodes are at the same position, as any one set
1244 of sibling decisions must be at the same position. */
1245 if (d1->success.first
1246 && d2->success.first
1247 && strcmp (d1->success.first->position, d2->success.first->position))
1248 return 0;
1249
1250 return 1;
1251 }
1252
1253 /* A subroutine of merge_trees; given two nodes that have been declared
1254 identical, cope with two insn accept states. If they differ in the
1255 number of clobbers, then the conflict was created by make_insn_sequence
1256 and we can drop the with-clobbers version on the floor. If both
1257 nodes have no additional clobbers, we have found an ambiguity in the
1258 source machine description. */
1259
1260 static void
1261 merge_accept_insn (oldd, addd)
1262 struct decision *oldd, *addd;
1263 {
1264 struct decision_test *old, *add;
1265
1266 for (old = oldd->tests; old; old = old->next)
1267 if (old->type == DT_accept_insn)
1268 break;
1269 if (old == NULL)
1270 return;
1271
1272 for (add = addd->tests; add; add = add->next)
1273 if (add->type == DT_accept_insn)
1274 break;
1275 if (add == NULL)
1276 return;
1277
1278 /* If one node is for a normal insn and the second is for the base
1279 insn with clobbers stripped off, the second node should be ignored. */
1280
1281 if (old->u.insn.num_clobbers_to_add == 0
1282 && add->u.insn.num_clobbers_to_add > 0)
1283 {
1284 /* Nothing to do here. */
1285 }
1286 else if (old->u.insn.num_clobbers_to_add > 0
1287 && add->u.insn.num_clobbers_to_add == 0)
1288 {
1289 /* In this case, replace OLD with ADD. */
1290 old->u.insn = add->u.insn;
1291 }
1292 else
1293 {
1294 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1295 get_insn_name (add->u.insn.code_number),
1296 get_insn_name (old->u.insn.code_number));
1297 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1298 get_insn_name (old->u.insn.code_number));
1299 error_count++;
1300 }
1301 }
1302
1303 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1304
1305 static void
1306 merge_trees (oldh, addh)
1307 struct decision_head *oldh, *addh;
1308 {
1309 struct decision *next, *add;
1310
1311 if (addh->first == 0)
1312 return;
1313 if (oldh->first == 0)
1314 {
1315 *oldh = *addh;
1316 return;
1317 }
1318
1319 /* Trying to merge bits at different positions isn't possible. */
1320 if (strcmp (oldh->first->position, addh->first->position))
1321 abort ();
1322
1323 for (add = addh->first; add ; add = next)
1324 {
1325 struct decision *old, *insert_before = NULL;
1326
1327 next = add->next;
1328
1329 /* The semantics of pattern matching state that the tests are
1330 done in the order given in the MD file so that if an insn
1331 matches two patterns, the first one will be used. However,
1332 in practice, most, if not all, patterns are unambiguous so
1333 that their order is independent. In that case, we can merge
1334 identical tests and group all similar modes and codes together.
1335
1336 Scan starting from the end of OLDH until we reach a point
1337 where we reach the head of the list or where we pass a
1338 pattern that could also be true if NEW is true. If we find
1339 an identical pattern, we can merge them. Also, record the
1340 last node that tests the same code and mode and the last one
1341 that tests just the same mode.
1342
1343 If we have no match, place NEW after the closest match we found. */
1344
1345 for (old = oldh->last; old; old = old->prev)
1346 {
1347 if (nodes_identical (old, add))
1348 {
1349 merge_accept_insn (old, add);
1350 merge_trees (&old->success, &add->success);
1351 goto merged_nodes;
1352 }
1353
1354 if (maybe_both_true (old, add, 0))
1355 break;
1356
1357 /* Insert the nodes in DT test type order, which is roughly
1358 how expensive/important the test is. Given that the tests
1359 are also ordered within the list, examining the first is
1360 sufficient. */
1361 if (add->tests->type < old->tests->type)
1362 insert_before = old;
1363 }
1364
1365 if (insert_before == NULL)
1366 {
1367 add->next = NULL;
1368 add->prev = oldh->last;
1369 oldh->last->next = add;
1370 oldh->last = add;
1371 }
1372 else
1373 {
1374 if ((add->prev = insert_before->prev) != NULL)
1375 add->prev->next = add;
1376 else
1377 oldh->first = add;
1378 add->next = insert_before;
1379 insert_before->prev = add;
1380 }
1381
1382 merged_nodes:;
1383 }
1384 }
1385 \f
1386 /* Walk the tree looking for sub-nodes that perform common tests.
1387 Factor out the common test into a new node. This enables us
1388 (depending on the test type) to emit switch statements later. */
1389
1390 static void
1391 factor_tests (head)
1392 struct decision_head *head;
1393 {
1394 struct decision *first, *next;
1395
1396 for (first = head->first; first && first->next; first = next)
1397 {
1398 enum decision_type type;
1399 struct decision *new, *old_last;
1400
1401 type = first->tests->type;
1402 next = first->next;
1403
1404 /* Want at least two compatible sequential nodes. */
1405 if (next->tests->type != type)
1406 continue;
1407
1408 /* Don't want all node types, just those we can turn into
1409 switch statements. */
1410 if (type != DT_mode
1411 && type != DT_code
1412 && type != DT_veclen
1413 && type != DT_elt_zero_int
1414 && type != DT_elt_one_int
1415 && type != DT_elt_zero_wide)
1416 continue;
1417
1418 /* If we'd been performing more than one test, create a new node
1419 below our first test. */
1420 if (first->tests->next != NULL)
1421 {
1422 new = new_decision (first->position, &first->success);
1423 new->tests = first->tests->next;
1424 first->tests->next = NULL;
1425 }
1426
1427 /* Crop the node tree off after our first test. */
1428 first->next = NULL;
1429 old_last = head->last;
1430 head->last = first;
1431
1432 /* For each compatible test, adjust to perform only one test in
1433 the top level node, then merge the node back into the tree. */
1434 do
1435 {
1436 struct decision_head h;
1437
1438 if (next->tests->next != NULL)
1439 {
1440 new = new_decision (next->position, &next->success);
1441 new->tests = next->tests->next;
1442 next->tests->next = NULL;
1443 }
1444 new = next;
1445 next = next->next;
1446 new->next = NULL;
1447 h.first = h.last = new;
1448
1449 merge_trees (head, &h);
1450 }
1451 while (next && next->tests->type == type);
1452
1453 /* After we run out of compatible tests, graft the remaining nodes
1454 back onto the tree. */
1455 if (next)
1456 {
1457 next->prev = head->last;
1458 head->last->next = next;
1459 head->last = old_last;
1460 }
1461 }
1462
1463 /* Recurse. */
1464 for (first = head->first; first; first = first->next)
1465 factor_tests (&first->success);
1466 }
1467
1468 /* After factoring, try to simplify the tests on any one node.
1469 Tests that are useful for switch statements are recognizable
1470 by having only a single test on a node -- we'll be manipulating
1471 nodes with multiple tests:
1472
1473 If we have mode tests or code tests that are redundant with
1474 predicates, remove them. */
1475
1476 static void
1477 simplify_tests (head)
1478 struct decision_head *head;
1479 {
1480 struct decision *tree;
1481
1482 for (tree = head->first; tree; tree = tree->next)
1483 {
1484 struct decision_test *a, *b;
1485
1486 a = tree->tests;
1487 b = a->next;
1488 if (b == NULL)
1489 continue;
1490
1491 /* Find a predicate node. */
1492 while (b && b->type != DT_pred)
1493 b = b->next;
1494 if (b)
1495 {
1496 /* Due to how these tests are constructed, we don't even need
1497 to check that the mode and code are compatible -- they were
1498 generated from the predicate in the first place. */
1499 while (a->type == DT_mode || a->type == DT_code)
1500 a = a->next;
1501 tree->tests = a;
1502 }
1503 }
1504
1505 /* Recurse. */
1506 for (tree = head->first; tree; tree = tree->next)
1507 simplify_tests (&tree->success);
1508 }
1509
1510 /* Count the number of subnodes of HEAD. If the number is high enough,
1511 make the first node in HEAD start a separate subroutine in the C code
1512 that is generated. */
1513
1514 static int
1515 break_out_subroutines (head, initial)
1516 struct decision_head *head;
1517 int initial;
1518 {
1519 int size = 0;
1520 struct decision *sub;
1521
1522 for (sub = head->first; sub; sub = sub->next)
1523 size += 1 + break_out_subroutines (&sub->success, 0);
1524
1525 if (size > SUBROUTINE_THRESHOLD && ! initial)
1526 {
1527 head->first->subroutine_number = ++next_subroutine_number;
1528 size = 1;
1529 }
1530 return size;
1531 }
1532
1533 /* For each node p, find the next alternative that might be true
1534 when p is true. */
1535
1536 static void
1537 find_afterward (head, real_afterward)
1538 struct decision_head *head;
1539 struct decision *real_afterward;
1540 {
1541 struct decision *p, *q, *afterward;
1542
1543 /* We can't propogate alternatives across subroutine boundaries.
1544 This is not incorrect, merely a minor optimization loss. */
1545
1546 p = head->first;
1547 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
1548
1549 for ( ; p ; p = p->next)
1550 {
1551 /* Find the next node that might be true if this one fails. */
1552 for (q = p->next; q ; q = q->next)
1553 if (maybe_both_true (p, q, 1))
1554 break;
1555
1556 /* If we reached the end of the list without finding one,
1557 use the incoming afterward position. */
1558 if (!q)
1559 q = afterward;
1560 p->afterward = q;
1561 if (q)
1562 q->need_label = 1;
1563 }
1564
1565 /* Recurse. */
1566 for (p = head->first; p ; p = p->next)
1567 if (p->success.first)
1568 find_afterward (&p->success, p->afterward);
1569
1570 /* When we are generating a subroutine, record the real afterward
1571 position in the first node where write_tree can find it, and we
1572 can do the right thing at the subroutine call site. */
1573 p = head->first;
1574 if (p->subroutine_number > 0)
1575 p->afterward = real_afterward;
1576 }
1577 \f
1578 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1579 actions are necessary to move to NEWPOS. If we fail to move to the
1580 new state, branch to node AFTERWARD if non-zero, otherwise return.
1581
1582 Failure to move to the new state can only occur if we are trying to
1583 match multiple insns and we try to step past the end of the stream. */
1584
1585 static void
1586 change_state (oldpos, newpos, afterward, indent)
1587 const char *oldpos;
1588 const char *newpos;
1589 struct decision *afterward;
1590 const char *indent;
1591 {
1592 int odepth = strlen (oldpos);
1593 int ndepth = strlen (newpos);
1594 int depth;
1595 int old_has_insn, new_has_insn;
1596
1597 /* Pop up as many levels as necessary. */
1598 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1599 continue;
1600
1601 /* Hunt for the last [A-Z] in both strings. */
1602 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1603 if (oldpos[old_has_insn] >= 'A' && oldpos[old_has_insn] <= 'Z')
1604 break;
1605 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
1606 if (newpos[new_has_insn] >= 'A' && newpos[new_has_insn] <= 'Z')
1607 break;
1608
1609 /* Make sure to reset the _last_insn pointer when popping back up. */
1610 if (old_has_insn >= 0 && new_has_insn < 0)
1611 printf ("%s_last_insn = insn;\n", indent);
1612
1613 /* Go down to desired level. */
1614 while (depth < ndepth)
1615 {
1616 /* It's a different insn from the first one. */
1617 if (newpos[depth] >= 'A' && newpos[depth] <= 'Z')
1618 {
1619 /* We can only fail if we're moving down the tree. */
1620 if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth])
1621 {
1622 printf ("%s_last_insn = recog_next_insn (insn, %d);\n",
1623 indent, newpos[depth] - 'A');
1624 }
1625 else
1626 {
1627 printf ("%stem = recog_next_insn (insn, %d);\n",
1628 indent, newpos[depth] - 'A');
1629 printf ("%sif (tem == NULL_RTX)\n", indent);
1630 if (afterward)
1631 printf ("%s goto L%d;\n", indent, afterward->number);
1632 else
1633 printf ("%s goto ret0;\n", indent);
1634 printf ("%s_last_insn = tem;\n", indent);
1635 }
1636 printf ("%sx%d = PATTERN (_last_insn);\n", indent, depth + 1);
1637 }
1638 else if (newpos[depth] >= 'a' && newpos[depth] <= 'z')
1639 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1640 indent, depth + 1, depth, newpos[depth] - 'a');
1641 else
1642 printf ("%sx%d = XEXP (x%d, %c);\n",
1643 indent, depth + 1, depth, newpos[depth]);
1644 ++depth;
1645 }
1646 }
1647 \f
1648 /* Print the enumerator constant for CODE -- the upcase version of
1649 the name. */
1650
1651 static void
1652 print_code (code)
1653 enum rtx_code code;
1654 {
1655 register const char *p;
1656 for (p = GET_RTX_NAME (code); *p; p++)
1657 putchar (TOUPPER (*p));
1658 }
1659
1660 /* Emit code to cross an afterward link -- change state and branch. */
1661
1662 static void
1663 write_afterward (start, afterward, indent)
1664 struct decision *start;
1665 struct decision *afterward;
1666 const char *indent;
1667 {
1668 if (!afterward || start->subroutine_number > 0)
1669 printf("%sgoto ret0;\n", indent);
1670 else
1671 {
1672 change_state (start->position, afterward->position, NULL, indent);
1673 printf ("%sgoto L%d;\n", indent, afterward->number);
1674 }
1675 }
1676
1677 /* Emit a switch statement, if possible, for an initial sequence of
1678 nodes at START. Return the first node yet untested. */
1679
1680 static struct decision *
1681 write_switch (start, depth)
1682 struct decision *start;
1683 int depth;
1684 {
1685 struct decision *p = start;
1686 enum decision_type type = p->tests->type;
1687
1688 /* If we have two or more nodes in sequence that test the same one
1689 thing, we may be able to use a switch statement. */
1690
1691 if (!p->next
1692 || p->tests->next
1693 || p->next->tests->type != type
1694 || p->next->tests->next)
1695 return p;
1696
1697 /* DT_code is special in that we can do interesting things with
1698 known predicates at the same time. */
1699 if (type == DT_code)
1700 {
1701 char codemap[NUM_RTX_CODE];
1702 struct decision *ret;
1703 RTX_CODE code;
1704
1705 memset (codemap, 0, sizeof(codemap));
1706
1707 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1708 code = p->tests->u.code;
1709 do
1710 {
1711 printf (" case ");
1712 print_code (code);
1713 printf (":\n goto L%d;\n", p->success.first->number);
1714 p->success.first->need_label = 1;
1715
1716 codemap[code] = 1;
1717 p = p->next;
1718 }
1719 while (p
1720 && ! p->tests->next
1721 && p->tests->type == DT_code
1722 && ! codemap[code = p->tests->u.code]);
1723
1724 /* If P is testing a predicate that we know about and we haven't
1725 seen any of the codes that are valid for the predicate, we can
1726 write a series of "case" statement, one for each possible code.
1727 Since we are already in a switch, these redundant tests are very
1728 cheap and will reduce the number of predicates called. */
1729
1730 /* Note that while we write out cases for these predicates here,
1731 we don't actually write the test here, as it gets kinda messy.
1732 It is trivial to leave this to later by telling our caller that
1733 we only processed the CODE tests. */
1734 ret = p;
1735
1736 while (p && p->tests->type == DT_pred
1737 && p->tests->u.pred.index >= 0)
1738 {
1739 const RTX_CODE *c;
1740
1741 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1742 if (codemap[(int) *c] != 0)
1743 goto pred_done;
1744
1745 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1746 {
1747 printf (" case ");
1748 print_code (*c);
1749 printf (":\n");
1750 codemap[(int) *c] = 1;
1751 }
1752
1753 printf (" goto L%d;\n", p->number);
1754 p->need_label = 1;
1755 p = p->next;
1756 }
1757
1758 pred_done:
1759 /* Make the default case skip the predicates we managed to match. */
1760
1761 printf (" default:\n");
1762 if (p != ret)
1763 {
1764 if (p)
1765 {
1766 printf (" goto L%d;\n", p->number);
1767 p->need_label = 1;
1768 }
1769 else
1770 write_afterward (start, start->afterward, " ");
1771 }
1772 else
1773 printf (" break;\n");
1774 printf (" }\n");
1775
1776 return ret;
1777 }
1778 else if (type == DT_mode
1779 || type == DT_veclen
1780 || type == DT_elt_zero_int
1781 || type == DT_elt_one_int
1782 || type == DT_elt_zero_wide)
1783 {
1784 printf (" switch (");
1785 switch (type)
1786 {
1787 case DT_mode:
1788 printf("GET_MODE (x%d)", depth);
1789 break;
1790 case DT_veclen:
1791 printf("XVECLEN (x%d, 0)", depth);
1792 break;
1793 case DT_elt_zero_int:
1794 printf("XINT (x%d, 0)", depth);
1795 break;
1796 case DT_elt_one_int:
1797 printf("XINT (x%d, 1)", depth);
1798 break;
1799 case DT_elt_zero_wide:
1800 printf("XWINT (x%d, 0)", depth);
1801 break;
1802 default:
1803 abort ();
1804 }
1805 printf (")\n {\n");
1806
1807 do
1808 {
1809 printf (" case ");
1810 switch (type)
1811 {
1812 case DT_mode:
1813 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
1814 break;
1815 case DT_veclen:
1816 printf ("%d", p->tests->u.veclen);
1817 break;
1818 case DT_elt_zero_int:
1819 case DT_elt_one_int:
1820 case DT_elt_zero_wide:
1821 printf (HOST_WIDE_INT_PRINT_DEC, p->tests->u.intval);
1822 break;
1823 default:
1824 abort ();
1825 }
1826 printf (":\n goto L%d;\n", p->success.first->number);
1827 p->success.first->need_label = 1;
1828
1829 p = p->next;
1830 }
1831 while (p && p->tests->type == type && !p->tests->next);
1832
1833 printf (" default:\n break;\n }\n");
1834
1835 return p;
1836 }
1837 else
1838 {
1839 /* None of the other tests are ameanable. */
1840 return p;
1841 }
1842 }
1843
1844 /* Emit code for one test. */
1845
1846 static void
1847 write_cond (p, depth, subroutine_type)
1848 struct decision_test *p;
1849 int depth;
1850 enum routine_type subroutine_type;
1851 {
1852 switch (p->type)
1853 {
1854 case DT_mode:
1855 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
1856 break;
1857
1858 case DT_code:
1859 printf ("GET_CODE (x%d) == ", depth);
1860 print_code (p->u.code);
1861 break;
1862
1863 case DT_veclen:
1864 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
1865 break;
1866
1867 case DT_elt_zero_int:
1868 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
1869 break;
1870
1871 case DT_elt_one_int:
1872 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
1873 break;
1874
1875 case DT_elt_zero_wide:
1876 printf ("XWINT (x%d, 0) == ", depth);
1877 printf (HOST_WIDE_INT_PRINT_DEC, p->u.intval);
1878 break;
1879
1880 case DT_dup:
1881 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
1882 break;
1883
1884 case DT_pred:
1885 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
1886 GET_MODE_NAME (p->u.pred.mode));
1887 break;
1888
1889 case DT_c_test:
1890 printf ("(%s)", p->u.c_test);
1891 break;
1892
1893 case DT_accept_insn:
1894 switch (subroutine_type)
1895 {
1896 case RECOG:
1897 if (p->u.insn.num_clobbers_to_add == 0)
1898 abort ();
1899 printf ("pnum_clobbers != NULL");
1900 break;
1901
1902 default:
1903 abort ();
1904 }
1905 break;
1906
1907 default:
1908 abort ();
1909 }
1910 }
1911
1912 /* Emit code for one action. The previous tests have succeeded;
1913 TEST is the last of the chain. In the normal case we simply
1914 perform a state change. For the `accept' tests we must do more work. */
1915
1916 static void
1917 write_action (test, depth, uncond, success, subroutine_type)
1918 struct decision_test *test;
1919 int depth, uncond;
1920 struct decision *success;
1921 enum routine_type subroutine_type;
1922 {
1923 const char *indent;
1924 int want_close = 0;
1925
1926 if (uncond)
1927 indent = " ";
1928 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
1929 {
1930 fputs (" {\n", stdout);
1931 indent = " ";
1932 want_close = 1;
1933 }
1934 else
1935 indent = " ";
1936
1937 if (test->type == DT_accept_op)
1938 {
1939 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
1940
1941 /* Only allow DT_accept_insn to follow. */
1942 if (test->next)
1943 {
1944 test = test->next;
1945 if (test->type != DT_accept_insn)
1946 abort ();
1947 }
1948 }
1949
1950 /* Sanity check that we're now at the end of the list of tests. */
1951 if (test->next)
1952 abort ();
1953
1954 if (test->type == DT_accept_insn)
1955 {
1956 switch (subroutine_type)
1957 {
1958 case RECOG:
1959 if (test->u.insn.num_clobbers_to_add != 0)
1960 printf ("%s*pnum_clobbers = %d;\n",
1961 indent, test->u.insn.num_clobbers_to_add);
1962 printf ("%sreturn %d;\n", indent, test->u.insn.code_number);
1963 break;
1964
1965 case SPLIT:
1966 printf ("%sreturn gen_split_%d (operands);\n",
1967 indent, test->u.insn.code_number);
1968 break;
1969
1970 case PEEPHOLE2:
1971 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
1972 indent, test->u.insn.code_number);
1973 printf ("%sif (tem != 0)\n%s goto ret1;\n", indent, indent);
1974 break;
1975
1976 default:
1977 abort ();
1978 }
1979 }
1980 else
1981 {
1982 printf("%sgoto L%d;\n", indent, success->number);
1983 success->need_label = 1;
1984 }
1985
1986 if (want_close)
1987 fputs (" }\n", stdout);
1988 }
1989
1990 /* Return 1 if the test is always true and has no fallthru path. Return -1
1991 if the test does have a fallthru path, but requires that the condition be
1992 terminated. Otherwise return 0 for a normal test. */
1993 /* ??? is_unconditional is a stupid name for a tri-state function. */
1994
1995 static int
1996 is_unconditional (t, subroutine_type)
1997 struct decision_test *t;
1998 enum routine_type subroutine_type;
1999 {
2000 if (t->type == DT_accept_op)
2001 return 1;
2002
2003 if (t->type == DT_accept_insn)
2004 {
2005 switch (subroutine_type)
2006 {
2007 case RECOG:
2008 return (t->u.insn.num_clobbers_to_add == 0);
2009 case SPLIT:
2010 return 1;
2011 case PEEPHOLE2:
2012 return -1;
2013 default:
2014 abort ();
2015 }
2016 }
2017
2018 return 0;
2019 }
2020
2021 /* Emit code for one node -- the conditional and the accompanying action.
2022 Return true if there is no fallthru path. */
2023
2024 static int
2025 write_node (p, depth, subroutine_type)
2026 struct decision *p;
2027 int depth;
2028 enum routine_type subroutine_type;
2029 {
2030 struct decision_test *test, *last_test;
2031 int uncond;
2032
2033 last_test = test = p->tests;
2034 uncond = is_unconditional (test, subroutine_type);
2035 if (uncond == 0)
2036 {
2037 printf (" if (");
2038 write_cond (test, depth, subroutine_type);
2039
2040 while ((test = test->next) != NULL)
2041 {
2042 int uncond2;
2043
2044 last_test = test;
2045 uncond2 = is_unconditional (test, subroutine_type);
2046 if (uncond2 != 0)
2047 break;
2048
2049 printf ("\n && ");
2050 write_cond (test, depth, subroutine_type);
2051 }
2052
2053 printf (")\n");
2054 }
2055
2056 write_action (last_test, depth, uncond, p->success.first, subroutine_type);
2057
2058 return uncond > 0;
2059 }
2060
2061 /* Emit code for all of the sibling nodes of HEAD. */
2062
2063 static void
2064 write_tree_1 (head, depth, subroutine_type)
2065 struct decision_head *head;
2066 int depth;
2067 enum routine_type subroutine_type;
2068 {
2069 struct decision *p, *next;
2070 int uncond = 0;
2071
2072 for (p = head->first; p ; p = next)
2073 {
2074 /* The label for the first element was printed in write_tree. */
2075 if (p != head->first && p->need_label)
2076 OUTPUT_LABEL (" ", p->number);
2077
2078 /* Attempt to write a switch statement for a whole sequence. */
2079 next = write_switch (p, depth);
2080 if (p != next)
2081 uncond = 0;
2082 else
2083 {
2084 /* Failed -- fall back and write one node. */
2085 uncond = write_node (p, depth, subroutine_type);
2086 next = p->next;
2087 }
2088 }
2089
2090 /* Finished with this chain. Close a fallthru path by branching
2091 to the afterward node. */
2092 if (! uncond)
2093 write_afterward (head->last, head->last->afterward, " ");
2094 }
2095
2096 /* Write out the decision tree starting at HEAD. PREVPOS is the
2097 position at the node that branched to this node. */
2098
2099 static void
2100 write_tree (head, prevpos, type, initial)
2101 struct decision_head *head;
2102 const char *prevpos;
2103 enum routine_type type;
2104 int initial;
2105 {
2106 register struct decision *p = head->first;
2107
2108 putchar ('\n');
2109 if (p->need_label)
2110 OUTPUT_LABEL (" ", p->number);
2111
2112 if (! initial && p->subroutine_number > 0)
2113 {
2114 static const char * const name_prefix[] = {
2115 "recog", "split", "peephole2"
2116 };
2117
2118 static const char * const call_suffix[] = {
2119 ", pnum_clobbers", "", ", _plast_insn"
2120 };
2121
2122 /* This node has been broken out into a separate subroutine.
2123 Call it, test the result, and branch accordingly. */
2124
2125 if (p->afterward)
2126 {
2127 printf (" tem = %s_%d (x0, insn%s);\n",
2128 name_prefix[type], p->subroutine_number, call_suffix[type]);
2129 if (IS_SPLIT (type))
2130 printf (" if (tem != 0)\n return tem;\n");
2131 else
2132 printf (" if (tem >= 0)\n return tem;\n");
2133
2134 change_state (p->position, p->afterward->position, NULL, " ");
2135 printf (" goto L%d;\n", p->afterward->number);
2136 }
2137 else
2138 {
2139 printf (" return %s_%d (x0, insn%s);\n",
2140 name_prefix[type], p->subroutine_number, call_suffix[type]);
2141 }
2142 }
2143 else
2144 {
2145 int depth = strlen (p->position);
2146
2147 change_state (prevpos, p->position, head->last->afterward, " ");
2148 write_tree_1 (head, depth, type);
2149
2150 for (p = head->first; p; p = p->next)
2151 if (p->success.first)
2152 write_tree (&p->success, p->position, type, 0);
2153 }
2154 }
2155
2156 /* Write out a subroutine of type TYPE to do comparisons starting at
2157 node TREE. */
2158
2159 static void
2160 write_subroutine (head, type)
2161 struct decision_head *head;
2162 enum routine_type type;
2163 {
2164 int subfunction = head->first ? head->first->subroutine_number : 0;
2165 const char *s_or_e;
2166 char extension[32];
2167 int i;
2168
2169 s_or_e = subfunction ? "static " : "";
2170
2171 if (subfunction)
2172 sprintf (extension, "_%d", subfunction);
2173 else if (type == RECOG)
2174 extension[0] = '\0';
2175 else
2176 strcpy (extension, "_insns");
2177
2178 switch (type)
2179 {
2180 case RECOG:
2181 printf ("%sint recog%s PARAMS ((rtx, rtx, int *));\n", s_or_e, extension);
2182 printf ("%sint\n\
2183 recog%s (x0, insn, pnum_clobbers)\n\
2184 register rtx x0;\n\
2185 rtx insn ATTRIBUTE_UNUSED;\n\
2186 int *pnum_clobbers ATTRIBUTE_UNUSED;\n", s_or_e, extension);
2187 break;
2188 case SPLIT:
2189 printf ("%srtx split%s PARAMS ((rtx, rtx));\n", s_or_e, extension);
2190 printf ("%srtx\n\
2191 split%s (x0, insn)\n\
2192 register rtx x0;\n\
2193 rtx insn ATTRIBUTE_UNUSED;\n", s_or_e, extension);
2194 break;
2195 case PEEPHOLE2:
2196 printf ("%srtx peephole2%s PARAMS ((rtx, rtx, rtx *));\n", s_or_e, extension);
2197 printf ("%srtx\n\
2198 peephole2%s (x0, insn, _plast_insn)\n\
2199 register rtx x0;\n\
2200 rtx insn ATTRIBUTE_UNUSED;\n\
2201 rtx *_plast_insn ATTRIBUTE_UNUSED;\n", s_or_e, extension);
2202 break;
2203 }
2204
2205 printf ("{\n register rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2206 for (i = 1; i <= max_depth; i++)
2207 printf (" register rtx x%d ATTRIBUTE_UNUSED;\n", i);
2208
2209 if (type == PEEPHOLE2)
2210 printf (" register rtx _last_insn = insn;\n");
2211 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2212
2213 if (head->first)
2214 write_tree (head, "", type, 1);
2215 else
2216 printf (" goto ret0;\n");
2217
2218 if (type == PEEPHOLE2)
2219 printf (" ret1:\n *_plast_insn = _last_insn;\n return tem;\n");
2220 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2221 }
2222
2223 /* In break_out_subroutines, we discovered the boundaries for the
2224 subroutines, but did not write them out. Do so now. */
2225
2226 static void
2227 write_subroutines (head, type)
2228 struct decision_head *head;
2229 enum routine_type type;
2230 {
2231 struct decision *p;
2232
2233 for (p = head->first; p ; p = p->next)
2234 if (p->success.first)
2235 write_subroutines (&p->success, type);
2236
2237 if (head->first->subroutine_number > 0)
2238 write_subroutine (head, type);
2239 }
2240
2241 /* Begin the output file. */
2242
2243 static void
2244 write_header ()
2245 {
2246 puts ("\
2247 /* Generated automatically by the program `genrecog' from the target\n\
2248 machine description file. */\n\
2249 \n\
2250 #include \"config.h\"\n\
2251 #include \"system.h\"\n\
2252 #include \"rtl.h\"\n\
2253 #include \"tm_p.h\"\n\
2254 #include \"function.h\"\n\
2255 #include \"insn-config.h\"\n\
2256 #include \"recog.h\"\n\
2257 #include \"real.h\"\n\
2258 #include \"output.h\"\n\
2259 #include \"flags.h\"\n\
2260 #include \"hard-reg-set.h\"\n\
2261 #include \"resource.h\"\n\
2262 \n");
2263
2264 puts ("\n\
2265 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2266 X0 is a valid instruction.\n\
2267 \n\
2268 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2269 returns a nonnegative number which is the insn code number for the\n\
2270 pattern that matched. This is the same as the order in the machine\n\
2271 description of the entry that matched. This number can be used as an\n\
2272 index into `insn_data' and other tables.\n\
2273 \n\
2274 The third argument to recog is an optional pointer to an int. If\n\
2275 present, recog will accept a pattern if it matches except for missing\n\
2276 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2277 the optional pointer will be set to the number of CLOBBERs that need\n\
2278 to be added (it should be initialized to zero by the caller). If it\n\
2279 is set nonzero, the caller should allocate a PARALLEL of the\n\
2280 appropriate size, copy the initial entries, and call add_clobbers\n\
2281 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2282 ");
2283
2284 puts ("\n\
2285 The function split_insns returns 0 if the rtl could not\n\
2286 be split or the split rtl in a SEQUENCE if it can be.\n\
2287 \n\
2288 The function peephole2_insns returns 0 if the rtl could not\n\
2289 be matched. If there was a match, the new rtl is returned in a SEQUENCE,\n\
2290 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2291 */\n\n");
2292 }
2293
2294 \f
2295 /* Construct and return a sequence of decisions
2296 that will recognize INSN.
2297
2298 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2299
2300 static struct decision_head
2301 make_insn_sequence (insn, type)
2302 rtx insn;
2303 enum routine_type type;
2304 {
2305 rtx x;
2306 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2307 struct decision *last;
2308 struct decision_test *test, **place;
2309 struct decision_head head;
2310
2311 record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));
2312
2313 if (type == PEEPHOLE2)
2314 {
2315 int i, j;
2316
2317 /* peephole2 gets special treatment:
2318 - X always gets an outer parallel even if it's only one entry
2319 - we remove all traces of outer-level match_scratch and match_dup
2320 expressions here. */
2321 x = rtx_alloc (PARALLEL);
2322 PUT_MODE (x, VOIDmode);
2323 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2324 for (i = j = 0; i < XVECLEN (insn, 0); i++)
2325 {
2326 rtx tmp = XVECEXP (insn, 0, i);
2327 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2328 {
2329 XVECEXP (x, 0, j) = tmp;
2330 j++;
2331 }
2332 }
2333 XVECLEN (x, 0) = j;
2334 }
2335 else if (XVECLEN (insn, type == RECOG) == 1)
2336 x = XVECEXP (insn, type == RECOG, 0);
2337 else
2338 {
2339 x = rtx_alloc (PARALLEL);
2340 XVEC (x, 0) = XVEC (insn, type == RECOG);
2341 PUT_MODE (x, VOIDmode);
2342 }
2343
2344 validate_pattern (x, insn, NULL_RTX);
2345
2346 memset(&head, 0, sizeof(head));
2347 last = add_to_sequence (x, &head, "", type, 1);
2348
2349 /* Find the end of the test chain on the last node. */
2350 for (test = last->tests; test->next; test = test->next)
2351 continue;
2352 place = &test->next;
2353
2354 if (c_test[0])
2355 {
2356 /* Need a new node if we have another test to add. */
2357 if (test->type == DT_accept_op)
2358 {
2359 last = new_decision ("", &last->success);
2360 place = &last->tests;
2361 }
2362 test = new_decision_test (DT_c_test, &place);
2363 test->u.c_test = c_test;
2364 }
2365
2366 test = new_decision_test (DT_accept_insn, &place);
2367 test->u.insn.code_number = next_insn_code;
2368 test->u.insn.lineno = pattern_lineno;
2369 test->u.insn.num_clobbers_to_add = 0;
2370
2371 switch (type)
2372 {
2373 case RECOG:
2374 /* If this is an DEFINE_INSN and X is a PARALLEL, see if it ends
2375 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2376 If so, set up to recognize the pattern without these CLOBBERs. */
2377
2378 if (GET_CODE (x) == PARALLEL)
2379 {
2380 int i;
2381
2382 /* Find the last non-clobber in the parallel. */
2383 for (i = XVECLEN (x, 0); i > 0; i--)
2384 {
2385 rtx y = XVECEXP (x, 0, i - 1);
2386 if (GET_CODE (y) != CLOBBER
2387 || (GET_CODE (XEXP (y, 0)) != REG
2388 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2389 break;
2390 }
2391
2392 if (i != XVECLEN (x, 0))
2393 {
2394 rtx new;
2395 struct decision_head clobber_head;
2396
2397 /* Build a similar insn without the clobbers. */
2398 if (i == 1)
2399 new = XVECEXP (x, 0, 0);
2400 else
2401 {
2402 int j;
2403
2404 new = rtx_alloc (PARALLEL);
2405 XVEC (new, 0) = rtvec_alloc (i);
2406 for (j = i - 1; j >= 0; j--)
2407 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2408 }
2409
2410 /* Recognize it. */
2411 memset (&clobber_head, 0, sizeof(clobber_head));
2412 last = add_to_sequence (new, &clobber_head, "", type, 1);
2413
2414 /* Find the end of the test chain on the last node. */
2415 for (test = last->tests; test->next; test = test->next)
2416 continue;
2417
2418 /* We definitely have a new test to add -- create a new
2419 node if needed. */
2420 place = &test->next;
2421 if (test->type == DT_accept_op)
2422 {
2423 last = new_decision ("", &last->success);
2424 place = &last->tests;
2425 }
2426
2427 if (c_test[0])
2428 {
2429 test = new_decision_test (DT_c_test, &place);
2430 test->u.c_test = c_test;
2431 }
2432
2433 test = new_decision_test (DT_accept_insn, &place);
2434 test->u.insn.code_number = next_insn_code;
2435 test->u.insn.lineno = pattern_lineno;
2436 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2437
2438 merge_trees (&head, &clobber_head);
2439 }
2440 }
2441 break;
2442
2443 case SPLIT:
2444 /* Define the subroutine we will call below and emit in genemit. */
2445 printf ("extern rtx gen_split_%d PARAMS ((rtx *));\n", next_insn_code);
2446 break;
2447
2448 case PEEPHOLE2:
2449 /* Define the subroutine we will call below and emit in genemit. */
2450 printf ("extern rtx gen_peephole2_%d PARAMS ((rtx, rtx *));\n",
2451 next_insn_code);
2452 break;
2453 }
2454 next_insn_code++;
2455
2456 return head;
2457 }
2458
2459 static void
2460 process_tree (head, subroutine_type)
2461 struct decision_head *head;
2462 enum routine_type subroutine_type;
2463 {
2464 if (head->first == NULL)
2465 {
2466 /* We can elide peephole2_insns, but not recog or split_insns. */
2467 if (subroutine_type == PEEPHOLE2)
2468 return;
2469 }
2470 else
2471 {
2472 factor_tests (head);
2473
2474 next_subroutine_number = 0;
2475 break_out_subroutines (head, 1);
2476 find_afterward (head, NULL);
2477
2478 /* We run this after find_afterward, because find_afterward needs
2479 the redundant DT_mode tests on predicates to determine whether
2480 two tests can both be true or not. */
2481 simplify_tests(head);
2482
2483 write_subroutines (head, subroutine_type);
2484 }
2485
2486 write_subroutine (head, subroutine_type);
2487 }
2488 \f
2489 extern int main PARAMS ((int, char **));
2490
2491 int
2492 main (argc, argv)
2493 int argc;
2494 char **argv;
2495 {
2496 rtx desc;
2497 struct decision_head recog_tree, split_tree, peephole2_tree, h;
2498 FILE *infile;
2499 register int c;
2500
2501 progname = "genrecog";
2502 obstack_init (rtl_obstack);
2503
2504 memset (&recog_tree, 0, sizeof recog_tree);
2505 memset (&split_tree, 0, sizeof split_tree);
2506 memset (&peephole2_tree, 0, sizeof peephole2_tree);
2507
2508 if (argc <= 1)
2509 fatal ("No input file name.");
2510
2511 infile = fopen (argv[1], "r");
2512 if (infile == 0)
2513 {
2514 perror (argv[1]);
2515 return FATAL_EXIT_CODE;
2516 }
2517 read_rtx_filename = argv[1];
2518
2519 next_insn_code = 0;
2520 next_index = 0;
2521
2522 write_header ();
2523
2524 /* Read the machine description. */
2525
2526 while (1)
2527 {
2528 c = read_skip_spaces (infile);
2529 if (c == EOF)
2530 break;
2531 ungetc (c, infile);
2532 pattern_lineno = read_rtx_lineno;
2533
2534 desc = read_rtx (infile);
2535 if (GET_CODE (desc) == DEFINE_INSN)
2536 {
2537 h = make_insn_sequence (desc, RECOG);
2538 merge_trees (&recog_tree, &h);
2539 }
2540 else if (GET_CODE (desc) == DEFINE_SPLIT)
2541 {
2542 h = make_insn_sequence (desc, SPLIT);
2543 merge_trees (&split_tree, &h);
2544 }
2545 else if (GET_CODE (desc) == DEFINE_PEEPHOLE2)
2546 {
2547 h = make_insn_sequence (desc, PEEPHOLE2);
2548 merge_trees (&peephole2_tree, &h);
2549 }
2550
2551 if (GET_CODE (desc) == DEFINE_PEEPHOLE
2552 || GET_CODE (desc) == DEFINE_EXPAND)
2553 next_insn_code++;
2554 next_index++;
2555 }
2556
2557 if (error_count)
2558 return FATAL_EXIT_CODE;
2559
2560 puts ("\n\n");
2561
2562 process_tree (&recog_tree, RECOG);
2563 process_tree (&split_tree, SPLIT);
2564 process_tree (&peephole2_tree, PEEPHOLE2);
2565
2566 fflush (stdout);
2567 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
2568 }
2569 \f
2570 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2571 const char *
2572 get_insn_name (code)
2573 int code;
2574 {
2575 if (code < insn_name_ptr_size)
2576 return insn_name_ptr[code];
2577 else
2578 return NULL;
2579 }
2580
2581 static void
2582 record_insn_name (code, name)
2583 int code;
2584 const char *name;
2585 {
2586 static const char *last_real_name = "insn";
2587 static int last_real_code = 0;
2588 char *new;
2589
2590 if (insn_name_ptr_size <= code)
2591 {
2592 int new_size;
2593 new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
2594 insn_name_ptr =
2595 (char **) xrealloc (insn_name_ptr, sizeof(char *) * new_size);
2596 memset (insn_name_ptr + insn_name_ptr_size, 0,
2597 sizeof(char *) * (new_size - insn_name_ptr_size));
2598 insn_name_ptr_size = new_size;
2599 }
2600
2601 if (!name || name[0] == '\0')
2602 {
2603 new = xmalloc (strlen (last_real_name) + 10);
2604 sprintf (new, "%s+%d", last_real_name, code - last_real_code);
2605 }
2606 else
2607 {
2608 last_real_name = new = xstrdup (name);
2609 last_real_code = code;
2610 }
2611
2612 insn_name_ptr[code] = new;
2613 }
2614 \f
2615 char *
2616 xstrdup (input)
2617 const char *input;
2618 {
2619 register size_t len = strlen (input) + 1;
2620 register char *output = xmalloc (len);
2621 memcpy (output, input, len);
2622 return output;
2623 }
2624
2625 PTR
2626 xrealloc (old, size)
2627 PTR old;
2628 size_t size;
2629 {
2630 register PTR ptr;
2631 if (old)
2632 ptr = (PTR) realloc (old, size);
2633 else
2634 ptr = (PTR) malloc (size);
2635 if (!ptr)
2636 fatal ("virtual memory exhausted");
2637 return ptr;
2638 }
2639
2640 PTR
2641 xmalloc (size)
2642 size_t size;
2643 {
2644 register PTR val = (PTR) malloc (size);
2645
2646 if (val == 0)
2647 fatal ("virtual memory exhausted");
2648 return val;
2649 }
2650 \f
2651 static void
2652 debug_decision_2 (test)
2653 struct decision_test *test;
2654 {
2655 switch (test->type)
2656 {
2657 case DT_mode:
2658 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2659 break;
2660 case DT_code:
2661 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2662 break;
2663 case DT_veclen:
2664 fprintf (stderr, "veclen=%d", test->u.veclen);
2665 break;
2666 case DT_elt_zero_int:
2667 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2668 break;
2669 case DT_elt_one_int:
2670 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2671 break;
2672 case DT_elt_zero_wide:
2673 fprintf (stderr, "elt0_w=");
2674 fprintf (stderr, HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2675 break;
2676 case DT_dup:
2677 fprintf (stderr, "dup=%d", test->u.dup);
2678 break;
2679 case DT_pred:
2680 fprintf (stderr, "pred=(%s,%s)",
2681 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2682 break;
2683 case DT_c_test:
2684 {
2685 char sub[16+4];
2686 strncpy (sub, test->u.c_test, sizeof(sub));
2687 memcpy (sub+16, "...", 4);
2688 fprintf (stderr, "c_test=\"%s\"", sub);
2689 }
2690 break;
2691 case DT_accept_op:
2692 fprintf (stderr, "A_op=%d", test->u.opno);
2693 break;
2694 case DT_accept_insn:
2695 fprintf (stderr, "A_insn=(%d,%d)",
2696 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2697 break;
2698
2699 default:
2700 abort ();
2701 }
2702 }
2703
2704 static void
2705 debug_decision_1 (d, indent)
2706 struct decision *d;
2707 int indent;
2708 {
2709 int i;
2710 struct decision_test *test;
2711
2712 if (d == NULL)
2713 {
2714 for (i = 0; i < indent; ++i)
2715 putc (' ', stderr);
2716 fputs ("(nil)\n", stderr);
2717 return;
2718 }
2719
2720 for (i = 0; i < indent; ++i)
2721 putc (' ', stderr);
2722
2723 putc ('{', stderr);
2724 test = d->tests;
2725 if (test)
2726 {
2727 debug_decision_2 (test);
2728 while ((test = test->next) != NULL)
2729 {
2730 fputs (" + ", stderr);
2731 debug_decision_2 (test);
2732 }
2733 }
2734 fprintf (stderr, "} %d n %d a %d\n", d->number,
2735 (d->next ? d->next->number : -1),
2736 (d->afterward ? d->afterward->number : -1));
2737 }
2738
2739 static void
2740 debug_decision_0 (d, indent, maxdepth)
2741 struct decision *d;
2742 int indent, maxdepth;
2743 {
2744 struct decision *n;
2745 int i;
2746
2747 if (maxdepth < 0)
2748 return;
2749 if (d == NULL)
2750 {
2751 for (i = 0; i < indent; ++i)
2752 putc (' ', stderr);
2753 fputs ("(nil)\n", stderr);
2754 return;
2755 }
2756
2757 debug_decision_1 (d, indent);
2758 for (n = d->success.first; n ; n = n->next)
2759 debug_decision_0 (n, indent + 2, maxdepth - 1);
2760 }
2761
2762 void
2763 debug_decision (d)
2764 struct decision *d;
2765 {
2766 debug_decision_0 (d, 0, 1000000);
2767 }
2768
2769 void
2770 debug_decision_list (d)
2771 struct decision *d;
2772 {
2773 while (d)
2774 {
2775 debug_decision_0 (d, 0, 0);
2776 d = d->next;
2777 }
2778 }
This page took 0.156947 seconds and 5 git commands to generate.