]> gcc.gnu.org Git - gcc.git/blob - gcc/genoutput.c
recog.h (INSN_OUTPUT_FORMAT_*): New.
[gcc.git] / gcc / genoutput.c
1 /* Generate code from to output assembler insns as recognized from rtl.
2 Copyright (C) 1987, 88, 92, 94-95, 97-98, 1999
3 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* This program reads the machine description for the compiler target machine
24 and produces a file containing these things:
25
26 1. An array of `struct insn_data', which is indexed by insn code number,
27 which contains:
28
29 a. `name' is the name for that pattern. Nameless patterns are
30 given a name.
31
32 b. `output' hold either the output template, an array of output
33 templates, or an output function.
34
35 c. `genfun' is the function to generate a body for that pattern,
36 given operands as arguments.
37
38 d. `n_operands' is the number of distinct operands in the pattern
39 for that insn,
40
41 e. `n_dups' is the number of match_dup's that appear in the insn's
42 pattern. This says how many elements of `recog_data.dup_loc' are
43 significant after an insn has been recognized.
44
45 f. `n_alternatives' is the number of alternatives in the constraints
46 of each pattern.
47
48 g. `output_format' tells what type of thing `output' is.
49
50 h. `operand' is the base of an array of operand data for the insn.
51
52 2. An array of `struct insn_operand data', used by `operand' above.
53
54 a. `predicate', an int-valued function, is the match_operand predicate
55 for this operand.
56
57 b. `constraint' is the constraint for this operand. This exists
58 only if register constraints appear in match_operand rtx's.
59
60 c. `address_p' indicates that the operand appears within ADDRESS
61 rtx's. This exists only if there are *no* register constraints
62 in the match_operand rtx's.
63
64 d. `mode' is the machine mode that that operand is supposed to have.
65
66 e. `strict_low', is nonzero for operands contained in a STRICT_LOW_PART.
67
68 The code number of an insn is simply its position in the machine
69 description; code numbers are assigned sequentially to entries in
70 the description, starting with code number 0.
71
72 Thus, the following entry in the machine description
73
74 (define_insn "clrdf"
75 [(set (match_operand:DF 0 "general_operand" "")
76 (const_int 0))]
77 ""
78 "clrd %0")
79
80 assuming it is the 25th entry present, would cause
81 insn_data[24].template to be "clrd %0", and
82 insn_data[24].n_operands to be 1. */
83 \f
84 #include "hconfig.h"
85 #include "system.h"
86 #include "rtl.h"
87 #include "obstack.h"
88 #include "errors.h"
89
90 /* No instruction can have more operands than this. Sorry for this
91 arbitrary limit, but what machine will have an instruction with
92 this many operands? */
93
94 #define MAX_MAX_OPERANDS 40
95
96 static struct obstack obstack;
97 struct obstack *rtl_obstack = &obstack;
98
99 #define obstack_chunk_alloc xmalloc
100 #define obstack_chunk_free free
101
102 static int n_occurrences PROTO((int, char *));
103
104 /* insns in the machine description are assigned sequential code numbers
105 that are used by insn-recog.c (produced by genrecog) to communicate
106 to insn-output.c (produced by this program). */
107
108 static int next_code_number;
109
110 /* This counts all definitions in the md file,
111 for the sake of error messages. */
112
113 static int next_index_number;
114
115 /* This counts all operands used in the md file. The first is null. */
116
117 static int next_operand_number = 1;
118
119 /* Record in this chain all information about the operands we will output. */
120
121 struct operand_data
122 {
123 struct operand_data *next;
124 int index;
125 char *predicate;
126 char *constraint;
127 enum machine_mode mode;
128 unsigned char n_alternatives;
129 char address_p;
130 char strict_low;
131 char seen;
132 };
133
134 /* Begin with a null operand at index 0. */
135
136 static struct operand_data null_operand =
137 {
138 0, 0, "", "", VOIDmode, 0, 0, 0, 0
139 };
140
141 static struct operand_data *odata = &null_operand;
142 static struct operand_data **odata_end = &null_operand.next;
143
144 /* Must match the constants in recog.h. */
145
146 #define INSN_OUTPUT_FORMAT_NONE 0 /* abort */
147 #define INSN_OUTPUT_FORMAT_SINGLE 1 /* const char * */
148 #define INSN_OUTPUT_FORMAT_MULTI 2 /* const char * const * */
149 #define INSN_OUTPUT_FORMAT_FUNCTION 3 /* const char * (*)(...) */
150
151 /* Record in this chain all information that we will output,
152 associated with the code number of the insn. */
153
154 struct data
155 {
156 struct data *next;
157 char *name;
158 char *template;
159 int code_number;
160 int index_number;
161 int n_operands; /* Number of operands this insn recognizes */
162 int n_dups; /* Number times match_dup appears in pattern */
163 int n_alternatives; /* Number of alternatives in each constraint */
164 int operand_number; /* Operand index in the big array. */
165 int output_format; /* INSN_OUTPUT_FORMAT_*. */
166 struct operand_data operand[MAX_MAX_OPERANDS];
167 };
168
169 /* This variable points to the first link in the insn chain. */
170
171 static struct data *idata, **idata_end = &idata;
172
173 /* Nonzero if any match_operand has a constraint string; implies that
174 REGISTER_CONSTRAINTS will be defined for this machine description. */
175
176 static int have_constraints;
177
178 \f
179 static void output_prologue PROTO((void));
180 static void output_predicate_decls PROTO((void));
181 static void output_operand_data PROTO((void));
182 static void output_insn_data PROTO((void));
183 static void output_get_insn_name PROTO((void));
184 static void scan_operands PROTO((struct data *, rtx, int, int));
185 static int compare_operands PROTO((struct operand_data *,
186 struct operand_data *));
187 static void place_operands PROTO((struct data *));
188 static void process_template PROTO((struct data *, char *));
189 static void validate_insn_alternatives PROTO((struct data *));
190 static void gen_insn PROTO((rtx));
191 static void gen_peephole PROTO((rtx));
192 static void gen_expand PROTO((rtx));
193 static void gen_split PROTO((rtx));
194 static int n_occurrences PROTO((int, char *));
195 \f
196 const char *
197 get_insn_name (index)
198 int index;
199 {
200 static char buf[100];
201
202 struct data *i, *last_named = NULL;
203 for (i = idata; i ; i = i->next)
204 {
205 if (i->index_number == index)
206 return i->name;
207 if (i->name)
208 last_named = i;
209 }
210
211 if (last_named)
212 sprintf(buf, "%s+%d", last_named->name, index - last_named->index_number);
213 else
214 sprintf(buf, "insn %d", index);
215
216 return buf;
217 }
218
219 static void
220 output_prologue ()
221 {
222 printf ("/* Generated automatically by the program `genoutput'\n\
223 from the machine description file `md'. */\n\n");
224
225 printf ("#define NO_MD_PROTOTYPES\n");
226 printf ("#include \"config.h\"\n");
227 printf ("#include \"system.h\"\n");
228 printf ("#include \"flags.h\"\n");
229 printf ("#include \"rtl.h\"\n");
230 printf ("#include \"function.h\"\n");
231 printf ("#include \"regs.h\"\n");
232 printf ("#include \"hard-reg-set.h\"\n");
233 printf ("#include \"real.h\"\n");
234 printf ("#include \"insn-config.h\"\n\n");
235 printf ("#include \"conditions.h\"\n");
236 printf ("#include \"insn-flags.h\"\n");
237 printf ("#include \"insn-attr.h\"\n\n");
238 printf ("#include \"insn-codes.h\"\n\n");
239 printf ("#include \"recog.h\"\n\n");
240
241 printf ("#include \"output.h\"\n");
242 }
243
244
245 /* We need to define all predicates used. Keep a list of those we
246 have defined so far. There normally aren't very many predicates
247 used, so a linked list should be fast enough. */
248
249 static void
250 output_predicate_decls ()
251 {
252 struct predicate { char *name; struct predicate *next; } *predicates = 0;
253 register struct operand_data *d;
254 struct predicate *p;
255
256 for (d = odata; d; d = d->next)
257 if (d->predicate && d->predicate[0])
258 {
259 for (p = predicates; p; p = p->next)
260 if (strcmp (p->name, d->predicate) == 0)
261 break;
262
263 if (p == 0)
264 {
265 printf ("extern int %s PROTO ((rtx, enum machine_mode));\n",
266 d->predicate);
267 p = (struct predicate *) alloca (sizeof (struct predicate));
268 p->name = d->predicate;
269 p->next = predicates;
270 predicates = p;
271 }
272 }
273
274 printf ("\n\n");
275 }
276
277 static void
278 output_operand_data ()
279 {
280 register struct operand_data *d;
281
282 printf ("\nstatic const struct insn_operand_data operand_data[] = \n{\n");
283
284 for (d = odata; d; d = d->next)
285 {
286 printf (" {\n");
287
288 printf (" %s,\n",
289 d->predicate && d->predicate[0] ? d->predicate : "0");
290
291 if (have_constraints)
292 {
293 printf (" \"%s\",\n",
294 d->constraint ? d->constraint : "");
295 }
296
297 printf (" %smode,\n", GET_MODE_NAME (d->mode));
298
299 if (! have_constraints)
300 printf (" %d,\n", d->address_p);
301
302 printf (" %d\n", d->strict_low);
303
304 printf(" },\n");
305 }
306 printf("};\n\n\n");
307 }
308
309 static void
310 output_insn_data ()
311 {
312 register struct data *d;
313 int name_offset = 0;
314 int next_name_offset;
315 const char * last_name = 0;
316 const char * next_name = 0;
317 register struct data *n;
318
319 for (n = idata, next_name_offset = 1; n; n = n->next, next_name_offset++)
320 if (n->name)
321 {
322 next_name = n->name;
323 break;
324 }
325
326 printf ("\nconst struct insn_data insn_data[] = \n{\n");
327
328 for (d = idata; d; d = d->next)
329 {
330 printf (" {\n");
331
332 if (d->name)
333 {
334 printf (" \"%s\",\n", d->name);
335 name_offset = 0;
336 last_name = d->name;
337 next_name = 0;
338 for (n = d->next, next_name_offset = 1; n;
339 n = n->next, next_name_offset++)
340 {
341 if (n->name)
342 {
343 next_name = n->name;
344 break;
345 }
346 }
347 }
348 else
349 {
350 name_offset++;
351 if (next_name && (last_name == 0
352 || name_offset > next_name_offset / 2))
353 printf (" \"%s-%d\",\n", next_name,
354 next_name_offset - name_offset);
355 else
356 printf (" \"%s+%d\",\n", last_name, name_offset);
357 }
358
359 switch (d->output_format)
360 {
361 case INSN_OUTPUT_FORMAT_NONE:
362 printf (" 0,\n");
363 break;
364 case INSN_OUTPUT_FORMAT_SINGLE:
365 printf (" \"%s\",\n", d->template);
366 break;
367 case INSN_OUTPUT_FORMAT_MULTI:
368 case INSN_OUTPUT_FORMAT_FUNCTION:
369 printf (" output_%d,\n", d->code_number);
370 break;
371 default:
372 abort ();
373 }
374
375 if (d->name && d->name[0] != '*')
376 printf (" gen_%s,\n", d->name);
377 else
378 printf (" 0,\n");
379
380 printf (" &operand_data[%d],\n", d->operand_number);
381 printf (" %d,\n", d->n_operands);
382 printf (" %d,\n", d->n_dups);
383 printf (" %d,\n", d->n_alternatives);
384 printf (" %d\n", d->output_format);
385
386 printf(" },\n");
387 }
388 printf ("};\n\n\n");
389 }
390
391 static void
392 output_get_insn_name ()
393 {
394 printf ("const char *\n");
395 printf ("get_insn_name (code)\n");
396 printf (" int code;\n");
397 printf ("{\n");
398 printf (" return insn_data[code].name;\n");
399 printf ("}\n");
400 }
401
402 \f
403 /* Stores in max_opno the largest operand number present in `part', if
404 that is larger than the previous value of max_opno, and the rest of
405 the operand data into `d->operand[i]'.
406
407 THIS_ADDRESS_P is nonzero if the containing rtx was an ADDRESS.
408 THIS_STRICT_LOW is nonzero if the containing rtx was a STRICT_LOW_PART. */
409
410 static int max_opno;
411 static int num_dups;
412
413 static void
414 scan_operands (d, part, this_address_p, this_strict_low)
415 struct data *d;
416 rtx part;
417 int this_address_p;
418 int this_strict_low;
419 {
420 register int i, j;
421 register const char *format_ptr;
422 int opno;
423
424 if (part == 0)
425 return;
426
427 switch (GET_CODE (part))
428 {
429 case MATCH_OPERAND:
430 opno = XINT (part, 0);
431 if (opno > max_opno)
432 max_opno = opno;
433 if (max_opno >= MAX_MAX_OPERANDS)
434 {
435 error ("Too many operands (%d) in definition %s.\n",
436 max_opno + 1, get_insn_name (next_index_number));
437 return;
438 }
439 if (d->operand[opno].seen)
440 error ("Definition %s specified operand number %d more than once.\n",
441 get_insn_name (next_index_number), opno);
442 d->operand[opno].seen = 1;
443 d->operand[opno].mode = GET_MODE (part);
444 d->operand[opno].strict_low = this_strict_low;
445 d->operand[opno].predicate = XSTR (part, 1);
446 d->operand[opno].constraint = XSTR (part, 2);
447 if (XSTR (part, 2) != 0 && *XSTR (part, 2) != 0)
448 {
449 d->operand[opno].n_alternatives
450 = n_occurrences (',', XSTR (part, 2)) + 1;
451 have_constraints = 1;
452 }
453 d->operand[opno].address_p = this_address_p;
454 return;
455
456 case MATCH_SCRATCH:
457 opno = XINT (part, 0);
458 if (opno > max_opno)
459 max_opno = opno;
460 if (max_opno >= MAX_MAX_OPERANDS)
461 {
462 error ("Too many operands (%d) in definition %s.\n",
463 max_opno + 1, get_insn_name (next_index_number));
464 return;
465 }
466 if (d->operand[opno].seen)
467 error ("Definition %s specified operand number %d more than once.\n",
468 get_insn_name (next_index_number), opno);
469 d->operand[opno].seen = 1;
470 d->operand[opno].mode = GET_MODE (part);
471 d->operand[opno].strict_low = 0;
472 d->operand[opno].predicate = "scratch_operand";
473 d->operand[opno].constraint = XSTR (part, 1);
474 if (XSTR (part, 1) != 0 && *XSTR (part, 1) != 0)
475 {
476 d->operand[opno].n_alternatives
477 = n_occurrences (',', XSTR (part, 1)) + 1;
478 have_constraints = 1;
479 }
480 d->operand[opno].address_p = 0;
481 return;
482
483 case MATCH_OPERATOR:
484 case MATCH_PARALLEL:
485 opno = XINT (part, 0);
486 if (opno > max_opno)
487 max_opno = opno;
488 if (max_opno >= MAX_MAX_OPERANDS)
489 {
490 error ("Too many operands (%d) in definition %s.\n",
491 max_opno + 1, get_insn_name (next_index_number));
492 return;
493 }
494 if (d->operand[opno].seen)
495 error ("Definition %s specified operand number %d more than once.\n",
496 get_insn_name (next_index_number), opno);
497 d->operand[opno].seen = 1;
498 d->operand[opno].mode = GET_MODE (part);
499 d->operand[opno].strict_low = 0;
500 d->operand[opno].predicate = XSTR (part, 1);
501 d->operand[opno].constraint = 0;
502 d->operand[opno].address_p = 0;
503 for (i = 0; i < XVECLEN (part, 2); i++)
504 scan_operands (d, XVECEXP (part, 2, i), 0, 0);
505 return;
506
507 case MATCH_DUP:
508 case MATCH_OP_DUP:
509 case MATCH_PAR_DUP:
510 ++num_dups;
511 return;
512
513 case ADDRESS:
514 scan_operands (d, XEXP (part, 0), 1, 0);
515 return;
516
517 case STRICT_LOW_PART:
518 scan_operands (d, XEXP (part, 0), 0, 1);
519 return;
520
521 default:
522 break;
523 }
524
525 format_ptr = GET_RTX_FORMAT (GET_CODE (part));
526
527 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (part)); i++)
528 switch (*format_ptr++)
529 {
530 case 'e':
531 case 'u':
532 scan_operands (d, XEXP (part, i), 0, 0);
533 break;
534 case 'E':
535 if (XVEC (part, i) != NULL)
536 for (j = 0; j < XVECLEN (part, i); j++)
537 scan_operands (d, XVECEXP (part, i, j), 0, 0);
538 break;
539 }
540 }
541
542 /* Compare two operands for content equality. */
543
544 static int
545 compare_operands (d0, d1)
546 struct operand_data *d0, *d1;
547 {
548 char *p0, *p1;
549
550 p0 = d0->predicate;
551 if (!p0)
552 p0 = "";
553 p1 = d1->predicate;
554 if (!p1)
555 p1 = "";
556 if (strcmp (p0, p1) != 0)
557 return 0;
558
559 if (have_constraints)
560 {
561 p0 = d0->constraint;
562 if (!p0)
563 p0 = "";
564 p1 = d1->constraint;
565 if (!p1)
566 p1 = "";
567 if (strcmp (p0, p1) != 0)
568 return 0;
569 }
570
571 if (d0->mode != d1->mode)
572 return 0;
573
574 if (!have_constraints)
575 if (d0->address_p != d1->address_p)
576 return 0;
577
578 if (d0->strict_low != d1->strict_low)
579 return 0;
580
581 return 1;
582 }
583
584 /* Scan the list of operands we've already committed to output and either
585 find a subsequence that is the same, or allocate a new one at the end. */
586
587 static void
588 place_operands (d)
589 struct data *d;
590 {
591 struct operand_data *od, *od2;
592 int i;
593
594 if (d->n_operands == 0)
595 {
596 d->operand_number = 0;
597 return;
598 }
599
600 /* Brute force substring search. */
601 for (od = odata, i = 0; od; od = od->next, i = 0)
602 if (compare_operands (od, &d->operand[0]))
603 {
604 od2 = od->next;
605 i = 1;
606 while (1)
607 {
608 if (i == d->n_operands)
609 goto full_match;
610 if (od2 == NULL)
611 goto partial_match;
612 if (! compare_operands (od2, &d->operand[i]))
613 break;
614 ++i, od2 = od2->next;
615 }
616 }
617
618 /* Either partial match at the end of the list, or no match. In either
619 case, we tack on what operands are remaining to the end of the list. */
620 partial_match:
621 d->operand_number = next_operand_number - i;
622 for (; i < d->n_operands; ++i)
623 {
624 od2 = &d->operand[i];
625 *odata_end = od2;
626 odata_end = &od2->next;
627 od2->index = next_operand_number++;
628 }
629 *odata_end = NULL;
630 return;
631
632 full_match:
633 d->operand_number = od->index;
634 return;
635 }
636
637 \f
638 /* Process an assembler template from a define_insn or a define_peephole.
639 It is either the assembler code template, a list of assembler code
640 templates, or C code to generate the assembler code template. */
641
642 static void
643 process_template (d, template)
644 struct data *d;
645 char *template;
646 {
647 register char *cp;
648 register int i;
649
650 /* Templates starting with * contain straight code to be run. */
651 if (template[0] == '*')
652 {
653 d->template = 0;
654 d->output_format = INSN_OUTPUT_FORMAT_FUNCTION;
655
656 printf ("\nstatic const char *output_%d PROTO ((rtx *, rtx));\n",
657 d->code_number);
658 puts ("\nstatic const char *");
659 printf ("output_%d (operands, insn)\n", d->code_number);
660 puts (" rtx *operands ATTRIBUTE_UNUSED;");
661 puts (" rtx insn ATTRIBUTE_UNUSED;");
662 puts ("{");
663
664 puts (template + 1);
665 puts ("}");
666 }
667
668 /* If the assembler code template starts with a @ it is a newline-separated
669 list of assembler code templates, one for each alternative. */
670 else if (template[0] == '@')
671 {
672 d->template = 0;
673 d->output_format = INSN_OUTPUT_FORMAT_MULTI;
674
675 printf ("\nstatic const char * const output_%d[] = {\n", d->code_number);
676
677 for (i = 0, cp = &template[1]; *cp; )
678 {
679 while (*cp == '\n' || *cp == ' ' || *cp== '\t')
680 cp++;
681
682 printf (" \"");
683 while (*cp != '\n' && *cp != '\0')
684 {
685 putchar (*cp);
686 cp++;
687 }
688
689 printf ("\",\n");
690 i++;
691 }
692
693 printf ("};\n");
694 }
695 else
696 {
697 d->template = template;
698 d->output_format = INSN_OUTPUT_FORMAT_SINGLE;
699 }
700 }
701 \f
702 /* Check insn D for consistency in number of constraint alternatives. */
703
704 static void
705 validate_insn_alternatives (d)
706 struct data *d;
707 {
708 register int n = 0, start;
709
710 /* Make sure all the operands have the same number of alternatives
711 in their constraints. Let N be that number. */
712 for (start = 0; start < d->n_operands; start++)
713 if (d->operand[start].n_alternatives > 0)
714 {
715 if (n == 0)
716 n = d->operand[start].n_alternatives;
717 else if (n != d->operand[start].n_alternatives)
718 error ("wrong number of alternatives in operand %d of insn %s",
719 start, get_insn_name (d->index_number));
720 }
721
722 /* Record the insn's overall number of alternatives. */
723 d->n_alternatives = n;
724 }
725 \f
726 /* Look at a define_insn just read. Assign its code number. Record
727 on idata the template and the number of arguments. If the insn has
728 a hairy output action, output a function for now. */
729
730 static void
731 gen_insn (insn)
732 rtx insn;
733 {
734 register struct data *d = (struct data *) xmalloc (sizeof (struct data));
735 register int i;
736
737 d->code_number = next_code_number++;
738 d->index_number = next_index_number;
739 if (XSTR (insn, 0)[0])
740 d->name = XSTR (insn, 0);
741 else
742 d->name = 0;
743
744 /* Build up the list in the same order as the insns are seen
745 in the machine description. */
746 d->next = 0;
747 *idata_end = d;
748 idata_end = &d->next;
749
750 max_opno = -1;
751 num_dups = 0;
752 memset (d->operand, 0, sizeof (d->operand));
753
754 for (i = 0; i < XVECLEN (insn, 1); i++)
755 scan_operands (d, XVECEXP (insn, 1, i), 0, 0);
756
757 d->n_operands = max_opno + 1;
758 d->n_dups = num_dups;
759
760 validate_insn_alternatives (d);
761 place_operands (d);
762 process_template (d, XSTR (insn, 3));
763 }
764 \f
765 /* Look at a define_peephole just read. Assign its code number.
766 Record on idata the template and the number of arguments.
767 If the insn has a hairy output action, output it now. */
768
769 static void
770 gen_peephole (peep)
771 rtx peep;
772 {
773 register struct data *d = (struct data *) xmalloc (sizeof (struct data));
774 register int i;
775
776 d->code_number = next_code_number++;
777 d->index_number = next_index_number;
778 d->name = 0;
779
780 /* Build up the list in the same order as the insns are seen
781 in the machine description. */
782 d->next = 0;
783 *idata_end = d;
784 idata_end = &d->next;
785
786 max_opno = -1;
787 num_dups = 0;
788 memset (d->operand, 0, sizeof (d->operand));
789
790 /* Get the number of operands by scanning all the patterns of the
791 peephole optimizer. But ignore all the rest of the information
792 thus obtained. */
793 for (i = 0; i < XVECLEN (peep, 0); i++)
794 scan_operands (d, XVECEXP (peep, 0, i), 0, 0);
795
796 d->n_operands = max_opno + 1;
797 d->n_dups = 0;
798
799 validate_insn_alternatives (d);
800 place_operands (d);
801 process_template (d, XSTR (peep, 2));
802 }
803 \f
804 /* Process a define_expand just read. Assign its code number,
805 only for the purposes of `insn_gen_function'. */
806
807 static void
808 gen_expand (insn)
809 rtx insn;
810 {
811 register struct data *d = (struct data *) xmalloc (sizeof (struct data));
812 register int i;
813
814 d->code_number = next_code_number++;
815 d->index_number = next_index_number;
816 if (XSTR (insn, 0)[0])
817 d->name = XSTR (insn, 0);
818 else
819 d->name = 0;
820
821 /* Build up the list in the same order as the insns are seen
822 in the machine description. */
823 d->next = 0;
824 *idata_end = d;
825 idata_end = &d->next;
826
827 max_opno = -1;
828 num_dups = 0;
829 memset (d->operand, 0, sizeof (d->operand));
830
831 /* Scan the operands to get the specified predicates and modes,
832 since expand_binop needs to know them. */
833
834 if (XVEC (insn, 1))
835 for (i = 0; i < XVECLEN (insn, 1); i++)
836 scan_operands (d, XVECEXP (insn, 1, i), 0, 0);
837
838 d->n_operands = max_opno + 1;
839 d->n_dups = num_dups;
840 d->template = 0;
841 d->output_format = INSN_OUTPUT_FORMAT_NONE;
842
843 validate_insn_alternatives (d);
844 place_operands (d);
845 }
846 \f
847 /* Process a define_split just read. Assign its code number,
848 only for reasons of consistency and to simplify genrecog. */
849
850 static void
851 gen_split (split)
852 rtx split;
853 {
854 register struct data *d = (struct data *) xmalloc (sizeof (struct data));
855 register int i;
856
857 d->code_number = next_code_number++;
858 d->index_number = next_index_number;
859 d->name = 0;
860
861 /* Build up the list in the same order as the insns are seen
862 in the machine description. */
863 d->next = 0;
864 *idata_end = d;
865 idata_end = &d->next;
866
867 max_opno = -1;
868 num_dups = 0;
869 memset (d->operand, 0, sizeof (d->operand));
870
871 /* Get the number of operands by scanning all the patterns of the
872 split patterns. But ignore all the rest of the information thus
873 obtained. */
874 for (i = 0; i < XVECLEN (split, 0); i++)
875 scan_operands (d, XVECEXP (split, 0, i), 0, 0);
876
877 d->n_operands = max_opno + 1;
878 d->n_dups = 0;
879 d->n_alternatives = 0;
880 d->template = 0;
881 d->output_format = INSN_OUTPUT_FORMAT_NONE;
882
883 place_operands (d);
884 }
885 \f
886 PTR
887 xmalloc (size)
888 size_t size;
889 {
890 register PTR val = (PTR) malloc (size);
891
892 if (val == 0)
893 fatal ("virtual memory exhausted");
894 return val;
895 }
896
897 PTR
898 xrealloc (old, size)
899 PTR old;
900 size_t size;
901 {
902 register PTR ptr;
903 if (old)
904 ptr = (PTR) realloc (old, size);
905 else
906 ptr = (PTR) malloc (size);
907 if (!ptr)
908 fatal ("virtual memory exhausted");
909 return ptr;
910 }
911
912 int
913 main (argc, argv)
914 int argc;
915 char **argv;
916 {
917 rtx desc;
918 FILE *infile;
919 register int c;
920
921 progname = "genoutput";
922 obstack_init (rtl_obstack);
923
924 if (argc <= 1)
925 fatal ("No input file name.");
926
927 infile = fopen (argv[1], "r");
928 if (infile == 0)
929 {
930 perror (argv[1]);
931 exit (FATAL_EXIT_CODE);
932 }
933
934 output_prologue ();
935 next_code_number = 0;
936 next_index_number = 0;
937 have_constraints = 0;
938
939 /* Read the machine description. */
940
941 while (1)
942 {
943 c = read_skip_spaces (infile);
944 if (c == EOF)
945 break;
946 ungetc (c, infile);
947
948 desc = read_rtx (infile);
949 if (GET_CODE (desc) == DEFINE_INSN)
950 gen_insn (desc);
951 if (GET_CODE (desc) == DEFINE_PEEPHOLE)
952 gen_peephole (desc);
953 if (GET_CODE (desc) == DEFINE_EXPAND)
954 gen_expand (desc);
955 if (GET_CODE (desc) == DEFINE_SPLIT
956 || GET_CODE (desc) == DEFINE_PEEPHOLE2)
957 gen_split (desc);
958 next_index_number++;
959 }
960
961 printf("\n\n");
962 output_predicate_decls ();
963 output_operand_data ();
964 output_insn_data ();
965 output_get_insn_name ();
966
967 fflush (stdout);
968 exit (ferror (stdout) != 0 || have_error
969 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
970
971 /* NOTREACHED */
972 return 0;
973 }
974
975 static int
976 n_occurrences (c, s)
977 int c;
978 char *s;
979 {
980 int n = 0;
981 while (*s)
982 n += (*s++ == c);
983 return n;
984 }
This page took 0.086012 seconds and 6 git commands to generate.