]> gcc.gnu.org Git - gcc.git/blob - gcc/gcse.c
290f70ecadac6c7e7c1bf6956a4ae520f70ddb8f
[gcc.git] / gcc / gcse.c
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
34
35 */
36
37 /* References searched while implementing this.
38
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
42
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
46
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
50
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
54
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
59
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
64
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
69
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
73
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
79
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
84
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
88
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
92
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
96
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
100
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
104
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
108
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
112
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
116
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
120
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
124
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
128
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
132
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
137
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
141
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
144 */
145
146 #include "config.h"
147 #include "system.h"
148 #include "coretypes.h"
149 #include "tm.h"
150 #include "toplev.h"
151
152 #include "rtl.h"
153 #include "tree.h"
154 #include "tm_p.h"
155 #include "regs.h"
156 #include "hard-reg-set.h"
157 #include "flags.h"
158 #include "real.h"
159 #include "insn-config.h"
160 #include "recog.h"
161 #include "basic-block.h"
162 #include "output.h"
163 #include "function.h"
164 #include "expr.h"
165 #include "except.h"
166 #include "ggc.h"
167 #include "params.h"
168 #include "cselib.h"
169 #include "intl.h"
170 #include "obstack.h"
171 #include "timevar.h"
172 #include "tree-pass.h"
173 #include "hashtab.h"
174
175 /* Propagate flow information through back edges and thus enable PRE's
176 moving loop invariant calculations out of loops.
177
178 Originally this tended to create worse overall code, but several
179 improvements during the development of PRE seem to have made following
180 back edges generally a win.
181
182 Note much of the loop invariant code motion done here would normally
183 be done by loop.c, which has more heuristics for when to move invariants
184 out of loops. At some point we might need to move some of those
185 heuristics into gcse.c. */
186
187 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
188 are a superset of those done by GCSE.
189
190 We perform the following steps:
191
192 1) Compute basic block information.
193
194 2) Compute table of places where registers are set.
195
196 3) Perform copy/constant propagation.
197
198 4) Perform global cse using lazy code motion if not optimizing
199 for size, or code hoisting if we are.
200
201 5) Perform another pass of copy/constant propagation.
202
203 Two passes of copy/constant propagation are done because the first one
204 enables more GCSE and the second one helps to clean up the copies that
205 GCSE creates. This is needed more for PRE than for Classic because Classic
206 GCSE will try to use an existing register containing the common
207 subexpression rather than create a new one. This is harder to do for PRE
208 because of the code motion (which Classic GCSE doesn't do).
209
210 Expressions we are interested in GCSE-ing are of the form
211 (set (pseudo-reg) (expression)).
212 Function want_to_gcse_p says what these are.
213
214 PRE handles moving invariant expressions out of loops (by treating them as
215 partially redundant).
216
217 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
218 assignment) based GVN (global value numbering). L. T. Simpson's paper
219 (Rice University) on value numbering is a useful reference for this.
220
221 **********************
222
223 We used to support multiple passes but there are diminishing returns in
224 doing so. The first pass usually makes 90% of the changes that are doable.
225 A second pass can make a few more changes made possible by the first pass.
226 Experiments show any further passes don't make enough changes to justify
227 the expense.
228
229 A study of spec92 using an unlimited number of passes:
230 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
231 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
232 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
233
234 It was found doing copy propagation between each pass enables further
235 substitutions.
236
237 PRE is quite expensive in complicated functions because the DFA can take
238 a while to converge. Hence we only perform one pass. The parameter
239 max-gcse-passes can be modified if one wants to experiment.
240
241 **********************
242
243 The steps for PRE are:
244
245 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
246
247 2) Perform the data flow analysis for PRE.
248
249 3) Delete the redundant instructions
250
251 4) Insert the required copies [if any] that make the partially
252 redundant instructions fully redundant.
253
254 5) For other reaching expressions, insert an instruction to copy the value
255 to a newly created pseudo that will reach the redundant instruction.
256
257 The deletion is done first so that when we do insertions we
258 know which pseudo reg to use.
259
260 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
261 argue it is not. The number of iterations for the algorithm to converge
262 is typically 2-4 so I don't view it as that expensive (relatively speaking).
263
264 PRE GCSE depends heavily on the second CSE pass to clean up the copies
265 we create. To make an expression reach the place where it's redundant,
266 the result of the expression is copied to a new register, and the redundant
267 expression is deleted by replacing it with this new register. Classic GCSE
268 doesn't have this problem as much as it computes the reaching defs of
269 each register in each block and thus can try to use an existing
270 register. */
271 \f
272 /* GCSE global vars. */
273
274 /* -dG dump file. */
275 static FILE *gcse_file;
276
277 /* Note whether or not we should run jump optimization after gcse. We
278 want to do this for two cases.
279
280 * If we changed any jumps via cprop.
281
282 * If we added any labels via edge splitting. */
283 static int run_jump_opt_after_gcse;
284
285 /* Bitmaps are normally not included in debugging dumps.
286 However it's useful to be able to print them from GDB.
287 We could create special functions for this, but it's simpler to
288 just allow passing stderr to the dump_foo fns. Since stderr can
289 be a macro, we store a copy here. */
290 static FILE *debug_stderr;
291
292 /* An obstack for our working variables. */
293 static struct obstack gcse_obstack;
294
295 struct reg_use {rtx reg_rtx; };
296
297 /* Hash table of expressions. */
298
299 struct expr
300 {
301 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
302 rtx expr;
303 /* Index in the available expression bitmaps. */
304 int bitmap_index;
305 /* Next entry with the same hash. */
306 struct expr *next_same_hash;
307 /* List of anticipatable occurrences in basic blocks in the function.
308 An "anticipatable occurrence" is one that is the first occurrence in the
309 basic block, the operands are not modified in the basic block prior
310 to the occurrence and the output is not used between the start of
311 the block and the occurrence. */
312 struct occr *antic_occr;
313 /* List of available occurrence in basic blocks in the function.
314 An "available occurrence" is one that is the last occurrence in the
315 basic block and the operands are not modified by following statements in
316 the basic block [including this insn]. */
317 struct occr *avail_occr;
318 /* Non-null if the computation is PRE redundant.
319 The value is the newly created pseudo-reg to record a copy of the
320 expression in all the places that reach the redundant copy. */
321 rtx reaching_reg;
322 };
323
324 /* Occurrence of an expression.
325 There is one per basic block. If a pattern appears more than once the
326 last appearance is used [or first for anticipatable expressions]. */
327
328 struct occr
329 {
330 /* Next occurrence of this expression. */
331 struct occr *next;
332 /* The insn that computes the expression. */
333 rtx insn;
334 /* Nonzero if this [anticipatable] occurrence has been deleted. */
335 char deleted_p;
336 /* Nonzero if this [available] occurrence has been copied to
337 reaching_reg. */
338 /* ??? This is mutually exclusive with deleted_p, so they could share
339 the same byte. */
340 char copied_p;
341 };
342
343 /* Expression and copy propagation hash tables.
344 Each hash table is an array of buckets.
345 ??? It is known that if it were an array of entries, structure elements
346 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
347 not clear whether in the final analysis a sufficient amount of memory would
348 be saved as the size of the available expression bitmaps would be larger
349 [one could build a mapping table without holes afterwards though].
350 Someday I'll perform the computation and figure it out. */
351
352 struct hash_table
353 {
354 /* The table itself.
355 This is an array of `expr_hash_table_size' elements. */
356 struct expr **table;
357
358 /* Size of the hash table, in elements. */
359 unsigned int size;
360
361 /* Number of hash table elements. */
362 unsigned int n_elems;
363
364 /* Whether the table is expression of copy propagation one. */
365 int set_p;
366 };
367
368 /* Expression hash table. */
369 static struct hash_table expr_hash_table;
370
371 /* Copy propagation hash table. */
372 static struct hash_table set_hash_table;
373
374 /* Mapping of uids to cuids.
375 Only real insns get cuids. */
376 static int *uid_cuid;
377
378 /* Highest UID in UID_CUID. */
379 static int max_uid;
380
381 /* Get the cuid of an insn. */
382 #ifdef ENABLE_CHECKING
383 #define INSN_CUID(INSN) \
384 (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
385 #else
386 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
387 #endif
388
389 /* Number of cuids. */
390 static int max_cuid;
391
392 /* Mapping of cuids to insns. */
393 static rtx *cuid_insn;
394
395 /* Get insn from cuid. */
396 #define CUID_INSN(CUID) (cuid_insn[CUID])
397
398 /* Maximum register number in function prior to doing gcse + 1.
399 Registers created during this pass have regno >= max_gcse_regno.
400 This is named with "gcse" to not collide with global of same name. */
401 static unsigned int max_gcse_regno;
402
403 /* Table of registers that are modified.
404
405 For each register, each element is a list of places where the pseudo-reg
406 is set.
407
408 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
409 requires knowledge of which blocks kill which regs [and thus could use
410 a bitmap instead of the lists `reg_set_table' uses].
411
412 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
413 num-regs) [however perhaps it may be useful to keep the data as is]. One
414 advantage of recording things this way is that `reg_set_table' is fairly
415 sparse with respect to pseudo regs but for hard regs could be fairly dense
416 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
417 up functions like compute_transp since in the case of pseudo-regs we only
418 need to iterate over the number of times a pseudo-reg is set, not over the
419 number of basic blocks [clearly there is a bit of a slow down in the cases
420 where a pseudo is set more than once in a block, however it is believed
421 that the net effect is to speed things up]. This isn't done for hard-regs
422 because recording call-clobbered hard-regs in `reg_set_table' at each
423 function call can consume a fair bit of memory, and iterating over
424 hard-regs stored this way in compute_transp will be more expensive. */
425
426 typedef struct reg_set
427 {
428 /* The next setting of this register. */
429 struct reg_set *next;
430 /* The index of the block where it was set. */
431 int bb_index;
432 } reg_set;
433
434 static reg_set **reg_set_table;
435
436 /* Size of `reg_set_table'.
437 The table starts out at max_gcse_regno + slop, and is enlarged as
438 necessary. */
439 static int reg_set_table_size;
440
441 /* Amount to grow `reg_set_table' by when it's full. */
442 #define REG_SET_TABLE_SLOP 100
443
444 /* This is a list of expressions which are MEMs and will be used by load
445 or store motion.
446 Load motion tracks MEMs which aren't killed by
447 anything except itself. (i.e., loads and stores to a single location).
448 We can then allow movement of these MEM refs with a little special
449 allowance. (all stores copy the same value to the reaching reg used
450 for the loads). This means all values used to store into memory must have
451 no side effects so we can re-issue the setter value.
452 Store Motion uses this structure as an expression table to track stores
453 which look interesting, and might be moveable towards the exit block. */
454
455 struct ls_expr
456 {
457 struct expr * expr; /* Gcse expression reference for LM. */
458 rtx pattern; /* Pattern of this mem. */
459 rtx pattern_regs; /* List of registers mentioned by the mem. */
460 rtx loads; /* INSN list of loads seen. */
461 rtx stores; /* INSN list of stores seen. */
462 struct ls_expr * next; /* Next in the list. */
463 int invalid; /* Invalid for some reason. */
464 int index; /* If it maps to a bitmap index. */
465 unsigned int hash_index; /* Index when in a hash table. */
466 rtx reaching_reg; /* Register to use when re-writing. */
467 };
468
469 /* Array of implicit set patterns indexed by basic block index. */
470 static rtx *implicit_sets;
471
472 /* Head of the list of load/store memory refs. */
473 static struct ls_expr * pre_ldst_mems = NULL;
474
475 /* Hashtable for the load/store memory refs. */
476 static htab_t pre_ldst_table = NULL;
477
478 /* Bitmap containing one bit for each register in the program.
479 Used when performing GCSE to track which registers have been set since
480 the start of the basic block. */
481 static regset reg_set_bitmap;
482
483 /* For each block, a bitmap of registers set in the block.
484 This is used by compute_transp.
485 It is computed during hash table computation and not by compute_sets
486 as it includes registers added since the last pass (or between cprop and
487 gcse) and it's currently not easy to realloc sbitmap vectors. */
488 static sbitmap *reg_set_in_block;
489
490 /* Array, indexed by basic block number for a list of insns which modify
491 memory within that block. */
492 static rtx * modify_mem_list;
493 static bitmap modify_mem_list_set;
494
495 /* This array parallels modify_mem_list, but is kept canonicalized. */
496 static rtx * canon_modify_mem_list;
497
498 /* Bitmap indexed by block numbers to record which blocks contain
499 function calls. */
500 static bitmap blocks_with_calls;
501
502 /* Various variables for statistics gathering. */
503
504 /* Memory used in a pass.
505 This isn't intended to be absolutely precise. Its intent is only
506 to keep an eye on memory usage. */
507 static int bytes_used;
508
509 /* GCSE substitutions made. */
510 static int gcse_subst_count;
511 /* Number of copy instructions created. */
512 static int gcse_create_count;
513 /* Number of local constants propagated. */
514 static int local_const_prop_count;
515 /* Number of local copies propagated. */
516 static int local_copy_prop_count;
517 /* Number of global constants propagated. */
518 static int global_const_prop_count;
519 /* Number of global copies propagated. */
520 static int global_copy_prop_count;
521 \f
522 /* For available exprs */
523 static sbitmap *ae_kill, *ae_gen;
524 \f
525 static void compute_can_copy (void);
526 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
527 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
528 static void *grealloc (void *, size_t);
529 static void *gcse_alloc (unsigned long);
530 static void alloc_gcse_mem (void);
531 static void free_gcse_mem (void);
532 static void alloc_reg_set_mem (int);
533 static void free_reg_set_mem (void);
534 static void record_one_set (int, rtx);
535 static void record_set_info (rtx, rtx, void *);
536 static void compute_sets (void);
537 static void hash_scan_insn (rtx, struct hash_table *, int);
538 static void hash_scan_set (rtx, rtx, struct hash_table *);
539 static void hash_scan_clobber (rtx, rtx, struct hash_table *);
540 static void hash_scan_call (rtx, rtx, struct hash_table *);
541 static int want_to_gcse_p (rtx);
542 static bool can_assign_to_reg_p (rtx);
543 static bool gcse_constant_p (rtx);
544 static int oprs_unchanged_p (rtx, rtx, int);
545 static int oprs_anticipatable_p (rtx, rtx);
546 static int oprs_available_p (rtx, rtx);
547 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
548 struct hash_table *);
549 static void insert_set_in_table (rtx, rtx, struct hash_table *);
550 static unsigned int hash_expr (rtx, enum machine_mode, int *, int);
551 static unsigned int hash_set (int, int);
552 static int expr_equiv_p (rtx, rtx);
553 static void record_last_reg_set_info (rtx, int);
554 static void record_last_mem_set_info (rtx);
555 static void record_last_set_info (rtx, rtx, void *);
556 static void compute_hash_table (struct hash_table *);
557 static void alloc_hash_table (int, struct hash_table *, int);
558 static void free_hash_table (struct hash_table *);
559 static void compute_hash_table_work (struct hash_table *);
560 static void dump_hash_table (FILE *, const char *, struct hash_table *);
561 static struct expr *lookup_set (unsigned int, struct hash_table *);
562 static struct expr *next_set (unsigned int, struct expr *);
563 static void reset_opr_set_tables (void);
564 static int oprs_not_set_p (rtx, rtx);
565 static void mark_call (rtx);
566 static void mark_set (rtx, rtx);
567 static void mark_clobber (rtx, rtx);
568 static void mark_oprs_set (rtx);
569 static void alloc_cprop_mem (int, int);
570 static void free_cprop_mem (void);
571 static void compute_transp (rtx, int, sbitmap *, int);
572 static void compute_transpout (void);
573 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
574 struct hash_table *);
575 static void compute_cprop_data (void);
576 static void find_used_regs (rtx *, void *);
577 static int try_replace_reg (rtx, rtx, rtx);
578 static struct expr *find_avail_set (int, rtx);
579 static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
580 static void mems_conflict_for_gcse_p (rtx, rtx, void *);
581 static int load_killed_in_block_p (basic_block, int, rtx, int);
582 static void canon_list_insert (rtx, rtx, void *);
583 static int cprop_insn (rtx, int);
584 static int cprop (int);
585 static void find_implicit_sets (void);
586 static int one_cprop_pass (int, bool, bool);
587 static bool constprop_register (rtx, rtx, rtx, bool);
588 static struct expr *find_bypass_set (int, int);
589 static bool reg_killed_on_edge (rtx, edge);
590 static int bypass_block (basic_block, rtx, rtx);
591 static int bypass_conditional_jumps (void);
592 static void alloc_pre_mem (int, int);
593 static void free_pre_mem (void);
594 static void compute_pre_data (void);
595 static int pre_expr_reaches_here_p (basic_block, struct expr *,
596 basic_block);
597 static void insert_insn_end_bb (struct expr *, basic_block, int);
598 static void pre_insert_copy_insn (struct expr *, rtx);
599 static void pre_insert_copies (void);
600 static int pre_delete (void);
601 static int pre_gcse (void);
602 static int one_pre_gcse_pass (int);
603 static void add_label_notes (rtx, rtx);
604 static void alloc_code_hoist_mem (int, int);
605 static void free_code_hoist_mem (void);
606 static void compute_code_hoist_vbeinout (void);
607 static void compute_code_hoist_data (void);
608 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
609 static void hoist_code (void);
610 static int one_code_hoisting_pass (void);
611 static rtx process_insert_insn (struct expr *);
612 static int pre_edge_insert (struct edge_list *, struct expr **);
613 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
614 basic_block, char *);
615 static struct ls_expr * ldst_entry (rtx);
616 static void free_ldst_entry (struct ls_expr *);
617 static void free_ldst_mems (void);
618 static void print_ldst_list (FILE *);
619 static struct ls_expr * find_rtx_in_ldst (rtx);
620 static int enumerate_ldsts (void);
621 static inline struct ls_expr * first_ls_expr (void);
622 static inline struct ls_expr * next_ls_expr (struct ls_expr *);
623 static int simple_mem (rtx);
624 static void invalidate_any_buried_refs (rtx);
625 static void compute_ld_motion_mems (void);
626 static void trim_ld_motion_mems (void);
627 static void update_ld_motion_stores (struct expr *);
628 static void reg_set_info (rtx, rtx, void *);
629 static void reg_clear_last_set (rtx, rtx, void *);
630 static bool store_ops_ok (rtx, int *);
631 static rtx extract_mentioned_regs (rtx);
632 static rtx extract_mentioned_regs_helper (rtx, rtx);
633 static void find_moveable_store (rtx, int *, int *);
634 static int compute_store_table (void);
635 static bool load_kills_store (rtx, rtx, int);
636 static bool find_loads (rtx, rtx, int);
637 static bool store_killed_in_insn (rtx, rtx, rtx, int);
638 static bool store_killed_after (rtx, rtx, rtx, basic_block, int *, rtx *);
639 static bool store_killed_before (rtx, rtx, rtx, basic_block, int *);
640 static void build_store_vectors (void);
641 static void insert_insn_start_bb (rtx, basic_block);
642 static int insert_store (struct ls_expr *, edge);
643 static void remove_reachable_equiv_notes (basic_block, struct ls_expr *);
644 static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *);
645 static void delete_store (struct ls_expr *, basic_block);
646 static void free_store_memory (void);
647 static void store_motion (void);
648 static void free_insn_expr_list_list (rtx *);
649 static void clear_modify_mem_tables (void);
650 static void free_modify_mem_tables (void);
651 static rtx gcse_emit_move_after (rtx, rtx, rtx);
652 static void local_cprop_find_used_regs (rtx *, void *);
653 static bool do_local_cprop (rtx, rtx, bool, rtx*);
654 static bool adjust_libcall_notes (rtx, rtx, rtx, rtx*);
655 static void local_cprop_pass (bool);
656 static bool is_too_expensive (const char *);
657 \f
658
659 /* Entry point for global common subexpression elimination.
660 F is the first instruction in the function. Return nonzero if a
661 change is mode. */
662
663 static int
664 gcse_main (rtx f ATTRIBUTE_UNUSED, FILE *file)
665 {
666 int changed, pass;
667 /* Bytes used at start of pass. */
668 int initial_bytes_used;
669 /* Maximum number of bytes used by a pass. */
670 int max_pass_bytes;
671 /* Point to release obstack data from for each pass. */
672 char *gcse_obstack_bottom;
673
674 /* We do not construct an accurate cfg in functions which call
675 setjmp, so just punt to be safe. */
676 if (current_function_calls_setjmp)
677 return 0;
678
679 /* Assume that we do not need to run jump optimizations after gcse. */
680 run_jump_opt_after_gcse = 0;
681
682 /* For calling dump_foo fns from gdb. */
683 debug_stderr = stderr;
684 gcse_file = file;
685
686 /* Identify the basic block information for this function, including
687 successors and predecessors. */
688 max_gcse_regno = max_reg_num ();
689
690 if (file)
691 dump_flow_info (file);
692
693 /* Return if there's nothing to do, or it is too expensive. */
694 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
695 || is_too_expensive (_("GCSE disabled")))
696 return 0;
697
698 gcc_obstack_init (&gcse_obstack);
699 bytes_used = 0;
700
701 /* We need alias. */
702 init_alias_analysis ();
703 /* Record where pseudo-registers are set. This data is kept accurate
704 during each pass. ??? We could also record hard-reg information here
705 [since it's unchanging], however it is currently done during hash table
706 computation.
707
708 It may be tempting to compute MEM set information here too, but MEM sets
709 will be subject to code motion one day and thus we need to compute
710 information about memory sets when we build the hash tables. */
711
712 alloc_reg_set_mem (max_gcse_regno);
713 compute_sets ();
714
715 pass = 0;
716 initial_bytes_used = bytes_used;
717 max_pass_bytes = 0;
718 gcse_obstack_bottom = gcse_alloc (1);
719 changed = 1;
720 while (changed && pass < MAX_GCSE_PASSES)
721 {
722 changed = 0;
723 if (file)
724 fprintf (file, "GCSE pass %d\n\n", pass + 1);
725
726 /* Initialize bytes_used to the space for the pred/succ lists,
727 and the reg_set_table data. */
728 bytes_used = initial_bytes_used;
729
730 /* Each pass may create new registers, so recalculate each time. */
731 max_gcse_regno = max_reg_num ();
732
733 alloc_gcse_mem ();
734
735 /* Don't allow constant propagation to modify jumps
736 during this pass. */
737 timevar_push (TV_CPROP1);
738 changed = one_cprop_pass (pass + 1, false, false);
739 timevar_pop (TV_CPROP1);
740
741 if (optimize_size)
742 /* Do nothing. */ ;
743 else
744 {
745 timevar_push (TV_PRE);
746 changed |= one_pre_gcse_pass (pass + 1);
747 /* We may have just created new basic blocks. Release and
748 recompute various things which are sized on the number of
749 basic blocks. */
750 if (changed)
751 {
752 free_modify_mem_tables ();
753 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
754 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
755 }
756 free_reg_set_mem ();
757 alloc_reg_set_mem (max_reg_num ());
758 compute_sets ();
759 run_jump_opt_after_gcse = 1;
760 timevar_pop (TV_PRE);
761 }
762
763 if (max_pass_bytes < bytes_used)
764 max_pass_bytes = bytes_used;
765
766 /* Free up memory, then reallocate for code hoisting. We can
767 not re-use the existing allocated memory because the tables
768 will not have info for the insns or registers created by
769 partial redundancy elimination. */
770 free_gcse_mem ();
771
772 /* It does not make sense to run code hoisting unless we are optimizing
773 for code size -- it rarely makes programs faster, and can make
774 them bigger if we did partial redundancy elimination (when optimizing
775 for space, we don't run the partial redundancy algorithms). */
776 if (optimize_size)
777 {
778 timevar_push (TV_HOIST);
779 max_gcse_regno = max_reg_num ();
780 alloc_gcse_mem ();
781 changed |= one_code_hoisting_pass ();
782 free_gcse_mem ();
783
784 if (max_pass_bytes < bytes_used)
785 max_pass_bytes = bytes_used;
786 timevar_pop (TV_HOIST);
787 }
788
789 if (file)
790 {
791 fprintf (file, "\n");
792 fflush (file);
793 }
794
795 obstack_free (&gcse_obstack, gcse_obstack_bottom);
796 pass++;
797 }
798
799 /* Do one last pass of copy propagation, including cprop into
800 conditional jumps. */
801
802 max_gcse_regno = max_reg_num ();
803 alloc_gcse_mem ();
804 /* This time, go ahead and allow cprop to alter jumps. */
805 timevar_push (TV_CPROP2);
806 one_cprop_pass (pass + 1, true, false);
807 timevar_pop (TV_CPROP2);
808 free_gcse_mem ();
809
810 if (file)
811 {
812 fprintf (file, "GCSE of %s: %d basic blocks, ",
813 current_function_name (), n_basic_blocks);
814 fprintf (file, "%d pass%s, %d bytes\n\n",
815 pass, pass > 1 ? "es" : "", max_pass_bytes);
816 }
817
818 obstack_free (&gcse_obstack, NULL);
819 free_reg_set_mem ();
820
821 /* We are finished with alias. */
822 end_alias_analysis ();
823 allocate_reg_info (max_reg_num (), FALSE, FALSE);
824
825 if (!optimize_size && flag_gcse_sm)
826 {
827 timevar_push (TV_LSM);
828 store_motion ();
829 timevar_pop (TV_LSM);
830 }
831
832 /* Record where pseudo-registers are set. */
833 return run_jump_opt_after_gcse;
834 }
835 \f
836 /* Misc. utilities. */
837
838 /* Nonzero for each mode that supports (set (reg) (reg)).
839 This is trivially true for integer and floating point values.
840 It may or may not be true for condition codes. */
841 static char can_copy[(int) NUM_MACHINE_MODES];
842
843 /* Compute which modes support reg/reg copy operations. */
844
845 static void
846 compute_can_copy (void)
847 {
848 int i;
849 #ifndef AVOID_CCMODE_COPIES
850 rtx reg, insn;
851 #endif
852 memset (can_copy, 0, NUM_MACHINE_MODES);
853
854 start_sequence ();
855 for (i = 0; i < NUM_MACHINE_MODES; i++)
856 if (GET_MODE_CLASS (i) == MODE_CC)
857 {
858 #ifdef AVOID_CCMODE_COPIES
859 can_copy[i] = 0;
860 #else
861 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
862 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
863 if (recog (PATTERN (insn), insn, NULL) >= 0)
864 can_copy[i] = 1;
865 #endif
866 }
867 else
868 can_copy[i] = 1;
869
870 end_sequence ();
871 }
872
873 /* Returns whether the mode supports reg/reg copy operations. */
874
875 bool
876 can_copy_p (enum machine_mode mode)
877 {
878 static bool can_copy_init_p = false;
879
880 if (! can_copy_init_p)
881 {
882 compute_can_copy ();
883 can_copy_init_p = true;
884 }
885
886 return can_copy[mode] != 0;
887 }
888 \f
889 /* Cover function to xmalloc to record bytes allocated. */
890
891 static void *
892 gmalloc (size_t size)
893 {
894 bytes_used += size;
895 return xmalloc (size);
896 }
897
898 /* Cover function to xcalloc to record bytes allocated. */
899
900 static void *
901 gcalloc (size_t nelem, size_t elsize)
902 {
903 bytes_used += nelem * elsize;
904 return xcalloc (nelem, elsize);
905 }
906
907 /* Cover function to xrealloc.
908 We don't record the additional size since we don't know it.
909 It won't affect memory usage stats much anyway. */
910
911 static void *
912 grealloc (void *ptr, size_t size)
913 {
914 return xrealloc (ptr, size);
915 }
916
917 /* Cover function to obstack_alloc. */
918
919 static void *
920 gcse_alloc (unsigned long size)
921 {
922 bytes_used += size;
923 return obstack_alloc (&gcse_obstack, size);
924 }
925
926 /* Allocate memory for the cuid mapping array,
927 and reg/memory set tracking tables.
928
929 This is called at the start of each pass. */
930
931 static void
932 alloc_gcse_mem (void)
933 {
934 int i;
935 basic_block bb;
936 rtx insn;
937
938 /* Find the largest UID and create a mapping from UIDs to CUIDs.
939 CUIDs are like UIDs except they increase monotonically, have no gaps,
940 and only apply to real insns.
941 (Actually, there are gaps, for insn that are not inside a basic block.
942 but we should never see those anyway, so this is OK.) */
943
944 max_uid = get_max_uid ();
945 uid_cuid = gcalloc (max_uid + 1, sizeof (int));
946 i = 0;
947 FOR_EACH_BB (bb)
948 FOR_BB_INSNS (bb, insn)
949 {
950 if (INSN_P (insn))
951 uid_cuid[INSN_UID (insn)] = i++;
952 else
953 uid_cuid[INSN_UID (insn)] = i;
954 }
955
956 /* Create a table mapping cuids to insns. */
957
958 max_cuid = i;
959 cuid_insn = gcalloc (max_cuid + 1, sizeof (rtx));
960 i = 0;
961 FOR_EACH_BB (bb)
962 FOR_BB_INSNS (bb, insn)
963 if (INSN_P (insn))
964 CUID_INSN (i++) = insn;
965
966 /* Allocate vars to track sets of regs. */
967 reg_set_bitmap = BITMAP_ALLOC (NULL);
968
969 /* Allocate vars to track sets of regs, memory per block. */
970 reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno);
971 /* Allocate array to keep a list of insns which modify memory in each
972 basic block. */
973 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
974 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
975 modify_mem_list_set = BITMAP_ALLOC (NULL);
976 blocks_with_calls = BITMAP_ALLOC (NULL);
977 }
978
979 /* Free memory allocated by alloc_gcse_mem. */
980
981 static void
982 free_gcse_mem (void)
983 {
984 free (uid_cuid);
985 free (cuid_insn);
986
987 BITMAP_FREE (reg_set_bitmap);
988
989 sbitmap_vector_free (reg_set_in_block);
990 free_modify_mem_tables ();
991 BITMAP_FREE (modify_mem_list_set);
992 BITMAP_FREE (blocks_with_calls);
993 }
994 \f
995 /* Compute the local properties of each recorded expression.
996
997 Local properties are those that are defined by the block, irrespective of
998 other blocks.
999
1000 An expression is transparent in a block if its operands are not modified
1001 in the block.
1002
1003 An expression is computed (locally available) in a block if it is computed
1004 at least once and expression would contain the same value if the
1005 computation was moved to the end of the block.
1006
1007 An expression is locally anticipatable in a block if it is computed at
1008 least once and expression would contain the same value if the computation
1009 was moved to the beginning of the block.
1010
1011 We call this routine for cprop, pre and code hoisting. They all compute
1012 basically the same information and thus can easily share this code.
1013
1014 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1015 properties. If NULL, then it is not necessary to compute or record that
1016 particular property.
1017
1018 TABLE controls which hash table to look at. If it is set hash table,
1019 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1020 ABSALTERED. */
1021
1022 static void
1023 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
1024 struct hash_table *table)
1025 {
1026 unsigned int i;
1027
1028 /* Initialize any bitmaps that were passed in. */
1029 if (transp)
1030 {
1031 if (table->set_p)
1032 sbitmap_vector_zero (transp, last_basic_block);
1033 else
1034 sbitmap_vector_ones (transp, last_basic_block);
1035 }
1036
1037 if (comp)
1038 sbitmap_vector_zero (comp, last_basic_block);
1039 if (antloc)
1040 sbitmap_vector_zero (antloc, last_basic_block);
1041
1042 for (i = 0; i < table->size; i++)
1043 {
1044 struct expr *expr;
1045
1046 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1047 {
1048 int indx = expr->bitmap_index;
1049 struct occr *occr;
1050
1051 /* The expression is transparent in this block if it is not killed.
1052 We start by assuming all are transparent [none are killed], and
1053 then reset the bits for those that are. */
1054 if (transp)
1055 compute_transp (expr->expr, indx, transp, table->set_p);
1056
1057 /* The occurrences recorded in antic_occr are exactly those that
1058 we want to set to nonzero in ANTLOC. */
1059 if (antloc)
1060 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1061 {
1062 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1063
1064 /* While we're scanning the table, this is a good place to
1065 initialize this. */
1066 occr->deleted_p = 0;
1067 }
1068
1069 /* The occurrences recorded in avail_occr are exactly those that
1070 we want to set to nonzero in COMP. */
1071 if (comp)
1072 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1073 {
1074 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1075
1076 /* While we're scanning the table, this is a good place to
1077 initialize this. */
1078 occr->copied_p = 0;
1079 }
1080
1081 /* While we're scanning the table, this is a good place to
1082 initialize this. */
1083 expr->reaching_reg = 0;
1084 }
1085 }
1086 }
1087 \f
1088 /* Register set information.
1089
1090 `reg_set_table' records where each register is set or otherwise
1091 modified. */
1092
1093 static struct obstack reg_set_obstack;
1094
1095 static void
1096 alloc_reg_set_mem (int n_regs)
1097 {
1098 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1099 reg_set_table = gcalloc (reg_set_table_size, sizeof (struct reg_set *));
1100
1101 gcc_obstack_init (&reg_set_obstack);
1102 }
1103
1104 static void
1105 free_reg_set_mem (void)
1106 {
1107 free (reg_set_table);
1108 obstack_free (&reg_set_obstack, NULL);
1109 }
1110
1111 /* Record REGNO in the reg_set table. */
1112
1113 static void
1114 record_one_set (int regno, rtx insn)
1115 {
1116 /* Allocate a new reg_set element and link it onto the list. */
1117 struct reg_set *new_reg_info;
1118
1119 /* If the table isn't big enough, enlarge it. */
1120 if (regno >= reg_set_table_size)
1121 {
1122 int new_size = regno + REG_SET_TABLE_SLOP;
1123
1124 reg_set_table = grealloc (reg_set_table,
1125 new_size * sizeof (struct reg_set *));
1126 memset (reg_set_table + reg_set_table_size, 0,
1127 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1128 reg_set_table_size = new_size;
1129 }
1130
1131 new_reg_info = obstack_alloc (&reg_set_obstack, sizeof (struct reg_set));
1132 bytes_used += sizeof (struct reg_set);
1133 new_reg_info->bb_index = BLOCK_NUM (insn);
1134 new_reg_info->next = reg_set_table[regno];
1135 reg_set_table[regno] = new_reg_info;
1136 }
1137
1138 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1139 an insn. The DATA is really the instruction in which the SET is
1140 occurring. */
1141
1142 static void
1143 record_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
1144 {
1145 rtx record_set_insn = (rtx) data;
1146
1147 if (REG_P (dest) && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1148 record_one_set (REGNO (dest), record_set_insn);
1149 }
1150
1151 /* Scan the function and record each set of each pseudo-register.
1152
1153 This is called once, at the start of the gcse pass. See the comments for
1154 `reg_set_table' for further documentation. */
1155
1156 static void
1157 compute_sets (void)
1158 {
1159 basic_block bb;
1160 rtx insn;
1161
1162 FOR_EACH_BB (bb)
1163 FOR_BB_INSNS (bb, insn)
1164 if (INSN_P (insn))
1165 note_stores (PATTERN (insn), record_set_info, insn);
1166 }
1167 \f
1168 /* Hash table support. */
1169
1170 struct reg_avail_info
1171 {
1172 basic_block last_bb;
1173 int first_set;
1174 int last_set;
1175 };
1176
1177 static struct reg_avail_info *reg_avail_info;
1178 static basic_block current_bb;
1179
1180
1181 /* See whether X, the source of a set, is something we want to consider for
1182 GCSE. */
1183
1184 static int
1185 want_to_gcse_p (rtx x)
1186 {
1187 switch (GET_CODE (x))
1188 {
1189 case REG:
1190 case SUBREG:
1191 case CONST_INT:
1192 case CONST_DOUBLE:
1193 case CONST_VECTOR:
1194 case CALL:
1195 return 0;
1196
1197 default:
1198 return can_assign_to_reg_p (x);
1199 }
1200 }
1201
1202 /* Used internally by can_assign_to_reg_p. */
1203
1204 static GTY(()) rtx test_insn;
1205
1206 /* Return true if we can assign X to a pseudo register. */
1207
1208 static bool
1209 can_assign_to_reg_p (rtx x)
1210 {
1211 int num_clobbers = 0;
1212 int icode;
1213
1214 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1215 if (general_operand (x, GET_MODE (x)))
1216 return 1;
1217 else if (GET_MODE (x) == VOIDmode)
1218 return 0;
1219
1220 /* Otherwise, check if we can make a valid insn from it. First initialize
1221 our test insn if we haven't already. */
1222 if (test_insn == 0)
1223 {
1224 test_insn
1225 = make_insn_raw (gen_rtx_SET (VOIDmode,
1226 gen_rtx_REG (word_mode,
1227 FIRST_PSEUDO_REGISTER * 2),
1228 const0_rtx));
1229 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1230 }
1231
1232 /* Now make an insn like the one we would make when GCSE'ing and see if
1233 valid. */
1234 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1235 SET_SRC (PATTERN (test_insn)) = x;
1236 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1237 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1238 }
1239
1240 /* Return nonzero if the operands of expression X are unchanged from the
1241 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1242 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1243
1244 static int
1245 oprs_unchanged_p (rtx x, rtx insn, int avail_p)
1246 {
1247 int i, j;
1248 enum rtx_code code;
1249 const char *fmt;
1250
1251 if (x == 0)
1252 return 1;
1253
1254 code = GET_CODE (x);
1255 switch (code)
1256 {
1257 case REG:
1258 {
1259 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1260
1261 if (info->last_bb != current_bb)
1262 return 1;
1263 if (avail_p)
1264 return info->last_set < INSN_CUID (insn);
1265 else
1266 return info->first_set >= INSN_CUID (insn);
1267 }
1268
1269 case MEM:
1270 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1271 x, avail_p))
1272 return 0;
1273 else
1274 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1275
1276 case PRE_DEC:
1277 case PRE_INC:
1278 case POST_DEC:
1279 case POST_INC:
1280 case PRE_MODIFY:
1281 case POST_MODIFY:
1282 return 0;
1283
1284 case PC:
1285 case CC0: /*FIXME*/
1286 case CONST:
1287 case CONST_INT:
1288 case CONST_DOUBLE:
1289 case CONST_VECTOR:
1290 case SYMBOL_REF:
1291 case LABEL_REF:
1292 case ADDR_VEC:
1293 case ADDR_DIFF_VEC:
1294 return 1;
1295
1296 default:
1297 break;
1298 }
1299
1300 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1301 {
1302 if (fmt[i] == 'e')
1303 {
1304 /* If we are about to do the last recursive call needed at this
1305 level, change it into iteration. This function is called enough
1306 to be worth it. */
1307 if (i == 0)
1308 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1309
1310 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1311 return 0;
1312 }
1313 else if (fmt[i] == 'E')
1314 for (j = 0; j < XVECLEN (x, i); j++)
1315 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1316 return 0;
1317 }
1318
1319 return 1;
1320 }
1321
1322 /* Used for communication between mems_conflict_for_gcse_p and
1323 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1324 conflict between two memory references. */
1325 static int gcse_mems_conflict_p;
1326
1327 /* Used for communication between mems_conflict_for_gcse_p and
1328 load_killed_in_block_p. A memory reference for a load instruction,
1329 mems_conflict_for_gcse_p will see if a memory store conflicts with
1330 this memory load. */
1331 static rtx gcse_mem_operand;
1332
1333 /* DEST is the output of an instruction. If it is a memory reference, and
1334 possibly conflicts with the load found in gcse_mem_operand, then set
1335 gcse_mems_conflict_p to a nonzero value. */
1336
1337 static void
1338 mems_conflict_for_gcse_p (rtx dest, rtx setter ATTRIBUTE_UNUSED,
1339 void *data ATTRIBUTE_UNUSED)
1340 {
1341 while (GET_CODE (dest) == SUBREG
1342 || GET_CODE (dest) == ZERO_EXTRACT
1343 || GET_CODE (dest) == STRICT_LOW_PART)
1344 dest = XEXP (dest, 0);
1345
1346 /* If DEST is not a MEM, then it will not conflict with the load. Note
1347 that function calls are assumed to clobber memory, but are handled
1348 elsewhere. */
1349 if (! MEM_P (dest))
1350 return;
1351
1352 /* If we are setting a MEM in our list of specially recognized MEMs,
1353 don't mark as killed this time. */
1354
1355 if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1356 {
1357 if (!find_rtx_in_ldst (dest))
1358 gcse_mems_conflict_p = 1;
1359 return;
1360 }
1361
1362 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1363 rtx_addr_varies_p))
1364 gcse_mems_conflict_p = 1;
1365 }
1366
1367 /* Return nonzero if the expression in X (a memory reference) is killed
1368 in block BB before or after the insn with the CUID in UID_LIMIT.
1369 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1370 before UID_LIMIT.
1371
1372 To check the entire block, set UID_LIMIT to max_uid + 1 and
1373 AVAIL_P to 0. */
1374
1375 static int
1376 load_killed_in_block_p (basic_block bb, int uid_limit, rtx x, int avail_p)
1377 {
1378 rtx list_entry = modify_mem_list[bb->index];
1379
1380 /* If this is a readonly then we aren't going to be changing it. */
1381 if (MEM_READONLY_P (x))
1382 return 0;
1383
1384 while (list_entry)
1385 {
1386 rtx setter;
1387 /* Ignore entries in the list that do not apply. */
1388 if ((avail_p
1389 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1390 || (! avail_p
1391 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1392 {
1393 list_entry = XEXP (list_entry, 1);
1394 continue;
1395 }
1396
1397 setter = XEXP (list_entry, 0);
1398
1399 /* If SETTER is a call everything is clobbered. Note that calls
1400 to pure functions are never put on the list, so we need not
1401 worry about them. */
1402 if (CALL_P (setter))
1403 return 1;
1404
1405 /* SETTER must be an INSN of some kind that sets memory. Call
1406 note_stores to examine each hunk of memory that is modified.
1407
1408 The note_stores interface is pretty limited, so we have to
1409 communicate via global variables. Yuk. */
1410 gcse_mem_operand = x;
1411 gcse_mems_conflict_p = 0;
1412 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1413 if (gcse_mems_conflict_p)
1414 return 1;
1415 list_entry = XEXP (list_entry, 1);
1416 }
1417 return 0;
1418 }
1419
1420 /* Return nonzero if the operands of expression X are unchanged from
1421 the start of INSN's basic block up to but not including INSN. */
1422
1423 static int
1424 oprs_anticipatable_p (rtx x, rtx insn)
1425 {
1426 return oprs_unchanged_p (x, insn, 0);
1427 }
1428
1429 /* Return nonzero if the operands of expression X are unchanged from
1430 INSN to the end of INSN's basic block. */
1431
1432 static int
1433 oprs_available_p (rtx x, rtx insn)
1434 {
1435 return oprs_unchanged_p (x, insn, 1);
1436 }
1437
1438 /* Hash expression X.
1439
1440 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1441 indicating if a volatile operand is found or if the expression contains
1442 something we don't want to insert in the table. HASH_TABLE_SIZE is
1443 the current size of the hash table to be probed. */
1444
1445 static unsigned int
1446 hash_expr (rtx x, enum machine_mode mode, int *do_not_record_p,
1447 int hash_table_size)
1448 {
1449 unsigned int hash;
1450
1451 *do_not_record_p = 0;
1452
1453 hash = hash_rtx (x, mode, do_not_record_p,
1454 NULL, /*have_reg_qty=*/false);
1455 return hash % hash_table_size;
1456 }
1457
1458 /* Hash a set of register REGNO.
1459
1460 Sets are hashed on the register that is set. This simplifies the PRE copy
1461 propagation code.
1462
1463 ??? May need to make things more elaborate. Later, as necessary. */
1464
1465 static unsigned int
1466 hash_set (int regno, int hash_table_size)
1467 {
1468 unsigned int hash;
1469
1470 hash = regno;
1471 return hash % hash_table_size;
1472 }
1473
1474 /* Return nonzero if exp1 is equivalent to exp2. */
1475
1476 static int
1477 expr_equiv_p (rtx x, rtx y)
1478 {
1479 return exp_equiv_p (x, y, 0, true);
1480 }
1481
1482 /* Insert expression X in INSN in the hash TABLE.
1483 If it is already present, record it as the last occurrence in INSN's
1484 basic block.
1485
1486 MODE is the mode of the value X is being stored into.
1487 It is only used if X is a CONST_INT.
1488
1489 ANTIC_P is nonzero if X is an anticipatable expression.
1490 AVAIL_P is nonzero if X is an available expression. */
1491
1492 static void
1493 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1494 int avail_p, struct hash_table *table)
1495 {
1496 int found, do_not_record_p;
1497 unsigned int hash;
1498 struct expr *cur_expr, *last_expr = NULL;
1499 struct occr *antic_occr, *avail_occr;
1500
1501 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1502
1503 /* Do not insert expression in table if it contains volatile operands,
1504 or if hash_expr determines the expression is something we don't want
1505 to or can't handle. */
1506 if (do_not_record_p)
1507 return;
1508
1509 cur_expr = table->table[hash];
1510 found = 0;
1511
1512 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1513 {
1514 /* If the expression isn't found, save a pointer to the end of
1515 the list. */
1516 last_expr = cur_expr;
1517 cur_expr = cur_expr->next_same_hash;
1518 }
1519
1520 if (! found)
1521 {
1522 cur_expr = gcse_alloc (sizeof (struct expr));
1523 bytes_used += sizeof (struct expr);
1524 if (table->table[hash] == NULL)
1525 /* This is the first pattern that hashed to this index. */
1526 table->table[hash] = cur_expr;
1527 else
1528 /* Add EXPR to end of this hash chain. */
1529 last_expr->next_same_hash = cur_expr;
1530
1531 /* Set the fields of the expr element. */
1532 cur_expr->expr = x;
1533 cur_expr->bitmap_index = table->n_elems++;
1534 cur_expr->next_same_hash = NULL;
1535 cur_expr->antic_occr = NULL;
1536 cur_expr->avail_occr = NULL;
1537 }
1538
1539 /* Now record the occurrence(s). */
1540 if (antic_p)
1541 {
1542 antic_occr = cur_expr->antic_occr;
1543
1544 if (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1545 antic_occr = NULL;
1546
1547 if (antic_occr)
1548 /* Found another instance of the expression in the same basic block.
1549 Prefer the currently recorded one. We want the first one in the
1550 block and the block is scanned from start to end. */
1551 ; /* nothing to do */
1552 else
1553 {
1554 /* First occurrence of this expression in this basic block. */
1555 antic_occr = gcse_alloc (sizeof (struct occr));
1556 bytes_used += sizeof (struct occr);
1557 antic_occr->insn = insn;
1558 antic_occr->next = cur_expr->antic_occr;
1559 antic_occr->deleted_p = 0;
1560 cur_expr->antic_occr = antic_occr;
1561 }
1562 }
1563
1564 if (avail_p)
1565 {
1566 avail_occr = cur_expr->avail_occr;
1567
1568 if (avail_occr && BLOCK_NUM (avail_occr->insn) == BLOCK_NUM (insn))
1569 {
1570 /* Found another instance of the expression in the same basic block.
1571 Prefer this occurrence to the currently recorded one. We want
1572 the last one in the block and the block is scanned from start
1573 to end. */
1574 avail_occr->insn = insn;
1575 }
1576 else
1577 {
1578 /* First occurrence of this expression in this basic block. */
1579 avail_occr = gcse_alloc (sizeof (struct occr));
1580 bytes_used += sizeof (struct occr);
1581 avail_occr->insn = insn;
1582 avail_occr->next = cur_expr->avail_occr;
1583 avail_occr->deleted_p = 0;
1584 cur_expr->avail_occr = avail_occr;
1585 }
1586 }
1587 }
1588
1589 /* Insert pattern X in INSN in the hash table.
1590 X is a SET of a reg to either another reg or a constant.
1591 If it is already present, record it as the last occurrence in INSN's
1592 basic block. */
1593
1594 static void
1595 insert_set_in_table (rtx x, rtx insn, struct hash_table *table)
1596 {
1597 int found;
1598 unsigned int hash;
1599 struct expr *cur_expr, *last_expr = NULL;
1600 struct occr *cur_occr;
1601
1602 gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
1603
1604 hash = hash_set (REGNO (SET_DEST (x)), table->size);
1605
1606 cur_expr = table->table[hash];
1607 found = 0;
1608
1609 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1610 {
1611 /* If the expression isn't found, save a pointer to the end of
1612 the list. */
1613 last_expr = cur_expr;
1614 cur_expr = cur_expr->next_same_hash;
1615 }
1616
1617 if (! found)
1618 {
1619 cur_expr = gcse_alloc (sizeof (struct expr));
1620 bytes_used += sizeof (struct expr);
1621 if (table->table[hash] == NULL)
1622 /* This is the first pattern that hashed to this index. */
1623 table->table[hash] = cur_expr;
1624 else
1625 /* Add EXPR to end of this hash chain. */
1626 last_expr->next_same_hash = cur_expr;
1627
1628 /* Set the fields of the expr element.
1629 We must copy X because it can be modified when copy propagation is
1630 performed on its operands. */
1631 cur_expr->expr = copy_rtx (x);
1632 cur_expr->bitmap_index = table->n_elems++;
1633 cur_expr->next_same_hash = NULL;
1634 cur_expr->antic_occr = NULL;
1635 cur_expr->avail_occr = NULL;
1636 }
1637
1638 /* Now record the occurrence. */
1639 cur_occr = cur_expr->avail_occr;
1640
1641 if (cur_occr && BLOCK_NUM (cur_occr->insn) == BLOCK_NUM (insn))
1642 {
1643 /* Found another instance of the expression in the same basic block.
1644 Prefer this occurrence to the currently recorded one. We want
1645 the last one in the block and the block is scanned from start
1646 to end. */
1647 cur_occr->insn = insn;
1648 }
1649 else
1650 {
1651 /* First occurrence of this expression in this basic block. */
1652 cur_occr = gcse_alloc (sizeof (struct occr));
1653 bytes_used += sizeof (struct occr);
1654
1655 cur_occr->insn = insn;
1656 cur_occr->next = cur_expr->avail_occr;
1657 cur_occr->deleted_p = 0;
1658 cur_expr->avail_occr = cur_occr;
1659 }
1660 }
1661
1662 /* Determine whether the rtx X should be treated as a constant for
1663 the purposes of GCSE's constant propagation. */
1664
1665 static bool
1666 gcse_constant_p (rtx x)
1667 {
1668 /* Consider a COMPARE of two integers constant. */
1669 if (GET_CODE (x) == COMPARE
1670 && GET_CODE (XEXP (x, 0)) == CONST_INT
1671 && GET_CODE (XEXP (x, 1)) == CONST_INT)
1672 return true;
1673
1674 /* Consider a COMPARE of the same registers is a constant
1675 if they are not floating point registers. */
1676 if (GET_CODE(x) == COMPARE
1677 && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
1678 && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
1679 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
1680 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
1681 return true;
1682
1683 return CONSTANT_P (x);
1684 }
1685
1686 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1687 expression one). */
1688
1689 static void
1690 hash_scan_set (rtx pat, rtx insn, struct hash_table *table)
1691 {
1692 rtx src = SET_SRC (pat);
1693 rtx dest = SET_DEST (pat);
1694 rtx note;
1695
1696 if (GET_CODE (src) == CALL)
1697 hash_scan_call (src, insn, table);
1698
1699 else if (REG_P (dest))
1700 {
1701 unsigned int regno = REGNO (dest);
1702 rtx tmp;
1703
1704 /* See if a REG_NOTE shows this equivalent to a simpler expression.
1705 This allows us to do a single GCSE pass and still eliminate
1706 redundant constants, addresses or other expressions that are
1707 constructed with multiple instructions. */
1708 note = find_reg_equal_equiv_note (insn);
1709 if (note != 0
1710 && (table->set_p
1711 ? gcse_constant_p (XEXP (note, 0))
1712 : want_to_gcse_p (XEXP (note, 0))))
1713 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
1714
1715 /* Only record sets of pseudo-regs in the hash table. */
1716 if (! table->set_p
1717 && regno >= FIRST_PSEUDO_REGISTER
1718 /* Don't GCSE something if we can't do a reg/reg copy. */
1719 && can_copy_p (GET_MODE (dest))
1720 /* GCSE commonly inserts instruction after the insn. We can't
1721 do that easily for EH_REGION notes so disable GCSE on these
1722 for now. */
1723 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1724 /* Is SET_SRC something we want to gcse? */
1725 && want_to_gcse_p (src)
1726 /* Don't CSE a nop. */
1727 && ! set_noop_p (pat)
1728 /* Don't GCSE if it has attached REG_EQUIV note.
1729 At this point this only function parameters should have
1730 REG_EQUIV notes and if the argument slot is used somewhere
1731 explicitly, it means address of parameter has been taken,
1732 so we should not extend the lifetime of the pseudo. */
1733 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1734 {
1735 /* An expression is not anticipatable if its operands are
1736 modified before this insn or if this is not the only SET in
1737 this insn. */
1738 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
1739 /* An expression is not available if its operands are
1740 subsequently modified, including this insn. It's also not
1741 available if this is a branch, because we can't insert
1742 a set after the branch. */
1743 int avail_p = (oprs_available_p (src, insn)
1744 && ! JUMP_P (insn));
1745
1746 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
1747 }
1748
1749 /* Record sets for constant/copy propagation. */
1750 else if (table->set_p
1751 && regno >= FIRST_PSEUDO_REGISTER
1752 && ((REG_P (src)
1753 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1754 && can_copy_p (GET_MODE (dest))
1755 && REGNO (src) != regno)
1756 || gcse_constant_p (src))
1757 /* A copy is not available if its src or dest is subsequently
1758 modified. Here we want to search from INSN+1 on, but
1759 oprs_available_p searches from INSN on. */
1760 && (insn == BB_END (BLOCK_FOR_INSN (insn))
1761 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
1762 && oprs_available_p (pat, tmp))))
1763 insert_set_in_table (pat, insn, table);
1764 }
1765 /* In case of store we want to consider the memory value as available in
1766 the REG stored in that memory. This makes it possible to remove
1767 redundant loads from due to stores to the same location. */
1768 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1769 {
1770 unsigned int regno = REGNO (src);
1771
1772 /* Do not do this for constant/copy propagation. */
1773 if (! table->set_p
1774 /* Only record sets of pseudo-regs in the hash table. */
1775 && regno >= FIRST_PSEUDO_REGISTER
1776 /* Don't GCSE something if we can't do a reg/reg copy. */
1777 && can_copy_p (GET_MODE (src))
1778 /* GCSE commonly inserts instruction after the insn. We can't
1779 do that easily for EH_REGION notes so disable GCSE on these
1780 for now. */
1781 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1782 /* Is SET_DEST something we want to gcse? */
1783 && want_to_gcse_p (dest)
1784 /* Don't CSE a nop. */
1785 && ! set_noop_p (pat)
1786 /* Don't GCSE if it has attached REG_EQUIV note.
1787 At this point this only function parameters should have
1788 REG_EQUIV notes and if the argument slot is used somewhere
1789 explicitly, it means address of parameter has been taken,
1790 so we should not extend the lifetime of the pseudo. */
1791 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1792 || ! MEM_P (XEXP (note, 0))))
1793 {
1794 /* Stores are never anticipatable. */
1795 int antic_p = 0;
1796 /* An expression is not available if its operands are
1797 subsequently modified, including this insn. It's also not
1798 available if this is a branch, because we can't insert
1799 a set after the branch. */
1800 int avail_p = oprs_available_p (dest, insn)
1801 && ! JUMP_P (insn);
1802
1803 /* Record the memory expression (DEST) in the hash table. */
1804 insert_expr_in_table (dest, GET_MODE (dest), insn,
1805 antic_p, avail_p, table);
1806 }
1807 }
1808 }
1809
1810 static void
1811 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1812 struct hash_table *table ATTRIBUTE_UNUSED)
1813 {
1814 /* Currently nothing to do. */
1815 }
1816
1817 static void
1818 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1819 struct hash_table *table ATTRIBUTE_UNUSED)
1820 {
1821 /* Currently nothing to do. */
1822 }
1823
1824 /* Process INSN and add hash table entries as appropriate.
1825
1826 Only available expressions that set a single pseudo-reg are recorded.
1827
1828 Single sets in a PARALLEL could be handled, but it's an extra complication
1829 that isn't dealt with right now. The trick is handling the CLOBBERs that
1830 are also in the PARALLEL. Later.
1831
1832 If SET_P is nonzero, this is for the assignment hash table,
1833 otherwise it is for the expression hash table.
1834 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1835 not record any expressions. */
1836
1837 static void
1838 hash_scan_insn (rtx insn, struct hash_table *table, int in_libcall_block)
1839 {
1840 rtx pat = PATTERN (insn);
1841 int i;
1842
1843 if (in_libcall_block)
1844 return;
1845
1846 /* Pick out the sets of INSN and for other forms of instructions record
1847 what's been modified. */
1848
1849 if (GET_CODE (pat) == SET)
1850 hash_scan_set (pat, insn, table);
1851 else if (GET_CODE (pat) == PARALLEL)
1852 for (i = 0; i < XVECLEN (pat, 0); i++)
1853 {
1854 rtx x = XVECEXP (pat, 0, i);
1855
1856 if (GET_CODE (x) == SET)
1857 hash_scan_set (x, insn, table);
1858 else if (GET_CODE (x) == CLOBBER)
1859 hash_scan_clobber (x, insn, table);
1860 else if (GET_CODE (x) == CALL)
1861 hash_scan_call (x, insn, table);
1862 }
1863
1864 else if (GET_CODE (pat) == CLOBBER)
1865 hash_scan_clobber (pat, insn, table);
1866 else if (GET_CODE (pat) == CALL)
1867 hash_scan_call (pat, insn, table);
1868 }
1869
1870 static void
1871 dump_hash_table (FILE *file, const char *name, struct hash_table *table)
1872 {
1873 int i;
1874 /* Flattened out table, so it's printed in proper order. */
1875 struct expr **flat_table;
1876 unsigned int *hash_val;
1877 struct expr *expr;
1878
1879 flat_table = xcalloc (table->n_elems, sizeof (struct expr *));
1880 hash_val = xmalloc (table->n_elems * sizeof (unsigned int));
1881
1882 for (i = 0; i < (int) table->size; i++)
1883 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1884 {
1885 flat_table[expr->bitmap_index] = expr;
1886 hash_val[expr->bitmap_index] = i;
1887 }
1888
1889 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1890 name, table->size, table->n_elems);
1891
1892 for (i = 0; i < (int) table->n_elems; i++)
1893 if (flat_table[i] != 0)
1894 {
1895 expr = flat_table[i];
1896 fprintf (file, "Index %d (hash value %d)\n ",
1897 expr->bitmap_index, hash_val[i]);
1898 print_rtl (file, expr->expr);
1899 fprintf (file, "\n");
1900 }
1901
1902 fprintf (file, "\n");
1903
1904 free (flat_table);
1905 free (hash_val);
1906 }
1907
1908 /* Record register first/last/block set information for REGNO in INSN.
1909
1910 first_set records the first place in the block where the register
1911 is set and is used to compute "anticipatability".
1912
1913 last_set records the last place in the block where the register
1914 is set and is used to compute "availability".
1915
1916 last_bb records the block for which first_set and last_set are
1917 valid, as a quick test to invalidate them.
1918
1919 reg_set_in_block records whether the register is set in the block
1920 and is used to compute "transparency". */
1921
1922 static void
1923 record_last_reg_set_info (rtx insn, int regno)
1924 {
1925 struct reg_avail_info *info = &reg_avail_info[regno];
1926 int cuid = INSN_CUID (insn);
1927
1928 info->last_set = cuid;
1929 if (info->last_bb != current_bb)
1930 {
1931 info->last_bb = current_bb;
1932 info->first_set = cuid;
1933 SET_BIT (reg_set_in_block[current_bb->index], regno);
1934 }
1935 }
1936
1937
1938 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1939 Note we store a pair of elements in the list, so they have to be
1940 taken off pairwise. */
1941
1942 static void
1943 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, rtx unused1 ATTRIBUTE_UNUSED,
1944 void * v_insn)
1945 {
1946 rtx dest_addr, insn;
1947 int bb;
1948
1949 while (GET_CODE (dest) == SUBREG
1950 || GET_CODE (dest) == ZERO_EXTRACT
1951 || GET_CODE (dest) == STRICT_LOW_PART)
1952 dest = XEXP (dest, 0);
1953
1954 /* If DEST is not a MEM, then it will not conflict with a load. Note
1955 that function calls are assumed to clobber memory, but are handled
1956 elsewhere. */
1957
1958 if (! MEM_P (dest))
1959 return;
1960
1961 dest_addr = get_addr (XEXP (dest, 0));
1962 dest_addr = canon_rtx (dest_addr);
1963 insn = (rtx) v_insn;
1964 bb = BLOCK_NUM (insn);
1965
1966 canon_modify_mem_list[bb] =
1967 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
1968 canon_modify_mem_list[bb] =
1969 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
1970 }
1971
1972 /* Record memory modification information for INSN. We do not actually care
1973 about the memory location(s) that are set, or even how they are set (consider
1974 a CALL_INSN). We merely need to record which insns modify memory. */
1975
1976 static void
1977 record_last_mem_set_info (rtx insn)
1978 {
1979 int bb = BLOCK_NUM (insn);
1980
1981 /* load_killed_in_block_p will handle the case of calls clobbering
1982 everything. */
1983 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
1984 bitmap_set_bit (modify_mem_list_set, bb);
1985
1986 if (CALL_P (insn))
1987 {
1988 /* Note that traversals of this loop (other than for free-ing)
1989 will break after encountering a CALL_INSN. So, there's no
1990 need to insert a pair of items, as canon_list_insert does. */
1991 canon_modify_mem_list[bb] =
1992 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
1993 bitmap_set_bit (blocks_with_calls, bb);
1994 }
1995 else
1996 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1997 }
1998
1999 /* Called from compute_hash_table via note_stores to handle one
2000 SET or CLOBBER in an insn. DATA is really the instruction in which
2001 the SET is taking place. */
2002
2003 static void
2004 record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
2005 {
2006 rtx last_set_insn = (rtx) data;
2007
2008 if (GET_CODE (dest) == SUBREG)
2009 dest = SUBREG_REG (dest);
2010
2011 if (REG_P (dest))
2012 record_last_reg_set_info (last_set_insn, REGNO (dest));
2013 else if (MEM_P (dest)
2014 /* Ignore pushes, they clobber nothing. */
2015 && ! push_operand (dest, GET_MODE (dest)))
2016 record_last_mem_set_info (last_set_insn);
2017 }
2018
2019 /* Top level function to create an expression or assignment hash table.
2020
2021 Expression entries are placed in the hash table if
2022 - they are of the form (set (pseudo-reg) src),
2023 - src is something we want to perform GCSE on,
2024 - none of the operands are subsequently modified in the block
2025
2026 Assignment entries are placed in the hash table if
2027 - they are of the form (set (pseudo-reg) src),
2028 - src is something we want to perform const/copy propagation on,
2029 - none of the operands or target are subsequently modified in the block
2030
2031 Currently src must be a pseudo-reg or a const_int.
2032
2033 TABLE is the table computed. */
2034
2035 static void
2036 compute_hash_table_work (struct hash_table *table)
2037 {
2038 unsigned int i;
2039
2040 /* While we compute the hash table we also compute a bit array of which
2041 registers are set in which blocks.
2042 ??? This isn't needed during const/copy propagation, but it's cheap to
2043 compute. Later. */
2044 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2045
2046 /* re-Cache any INSN_LIST nodes we have allocated. */
2047 clear_modify_mem_tables ();
2048 /* Some working arrays used to track first and last set in each block. */
2049 reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2050
2051 for (i = 0; i < max_gcse_regno; ++i)
2052 reg_avail_info[i].last_bb = NULL;
2053
2054 FOR_EACH_BB (current_bb)
2055 {
2056 rtx insn;
2057 unsigned int regno;
2058 int in_libcall_block;
2059
2060 /* First pass over the instructions records information used to
2061 determine when registers and memory are first and last set.
2062 ??? hard-reg reg_set_in_block computation
2063 could be moved to compute_sets since they currently don't change. */
2064
2065 FOR_BB_INSNS (current_bb, insn)
2066 {
2067 if (! INSN_P (insn))
2068 continue;
2069
2070 if (CALL_P (insn))
2071 {
2072 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2073 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2074 record_last_reg_set_info (insn, regno);
2075
2076 mark_call (insn);
2077 }
2078
2079 note_stores (PATTERN (insn), record_last_set_info, insn);
2080 }
2081
2082 /* Insert implicit sets in the hash table. */
2083 if (table->set_p
2084 && implicit_sets[current_bb->index] != NULL_RTX)
2085 hash_scan_set (implicit_sets[current_bb->index],
2086 BB_HEAD (current_bb), table);
2087
2088 /* The next pass builds the hash table. */
2089 in_libcall_block = 0;
2090 FOR_BB_INSNS (current_bb, insn)
2091 if (INSN_P (insn))
2092 {
2093 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2094 in_libcall_block = 1;
2095 else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2096 in_libcall_block = 0;
2097 hash_scan_insn (insn, table, in_libcall_block);
2098 if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2099 in_libcall_block = 0;
2100 }
2101 }
2102
2103 free (reg_avail_info);
2104 reg_avail_info = NULL;
2105 }
2106
2107 /* Allocate space for the set/expr hash TABLE.
2108 N_INSNS is the number of instructions in the function.
2109 It is used to determine the number of buckets to use.
2110 SET_P determines whether set or expression table will
2111 be created. */
2112
2113 static void
2114 alloc_hash_table (int n_insns, struct hash_table *table, int set_p)
2115 {
2116 int n;
2117
2118 table->size = n_insns / 4;
2119 if (table->size < 11)
2120 table->size = 11;
2121
2122 /* Attempt to maintain efficient use of hash table.
2123 Making it an odd number is simplest for now.
2124 ??? Later take some measurements. */
2125 table->size |= 1;
2126 n = table->size * sizeof (struct expr *);
2127 table->table = gmalloc (n);
2128 table->set_p = set_p;
2129 }
2130
2131 /* Free things allocated by alloc_hash_table. */
2132
2133 static void
2134 free_hash_table (struct hash_table *table)
2135 {
2136 free (table->table);
2137 }
2138
2139 /* Compute the hash TABLE for doing copy/const propagation or
2140 expression hash table. */
2141
2142 static void
2143 compute_hash_table (struct hash_table *table)
2144 {
2145 /* Initialize count of number of entries in hash table. */
2146 table->n_elems = 0;
2147 memset (table->table, 0, table->size * sizeof (struct expr *));
2148
2149 compute_hash_table_work (table);
2150 }
2151 \f
2152 /* Expression tracking support. */
2153
2154 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2155 table entry, or NULL if not found. */
2156
2157 static struct expr *
2158 lookup_set (unsigned int regno, struct hash_table *table)
2159 {
2160 unsigned int hash = hash_set (regno, table->size);
2161 struct expr *expr;
2162
2163 expr = table->table[hash];
2164
2165 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2166 expr = expr->next_same_hash;
2167
2168 return expr;
2169 }
2170
2171 /* Return the next entry for REGNO in list EXPR. */
2172
2173 static struct expr *
2174 next_set (unsigned int regno, struct expr *expr)
2175 {
2176 do
2177 expr = expr->next_same_hash;
2178 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2179
2180 return expr;
2181 }
2182
2183 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2184 types may be mixed. */
2185
2186 static void
2187 free_insn_expr_list_list (rtx *listp)
2188 {
2189 rtx list, next;
2190
2191 for (list = *listp; list ; list = next)
2192 {
2193 next = XEXP (list, 1);
2194 if (GET_CODE (list) == EXPR_LIST)
2195 free_EXPR_LIST_node (list);
2196 else
2197 free_INSN_LIST_node (list);
2198 }
2199
2200 *listp = NULL;
2201 }
2202
2203 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2204 static void
2205 clear_modify_mem_tables (void)
2206 {
2207 unsigned i;
2208 bitmap_iterator bi;
2209
2210 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
2211 {
2212 free_INSN_LIST_list (modify_mem_list + i);
2213 free_insn_expr_list_list (canon_modify_mem_list + i);
2214 }
2215 bitmap_clear (modify_mem_list_set);
2216 bitmap_clear (blocks_with_calls);
2217 }
2218
2219 /* Release memory used by modify_mem_list_set. */
2220
2221 static void
2222 free_modify_mem_tables (void)
2223 {
2224 clear_modify_mem_tables ();
2225 free (modify_mem_list);
2226 free (canon_modify_mem_list);
2227 modify_mem_list = 0;
2228 canon_modify_mem_list = 0;
2229 }
2230
2231 /* Reset tables used to keep track of what's still available [since the
2232 start of the block]. */
2233
2234 static void
2235 reset_opr_set_tables (void)
2236 {
2237 /* Maintain a bitmap of which regs have been set since beginning of
2238 the block. */
2239 CLEAR_REG_SET (reg_set_bitmap);
2240
2241 /* Also keep a record of the last instruction to modify memory.
2242 For now this is very trivial, we only record whether any memory
2243 location has been modified. */
2244 clear_modify_mem_tables ();
2245 }
2246
2247 /* Return nonzero if the operands of X are not set before INSN in
2248 INSN's basic block. */
2249
2250 static int
2251 oprs_not_set_p (rtx x, rtx insn)
2252 {
2253 int i, j;
2254 enum rtx_code code;
2255 const char *fmt;
2256
2257 if (x == 0)
2258 return 1;
2259
2260 code = GET_CODE (x);
2261 switch (code)
2262 {
2263 case PC:
2264 case CC0:
2265 case CONST:
2266 case CONST_INT:
2267 case CONST_DOUBLE:
2268 case CONST_VECTOR:
2269 case SYMBOL_REF:
2270 case LABEL_REF:
2271 case ADDR_VEC:
2272 case ADDR_DIFF_VEC:
2273 return 1;
2274
2275 case MEM:
2276 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2277 INSN_CUID (insn), x, 0))
2278 return 0;
2279 else
2280 return oprs_not_set_p (XEXP (x, 0), insn);
2281
2282 case REG:
2283 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2284
2285 default:
2286 break;
2287 }
2288
2289 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2290 {
2291 if (fmt[i] == 'e')
2292 {
2293 /* If we are about to do the last recursive call
2294 needed at this level, change it into iteration.
2295 This function is called enough to be worth it. */
2296 if (i == 0)
2297 return oprs_not_set_p (XEXP (x, i), insn);
2298
2299 if (! oprs_not_set_p (XEXP (x, i), insn))
2300 return 0;
2301 }
2302 else if (fmt[i] == 'E')
2303 for (j = 0; j < XVECLEN (x, i); j++)
2304 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2305 return 0;
2306 }
2307
2308 return 1;
2309 }
2310
2311 /* Mark things set by a CALL. */
2312
2313 static void
2314 mark_call (rtx insn)
2315 {
2316 if (! CONST_OR_PURE_CALL_P (insn))
2317 record_last_mem_set_info (insn);
2318 }
2319
2320 /* Mark things set by a SET. */
2321
2322 static void
2323 mark_set (rtx pat, rtx insn)
2324 {
2325 rtx dest = SET_DEST (pat);
2326
2327 while (GET_CODE (dest) == SUBREG
2328 || GET_CODE (dest) == ZERO_EXTRACT
2329 || GET_CODE (dest) == STRICT_LOW_PART)
2330 dest = XEXP (dest, 0);
2331
2332 if (REG_P (dest))
2333 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2334 else if (MEM_P (dest))
2335 record_last_mem_set_info (insn);
2336
2337 if (GET_CODE (SET_SRC (pat)) == CALL)
2338 mark_call (insn);
2339 }
2340
2341 /* Record things set by a CLOBBER. */
2342
2343 static void
2344 mark_clobber (rtx pat, rtx insn)
2345 {
2346 rtx clob = XEXP (pat, 0);
2347
2348 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2349 clob = XEXP (clob, 0);
2350
2351 if (REG_P (clob))
2352 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2353 else
2354 record_last_mem_set_info (insn);
2355 }
2356
2357 /* Record things set by INSN.
2358 This data is used by oprs_not_set_p. */
2359
2360 static void
2361 mark_oprs_set (rtx insn)
2362 {
2363 rtx pat = PATTERN (insn);
2364 int i;
2365
2366 if (GET_CODE (pat) == SET)
2367 mark_set (pat, insn);
2368 else if (GET_CODE (pat) == PARALLEL)
2369 for (i = 0; i < XVECLEN (pat, 0); i++)
2370 {
2371 rtx x = XVECEXP (pat, 0, i);
2372
2373 if (GET_CODE (x) == SET)
2374 mark_set (x, insn);
2375 else if (GET_CODE (x) == CLOBBER)
2376 mark_clobber (x, insn);
2377 else if (GET_CODE (x) == CALL)
2378 mark_call (insn);
2379 }
2380
2381 else if (GET_CODE (pat) == CLOBBER)
2382 mark_clobber (pat, insn);
2383 else if (GET_CODE (pat) == CALL)
2384 mark_call (insn);
2385 }
2386
2387 \f
2388 /* Compute copy/constant propagation working variables. */
2389
2390 /* Local properties of assignments. */
2391 static sbitmap *cprop_pavloc;
2392 static sbitmap *cprop_absaltered;
2393
2394 /* Global properties of assignments (computed from the local properties). */
2395 static sbitmap *cprop_avin;
2396 static sbitmap *cprop_avout;
2397
2398 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2399 basic blocks. N_SETS is the number of sets. */
2400
2401 static void
2402 alloc_cprop_mem (int n_blocks, int n_sets)
2403 {
2404 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2405 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2406
2407 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2408 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2409 }
2410
2411 /* Free vars used by copy/const propagation. */
2412
2413 static void
2414 free_cprop_mem (void)
2415 {
2416 sbitmap_vector_free (cprop_pavloc);
2417 sbitmap_vector_free (cprop_absaltered);
2418 sbitmap_vector_free (cprop_avin);
2419 sbitmap_vector_free (cprop_avout);
2420 }
2421
2422 /* For each block, compute whether X is transparent. X is either an
2423 expression or an assignment [though we don't care which, for this context
2424 an assignment is treated as an expression]. For each block where an
2425 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2426 bit in BMAP. */
2427
2428 static void
2429 compute_transp (rtx x, int indx, sbitmap *bmap, int set_p)
2430 {
2431 int i, j;
2432 basic_block bb;
2433 enum rtx_code code;
2434 reg_set *r;
2435 const char *fmt;
2436
2437 /* repeat is used to turn tail-recursion into iteration since GCC
2438 can't do it when there's no return value. */
2439 repeat:
2440
2441 if (x == 0)
2442 return;
2443
2444 code = GET_CODE (x);
2445 switch (code)
2446 {
2447 case REG:
2448 if (set_p)
2449 {
2450 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2451 {
2452 FOR_EACH_BB (bb)
2453 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2454 SET_BIT (bmap[bb->index], indx);
2455 }
2456 else
2457 {
2458 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2459 SET_BIT (bmap[r->bb_index], indx);
2460 }
2461 }
2462 else
2463 {
2464 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2465 {
2466 FOR_EACH_BB (bb)
2467 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2468 RESET_BIT (bmap[bb->index], indx);
2469 }
2470 else
2471 {
2472 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2473 RESET_BIT (bmap[r->bb_index], indx);
2474 }
2475 }
2476
2477 return;
2478
2479 case MEM:
2480 if (! MEM_READONLY_P (x))
2481 {
2482 bitmap_iterator bi;
2483 unsigned bb_index;
2484
2485 /* First handle all the blocks with calls. We don't need to
2486 do any list walking for them. */
2487 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
2488 {
2489 if (set_p)
2490 SET_BIT (bmap[bb_index], indx);
2491 else
2492 RESET_BIT (bmap[bb_index], indx);
2493 }
2494
2495 /* Now iterate over the blocks which have memory modifications
2496 but which do not have any calls. */
2497 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
2498 blocks_with_calls,
2499 0, bb_index, bi)
2500 {
2501 rtx list_entry = canon_modify_mem_list[bb_index];
2502
2503 while (list_entry)
2504 {
2505 rtx dest, dest_addr;
2506
2507 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2508 Examine each hunk of memory that is modified. */
2509
2510 dest = XEXP (list_entry, 0);
2511 list_entry = XEXP (list_entry, 1);
2512 dest_addr = XEXP (list_entry, 0);
2513
2514 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2515 x, rtx_addr_varies_p))
2516 {
2517 if (set_p)
2518 SET_BIT (bmap[bb_index], indx);
2519 else
2520 RESET_BIT (bmap[bb_index], indx);
2521 break;
2522 }
2523 list_entry = XEXP (list_entry, 1);
2524 }
2525 }
2526 }
2527
2528 x = XEXP (x, 0);
2529 goto repeat;
2530
2531 case PC:
2532 case CC0: /*FIXME*/
2533 case CONST:
2534 case CONST_INT:
2535 case CONST_DOUBLE:
2536 case CONST_VECTOR:
2537 case SYMBOL_REF:
2538 case LABEL_REF:
2539 case ADDR_VEC:
2540 case ADDR_DIFF_VEC:
2541 return;
2542
2543 default:
2544 break;
2545 }
2546
2547 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2548 {
2549 if (fmt[i] == 'e')
2550 {
2551 /* If we are about to do the last recursive call
2552 needed at this level, change it into iteration.
2553 This function is called enough to be worth it. */
2554 if (i == 0)
2555 {
2556 x = XEXP (x, i);
2557 goto repeat;
2558 }
2559
2560 compute_transp (XEXP (x, i), indx, bmap, set_p);
2561 }
2562 else if (fmt[i] == 'E')
2563 for (j = 0; j < XVECLEN (x, i); j++)
2564 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2565 }
2566 }
2567
2568 /* Top level routine to do the dataflow analysis needed by copy/const
2569 propagation. */
2570
2571 static void
2572 compute_cprop_data (void)
2573 {
2574 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2575 compute_available (cprop_pavloc, cprop_absaltered,
2576 cprop_avout, cprop_avin);
2577 }
2578 \f
2579 /* Copy/constant propagation. */
2580
2581 /* Maximum number of register uses in an insn that we handle. */
2582 #define MAX_USES 8
2583
2584 /* Table of uses found in an insn.
2585 Allocated statically to avoid alloc/free complexity and overhead. */
2586 static struct reg_use reg_use_table[MAX_USES];
2587
2588 /* Index into `reg_use_table' while building it. */
2589 static int reg_use_count;
2590
2591 /* Set up a list of register numbers used in INSN. The found uses are stored
2592 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2593 and contains the number of uses in the table upon exit.
2594
2595 ??? If a register appears multiple times we will record it multiple times.
2596 This doesn't hurt anything but it will slow things down. */
2597
2598 static void
2599 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
2600 {
2601 int i, j;
2602 enum rtx_code code;
2603 const char *fmt;
2604 rtx x = *xptr;
2605
2606 /* repeat is used to turn tail-recursion into iteration since GCC
2607 can't do it when there's no return value. */
2608 repeat:
2609 if (x == 0)
2610 return;
2611
2612 code = GET_CODE (x);
2613 if (REG_P (x))
2614 {
2615 if (reg_use_count == MAX_USES)
2616 return;
2617
2618 reg_use_table[reg_use_count].reg_rtx = x;
2619 reg_use_count++;
2620 }
2621
2622 /* Recursively scan the operands of this expression. */
2623
2624 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2625 {
2626 if (fmt[i] == 'e')
2627 {
2628 /* If we are about to do the last recursive call
2629 needed at this level, change it into iteration.
2630 This function is called enough to be worth it. */
2631 if (i == 0)
2632 {
2633 x = XEXP (x, 0);
2634 goto repeat;
2635 }
2636
2637 find_used_regs (&XEXP (x, i), data);
2638 }
2639 else if (fmt[i] == 'E')
2640 for (j = 0; j < XVECLEN (x, i); j++)
2641 find_used_regs (&XVECEXP (x, i, j), data);
2642 }
2643 }
2644
2645 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2646 Returns nonzero is successful. */
2647
2648 static int
2649 try_replace_reg (rtx from, rtx to, rtx insn)
2650 {
2651 rtx note = find_reg_equal_equiv_note (insn);
2652 rtx src = 0;
2653 int success = 0;
2654 rtx set = single_set (insn);
2655
2656 validate_replace_src_group (from, to, insn);
2657 if (num_changes_pending () && apply_change_group ())
2658 success = 1;
2659
2660 /* Try to simplify SET_SRC if we have substituted a constant. */
2661 if (success && set && CONSTANT_P (to))
2662 {
2663 src = simplify_rtx (SET_SRC (set));
2664
2665 if (src)
2666 validate_change (insn, &SET_SRC (set), src, 0);
2667 }
2668
2669 /* If there is already a NOTE, update the expression in it with our
2670 replacement. */
2671 if (note != 0)
2672 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
2673
2674 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
2675 {
2676 /* If above failed and this is a single set, try to simplify the source of
2677 the set given our substitution. We could perhaps try this for multiple
2678 SETs, but it probably won't buy us anything. */
2679 src = simplify_replace_rtx (SET_SRC (set), from, to);
2680
2681 if (!rtx_equal_p (src, SET_SRC (set))
2682 && validate_change (insn, &SET_SRC (set), src, 0))
2683 success = 1;
2684
2685 /* If we've failed to do replacement, have a single SET, don't already
2686 have a note, and have no special SET, add a REG_EQUAL note to not
2687 lose information. */
2688 if (!success && note == 0 && set != 0
2689 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2690 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2691 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2692 }
2693
2694 /* REG_EQUAL may get simplified into register.
2695 We don't allow that. Remove that note. This code ought
2696 not to happen, because previous code ought to synthesize
2697 reg-reg move, but be on the safe side. */
2698 if (note && REG_P (XEXP (note, 0)))
2699 remove_note (insn, note);
2700
2701 return success;
2702 }
2703
2704 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2705 NULL no such set is found. */
2706
2707 static struct expr *
2708 find_avail_set (int regno, rtx insn)
2709 {
2710 /* SET1 contains the last set found that can be returned to the caller for
2711 use in a substitution. */
2712 struct expr *set1 = 0;
2713
2714 /* Loops are not possible here. To get a loop we would need two sets
2715 available at the start of the block containing INSN. i.e. we would
2716 need two sets like this available at the start of the block:
2717
2718 (set (reg X) (reg Y))
2719 (set (reg Y) (reg X))
2720
2721 This can not happen since the set of (reg Y) would have killed the
2722 set of (reg X) making it unavailable at the start of this block. */
2723 while (1)
2724 {
2725 rtx src;
2726 struct expr *set = lookup_set (regno, &set_hash_table);
2727
2728 /* Find a set that is available at the start of the block
2729 which contains INSN. */
2730 while (set)
2731 {
2732 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
2733 break;
2734 set = next_set (regno, set);
2735 }
2736
2737 /* If no available set was found we've reached the end of the
2738 (possibly empty) copy chain. */
2739 if (set == 0)
2740 break;
2741
2742 gcc_assert (GET_CODE (set->expr) == SET);
2743
2744 src = SET_SRC (set->expr);
2745
2746 /* We know the set is available.
2747 Now check that SRC is ANTLOC (i.e. none of the source operands
2748 have changed since the start of the block).
2749
2750 If the source operand changed, we may still use it for the next
2751 iteration of this loop, but we may not use it for substitutions. */
2752
2753 if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
2754 set1 = set;
2755
2756 /* If the source of the set is anything except a register, then
2757 we have reached the end of the copy chain. */
2758 if (! REG_P (src))
2759 break;
2760
2761 /* Follow the copy chain, i.e. start another iteration of the loop
2762 and see if we have an available copy into SRC. */
2763 regno = REGNO (src);
2764 }
2765
2766 /* SET1 holds the last set that was available and anticipatable at
2767 INSN. */
2768 return set1;
2769 }
2770
2771 /* Subroutine of cprop_insn that tries to propagate constants into
2772 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2773 it is the instruction that immediately precedes JUMP, and must be a
2774 single SET of a register. FROM is what we will try to replace,
2775 SRC is the constant we will try to substitute for it. Returns nonzero
2776 if a change was made. */
2777
2778 static int
2779 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
2780 {
2781 rtx new, set_src, note_src;
2782 rtx set = pc_set (jump);
2783 rtx note = find_reg_equal_equiv_note (jump);
2784
2785 if (note)
2786 {
2787 note_src = XEXP (note, 0);
2788 if (GET_CODE (note_src) == EXPR_LIST)
2789 note_src = NULL_RTX;
2790 }
2791 else note_src = NULL_RTX;
2792
2793 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2794 set_src = note_src ? note_src : SET_SRC (set);
2795
2796 /* First substitute the SETCC condition into the JUMP instruction,
2797 then substitute that given values into this expanded JUMP. */
2798 if (setcc != NULL_RTX
2799 && !modified_between_p (from, setcc, jump)
2800 && !modified_between_p (src, setcc, jump))
2801 {
2802 rtx setcc_src;
2803 rtx setcc_set = single_set (setcc);
2804 rtx setcc_note = find_reg_equal_equiv_note (setcc);
2805 setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
2806 ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
2807 set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
2808 setcc_src);
2809 }
2810 else
2811 setcc = NULL_RTX;
2812
2813 new = simplify_replace_rtx (set_src, from, src);
2814
2815 /* If no simplification can be made, then try the next register. */
2816 if (rtx_equal_p (new, SET_SRC (set)))
2817 return 0;
2818
2819 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2820 if (new == pc_rtx)
2821 delete_insn (jump);
2822 else
2823 {
2824 /* Ensure the value computed inside the jump insn to be equivalent
2825 to one computed by setcc. */
2826 if (setcc && modified_in_p (new, setcc))
2827 return 0;
2828 if (! validate_change (jump, &SET_SRC (set), new, 0))
2829 {
2830 /* When (some) constants are not valid in a comparison, and there
2831 are two registers to be replaced by constants before the entire
2832 comparison can be folded into a constant, we need to keep
2833 intermediate information in REG_EQUAL notes. For targets with
2834 separate compare insns, such notes are added by try_replace_reg.
2835 When we have a combined compare-and-branch instruction, however,
2836 we need to attach a note to the branch itself to make this
2837 optimization work. */
2838
2839 if (!rtx_equal_p (new, note_src))
2840 set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new));
2841 return 0;
2842 }
2843
2844 /* Remove REG_EQUAL note after simplification. */
2845 if (note_src)
2846 remove_note (jump, note);
2847
2848 /* If this has turned into an unconditional jump,
2849 then put a barrier after it so that the unreachable
2850 code will be deleted. */
2851 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
2852 emit_barrier_after (jump);
2853 }
2854
2855 #ifdef HAVE_cc0
2856 /* Delete the cc0 setter. */
2857 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
2858 delete_insn (setcc);
2859 #endif
2860
2861 run_jump_opt_after_gcse = 1;
2862
2863 global_const_prop_count++;
2864 if (gcse_file != NULL)
2865 {
2866 fprintf (gcse_file,
2867 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2868 REGNO (from), INSN_UID (jump));
2869 print_rtl (gcse_file, src);
2870 fprintf (gcse_file, "\n");
2871 }
2872 purge_dead_edges (bb);
2873
2874 return 1;
2875 }
2876
2877 static bool
2878 constprop_register (rtx insn, rtx from, rtx to, bool alter_jumps)
2879 {
2880 rtx sset;
2881
2882 /* Check for reg or cc0 setting instructions followed by
2883 conditional branch instructions first. */
2884 if (alter_jumps
2885 && (sset = single_set (insn)) != NULL
2886 && NEXT_INSN (insn)
2887 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
2888 {
2889 rtx dest = SET_DEST (sset);
2890 if ((REG_P (dest) || CC0_P (dest))
2891 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
2892 return 1;
2893 }
2894
2895 /* Handle normal insns next. */
2896 if (NONJUMP_INSN_P (insn)
2897 && try_replace_reg (from, to, insn))
2898 return 1;
2899
2900 /* Try to propagate a CONST_INT into a conditional jump.
2901 We're pretty specific about what we will handle in this
2902 code, we can extend this as necessary over time.
2903
2904 Right now the insn in question must look like
2905 (set (pc) (if_then_else ...)) */
2906 else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
2907 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
2908 return 0;
2909 }
2910
2911 /* Perform constant and copy propagation on INSN.
2912 The result is nonzero if a change was made. */
2913
2914 static int
2915 cprop_insn (rtx insn, int alter_jumps)
2916 {
2917 struct reg_use *reg_used;
2918 int changed = 0;
2919 rtx note;
2920
2921 if (!INSN_P (insn))
2922 return 0;
2923
2924 reg_use_count = 0;
2925 note_uses (&PATTERN (insn), find_used_regs, NULL);
2926
2927 note = find_reg_equal_equiv_note (insn);
2928
2929 /* We may win even when propagating constants into notes. */
2930 if (note)
2931 find_used_regs (&XEXP (note, 0), NULL);
2932
2933 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2934 reg_used++, reg_use_count--)
2935 {
2936 unsigned int regno = REGNO (reg_used->reg_rtx);
2937 rtx pat, src;
2938 struct expr *set;
2939
2940 /* Ignore registers created by GCSE.
2941 We do this because ... */
2942 if (regno >= max_gcse_regno)
2943 continue;
2944
2945 /* If the register has already been set in this block, there's
2946 nothing we can do. */
2947 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
2948 continue;
2949
2950 /* Find an assignment that sets reg_used and is available
2951 at the start of the block. */
2952 set = find_avail_set (regno, insn);
2953 if (! set)
2954 continue;
2955
2956 pat = set->expr;
2957 /* ??? We might be able to handle PARALLELs. Later. */
2958 gcc_assert (GET_CODE (pat) == SET);
2959
2960 src = SET_SRC (pat);
2961
2962 /* Constant propagation. */
2963 if (gcse_constant_p (src))
2964 {
2965 if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
2966 {
2967 changed = 1;
2968 global_const_prop_count++;
2969 if (gcse_file != NULL)
2970 {
2971 fprintf (gcse_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
2972 fprintf (gcse_file, "insn %d with constant ", INSN_UID (insn));
2973 print_rtl (gcse_file, src);
2974 fprintf (gcse_file, "\n");
2975 }
2976 if (INSN_DELETED_P (insn))
2977 return 1;
2978 }
2979 }
2980 else if (REG_P (src)
2981 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2982 && REGNO (src) != regno)
2983 {
2984 if (try_replace_reg (reg_used->reg_rtx, src, insn))
2985 {
2986 changed = 1;
2987 global_copy_prop_count++;
2988 if (gcse_file != NULL)
2989 {
2990 fprintf (gcse_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2991 regno, INSN_UID (insn));
2992 fprintf (gcse_file, " with reg %d\n", REGNO (src));
2993 }
2994
2995 /* The original insn setting reg_used may or may not now be
2996 deletable. We leave the deletion to flow. */
2997 /* FIXME: If it turns out that the insn isn't deletable,
2998 then we may have unnecessarily extended register lifetimes
2999 and made things worse. */
3000 }
3001 }
3002 }
3003
3004 return changed;
3005 }
3006
3007 /* Like find_used_regs, but avoid recording uses that appear in
3008 input-output contexts such as zero_extract or pre_dec. This
3009 restricts the cases we consider to those for which local cprop
3010 can legitimately make replacements. */
3011
3012 static void
3013 local_cprop_find_used_regs (rtx *xptr, void *data)
3014 {
3015 rtx x = *xptr;
3016
3017 if (x == 0)
3018 return;
3019
3020 switch (GET_CODE (x))
3021 {
3022 case ZERO_EXTRACT:
3023 case SIGN_EXTRACT:
3024 case STRICT_LOW_PART:
3025 return;
3026
3027 case PRE_DEC:
3028 case PRE_INC:
3029 case POST_DEC:
3030 case POST_INC:
3031 case PRE_MODIFY:
3032 case POST_MODIFY:
3033 /* Can only legitimately appear this early in the context of
3034 stack pushes for function arguments, but handle all of the
3035 codes nonetheless. */
3036 return;
3037
3038 case SUBREG:
3039 /* Setting a subreg of a register larger than word_mode leaves
3040 the non-written words unchanged. */
3041 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
3042 return;
3043 break;
3044
3045 default:
3046 break;
3047 }
3048
3049 find_used_regs (xptr, data);
3050 }
3051
3052 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3053 their REG_EQUAL notes need updating. */
3054
3055 static bool
3056 do_local_cprop (rtx x, rtx insn, bool alter_jumps, rtx *libcall_sp)
3057 {
3058 rtx newreg = NULL, newcnst = NULL;
3059
3060 /* Rule out USE instructions and ASM statements as we don't want to
3061 change the hard registers mentioned. */
3062 if (REG_P (x)
3063 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
3064 || (GET_CODE (PATTERN (insn)) != USE
3065 && asm_noperands (PATTERN (insn)) < 0)))
3066 {
3067 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
3068 struct elt_loc_list *l;
3069
3070 if (!val)
3071 return false;
3072 for (l = val->locs; l; l = l->next)
3073 {
3074 rtx this_rtx = l->loc;
3075 rtx note;
3076
3077 /* Don't CSE non-constant values out of libcall blocks. */
3078 if (l->in_libcall && ! CONSTANT_P (this_rtx))
3079 continue;
3080
3081 if (gcse_constant_p (this_rtx))
3082 newcnst = this_rtx;
3083 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
3084 /* Don't copy propagate if it has attached REG_EQUIV note.
3085 At this point this only function parameters should have
3086 REG_EQUIV notes and if the argument slot is used somewhere
3087 explicitly, it means address of parameter has been taken,
3088 so we should not extend the lifetime of the pseudo. */
3089 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
3090 || ! MEM_P (XEXP (note, 0))))
3091 newreg = this_rtx;
3092 }
3093 if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
3094 {
3095 /* If we find a case where we can't fix the retval REG_EQUAL notes
3096 match the new register, we either have to abandon this replacement
3097 or fix delete_trivially_dead_insns to preserve the setting insn,
3098 or make it delete the REG_EUAQL note, and fix up all passes that
3099 require the REG_EQUAL note there. */
3100 bool adjusted;
3101
3102 adjusted = adjust_libcall_notes (x, newcnst, insn, libcall_sp);
3103 gcc_assert (adjusted);
3104
3105 if (gcse_file != NULL)
3106 {
3107 fprintf (gcse_file, "LOCAL CONST-PROP: Replacing reg %d in ",
3108 REGNO (x));
3109 fprintf (gcse_file, "insn %d with constant ",
3110 INSN_UID (insn));
3111 print_rtl (gcse_file, newcnst);
3112 fprintf (gcse_file, "\n");
3113 }
3114 local_const_prop_count++;
3115 return true;
3116 }
3117 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
3118 {
3119 adjust_libcall_notes (x, newreg, insn, libcall_sp);
3120 if (gcse_file != NULL)
3121 {
3122 fprintf (gcse_file,
3123 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3124 REGNO (x), INSN_UID (insn));
3125 fprintf (gcse_file, " with reg %d\n", REGNO (newreg));
3126 }
3127 local_copy_prop_count++;
3128 return true;
3129 }
3130 }
3131 return false;
3132 }
3133
3134 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3135 their REG_EQUAL notes need updating to reflect that OLDREG has been
3136 replaced with NEWVAL in INSN. Return true if all substitutions could
3137 be made. */
3138 static bool
3139 adjust_libcall_notes (rtx oldreg, rtx newval, rtx insn, rtx *libcall_sp)
3140 {
3141 rtx end;
3142
3143 while ((end = *libcall_sp++))
3144 {
3145 rtx note = find_reg_equal_equiv_note (end);
3146
3147 if (! note)
3148 continue;
3149
3150 if (REG_P (newval))
3151 {
3152 if (reg_set_between_p (newval, PREV_INSN (insn), end))
3153 {
3154 do
3155 {
3156 note = find_reg_equal_equiv_note (end);
3157 if (! note)
3158 continue;
3159 if (reg_mentioned_p (newval, XEXP (note, 0)))
3160 return false;
3161 }
3162 while ((end = *libcall_sp++));
3163 return true;
3164 }
3165 }
3166 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), oldreg, newval);
3167 insn = end;
3168 }
3169 return true;
3170 }
3171
3172 #define MAX_NESTED_LIBCALLS 9
3173
3174 /* Do local const/copy propagation (i.e. within each basic block).
3175 If ALTER_JUMPS is true, allow propagating into jump insns, which
3176 could modify the CFG. */
3177
3178 static void
3179 local_cprop_pass (bool alter_jumps)
3180 {
3181 basic_block bb;
3182 rtx insn;
3183 struct reg_use *reg_used;
3184 rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
3185 bool changed = false;
3186
3187 cselib_init (false);
3188 libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
3189 *libcall_sp = 0;
3190 FOR_EACH_BB (bb)
3191 {
3192 FOR_BB_INSNS (bb, insn)
3193 {
3194 if (INSN_P (insn))
3195 {
3196 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
3197
3198 if (note)
3199 {
3200 gcc_assert (libcall_sp != libcall_stack);
3201 *--libcall_sp = XEXP (note, 0);
3202 }
3203 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
3204 if (note)
3205 libcall_sp++;
3206 note = find_reg_equal_equiv_note (insn);
3207 do
3208 {
3209 reg_use_count = 0;
3210 note_uses (&PATTERN (insn), local_cprop_find_used_regs,
3211 NULL);
3212 if (note)
3213 local_cprop_find_used_regs (&XEXP (note, 0), NULL);
3214
3215 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
3216 reg_used++, reg_use_count--)
3217 if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
3218 libcall_sp))
3219 {
3220 changed = true;
3221 break;
3222 }
3223 if (INSN_DELETED_P (insn))
3224 break;
3225 }
3226 while (reg_use_count);
3227 }
3228 cselib_process_insn (insn);
3229 }
3230
3231 /* Forget everything at the end of a basic block. Make sure we are
3232 not inside a libcall, they should never cross basic blocks. */
3233 cselib_clear_table ();
3234 gcc_assert (libcall_sp == &libcall_stack[MAX_NESTED_LIBCALLS]);
3235 }
3236
3237 cselib_finish ();
3238
3239 /* Global analysis may get into infinite loops for unreachable blocks. */
3240 if (changed && alter_jumps)
3241 {
3242 delete_unreachable_blocks ();
3243 free_reg_set_mem ();
3244 alloc_reg_set_mem (max_reg_num ());
3245 compute_sets ();
3246 }
3247 }
3248
3249 /* Forward propagate copies. This includes copies and constants. Return
3250 nonzero if a change was made. */
3251
3252 static int
3253 cprop (int alter_jumps)
3254 {
3255 int changed;
3256 basic_block bb;
3257 rtx insn;
3258
3259 /* Note we start at block 1. */
3260 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3261 {
3262 if (gcse_file != NULL)
3263 fprintf (gcse_file, "\n");
3264 return 0;
3265 }
3266
3267 changed = 0;
3268 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3269 {
3270 /* Reset tables used to keep track of what's still valid [since the
3271 start of the block]. */
3272 reset_opr_set_tables ();
3273
3274 FOR_BB_INSNS (bb, insn)
3275 if (INSN_P (insn))
3276 {
3277 changed |= cprop_insn (insn, alter_jumps);
3278
3279 /* Keep track of everything modified by this insn. */
3280 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3281 call mark_oprs_set if we turned the insn into a NOTE. */
3282 if (! NOTE_P (insn))
3283 mark_oprs_set (insn);
3284 }
3285 }
3286
3287 if (gcse_file != NULL)
3288 fprintf (gcse_file, "\n");
3289
3290 return changed;
3291 }
3292
3293 /* Similar to get_condition, only the resulting condition must be
3294 valid at JUMP, instead of at EARLIEST.
3295
3296 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3297 settle for the condition variable in the jump instruction being integral.
3298 We prefer to be able to record the value of a user variable, rather than
3299 the value of a temporary used in a condition. This could be solved by
3300 recording the value of *every* register scanned by canonicalize_condition,
3301 but this would require some code reorganization. */
3302
3303 rtx
3304 fis_get_condition (rtx jump)
3305 {
3306 return get_condition (jump, NULL, false, true);
3307 }
3308
3309 /* Check the comparison COND to see if we can safely form an implicit set from
3310 it. COND is either an EQ or NE comparison. */
3311
3312 static bool
3313 implicit_set_cond_p (rtx cond)
3314 {
3315 enum machine_mode mode = GET_MODE (XEXP (cond, 0));
3316 rtx cst = XEXP (cond, 1);
3317
3318 /* We can't perform this optimization if either operand might be or might
3319 contain a signed zero. */
3320 if (HONOR_SIGNED_ZEROS (mode))
3321 {
3322 /* It is sufficient to check if CST is or contains a zero. We must
3323 handle float, complex, and vector. If any subpart is a zero, then
3324 the optimization can't be performed. */
3325 /* ??? The complex and vector checks are not implemented yet. We just
3326 always return zero for them. */
3327 if (GET_CODE (cst) == CONST_DOUBLE)
3328 {
3329 REAL_VALUE_TYPE d;
3330 REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
3331 if (REAL_VALUES_EQUAL (d, dconst0))
3332 return 0;
3333 }
3334 else
3335 return 0;
3336 }
3337
3338 return gcse_constant_p (cst);
3339 }
3340
3341 /* Find the implicit sets of a function. An "implicit set" is a constraint
3342 on the value of a variable, implied by a conditional jump. For example,
3343 following "if (x == 2)", the then branch may be optimized as though the
3344 conditional performed an "explicit set", in this example, "x = 2". This
3345 function records the set patterns that are implicit at the start of each
3346 basic block. */
3347
3348 static void
3349 find_implicit_sets (void)
3350 {
3351 basic_block bb, dest;
3352 unsigned int count;
3353 rtx cond, new;
3354
3355 count = 0;
3356 FOR_EACH_BB (bb)
3357 /* Check for more than one successor. */
3358 if (EDGE_COUNT (bb->succs) > 1)
3359 {
3360 cond = fis_get_condition (BB_END (bb));
3361
3362 if (cond
3363 && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
3364 && REG_P (XEXP (cond, 0))
3365 && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
3366 && implicit_set_cond_p (cond))
3367 {
3368 dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
3369 : FALLTHRU_EDGE (bb)->dest;
3370
3371 if (dest && single_pred_p (dest)
3372 && dest != EXIT_BLOCK_PTR)
3373 {
3374 new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
3375 XEXP (cond, 1));
3376 implicit_sets[dest->index] = new;
3377 if (gcse_file)
3378 {
3379 fprintf(gcse_file, "Implicit set of reg %d in ",
3380 REGNO (XEXP (cond, 0)));
3381 fprintf(gcse_file, "basic block %d\n", dest->index);
3382 }
3383 count++;
3384 }
3385 }
3386 }
3387
3388 if (gcse_file)
3389 fprintf (gcse_file, "Found %d implicit sets\n", count);
3390 }
3391
3392 /* Perform one copy/constant propagation pass.
3393 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3394 propagation into conditional jumps. If BYPASS_JUMPS is true,
3395 perform conditional jump bypassing optimizations. */
3396
3397 static int
3398 one_cprop_pass (int pass, bool cprop_jumps, bool bypass_jumps)
3399 {
3400 int changed = 0;
3401
3402 global_const_prop_count = local_const_prop_count = 0;
3403 global_copy_prop_count = local_copy_prop_count = 0;
3404
3405 local_cprop_pass (cprop_jumps);
3406
3407 /* Determine implicit sets. */
3408 implicit_sets = xcalloc (last_basic_block, sizeof (rtx));
3409 find_implicit_sets ();
3410
3411 alloc_hash_table (max_cuid, &set_hash_table, 1);
3412 compute_hash_table (&set_hash_table);
3413
3414 /* Free implicit_sets before peak usage. */
3415 free (implicit_sets);
3416 implicit_sets = NULL;
3417
3418 if (gcse_file)
3419 dump_hash_table (gcse_file, "SET", &set_hash_table);
3420 if (set_hash_table.n_elems > 0)
3421 {
3422 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
3423 compute_cprop_data ();
3424 changed = cprop (cprop_jumps);
3425 if (bypass_jumps)
3426 changed |= bypass_conditional_jumps ();
3427 free_cprop_mem ();
3428 }
3429
3430 free_hash_table (&set_hash_table);
3431
3432 if (gcse_file)
3433 {
3434 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
3435 current_function_name (), pass, bytes_used);
3436 fprintf (gcse_file, "%d local const props, %d local copy props, ",
3437 local_const_prop_count, local_copy_prop_count);
3438 fprintf (gcse_file, "%d global const props, %d global copy props\n\n",
3439 global_const_prop_count, global_copy_prop_count);
3440 }
3441 /* Global analysis may get into infinite loops for unreachable blocks. */
3442 if (changed && cprop_jumps)
3443 delete_unreachable_blocks ();
3444
3445 return changed;
3446 }
3447 \f
3448 /* Bypass conditional jumps. */
3449
3450 /* The value of last_basic_block at the beginning of the jump_bypass
3451 pass. The use of redirect_edge_and_branch_force may introduce new
3452 basic blocks, but the data flow analysis is only valid for basic
3453 block indices less than bypass_last_basic_block. */
3454
3455 static int bypass_last_basic_block;
3456
3457 /* Find a set of REGNO to a constant that is available at the end of basic
3458 block BB. Returns NULL if no such set is found. Based heavily upon
3459 find_avail_set. */
3460
3461 static struct expr *
3462 find_bypass_set (int regno, int bb)
3463 {
3464 struct expr *result = 0;
3465
3466 for (;;)
3467 {
3468 rtx src;
3469 struct expr *set = lookup_set (regno, &set_hash_table);
3470
3471 while (set)
3472 {
3473 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
3474 break;
3475 set = next_set (regno, set);
3476 }
3477
3478 if (set == 0)
3479 break;
3480
3481 gcc_assert (GET_CODE (set->expr) == SET);
3482
3483 src = SET_SRC (set->expr);
3484 if (gcse_constant_p (src))
3485 result = set;
3486
3487 if (! REG_P (src))
3488 break;
3489
3490 regno = REGNO (src);
3491 }
3492 return result;
3493 }
3494
3495
3496 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3497 any of the instructions inserted on an edge. Jump bypassing places
3498 condition code setters on CFG edges using insert_insn_on_edge. This
3499 function is required to check that our data flow analysis is still
3500 valid prior to commit_edge_insertions. */
3501
3502 static bool
3503 reg_killed_on_edge (rtx reg, edge e)
3504 {
3505 rtx insn;
3506
3507 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
3508 if (INSN_P (insn) && reg_set_p (reg, insn))
3509 return true;
3510
3511 return false;
3512 }
3513
3514 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3515 basic block BB which has more than one predecessor. If not NULL, SETCC
3516 is the first instruction of BB, which is immediately followed by JUMP_INSN
3517 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3518 Returns nonzero if a change was made.
3519
3520 During the jump bypassing pass, we may place copies of SETCC instructions
3521 on CFG edges. The following routine must be careful to pay attention to
3522 these inserted insns when performing its transformations. */
3523
3524 static int
3525 bypass_block (basic_block bb, rtx setcc, rtx jump)
3526 {
3527 rtx insn, note;
3528 edge e, edest;
3529 int i, change;
3530 int may_be_loop_header;
3531 unsigned removed_p;
3532 edge_iterator ei;
3533
3534 insn = (setcc != NULL) ? setcc : jump;
3535
3536 /* Determine set of register uses in INSN. */
3537 reg_use_count = 0;
3538 note_uses (&PATTERN (insn), find_used_regs, NULL);
3539 note = find_reg_equal_equiv_note (insn);
3540 if (note)
3541 find_used_regs (&XEXP (note, 0), NULL);
3542
3543 may_be_loop_header = false;
3544 FOR_EACH_EDGE (e, ei, bb->preds)
3545 if (e->flags & EDGE_DFS_BACK)
3546 {
3547 may_be_loop_header = true;
3548 break;
3549 }
3550
3551 change = 0;
3552 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3553 {
3554 removed_p = 0;
3555
3556 if (e->flags & EDGE_COMPLEX)
3557 {
3558 ei_next (&ei);
3559 continue;
3560 }
3561
3562 /* We can't redirect edges from new basic blocks. */
3563 if (e->src->index >= bypass_last_basic_block)
3564 {
3565 ei_next (&ei);
3566 continue;
3567 }
3568
3569 /* The irreducible loops created by redirecting of edges entering the
3570 loop from outside would decrease effectiveness of some of the following
3571 optimizations, so prevent this. */
3572 if (may_be_loop_header
3573 && !(e->flags & EDGE_DFS_BACK))
3574 {
3575 ei_next (&ei);
3576 continue;
3577 }
3578
3579 for (i = 0; i < reg_use_count; i++)
3580 {
3581 struct reg_use *reg_used = &reg_use_table[i];
3582 unsigned int regno = REGNO (reg_used->reg_rtx);
3583 basic_block dest, old_dest;
3584 struct expr *set;
3585 rtx src, new;
3586
3587 if (regno >= max_gcse_regno)
3588 continue;
3589
3590 set = find_bypass_set (regno, e->src->index);
3591
3592 if (! set)
3593 continue;
3594
3595 /* Check the data flow is valid after edge insertions. */
3596 if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
3597 continue;
3598
3599 src = SET_SRC (pc_set (jump));
3600
3601 if (setcc != NULL)
3602 src = simplify_replace_rtx (src,
3603 SET_DEST (PATTERN (setcc)),
3604 SET_SRC (PATTERN (setcc)));
3605
3606 new = simplify_replace_rtx (src, reg_used->reg_rtx,
3607 SET_SRC (set->expr));
3608
3609 /* Jump bypassing may have already placed instructions on
3610 edges of the CFG. We can't bypass an outgoing edge that
3611 has instructions associated with it, as these insns won't
3612 get executed if the incoming edge is redirected. */
3613
3614 if (new == pc_rtx)
3615 {
3616 edest = FALLTHRU_EDGE (bb);
3617 dest = edest->insns.r ? NULL : edest->dest;
3618 }
3619 else if (GET_CODE (new) == LABEL_REF)
3620 {
3621 dest = BLOCK_FOR_INSN (XEXP (new, 0));
3622 /* Don't bypass edges containing instructions. */
3623 edest = find_edge (bb, dest);
3624 if (edest && edest->insns.r)
3625 dest = NULL;
3626 }
3627 else
3628 dest = NULL;
3629
3630 /* Avoid unification of the edge with other edges from original
3631 branch. We would end up emitting the instruction on "both"
3632 edges. */
3633
3634 if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc)))
3635 && find_edge (e->src, dest))
3636 dest = NULL;
3637
3638 old_dest = e->dest;
3639 if (dest != NULL
3640 && dest != old_dest
3641 && dest != EXIT_BLOCK_PTR)
3642 {
3643 redirect_edge_and_branch_force (e, dest);
3644
3645 /* Copy the register setter to the redirected edge.
3646 Don't copy CC0 setters, as CC0 is dead after jump. */
3647 if (setcc)
3648 {
3649 rtx pat = PATTERN (setcc);
3650 if (!CC0_P (SET_DEST (pat)))
3651 insert_insn_on_edge (copy_insn (pat), e);
3652 }
3653
3654 if (gcse_file != NULL)
3655 {
3656 fprintf (gcse_file, "JUMP-BYPASS: Proved reg %d "
3657 "in jump_insn %d equals constant ",
3658 regno, INSN_UID (jump));
3659 print_rtl (gcse_file, SET_SRC (set->expr));
3660 fprintf (gcse_file, "\nBypass edge from %d->%d to %d\n",
3661 e->src->index, old_dest->index, dest->index);
3662 }
3663 change = 1;
3664 removed_p = 1;
3665 break;
3666 }
3667 }
3668 if (!removed_p)
3669 ei_next (&ei);
3670 }
3671 return change;
3672 }
3673
3674 /* Find basic blocks with more than one predecessor that only contain a
3675 single conditional jump. If the result of the comparison is known at
3676 compile-time from any incoming edge, redirect that edge to the
3677 appropriate target. Returns nonzero if a change was made.
3678
3679 This function is now mis-named, because we also handle indirect jumps. */
3680
3681 static int
3682 bypass_conditional_jumps (void)
3683 {
3684 basic_block bb;
3685 int changed;
3686 rtx setcc;
3687 rtx insn;
3688 rtx dest;
3689
3690 /* Note we start at block 1. */
3691 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3692 return 0;
3693
3694 bypass_last_basic_block = last_basic_block;
3695 mark_dfs_back_edges ();
3696
3697 changed = 0;
3698 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
3699 EXIT_BLOCK_PTR, next_bb)
3700 {
3701 /* Check for more than one predecessor. */
3702 if (!single_pred_p (bb))
3703 {
3704 setcc = NULL_RTX;
3705 FOR_BB_INSNS (bb, insn)
3706 if (NONJUMP_INSN_P (insn))
3707 {
3708 if (setcc)
3709 break;
3710 if (GET_CODE (PATTERN (insn)) != SET)
3711 break;
3712
3713 dest = SET_DEST (PATTERN (insn));
3714 if (REG_P (dest) || CC0_P (dest))
3715 setcc = insn;
3716 else
3717 break;
3718 }
3719 else if (JUMP_P (insn))
3720 {
3721 if ((any_condjump_p (insn) || computed_jump_p (insn))
3722 && onlyjump_p (insn))
3723 changed |= bypass_block (bb, setcc, insn);
3724 break;
3725 }
3726 else if (INSN_P (insn))
3727 break;
3728 }
3729 }
3730
3731 /* If we bypassed any register setting insns, we inserted a
3732 copy on the redirected edge. These need to be committed. */
3733 if (changed)
3734 commit_edge_insertions();
3735
3736 return changed;
3737 }
3738 \f
3739 /* Compute PRE+LCM working variables. */
3740
3741 /* Local properties of expressions. */
3742 /* Nonzero for expressions that are transparent in the block. */
3743 static sbitmap *transp;
3744
3745 /* Nonzero for expressions that are transparent at the end of the block.
3746 This is only zero for expressions killed by abnormal critical edge
3747 created by a calls. */
3748 static sbitmap *transpout;
3749
3750 /* Nonzero for expressions that are computed (available) in the block. */
3751 static sbitmap *comp;
3752
3753 /* Nonzero for expressions that are locally anticipatable in the block. */
3754 static sbitmap *antloc;
3755
3756 /* Nonzero for expressions where this block is an optimal computation
3757 point. */
3758 static sbitmap *pre_optimal;
3759
3760 /* Nonzero for expressions which are redundant in a particular block. */
3761 static sbitmap *pre_redundant;
3762
3763 /* Nonzero for expressions which should be inserted on a specific edge. */
3764 static sbitmap *pre_insert_map;
3765
3766 /* Nonzero for expressions which should be deleted in a specific block. */
3767 static sbitmap *pre_delete_map;
3768
3769 /* Contains the edge_list returned by pre_edge_lcm. */
3770 static struct edge_list *edge_list;
3771
3772 /* Redundant insns. */
3773 static sbitmap pre_redundant_insns;
3774
3775 /* Allocate vars used for PRE analysis. */
3776
3777 static void
3778 alloc_pre_mem (int n_blocks, int n_exprs)
3779 {
3780 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
3781 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
3782 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
3783
3784 pre_optimal = NULL;
3785 pre_redundant = NULL;
3786 pre_insert_map = NULL;
3787 pre_delete_map = NULL;
3788 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
3789
3790 /* pre_insert and pre_delete are allocated later. */
3791 }
3792
3793 /* Free vars used for PRE analysis. */
3794
3795 static void
3796 free_pre_mem (void)
3797 {
3798 sbitmap_vector_free (transp);
3799 sbitmap_vector_free (comp);
3800
3801 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3802
3803 if (pre_optimal)
3804 sbitmap_vector_free (pre_optimal);
3805 if (pre_redundant)
3806 sbitmap_vector_free (pre_redundant);
3807 if (pre_insert_map)
3808 sbitmap_vector_free (pre_insert_map);
3809 if (pre_delete_map)
3810 sbitmap_vector_free (pre_delete_map);
3811
3812 transp = comp = NULL;
3813 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
3814 }
3815
3816 /* Top level routine to do the dataflow analysis needed by PRE. */
3817
3818 static void
3819 compute_pre_data (void)
3820 {
3821 sbitmap trapping_expr;
3822 basic_block bb;
3823 unsigned int ui;
3824
3825 compute_local_properties (transp, comp, antloc, &expr_hash_table);
3826 sbitmap_vector_zero (ae_kill, last_basic_block);
3827
3828 /* Collect expressions which might trap. */
3829 trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
3830 sbitmap_zero (trapping_expr);
3831 for (ui = 0; ui < expr_hash_table.size; ui++)
3832 {
3833 struct expr *e;
3834 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
3835 if (may_trap_p (e->expr))
3836 SET_BIT (trapping_expr, e->bitmap_index);
3837 }
3838
3839 /* Compute ae_kill for each basic block using:
3840
3841 ~(TRANSP | COMP)
3842 */
3843
3844 FOR_EACH_BB (bb)
3845 {
3846 edge e;
3847 edge_iterator ei;
3848
3849 /* If the current block is the destination of an abnormal edge, we
3850 kill all trapping expressions because we won't be able to properly
3851 place the instruction on the edge. So make them neither
3852 anticipatable nor transparent. This is fairly conservative. */
3853 FOR_EACH_EDGE (e, ei, bb->preds)
3854 if (e->flags & EDGE_ABNORMAL)
3855 {
3856 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
3857 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
3858 break;
3859 }
3860
3861 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
3862 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
3863 }
3864
3865 edge_list = pre_edge_lcm (gcse_file, expr_hash_table.n_elems, transp, comp, antloc,
3866 ae_kill, &pre_insert_map, &pre_delete_map);
3867 sbitmap_vector_free (antloc);
3868 antloc = NULL;
3869 sbitmap_vector_free (ae_kill);
3870 ae_kill = NULL;
3871 sbitmap_free (trapping_expr);
3872 }
3873 \f
3874 /* PRE utilities */
3875
3876 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3877 block BB.
3878
3879 VISITED is a pointer to a working buffer for tracking which BB's have
3880 been visited. It is NULL for the top-level call.
3881
3882 We treat reaching expressions that go through blocks containing the same
3883 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3884 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3885 2 as not reaching. The intent is to improve the probability of finding
3886 only one reaching expression and to reduce register lifetimes by picking
3887 the closest such expression. */
3888
3889 static int
3890 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
3891 {
3892 edge pred;
3893 edge_iterator ei;
3894
3895 FOR_EACH_EDGE (pred, ei, bb->preds)
3896 {
3897 basic_block pred_bb = pred->src;
3898
3899 if (pred->src == ENTRY_BLOCK_PTR
3900 /* Has predecessor has already been visited? */
3901 || visited[pred_bb->index])
3902 ;/* Nothing to do. */
3903
3904 /* Does this predecessor generate this expression? */
3905 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
3906 {
3907 /* Is this the occurrence we're looking for?
3908 Note that there's only one generating occurrence per block
3909 so we just need to check the block number. */
3910 if (occr_bb == pred_bb)
3911 return 1;
3912
3913 visited[pred_bb->index] = 1;
3914 }
3915 /* Ignore this predecessor if it kills the expression. */
3916 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
3917 visited[pred_bb->index] = 1;
3918
3919 /* Neither gen nor kill. */
3920 else
3921 {
3922 visited[pred_bb->index] = 1;
3923 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
3924 return 1;
3925 }
3926 }
3927
3928 /* All paths have been checked. */
3929 return 0;
3930 }
3931
3932 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3933 memory allocated for that function is returned. */
3934
3935 static int
3936 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
3937 {
3938 int rval;
3939 char *visited = xcalloc (last_basic_block, 1);
3940
3941 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
3942
3943 free (visited);
3944 return rval;
3945 }
3946 \f
3947
3948 /* Given an expr, generate RTL which we can insert at the end of a BB,
3949 or on an edge. Set the block number of any insns generated to
3950 the value of BB. */
3951
3952 static rtx
3953 process_insert_insn (struct expr *expr)
3954 {
3955 rtx reg = expr->reaching_reg;
3956 rtx exp = copy_rtx (expr->expr);
3957 rtx pat;
3958
3959 start_sequence ();
3960
3961 /* If the expression is something that's an operand, like a constant,
3962 just copy it to a register. */
3963 if (general_operand (exp, GET_MODE (reg)))
3964 emit_move_insn (reg, exp);
3965
3966 /* Otherwise, make a new insn to compute this expression and make sure the
3967 insn will be recognized (this also adds any needed CLOBBERs). Copy the
3968 expression to make sure we don't have any sharing issues. */
3969 else
3970 {
3971 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
3972
3973 if (insn_invalid_p (insn))
3974 gcc_unreachable ();
3975 }
3976
3977
3978 pat = get_insns ();
3979 end_sequence ();
3980
3981 return pat;
3982 }
3983
3984 /* Add EXPR to the end of basic block BB.
3985
3986 This is used by both the PRE and code hoisting.
3987
3988 For PRE, we want to verify that the expr is either transparent
3989 or locally anticipatable in the target block. This check makes
3990 no sense for code hoisting. */
3991
3992 static void
3993 insert_insn_end_bb (struct expr *expr, basic_block bb, int pre)
3994 {
3995 rtx insn = BB_END (bb);
3996 rtx new_insn;
3997 rtx reg = expr->reaching_reg;
3998 int regno = REGNO (reg);
3999 rtx pat, pat_end;
4000
4001 pat = process_insert_insn (expr);
4002 gcc_assert (pat && INSN_P (pat));
4003
4004 pat_end = pat;
4005 while (NEXT_INSN (pat_end) != NULL_RTX)
4006 pat_end = NEXT_INSN (pat_end);
4007
4008 /* If the last insn is a jump, insert EXPR in front [taking care to
4009 handle cc0, etc. properly]. Similarly we need to care trapping
4010 instructions in presence of non-call exceptions. */
4011
4012 if (JUMP_P (insn)
4013 || (NONJUMP_INSN_P (insn)
4014 && (!single_succ_p (bb)
4015 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
4016 {
4017 #ifdef HAVE_cc0
4018 rtx note;
4019 #endif
4020 /* It should always be the case that we can put these instructions
4021 anywhere in the basic block with performing PRE optimizations.
4022 Check this. */
4023 gcc_assert (!NONJUMP_INSN_P (insn) || !pre
4024 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4025 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4026
4027 /* If this is a jump table, then we can't insert stuff here. Since
4028 we know the previous real insn must be the tablejump, we insert
4029 the new instruction just before the tablejump. */
4030 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4031 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4032 insn = prev_real_insn (insn);
4033
4034 #ifdef HAVE_cc0
4035 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4036 if cc0 isn't set. */
4037 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4038 if (note)
4039 insn = XEXP (note, 0);
4040 else
4041 {
4042 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4043 if (maybe_cc0_setter
4044 && INSN_P (maybe_cc0_setter)
4045 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4046 insn = maybe_cc0_setter;
4047 }
4048 #endif
4049 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4050 new_insn = emit_insn_before_noloc (pat, insn);
4051 }
4052
4053 /* Likewise if the last insn is a call, as will happen in the presence
4054 of exception handling. */
4055 else if (CALL_P (insn)
4056 && (!single_succ_p (bb)
4057 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
4058 {
4059 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4060 we search backward and place the instructions before the first
4061 parameter is loaded. Do this for everyone for consistency and a
4062 presumption that we'll get better code elsewhere as well.
4063
4064 It should always be the case that we can put these instructions
4065 anywhere in the basic block with performing PRE optimizations.
4066 Check this. */
4067
4068 gcc_assert (!pre
4069 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4070 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4071
4072 /* Since different machines initialize their parameter registers
4073 in different orders, assume nothing. Collect the set of all
4074 parameter registers. */
4075 insn = find_first_parameter_load (insn, BB_HEAD (bb));
4076
4077 /* If we found all the parameter loads, then we want to insert
4078 before the first parameter load.
4079
4080 If we did not find all the parameter loads, then we might have
4081 stopped on the head of the block, which could be a CODE_LABEL.
4082 If we inserted before the CODE_LABEL, then we would be putting
4083 the insn in the wrong basic block. In that case, put the insn
4084 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4085 while (LABEL_P (insn)
4086 || NOTE_INSN_BASIC_BLOCK_P (insn))
4087 insn = NEXT_INSN (insn);
4088
4089 new_insn = emit_insn_before_noloc (pat, insn);
4090 }
4091 else
4092 new_insn = emit_insn_after_noloc (pat, insn);
4093
4094 while (1)
4095 {
4096 if (INSN_P (pat))
4097 {
4098 add_label_notes (PATTERN (pat), new_insn);
4099 note_stores (PATTERN (pat), record_set_info, pat);
4100 }
4101 if (pat == pat_end)
4102 break;
4103 pat = NEXT_INSN (pat);
4104 }
4105
4106 gcse_create_count++;
4107
4108 if (gcse_file)
4109 {
4110 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
4111 bb->index, INSN_UID (new_insn));
4112 fprintf (gcse_file, "copying expression %d to reg %d\n",
4113 expr->bitmap_index, regno);
4114 }
4115 }
4116
4117 /* Insert partially redundant expressions on edges in the CFG to make
4118 the expressions fully redundant. */
4119
4120 static int
4121 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
4122 {
4123 int e, i, j, num_edges, set_size, did_insert = 0;
4124 sbitmap *inserted;
4125
4126 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4127 if it reaches any of the deleted expressions. */
4128
4129 set_size = pre_insert_map[0]->size;
4130 num_edges = NUM_EDGES (edge_list);
4131 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
4132 sbitmap_vector_zero (inserted, num_edges);
4133
4134 for (e = 0; e < num_edges; e++)
4135 {
4136 int indx;
4137 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4138
4139 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4140 {
4141 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4142
4143 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
4144 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4145 {
4146 struct expr *expr = index_map[j];
4147 struct occr *occr;
4148
4149 /* Now look at each deleted occurrence of this expression. */
4150 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4151 {
4152 if (! occr->deleted_p)
4153 continue;
4154
4155 /* Insert this expression on this edge if it would
4156 reach the deleted occurrence in BB. */
4157 if (!TEST_BIT (inserted[e], j))
4158 {
4159 rtx insn;
4160 edge eg = INDEX_EDGE (edge_list, e);
4161
4162 /* We can't insert anything on an abnormal and
4163 critical edge, so we insert the insn at the end of
4164 the previous block. There are several alternatives
4165 detailed in Morgans book P277 (sec 10.5) for
4166 handling this situation. This one is easiest for
4167 now. */
4168
4169 if (eg->flags & EDGE_ABNORMAL)
4170 insert_insn_end_bb (index_map[j], bb, 0);
4171 else
4172 {
4173 insn = process_insert_insn (index_map[j]);
4174 insert_insn_on_edge (insn, eg);
4175 }
4176
4177 if (gcse_file)
4178 {
4179 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
4180 bb->index,
4181 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4182 fprintf (gcse_file, "copy expression %d\n",
4183 expr->bitmap_index);
4184 }
4185
4186 update_ld_motion_stores (expr);
4187 SET_BIT (inserted[e], j);
4188 did_insert = 1;
4189 gcse_create_count++;
4190 }
4191 }
4192 }
4193 }
4194 }
4195
4196 sbitmap_vector_free (inserted);
4197 return did_insert;
4198 }
4199
4200 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4201 Given "old_reg <- expr" (INSN), instead of adding after it
4202 reaching_reg <- old_reg
4203 it's better to do the following:
4204 reaching_reg <- expr
4205 old_reg <- reaching_reg
4206 because this way copy propagation can discover additional PRE
4207 opportunities. But if this fails, we try the old way.
4208 When "expr" is a store, i.e.
4209 given "MEM <- old_reg", instead of adding after it
4210 reaching_reg <- old_reg
4211 it's better to add it before as follows:
4212 reaching_reg <- old_reg
4213 MEM <- reaching_reg. */
4214
4215 static void
4216 pre_insert_copy_insn (struct expr *expr, rtx insn)
4217 {
4218 rtx reg = expr->reaching_reg;
4219 int regno = REGNO (reg);
4220 int indx = expr->bitmap_index;
4221 rtx pat = PATTERN (insn);
4222 rtx set, first_set, new_insn;
4223 rtx old_reg;
4224 int i;
4225
4226 /* This block matches the logic in hash_scan_insn. */
4227 switch (GET_CODE (pat))
4228 {
4229 case SET:
4230 set = pat;
4231 break;
4232
4233 case PARALLEL:
4234 /* Search through the parallel looking for the set whose
4235 source was the expression that we're interested in. */
4236 first_set = NULL_RTX;
4237 set = NULL_RTX;
4238 for (i = 0; i < XVECLEN (pat, 0); i++)
4239 {
4240 rtx x = XVECEXP (pat, 0, i);
4241 if (GET_CODE (x) == SET)
4242 {
4243 /* If the source was a REG_EQUAL or REG_EQUIV note, we
4244 may not find an equivalent expression, but in this
4245 case the PARALLEL will have a single set. */
4246 if (first_set == NULL_RTX)
4247 first_set = x;
4248 if (expr_equiv_p (SET_SRC (x), expr->expr))
4249 {
4250 set = x;
4251 break;
4252 }
4253 }
4254 }
4255
4256 gcc_assert (first_set);
4257 if (set == NULL_RTX)
4258 set = first_set;
4259 break;
4260
4261 default:
4262 gcc_unreachable ();
4263 }
4264
4265 if (REG_P (SET_DEST (set)))
4266 {
4267 old_reg = SET_DEST (set);
4268 /* Check if we can modify the set destination in the original insn. */
4269 if (validate_change (insn, &SET_DEST (set), reg, 0))
4270 {
4271 new_insn = gen_move_insn (old_reg, reg);
4272 new_insn = emit_insn_after (new_insn, insn);
4273
4274 /* Keep register set table up to date. */
4275 record_one_set (regno, insn);
4276 }
4277 else
4278 {
4279 new_insn = gen_move_insn (reg, old_reg);
4280 new_insn = emit_insn_after (new_insn, insn);
4281
4282 /* Keep register set table up to date. */
4283 record_one_set (regno, new_insn);
4284 }
4285 }
4286 else /* This is possible only in case of a store to memory. */
4287 {
4288 old_reg = SET_SRC (set);
4289 new_insn = gen_move_insn (reg, old_reg);
4290
4291 /* Check if we can modify the set source in the original insn. */
4292 if (validate_change (insn, &SET_SRC (set), reg, 0))
4293 new_insn = emit_insn_before (new_insn, insn);
4294 else
4295 new_insn = emit_insn_after (new_insn, insn);
4296
4297 /* Keep register set table up to date. */
4298 record_one_set (regno, new_insn);
4299 }
4300
4301 gcse_create_count++;
4302
4303 if (gcse_file)
4304 fprintf (gcse_file,
4305 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4306 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4307 INSN_UID (insn), regno);
4308 }
4309
4310 /* Copy available expressions that reach the redundant expression
4311 to `reaching_reg'. */
4312
4313 static void
4314 pre_insert_copies (void)
4315 {
4316 unsigned int i, added_copy;
4317 struct expr *expr;
4318 struct occr *occr;
4319 struct occr *avail;
4320
4321 /* For each available expression in the table, copy the result to
4322 `reaching_reg' if the expression reaches a deleted one.
4323
4324 ??? The current algorithm is rather brute force.
4325 Need to do some profiling. */
4326
4327 for (i = 0; i < expr_hash_table.size; i++)
4328 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4329 {
4330 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4331 we don't want to insert a copy here because the expression may not
4332 really be redundant. So only insert an insn if the expression was
4333 deleted. This test also avoids further processing if the
4334 expression wasn't deleted anywhere. */
4335 if (expr->reaching_reg == NULL)
4336 continue;
4337
4338 /* Set when we add a copy for that expression. */
4339 added_copy = 0;
4340
4341 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4342 {
4343 if (! occr->deleted_p)
4344 continue;
4345
4346 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4347 {
4348 rtx insn = avail->insn;
4349
4350 /* No need to handle this one if handled already. */
4351 if (avail->copied_p)
4352 continue;
4353
4354 /* Don't handle this one if it's a redundant one. */
4355 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4356 continue;
4357
4358 /* Or if the expression doesn't reach the deleted one. */
4359 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4360 expr,
4361 BLOCK_FOR_INSN (occr->insn)))
4362 continue;
4363
4364 added_copy = 1;
4365
4366 /* Copy the result of avail to reaching_reg. */
4367 pre_insert_copy_insn (expr, insn);
4368 avail->copied_p = 1;
4369 }
4370 }
4371
4372 if (added_copy)
4373 update_ld_motion_stores (expr);
4374 }
4375 }
4376
4377 /* Emit move from SRC to DEST noting the equivalence with expression computed
4378 in INSN. */
4379 static rtx
4380 gcse_emit_move_after (rtx src, rtx dest, rtx insn)
4381 {
4382 rtx new;
4383 rtx set = single_set (insn), set2;
4384 rtx note;
4385 rtx eqv;
4386
4387 /* This should never fail since we're creating a reg->reg copy
4388 we've verified to be valid. */
4389
4390 new = emit_insn_after (gen_move_insn (dest, src), insn);
4391
4392 /* Note the equivalence for local CSE pass. */
4393 set2 = single_set (new);
4394 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
4395 return new;
4396 if ((note = find_reg_equal_equiv_note (insn)))
4397 eqv = XEXP (note, 0);
4398 else
4399 eqv = SET_SRC (set);
4400
4401 set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
4402
4403 return new;
4404 }
4405
4406 /* Delete redundant computations.
4407 Deletion is done by changing the insn to copy the `reaching_reg' of
4408 the expression into the result of the SET. It is left to later passes
4409 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4410
4411 Returns nonzero if a change is made. */
4412
4413 static int
4414 pre_delete (void)
4415 {
4416 unsigned int i;
4417 int changed;
4418 struct expr *expr;
4419 struct occr *occr;
4420
4421 changed = 0;
4422 for (i = 0; i < expr_hash_table.size; i++)
4423 for (expr = expr_hash_table.table[i];
4424 expr != NULL;
4425 expr = expr->next_same_hash)
4426 {
4427 int indx = expr->bitmap_index;
4428
4429 /* We only need to search antic_occr since we require
4430 ANTLOC != 0. */
4431
4432 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4433 {
4434 rtx insn = occr->insn;
4435 rtx set;
4436 basic_block bb = BLOCK_FOR_INSN (insn);
4437
4438 /* We only delete insns that have a single_set. */
4439 if (TEST_BIT (pre_delete_map[bb->index], indx)
4440 && (set = single_set (insn)) != 0)
4441 {
4442 /* Create a pseudo-reg to store the result of reaching
4443 expressions into. Get the mode for the new pseudo from
4444 the mode of the original destination pseudo. */
4445 if (expr->reaching_reg == NULL)
4446 expr->reaching_reg
4447 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4448
4449 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4450 delete_insn (insn);
4451 occr->deleted_p = 1;
4452 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4453 changed = 1;
4454 gcse_subst_count++;
4455
4456 if (gcse_file)
4457 {
4458 fprintf (gcse_file,
4459 "PRE: redundant insn %d (expression %d) in ",
4460 INSN_UID (insn), indx);
4461 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
4462 bb->index, REGNO (expr->reaching_reg));
4463 }
4464 }
4465 }
4466 }
4467
4468 return changed;
4469 }
4470
4471 /* Perform GCSE optimizations using PRE.
4472 This is called by one_pre_gcse_pass after all the dataflow analysis
4473 has been done.
4474
4475 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4476 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4477 Compiler Design and Implementation.
4478
4479 ??? A new pseudo reg is created to hold the reaching expression. The nice
4480 thing about the classical approach is that it would try to use an existing
4481 reg. If the register can't be adequately optimized [i.e. we introduce
4482 reload problems], one could add a pass here to propagate the new register
4483 through the block.
4484
4485 ??? We don't handle single sets in PARALLELs because we're [currently] not
4486 able to copy the rest of the parallel when we insert copies to create full
4487 redundancies from partial redundancies. However, there's no reason why we
4488 can't handle PARALLELs in the cases where there are no partial
4489 redundancies. */
4490
4491 static int
4492 pre_gcse (void)
4493 {
4494 unsigned int i;
4495 int did_insert, changed;
4496 struct expr **index_map;
4497 struct expr *expr;
4498
4499 /* Compute a mapping from expression number (`bitmap_index') to
4500 hash table entry. */
4501
4502 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
4503 for (i = 0; i < expr_hash_table.size; i++)
4504 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4505 index_map[expr->bitmap_index] = expr;
4506
4507 /* Reset bitmap used to track which insns are redundant. */
4508 pre_redundant_insns = sbitmap_alloc (max_cuid);
4509 sbitmap_zero (pre_redundant_insns);
4510
4511 /* Delete the redundant insns first so that
4512 - we know what register to use for the new insns and for the other
4513 ones with reaching expressions
4514 - we know which insns are redundant when we go to create copies */
4515
4516 changed = pre_delete ();
4517
4518 did_insert = pre_edge_insert (edge_list, index_map);
4519
4520 /* In other places with reaching expressions, copy the expression to the
4521 specially allocated pseudo-reg that reaches the redundant expr. */
4522 pre_insert_copies ();
4523 if (did_insert)
4524 {
4525 commit_edge_insertions ();
4526 changed = 1;
4527 }
4528
4529 free (index_map);
4530 sbitmap_free (pre_redundant_insns);
4531 return changed;
4532 }
4533
4534 /* Top level routine to perform one PRE GCSE pass.
4535
4536 Return nonzero if a change was made. */
4537
4538 static int
4539 one_pre_gcse_pass (int pass)
4540 {
4541 int changed = 0;
4542
4543 gcse_subst_count = 0;
4544 gcse_create_count = 0;
4545
4546 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4547 add_noreturn_fake_exit_edges ();
4548 if (flag_gcse_lm)
4549 compute_ld_motion_mems ();
4550
4551 compute_hash_table (&expr_hash_table);
4552 trim_ld_motion_mems ();
4553 if (gcse_file)
4554 dump_hash_table (gcse_file, "Expression", &expr_hash_table);
4555
4556 if (expr_hash_table.n_elems > 0)
4557 {
4558 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
4559 compute_pre_data ();
4560 changed |= pre_gcse ();
4561 free_edge_list (edge_list);
4562 free_pre_mem ();
4563 }
4564
4565 free_ldst_mems ();
4566 remove_fake_exit_edges ();
4567 free_hash_table (&expr_hash_table);
4568
4569 if (gcse_file)
4570 {
4571 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4572 current_function_name (), pass, bytes_used);
4573 fprintf (gcse_file, "%d substs, %d insns created\n",
4574 gcse_subst_count, gcse_create_count);
4575 }
4576
4577 return changed;
4578 }
4579 \f
4580 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4581 If notes are added to an insn which references a CODE_LABEL, the
4582 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
4583 because the following loop optimization pass requires them. */
4584
4585 /* ??? This is very similar to the loop.c add_label_notes function. We
4586 could probably share code here. */
4587
4588 /* ??? If there was a jump optimization pass after gcse and before loop,
4589 then we would not need to do this here, because jump would add the
4590 necessary REG_LABEL notes. */
4591
4592 static void
4593 add_label_notes (rtx x, rtx insn)
4594 {
4595 enum rtx_code code = GET_CODE (x);
4596 int i, j;
4597 const char *fmt;
4598
4599 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4600 {
4601 /* This code used to ignore labels that referred to dispatch tables to
4602 avoid flow generating (slightly) worse code.
4603
4604 We no longer ignore such label references (see LABEL_REF handling in
4605 mark_jump_label for additional information). */
4606
4607 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
4608 REG_NOTES (insn));
4609 if (LABEL_P (XEXP (x, 0)))
4610 LABEL_NUSES (XEXP (x, 0))++;
4611 return;
4612 }
4613
4614 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4615 {
4616 if (fmt[i] == 'e')
4617 add_label_notes (XEXP (x, i), insn);
4618 else if (fmt[i] == 'E')
4619 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4620 add_label_notes (XVECEXP (x, i, j), insn);
4621 }
4622 }
4623
4624 /* Compute transparent outgoing information for each block.
4625
4626 An expression is transparent to an edge unless it is killed by
4627 the edge itself. This can only happen with abnormal control flow,
4628 when the edge is traversed through a call. This happens with
4629 non-local labels and exceptions.
4630
4631 This would not be necessary if we split the edge. While this is
4632 normally impossible for abnormal critical edges, with some effort
4633 it should be possible with exception handling, since we still have
4634 control over which handler should be invoked. But due to increased
4635 EH table sizes, this may not be worthwhile. */
4636
4637 static void
4638 compute_transpout (void)
4639 {
4640 basic_block bb;
4641 unsigned int i;
4642 struct expr *expr;
4643
4644 sbitmap_vector_ones (transpout, last_basic_block);
4645
4646 FOR_EACH_BB (bb)
4647 {
4648 /* Note that flow inserted a nop a the end of basic blocks that
4649 end in call instructions for reasons other than abnormal
4650 control flow. */
4651 if (! CALL_P (BB_END (bb)))
4652 continue;
4653
4654 for (i = 0; i < expr_hash_table.size; i++)
4655 for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
4656 if (MEM_P (expr->expr))
4657 {
4658 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
4659 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
4660 continue;
4661
4662 /* ??? Optimally, we would use interprocedural alias
4663 analysis to determine if this mem is actually killed
4664 by this call. */
4665 RESET_BIT (transpout[bb->index], expr->bitmap_index);
4666 }
4667 }
4668 }
4669
4670 /* Code Hoisting variables and subroutines. */
4671
4672 /* Very busy expressions. */
4673 static sbitmap *hoist_vbein;
4674 static sbitmap *hoist_vbeout;
4675
4676 /* Hoistable expressions. */
4677 static sbitmap *hoist_exprs;
4678
4679 /* ??? We could compute post dominators and run this algorithm in
4680 reverse to perform tail merging, doing so would probably be
4681 more effective than the tail merging code in jump.c.
4682
4683 It's unclear if tail merging could be run in parallel with
4684 code hoisting. It would be nice. */
4685
4686 /* Allocate vars used for code hoisting analysis. */
4687
4688 static void
4689 alloc_code_hoist_mem (int n_blocks, int n_exprs)
4690 {
4691 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4692 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4693 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4694
4695 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
4696 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
4697 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
4698 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
4699 }
4700
4701 /* Free vars used for code hoisting analysis. */
4702
4703 static void
4704 free_code_hoist_mem (void)
4705 {
4706 sbitmap_vector_free (antloc);
4707 sbitmap_vector_free (transp);
4708 sbitmap_vector_free (comp);
4709
4710 sbitmap_vector_free (hoist_vbein);
4711 sbitmap_vector_free (hoist_vbeout);
4712 sbitmap_vector_free (hoist_exprs);
4713 sbitmap_vector_free (transpout);
4714
4715 free_dominance_info (CDI_DOMINATORS);
4716 }
4717
4718 /* Compute the very busy expressions at entry/exit from each block.
4719
4720 An expression is very busy if all paths from a given point
4721 compute the expression. */
4722
4723 static void
4724 compute_code_hoist_vbeinout (void)
4725 {
4726 int changed, passes;
4727 basic_block bb;
4728
4729 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
4730 sbitmap_vector_zero (hoist_vbein, last_basic_block);
4731
4732 passes = 0;
4733 changed = 1;
4734
4735 while (changed)
4736 {
4737 changed = 0;
4738
4739 /* We scan the blocks in the reverse order to speed up
4740 the convergence. */
4741 FOR_EACH_BB_REVERSE (bb)
4742 {
4743 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
4744 hoist_vbeout[bb->index], transp[bb->index]);
4745 if (bb->next_bb != EXIT_BLOCK_PTR)
4746 sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
4747 }
4748
4749 passes++;
4750 }
4751
4752 if (gcse_file)
4753 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
4754 }
4755
4756 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4757
4758 static void
4759 compute_code_hoist_data (void)
4760 {
4761 compute_local_properties (transp, comp, antloc, &expr_hash_table);
4762 compute_transpout ();
4763 compute_code_hoist_vbeinout ();
4764 calculate_dominance_info (CDI_DOMINATORS);
4765 if (gcse_file)
4766 fprintf (gcse_file, "\n");
4767 }
4768
4769 /* Determine if the expression identified by EXPR_INDEX would
4770 reach BB unimpared if it was placed at the end of EXPR_BB.
4771
4772 It's unclear exactly what Muchnick meant by "unimpared". It seems
4773 to me that the expression must either be computed or transparent in
4774 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4775 would allow the expression to be hoisted out of loops, even if
4776 the expression wasn't a loop invariant.
4777
4778 Contrast this to reachability for PRE where an expression is
4779 considered reachable if *any* path reaches instead of *all*
4780 paths. */
4781
4782 static int
4783 hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
4784 {
4785 edge pred;
4786 edge_iterator ei;
4787 int visited_allocated_locally = 0;
4788
4789
4790 if (visited == NULL)
4791 {
4792 visited_allocated_locally = 1;
4793 visited = xcalloc (last_basic_block, 1);
4794 }
4795
4796 FOR_EACH_EDGE (pred, ei, bb->preds)
4797 {
4798 basic_block pred_bb = pred->src;
4799
4800 if (pred->src == ENTRY_BLOCK_PTR)
4801 break;
4802 else if (pred_bb == expr_bb)
4803 continue;
4804 else if (visited[pred_bb->index])
4805 continue;
4806
4807 /* Does this predecessor generate this expression? */
4808 else if (TEST_BIT (comp[pred_bb->index], expr_index))
4809 break;
4810 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
4811 break;
4812
4813 /* Not killed. */
4814 else
4815 {
4816 visited[pred_bb->index] = 1;
4817 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
4818 pred_bb, visited))
4819 break;
4820 }
4821 }
4822 if (visited_allocated_locally)
4823 free (visited);
4824
4825 return (pred == NULL);
4826 }
4827 \f
4828 /* Actually perform code hoisting. */
4829
4830 static void
4831 hoist_code (void)
4832 {
4833 basic_block bb, dominated;
4834 basic_block *domby;
4835 unsigned int domby_len;
4836 unsigned int i,j;
4837 struct expr **index_map;
4838 struct expr *expr;
4839
4840 sbitmap_vector_zero (hoist_exprs, last_basic_block);
4841
4842 /* Compute a mapping from expression number (`bitmap_index') to
4843 hash table entry. */
4844
4845 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
4846 for (i = 0; i < expr_hash_table.size; i++)
4847 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4848 index_map[expr->bitmap_index] = expr;
4849
4850 /* Walk over each basic block looking for potentially hoistable
4851 expressions, nothing gets hoisted from the entry block. */
4852 FOR_EACH_BB (bb)
4853 {
4854 int found = 0;
4855 int insn_inserted_p;
4856
4857 domby_len = get_dominated_by (CDI_DOMINATORS, bb, &domby);
4858 /* Examine each expression that is very busy at the exit of this
4859 block. These are the potentially hoistable expressions. */
4860 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
4861 {
4862 int hoistable = 0;
4863
4864 if (TEST_BIT (hoist_vbeout[bb->index], i)
4865 && TEST_BIT (transpout[bb->index], i))
4866 {
4867 /* We've found a potentially hoistable expression, now
4868 we look at every block BB dominates to see if it
4869 computes the expression. */
4870 for (j = 0; j < domby_len; j++)
4871 {
4872 dominated = domby[j];
4873 /* Ignore self dominance. */
4874 if (bb == dominated)
4875 continue;
4876 /* We've found a dominated block, now see if it computes
4877 the busy expression and whether or not moving that
4878 expression to the "beginning" of that block is safe. */
4879 if (!TEST_BIT (antloc[dominated->index], i))
4880 continue;
4881
4882 /* Note if the expression would reach the dominated block
4883 unimpared if it was placed at the end of BB.
4884
4885 Keep track of how many times this expression is hoistable
4886 from a dominated block into BB. */
4887 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4888 hoistable++;
4889 }
4890
4891 /* If we found more than one hoistable occurrence of this
4892 expression, then note it in the bitmap of expressions to
4893 hoist. It makes no sense to hoist things which are computed
4894 in only one BB, and doing so tends to pessimize register
4895 allocation. One could increase this value to try harder
4896 to avoid any possible code expansion due to register
4897 allocation issues; however experiments have shown that
4898 the vast majority of hoistable expressions are only movable
4899 from two successors, so raising this threshold is likely
4900 to nullify any benefit we get from code hoisting. */
4901 if (hoistable > 1)
4902 {
4903 SET_BIT (hoist_exprs[bb->index], i);
4904 found = 1;
4905 }
4906 }
4907 }
4908 /* If we found nothing to hoist, then quit now. */
4909 if (! found)
4910 {
4911 free (domby);
4912 continue;
4913 }
4914
4915 /* Loop over all the hoistable expressions. */
4916 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
4917 {
4918 /* We want to insert the expression into BB only once, so
4919 note when we've inserted it. */
4920 insn_inserted_p = 0;
4921
4922 /* These tests should be the same as the tests above. */
4923 if (TEST_BIT (hoist_exprs[bb->index], i))
4924 {
4925 /* We've found a potentially hoistable expression, now
4926 we look at every block BB dominates to see if it
4927 computes the expression. */
4928 for (j = 0; j < domby_len; j++)
4929 {
4930 dominated = domby[j];
4931 /* Ignore self dominance. */
4932 if (bb == dominated)
4933 continue;
4934
4935 /* We've found a dominated block, now see if it computes
4936 the busy expression and whether or not moving that
4937 expression to the "beginning" of that block is safe. */
4938 if (!TEST_BIT (antloc[dominated->index], i))
4939 continue;
4940
4941 /* The expression is computed in the dominated block and
4942 it would be safe to compute it at the start of the
4943 dominated block. Now we have to determine if the
4944 expression would reach the dominated block if it was
4945 placed at the end of BB. */
4946 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4947 {
4948 struct expr *expr = index_map[i];
4949 struct occr *occr = expr->antic_occr;
4950 rtx insn;
4951 rtx set;
4952
4953 /* Find the right occurrence of this expression. */
4954 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
4955 occr = occr->next;
4956
4957 gcc_assert (occr);
4958 insn = occr->insn;
4959 set = single_set (insn);
4960 gcc_assert (set);
4961
4962 /* Create a pseudo-reg to store the result of reaching
4963 expressions into. Get the mode for the new pseudo
4964 from the mode of the original destination pseudo. */
4965 if (expr->reaching_reg == NULL)
4966 expr->reaching_reg
4967 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4968
4969 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4970 delete_insn (insn);
4971 occr->deleted_p = 1;
4972 if (!insn_inserted_p)
4973 {
4974 insert_insn_end_bb (index_map[i], bb, 0);
4975 insn_inserted_p = 1;
4976 }
4977 }
4978 }
4979 }
4980 }
4981 free (domby);
4982 }
4983
4984 free (index_map);
4985 }
4986
4987 /* Top level routine to perform one code hoisting (aka unification) pass
4988
4989 Return nonzero if a change was made. */
4990
4991 static int
4992 one_code_hoisting_pass (void)
4993 {
4994 int changed = 0;
4995
4996 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4997 compute_hash_table (&expr_hash_table);
4998 if (gcse_file)
4999 dump_hash_table (gcse_file, "Code Hosting Expressions", &expr_hash_table);
5000
5001 if (expr_hash_table.n_elems > 0)
5002 {
5003 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
5004 compute_code_hoist_data ();
5005 hoist_code ();
5006 free_code_hoist_mem ();
5007 }
5008
5009 free_hash_table (&expr_hash_table);
5010
5011 return changed;
5012 }
5013 \f
5014 /* Here we provide the things required to do store motion towards
5015 the exit. In order for this to be effective, gcse also needed to
5016 be taught how to move a load when it is kill only by a store to itself.
5017
5018 int i;
5019 float a[10];
5020
5021 void foo(float scale)
5022 {
5023 for (i=0; i<10; i++)
5024 a[i] *= scale;
5025 }
5026
5027 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
5028 the load out since its live around the loop, and stored at the bottom
5029 of the loop.
5030
5031 The 'Load Motion' referred to and implemented in this file is
5032 an enhancement to gcse which when using edge based lcm, recognizes
5033 this situation and allows gcse to move the load out of the loop.
5034
5035 Once gcse has hoisted the load, store motion can then push this
5036 load towards the exit, and we end up with no loads or stores of 'i'
5037 in the loop. */
5038
5039 static hashval_t
5040 pre_ldst_expr_hash (const void *p)
5041 {
5042 int do_not_record_p = 0;
5043 const struct ls_expr *x = p;
5044 return hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
5045 }
5046
5047 static int
5048 pre_ldst_expr_eq (const void *p1, const void *p2)
5049 {
5050 const struct ls_expr *ptr1 = p1, *ptr2 = p2;
5051 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
5052 }
5053
5054 /* This will search the ldst list for a matching expression. If it
5055 doesn't find one, we create one and initialize it. */
5056
5057 static struct ls_expr *
5058 ldst_entry (rtx x)
5059 {
5060 int do_not_record_p = 0;
5061 struct ls_expr * ptr;
5062 unsigned int hash;
5063 void **slot;
5064 struct ls_expr e;
5065
5066 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
5067 NULL, /*have_reg_qty=*/false);
5068
5069 e.pattern = x;
5070 slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
5071 if (*slot)
5072 return (struct ls_expr *)*slot;
5073
5074 ptr = xmalloc (sizeof (struct ls_expr));
5075
5076 ptr->next = pre_ldst_mems;
5077 ptr->expr = NULL;
5078 ptr->pattern = x;
5079 ptr->pattern_regs = NULL_RTX;
5080 ptr->loads = NULL_RTX;
5081 ptr->stores = NULL_RTX;
5082 ptr->reaching_reg = NULL_RTX;
5083 ptr->invalid = 0;
5084 ptr->index = 0;
5085 ptr->hash_index = hash;
5086 pre_ldst_mems = ptr;
5087 *slot = ptr;
5088
5089 return ptr;
5090 }
5091
5092 /* Free up an individual ldst entry. */
5093
5094 static void
5095 free_ldst_entry (struct ls_expr * ptr)
5096 {
5097 free_INSN_LIST_list (& ptr->loads);
5098 free_INSN_LIST_list (& ptr->stores);
5099
5100 free (ptr);
5101 }
5102
5103 /* Free up all memory associated with the ldst list. */
5104
5105 static void
5106 free_ldst_mems (void)
5107 {
5108 if (pre_ldst_table)
5109 htab_delete (pre_ldst_table);
5110 pre_ldst_table = NULL;
5111
5112 while (pre_ldst_mems)
5113 {
5114 struct ls_expr * tmp = pre_ldst_mems;
5115
5116 pre_ldst_mems = pre_ldst_mems->next;
5117
5118 free_ldst_entry (tmp);
5119 }
5120
5121 pre_ldst_mems = NULL;
5122 }
5123
5124 /* Dump debugging info about the ldst list. */
5125
5126 static void
5127 print_ldst_list (FILE * file)
5128 {
5129 struct ls_expr * ptr;
5130
5131 fprintf (file, "LDST list: \n");
5132
5133 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5134 {
5135 fprintf (file, " Pattern (%3d): ", ptr->index);
5136
5137 print_rtl (file, ptr->pattern);
5138
5139 fprintf (file, "\n Loads : ");
5140
5141 if (ptr->loads)
5142 print_rtl (file, ptr->loads);
5143 else
5144 fprintf (file, "(nil)");
5145
5146 fprintf (file, "\n Stores : ");
5147
5148 if (ptr->stores)
5149 print_rtl (file, ptr->stores);
5150 else
5151 fprintf (file, "(nil)");
5152
5153 fprintf (file, "\n\n");
5154 }
5155
5156 fprintf (file, "\n");
5157 }
5158
5159 /* Returns 1 if X is in the list of ldst only expressions. */
5160
5161 static struct ls_expr *
5162 find_rtx_in_ldst (rtx x)
5163 {
5164 struct ls_expr e;
5165 void **slot;
5166 if (!pre_ldst_table)
5167 return NULL;
5168 e.pattern = x;
5169 slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
5170 if (!slot || ((struct ls_expr *)*slot)->invalid)
5171 return NULL;
5172 return *slot;
5173 }
5174
5175 /* Assign each element of the list of mems a monotonically increasing value. */
5176
5177 static int
5178 enumerate_ldsts (void)
5179 {
5180 struct ls_expr * ptr;
5181 int n = 0;
5182
5183 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5184 ptr->index = n++;
5185
5186 return n;
5187 }
5188
5189 /* Return first item in the list. */
5190
5191 static inline struct ls_expr *
5192 first_ls_expr (void)
5193 {
5194 return pre_ldst_mems;
5195 }
5196
5197 /* Return the next item in the list after the specified one. */
5198
5199 static inline struct ls_expr *
5200 next_ls_expr (struct ls_expr * ptr)
5201 {
5202 return ptr->next;
5203 }
5204 \f
5205 /* Load Motion for loads which only kill themselves. */
5206
5207 /* Return true if x is a simple MEM operation, with no registers or
5208 side effects. These are the types of loads we consider for the
5209 ld_motion list, otherwise we let the usual aliasing take care of it. */
5210
5211 static int
5212 simple_mem (rtx x)
5213 {
5214 if (! MEM_P (x))
5215 return 0;
5216
5217 if (MEM_VOLATILE_P (x))
5218 return 0;
5219
5220 if (GET_MODE (x) == BLKmode)
5221 return 0;
5222
5223 /* If we are handling exceptions, we must be careful with memory references
5224 that may trap. If we are not, the behavior is undefined, so we may just
5225 continue. */
5226 if (flag_non_call_exceptions && may_trap_p (x))
5227 return 0;
5228
5229 if (side_effects_p (x))
5230 return 0;
5231
5232 /* Do not consider function arguments passed on stack. */
5233 if (reg_mentioned_p (stack_pointer_rtx, x))
5234 return 0;
5235
5236 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
5237 return 0;
5238
5239 return 1;
5240 }
5241
5242 /* Make sure there isn't a buried reference in this pattern anywhere.
5243 If there is, invalidate the entry for it since we're not capable
5244 of fixing it up just yet.. We have to be sure we know about ALL
5245 loads since the aliasing code will allow all entries in the
5246 ld_motion list to not-alias itself. If we miss a load, we will get
5247 the wrong value since gcse might common it and we won't know to
5248 fix it up. */
5249
5250 static void
5251 invalidate_any_buried_refs (rtx x)
5252 {
5253 const char * fmt;
5254 int i, j;
5255 struct ls_expr * ptr;
5256
5257 /* Invalidate it in the list. */
5258 if (MEM_P (x) && simple_mem (x))
5259 {
5260 ptr = ldst_entry (x);
5261 ptr->invalid = 1;
5262 }
5263
5264 /* Recursively process the insn. */
5265 fmt = GET_RTX_FORMAT (GET_CODE (x));
5266
5267 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5268 {
5269 if (fmt[i] == 'e')
5270 invalidate_any_buried_refs (XEXP (x, i));
5271 else if (fmt[i] == 'E')
5272 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5273 invalidate_any_buried_refs (XVECEXP (x, i, j));
5274 }
5275 }
5276
5277 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
5278 being defined as MEM loads and stores to symbols, with no side effects
5279 and no registers in the expression. For a MEM destination, we also
5280 check that the insn is still valid if we replace the destination with a
5281 REG, as is done in update_ld_motion_stores. If there are any uses/defs
5282 which don't match this criteria, they are invalidated and trimmed out
5283 later. */
5284
5285 static void
5286 compute_ld_motion_mems (void)
5287 {
5288 struct ls_expr * ptr;
5289 basic_block bb;
5290 rtx insn;
5291
5292 pre_ldst_mems = NULL;
5293 pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
5294 pre_ldst_expr_eq, NULL);
5295
5296 FOR_EACH_BB (bb)
5297 {
5298 FOR_BB_INSNS (bb, insn)
5299 {
5300 if (INSN_P (insn))
5301 {
5302 if (GET_CODE (PATTERN (insn)) == SET)
5303 {
5304 rtx src = SET_SRC (PATTERN (insn));
5305 rtx dest = SET_DEST (PATTERN (insn));
5306
5307 /* Check for a simple LOAD... */
5308 if (MEM_P (src) && simple_mem (src))
5309 {
5310 ptr = ldst_entry (src);
5311 if (REG_P (dest))
5312 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
5313 else
5314 ptr->invalid = 1;
5315 }
5316 else
5317 {
5318 /* Make sure there isn't a buried load somewhere. */
5319 invalidate_any_buried_refs (src);
5320 }
5321
5322 /* Check for stores. Don't worry about aliased ones, they
5323 will block any movement we might do later. We only care
5324 about this exact pattern since those are the only
5325 circumstance that we will ignore the aliasing info. */
5326 if (MEM_P (dest) && simple_mem (dest))
5327 {
5328 ptr = ldst_entry (dest);
5329
5330 if (! MEM_P (src)
5331 && GET_CODE (src) != ASM_OPERANDS
5332 /* Check for REG manually since want_to_gcse_p
5333 returns 0 for all REGs. */
5334 && can_assign_to_reg_p (src))
5335 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
5336 else
5337 ptr->invalid = 1;
5338 }
5339 }
5340 else
5341 invalidate_any_buried_refs (PATTERN (insn));
5342 }
5343 }
5344 }
5345 }
5346
5347 /* Remove any references that have been either invalidated or are not in the
5348 expression list for pre gcse. */
5349
5350 static void
5351 trim_ld_motion_mems (void)
5352 {
5353 struct ls_expr * * last = & pre_ldst_mems;
5354 struct ls_expr * ptr = pre_ldst_mems;
5355
5356 while (ptr != NULL)
5357 {
5358 struct expr * expr;
5359
5360 /* Delete if entry has been made invalid. */
5361 if (! ptr->invalid)
5362 {
5363 /* Delete if we cannot find this mem in the expression list. */
5364 unsigned int hash = ptr->hash_index % expr_hash_table.size;
5365
5366 for (expr = expr_hash_table.table[hash];
5367 expr != NULL;
5368 expr = expr->next_same_hash)
5369 if (expr_equiv_p (expr->expr, ptr->pattern))
5370 break;
5371 }
5372 else
5373 expr = (struct expr *) 0;
5374
5375 if (expr)
5376 {
5377 /* Set the expression field if we are keeping it. */
5378 ptr->expr = expr;
5379 last = & ptr->next;
5380 ptr = ptr->next;
5381 }
5382 else
5383 {
5384 *last = ptr->next;
5385 htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
5386 free_ldst_entry (ptr);
5387 ptr = * last;
5388 }
5389 }
5390
5391 /* Show the world what we've found. */
5392 if (gcse_file && pre_ldst_mems != NULL)
5393 print_ldst_list (gcse_file);
5394 }
5395
5396 /* This routine will take an expression which we are replacing with
5397 a reaching register, and update any stores that are needed if
5398 that expression is in the ld_motion list. Stores are updated by
5399 copying their SRC to the reaching register, and then storing
5400 the reaching register into the store location. These keeps the
5401 correct value in the reaching register for the loads. */
5402
5403 static void
5404 update_ld_motion_stores (struct expr * expr)
5405 {
5406 struct ls_expr * mem_ptr;
5407
5408 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
5409 {
5410 /* We can try to find just the REACHED stores, but is shouldn't
5411 matter to set the reaching reg everywhere... some might be
5412 dead and should be eliminated later. */
5413
5414 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5415 where reg is the reaching reg used in the load. We checked in
5416 compute_ld_motion_mems that we can replace (set mem expr) with
5417 (set reg expr) in that insn. */
5418 rtx list = mem_ptr->stores;
5419
5420 for ( ; list != NULL_RTX; list = XEXP (list, 1))
5421 {
5422 rtx insn = XEXP (list, 0);
5423 rtx pat = PATTERN (insn);
5424 rtx src = SET_SRC (pat);
5425 rtx reg = expr->reaching_reg;
5426 rtx copy, new;
5427
5428 /* If we've already copied it, continue. */
5429 if (expr->reaching_reg == src)
5430 continue;
5431
5432 if (gcse_file)
5433 {
5434 fprintf (gcse_file, "PRE: store updated with reaching reg ");
5435 print_rtl (gcse_file, expr->reaching_reg);
5436 fprintf (gcse_file, ":\n ");
5437 print_inline_rtx (gcse_file, insn, 8);
5438 fprintf (gcse_file, "\n");
5439 }
5440
5441 copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
5442 new = emit_insn_before (copy, insn);
5443 record_one_set (REGNO (reg), new);
5444 SET_SRC (pat) = reg;
5445
5446 /* un-recognize this pattern since it's probably different now. */
5447 INSN_CODE (insn) = -1;
5448 gcse_create_count++;
5449 }
5450 }
5451 }
5452 \f
5453 /* Store motion code. */
5454
5455 #define ANTIC_STORE_LIST(x) ((x)->loads)
5456 #define AVAIL_STORE_LIST(x) ((x)->stores)
5457 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
5458
5459 /* This is used to communicate the target bitvector we want to use in the
5460 reg_set_info routine when called via the note_stores mechanism. */
5461 static int * regvec;
5462
5463 /* And current insn, for the same routine. */
5464 static rtx compute_store_table_current_insn;
5465
5466 /* Used in computing the reverse edge graph bit vectors. */
5467 static sbitmap * st_antloc;
5468
5469 /* Global holding the number of store expressions we are dealing with. */
5470 static int num_stores;
5471
5472 /* Checks to set if we need to mark a register set. Called from
5473 note_stores. */
5474
5475 static void
5476 reg_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5477 void *data)
5478 {
5479 sbitmap bb_reg = data;
5480
5481 if (GET_CODE (dest) == SUBREG)
5482 dest = SUBREG_REG (dest);
5483
5484 if (REG_P (dest))
5485 {
5486 regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
5487 if (bb_reg)
5488 SET_BIT (bb_reg, REGNO (dest));
5489 }
5490 }
5491
5492 /* Clear any mark that says that this insn sets dest. Called from
5493 note_stores. */
5494
5495 static void
5496 reg_clear_last_set (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5497 void *data)
5498 {
5499 int *dead_vec = data;
5500
5501 if (GET_CODE (dest) == SUBREG)
5502 dest = SUBREG_REG (dest);
5503
5504 if (REG_P (dest) &&
5505 dead_vec[REGNO (dest)] == INSN_UID (compute_store_table_current_insn))
5506 dead_vec[REGNO (dest)] = 0;
5507 }
5508
5509 /* Return zero if some of the registers in list X are killed
5510 due to set of registers in bitmap REGS_SET. */
5511
5512 static bool
5513 store_ops_ok (rtx x, int *regs_set)
5514 {
5515 rtx reg;
5516
5517 for (; x; x = XEXP (x, 1))
5518 {
5519 reg = XEXP (x, 0);
5520 if (regs_set[REGNO(reg)])
5521 return false;
5522 }
5523
5524 return true;
5525 }
5526
5527 /* Returns a list of registers mentioned in X. */
5528 static rtx
5529 extract_mentioned_regs (rtx x)
5530 {
5531 return extract_mentioned_regs_helper (x, NULL_RTX);
5532 }
5533
5534 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5535 registers. */
5536 static rtx
5537 extract_mentioned_regs_helper (rtx x, rtx accum)
5538 {
5539 int i;
5540 enum rtx_code code;
5541 const char * fmt;
5542
5543 /* Repeat is used to turn tail-recursion into iteration. */
5544 repeat:
5545
5546 if (x == 0)
5547 return accum;
5548
5549 code = GET_CODE (x);
5550 switch (code)
5551 {
5552 case REG:
5553 return alloc_EXPR_LIST (0, x, accum);
5554
5555 case MEM:
5556 x = XEXP (x, 0);
5557 goto repeat;
5558
5559 case PRE_DEC:
5560 case PRE_INC:
5561 case POST_DEC:
5562 case POST_INC:
5563 /* We do not run this function with arguments having side effects. */
5564 gcc_unreachable ();
5565
5566 case PC:
5567 case CC0: /*FIXME*/
5568 case CONST:
5569 case CONST_INT:
5570 case CONST_DOUBLE:
5571 case CONST_VECTOR:
5572 case SYMBOL_REF:
5573 case LABEL_REF:
5574 case ADDR_VEC:
5575 case ADDR_DIFF_VEC:
5576 return accum;
5577
5578 default:
5579 break;
5580 }
5581
5582 i = GET_RTX_LENGTH (code) - 1;
5583 fmt = GET_RTX_FORMAT (code);
5584
5585 for (; i >= 0; i--)
5586 {
5587 if (fmt[i] == 'e')
5588 {
5589 rtx tem = XEXP (x, i);
5590
5591 /* If we are about to do the last recursive call
5592 needed at this level, change it into iteration. */
5593 if (i == 0)
5594 {
5595 x = tem;
5596 goto repeat;
5597 }
5598
5599 accum = extract_mentioned_regs_helper (tem, accum);
5600 }
5601 else if (fmt[i] == 'E')
5602 {
5603 int j;
5604
5605 for (j = 0; j < XVECLEN (x, i); j++)
5606 accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
5607 }
5608 }
5609
5610 return accum;
5611 }
5612
5613 /* Determine whether INSN is MEM store pattern that we will consider moving.
5614 REGS_SET_BEFORE is bitmap of registers set before (and including) the
5615 current insn, REGS_SET_AFTER is bitmap of registers set after (and
5616 including) the insn in this basic block. We must be passing through BB from
5617 head to end, as we are using this fact to speed things up.
5618
5619 The results are stored this way:
5620
5621 -- the first anticipatable expression is added into ANTIC_STORE_LIST
5622 -- if the processed expression is not anticipatable, NULL_RTX is added
5623 there instead, so that we can use it as indicator that no further
5624 expression of this type may be anticipatable
5625 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5626 consequently, all of them but this head are dead and may be deleted.
5627 -- if the expression is not available, the insn due to that it fails to be
5628 available is stored in reaching_reg.
5629
5630 The things are complicated a bit by fact that there already may be stores
5631 to the same MEM from other blocks; also caller must take care of the
5632 necessary cleanup of the temporary markers after end of the basic block.
5633 */
5634
5635 static void
5636 find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after)
5637 {
5638 struct ls_expr * ptr;
5639 rtx dest, set, tmp;
5640 int check_anticipatable, check_available;
5641 basic_block bb = BLOCK_FOR_INSN (insn);
5642
5643 set = single_set (insn);
5644 if (!set)
5645 return;
5646
5647 dest = SET_DEST (set);
5648
5649 if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
5650 || GET_MODE (dest) == BLKmode)
5651 return;
5652
5653 if (side_effects_p (dest))
5654 return;
5655
5656 /* If we are handling exceptions, we must be careful with memory references
5657 that may trap. If we are not, the behavior is undefined, so we may just
5658 continue. */
5659 if (flag_non_call_exceptions && may_trap_p (dest))
5660 return;
5661
5662 /* Even if the destination cannot trap, the source may. In this case we'd
5663 need to handle updating the REG_EH_REGION note. */
5664 if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
5665 return;
5666
5667 /* Make sure that the SET_SRC of this store insns can be assigned to
5668 a register, or we will fail later on in replace_store_insn, which
5669 assumes that we can do this. But sometimes the target machine has
5670 oddities like MEM read-modify-write instruction. See for example
5671 PR24257. */
5672 if (!can_assign_to_reg_p (SET_SRC (set)))
5673 return;
5674
5675 ptr = ldst_entry (dest);
5676 if (!ptr->pattern_regs)
5677 ptr->pattern_regs = extract_mentioned_regs (dest);
5678
5679 /* Do not check for anticipatability if we either found one anticipatable
5680 store already, or tested for one and found out that it was killed. */
5681 check_anticipatable = 0;
5682 if (!ANTIC_STORE_LIST (ptr))
5683 check_anticipatable = 1;
5684 else
5685 {
5686 tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
5687 if (tmp != NULL_RTX
5688 && BLOCK_FOR_INSN (tmp) != bb)
5689 check_anticipatable = 1;
5690 }
5691 if (check_anticipatable)
5692 {
5693 if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
5694 tmp = NULL_RTX;
5695 else
5696 tmp = insn;
5697 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
5698 ANTIC_STORE_LIST (ptr));
5699 }
5700
5701 /* It is not necessary to check whether store is available if we did
5702 it successfully before; if we failed before, do not bother to check
5703 until we reach the insn that caused us to fail. */
5704 check_available = 0;
5705 if (!AVAIL_STORE_LIST (ptr))
5706 check_available = 1;
5707 else
5708 {
5709 tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
5710 if (BLOCK_FOR_INSN (tmp) != bb)
5711 check_available = 1;
5712 }
5713 if (check_available)
5714 {
5715 /* Check that we have already reached the insn at that the check
5716 failed last time. */
5717 if (LAST_AVAIL_CHECK_FAILURE (ptr))
5718 {
5719 for (tmp = BB_END (bb);
5720 tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
5721 tmp = PREV_INSN (tmp))
5722 continue;
5723 if (tmp == insn)
5724 check_available = 0;
5725 }
5726 else
5727 check_available = store_killed_after (dest, ptr->pattern_regs, insn,
5728 bb, regs_set_after,
5729 &LAST_AVAIL_CHECK_FAILURE (ptr));
5730 }
5731 if (!check_available)
5732 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
5733 }
5734
5735 /* Find available and anticipatable stores. */
5736
5737 static int
5738 compute_store_table (void)
5739 {
5740 int ret;
5741 basic_block bb;
5742 unsigned regno;
5743 rtx insn, pat, tmp;
5744 int *last_set_in, *already_set;
5745 struct ls_expr * ptr, **prev_next_ptr_ptr;
5746
5747 max_gcse_regno = max_reg_num ();
5748
5749 reg_set_in_block = sbitmap_vector_alloc (last_basic_block,
5750 max_gcse_regno);
5751 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
5752 pre_ldst_mems = 0;
5753 pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
5754 pre_ldst_expr_eq, NULL);
5755 last_set_in = xcalloc (max_gcse_regno, sizeof (int));
5756 already_set = xmalloc (sizeof (int) * max_gcse_regno);
5757
5758 /* Find all the stores we care about. */
5759 FOR_EACH_BB (bb)
5760 {
5761 /* First compute the registers set in this block. */
5762 regvec = last_set_in;
5763
5764 FOR_BB_INSNS (bb, insn)
5765 {
5766 if (! INSN_P (insn))
5767 continue;
5768
5769 if (CALL_P (insn))
5770 {
5771 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5772 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5773 {
5774 last_set_in[regno] = INSN_UID (insn);
5775 SET_BIT (reg_set_in_block[bb->index], regno);
5776 }
5777 }
5778
5779 pat = PATTERN (insn);
5780 compute_store_table_current_insn = insn;
5781 note_stores (pat, reg_set_info, reg_set_in_block[bb->index]);
5782 }
5783
5784 /* Now find the stores. */
5785 memset (already_set, 0, sizeof (int) * max_gcse_regno);
5786 regvec = already_set;
5787 FOR_BB_INSNS (bb, insn)
5788 {
5789 if (! INSN_P (insn))
5790 continue;
5791
5792 if (CALL_P (insn))
5793 {
5794 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5795 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5796 already_set[regno] = 1;
5797 }
5798
5799 pat = PATTERN (insn);
5800 note_stores (pat, reg_set_info, NULL);
5801
5802 /* Now that we've marked regs, look for stores. */
5803 find_moveable_store (insn, already_set, last_set_in);
5804
5805 /* Unmark regs that are no longer set. */
5806 compute_store_table_current_insn = insn;
5807 note_stores (pat, reg_clear_last_set, last_set_in);
5808 if (CALL_P (insn))
5809 {
5810 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5811 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
5812 && last_set_in[regno] == INSN_UID (insn))
5813 last_set_in[regno] = 0;
5814 }
5815 }
5816
5817 #ifdef ENABLE_CHECKING
5818 /* last_set_in should now be all-zero. */
5819 for (regno = 0; regno < max_gcse_regno; regno++)
5820 gcc_assert (!last_set_in[regno]);
5821 #endif
5822
5823 /* Clear temporary marks. */
5824 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
5825 {
5826 LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
5827 if (ANTIC_STORE_LIST (ptr)
5828 && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
5829 ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
5830 }
5831 }
5832
5833 /* Remove the stores that are not available anywhere, as there will
5834 be no opportunity to optimize them. */
5835 for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
5836 ptr != NULL;
5837 ptr = *prev_next_ptr_ptr)
5838 {
5839 if (!AVAIL_STORE_LIST (ptr))
5840 {
5841 *prev_next_ptr_ptr = ptr->next;
5842 htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
5843 free_ldst_entry (ptr);
5844 }
5845 else
5846 prev_next_ptr_ptr = &ptr->next;
5847 }
5848
5849 ret = enumerate_ldsts ();
5850
5851 if (gcse_file)
5852 {
5853 fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
5854 print_ldst_list (gcse_file);
5855 }
5856
5857 free (last_set_in);
5858 free (already_set);
5859 return ret;
5860 }
5861
5862 /* Check to see if the load X is aliased with STORE_PATTERN.
5863 AFTER is true if we are checking the case when STORE_PATTERN occurs
5864 after the X. */
5865
5866 static bool
5867 load_kills_store (rtx x, rtx store_pattern, int after)
5868 {
5869 if (after)
5870 return anti_dependence (x, store_pattern);
5871 else
5872 return true_dependence (store_pattern, GET_MODE (store_pattern), x,
5873 rtx_addr_varies_p);
5874 }
5875
5876 /* Go through the entire insn X, looking for any loads which might alias
5877 STORE_PATTERN. Return true if found.
5878 AFTER is true if we are checking the case when STORE_PATTERN occurs
5879 after the insn X. */
5880
5881 static bool
5882 find_loads (rtx x, rtx store_pattern, int after)
5883 {
5884 const char * fmt;
5885 int i, j;
5886 int ret = false;
5887
5888 if (!x)
5889 return false;
5890
5891 if (GET_CODE (x) == SET)
5892 x = SET_SRC (x);
5893
5894 if (MEM_P (x))
5895 {
5896 if (load_kills_store (x, store_pattern, after))
5897 return true;
5898 }
5899
5900 /* Recursively process the insn. */
5901 fmt = GET_RTX_FORMAT (GET_CODE (x));
5902
5903 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
5904 {
5905 if (fmt[i] == 'e')
5906 ret |= find_loads (XEXP (x, i), store_pattern, after);
5907 else if (fmt[i] == 'E')
5908 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5909 ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
5910 }
5911 return ret;
5912 }
5913
5914 /* Check if INSN kills the store pattern X (is aliased with it).
5915 AFTER is true if we are checking the case when store X occurs
5916 after the insn. Return true if it does. */
5917
5918 static bool
5919 store_killed_in_insn (rtx x, rtx x_regs, rtx insn, int after)
5920 {
5921 rtx reg, base, note;
5922
5923 if (!INSN_P (insn))
5924 return false;
5925
5926 if (CALL_P (insn))
5927 {
5928 /* A normal or pure call might read from pattern,
5929 but a const call will not. */
5930 if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn))
5931 return true;
5932
5933 /* But even a const call reads its parameters. Check whether the
5934 base of some of registers used in mem is stack pointer. */
5935 for (reg = x_regs; reg; reg = XEXP (reg, 1))
5936 {
5937 base = find_base_term (XEXP (reg, 0));
5938 if (!base
5939 || (GET_CODE (base) == ADDRESS
5940 && GET_MODE (base) == Pmode
5941 && XEXP (base, 0) == stack_pointer_rtx))
5942 return true;
5943 }
5944
5945 return false;
5946 }
5947
5948 if (GET_CODE (PATTERN (insn)) == SET)
5949 {
5950 rtx pat = PATTERN (insn);
5951 rtx dest = SET_DEST (pat);
5952
5953 if (GET_CODE (dest) == ZERO_EXTRACT)
5954 dest = XEXP (dest, 0);
5955
5956 /* Check for memory stores to aliased objects. */
5957 if (MEM_P (dest)
5958 && !expr_equiv_p (dest, x))
5959 {
5960 if (after)
5961 {
5962 if (output_dependence (dest, x))
5963 return true;
5964 }
5965 else
5966 {
5967 if (output_dependence (x, dest))
5968 return true;
5969 }
5970 }
5971 if (find_loads (SET_SRC (pat), x, after))
5972 return true;
5973 }
5974 else if (find_loads (PATTERN (insn), x, after))
5975 return true;
5976
5977 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
5978 location aliased with X, then this insn kills X. */
5979 note = find_reg_equal_equiv_note (insn);
5980 if (! note)
5981 return false;
5982 note = XEXP (note, 0);
5983
5984 /* However, if the note represents a must alias rather than a may
5985 alias relationship, then it does not kill X. */
5986 if (expr_equiv_p (note, x))
5987 return false;
5988
5989 /* See if there are any aliased loads in the note. */
5990 return find_loads (note, x, after);
5991 }
5992
5993 /* Returns true if the expression X is loaded or clobbered on or after INSN
5994 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
5995 or after the insn. X_REGS is list of registers mentioned in X. If the store
5996 is killed, return the last insn in that it occurs in FAIL_INSN. */
5997
5998 static bool
5999 store_killed_after (rtx x, rtx x_regs, rtx insn, basic_block bb,
6000 int *regs_set_after, rtx *fail_insn)
6001 {
6002 rtx last = BB_END (bb), act;
6003
6004 if (!store_ops_ok (x_regs, regs_set_after))
6005 {
6006 /* We do not know where it will happen. */
6007 if (fail_insn)
6008 *fail_insn = NULL_RTX;
6009 return true;
6010 }
6011
6012 /* Scan from the end, so that fail_insn is determined correctly. */
6013 for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
6014 if (store_killed_in_insn (x, x_regs, act, false))
6015 {
6016 if (fail_insn)
6017 *fail_insn = act;
6018 return true;
6019 }
6020
6021 return false;
6022 }
6023
6024 /* Returns true if the expression X is loaded or clobbered on or before INSN
6025 within basic block BB. X_REGS is list of registers mentioned in X.
6026 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
6027 static bool
6028 store_killed_before (rtx x, rtx x_regs, rtx insn, basic_block bb,
6029 int *regs_set_before)
6030 {
6031 rtx first = BB_HEAD (bb);
6032
6033 if (!store_ops_ok (x_regs, regs_set_before))
6034 return true;
6035
6036 for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
6037 if (store_killed_in_insn (x, x_regs, insn, true))
6038 return true;
6039
6040 return false;
6041 }
6042
6043 /* Fill in available, anticipatable, transparent and kill vectors in
6044 STORE_DATA, based on lists of available and anticipatable stores. */
6045 static void
6046 build_store_vectors (void)
6047 {
6048 basic_block bb;
6049 int *regs_set_in_block;
6050 rtx insn, st;
6051 struct ls_expr * ptr;
6052 unsigned regno;
6053
6054 /* Build the gen_vector. This is any store in the table which is not killed
6055 by aliasing later in its block. */
6056 ae_gen = sbitmap_vector_alloc (last_basic_block, num_stores);
6057 sbitmap_vector_zero (ae_gen, last_basic_block);
6058
6059 st_antloc = sbitmap_vector_alloc (last_basic_block, num_stores);
6060 sbitmap_vector_zero (st_antloc, last_basic_block);
6061
6062 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6063 {
6064 for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6065 {
6066 insn = XEXP (st, 0);
6067 bb = BLOCK_FOR_INSN (insn);
6068
6069 /* If we've already seen an available expression in this block,
6070 we can delete this one (It occurs earlier in the block). We'll
6071 copy the SRC expression to an unused register in case there
6072 are any side effects. */
6073 if (TEST_BIT (ae_gen[bb->index], ptr->index))
6074 {
6075 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6076 if (gcse_file)
6077 fprintf (gcse_file, "Removing redundant store:\n");
6078 replace_store_insn (r, XEXP (st, 0), bb, ptr);
6079 continue;
6080 }
6081 SET_BIT (ae_gen[bb->index], ptr->index);
6082 }
6083
6084 for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6085 {
6086 insn = XEXP (st, 0);
6087 bb = BLOCK_FOR_INSN (insn);
6088 SET_BIT (st_antloc[bb->index], ptr->index);
6089 }
6090 }
6091
6092 ae_kill = sbitmap_vector_alloc (last_basic_block, num_stores);
6093 sbitmap_vector_zero (ae_kill, last_basic_block);
6094
6095 transp = sbitmap_vector_alloc (last_basic_block, num_stores);
6096 sbitmap_vector_zero (transp, last_basic_block);
6097 regs_set_in_block = xmalloc (sizeof (int) * max_gcse_regno);
6098
6099 FOR_EACH_BB (bb)
6100 {
6101 for (regno = 0; regno < max_gcse_regno; regno++)
6102 regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);
6103
6104 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6105 {
6106 if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
6107 bb, regs_set_in_block, NULL))
6108 {
6109 /* It should not be necessary to consider the expression
6110 killed if it is both anticipatable and available. */
6111 if (!TEST_BIT (st_antloc[bb->index], ptr->index)
6112 || !TEST_BIT (ae_gen[bb->index], ptr->index))
6113 SET_BIT (ae_kill[bb->index], ptr->index);
6114 }
6115 else
6116 SET_BIT (transp[bb->index], ptr->index);
6117 }
6118 }
6119
6120 free (regs_set_in_block);
6121
6122 if (gcse_file)
6123 {
6124 dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, last_basic_block);
6125 dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, last_basic_block);
6126 dump_sbitmap_vector (gcse_file, "Transpt", "", transp, last_basic_block);
6127 dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, last_basic_block);
6128 }
6129 }
6130
6131 /* Insert an instruction at the beginning of a basic block, and update
6132 the BB_HEAD if needed. */
6133
6134 static void
6135 insert_insn_start_bb (rtx insn, basic_block bb)
6136 {
6137 /* Insert at start of successor block. */
6138 rtx prev = PREV_INSN (BB_HEAD (bb));
6139 rtx before = BB_HEAD (bb);
6140 while (before != 0)
6141 {
6142 if (! LABEL_P (before)
6143 && (! NOTE_P (before)
6144 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
6145 break;
6146 prev = before;
6147 if (prev == BB_END (bb))
6148 break;
6149 before = NEXT_INSN (before);
6150 }
6151
6152 insn = emit_insn_after_noloc (insn, prev);
6153
6154 if (gcse_file)
6155 {
6156 fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
6157 bb->index);
6158 print_inline_rtx (gcse_file, insn, 6);
6159 fprintf (gcse_file, "\n");
6160 }
6161 }
6162
6163 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6164 the memory reference, and E is the edge to insert it on. Returns nonzero
6165 if an edge insertion was performed. */
6166
6167 static int
6168 insert_store (struct ls_expr * expr, edge e)
6169 {
6170 rtx reg, insn;
6171 basic_block bb;
6172 edge tmp;
6173 edge_iterator ei;
6174
6175 /* We did all the deleted before this insert, so if we didn't delete a
6176 store, then we haven't set the reaching reg yet either. */
6177 if (expr->reaching_reg == NULL_RTX)
6178 return 0;
6179
6180 if (e->flags & EDGE_FAKE)
6181 return 0;
6182
6183 reg = expr->reaching_reg;
6184 insn = gen_move_insn (copy_rtx (expr->pattern), reg);
6185
6186 /* If we are inserting this expression on ALL predecessor edges of a BB,
6187 insert it at the start of the BB, and reset the insert bits on the other
6188 edges so we don't try to insert it on the other edges. */
6189 bb = e->dest;
6190 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6191 if (!(tmp->flags & EDGE_FAKE))
6192 {
6193 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6194
6195 gcc_assert (index != EDGE_INDEX_NO_EDGE);
6196 if (! TEST_BIT (pre_insert_map[index], expr->index))
6197 break;
6198 }
6199
6200 /* If tmp is NULL, we found an insertion on every edge, blank the
6201 insertion vector for these edges, and insert at the start of the BB. */
6202 if (!tmp && bb != EXIT_BLOCK_PTR)
6203 {
6204 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6205 {
6206 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6207 RESET_BIT (pre_insert_map[index], expr->index);
6208 }
6209 insert_insn_start_bb (insn, bb);
6210 return 0;
6211 }
6212
6213 /* We can't put stores in the front of blocks pointed to by abnormal
6214 edges since that may put a store where one didn't used to be. */
6215 gcc_assert (!(e->flags & EDGE_ABNORMAL));
6216
6217 insert_insn_on_edge (insn, e);
6218
6219 if (gcse_file)
6220 {
6221 fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
6222 e->src->index, e->dest->index);
6223 print_inline_rtx (gcse_file, insn, 6);
6224 fprintf (gcse_file, "\n");
6225 }
6226
6227 return 1;
6228 }
6229
6230 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6231 memory location in SMEXPR set in basic block BB.
6232
6233 This could be rather expensive. */
6234
6235 static void
6236 remove_reachable_equiv_notes (basic_block bb, struct ls_expr *smexpr)
6237 {
6238 edge_iterator *stack, ei;
6239 int sp;
6240 edge act;
6241 sbitmap visited = sbitmap_alloc (last_basic_block);
6242 rtx last, insn, note;
6243 rtx mem = smexpr->pattern;
6244
6245 stack = xmalloc (sizeof (edge_iterator) * n_basic_blocks);
6246 sp = 0;
6247 ei = ei_start (bb->succs);
6248
6249 sbitmap_zero (visited);
6250
6251 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6252 while (1)
6253 {
6254 if (!act)
6255 {
6256 if (!sp)
6257 {
6258 free (stack);
6259 sbitmap_free (visited);
6260 return;
6261 }
6262 act = ei_edge (stack[--sp]);
6263 }
6264 bb = act->dest;
6265
6266 if (bb == EXIT_BLOCK_PTR
6267 || TEST_BIT (visited, bb->index))
6268 {
6269 if (!ei_end_p (ei))
6270 ei_next (&ei);
6271 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6272 continue;
6273 }
6274 SET_BIT (visited, bb->index);
6275
6276 if (TEST_BIT (st_antloc[bb->index], smexpr->index))
6277 {
6278 for (last = ANTIC_STORE_LIST (smexpr);
6279 BLOCK_FOR_INSN (XEXP (last, 0)) != bb;
6280 last = XEXP (last, 1))
6281 continue;
6282 last = XEXP (last, 0);
6283 }
6284 else
6285 last = NEXT_INSN (BB_END (bb));
6286
6287 for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
6288 if (INSN_P (insn))
6289 {
6290 note = find_reg_equal_equiv_note (insn);
6291 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6292 continue;
6293
6294 if (gcse_file)
6295 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6296 INSN_UID (insn));
6297 remove_note (insn, note);
6298 }
6299
6300 if (!ei_end_p (ei))
6301 ei_next (&ei);
6302 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6303
6304 if (EDGE_COUNT (bb->succs) > 0)
6305 {
6306 if (act)
6307 stack[sp++] = ei;
6308 ei = ei_start (bb->succs);
6309 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6310 }
6311 }
6312 }
6313
6314 /* This routine will replace a store with a SET to a specified register. */
6315
6316 static void
6317 replace_store_insn (rtx reg, rtx del, basic_block bb, struct ls_expr *smexpr)
6318 {
6319 rtx insn, mem, note, set, ptr, pair;
6320
6321 mem = smexpr->pattern;
6322 insn = gen_move_insn (reg, SET_SRC (single_set (del)));
6323 insn = emit_insn_after (insn, del);
6324
6325 if (gcse_file)
6326 {
6327 fprintf (gcse_file,
6328 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
6329 print_inline_rtx (gcse_file, del, 6);
6330 fprintf (gcse_file, "\nSTORE MOTION replaced with insn:\n ");
6331 print_inline_rtx (gcse_file, insn, 6);
6332 fprintf (gcse_file, "\n");
6333 }
6334
6335 for (ptr = ANTIC_STORE_LIST (smexpr); ptr; ptr = XEXP (ptr, 1))
6336 if (XEXP (ptr, 0) == del)
6337 {
6338 XEXP (ptr, 0) = insn;
6339 break;
6340 }
6341
6342 /* Move the notes from the deleted insn to its replacement, and patch
6343 up the LIBCALL notes. */
6344 REG_NOTES (insn) = REG_NOTES (del);
6345
6346 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
6347 if (note)
6348 {
6349 pair = XEXP (note, 0);
6350 note = find_reg_note (pair, REG_LIBCALL, NULL_RTX);
6351 XEXP (note, 0) = insn;
6352 }
6353 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
6354 if (note)
6355 {
6356 pair = XEXP (note, 0);
6357 note = find_reg_note (pair, REG_RETVAL, NULL_RTX);
6358 XEXP (note, 0) = insn;
6359 }
6360
6361 delete_insn (del);
6362
6363 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6364 they are no longer accurate provided that they are reached by this
6365 definition, so drop them. */
6366 for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
6367 if (INSN_P (insn))
6368 {
6369 set = single_set (insn);
6370 if (!set)
6371 continue;
6372 if (expr_equiv_p (SET_DEST (set), mem))
6373 return;
6374 note = find_reg_equal_equiv_note (insn);
6375 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6376 continue;
6377
6378 if (gcse_file)
6379 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6380 INSN_UID (insn));
6381 remove_note (insn, note);
6382 }
6383 remove_reachable_equiv_notes (bb, smexpr);
6384 }
6385
6386
6387 /* Delete a store, but copy the value that would have been stored into
6388 the reaching_reg for later storing. */
6389
6390 static void
6391 delete_store (struct ls_expr * expr, basic_block bb)
6392 {
6393 rtx reg, i, del;
6394
6395 if (expr->reaching_reg == NULL_RTX)
6396 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
6397
6398 reg = expr->reaching_reg;
6399
6400 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
6401 {
6402 del = XEXP (i, 0);
6403 if (BLOCK_FOR_INSN (del) == bb)
6404 {
6405 /* We know there is only one since we deleted redundant
6406 ones during the available computation. */
6407 replace_store_insn (reg, del, bb, expr);
6408 break;
6409 }
6410 }
6411 }
6412
6413 /* Free memory used by store motion. */
6414
6415 static void
6416 free_store_memory (void)
6417 {
6418 free_ldst_mems ();
6419
6420 if (ae_gen)
6421 sbitmap_vector_free (ae_gen);
6422 if (ae_kill)
6423 sbitmap_vector_free (ae_kill);
6424 if (transp)
6425 sbitmap_vector_free (transp);
6426 if (st_antloc)
6427 sbitmap_vector_free (st_antloc);
6428 if (pre_insert_map)
6429 sbitmap_vector_free (pre_insert_map);
6430 if (pre_delete_map)
6431 sbitmap_vector_free (pre_delete_map);
6432 if (reg_set_in_block)
6433 sbitmap_vector_free (reg_set_in_block);
6434
6435 ae_gen = ae_kill = transp = st_antloc = NULL;
6436 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
6437 }
6438
6439 /* Perform store motion. Much like gcse, except we move expressions the
6440 other way by looking at the flowgraph in reverse. */
6441
6442 static void
6443 store_motion (void)
6444 {
6445 basic_block bb;
6446 int x;
6447 struct ls_expr * ptr;
6448 int update_flow = 0;
6449
6450 if (gcse_file)
6451 {
6452 fprintf (gcse_file, "before store motion\n");
6453 print_rtl (gcse_file, get_insns ());
6454 }
6455
6456 init_alias_analysis ();
6457
6458 /* Find all the available and anticipatable stores. */
6459 num_stores = compute_store_table ();
6460 if (num_stores == 0)
6461 {
6462 htab_delete (pre_ldst_table);
6463 pre_ldst_table = NULL;
6464 sbitmap_vector_free (reg_set_in_block);
6465 end_alias_analysis ();
6466 return;
6467 }
6468
6469 /* Now compute kill & transp vectors. */
6470 build_store_vectors ();
6471 add_noreturn_fake_exit_edges ();
6472 connect_infinite_loops_to_exit ();
6473
6474 edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
6475 st_antloc, ae_kill, &pre_insert_map,
6476 &pre_delete_map);
6477
6478 /* Now we want to insert the new stores which are going to be needed. */
6479 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6480 {
6481 /* If any of the edges we have above are abnormal, we can't move this
6482 store. */
6483 for (x = NUM_EDGES (edge_list) - 1; x >= 0; x--)
6484 if (TEST_BIT (pre_insert_map[x], ptr->index)
6485 && (INDEX_EDGE (edge_list, x)->flags & EDGE_ABNORMAL))
6486 break;
6487
6488 if (x >= 0)
6489 {
6490 if (gcse_file != NULL)
6491 fprintf (gcse_file,
6492 "Can't replace store %d: abnormal edge from %d to %d\n",
6493 ptr->index, INDEX_EDGE (edge_list, x)->src->index,
6494 INDEX_EDGE (edge_list, x)->dest->index);
6495 continue;
6496 }
6497
6498 /* Now we want to insert the new stores which are going to be needed. */
6499
6500 FOR_EACH_BB (bb)
6501 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
6502 delete_store (ptr, bb);
6503
6504 for (x = 0; x < NUM_EDGES (edge_list); x++)
6505 if (TEST_BIT (pre_insert_map[x], ptr->index))
6506 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
6507 }
6508
6509 if (update_flow)
6510 commit_edge_insertions ();
6511
6512 free_store_memory ();
6513 free_edge_list (edge_list);
6514 remove_fake_exit_edges ();
6515 end_alias_analysis ();
6516 }
6517
6518 \f
6519 /* Entry point for jump bypassing optimization pass. */
6520
6521 static int
6522 bypass_jumps (FILE *file)
6523 {
6524 int changed;
6525
6526 /* We do not construct an accurate cfg in functions which call
6527 setjmp, so just punt to be safe. */
6528 if (current_function_calls_setjmp)
6529 return 0;
6530
6531 /* For calling dump_foo fns from gdb. */
6532 debug_stderr = stderr;
6533 gcse_file = file;
6534
6535 /* Identify the basic block information for this function, including
6536 successors and predecessors. */
6537 max_gcse_regno = max_reg_num ();
6538
6539 if (file)
6540 dump_flow_info (file);
6541
6542 /* Return if there's nothing to do, or it is too expensive. */
6543 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
6544 || is_too_expensive (_ ("jump bypassing disabled")))
6545 return 0;
6546
6547 gcc_obstack_init (&gcse_obstack);
6548 bytes_used = 0;
6549
6550 /* We need alias. */
6551 init_alias_analysis ();
6552
6553 /* Record where pseudo-registers are set. This data is kept accurate
6554 during each pass. ??? We could also record hard-reg information here
6555 [since it's unchanging], however it is currently done during hash table
6556 computation.
6557
6558 It may be tempting to compute MEM set information here too, but MEM sets
6559 will be subject to code motion one day and thus we need to compute
6560 information about memory sets when we build the hash tables. */
6561
6562 alloc_reg_set_mem (max_gcse_regno);
6563 compute_sets ();
6564
6565 max_gcse_regno = max_reg_num ();
6566 alloc_gcse_mem ();
6567 changed = one_cprop_pass (MAX_GCSE_PASSES + 2, true, true);
6568 free_gcse_mem ();
6569
6570 if (file)
6571 {
6572 fprintf (file, "BYPASS of %s: %d basic blocks, ",
6573 current_function_name (), n_basic_blocks);
6574 fprintf (file, "%d bytes\n\n", bytes_used);
6575 }
6576
6577 obstack_free (&gcse_obstack, NULL);
6578 free_reg_set_mem ();
6579
6580 /* We are finished with alias. */
6581 end_alias_analysis ();
6582 allocate_reg_info (max_reg_num (), FALSE, FALSE);
6583
6584 return changed;
6585 }
6586
6587 /* Return true if the graph is too expensive to optimize. PASS is the
6588 optimization about to be performed. */
6589
6590 static bool
6591 is_too_expensive (const char *pass)
6592 {
6593 /* Trying to perform global optimizations on flow graphs which have
6594 a high connectivity will take a long time and is unlikely to be
6595 particularly useful.
6596
6597 In normal circumstances a cfg should have about twice as many
6598 edges as blocks. But we do not want to punish small functions
6599 which have a couple switch statements. Rather than simply
6600 threshold the number of blocks, uses something with a more
6601 graceful degradation. */
6602 if (n_edges > 20000 + n_basic_blocks * 4)
6603 {
6604 warning (OPT_Wdisabled_optimization,
6605 "%s: %d basic blocks and %d edges/basic block",
6606 pass, n_basic_blocks, n_edges / n_basic_blocks);
6607
6608 return true;
6609 }
6610
6611 /* If allocating memory for the cprop bitmap would take up too much
6612 storage it's better just to disable the optimization. */
6613 if ((n_basic_blocks
6614 * SBITMAP_SET_SIZE (max_reg_num ())
6615 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
6616 {
6617 warning (OPT_Wdisabled_optimization,
6618 "%s: %d basic blocks and %d registers",
6619 pass, n_basic_blocks, max_reg_num ());
6620
6621 return true;
6622 }
6623
6624 return false;
6625 }
6626 \f
6627 static bool
6628 gate_handle_jump_bypass (void)
6629 {
6630 return optimize > 0 && flag_gcse;
6631 }
6632
6633 /* Perform jump bypassing and control flow optimizations. */
6634 static void
6635 rest_of_handle_jump_bypass (void)
6636 {
6637 cleanup_cfg (CLEANUP_EXPENSIVE);
6638 reg_scan (get_insns (), max_reg_num ());
6639
6640 if (bypass_jumps (dump_file))
6641 {
6642 rebuild_jump_labels (get_insns ());
6643 cleanup_cfg (CLEANUP_EXPENSIVE);
6644 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6645 }
6646 }
6647
6648 struct tree_opt_pass pass_jump_bypass =
6649 {
6650 "bypass", /* name */
6651 gate_handle_jump_bypass, /* gate */
6652 rest_of_handle_jump_bypass, /* execute */
6653 NULL, /* sub */
6654 NULL, /* next */
6655 0, /* static_pass_number */
6656 TV_BYPASS, /* tv_id */
6657 0, /* properties_required */
6658 0, /* properties_provided */
6659 0, /* properties_destroyed */
6660 0, /* todo_flags_start */
6661 TODO_dump_func |
6662 TODO_ggc_collect | TODO_verify_flow, /* todo_flags_finish */
6663 'G' /* letter */
6664 };
6665
6666
6667 static bool
6668 gate_handle_gcse (void)
6669 {
6670 return optimize > 0 && flag_gcse;
6671 }
6672
6673
6674 static void
6675 rest_of_handle_gcse (void)
6676 {
6677 int save_csb, save_cfj;
6678 int tem2 = 0, tem;
6679
6680 tem = gcse_main (get_insns (), dump_file);
6681 rebuild_jump_labels (get_insns ());
6682 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6683
6684 save_csb = flag_cse_skip_blocks;
6685 save_cfj = flag_cse_follow_jumps;
6686 flag_cse_skip_blocks = flag_cse_follow_jumps = 0;
6687
6688 /* If -fexpensive-optimizations, re-run CSE to clean up things done
6689 by gcse. */
6690 if (flag_expensive_optimizations)
6691 {
6692 timevar_push (TV_CSE);
6693 reg_scan (get_insns (), max_reg_num ());
6694 tem2 = cse_main (get_insns (), max_reg_num (), dump_file);
6695 purge_all_dead_edges ();
6696 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6697 timevar_pop (TV_CSE);
6698 cse_not_expected = !flag_rerun_cse_after_loop;
6699 }
6700
6701 /* If gcse or cse altered any jumps, rerun jump optimizations to clean
6702 things up. */
6703 if (tem || tem2)
6704 {
6705 timevar_push (TV_JUMP);
6706 rebuild_jump_labels (get_insns ());
6707 delete_dead_jumptables ();
6708 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_PRE_LOOP);
6709 timevar_pop (TV_JUMP);
6710 }
6711
6712 flag_cse_skip_blocks = save_csb;
6713 flag_cse_follow_jumps = save_cfj;
6714 }
6715
6716 struct tree_opt_pass pass_gcse =
6717 {
6718 "gcse1", /* name */
6719 gate_handle_gcse, /* gate */
6720 rest_of_handle_gcse, /* execute */
6721 NULL, /* sub */
6722 NULL, /* next */
6723 0, /* static_pass_number */
6724 TV_GCSE, /* tv_id */
6725 0, /* properties_required */
6726 0, /* properties_provided */
6727 0, /* properties_destroyed */
6728 0, /* todo_flags_start */
6729 TODO_dump_func |
6730 TODO_verify_flow | TODO_ggc_collect, /* todo_flags_finish */
6731 'G' /* letter */
6732 };
6733
6734
6735 #include "gt-gcse.h"
This page took 0.338875 seconds and 5 git commands to generate.