]> gcc.gnu.org Git - gcc.git/blob - gcc/gcse.c
c-common.c, [...]: Fix comment typos.
[gcc.git] / gcc / gcse.c
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 /* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
34
35 */
36
37 /* References searched while implementing this.
38
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
42
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
46
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
50
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
54
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
59
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
64
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
69
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
73
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
79
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
84
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
88
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
92
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
96
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
100
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
104
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
108
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
112
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
116
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
120
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
124
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
128
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
132
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
137
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
141
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
144 */
145
146 #include "config.h"
147 #include "system.h"
148 #include "coretypes.h"
149 #include "tm.h"
150 #include "toplev.h"
151
152 #include "rtl.h"
153 #include "tree.h"
154 #include "tm_p.h"
155 #include "regs.h"
156 #include "hard-reg-set.h"
157 #include "flags.h"
158 #include "real.h"
159 #include "insn-config.h"
160 #include "recog.h"
161 #include "basic-block.h"
162 #include "output.h"
163 #include "function.h"
164 #include "expr.h"
165 #include "except.h"
166 #include "ggc.h"
167 #include "params.h"
168 #include "cselib.h"
169 #include "intl.h"
170 #include "obstack.h"
171 #include "timevar.h"
172
173 /* Propagate flow information through back edges and thus enable PRE's
174 moving loop invariant calculations out of loops.
175
176 Originally this tended to create worse overall code, but several
177 improvements during the development of PRE seem to have made following
178 back edges generally a win.
179
180 Note much of the loop invariant code motion done here would normally
181 be done by loop.c, which has more heuristics for when to move invariants
182 out of loops. At some point we might need to move some of those
183 heuristics into gcse.c. */
184
185 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
186 are a superset of those done by GCSE.
187
188 We perform the following steps:
189
190 1) Compute basic block information.
191
192 2) Compute table of places where registers are set.
193
194 3) Perform copy/constant propagation.
195
196 4) Perform global cse using lazy code motion if not optimizing
197 for size, or code hoisting if we are.
198
199 5) Perform another pass of copy/constant propagation.
200
201 Two passes of copy/constant propagation are done because the first one
202 enables more GCSE and the second one helps to clean up the copies that
203 GCSE creates. This is needed more for PRE than for Classic because Classic
204 GCSE will try to use an existing register containing the common
205 subexpression rather than create a new one. This is harder to do for PRE
206 because of the code motion (which Classic GCSE doesn't do).
207
208 Expressions we are interested in GCSE-ing are of the form
209 (set (pseudo-reg) (expression)).
210 Function want_to_gcse_p says what these are.
211
212 PRE handles moving invariant expressions out of loops (by treating them as
213 partially redundant).
214
215 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
216 assignment) based GVN (global value numbering). L. T. Simpson's paper
217 (Rice University) on value numbering is a useful reference for this.
218
219 **********************
220
221 We used to support multiple passes but there are diminishing returns in
222 doing so. The first pass usually makes 90% of the changes that are doable.
223 A second pass can make a few more changes made possible by the first pass.
224 Experiments show any further passes don't make enough changes to justify
225 the expense.
226
227 A study of spec92 using an unlimited number of passes:
228 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
229 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
230 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
231
232 It was found doing copy propagation between each pass enables further
233 substitutions.
234
235 PRE is quite expensive in complicated functions because the DFA can take
236 a while to converge. Hence we only perform one pass. The parameter
237 max-gcse-passes can be modified if one wants to experiment.
238
239 **********************
240
241 The steps for PRE are:
242
243 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
244
245 2) Perform the data flow analysis for PRE.
246
247 3) Delete the redundant instructions
248
249 4) Insert the required copies [if any] that make the partially
250 redundant instructions fully redundant.
251
252 5) For other reaching expressions, insert an instruction to copy the value
253 to a newly created pseudo that will reach the redundant instruction.
254
255 The deletion is done first so that when we do insertions we
256 know which pseudo reg to use.
257
258 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
259 argue it is not. The number of iterations for the algorithm to converge
260 is typically 2-4 so I don't view it as that expensive (relatively speaking).
261
262 PRE GCSE depends heavily on the second CSE pass to clean up the copies
263 we create. To make an expression reach the place where it's redundant,
264 the result of the expression is copied to a new register, and the redundant
265 expression is deleted by replacing it with this new register. Classic GCSE
266 doesn't have this problem as much as it computes the reaching defs of
267 each register in each block and thus can try to use an existing
268 register. */
269 \f
270 /* GCSE global vars. */
271
272 /* -dG dump file. */
273 static FILE *gcse_file;
274
275 /* Note whether or not we should run jump optimization after gcse. We
276 want to do this for two cases.
277
278 * If we changed any jumps via cprop.
279
280 * If we added any labels via edge splitting. */
281 static int run_jump_opt_after_gcse;
282
283 /* Bitmaps are normally not included in debugging dumps.
284 However it's useful to be able to print them from GDB.
285 We could create special functions for this, but it's simpler to
286 just allow passing stderr to the dump_foo fns. Since stderr can
287 be a macro, we store a copy here. */
288 static FILE *debug_stderr;
289
290 /* An obstack for our working variables. */
291 static struct obstack gcse_obstack;
292
293 struct reg_use {rtx reg_rtx; };
294
295 /* Hash table of expressions. */
296
297 struct expr
298 {
299 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
300 rtx expr;
301 /* Index in the available expression bitmaps. */
302 int bitmap_index;
303 /* Next entry with the same hash. */
304 struct expr *next_same_hash;
305 /* List of anticipatable occurrences in basic blocks in the function.
306 An "anticipatable occurrence" is one that is the first occurrence in the
307 basic block, the operands are not modified in the basic block prior
308 to the occurrence and the output is not used between the start of
309 the block and the occurrence. */
310 struct occr *antic_occr;
311 /* List of available occurrence in basic blocks in the function.
312 An "available occurrence" is one that is the last occurrence in the
313 basic block and the operands are not modified by following statements in
314 the basic block [including this insn]. */
315 struct occr *avail_occr;
316 /* Non-null if the computation is PRE redundant.
317 The value is the newly created pseudo-reg to record a copy of the
318 expression in all the places that reach the redundant copy. */
319 rtx reaching_reg;
320 };
321
322 /* Occurrence of an expression.
323 There is one per basic block. If a pattern appears more than once the
324 last appearance is used [or first for anticipatable expressions]. */
325
326 struct occr
327 {
328 /* Next occurrence of this expression. */
329 struct occr *next;
330 /* The insn that computes the expression. */
331 rtx insn;
332 /* Nonzero if this [anticipatable] occurrence has been deleted. */
333 char deleted_p;
334 /* Nonzero if this [available] occurrence has been copied to
335 reaching_reg. */
336 /* ??? This is mutually exclusive with deleted_p, so they could share
337 the same byte. */
338 char copied_p;
339 };
340
341 /* Expression and copy propagation hash tables.
342 Each hash table is an array of buckets.
343 ??? It is known that if it were an array of entries, structure elements
344 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
345 not clear whether in the final analysis a sufficient amount of memory would
346 be saved as the size of the available expression bitmaps would be larger
347 [one could build a mapping table without holes afterwards though].
348 Someday I'll perform the computation and figure it out. */
349
350 struct hash_table
351 {
352 /* The table itself.
353 This is an array of `expr_hash_table_size' elements. */
354 struct expr **table;
355
356 /* Size of the hash table, in elements. */
357 unsigned int size;
358
359 /* Number of hash table elements. */
360 unsigned int n_elems;
361
362 /* Whether the table is expression of copy propagation one. */
363 int set_p;
364 };
365
366 /* Expression hash table. */
367 static struct hash_table expr_hash_table;
368
369 /* Copy propagation hash table. */
370 static struct hash_table set_hash_table;
371
372 /* Mapping of uids to cuids.
373 Only real insns get cuids. */
374 static int *uid_cuid;
375
376 /* Highest UID in UID_CUID. */
377 static int max_uid;
378
379 /* Get the cuid of an insn. */
380 #ifdef ENABLE_CHECKING
381 #define INSN_CUID(INSN) \
382 (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
383 #else
384 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
385 #endif
386
387 /* Number of cuids. */
388 static int max_cuid;
389
390 /* Mapping of cuids to insns. */
391 static rtx *cuid_insn;
392
393 /* Get insn from cuid. */
394 #define CUID_INSN(CUID) (cuid_insn[CUID])
395
396 /* Maximum register number in function prior to doing gcse + 1.
397 Registers created during this pass have regno >= max_gcse_regno.
398 This is named with "gcse" to not collide with global of same name. */
399 static unsigned int max_gcse_regno;
400
401 /* Table of registers that are modified.
402
403 For each register, each element is a list of places where the pseudo-reg
404 is set.
405
406 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
407 requires knowledge of which blocks kill which regs [and thus could use
408 a bitmap instead of the lists `reg_set_table' uses].
409
410 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
411 num-regs) [however perhaps it may be useful to keep the data as is]. One
412 advantage of recording things this way is that `reg_set_table' is fairly
413 sparse with respect to pseudo regs but for hard regs could be fairly dense
414 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
415 up functions like compute_transp since in the case of pseudo-regs we only
416 need to iterate over the number of times a pseudo-reg is set, not over the
417 number of basic blocks [clearly there is a bit of a slow down in the cases
418 where a pseudo is set more than once in a block, however it is believed
419 that the net effect is to speed things up]. This isn't done for hard-regs
420 because recording call-clobbered hard-regs in `reg_set_table' at each
421 function call can consume a fair bit of memory, and iterating over
422 hard-regs stored this way in compute_transp will be more expensive. */
423
424 typedef struct reg_set
425 {
426 /* The next setting of this register. */
427 struct reg_set *next;
428 /* The index of the block where it was set. */
429 int bb_index;
430 } reg_set;
431
432 static reg_set **reg_set_table;
433
434 /* Size of `reg_set_table'.
435 The table starts out at max_gcse_regno + slop, and is enlarged as
436 necessary. */
437 static int reg_set_table_size;
438
439 /* Amount to grow `reg_set_table' by when it's full. */
440 #define REG_SET_TABLE_SLOP 100
441
442 /* This is a list of expressions which are MEMs and will be used by load
443 or store motion.
444 Load motion tracks MEMs which aren't killed by
445 anything except itself. (i.e., loads and stores to a single location).
446 We can then allow movement of these MEM refs with a little special
447 allowance. (all stores copy the same value to the reaching reg used
448 for the loads). This means all values used to store into memory must have
449 no side effects so we can re-issue the setter value.
450 Store Motion uses this structure as an expression table to track stores
451 which look interesting, and might be moveable towards the exit block. */
452
453 struct ls_expr
454 {
455 struct expr * expr; /* Gcse expression reference for LM. */
456 rtx pattern; /* Pattern of this mem. */
457 rtx pattern_regs; /* List of registers mentioned by the mem. */
458 rtx loads; /* INSN list of loads seen. */
459 rtx stores; /* INSN list of stores seen. */
460 struct ls_expr * next; /* Next in the list. */
461 int invalid; /* Invalid for some reason. */
462 int index; /* If it maps to a bitmap index. */
463 unsigned int hash_index; /* Index when in a hash table. */
464 rtx reaching_reg; /* Register to use when re-writing. */
465 };
466
467 /* Array of implicit set patterns indexed by basic block index. */
468 static rtx *implicit_sets;
469
470 /* Head of the list of load/store memory refs. */
471 static struct ls_expr * pre_ldst_mems = NULL;
472
473 /* Bitmap containing one bit for each register in the program.
474 Used when performing GCSE to track which registers have been set since
475 the start of the basic block. */
476 static regset reg_set_bitmap;
477
478 /* For each block, a bitmap of registers set in the block.
479 This is used by compute_transp.
480 It is computed during hash table computation and not by compute_sets
481 as it includes registers added since the last pass (or between cprop and
482 gcse) and it's currently not easy to realloc sbitmap vectors. */
483 static sbitmap *reg_set_in_block;
484
485 /* Array, indexed by basic block number for a list of insns which modify
486 memory within that block. */
487 static rtx * modify_mem_list;
488 static bitmap modify_mem_list_set;
489
490 /* This array parallels modify_mem_list, but is kept canonicalized. */
491 static rtx * canon_modify_mem_list;
492
493 /* Bitmap indexed by block numbers to record which blocks contain
494 function calls. */
495 static bitmap blocks_with_calls;
496
497 /* Various variables for statistics gathering. */
498
499 /* Memory used in a pass.
500 This isn't intended to be absolutely precise. Its intent is only
501 to keep an eye on memory usage. */
502 static int bytes_used;
503
504 /* GCSE substitutions made. */
505 static int gcse_subst_count;
506 /* Number of copy instructions created. */
507 static int gcse_create_count;
508 /* Number of local constants propagated. */
509 static int local_const_prop_count;
510 /* Number of local copies propagated. */
511 static int local_copy_prop_count;
512 /* Number of global constants propagated. */
513 static int global_const_prop_count;
514 /* Number of global copies propagated. */
515 static int global_copy_prop_count;
516 \f
517 /* For available exprs */
518 static sbitmap *ae_kill, *ae_gen;
519 \f
520 static void compute_can_copy (void);
521 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
522 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
523 static void *grealloc (void *, size_t);
524 static void *gcse_alloc (unsigned long);
525 static void alloc_gcse_mem (void);
526 static void free_gcse_mem (void);
527 static void alloc_reg_set_mem (int);
528 static void free_reg_set_mem (void);
529 static void record_one_set (int, rtx);
530 static void record_set_info (rtx, rtx, void *);
531 static void compute_sets (void);
532 static void hash_scan_insn (rtx, struct hash_table *, int);
533 static void hash_scan_set (rtx, rtx, struct hash_table *);
534 static void hash_scan_clobber (rtx, rtx, struct hash_table *);
535 static void hash_scan_call (rtx, rtx, struct hash_table *);
536 static int want_to_gcse_p (rtx);
537 static bool can_assign_to_reg_p (rtx);
538 static bool gcse_constant_p (rtx);
539 static int oprs_unchanged_p (rtx, rtx, int);
540 static int oprs_anticipatable_p (rtx, rtx);
541 static int oprs_available_p (rtx, rtx);
542 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
543 struct hash_table *);
544 static void insert_set_in_table (rtx, rtx, struct hash_table *);
545 static unsigned int hash_expr (rtx, enum machine_mode, int *, int);
546 static unsigned int hash_set (int, int);
547 static int expr_equiv_p (rtx, rtx);
548 static void record_last_reg_set_info (rtx, int);
549 static void record_last_mem_set_info (rtx);
550 static void record_last_set_info (rtx, rtx, void *);
551 static void compute_hash_table (struct hash_table *);
552 static void alloc_hash_table (int, struct hash_table *, int);
553 static void free_hash_table (struct hash_table *);
554 static void compute_hash_table_work (struct hash_table *);
555 static void dump_hash_table (FILE *, const char *, struct hash_table *);
556 static struct expr *lookup_set (unsigned int, struct hash_table *);
557 static struct expr *next_set (unsigned int, struct expr *);
558 static void reset_opr_set_tables (void);
559 static int oprs_not_set_p (rtx, rtx);
560 static void mark_call (rtx);
561 static void mark_set (rtx, rtx);
562 static void mark_clobber (rtx, rtx);
563 static void mark_oprs_set (rtx);
564 static void alloc_cprop_mem (int, int);
565 static void free_cprop_mem (void);
566 static void compute_transp (rtx, int, sbitmap *, int);
567 static void compute_transpout (void);
568 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
569 struct hash_table *);
570 static void compute_cprop_data (void);
571 static void find_used_regs (rtx *, void *);
572 static int try_replace_reg (rtx, rtx, rtx);
573 static struct expr *find_avail_set (int, rtx);
574 static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
575 static void mems_conflict_for_gcse_p (rtx, rtx, void *);
576 static int load_killed_in_block_p (basic_block, int, rtx, int);
577 static void canon_list_insert (rtx, rtx, void *);
578 static int cprop_insn (rtx, int);
579 static int cprop (int);
580 static void find_implicit_sets (void);
581 static int one_cprop_pass (int, bool, bool);
582 static bool constprop_register (rtx, rtx, rtx, bool);
583 static struct expr *find_bypass_set (int, int);
584 static bool reg_killed_on_edge (rtx, edge);
585 static int bypass_block (basic_block, rtx, rtx);
586 static int bypass_conditional_jumps (void);
587 static void alloc_pre_mem (int, int);
588 static void free_pre_mem (void);
589 static void compute_pre_data (void);
590 static int pre_expr_reaches_here_p (basic_block, struct expr *,
591 basic_block);
592 static void insert_insn_end_bb (struct expr *, basic_block, int);
593 static void pre_insert_copy_insn (struct expr *, rtx);
594 static void pre_insert_copies (void);
595 static int pre_delete (void);
596 static int pre_gcse (void);
597 static int one_pre_gcse_pass (int);
598 static void add_label_notes (rtx, rtx);
599 static void alloc_code_hoist_mem (int, int);
600 static void free_code_hoist_mem (void);
601 static void compute_code_hoist_vbeinout (void);
602 static void compute_code_hoist_data (void);
603 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
604 static void hoist_code (void);
605 static int one_code_hoisting_pass (void);
606 static rtx process_insert_insn (struct expr *);
607 static int pre_edge_insert (struct edge_list *, struct expr **);
608 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
609 basic_block, char *);
610 static struct ls_expr * ldst_entry (rtx);
611 static void free_ldst_entry (struct ls_expr *);
612 static void free_ldst_mems (void);
613 static void print_ldst_list (FILE *);
614 static struct ls_expr * find_rtx_in_ldst (rtx);
615 static int enumerate_ldsts (void);
616 static inline struct ls_expr * first_ls_expr (void);
617 static inline struct ls_expr * next_ls_expr (struct ls_expr *);
618 static int simple_mem (rtx);
619 static void invalidate_any_buried_refs (rtx);
620 static void compute_ld_motion_mems (void);
621 static void trim_ld_motion_mems (void);
622 static void update_ld_motion_stores (struct expr *);
623 static void reg_set_info (rtx, rtx, void *);
624 static void reg_clear_last_set (rtx, rtx, void *);
625 static bool store_ops_ok (rtx, int *);
626 static rtx extract_mentioned_regs (rtx);
627 static rtx extract_mentioned_regs_helper (rtx, rtx);
628 static void find_moveable_store (rtx, int *, int *);
629 static int compute_store_table (void);
630 static bool load_kills_store (rtx, rtx, int);
631 static bool find_loads (rtx, rtx, int);
632 static bool store_killed_in_insn (rtx, rtx, rtx, int);
633 static bool store_killed_after (rtx, rtx, rtx, basic_block, int *, rtx *);
634 static bool store_killed_before (rtx, rtx, rtx, basic_block, int *);
635 static void build_store_vectors (void);
636 static void insert_insn_start_bb (rtx, basic_block);
637 static int insert_store (struct ls_expr *, edge);
638 static void remove_reachable_equiv_notes (basic_block, struct ls_expr *);
639 static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *);
640 static void delete_store (struct ls_expr *, basic_block);
641 static void free_store_memory (void);
642 static void store_motion (void);
643 static void free_insn_expr_list_list (rtx *);
644 static void clear_modify_mem_tables (void);
645 static void free_modify_mem_tables (void);
646 static rtx gcse_emit_move_after (rtx, rtx, rtx);
647 static void local_cprop_find_used_regs (rtx *, void *);
648 static bool do_local_cprop (rtx, rtx, bool, rtx*);
649 static bool adjust_libcall_notes (rtx, rtx, rtx, rtx*);
650 static void local_cprop_pass (bool);
651 static bool is_too_expensive (const char *);
652 \f
653
654 /* Entry point for global common subexpression elimination.
655 F is the first instruction in the function. Return nonzero if a
656 change is mode. */
657
658 int
659 gcse_main (rtx f ATTRIBUTE_UNUSED, FILE *file)
660 {
661 int changed, pass;
662 /* Bytes used at start of pass. */
663 int initial_bytes_used;
664 /* Maximum number of bytes used by a pass. */
665 int max_pass_bytes;
666 /* Point to release obstack data from for each pass. */
667 char *gcse_obstack_bottom;
668
669 /* We do not construct an accurate cfg in functions which call
670 setjmp, so just punt to be safe. */
671 if (current_function_calls_setjmp)
672 return 0;
673
674 /* Assume that we do not need to run jump optimizations after gcse. */
675 run_jump_opt_after_gcse = 0;
676
677 /* For calling dump_foo fns from gdb. */
678 debug_stderr = stderr;
679 gcse_file = file;
680
681 /* Identify the basic block information for this function, including
682 successors and predecessors. */
683 max_gcse_regno = max_reg_num ();
684
685 if (file)
686 dump_flow_info (file);
687
688 /* Return if there's nothing to do, or it is too expensive. */
689 if (n_basic_blocks <= 1 || is_too_expensive (_("GCSE disabled")))
690 return 0;
691
692 gcc_obstack_init (&gcse_obstack);
693 bytes_used = 0;
694
695 /* We need alias. */
696 init_alias_analysis ();
697 /* Record where pseudo-registers are set. This data is kept accurate
698 during each pass. ??? We could also record hard-reg information here
699 [since it's unchanging], however it is currently done during hash table
700 computation.
701
702 It may be tempting to compute MEM set information here too, but MEM sets
703 will be subject to code motion one day and thus we need to compute
704 information about memory sets when we build the hash tables. */
705
706 alloc_reg_set_mem (max_gcse_regno);
707 compute_sets ();
708
709 pass = 0;
710 initial_bytes_used = bytes_used;
711 max_pass_bytes = 0;
712 gcse_obstack_bottom = gcse_alloc (1);
713 changed = 1;
714 while (changed && pass < MAX_GCSE_PASSES)
715 {
716 changed = 0;
717 if (file)
718 fprintf (file, "GCSE pass %d\n\n", pass + 1);
719
720 /* Initialize bytes_used to the space for the pred/succ lists,
721 and the reg_set_table data. */
722 bytes_used = initial_bytes_used;
723
724 /* Each pass may create new registers, so recalculate each time. */
725 max_gcse_regno = max_reg_num ();
726
727 alloc_gcse_mem ();
728
729 /* Don't allow constant propagation to modify jumps
730 during this pass. */
731 timevar_push (TV_CPROP1);
732 changed = one_cprop_pass (pass + 1, false, false);
733 timevar_pop (TV_CPROP1);
734
735 if (optimize_size)
736 /* Do nothing. */ ;
737 else
738 {
739 timevar_push (TV_PRE);
740 changed |= one_pre_gcse_pass (pass + 1);
741 /* We may have just created new basic blocks. Release and
742 recompute various things which are sized on the number of
743 basic blocks. */
744 if (changed)
745 {
746 free_modify_mem_tables ();
747 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
748 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
749 }
750 free_reg_set_mem ();
751 alloc_reg_set_mem (max_reg_num ());
752 compute_sets ();
753 run_jump_opt_after_gcse = 1;
754 timevar_pop (TV_PRE);
755 }
756
757 if (max_pass_bytes < bytes_used)
758 max_pass_bytes = bytes_used;
759
760 /* Free up memory, then reallocate for code hoisting. We can
761 not re-use the existing allocated memory because the tables
762 will not have info for the insns or registers created by
763 partial redundancy elimination. */
764 free_gcse_mem ();
765
766 /* It does not make sense to run code hoisting unless we are optimizing
767 for code size -- it rarely makes programs faster, and can make
768 them bigger if we did partial redundancy elimination (when optimizing
769 for space, we don't run the partial redundancy algorithms). */
770 if (optimize_size)
771 {
772 timevar_push (TV_HOIST);
773 max_gcse_regno = max_reg_num ();
774 alloc_gcse_mem ();
775 changed |= one_code_hoisting_pass ();
776 free_gcse_mem ();
777
778 if (max_pass_bytes < bytes_used)
779 max_pass_bytes = bytes_used;
780 timevar_pop (TV_HOIST);
781 }
782
783 if (file)
784 {
785 fprintf (file, "\n");
786 fflush (file);
787 }
788
789 obstack_free (&gcse_obstack, gcse_obstack_bottom);
790 pass++;
791 }
792
793 /* Do one last pass of copy propagation, including cprop into
794 conditional jumps. */
795
796 max_gcse_regno = max_reg_num ();
797 alloc_gcse_mem ();
798 /* This time, go ahead and allow cprop to alter jumps. */
799 timevar_push (TV_CPROP2);
800 one_cprop_pass (pass + 1, true, false);
801 timevar_pop (TV_CPROP2);
802 free_gcse_mem ();
803
804 if (file)
805 {
806 fprintf (file, "GCSE of %s: %d basic blocks, ",
807 current_function_name (), n_basic_blocks);
808 fprintf (file, "%d pass%s, %d bytes\n\n",
809 pass, pass > 1 ? "es" : "", max_pass_bytes);
810 }
811
812 obstack_free (&gcse_obstack, NULL);
813 free_reg_set_mem ();
814
815 /* We are finished with alias. */
816 end_alias_analysis ();
817 allocate_reg_info (max_reg_num (), FALSE, FALSE);
818
819 if (!optimize_size && flag_gcse_sm)
820 {
821 timevar_push (TV_LSM);
822 store_motion ();
823 timevar_pop (TV_LSM);
824 }
825
826 /* Record where pseudo-registers are set. */
827 return run_jump_opt_after_gcse;
828 }
829 \f
830 /* Misc. utilities. */
831
832 /* Nonzero for each mode that supports (set (reg) (reg)).
833 This is trivially true for integer and floating point values.
834 It may or may not be true for condition codes. */
835 static char can_copy[(int) NUM_MACHINE_MODES];
836
837 /* Compute which modes support reg/reg copy operations. */
838
839 static void
840 compute_can_copy (void)
841 {
842 int i;
843 #ifndef AVOID_CCMODE_COPIES
844 rtx reg, insn;
845 #endif
846 memset (can_copy, 0, NUM_MACHINE_MODES);
847
848 start_sequence ();
849 for (i = 0; i < NUM_MACHINE_MODES; i++)
850 if (GET_MODE_CLASS (i) == MODE_CC)
851 {
852 #ifdef AVOID_CCMODE_COPIES
853 can_copy[i] = 0;
854 #else
855 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
856 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
857 if (recog (PATTERN (insn), insn, NULL) >= 0)
858 can_copy[i] = 1;
859 #endif
860 }
861 else
862 can_copy[i] = 1;
863
864 end_sequence ();
865 }
866
867 /* Returns whether the mode supports reg/reg copy operations. */
868
869 bool
870 can_copy_p (enum machine_mode mode)
871 {
872 static bool can_copy_init_p = false;
873
874 if (! can_copy_init_p)
875 {
876 compute_can_copy ();
877 can_copy_init_p = true;
878 }
879
880 return can_copy[mode] != 0;
881 }
882 \f
883 /* Cover function to xmalloc to record bytes allocated. */
884
885 static void *
886 gmalloc (size_t size)
887 {
888 bytes_used += size;
889 return xmalloc (size);
890 }
891
892 /* Cover function to xcalloc to record bytes allocated. */
893
894 static void *
895 gcalloc (size_t nelem, size_t elsize)
896 {
897 bytes_used += nelem * elsize;
898 return xcalloc (nelem, elsize);
899 }
900
901 /* Cover function to xrealloc.
902 We don't record the additional size since we don't know it.
903 It won't affect memory usage stats much anyway. */
904
905 static void *
906 grealloc (void *ptr, size_t size)
907 {
908 return xrealloc (ptr, size);
909 }
910
911 /* Cover function to obstack_alloc. */
912
913 static void *
914 gcse_alloc (unsigned long size)
915 {
916 bytes_used += size;
917 return obstack_alloc (&gcse_obstack, size);
918 }
919
920 /* Allocate memory for the cuid mapping array,
921 and reg/memory set tracking tables.
922
923 This is called at the start of each pass. */
924
925 static void
926 alloc_gcse_mem (void)
927 {
928 int i;
929 basic_block bb;
930 rtx insn;
931
932 /* Find the largest UID and create a mapping from UIDs to CUIDs.
933 CUIDs are like UIDs except they increase monotonically, have no gaps,
934 and only apply to real insns.
935 (Actually, there are gaps, for insn that are not inside a basic block.
936 but we should never see those anyway, so this is OK.) */
937
938 max_uid = get_max_uid ();
939 uid_cuid = gcalloc (max_uid + 1, sizeof (int));
940 i = 0;
941 FOR_EACH_BB (bb)
942 FOR_BB_INSNS (bb, insn)
943 {
944 if (INSN_P (insn))
945 uid_cuid[INSN_UID (insn)] = i++;
946 else
947 uid_cuid[INSN_UID (insn)] = i;
948 }
949
950 /* Create a table mapping cuids to insns. */
951
952 max_cuid = i;
953 cuid_insn = gcalloc (max_cuid + 1, sizeof (rtx));
954 i = 0;
955 FOR_EACH_BB (bb)
956 FOR_BB_INSNS (bb, insn)
957 if (INSN_P (insn))
958 CUID_INSN (i++) = insn;
959
960 /* Allocate vars to track sets of regs. */
961 reg_set_bitmap = BITMAP_ALLOC (NULL);
962
963 /* Allocate vars to track sets of regs, memory per block. */
964 reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno);
965 /* Allocate array to keep a list of insns which modify memory in each
966 basic block. */
967 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
968 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
969 modify_mem_list_set = BITMAP_ALLOC (NULL);
970 blocks_with_calls = BITMAP_ALLOC (NULL);
971 }
972
973 /* Free memory allocated by alloc_gcse_mem. */
974
975 static void
976 free_gcse_mem (void)
977 {
978 free (uid_cuid);
979 free (cuid_insn);
980
981 BITMAP_FREE (reg_set_bitmap);
982
983 sbitmap_vector_free (reg_set_in_block);
984 free_modify_mem_tables ();
985 BITMAP_FREE (modify_mem_list_set);
986 BITMAP_FREE (blocks_with_calls);
987 }
988 \f
989 /* Compute the local properties of each recorded expression.
990
991 Local properties are those that are defined by the block, irrespective of
992 other blocks.
993
994 An expression is transparent in a block if its operands are not modified
995 in the block.
996
997 An expression is computed (locally available) in a block if it is computed
998 at least once and expression would contain the same value if the
999 computation was moved to the end of the block.
1000
1001 An expression is locally anticipatable in a block if it is computed at
1002 least once and expression would contain the same value if the computation
1003 was moved to the beginning of the block.
1004
1005 We call this routine for cprop, pre and code hoisting. They all compute
1006 basically the same information and thus can easily share this code.
1007
1008 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1009 properties. If NULL, then it is not necessary to compute or record that
1010 particular property.
1011
1012 TABLE controls which hash table to look at. If it is set hash table,
1013 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1014 ABSALTERED. */
1015
1016 static void
1017 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
1018 struct hash_table *table)
1019 {
1020 unsigned int i;
1021
1022 /* Initialize any bitmaps that were passed in. */
1023 if (transp)
1024 {
1025 if (table->set_p)
1026 sbitmap_vector_zero (transp, last_basic_block);
1027 else
1028 sbitmap_vector_ones (transp, last_basic_block);
1029 }
1030
1031 if (comp)
1032 sbitmap_vector_zero (comp, last_basic_block);
1033 if (antloc)
1034 sbitmap_vector_zero (antloc, last_basic_block);
1035
1036 for (i = 0; i < table->size; i++)
1037 {
1038 struct expr *expr;
1039
1040 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1041 {
1042 int indx = expr->bitmap_index;
1043 struct occr *occr;
1044
1045 /* The expression is transparent in this block if it is not killed.
1046 We start by assuming all are transparent [none are killed], and
1047 then reset the bits for those that are. */
1048 if (transp)
1049 compute_transp (expr->expr, indx, transp, table->set_p);
1050
1051 /* The occurrences recorded in antic_occr are exactly those that
1052 we want to set to nonzero in ANTLOC. */
1053 if (antloc)
1054 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1055 {
1056 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1057
1058 /* While we're scanning the table, this is a good place to
1059 initialize this. */
1060 occr->deleted_p = 0;
1061 }
1062
1063 /* The occurrences recorded in avail_occr are exactly those that
1064 we want to set to nonzero in COMP. */
1065 if (comp)
1066 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1067 {
1068 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1069
1070 /* While we're scanning the table, this is a good place to
1071 initialize this. */
1072 occr->copied_p = 0;
1073 }
1074
1075 /* While we're scanning the table, this is a good place to
1076 initialize this. */
1077 expr->reaching_reg = 0;
1078 }
1079 }
1080 }
1081 \f
1082 /* Register set information.
1083
1084 `reg_set_table' records where each register is set or otherwise
1085 modified. */
1086
1087 static struct obstack reg_set_obstack;
1088
1089 static void
1090 alloc_reg_set_mem (int n_regs)
1091 {
1092 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1093 reg_set_table = gcalloc (reg_set_table_size, sizeof (struct reg_set *));
1094
1095 gcc_obstack_init (&reg_set_obstack);
1096 }
1097
1098 static void
1099 free_reg_set_mem (void)
1100 {
1101 free (reg_set_table);
1102 obstack_free (&reg_set_obstack, NULL);
1103 }
1104
1105 /* Record REGNO in the reg_set table. */
1106
1107 static void
1108 record_one_set (int regno, rtx insn)
1109 {
1110 /* Allocate a new reg_set element and link it onto the list. */
1111 struct reg_set *new_reg_info;
1112
1113 /* If the table isn't big enough, enlarge it. */
1114 if (regno >= reg_set_table_size)
1115 {
1116 int new_size = regno + REG_SET_TABLE_SLOP;
1117
1118 reg_set_table = grealloc (reg_set_table,
1119 new_size * sizeof (struct reg_set *));
1120 memset (reg_set_table + reg_set_table_size, 0,
1121 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1122 reg_set_table_size = new_size;
1123 }
1124
1125 new_reg_info = obstack_alloc (&reg_set_obstack, sizeof (struct reg_set));
1126 bytes_used += sizeof (struct reg_set);
1127 new_reg_info->bb_index = BLOCK_NUM (insn);
1128 new_reg_info->next = reg_set_table[regno];
1129 reg_set_table[regno] = new_reg_info;
1130 }
1131
1132 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1133 an insn. The DATA is really the instruction in which the SET is
1134 occurring. */
1135
1136 static void
1137 record_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
1138 {
1139 rtx record_set_insn = (rtx) data;
1140
1141 if (REG_P (dest) && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1142 record_one_set (REGNO (dest), record_set_insn);
1143 }
1144
1145 /* Scan the function and record each set of each pseudo-register.
1146
1147 This is called once, at the start of the gcse pass. See the comments for
1148 `reg_set_table' for further documentation. */
1149
1150 static void
1151 compute_sets (void)
1152 {
1153 basic_block bb;
1154 rtx insn;
1155
1156 FOR_EACH_BB (bb)
1157 FOR_BB_INSNS (bb, insn)
1158 if (INSN_P (insn))
1159 note_stores (PATTERN (insn), record_set_info, insn);
1160 }
1161 \f
1162 /* Hash table support. */
1163
1164 struct reg_avail_info
1165 {
1166 basic_block last_bb;
1167 int first_set;
1168 int last_set;
1169 };
1170
1171 static struct reg_avail_info *reg_avail_info;
1172 static basic_block current_bb;
1173
1174
1175 /* See whether X, the source of a set, is something we want to consider for
1176 GCSE. */
1177
1178 static int
1179 want_to_gcse_p (rtx x)
1180 {
1181 switch (GET_CODE (x))
1182 {
1183 case REG:
1184 case SUBREG:
1185 case CONST_INT:
1186 case CONST_DOUBLE:
1187 case CONST_VECTOR:
1188 case CALL:
1189 return 0;
1190
1191 default:
1192 return can_assign_to_reg_p (x);
1193 }
1194 }
1195
1196 /* Used internally by can_assign_to_reg_p. */
1197
1198 static GTY(()) rtx test_insn;
1199
1200 /* Return true if we can assign X to a pseudo register. */
1201
1202 static bool
1203 can_assign_to_reg_p (rtx x)
1204 {
1205 int num_clobbers = 0;
1206 int icode;
1207
1208 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1209 if (general_operand (x, GET_MODE (x)))
1210 return 1;
1211 else if (GET_MODE (x) == VOIDmode)
1212 return 0;
1213
1214 /* Otherwise, check if we can make a valid insn from it. First initialize
1215 our test insn if we haven't already. */
1216 if (test_insn == 0)
1217 {
1218 test_insn
1219 = make_insn_raw (gen_rtx_SET (VOIDmode,
1220 gen_rtx_REG (word_mode,
1221 FIRST_PSEUDO_REGISTER * 2),
1222 const0_rtx));
1223 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1224 }
1225
1226 /* Now make an insn like the one we would make when GCSE'ing and see if
1227 valid. */
1228 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1229 SET_SRC (PATTERN (test_insn)) = x;
1230 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1231 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1232 }
1233
1234 /* Return nonzero if the operands of expression X are unchanged from the
1235 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1236 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1237
1238 static int
1239 oprs_unchanged_p (rtx x, rtx insn, int avail_p)
1240 {
1241 int i, j;
1242 enum rtx_code code;
1243 const char *fmt;
1244
1245 if (x == 0)
1246 return 1;
1247
1248 code = GET_CODE (x);
1249 switch (code)
1250 {
1251 case REG:
1252 {
1253 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1254
1255 if (info->last_bb != current_bb)
1256 return 1;
1257 if (avail_p)
1258 return info->last_set < INSN_CUID (insn);
1259 else
1260 return info->first_set >= INSN_CUID (insn);
1261 }
1262
1263 case MEM:
1264 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1265 x, avail_p))
1266 return 0;
1267 else
1268 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1269
1270 case PRE_DEC:
1271 case PRE_INC:
1272 case POST_DEC:
1273 case POST_INC:
1274 case PRE_MODIFY:
1275 case POST_MODIFY:
1276 return 0;
1277
1278 case PC:
1279 case CC0: /*FIXME*/
1280 case CONST:
1281 case CONST_INT:
1282 case CONST_DOUBLE:
1283 case CONST_VECTOR:
1284 case SYMBOL_REF:
1285 case LABEL_REF:
1286 case ADDR_VEC:
1287 case ADDR_DIFF_VEC:
1288 return 1;
1289
1290 default:
1291 break;
1292 }
1293
1294 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1295 {
1296 if (fmt[i] == 'e')
1297 {
1298 /* If we are about to do the last recursive call needed at this
1299 level, change it into iteration. This function is called enough
1300 to be worth it. */
1301 if (i == 0)
1302 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1303
1304 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1305 return 0;
1306 }
1307 else if (fmt[i] == 'E')
1308 for (j = 0; j < XVECLEN (x, i); j++)
1309 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1310 return 0;
1311 }
1312
1313 return 1;
1314 }
1315
1316 /* Used for communication between mems_conflict_for_gcse_p and
1317 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1318 conflict between two memory references. */
1319 static int gcse_mems_conflict_p;
1320
1321 /* Used for communication between mems_conflict_for_gcse_p and
1322 load_killed_in_block_p. A memory reference for a load instruction,
1323 mems_conflict_for_gcse_p will see if a memory store conflicts with
1324 this memory load. */
1325 static rtx gcse_mem_operand;
1326
1327 /* DEST is the output of an instruction. If it is a memory reference, and
1328 possibly conflicts with the load found in gcse_mem_operand, then set
1329 gcse_mems_conflict_p to a nonzero value. */
1330
1331 static void
1332 mems_conflict_for_gcse_p (rtx dest, rtx setter ATTRIBUTE_UNUSED,
1333 void *data ATTRIBUTE_UNUSED)
1334 {
1335 while (GET_CODE (dest) == SUBREG
1336 || GET_CODE (dest) == ZERO_EXTRACT
1337 || GET_CODE (dest) == STRICT_LOW_PART)
1338 dest = XEXP (dest, 0);
1339
1340 /* If DEST is not a MEM, then it will not conflict with the load. Note
1341 that function calls are assumed to clobber memory, but are handled
1342 elsewhere. */
1343 if (! MEM_P (dest))
1344 return;
1345
1346 /* If we are setting a MEM in our list of specially recognized MEMs,
1347 don't mark as killed this time. */
1348
1349 if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1350 {
1351 if (!find_rtx_in_ldst (dest))
1352 gcse_mems_conflict_p = 1;
1353 return;
1354 }
1355
1356 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1357 rtx_addr_varies_p))
1358 gcse_mems_conflict_p = 1;
1359 }
1360
1361 /* Return nonzero if the expression in X (a memory reference) is killed
1362 in block BB before or after the insn with the CUID in UID_LIMIT.
1363 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1364 before UID_LIMIT.
1365
1366 To check the entire block, set UID_LIMIT to max_uid + 1 and
1367 AVAIL_P to 0. */
1368
1369 static int
1370 load_killed_in_block_p (basic_block bb, int uid_limit, rtx x, int avail_p)
1371 {
1372 rtx list_entry = modify_mem_list[bb->index];
1373 while (list_entry)
1374 {
1375 rtx setter;
1376 /* Ignore entries in the list that do not apply. */
1377 if ((avail_p
1378 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1379 || (! avail_p
1380 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1381 {
1382 list_entry = XEXP (list_entry, 1);
1383 continue;
1384 }
1385
1386 setter = XEXP (list_entry, 0);
1387
1388 /* If SETTER is a call everything is clobbered. Note that calls
1389 to pure functions are never put on the list, so we need not
1390 worry about them. */
1391 if (CALL_P (setter))
1392 return 1;
1393
1394 /* SETTER must be an INSN of some kind that sets memory. Call
1395 note_stores to examine each hunk of memory that is modified.
1396
1397 The note_stores interface is pretty limited, so we have to
1398 communicate via global variables. Yuk. */
1399 gcse_mem_operand = x;
1400 gcse_mems_conflict_p = 0;
1401 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1402 if (gcse_mems_conflict_p)
1403 return 1;
1404 list_entry = XEXP (list_entry, 1);
1405 }
1406 return 0;
1407 }
1408
1409 /* Return nonzero if the operands of expression X are unchanged from
1410 the start of INSN's basic block up to but not including INSN. */
1411
1412 static int
1413 oprs_anticipatable_p (rtx x, rtx insn)
1414 {
1415 return oprs_unchanged_p (x, insn, 0);
1416 }
1417
1418 /* Return nonzero if the operands of expression X are unchanged from
1419 INSN to the end of INSN's basic block. */
1420
1421 static int
1422 oprs_available_p (rtx x, rtx insn)
1423 {
1424 return oprs_unchanged_p (x, insn, 1);
1425 }
1426
1427 /* Hash expression X.
1428
1429 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1430 indicating if a volatile operand is found or if the expression contains
1431 something we don't want to insert in the table. HASH_TABLE_SIZE is
1432 the current size of the hash table to be probed. */
1433
1434 static unsigned int
1435 hash_expr (rtx x, enum machine_mode mode, int *do_not_record_p,
1436 int hash_table_size)
1437 {
1438 unsigned int hash;
1439
1440 *do_not_record_p = 0;
1441
1442 hash = hash_rtx (x, mode, do_not_record_p,
1443 NULL, /*have_reg_qty=*/false);
1444 return hash % hash_table_size;
1445 }
1446
1447 /* Hash a set of register REGNO.
1448
1449 Sets are hashed on the register that is set. This simplifies the PRE copy
1450 propagation code.
1451
1452 ??? May need to make things more elaborate. Later, as necessary. */
1453
1454 static unsigned int
1455 hash_set (int regno, int hash_table_size)
1456 {
1457 unsigned int hash;
1458
1459 hash = regno;
1460 return hash % hash_table_size;
1461 }
1462
1463 /* Return nonzero if exp1 is equivalent to exp2. */
1464
1465 static int
1466 expr_equiv_p (rtx x, rtx y)
1467 {
1468 return exp_equiv_p (x, y, 0, true);
1469 }
1470
1471 /* Insert expression X in INSN in the hash TABLE.
1472 If it is already present, record it as the last occurrence in INSN's
1473 basic block.
1474
1475 MODE is the mode of the value X is being stored into.
1476 It is only used if X is a CONST_INT.
1477
1478 ANTIC_P is nonzero if X is an anticipatable expression.
1479 AVAIL_P is nonzero if X is an available expression. */
1480
1481 static void
1482 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1483 int avail_p, struct hash_table *table)
1484 {
1485 int found, do_not_record_p;
1486 unsigned int hash;
1487 struct expr *cur_expr, *last_expr = NULL;
1488 struct occr *antic_occr, *avail_occr;
1489
1490 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1491
1492 /* Do not insert expression in table if it contains volatile operands,
1493 or if hash_expr determines the expression is something we don't want
1494 to or can't handle. */
1495 if (do_not_record_p)
1496 return;
1497
1498 cur_expr = table->table[hash];
1499 found = 0;
1500
1501 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1502 {
1503 /* If the expression isn't found, save a pointer to the end of
1504 the list. */
1505 last_expr = cur_expr;
1506 cur_expr = cur_expr->next_same_hash;
1507 }
1508
1509 if (! found)
1510 {
1511 cur_expr = gcse_alloc (sizeof (struct expr));
1512 bytes_used += sizeof (struct expr);
1513 if (table->table[hash] == NULL)
1514 /* This is the first pattern that hashed to this index. */
1515 table->table[hash] = cur_expr;
1516 else
1517 /* Add EXPR to end of this hash chain. */
1518 last_expr->next_same_hash = cur_expr;
1519
1520 /* Set the fields of the expr element. */
1521 cur_expr->expr = x;
1522 cur_expr->bitmap_index = table->n_elems++;
1523 cur_expr->next_same_hash = NULL;
1524 cur_expr->antic_occr = NULL;
1525 cur_expr->avail_occr = NULL;
1526 }
1527
1528 /* Now record the occurrence(s). */
1529 if (antic_p)
1530 {
1531 antic_occr = cur_expr->antic_occr;
1532
1533 if (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1534 antic_occr = NULL;
1535
1536 if (antic_occr)
1537 /* Found another instance of the expression in the same basic block.
1538 Prefer the currently recorded one. We want the first one in the
1539 block and the block is scanned from start to end. */
1540 ; /* nothing to do */
1541 else
1542 {
1543 /* First occurrence of this expression in this basic block. */
1544 antic_occr = gcse_alloc (sizeof (struct occr));
1545 bytes_used += sizeof (struct occr);
1546 antic_occr->insn = insn;
1547 antic_occr->next = cur_expr->antic_occr;
1548 antic_occr->deleted_p = 0;
1549 cur_expr->antic_occr = antic_occr;
1550 }
1551 }
1552
1553 if (avail_p)
1554 {
1555 avail_occr = cur_expr->avail_occr;
1556
1557 if (avail_occr && BLOCK_NUM (avail_occr->insn) == BLOCK_NUM (insn))
1558 {
1559 /* Found another instance of the expression in the same basic block.
1560 Prefer this occurrence to the currently recorded one. We want
1561 the last one in the block and the block is scanned from start
1562 to end. */
1563 avail_occr->insn = insn;
1564 }
1565 else
1566 {
1567 /* First occurrence of this expression in this basic block. */
1568 avail_occr = gcse_alloc (sizeof (struct occr));
1569 bytes_used += sizeof (struct occr);
1570 avail_occr->insn = insn;
1571 avail_occr->next = cur_expr->avail_occr;
1572 avail_occr->deleted_p = 0;
1573 cur_expr->avail_occr = avail_occr;
1574 }
1575 }
1576 }
1577
1578 /* Insert pattern X in INSN in the hash table.
1579 X is a SET of a reg to either another reg or a constant.
1580 If it is already present, record it as the last occurrence in INSN's
1581 basic block. */
1582
1583 static void
1584 insert_set_in_table (rtx x, rtx insn, struct hash_table *table)
1585 {
1586 int found;
1587 unsigned int hash;
1588 struct expr *cur_expr, *last_expr = NULL;
1589 struct occr *cur_occr;
1590
1591 gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
1592
1593 hash = hash_set (REGNO (SET_DEST (x)), table->size);
1594
1595 cur_expr = table->table[hash];
1596 found = 0;
1597
1598 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1599 {
1600 /* If the expression isn't found, save a pointer to the end of
1601 the list. */
1602 last_expr = cur_expr;
1603 cur_expr = cur_expr->next_same_hash;
1604 }
1605
1606 if (! found)
1607 {
1608 cur_expr = gcse_alloc (sizeof (struct expr));
1609 bytes_used += sizeof (struct expr);
1610 if (table->table[hash] == NULL)
1611 /* This is the first pattern that hashed to this index. */
1612 table->table[hash] = cur_expr;
1613 else
1614 /* Add EXPR to end of this hash chain. */
1615 last_expr->next_same_hash = cur_expr;
1616
1617 /* Set the fields of the expr element.
1618 We must copy X because it can be modified when copy propagation is
1619 performed on its operands. */
1620 cur_expr->expr = copy_rtx (x);
1621 cur_expr->bitmap_index = table->n_elems++;
1622 cur_expr->next_same_hash = NULL;
1623 cur_expr->antic_occr = NULL;
1624 cur_expr->avail_occr = NULL;
1625 }
1626
1627 /* Now record the occurrence. */
1628 cur_occr = cur_expr->avail_occr;
1629
1630 if (cur_occr && BLOCK_NUM (cur_occr->insn) == BLOCK_NUM (insn))
1631 {
1632 /* Found another instance of the expression in the same basic block.
1633 Prefer this occurrence to the currently recorded one. We want
1634 the last one in the block and the block is scanned from start
1635 to end. */
1636 cur_occr->insn = insn;
1637 }
1638 else
1639 {
1640 /* First occurrence of this expression in this basic block. */
1641 cur_occr = gcse_alloc (sizeof (struct occr));
1642 bytes_used += sizeof (struct occr);
1643
1644 cur_occr->insn = insn;
1645 cur_occr->next = cur_expr->avail_occr;
1646 cur_occr->deleted_p = 0;
1647 cur_expr->avail_occr = cur_occr;
1648 }
1649 }
1650
1651 /* Determine whether the rtx X should be treated as a constant for
1652 the purposes of GCSE's constant propagation. */
1653
1654 static bool
1655 gcse_constant_p (rtx x)
1656 {
1657 /* Consider a COMPARE of two integers constant. */
1658 if (GET_CODE (x) == COMPARE
1659 && GET_CODE (XEXP (x, 0)) == CONST_INT
1660 && GET_CODE (XEXP (x, 1)) == CONST_INT)
1661 return true;
1662
1663 /* Consider a COMPARE of the same registers is a constant
1664 if they are not floating point registers. */
1665 if (GET_CODE(x) == COMPARE
1666 && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
1667 && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
1668 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
1669 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
1670 return true;
1671
1672 return CONSTANT_P (x);
1673 }
1674
1675 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1676 expression one). */
1677
1678 static void
1679 hash_scan_set (rtx pat, rtx insn, struct hash_table *table)
1680 {
1681 rtx src = SET_SRC (pat);
1682 rtx dest = SET_DEST (pat);
1683 rtx note;
1684
1685 if (GET_CODE (src) == CALL)
1686 hash_scan_call (src, insn, table);
1687
1688 else if (REG_P (dest))
1689 {
1690 unsigned int regno = REGNO (dest);
1691 rtx tmp;
1692
1693 /* If this is a single set and we are doing constant propagation,
1694 see if a REG_NOTE shows this equivalent to a constant. */
1695 if (table->set_p && (note = find_reg_equal_equiv_note (insn)) != 0
1696 && gcse_constant_p (XEXP (note, 0)))
1697 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
1698
1699 /* Only record sets of pseudo-regs in the hash table. */
1700 if (! table->set_p
1701 && regno >= FIRST_PSEUDO_REGISTER
1702 /* Don't GCSE something if we can't do a reg/reg copy. */
1703 && can_copy_p (GET_MODE (dest))
1704 /* GCSE commonly inserts instruction after the insn. We can't
1705 do that easily for EH_REGION notes so disable GCSE on these
1706 for now. */
1707 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1708 /* Is SET_SRC something we want to gcse? */
1709 && want_to_gcse_p (src)
1710 /* Don't CSE a nop. */
1711 && ! set_noop_p (pat)
1712 /* Don't GCSE if it has attached REG_EQUIV note.
1713 At this point this only function parameters should have
1714 REG_EQUIV notes and if the argument slot is used somewhere
1715 explicitly, it means address of parameter has been taken,
1716 so we should not extend the lifetime of the pseudo. */
1717 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1718 || ! MEM_P (XEXP (note, 0))))
1719 {
1720 /* An expression is not anticipatable if its operands are
1721 modified before this insn or if this is not the only SET in
1722 this insn. */
1723 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
1724 /* An expression is not available if its operands are
1725 subsequently modified, including this insn. It's also not
1726 available if this is a branch, because we can't insert
1727 a set after the branch. */
1728 int avail_p = (oprs_available_p (src, insn)
1729 && ! JUMP_P (insn));
1730
1731 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
1732 }
1733
1734 /* Record sets for constant/copy propagation. */
1735 else if (table->set_p
1736 && regno >= FIRST_PSEUDO_REGISTER
1737 && ((REG_P (src)
1738 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1739 && can_copy_p (GET_MODE (dest))
1740 && REGNO (src) != regno)
1741 || gcse_constant_p (src))
1742 /* A copy is not available if its src or dest is subsequently
1743 modified. Here we want to search from INSN+1 on, but
1744 oprs_available_p searches from INSN on. */
1745 && (insn == BB_END (BLOCK_FOR_INSN (insn))
1746 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
1747 && oprs_available_p (pat, tmp))))
1748 insert_set_in_table (pat, insn, table);
1749 }
1750 /* In case of store we want to consider the memory value as available in
1751 the REG stored in that memory. This makes it possible to remove
1752 redundant loads from due to stores to the same location. */
1753 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1754 {
1755 unsigned int regno = REGNO (src);
1756
1757 /* Do not do this for constant/copy propagation. */
1758 if (! table->set_p
1759 /* Only record sets of pseudo-regs in the hash table. */
1760 && regno >= FIRST_PSEUDO_REGISTER
1761 /* Don't GCSE something if we can't do a reg/reg copy. */
1762 && can_copy_p (GET_MODE (src))
1763 /* GCSE commonly inserts instruction after the insn. We can't
1764 do that easily for EH_REGION notes so disable GCSE on these
1765 for now. */
1766 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1767 /* Is SET_DEST something we want to gcse? */
1768 && want_to_gcse_p (dest)
1769 /* Don't CSE a nop. */
1770 && ! set_noop_p (pat)
1771 /* Don't GCSE if it has attached REG_EQUIV note.
1772 At this point this only function parameters should have
1773 REG_EQUIV notes and if the argument slot is used somewhere
1774 explicitly, it means address of parameter has been taken,
1775 so we should not extend the lifetime of the pseudo. */
1776 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1777 || ! MEM_P (XEXP (note, 0))))
1778 {
1779 /* Stores are never anticipatable. */
1780 int antic_p = 0;
1781 /* An expression is not available if its operands are
1782 subsequently modified, including this insn. It's also not
1783 available if this is a branch, because we can't insert
1784 a set after the branch. */
1785 int avail_p = oprs_available_p (dest, insn)
1786 && ! JUMP_P (insn);
1787
1788 /* Record the memory expression (DEST) in the hash table. */
1789 insert_expr_in_table (dest, GET_MODE (dest), insn,
1790 antic_p, avail_p, table);
1791 }
1792 }
1793 }
1794
1795 static void
1796 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1797 struct hash_table *table ATTRIBUTE_UNUSED)
1798 {
1799 /* Currently nothing to do. */
1800 }
1801
1802 static void
1803 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1804 struct hash_table *table ATTRIBUTE_UNUSED)
1805 {
1806 /* Currently nothing to do. */
1807 }
1808
1809 /* Process INSN and add hash table entries as appropriate.
1810
1811 Only available expressions that set a single pseudo-reg are recorded.
1812
1813 Single sets in a PARALLEL could be handled, but it's an extra complication
1814 that isn't dealt with right now. The trick is handling the CLOBBERs that
1815 are also in the PARALLEL. Later.
1816
1817 If SET_P is nonzero, this is for the assignment hash table,
1818 otherwise it is for the expression hash table.
1819 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1820 not record any expressions. */
1821
1822 static void
1823 hash_scan_insn (rtx insn, struct hash_table *table, int in_libcall_block)
1824 {
1825 rtx pat = PATTERN (insn);
1826 int i;
1827
1828 if (in_libcall_block)
1829 return;
1830
1831 /* Pick out the sets of INSN and for other forms of instructions record
1832 what's been modified. */
1833
1834 if (GET_CODE (pat) == SET)
1835 hash_scan_set (pat, insn, table);
1836 else if (GET_CODE (pat) == PARALLEL)
1837 for (i = 0; i < XVECLEN (pat, 0); i++)
1838 {
1839 rtx x = XVECEXP (pat, 0, i);
1840
1841 if (GET_CODE (x) == SET)
1842 hash_scan_set (x, insn, table);
1843 else if (GET_CODE (x) == CLOBBER)
1844 hash_scan_clobber (x, insn, table);
1845 else if (GET_CODE (x) == CALL)
1846 hash_scan_call (x, insn, table);
1847 }
1848
1849 else if (GET_CODE (pat) == CLOBBER)
1850 hash_scan_clobber (pat, insn, table);
1851 else if (GET_CODE (pat) == CALL)
1852 hash_scan_call (pat, insn, table);
1853 }
1854
1855 static void
1856 dump_hash_table (FILE *file, const char *name, struct hash_table *table)
1857 {
1858 int i;
1859 /* Flattened out table, so it's printed in proper order. */
1860 struct expr **flat_table;
1861 unsigned int *hash_val;
1862 struct expr *expr;
1863
1864 flat_table = xcalloc (table->n_elems, sizeof (struct expr *));
1865 hash_val = xmalloc (table->n_elems * sizeof (unsigned int));
1866
1867 for (i = 0; i < (int) table->size; i++)
1868 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1869 {
1870 flat_table[expr->bitmap_index] = expr;
1871 hash_val[expr->bitmap_index] = i;
1872 }
1873
1874 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1875 name, table->size, table->n_elems);
1876
1877 for (i = 0; i < (int) table->n_elems; i++)
1878 if (flat_table[i] != 0)
1879 {
1880 expr = flat_table[i];
1881 fprintf (file, "Index %d (hash value %d)\n ",
1882 expr->bitmap_index, hash_val[i]);
1883 print_rtl (file, expr->expr);
1884 fprintf (file, "\n");
1885 }
1886
1887 fprintf (file, "\n");
1888
1889 free (flat_table);
1890 free (hash_val);
1891 }
1892
1893 /* Record register first/last/block set information for REGNO in INSN.
1894
1895 first_set records the first place in the block where the register
1896 is set and is used to compute "anticipatability".
1897
1898 last_set records the last place in the block where the register
1899 is set and is used to compute "availability".
1900
1901 last_bb records the block for which first_set and last_set are
1902 valid, as a quick test to invalidate them.
1903
1904 reg_set_in_block records whether the register is set in the block
1905 and is used to compute "transparency". */
1906
1907 static void
1908 record_last_reg_set_info (rtx insn, int regno)
1909 {
1910 struct reg_avail_info *info = &reg_avail_info[regno];
1911 int cuid = INSN_CUID (insn);
1912
1913 info->last_set = cuid;
1914 if (info->last_bb != current_bb)
1915 {
1916 info->last_bb = current_bb;
1917 info->first_set = cuid;
1918 SET_BIT (reg_set_in_block[current_bb->index], regno);
1919 }
1920 }
1921
1922
1923 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1924 Note we store a pair of elements in the list, so they have to be
1925 taken off pairwise. */
1926
1927 static void
1928 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, rtx unused1 ATTRIBUTE_UNUSED,
1929 void * v_insn)
1930 {
1931 rtx dest_addr, insn;
1932 int bb;
1933
1934 while (GET_CODE (dest) == SUBREG
1935 || GET_CODE (dest) == ZERO_EXTRACT
1936 || GET_CODE (dest) == STRICT_LOW_PART)
1937 dest = XEXP (dest, 0);
1938
1939 /* If DEST is not a MEM, then it will not conflict with a load. Note
1940 that function calls are assumed to clobber memory, but are handled
1941 elsewhere. */
1942
1943 if (! MEM_P (dest))
1944 return;
1945
1946 dest_addr = get_addr (XEXP (dest, 0));
1947 dest_addr = canon_rtx (dest_addr);
1948 insn = (rtx) v_insn;
1949 bb = BLOCK_NUM (insn);
1950
1951 canon_modify_mem_list[bb] =
1952 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
1953 canon_modify_mem_list[bb] =
1954 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
1955 }
1956
1957 /* Record memory modification information for INSN. We do not actually care
1958 about the memory location(s) that are set, or even how they are set (consider
1959 a CALL_INSN). We merely need to record which insns modify memory. */
1960
1961 static void
1962 record_last_mem_set_info (rtx insn)
1963 {
1964 int bb = BLOCK_NUM (insn);
1965
1966 /* load_killed_in_block_p will handle the case of calls clobbering
1967 everything. */
1968 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
1969 bitmap_set_bit (modify_mem_list_set, bb);
1970
1971 if (CALL_P (insn))
1972 {
1973 /* Note that traversals of this loop (other than for free-ing)
1974 will break after encountering a CALL_INSN. So, there's no
1975 need to insert a pair of items, as canon_list_insert does. */
1976 canon_modify_mem_list[bb] =
1977 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
1978 bitmap_set_bit (blocks_with_calls, bb);
1979 }
1980 else
1981 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1982 }
1983
1984 /* Called from compute_hash_table via note_stores to handle one
1985 SET or CLOBBER in an insn. DATA is really the instruction in which
1986 the SET is taking place. */
1987
1988 static void
1989 record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
1990 {
1991 rtx last_set_insn = (rtx) data;
1992
1993 if (GET_CODE (dest) == SUBREG)
1994 dest = SUBREG_REG (dest);
1995
1996 if (REG_P (dest))
1997 record_last_reg_set_info (last_set_insn, REGNO (dest));
1998 else if (MEM_P (dest)
1999 /* Ignore pushes, they clobber nothing. */
2000 && ! push_operand (dest, GET_MODE (dest)))
2001 record_last_mem_set_info (last_set_insn);
2002 }
2003
2004 /* Top level function to create an expression or assignment hash table.
2005
2006 Expression entries are placed in the hash table if
2007 - they are of the form (set (pseudo-reg) src),
2008 - src is something we want to perform GCSE on,
2009 - none of the operands are subsequently modified in the block
2010
2011 Assignment entries are placed in the hash table if
2012 - they are of the form (set (pseudo-reg) src),
2013 - src is something we want to perform const/copy propagation on,
2014 - none of the operands or target are subsequently modified in the block
2015
2016 Currently src must be a pseudo-reg or a const_int.
2017
2018 TABLE is the table computed. */
2019
2020 static void
2021 compute_hash_table_work (struct hash_table *table)
2022 {
2023 unsigned int i;
2024
2025 /* While we compute the hash table we also compute a bit array of which
2026 registers are set in which blocks.
2027 ??? This isn't needed during const/copy propagation, but it's cheap to
2028 compute. Later. */
2029 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2030
2031 /* re-Cache any INSN_LIST nodes we have allocated. */
2032 clear_modify_mem_tables ();
2033 /* Some working arrays used to track first and last set in each block. */
2034 reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2035
2036 for (i = 0; i < max_gcse_regno; ++i)
2037 reg_avail_info[i].last_bb = NULL;
2038
2039 FOR_EACH_BB (current_bb)
2040 {
2041 rtx insn;
2042 unsigned int regno;
2043 int in_libcall_block;
2044
2045 /* First pass over the instructions records information used to
2046 determine when registers and memory are first and last set.
2047 ??? hard-reg reg_set_in_block computation
2048 could be moved to compute_sets since they currently don't change. */
2049
2050 FOR_BB_INSNS (current_bb, insn)
2051 {
2052 if (! INSN_P (insn))
2053 continue;
2054
2055 if (CALL_P (insn))
2056 {
2057 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2058 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2059 record_last_reg_set_info (insn, regno);
2060
2061 mark_call (insn);
2062 }
2063
2064 note_stores (PATTERN (insn), record_last_set_info, insn);
2065 }
2066
2067 /* Insert implicit sets in the hash table. */
2068 if (table->set_p
2069 && implicit_sets[current_bb->index] != NULL_RTX)
2070 hash_scan_set (implicit_sets[current_bb->index],
2071 BB_HEAD (current_bb), table);
2072
2073 /* The next pass builds the hash table. */
2074 in_libcall_block = 0;
2075 FOR_BB_INSNS (current_bb, insn)
2076 if (INSN_P (insn))
2077 {
2078 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2079 in_libcall_block = 1;
2080 else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2081 in_libcall_block = 0;
2082 hash_scan_insn (insn, table, in_libcall_block);
2083 if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2084 in_libcall_block = 0;
2085 }
2086 }
2087
2088 free (reg_avail_info);
2089 reg_avail_info = NULL;
2090 }
2091
2092 /* Allocate space for the set/expr hash TABLE.
2093 N_INSNS is the number of instructions in the function.
2094 It is used to determine the number of buckets to use.
2095 SET_P determines whether set or expression table will
2096 be created. */
2097
2098 static void
2099 alloc_hash_table (int n_insns, struct hash_table *table, int set_p)
2100 {
2101 int n;
2102
2103 table->size = n_insns / 4;
2104 if (table->size < 11)
2105 table->size = 11;
2106
2107 /* Attempt to maintain efficient use of hash table.
2108 Making it an odd number is simplest for now.
2109 ??? Later take some measurements. */
2110 table->size |= 1;
2111 n = table->size * sizeof (struct expr *);
2112 table->table = gmalloc (n);
2113 table->set_p = set_p;
2114 }
2115
2116 /* Free things allocated by alloc_hash_table. */
2117
2118 static void
2119 free_hash_table (struct hash_table *table)
2120 {
2121 free (table->table);
2122 }
2123
2124 /* Compute the hash TABLE for doing copy/const propagation or
2125 expression hash table. */
2126
2127 static void
2128 compute_hash_table (struct hash_table *table)
2129 {
2130 /* Initialize count of number of entries in hash table. */
2131 table->n_elems = 0;
2132 memset (table->table, 0, table->size * sizeof (struct expr *));
2133
2134 compute_hash_table_work (table);
2135 }
2136 \f
2137 /* Expression tracking support. */
2138
2139 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2140 table entry, or NULL if not found. */
2141
2142 static struct expr *
2143 lookup_set (unsigned int regno, struct hash_table *table)
2144 {
2145 unsigned int hash = hash_set (regno, table->size);
2146 struct expr *expr;
2147
2148 expr = table->table[hash];
2149
2150 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2151 expr = expr->next_same_hash;
2152
2153 return expr;
2154 }
2155
2156 /* Return the next entry for REGNO in list EXPR. */
2157
2158 static struct expr *
2159 next_set (unsigned int regno, struct expr *expr)
2160 {
2161 do
2162 expr = expr->next_same_hash;
2163 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2164
2165 return expr;
2166 }
2167
2168 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2169 types may be mixed. */
2170
2171 static void
2172 free_insn_expr_list_list (rtx *listp)
2173 {
2174 rtx list, next;
2175
2176 for (list = *listp; list ; list = next)
2177 {
2178 next = XEXP (list, 1);
2179 if (GET_CODE (list) == EXPR_LIST)
2180 free_EXPR_LIST_node (list);
2181 else
2182 free_INSN_LIST_node (list);
2183 }
2184
2185 *listp = NULL;
2186 }
2187
2188 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2189 static void
2190 clear_modify_mem_tables (void)
2191 {
2192 unsigned i;
2193 bitmap_iterator bi;
2194
2195 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
2196 {
2197 free_INSN_LIST_list (modify_mem_list + i);
2198 free_insn_expr_list_list (canon_modify_mem_list + i);
2199 }
2200 bitmap_clear (modify_mem_list_set);
2201 bitmap_clear (blocks_with_calls);
2202 }
2203
2204 /* Release memory used by modify_mem_list_set. */
2205
2206 static void
2207 free_modify_mem_tables (void)
2208 {
2209 clear_modify_mem_tables ();
2210 free (modify_mem_list);
2211 free (canon_modify_mem_list);
2212 modify_mem_list = 0;
2213 canon_modify_mem_list = 0;
2214 }
2215
2216 /* Reset tables used to keep track of what's still available [since the
2217 start of the block]. */
2218
2219 static void
2220 reset_opr_set_tables (void)
2221 {
2222 /* Maintain a bitmap of which regs have been set since beginning of
2223 the block. */
2224 CLEAR_REG_SET (reg_set_bitmap);
2225
2226 /* Also keep a record of the last instruction to modify memory.
2227 For now this is very trivial, we only record whether any memory
2228 location has been modified. */
2229 clear_modify_mem_tables ();
2230 }
2231
2232 /* Return nonzero if the operands of X are not set before INSN in
2233 INSN's basic block. */
2234
2235 static int
2236 oprs_not_set_p (rtx x, rtx insn)
2237 {
2238 int i, j;
2239 enum rtx_code code;
2240 const char *fmt;
2241
2242 if (x == 0)
2243 return 1;
2244
2245 code = GET_CODE (x);
2246 switch (code)
2247 {
2248 case PC:
2249 case CC0:
2250 case CONST:
2251 case CONST_INT:
2252 case CONST_DOUBLE:
2253 case CONST_VECTOR:
2254 case SYMBOL_REF:
2255 case LABEL_REF:
2256 case ADDR_VEC:
2257 case ADDR_DIFF_VEC:
2258 return 1;
2259
2260 case MEM:
2261 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2262 INSN_CUID (insn), x, 0))
2263 return 0;
2264 else
2265 return oprs_not_set_p (XEXP (x, 0), insn);
2266
2267 case REG:
2268 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2269
2270 default:
2271 break;
2272 }
2273
2274 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2275 {
2276 if (fmt[i] == 'e')
2277 {
2278 /* If we are about to do the last recursive call
2279 needed at this level, change it into iteration.
2280 This function is called enough to be worth it. */
2281 if (i == 0)
2282 return oprs_not_set_p (XEXP (x, i), insn);
2283
2284 if (! oprs_not_set_p (XEXP (x, i), insn))
2285 return 0;
2286 }
2287 else if (fmt[i] == 'E')
2288 for (j = 0; j < XVECLEN (x, i); j++)
2289 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2290 return 0;
2291 }
2292
2293 return 1;
2294 }
2295
2296 /* Mark things set by a CALL. */
2297
2298 static void
2299 mark_call (rtx insn)
2300 {
2301 if (! CONST_OR_PURE_CALL_P (insn))
2302 record_last_mem_set_info (insn);
2303 }
2304
2305 /* Mark things set by a SET. */
2306
2307 static void
2308 mark_set (rtx pat, rtx insn)
2309 {
2310 rtx dest = SET_DEST (pat);
2311
2312 while (GET_CODE (dest) == SUBREG
2313 || GET_CODE (dest) == ZERO_EXTRACT
2314 || GET_CODE (dest) == STRICT_LOW_PART)
2315 dest = XEXP (dest, 0);
2316
2317 if (REG_P (dest))
2318 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2319 else if (MEM_P (dest))
2320 record_last_mem_set_info (insn);
2321
2322 if (GET_CODE (SET_SRC (pat)) == CALL)
2323 mark_call (insn);
2324 }
2325
2326 /* Record things set by a CLOBBER. */
2327
2328 static void
2329 mark_clobber (rtx pat, rtx insn)
2330 {
2331 rtx clob = XEXP (pat, 0);
2332
2333 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2334 clob = XEXP (clob, 0);
2335
2336 if (REG_P (clob))
2337 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2338 else
2339 record_last_mem_set_info (insn);
2340 }
2341
2342 /* Record things set by INSN.
2343 This data is used by oprs_not_set_p. */
2344
2345 static void
2346 mark_oprs_set (rtx insn)
2347 {
2348 rtx pat = PATTERN (insn);
2349 int i;
2350
2351 if (GET_CODE (pat) == SET)
2352 mark_set (pat, insn);
2353 else if (GET_CODE (pat) == PARALLEL)
2354 for (i = 0; i < XVECLEN (pat, 0); i++)
2355 {
2356 rtx x = XVECEXP (pat, 0, i);
2357
2358 if (GET_CODE (x) == SET)
2359 mark_set (x, insn);
2360 else if (GET_CODE (x) == CLOBBER)
2361 mark_clobber (x, insn);
2362 else if (GET_CODE (x) == CALL)
2363 mark_call (insn);
2364 }
2365
2366 else if (GET_CODE (pat) == CLOBBER)
2367 mark_clobber (pat, insn);
2368 else if (GET_CODE (pat) == CALL)
2369 mark_call (insn);
2370 }
2371
2372 \f
2373 /* Compute copy/constant propagation working variables. */
2374
2375 /* Local properties of assignments. */
2376 static sbitmap *cprop_pavloc;
2377 static sbitmap *cprop_absaltered;
2378
2379 /* Global properties of assignments (computed from the local properties). */
2380 static sbitmap *cprop_avin;
2381 static sbitmap *cprop_avout;
2382
2383 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2384 basic blocks. N_SETS is the number of sets. */
2385
2386 static void
2387 alloc_cprop_mem (int n_blocks, int n_sets)
2388 {
2389 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2390 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2391
2392 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2393 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2394 }
2395
2396 /* Free vars used by copy/const propagation. */
2397
2398 static void
2399 free_cprop_mem (void)
2400 {
2401 sbitmap_vector_free (cprop_pavloc);
2402 sbitmap_vector_free (cprop_absaltered);
2403 sbitmap_vector_free (cprop_avin);
2404 sbitmap_vector_free (cprop_avout);
2405 }
2406
2407 /* For each block, compute whether X is transparent. X is either an
2408 expression or an assignment [though we don't care which, for this context
2409 an assignment is treated as an expression]. For each block where an
2410 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2411 bit in BMAP. */
2412
2413 static void
2414 compute_transp (rtx x, int indx, sbitmap *bmap, int set_p)
2415 {
2416 int i, j;
2417 basic_block bb;
2418 enum rtx_code code;
2419 reg_set *r;
2420 const char *fmt;
2421
2422 /* repeat is used to turn tail-recursion into iteration since GCC
2423 can't do it when there's no return value. */
2424 repeat:
2425
2426 if (x == 0)
2427 return;
2428
2429 code = GET_CODE (x);
2430 switch (code)
2431 {
2432 case REG:
2433 if (set_p)
2434 {
2435 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2436 {
2437 FOR_EACH_BB (bb)
2438 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2439 SET_BIT (bmap[bb->index], indx);
2440 }
2441 else
2442 {
2443 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2444 SET_BIT (bmap[r->bb_index], indx);
2445 }
2446 }
2447 else
2448 {
2449 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2450 {
2451 FOR_EACH_BB (bb)
2452 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2453 RESET_BIT (bmap[bb->index], indx);
2454 }
2455 else
2456 {
2457 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2458 RESET_BIT (bmap[r->bb_index], indx);
2459 }
2460 }
2461
2462 return;
2463
2464 case MEM:
2465 {
2466 bitmap_iterator bi;
2467 unsigned bb_index;
2468
2469 /* First handle all the blocks with calls. We don't need to
2470 do any list walking for them. */
2471 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
2472 {
2473 if (set_p)
2474 SET_BIT (bmap[bb_index], indx);
2475 else
2476 RESET_BIT (bmap[bb_index], indx);
2477 }
2478
2479 /* Now iterate over the blocks which have memory modifications
2480 but which do not have any calls. */
2481 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set, blocks_with_calls,
2482 0, bb_index, bi)
2483 {
2484 rtx list_entry = canon_modify_mem_list[bb_index];
2485
2486 while (list_entry)
2487 {
2488 rtx dest, dest_addr;
2489
2490 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2491 Examine each hunk of memory that is modified. */
2492
2493 dest = XEXP (list_entry, 0);
2494 list_entry = XEXP (list_entry, 1);
2495 dest_addr = XEXP (list_entry, 0);
2496
2497 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2498 x, rtx_addr_varies_p))
2499 {
2500 if (set_p)
2501 SET_BIT (bmap[bb_index], indx);
2502 else
2503 RESET_BIT (bmap[bb_index], indx);
2504 break;
2505 }
2506 list_entry = XEXP (list_entry, 1);
2507 }
2508 }
2509 }
2510
2511 x = XEXP (x, 0);
2512 goto repeat;
2513
2514 case PC:
2515 case CC0: /*FIXME*/
2516 case CONST:
2517 case CONST_INT:
2518 case CONST_DOUBLE:
2519 case CONST_VECTOR:
2520 case SYMBOL_REF:
2521 case LABEL_REF:
2522 case ADDR_VEC:
2523 case ADDR_DIFF_VEC:
2524 return;
2525
2526 default:
2527 break;
2528 }
2529
2530 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2531 {
2532 if (fmt[i] == 'e')
2533 {
2534 /* If we are about to do the last recursive call
2535 needed at this level, change it into iteration.
2536 This function is called enough to be worth it. */
2537 if (i == 0)
2538 {
2539 x = XEXP (x, i);
2540 goto repeat;
2541 }
2542
2543 compute_transp (XEXP (x, i), indx, bmap, set_p);
2544 }
2545 else if (fmt[i] == 'E')
2546 for (j = 0; j < XVECLEN (x, i); j++)
2547 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2548 }
2549 }
2550
2551 /* Top level routine to do the dataflow analysis needed by copy/const
2552 propagation. */
2553
2554 static void
2555 compute_cprop_data (void)
2556 {
2557 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2558 compute_available (cprop_pavloc, cprop_absaltered,
2559 cprop_avout, cprop_avin);
2560 }
2561 \f
2562 /* Copy/constant propagation. */
2563
2564 /* Maximum number of register uses in an insn that we handle. */
2565 #define MAX_USES 8
2566
2567 /* Table of uses found in an insn.
2568 Allocated statically to avoid alloc/free complexity and overhead. */
2569 static struct reg_use reg_use_table[MAX_USES];
2570
2571 /* Index into `reg_use_table' while building it. */
2572 static int reg_use_count;
2573
2574 /* Set up a list of register numbers used in INSN. The found uses are stored
2575 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2576 and contains the number of uses in the table upon exit.
2577
2578 ??? If a register appears multiple times we will record it multiple times.
2579 This doesn't hurt anything but it will slow things down. */
2580
2581 static void
2582 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
2583 {
2584 int i, j;
2585 enum rtx_code code;
2586 const char *fmt;
2587 rtx x = *xptr;
2588
2589 /* repeat is used to turn tail-recursion into iteration since GCC
2590 can't do it when there's no return value. */
2591 repeat:
2592 if (x == 0)
2593 return;
2594
2595 code = GET_CODE (x);
2596 if (REG_P (x))
2597 {
2598 if (reg_use_count == MAX_USES)
2599 return;
2600
2601 reg_use_table[reg_use_count].reg_rtx = x;
2602 reg_use_count++;
2603 }
2604
2605 /* Recursively scan the operands of this expression. */
2606
2607 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2608 {
2609 if (fmt[i] == 'e')
2610 {
2611 /* If we are about to do the last recursive call
2612 needed at this level, change it into iteration.
2613 This function is called enough to be worth it. */
2614 if (i == 0)
2615 {
2616 x = XEXP (x, 0);
2617 goto repeat;
2618 }
2619
2620 find_used_regs (&XEXP (x, i), data);
2621 }
2622 else if (fmt[i] == 'E')
2623 for (j = 0; j < XVECLEN (x, i); j++)
2624 find_used_regs (&XVECEXP (x, i, j), data);
2625 }
2626 }
2627
2628 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2629 Returns nonzero is successful. */
2630
2631 static int
2632 try_replace_reg (rtx from, rtx to, rtx insn)
2633 {
2634 rtx note = find_reg_equal_equiv_note (insn);
2635 rtx src = 0;
2636 int success = 0;
2637 rtx set = single_set (insn);
2638
2639 validate_replace_src_group (from, to, insn);
2640 if (num_changes_pending () && apply_change_group ())
2641 success = 1;
2642
2643 /* Try to simplify SET_SRC if we have substituted a constant. */
2644 if (success && set && CONSTANT_P (to))
2645 {
2646 src = simplify_rtx (SET_SRC (set));
2647
2648 if (src)
2649 validate_change (insn, &SET_SRC (set), src, 0);
2650 }
2651
2652 /* If there is already a NOTE, update the expression in it with our
2653 replacement. */
2654 if (note != 0)
2655 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
2656
2657 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
2658 {
2659 /* If above failed and this is a single set, try to simplify the source of
2660 the set given our substitution. We could perhaps try this for multiple
2661 SETs, but it probably won't buy us anything. */
2662 src = simplify_replace_rtx (SET_SRC (set), from, to);
2663
2664 if (!rtx_equal_p (src, SET_SRC (set))
2665 && validate_change (insn, &SET_SRC (set), src, 0))
2666 success = 1;
2667
2668 /* If we've failed to do replacement, have a single SET, don't already
2669 have a note, and have no special SET, add a REG_EQUAL note to not
2670 lose information. */
2671 if (!success && note == 0 && set != 0
2672 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT)
2673 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2674 }
2675
2676 /* REG_EQUAL may get simplified into register.
2677 We don't allow that. Remove that note. This code ought
2678 not to happen, because previous code ought to synthesize
2679 reg-reg move, but be on the safe side. */
2680 if (note && REG_P (XEXP (note, 0)))
2681 remove_note (insn, note);
2682
2683 return success;
2684 }
2685
2686 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2687 NULL no such set is found. */
2688
2689 static struct expr *
2690 find_avail_set (int regno, rtx insn)
2691 {
2692 /* SET1 contains the last set found that can be returned to the caller for
2693 use in a substitution. */
2694 struct expr *set1 = 0;
2695
2696 /* Loops are not possible here. To get a loop we would need two sets
2697 available at the start of the block containing INSN. i.e. we would
2698 need two sets like this available at the start of the block:
2699
2700 (set (reg X) (reg Y))
2701 (set (reg Y) (reg X))
2702
2703 This can not happen since the set of (reg Y) would have killed the
2704 set of (reg X) making it unavailable at the start of this block. */
2705 while (1)
2706 {
2707 rtx src;
2708 struct expr *set = lookup_set (regno, &set_hash_table);
2709
2710 /* Find a set that is available at the start of the block
2711 which contains INSN. */
2712 while (set)
2713 {
2714 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
2715 break;
2716 set = next_set (regno, set);
2717 }
2718
2719 /* If no available set was found we've reached the end of the
2720 (possibly empty) copy chain. */
2721 if (set == 0)
2722 break;
2723
2724 gcc_assert (GET_CODE (set->expr) == SET);
2725
2726 src = SET_SRC (set->expr);
2727
2728 /* We know the set is available.
2729 Now check that SRC is ANTLOC (i.e. none of the source operands
2730 have changed since the start of the block).
2731
2732 If the source operand changed, we may still use it for the next
2733 iteration of this loop, but we may not use it for substitutions. */
2734
2735 if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
2736 set1 = set;
2737
2738 /* If the source of the set is anything except a register, then
2739 we have reached the end of the copy chain. */
2740 if (! REG_P (src))
2741 break;
2742
2743 /* Follow the copy chain, i.e. start another iteration of the loop
2744 and see if we have an available copy into SRC. */
2745 regno = REGNO (src);
2746 }
2747
2748 /* SET1 holds the last set that was available and anticipatable at
2749 INSN. */
2750 return set1;
2751 }
2752
2753 /* Subroutine of cprop_insn that tries to propagate constants into
2754 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2755 it is the instruction that immediately precedes JUMP, and must be a
2756 single SET of a register. FROM is what we will try to replace,
2757 SRC is the constant we will try to substitute for it. Returns nonzero
2758 if a change was made. */
2759
2760 static int
2761 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
2762 {
2763 rtx new, set_src, note_src;
2764 rtx set = pc_set (jump);
2765 rtx note = find_reg_equal_equiv_note (jump);
2766
2767 if (note)
2768 {
2769 note_src = XEXP (note, 0);
2770 if (GET_CODE (note_src) == EXPR_LIST)
2771 note_src = NULL_RTX;
2772 }
2773 else note_src = NULL_RTX;
2774
2775 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2776 set_src = note_src ? note_src : SET_SRC (set);
2777
2778 /* First substitute the SETCC condition into the JUMP instruction,
2779 then substitute that given values into this expanded JUMP. */
2780 if (setcc != NULL_RTX
2781 && !modified_between_p (from, setcc, jump)
2782 && !modified_between_p (src, setcc, jump))
2783 {
2784 rtx setcc_src;
2785 rtx setcc_set = single_set (setcc);
2786 rtx setcc_note = find_reg_equal_equiv_note (setcc);
2787 setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
2788 ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
2789 set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
2790 setcc_src);
2791 }
2792 else
2793 setcc = NULL_RTX;
2794
2795 new = simplify_replace_rtx (set_src, from, src);
2796
2797 /* If no simplification can be made, then try the next register. */
2798 if (rtx_equal_p (new, SET_SRC (set)))
2799 return 0;
2800
2801 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2802 if (new == pc_rtx)
2803 delete_insn (jump);
2804 else
2805 {
2806 /* Ensure the value computed inside the jump insn to be equivalent
2807 to one computed by setcc. */
2808 if (setcc && modified_in_p (new, setcc))
2809 return 0;
2810 if (! validate_change (jump, &SET_SRC (set), new, 0))
2811 {
2812 /* When (some) constants are not valid in a comparison, and there
2813 are two registers to be replaced by constants before the entire
2814 comparison can be folded into a constant, we need to keep
2815 intermediate information in REG_EQUAL notes. For targets with
2816 separate compare insns, such notes are added by try_replace_reg.
2817 When we have a combined compare-and-branch instruction, however,
2818 we need to attach a note to the branch itself to make this
2819 optimization work. */
2820
2821 if (!rtx_equal_p (new, note_src))
2822 set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new));
2823 return 0;
2824 }
2825
2826 /* Remove REG_EQUAL note after simplification. */
2827 if (note_src)
2828 remove_note (jump, note);
2829
2830 /* If this has turned into an unconditional jump,
2831 then put a barrier after it so that the unreachable
2832 code will be deleted. */
2833 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
2834 emit_barrier_after (jump);
2835 }
2836
2837 #ifdef HAVE_cc0
2838 /* Delete the cc0 setter. */
2839 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
2840 delete_insn (setcc);
2841 #endif
2842
2843 run_jump_opt_after_gcse = 1;
2844
2845 global_const_prop_count++;
2846 if (gcse_file != NULL)
2847 {
2848 fprintf (gcse_file,
2849 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2850 REGNO (from), INSN_UID (jump));
2851 print_rtl (gcse_file, src);
2852 fprintf (gcse_file, "\n");
2853 }
2854 purge_dead_edges (bb);
2855
2856 return 1;
2857 }
2858
2859 static bool
2860 constprop_register (rtx insn, rtx from, rtx to, bool alter_jumps)
2861 {
2862 rtx sset;
2863
2864 /* Check for reg or cc0 setting instructions followed by
2865 conditional branch instructions first. */
2866 if (alter_jumps
2867 && (sset = single_set (insn)) != NULL
2868 && NEXT_INSN (insn)
2869 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
2870 {
2871 rtx dest = SET_DEST (sset);
2872 if ((REG_P (dest) || CC0_P (dest))
2873 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
2874 return 1;
2875 }
2876
2877 /* Handle normal insns next. */
2878 if (NONJUMP_INSN_P (insn)
2879 && try_replace_reg (from, to, insn))
2880 return 1;
2881
2882 /* Try to propagate a CONST_INT into a conditional jump.
2883 We're pretty specific about what we will handle in this
2884 code, we can extend this as necessary over time.
2885
2886 Right now the insn in question must look like
2887 (set (pc) (if_then_else ...)) */
2888 else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
2889 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
2890 return 0;
2891 }
2892
2893 /* Perform constant and copy propagation on INSN.
2894 The result is nonzero if a change was made. */
2895
2896 static int
2897 cprop_insn (rtx insn, int alter_jumps)
2898 {
2899 struct reg_use *reg_used;
2900 int changed = 0;
2901 rtx note;
2902
2903 if (!INSN_P (insn))
2904 return 0;
2905
2906 reg_use_count = 0;
2907 note_uses (&PATTERN (insn), find_used_regs, NULL);
2908
2909 note = find_reg_equal_equiv_note (insn);
2910
2911 /* We may win even when propagating constants into notes. */
2912 if (note)
2913 find_used_regs (&XEXP (note, 0), NULL);
2914
2915 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2916 reg_used++, reg_use_count--)
2917 {
2918 unsigned int regno = REGNO (reg_used->reg_rtx);
2919 rtx pat, src;
2920 struct expr *set;
2921
2922 /* Ignore registers created by GCSE.
2923 We do this because ... */
2924 if (regno >= max_gcse_regno)
2925 continue;
2926
2927 /* If the register has already been set in this block, there's
2928 nothing we can do. */
2929 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
2930 continue;
2931
2932 /* Find an assignment that sets reg_used and is available
2933 at the start of the block. */
2934 set = find_avail_set (regno, insn);
2935 if (! set)
2936 continue;
2937
2938 pat = set->expr;
2939 /* ??? We might be able to handle PARALLELs. Later. */
2940 gcc_assert (GET_CODE (pat) == SET);
2941
2942 src = SET_SRC (pat);
2943
2944 /* Constant propagation. */
2945 if (gcse_constant_p (src))
2946 {
2947 if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
2948 {
2949 changed = 1;
2950 global_const_prop_count++;
2951 if (gcse_file != NULL)
2952 {
2953 fprintf (gcse_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
2954 fprintf (gcse_file, "insn %d with constant ", INSN_UID (insn));
2955 print_rtl (gcse_file, src);
2956 fprintf (gcse_file, "\n");
2957 }
2958 if (INSN_DELETED_P (insn))
2959 return 1;
2960 }
2961 }
2962 else if (REG_P (src)
2963 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2964 && REGNO (src) != regno)
2965 {
2966 if (try_replace_reg (reg_used->reg_rtx, src, insn))
2967 {
2968 changed = 1;
2969 global_copy_prop_count++;
2970 if (gcse_file != NULL)
2971 {
2972 fprintf (gcse_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2973 regno, INSN_UID (insn));
2974 fprintf (gcse_file, " with reg %d\n", REGNO (src));
2975 }
2976
2977 /* The original insn setting reg_used may or may not now be
2978 deletable. We leave the deletion to flow. */
2979 /* FIXME: If it turns out that the insn isn't deletable,
2980 then we may have unnecessarily extended register lifetimes
2981 and made things worse. */
2982 }
2983 }
2984 }
2985
2986 return changed;
2987 }
2988
2989 /* Like find_used_regs, but avoid recording uses that appear in
2990 input-output contexts such as zero_extract or pre_dec. This
2991 restricts the cases we consider to those for which local cprop
2992 can legitimately make replacements. */
2993
2994 static void
2995 local_cprop_find_used_regs (rtx *xptr, void *data)
2996 {
2997 rtx x = *xptr;
2998
2999 if (x == 0)
3000 return;
3001
3002 switch (GET_CODE (x))
3003 {
3004 case ZERO_EXTRACT:
3005 case SIGN_EXTRACT:
3006 case STRICT_LOW_PART:
3007 return;
3008
3009 case PRE_DEC:
3010 case PRE_INC:
3011 case POST_DEC:
3012 case POST_INC:
3013 case PRE_MODIFY:
3014 case POST_MODIFY:
3015 /* Can only legitimately appear this early in the context of
3016 stack pushes for function arguments, but handle all of the
3017 codes nonetheless. */
3018 return;
3019
3020 case SUBREG:
3021 /* Setting a subreg of a register larger than word_mode leaves
3022 the non-written words unchanged. */
3023 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
3024 return;
3025 break;
3026
3027 default:
3028 break;
3029 }
3030
3031 find_used_regs (xptr, data);
3032 }
3033
3034 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3035 their REG_EQUAL notes need updating. */
3036
3037 static bool
3038 do_local_cprop (rtx x, rtx insn, bool alter_jumps, rtx *libcall_sp)
3039 {
3040 rtx newreg = NULL, newcnst = NULL;
3041
3042 /* Rule out USE instructions and ASM statements as we don't want to
3043 change the hard registers mentioned. */
3044 if (REG_P (x)
3045 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
3046 || (GET_CODE (PATTERN (insn)) != USE
3047 && asm_noperands (PATTERN (insn)) < 0)))
3048 {
3049 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
3050 struct elt_loc_list *l;
3051
3052 if (!val)
3053 return false;
3054 for (l = val->locs; l; l = l->next)
3055 {
3056 rtx this_rtx = l->loc;
3057 rtx note;
3058
3059 /* Don't CSE non-constant values out of libcall blocks. */
3060 if (l->in_libcall && ! CONSTANT_P (this_rtx))
3061 continue;
3062
3063 if (gcse_constant_p (this_rtx))
3064 newcnst = this_rtx;
3065 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
3066 /* Don't copy propagate if it has attached REG_EQUIV note.
3067 At this point this only function parameters should have
3068 REG_EQUIV notes and if the argument slot is used somewhere
3069 explicitly, it means address of parameter has been taken,
3070 so we should not extend the lifetime of the pseudo. */
3071 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
3072 || ! MEM_P (XEXP (note, 0))))
3073 newreg = this_rtx;
3074 }
3075 if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
3076 {
3077 /* If we find a case where we can't fix the retval REG_EQUAL notes
3078 match the new register, we either have to abandon this replacement
3079 or fix delete_trivially_dead_insns to preserve the setting insn,
3080 or make it delete the REG_EUAQL note, and fix up all passes that
3081 require the REG_EQUAL note there. */
3082 bool adjusted;
3083
3084 adjusted = adjust_libcall_notes (x, newcnst, insn, libcall_sp);
3085 gcc_assert (adjusted);
3086
3087 if (gcse_file != NULL)
3088 {
3089 fprintf (gcse_file, "LOCAL CONST-PROP: Replacing reg %d in ",
3090 REGNO (x));
3091 fprintf (gcse_file, "insn %d with constant ",
3092 INSN_UID (insn));
3093 print_rtl (gcse_file, newcnst);
3094 fprintf (gcse_file, "\n");
3095 }
3096 local_const_prop_count++;
3097 return true;
3098 }
3099 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
3100 {
3101 adjust_libcall_notes (x, newreg, insn, libcall_sp);
3102 if (gcse_file != NULL)
3103 {
3104 fprintf (gcse_file,
3105 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3106 REGNO (x), INSN_UID (insn));
3107 fprintf (gcse_file, " with reg %d\n", REGNO (newreg));
3108 }
3109 local_copy_prop_count++;
3110 return true;
3111 }
3112 }
3113 return false;
3114 }
3115
3116 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3117 their REG_EQUAL notes need updating to reflect that OLDREG has been
3118 replaced with NEWVAL in INSN. Return true if all substitutions could
3119 be made. */
3120 static bool
3121 adjust_libcall_notes (rtx oldreg, rtx newval, rtx insn, rtx *libcall_sp)
3122 {
3123 rtx end;
3124
3125 while ((end = *libcall_sp++))
3126 {
3127 rtx note = find_reg_equal_equiv_note (end);
3128
3129 if (! note)
3130 continue;
3131
3132 if (REG_P (newval))
3133 {
3134 if (reg_set_between_p (newval, PREV_INSN (insn), end))
3135 {
3136 do
3137 {
3138 note = find_reg_equal_equiv_note (end);
3139 if (! note)
3140 continue;
3141 if (reg_mentioned_p (newval, XEXP (note, 0)))
3142 return false;
3143 }
3144 while ((end = *libcall_sp++));
3145 return true;
3146 }
3147 }
3148 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), oldreg, newval);
3149 insn = end;
3150 }
3151 return true;
3152 }
3153
3154 #define MAX_NESTED_LIBCALLS 9
3155
3156 /* Do local const/copy propagation (i.e. within each basic block).
3157 If ALTER_JUMPS is true, allow propagating into jump insns, which
3158 could modify the CFG. */
3159
3160 static void
3161 local_cprop_pass (bool alter_jumps)
3162 {
3163 basic_block bb;
3164 rtx insn;
3165 struct reg_use *reg_used;
3166 rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
3167 bool changed = false;
3168
3169 cselib_init (false);
3170 libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
3171 *libcall_sp = 0;
3172 FOR_EACH_BB (bb)
3173 {
3174 FOR_BB_INSNS (bb, insn)
3175 {
3176 if (INSN_P (insn))
3177 {
3178 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
3179
3180 if (note)
3181 {
3182 gcc_assert (libcall_sp != libcall_stack);
3183 *--libcall_sp = XEXP (note, 0);
3184 }
3185 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
3186 if (note)
3187 libcall_sp++;
3188 note = find_reg_equal_equiv_note (insn);
3189 do
3190 {
3191 reg_use_count = 0;
3192 note_uses (&PATTERN (insn), local_cprop_find_used_regs,
3193 NULL);
3194 if (note)
3195 local_cprop_find_used_regs (&XEXP (note, 0), NULL);
3196
3197 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
3198 reg_used++, reg_use_count--)
3199 if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
3200 libcall_sp))
3201 {
3202 changed = true;
3203 break;
3204 }
3205 if (INSN_DELETED_P (insn))
3206 break;
3207 }
3208 while (reg_use_count);
3209 }
3210 cselib_process_insn (insn);
3211 }
3212
3213 /* Forget everything at the end of a basic block. Make sure we are
3214 not inside a libcall, they should never cross basic blocks. */
3215 cselib_clear_table ();
3216 gcc_assert (libcall_sp == &libcall_stack[MAX_NESTED_LIBCALLS]);
3217 }
3218
3219 cselib_finish ();
3220
3221 /* Global analysis may get into infinite loops for unreachable blocks. */
3222 if (changed && alter_jumps)
3223 {
3224 delete_unreachable_blocks ();
3225 free_reg_set_mem ();
3226 alloc_reg_set_mem (max_reg_num ());
3227 compute_sets ();
3228 }
3229 }
3230
3231 /* Forward propagate copies. This includes copies and constants. Return
3232 nonzero if a change was made. */
3233
3234 static int
3235 cprop (int alter_jumps)
3236 {
3237 int changed;
3238 basic_block bb;
3239 rtx insn;
3240
3241 /* Note we start at block 1. */
3242 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3243 {
3244 if (gcse_file != NULL)
3245 fprintf (gcse_file, "\n");
3246 return 0;
3247 }
3248
3249 changed = 0;
3250 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3251 {
3252 /* Reset tables used to keep track of what's still valid [since the
3253 start of the block]. */
3254 reset_opr_set_tables ();
3255
3256 FOR_BB_INSNS (bb, insn)
3257 if (INSN_P (insn))
3258 {
3259 changed |= cprop_insn (insn, alter_jumps);
3260
3261 /* Keep track of everything modified by this insn. */
3262 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3263 call mark_oprs_set if we turned the insn into a NOTE. */
3264 if (! NOTE_P (insn))
3265 mark_oprs_set (insn);
3266 }
3267 }
3268
3269 if (gcse_file != NULL)
3270 fprintf (gcse_file, "\n");
3271
3272 return changed;
3273 }
3274
3275 /* Similar to get_condition, only the resulting condition must be
3276 valid at JUMP, instead of at EARLIEST.
3277
3278 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3279 settle for the condition variable in the jump instruction being integral.
3280 We prefer to be able to record the value of a user variable, rather than
3281 the value of a temporary used in a condition. This could be solved by
3282 recording the value of *every* register scanned by canonicalize_condition,
3283 but this would require some code reorganization. */
3284
3285 rtx
3286 fis_get_condition (rtx jump)
3287 {
3288 return get_condition (jump, NULL, false, true);
3289 }
3290
3291 /* Check the comparison COND to see if we can safely form an implicit set from
3292 it. COND is either an EQ or NE comparison. */
3293
3294 static bool
3295 implicit_set_cond_p (rtx cond)
3296 {
3297 enum machine_mode mode = GET_MODE (XEXP (cond, 0));
3298 rtx cst = XEXP (cond, 1);
3299
3300 /* We can't perform this optimization if either operand might be or might
3301 contain a signed zero. */
3302 if (HONOR_SIGNED_ZEROS (mode))
3303 {
3304 /* It is sufficient to check if CST is or contains a zero. We must
3305 handle float, complex, and vector. If any subpart is a zero, then
3306 the optimization can't be performed. */
3307 /* ??? The complex and vector checks are not implemented yet. We just
3308 always return zero for them. */
3309 if (GET_CODE (cst) == CONST_DOUBLE)
3310 {
3311 REAL_VALUE_TYPE d;
3312 REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
3313 if (REAL_VALUES_EQUAL (d, dconst0))
3314 return 0;
3315 }
3316 else
3317 return 0;
3318 }
3319
3320 return gcse_constant_p (cst);
3321 }
3322
3323 /* Find the implicit sets of a function. An "implicit set" is a constraint
3324 on the value of a variable, implied by a conditional jump. For example,
3325 following "if (x == 2)", the then branch may be optimized as though the
3326 conditional performed an "explicit set", in this example, "x = 2". This
3327 function records the set patterns that are implicit at the start of each
3328 basic block. */
3329
3330 static void
3331 find_implicit_sets (void)
3332 {
3333 basic_block bb, dest;
3334 unsigned int count;
3335 rtx cond, new;
3336
3337 count = 0;
3338 FOR_EACH_BB (bb)
3339 /* Check for more than one successor. */
3340 if (EDGE_COUNT (bb->succs) > 1)
3341 {
3342 cond = fis_get_condition (BB_END (bb));
3343
3344 if (cond
3345 && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
3346 && REG_P (XEXP (cond, 0))
3347 && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
3348 && implicit_set_cond_p (cond))
3349 {
3350 dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
3351 : FALLTHRU_EDGE (bb)->dest;
3352
3353 if (dest && single_pred_p (dest)
3354 && dest != EXIT_BLOCK_PTR)
3355 {
3356 new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
3357 XEXP (cond, 1));
3358 implicit_sets[dest->index] = new;
3359 if (gcse_file)
3360 {
3361 fprintf(gcse_file, "Implicit set of reg %d in ",
3362 REGNO (XEXP (cond, 0)));
3363 fprintf(gcse_file, "basic block %d\n", dest->index);
3364 }
3365 count++;
3366 }
3367 }
3368 }
3369
3370 if (gcse_file)
3371 fprintf (gcse_file, "Found %d implicit sets\n", count);
3372 }
3373
3374 /* Perform one copy/constant propagation pass.
3375 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3376 propagation into conditional jumps. If BYPASS_JUMPS is true,
3377 perform conditional jump bypassing optimizations. */
3378
3379 static int
3380 one_cprop_pass (int pass, bool cprop_jumps, bool bypass_jumps)
3381 {
3382 int changed = 0;
3383
3384 global_const_prop_count = local_const_prop_count = 0;
3385 global_copy_prop_count = local_copy_prop_count = 0;
3386
3387 local_cprop_pass (cprop_jumps);
3388
3389 /* Determine implicit sets. */
3390 implicit_sets = xcalloc (last_basic_block, sizeof (rtx));
3391 find_implicit_sets ();
3392
3393 alloc_hash_table (max_cuid, &set_hash_table, 1);
3394 compute_hash_table (&set_hash_table);
3395
3396 /* Free implicit_sets before peak usage. */
3397 free (implicit_sets);
3398 implicit_sets = NULL;
3399
3400 if (gcse_file)
3401 dump_hash_table (gcse_file, "SET", &set_hash_table);
3402 if (set_hash_table.n_elems > 0)
3403 {
3404 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
3405 compute_cprop_data ();
3406 changed = cprop (cprop_jumps);
3407 if (bypass_jumps)
3408 changed |= bypass_conditional_jumps ();
3409 free_cprop_mem ();
3410 }
3411
3412 free_hash_table (&set_hash_table);
3413
3414 if (gcse_file)
3415 {
3416 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
3417 current_function_name (), pass, bytes_used);
3418 fprintf (gcse_file, "%d local const props, %d local copy props, ",
3419 local_const_prop_count, local_copy_prop_count);
3420 fprintf (gcse_file, "%d global const props, %d global copy props\n\n",
3421 global_const_prop_count, global_copy_prop_count);
3422 }
3423 /* Global analysis may get into infinite loops for unreachable blocks. */
3424 if (changed && cprop_jumps)
3425 delete_unreachable_blocks ();
3426
3427 return changed;
3428 }
3429 \f
3430 /* Bypass conditional jumps. */
3431
3432 /* The value of last_basic_block at the beginning of the jump_bypass
3433 pass. The use of redirect_edge_and_branch_force may introduce new
3434 basic blocks, but the data flow analysis is only valid for basic
3435 block indices less than bypass_last_basic_block. */
3436
3437 static int bypass_last_basic_block;
3438
3439 /* Find a set of REGNO to a constant that is available at the end of basic
3440 block BB. Returns NULL if no such set is found. Based heavily upon
3441 find_avail_set. */
3442
3443 static struct expr *
3444 find_bypass_set (int regno, int bb)
3445 {
3446 struct expr *result = 0;
3447
3448 for (;;)
3449 {
3450 rtx src;
3451 struct expr *set = lookup_set (regno, &set_hash_table);
3452
3453 while (set)
3454 {
3455 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
3456 break;
3457 set = next_set (regno, set);
3458 }
3459
3460 if (set == 0)
3461 break;
3462
3463 gcc_assert (GET_CODE (set->expr) == SET);
3464
3465 src = SET_SRC (set->expr);
3466 if (gcse_constant_p (src))
3467 result = set;
3468
3469 if (! REG_P (src))
3470 break;
3471
3472 regno = REGNO (src);
3473 }
3474 return result;
3475 }
3476
3477
3478 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3479 any of the instructions inserted on an edge. Jump bypassing places
3480 condition code setters on CFG edges using insert_insn_on_edge. This
3481 function is required to check that our data flow analysis is still
3482 valid prior to commit_edge_insertions. */
3483
3484 static bool
3485 reg_killed_on_edge (rtx reg, edge e)
3486 {
3487 rtx insn;
3488
3489 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
3490 if (INSN_P (insn) && reg_set_p (reg, insn))
3491 return true;
3492
3493 return false;
3494 }
3495
3496 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3497 basic block BB which has more than one predecessor. If not NULL, SETCC
3498 is the first instruction of BB, which is immediately followed by JUMP_INSN
3499 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3500 Returns nonzero if a change was made.
3501
3502 During the jump bypassing pass, we may place copies of SETCC instructions
3503 on CFG edges. The following routine must be careful to pay attention to
3504 these inserted insns when performing its transformations. */
3505
3506 static int
3507 bypass_block (basic_block bb, rtx setcc, rtx jump)
3508 {
3509 rtx insn, note;
3510 edge e, edest;
3511 int i, change;
3512 int may_be_loop_header;
3513 unsigned removed_p;
3514 edge_iterator ei;
3515
3516 insn = (setcc != NULL) ? setcc : jump;
3517
3518 /* Determine set of register uses in INSN. */
3519 reg_use_count = 0;
3520 note_uses (&PATTERN (insn), find_used_regs, NULL);
3521 note = find_reg_equal_equiv_note (insn);
3522 if (note)
3523 find_used_regs (&XEXP (note, 0), NULL);
3524
3525 may_be_loop_header = false;
3526 FOR_EACH_EDGE (e, ei, bb->preds)
3527 if (e->flags & EDGE_DFS_BACK)
3528 {
3529 may_be_loop_header = true;
3530 break;
3531 }
3532
3533 change = 0;
3534 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3535 {
3536 removed_p = 0;
3537
3538 if (e->flags & EDGE_COMPLEX)
3539 {
3540 ei_next (&ei);
3541 continue;
3542 }
3543
3544 /* We can't redirect edges from new basic blocks. */
3545 if (e->src->index >= bypass_last_basic_block)
3546 {
3547 ei_next (&ei);
3548 continue;
3549 }
3550
3551 /* The irreducible loops created by redirecting of edges entering the
3552 loop from outside would decrease effectiveness of some of the following
3553 optimizations, so prevent this. */
3554 if (may_be_loop_header
3555 && !(e->flags & EDGE_DFS_BACK))
3556 {
3557 ei_next (&ei);
3558 continue;
3559 }
3560
3561 for (i = 0; i < reg_use_count; i++)
3562 {
3563 struct reg_use *reg_used = &reg_use_table[i];
3564 unsigned int regno = REGNO (reg_used->reg_rtx);
3565 basic_block dest, old_dest;
3566 struct expr *set;
3567 rtx src, new;
3568
3569 if (regno >= max_gcse_regno)
3570 continue;
3571
3572 set = find_bypass_set (regno, e->src->index);
3573
3574 if (! set)
3575 continue;
3576
3577 /* Check the data flow is valid after edge insertions. */
3578 if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
3579 continue;
3580
3581 src = SET_SRC (pc_set (jump));
3582
3583 if (setcc != NULL)
3584 src = simplify_replace_rtx (src,
3585 SET_DEST (PATTERN (setcc)),
3586 SET_SRC (PATTERN (setcc)));
3587
3588 new = simplify_replace_rtx (src, reg_used->reg_rtx,
3589 SET_SRC (set->expr));
3590
3591 /* Jump bypassing may have already placed instructions on
3592 edges of the CFG. We can't bypass an outgoing edge that
3593 has instructions associated with it, as these insns won't
3594 get executed if the incoming edge is redirected. */
3595
3596 if (new == pc_rtx)
3597 {
3598 edest = FALLTHRU_EDGE (bb);
3599 dest = edest->insns.r ? NULL : edest->dest;
3600 }
3601 else if (GET_CODE (new) == LABEL_REF)
3602 {
3603 dest = BLOCK_FOR_INSN (XEXP (new, 0));
3604 /* Don't bypass edges containing instructions. */
3605 edest = find_edge (bb, dest);
3606 if (edest && edest->insns.r)
3607 dest = NULL;
3608 }
3609 else
3610 dest = NULL;
3611
3612 /* Avoid unification of the edge with other edges from original
3613 branch. We would end up emitting the instruction on "both"
3614 edges. */
3615
3616 if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc)))
3617 && find_edge (e->src, dest))
3618 dest = NULL;
3619
3620 old_dest = e->dest;
3621 if (dest != NULL
3622 && dest != old_dest
3623 && dest != EXIT_BLOCK_PTR)
3624 {
3625 redirect_edge_and_branch_force (e, dest);
3626
3627 /* Copy the register setter to the redirected edge.
3628 Don't copy CC0 setters, as CC0 is dead after jump. */
3629 if (setcc)
3630 {
3631 rtx pat = PATTERN (setcc);
3632 if (!CC0_P (SET_DEST (pat)))
3633 insert_insn_on_edge (copy_insn (pat), e);
3634 }
3635
3636 if (gcse_file != NULL)
3637 {
3638 fprintf (gcse_file, "JUMP-BYPASS: Proved reg %d "
3639 "in jump_insn %d equals constant ",
3640 regno, INSN_UID (jump));
3641 print_rtl (gcse_file, SET_SRC (set->expr));
3642 fprintf (gcse_file, "\nBypass edge from %d->%d to %d\n",
3643 e->src->index, old_dest->index, dest->index);
3644 }
3645 change = 1;
3646 removed_p = 1;
3647 break;
3648 }
3649 }
3650 if (!removed_p)
3651 ei_next (&ei);
3652 }
3653 return change;
3654 }
3655
3656 /* Find basic blocks with more than one predecessor that only contain a
3657 single conditional jump. If the result of the comparison is known at
3658 compile-time from any incoming edge, redirect that edge to the
3659 appropriate target. Returns nonzero if a change was made.
3660
3661 This function is now mis-named, because we also handle indirect jumps. */
3662
3663 static int
3664 bypass_conditional_jumps (void)
3665 {
3666 basic_block bb;
3667 int changed;
3668 rtx setcc;
3669 rtx insn;
3670 rtx dest;
3671
3672 /* Note we start at block 1. */
3673 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3674 return 0;
3675
3676 bypass_last_basic_block = last_basic_block;
3677 mark_dfs_back_edges ();
3678
3679 changed = 0;
3680 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
3681 EXIT_BLOCK_PTR, next_bb)
3682 {
3683 /* Check for more than one predecessor. */
3684 if (!single_pred_p (bb))
3685 {
3686 setcc = NULL_RTX;
3687 FOR_BB_INSNS (bb, insn)
3688 if (NONJUMP_INSN_P (insn))
3689 {
3690 if (setcc)
3691 break;
3692 if (GET_CODE (PATTERN (insn)) != SET)
3693 break;
3694
3695 dest = SET_DEST (PATTERN (insn));
3696 if (REG_P (dest) || CC0_P (dest))
3697 setcc = insn;
3698 else
3699 break;
3700 }
3701 else if (JUMP_P (insn))
3702 {
3703 if ((any_condjump_p (insn) || computed_jump_p (insn))
3704 && onlyjump_p (insn))
3705 changed |= bypass_block (bb, setcc, insn);
3706 break;
3707 }
3708 else if (INSN_P (insn))
3709 break;
3710 }
3711 }
3712
3713 /* If we bypassed any register setting insns, we inserted a
3714 copy on the redirected edge. These need to be committed. */
3715 if (changed)
3716 commit_edge_insertions();
3717
3718 return changed;
3719 }
3720 \f
3721 /* Compute PRE+LCM working variables. */
3722
3723 /* Local properties of expressions. */
3724 /* Nonzero for expressions that are transparent in the block. */
3725 static sbitmap *transp;
3726
3727 /* Nonzero for expressions that are transparent at the end of the block.
3728 This is only zero for expressions killed by abnormal critical edge
3729 created by a calls. */
3730 static sbitmap *transpout;
3731
3732 /* Nonzero for expressions that are computed (available) in the block. */
3733 static sbitmap *comp;
3734
3735 /* Nonzero for expressions that are locally anticipatable in the block. */
3736 static sbitmap *antloc;
3737
3738 /* Nonzero for expressions where this block is an optimal computation
3739 point. */
3740 static sbitmap *pre_optimal;
3741
3742 /* Nonzero for expressions which are redundant in a particular block. */
3743 static sbitmap *pre_redundant;
3744
3745 /* Nonzero for expressions which should be inserted on a specific edge. */
3746 static sbitmap *pre_insert_map;
3747
3748 /* Nonzero for expressions which should be deleted in a specific block. */
3749 static sbitmap *pre_delete_map;
3750
3751 /* Contains the edge_list returned by pre_edge_lcm. */
3752 static struct edge_list *edge_list;
3753
3754 /* Redundant insns. */
3755 static sbitmap pre_redundant_insns;
3756
3757 /* Allocate vars used for PRE analysis. */
3758
3759 static void
3760 alloc_pre_mem (int n_blocks, int n_exprs)
3761 {
3762 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
3763 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
3764 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
3765
3766 pre_optimal = NULL;
3767 pre_redundant = NULL;
3768 pre_insert_map = NULL;
3769 pre_delete_map = NULL;
3770 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
3771
3772 /* pre_insert and pre_delete are allocated later. */
3773 }
3774
3775 /* Free vars used for PRE analysis. */
3776
3777 static void
3778 free_pre_mem (void)
3779 {
3780 sbitmap_vector_free (transp);
3781 sbitmap_vector_free (comp);
3782
3783 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3784
3785 if (pre_optimal)
3786 sbitmap_vector_free (pre_optimal);
3787 if (pre_redundant)
3788 sbitmap_vector_free (pre_redundant);
3789 if (pre_insert_map)
3790 sbitmap_vector_free (pre_insert_map);
3791 if (pre_delete_map)
3792 sbitmap_vector_free (pre_delete_map);
3793
3794 transp = comp = NULL;
3795 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
3796 }
3797
3798 /* Top level routine to do the dataflow analysis needed by PRE. */
3799
3800 static void
3801 compute_pre_data (void)
3802 {
3803 sbitmap trapping_expr;
3804 basic_block bb;
3805 unsigned int ui;
3806
3807 compute_local_properties (transp, comp, antloc, &expr_hash_table);
3808 sbitmap_vector_zero (ae_kill, last_basic_block);
3809
3810 /* Collect expressions which might trap. */
3811 trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
3812 sbitmap_zero (trapping_expr);
3813 for (ui = 0; ui < expr_hash_table.size; ui++)
3814 {
3815 struct expr *e;
3816 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
3817 if (may_trap_p (e->expr))
3818 SET_BIT (trapping_expr, e->bitmap_index);
3819 }
3820
3821 /* Compute ae_kill for each basic block using:
3822
3823 ~(TRANSP | COMP)
3824 */
3825
3826 FOR_EACH_BB (bb)
3827 {
3828 edge e;
3829 edge_iterator ei;
3830
3831 /* If the current block is the destination of an abnormal edge, we
3832 kill all trapping expressions because we won't be able to properly
3833 place the instruction on the edge. So make them neither
3834 anticipatable nor transparent. This is fairly conservative. */
3835 FOR_EACH_EDGE (e, ei, bb->preds)
3836 if (e->flags & EDGE_ABNORMAL)
3837 {
3838 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
3839 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
3840 break;
3841 }
3842
3843 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
3844 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
3845 }
3846
3847 edge_list = pre_edge_lcm (gcse_file, expr_hash_table.n_elems, transp, comp, antloc,
3848 ae_kill, &pre_insert_map, &pre_delete_map);
3849 sbitmap_vector_free (antloc);
3850 antloc = NULL;
3851 sbitmap_vector_free (ae_kill);
3852 ae_kill = NULL;
3853 sbitmap_free (trapping_expr);
3854 }
3855 \f
3856 /* PRE utilities */
3857
3858 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3859 block BB.
3860
3861 VISITED is a pointer to a working buffer for tracking which BB's have
3862 been visited. It is NULL for the top-level call.
3863
3864 We treat reaching expressions that go through blocks containing the same
3865 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3866 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3867 2 as not reaching. The intent is to improve the probability of finding
3868 only one reaching expression and to reduce register lifetimes by picking
3869 the closest such expression. */
3870
3871 static int
3872 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
3873 {
3874 edge pred;
3875 edge_iterator ei;
3876
3877 FOR_EACH_EDGE (pred, ei, bb->preds)
3878 {
3879 basic_block pred_bb = pred->src;
3880
3881 if (pred->src == ENTRY_BLOCK_PTR
3882 /* Has predecessor has already been visited? */
3883 || visited[pred_bb->index])
3884 ;/* Nothing to do. */
3885
3886 /* Does this predecessor generate this expression? */
3887 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
3888 {
3889 /* Is this the occurrence we're looking for?
3890 Note that there's only one generating occurrence per block
3891 so we just need to check the block number. */
3892 if (occr_bb == pred_bb)
3893 return 1;
3894
3895 visited[pred_bb->index] = 1;
3896 }
3897 /* Ignore this predecessor if it kills the expression. */
3898 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
3899 visited[pred_bb->index] = 1;
3900
3901 /* Neither gen nor kill. */
3902 else
3903 {
3904 visited[pred_bb->index] = 1;
3905 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
3906 return 1;
3907 }
3908 }
3909
3910 /* All paths have been checked. */
3911 return 0;
3912 }
3913
3914 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3915 memory allocated for that function is returned. */
3916
3917 static int
3918 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
3919 {
3920 int rval;
3921 char *visited = xcalloc (last_basic_block, 1);
3922
3923 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
3924
3925 free (visited);
3926 return rval;
3927 }
3928 \f
3929
3930 /* Given an expr, generate RTL which we can insert at the end of a BB,
3931 or on an edge. Set the block number of any insns generated to
3932 the value of BB. */
3933
3934 static rtx
3935 process_insert_insn (struct expr *expr)
3936 {
3937 rtx reg = expr->reaching_reg;
3938 rtx exp = copy_rtx (expr->expr);
3939 rtx pat;
3940
3941 start_sequence ();
3942
3943 /* If the expression is something that's an operand, like a constant,
3944 just copy it to a register. */
3945 if (general_operand (exp, GET_MODE (reg)))
3946 emit_move_insn (reg, exp);
3947
3948 /* Otherwise, make a new insn to compute this expression and make sure the
3949 insn will be recognized (this also adds any needed CLOBBERs). Copy the
3950 expression to make sure we don't have any sharing issues. */
3951 else
3952 {
3953 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
3954
3955 if (insn_invalid_p (insn))
3956 gcc_unreachable ();
3957 }
3958
3959
3960 pat = get_insns ();
3961 end_sequence ();
3962
3963 return pat;
3964 }
3965
3966 /* Add EXPR to the end of basic block BB.
3967
3968 This is used by both the PRE and code hoisting.
3969
3970 For PRE, we want to verify that the expr is either transparent
3971 or locally anticipatable in the target block. This check makes
3972 no sense for code hoisting. */
3973
3974 static void
3975 insert_insn_end_bb (struct expr *expr, basic_block bb, int pre)
3976 {
3977 rtx insn = BB_END (bb);
3978 rtx new_insn;
3979 rtx reg = expr->reaching_reg;
3980 int regno = REGNO (reg);
3981 rtx pat, pat_end;
3982
3983 pat = process_insert_insn (expr);
3984 gcc_assert (pat && INSN_P (pat));
3985
3986 pat_end = pat;
3987 while (NEXT_INSN (pat_end) != NULL_RTX)
3988 pat_end = NEXT_INSN (pat_end);
3989
3990 /* If the last insn is a jump, insert EXPR in front [taking care to
3991 handle cc0, etc. properly]. Similarly we need to care trapping
3992 instructions in presence of non-call exceptions. */
3993
3994 if (JUMP_P (insn)
3995 || (NONJUMP_INSN_P (insn)
3996 && (!single_succ_p (bb)
3997 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
3998 {
3999 #ifdef HAVE_cc0
4000 rtx note;
4001 #endif
4002 /* It should always be the case that we can put these instructions
4003 anywhere in the basic block with performing PRE optimizations.
4004 Check this. */
4005 gcc_assert (!NONJUMP_INSN_P (insn) || !pre
4006 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4007 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4008
4009 /* If this is a jump table, then we can't insert stuff here. Since
4010 we know the previous real insn must be the tablejump, we insert
4011 the new instruction just before the tablejump. */
4012 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4013 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4014 insn = prev_real_insn (insn);
4015
4016 #ifdef HAVE_cc0
4017 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4018 if cc0 isn't set. */
4019 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4020 if (note)
4021 insn = XEXP (note, 0);
4022 else
4023 {
4024 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4025 if (maybe_cc0_setter
4026 && INSN_P (maybe_cc0_setter)
4027 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4028 insn = maybe_cc0_setter;
4029 }
4030 #endif
4031 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4032 new_insn = emit_insn_before_noloc (pat, insn);
4033 }
4034
4035 /* Likewise if the last insn is a call, as will happen in the presence
4036 of exception handling. */
4037 else if (CALL_P (insn)
4038 && (!single_succ_p (bb)
4039 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
4040 {
4041 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4042 we search backward and place the instructions before the first
4043 parameter is loaded. Do this for everyone for consistency and a
4044 presumption that we'll get better code elsewhere as well.
4045
4046 It should always be the case that we can put these instructions
4047 anywhere in the basic block with performing PRE optimizations.
4048 Check this. */
4049
4050 gcc_assert (!pre
4051 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4052 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4053
4054 /* Since different machines initialize their parameter registers
4055 in different orders, assume nothing. Collect the set of all
4056 parameter registers. */
4057 insn = find_first_parameter_load (insn, BB_HEAD (bb));
4058
4059 /* If we found all the parameter loads, then we want to insert
4060 before the first parameter load.
4061
4062 If we did not find all the parameter loads, then we might have
4063 stopped on the head of the block, which could be a CODE_LABEL.
4064 If we inserted before the CODE_LABEL, then we would be putting
4065 the insn in the wrong basic block. In that case, put the insn
4066 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4067 while (LABEL_P (insn)
4068 || NOTE_INSN_BASIC_BLOCK_P (insn))
4069 insn = NEXT_INSN (insn);
4070
4071 new_insn = emit_insn_before_noloc (pat, insn);
4072 }
4073 else
4074 new_insn = emit_insn_after_noloc (pat, insn);
4075
4076 while (1)
4077 {
4078 if (INSN_P (pat))
4079 {
4080 add_label_notes (PATTERN (pat), new_insn);
4081 note_stores (PATTERN (pat), record_set_info, pat);
4082 }
4083 if (pat == pat_end)
4084 break;
4085 pat = NEXT_INSN (pat);
4086 }
4087
4088 gcse_create_count++;
4089
4090 if (gcse_file)
4091 {
4092 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
4093 bb->index, INSN_UID (new_insn));
4094 fprintf (gcse_file, "copying expression %d to reg %d\n",
4095 expr->bitmap_index, regno);
4096 }
4097 }
4098
4099 /* Insert partially redundant expressions on edges in the CFG to make
4100 the expressions fully redundant. */
4101
4102 static int
4103 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
4104 {
4105 int e, i, j, num_edges, set_size, did_insert = 0;
4106 sbitmap *inserted;
4107
4108 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4109 if it reaches any of the deleted expressions. */
4110
4111 set_size = pre_insert_map[0]->size;
4112 num_edges = NUM_EDGES (edge_list);
4113 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
4114 sbitmap_vector_zero (inserted, num_edges);
4115
4116 for (e = 0; e < num_edges; e++)
4117 {
4118 int indx;
4119 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4120
4121 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4122 {
4123 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4124
4125 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
4126 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4127 {
4128 struct expr *expr = index_map[j];
4129 struct occr *occr;
4130
4131 /* Now look at each deleted occurrence of this expression. */
4132 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4133 {
4134 if (! occr->deleted_p)
4135 continue;
4136
4137 /* Insert this expression on this edge if it would
4138 reach the deleted occurrence in BB. */
4139 if (!TEST_BIT (inserted[e], j))
4140 {
4141 rtx insn;
4142 edge eg = INDEX_EDGE (edge_list, e);
4143
4144 /* We can't insert anything on an abnormal and
4145 critical edge, so we insert the insn at the end of
4146 the previous block. There are several alternatives
4147 detailed in Morgans book P277 (sec 10.5) for
4148 handling this situation. This one is easiest for
4149 now. */
4150
4151 if (eg->flags & EDGE_ABNORMAL)
4152 insert_insn_end_bb (index_map[j], bb, 0);
4153 else
4154 {
4155 insn = process_insert_insn (index_map[j]);
4156 insert_insn_on_edge (insn, eg);
4157 }
4158
4159 if (gcse_file)
4160 {
4161 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
4162 bb->index,
4163 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4164 fprintf (gcse_file, "copy expression %d\n",
4165 expr->bitmap_index);
4166 }
4167
4168 update_ld_motion_stores (expr);
4169 SET_BIT (inserted[e], j);
4170 did_insert = 1;
4171 gcse_create_count++;
4172 }
4173 }
4174 }
4175 }
4176 }
4177
4178 sbitmap_vector_free (inserted);
4179 return did_insert;
4180 }
4181
4182 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4183 Given "old_reg <- expr" (INSN), instead of adding after it
4184 reaching_reg <- old_reg
4185 it's better to do the following:
4186 reaching_reg <- expr
4187 old_reg <- reaching_reg
4188 because this way copy propagation can discover additional PRE
4189 opportunities. But if this fails, we try the old way.
4190 When "expr" is a store, i.e.
4191 given "MEM <- old_reg", instead of adding after it
4192 reaching_reg <- old_reg
4193 it's better to add it before as follows:
4194 reaching_reg <- old_reg
4195 MEM <- reaching_reg. */
4196
4197 static void
4198 pre_insert_copy_insn (struct expr *expr, rtx insn)
4199 {
4200 rtx reg = expr->reaching_reg;
4201 int regno = REGNO (reg);
4202 int indx = expr->bitmap_index;
4203 rtx pat = PATTERN (insn);
4204 rtx set, new_insn;
4205 rtx old_reg;
4206 int i;
4207
4208 /* This block matches the logic in hash_scan_insn. */
4209 switch (GET_CODE (pat))
4210 {
4211 case SET:
4212 set = pat;
4213 break;
4214
4215 case PARALLEL:
4216 /* Search through the parallel looking for the set whose
4217 source was the expression that we're interested in. */
4218 set = NULL_RTX;
4219 for (i = 0; i < XVECLEN (pat, 0); i++)
4220 {
4221 rtx x = XVECEXP (pat, 0, i);
4222 if (GET_CODE (x) == SET
4223 && expr_equiv_p (SET_SRC (x), expr->expr))
4224 {
4225 set = x;
4226 break;
4227 }
4228 }
4229 break;
4230
4231 default:
4232 gcc_unreachable ();
4233 }
4234
4235 if (REG_P (SET_DEST (set)))
4236 {
4237 old_reg = SET_DEST (set);
4238 /* Check if we can modify the set destination in the original insn. */
4239 if (validate_change (insn, &SET_DEST (set), reg, 0))
4240 {
4241 new_insn = gen_move_insn (old_reg, reg);
4242 new_insn = emit_insn_after (new_insn, insn);
4243
4244 /* Keep register set table up to date. */
4245 record_one_set (regno, insn);
4246 }
4247 else
4248 {
4249 new_insn = gen_move_insn (reg, old_reg);
4250 new_insn = emit_insn_after (new_insn, insn);
4251
4252 /* Keep register set table up to date. */
4253 record_one_set (regno, new_insn);
4254 }
4255 }
4256 else /* This is possible only in case of a store to memory. */
4257 {
4258 old_reg = SET_SRC (set);
4259 new_insn = gen_move_insn (reg, old_reg);
4260
4261 /* Check if we can modify the set source in the original insn. */
4262 if (validate_change (insn, &SET_SRC (set), reg, 0))
4263 new_insn = emit_insn_before (new_insn, insn);
4264 else
4265 new_insn = emit_insn_after (new_insn, insn);
4266
4267 /* Keep register set table up to date. */
4268 record_one_set (regno, new_insn);
4269 }
4270
4271 gcse_create_count++;
4272
4273 if (gcse_file)
4274 fprintf (gcse_file,
4275 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4276 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4277 INSN_UID (insn), regno);
4278 }
4279
4280 /* Copy available expressions that reach the redundant expression
4281 to `reaching_reg'. */
4282
4283 static void
4284 pre_insert_copies (void)
4285 {
4286 unsigned int i, added_copy;
4287 struct expr *expr;
4288 struct occr *occr;
4289 struct occr *avail;
4290
4291 /* For each available expression in the table, copy the result to
4292 `reaching_reg' if the expression reaches a deleted one.
4293
4294 ??? The current algorithm is rather brute force.
4295 Need to do some profiling. */
4296
4297 for (i = 0; i < expr_hash_table.size; i++)
4298 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4299 {
4300 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4301 we don't want to insert a copy here because the expression may not
4302 really be redundant. So only insert an insn if the expression was
4303 deleted. This test also avoids further processing if the
4304 expression wasn't deleted anywhere. */
4305 if (expr->reaching_reg == NULL)
4306 continue;
4307
4308 /* Set when we add a copy for that expression. */
4309 added_copy = 0;
4310
4311 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4312 {
4313 if (! occr->deleted_p)
4314 continue;
4315
4316 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4317 {
4318 rtx insn = avail->insn;
4319
4320 /* No need to handle this one if handled already. */
4321 if (avail->copied_p)
4322 continue;
4323
4324 /* Don't handle this one if it's a redundant one. */
4325 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4326 continue;
4327
4328 /* Or if the expression doesn't reach the deleted one. */
4329 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4330 expr,
4331 BLOCK_FOR_INSN (occr->insn)))
4332 continue;
4333
4334 added_copy = 1;
4335
4336 /* Copy the result of avail to reaching_reg. */
4337 pre_insert_copy_insn (expr, insn);
4338 avail->copied_p = 1;
4339 }
4340 }
4341
4342 if (added_copy)
4343 update_ld_motion_stores (expr);
4344 }
4345 }
4346
4347 /* Emit move from SRC to DEST noting the equivalence with expression computed
4348 in INSN. */
4349 static rtx
4350 gcse_emit_move_after (rtx src, rtx dest, rtx insn)
4351 {
4352 rtx new;
4353 rtx set = single_set (insn), set2;
4354 rtx note;
4355 rtx eqv;
4356
4357 /* This should never fail since we're creating a reg->reg copy
4358 we've verified to be valid. */
4359
4360 new = emit_insn_after (gen_move_insn (dest, src), insn);
4361
4362 /* Note the equivalence for local CSE pass. */
4363 set2 = single_set (new);
4364 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
4365 return new;
4366 if ((note = find_reg_equal_equiv_note (insn)))
4367 eqv = XEXP (note, 0);
4368 else
4369 eqv = SET_SRC (set);
4370
4371 set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
4372
4373 return new;
4374 }
4375
4376 /* Delete redundant computations.
4377 Deletion is done by changing the insn to copy the `reaching_reg' of
4378 the expression into the result of the SET. It is left to later passes
4379 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4380
4381 Returns nonzero if a change is made. */
4382
4383 static int
4384 pre_delete (void)
4385 {
4386 unsigned int i;
4387 int changed;
4388 struct expr *expr;
4389 struct occr *occr;
4390
4391 changed = 0;
4392 for (i = 0; i < expr_hash_table.size; i++)
4393 for (expr = expr_hash_table.table[i];
4394 expr != NULL;
4395 expr = expr->next_same_hash)
4396 {
4397 int indx = expr->bitmap_index;
4398
4399 /* We only need to search antic_occr since we require
4400 ANTLOC != 0. */
4401
4402 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4403 {
4404 rtx insn = occr->insn;
4405 rtx set;
4406 basic_block bb = BLOCK_FOR_INSN (insn);
4407
4408 /* We only delete insns that have a single_set. */
4409 if (TEST_BIT (pre_delete_map[bb->index], indx)
4410 && (set = single_set (insn)) != 0)
4411 {
4412 /* Create a pseudo-reg to store the result of reaching
4413 expressions into. Get the mode for the new pseudo from
4414 the mode of the original destination pseudo. */
4415 if (expr->reaching_reg == NULL)
4416 expr->reaching_reg
4417 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4418
4419 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4420 delete_insn (insn);
4421 occr->deleted_p = 1;
4422 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4423 changed = 1;
4424 gcse_subst_count++;
4425
4426 if (gcse_file)
4427 {
4428 fprintf (gcse_file,
4429 "PRE: redundant insn %d (expression %d) in ",
4430 INSN_UID (insn), indx);
4431 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
4432 bb->index, REGNO (expr->reaching_reg));
4433 }
4434 }
4435 }
4436 }
4437
4438 return changed;
4439 }
4440
4441 /* Perform GCSE optimizations using PRE.
4442 This is called by one_pre_gcse_pass after all the dataflow analysis
4443 has been done.
4444
4445 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4446 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4447 Compiler Design and Implementation.
4448
4449 ??? A new pseudo reg is created to hold the reaching expression. The nice
4450 thing about the classical approach is that it would try to use an existing
4451 reg. If the register can't be adequately optimized [i.e. we introduce
4452 reload problems], one could add a pass here to propagate the new register
4453 through the block.
4454
4455 ??? We don't handle single sets in PARALLELs because we're [currently] not
4456 able to copy the rest of the parallel when we insert copies to create full
4457 redundancies from partial redundancies. However, there's no reason why we
4458 can't handle PARALLELs in the cases where there are no partial
4459 redundancies. */
4460
4461 static int
4462 pre_gcse (void)
4463 {
4464 unsigned int i;
4465 int did_insert, changed;
4466 struct expr **index_map;
4467 struct expr *expr;
4468
4469 /* Compute a mapping from expression number (`bitmap_index') to
4470 hash table entry. */
4471
4472 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
4473 for (i = 0; i < expr_hash_table.size; i++)
4474 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4475 index_map[expr->bitmap_index] = expr;
4476
4477 /* Reset bitmap used to track which insns are redundant. */
4478 pre_redundant_insns = sbitmap_alloc (max_cuid);
4479 sbitmap_zero (pre_redundant_insns);
4480
4481 /* Delete the redundant insns first so that
4482 - we know what register to use for the new insns and for the other
4483 ones with reaching expressions
4484 - we know which insns are redundant when we go to create copies */
4485
4486 changed = pre_delete ();
4487
4488 did_insert = pre_edge_insert (edge_list, index_map);
4489
4490 /* In other places with reaching expressions, copy the expression to the
4491 specially allocated pseudo-reg that reaches the redundant expr. */
4492 pre_insert_copies ();
4493 if (did_insert)
4494 {
4495 commit_edge_insertions ();
4496 changed = 1;
4497 }
4498
4499 free (index_map);
4500 sbitmap_free (pre_redundant_insns);
4501 return changed;
4502 }
4503
4504 /* Top level routine to perform one PRE GCSE pass.
4505
4506 Return nonzero if a change was made. */
4507
4508 static int
4509 one_pre_gcse_pass (int pass)
4510 {
4511 int changed = 0;
4512
4513 gcse_subst_count = 0;
4514 gcse_create_count = 0;
4515
4516 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4517 add_noreturn_fake_exit_edges ();
4518 if (flag_gcse_lm)
4519 compute_ld_motion_mems ();
4520
4521 compute_hash_table (&expr_hash_table);
4522 trim_ld_motion_mems ();
4523 if (gcse_file)
4524 dump_hash_table (gcse_file, "Expression", &expr_hash_table);
4525
4526 if (expr_hash_table.n_elems > 0)
4527 {
4528 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
4529 compute_pre_data ();
4530 changed |= pre_gcse ();
4531 free_edge_list (edge_list);
4532 free_pre_mem ();
4533 }
4534
4535 free_ldst_mems ();
4536 remove_fake_exit_edges ();
4537 free_hash_table (&expr_hash_table);
4538
4539 if (gcse_file)
4540 {
4541 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4542 current_function_name (), pass, bytes_used);
4543 fprintf (gcse_file, "%d substs, %d insns created\n",
4544 gcse_subst_count, gcse_create_count);
4545 }
4546
4547 return changed;
4548 }
4549 \f
4550 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4551 If notes are added to an insn which references a CODE_LABEL, the
4552 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
4553 because the following loop optimization pass requires them. */
4554
4555 /* ??? This is very similar to the loop.c add_label_notes function. We
4556 could probably share code here. */
4557
4558 /* ??? If there was a jump optimization pass after gcse and before loop,
4559 then we would not need to do this here, because jump would add the
4560 necessary REG_LABEL notes. */
4561
4562 static void
4563 add_label_notes (rtx x, rtx insn)
4564 {
4565 enum rtx_code code = GET_CODE (x);
4566 int i, j;
4567 const char *fmt;
4568
4569 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4570 {
4571 /* This code used to ignore labels that referred to dispatch tables to
4572 avoid flow generating (slightly) worse code.
4573
4574 We no longer ignore such label references (see LABEL_REF handling in
4575 mark_jump_label for additional information). */
4576
4577 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
4578 REG_NOTES (insn));
4579 if (LABEL_P (XEXP (x, 0)))
4580 LABEL_NUSES (XEXP (x, 0))++;
4581 return;
4582 }
4583
4584 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4585 {
4586 if (fmt[i] == 'e')
4587 add_label_notes (XEXP (x, i), insn);
4588 else if (fmt[i] == 'E')
4589 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4590 add_label_notes (XVECEXP (x, i, j), insn);
4591 }
4592 }
4593
4594 /* Compute transparent outgoing information for each block.
4595
4596 An expression is transparent to an edge unless it is killed by
4597 the edge itself. This can only happen with abnormal control flow,
4598 when the edge is traversed through a call. This happens with
4599 non-local labels and exceptions.
4600
4601 This would not be necessary if we split the edge. While this is
4602 normally impossible for abnormal critical edges, with some effort
4603 it should be possible with exception handling, since we still have
4604 control over which handler should be invoked. But due to increased
4605 EH table sizes, this may not be worthwhile. */
4606
4607 static void
4608 compute_transpout (void)
4609 {
4610 basic_block bb;
4611 unsigned int i;
4612 struct expr *expr;
4613
4614 sbitmap_vector_ones (transpout, last_basic_block);
4615
4616 FOR_EACH_BB (bb)
4617 {
4618 /* Note that flow inserted a nop a the end of basic blocks that
4619 end in call instructions for reasons other than abnormal
4620 control flow. */
4621 if (! CALL_P (BB_END (bb)))
4622 continue;
4623
4624 for (i = 0; i < expr_hash_table.size; i++)
4625 for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
4626 if (MEM_P (expr->expr))
4627 {
4628 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
4629 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
4630 continue;
4631
4632 /* ??? Optimally, we would use interprocedural alias
4633 analysis to determine if this mem is actually killed
4634 by this call. */
4635 RESET_BIT (transpout[bb->index], expr->bitmap_index);
4636 }
4637 }
4638 }
4639
4640 /* Code Hoisting variables and subroutines. */
4641
4642 /* Very busy expressions. */
4643 static sbitmap *hoist_vbein;
4644 static sbitmap *hoist_vbeout;
4645
4646 /* Hoistable expressions. */
4647 static sbitmap *hoist_exprs;
4648
4649 /* ??? We could compute post dominators and run this algorithm in
4650 reverse to perform tail merging, doing so would probably be
4651 more effective than the tail merging code in jump.c.
4652
4653 It's unclear if tail merging could be run in parallel with
4654 code hoisting. It would be nice. */
4655
4656 /* Allocate vars used for code hoisting analysis. */
4657
4658 static void
4659 alloc_code_hoist_mem (int n_blocks, int n_exprs)
4660 {
4661 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4662 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4663 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4664
4665 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
4666 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
4667 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
4668 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
4669 }
4670
4671 /* Free vars used for code hoisting analysis. */
4672
4673 static void
4674 free_code_hoist_mem (void)
4675 {
4676 sbitmap_vector_free (antloc);
4677 sbitmap_vector_free (transp);
4678 sbitmap_vector_free (comp);
4679
4680 sbitmap_vector_free (hoist_vbein);
4681 sbitmap_vector_free (hoist_vbeout);
4682 sbitmap_vector_free (hoist_exprs);
4683 sbitmap_vector_free (transpout);
4684
4685 free_dominance_info (CDI_DOMINATORS);
4686 }
4687
4688 /* Compute the very busy expressions at entry/exit from each block.
4689
4690 An expression is very busy if all paths from a given point
4691 compute the expression. */
4692
4693 static void
4694 compute_code_hoist_vbeinout (void)
4695 {
4696 int changed, passes;
4697 basic_block bb;
4698
4699 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
4700 sbitmap_vector_zero (hoist_vbein, last_basic_block);
4701
4702 passes = 0;
4703 changed = 1;
4704
4705 while (changed)
4706 {
4707 changed = 0;
4708
4709 /* We scan the blocks in the reverse order to speed up
4710 the convergence. */
4711 FOR_EACH_BB_REVERSE (bb)
4712 {
4713 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
4714 hoist_vbeout[bb->index], transp[bb->index]);
4715 if (bb->next_bb != EXIT_BLOCK_PTR)
4716 sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
4717 }
4718
4719 passes++;
4720 }
4721
4722 if (gcse_file)
4723 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
4724 }
4725
4726 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4727
4728 static void
4729 compute_code_hoist_data (void)
4730 {
4731 compute_local_properties (transp, comp, antloc, &expr_hash_table);
4732 compute_transpout ();
4733 compute_code_hoist_vbeinout ();
4734 calculate_dominance_info (CDI_DOMINATORS);
4735 if (gcse_file)
4736 fprintf (gcse_file, "\n");
4737 }
4738
4739 /* Determine if the expression identified by EXPR_INDEX would
4740 reach BB unimpared if it was placed at the end of EXPR_BB.
4741
4742 It's unclear exactly what Muchnick meant by "unimpared". It seems
4743 to me that the expression must either be computed or transparent in
4744 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4745 would allow the expression to be hoisted out of loops, even if
4746 the expression wasn't a loop invariant.
4747
4748 Contrast this to reachability for PRE where an expression is
4749 considered reachable if *any* path reaches instead of *all*
4750 paths. */
4751
4752 static int
4753 hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
4754 {
4755 edge pred;
4756 edge_iterator ei;
4757 int visited_allocated_locally = 0;
4758
4759
4760 if (visited == NULL)
4761 {
4762 visited_allocated_locally = 1;
4763 visited = xcalloc (last_basic_block, 1);
4764 }
4765
4766 FOR_EACH_EDGE (pred, ei, bb->preds)
4767 {
4768 basic_block pred_bb = pred->src;
4769
4770 if (pred->src == ENTRY_BLOCK_PTR)
4771 break;
4772 else if (pred_bb == expr_bb)
4773 continue;
4774 else if (visited[pred_bb->index])
4775 continue;
4776
4777 /* Does this predecessor generate this expression? */
4778 else if (TEST_BIT (comp[pred_bb->index], expr_index))
4779 break;
4780 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
4781 break;
4782
4783 /* Not killed. */
4784 else
4785 {
4786 visited[pred_bb->index] = 1;
4787 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
4788 pred_bb, visited))
4789 break;
4790 }
4791 }
4792 if (visited_allocated_locally)
4793 free (visited);
4794
4795 return (pred == NULL);
4796 }
4797 \f
4798 /* Actually perform code hoisting. */
4799
4800 static void
4801 hoist_code (void)
4802 {
4803 basic_block bb, dominated;
4804 basic_block *domby;
4805 unsigned int domby_len;
4806 unsigned int i,j;
4807 struct expr **index_map;
4808 struct expr *expr;
4809
4810 sbitmap_vector_zero (hoist_exprs, last_basic_block);
4811
4812 /* Compute a mapping from expression number (`bitmap_index') to
4813 hash table entry. */
4814
4815 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
4816 for (i = 0; i < expr_hash_table.size; i++)
4817 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4818 index_map[expr->bitmap_index] = expr;
4819
4820 /* Walk over each basic block looking for potentially hoistable
4821 expressions, nothing gets hoisted from the entry block. */
4822 FOR_EACH_BB (bb)
4823 {
4824 int found = 0;
4825 int insn_inserted_p;
4826
4827 domby_len = get_dominated_by (CDI_DOMINATORS, bb, &domby);
4828 /* Examine each expression that is very busy at the exit of this
4829 block. These are the potentially hoistable expressions. */
4830 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
4831 {
4832 int hoistable = 0;
4833
4834 if (TEST_BIT (hoist_vbeout[bb->index], i)
4835 && TEST_BIT (transpout[bb->index], i))
4836 {
4837 /* We've found a potentially hoistable expression, now
4838 we look at every block BB dominates to see if it
4839 computes the expression. */
4840 for (j = 0; j < domby_len; j++)
4841 {
4842 dominated = domby[j];
4843 /* Ignore self dominance. */
4844 if (bb == dominated)
4845 continue;
4846 /* We've found a dominated block, now see if it computes
4847 the busy expression and whether or not moving that
4848 expression to the "beginning" of that block is safe. */
4849 if (!TEST_BIT (antloc[dominated->index], i))
4850 continue;
4851
4852 /* Note if the expression would reach the dominated block
4853 unimpared if it was placed at the end of BB.
4854
4855 Keep track of how many times this expression is hoistable
4856 from a dominated block into BB. */
4857 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4858 hoistable++;
4859 }
4860
4861 /* If we found more than one hoistable occurrence of this
4862 expression, then note it in the bitmap of expressions to
4863 hoist. It makes no sense to hoist things which are computed
4864 in only one BB, and doing so tends to pessimize register
4865 allocation. One could increase this value to try harder
4866 to avoid any possible code expansion due to register
4867 allocation issues; however experiments have shown that
4868 the vast majority of hoistable expressions are only movable
4869 from two successors, so raising this threshold is likely
4870 to nullify any benefit we get from code hoisting. */
4871 if (hoistable > 1)
4872 {
4873 SET_BIT (hoist_exprs[bb->index], i);
4874 found = 1;
4875 }
4876 }
4877 }
4878 /* If we found nothing to hoist, then quit now. */
4879 if (! found)
4880 {
4881 free (domby);
4882 continue;
4883 }
4884
4885 /* Loop over all the hoistable expressions. */
4886 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
4887 {
4888 /* We want to insert the expression into BB only once, so
4889 note when we've inserted it. */
4890 insn_inserted_p = 0;
4891
4892 /* These tests should be the same as the tests above. */
4893 if (TEST_BIT (hoist_vbeout[bb->index], i))
4894 {
4895 /* We've found a potentially hoistable expression, now
4896 we look at every block BB dominates to see if it
4897 computes the expression. */
4898 for (j = 0; j < domby_len; j++)
4899 {
4900 dominated = domby[j];
4901 /* Ignore self dominance. */
4902 if (bb == dominated)
4903 continue;
4904
4905 /* We've found a dominated block, now see if it computes
4906 the busy expression and whether or not moving that
4907 expression to the "beginning" of that block is safe. */
4908 if (!TEST_BIT (antloc[dominated->index], i))
4909 continue;
4910
4911 /* The expression is computed in the dominated block and
4912 it would be safe to compute it at the start of the
4913 dominated block. Now we have to determine if the
4914 expression would reach the dominated block if it was
4915 placed at the end of BB. */
4916 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4917 {
4918 struct expr *expr = index_map[i];
4919 struct occr *occr = expr->antic_occr;
4920 rtx insn;
4921 rtx set;
4922
4923 /* Find the right occurrence of this expression. */
4924 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
4925 occr = occr->next;
4926
4927 gcc_assert (occr);
4928 insn = occr->insn;
4929 set = single_set (insn);
4930 gcc_assert (set);
4931
4932 /* Create a pseudo-reg to store the result of reaching
4933 expressions into. Get the mode for the new pseudo
4934 from the mode of the original destination pseudo. */
4935 if (expr->reaching_reg == NULL)
4936 expr->reaching_reg
4937 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4938
4939 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4940 delete_insn (insn);
4941 occr->deleted_p = 1;
4942 if (!insn_inserted_p)
4943 {
4944 insert_insn_end_bb (index_map[i], bb, 0);
4945 insn_inserted_p = 1;
4946 }
4947 }
4948 }
4949 }
4950 }
4951 free (domby);
4952 }
4953
4954 free (index_map);
4955 }
4956
4957 /* Top level routine to perform one code hoisting (aka unification) pass
4958
4959 Return nonzero if a change was made. */
4960
4961 static int
4962 one_code_hoisting_pass (void)
4963 {
4964 int changed = 0;
4965
4966 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4967 compute_hash_table (&expr_hash_table);
4968 if (gcse_file)
4969 dump_hash_table (gcse_file, "Code Hosting Expressions", &expr_hash_table);
4970
4971 if (expr_hash_table.n_elems > 0)
4972 {
4973 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
4974 compute_code_hoist_data ();
4975 hoist_code ();
4976 free_code_hoist_mem ();
4977 }
4978
4979 free_hash_table (&expr_hash_table);
4980
4981 return changed;
4982 }
4983 \f
4984 /* Here we provide the things required to do store motion towards
4985 the exit. In order for this to be effective, gcse also needed to
4986 be taught how to move a load when it is kill only by a store to itself.
4987
4988 int i;
4989 float a[10];
4990
4991 void foo(float scale)
4992 {
4993 for (i=0; i<10; i++)
4994 a[i] *= scale;
4995 }
4996
4997 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
4998 the load out since its live around the loop, and stored at the bottom
4999 of the loop.
5000
5001 The 'Load Motion' referred to and implemented in this file is
5002 an enhancement to gcse which when using edge based lcm, recognizes
5003 this situation and allows gcse to move the load out of the loop.
5004
5005 Once gcse has hoisted the load, store motion can then push this
5006 load towards the exit, and we end up with no loads or stores of 'i'
5007 in the loop. */
5008
5009 /* This will search the ldst list for a matching expression. If it
5010 doesn't find one, we create one and initialize it. */
5011
5012 static struct ls_expr *
5013 ldst_entry (rtx x)
5014 {
5015 int do_not_record_p = 0;
5016 struct ls_expr * ptr;
5017 unsigned int hash;
5018
5019 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
5020 NULL, /*have_reg_qty=*/false);
5021
5022 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5023 if (ptr->hash_index == hash && expr_equiv_p (ptr->pattern, x))
5024 return ptr;
5025
5026 ptr = xmalloc (sizeof (struct ls_expr));
5027
5028 ptr->next = pre_ldst_mems;
5029 ptr->expr = NULL;
5030 ptr->pattern = x;
5031 ptr->pattern_regs = NULL_RTX;
5032 ptr->loads = NULL_RTX;
5033 ptr->stores = NULL_RTX;
5034 ptr->reaching_reg = NULL_RTX;
5035 ptr->invalid = 0;
5036 ptr->index = 0;
5037 ptr->hash_index = hash;
5038 pre_ldst_mems = ptr;
5039
5040 return ptr;
5041 }
5042
5043 /* Free up an individual ldst entry. */
5044
5045 static void
5046 free_ldst_entry (struct ls_expr * ptr)
5047 {
5048 free_INSN_LIST_list (& ptr->loads);
5049 free_INSN_LIST_list (& ptr->stores);
5050
5051 free (ptr);
5052 }
5053
5054 /* Free up all memory associated with the ldst list. */
5055
5056 static void
5057 free_ldst_mems (void)
5058 {
5059 while (pre_ldst_mems)
5060 {
5061 struct ls_expr * tmp = pre_ldst_mems;
5062
5063 pre_ldst_mems = pre_ldst_mems->next;
5064
5065 free_ldst_entry (tmp);
5066 }
5067
5068 pre_ldst_mems = NULL;
5069 }
5070
5071 /* Dump debugging info about the ldst list. */
5072
5073 static void
5074 print_ldst_list (FILE * file)
5075 {
5076 struct ls_expr * ptr;
5077
5078 fprintf (file, "LDST list: \n");
5079
5080 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5081 {
5082 fprintf (file, " Pattern (%3d): ", ptr->index);
5083
5084 print_rtl (file, ptr->pattern);
5085
5086 fprintf (file, "\n Loads : ");
5087
5088 if (ptr->loads)
5089 print_rtl (file, ptr->loads);
5090 else
5091 fprintf (file, "(nil)");
5092
5093 fprintf (file, "\n Stores : ");
5094
5095 if (ptr->stores)
5096 print_rtl (file, ptr->stores);
5097 else
5098 fprintf (file, "(nil)");
5099
5100 fprintf (file, "\n\n");
5101 }
5102
5103 fprintf (file, "\n");
5104 }
5105
5106 /* Returns 1 if X is in the list of ldst only expressions. */
5107
5108 static struct ls_expr *
5109 find_rtx_in_ldst (rtx x)
5110 {
5111 struct ls_expr * ptr;
5112
5113 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5114 if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
5115 return ptr;
5116
5117 return NULL;
5118 }
5119
5120 /* Assign each element of the list of mems a monotonically increasing value. */
5121
5122 static int
5123 enumerate_ldsts (void)
5124 {
5125 struct ls_expr * ptr;
5126 int n = 0;
5127
5128 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5129 ptr->index = n++;
5130
5131 return n;
5132 }
5133
5134 /* Return first item in the list. */
5135
5136 static inline struct ls_expr *
5137 first_ls_expr (void)
5138 {
5139 return pre_ldst_mems;
5140 }
5141
5142 /* Return the next item in the list after the specified one. */
5143
5144 static inline struct ls_expr *
5145 next_ls_expr (struct ls_expr * ptr)
5146 {
5147 return ptr->next;
5148 }
5149 \f
5150 /* Load Motion for loads which only kill themselves. */
5151
5152 /* Return true if x is a simple MEM operation, with no registers or
5153 side effects. These are the types of loads we consider for the
5154 ld_motion list, otherwise we let the usual aliasing take care of it. */
5155
5156 static int
5157 simple_mem (rtx x)
5158 {
5159 if (! MEM_P (x))
5160 return 0;
5161
5162 if (MEM_VOLATILE_P (x))
5163 return 0;
5164
5165 if (GET_MODE (x) == BLKmode)
5166 return 0;
5167
5168 /* If we are handling exceptions, we must be careful with memory references
5169 that may trap. If we are not, the behavior is undefined, so we may just
5170 continue. */
5171 if (flag_non_call_exceptions && may_trap_p (x))
5172 return 0;
5173
5174 if (side_effects_p (x))
5175 return 0;
5176
5177 /* Do not consider function arguments passed on stack. */
5178 if (reg_mentioned_p (stack_pointer_rtx, x))
5179 return 0;
5180
5181 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
5182 return 0;
5183
5184 return 1;
5185 }
5186
5187 /* Make sure there isn't a buried reference in this pattern anywhere.
5188 If there is, invalidate the entry for it since we're not capable
5189 of fixing it up just yet.. We have to be sure we know about ALL
5190 loads since the aliasing code will allow all entries in the
5191 ld_motion list to not-alias itself. If we miss a load, we will get
5192 the wrong value since gcse might common it and we won't know to
5193 fix it up. */
5194
5195 static void
5196 invalidate_any_buried_refs (rtx x)
5197 {
5198 const char * fmt;
5199 int i, j;
5200 struct ls_expr * ptr;
5201
5202 /* Invalidate it in the list. */
5203 if (MEM_P (x) && simple_mem (x))
5204 {
5205 ptr = ldst_entry (x);
5206 ptr->invalid = 1;
5207 }
5208
5209 /* Recursively process the insn. */
5210 fmt = GET_RTX_FORMAT (GET_CODE (x));
5211
5212 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5213 {
5214 if (fmt[i] == 'e')
5215 invalidate_any_buried_refs (XEXP (x, i));
5216 else if (fmt[i] == 'E')
5217 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5218 invalidate_any_buried_refs (XVECEXP (x, i, j));
5219 }
5220 }
5221
5222 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
5223 being defined as MEM loads and stores to symbols, with no side effects
5224 and no registers in the expression. For a MEM destination, we also
5225 check that the insn is still valid if we replace the destination with a
5226 REG, as is done in update_ld_motion_stores. If there are any uses/defs
5227 which don't match this criteria, they are invalidated and trimmed out
5228 later. */
5229
5230 static void
5231 compute_ld_motion_mems (void)
5232 {
5233 struct ls_expr * ptr;
5234 basic_block bb;
5235 rtx insn;
5236
5237 pre_ldst_mems = NULL;
5238
5239 FOR_EACH_BB (bb)
5240 {
5241 FOR_BB_INSNS (bb, insn)
5242 {
5243 if (INSN_P (insn))
5244 {
5245 if (GET_CODE (PATTERN (insn)) == SET)
5246 {
5247 rtx src = SET_SRC (PATTERN (insn));
5248 rtx dest = SET_DEST (PATTERN (insn));
5249
5250 /* Check for a simple LOAD... */
5251 if (MEM_P (src) && simple_mem (src))
5252 {
5253 ptr = ldst_entry (src);
5254 if (REG_P (dest))
5255 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
5256 else
5257 ptr->invalid = 1;
5258 }
5259 else
5260 {
5261 /* Make sure there isn't a buried load somewhere. */
5262 invalidate_any_buried_refs (src);
5263 }
5264
5265 /* Check for stores. Don't worry about aliased ones, they
5266 will block any movement we might do later. We only care
5267 about this exact pattern since those are the only
5268 circumstance that we will ignore the aliasing info. */
5269 if (MEM_P (dest) && simple_mem (dest))
5270 {
5271 ptr = ldst_entry (dest);
5272
5273 if (! MEM_P (src)
5274 && GET_CODE (src) != ASM_OPERANDS
5275 /* Check for REG manually since want_to_gcse_p
5276 returns 0 for all REGs. */
5277 && can_assign_to_reg_p (src))
5278 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
5279 else
5280 ptr->invalid = 1;
5281 }
5282 }
5283 else
5284 invalidate_any_buried_refs (PATTERN (insn));
5285 }
5286 }
5287 }
5288 }
5289
5290 /* Remove any references that have been either invalidated or are not in the
5291 expression list for pre gcse. */
5292
5293 static void
5294 trim_ld_motion_mems (void)
5295 {
5296 struct ls_expr * * last = & pre_ldst_mems;
5297 struct ls_expr * ptr = pre_ldst_mems;
5298
5299 while (ptr != NULL)
5300 {
5301 struct expr * expr;
5302
5303 /* Delete if entry has been made invalid. */
5304 if (! ptr->invalid)
5305 {
5306 /* Delete if we cannot find this mem in the expression list. */
5307 unsigned int hash = ptr->hash_index % expr_hash_table.size;
5308
5309 for (expr = expr_hash_table.table[hash];
5310 expr != NULL;
5311 expr = expr->next_same_hash)
5312 if (expr_equiv_p (expr->expr, ptr->pattern))
5313 break;
5314 }
5315 else
5316 expr = (struct expr *) 0;
5317
5318 if (expr)
5319 {
5320 /* Set the expression field if we are keeping it. */
5321 ptr->expr = expr;
5322 last = & ptr->next;
5323 ptr = ptr->next;
5324 }
5325 else
5326 {
5327 *last = ptr->next;
5328 free_ldst_entry (ptr);
5329 ptr = * last;
5330 }
5331 }
5332
5333 /* Show the world what we've found. */
5334 if (gcse_file && pre_ldst_mems != NULL)
5335 print_ldst_list (gcse_file);
5336 }
5337
5338 /* This routine will take an expression which we are replacing with
5339 a reaching register, and update any stores that are needed if
5340 that expression is in the ld_motion list. Stores are updated by
5341 copying their SRC to the reaching register, and then storing
5342 the reaching register into the store location. These keeps the
5343 correct value in the reaching register for the loads. */
5344
5345 static void
5346 update_ld_motion_stores (struct expr * expr)
5347 {
5348 struct ls_expr * mem_ptr;
5349
5350 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
5351 {
5352 /* We can try to find just the REACHED stores, but is shouldn't
5353 matter to set the reaching reg everywhere... some might be
5354 dead and should be eliminated later. */
5355
5356 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5357 where reg is the reaching reg used in the load. We checked in
5358 compute_ld_motion_mems that we can replace (set mem expr) with
5359 (set reg expr) in that insn. */
5360 rtx list = mem_ptr->stores;
5361
5362 for ( ; list != NULL_RTX; list = XEXP (list, 1))
5363 {
5364 rtx insn = XEXP (list, 0);
5365 rtx pat = PATTERN (insn);
5366 rtx src = SET_SRC (pat);
5367 rtx reg = expr->reaching_reg;
5368 rtx copy, new;
5369
5370 /* If we've already copied it, continue. */
5371 if (expr->reaching_reg == src)
5372 continue;
5373
5374 if (gcse_file)
5375 {
5376 fprintf (gcse_file, "PRE: store updated with reaching reg ");
5377 print_rtl (gcse_file, expr->reaching_reg);
5378 fprintf (gcse_file, ":\n ");
5379 print_inline_rtx (gcse_file, insn, 8);
5380 fprintf (gcse_file, "\n");
5381 }
5382
5383 copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
5384 new = emit_insn_before (copy, insn);
5385 record_one_set (REGNO (reg), new);
5386 SET_SRC (pat) = reg;
5387
5388 /* un-recognize this pattern since it's probably different now. */
5389 INSN_CODE (insn) = -1;
5390 gcse_create_count++;
5391 }
5392 }
5393 }
5394 \f
5395 /* Store motion code. */
5396
5397 #define ANTIC_STORE_LIST(x) ((x)->loads)
5398 #define AVAIL_STORE_LIST(x) ((x)->stores)
5399 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
5400
5401 /* This is used to communicate the target bitvector we want to use in the
5402 reg_set_info routine when called via the note_stores mechanism. */
5403 static int * regvec;
5404
5405 /* And current insn, for the same routine. */
5406 static rtx compute_store_table_current_insn;
5407
5408 /* Used in computing the reverse edge graph bit vectors. */
5409 static sbitmap * st_antloc;
5410
5411 /* Global holding the number of store expressions we are dealing with. */
5412 static int num_stores;
5413
5414 /* Checks to set if we need to mark a register set. Called from
5415 note_stores. */
5416
5417 static void
5418 reg_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5419 void *data)
5420 {
5421 sbitmap bb_reg = data;
5422
5423 if (GET_CODE (dest) == SUBREG)
5424 dest = SUBREG_REG (dest);
5425
5426 if (REG_P (dest))
5427 {
5428 regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
5429 if (bb_reg)
5430 SET_BIT (bb_reg, REGNO (dest));
5431 }
5432 }
5433
5434 /* Clear any mark that says that this insn sets dest. Called from
5435 note_stores. */
5436
5437 static void
5438 reg_clear_last_set (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5439 void *data)
5440 {
5441 int *dead_vec = data;
5442
5443 if (GET_CODE (dest) == SUBREG)
5444 dest = SUBREG_REG (dest);
5445
5446 if (REG_P (dest) &&
5447 dead_vec[REGNO (dest)] == INSN_UID (compute_store_table_current_insn))
5448 dead_vec[REGNO (dest)] = 0;
5449 }
5450
5451 /* Return zero if some of the registers in list X are killed
5452 due to set of registers in bitmap REGS_SET. */
5453
5454 static bool
5455 store_ops_ok (rtx x, int *regs_set)
5456 {
5457 rtx reg;
5458
5459 for (; x; x = XEXP (x, 1))
5460 {
5461 reg = XEXP (x, 0);
5462 if (regs_set[REGNO(reg)])
5463 return false;
5464 }
5465
5466 return true;
5467 }
5468
5469 /* Returns a list of registers mentioned in X. */
5470 static rtx
5471 extract_mentioned_regs (rtx x)
5472 {
5473 return extract_mentioned_regs_helper (x, NULL_RTX);
5474 }
5475
5476 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5477 registers. */
5478 static rtx
5479 extract_mentioned_regs_helper (rtx x, rtx accum)
5480 {
5481 int i;
5482 enum rtx_code code;
5483 const char * fmt;
5484
5485 /* Repeat is used to turn tail-recursion into iteration. */
5486 repeat:
5487
5488 if (x == 0)
5489 return accum;
5490
5491 code = GET_CODE (x);
5492 switch (code)
5493 {
5494 case REG:
5495 return alloc_EXPR_LIST (0, x, accum);
5496
5497 case MEM:
5498 x = XEXP (x, 0);
5499 goto repeat;
5500
5501 case PRE_DEC:
5502 case PRE_INC:
5503 case POST_DEC:
5504 case POST_INC:
5505 /* We do not run this function with arguments having side effects. */
5506 gcc_unreachable ();
5507
5508 case PC:
5509 case CC0: /*FIXME*/
5510 case CONST:
5511 case CONST_INT:
5512 case CONST_DOUBLE:
5513 case CONST_VECTOR:
5514 case SYMBOL_REF:
5515 case LABEL_REF:
5516 case ADDR_VEC:
5517 case ADDR_DIFF_VEC:
5518 return accum;
5519
5520 default:
5521 break;
5522 }
5523
5524 i = GET_RTX_LENGTH (code) - 1;
5525 fmt = GET_RTX_FORMAT (code);
5526
5527 for (; i >= 0; i--)
5528 {
5529 if (fmt[i] == 'e')
5530 {
5531 rtx tem = XEXP (x, i);
5532
5533 /* If we are about to do the last recursive call
5534 needed at this level, change it into iteration. */
5535 if (i == 0)
5536 {
5537 x = tem;
5538 goto repeat;
5539 }
5540
5541 accum = extract_mentioned_regs_helper (tem, accum);
5542 }
5543 else if (fmt[i] == 'E')
5544 {
5545 int j;
5546
5547 for (j = 0; j < XVECLEN (x, i); j++)
5548 accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
5549 }
5550 }
5551
5552 return accum;
5553 }
5554
5555 /* Determine whether INSN is MEM store pattern that we will consider moving.
5556 REGS_SET_BEFORE is bitmap of registers set before (and including) the
5557 current insn, REGS_SET_AFTER is bitmap of registers set after (and
5558 including) the insn in this basic block. We must be passing through BB from
5559 head to end, as we are using this fact to speed things up.
5560
5561 The results are stored this way:
5562
5563 -- the first anticipatable expression is added into ANTIC_STORE_LIST
5564 -- if the processed expression is not anticipatable, NULL_RTX is added
5565 there instead, so that we can use it as indicator that no further
5566 expression of this type may be anticipatable
5567 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5568 consequently, all of them but this head are dead and may be deleted.
5569 -- if the expression is not available, the insn due to that it fails to be
5570 available is stored in reaching_reg.
5571
5572 The things are complicated a bit by fact that there already may be stores
5573 to the same MEM from other blocks; also caller must take care of the
5574 necessary cleanup of the temporary markers after end of the basic block.
5575 */
5576
5577 static void
5578 find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after)
5579 {
5580 struct ls_expr * ptr;
5581 rtx dest, set, tmp;
5582 int check_anticipatable, check_available;
5583 basic_block bb = BLOCK_FOR_INSN (insn);
5584
5585 set = single_set (insn);
5586 if (!set)
5587 return;
5588
5589 dest = SET_DEST (set);
5590
5591 if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
5592 || GET_MODE (dest) == BLKmode)
5593 return;
5594
5595 if (side_effects_p (dest))
5596 return;
5597
5598 /* If we are handling exceptions, we must be careful with memory references
5599 that may trap. If we are not, the behavior is undefined, so we may just
5600 continue. */
5601 if (flag_non_call_exceptions && may_trap_p (dest))
5602 return;
5603
5604 /* Even if the destination cannot trap, the source may. In this case we'd
5605 need to handle updating the REG_EH_REGION note. */
5606 if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
5607 return;
5608
5609 ptr = ldst_entry (dest);
5610 if (!ptr->pattern_regs)
5611 ptr->pattern_regs = extract_mentioned_regs (dest);
5612
5613 /* Do not check for anticipatability if we either found one anticipatable
5614 store already, or tested for one and found out that it was killed. */
5615 check_anticipatable = 0;
5616 if (!ANTIC_STORE_LIST (ptr))
5617 check_anticipatable = 1;
5618 else
5619 {
5620 tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
5621 if (tmp != NULL_RTX
5622 && BLOCK_FOR_INSN (tmp) != bb)
5623 check_anticipatable = 1;
5624 }
5625 if (check_anticipatable)
5626 {
5627 if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
5628 tmp = NULL_RTX;
5629 else
5630 tmp = insn;
5631 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
5632 ANTIC_STORE_LIST (ptr));
5633 }
5634
5635 /* It is not necessary to check whether store is available if we did
5636 it successfully before; if we failed before, do not bother to check
5637 until we reach the insn that caused us to fail. */
5638 check_available = 0;
5639 if (!AVAIL_STORE_LIST (ptr))
5640 check_available = 1;
5641 else
5642 {
5643 tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
5644 if (BLOCK_FOR_INSN (tmp) != bb)
5645 check_available = 1;
5646 }
5647 if (check_available)
5648 {
5649 /* Check that we have already reached the insn at that the check
5650 failed last time. */
5651 if (LAST_AVAIL_CHECK_FAILURE (ptr))
5652 {
5653 for (tmp = BB_END (bb);
5654 tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
5655 tmp = PREV_INSN (tmp))
5656 continue;
5657 if (tmp == insn)
5658 check_available = 0;
5659 }
5660 else
5661 check_available = store_killed_after (dest, ptr->pattern_regs, insn,
5662 bb, regs_set_after,
5663 &LAST_AVAIL_CHECK_FAILURE (ptr));
5664 }
5665 if (!check_available)
5666 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
5667 }
5668
5669 /* Find available and anticipatable stores. */
5670
5671 static int
5672 compute_store_table (void)
5673 {
5674 int ret;
5675 basic_block bb;
5676 unsigned regno;
5677 rtx insn, pat, tmp;
5678 int *last_set_in, *already_set;
5679 struct ls_expr * ptr, **prev_next_ptr_ptr;
5680
5681 max_gcse_regno = max_reg_num ();
5682
5683 reg_set_in_block = sbitmap_vector_alloc (last_basic_block,
5684 max_gcse_regno);
5685 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
5686 pre_ldst_mems = 0;
5687 last_set_in = xcalloc (max_gcse_regno, sizeof (int));
5688 already_set = xmalloc (sizeof (int) * max_gcse_regno);
5689
5690 /* Find all the stores we care about. */
5691 FOR_EACH_BB (bb)
5692 {
5693 /* First compute the registers set in this block. */
5694 regvec = last_set_in;
5695
5696 FOR_BB_INSNS (bb, insn)
5697 {
5698 if (! INSN_P (insn))
5699 continue;
5700
5701 if (CALL_P (insn))
5702 {
5703 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5704 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5705 {
5706 last_set_in[regno] = INSN_UID (insn);
5707 SET_BIT (reg_set_in_block[bb->index], regno);
5708 }
5709 }
5710
5711 pat = PATTERN (insn);
5712 compute_store_table_current_insn = insn;
5713 note_stores (pat, reg_set_info, reg_set_in_block[bb->index]);
5714 }
5715
5716 /* Now find the stores. */
5717 memset (already_set, 0, sizeof (int) * max_gcse_regno);
5718 regvec = already_set;
5719 FOR_BB_INSNS (bb, insn)
5720 {
5721 if (! INSN_P (insn))
5722 continue;
5723
5724 if (CALL_P (insn))
5725 {
5726 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5727 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5728 already_set[regno] = 1;
5729 }
5730
5731 pat = PATTERN (insn);
5732 note_stores (pat, reg_set_info, NULL);
5733
5734 /* Now that we've marked regs, look for stores. */
5735 find_moveable_store (insn, already_set, last_set_in);
5736
5737 /* Unmark regs that are no longer set. */
5738 compute_store_table_current_insn = insn;
5739 note_stores (pat, reg_clear_last_set, last_set_in);
5740 if (CALL_P (insn))
5741 {
5742 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5743 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
5744 && last_set_in[regno] == INSN_UID (insn))
5745 last_set_in[regno] = 0;
5746 }
5747 }
5748
5749 #ifdef ENABLE_CHECKING
5750 /* last_set_in should now be all-zero. */
5751 for (regno = 0; regno < max_gcse_regno; regno++)
5752 gcc_assert (!last_set_in[regno]);
5753 #endif
5754
5755 /* Clear temporary marks. */
5756 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
5757 {
5758 LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
5759 if (ANTIC_STORE_LIST (ptr)
5760 && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
5761 ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
5762 }
5763 }
5764
5765 /* Remove the stores that are not available anywhere, as there will
5766 be no opportunity to optimize them. */
5767 for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
5768 ptr != NULL;
5769 ptr = *prev_next_ptr_ptr)
5770 {
5771 if (!AVAIL_STORE_LIST (ptr))
5772 {
5773 *prev_next_ptr_ptr = ptr->next;
5774 free_ldst_entry (ptr);
5775 }
5776 else
5777 prev_next_ptr_ptr = &ptr->next;
5778 }
5779
5780 ret = enumerate_ldsts ();
5781
5782 if (gcse_file)
5783 {
5784 fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
5785 print_ldst_list (gcse_file);
5786 }
5787
5788 free (last_set_in);
5789 free (already_set);
5790 return ret;
5791 }
5792
5793 /* Check to see if the load X is aliased with STORE_PATTERN.
5794 AFTER is true if we are checking the case when STORE_PATTERN occurs
5795 after the X. */
5796
5797 static bool
5798 load_kills_store (rtx x, rtx store_pattern, int after)
5799 {
5800 if (after)
5801 return anti_dependence (x, store_pattern);
5802 else
5803 return true_dependence (store_pattern, GET_MODE (store_pattern), x,
5804 rtx_addr_varies_p);
5805 }
5806
5807 /* Go through the entire insn X, looking for any loads which might alias
5808 STORE_PATTERN. Return true if found.
5809 AFTER is true if we are checking the case when STORE_PATTERN occurs
5810 after the insn X. */
5811
5812 static bool
5813 find_loads (rtx x, rtx store_pattern, int after)
5814 {
5815 const char * fmt;
5816 int i, j;
5817 int ret = false;
5818
5819 if (!x)
5820 return false;
5821
5822 if (GET_CODE (x) == SET)
5823 x = SET_SRC (x);
5824
5825 if (MEM_P (x))
5826 {
5827 if (load_kills_store (x, store_pattern, after))
5828 return true;
5829 }
5830
5831 /* Recursively process the insn. */
5832 fmt = GET_RTX_FORMAT (GET_CODE (x));
5833
5834 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
5835 {
5836 if (fmt[i] == 'e')
5837 ret |= find_loads (XEXP (x, i), store_pattern, after);
5838 else if (fmt[i] == 'E')
5839 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5840 ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
5841 }
5842 return ret;
5843 }
5844
5845 /* Check if INSN kills the store pattern X (is aliased with it).
5846 AFTER is true if we are checking the case when store X occurs
5847 after the insn. Return true if it does. */
5848
5849 static bool
5850 store_killed_in_insn (rtx x, rtx x_regs, rtx insn, int after)
5851 {
5852 rtx reg, base, note;
5853
5854 if (!INSN_P (insn))
5855 return false;
5856
5857 if (CALL_P (insn))
5858 {
5859 /* A normal or pure call might read from pattern,
5860 but a const call will not. */
5861 if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn))
5862 return true;
5863
5864 /* But even a const call reads its parameters. Check whether the
5865 base of some of registers used in mem is stack pointer. */
5866 for (reg = x_regs; reg; reg = XEXP (reg, 1))
5867 {
5868 base = find_base_term (XEXP (reg, 0));
5869 if (!base
5870 || (GET_CODE (base) == ADDRESS
5871 && GET_MODE (base) == Pmode
5872 && XEXP (base, 0) == stack_pointer_rtx))
5873 return true;
5874 }
5875
5876 return false;
5877 }
5878
5879 if (GET_CODE (PATTERN (insn)) == SET)
5880 {
5881 rtx pat = PATTERN (insn);
5882 rtx dest = SET_DEST (pat);
5883
5884 if (GET_CODE (dest) == ZERO_EXTRACT)
5885 dest = XEXP (dest, 0);
5886
5887 /* Check for memory stores to aliased objects. */
5888 if (MEM_P (dest)
5889 && !expr_equiv_p (dest, x))
5890 {
5891 if (after)
5892 {
5893 if (output_dependence (dest, x))
5894 return true;
5895 }
5896 else
5897 {
5898 if (output_dependence (x, dest))
5899 return true;
5900 }
5901 }
5902 if (find_loads (SET_SRC (pat), x, after))
5903 return true;
5904 }
5905 else if (find_loads (PATTERN (insn), x, after))
5906 return true;
5907
5908 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
5909 location aliased with X, then this insn kills X. */
5910 note = find_reg_equal_equiv_note (insn);
5911 if (! note)
5912 return false;
5913 note = XEXP (note, 0);
5914
5915 /* However, if the note represents a must alias rather than a may
5916 alias relationship, then it does not kill X. */
5917 if (expr_equiv_p (note, x))
5918 return false;
5919
5920 /* See if there are any aliased loads in the note. */
5921 return find_loads (note, x, after);
5922 }
5923
5924 /* Returns true if the expression X is loaded or clobbered on or after INSN
5925 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
5926 or after the insn. X_REGS is list of registers mentioned in X. If the store
5927 is killed, return the last insn in that it occurs in FAIL_INSN. */
5928
5929 static bool
5930 store_killed_after (rtx x, rtx x_regs, rtx insn, basic_block bb,
5931 int *regs_set_after, rtx *fail_insn)
5932 {
5933 rtx last = BB_END (bb), act;
5934
5935 if (!store_ops_ok (x_regs, regs_set_after))
5936 {
5937 /* We do not know where it will happen. */
5938 if (fail_insn)
5939 *fail_insn = NULL_RTX;
5940 return true;
5941 }
5942
5943 /* Scan from the end, so that fail_insn is determined correctly. */
5944 for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
5945 if (store_killed_in_insn (x, x_regs, act, false))
5946 {
5947 if (fail_insn)
5948 *fail_insn = act;
5949 return true;
5950 }
5951
5952 return false;
5953 }
5954
5955 /* Returns true if the expression X is loaded or clobbered on or before INSN
5956 within basic block BB. X_REGS is list of registers mentioned in X.
5957 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
5958 static bool
5959 store_killed_before (rtx x, rtx x_regs, rtx insn, basic_block bb,
5960 int *regs_set_before)
5961 {
5962 rtx first = BB_HEAD (bb);
5963
5964 if (!store_ops_ok (x_regs, regs_set_before))
5965 return true;
5966
5967 for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
5968 if (store_killed_in_insn (x, x_regs, insn, true))
5969 return true;
5970
5971 return false;
5972 }
5973
5974 /* Fill in available, anticipatable, transparent and kill vectors in
5975 STORE_DATA, based on lists of available and anticipatable stores. */
5976 static void
5977 build_store_vectors (void)
5978 {
5979 basic_block bb;
5980 int *regs_set_in_block;
5981 rtx insn, st;
5982 struct ls_expr * ptr;
5983 unsigned regno;
5984
5985 /* Build the gen_vector. This is any store in the table which is not killed
5986 by aliasing later in its block. */
5987 ae_gen = sbitmap_vector_alloc (last_basic_block, num_stores);
5988 sbitmap_vector_zero (ae_gen, last_basic_block);
5989
5990 st_antloc = sbitmap_vector_alloc (last_basic_block, num_stores);
5991 sbitmap_vector_zero (st_antloc, last_basic_block);
5992
5993 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
5994 {
5995 for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
5996 {
5997 insn = XEXP (st, 0);
5998 bb = BLOCK_FOR_INSN (insn);
5999
6000 /* If we've already seen an available expression in this block,
6001 we can delete this one (It occurs earlier in the block). We'll
6002 copy the SRC expression to an unused register in case there
6003 are any side effects. */
6004 if (TEST_BIT (ae_gen[bb->index], ptr->index))
6005 {
6006 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6007 if (gcse_file)
6008 fprintf (gcse_file, "Removing redundant store:\n");
6009 replace_store_insn (r, XEXP (st, 0), bb, ptr);
6010 continue;
6011 }
6012 SET_BIT (ae_gen[bb->index], ptr->index);
6013 }
6014
6015 for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6016 {
6017 insn = XEXP (st, 0);
6018 bb = BLOCK_FOR_INSN (insn);
6019 SET_BIT (st_antloc[bb->index], ptr->index);
6020 }
6021 }
6022
6023 ae_kill = sbitmap_vector_alloc (last_basic_block, num_stores);
6024 sbitmap_vector_zero (ae_kill, last_basic_block);
6025
6026 transp = sbitmap_vector_alloc (last_basic_block, num_stores);
6027 sbitmap_vector_zero (transp, last_basic_block);
6028 regs_set_in_block = xmalloc (sizeof (int) * max_gcse_regno);
6029
6030 FOR_EACH_BB (bb)
6031 {
6032 for (regno = 0; regno < max_gcse_regno; regno++)
6033 regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);
6034
6035 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6036 {
6037 if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
6038 bb, regs_set_in_block, NULL))
6039 {
6040 /* It should not be necessary to consider the expression
6041 killed if it is both anticipatable and available. */
6042 if (!TEST_BIT (st_antloc[bb->index], ptr->index)
6043 || !TEST_BIT (ae_gen[bb->index], ptr->index))
6044 SET_BIT (ae_kill[bb->index], ptr->index);
6045 }
6046 else
6047 SET_BIT (transp[bb->index], ptr->index);
6048 }
6049 }
6050
6051 free (regs_set_in_block);
6052
6053 if (gcse_file)
6054 {
6055 dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, last_basic_block);
6056 dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, last_basic_block);
6057 dump_sbitmap_vector (gcse_file, "Transpt", "", transp, last_basic_block);
6058 dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, last_basic_block);
6059 }
6060 }
6061
6062 /* Insert an instruction at the beginning of a basic block, and update
6063 the BB_HEAD if needed. */
6064
6065 static void
6066 insert_insn_start_bb (rtx insn, basic_block bb)
6067 {
6068 /* Insert at start of successor block. */
6069 rtx prev = PREV_INSN (BB_HEAD (bb));
6070 rtx before = BB_HEAD (bb);
6071 while (before != 0)
6072 {
6073 if (! LABEL_P (before)
6074 && (! NOTE_P (before)
6075 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
6076 break;
6077 prev = before;
6078 if (prev == BB_END (bb))
6079 break;
6080 before = NEXT_INSN (before);
6081 }
6082
6083 insn = emit_insn_after_noloc (insn, prev);
6084
6085 if (gcse_file)
6086 {
6087 fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
6088 bb->index);
6089 print_inline_rtx (gcse_file, insn, 6);
6090 fprintf (gcse_file, "\n");
6091 }
6092 }
6093
6094 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6095 the memory reference, and E is the edge to insert it on. Returns nonzero
6096 if an edge insertion was performed. */
6097
6098 static int
6099 insert_store (struct ls_expr * expr, edge e)
6100 {
6101 rtx reg, insn;
6102 basic_block bb;
6103 edge tmp;
6104 edge_iterator ei;
6105
6106 /* We did all the deleted before this insert, so if we didn't delete a
6107 store, then we haven't set the reaching reg yet either. */
6108 if (expr->reaching_reg == NULL_RTX)
6109 return 0;
6110
6111 if (e->flags & EDGE_FAKE)
6112 return 0;
6113
6114 reg = expr->reaching_reg;
6115 insn = gen_move_insn (copy_rtx (expr->pattern), reg);
6116
6117 /* If we are inserting this expression on ALL predecessor edges of a BB,
6118 insert it at the start of the BB, and reset the insert bits on the other
6119 edges so we don't try to insert it on the other edges. */
6120 bb = e->dest;
6121 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6122 if (!(tmp->flags & EDGE_FAKE))
6123 {
6124 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6125
6126 gcc_assert (index != EDGE_INDEX_NO_EDGE);
6127 if (! TEST_BIT (pre_insert_map[index], expr->index))
6128 break;
6129 }
6130
6131 /* If tmp is NULL, we found an insertion on every edge, blank the
6132 insertion vector for these edges, and insert at the start of the BB. */
6133 if (!tmp && bb != EXIT_BLOCK_PTR)
6134 {
6135 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6136 {
6137 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6138 RESET_BIT (pre_insert_map[index], expr->index);
6139 }
6140 insert_insn_start_bb (insn, bb);
6141 return 0;
6142 }
6143
6144 /* We can't put stores in the front of blocks pointed to by abnormal
6145 edges since that may put a store where one didn't used to be. */
6146 gcc_assert (!(e->flags & EDGE_ABNORMAL));
6147
6148 insert_insn_on_edge (insn, e);
6149
6150 if (gcse_file)
6151 {
6152 fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
6153 e->src->index, e->dest->index);
6154 print_inline_rtx (gcse_file, insn, 6);
6155 fprintf (gcse_file, "\n");
6156 }
6157
6158 return 1;
6159 }
6160
6161 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6162 memory location in SMEXPR set in basic block BB.
6163
6164 This could be rather expensive. */
6165
6166 static void
6167 remove_reachable_equiv_notes (basic_block bb, struct ls_expr *smexpr)
6168 {
6169 edge_iterator *stack, ei;
6170 int sp;
6171 edge act;
6172 sbitmap visited = sbitmap_alloc (last_basic_block);
6173 rtx last, insn, note;
6174 rtx mem = smexpr->pattern;
6175
6176 stack = xmalloc (sizeof (edge_iterator) * n_basic_blocks);
6177 sp = 0;
6178 ei = ei_start (bb->succs);
6179
6180 sbitmap_zero (visited);
6181
6182 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6183 while (1)
6184 {
6185 if (!act)
6186 {
6187 if (!sp)
6188 {
6189 free (stack);
6190 sbitmap_free (visited);
6191 return;
6192 }
6193 act = ei_edge (stack[--sp]);
6194 }
6195 bb = act->dest;
6196
6197 if (bb == EXIT_BLOCK_PTR
6198 || TEST_BIT (visited, bb->index))
6199 {
6200 if (!ei_end_p (ei))
6201 ei_next (&ei);
6202 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6203 continue;
6204 }
6205 SET_BIT (visited, bb->index);
6206
6207 if (TEST_BIT (st_antloc[bb->index], smexpr->index))
6208 {
6209 for (last = ANTIC_STORE_LIST (smexpr);
6210 BLOCK_FOR_INSN (XEXP (last, 0)) != bb;
6211 last = XEXP (last, 1))
6212 continue;
6213 last = XEXP (last, 0);
6214 }
6215 else
6216 last = NEXT_INSN (BB_END (bb));
6217
6218 for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
6219 if (INSN_P (insn))
6220 {
6221 note = find_reg_equal_equiv_note (insn);
6222 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6223 continue;
6224
6225 if (gcse_file)
6226 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6227 INSN_UID (insn));
6228 remove_note (insn, note);
6229 }
6230
6231 if (!ei_end_p (ei))
6232 ei_next (&ei);
6233 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6234
6235 if (EDGE_COUNT (bb->succs) > 0)
6236 {
6237 if (act)
6238 stack[sp++] = ei;
6239 ei = ei_start (bb->succs);
6240 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6241 }
6242 }
6243 }
6244
6245 /* This routine will replace a store with a SET to a specified register. */
6246
6247 static void
6248 replace_store_insn (rtx reg, rtx del, basic_block bb, struct ls_expr *smexpr)
6249 {
6250 rtx insn, mem, note, set, ptr, pair;
6251
6252 mem = smexpr->pattern;
6253 insn = gen_move_insn (reg, SET_SRC (single_set (del)));
6254 insn = emit_insn_after (insn, del);
6255
6256 if (gcse_file)
6257 {
6258 fprintf (gcse_file,
6259 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
6260 print_inline_rtx (gcse_file, del, 6);
6261 fprintf (gcse_file, "\nSTORE MOTION replaced with insn:\n ");
6262 print_inline_rtx (gcse_file, insn, 6);
6263 fprintf (gcse_file, "\n");
6264 }
6265
6266 for (ptr = ANTIC_STORE_LIST (smexpr); ptr; ptr = XEXP (ptr, 1))
6267 if (XEXP (ptr, 0) == del)
6268 {
6269 XEXP (ptr, 0) = insn;
6270 break;
6271 }
6272
6273 /* Move the notes from the deleted insn to its replacement, and patch
6274 up the LIBCALL notes. */
6275 REG_NOTES (insn) = REG_NOTES (del);
6276
6277 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
6278 if (note)
6279 {
6280 pair = XEXP (note, 0);
6281 note = find_reg_note (pair, REG_LIBCALL, NULL_RTX);
6282 XEXP (note, 0) = insn;
6283 }
6284 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
6285 if (note)
6286 {
6287 pair = XEXP (note, 0);
6288 note = find_reg_note (pair, REG_RETVAL, NULL_RTX);
6289 XEXP (note, 0) = insn;
6290 }
6291
6292 delete_insn (del);
6293
6294 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6295 they are no longer accurate provided that they are reached by this
6296 definition, so drop them. */
6297 for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
6298 if (INSN_P (insn))
6299 {
6300 set = single_set (insn);
6301 if (!set)
6302 continue;
6303 if (expr_equiv_p (SET_DEST (set), mem))
6304 return;
6305 note = find_reg_equal_equiv_note (insn);
6306 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6307 continue;
6308
6309 if (gcse_file)
6310 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6311 INSN_UID (insn));
6312 remove_note (insn, note);
6313 }
6314 remove_reachable_equiv_notes (bb, smexpr);
6315 }
6316
6317
6318 /* Delete a store, but copy the value that would have been stored into
6319 the reaching_reg for later storing. */
6320
6321 static void
6322 delete_store (struct ls_expr * expr, basic_block bb)
6323 {
6324 rtx reg, i, del;
6325
6326 if (expr->reaching_reg == NULL_RTX)
6327 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
6328
6329 reg = expr->reaching_reg;
6330
6331 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
6332 {
6333 del = XEXP (i, 0);
6334 if (BLOCK_FOR_INSN (del) == bb)
6335 {
6336 /* We know there is only one since we deleted redundant
6337 ones during the available computation. */
6338 replace_store_insn (reg, del, bb, expr);
6339 break;
6340 }
6341 }
6342 }
6343
6344 /* Free memory used by store motion. */
6345
6346 static void
6347 free_store_memory (void)
6348 {
6349 free_ldst_mems ();
6350
6351 if (ae_gen)
6352 sbitmap_vector_free (ae_gen);
6353 if (ae_kill)
6354 sbitmap_vector_free (ae_kill);
6355 if (transp)
6356 sbitmap_vector_free (transp);
6357 if (st_antloc)
6358 sbitmap_vector_free (st_antloc);
6359 if (pre_insert_map)
6360 sbitmap_vector_free (pre_insert_map);
6361 if (pre_delete_map)
6362 sbitmap_vector_free (pre_delete_map);
6363 if (reg_set_in_block)
6364 sbitmap_vector_free (reg_set_in_block);
6365
6366 ae_gen = ae_kill = transp = st_antloc = NULL;
6367 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
6368 }
6369
6370 /* Perform store motion. Much like gcse, except we move expressions the
6371 other way by looking at the flowgraph in reverse. */
6372
6373 static void
6374 store_motion (void)
6375 {
6376 basic_block bb;
6377 int x;
6378 struct ls_expr * ptr;
6379 int update_flow = 0;
6380
6381 if (gcse_file)
6382 {
6383 fprintf (gcse_file, "before store motion\n");
6384 print_rtl (gcse_file, get_insns ());
6385 }
6386
6387 init_alias_analysis ();
6388
6389 /* Find all the available and anticipatable stores. */
6390 num_stores = compute_store_table ();
6391 if (num_stores == 0)
6392 {
6393 sbitmap_vector_free (reg_set_in_block);
6394 end_alias_analysis ();
6395 return;
6396 }
6397
6398 /* Now compute kill & transp vectors. */
6399 build_store_vectors ();
6400 add_noreturn_fake_exit_edges ();
6401 connect_infinite_loops_to_exit ();
6402
6403 edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
6404 st_antloc, ae_kill, &pre_insert_map,
6405 &pre_delete_map);
6406
6407 /* Now we want to insert the new stores which are going to be needed. */
6408 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6409 {
6410 /* If any of the edges we have above are abnormal, we can't move this
6411 store. */
6412 for (x = NUM_EDGES (edge_list) - 1; x >= 0; x--)
6413 if (TEST_BIT (pre_insert_map[x], ptr->index)
6414 && (INDEX_EDGE (edge_list, x)->flags & EDGE_ABNORMAL))
6415 break;
6416
6417 if (x >= 0)
6418 {
6419 if (gcse_file != NULL)
6420 fprintf (gcse_file,
6421 "Can't replace store %d: abnormal edge from %d to %d\n",
6422 ptr->index, INDEX_EDGE (edge_list, x)->src->index,
6423 INDEX_EDGE (edge_list, x)->dest->index);
6424 continue;
6425 }
6426
6427 /* Now we want to insert the new stores which are going to be needed. */
6428
6429 FOR_EACH_BB (bb)
6430 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
6431 delete_store (ptr, bb);
6432
6433 for (x = 0; x < NUM_EDGES (edge_list); x++)
6434 if (TEST_BIT (pre_insert_map[x], ptr->index))
6435 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
6436 }
6437
6438 if (update_flow)
6439 commit_edge_insertions ();
6440
6441 free_store_memory ();
6442 free_edge_list (edge_list);
6443 remove_fake_exit_edges ();
6444 end_alias_analysis ();
6445 }
6446
6447 \f
6448 /* Entry point for jump bypassing optimization pass. */
6449
6450 int
6451 bypass_jumps (FILE *file)
6452 {
6453 int changed;
6454
6455 /* We do not construct an accurate cfg in functions which call
6456 setjmp, so just punt to be safe. */
6457 if (current_function_calls_setjmp)
6458 return 0;
6459
6460 /* For calling dump_foo fns from gdb. */
6461 debug_stderr = stderr;
6462 gcse_file = file;
6463
6464 /* Identify the basic block information for this function, including
6465 successors and predecessors. */
6466 max_gcse_regno = max_reg_num ();
6467
6468 if (file)
6469 dump_flow_info (file);
6470
6471 /* Return if there's nothing to do, or it is too expensive. */
6472 if (n_basic_blocks <= 1 || is_too_expensive (_ ("jump bypassing disabled")))
6473 return 0;
6474
6475 gcc_obstack_init (&gcse_obstack);
6476 bytes_used = 0;
6477
6478 /* We need alias. */
6479 init_alias_analysis ();
6480
6481 /* Record where pseudo-registers are set. This data is kept accurate
6482 during each pass. ??? We could also record hard-reg information here
6483 [since it's unchanging], however it is currently done during hash table
6484 computation.
6485
6486 It may be tempting to compute MEM set information here too, but MEM sets
6487 will be subject to code motion one day and thus we need to compute
6488 information about memory sets when we build the hash tables. */
6489
6490 alloc_reg_set_mem (max_gcse_regno);
6491 compute_sets ();
6492
6493 max_gcse_regno = max_reg_num ();
6494 alloc_gcse_mem ();
6495 changed = one_cprop_pass (MAX_GCSE_PASSES + 2, true, true);
6496 free_gcse_mem ();
6497
6498 if (file)
6499 {
6500 fprintf (file, "BYPASS of %s: %d basic blocks, ",
6501 current_function_name (), n_basic_blocks);
6502 fprintf (file, "%d bytes\n\n", bytes_used);
6503 }
6504
6505 obstack_free (&gcse_obstack, NULL);
6506 free_reg_set_mem ();
6507
6508 /* We are finished with alias. */
6509 end_alias_analysis ();
6510 allocate_reg_info (max_reg_num (), FALSE, FALSE);
6511
6512 return changed;
6513 }
6514
6515 /* Return true if the graph is too expensive to optimize. PASS is the
6516 optimization about to be performed. */
6517
6518 static bool
6519 is_too_expensive (const char *pass)
6520 {
6521 /* Trying to perform global optimizations on flow graphs which have
6522 a high connectivity will take a long time and is unlikely to be
6523 particularly useful.
6524
6525 In normal circumstances a cfg should have about twice as many
6526 edges as blocks. But we do not want to punish small functions
6527 which have a couple switch statements. Rather than simply
6528 threshold the number of blocks, uses something with a more
6529 graceful degradation. */
6530 if (n_edges > 20000 + n_basic_blocks * 4)
6531 {
6532 warning (OPT_Wdisabled_optimization,
6533 "%s: %d basic blocks and %d edges/basic block",
6534 pass, n_basic_blocks, n_edges / n_basic_blocks);
6535
6536 return true;
6537 }
6538
6539 /* If allocating memory for the cprop bitmap would take up too much
6540 storage it's better just to disable the optimization. */
6541 if ((n_basic_blocks
6542 * SBITMAP_SET_SIZE (max_reg_num ())
6543 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
6544 {
6545 warning (OPT_Wdisabled_optimization,
6546 "%s: %d basic blocks and %d registers",
6547 pass, n_basic_blocks, max_reg_num ());
6548
6549 return true;
6550 }
6551
6552 return false;
6553 }
6554
6555 #include "gt-gcse.h"
This page took 0.304435 seconds and 5 git commands to generate.