]> gcc.gnu.org Git - gcc.git/blob - gcc/function.c
expmed.c (store_bit_field): Pun non-integral str_rtx modes.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 88, 89, 91-97, 1998 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
35
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
40
41 #include "config.h"
42 #include "system.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "flags.h"
46 #include "except.h"
47 #include "function.h"
48 #include "insn-flags.h"
49 #include "expr.h"
50 #include "insn-codes.h"
51 #include "regs.h"
52 #include "hard-reg-set.h"
53 #include "insn-config.h"
54 #include "recog.h"
55 #include "output.h"
56 #include "basic-block.h"
57 #include "obstack.h"
58 #include "toplev.h"
59
60 #ifndef TRAMPOLINE_ALIGNMENT
61 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
62 #endif
63
64 /* Some systems use __main in a way incompatible with its use in gcc, in these
65 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
66 give the same symbol without quotes for an alternative entry point. You
67 must define both, or neither. */
68 #ifndef NAME__MAIN
69 #define NAME__MAIN "__main"
70 #define SYMBOL__MAIN __main
71 #endif
72
73 /* Round a value to the lowest integer less than it that is a multiple of
74 the required alignment. Avoid using division in case the value is
75 negative. Assume the alignment is a power of two. */
76 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
77
78 /* Similar, but round to the next highest integer that meets the
79 alignment. */
80 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
81
82 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
83 during rtl generation. If they are different register numbers, this is
84 always true. It may also be true if
85 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
86 generation. See fix_lexical_addr for details. */
87
88 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
89 #define NEED_SEPARATE_AP
90 #endif
91
92 /* Number of bytes of args popped by function being compiled on its return.
93 Zero if no bytes are to be popped.
94 May affect compilation of return insn or of function epilogue. */
95
96 int current_function_pops_args;
97
98 /* Nonzero if function being compiled needs to be given an address
99 where the value should be stored. */
100
101 int current_function_returns_struct;
102
103 /* Nonzero if function being compiled needs to
104 return the address of where it has put a structure value. */
105
106 int current_function_returns_pcc_struct;
107
108 /* Nonzero if function being compiled needs to be passed a static chain. */
109
110 int current_function_needs_context;
111
112 /* Nonzero if function being compiled can call setjmp. */
113
114 int current_function_calls_setjmp;
115
116 /* Nonzero if function being compiled can call longjmp. */
117
118 int current_function_calls_longjmp;
119
120 /* Nonzero if function being compiled receives nonlocal gotos
121 from nested functions. */
122
123 int current_function_has_nonlocal_label;
124
125 /* Nonzero if function being compiled has nonlocal gotos to parent
126 function. */
127
128 int current_function_has_nonlocal_goto;
129
130 /* Nonzero if this function has a computed goto.
131
132 It is computed during find_basic_blocks or during stupid life
133 analysis. */
134
135 int current_function_has_computed_jump;
136
137 /* Nonzero if function being compiled contains nested functions. */
138
139 int current_function_contains_functions;
140
141 /* Nonzero if the current function is a thunk (a lightweight function that
142 just adjusts one of its arguments and forwards to another function), so
143 we should try to cut corners where we can. */
144 int current_function_is_thunk;
145
146 /* Nonzero if function being compiled can call alloca,
147 either as a subroutine or builtin. */
148
149 int current_function_calls_alloca;
150
151 /* Nonzero if the current function returns a pointer type */
152
153 int current_function_returns_pointer;
154
155 /* If some insns can be deferred to the delay slots of the epilogue, the
156 delay list for them is recorded here. */
157
158 rtx current_function_epilogue_delay_list;
159
160 /* If function's args have a fixed size, this is that size, in bytes.
161 Otherwise, it is -1.
162 May affect compilation of return insn or of function epilogue. */
163
164 int current_function_args_size;
165
166 /* # bytes the prologue should push and pretend that the caller pushed them.
167 The prologue must do this, but only if parms can be passed in registers. */
168
169 int current_function_pretend_args_size;
170
171 /* # of bytes of outgoing arguments. If ACCUMULATE_OUTGOING_ARGS is
172 defined, the needed space is pushed by the prologue. */
173
174 int current_function_outgoing_args_size;
175
176 /* This is the offset from the arg pointer to the place where the first
177 anonymous arg can be found, if there is one. */
178
179 rtx current_function_arg_offset_rtx;
180
181 /* Nonzero if current function uses varargs.h or equivalent.
182 Zero for functions that use stdarg.h. */
183
184 int current_function_varargs;
185
186 /* Nonzero if current function uses stdarg.h or equivalent.
187 Zero for functions that use varargs.h. */
188
189 int current_function_stdarg;
190
191 /* Quantities of various kinds of registers
192 used for the current function's args. */
193
194 CUMULATIVE_ARGS current_function_args_info;
195
196 /* Name of function now being compiled. */
197
198 char *current_function_name;
199
200 /* If non-zero, an RTL expression for the location at which the current
201 function returns its result. If the current function returns its
202 result in a register, current_function_return_rtx will always be
203 the hard register containing the result. */
204
205 rtx current_function_return_rtx;
206
207 /* Nonzero if the current function uses the constant pool. */
208
209 int current_function_uses_const_pool;
210
211 /* Nonzero if the current function uses pic_offset_table_rtx. */
212 int current_function_uses_pic_offset_table;
213
214 /* The arg pointer hard register, or the pseudo into which it was copied. */
215 rtx current_function_internal_arg_pointer;
216
217 /* Language-specific reason why the current function cannot be made inline. */
218 char *current_function_cannot_inline;
219
220 /* Nonzero if instrumentation calls for function entry and exit should be
221 generated. */
222 int current_function_instrument_entry_exit;
223
224 /* The FUNCTION_DECL for an inline function currently being expanded. */
225 tree inline_function_decl;
226
227 /* Number of function calls seen so far in current function. */
228
229 int function_call_count;
230
231 /* List (chain of TREE_LIST) of LABEL_DECLs for all nonlocal labels
232 (labels to which there can be nonlocal gotos from nested functions)
233 in this function. */
234
235 tree nonlocal_labels;
236
237 /* RTX for stack slot that holds the current handler for nonlocal gotos.
238 Zero when function does not have nonlocal labels. */
239
240 rtx nonlocal_goto_handler_slot;
241
242 /* RTX for stack slot that holds the stack pointer value to restore
243 for a nonlocal goto.
244 Zero when function does not have nonlocal labels. */
245
246 rtx nonlocal_goto_stack_level;
247
248 /* Label that will go on parm cleanup code, if any.
249 Jumping to this label runs cleanup code for parameters, if
250 such code must be run. Following this code is the logical return label. */
251
252 rtx cleanup_label;
253
254 /* Label that will go on function epilogue.
255 Jumping to this label serves as a "return" instruction
256 on machines which require execution of the epilogue on all returns. */
257
258 rtx return_label;
259
260 /* List (chain of EXPR_LISTs) of pseudo-regs of SAVE_EXPRs.
261 So we can mark them all live at the end of the function, if nonopt. */
262 rtx save_expr_regs;
263
264 /* List (chain of EXPR_LISTs) of all stack slots in this function.
265 Made for the sake of unshare_all_rtl. */
266 rtx stack_slot_list;
267
268 /* Chain of all RTL_EXPRs that have insns in them. */
269 tree rtl_expr_chain;
270
271 /* Label to jump back to for tail recursion, or 0 if we have
272 not yet needed one for this function. */
273 rtx tail_recursion_label;
274
275 /* Place after which to insert the tail_recursion_label if we need one. */
276 rtx tail_recursion_reentry;
277
278 /* Location at which to save the argument pointer if it will need to be
279 referenced. There are two cases where this is done: if nonlocal gotos
280 exist, or if vars stored at an offset from the argument pointer will be
281 needed by inner routines. */
282
283 rtx arg_pointer_save_area;
284
285 /* Offset to end of allocated area of stack frame.
286 If stack grows down, this is the address of the last stack slot allocated.
287 If stack grows up, this is the address for the next slot. */
288 HOST_WIDE_INT frame_offset;
289
290 /* List (chain of TREE_LISTs) of static chains for containing functions.
291 Each link has a FUNCTION_DECL in the TREE_PURPOSE and a reg rtx
292 in an RTL_EXPR in the TREE_VALUE. */
293 static tree context_display;
294
295 /* List (chain of TREE_LISTs) of trampolines for nested functions.
296 The trampoline sets up the static chain and jumps to the function.
297 We supply the trampoline's address when the function's address is requested.
298
299 Each link has a FUNCTION_DECL in the TREE_PURPOSE and a reg rtx
300 in an RTL_EXPR in the TREE_VALUE. */
301 static tree trampoline_list;
302
303 /* Insn after which register parms and SAVE_EXPRs are born, if nonopt. */
304 static rtx parm_birth_insn;
305
306 #if 0
307 /* Nonzero if a stack slot has been generated whose address is not
308 actually valid. It means that the generated rtl must all be scanned
309 to detect and correct the invalid addresses where they occur. */
310 static int invalid_stack_slot;
311 #endif
312
313 /* Last insn of those whose job was to put parms into their nominal homes. */
314 static rtx last_parm_insn;
315
316 /* 1 + last pseudo register number possibly used for loading a copy
317 of a parameter of this function. */
318 int max_parm_reg;
319
320 /* Vector indexed by REGNO, containing location on stack in which
321 to put the parm which is nominally in pseudo register REGNO,
322 if we discover that that parm must go in the stack. The highest
323 element in this vector is one less than MAX_PARM_REG, above. */
324 rtx *parm_reg_stack_loc;
325
326 /* Nonzero once virtual register instantiation has been done.
327 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
328 static int virtuals_instantiated;
329
330 /* These variables hold pointers to functions to
331 save and restore machine-specific data,
332 in push_function_context and pop_function_context. */
333 void (*save_machine_status) PROTO((struct function *));
334 void (*restore_machine_status) PROTO((struct function *));
335
336 /* Nonzero if we need to distinguish between the return value of this function
337 and the return value of a function called by this function. This helps
338 integrate.c */
339
340 extern int rtx_equal_function_value_matters;
341 extern tree sequence_rtl_expr;
342 \f
343 /* In order to evaluate some expressions, such as function calls returning
344 structures in memory, we need to temporarily allocate stack locations.
345 We record each allocated temporary in the following structure.
346
347 Associated with each temporary slot is a nesting level. When we pop up
348 one level, all temporaries associated with the previous level are freed.
349 Normally, all temporaries are freed after the execution of the statement
350 in which they were created. However, if we are inside a ({...}) grouping,
351 the result may be in a temporary and hence must be preserved. If the
352 result could be in a temporary, we preserve it if we can determine which
353 one it is in. If we cannot determine which temporary may contain the
354 result, all temporaries are preserved. A temporary is preserved by
355 pretending it was allocated at the previous nesting level.
356
357 Automatic variables are also assigned temporary slots, at the nesting
358 level where they are defined. They are marked a "kept" so that
359 free_temp_slots will not free them. */
360
361 struct temp_slot
362 {
363 /* Points to next temporary slot. */
364 struct temp_slot *next;
365 /* The rtx to used to reference the slot. */
366 rtx slot;
367 /* The rtx used to represent the address if not the address of the
368 slot above. May be an EXPR_LIST if multiple addresses exist. */
369 rtx address;
370 /* The size, in units, of the slot. */
371 HOST_WIDE_INT size;
372 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
373 tree rtl_expr;
374 /* Non-zero if this temporary is currently in use. */
375 char in_use;
376 /* Non-zero if this temporary has its address taken. */
377 char addr_taken;
378 /* Nesting level at which this slot is being used. */
379 int level;
380 /* Non-zero if this should survive a call to free_temp_slots. */
381 int keep;
382 /* The offset of the slot from the frame_pointer, including extra space
383 for alignment. This info is for combine_temp_slots. */
384 HOST_WIDE_INT base_offset;
385 /* The size of the slot, including extra space for alignment. This
386 info is for combine_temp_slots. */
387 HOST_WIDE_INT full_size;
388 };
389
390 /* List of all temporaries allocated, both available and in use. */
391
392 struct temp_slot *temp_slots;
393
394 /* Current nesting level for temporaries. */
395
396 int temp_slot_level;
397
398 /* Current nesting level for variables in a block. */
399
400 int var_temp_slot_level;
401
402 /* When temporaries are created by TARGET_EXPRs, they are created at
403 this level of temp_slot_level, so that they can remain allocated
404 until no longer needed. CLEANUP_POINT_EXPRs define the lifetime
405 of TARGET_EXPRs. */
406 int target_temp_slot_level;
407 \f
408 /* This structure is used to record MEMs or pseudos used to replace VAR, any
409 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
410 maintain this list in case two operands of an insn were required to match;
411 in that case we must ensure we use the same replacement. */
412
413 struct fixup_replacement
414 {
415 rtx old;
416 rtx new;
417 struct fixup_replacement *next;
418 };
419
420 /* Forward declarations. */
421
422 static rtx assign_outer_stack_local PROTO ((enum machine_mode, HOST_WIDE_INT,
423 int, struct function *));
424 static struct temp_slot *find_temp_slot_from_address PROTO((rtx));
425 static void put_reg_into_stack PROTO((struct function *, rtx, tree,
426 enum machine_mode, enum machine_mode,
427 int, int, int));
428 static void fixup_var_refs PROTO((rtx, enum machine_mode, int));
429 static struct fixup_replacement
430 *find_fixup_replacement PROTO((struct fixup_replacement **, rtx));
431 static void fixup_var_refs_insns PROTO((rtx, enum machine_mode, int,
432 rtx, int));
433 static void fixup_var_refs_1 PROTO((rtx, enum machine_mode, rtx *, rtx,
434 struct fixup_replacement **));
435 static rtx fixup_memory_subreg PROTO((rtx, rtx, int));
436 static rtx walk_fixup_memory_subreg PROTO((rtx, rtx, int));
437 static rtx fixup_stack_1 PROTO((rtx, rtx));
438 static void optimize_bit_field PROTO((rtx, rtx, rtx *));
439 static void instantiate_decls PROTO((tree, int));
440 static void instantiate_decls_1 PROTO((tree, int));
441 static void instantiate_decl PROTO((rtx, int, int));
442 static int instantiate_virtual_regs_1 PROTO((rtx *, rtx, int));
443 static void delete_handlers PROTO((void));
444 static void pad_to_arg_alignment PROTO((struct args_size *, int));
445 #ifndef ARGS_GROW_DOWNWARD
446 static void pad_below PROTO((struct args_size *, enum machine_mode,
447 tree));
448 #endif
449 #ifdef ARGS_GROW_DOWNWARD
450 static tree round_down PROTO((tree, int));
451 #endif
452 static rtx round_trampoline_addr PROTO((rtx));
453 static tree blocks_nreverse PROTO((tree));
454 static int all_blocks PROTO((tree, tree *));
455 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
456 static int *record_insns PROTO((rtx));
457 static int contains PROTO((rtx, int *));
458 #endif /* HAVE_prologue || HAVE_epilogue */
459 static void put_addressof_into_stack PROTO((rtx));
460 static void purge_addressof_1 PROTO((rtx *, rtx, int, int));
461 \f
462 /* Pointer to chain of `struct function' for containing functions. */
463 struct function *outer_function_chain;
464
465 /* Given a function decl for a containing function,
466 return the `struct function' for it. */
467
468 struct function *
469 find_function_data (decl)
470 tree decl;
471 {
472 struct function *p;
473
474 for (p = outer_function_chain; p; p = p->next)
475 if (p->decl == decl)
476 return p;
477
478 abort ();
479 }
480
481 /* Save the current context for compilation of a nested function.
482 This is called from language-specific code.
483 The caller is responsible for saving any language-specific status,
484 since this function knows only about language-independent variables. */
485
486 void
487 push_function_context_to (context)
488 tree context;
489 {
490 struct function *p = (struct function *) xmalloc (sizeof (struct function));
491
492 p->next = outer_function_chain;
493 outer_function_chain = p;
494
495 p->name = current_function_name;
496 p->decl = current_function_decl;
497 p->pops_args = current_function_pops_args;
498 p->returns_struct = current_function_returns_struct;
499 p->returns_pcc_struct = current_function_returns_pcc_struct;
500 p->returns_pointer = current_function_returns_pointer;
501 p->needs_context = current_function_needs_context;
502 p->calls_setjmp = current_function_calls_setjmp;
503 p->calls_longjmp = current_function_calls_longjmp;
504 p->calls_alloca = current_function_calls_alloca;
505 p->has_nonlocal_label = current_function_has_nonlocal_label;
506 p->has_nonlocal_goto = current_function_has_nonlocal_goto;
507 p->contains_functions = current_function_contains_functions;
508 p->is_thunk = current_function_is_thunk;
509 p->args_size = current_function_args_size;
510 p->pretend_args_size = current_function_pretend_args_size;
511 p->arg_offset_rtx = current_function_arg_offset_rtx;
512 p->varargs = current_function_varargs;
513 p->stdarg = current_function_stdarg;
514 p->uses_const_pool = current_function_uses_const_pool;
515 p->uses_pic_offset_table = current_function_uses_pic_offset_table;
516 p->internal_arg_pointer = current_function_internal_arg_pointer;
517 p->cannot_inline = current_function_cannot_inline;
518 p->max_parm_reg = max_parm_reg;
519 p->parm_reg_stack_loc = parm_reg_stack_loc;
520 p->outgoing_args_size = current_function_outgoing_args_size;
521 p->return_rtx = current_function_return_rtx;
522 p->nonlocal_goto_handler_slot = nonlocal_goto_handler_slot;
523 p->nonlocal_goto_stack_level = nonlocal_goto_stack_level;
524 p->nonlocal_labels = nonlocal_labels;
525 p->cleanup_label = cleanup_label;
526 p->return_label = return_label;
527 p->save_expr_regs = save_expr_regs;
528 p->stack_slot_list = stack_slot_list;
529 p->parm_birth_insn = parm_birth_insn;
530 p->frame_offset = frame_offset;
531 p->tail_recursion_label = tail_recursion_label;
532 p->tail_recursion_reentry = tail_recursion_reentry;
533 p->arg_pointer_save_area = arg_pointer_save_area;
534 p->rtl_expr_chain = rtl_expr_chain;
535 p->last_parm_insn = last_parm_insn;
536 p->context_display = context_display;
537 p->trampoline_list = trampoline_list;
538 p->function_call_count = function_call_count;
539 p->temp_slots = temp_slots;
540 p->temp_slot_level = temp_slot_level;
541 p->target_temp_slot_level = target_temp_slot_level;
542 p->var_temp_slot_level = var_temp_slot_level;
543 p->fixup_var_refs_queue = 0;
544 p->epilogue_delay_list = current_function_epilogue_delay_list;
545 p->args_info = current_function_args_info;
546 p->instrument_entry_exit = current_function_instrument_entry_exit;
547
548 save_tree_status (p, context);
549 save_storage_status (p);
550 save_emit_status (p);
551 save_expr_status (p);
552 save_stmt_status (p);
553 save_varasm_status (p, context);
554 if (save_machine_status)
555 (*save_machine_status) (p);
556 }
557
558 void
559 push_function_context ()
560 {
561 push_function_context_to (current_function_decl);
562 }
563
564 /* Restore the last saved context, at the end of a nested function.
565 This function is called from language-specific code. */
566
567 void
568 pop_function_context_from (context)
569 tree context;
570 {
571 struct function *p = outer_function_chain;
572 struct var_refs_queue *queue;
573
574 outer_function_chain = p->next;
575
576 current_function_contains_functions
577 = p->contains_functions || p->inline_obstacks
578 || context == current_function_decl;
579 current_function_name = p->name;
580 current_function_decl = p->decl;
581 current_function_pops_args = p->pops_args;
582 current_function_returns_struct = p->returns_struct;
583 current_function_returns_pcc_struct = p->returns_pcc_struct;
584 current_function_returns_pointer = p->returns_pointer;
585 current_function_needs_context = p->needs_context;
586 current_function_calls_setjmp = p->calls_setjmp;
587 current_function_calls_longjmp = p->calls_longjmp;
588 current_function_calls_alloca = p->calls_alloca;
589 current_function_has_nonlocal_label = p->has_nonlocal_label;
590 current_function_has_nonlocal_goto = p->has_nonlocal_goto;
591 current_function_is_thunk = p->is_thunk;
592 current_function_args_size = p->args_size;
593 current_function_pretend_args_size = p->pretend_args_size;
594 current_function_arg_offset_rtx = p->arg_offset_rtx;
595 current_function_varargs = p->varargs;
596 current_function_stdarg = p->stdarg;
597 current_function_uses_const_pool = p->uses_const_pool;
598 current_function_uses_pic_offset_table = p->uses_pic_offset_table;
599 current_function_internal_arg_pointer = p->internal_arg_pointer;
600 current_function_cannot_inline = p->cannot_inline;
601 max_parm_reg = p->max_parm_reg;
602 parm_reg_stack_loc = p->parm_reg_stack_loc;
603 current_function_outgoing_args_size = p->outgoing_args_size;
604 current_function_return_rtx = p->return_rtx;
605 nonlocal_goto_handler_slot = p->nonlocal_goto_handler_slot;
606 nonlocal_goto_stack_level = p->nonlocal_goto_stack_level;
607 nonlocal_labels = p->nonlocal_labels;
608 cleanup_label = p->cleanup_label;
609 return_label = p->return_label;
610 save_expr_regs = p->save_expr_regs;
611 stack_slot_list = p->stack_slot_list;
612 parm_birth_insn = p->parm_birth_insn;
613 frame_offset = p->frame_offset;
614 tail_recursion_label = p->tail_recursion_label;
615 tail_recursion_reentry = p->tail_recursion_reentry;
616 arg_pointer_save_area = p->arg_pointer_save_area;
617 rtl_expr_chain = p->rtl_expr_chain;
618 last_parm_insn = p->last_parm_insn;
619 context_display = p->context_display;
620 trampoline_list = p->trampoline_list;
621 function_call_count = p->function_call_count;
622 temp_slots = p->temp_slots;
623 temp_slot_level = p->temp_slot_level;
624 target_temp_slot_level = p->target_temp_slot_level;
625 var_temp_slot_level = p->var_temp_slot_level;
626 current_function_epilogue_delay_list = p->epilogue_delay_list;
627 reg_renumber = 0;
628 current_function_args_info = p->args_info;
629 current_function_instrument_entry_exit = p->instrument_entry_exit;
630
631 restore_tree_status (p, context);
632 restore_storage_status (p);
633 restore_expr_status (p);
634 restore_emit_status (p);
635 restore_stmt_status (p);
636 restore_varasm_status (p);
637
638 if (restore_machine_status)
639 (*restore_machine_status) (p);
640
641 /* Finish doing put_var_into_stack for any of our variables
642 which became addressable during the nested function. */
643 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
644 fixup_var_refs (queue->modified, queue->promoted_mode, queue->unsignedp);
645
646 free (p);
647
648 /* Reset variables that have known state during rtx generation. */
649 rtx_equal_function_value_matters = 1;
650 virtuals_instantiated = 0;
651 }
652
653 void pop_function_context ()
654 {
655 pop_function_context_from (current_function_decl);
656 }
657 \f
658 /* Allocate fixed slots in the stack frame of the current function. */
659
660 /* Return size needed for stack frame based on slots so far allocated.
661 This size counts from zero. It is not rounded to STACK_BOUNDARY;
662 the caller may have to do that. */
663
664 HOST_WIDE_INT
665 get_frame_size ()
666 {
667 #ifdef FRAME_GROWS_DOWNWARD
668 return -frame_offset;
669 #else
670 return frame_offset;
671 #endif
672 }
673
674 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
675 with machine mode MODE.
676
677 ALIGN controls the amount of alignment for the address of the slot:
678 0 means according to MODE,
679 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
680 positive specifies alignment boundary in bits.
681
682 We do not round to stack_boundary here. */
683
684 rtx
685 assign_stack_local (mode, size, align)
686 enum machine_mode mode;
687 HOST_WIDE_INT size;
688 int align;
689 {
690 register rtx x, addr;
691 int bigend_correction = 0;
692 int alignment;
693
694 if (align == 0)
695 {
696 alignment = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
697 if (mode == BLKmode)
698 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
699 }
700 else if (align == -1)
701 {
702 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
703 size = CEIL_ROUND (size, alignment);
704 }
705 else
706 alignment = align / BITS_PER_UNIT;
707
708 /* Round frame offset to that alignment.
709 We must be careful here, since FRAME_OFFSET might be negative and
710 division with a negative dividend isn't as well defined as we might
711 like. So we instead assume that ALIGNMENT is a power of two and
712 use logical operations which are unambiguous. */
713 #ifdef FRAME_GROWS_DOWNWARD
714 frame_offset = FLOOR_ROUND (frame_offset, alignment);
715 #else
716 frame_offset = CEIL_ROUND (frame_offset, alignment);
717 #endif
718
719 /* On a big-endian machine, if we are allocating more space than we will use,
720 use the least significant bytes of those that are allocated. */
721 if (BYTES_BIG_ENDIAN && mode != BLKmode)
722 bigend_correction = size - GET_MODE_SIZE (mode);
723
724 #ifdef FRAME_GROWS_DOWNWARD
725 frame_offset -= size;
726 #endif
727
728 /* If we have already instantiated virtual registers, return the actual
729 address relative to the frame pointer. */
730 if (virtuals_instantiated)
731 addr = plus_constant (frame_pointer_rtx,
732 (frame_offset + bigend_correction
733 + STARTING_FRAME_OFFSET));
734 else
735 addr = plus_constant (virtual_stack_vars_rtx,
736 frame_offset + bigend_correction);
737
738 #ifndef FRAME_GROWS_DOWNWARD
739 frame_offset += size;
740 #endif
741
742 x = gen_rtx_MEM (mode, addr);
743
744 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
745
746 return x;
747 }
748
749 /* Assign a stack slot in a containing function.
750 First three arguments are same as in preceding function.
751 The last argument specifies the function to allocate in. */
752
753 static rtx
754 assign_outer_stack_local (mode, size, align, function)
755 enum machine_mode mode;
756 HOST_WIDE_INT size;
757 int align;
758 struct function *function;
759 {
760 register rtx x, addr;
761 int bigend_correction = 0;
762 int alignment;
763
764 /* Allocate in the memory associated with the function in whose frame
765 we are assigning. */
766 push_obstacks (function->function_obstack,
767 function->function_maybepermanent_obstack);
768
769 if (align == 0)
770 {
771 alignment = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
772 if (mode == BLKmode)
773 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
774 }
775 else if (align == -1)
776 {
777 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
778 size = CEIL_ROUND (size, alignment);
779 }
780 else
781 alignment = align / BITS_PER_UNIT;
782
783 /* Round frame offset to that alignment. */
784 #ifdef FRAME_GROWS_DOWNWARD
785 function->frame_offset = FLOOR_ROUND (function->frame_offset, alignment);
786 #else
787 function->frame_offset = CEIL_ROUND (function->frame_offset, alignment);
788 #endif
789
790 /* On a big-endian machine, if we are allocating more space than we will use,
791 use the least significant bytes of those that are allocated. */
792 if (BYTES_BIG_ENDIAN && mode != BLKmode)
793 bigend_correction = size - GET_MODE_SIZE (mode);
794
795 #ifdef FRAME_GROWS_DOWNWARD
796 function->frame_offset -= size;
797 #endif
798 addr = plus_constant (virtual_stack_vars_rtx,
799 function->frame_offset + bigend_correction);
800 #ifndef FRAME_GROWS_DOWNWARD
801 function->frame_offset += size;
802 #endif
803
804 x = gen_rtx_MEM (mode, addr);
805
806 function->stack_slot_list
807 = gen_rtx_EXPR_LIST (VOIDmode, x, function->stack_slot_list);
808
809 pop_obstacks ();
810
811 return x;
812 }
813 \f
814 /* Allocate a temporary stack slot and record it for possible later
815 reuse.
816
817 MODE is the machine mode to be given to the returned rtx.
818
819 SIZE is the size in units of the space required. We do no rounding here
820 since assign_stack_local will do any required rounding.
821
822 KEEP is 1 if this slot is to be retained after a call to
823 free_temp_slots. Automatic variables for a block are allocated
824 with this flag. KEEP is 2 if we allocate a longer term temporary,
825 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
826 if we are to allocate something at an inner level to be treated as
827 a variable in the block (e.g., a SAVE_EXPR). */
828
829 rtx
830 assign_stack_temp (mode, size, keep)
831 enum machine_mode mode;
832 HOST_WIDE_INT size;
833 int keep;
834 {
835 struct temp_slot *p, *best_p = 0;
836
837 /* If SIZE is -1 it means that somebody tried to allocate a temporary
838 of a variable size. */
839 if (size == -1)
840 abort ();
841
842 /* First try to find an available, already-allocated temporary that is the
843 exact size we require. */
844 for (p = temp_slots; p; p = p->next)
845 if (p->size == size && GET_MODE (p->slot) == mode && ! p->in_use)
846 break;
847
848 /* If we didn't find, one, try one that is larger than what we want. We
849 find the smallest such. */
850 if (p == 0)
851 for (p = temp_slots; p; p = p->next)
852 if (p->size > size && GET_MODE (p->slot) == mode && ! p->in_use
853 && (best_p == 0 || best_p->size > p->size))
854 best_p = p;
855
856 /* Make our best, if any, the one to use. */
857 if (best_p)
858 {
859 /* If there are enough aligned bytes left over, make them into a new
860 temp_slot so that the extra bytes don't get wasted. Do this only
861 for BLKmode slots, so that we can be sure of the alignment. */
862 if (GET_MODE (best_p->slot) == BLKmode)
863 {
864 int alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
865 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
866
867 if (best_p->size - rounded_size >= alignment)
868 {
869 p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
870 p->in_use = p->addr_taken = 0;
871 p->size = best_p->size - rounded_size;
872 p->base_offset = best_p->base_offset + rounded_size;
873 p->full_size = best_p->full_size - rounded_size;
874 p->slot = gen_rtx_MEM (BLKmode,
875 plus_constant (XEXP (best_p->slot, 0),
876 rounded_size));
877 p->address = 0;
878 p->rtl_expr = 0;
879 p->next = temp_slots;
880 temp_slots = p;
881
882 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
883 stack_slot_list);
884
885 best_p->size = rounded_size;
886 best_p->full_size = rounded_size;
887 }
888 }
889
890 p = best_p;
891 }
892
893 /* If we still didn't find one, make a new temporary. */
894 if (p == 0)
895 {
896 HOST_WIDE_INT frame_offset_old = frame_offset;
897
898 p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
899
900 /* If the temp slot mode doesn't indicate the alignment,
901 use the largest possible, so no one will be disappointed. */
902 p->slot = assign_stack_local (mode, size, mode == BLKmode ? -1 : 0);
903
904 /* The following slot size computation is necessary because we don't
905 know the actual size of the temporary slot until assign_stack_local
906 has performed all the frame alignment and size rounding for the
907 requested temporary. Note that extra space added for alignment
908 can be either above or below this stack slot depending on which
909 way the frame grows. We include the extra space if and only if it
910 is above this slot. */
911 #ifdef FRAME_GROWS_DOWNWARD
912 p->size = frame_offset_old - frame_offset;
913 #else
914 p->size = size;
915 #endif
916
917 /* Now define the fields used by combine_temp_slots. */
918 #ifdef FRAME_GROWS_DOWNWARD
919 p->base_offset = frame_offset;
920 p->full_size = frame_offset_old - frame_offset;
921 #else
922 p->base_offset = frame_offset_old;
923 p->full_size = frame_offset - frame_offset_old;
924 #endif
925 p->address = 0;
926 p->next = temp_slots;
927 temp_slots = p;
928 }
929
930 p->in_use = 1;
931 p->addr_taken = 0;
932 p->rtl_expr = sequence_rtl_expr;
933
934 if (keep == 2)
935 {
936 p->level = target_temp_slot_level;
937 p->keep = 0;
938 }
939 else if (keep == 3)
940 {
941 p->level = var_temp_slot_level;
942 p->keep = 0;
943 }
944 else
945 {
946 p->level = temp_slot_level;
947 p->keep = keep;
948 }
949
950 /* We may be reusing an old slot, so clear any MEM flags that may have been
951 set from before. */
952 RTX_UNCHANGING_P (p->slot) = 0;
953 MEM_IN_STRUCT_P (p->slot) = 0;
954 return p->slot;
955 }
956 \f
957 /* Assign a temporary of given TYPE.
958 KEEP is as for assign_stack_temp.
959 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
960 it is 0 if a register is OK.
961 DONT_PROMOTE is 1 if we should not promote values in register
962 to wider modes. */
963
964 rtx
965 assign_temp (type, keep, memory_required, dont_promote)
966 tree type;
967 int keep;
968 int memory_required;
969 int dont_promote;
970 {
971 enum machine_mode mode = TYPE_MODE (type);
972 int unsignedp = TREE_UNSIGNED (type);
973
974 if (mode == BLKmode || memory_required)
975 {
976 HOST_WIDE_INT size = int_size_in_bytes (type);
977 rtx tmp;
978
979 /* Unfortunately, we don't yet know how to allocate variable-sized
980 temporaries. However, sometimes we have a fixed upper limit on
981 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
982 instead. This is the case for Chill variable-sized strings. */
983 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
984 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
985 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (type)) == INTEGER_CST)
986 size = TREE_INT_CST_LOW (TYPE_ARRAY_MAX_SIZE (type));
987
988 tmp = assign_stack_temp (mode, size, keep);
989 MEM_IN_STRUCT_P (tmp) = AGGREGATE_TYPE_P (type);
990 return tmp;
991 }
992
993 #ifndef PROMOTE_FOR_CALL_ONLY
994 if (! dont_promote)
995 mode = promote_mode (type, mode, &unsignedp, 0);
996 #endif
997
998 return gen_reg_rtx (mode);
999 }
1000 \f
1001 /* Combine temporary stack slots which are adjacent on the stack.
1002
1003 This allows for better use of already allocated stack space. This is only
1004 done for BLKmode slots because we can be sure that we won't have alignment
1005 problems in this case. */
1006
1007 void
1008 combine_temp_slots ()
1009 {
1010 struct temp_slot *p, *q;
1011 struct temp_slot *prev_p, *prev_q;
1012 int num_slots;
1013
1014 /* If there are a lot of temp slots, don't do anything unless
1015 high levels of optimizaton. */
1016 if (! flag_expensive_optimizations)
1017 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1018 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1019 return;
1020
1021 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
1022 {
1023 int delete_p = 0;
1024
1025 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
1026 for (q = p->next, prev_q = p; q; q = prev_q->next)
1027 {
1028 int delete_q = 0;
1029 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
1030 {
1031 if (p->base_offset + p->full_size == q->base_offset)
1032 {
1033 /* Q comes after P; combine Q into P. */
1034 p->size += q->size;
1035 p->full_size += q->full_size;
1036 delete_q = 1;
1037 }
1038 else if (q->base_offset + q->full_size == p->base_offset)
1039 {
1040 /* P comes after Q; combine P into Q. */
1041 q->size += p->size;
1042 q->full_size += p->full_size;
1043 delete_p = 1;
1044 break;
1045 }
1046 }
1047 /* Either delete Q or advance past it. */
1048 if (delete_q)
1049 prev_q->next = q->next;
1050 else
1051 prev_q = q;
1052 }
1053 /* Either delete P or advance past it. */
1054 if (delete_p)
1055 {
1056 if (prev_p)
1057 prev_p->next = p->next;
1058 else
1059 temp_slots = p->next;
1060 }
1061 else
1062 prev_p = p;
1063 }
1064 }
1065 \f
1066 /* Find the temp slot corresponding to the object at address X. */
1067
1068 static struct temp_slot *
1069 find_temp_slot_from_address (x)
1070 rtx x;
1071 {
1072 struct temp_slot *p;
1073 rtx next;
1074
1075 for (p = temp_slots; p; p = p->next)
1076 {
1077 if (! p->in_use)
1078 continue;
1079
1080 else if (XEXP (p->slot, 0) == x
1081 || p->address == x
1082 || (GET_CODE (x) == PLUS
1083 && XEXP (x, 0) == virtual_stack_vars_rtx
1084 && GET_CODE (XEXP (x, 1)) == CONST_INT
1085 && INTVAL (XEXP (x, 1)) >= p->base_offset
1086 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
1087 return p;
1088
1089 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
1090 for (next = p->address; next; next = XEXP (next, 1))
1091 if (XEXP (next, 0) == x)
1092 return p;
1093 }
1094
1095 return 0;
1096 }
1097
1098 /* Indicate that NEW is an alternate way of referring to the temp slot
1099 that previously was known by OLD. */
1100
1101 void
1102 update_temp_slot_address (old, new)
1103 rtx old, new;
1104 {
1105 struct temp_slot *p = find_temp_slot_from_address (old);
1106
1107 /* If none, return. Else add NEW as an alias. */
1108 if (p == 0)
1109 return;
1110 else if (p->address == 0)
1111 p->address = new;
1112 else
1113 {
1114 if (GET_CODE (p->address) != EXPR_LIST)
1115 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1116
1117 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1118 }
1119 }
1120
1121 /* If X could be a reference to a temporary slot, mark the fact that its
1122 address was taken. */
1123
1124 void
1125 mark_temp_addr_taken (x)
1126 rtx x;
1127 {
1128 struct temp_slot *p;
1129
1130 if (x == 0)
1131 return;
1132
1133 /* If X is not in memory or is at a constant address, it cannot be in
1134 a temporary slot. */
1135 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1136 return;
1137
1138 p = find_temp_slot_from_address (XEXP (x, 0));
1139 if (p != 0)
1140 p->addr_taken = 1;
1141 }
1142
1143 /* If X could be a reference to a temporary slot, mark that slot as
1144 belonging to the to one level higher than the current level. If X
1145 matched one of our slots, just mark that one. Otherwise, we can't
1146 easily predict which it is, so upgrade all of them. Kept slots
1147 need not be touched.
1148
1149 This is called when an ({...}) construct occurs and a statement
1150 returns a value in memory. */
1151
1152 void
1153 preserve_temp_slots (x)
1154 rtx x;
1155 {
1156 struct temp_slot *p = 0;
1157
1158 /* If there is no result, we still might have some objects whose address
1159 were taken, so we need to make sure they stay around. */
1160 if (x == 0)
1161 {
1162 for (p = temp_slots; p; p = p->next)
1163 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1164 p->level--;
1165
1166 return;
1167 }
1168
1169 /* If X is a register that is being used as a pointer, see if we have
1170 a temporary slot we know it points to. To be consistent with
1171 the code below, we really should preserve all non-kept slots
1172 if we can't find a match, but that seems to be much too costly. */
1173 if (GET_CODE (x) == REG && REGNO_POINTER_FLAG (REGNO (x)))
1174 p = find_temp_slot_from_address (x);
1175
1176 /* If X is not in memory or is at a constant address, it cannot be in
1177 a temporary slot, but it can contain something whose address was
1178 taken. */
1179 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1180 {
1181 for (p = temp_slots; p; p = p->next)
1182 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1183 p->level--;
1184
1185 return;
1186 }
1187
1188 /* First see if we can find a match. */
1189 if (p == 0)
1190 p = find_temp_slot_from_address (XEXP (x, 0));
1191
1192 if (p != 0)
1193 {
1194 /* Move everything at our level whose address was taken to our new
1195 level in case we used its address. */
1196 struct temp_slot *q;
1197
1198 if (p->level == temp_slot_level)
1199 {
1200 for (q = temp_slots; q; q = q->next)
1201 if (q != p && q->addr_taken && q->level == p->level)
1202 q->level--;
1203
1204 p->level--;
1205 p->addr_taken = 0;
1206 }
1207 return;
1208 }
1209
1210 /* Otherwise, preserve all non-kept slots at this level. */
1211 for (p = temp_slots; p; p = p->next)
1212 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1213 p->level--;
1214 }
1215
1216 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1217 with that RTL_EXPR, promote it into a temporary slot at the present
1218 level so it will not be freed when we free slots made in the
1219 RTL_EXPR. */
1220
1221 void
1222 preserve_rtl_expr_result (x)
1223 rtx x;
1224 {
1225 struct temp_slot *p;
1226
1227 /* If X is not in memory or is at a constant address, it cannot be in
1228 a temporary slot. */
1229 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1230 return;
1231
1232 /* If we can find a match, move it to our level unless it is already at
1233 an upper level. */
1234 p = find_temp_slot_from_address (XEXP (x, 0));
1235 if (p != 0)
1236 {
1237 p->level = MIN (p->level, temp_slot_level);
1238 p->rtl_expr = 0;
1239 }
1240
1241 return;
1242 }
1243
1244 /* Free all temporaries used so far. This is normally called at the end
1245 of generating code for a statement. Don't free any temporaries
1246 currently in use for an RTL_EXPR that hasn't yet been emitted.
1247 We could eventually do better than this since it can be reused while
1248 generating the same RTL_EXPR, but this is complex and probably not
1249 worthwhile. */
1250
1251 void
1252 free_temp_slots ()
1253 {
1254 struct temp_slot *p;
1255
1256 for (p = temp_slots; p; p = p->next)
1257 if (p->in_use && p->level == temp_slot_level && ! p->keep
1258 && p->rtl_expr == 0)
1259 p->in_use = 0;
1260
1261 combine_temp_slots ();
1262 }
1263
1264 /* Free all temporary slots used in T, an RTL_EXPR node. */
1265
1266 void
1267 free_temps_for_rtl_expr (t)
1268 tree t;
1269 {
1270 struct temp_slot *p;
1271
1272 for (p = temp_slots; p; p = p->next)
1273 if (p->rtl_expr == t)
1274 p->in_use = 0;
1275
1276 combine_temp_slots ();
1277 }
1278
1279 /* Mark all temporaries ever allocated in this function as not suitable
1280 for reuse until the current level is exited. */
1281
1282 void
1283 mark_all_temps_used ()
1284 {
1285 struct temp_slot *p;
1286
1287 for (p = temp_slots; p; p = p->next)
1288 {
1289 p->in_use = p->keep = 1;
1290 p->level = MIN (p->level, temp_slot_level);
1291 }
1292 }
1293
1294 /* Push deeper into the nesting level for stack temporaries. */
1295
1296 void
1297 push_temp_slots ()
1298 {
1299 temp_slot_level++;
1300 }
1301
1302 /* Likewise, but save the new level as the place to allocate variables
1303 for blocks. */
1304
1305 void
1306 push_temp_slots_for_block ()
1307 {
1308 push_temp_slots ();
1309
1310 var_temp_slot_level = temp_slot_level;
1311 }
1312
1313 /* Likewise, but save the new level as the place to allocate temporaries
1314 for TARGET_EXPRs. */
1315
1316 void
1317 push_temp_slots_for_target ()
1318 {
1319 push_temp_slots ();
1320
1321 target_temp_slot_level = temp_slot_level;
1322 }
1323
1324 /* Set and get the value of target_temp_slot_level. The only
1325 permitted use of these functions is to save and restore this value. */
1326
1327 int
1328 get_target_temp_slot_level ()
1329 {
1330 return target_temp_slot_level;
1331 }
1332
1333 void
1334 set_target_temp_slot_level (level)
1335 int level;
1336 {
1337 target_temp_slot_level = level;
1338 }
1339
1340 /* Pop a temporary nesting level. All slots in use in the current level
1341 are freed. */
1342
1343 void
1344 pop_temp_slots ()
1345 {
1346 struct temp_slot *p;
1347
1348 for (p = temp_slots; p; p = p->next)
1349 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1350 p->in_use = 0;
1351
1352 combine_temp_slots ();
1353
1354 temp_slot_level--;
1355 }
1356
1357 /* Initialize temporary slots. */
1358
1359 void
1360 init_temp_slots ()
1361 {
1362 /* We have not allocated any temporaries yet. */
1363 temp_slots = 0;
1364 temp_slot_level = 0;
1365 var_temp_slot_level = 0;
1366 target_temp_slot_level = 0;
1367 }
1368 \f
1369 /* Retroactively move an auto variable from a register to a stack slot.
1370 This is done when an address-reference to the variable is seen. */
1371
1372 void
1373 put_var_into_stack (decl)
1374 tree decl;
1375 {
1376 register rtx reg;
1377 enum machine_mode promoted_mode, decl_mode;
1378 struct function *function = 0;
1379 tree context;
1380 int can_use_addressof;
1381
1382 context = decl_function_context (decl);
1383
1384 /* Get the current rtl used for this object and its original mode. */
1385 reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl);
1386
1387 /* No need to do anything if decl has no rtx yet
1388 since in that case caller is setting TREE_ADDRESSABLE
1389 and a stack slot will be assigned when the rtl is made. */
1390 if (reg == 0)
1391 return;
1392
1393 /* Get the declared mode for this object. */
1394 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1395 : DECL_MODE (decl));
1396 /* Get the mode it's actually stored in. */
1397 promoted_mode = GET_MODE (reg);
1398
1399 /* If this variable comes from an outer function,
1400 find that function's saved context. */
1401 if (context != current_function_decl && context != inline_function_decl)
1402 for (function = outer_function_chain; function; function = function->next)
1403 if (function->decl == context)
1404 break;
1405
1406 /* If this is a variable-size object with a pseudo to address it,
1407 put that pseudo into the stack, if the var is nonlocal. */
1408 if (DECL_NONLOCAL (decl)
1409 && GET_CODE (reg) == MEM
1410 && GET_CODE (XEXP (reg, 0)) == REG
1411 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1412 {
1413 reg = XEXP (reg, 0);
1414 decl_mode = promoted_mode = GET_MODE (reg);
1415 }
1416
1417 can_use_addressof
1418 = (function == 0
1419 && optimize > 0
1420 /* FIXME make it work for promoted modes too */
1421 && decl_mode == promoted_mode
1422 #ifdef NON_SAVING_SETJMP
1423 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1424 #endif
1425 );
1426
1427 /* If we can't use ADDRESSOF, make sure we see through one we already
1428 generated. */
1429 if (! can_use_addressof && GET_CODE (reg) == MEM
1430 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1431 reg = XEXP (XEXP (reg, 0), 0);
1432
1433 /* Now we should have a value that resides in one or more pseudo regs. */
1434
1435 if (GET_CODE (reg) == REG)
1436 {
1437 /* If this variable lives in the current function and we don't need
1438 to put things in the stack for the sake of setjmp, try to keep it
1439 in a register until we know we actually need the address. */
1440 if (can_use_addressof)
1441 gen_mem_addressof (reg, decl);
1442 else
1443 put_reg_into_stack (function, reg, TREE_TYPE (decl),
1444 promoted_mode, decl_mode,
1445 TREE_SIDE_EFFECTS (decl), 0,
1446 TREE_USED (decl)
1447 || DECL_INITIAL (decl) != 0);
1448 }
1449 else if (GET_CODE (reg) == CONCAT)
1450 {
1451 /* A CONCAT contains two pseudos; put them both in the stack.
1452 We do it so they end up consecutive. */
1453 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1454 tree part_type = TREE_TYPE (TREE_TYPE (decl));
1455 #ifdef FRAME_GROWS_DOWNWARD
1456 /* Since part 0 should have a lower address, do it second. */
1457 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1458 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1459 TREE_USED (decl) || DECL_INITIAL (decl) != 0);
1460 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1461 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1462 TREE_USED (decl) || DECL_INITIAL (decl) != 0);
1463 #else
1464 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1465 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1466 TREE_USED (decl) || DECL_INITIAL (decl) != 0);
1467 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1468 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1469 TREE_USED (decl) || DECL_INITIAL (decl) != 0);
1470 #endif
1471
1472 /* Change the CONCAT into a combined MEM for both parts. */
1473 PUT_CODE (reg, MEM);
1474 MEM_VOLATILE_P (reg) = MEM_VOLATILE_P (XEXP (reg, 0));
1475 MEM_ALIAS_SET (reg) = get_alias_set (decl);
1476
1477 /* The two parts are in memory order already.
1478 Use the lower parts address as ours. */
1479 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1480 /* Prevent sharing of rtl that might lose. */
1481 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1482 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1483 }
1484 else
1485 return;
1486
1487 if (flag_check_memory_usage)
1488 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
1489 XEXP (reg, 0), ptr_mode,
1490 GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
1491 TYPE_MODE (sizetype),
1492 GEN_INT (MEMORY_USE_RW),
1493 TYPE_MODE (integer_type_node));
1494 }
1495
1496 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1497 into the stack frame of FUNCTION (0 means the current function).
1498 DECL_MODE is the machine mode of the user-level data type.
1499 PROMOTED_MODE is the machine mode of the register.
1500 VOLATILE_P is nonzero if this is for a "volatile" decl.
1501 USED_P is nonzero if this reg might have already been used in an insn. */
1502
1503 static void
1504 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1505 original_regno, used_p)
1506 struct function *function;
1507 rtx reg;
1508 tree type;
1509 enum machine_mode promoted_mode, decl_mode;
1510 int volatile_p;
1511 int original_regno;
1512 int used_p;
1513 {
1514 rtx new = 0;
1515 int regno = original_regno;
1516
1517 if (regno == 0)
1518 regno = REGNO (reg);
1519
1520 if (function)
1521 {
1522 if (regno < function->max_parm_reg)
1523 new = function->parm_reg_stack_loc[regno];
1524 if (new == 0)
1525 new = assign_outer_stack_local (decl_mode, GET_MODE_SIZE (decl_mode),
1526 0, function);
1527 }
1528 else
1529 {
1530 if (regno < max_parm_reg)
1531 new = parm_reg_stack_loc[regno];
1532 if (new == 0)
1533 new = assign_stack_local (decl_mode, GET_MODE_SIZE (decl_mode), 0);
1534 }
1535
1536 PUT_MODE (reg, decl_mode);
1537 XEXP (reg, 0) = XEXP (new, 0);
1538 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1539 MEM_VOLATILE_P (reg) = volatile_p;
1540 PUT_CODE (reg, MEM);
1541
1542 /* If this is a memory ref that contains aggregate components,
1543 mark it as such for cse and loop optimize. If we are reusing a
1544 previously generated stack slot, then we need to copy the bit in
1545 case it was set for other reasons. For instance, it is set for
1546 __builtin_va_alist. */
1547 MEM_IN_STRUCT_P (reg) = AGGREGATE_TYPE_P (type) | MEM_IN_STRUCT_P (new);
1548 MEM_ALIAS_SET (reg) = get_alias_set (type);
1549
1550 /* Now make sure that all refs to the variable, previously made
1551 when it was a register, are fixed up to be valid again. */
1552
1553 if (used_p && function != 0)
1554 {
1555 struct var_refs_queue *temp;
1556
1557 /* Variable is inherited; fix it up when we get back to its function. */
1558 push_obstacks (function->function_obstack,
1559 function->function_maybepermanent_obstack);
1560
1561 /* See comment in restore_tree_status in tree.c for why this needs to be
1562 on saveable obstack. */
1563 temp
1564 = (struct var_refs_queue *) savealloc (sizeof (struct var_refs_queue));
1565 temp->modified = reg;
1566 temp->promoted_mode = promoted_mode;
1567 temp->unsignedp = TREE_UNSIGNED (type);
1568 temp->next = function->fixup_var_refs_queue;
1569 function->fixup_var_refs_queue = temp;
1570 pop_obstacks ();
1571 }
1572 else if (used_p)
1573 /* Variable is local; fix it up now. */
1574 fixup_var_refs (reg, promoted_mode, TREE_UNSIGNED (type));
1575 }
1576 \f
1577 static void
1578 fixup_var_refs (var, promoted_mode, unsignedp)
1579 rtx var;
1580 enum machine_mode promoted_mode;
1581 int unsignedp;
1582 {
1583 tree pending;
1584 rtx first_insn = get_insns ();
1585 struct sequence_stack *stack = sequence_stack;
1586 tree rtl_exps = rtl_expr_chain;
1587
1588 /* Must scan all insns for stack-refs that exceed the limit. */
1589 fixup_var_refs_insns (var, promoted_mode, unsignedp, first_insn, stack == 0);
1590
1591 /* Scan all pending sequences too. */
1592 for (; stack; stack = stack->next)
1593 {
1594 push_to_sequence (stack->first);
1595 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1596 stack->first, stack->next != 0);
1597 /* Update remembered end of sequence
1598 in case we added an insn at the end. */
1599 stack->last = get_last_insn ();
1600 end_sequence ();
1601 }
1602
1603 /* Scan all waiting RTL_EXPRs too. */
1604 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1605 {
1606 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1607 if (seq != const0_rtx && seq != 0)
1608 {
1609 push_to_sequence (seq);
1610 fixup_var_refs_insns (var, promoted_mode, unsignedp, seq, 0);
1611 end_sequence ();
1612 }
1613 }
1614 }
1615 \f
1616 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1617 some part of an insn. Return a struct fixup_replacement whose OLD
1618 value is equal to X. Allocate a new structure if no such entry exists. */
1619
1620 static struct fixup_replacement *
1621 find_fixup_replacement (replacements, x)
1622 struct fixup_replacement **replacements;
1623 rtx x;
1624 {
1625 struct fixup_replacement *p;
1626
1627 /* See if we have already replaced this. */
1628 for (p = *replacements; p && p->old != x; p = p->next)
1629 ;
1630
1631 if (p == 0)
1632 {
1633 p = (struct fixup_replacement *) oballoc (sizeof (struct fixup_replacement));
1634 p->old = x;
1635 p->new = 0;
1636 p->next = *replacements;
1637 *replacements = p;
1638 }
1639
1640 return p;
1641 }
1642
1643 /* Scan the insn-chain starting with INSN for refs to VAR
1644 and fix them up. TOPLEVEL is nonzero if this chain is the
1645 main chain of insns for the current function. */
1646
1647 static void
1648 fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel)
1649 rtx var;
1650 enum machine_mode promoted_mode;
1651 int unsignedp;
1652 rtx insn;
1653 int toplevel;
1654 {
1655 rtx call_dest = 0;
1656
1657 while (insn)
1658 {
1659 rtx next = NEXT_INSN (insn);
1660 rtx set, prev, prev_set;
1661 rtx note;
1662
1663 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1664 {
1665 /* If this is a CLOBBER of VAR, delete it.
1666
1667 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1668 and REG_RETVAL notes too. */
1669 if (GET_CODE (PATTERN (insn)) == CLOBBER
1670 && (XEXP (PATTERN (insn), 0) == var
1671 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1672 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1673 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1674 {
1675 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1676 /* The REG_LIBCALL note will go away since we are going to
1677 turn INSN into a NOTE, so just delete the
1678 corresponding REG_RETVAL note. */
1679 remove_note (XEXP (note, 0),
1680 find_reg_note (XEXP (note, 0), REG_RETVAL,
1681 NULL_RTX));
1682
1683 /* In unoptimized compilation, we shouldn't call delete_insn
1684 except in jump.c doing warnings. */
1685 PUT_CODE (insn, NOTE);
1686 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1687 NOTE_SOURCE_FILE (insn) = 0;
1688 }
1689
1690 /* The insn to load VAR from a home in the arglist
1691 is now a no-op. When we see it, just delete it.
1692 Similarly if this is storing VAR from a register from which
1693 it was loaded in the previous insn. This will occur
1694 when an ADDRESSOF was made for an arglist slot. */
1695 else if (toplevel
1696 && (set = single_set (insn)) != 0
1697 && SET_DEST (set) == var
1698 /* If this represents the result of an insn group,
1699 don't delete the insn. */
1700 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1701 && (rtx_equal_p (SET_SRC (set), var)
1702 || (GET_CODE (SET_SRC (set)) == REG
1703 && (prev = prev_nonnote_insn (insn)) != 0
1704 && (prev_set = single_set (prev)) != 0
1705 && SET_DEST (prev_set) == SET_SRC (set)
1706 && rtx_equal_p (SET_SRC (prev_set), var))))
1707 {
1708 /* In unoptimized compilation, we shouldn't call delete_insn
1709 except in jump.c doing warnings. */
1710 PUT_CODE (insn, NOTE);
1711 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1712 NOTE_SOURCE_FILE (insn) = 0;
1713 if (insn == last_parm_insn)
1714 last_parm_insn = PREV_INSN (next);
1715 }
1716 else
1717 {
1718 struct fixup_replacement *replacements = 0;
1719 rtx next_insn = NEXT_INSN (insn);
1720
1721 if (SMALL_REGISTER_CLASSES)
1722 {
1723 /* If the insn that copies the results of a CALL_INSN
1724 into a pseudo now references VAR, we have to use an
1725 intermediate pseudo since we want the life of the
1726 return value register to be only a single insn.
1727
1728 If we don't use an intermediate pseudo, such things as
1729 address computations to make the address of VAR valid
1730 if it is not can be placed between the CALL_INSN and INSN.
1731
1732 To make sure this doesn't happen, we record the destination
1733 of the CALL_INSN and see if the next insn uses both that
1734 and VAR. */
1735
1736 if (call_dest != 0 && GET_CODE (insn) == INSN
1737 && reg_mentioned_p (var, PATTERN (insn))
1738 && reg_mentioned_p (call_dest, PATTERN (insn)))
1739 {
1740 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1741
1742 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1743
1744 PATTERN (insn) = replace_rtx (PATTERN (insn),
1745 call_dest, temp);
1746 }
1747
1748 if (GET_CODE (insn) == CALL_INSN
1749 && GET_CODE (PATTERN (insn)) == SET)
1750 call_dest = SET_DEST (PATTERN (insn));
1751 else if (GET_CODE (insn) == CALL_INSN
1752 && GET_CODE (PATTERN (insn)) == PARALLEL
1753 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1754 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1755 else
1756 call_dest = 0;
1757 }
1758
1759 /* See if we have to do anything to INSN now that VAR is in
1760 memory. If it needs to be loaded into a pseudo, use a single
1761 pseudo for the entire insn in case there is a MATCH_DUP
1762 between two operands. We pass a pointer to the head of
1763 a list of struct fixup_replacements. If fixup_var_refs_1
1764 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1765 it will record them in this list.
1766
1767 If it allocated a pseudo for any replacement, we copy into
1768 it here. */
1769
1770 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1771 &replacements);
1772
1773 /* If this is last_parm_insn, and any instructions were output
1774 after it to fix it up, then we must set last_parm_insn to
1775 the last such instruction emitted. */
1776 if (insn == last_parm_insn)
1777 last_parm_insn = PREV_INSN (next_insn);
1778
1779 while (replacements)
1780 {
1781 if (GET_CODE (replacements->new) == REG)
1782 {
1783 rtx insert_before;
1784 rtx seq;
1785
1786 /* OLD might be a (subreg (mem)). */
1787 if (GET_CODE (replacements->old) == SUBREG)
1788 replacements->old
1789 = fixup_memory_subreg (replacements->old, insn, 0);
1790 else
1791 replacements->old
1792 = fixup_stack_1 (replacements->old, insn);
1793
1794 insert_before = insn;
1795
1796 /* If we are changing the mode, do a conversion.
1797 This might be wasteful, but combine.c will
1798 eliminate much of the waste. */
1799
1800 if (GET_MODE (replacements->new)
1801 != GET_MODE (replacements->old))
1802 {
1803 start_sequence ();
1804 convert_move (replacements->new,
1805 replacements->old, unsignedp);
1806 seq = gen_sequence ();
1807 end_sequence ();
1808 }
1809 else
1810 seq = gen_move_insn (replacements->new,
1811 replacements->old);
1812
1813 emit_insn_before (seq, insert_before);
1814 }
1815
1816 replacements = replacements->next;
1817 }
1818 }
1819
1820 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1821 But don't touch other insns referred to by reg-notes;
1822 we will get them elsewhere. */
1823 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1824 if (GET_CODE (note) != INSN_LIST)
1825 XEXP (note, 0)
1826 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1827 }
1828 insn = next;
1829 }
1830 }
1831 \f
1832 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1833 See if the rtx expression at *LOC in INSN needs to be changed.
1834
1835 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1836 contain a list of original rtx's and replacements. If we find that we need
1837 to modify this insn by replacing a memory reference with a pseudo or by
1838 making a new MEM to implement a SUBREG, we consult that list to see if
1839 we have already chosen a replacement. If none has already been allocated,
1840 we allocate it and update the list. fixup_var_refs_insns will copy VAR
1841 or the SUBREG, as appropriate, to the pseudo. */
1842
1843 static void
1844 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1845 register rtx var;
1846 enum machine_mode promoted_mode;
1847 register rtx *loc;
1848 rtx insn;
1849 struct fixup_replacement **replacements;
1850 {
1851 register int i;
1852 register rtx x = *loc;
1853 RTX_CODE code = GET_CODE (x);
1854 register char *fmt;
1855 register rtx tem, tem1;
1856 struct fixup_replacement *replacement;
1857
1858 switch (code)
1859 {
1860 case ADDRESSOF:
1861 if (XEXP (x, 0) == var)
1862 {
1863 /* Prevent sharing of rtl that might lose. */
1864 rtx sub = copy_rtx (XEXP (var, 0));
1865
1866 start_sequence ();
1867
1868 if (! validate_change (insn, loc, sub, 0))
1869 {
1870 rtx y = force_operand (sub, NULL_RTX);
1871
1872 if (! validate_change (insn, loc, y, 0))
1873 *loc = copy_to_reg (y);
1874 }
1875
1876 emit_insn_before (gen_sequence (), insn);
1877 end_sequence ();
1878 }
1879 return;
1880
1881 case MEM:
1882 if (var == x)
1883 {
1884 /* If we already have a replacement, use it. Otherwise,
1885 try to fix up this address in case it is invalid. */
1886
1887 replacement = find_fixup_replacement (replacements, var);
1888 if (replacement->new)
1889 {
1890 *loc = replacement->new;
1891 return;
1892 }
1893
1894 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1895
1896 /* Unless we are forcing memory to register or we changed the mode,
1897 we can leave things the way they are if the insn is valid. */
1898
1899 INSN_CODE (insn) = -1;
1900 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1901 && recog_memoized (insn) >= 0)
1902 return;
1903
1904 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1905 return;
1906 }
1907
1908 /* If X contains VAR, we need to unshare it here so that we update
1909 each occurrence separately. But all identical MEMs in one insn
1910 must be replaced with the same rtx because of the possibility of
1911 MATCH_DUPs. */
1912
1913 if (reg_mentioned_p (var, x))
1914 {
1915 replacement = find_fixup_replacement (replacements, x);
1916 if (replacement->new == 0)
1917 replacement->new = copy_most_rtx (x, var);
1918
1919 *loc = x = replacement->new;
1920 }
1921 break;
1922
1923 case REG:
1924 case CC0:
1925 case PC:
1926 case CONST_INT:
1927 case CONST:
1928 case SYMBOL_REF:
1929 case LABEL_REF:
1930 case CONST_DOUBLE:
1931 return;
1932
1933 case SIGN_EXTRACT:
1934 case ZERO_EXTRACT:
1935 /* Note that in some cases those types of expressions are altered
1936 by optimize_bit_field, and do not survive to get here. */
1937 if (XEXP (x, 0) == var
1938 || (GET_CODE (XEXP (x, 0)) == SUBREG
1939 && SUBREG_REG (XEXP (x, 0)) == var))
1940 {
1941 /* Get TEM as a valid MEM in the mode presently in the insn.
1942
1943 We don't worry about the possibility of MATCH_DUP here; it
1944 is highly unlikely and would be tricky to handle. */
1945
1946 tem = XEXP (x, 0);
1947 if (GET_CODE (tem) == SUBREG)
1948 {
1949 if (GET_MODE_BITSIZE (GET_MODE (tem))
1950 > GET_MODE_BITSIZE (GET_MODE (var)))
1951 {
1952 replacement = find_fixup_replacement (replacements, var);
1953 if (replacement->new == 0)
1954 replacement->new = gen_reg_rtx (GET_MODE (var));
1955 SUBREG_REG (tem) = replacement->new;
1956 }
1957 else
1958 tem = fixup_memory_subreg (tem, insn, 0);
1959 }
1960 else
1961 tem = fixup_stack_1 (tem, insn);
1962
1963 /* Unless we want to load from memory, get TEM into the proper mode
1964 for an extract from memory. This can only be done if the
1965 extract is at a constant position and length. */
1966
1967 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
1968 && GET_CODE (XEXP (x, 2)) == CONST_INT
1969 && ! mode_dependent_address_p (XEXP (tem, 0))
1970 && ! MEM_VOLATILE_P (tem))
1971 {
1972 enum machine_mode wanted_mode = VOIDmode;
1973 enum machine_mode is_mode = GET_MODE (tem);
1974 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
1975
1976 #ifdef HAVE_extzv
1977 if (GET_CODE (x) == ZERO_EXTRACT)
1978 {
1979 wanted_mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
1980 if (wanted_mode == VOIDmode)
1981 wanted_mode = word_mode;
1982 }
1983 #endif
1984 #ifdef HAVE_extv
1985 if (GET_CODE (x) == SIGN_EXTRACT)
1986 {
1987 wanted_mode = insn_operand_mode[(int) CODE_FOR_extv][1];
1988 if (wanted_mode == VOIDmode)
1989 wanted_mode = word_mode;
1990 }
1991 #endif
1992 /* If we have a narrower mode, we can do something. */
1993 if (wanted_mode != VOIDmode
1994 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
1995 {
1996 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
1997 rtx old_pos = XEXP (x, 2);
1998 rtx newmem;
1999
2000 /* If the bytes and bits are counted differently, we
2001 must adjust the offset. */
2002 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2003 offset = (GET_MODE_SIZE (is_mode)
2004 - GET_MODE_SIZE (wanted_mode) - offset);
2005
2006 pos %= GET_MODE_BITSIZE (wanted_mode);
2007
2008 newmem = gen_rtx_MEM (wanted_mode,
2009 plus_constant (XEXP (tem, 0), offset));
2010 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
2011 MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (tem);
2012 MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (tem);
2013
2014 /* Make the change and see if the insn remains valid. */
2015 INSN_CODE (insn) = -1;
2016 XEXP (x, 0) = newmem;
2017 XEXP (x, 2) = GEN_INT (pos);
2018
2019 if (recog_memoized (insn) >= 0)
2020 return;
2021
2022 /* Otherwise, restore old position. XEXP (x, 0) will be
2023 restored later. */
2024 XEXP (x, 2) = old_pos;
2025 }
2026 }
2027
2028 /* If we get here, the bitfield extract insn can't accept a memory
2029 reference. Copy the input into a register. */
2030
2031 tem1 = gen_reg_rtx (GET_MODE (tem));
2032 emit_insn_before (gen_move_insn (tem1, tem), insn);
2033 XEXP (x, 0) = tem1;
2034 return;
2035 }
2036 break;
2037
2038 case SUBREG:
2039 if (SUBREG_REG (x) == var)
2040 {
2041 /* If this is a special SUBREG made because VAR was promoted
2042 from a wider mode, replace it with VAR and call ourself
2043 recursively, this time saying that the object previously
2044 had its current mode (by virtue of the SUBREG). */
2045
2046 if (SUBREG_PROMOTED_VAR_P (x))
2047 {
2048 *loc = var;
2049 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
2050 return;
2051 }
2052
2053 /* If this SUBREG makes VAR wider, it has become a paradoxical
2054 SUBREG with VAR in memory, but these aren't allowed at this
2055 stage of the compilation. So load VAR into a pseudo and take
2056 a SUBREG of that pseudo. */
2057 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2058 {
2059 replacement = find_fixup_replacement (replacements, var);
2060 if (replacement->new == 0)
2061 replacement->new = gen_reg_rtx (GET_MODE (var));
2062 SUBREG_REG (x) = replacement->new;
2063 return;
2064 }
2065
2066 /* See if we have already found a replacement for this SUBREG.
2067 If so, use it. Otherwise, make a MEM and see if the insn
2068 is recognized. If not, or if we should force MEM into a register,
2069 make a pseudo for this SUBREG. */
2070 replacement = find_fixup_replacement (replacements, x);
2071 if (replacement->new)
2072 {
2073 *loc = replacement->new;
2074 return;
2075 }
2076
2077 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
2078
2079 INSN_CODE (insn) = -1;
2080 if (! flag_force_mem && recog_memoized (insn) >= 0)
2081 return;
2082
2083 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2084 return;
2085 }
2086 break;
2087
2088 case SET:
2089 /* First do special simplification of bit-field references. */
2090 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2091 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2092 optimize_bit_field (x, insn, 0);
2093 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2094 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2095 optimize_bit_field (x, insn, NULL_PTR);
2096
2097 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2098 into a register and then store it back out. */
2099 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2100 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2101 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2102 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2103 > GET_MODE_SIZE (GET_MODE (var))))
2104 {
2105 replacement = find_fixup_replacement (replacements, var);
2106 if (replacement->new == 0)
2107 replacement->new = gen_reg_rtx (GET_MODE (var));
2108
2109 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2110 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2111 }
2112
2113 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2114 insn into a pseudo and store the low part of the pseudo into VAR. */
2115 if (GET_CODE (SET_DEST (x)) == SUBREG
2116 && SUBREG_REG (SET_DEST (x)) == var
2117 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2118 > GET_MODE_SIZE (GET_MODE (var))))
2119 {
2120 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2121 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2122 tem)),
2123 insn);
2124 break;
2125 }
2126
2127 {
2128 rtx dest = SET_DEST (x);
2129 rtx src = SET_SRC (x);
2130 #ifdef HAVE_insv
2131 rtx outerdest = dest;
2132 #endif
2133
2134 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2135 || GET_CODE (dest) == SIGN_EXTRACT
2136 || GET_CODE (dest) == ZERO_EXTRACT)
2137 dest = XEXP (dest, 0);
2138
2139 if (GET_CODE (src) == SUBREG)
2140 src = XEXP (src, 0);
2141
2142 /* If VAR does not appear at the top level of the SET
2143 just scan the lower levels of the tree. */
2144
2145 if (src != var && dest != var)
2146 break;
2147
2148 /* We will need to rerecognize this insn. */
2149 INSN_CODE (insn) = -1;
2150
2151 #ifdef HAVE_insv
2152 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
2153 {
2154 /* Since this case will return, ensure we fixup all the
2155 operands here. */
2156 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2157 insn, replacements);
2158 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2159 insn, replacements);
2160 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2161 insn, replacements);
2162
2163 tem = XEXP (outerdest, 0);
2164
2165 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2166 that may appear inside a ZERO_EXTRACT.
2167 This was legitimate when the MEM was a REG. */
2168 if (GET_CODE (tem) == SUBREG
2169 && SUBREG_REG (tem) == var)
2170 tem = fixup_memory_subreg (tem, insn, 0);
2171 else
2172 tem = fixup_stack_1 (tem, insn);
2173
2174 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2175 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2176 && ! mode_dependent_address_p (XEXP (tem, 0))
2177 && ! MEM_VOLATILE_P (tem))
2178 {
2179 enum machine_mode wanted_mode;
2180 enum machine_mode is_mode = GET_MODE (tem);
2181 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2182
2183 wanted_mode = insn_operand_mode[(int) CODE_FOR_insv][0];
2184 if (wanted_mode == VOIDmode)
2185 wanted_mode = word_mode;
2186
2187 /* If we have a narrower mode, we can do something. */
2188 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2189 {
2190 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2191 rtx old_pos = XEXP (outerdest, 2);
2192 rtx newmem;
2193
2194 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2195 offset = (GET_MODE_SIZE (is_mode)
2196 - GET_MODE_SIZE (wanted_mode) - offset);
2197
2198 pos %= GET_MODE_BITSIZE (wanted_mode);
2199
2200 newmem = gen_rtx_MEM (wanted_mode,
2201 plus_constant (XEXP (tem, 0), offset));
2202 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
2203 MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (tem);
2204 MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (tem);
2205
2206 /* Make the change and see if the insn remains valid. */
2207 INSN_CODE (insn) = -1;
2208 XEXP (outerdest, 0) = newmem;
2209 XEXP (outerdest, 2) = GEN_INT (pos);
2210
2211 if (recog_memoized (insn) >= 0)
2212 return;
2213
2214 /* Otherwise, restore old position. XEXP (x, 0) will be
2215 restored later. */
2216 XEXP (outerdest, 2) = old_pos;
2217 }
2218 }
2219
2220 /* If we get here, the bit-field store doesn't allow memory
2221 or isn't located at a constant position. Load the value into
2222 a register, do the store, and put it back into memory. */
2223
2224 tem1 = gen_reg_rtx (GET_MODE (tem));
2225 emit_insn_before (gen_move_insn (tem1, tem), insn);
2226 emit_insn_after (gen_move_insn (tem, tem1), insn);
2227 XEXP (outerdest, 0) = tem1;
2228 return;
2229 }
2230 #endif
2231
2232 /* STRICT_LOW_PART is a no-op on memory references
2233 and it can cause combinations to be unrecognizable,
2234 so eliminate it. */
2235
2236 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2237 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2238
2239 /* A valid insn to copy VAR into or out of a register
2240 must be left alone, to avoid an infinite loop here.
2241 If the reference to VAR is by a subreg, fix that up,
2242 since SUBREG is not valid for a memref.
2243 Also fix up the address of the stack slot.
2244
2245 Note that we must not try to recognize the insn until
2246 after we know that we have valid addresses and no
2247 (subreg (mem ...) ...) constructs, since these interfere
2248 with determining the validity of the insn. */
2249
2250 if ((SET_SRC (x) == var
2251 || (GET_CODE (SET_SRC (x)) == SUBREG
2252 && SUBREG_REG (SET_SRC (x)) == var))
2253 && (GET_CODE (SET_DEST (x)) == REG
2254 || (GET_CODE (SET_DEST (x)) == SUBREG
2255 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2256 && GET_MODE (var) == promoted_mode
2257 && x == single_set (insn))
2258 {
2259 rtx pat;
2260
2261 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2262 if (replacement->new)
2263 SET_SRC (x) = replacement->new;
2264 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2265 SET_SRC (x) = replacement->new
2266 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2267 else
2268 SET_SRC (x) = replacement->new
2269 = fixup_stack_1 (SET_SRC (x), insn);
2270
2271 if (recog_memoized (insn) >= 0)
2272 return;
2273
2274 /* INSN is not valid, but we know that we want to
2275 copy SET_SRC (x) to SET_DEST (x) in some way. So
2276 we generate the move and see whether it requires more
2277 than one insn. If it does, we emit those insns and
2278 delete INSN. Otherwise, we an just replace the pattern
2279 of INSN; we have already verified above that INSN has
2280 no other function that to do X. */
2281
2282 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2283 if (GET_CODE (pat) == SEQUENCE)
2284 {
2285 emit_insn_after (pat, insn);
2286 PUT_CODE (insn, NOTE);
2287 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2288 NOTE_SOURCE_FILE (insn) = 0;
2289 }
2290 else
2291 PATTERN (insn) = pat;
2292
2293 return;
2294 }
2295
2296 if ((SET_DEST (x) == var
2297 || (GET_CODE (SET_DEST (x)) == SUBREG
2298 && SUBREG_REG (SET_DEST (x)) == var))
2299 && (GET_CODE (SET_SRC (x)) == REG
2300 || (GET_CODE (SET_SRC (x)) == SUBREG
2301 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2302 && GET_MODE (var) == promoted_mode
2303 && x == single_set (insn))
2304 {
2305 rtx pat;
2306
2307 if (GET_CODE (SET_DEST (x)) == SUBREG)
2308 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2309 else
2310 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2311
2312 if (recog_memoized (insn) >= 0)
2313 return;
2314
2315 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2316 if (GET_CODE (pat) == SEQUENCE)
2317 {
2318 emit_insn_after (pat, insn);
2319 PUT_CODE (insn, NOTE);
2320 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2321 NOTE_SOURCE_FILE (insn) = 0;
2322 }
2323 else
2324 PATTERN (insn) = pat;
2325
2326 return;
2327 }
2328
2329 /* Otherwise, storing into VAR must be handled specially
2330 by storing into a temporary and copying that into VAR
2331 with a new insn after this one. Note that this case
2332 will be used when storing into a promoted scalar since
2333 the insn will now have different modes on the input
2334 and output and hence will be invalid (except for the case
2335 of setting it to a constant, which does not need any
2336 change if it is valid). We generate extra code in that case,
2337 but combine.c will eliminate it. */
2338
2339 if (dest == var)
2340 {
2341 rtx temp;
2342 rtx fixeddest = SET_DEST (x);
2343
2344 /* STRICT_LOW_PART can be discarded, around a MEM. */
2345 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2346 fixeddest = XEXP (fixeddest, 0);
2347 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2348 if (GET_CODE (fixeddest) == SUBREG)
2349 {
2350 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2351 promoted_mode = GET_MODE (fixeddest);
2352 }
2353 else
2354 fixeddest = fixup_stack_1 (fixeddest, insn);
2355
2356 temp = gen_reg_rtx (promoted_mode);
2357
2358 emit_insn_after (gen_move_insn (fixeddest,
2359 gen_lowpart (GET_MODE (fixeddest),
2360 temp)),
2361 insn);
2362
2363 SET_DEST (x) = temp;
2364 }
2365 }
2366
2367 default:
2368 break;
2369 }
2370
2371 /* Nothing special about this RTX; fix its operands. */
2372
2373 fmt = GET_RTX_FORMAT (code);
2374 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2375 {
2376 if (fmt[i] == 'e')
2377 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2378 if (fmt[i] == 'E')
2379 {
2380 register int j;
2381 for (j = 0; j < XVECLEN (x, i); j++)
2382 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2383 insn, replacements);
2384 }
2385 }
2386 }
2387 \f
2388 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2389 return an rtx (MEM:m1 newaddr) which is equivalent.
2390 If any insns must be emitted to compute NEWADDR, put them before INSN.
2391
2392 UNCRITICAL nonzero means accept paradoxical subregs.
2393 This is used for subregs found inside REG_NOTES. */
2394
2395 static rtx
2396 fixup_memory_subreg (x, insn, uncritical)
2397 rtx x;
2398 rtx insn;
2399 int uncritical;
2400 {
2401 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2402 rtx addr = XEXP (SUBREG_REG (x), 0);
2403 enum machine_mode mode = GET_MODE (x);
2404 rtx result;
2405
2406 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2407 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2408 && ! uncritical)
2409 abort ();
2410
2411 if (BYTES_BIG_ENDIAN)
2412 offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2413 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2414 addr = plus_constant (addr, offset);
2415 if (!flag_force_addr && memory_address_p (mode, addr))
2416 /* Shortcut if no insns need be emitted. */
2417 return change_address (SUBREG_REG (x), mode, addr);
2418 start_sequence ();
2419 result = change_address (SUBREG_REG (x), mode, addr);
2420 emit_insn_before (gen_sequence (), insn);
2421 end_sequence ();
2422 return result;
2423 }
2424
2425 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2426 Replace subexpressions of X in place.
2427 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2428 Otherwise return X, with its contents possibly altered.
2429
2430 If any insns must be emitted to compute NEWADDR, put them before INSN.
2431
2432 UNCRITICAL is as in fixup_memory_subreg. */
2433
2434 static rtx
2435 walk_fixup_memory_subreg (x, insn, uncritical)
2436 register rtx x;
2437 rtx insn;
2438 int uncritical;
2439 {
2440 register enum rtx_code code;
2441 register char *fmt;
2442 register int i;
2443
2444 if (x == 0)
2445 return 0;
2446
2447 code = GET_CODE (x);
2448
2449 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2450 return fixup_memory_subreg (x, insn, uncritical);
2451
2452 /* Nothing special about this RTX; fix its operands. */
2453
2454 fmt = GET_RTX_FORMAT (code);
2455 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2456 {
2457 if (fmt[i] == 'e')
2458 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2459 if (fmt[i] == 'E')
2460 {
2461 register int j;
2462 for (j = 0; j < XVECLEN (x, i); j++)
2463 XVECEXP (x, i, j)
2464 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2465 }
2466 }
2467 return x;
2468 }
2469 \f
2470 /* For each memory ref within X, if it refers to a stack slot
2471 with an out of range displacement, put the address in a temp register
2472 (emitting new insns before INSN to load these registers)
2473 and alter the memory ref to use that register.
2474 Replace each such MEM rtx with a copy, to avoid clobberage. */
2475
2476 static rtx
2477 fixup_stack_1 (x, insn)
2478 rtx x;
2479 rtx insn;
2480 {
2481 register int i;
2482 register RTX_CODE code = GET_CODE (x);
2483 register char *fmt;
2484
2485 if (code == MEM)
2486 {
2487 register rtx ad = XEXP (x, 0);
2488 /* If we have address of a stack slot but it's not valid
2489 (displacement is too large), compute the sum in a register. */
2490 if (GET_CODE (ad) == PLUS
2491 && GET_CODE (XEXP (ad, 0)) == REG
2492 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2493 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2494 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2495 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2496 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2497 #endif
2498 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2499 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2500 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2501 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2502 {
2503 rtx temp, seq;
2504 if (memory_address_p (GET_MODE (x), ad))
2505 return x;
2506
2507 start_sequence ();
2508 temp = copy_to_reg (ad);
2509 seq = gen_sequence ();
2510 end_sequence ();
2511 emit_insn_before (seq, insn);
2512 return change_address (x, VOIDmode, temp);
2513 }
2514 return x;
2515 }
2516
2517 fmt = GET_RTX_FORMAT (code);
2518 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2519 {
2520 if (fmt[i] == 'e')
2521 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2522 if (fmt[i] == 'E')
2523 {
2524 register int j;
2525 for (j = 0; j < XVECLEN (x, i); j++)
2526 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2527 }
2528 }
2529 return x;
2530 }
2531 \f
2532 /* Optimization: a bit-field instruction whose field
2533 happens to be a byte or halfword in memory
2534 can be changed to a move instruction.
2535
2536 We call here when INSN is an insn to examine or store into a bit-field.
2537 BODY is the SET-rtx to be altered.
2538
2539 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2540 (Currently this is called only from function.c, and EQUIV_MEM
2541 is always 0.) */
2542
2543 static void
2544 optimize_bit_field (body, insn, equiv_mem)
2545 rtx body;
2546 rtx insn;
2547 rtx *equiv_mem;
2548 {
2549 register rtx bitfield;
2550 int destflag;
2551 rtx seq = 0;
2552 enum machine_mode mode;
2553
2554 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2555 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2556 bitfield = SET_DEST (body), destflag = 1;
2557 else
2558 bitfield = SET_SRC (body), destflag = 0;
2559
2560 /* First check that the field being stored has constant size and position
2561 and is in fact a byte or halfword suitably aligned. */
2562
2563 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2564 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2565 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2566 != BLKmode)
2567 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2568 {
2569 register rtx memref = 0;
2570
2571 /* Now check that the containing word is memory, not a register,
2572 and that it is safe to change the machine mode. */
2573
2574 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2575 memref = XEXP (bitfield, 0);
2576 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2577 && equiv_mem != 0)
2578 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2579 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2580 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2581 memref = SUBREG_REG (XEXP (bitfield, 0));
2582 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2583 && equiv_mem != 0
2584 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2585 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2586
2587 if (memref
2588 && ! mode_dependent_address_p (XEXP (memref, 0))
2589 && ! MEM_VOLATILE_P (memref))
2590 {
2591 /* Now adjust the address, first for any subreg'ing
2592 that we are now getting rid of,
2593 and then for which byte of the word is wanted. */
2594
2595 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2596 rtx insns;
2597
2598 /* Adjust OFFSET to count bits from low-address byte. */
2599 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2600 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2601 - offset - INTVAL (XEXP (bitfield, 1)));
2602
2603 /* Adjust OFFSET to count bytes from low-address byte. */
2604 offset /= BITS_PER_UNIT;
2605 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2606 {
2607 offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
2608 if (BYTES_BIG_ENDIAN)
2609 offset -= (MIN (UNITS_PER_WORD,
2610 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2611 - MIN (UNITS_PER_WORD,
2612 GET_MODE_SIZE (GET_MODE (memref))));
2613 }
2614
2615 start_sequence ();
2616 memref = change_address (memref, mode,
2617 plus_constant (XEXP (memref, 0), offset));
2618 insns = get_insns ();
2619 end_sequence ();
2620 emit_insns_before (insns, insn);
2621
2622 /* Store this memory reference where
2623 we found the bit field reference. */
2624
2625 if (destflag)
2626 {
2627 validate_change (insn, &SET_DEST (body), memref, 1);
2628 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2629 {
2630 rtx src = SET_SRC (body);
2631 while (GET_CODE (src) == SUBREG
2632 && SUBREG_WORD (src) == 0)
2633 src = SUBREG_REG (src);
2634 if (GET_MODE (src) != GET_MODE (memref))
2635 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2636 validate_change (insn, &SET_SRC (body), src, 1);
2637 }
2638 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2639 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2640 /* This shouldn't happen because anything that didn't have
2641 one of these modes should have got converted explicitly
2642 and then referenced through a subreg.
2643 This is so because the original bit-field was
2644 handled by agg_mode and so its tree structure had
2645 the same mode that memref now has. */
2646 abort ();
2647 }
2648 else
2649 {
2650 rtx dest = SET_DEST (body);
2651
2652 while (GET_CODE (dest) == SUBREG
2653 && SUBREG_WORD (dest) == 0
2654 && (GET_MODE_CLASS (GET_MODE (dest))
2655 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest)))))
2656 dest = SUBREG_REG (dest);
2657
2658 validate_change (insn, &SET_DEST (body), dest, 1);
2659
2660 if (GET_MODE (dest) == GET_MODE (memref))
2661 validate_change (insn, &SET_SRC (body), memref, 1);
2662 else
2663 {
2664 /* Convert the mem ref to the destination mode. */
2665 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2666
2667 start_sequence ();
2668 convert_move (newreg, memref,
2669 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2670 seq = get_insns ();
2671 end_sequence ();
2672
2673 validate_change (insn, &SET_SRC (body), newreg, 1);
2674 }
2675 }
2676
2677 /* See if we can convert this extraction or insertion into
2678 a simple move insn. We might not be able to do so if this
2679 was, for example, part of a PARALLEL.
2680
2681 If we succeed, write out any needed conversions. If we fail,
2682 it is hard to guess why we failed, so don't do anything
2683 special; just let the optimization be suppressed. */
2684
2685 if (apply_change_group () && seq)
2686 emit_insns_before (seq, insn);
2687 }
2688 }
2689 }
2690 \f
2691 /* These routines are responsible for converting virtual register references
2692 to the actual hard register references once RTL generation is complete.
2693
2694 The following four variables are used for communication between the
2695 routines. They contain the offsets of the virtual registers from their
2696 respective hard registers. */
2697
2698 static int in_arg_offset;
2699 static int var_offset;
2700 static int dynamic_offset;
2701 static int out_arg_offset;
2702 static int cfa_offset;
2703
2704 /* In most machines, the stack pointer register is equivalent to the bottom
2705 of the stack. */
2706
2707 #ifndef STACK_POINTER_OFFSET
2708 #define STACK_POINTER_OFFSET 0
2709 #endif
2710
2711 /* If not defined, pick an appropriate default for the offset of dynamically
2712 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2713 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2714
2715 #ifndef STACK_DYNAMIC_OFFSET
2716
2717 #ifdef ACCUMULATE_OUTGOING_ARGS
2718 /* The bottom of the stack points to the actual arguments. If
2719 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2720 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2721 stack space for register parameters is not pushed by the caller, but
2722 rather part of the fixed stack areas and hence not included in
2723 `current_function_outgoing_args_size'. Nevertheless, we must allow
2724 for it when allocating stack dynamic objects. */
2725
2726 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2727 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2728 (current_function_outgoing_args_size \
2729 + REG_PARM_STACK_SPACE (FNDECL) + (STACK_POINTER_OFFSET))
2730
2731 #else
2732 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2733 (current_function_outgoing_args_size + (STACK_POINTER_OFFSET))
2734 #endif
2735
2736 #else
2737 #define STACK_DYNAMIC_OFFSET(FNDECL) STACK_POINTER_OFFSET
2738 #endif
2739 #endif
2740
2741 /* On a few machines, the CFA coincides with the arg pointer. */
2742
2743 #ifndef ARG_POINTER_CFA_OFFSET
2744 #define ARG_POINTER_CFA_OFFSET 0
2745 #endif
2746
2747
2748 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2749 its address taken. DECL is the decl for the object stored in the
2750 register, for later use if we do need to force REG into the stack.
2751 REG is overwritten by the MEM like in put_reg_into_stack. */
2752
2753 rtx
2754 gen_mem_addressof (reg, decl)
2755 rtx reg;
2756 tree decl;
2757 {
2758 tree type = TREE_TYPE (decl);
2759 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)), REGNO (reg));
2760 SET_ADDRESSOF_DECL (r, decl);
2761 /* If the original REG was a user-variable, then so is the REG whose
2762 address is being taken. */
2763 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2764
2765 XEXP (reg, 0) = r;
2766 PUT_CODE (reg, MEM);
2767 PUT_MODE (reg, DECL_MODE (decl));
2768 MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
2769 MEM_IN_STRUCT_P (reg) = AGGREGATE_TYPE_P (type);
2770 MEM_ALIAS_SET (reg) = get_alias_set (decl);
2771
2772 if (TREE_USED (decl) || DECL_INITIAL (decl) != 0)
2773 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type));
2774
2775 return reg;
2776 }
2777
2778 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2779
2780 void
2781 flush_addressof (decl)
2782 tree decl;
2783 {
2784 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2785 && DECL_RTL (decl) != 0
2786 && GET_CODE (DECL_RTL (decl)) == MEM
2787 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2788 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2789 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0));
2790 }
2791
2792 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2793
2794 static void
2795 put_addressof_into_stack (r)
2796 rtx r;
2797 {
2798 tree decl = ADDRESSOF_DECL (r);
2799 rtx reg = XEXP (r, 0);
2800
2801 if (GET_CODE (reg) != REG)
2802 abort ();
2803
2804 put_reg_into_stack (0, reg, TREE_TYPE (decl), GET_MODE (reg),
2805 DECL_MODE (decl), TREE_SIDE_EFFECTS (decl),
2806 ADDRESSOF_REGNO (r),
2807 TREE_USED (decl) || DECL_INITIAL (decl) != 0);
2808 }
2809
2810 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2811 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2812 the stack. */
2813
2814 static void
2815 purge_addressof_1 (loc, insn, force, store)
2816 rtx *loc;
2817 rtx insn;
2818 int force, store;
2819 {
2820 rtx x;
2821 RTX_CODE code;
2822 int i, j;
2823 char *fmt;
2824
2825 /* Re-start here to avoid recursion in common cases. */
2826 restart:
2827
2828 x = *loc;
2829 if (x == 0)
2830 return;
2831
2832 code = GET_CODE (x);
2833
2834 if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM)
2835 {
2836 rtx insns;
2837 /* We must create a copy of the rtx because it was created by
2838 overwriting a REG rtx which is always shared. */
2839 rtx sub = copy_rtx (XEXP (XEXP (x, 0), 0));
2840
2841 if (validate_change (insn, loc, sub, 0))
2842 return;
2843
2844 start_sequence ();
2845 if (! validate_change (insn, loc,
2846 force_operand (sub, NULL_RTX),
2847 0))
2848 abort ();
2849
2850 insns = gen_sequence ();
2851 end_sequence ();
2852 emit_insns_before (insns, insn);
2853 return;
2854 }
2855 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
2856 {
2857 rtx sub = XEXP (XEXP (x, 0), 0);
2858
2859 if (GET_CODE (sub) == MEM)
2860 sub = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0)));
2861
2862 if (GET_CODE (sub) == REG
2863 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2864 {
2865 put_addressof_into_stack (XEXP (x, 0));
2866 return;
2867 }
2868 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
2869 {
2870 int size_x, size_sub;
2871
2872 size_x = GET_MODE_BITSIZE (GET_MODE (x));
2873 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
2874
2875 /* Don't even consider working with paradoxical subregs,
2876 or the moral equivalent seen here. */
2877 if (size_x < size_sub
2878 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
2879 {
2880 /* Do a bitfield insertion to mirror what would happen
2881 in memory. */
2882
2883 rtx val, seq;
2884
2885 if (store)
2886 {
2887 /* If we can't replace with a register, be afraid. */
2888
2889 start_sequence ();
2890 val = gen_reg_rtx (GET_MODE (x));
2891 if (! validate_change (insn, loc, val, 0))
2892 abort ();
2893 seq = gen_sequence ();
2894 end_sequence ();
2895 emit_insn_before (seq, insn);
2896
2897 start_sequence ();
2898 store_bit_field (sub, size_x, 0, GET_MODE (x),
2899 val, GET_MODE_SIZE (GET_MODE (sub)),
2900 GET_MODE_SIZE (GET_MODE (sub)));
2901
2902 seq = gen_sequence ();
2903 end_sequence ();
2904 emit_insn_after (seq, insn);
2905 }
2906 else
2907 {
2908 start_sequence ();
2909 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
2910 GET_MODE (x), GET_MODE (x),
2911 GET_MODE_SIZE (GET_MODE (sub)),
2912 GET_MODE_SIZE (GET_MODE (sub)));
2913
2914 /* If we can't replace with a register, be afraid. */
2915 if (! validate_change (insn, loc, val, 0))
2916 abort ();
2917
2918 seq = gen_sequence ();
2919 end_sequence ();
2920 emit_insn_before (seq, insn);
2921 }
2922
2923 /* We replaced with a reg -- all done. */
2924 return;
2925 }
2926 }
2927 else if (validate_change (insn, loc, sub, 0))
2928 goto restart;
2929 /* else give up and put it into the stack */
2930 }
2931 else if (code == ADDRESSOF)
2932 {
2933 put_addressof_into_stack (x);
2934 return;
2935 }
2936 else if (code == SET)
2937 {
2938 purge_addressof_1 (&SET_DEST (x), insn, force, 1);
2939 purge_addressof_1 (&SET_SRC (x), insn, force, 0);
2940 return;
2941 }
2942
2943 /* Scan all subexpressions. */
2944 fmt = GET_RTX_FORMAT (code);
2945 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2946 {
2947 if (*fmt == 'e')
2948 purge_addressof_1 (&XEXP (x, i), insn, force, 0);
2949 else if (*fmt == 'E')
2950 for (j = 0; j < XVECLEN (x, i); j++)
2951 purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0);
2952 }
2953 }
2954
2955 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
2956 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
2957 stack. */
2958
2959 void
2960 purge_addressof (insns)
2961 rtx insns;
2962 {
2963 rtx insn;
2964 for (insn = insns; insn; insn = NEXT_INSN (insn))
2965 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2966 || GET_CODE (insn) == CALL_INSN)
2967 {
2968 purge_addressof_1 (&PATTERN (insn), insn,
2969 asm_noperands (PATTERN (insn)) > 0, 0);
2970 purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0);
2971 }
2972 }
2973 \f
2974 /* Pass through the INSNS of function FNDECL and convert virtual register
2975 references to hard register references. */
2976
2977 void
2978 instantiate_virtual_regs (fndecl, insns)
2979 tree fndecl;
2980 rtx insns;
2981 {
2982 rtx insn;
2983 int i;
2984
2985 /* Compute the offsets to use for this function. */
2986 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
2987 var_offset = STARTING_FRAME_OFFSET;
2988 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
2989 out_arg_offset = STACK_POINTER_OFFSET;
2990 cfa_offset = ARG_POINTER_CFA_OFFSET;
2991
2992 /* Scan all variables and parameters of this function. For each that is
2993 in memory, instantiate all virtual registers if the result is a valid
2994 address. If not, we do it later. That will handle most uses of virtual
2995 regs on many machines. */
2996 instantiate_decls (fndecl, 1);
2997
2998 /* Initialize recognition, indicating that volatile is OK. */
2999 init_recog ();
3000
3001 /* Scan through all the insns, instantiating every virtual register still
3002 present. */
3003 for (insn = insns; insn; insn = NEXT_INSN (insn))
3004 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3005 || GET_CODE (insn) == CALL_INSN)
3006 {
3007 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3008 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3009 }
3010
3011 /* Instantiate the stack slots for the parm registers, for later use in
3012 addressof elimination. */
3013 for (i = 0; i < max_parm_reg; ++i)
3014 if (parm_reg_stack_loc[i])
3015 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3016
3017 /* Now instantiate the remaining register equivalences for debugging info.
3018 These will not be valid addresses. */
3019 instantiate_decls (fndecl, 0);
3020
3021 /* Indicate that, from now on, assign_stack_local should use
3022 frame_pointer_rtx. */
3023 virtuals_instantiated = 1;
3024 }
3025
3026 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3027 all virtual registers in their DECL_RTL's.
3028
3029 If VALID_ONLY, do this only if the resulting address is still valid.
3030 Otherwise, always do it. */
3031
3032 static void
3033 instantiate_decls (fndecl, valid_only)
3034 tree fndecl;
3035 int valid_only;
3036 {
3037 tree decl;
3038
3039 if (DECL_SAVED_INSNS (fndecl))
3040 /* When compiling an inline function, the obstack used for
3041 rtl allocation is the maybepermanent_obstack. Calling
3042 `resume_temporary_allocation' switches us back to that
3043 obstack while we process this function's parameters. */
3044 resume_temporary_allocation ();
3045
3046 /* Process all parameters of the function. */
3047 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3048 {
3049 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3050
3051 instantiate_decl (DECL_RTL (decl), size, valid_only);
3052
3053 /* If the parameter was promoted, then the incoming RTL mode may be
3054 larger than the declared type size. We must use the larger of
3055 the two sizes. */
3056 size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size);
3057 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3058 }
3059
3060 /* Now process all variables defined in the function or its subblocks. */
3061 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3062
3063 if (DECL_INLINE (fndecl) || DECL_DEFER_OUTPUT (fndecl))
3064 {
3065 /* Save all rtl allocated for this function by raising the
3066 high-water mark on the maybepermanent_obstack. */
3067 preserve_data ();
3068 /* All further rtl allocation is now done in the current_obstack. */
3069 rtl_in_current_obstack ();
3070 }
3071 }
3072
3073 /* Subroutine of instantiate_decls: Process all decls in the given
3074 BLOCK node and all its subblocks. */
3075
3076 static void
3077 instantiate_decls_1 (let, valid_only)
3078 tree let;
3079 int valid_only;
3080 {
3081 tree t;
3082
3083 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3084 instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)),
3085 valid_only);
3086
3087 /* Process all subblocks. */
3088 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3089 instantiate_decls_1 (t, valid_only);
3090 }
3091
3092 /* Subroutine of the preceding procedures: Given RTL representing a
3093 decl and the size of the object, do any instantiation required.
3094
3095 If VALID_ONLY is non-zero, it means that the RTL should only be
3096 changed if the new address is valid. */
3097
3098 static void
3099 instantiate_decl (x, size, valid_only)
3100 rtx x;
3101 int size;
3102 int valid_only;
3103 {
3104 enum machine_mode mode;
3105 rtx addr;
3106
3107 /* If this is not a MEM, no need to do anything. Similarly if the
3108 address is a constant or a register that is not a virtual register. */
3109
3110 if (x == 0 || GET_CODE (x) != MEM)
3111 return;
3112
3113 addr = XEXP (x, 0);
3114 if (CONSTANT_P (addr)
3115 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3116 || (GET_CODE (addr) == REG
3117 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3118 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3119 return;
3120
3121 /* If we should only do this if the address is valid, copy the address.
3122 We need to do this so we can undo any changes that might make the
3123 address invalid. This copy is unfortunate, but probably can't be
3124 avoided. */
3125
3126 if (valid_only)
3127 addr = copy_rtx (addr);
3128
3129 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3130
3131 if (valid_only)
3132 {
3133 /* Now verify that the resulting address is valid for every integer or
3134 floating-point mode up to and including SIZE bytes long. We do this
3135 since the object might be accessed in any mode and frame addresses
3136 are shared. */
3137
3138 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3139 mode != VOIDmode && GET_MODE_SIZE (mode) <= size;
3140 mode = GET_MODE_WIDER_MODE (mode))
3141 if (! memory_address_p (mode, addr))
3142 return;
3143
3144 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3145 mode != VOIDmode && GET_MODE_SIZE (mode) <= size;
3146 mode = GET_MODE_WIDER_MODE (mode))
3147 if (! memory_address_p (mode, addr))
3148 return;
3149 }
3150
3151 /* Put back the address now that we have updated it and we either know
3152 it is valid or we don't care whether it is valid. */
3153
3154 XEXP (x, 0) = addr;
3155 }
3156 \f
3157 /* Given a pointer to a piece of rtx and an optional pointer to the
3158 containing object, instantiate any virtual registers present in it.
3159
3160 If EXTRA_INSNS, we always do the replacement and generate
3161 any extra insns before OBJECT. If it zero, we do nothing if replacement
3162 is not valid.
3163
3164 Return 1 if we either had nothing to do or if we were able to do the
3165 needed replacement. Return 0 otherwise; we only return zero if
3166 EXTRA_INSNS is zero.
3167
3168 We first try some simple transformations to avoid the creation of extra
3169 pseudos. */
3170
3171 static int
3172 instantiate_virtual_regs_1 (loc, object, extra_insns)
3173 rtx *loc;
3174 rtx object;
3175 int extra_insns;
3176 {
3177 rtx x;
3178 RTX_CODE code;
3179 rtx new = 0;
3180 HOST_WIDE_INT offset;
3181 rtx temp;
3182 rtx seq;
3183 int i, j;
3184 char *fmt;
3185
3186 /* Re-start here to avoid recursion in common cases. */
3187 restart:
3188
3189 x = *loc;
3190 if (x == 0)
3191 return 1;
3192
3193 code = GET_CODE (x);
3194
3195 /* Check for some special cases. */
3196 switch (code)
3197 {
3198 case CONST_INT:
3199 case CONST_DOUBLE:
3200 case CONST:
3201 case SYMBOL_REF:
3202 case CODE_LABEL:
3203 case PC:
3204 case CC0:
3205 case ASM_INPUT:
3206 case ADDR_VEC:
3207 case ADDR_DIFF_VEC:
3208 case RETURN:
3209 return 1;
3210
3211 case SET:
3212 /* We are allowed to set the virtual registers. This means that
3213 the actual register should receive the source minus the
3214 appropriate offset. This is used, for example, in the handling
3215 of non-local gotos. */
3216 if (SET_DEST (x) == virtual_incoming_args_rtx)
3217 new = arg_pointer_rtx, offset = - in_arg_offset;
3218 else if (SET_DEST (x) == virtual_stack_vars_rtx)
3219 new = frame_pointer_rtx, offset = - var_offset;
3220 else if (SET_DEST (x) == virtual_stack_dynamic_rtx)
3221 new = stack_pointer_rtx, offset = - dynamic_offset;
3222 else if (SET_DEST (x) == virtual_outgoing_args_rtx)
3223 new = stack_pointer_rtx, offset = - out_arg_offset;
3224 else if (SET_DEST (x) == virtual_cfa_rtx)
3225 new = arg_pointer_rtx, offset = - cfa_offset;
3226
3227 if (new)
3228 {
3229 /* The only valid sources here are PLUS or REG. Just do
3230 the simplest possible thing to handle them. */
3231 if (GET_CODE (SET_SRC (x)) != REG
3232 && GET_CODE (SET_SRC (x)) != PLUS)
3233 abort ();
3234
3235 start_sequence ();
3236 if (GET_CODE (SET_SRC (x)) != REG)
3237 temp = force_operand (SET_SRC (x), NULL_RTX);
3238 else
3239 temp = SET_SRC (x);
3240 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3241 seq = get_insns ();
3242 end_sequence ();
3243
3244 emit_insns_before (seq, object);
3245 SET_DEST (x) = new;
3246
3247 if (! validate_change (object, &SET_SRC (x), temp, 0)
3248 || ! extra_insns)
3249 abort ();
3250
3251 return 1;
3252 }
3253
3254 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3255 loc = &SET_SRC (x);
3256 goto restart;
3257
3258 case PLUS:
3259 /* Handle special case of virtual register plus constant. */
3260 if (CONSTANT_P (XEXP (x, 1)))
3261 {
3262 rtx old, new_offset;
3263
3264 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3265 if (GET_CODE (XEXP (x, 0)) == PLUS)
3266 {
3267 rtx inner = XEXP (XEXP (x, 0), 0);
3268
3269 if (inner == virtual_incoming_args_rtx)
3270 new = arg_pointer_rtx, offset = in_arg_offset;
3271 else if (inner == virtual_stack_vars_rtx)
3272 new = frame_pointer_rtx, offset = var_offset;
3273 else if (inner == virtual_stack_dynamic_rtx)
3274 new = stack_pointer_rtx, offset = dynamic_offset;
3275 else if (inner == virtual_outgoing_args_rtx)
3276 new = stack_pointer_rtx, offset = out_arg_offset;
3277 else if (inner == virtual_cfa_rtx)
3278 new = arg_pointer_rtx, offset = cfa_offset;
3279 else
3280 {
3281 loc = &XEXP (x, 0);
3282 goto restart;
3283 }
3284
3285 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3286 extra_insns);
3287 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3288 }
3289
3290 else if (XEXP (x, 0) == virtual_incoming_args_rtx)
3291 new = arg_pointer_rtx, offset = in_arg_offset;
3292 else if (XEXP (x, 0) == virtual_stack_vars_rtx)
3293 new = frame_pointer_rtx, offset = var_offset;
3294 else if (XEXP (x, 0) == virtual_stack_dynamic_rtx)
3295 new = stack_pointer_rtx, offset = dynamic_offset;
3296 else if (XEXP (x, 0) == virtual_outgoing_args_rtx)
3297 new = stack_pointer_rtx, offset = out_arg_offset;
3298 else if (XEXP (x, 0) == virtual_cfa_rtx)
3299 new = arg_pointer_rtx, offset = cfa_offset;
3300 else
3301 {
3302 /* We know the second operand is a constant. Unless the
3303 first operand is a REG (which has been already checked),
3304 it needs to be checked. */
3305 if (GET_CODE (XEXP (x, 0)) != REG)
3306 {
3307 loc = &XEXP (x, 0);
3308 goto restart;
3309 }
3310 return 1;
3311 }
3312
3313 new_offset = plus_constant (XEXP (x, 1), offset);
3314
3315 /* If the new constant is zero, try to replace the sum with just
3316 the register. */
3317 if (new_offset == const0_rtx
3318 && validate_change (object, loc, new, 0))
3319 return 1;
3320
3321 /* Next try to replace the register and new offset.
3322 There are two changes to validate here and we can't assume that
3323 in the case of old offset equals new just changing the register
3324 will yield a valid insn. In the interests of a little efficiency,
3325 however, we only call validate change once (we don't queue up the
3326 changes and then call apply_change_group). */
3327
3328 old = XEXP (x, 0);
3329 if (offset == 0
3330 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3331 : (XEXP (x, 0) = new,
3332 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3333 {
3334 if (! extra_insns)
3335 {
3336 XEXP (x, 0) = old;
3337 return 0;
3338 }
3339
3340 /* Otherwise copy the new constant into a register and replace
3341 constant with that register. */
3342 temp = gen_reg_rtx (Pmode);
3343 XEXP (x, 0) = new;
3344 if (validate_change (object, &XEXP (x, 1), temp, 0))
3345 emit_insn_before (gen_move_insn (temp, new_offset), object);
3346 else
3347 {
3348 /* If that didn't work, replace this expression with a
3349 register containing the sum. */
3350
3351 XEXP (x, 0) = old;
3352 new = gen_rtx_PLUS (Pmode, new, new_offset);
3353
3354 start_sequence ();
3355 temp = force_operand (new, NULL_RTX);
3356 seq = get_insns ();
3357 end_sequence ();
3358
3359 emit_insns_before (seq, object);
3360 if (! validate_change (object, loc, temp, 0)
3361 && ! validate_replace_rtx (x, temp, object))
3362 abort ();
3363 }
3364 }
3365
3366 return 1;
3367 }
3368
3369 /* Fall through to generic two-operand expression case. */
3370 case EXPR_LIST:
3371 case CALL:
3372 case COMPARE:
3373 case MINUS:
3374 case MULT:
3375 case DIV: case UDIV:
3376 case MOD: case UMOD:
3377 case AND: case IOR: case XOR:
3378 case ROTATERT: case ROTATE:
3379 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3380 case NE: case EQ:
3381 case GE: case GT: case GEU: case GTU:
3382 case LE: case LT: case LEU: case LTU:
3383 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3384 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3385 loc = &XEXP (x, 0);
3386 goto restart;
3387
3388 case MEM:
3389 /* Most cases of MEM that convert to valid addresses have already been
3390 handled by our scan of decls. The only special handling we
3391 need here is to make a copy of the rtx to ensure it isn't being
3392 shared if we have to change it to a pseudo.
3393
3394 If the rtx is a simple reference to an address via a virtual register,
3395 it can potentially be shared. In such cases, first try to make it
3396 a valid address, which can also be shared. Otherwise, copy it and
3397 proceed normally.
3398
3399 First check for common cases that need no processing. These are
3400 usually due to instantiation already being done on a previous instance
3401 of a shared rtx. */
3402
3403 temp = XEXP (x, 0);
3404 if (CONSTANT_ADDRESS_P (temp)
3405 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3406 || temp == arg_pointer_rtx
3407 #endif
3408 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3409 || temp == hard_frame_pointer_rtx
3410 #endif
3411 || temp == frame_pointer_rtx)
3412 return 1;
3413
3414 if (GET_CODE (temp) == PLUS
3415 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3416 && (XEXP (temp, 0) == frame_pointer_rtx
3417 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3418 || XEXP (temp, 0) == hard_frame_pointer_rtx
3419 #endif
3420 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3421 || XEXP (temp, 0) == arg_pointer_rtx
3422 #endif
3423 ))
3424 return 1;
3425
3426 if (temp == virtual_stack_vars_rtx
3427 || temp == virtual_incoming_args_rtx
3428 || (GET_CODE (temp) == PLUS
3429 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3430 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3431 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3432 {
3433 /* This MEM may be shared. If the substitution can be done without
3434 the need to generate new pseudos, we want to do it in place
3435 so all copies of the shared rtx benefit. The call below will
3436 only make substitutions if the resulting address is still
3437 valid.
3438
3439 Note that we cannot pass X as the object in the recursive call
3440 since the insn being processed may not allow all valid
3441 addresses. However, if we were not passed on object, we can
3442 only modify X without copying it if X will have a valid
3443 address.
3444
3445 ??? Also note that this can still lose if OBJECT is an insn that
3446 has less restrictions on an address that some other insn.
3447 In that case, we will modify the shared address. This case
3448 doesn't seem very likely, though. One case where this could
3449 happen is in the case of a USE or CLOBBER reference, but we
3450 take care of that below. */
3451
3452 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
3453 object ? object : x, 0))
3454 return 1;
3455
3456 /* Otherwise make a copy and process that copy. We copy the entire
3457 RTL expression since it might be a PLUS which could also be
3458 shared. */
3459 *loc = x = copy_rtx (x);
3460 }
3461
3462 /* Fall through to generic unary operation case. */
3463 case SUBREG:
3464 case STRICT_LOW_PART:
3465 case NEG: case NOT:
3466 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
3467 case SIGN_EXTEND: case ZERO_EXTEND:
3468 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3469 case FLOAT: case FIX:
3470 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3471 case ABS:
3472 case SQRT:
3473 case FFS:
3474 /* These case either have just one operand or we know that we need not
3475 check the rest of the operands. */
3476 loc = &XEXP (x, 0);
3477 goto restart;
3478
3479 case USE:
3480 case CLOBBER:
3481 /* If the operand is a MEM, see if the change is a valid MEM. If not,
3482 go ahead and make the invalid one, but do it to a copy. For a REG,
3483 just make the recursive call, since there's no chance of a problem. */
3484
3485 if ((GET_CODE (XEXP (x, 0)) == MEM
3486 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
3487 0))
3488 || (GET_CODE (XEXP (x, 0)) == REG
3489 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
3490 return 1;
3491
3492 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
3493 loc = &XEXP (x, 0);
3494 goto restart;
3495
3496 case REG:
3497 /* Try to replace with a PLUS. If that doesn't work, compute the sum
3498 in front of this insn and substitute the temporary. */
3499 if (x == virtual_incoming_args_rtx)
3500 new = arg_pointer_rtx, offset = in_arg_offset;
3501 else if (x == virtual_stack_vars_rtx)
3502 new = frame_pointer_rtx, offset = var_offset;
3503 else if (x == virtual_stack_dynamic_rtx)
3504 new = stack_pointer_rtx, offset = dynamic_offset;
3505 else if (x == virtual_outgoing_args_rtx)
3506 new = stack_pointer_rtx, offset = out_arg_offset;
3507 else if (x == virtual_cfa_rtx)
3508 new = arg_pointer_rtx, offset = cfa_offset;
3509
3510 if (new)
3511 {
3512 temp = plus_constant (new, offset);
3513 if (!validate_change (object, loc, temp, 0))
3514 {
3515 if (! extra_insns)
3516 return 0;
3517
3518 start_sequence ();
3519 temp = force_operand (temp, NULL_RTX);
3520 seq = get_insns ();
3521 end_sequence ();
3522
3523 emit_insns_before (seq, object);
3524 if (! validate_change (object, loc, temp, 0)
3525 && ! validate_replace_rtx (x, temp, object))
3526 abort ();
3527 }
3528 }
3529
3530 return 1;
3531
3532 case ADDRESSOF:
3533 if (GET_CODE (XEXP (x, 0)) == REG)
3534 return 1;
3535
3536 else if (GET_CODE (XEXP (x, 0)) == MEM)
3537 {
3538 /* If we have a (addressof (mem ..)), do any instantiation inside
3539 since we know we'll be making the inside valid when we finally
3540 remove the ADDRESSOF. */
3541 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
3542 return 1;
3543 }
3544 break;
3545
3546 default:
3547 break;
3548 }
3549
3550 /* Scan all subexpressions. */
3551 fmt = GET_RTX_FORMAT (code);
3552 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3553 if (*fmt == 'e')
3554 {
3555 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
3556 return 0;
3557 }
3558 else if (*fmt == 'E')
3559 for (j = 0; j < XVECLEN (x, i); j++)
3560 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
3561 extra_insns))
3562 return 0;
3563
3564 return 1;
3565 }
3566 \f
3567 /* Optimization: assuming this function does not receive nonlocal gotos,
3568 delete the handlers for such, as well as the insns to establish
3569 and disestablish them. */
3570
3571 static void
3572 delete_handlers ()
3573 {
3574 rtx insn;
3575 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3576 {
3577 /* Delete the handler by turning off the flag that would
3578 prevent jump_optimize from deleting it.
3579 Also permit deletion of the nonlocal labels themselves
3580 if nothing local refers to them. */
3581 if (GET_CODE (insn) == CODE_LABEL)
3582 {
3583 tree t, last_t;
3584
3585 LABEL_PRESERVE_P (insn) = 0;
3586
3587 /* Remove it from the nonlocal_label list, to avoid confusing
3588 flow. */
3589 for (t = nonlocal_labels, last_t = 0; t;
3590 last_t = t, t = TREE_CHAIN (t))
3591 if (DECL_RTL (TREE_VALUE (t)) == insn)
3592 break;
3593 if (t)
3594 {
3595 if (! last_t)
3596 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
3597 else
3598 TREE_CHAIN (last_t) = TREE_CHAIN (t);
3599 }
3600 }
3601 if (GET_CODE (insn) == INSN
3602 && ((nonlocal_goto_handler_slot != 0
3603 && reg_mentioned_p (nonlocal_goto_handler_slot, PATTERN (insn)))
3604 || (nonlocal_goto_stack_level != 0
3605 && reg_mentioned_p (nonlocal_goto_stack_level,
3606 PATTERN (insn)))))
3607 delete_insn (insn);
3608 }
3609 }
3610
3611 /* Return a list (chain of EXPR_LIST nodes) for the nonlocal labels
3612 of the current function. */
3613
3614 rtx
3615 nonlocal_label_rtx_list ()
3616 {
3617 tree t;
3618 rtx x = 0;
3619
3620 for (t = nonlocal_labels; t; t = TREE_CHAIN (t))
3621 x = gen_rtx_EXPR_LIST (VOIDmode, label_rtx (TREE_VALUE (t)), x);
3622
3623 return x;
3624 }
3625 \f
3626 /* Output a USE for any register use in RTL.
3627 This is used with -noreg to mark the extent of lifespan
3628 of any registers used in a user-visible variable's DECL_RTL. */
3629
3630 void
3631 use_variable (rtl)
3632 rtx rtl;
3633 {
3634 if (GET_CODE (rtl) == REG)
3635 /* This is a register variable. */
3636 emit_insn (gen_rtx_USE (VOIDmode, rtl));
3637 else if (GET_CODE (rtl) == MEM
3638 && GET_CODE (XEXP (rtl, 0)) == REG
3639 && (REGNO (XEXP (rtl, 0)) < FIRST_VIRTUAL_REGISTER
3640 || REGNO (XEXP (rtl, 0)) > LAST_VIRTUAL_REGISTER)
3641 && XEXP (rtl, 0) != current_function_internal_arg_pointer)
3642 /* This is a variable-sized structure. */
3643 emit_insn (gen_rtx_USE (VOIDmode, XEXP (rtl, 0)));
3644 }
3645
3646 /* Like use_variable except that it outputs the USEs after INSN
3647 instead of at the end of the insn-chain. */
3648
3649 void
3650 use_variable_after (rtl, insn)
3651 rtx rtl, insn;
3652 {
3653 if (GET_CODE (rtl) == REG)
3654 /* This is a register variable. */
3655 emit_insn_after (gen_rtx_USE (VOIDmode, rtl), insn);
3656 else if (GET_CODE (rtl) == MEM
3657 && GET_CODE (XEXP (rtl, 0)) == REG
3658 && (REGNO (XEXP (rtl, 0)) < FIRST_VIRTUAL_REGISTER
3659 || REGNO (XEXP (rtl, 0)) > LAST_VIRTUAL_REGISTER)
3660 && XEXP (rtl, 0) != current_function_internal_arg_pointer)
3661 /* This is a variable-sized structure. */
3662 emit_insn_after (gen_rtx_USE (VOIDmode, XEXP (rtl, 0)), insn);
3663 }
3664 \f
3665 int
3666 max_parm_reg_num ()
3667 {
3668 return max_parm_reg;
3669 }
3670
3671 /* Return the first insn following those generated by `assign_parms'. */
3672
3673 rtx
3674 get_first_nonparm_insn ()
3675 {
3676 if (last_parm_insn)
3677 return NEXT_INSN (last_parm_insn);
3678 return get_insns ();
3679 }
3680
3681 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
3682 Crash if there is none. */
3683
3684 rtx
3685 get_first_block_beg ()
3686 {
3687 register rtx searcher;
3688 register rtx insn = get_first_nonparm_insn ();
3689
3690 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
3691 if (GET_CODE (searcher) == NOTE
3692 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
3693 return searcher;
3694
3695 abort (); /* Invalid call to this function. (See comments above.) */
3696 return NULL_RTX;
3697 }
3698
3699 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
3700 This means a type for which function calls must pass an address to the
3701 function or get an address back from the function.
3702 EXP may be a type node or an expression (whose type is tested). */
3703
3704 int
3705 aggregate_value_p (exp)
3706 tree exp;
3707 {
3708 int i, regno, nregs;
3709 rtx reg;
3710 tree type;
3711 if (TREE_CODE_CLASS (TREE_CODE (exp)) == 't')
3712 type = exp;
3713 else
3714 type = TREE_TYPE (exp);
3715
3716 if (RETURN_IN_MEMORY (type))
3717 return 1;
3718 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
3719 and thus can't be returned in registers. */
3720 if (TREE_ADDRESSABLE (type))
3721 return 1;
3722 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
3723 return 1;
3724 /* Make sure we have suitable call-clobbered regs to return
3725 the value in; if not, we must return it in memory. */
3726 reg = hard_function_value (type, 0);
3727
3728 /* If we have something other than a REG (e.g. a PARALLEL), then assume
3729 it is OK. */
3730 if (GET_CODE (reg) != REG)
3731 return 0;
3732
3733 regno = REGNO (reg);
3734 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
3735 for (i = 0; i < nregs; i++)
3736 if (! call_used_regs[regno + i])
3737 return 1;
3738 return 0;
3739 }
3740 \f
3741 /* Assign RTL expressions to the function's parameters.
3742 This may involve copying them into registers and using
3743 those registers as the RTL for them.
3744
3745 If SECOND_TIME is non-zero it means that this function is being
3746 called a second time. This is done by integrate.c when a function's
3747 compilation is deferred. We need to come back here in case the
3748 FUNCTION_ARG macro computes items needed for the rest of the compilation
3749 (such as changing which registers are fixed or caller-saved). But suppress
3750 writing any insns or setting DECL_RTL of anything in this case. */
3751
3752 void
3753 assign_parms (fndecl, second_time)
3754 tree fndecl;
3755 int second_time;
3756 {
3757 register tree parm;
3758 register rtx entry_parm = 0;
3759 register rtx stack_parm = 0;
3760 CUMULATIVE_ARGS args_so_far;
3761 enum machine_mode promoted_mode, passed_mode;
3762 enum machine_mode nominal_mode, promoted_nominal_mode;
3763 int unsignedp;
3764 /* Total space needed so far for args on the stack,
3765 given as a constant and a tree-expression. */
3766 struct args_size stack_args_size;
3767 tree fntype = TREE_TYPE (fndecl);
3768 tree fnargs = DECL_ARGUMENTS (fndecl);
3769 /* This is used for the arg pointer when referring to stack args. */
3770 rtx internal_arg_pointer;
3771 /* This is a dummy PARM_DECL that we used for the function result if
3772 the function returns a structure. */
3773 tree function_result_decl = 0;
3774 int varargs_setup = 0;
3775 rtx conversion_insns = 0;
3776
3777 /* Nonzero if the last arg is named `__builtin_va_alist',
3778 which is used on some machines for old-fashioned non-ANSI varargs.h;
3779 this should be stuck onto the stack as if it had arrived there. */
3780 int hide_last_arg
3781 = (current_function_varargs
3782 && fnargs
3783 && (parm = tree_last (fnargs)) != 0
3784 && DECL_NAME (parm)
3785 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
3786 "__builtin_va_alist")));
3787
3788 /* Nonzero if function takes extra anonymous args.
3789 This means the last named arg must be on the stack
3790 right before the anonymous ones. */
3791 int stdarg
3792 = (TYPE_ARG_TYPES (fntype) != 0
3793 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3794 != void_type_node));
3795
3796 current_function_stdarg = stdarg;
3797
3798 /* If the reg that the virtual arg pointer will be translated into is
3799 not a fixed reg or is the stack pointer, make a copy of the virtual
3800 arg pointer, and address parms via the copy. The frame pointer is
3801 considered fixed even though it is not marked as such.
3802
3803 The second time through, simply use ap to avoid generating rtx. */
3804
3805 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
3806 || ! (fixed_regs[ARG_POINTER_REGNUM]
3807 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM))
3808 && ! second_time)
3809 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
3810 else
3811 internal_arg_pointer = virtual_incoming_args_rtx;
3812 current_function_internal_arg_pointer = internal_arg_pointer;
3813
3814 stack_args_size.constant = 0;
3815 stack_args_size.var = 0;
3816
3817 /* If struct value address is treated as the first argument, make it so. */
3818 if (aggregate_value_p (DECL_RESULT (fndecl))
3819 && ! current_function_returns_pcc_struct
3820 && struct_value_incoming_rtx == 0)
3821 {
3822 tree type = build_pointer_type (TREE_TYPE (fntype));
3823
3824 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
3825
3826 DECL_ARG_TYPE (function_result_decl) = type;
3827 TREE_CHAIN (function_result_decl) = fnargs;
3828 fnargs = function_result_decl;
3829 }
3830
3831 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
3832 parm_reg_stack_loc = (rtx *) savealloc (max_parm_reg * sizeof (rtx));
3833 bzero ((char *) parm_reg_stack_loc, max_parm_reg * sizeof (rtx));
3834
3835 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
3836 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
3837 #else
3838 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
3839 #endif
3840
3841 /* We haven't yet found an argument that we must push and pretend the
3842 caller did. */
3843 current_function_pretend_args_size = 0;
3844
3845 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3846 {
3847 int aggregate = AGGREGATE_TYPE_P (TREE_TYPE (parm));
3848 struct args_size stack_offset;
3849 struct args_size arg_size;
3850 int passed_pointer = 0;
3851 int did_conversion = 0;
3852 tree passed_type = DECL_ARG_TYPE (parm);
3853 tree nominal_type = TREE_TYPE (parm);
3854
3855 /* Set LAST_NAMED if this is last named arg before some
3856 anonymous args. */
3857 int last_named = ((TREE_CHAIN (parm) == 0
3858 || DECL_NAME (TREE_CHAIN (parm)) == 0)
3859 && (stdarg || current_function_varargs));
3860 /* Set NAMED_ARG if this arg should be treated as a named arg. For
3861 most machines, if this is a varargs/stdarg function, then we treat
3862 the last named arg as if it were anonymous too. */
3863 int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
3864
3865 if (TREE_TYPE (parm) == error_mark_node
3866 /* This can happen after weird syntax errors
3867 or if an enum type is defined among the parms. */
3868 || TREE_CODE (parm) != PARM_DECL
3869 || passed_type == NULL)
3870 {
3871 DECL_INCOMING_RTL (parm) = DECL_RTL (parm)
3872 = gen_rtx_MEM (BLKmode, const0_rtx);
3873 TREE_USED (parm) = 1;
3874 continue;
3875 }
3876
3877 /* For varargs.h function, save info about regs and stack space
3878 used by the individual args, not including the va_alist arg. */
3879 if (hide_last_arg && last_named)
3880 current_function_args_info = args_so_far;
3881
3882 /* Find mode of arg as it is passed, and mode of arg
3883 as it should be during execution of this function. */
3884 passed_mode = TYPE_MODE (passed_type);
3885 nominal_mode = TYPE_MODE (nominal_type);
3886
3887 /* If the parm's mode is VOID, its value doesn't matter,
3888 and avoid the usual things like emit_move_insn that could crash. */
3889 if (nominal_mode == VOIDmode)
3890 {
3891 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx;
3892 continue;
3893 }
3894
3895 /* If the parm is to be passed as a transparent union, use the
3896 type of the first field for the tests below. We have already
3897 verified that the modes are the same. */
3898 if (DECL_TRANSPARENT_UNION (parm)
3899 || TYPE_TRANSPARENT_UNION (passed_type))
3900 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
3901
3902 /* See if this arg was passed by invisible reference. It is if
3903 it is an object whose size depends on the contents of the
3904 object itself or if the machine requires these objects be passed
3905 that way. */
3906
3907 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
3908 && contains_placeholder_p (TYPE_SIZE (passed_type)))
3909 || TREE_ADDRESSABLE (passed_type)
3910 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
3911 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
3912 passed_type, named_arg)
3913 #endif
3914 )
3915 {
3916 passed_type = nominal_type = build_pointer_type (passed_type);
3917 passed_pointer = 1;
3918 passed_mode = nominal_mode = Pmode;
3919 }
3920
3921 promoted_mode = passed_mode;
3922
3923 #ifdef PROMOTE_FUNCTION_ARGS
3924 /* Compute the mode in which the arg is actually extended to. */
3925 unsignedp = TREE_UNSIGNED (passed_type);
3926 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
3927 #endif
3928
3929 /* Let machine desc say which reg (if any) the parm arrives in.
3930 0 means it arrives on the stack. */
3931 #ifdef FUNCTION_INCOMING_ARG
3932 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
3933 passed_type, named_arg);
3934 #else
3935 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
3936 passed_type, named_arg);
3937 #endif
3938
3939 if (entry_parm == 0)
3940 promoted_mode = passed_mode;
3941
3942 #ifdef SETUP_INCOMING_VARARGS
3943 /* If this is the last named parameter, do any required setup for
3944 varargs or stdargs. We need to know about the case of this being an
3945 addressable type, in which case we skip the registers it
3946 would have arrived in.
3947
3948 For stdargs, LAST_NAMED will be set for two parameters, the one that
3949 is actually the last named, and the dummy parameter. We only
3950 want to do this action once.
3951
3952 Also, indicate when RTL generation is to be suppressed. */
3953 if (last_named && !varargs_setup)
3954 {
3955 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
3956 current_function_pretend_args_size,
3957 second_time);
3958 varargs_setup = 1;
3959 }
3960 #endif
3961
3962 /* Determine parm's home in the stack,
3963 in case it arrives in the stack or we should pretend it did.
3964
3965 Compute the stack position and rtx where the argument arrives
3966 and its size.
3967
3968 There is one complexity here: If this was a parameter that would
3969 have been passed in registers, but wasn't only because it is
3970 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
3971 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
3972 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
3973 0 as it was the previous time. */
3974
3975 locate_and_pad_parm (promoted_mode, passed_type,
3976 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3977 1,
3978 #else
3979 #ifdef FUNCTION_INCOMING_ARG
3980 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
3981 passed_type,
3982 (named_arg
3983 || varargs_setup)) != 0,
3984 #else
3985 FUNCTION_ARG (args_so_far, promoted_mode,
3986 passed_type,
3987 named_arg || varargs_setup) != 0,
3988 #endif
3989 #endif
3990 fndecl, &stack_args_size, &stack_offset, &arg_size);
3991
3992 if (! second_time)
3993 {
3994 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
3995
3996 if (offset_rtx == const0_rtx)
3997 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
3998 else
3999 stack_parm = gen_rtx_MEM (promoted_mode,
4000 gen_rtx_PLUS (Pmode,
4001 internal_arg_pointer,
4002 offset_rtx));
4003
4004 /* If this is a memory ref that contains aggregate components,
4005 mark it as such for cse and loop optimize. Likewise if it
4006 is readonly. */
4007 MEM_IN_STRUCT_P (stack_parm) = aggregate;
4008 RTX_UNCHANGING_P (stack_parm) = TREE_READONLY (parm);
4009 MEM_ALIAS_SET (stack_parm) = get_alias_set (parm);
4010 }
4011
4012 /* If this parameter was passed both in registers and in the stack,
4013 use the copy on the stack. */
4014 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4015 entry_parm = 0;
4016
4017 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4018 /* If this parm was passed part in regs and part in memory,
4019 pretend it arrived entirely in memory
4020 by pushing the register-part onto the stack.
4021
4022 In the special case of a DImode or DFmode that is split,
4023 we could put it together in a pseudoreg directly,
4024 but for now that's not worth bothering with. */
4025
4026 if (entry_parm)
4027 {
4028 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4029 passed_type, named_arg);
4030
4031 if (nregs > 0)
4032 {
4033 current_function_pretend_args_size
4034 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4035 / (PARM_BOUNDARY / BITS_PER_UNIT)
4036 * (PARM_BOUNDARY / BITS_PER_UNIT));
4037
4038 if (! second_time)
4039 {
4040 /* Handle calls that pass values in multiple non-contiguous
4041 locations. The Irix 6 ABI has examples of this. */
4042 if (GET_CODE (entry_parm) == PARALLEL)
4043 emit_group_store (validize_mem (stack_parm), entry_parm,
4044 int_size_in_bytes (TREE_TYPE (parm)),
4045 (TYPE_ALIGN (TREE_TYPE (parm))
4046 / BITS_PER_UNIT));
4047 else
4048 move_block_from_reg (REGNO (entry_parm),
4049 validize_mem (stack_parm), nregs,
4050 int_size_in_bytes (TREE_TYPE (parm)));
4051 }
4052 entry_parm = stack_parm;
4053 }
4054 }
4055 #endif
4056
4057 /* If we didn't decide this parm came in a register,
4058 by default it came on the stack. */
4059 if (entry_parm == 0)
4060 entry_parm = stack_parm;
4061
4062 /* Record permanently how this parm was passed. */
4063 if (! second_time)
4064 DECL_INCOMING_RTL (parm) = entry_parm;
4065
4066 /* If there is actually space on the stack for this parm,
4067 count it in stack_args_size; otherwise set stack_parm to 0
4068 to indicate there is no preallocated stack slot for the parm. */
4069
4070 if (entry_parm == stack_parm
4071 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4072 /* On some machines, even if a parm value arrives in a register
4073 there is still an (uninitialized) stack slot allocated for it.
4074
4075 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4076 whether this parameter already has a stack slot allocated,
4077 because an arg block exists only if current_function_args_size
4078 is larger than some threshold, and we haven't calculated that
4079 yet. So, for now, we just assume that stack slots never exist
4080 in this case. */
4081 || REG_PARM_STACK_SPACE (fndecl) > 0
4082 #endif
4083 )
4084 {
4085 stack_args_size.constant += arg_size.constant;
4086 if (arg_size.var)
4087 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4088 }
4089 else
4090 /* No stack slot was pushed for this parm. */
4091 stack_parm = 0;
4092
4093 /* Update info on where next arg arrives in registers. */
4094
4095 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4096 passed_type, named_arg);
4097
4098 /* If this is our second time through, we are done with this parm. */
4099 if (second_time)
4100 continue;
4101
4102 /* If we can't trust the parm stack slot to be aligned enough
4103 for its ultimate type, don't use that slot after entry.
4104 We'll make another stack slot, if we need one. */
4105 {
4106 int thisparm_boundary
4107 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4108
4109 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4110 stack_parm = 0;
4111 }
4112
4113 /* If parm was passed in memory, and we need to convert it on entry,
4114 don't store it back in that same slot. */
4115 if (entry_parm != 0
4116 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4117 stack_parm = 0;
4118
4119 #if 0
4120 /* Now adjust STACK_PARM to the mode and precise location
4121 where this parameter should live during execution,
4122 if we discover that it must live in the stack during execution.
4123 To make debuggers happier on big-endian machines, we store
4124 the value in the last bytes of the space available. */
4125
4126 if (nominal_mode != BLKmode && nominal_mode != passed_mode
4127 && stack_parm != 0)
4128 {
4129 rtx offset_rtx;
4130
4131 if (BYTES_BIG_ENDIAN
4132 && GET_MODE_SIZE (nominal_mode) < UNITS_PER_WORD)
4133 stack_offset.constant += (GET_MODE_SIZE (passed_mode)
4134 - GET_MODE_SIZE (nominal_mode));
4135
4136 offset_rtx = ARGS_SIZE_RTX (stack_offset);
4137 if (offset_rtx == const0_rtx)
4138 stack_parm = gen_rtx_MEM (nominal_mode, internal_arg_pointer);
4139 else
4140 stack_parm = gen_rtx_MEM (nominal_mode,
4141 gen_rtx_PLUS (Pmode,
4142 internal_arg_pointer,
4143 offset_rtx));
4144
4145 /* If this is a memory ref that contains aggregate components,
4146 mark it as such for cse and loop optimize. */
4147 MEM_IN_STRUCT_P (stack_parm) = aggregate;
4148 }
4149 #endif /* 0 */
4150
4151 #ifdef STACK_REGS
4152 /* We need this "use" info, because the gcc-register->stack-register
4153 converter in reg-stack.c needs to know which registers are active
4154 at the start of the function call. The actual parameter loading
4155 instructions are not always available then anymore, since they might
4156 have been optimised away. */
4157
4158 if (GET_CODE (entry_parm) == REG && !(hide_last_arg && last_named))
4159 emit_insn (gen_rtx_USE (GET_MODE (entry_parm), entry_parm));
4160 #endif
4161
4162 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4163 in the mode in which it arrives.
4164 STACK_PARM is an RTX for a stack slot where the parameter can live
4165 during the function (in case we want to put it there).
4166 STACK_PARM is 0 if no stack slot was pushed for it.
4167
4168 Now output code if necessary to convert ENTRY_PARM to
4169 the type in which this function declares it,
4170 and store that result in an appropriate place,
4171 which may be a pseudo reg, may be STACK_PARM,
4172 or may be a local stack slot if STACK_PARM is 0.
4173
4174 Set DECL_RTL to that place. */
4175
4176 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4177 {
4178 /* If a BLKmode arrives in registers, copy it to a stack slot.
4179 Handle calls that pass values in multiple non-contiguous
4180 locations. The Irix 6 ABI has examples of this. */
4181 if (GET_CODE (entry_parm) == REG
4182 || GET_CODE (entry_parm) == PARALLEL)
4183 {
4184 int size_stored
4185 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4186 UNITS_PER_WORD);
4187
4188 /* Note that we will be storing an integral number of words.
4189 So we have to be careful to ensure that we allocate an
4190 integral number of words. We do this below in the
4191 assign_stack_local if space was not allocated in the argument
4192 list. If it was, this will not work if PARM_BOUNDARY is not
4193 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4194 if it becomes a problem. */
4195
4196 if (stack_parm == 0)
4197 {
4198 stack_parm
4199 = assign_stack_local (GET_MODE (entry_parm),
4200 size_stored, 0);
4201
4202 /* If this is a memory ref that contains aggregate
4203 components, mark it as such for cse and loop optimize. */
4204 MEM_IN_STRUCT_P (stack_parm) = aggregate;
4205 }
4206
4207 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4208 abort ();
4209
4210 if (TREE_READONLY (parm))
4211 RTX_UNCHANGING_P (stack_parm) = 1;
4212
4213 /* Handle calls that pass values in multiple non-contiguous
4214 locations. The Irix 6 ABI has examples of this. */
4215 if (GET_CODE (entry_parm) == PARALLEL)
4216 emit_group_store (validize_mem (stack_parm), entry_parm,
4217 int_size_in_bytes (TREE_TYPE (parm)),
4218 (TYPE_ALIGN (TREE_TYPE (parm))
4219 / BITS_PER_UNIT));
4220 else
4221 move_block_from_reg (REGNO (entry_parm),
4222 validize_mem (stack_parm),
4223 size_stored / UNITS_PER_WORD,
4224 int_size_in_bytes (TREE_TYPE (parm)));
4225 }
4226 DECL_RTL (parm) = stack_parm;
4227 }
4228 else if (! ((obey_regdecls && ! DECL_REGISTER (parm)
4229 && ! DECL_INLINE (fndecl))
4230 /* layout_decl may set this. */
4231 || TREE_ADDRESSABLE (parm)
4232 || TREE_SIDE_EFFECTS (parm)
4233 /* If -ffloat-store specified, don't put explicit
4234 float variables into registers. */
4235 || (flag_float_store
4236 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4237 /* Always assign pseudo to structure return or item passed
4238 by invisible reference. */
4239 || passed_pointer || parm == function_result_decl)
4240 {
4241 /* Store the parm in a pseudoregister during the function, but we
4242 may need to do it in a wider mode. */
4243
4244 register rtx parmreg;
4245 int regno, regnoi = 0, regnor = 0;
4246
4247 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4248
4249 promoted_nominal_mode
4250 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4251
4252 parmreg = gen_reg_rtx (promoted_nominal_mode);
4253 mark_user_reg (parmreg);
4254
4255 /* If this was an item that we received a pointer to, set DECL_RTL
4256 appropriately. */
4257 if (passed_pointer)
4258 {
4259 DECL_RTL (parm)
4260 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)), parmreg);
4261 MEM_IN_STRUCT_P (DECL_RTL (parm)) = aggregate;
4262 }
4263 else
4264 DECL_RTL (parm) = parmreg;
4265
4266 /* Copy the value into the register. */
4267 if (nominal_mode != passed_mode
4268 || promoted_nominal_mode != promoted_mode)
4269 {
4270 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4271 mode, by the caller. We now have to convert it to
4272 NOMINAL_MODE, if different. However, PARMREG may be in
4273 a different mode than NOMINAL_MODE if it is being stored
4274 promoted.
4275
4276 If ENTRY_PARM is a hard register, it might be in a register
4277 not valid for operating in its mode (e.g., an odd-numbered
4278 register for a DFmode). In that case, moves are the only
4279 thing valid, so we can't do a convert from there. This
4280 occurs when the calling sequence allow such misaligned
4281 usages.
4282
4283 In addition, the conversion may involve a call, which could
4284 clobber parameters which haven't been copied to pseudo
4285 registers yet. Therefore, we must first copy the parm to
4286 a pseudo reg here, and save the conversion until after all
4287 parameters have been moved. */
4288
4289 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4290
4291 emit_move_insn (tempreg, validize_mem (entry_parm));
4292
4293 push_to_sequence (conversion_insns);
4294 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4295
4296 expand_assignment (parm,
4297 make_tree (nominal_type, tempreg), 0, 0);
4298 conversion_insns = get_insns ();
4299 did_conversion = 1;
4300 end_sequence ();
4301 }
4302 else
4303 emit_move_insn (parmreg, validize_mem (entry_parm));
4304
4305 /* If we were passed a pointer but the actual value
4306 can safely live in a register, put it in one. */
4307 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4308 && ! ((obey_regdecls && ! DECL_REGISTER (parm)
4309 && ! DECL_INLINE (fndecl))
4310 /* layout_decl may set this. */
4311 || TREE_ADDRESSABLE (parm)
4312 || TREE_SIDE_EFFECTS (parm)
4313 /* If -ffloat-store specified, don't put explicit
4314 float variables into registers. */
4315 || (flag_float_store
4316 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
4317 {
4318 /* We can't use nominal_mode, because it will have been set to
4319 Pmode above. We must use the actual mode of the parm. */
4320 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4321 mark_user_reg (parmreg);
4322 emit_move_insn (parmreg, DECL_RTL (parm));
4323 DECL_RTL (parm) = parmreg;
4324 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4325 now the parm. */
4326 stack_parm = 0;
4327 }
4328 #ifdef FUNCTION_ARG_CALLEE_COPIES
4329 /* If we are passed an arg by reference and it is our responsibility
4330 to make a copy, do it now.
4331 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4332 original argument, so we must recreate them in the call to
4333 FUNCTION_ARG_CALLEE_COPIES. */
4334 /* ??? Later add code to handle the case that if the argument isn't
4335 modified, don't do the copy. */
4336
4337 else if (passed_pointer
4338 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4339 TYPE_MODE (DECL_ARG_TYPE (parm)),
4340 DECL_ARG_TYPE (parm),
4341 named_arg)
4342 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4343 {
4344 rtx copy;
4345 tree type = DECL_ARG_TYPE (parm);
4346
4347 /* This sequence may involve a library call perhaps clobbering
4348 registers that haven't been copied to pseudos yet. */
4349
4350 push_to_sequence (conversion_insns);
4351
4352 if (TYPE_SIZE (type) == 0
4353 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4354 /* This is a variable sized object. */
4355 copy = gen_rtx_MEM (BLKmode,
4356 allocate_dynamic_stack_space
4357 (expr_size (parm), NULL_RTX,
4358 TYPE_ALIGN (type)));
4359 else
4360 copy = assign_stack_temp (TYPE_MODE (type),
4361 int_size_in_bytes (type), 1);
4362 MEM_IN_STRUCT_P (copy) = AGGREGATE_TYPE_P (type);
4363 RTX_UNCHANGING_P (copy) = TREE_READONLY (parm);
4364
4365 store_expr (parm, copy, 0);
4366 emit_move_insn (parmreg, XEXP (copy, 0));
4367 if (flag_check_memory_usage)
4368 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4369 XEXP (copy, 0), ptr_mode,
4370 GEN_INT (int_size_in_bytes (type)),
4371 TYPE_MODE (sizetype),
4372 GEN_INT (MEMORY_USE_RW),
4373 TYPE_MODE (integer_type_node));
4374 conversion_insns = get_insns ();
4375 did_conversion = 1;
4376 end_sequence ();
4377 }
4378 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4379
4380 /* In any case, record the parm's desired stack location
4381 in case we later discover it must live in the stack.
4382
4383 If it is a COMPLEX value, store the stack location for both
4384 halves. */
4385
4386 if (GET_CODE (parmreg) == CONCAT)
4387 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4388 else
4389 regno = REGNO (parmreg);
4390
4391 if (regno >= max_parm_reg)
4392 {
4393 rtx *new;
4394 int old_max_parm_reg = max_parm_reg;
4395
4396 /* It's slow to expand this one register at a time,
4397 but it's also rare and we need max_parm_reg to be
4398 precisely correct. */
4399 max_parm_reg = regno + 1;
4400 new = (rtx *) savealloc (max_parm_reg * sizeof (rtx));
4401 bcopy ((char *) parm_reg_stack_loc, (char *) new,
4402 old_max_parm_reg * sizeof (rtx));
4403 bzero ((char *) (new + old_max_parm_reg),
4404 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4405 parm_reg_stack_loc = new;
4406 }
4407
4408 if (GET_CODE (parmreg) == CONCAT)
4409 {
4410 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4411
4412 regnor = REGNO (gen_realpart (submode, parmreg));
4413 regnoi = REGNO (gen_imagpart (submode, parmreg));
4414
4415 if (stack_parm != 0)
4416 {
4417 parm_reg_stack_loc[regnor]
4418 = gen_realpart (submode, stack_parm);
4419 parm_reg_stack_loc[regnoi]
4420 = gen_imagpart (submode, stack_parm);
4421 }
4422 else
4423 {
4424 parm_reg_stack_loc[regnor] = 0;
4425 parm_reg_stack_loc[regnoi] = 0;
4426 }
4427 }
4428 else
4429 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4430
4431 /* Mark the register as eliminable if we did no conversion
4432 and it was copied from memory at a fixed offset,
4433 and the arg pointer was not copied to a pseudo-reg.
4434 If the arg pointer is a pseudo reg or the offset formed
4435 an invalid address, such memory-equivalences
4436 as we make here would screw up life analysis for it. */
4437 if (nominal_mode == passed_mode
4438 && ! did_conversion
4439 && stack_parm != 0
4440 && GET_CODE (stack_parm) == MEM
4441 && stack_offset.var == 0
4442 && reg_mentioned_p (virtual_incoming_args_rtx,
4443 XEXP (stack_parm, 0)))
4444 {
4445 rtx linsn = get_last_insn ();
4446 rtx sinsn, set;
4447
4448 /* Mark complex types separately. */
4449 if (GET_CODE (parmreg) == CONCAT)
4450 /* Scan backwards for the set of the real and
4451 imaginary parts. */
4452 for (sinsn = linsn; sinsn != 0;
4453 sinsn = prev_nonnote_insn (sinsn))
4454 {
4455 set = single_set (sinsn);
4456 if (set != 0
4457 && SET_DEST (set) == regno_reg_rtx [regnoi])
4458 REG_NOTES (sinsn)
4459 = gen_rtx_EXPR_LIST (REG_EQUIV,
4460 parm_reg_stack_loc[regnoi],
4461 REG_NOTES (sinsn));
4462 else if (set != 0
4463 && SET_DEST (set) == regno_reg_rtx [regnor])
4464 REG_NOTES (sinsn)
4465 = gen_rtx_EXPR_LIST (REG_EQUIV,
4466 parm_reg_stack_loc[regnor],
4467 REG_NOTES (sinsn));
4468 }
4469 else if ((set = single_set (linsn)) != 0
4470 && SET_DEST (set) == parmreg)
4471 REG_NOTES (linsn)
4472 = gen_rtx_EXPR_LIST (REG_EQUIV,
4473 stack_parm, REG_NOTES (linsn));
4474 }
4475
4476 /* For pointer data type, suggest pointer register. */
4477 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4478 mark_reg_pointer (parmreg,
4479 (TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))
4480 / BITS_PER_UNIT));
4481 }
4482 else
4483 {
4484 /* Value must be stored in the stack slot STACK_PARM
4485 during function execution. */
4486
4487 if (promoted_mode != nominal_mode)
4488 {
4489 /* Conversion is required. */
4490 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4491
4492 emit_move_insn (tempreg, validize_mem (entry_parm));
4493
4494 push_to_sequence (conversion_insns);
4495 entry_parm = convert_to_mode (nominal_mode, tempreg,
4496 TREE_UNSIGNED (TREE_TYPE (parm)));
4497 if (stack_parm)
4498 {
4499 /* ??? This may need a big-endian conversion on sparc64. */
4500 stack_parm = change_address (stack_parm, nominal_mode,
4501 NULL_RTX);
4502 }
4503 conversion_insns = get_insns ();
4504 did_conversion = 1;
4505 end_sequence ();
4506 }
4507
4508 if (entry_parm != stack_parm)
4509 {
4510 if (stack_parm == 0)
4511 {
4512 stack_parm
4513 = assign_stack_local (GET_MODE (entry_parm),
4514 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
4515 /* If this is a memory ref that contains aggregate components,
4516 mark it as such for cse and loop optimize. */
4517 MEM_IN_STRUCT_P (stack_parm) = aggregate;
4518 }
4519
4520 if (promoted_mode != nominal_mode)
4521 {
4522 push_to_sequence (conversion_insns);
4523 emit_move_insn (validize_mem (stack_parm),
4524 validize_mem (entry_parm));
4525 conversion_insns = get_insns ();
4526 end_sequence ();
4527 }
4528 else
4529 emit_move_insn (validize_mem (stack_parm),
4530 validize_mem (entry_parm));
4531 }
4532 if (flag_check_memory_usage)
4533 {
4534 push_to_sequence (conversion_insns);
4535 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4536 XEXP (stack_parm, 0), ptr_mode,
4537 GEN_INT (GET_MODE_SIZE (GET_MODE
4538 (entry_parm))),
4539 TYPE_MODE (sizetype),
4540 GEN_INT (MEMORY_USE_RW),
4541 TYPE_MODE (integer_type_node));
4542
4543 conversion_insns = get_insns ();
4544 end_sequence ();
4545 }
4546 DECL_RTL (parm) = stack_parm;
4547 }
4548
4549 /* If this "parameter" was the place where we are receiving the
4550 function's incoming structure pointer, set up the result. */
4551 if (parm == function_result_decl)
4552 {
4553 tree result = DECL_RESULT (fndecl);
4554 tree restype = TREE_TYPE (result);
4555
4556 DECL_RTL (result)
4557 = gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm));
4558
4559 MEM_IN_STRUCT_P (DECL_RTL (result)) = AGGREGATE_TYPE_P (restype);
4560 }
4561
4562 if (TREE_THIS_VOLATILE (parm))
4563 MEM_VOLATILE_P (DECL_RTL (parm)) = 1;
4564 if (TREE_READONLY (parm))
4565 RTX_UNCHANGING_P (DECL_RTL (parm)) = 1;
4566 }
4567
4568 /* Output all parameter conversion instructions (possibly including calls)
4569 now that all parameters have been copied out of hard registers. */
4570 emit_insns (conversion_insns);
4571
4572 last_parm_insn = get_last_insn ();
4573
4574 current_function_args_size = stack_args_size.constant;
4575
4576 /* Adjust function incoming argument size for alignment and
4577 minimum length. */
4578
4579 #ifdef REG_PARM_STACK_SPACE
4580 #ifndef MAYBE_REG_PARM_STACK_SPACE
4581 current_function_args_size = MAX (current_function_args_size,
4582 REG_PARM_STACK_SPACE (fndecl));
4583 #endif
4584 #endif
4585
4586 #ifdef STACK_BOUNDARY
4587 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
4588
4589 current_function_args_size
4590 = ((current_function_args_size + STACK_BYTES - 1)
4591 / STACK_BYTES) * STACK_BYTES;
4592 #endif
4593
4594 #ifdef ARGS_GROW_DOWNWARD
4595 current_function_arg_offset_rtx
4596 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
4597 : expand_expr (size_binop (MINUS_EXPR, stack_args_size.var,
4598 size_int (-stack_args_size.constant)),
4599 NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD));
4600 #else
4601 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
4602 #endif
4603
4604 /* See how many bytes, if any, of its args a function should try to pop
4605 on return. */
4606
4607 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
4608 current_function_args_size);
4609
4610 /* For stdarg.h function, save info about
4611 regs and stack space used by the named args. */
4612
4613 if (!hide_last_arg)
4614 current_function_args_info = args_so_far;
4615
4616 /* Set the rtx used for the function return value. Put this in its
4617 own variable so any optimizers that need this information don't have
4618 to include tree.h. Do this here so it gets done when an inlined
4619 function gets output. */
4620
4621 current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl));
4622 }
4623 \f
4624 /* Indicate whether REGNO is an incoming argument to the current function
4625 that was promoted to a wider mode. If so, return the RTX for the
4626 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
4627 that REGNO is promoted from and whether the promotion was signed or
4628 unsigned. */
4629
4630 #ifdef PROMOTE_FUNCTION_ARGS
4631
4632 rtx
4633 promoted_input_arg (regno, pmode, punsignedp)
4634 int regno;
4635 enum machine_mode *pmode;
4636 int *punsignedp;
4637 {
4638 tree arg;
4639
4640 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
4641 arg = TREE_CHAIN (arg))
4642 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
4643 && REGNO (DECL_INCOMING_RTL (arg)) == regno
4644 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
4645 {
4646 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
4647 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
4648
4649 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
4650 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
4651 && mode != DECL_MODE (arg))
4652 {
4653 *pmode = DECL_MODE (arg);
4654 *punsignedp = unsignedp;
4655 return DECL_INCOMING_RTL (arg);
4656 }
4657 }
4658
4659 return 0;
4660 }
4661
4662 #endif
4663 \f
4664 /* Compute the size and offset from the start of the stacked arguments for a
4665 parm passed in mode PASSED_MODE and with type TYPE.
4666
4667 INITIAL_OFFSET_PTR points to the current offset into the stacked
4668 arguments.
4669
4670 The starting offset and size for this parm are returned in *OFFSET_PTR
4671 and *ARG_SIZE_PTR, respectively.
4672
4673 IN_REGS is non-zero if the argument will be passed in registers. It will
4674 never be set if REG_PARM_STACK_SPACE is not defined.
4675
4676 FNDECL is the function in which the argument was defined.
4677
4678 There are two types of rounding that are done. The first, controlled by
4679 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
4680 list to be aligned to the specific boundary (in bits). This rounding
4681 affects the initial and starting offsets, but not the argument size.
4682
4683 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4684 optionally rounds the size of the parm to PARM_BOUNDARY. The
4685 initial offset is not affected by this rounding, while the size always
4686 is and the starting offset may be. */
4687
4688 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
4689 initial_offset_ptr is positive because locate_and_pad_parm's
4690 callers pass in the total size of args so far as
4691 initial_offset_ptr. arg_size_ptr is always positive.*/
4692
4693 void
4694 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
4695 initial_offset_ptr, offset_ptr, arg_size_ptr)
4696 enum machine_mode passed_mode;
4697 tree type;
4698 int in_regs;
4699 tree fndecl;
4700 struct args_size *initial_offset_ptr;
4701 struct args_size *offset_ptr;
4702 struct args_size *arg_size_ptr;
4703 {
4704 tree sizetree
4705 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4706 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
4707 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
4708
4709 #ifdef REG_PARM_STACK_SPACE
4710 /* If we have found a stack parm before we reach the end of the
4711 area reserved for registers, skip that area. */
4712 if (! in_regs)
4713 {
4714 int reg_parm_stack_space = 0;
4715
4716 #ifdef MAYBE_REG_PARM_STACK_SPACE
4717 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
4718 #else
4719 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
4720 #endif
4721 if (reg_parm_stack_space > 0)
4722 {
4723 if (initial_offset_ptr->var)
4724 {
4725 initial_offset_ptr->var
4726 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4727 size_int (reg_parm_stack_space));
4728 initial_offset_ptr->constant = 0;
4729 }
4730 else if (initial_offset_ptr->constant < reg_parm_stack_space)
4731 initial_offset_ptr->constant = reg_parm_stack_space;
4732 }
4733 }
4734 #endif /* REG_PARM_STACK_SPACE */
4735
4736 arg_size_ptr->var = 0;
4737 arg_size_ptr->constant = 0;
4738
4739 #ifdef ARGS_GROW_DOWNWARD
4740 if (initial_offset_ptr->var)
4741 {
4742 offset_ptr->constant = 0;
4743 offset_ptr->var = size_binop (MINUS_EXPR, integer_zero_node,
4744 initial_offset_ptr->var);
4745 }
4746 else
4747 {
4748 offset_ptr->constant = - initial_offset_ptr->constant;
4749 offset_ptr->var = 0;
4750 }
4751 if (where_pad != none
4752 && (TREE_CODE (sizetree) != INTEGER_CST
4753 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
4754 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4755 SUB_PARM_SIZE (*offset_ptr, sizetree);
4756 if (where_pad != downward)
4757 pad_to_arg_alignment (offset_ptr, boundary);
4758 if (initial_offset_ptr->var)
4759 {
4760 arg_size_ptr->var = size_binop (MINUS_EXPR,
4761 size_binop (MINUS_EXPR,
4762 integer_zero_node,
4763 initial_offset_ptr->var),
4764 offset_ptr->var);
4765 }
4766 else
4767 {
4768 arg_size_ptr->constant = (- initial_offset_ptr->constant
4769 - offset_ptr->constant);
4770 }
4771 #else /* !ARGS_GROW_DOWNWARD */
4772 pad_to_arg_alignment (initial_offset_ptr, boundary);
4773 *offset_ptr = *initial_offset_ptr;
4774
4775 #ifdef PUSH_ROUNDING
4776 if (passed_mode != BLKmode)
4777 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4778 #endif
4779
4780 /* Pad_below needs the pre-rounded size to know how much to pad below
4781 so this must be done before rounding up. */
4782 if (where_pad == downward
4783 /* However, BLKmode args passed in regs have their padding done elsewhere.
4784 The stack slot must be able to hold the entire register. */
4785 && !(in_regs && passed_mode == BLKmode))
4786 pad_below (offset_ptr, passed_mode, sizetree);
4787
4788 if (where_pad != none
4789 && (TREE_CODE (sizetree) != INTEGER_CST
4790 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
4791 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4792
4793 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
4794 #endif /* ARGS_GROW_DOWNWARD */
4795 }
4796
4797 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4798 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4799
4800 static void
4801 pad_to_arg_alignment (offset_ptr, boundary)
4802 struct args_size *offset_ptr;
4803 int boundary;
4804 {
4805 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4806
4807 if (boundary > BITS_PER_UNIT)
4808 {
4809 if (offset_ptr->var)
4810 {
4811 offset_ptr->var =
4812 #ifdef ARGS_GROW_DOWNWARD
4813 round_down
4814 #else
4815 round_up
4816 #endif
4817 (ARGS_SIZE_TREE (*offset_ptr),
4818 boundary / BITS_PER_UNIT);
4819 offset_ptr->constant = 0; /*?*/
4820 }
4821 else
4822 offset_ptr->constant =
4823 #ifdef ARGS_GROW_DOWNWARD
4824 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
4825 #else
4826 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
4827 #endif
4828 }
4829 }
4830
4831 #ifndef ARGS_GROW_DOWNWARD
4832 static void
4833 pad_below (offset_ptr, passed_mode, sizetree)
4834 struct args_size *offset_ptr;
4835 enum machine_mode passed_mode;
4836 tree sizetree;
4837 {
4838 if (passed_mode != BLKmode)
4839 {
4840 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
4841 offset_ptr->constant
4842 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
4843 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
4844 - GET_MODE_SIZE (passed_mode));
4845 }
4846 else
4847 {
4848 if (TREE_CODE (sizetree) != INTEGER_CST
4849 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
4850 {
4851 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4852 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4853 /* Add it in. */
4854 ADD_PARM_SIZE (*offset_ptr, s2);
4855 SUB_PARM_SIZE (*offset_ptr, sizetree);
4856 }
4857 }
4858 }
4859 #endif
4860
4861 #ifdef ARGS_GROW_DOWNWARD
4862 static tree
4863 round_down (value, divisor)
4864 tree value;
4865 int divisor;
4866 {
4867 return size_binop (MULT_EXPR,
4868 size_binop (FLOOR_DIV_EXPR, value, size_int (divisor)),
4869 size_int (divisor));
4870 }
4871 #endif
4872 \f
4873 /* Walk the tree of blocks describing the binding levels within a function
4874 and warn about uninitialized variables.
4875 This is done after calling flow_analysis and before global_alloc
4876 clobbers the pseudo-regs to hard regs. */
4877
4878 void
4879 uninitialized_vars_warning (block)
4880 tree block;
4881 {
4882 register tree decl, sub;
4883 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
4884 {
4885 if (TREE_CODE (decl) == VAR_DECL
4886 /* These warnings are unreliable for and aggregates
4887 because assigning the fields one by one can fail to convince
4888 flow.c that the entire aggregate was initialized.
4889 Unions are troublesome because members may be shorter. */
4890 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
4891 && DECL_RTL (decl) != 0
4892 && GET_CODE (DECL_RTL (decl)) == REG
4893 && regno_uninitialized (REGNO (DECL_RTL (decl))))
4894 warning_with_decl (decl,
4895 "`%s' might be used uninitialized in this function");
4896 if (TREE_CODE (decl) == VAR_DECL
4897 && DECL_RTL (decl) != 0
4898 && GET_CODE (DECL_RTL (decl)) == REG
4899 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
4900 warning_with_decl (decl,
4901 "variable `%s' might be clobbered by `longjmp' or `vfork'");
4902 }
4903 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
4904 uninitialized_vars_warning (sub);
4905 }
4906
4907 /* Do the appropriate part of uninitialized_vars_warning
4908 but for arguments instead of local variables. */
4909
4910 void
4911 setjmp_args_warning ()
4912 {
4913 register tree decl;
4914 for (decl = DECL_ARGUMENTS (current_function_decl);
4915 decl; decl = TREE_CHAIN (decl))
4916 if (DECL_RTL (decl) != 0
4917 && GET_CODE (DECL_RTL (decl)) == REG
4918 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
4919 warning_with_decl (decl, "argument `%s' might be clobbered by `longjmp' or `vfork'");
4920 }
4921
4922 /* If this function call setjmp, put all vars into the stack
4923 unless they were declared `register'. */
4924
4925 void
4926 setjmp_protect (block)
4927 tree block;
4928 {
4929 register tree decl, sub;
4930 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
4931 if ((TREE_CODE (decl) == VAR_DECL
4932 || TREE_CODE (decl) == PARM_DECL)
4933 && DECL_RTL (decl) != 0
4934 && (GET_CODE (DECL_RTL (decl)) == REG
4935 || (GET_CODE (DECL_RTL (decl)) == MEM
4936 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
4937 /* If this variable came from an inline function, it must be
4938 that its life doesn't overlap the setjmp. If there was a
4939 setjmp in the function, it would already be in memory. We
4940 must exclude such variable because their DECL_RTL might be
4941 set to strange things such as virtual_stack_vars_rtx. */
4942 && ! DECL_FROM_INLINE (decl)
4943 && (
4944 #ifdef NON_SAVING_SETJMP
4945 /* If longjmp doesn't restore the registers,
4946 don't put anything in them. */
4947 NON_SAVING_SETJMP
4948 ||
4949 #endif
4950 ! DECL_REGISTER (decl)))
4951 put_var_into_stack (decl);
4952 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
4953 setjmp_protect (sub);
4954 }
4955 \f
4956 /* Like the previous function, but for args instead of local variables. */
4957
4958 void
4959 setjmp_protect_args ()
4960 {
4961 register tree decl;
4962 for (decl = DECL_ARGUMENTS (current_function_decl);
4963 decl; decl = TREE_CHAIN (decl))
4964 if ((TREE_CODE (decl) == VAR_DECL
4965 || TREE_CODE (decl) == PARM_DECL)
4966 && DECL_RTL (decl) != 0
4967 && (GET_CODE (DECL_RTL (decl)) == REG
4968 || (GET_CODE (DECL_RTL (decl)) == MEM
4969 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
4970 && (
4971 /* If longjmp doesn't restore the registers,
4972 don't put anything in them. */
4973 #ifdef NON_SAVING_SETJMP
4974 NON_SAVING_SETJMP
4975 ||
4976 #endif
4977 ! DECL_REGISTER (decl)))
4978 put_var_into_stack (decl);
4979 }
4980 \f
4981 /* Return the context-pointer register corresponding to DECL,
4982 or 0 if it does not need one. */
4983
4984 rtx
4985 lookup_static_chain (decl)
4986 tree decl;
4987 {
4988 tree context = decl_function_context (decl);
4989 tree link;
4990
4991 if (context == 0
4992 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
4993 return 0;
4994
4995 /* We treat inline_function_decl as an alias for the current function
4996 because that is the inline function whose vars, types, etc.
4997 are being merged into the current function.
4998 See expand_inline_function. */
4999 if (context == current_function_decl || context == inline_function_decl)
5000 return virtual_stack_vars_rtx;
5001
5002 for (link = context_display; link; link = TREE_CHAIN (link))
5003 if (TREE_PURPOSE (link) == context)
5004 return RTL_EXPR_RTL (TREE_VALUE (link));
5005
5006 abort ();
5007 }
5008 \f
5009 /* Convert a stack slot address ADDR for variable VAR
5010 (from a containing function)
5011 into an address valid in this function (using a static chain). */
5012
5013 rtx
5014 fix_lexical_addr (addr, var)
5015 rtx addr;
5016 tree var;
5017 {
5018 rtx basereg;
5019 HOST_WIDE_INT displacement;
5020 tree context = decl_function_context (var);
5021 struct function *fp;
5022 rtx base = 0;
5023
5024 /* If this is the present function, we need not do anything. */
5025 if (context == current_function_decl || context == inline_function_decl)
5026 return addr;
5027
5028 for (fp = outer_function_chain; fp; fp = fp->next)
5029 if (fp->decl == context)
5030 break;
5031
5032 if (fp == 0)
5033 abort ();
5034
5035 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5036 addr = XEXP (XEXP (addr, 0), 0);
5037
5038 /* Decode given address as base reg plus displacement. */
5039 if (GET_CODE (addr) == REG)
5040 basereg = addr, displacement = 0;
5041 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5042 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5043 else
5044 abort ();
5045
5046 /* We accept vars reached via the containing function's
5047 incoming arg pointer and via its stack variables pointer. */
5048 if (basereg == fp->internal_arg_pointer)
5049 {
5050 /* If reached via arg pointer, get the arg pointer value
5051 out of that function's stack frame.
5052
5053 There are two cases: If a separate ap is needed, allocate a
5054 slot in the outer function for it and dereference it that way.
5055 This is correct even if the real ap is actually a pseudo.
5056 Otherwise, just adjust the offset from the frame pointer to
5057 compensate. */
5058
5059 #ifdef NEED_SEPARATE_AP
5060 rtx addr;
5061
5062 if (fp->arg_pointer_save_area == 0)
5063 fp->arg_pointer_save_area
5064 = assign_outer_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
5065
5066 addr = fix_lexical_addr (XEXP (fp->arg_pointer_save_area, 0), var);
5067 addr = memory_address (Pmode, addr);
5068
5069 base = copy_to_reg (gen_rtx_MEM (Pmode, addr));
5070 #else
5071 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5072 base = lookup_static_chain (var);
5073 #endif
5074 }
5075
5076 else if (basereg == virtual_stack_vars_rtx)
5077 {
5078 /* This is the same code as lookup_static_chain, duplicated here to
5079 avoid an extra call to decl_function_context. */
5080 tree link;
5081
5082 for (link = context_display; link; link = TREE_CHAIN (link))
5083 if (TREE_PURPOSE (link) == context)
5084 {
5085 base = RTL_EXPR_RTL (TREE_VALUE (link));
5086 break;
5087 }
5088 }
5089
5090 if (base == 0)
5091 abort ();
5092
5093 /* Use same offset, relative to appropriate static chain or argument
5094 pointer. */
5095 return plus_constant (base, displacement);
5096 }
5097 \f
5098 /* Return the address of the trampoline for entering nested fn FUNCTION.
5099 If necessary, allocate a trampoline (in the stack frame)
5100 and emit rtl to initialize its contents (at entry to this function). */
5101
5102 rtx
5103 trampoline_address (function)
5104 tree function;
5105 {
5106 tree link;
5107 tree rtlexp;
5108 rtx tramp;
5109 struct function *fp;
5110 tree fn_context;
5111
5112 /* Find an existing trampoline and return it. */
5113 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5114 if (TREE_PURPOSE (link) == function)
5115 return
5116 round_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5117
5118 for (fp = outer_function_chain; fp; fp = fp->next)
5119 for (link = fp->trampoline_list; link; link = TREE_CHAIN (link))
5120 if (TREE_PURPOSE (link) == function)
5121 {
5122 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5123 function);
5124 return round_trampoline_addr (tramp);
5125 }
5126
5127 /* None exists; we must make one. */
5128
5129 /* Find the `struct function' for the function containing FUNCTION. */
5130 fp = 0;
5131 fn_context = decl_function_context (function);
5132 if (fn_context != current_function_decl
5133 && fn_context != inline_function_decl)
5134 for (fp = outer_function_chain; fp; fp = fp->next)
5135 if (fp->decl == fn_context)
5136 break;
5137
5138 /* Allocate run-time space for this trampoline
5139 (usually in the defining function's stack frame). */
5140 #ifdef ALLOCATE_TRAMPOLINE
5141 tramp = ALLOCATE_TRAMPOLINE (fp);
5142 #else
5143 /* If rounding needed, allocate extra space
5144 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5145 #ifdef TRAMPOLINE_ALIGNMENT
5146 #define TRAMPOLINE_REAL_SIZE \
5147 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5148 #else
5149 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5150 #endif
5151 if (fp != 0)
5152 tramp = assign_outer_stack_local (BLKmode, TRAMPOLINE_REAL_SIZE, 0, fp);
5153 else
5154 tramp = assign_stack_local (BLKmode, TRAMPOLINE_REAL_SIZE, 0);
5155 #endif
5156
5157 /* Record the trampoline for reuse and note it for later initialization
5158 by expand_function_end. */
5159 if (fp != 0)
5160 {
5161 push_obstacks (fp->function_maybepermanent_obstack,
5162 fp->function_maybepermanent_obstack);
5163 rtlexp = make_node (RTL_EXPR);
5164 RTL_EXPR_RTL (rtlexp) = tramp;
5165 fp->trampoline_list = tree_cons (function, rtlexp, fp->trampoline_list);
5166 pop_obstacks ();
5167 }
5168 else
5169 {
5170 /* Make the RTL_EXPR node temporary, not momentary, so that the
5171 trampoline_list doesn't become garbage. */
5172 int momentary = suspend_momentary ();
5173 rtlexp = make_node (RTL_EXPR);
5174 resume_momentary (momentary);
5175
5176 RTL_EXPR_RTL (rtlexp) = tramp;
5177 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5178 }
5179
5180 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5181 return round_trampoline_addr (tramp);
5182 }
5183
5184 /* Given a trampoline address,
5185 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5186
5187 static rtx
5188 round_trampoline_addr (tramp)
5189 rtx tramp;
5190 {
5191 #ifdef TRAMPOLINE_ALIGNMENT
5192 /* Round address up to desired boundary. */
5193 rtx temp = gen_reg_rtx (Pmode);
5194 temp = expand_binop (Pmode, add_optab, tramp,
5195 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
5196 temp, 0, OPTAB_LIB_WIDEN);
5197 tramp = expand_binop (Pmode, and_optab, temp,
5198 GEN_INT (- TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
5199 temp, 0, OPTAB_LIB_WIDEN);
5200 #endif
5201 return tramp;
5202 }
5203 \f
5204 /* The functions identify_blocks and reorder_blocks provide a way to
5205 reorder the tree of BLOCK nodes, for optimizers that reshuffle or
5206 duplicate portions of the RTL code. Call identify_blocks before
5207 changing the RTL, and call reorder_blocks after. */
5208
5209 /* Put all this function's BLOCK nodes including those that are chained
5210 onto the first block into a vector, and return it.
5211 Also store in each NOTE for the beginning or end of a block
5212 the index of that block in the vector.
5213 The arguments are BLOCK, the chain of top-level blocks of the function,
5214 and INSNS, the insn chain of the function. */
5215
5216 tree *
5217 identify_blocks (block, insns)
5218 tree block;
5219 rtx insns;
5220 {
5221 int n_blocks;
5222 tree *block_vector;
5223 int *block_stack;
5224 int depth = 0;
5225 int next_block_number = 1;
5226 int current_block_number = 1;
5227 rtx insn;
5228
5229 if (block == 0)
5230 return 0;
5231
5232 n_blocks = all_blocks (block, 0);
5233 block_vector = (tree *) xmalloc (n_blocks * sizeof (tree));
5234 block_stack = (int *) alloca (n_blocks * sizeof (int));
5235
5236 all_blocks (block, block_vector);
5237
5238 for (insn = insns; insn; insn = NEXT_INSN (insn))
5239 if (GET_CODE (insn) == NOTE)
5240 {
5241 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5242 {
5243 block_stack[depth++] = current_block_number;
5244 current_block_number = next_block_number;
5245 NOTE_BLOCK_NUMBER (insn) = next_block_number++;
5246 }
5247 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5248 {
5249 NOTE_BLOCK_NUMBER (insn) = current_block_number;
5250 current_block_number = block_stack[--depth];
5251 }
5252 }
5253
5254 if (n_blocks != next_block_number)
5255 abort ();
5256
5257 return block_vector;
5258 }
5259
5260 /* Given BLOCK_VECTOR which was returned by identify_blocks,
5261 and a revised instruction chain, rebuild the tree structure
5262 of BLOCK nodes to correspond to the new order of RTL.
5263 The new block tree is inserted below TOP_BLOCK.
5264 Returns the current top-level block. */
5265
5266 tree
5267 reorder_blocks (block_vector, block, insns)
5268 tree *block_vector;
5269 tree block;
5270 rtx insns;
5271 {
5272 tree current_block = block;
5273 rtx insn;
5274
5275 if (block_vector == 0)
5276 return block;
5277
5278 /* Prune the old trees away, so that it doesn't get in the way. */
5279 BLOCK_SUBBLOCKS (current_block) = 0;
5280 BLOCK_CHAIN (current_block) = 0;
5281
5282 for (insn = insns; insn; insn = NEXT_INSN (insn))
5283 if (GET_CODE (insn) == NOTE)
5284 {
5285 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5286 {
5287 tree block = block_vector[NOTE_BLOCK_NUMBER (insn)];
5288 /* If we have seen this block before, copy it. */
5289 if (TREE_ASM_WRITTEN (block))
5290 block = copy_node (block);
5291 BLOCK_SUBBLOCKS (block) = 0;
5292 TREE_ASM_WRITTEN (block) = 1;
5293 BLOCK_SUPERCONTEXT (block) = current_block;
5294 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5295 BLOCK_SUBBLOCKS (current_block) = block;
5296 current_block = block;
5297 NOTE_SOURCE_FILE (insn) = 0;
5298 }
5299 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5300 {
5301 BLOCK_SUBBLOCKS (current_block)
5302 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5303 current_block = BLOCK_SUPERCONTEXT (current_block);
5304 NOTE_SOURCE_FILE (insn) = 0;
5305 }
5306 }
5307
5308 BLOCK_SUBBLOCKS (current_block)
5309 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5310 return current_block;
5311 }
5312
5313 /* Reverse the order of elements in the chain T of blocks,
5314 and return the new head of the chain (old last element). */
5315
5316 static tree
5317 blocks_nreverse (t)
5318 tree t;
5319 {
5320 register tree prev = 0, decl, next;
5321 for (decl = t; decl; decl = next)
5322 {
5323 next = BLOCK_CHAIN (decl);
5324 BLOCK_CHAIN (decl) = prev;
5325 prev = decl;
5326 }
5327 return prev;
5328 }
5329
5330 /* Count the subblocks of the list starting with BLOCK, and list them
5331 all into the vector VECTOR. Also clear TREE_ASM_WRITTEN in all
5332 blocks. */
5333
5334 static int
5335 all_blocks (block, vector)
5336 tree block;
5337 tree *vector;
5338 {
5339 int n_blocks = 0;
5340
5341 while (block)
5342 {
5343 TREE_ASM_WRITTEN (block) = 0;
5344
5345 /* Record this block. */
5346 if (vector)
5347 vector[n_blocks] = block;
5348
5349 ++n_blocks;
5350
5351 /* Record the subblocks, and their subblocks... */
5352 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
5353 vector ? vector + n_blocks : 0);
5354 block = BLOCK_CHAIN (block);
5355 }
5356
5357 return n_blocks;
5358 }
5359 \f
5360 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5361 and initialize static variables for generating RTL for the statements
5362 of the function. */
5363
5364 void
5365 init_function_start (subr, filename, line)
5366 tree subr;
5367 char *filename;
5368 int line;
5369 {
5370 init_stmt_for_function ();
5371
5372 cse_not_expected = ! optimize;
5373
5374 /* Caller save not needed yet. */
5375 caller_save_needed = 0;
5376
5377 /* No stack slots have been made yet. */
5378 stack_slot_list = 0;
5379
5380 /* There is no stack slot for handling nonlocal gotos. */
5381 nonlocal_goto_handler_slot = 0;
5382 nonlocal_goto_stack_level = 0;
5383
5384 /* No labels have been declared for nonlocal use. */
5385 nonlocal_labels = 0;
5386
5387 /* No function calls so far in this function. */
5388 function_call_count = 0;
5389
5390 /* No parm regs have been allocated.
5391 (This is important for output_inline_function.) */
5392 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
5393
5394 /* Initialize the RTL mechanism. */
5395 init_emit ();
5396
5397 /* Initialize the queue of pending postincrement and postdecrements,
5398 and some other info in expr.c. */
5399 init_expr ();
5400
5401 /* We haven't done register allocation yet. */
5402 reg_renumber = 0;
5403
5404 init_const_rtx_hash_table ();
5405
5406 current_function_name = (*decl_printable_name) (subr, 2);
5407
5408 /* Nonzero if this is a nested function that uses a static chain. */
5409
5410 current_function_needs_context
5411 = (decl_function_context (current_function_decl) != 0
5412 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
5413
5414 /* Set if a call to setjmp is seen. */
5415 current_function_calls_setjmp = 0;
5416
5417 /* Set if a call to longjmp is seen. */
5418 current_function_calls_longjmp = 0;
5419
5420 current_function_calls_alloca = 0;
5421 current_function_has_nonlocal_label = 0;
5422 current_function_has_nonlocal_goto = 0;
5423 current_function_contains_functions = 0;
5424 current_function_is_thunk = 0;
5425
5426 current_function_returns_pcc_struct = 0;
5427 current_function_returns_struct = 0;
5428 current_function_epilogue_delay_list = 0;
5429 current_function_uses_const_pool = 0;
5430 current_function_uses_pic_offset_table = 0;
5431 current_function_cannot_inline = 0;
5432
5433 /* We have not yet needed to make a label to jump to for tail-recursion. */
5434 tail_recursion_label = 0;
5435
5436 /* We haven't had a need to make a save area for ap yet. */
5437
5438 arg_pointer_save_area = 0;
5439
5440 /* No stack slots allocated yet. */
5441 frame_offset = 0;
5442
5443 /* No SAVE_EXPRs in this function yet. */
5444 save_expr_regs = 0;
5445
5446 /* No RTL_EXPRs in this function yet. */
5447 rtl_expr_chain = 0;
5448
5449 /* Set up to allocate temporaries. */
5450 init_temp_slots ();
5451
5452 /* Within function body, compute a type's size as soon it is laid out. */
5453 immediate_size_expand++;
5454
5455 /* We haven't made any trampolines for this function yet. */
5456 trampoline_list = 0;
5457
5458 init_pending_stack_adjust ();
5459 inhibit_defer_pop = 0;
5460
5461 current_function_outgoing_args_size = 0;
5462
5463 /* Prevent ever trying to delete the first instruction of a function.
5464 Also tell final how to output a linenum before the function prologue.
5465 Note linenums could be missing, e.g. when compiling a Java .class file. */
5466 if (line > 0)
5467 emit_line_note (filename, line);
5468
5469 /* Make sure first insn is a note even if we don't want linenums.
5470 This makes sure the first insn will never be deleted.
5471 Also, final expects a note to appear there. */
5472 emit_note (NULL_PTR, NOTE_INSN_DELETED);
5473
5474 /* Set flags used by final.c. */
5475 if (aggregate_value_p (DECL_RESULT (subr)))
5476 {
5477 #ifdef PCC_STATIC_STRUCT_RETURN
5478 current_function_returns_pcc_struct = 1;
5479 #endif
5480 current_function_returns_struct = 1;
5481 }
5482
5483 /* Warn if this value is an aggregate type,
5484 regardless of which calling convention we are using for it. */
5485 if (warn_aggregate_return
5486 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
5487 warning ("function returns an aggregate");
5488
5489 current_function_returns_pointer
5490 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
5491
5492 /* Indicate that we need to distinguish between the return value of the
5493 present function and the return value of a function being called. */
5494 rtx_equal_function_value_matters = 1;
5495
5496 /* Indicate that we have not instantiated virtual registers yet. */
5497 virtuals_instantiated = 0;
5498
5499 /* Indicate we have no need of a frame pointer yet. */
5500 frame_pointer_needed = 0;
5501
5502 /* By default assume not varargs or stdarg. */
5503 current_function_varargs = 0;
5504 current_function_stdarg = 0;
5505 }
5506
5507 /* Indicate that the current function uses extra args
5508 not explicitly mentioned in the argument list in any fashion. */
5509
5510 void
5511 mark_varargs ()
5512 {
5513 current_function_varargs = 1;
5514 }
5515
5516 /* Expand a call to __main at the beginning of a possible main function. */
5517
5518 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
5519 #undef HAS_INIT_SECTION
5520 #define HAS_INIT_SECTION
5521 #endif
5522
5523 void
5524 expand_main_function ()
5525 {
5526 #if !defined (HAS_INIT_SECTION)
5527 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0,
5528 VOIDmode, 0);
5529 #endif /* not HAS_INIT_SECTION */
5530 }
5531 \f
5532 extern struct obstack permanent_obstack;
5533
5534 /* Start the RTL for a new function, and set variables used for
5535 emitting RTL.
5536 SUBR is the FUNCTION_DECL node.
5537 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5538 the function's parameters, which must be run at any return statement. */
5539
5540 void
5541 expand_function_start (subr, parms_have_cleanups)
5542 tree subr;
5543 int parms_have_cleanups;
5544 {
5545 register int i;
5546 tree tem;
5547 rtx last_ptr = NULL_RTX;
5548
5549 /* Make sure volatile mem refs aren't considered
5550 valid operands of arithmetic insns. */
5551 init_recog_no_volatile ();
5552
5553 current_function_instrument_entry_exit
5554 = (flag_instrument_function_entry_exit
5555 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
5556
5557 /* If function gets a static chain arg, store it in the stack frame.
5558 Do this first, so it gets the first stack slot offset. */
5559 if (current_function_needs_context)
5560 {
5561 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5562
5563 /* Delay copying static chain if it is not a register to avoid
5564 conflicts with regs used for parameters. */
5565 if (! SMALL_REGISTER_CLASSES
5566 || GET_CODE (static_chain_incoming_rtx) == REG)
5567 emit_move_insn (last_ptr, static_chain_incoming_rtx);
5568 }
5569
5570 /* If the parameters of this function need cleaning up, get a label
5571 for the beginning of the code which executes those cleanups. This must
5572 be done before doing anything with return_label. */
5573 if (parms_have_cleanups)
5574 cleanup_label = gen_label_rtx ();
5575 else
5576 cleanup_label = 0;
5577
5578 /* Make the label for return statements to jump to, if this machine
5579 does not have a one-instruction return and uses an epilogue,
5580 or if it returns a structure, or if it has parm cleanups. */
5581 #ifdef HAVE_return
5582 if (cleanup_label == 0 && HAVE_return
5583 && ! current_function_instrument_entry_exit
5584 && ! current_function_returns_pcc_struct
5585 && ! (current_function_returns_struct && ! optimize))
5586 return_label = 0;
5587 else
5588 return_label = gen_label_rtx ();
5589 #else
5590 return_label = gen_label_rtx ();
5591 #endif
5592
5593 /* Initialize rtx used to return the value. */
5594 /* Do this before assign_parms so that we copy the struct value address
5595 before any library calls that assign parms might generate. */
5596
5597 /* Decide whether to return the value in memory or in a register. */
5598 if (aggregate_value_p (DECL_RESULT (subr)))
5599 {
5600 /* Returning something that won't go in a register. */
5601 register rtx value_address = 0;
5602
5603 #ifdef PCC_STATIC_STRUCT_RETURN
5604 if (current_function_returns_pcc_struct)
5605 {
5606 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
5607 value_address = assemble_static_space (size);
5608 }
5609 else
5610 #endif
5611 {
5612 /* Expect to be passed the address of a place to store the value.
5613 If it is passed as an argument, assign_parms will take care of
5614 it. */
5615 if (struct_value_incoming_rtx)
5616 {
5617 value_address = gen_reg_rtx (Pmode);
5618 emit_move_insn (value_address, struct_value_incoming_rtx);
5619 }
5620 }
5621 if (value_address)
5622 {
5623 DECL_RTL (DECL_RESULT (subr))
5624 = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
5625 MEM_IN_STRUCT_P (DECL_RTL (DECL_RESULT (subr)))
5626 = AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
5627 }
5628 }
5629 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
5630 /* If return mode is void, this decl rtl should not be used. */
5631 DECL_RTL (DECL_RESULT (subr)) = 0;
5632 else if (parms_have_cleanups || current_function_instrument_entry_exit)
5633 {
5634 /* If function will end with cleanup code for parms,
5635 compute the return values into a pseudo reg,
5636 which we will copy into the true return register
5637 after the cleanups are done. */
5638
5639 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
5640
5641 #ifdef PROMOTE_FUNCTION_RETURN
5642 tree type = TREE_TYPE (DECL_RESULT (subr));
5643 int unsignedp = TREE_UNSIGNED (type);
5644
5645 mode = promote_mode (type, mode, &unsignedp, 1);
5646 #endif
5647
5648 DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode);
5649 }
5650 else
5651 /* Scalar, returned in a register. */
5652 {
5653 #ifdef FUNCTION_OUTGOING_VALUE
5654 DECL_RTL (DECL_RESULT (subr))
5655 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
5656 #else
5657 DECL_RTL (DECL_RESULT (subr))
5658 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
5659 #endif
5660
5661 /* Mark this reg as the function's return value. */
5662 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
5663 {
5664 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
5665 /* Needed because we may need to move this to memory
5666 in case it's a named return value whose address is taken. */
5667 DECL_REGISTER (DECL_RESULT (subr)) = 1;
5668 }
5669 }
5670
5671 /* Initialize rtx for parameters and local variables.
5672 In some cases this requires emitting insns. */
5673
5674 assign_parms (subr, 0);
5675
5676 /* Copy the static chain now if it wasn't a register. The delay is to
5677 avoid conflicts with the parameter passing registers. */
5678
5679 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
5680 if (GET_CODE (static_chain_incoming_rtx) != REG)
5681 emit_move_insn (last_ptr, static_chain_incoming_rtx);
5682
5683 /* The following was moved from init_function_start.
5684 The move is supposed to make sdb output more accurate. */
5685 /* Indicate the beginning of the function body,
5686 as opposed to parm setup. */
5687 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
5688
5689 /* If doing stupid allocation, mark parms as born here. */
5690
5691 if (GET_CODE (get_last_insn ()) != NOTE)
5692 emit_note (NULL_PTR, NOTE_INSN_DELETED);
5693 parm_birth_insn = get_last_insn ();
5694
5695 if (obey_regdecls)
5696 {
5697 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_parm_reg; i++)
5698 use_variable (regno_reg_rtx[i]);
5699
5700 if (current_function_internal_arg_pointer != virtual_incoming_args_rtx)
5701 use_variable (current_function_internal_arg_pointer);
5702 }
5703
5704 context_display = 0;
5705 if (current_function_needs_context)
5706 {
5707 /* Fetch static chain values for containing functions. */
5708 tem = decl_function_context (current_function_decl);
5709 /* If not doing stupid register allocation copy the static chain
5710 pointer into a pseudo. If we have small register classes, copy
5711 the value from memory if static_chain_incoming_rtx is a REG. If
5712 we do stupid register allocation, we use the stack address
5713 generated above. */
5714 if (tem && ! obey_regdecls)
5715 {
5716 /* If the static chain originally came in a register, put it back
5717 there, then move it out in the next insn. The reason for
5718 this peculiar code is to satisfy function integration. */
5719 if (SMALL_REGISTER_CLASSES
5720 && GET_CODE (static_chain_incoming_rtx) == REG)
5721 emit_move_insn (static_chain_incoming_rtx, last_ptr);
5722 last_ptr = copy_to_reg (static_chain_incoming_rtx);
5723 }
5724
5725 while (tem)
5726 {
5727 tree rtlexp = make_node (RTL_EXPR);
5728
5729 RTL_EXPR_RTL (rtlexp) = last_ptr;
5730 context_display = tree_cons (tem, rtlexp, context_display);
5731 tem = decl_function_context (tem);
5732 if (tem == 0)
5733 break;
5734 /* Chain thru stack frames, assuming pointer to next lexical frame
5735 is found at the place we always store it. */
5736 #ifdef FRAME_GROWS_DOWNWARD
5737 last_ptr = plus_constant (last_ptr, - GET_MODE_SIZE (Pmode));
5738 #endif
5739 last_ptr = copy_to_reg (gen_rtx_MEM (Pmode,
5740 memory_address (Pmode, last_ptr)));
5741
5742 /* If we are not optimizing, ensure that we know that this
5743 piece of context is live over the entire function. */
5744 if (! optimize)
5745 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
5746 save_expr_regs);
5747 }
5748 }
5749
5750 if (current_function_instrument_entry_exit)
5751 {
5752 rtx fun = DECL_RTL (current_function_decl);
5753 if (GET_CODE (fun) == MEM)
5754 fun = XEXP (fun, 0);
5755 else
5756 abort ();
5757 emit_library_call (profile_function_entry_libfunc, 0, VOIDmode, 2,
5758 fun, Pmode,
5759 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
5760 0,
5761 hard_frame_pointer_rtx),
5762 Pmode);
5763 }
5764
5765 /* After the display initializations is where the tail-recursion label
5766 should go, if we end up needing one. Ensure we have a NOTE here
5767 since some things (like trampolines) get placed before this. */
5768 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
5769
5770 /* Evaluate now the sizes of any types declared among the arguments. */
5771 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
5772 {
5773 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode,
5774 EXPAND_MEMORY_USE_BAD);
5775 /* Flush the queue in case this parameter declaration has
5776 side-effects. */
5777 emit_queue ();
5778 }
5779
5780 /* Make sure there is a line number after the function entry setup code. */
5781 force_next_line_note ();
5782 }
5783 \f
5784 /* Generate RTL for the end of the current function.
5785 FILENAME and LINE are the current position in the source file.
5786
5787 It is up to language-specific callers to do cleanups for parameters--
5788 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
5789
5790 void
5791 expand_function_end (filename, line, end_bindings)
5792 char *filename;
5793 int line;
5794 int end_bindings;
5795 {
5796 register int i;
5797 tree link;
5798
5799 #ifdef TRAMPOLINE_TEMPLATE
5800 static rtx initial_trampoline;
5801 #endif
5802
5803 #ifdef NON_SAVING_SETJMP
5804 /* Don't put any variables in registers if we call setjmp
5805 on a machine that fails to restore the registers. */
5806 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
5807 {
5808 if (DECL_INITIAL (current_function_decl) != error_mark_node)
5809 setjmp_protect (DECL_INITIAL (current_function_decl));
5810
5811 setjmp_protect_args ();
5812 }
5813 #endif
5814
5815 /* Save the argument pointer if a save area was made for it. */
5816 if (arg_pointer_save_area)
5817 {
5818 rtx x = gen_move_insn (arg_pointer_save_area, virtual_incoming_args_rtx);
5819 emit_insn_before (x, tail_recursion_reentry);
5820 }
5821
5822 /* Initialize any trampolines required by this function. */
5823 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5824 {
5825 tree function = TREE_PURPOSE (link);
5826 rtx context = lookup_static_chain (function);
5827 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
5828 #ifdef TRAMPOLINE_TEMPLATE
5829 rtx blktramp;
5830 #endif
5831 rtx seq;
5832
5833 #ifdef TRAMPOLINE_TEMPLATE
5834 /* First make sure this compilation has a template for
5835 initializing trampolines. */
5836 if (initial_trampoline == 0)
5837 {
5838 end_temporary_allocation ();
5839 initial_trampoline
5840 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
5841 resume_temporary_allocation ();
5842 }
5843 #endif
5844
5845 /* Generate insns to initialize the trampoline. */
5846 start_sequence ();
5847 tramp = round_trampoline_addr (XEXP (tramp, 0));
5848 #ifdef TRAMPOLINE_TEMPLATE
5849 blktramp = change_address (initial_trampoline, BLKmode, tramp);
5850 emit_block_move (blktramp, initial_trampoline,
5851 GEN_INT (TRAMPOLINE_SIZE),
5852 TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
5853 #endif
5854 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
5855 seq = get_insns ();
5856 end_sequence ();
5857
5858 /* Put those insns at entry to the containing function (this one). */
5859 emit_insns_before (seq, tail_recursion_reentry);
5860 }
5861
5862 /* If we are doing stack checking and this function makes calls,
5863 do a stack probe at the start of the function to ensure we have enough
5864 space for another stack frame. */
5865 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
5866 {
5867 rtx insn, seq;
5868
5869 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5870 if (GET_CODE (insn) == CALL_INSN)
5871 {
5872 start_sequence ();
5873 probe_stack_range (STACK_CHECK_PROTECT,
5874 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
5875 seq = get_insns ();
5876 end_sequence ();
5877 emit_insns_before (seq, tail_recursion_reentry);
5878 break;
5879 }
5880 }
5881
5882 /* Warn about unused parms if extra warnings were specified. */
5883 if (warn_unused && extra_warnings)
5884 {
5885 tree decl;
5886
5887 for (decl = DECL_ARGUMENTS (current_function_decl);
5888 decl; decl = TREE_CHAIN (decl))
5889 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
5890 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
5891 warning_with_decl (decl, "unused parameter `%s'");
5892 }
5893
5894 /* Delete handlers for nonlocal gotos if nothing uses them. */
5895 if (nonlocal_goto_handler_slot != 0 && !current_function_has_nonlocal_label)
5896 delete_handlers ();
5897
5898 /* End any sequences that failed to be closed due to syntax errors. */
5899 while (in_sequence_p ())
5900 end_sequence ();
5901
5902 /* Outside function body, can't compute type's actual size
5903 until next function's body starts. */
5904 immediate_size_expand--;
5905
5906 /* If doing stupid register allocation,
5907 mark register parms as dying here. */
5908
5909 if (obey_regdecls)
5910 {
5911 rtx tem;
5912 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_parm_reg; i++)
5913 use_variable (regno_reg_rtx[i]);
5914
5915 /* Likewise for the regs of all the SAVE_EXPRs in the function. */
5916
5917 for (tem = save_expr_regs; tem; tem = XEXP (tem, 1))
5918 {
5919 use_variable (XEXP (tem, 0));
5920 use_variable_after (XEXP (tem, 0), parm_birth_insn);
5921 }
5922
5923 if (current_function_internal_arg_pointer != virtual_incoming_args_rtx)
5924 use_variable (current_function_internal_arg_pointer);
5925 }
5926
5927 clear_pending_stack_adjust ();
5928 do_pending_stack_adjust ();
5929
5930 /* Mark the end of the function body.
5931 If control reaches this insn, the function can drop through
5932 without returning a value. */
5933 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
5934
5935 /* Must mark the last line number note in the function, so that the test
5936 coverage code can avoid counting the last line twice. This just tells
5937 the code to ignore the immediately following line note, since there
5938 already exists a copy of this note somewhere above. This line number
5939 note is still needed for debugging though, so we can't delete it. */
5940 if (flag_test_coverage)
5941 emit_note (NULL_PTR, NOTE_REPEATED_LINE_NUMBER);
5942
5943 /* Output a linenumber for the end of the function.
5944 SDB depends on this. */
5945 emit_line_note_force (filename, line);
5946
5947 /* Output the label for the actual return from the function,
5948 if one is expected. This happens either because a function epilogue
5949 is used instead of a return instruction, or because a return was done
5950 with a goto in order to run local cleanups, or because of pcc-style
5951 structure returning. */
5952
5953 if (return_label)
5954 emit_label (return_label);
5955
5956 /* C++ uses this. */
5957 if (end_bindings)
5958 expand_end_bindings (0, 0, 0);
5959
5960 /* Now handle any leftover exception regions that may have been
5961 created for the parameters. */
5962 {
5963 rtx last = get_last_insn ();
5964 rtx label;
5965
5966 expand_leftover_cleanups ();
5967
5968 /* If the above emitted any code, may sure we jump around it. */
5969 if (last != get_last_insn ())
5970 {
5971 label = gen_label_rtx ();
5972 last = emit_jump_insn_after (gen_jump (label), last);
5973 last = emit_barrier_after (last);
5974 emit_label (label);
5975 }
5976 }
5977
5978 if (current_function_instrument_entry_exit)
5979 {
5980 rtx fun = DECL_RTL (current_function_decl);
5981 if (GET_CODE (fun) == MEM)
5982 fun = XEXP (fun, 0);
5983 else
5984 abort ();
5985 emit_library_call (profile_function_exit_libfunc, 0, VOIDmode, 2,
5986 fun, Pmode,
5987 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
5988 0,
5989 hard_frame_pointer_rtx),
5990 Pmode);
5991 }
5992
5993 /* If we had calls to alloca, and this machine needs
5994 an accurate stack pointer to exit the function,
5995 insert some code to save and restore the stack pointer. */
5996 #ifdef EXIT_IGNORE_STACK
5997 if (! EXIT_IGNORE_STACK)
5998 #endif
5999 if (current_function_calls_alloca)
6000 {
6001 rtx tem = 0;
6002
6003 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6004 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6005 }
6006
6007 /* If scalar return value was computed in a pseudo-reg,
6008 copy that to the hard return register. */
6009 if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0
6010 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG
6011 && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl)))
6012 >= FIRST_PSEUDO_REGISTER))
6013 {
6014 rtx real_decl_result;
6015
6016 #ifdef FUNCTION_OUTGOING_VALUE
6017 real_decl_result
6018 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6019 current_function_decl);
6020 #else
6021 real_decl_result
6022 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6023 current_function_decl);
6024 #endif
6025 REG_FUNCTION_VALUE_P (real_decl_result) = 1;
6026 /* If this is a BLKmode structure being returned in registers, then use
6027 the mode computed in expand_return. */
6028 if (GET_MODE (real_decl_result) == BLKmode)
6029 PUT_MODE (real_decl_result,
6030 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6031 emit_move_insn (real_decl_result,
6032 DECL_RTL (DECL_RESULT (current_function_decl)));
6033 emit_insn (gen_rtx_USE (VOIDmode, real_decl_result));
6034
6035 /* The delay slot scheduler assumes that current_function_return_rtx
6036 holds the hard register containing the return value, not a temporary
6037 pseudo. */
6038 current_function_return_rtx = real_decl_result;
6039 }
6040
6041 /* If returning a structure, arrange to return the address of the value
6042 in a place where debuggers expect to find it.
6043
6044 If returning a structure PCC style,
6045 the caller also depends on this value.
6046 And current_function_returns_pcc_struct is not necessarily set. */
6047 if (current_function_returns_struct
6048 || current_function_returns_pcc_struct)
6049 {
6050 rtx value_address = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
6051 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6052 #ifdef FUNCTION_OUTGOING_VALUE
6053 rtx outgoing
6054 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
6055 current_function_decl);
6056 #else
6057 rtx outgoing
6058 = FUNCTION_VALUE (build_pointer_type (type),
6059 current_function_decl);
6060 #endif
6061
6062 /* Mark this as a function return value so integrate will delete the
6063 assignment and USE below when inlining this function. */
6064 REG_FUNCTION_VALUE_P (outgoing) = 1;
6065
6066 emit_move_insn (outgoing, value_address);
6067 use_variable (outgoing);
6068 }
6069
6070 /* If this is an implementation of __throw, do what's necessary to
6071 communicate between __builtin_eh_return and the epilogue. */
6072 expand_eh_return ();
6073
6074 /* Output a return insn if we are using one.
6075 Otherwise, let the rtl chain end here, to drop through
6076 into the epilogue. */
6077
6078 #ifdef HAVE_return
6079 if (HAVE_return)
6080 {
6081 emit_jump_insn (gen_return ());
6082 emit_barrier ();
6083 }
6084 #endif
6085
6086 /* Fix up any gotos that jumped out to the outermost
6087 binding level of the function.
6088 Must follow emitting RETURN_LABEL. */
6089
6090 /* If you have any cleanups to do at this point,
6091 and they need to create temporary variables,
6092 then you will lose. */
6093 expand_fixups (get_insns ());
6094 }
6095 \f
6096 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
6097
6098 static int *prologue;
6099 static int *epilogue;
6100
6101 /* Create an array that records the INSN_UIDs of INSNS (either a sequence
6102 or a single insn). */
6103
6104 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
6105 static int *
6106 record_insns (insns)
6107 rtx insns;
6108 {
6109 int *vec;
6110
6111 if (GET_CODE (insns) == SEQUENCE)
6112 {
6113 int len = XVECLEN (insns, 0);
6114 vec = (int *) oballoc ((len + 1) * sizeof (int));
6115 vec[len] = 0;
6116 while (--len >= 0)
6117 vec[len] = INSN_UID (XVECEXP (insns, 0, len));
6118 }
6119 else
6120 {
6121 vec = (int *) oballoc (2 * sizeof (int));
6122 vec[0] = INSN_UID (insns);
6123 vec[1] = 0;
6124 }
6125 return vec;
6126 }
6127
6128 /* Determine how many INSN_UIDs in VEC are part of INSN. */
6129
6130 static int
6131 contains (insn, vec)
6132 rtx insn;
6133 int *vec;
6134 {
6135 register int i, j;
6136
6137 if (GET_CODE (insn) == INSN
6138 && GET_CODE (PATTERN (insn)) == SEQUENCE)
6139 {
6140 int count = 0;
6141 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6142 for (j = 0; vec[j]; j++)
6143 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == vec[j])
6144 count++;
6145 return count;
6146 }
6147 else
6148 {
6149 for (j = 0; vec[j]; j++)
6150 if (INSN_UID (insn) == vec[j])
6151 return 1;
6152 }
6153 return 0;
6154 }
6155 #endif /* HAVE_prologue || HAVE_epilogue */
6156
6157 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
6158 this into place with notes indicating where the prologue ends and where
6159 the epilogue begins. Update the basic block information when possible. */
6160
6161 void
6162 thread_prologue_and_epilogue_insns (f)
6163 rtx f;
6164 {
6165 #ifdef HAVE_prologue
6166 if (HAVE_prologue)
6167 {
6168 rtx head, seq;
6169
6170 /* The first insn (a NOTE_INSN_DELETED) is followed by zero or more
6171 prologue insns and a NOTE_INSN_PROLOGUE_END. */
6172 emit_note_after (NOTE_INSN_PROLOGUE_END, f);
6173 seq = gen_prologue ();
6174 head = emit_insn_after (seq, f);
6175
6176 /* Include the new prologue insns in the first block. Ignore them
6177 if they form a basic block unto themselves. */
6178 if (basic_block_head && n_basic_blocks
6179 && GET_CODE (basic_block_head[0]) != CODE_LABEL)
6180 basic_block_head[0] = NEXT_INSN (f);
6181
6182 /* Retain a map of the prologue insns. */
6183 prologue = record_insns (GET_CODE (seq) == SEQUENCE ? seq : head);
6184 }
6185 else
6186 #endif
6187 prologue = 0;
6188
6189 #ifdef HAVE_epilogue
6190 if (HAVE_epilogue)
6191 {
6192 rtx insn = get_last_insn ();
6193 rtx prev = prev_nonnote_insn (insn);
6194
6195 /* If we end with a BARRIER, we don't need an epilogue. */
6196 if (! (prev && GET_CODE (prev) == BARRIER))
6197 {
6198 rtx tail, seq, tem;
6199 rtx first_use = 0;
6200 rtx last_use = 0;
6201
6202 /* The last basic block ends with a NOTE_INSN_EPILOGUE_BEG, the
6203 epilogue insns, the USE insns at the end of a function,
6204 the jump insn that returns, and then a BARRIER. */
6205
6206 /* Move the USE insns at the end of a function onto a list. */
6207 while (prev
6208 && GET_CODE (prev) == INSN
6209 && GET_CODE (PATTERN (prev)) == USE)
6210 {
6211 tem = prev;
6212 prev = prev_nonnote_insn (prev);
6213
6214 NEXT_INSN (PREV_INSN (tem)) = NEXT_INSN (tem);
6215 PREV_INSN (NEXT_INSN (tem)) = PREV_INSN (tem);
6216 if (first_use)
6217 {
6218 NEXT_INSN (tem) = first_use;
6219 PREV_INSN (first_use) = tem;
6220 }
6221 first_use = tem;
6222 if (!last_use)
6223 last_use = tem;
6224 }
6225
6226 emit_barrier_after (insn);
6227
6228 seq = gen_epilogue ();
6229 tail = emit_jump_insn_after (seq, insn);
6230
6231 /* Insert the USE insns immediately before the return insn, which
6232 must be the first instruction before the final barrier. */
6233 if (first_use)
6234 {
6235 tem = prev_nonnote_insn (get_last_insn ());
6236 NEXT_INSN (PREV_INSN (tem)) = first_use;
6237 PREV_INSN (first_use) = PREV_INSN (tem);
6238 PREV_INSN (tem) = last_use;
6239 NEXT_INSN (last_use) = tem;
6240 }
6241
6242 emit_note_after (NOTE_INSN_EPILOGUE_BEG, insn);
6243
6244 /* Include the new epilogue insns in the last block. Ignore
6245 them if they form a basic block unto themselves. */
6246 if (basic_block_end && n_basic_blocks
6247 && GET_CODE (basic_block_end[n_basic_blocks - 1]) != JUMP_INSN)
6248 basic_block_end[n_basic_blocks - 1] = tail;
6249
6250 /* Retain a map of the epilogue insns. */
6251 epilogue = record_insns (GET_CODE (seq) == SEQUENCE ? seq : tail);
6252 return;
6253 }
6254 }
6255 #endif
6256 epilogue = 0;
6257 }
6258
6259 /* Reposition the prologue-end and epilogue-begin notes after instruction
6260 scheduling and delayed branch scheduling. */
6261
6262 void
6263 reposition_prologue_and_epilogue_notes (f)
6264 rtx f;
6265 {
6266 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
6267 /* Reposition the prologue and epilogue notes. */
6268 if (n_basic_blocks)
6269 {
6270 rtx next, prev;
6271 int len;
6272
6273 if (prologue)
6274 {
6275 register rtx insn, note = 0;
6276
6277 /* Scan from the beginning until we reach the last prologue insn.
6278 We apparently can't depend on basic_block_{head,end} after
6279 reorg has run. */
6280 for (len = 0; prologue[len]; len++)
6281 ;
6282 for (insn = f; len && insn; insn = NEXT_INSN (insn))
6283 {
6284 if (GET_CODE (insn) == NOTE)
6285 {
6286 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
6287 note = insn;
6288 }
6289 else if ((len -= contains (insn, prologue)) == 0)
6290 {
6291 /* Find the prologue-end note if we haven't already, and
6292 move it to just after the last prologue insn. */
6293 if (note == 0)
6294 {
6295 for (note = insn; (note = NEXT_INSN (note));)
6296 if (GET_CODE (note) == NOTE
6297 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
6298 break;
6299 }
6300
6301 next = NEXT_INSN (note);
6302 prev = PREV_INSN (note);
6303 if (prev)
6304 NEXT_INSN (prev) = next;
6305 if (next)
6306 PREV_INSN (next) = prev;
6307
6308 /* Whether or not we can depend on basic_block_head,
6309 attempt to keep it up-to-date. */
6310 if (basic_block_head[0] == note)
6311 basic_block_head[0] = next;
6312
6313 add_insn_after (note, insn);
6314 }
6315 }
6316 }
6317
6318 if (epilogue)
6319 {
6320 register rtx insn, note = 0;
6321
6322 /* Scan from the end until we reach the first epilogue insn.
6323 We apparently can't depend on basic_block_{head,end} after
6324 reorg has run. */
6325 for (len = 0; epilogue[len]; len++)
6326 ;
6327 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
6328 {
6329 if (GET_CODE (insn) == NOTE)
6330 {
6331 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
6332 note = insn;
6333 }
6334 else if ((len -= contains (insn, epilogue)) == 0)
6335 {
6336 /* Find the epilogue-begin note if we haven't already, and
6337 move it to just before the first epilogue insn. */
6338 if (note == 0)
6339 {
6340 for (note = insn; (note = PREV_INSN (note));)
6341 if (GET_CODE (note) == NOTE
6342 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
6343 break;
6344 }
6345 next = NEXT_INSN (note);
6346 prev = PREV_INSN (note);
6347 if (prev)
6348 NEXT_INSN (prev) = next;
6349 if (next)
6350 PREV_INSN (next) = prev;
6351
6352 /* Whether or not we can depend on basic_block_head,
6353 attempt to keep it up-to-date. */
6354 if (n_basic_blocks
6355 && basic_block_head[n_basic_blocks-1] == insn)
6356 basic_block_head[n_basic_blocks-1] = note;
6357
6358 add_insn_before (note, insn);
6359 }
6360 }
6361 }
6362 }
6363 #endif /* HAVE_prologue or HAVE_epilogue */
6364 }
This page took 0.364416 seconds and 6 git commands to generate.