]> gcc.gnu.org Git - gcc.git/blob - gcc/function.c
emit-rtl.c (push_to_full_sequence, [...]): New functions.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
27
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
31
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register.
36
37 Call `put_var_into_stack' when you learn, belatedly, that a variable
38 previously given a pseudo-register must in fact go in the stack.
39 This function changes the DECL_RTL to be a stack slot instead of a reg
40 then scans all the RTL instructions so far generated to correct them. */
41
42 #include "config.h"
43 #include "system.h"
44 #include "rtl.h"
45 #include "tree.h"
46 #include "flags.h"
47 #include "except.h"
48 #include "function.h"
49 #include "insn-flags.h"
50 #include "expr.h"
51 #include "insn-codes.h"
52 #include "regs.h"
53 #include "hard-reg-set.h"
54 #include "insn-config.h"
55 #include "recog.h"
56 #include "output.h"
57 #include "basic-block.h"
58 #include "obstack.h"
59 #include "toplev.h"
60 #include "hash.h"
61 #include "ggc.h"
62 #include "tm_p.h"
63
64 #ifndef TRAMPOLINE_ALIGNMENT
65 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
66 #endif
67
68 #ifndef LOCAL_ALIGNMENT
69 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
70 #endif
71
72 #if !defined (PREFERRED_STACK_BOUNDARY) && defined (STACK_BOUNDARY)
73 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
74 #endif
75
76 /* Some systems use __main in a way incompatible with its use in gcc, in these
77 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
78 give the same symbol without quotes for an alternative entry point. You
79 must define both, or neither. */
80 #ifndef NAME__MAIN
81 #define NAME__MAIN "__main"
82 #define SYMBOL__MAIN __main
83 #endif
84
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
89
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
93
94 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
95 during rtl generation. If they are different register numbers, this is
96 always true. It may also be true if
97 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
98 generation. See fix_lexical_addr for details. */
99
100 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
101 #define NEED_SEPARATE_AP
102 #endif
103
104 /* Nonzero if function being compiled doesn't contain any calls
105 (ignoring the prologue and epilogue). This is set prior to
106 local register allocation and is valid for the remaining
107 compiler passes. */
108 int current_function_is_leaf;
109
110 /* Nonzero if function being compiled doesn't contain any instructions
111 that can throw an exception. This is set prior to final. */
112
113 int current_function_nothrow;
114
115 /* Nonzero if function being compiled doesn't modify the stack pointer
116 (ignoring the prologue and epilogue). This is only valid after
117 life_analysis has run. */
118 int current_function_sp_is_unchanging;
119
120 /* Nonzero if the function being compiled is a leaf function which only
121 uses leaf registers. This is valid after reload (specifically after
122 sched2) and is useful only if the port defines LEAF_REGISTERS. */
123 int current_function_uses_only_leaf_regs;
124
125 /* Nonzero once virtual register instantiation has been done.
126 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
127 static int virtuals_instantiated;
128
129 /* These variables hold pointers to functions to
130 save and restore machine-specific data,
131 in push_function_context and pop_function_context. */
132 void (*init_machine_status) PARAMS ((struct function *));
133 void (*save_machine_status) PARAMS ((struct function *));
134 void (*restore_machine_status) PARAMS ((struct function *));
135 void (*mark_machine_status) PARAMS ((struct function *));
136 void (*free_machine_status) PARAMS ((struct function *));
137
138 /* Likewise, but for language-specific data. */
139 void (*init_lang_status) PARAMS ((struct function *));
140 void (*save_lang_status) PARAMS ((struct function *));
141 void (*restore_lang_status) PARAMS ((struct function *));
142 void (*mark_lang_status) PARAMS ((struct function *));
143 void (*free_lang_status) PARAMS ((struct function *));
144
145 /* The FUNCTION_DECL for an inline function currently being expanded. */
146 tree inline_function_decl;
147
148 /* The currently compiled function. */
149 struct function *cfun = 0;
150
151 /* Global list of all compiled functions. */
152 struct function *all_functions = 0;
153
154 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
155 static varray_type prologue;
156 static varray_type epilogue;
157
158 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
159 in this function. */
160 static varray_type sibcall_epilogue;
161 \f
162 /* In order to evaluate some expressions, such as function calls returning
163 structures in memory, we need to temporarily allocate stack locations.
164 We record each allocated temporary in the following structure.
165
166 Associated with each temporary slot is a nesting level. When we pop up
167 one level, all temporaries associated with the previous level are freed.
168 Normally, all temporaries are freed after the execution of the statement
169 in which they were created. However, if we are inside a ({...}) grouping,
170 the result may be in a temporary and hence must be preserved. If the
171 result could be in a temporary, we preserve it if we can determine which
172 one it is in. If we cannot determine which temporary may contain the
173 result, all temporaries are preserved. A temporary is preserved by
174 pretending it was allocated at the previous nesting level.
175
176 Automatic variables are also assigned temporary slots, at the nesting
177 level where they are defined. They are marked a "kept" so that
178 free_temp_slots will not free them. */
179
180 struct temp_slot
181 {
182 /* Points to next temporary slot. */
183 struct temp_slot *next;
184 /* The rtx to used to reference the slot. */
185 rtx slot;
186 /* The rtx used to represent the address if not the address of the
187 slot above. May be an EXPR_LIST if multiple addresses exist. */
188 rtx address;
189 /* The alignment (in bits) of the slot. */
190 int align;
191 /* The size, in units, of the slot. */
192 HOST_WIDE_INT size;
193 /* The alias set for the slot. If the alias set is zero, we don't
194 know anything about the alias set of the slot. We must only
195 reuse a slot if it is assigned an object of the same alias set.
196 Otherwise, the rest of the compiler may assume that the new use
197 of the slot cannot alias the old use of the slot, which is
198 false. If the slot has alias set zero, then we can't reuse the
199 slot at all, since we have no idea what alias set may have been
200 imposed on the memory. For example, if the stack slot is the
201 call frame for an inline functioned, we have no idea what alias
202 sets will be assigned to various pieces of the call frame. */
203 int alias_set;
204 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
205 tree rtl_expr;
206 /* Non-zero if this temporary is currently in use. */
207 char in_use;
208 /* Non-zero if this temporary has its address taken. */
209 char addr_taken;
210 /* Nesting level at which this slot is being used. */
211 int level;
212 /* Non-zero if this should survive a call to free_temp_slots. */
213 int keep;
214 /* The offset of the slot from the frame_pointer, including extra space
215 for alignment. This info is for combine_temp_slots. */
216 HOST_WIDE_INT base_offset;
217 /* The size of the slot, including extra space for alignment. This
218 info is for combine_temp_slots. */
219 HOST_WIDE_INT full_size;
220 };
221 \f
222 /* This structure is used to record MEMs or pseudos used to replace VAR, any
223 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
224 maintain this list in case two operands of an insn were required to match;
225 in that case we must ensure we use the same replacement. */
226
227 struct fixup_replacement
228 {
229 rtx old;
230 rtx new;
231 struct fixup_replacement *next;
232 };
233
234 struct insns_for_mem_entry {
235 /* The KEY in HE will be a MEM. */
236 struct hash_entry he;
237 /* These are the INSNS which reference the MEM. */
238 rtx insns;
239 };
240
241 /* Forward declarations. */
242
243 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
244 int, struct function *));
245 static rtx assign_stack_temp_for_type PARAMS ((enum machine_mode,
246 HOST_WIDE_INT, int, tree));
247 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
248 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
249 enum machine_mode, enum machine_mode,
250 int, int, int, struct hash_table *));
251 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int,
252 struct hash_table *));
253 static struct fixup_replacement
254 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
255 static void fixup_var_refs_insns PARAMS ((rtx, enum machine_mode, int,
256 rtx, int, struct hash_table *));
257 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
258 struct fixup_replacement **));
259 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, int));
260 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, int));
261 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
262 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
263 static void instantiate_decls PARAMS ((tree, int));
264 static void instantiate_decls_1 PARAMS ((tree, int));
265 static void instantiate_decl PARAMS ((rtx, int, int));
266 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
267 static void delete_handlers PARAMS ((void));
268 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
269 struct args_size *));
270 #ifndef ARGS_GROW_DOWNWARD
271 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
272 tree));
273 #endif
274 #ifdef ARGS_GROW_DOWNWARD
275 static tree round_down PARAMS ((tree, int));
276 #endif
277 static rtx round_trampoline_addr PARAMS ((rtx));
278 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
279 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
280 static tree blocks_nreverse PARAMS ((tree));
281 static int all_blocks PARAMS ((tree, tree *));
282 static tree *get_block_vector PARAMS ((tree, int *));
283 /* We always define `record_insns' even if its not used so that we
284 can always export `prologue_epilogue_contains'. */
285 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
286 static int contains PARAMS ((rtx, varray_type));
287 #ifdef HAVE_return
288 static void emit_return_into_block PARAMS ((basic_block));
289 #endif
290 static void put_addressof_into_stack PARAMS ((rtx, struct hash_table *));
291 static boolean purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
292 struct hash_table *));
293 static int is_addressof PARAMS ((rtx *, void *));
294 static struct hash_entry *insns_for_mem_newfunc PARAMS ((struct hash_entry *,
295 struct hash_table *,
296 hash_table_key));
297 static unsigned long insns_for_mem_hash PARAMS ((hash_table_key));
298 static boolean insns_for_mem_comp PARAMS ((hash_table_key, hash_table_key));
299 static int insns_for_mem_walk PARAMS ((rtx *, void *));
300 static void compute_insns_for_mem PARAMS ((rtx, rtx, struct hash_table *));
301 static void mark_temp_slot PARAMS ((struct temp_slot *));
302 static void mark_function_status PARAMS ((struct function *));
303 static void mark_function_chain PARAMS ((void *));
304 static void prepare_function_start PARAMS ((void));
305 static void do_clobber_return_reg PARAMS ((rtx, void *));
306 static void do_use_return_reg PARAMS ((rtx, void *));
307 \f
308 /* Pointer to chain of `struct function' for containing functions. */
309 struct function *outer_function_chain;
310
311 /* Given a function decl for a containing function,
312 return the `struct function' for it. */
313
314 struct function *
315 find_function_data (decl)
316 tree decl;
317 {
318 struct function *p;
319
320 for (p = outer_function_chain; p; p = p->next)
321 if (p->decl == decl)
322 return p;
323
324 abort ();
325 }
326
327 /* Save the current context for compilation of a nested function.
328 This is called from language-specific code. The caller should use
329 the save_lang_status callback to save any language-specific state,
330 since this function knows only about language-independent
331 variables. */
332
333 void
334 push_function_context_to (context)
335 tree context;
336 {
337 struct function *p, *context_data;
338
339 if (context)
340 {
341 context_data = (context == current_function_decl
342 ? cfun
343 : find_function_data (context));
344 context_data->contains_functions = 1;
345 }
346
347 if (cfun == 0)
348 init_dummy_function_start ();
349 p = cfun;
350
351 p->next = outer_function_chain;
352 outer_function_chain = p;
353 p->fixup_var_refs_queue = 0;
354
355 save_tree_status (p);
356 if (save_lang_status)
357 (*save_lang_status) (p);
358 if (save_machine_status)
359 (*save_machine_status) (p);
360
361 cfun = 0;
362 }
363
364 void
365 push_function_context ()
366 {
367 push_function_context_to (current_function_decl);
368 }
369
370 /* Restore the last saved context, at the end of a nested function.
371 This function is called from language-specific code. */
372
373 void
374 pop_function_context_from (context)
375 tree context ATTRIBUTE_UNUSED;
376 {
377 struct function *p = outer_function_chain;
378 struct var_refs_queue *queue;
379 struct var_refs_queue *next;
380
381 cfun = p;
382 outer_function_chain = p->next;
383
384 current_function_decl = p->decl;
385 reg_renumber = 0;
386
387 restore_tree_status (p);
388 restore_emit_status (p);
389
390 if (restore_machine_status)
391 (*restore_machine_status) (p);
392 if (restore_lang_status)
393 (*restore_lang_status) (p);
394
395 /* Finish doing put_var_into_stack for any of our variables
396 which became addressable during the nested function. */
397 for (queue = p->fixup_var_refs_queue; queue; queue = next)
398 {
399 next = queue->next;
400 fixup_var_refs (queue->modified, queue->promoted_mode,
401 queue->unsignedp, 0);
402 free (queue);
403 }
404 p->fixup_var_refs_queue = 0;
405
406 /* Reset variables that have known state during rtx generation. */
407 rtx_equal_function_value_matters = 1;
408 virtuals_instantiated = 0;
409 }
410
411 void
412 pop_function_context ()
413 {
414 pop_function_context_from (current_function_decl);
415 }
416
417 /* Clear out all parts of the state in F that can safely be discarded
418 after the function has been parsed, but not compiled, to let
419 garbage collection reclaim the memory. */
420
421 void
422 free_after_parsing (f)
423 struct function *f;
424 {
425 /* f->expr->forced_labels is used by code generation. */
426 /* f->emit->regno_reg_rtx is used by code generation. */
427 /* f->varasm is used by code generation. */
428 /* f->eh->eh_return_stub_label is used by code generation. */
429
430 if (free_lang_status)
431 (*free_lang_status) (f);
432 free_stmt_status (f);
433 }
434
435 /* Clear out all parts of the state in F that can safely be discarded
436 after the function has been compiled, to let garbage collection
437 reclaim the memory. */
438
439 void
440 free_after_compilation (f)
441 struct function *f;
442 {
443 free_eh_status (f);
444 free_expr_status (f);
445 free_emit_status (f);
446 free_varasm_status (f);
447
448 if (free_machine_status)
449 (*free_machine_status) (f);
450
451 if (f->x_parm_reg_stack_loc)
452 free (f->x_parm_reg_stack_loc);
453
454 f->arg_offset_rtx = NULL;
455 f->return_rtx = NULL;
456 f->internal_arg_pointer = NULL;
457 f->x_nonlocal_labels = NULL;
458 f->x_nonlocal_goto_handler_slots = NULL;
459 f->x_nonlocal_goto_handler_labels = NULL;
460 f->x_nonlocal_goto_stack_level = NULL;
461 f->x_cleanup_label = NULL;
462 f->x_return_label = NULL;
463 f->x_save_expr_regs = NULL;
464 f->x_stack_slot_list = NULL;
465 f->x_rtl_expr_chain = NULL;
466 f->x_tail_recursion_label = NULL;
467 f->x_tail_recursion_reentry = NULL;
468 f->x_arg_pointer_save_area = NULL;
469 f->x_context_display = NULL;
470 f->x_trampoline_list = NULL;
471 f->x_parm_birth_insn = NULL;
472 f->x_last_parm_insn = NULL;
473 f->x_parm_reg_stack_loc = NULL;
474 f->x_temp_slots = NULL;
475 f->fixup_var_refs_queue = NULL;
476 f->original_arg_vector = NULL;
477 f->original_decl_initial = NULL;
478 f->inl_last_parm_insn = NULL;
479 f->epilogue_delay_list = NULL;
480 }
481
482 \f
483 /* Allocate fixed slots in the stack frame of the current function. */
484
485 /* Return size needed for stack frame based on slots so far allocated in
486 function F.
487 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
488 the caller may have to do that. */
489
490 HOST_WIDE_INT
491 get_func_frame_size (f)
492 struct function *f;
493 {
494 #ifdef FRAME_GROWS_DOWNWARD
495 return -f->x_frame_offset;
496 #else
497 return f->x_frame_offset;
498 #endif
499 }
500
501 /* Return size needed for stack frame based on slots so far allocated.
502 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
503 the caller may have to do that. */
504 HOST_WIDE_INT
505 get_frame_size ()
506 {
507 return get_func_frame_size (cfun);
508 }
509
510 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
511 with machine mode MODE.
512
513 ALIGN controls the amount of alignment for the address of the slot:
514 0 means according to MODE,
515 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
516 positive specifies alignment boundary in bits.
517
518 We do not round to stack_boundary here.
519
520 FUNCTION specifies the function to allocate in. */
521
522 static rtx
523 assign_stack_local_1 (mode, size, align, function)
524 enum machine_mode mode;
525 HOST_WIDE_INT size;
526 int align;
527 struct function *function;
528 {
529 register rtx x, addr;
530 int bigend_correction = 0;
531 int alignment;
532
533 /* Allocate in the memory associated with the function in whose frame
534 we are assigning. */
535 if (function != cfun)
536 push_obstacks (function->function_obstack,
537 function->function_maybepermanent_obstack);
538
539 if (align == 0)
540 {
541 tree type;
542
543 alignment = GET_MODE_ALIGNMENT (mode);
544 if (mode == BLKmode)
545 alignment = BIGGEST_ALIGNMENT;
546
547 /* Allow the target to (possibly) increase the alignment of this
548 stack slot. */
549 type = type_for_mode (mode, 0);
550 if (type)
551 alignment = LOCAL_ALIGNMENT (type, alignment);
552
553 alignment /= BITS_PER_UNIT;
554 }
555 else if (align == -1)
556 {
557 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
558 size = CEIL_ROUND (size, alignment);
559 }
560 else
561 alignment = align / BITS_PER_UNIT;
562
563 #ifdef FRAME_GROWS_DOWNWARD
564 function->x_frame_offset -= size;
565 #endif
566
567 /* Ignore alignment we can't do with expected alignment of the boundary. */
568 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
569 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
570
571 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
572 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
573
574 /* Round frame offset to that alignment.
575 We must be careful here, since FRAME_OFFSET might be negative and
576 division with a negative dividend isn't as well defined as we might
577 like. So we instead assume that ALIGNMENT is a power of two and
578 use logical operations which are unambiguous. */
579 #ifdef FRAME_GROWS_DOWNWARD
580 function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset, alignment);
581 #else
582 function->x_frame_offset = CEIL_ROUND (function->x_frame_offset, alignment);
583 #endif
584
585 /* On a big-endian machine, if we are allocating more space than we will use,
586 use the least significant bytes of those that are allocated. */
587 if (BYTES_BIG_ENDIAN && mode != BLKmode)
588 bigend_correction = size - GET_MODE_SIZE (mode);
589
590 /* If we have already instantiated virtual registers, return the actual
591 address relative to the frame pointer. */
592 if (function == cfun && virtuals_instantiated)
593 addr = plus_constant (frame_pointer_rtx,
594 (frame_offset + bigend_correction
595 + STARTING_FRAME_OFFSET));
596 else
597 addr = plus_constant (virtual_stack_vars_rtx,
598 function->x_frame_offset + bigend_correction);
599
600 #ifndef FRAME_GROWS_DOWNWARD
601 function->x_frame_offset += size;
602 #endif
603
604 x = gen_rtx_MEM (mode, addr);
605
606 function->x_stack_slot_list
607 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
608
609 if (function != cfun)
610 pop_obstacks ();
611
612 return x;
613 }
614
615 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
616 current function. */
617 rtx
618 assign_stack_local (mode, size, align)
619 enum machine_mode mode;
620 HOST_WIDE_INT size;
621 int align;
622 {
623 return assign_stack_local_1 (mode, size, align, cfun);
624 }
625 \f
626 /* Allocate a temporary stack slot and record it for possible later
627 reuse.
628
629 MODE is the machine mode to be given to the returned rtx.
630
631 SIZE is the size in units of the space required. We do no rounding here
632 since assign_stack_local will do any required rounding.
633
634 KEEP is 1 if this slot is to be retained after a call to
635 free_temp_slots. Automatic variables for a block are allocated
636 with this flag. KEEP is 2 if we allocate a longer term temporary,
637 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
638 if we are to allocate something at an inner level to be treated as
639 a variable in the block (e.g., a SAVE_EXPR).
640
641 TYPE is the type that will be used for the stack slot. */
642
643 static rtx
644 assign_stack_temp_for_type (mode, size, keep, type)
645 enum machine_mode mode;
646 HOST_WIDE_INT size;
647 int keep;
648 tree type;
649 {
650 int align;
651 int alias_set;
652 struct temp_slot *p, *best_p = 0;
653
654 /* If SIZE is -1 it means that somebody tried to allocate a temporary
655 of a variable size. */
656 if (size == -1)
657 abort ();
658
659 /* If we know the alias set for the memory that will be used, use
660 it. If there's no TYPE, then we don't know anything about the
661 alias set for the memory. */
662 if (type)
663 alias_set = get_alias_set (type);
664 else
665 alias_set = 0;
666
667 align = GET_MODE_ALIGNMENT (mode);
668 if (mode == BLKmode)
669 align = BIGGEST_ALIGNMENT;
670
671 if (! type)
672 type = type_for_mode (mode, 0);
673 if (type)
674 align = LOCAL_ALIGNMENT (type, align);
675
676 /* Try to find an available, already-allocated temporary of the proper
677 mode which meets the size and alignment requirements. Choose the
678 smallest one with the closest alignment. */
679 for (p = temp_slots; p; p = p->next)
680 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
681 && ! p->in_use
682 && (!flag_strict_aliasing
683 || (alias_set && p->alias_set == alias_set))
684 && (best_p == 0 || best_p->size > p->size
685 || (best_p->size == p->size && best_p->align > p->align)))
686 {
687 if (p->align == align && p->size == size)
688 {
689 best_p = 0;
690 break;
691 }
692 best_p = p;
693 }
694
695 /* Make our best, if any, the one to use. */
696 if (best_p)
697 {
698 /* If there are enough aligned bytes left over, make them into a new
699 temp_slot so that the extra bytes don't get wasted. Do this only
700 for BLKmode slots, so that we can be sure of the alignment. */
701 if (GET_MODE (best_p->slot) == BLKmode
702 /* We can't split slots if -fstrict-aliasing because the
703 information about the alias set for the new slot will be
704 lost. */
705 && !flag_strict_aliasing)
706 {
707 int alignment = best_p->align / BITS_PER_UNIT;
708 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
709
710 if (best_p->size - rounded_size >= alignment)
711 {
712 p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
713 p->in_use = p->addr_taken = 0;
714 p->size = best_p->size - rounded_size;
715 p->base_offset = best_p->base_offset + rounded_size;
716 p->full_size = best_p->full_size - rounded_size;
717 p->slot = gen_rtx_MEM (BLKmode,
718 plus_constant (XEXP (best_p->slot, 0),
719 rounded_size));
720 p->align = best_p->align;
721 p->address = 0;
722 p->rtl_expr = 0;
723 p->next = temp_slots;
724 temp_slots = p;
725
726 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
727 stack_slot_list);
728
729 best_p->size = rounded_size;
730 best_p->full_size = rounded_size;
731 }
732 }
733
734 p = best_p;
735 }
736
737 /* If we still didn't find one, make a new temporary. */
738 if (p == 0)
739 {
740 HOST_WIDE_INT frame_offset_old = frame_offset;
741
742 p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
743
744 /* We are passing an explicit alignment request to assign_stack_local.
745 One side effect of that is assign_stack_local will not round SIZE
746 to ensure the frame offset remains suitably aligned.
747
748 So for requests which depended on the rounding of SIZE, we go ahead
749 and round it now. We also make sure ALIGNMENT is at least
750 BIGGEST_ALIGNMENT. */
751 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
752 abort();
753 p->slot = assign_stack_local (mode,
754 (mode == BLKmode
755 ? CEIL_ROUND (size, align / BITS_PER_UNIT)
756 : size),
757 align);
758
759 p->align = align;
760 p->alias_set = alias_set;
761
762 /* The following slot size computation is necessary because we don't
763 know the actual size of the temporary slot until assign_stack_local
764 has performed all the frame alignment and size rounding for the
765 requested temporary. Note that extra space added for alignment
766 can be either above or below this stack slot depending on which
767 way the frame grows. We include the extra space if and only if it
768 is above this slot. */
769 #ifdef FRAME_GROWS_DOWNWARD
770 p->size = frame_offset_old - frame_offset;
771 #else
772 p->size = size;
773 #endif
774
775 /* Now define the fields used by combine_temp_slots. */
776 #ifdef FRAME_GROWS_DOWNWARD
777 p->base_offset = frame_offset;
778 p->full_size = frame_offset_old - frame_offset;
779 #else
780 p->base_offset = frame_offset_old;
781 p->full_size = frame_offset - frame_offset_old;
782 #endif
783 p->address = 0;
784 p->next = temp_slots;
785 temp_slots = p;
786 }
787
788 p->in_use = 1;
789 p->addr_taken = 0;
790 p->rtl_expr = seq_rtl_expr;
791
792 if (keep == 2)
793 {
794 p->level = target_temp_slot_level;
795 p->keep = 0;
796 }
797 else if (keep == 3)
798 {
799 p->level = var_temp_slot_level;
800 p->keep = 0;
801 }
802 else
803 {
804 p->level = temp_slot_level;
805 p->keep = keep;
806 }
807
808 /* We may be reusing an old slot, so clear any MEM flags that may have been
809 set from before. */
810 RTX_UNCHANGING_P (p->slot) = 0;
811 MEM_IN_STRUCT_P (p->slot) = 0;
812 MEM_SCALAR_P (p->slot) = 0;
813 MEM_ALIAS_SET (p->slot) = 0;
814 return p->slot;
815 }
816
817 /* Allocate a temporary stack slot and record it for possible later
818 reuse. First three arguments are same as in preceding function. */
819
820 rtx
821 assign_stack_temp (mode, size, keep)
822 enum machine_mode mode;
823 HOST_WIDE_INT size;
824 int keep;
825 {
826 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
827 }
828 \f
829 /* Assign a temporary of given TYPE.
830 KEEP is as for assign_stack_temp.
831 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
832 it is 0 if a register is OK.
833 DONT_PROMOTE is 1 if we should not promote values in register
834 to wider modes. */
835
836 rtx
837 assign_temp (type, keep, memory_required, dont_promote)
838 tree type;
839 int keep;
840 int memory_required;
841 int dont_promote ATTRIBUTE_UNUSED;
842 {
843 enum machine_mode mode = TYPE_MODE (type);
844 #ifndef PROMOTE_FOR_CALL_ONLY
845 int unsignedp = TREE_UNSIGNED (type);
846 #endif
847
848 if (mode == BLKmode || memory_required)
849 {
850 HOST_WIDE_INT size = int_size_in_bytes (type);
851 rtx tmp;
852
853 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
854 problems with allocating the stack space. */
855 if (size == 0)
856 size = 1;
857
858 /* Unfortunately, we don't yet know how to allocate variable-sized
859 temporaries. However, sometimes we have a fixed upper limit on
860 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
861 instead. This is the case for Chill variable-sized strings. */
862 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
863 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
864 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (type)) == INTEGER_CST)
865 size = TREE_INT_CST_LOW (TYPE_ARRAY_MAX_SIZE (type));
866
867 tmp = assign_stack_temp_for_type (mode, size, keep, type);
868 MEM_SET_IN_STRUCT_P (tmp, AGGREGATE_TYPE_P (type));
869 return tmp;
870 }
871
872 #ifndef PROMOTE_FOR_CALL_ONLY
873 if (! dont_promote)
874 mode = promote_mode (type, mode, &unsignedp, 0);
875 #endif
876
877 return gen_reg_rtx (mode);
878 }
879 \f
880 /* Combine temporary stack slots which are adjacent on the stack.
881
882 This allows for better use of already allocated stack space. This is only
883 done for BLKmode slots because we can be sure that we won't have alignment
884 problems in this case. */
885
886 void
887 combine_temp_slots ()
888 {
889 struct temp_slot *p, *q;
890 struct temp_slot *prev_p, *prev_q;
891 int num_slots;
892
893 /* We can't combine slots, because the information about which slot
894 is in which alias set will be lost. */
895 if (flag_strict_aliasing)
896 return;
897
898 /* If there are a lot of temp slots, don't do anything unless
899 high levels of optimizaton. */
900 if (! flag_expensive_optimizations)
901 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
902 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
903 return;
904
905 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
906 {
907 int delete_p = 0;
908
909 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
910 for (q = p->next, prev_q = p; q; q = prev_q->next)
911 {
912 int delete_q = 0;
913 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
914 {
915 if (p->base_offset + p->full_size == q->base_offset)
916 {
917 /* Q comes after P; combine Q into P. */
918 p->size += q->size;
919 p->full_size += q->full_size;
920 delete_q = 1;
921 }
922 else if (q->base_offset + q->full_size == p->base_offset)
923 {
924 /* P comes after Q; combine P into Q. */
925 q->size += p->size;
926 q->full_size += p->full_size;
927 delete_p = 1;
928 break;
929 }
930 }
931 /* Either delete Q or advance past it. */
932 if (delete_q)
933 prev_q->next = q->next;
934 else
935 prev_q = q;
936 }
937 /* Either delete P or advance past it. */
938 if (delete_p)
939 {
940 if (prev_p)
941 prev_p->next = p->next;
942 else
943 temp_slots = p->next;
944 }
945 else
946 prev_p = p;
947 }
948 }
949 \f
950 /* Find the temp slot corresponding to the object at address X. */
951
952 static struct temp_slot *
953 find_temp_slot_from_address (x)
954 rtx x;
955 {
956 struct temp_slot *p;
957 rtx next;
958
959 for (p = temp_slots; p; p = p->next)
960 {
961 if (! p->in_use)
962 continue;
963
964 else if (XEXP (p->slot, 0) == x
965 || p->address == x
966 || (GET_CODE (x) == PLUS
967 && XEXP (x, 0) == virtual_stack_vars_rtx
968 && GET_CODE (XEXP (x, 1)) == CONST_INT
969 && INTVAL (XEXP (x, 1)) >= p->base_offset
970 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
971 return p;
972
973 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
974 for (next = p->address; next; next = XEXP (next, 1))
975 if (XEXP (next, 0) == x)
976 return p;
977 }
978
979 /* If we have a sum involving a register, see if it points to a temp
980 slot. */
981 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
982 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
983 return p;
984 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
985 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
986 return p;
987
988 return 0;
989 }
990
991 /* Indicate that NEW is an alternate way of referring to the temp slot
992 that previously was known by OLD. */
993
994 void
995 update_temp_slot_address (old, new)
996 rtx old, new;
997 {
998 struct temp_slot *p;
999
1000 if (rtx_equal_p (old, new))
1001 return;
1002
1003 p = find_temp_slot_from_address (old);
1004
1005 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1006 is a register, see if one operand of the PLUS is a temporary
1007 location. If so, NEW points into it. Otherwise, if both OLD and
1008 NEW are a PLUS and if there is a register in common between them.
1009 If so, try a recursive call on those values. */
1010 if (p == 0)
1011 {
1012 if (GET_CODE (old) != PLUS)
1013 return;
1014
1015 if (GET_CODE (new) == REG)
1016 {
1017 update_temp_slot_address (XEXP (old, 0), new);
1018 update_temp_slot_address (XEXP (old, 1), new);
1019 return;
1020 }
1021 else if (GET_CODE (new) != PLUS)
1022 return;
1023
1024 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1025 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1026 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1027 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1028 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1029 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1030 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1031 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1032
1033 return;
1034 }
1035
1036 /* Otherwise add an alias for the temp's address. */
1037 else if (p->address == 0)
1038 p->address = new;
1039 else
1040 {
1041 if (GET_CODE (p->address) != EXPR_LIST)
1042 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1043
1044 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1045 }
1046 }
1047
1048 /* If X could be a reference to a temporary slot, mark the fact that its
1049 address was taken. */
1050
1051 void
1052 mark_temp_addr_taken (x)
1053 rtx x;
1054 {
1055 struct temp_slot *p;
1056
1057 if (x == 0)
1058 return;
1059
1060 /* If X is not in memory or is at a constant address, it cannot be in
1061 a temporary slot. */
1062 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1063 return;
1064
1065 p = find_temp_slot_from_address (XEXP (x, 0));
1066 if (p != 0)
1067 p->addr_taken = 1;
1068 }
1069
1070 /* If X could be a reference to a temporary slot, mark that slot as
1071 belonging to the to one level higher than the current level. If X
1072 matched one of our slots, just mark that one. Otherwise, we can't
1073 easily predict which it is, so upgrade all of them. Kept slots
1074 need not be touched.
1075
1076 This is called when an ({...}) construct occurs and a statement
1077 returns a value in memory. */
1078
1079 void
1080 preserve_temp_slots (x)
1081 rtx x;
1082 {
1083 struct temp_slot *p = 0;
1084
1085 /* If there is no result, we still might have some objects whose address
1086 were taken, so we need to make sure they stay around. */
1087 if (x == 0)
1088 {
1089 for (p = temp_slots; p; p = p->next)
1090 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1091 p->level--;
1092
1093 return;
1094 }
1095
1096 /* If X is a register that is being used as a pointer, see if we have
1097 a temporary slot we know it points to. To be consistent with
1098 the code below, we really should preserve all non-kept slots
1099 if we can't find a match, but that seems to be much too costly. */
1100 if (GET_CODE (x) == REG && REGNO_POINTER_FLAG (REGNO (x)))
1101 p = find_temp_slot_from_address (x);
1102
1103 /* If X is not in memory or is at a constant address, it cannot be in
1104 a temporary slot, but it can contain something whose address was
1105 taken. */
1106 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1107 {
1108 for (p = temp_slots; p; p = p->next)
1109 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1110 p->level--;
1111
1112 return;
1113 }
1114
1115 /* First see if we can find a match. */
1116 if (p == 0)
1117 p = find_temp_slot_from_address (XEXP (x, 0));
1118
1119 if (p != 0)
1120 {
1121 /* Move everything at our level whose address was taken to our new
1122 level in case we used its address. */
1123 struct temp_slot *q;
1124
1125 if (p->level == temp_slot_level)
1126 {
1127 for (q = temp_slots; q; q = q->next)
1128 if (q != p && q->addr_taken && q->level == p->level)
1129 q->level--;
1130
1131 p->level--;
1132 p->addr_taken = 0;
1133 }
1134 return;
1135 }
1136
1137 /* Otherwise, preserve all non-kept slots at this level. */
1138 for (p = temp_slots; p; p = p->next)
1139 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1140 p->level--;
1141 }
1142
1143 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1144 with that RTL_EXPR, promote it into a temporary slot at the present
1145 level so it will not be freed when we free slots made in the
1146 RTL_EXPR. */
1147
1148 void
1149 preserve_rtl_expr_result (x)
1150 rtx x;
1151 {
1152 struct temp_slot *p;
1153
1154 /* If X is not in memory or is at a constant address, it cannot be in
1155 a temporary slot. */
1156 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1157 return;
1158
1159 /* If we can find a match, move it to our level unless it is already at
1160 an upper level. */
1161 p = find_temp_slot_from_address (XEXP (x, 0));
1162 if (p != 0)
1163 {
1164 p->level = MIN (p->level, temp_slot_level);
1165 p->rtl_expr = 0;
1166 }
1167
1168 return;
1169 }
1170
1171 /* Free all temporaries used so far. This is normally called at the end
1172 of generating code for a statement. Don't free any temporaries
1173 currently in use for an RTL_EXPR that hasn't yet been emitted.
1174 We could eventually do better than this since it can be reused while
1175 generating the same RTL_EXPR, but this is complex and probably not
1176 worthwhile. */
1177
1178 void
1179 free_temp_slots ()
1180 {
1181 struct temp_slot *p;
1182
1183 for (p = temp_slots; p; p = p->next)
1184 if (p->in_use && p->level == temp_slot_level && ! p->keep
1185 && p->rtl_expr == 0)
1186 p->in_use = 0;
1187
1188 combine_temp_slots ();
1189 }
1190
1191 /* Free all temporary slots used in T, an RTL_EXPR node. */
1192
1193 void
1194 free_temps_for_rtl_expr (t)
1195 tree t;
1196 {
1197 struct temp_slot *p;
1198
1199 for (p = temp_slots; p; p = p->next)
1200 if (p->rtl_expr == t)
1201 {
1202 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1203 needs to be preserved. This can happen if a temporary in
1204 the RTL_EXPR was addressed; preserve_temp_slots will move
1205 the temporary into a higher level. */
1206 if (temp_slot_level <= p->level)
1207 p->in_use = 0;
1208 else
1209 p->rtl_expr = NULL_TREE;
1210 }
1211
1212 combine_temp_slots ();
1213 }
1214
1215 /* Mark all temporaries ever allocated in this function as not suitable
1216 for reuse until the current level is exited. */
1217
1218 void
1219 mark_all_temps_used ()
1220 {
1221 struct temp_slot *p;
1222
1223 for (p = temp_slots; p; p = p->next)
1224 {
1225 p->in_use = p->keep = 1;
1226 p->level = MIN (p->level, temp_slot_level);
1227 }
1228 }
1229
1230 /* Push deeper into the nesting level for stack temporaries. */
1231
1232 void
1233 push_temp_slots ()
1234 {
1235 temp_slot_level++;
1236 }
1237
1238 /* Likewise, but save the new level as the place to allocate variables
1239 for blocks. */
1240
1241 #if 0
1242 void
1243 push_temp_slots_for_block ()
1244 {
1245 push_temp_slots ();
1246
1247 var_temp_slot_level = temp_slot_level;
1248 }
1249
1250 /* Likewise, but save the new level as the place to allocate temporaries
1251 for TARGET_EXPRs. */
1252
1253 void
1254 push_temp_slots_for_target ()
1255 {
1256 push_temp_slots ();
1257
1258 target_temp_slot_level = temp_slot_level;
1259 }
1260
1261 /* Set and get the value of target_temp_slot_level. The only
1262 permitted use of these functions is to save and restore this value. */
1263
1264 int
1265 get_target_temp_slot_level ()
1266 {
1267 return target_temp_slot_level;
1268 }
1269
1270 void
1271 set_target_temp_slot_level (level)
1272 int level;
1273 {
1274 target_temp_slot_level = level;
1275 }
1276 #endif
1277
1278 /* Pop a temporary nesting level. All slots in use in the current level
1279 are freed. */
1280
1281 void
1282 pop_temp_slots ()
1283 {
1284 struct temp_slot *p;
1285
1286 for (p = temp_slots; p; p = p->next)
1287 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1288 p->in_use = 0;
1289
1290 combine_temp_slots ();
1291
1292 temp_slot_level--;
1293 }
1294
1295 /* Initialize temporary slots. */
1296
1297 void
1298 init_temp_slots ()
1299 {
1300 /* We have not allocated any temporaries yet. */
1301 temp_slots = 0;
1302 temp_slot_level = 0;
1303 var_temp_slot_level = 0;
1304 target_temp_slot_level = 0;
1305 }
1306 \f
1307 /* Retroactively move an auto variable from a register to a stack slot.
1308 This is done when an address-reference to the variable is seen. */
1309
1310 void
1311 put_var_into_stack (decl)
1312 tree decl;
1313 {
1314 register rtx reg;
1315 enum machine_mode promoted_mode, decl_mode;
1316 struct function *function = 0;
1317 tree context;
1318 int can_use_addressof;
1319
1320 context = decl_function_context (decl);
1321
1322 /* Get the current rtl used for this object and its original mode. */
1323 reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl);
1324
1325 /* No need to do anything if decl has no rtx yet
1326 since in that case caller is setting TREE_ADDRESSABLE
1327 and a stack slot will be assigned when the rtl is made. */
1328 if (reg == 0)
1329 return;
1330
1331 /* Get the declared mode for this object. */
1332 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1333 : DECL_MODE (decl));
1334 /* Get the mode it's actually stored in. */
1335 promoted_mode = GET_MODE (reg);
1336
1337 /* If this variable comes from an outer function,
1338 find that function's saved context. */
1339 if (context != current_function_decl && context != inline_function_decl)
1340 for (function = outer_function_chain; function; function = function->next)
1341 if (function->decl == context)
1342 break;
1343
1344 /* If this is a variable-size object with a pseudo to address it,
1345 put that pseudo into the stack, if the var is nonlocal. */
1346 if (DECL_NONLOCAL (decl)
1347 && GET_CODE (reg) == MEM
1348 && GET_CODE (XEXP (reg, 0)) == REG
1349 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1350 {
1351 reg = XEXP (reg, 0);
1352 decl_mode = promoted_mode = GET_MODE (reg);
1353 }
1354
1355 can_use_addressof
1356 = (function == 0
1357 && optimize > 0
1358 /* FIXME make it work for promoted modes too */
1359 && decl_mode == promoted_mode
1360 #ifdef NON_SAVING_SETJMP
1361 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1362 #endif
1363 );
1364
1365 /* If we can't use ADDRESSOF, make sure we see through one we already
1366 generated. */
1367 if (! can_use_addressof && GET_CODE (reg) == MEM
1368 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1369 reg = XEXP (XEXP (reg, 0), 0);
1370
1371 /* Now we should have a value that resides in one or more pseudo regs. */
1372
1373 if (GET_CODE (reg) == REG)
1374 {
1375 /* If this variable lives in the current function and we don't need
1376 to put things in the stack for the sake of setjmp, try to keep it
1377 in a register until we know we actually need the address. */
1378 if (can_use_addressof)
1379 gen_mem_addressof (reg, decl);
1380 else
1381 put_reg_into_stack (function, reg, TREE_TYPE (decl),
1382 promoted_mode, decl_mode,
1383 TREE_SIDE_EFFECTS (decl), 0,
1384 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1385 0);
1386 }
1387 else if (GET_CODE (reg) == CONCAT)
1388 {
1389 /* A CONCAT contains two pseudos; put them both in the stack.
1390 We do it so they end up consecutive. */
1391 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1392 tree part_type = type_for_mode (part_mode, 0);
1393 #ifdef FRAME_GROWS_DOWNWARD
1394 /* Since part 0 should have a lower address, do it second. */
1395 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1396 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1397 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1398 0);
1399 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1400 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1401 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1402 0);
1403 #else
1404 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1405 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1406 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1407 0);
1408 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1409 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1410 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1411 0);
1412 #endif
1413
1414 /* Change the CONCAT into a combined MEM for both parts. */
1415 PUT_CODE (reg, MEM);
1416 MEM_VOLATILE_P (reg) = MEM_VOLATILE_P (XEXP (reg, 0));
1417 MEM_ALIAS_SET (reg) = get_alias_set (decl);
1418 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (TREE_TYPE (decl)));
1419
1420 /* The two parts are in memory order already.
1421 Use the lower parts address as ours. */
1422 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1423 /* Prevent sharing of rtl that might lose. */
1424 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1425 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1426 }
1427 else
1428 return;
1429
1430 if (current_function_check_memory_usage)
1431 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
1432 XEXP (reg, 0), Pmode,
1433 GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
1434 TYPE_MODE (sizetype),
1435 GEN_INT (MEMORY_USE_RW),
1436 TYPE_MODE (integer_type_node));
1437 }
1438
1439 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1440 into the stack frame of FUNCTION (0 means the current function).
1441 DECL_MODE is the machine mode of the user-level data type.
1442 PROMOTED_MODE is the machine mode of the register.
1443 VOLATILE_P is nonzero if this is for a "volatile" decl.
1444 USED_P is nonzero if this reg might have already been used in an insn. */
1445
1446 static void
1447 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1448 original_regno, used_p, ht)
1449 struct function *function;
1450 rtx reg;
1451 tree type;
1452 enum machine_mode promoted_mode, decl_mode;
1453 int volatile_p;
1454 int original_regno;
1455 int used_p;
1456 struct hash_table *ht;
1457 {
1458 struct function *func = function ? function : cfun;
1459 rtx new = 0;
1460 int regno = original_regno;
1461
1462 if (regno == 0)
1463 regno = REGNO (reg);
1464
1465 if (regno < func->x_max_parm_reg)
1466 new = func->x_parm_reg_stack_loc[regno];
1467 if (new == 0)
1468 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1469
1470 PUT_CODE (reg, MEM);
1471 PUT_MODE (reg, decl_mode);
1472 XEXP (reg, 0) = XEXP (new, 0);
1473 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1474 MEM_VOLATILE_P (reg) = volatile_p;
1475
1476 /* If this is a memory ref that contains aggregate components,
1477 mark it as such for cse and loop optimize. If we are reusing a
1478 previously generated stack slot, then we need to copy the bit in
1479 case it was set for other reasons. For instance, it is set for
1480 __builtin_va_alist. */
1481 MEM_SET_IN_STRUCT_P (reg,
1482 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1483 MEM_ALIAS_SET (reg) = get_alias_set (type);
1484
1485 /* Now make sure that all refs to the variable, previously made
1486 when it was a register, are fixed up to be valid again. */
1487
1488 if (used_p && function != 0)
1489 {
1490 struct var_refs_queue *temp;
1491
1492 temp
1493 = (struct var_refs_queue *) xmalloc (sizeof (struct var_refs_queue));
1494 temp->modified = reg;
1495 temp->promoted_mode = promoted_mode;
1496 temp->unsignedp = TREE_UNSIGNED (type);
1497 temp->next = function->fixup_var_refs_queue;
1498 function->fixup_var_refs_queue = temp;
1499 }
1500 else if (used_p)
1501 /* Variable is local; fix it up now. */
1502 fixup_var_refs (reg, promoted_mode, TREE_UNSIGNED (type), ht);
1503 }
1504 \f
1505 static void
1506 fixup_var_refs (var, promoted_mode, unsignedp, ht)
1507 rtx var;
1508 enum machine_mode promoted_mode;
1509 int unsignedp;
1510 struct hash_table *ht;
1511 {
1512 tree pending;
1513 rtx first_insn = get_insns ();
1514 struct sequence_stack *stack = seq_stack;
1515 tree rtl_exps = rtl_expr_chain;
1516 rtx insn;
1517
1518 /* Must scan all insns for stack-refs that exceed the limit. */
1519 fixup_var_refs_insns (var, promoted_mode, unsignedp, first_insn,
1520 stack == 0, ht);
1521 /* If there's a hash table, it must record all uses of VAR. */
1522 if (ht)
1523 return;
1524
1525 /* Scan all pending sequences too. */
1526 for (; stack; stack = stack->next)
1527 {
1528 push_to_sequence (stack->first);
1529 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1530 stack->first, stack->next != 0, 0);
1531 /* Update remembered end of sequence
1532 in case we added an insn at the end. */
1533 stack->last = get_last_insn ();
1534 end_sequence ();
1535 }
1536
1537 /* Scan all waiting RTL_EXPRs too. */
1538 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1539 {
1540 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1541 if (seq != const0_rtx && seq != 0)
1542 {
1543 push_to_sequence (seq);
1544 fixup_var_refs_insns (var, promoted_mode, unsignedp, seq, 0,
1545 0);
1546 end_sequence ();
1547 }
1548 }
1549
1550 /* Scan the catch clauses for exception handling too. */
1551 push_to_full_sequence (catch_clauses, catch_clauses_last);
1552 fixup_var_refs_insns (var, promoted_mode, unsignedp, catch_clauses,
1553 0, 0);
1554 end_full_sequence (&catch_clauses, &catch_clauses_last);
1555
1556 /* Scan sequences saved in CALL_PLACEHOLDERS too. */
1557 for (insn = first_insn; insn; insn = NEXT_INSN (insn))
1558 {
1559 if (GET_CODE (insn) == CALL_INSN
1560 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1561 {
1562 int i;
1563
1564 /* Look at the Normal call, sibling call and tail recursion
1565 sequences attached to the CALL_PLACEHOLDER. */
1566 for (i = 0; i < 3; i++)
1567 {
1568 rtx seq = XEXP (PATTERN (insn), i);
1569 if (seq)
1570 {
1571 push_to_sequence (seq);
1572 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1573 seq, 0, 0);
1574 XEXP (PATTERN (insn), i) = get_insns ();
1575 end_sequence ();
1576 }
1577 }
1578 }
1579 }
1580 }
1581 \f
1582 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1583 some part of an insn. Return a struct fixup_replacement whose OLD
1584 value is equal to X. Allocate a new structure if no such entry exists. */
1585
1586 static struct fixup_replacement *
1587 find_fixup_replacement (replacements, x)
1588 struct fixup_replacement **replacements;
1589 rtx x;
1590 {
1591 struct fixup_replacement *p;
1592
1593 /* See if we have already replaced this. */
1594 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1595 ;
1596
1597 if (p == 0)
1598 {
1599 p = (struct fixup_replacement *) oballoc (sizeof (struct fixup_replacement));
1600 p->old = x;
1601 p->new = 0;
1602 p->next = *replacements;
1603 *replacements = p;
1604 }
1605
1606 return p;
1607 }
1608
1609 /* Scan the insn-chain starting with INSN for refs to VAR
1610 and fix them up. TOPLEVEL is nonzero if this chain is the
1611 main chain of insns for the current function. */
1612
1613 static void
1614 fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel, ht)
1615 rtx var;
1616 enum machine_mode promoted_mode;
1617 int unsignedp;
1618 rtx insn;
1619 int toplevel;
1620 struct hash_table *ht;
1621 {
1622 rtx call_dest = 0;
1623 rtx insn_list = NULL_RTX;
1624
1625 /* If we already know which INSNs reference VAR there's no need
1626 to walk the entire instruction chain. */
1627 if (ht)
1628 {
1629 insn_list = ((struct insns_for_mem_entry *)
1630 hash_lookup (ht, var, /*create=*/0, /*copy=*/0))->insns;
1631 insn = insn_list ? XEXP (insn_list, 0) : NULL_RTX;
1632 insn_list = XEXP (insn_list, 1);
1633 }
1634
1635 while (insn)
1636 {
1637 rtx next = NEXT_INSN (insn);
1638 rtx set, prev, prev_set;
1639 rtx note;
1640
1641 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1642 {
1643 /* Remember the notes in case we delete the insn. */
1644 note = REG_NOTES (insn);
1645
1646 /* If this is a CLOBBER of VAR, delete it.
1647
1648 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1649 and REG_RETVAL notes too. */
1650 if (GET_CODE (PATTERN (insn)) == CLOBBER
1651 && (XEXP (PATTERN (insn), 0) == var
1652 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1653 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1654 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1655 {
1656 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1657 /* The REG_LIBCALL note will go away since we are going to
1658 turn INSN into a NOTE, so just delete the
1659 corresponding REG_RETVAL note. */
1660 remove_note (XEXP (note, 0),
1661 find_reg_note (XEXP (note, 0), REG_RETVAL,
1662 NULL_RTX));
1663
1664 /* In unoptimized compilation, we shouldn't call delete_insn
1665 except in jump.c doing warnings. */
1666 PUT_CODE (insn, NOTE);
1667 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1668 NOTE_SOURCE_FILE (insn) = 0;
1669 }
1670
1671 /* The insn to load VAR from a home in the arglist
1672 is now a no-op. When we see it, just delete it.
1673 Similarly if this is storing VAR from a register from which
1674 it was loaded in the previous insn. This will occur
1675 when an ADDRESSOF was made for an arglist slot. */
1676 else if (toplevel
1677 && (set = single_set (insn)) != 0
1678 && SET_DEST (set) == var
1679 /* If this represents the result of an insn group,
1680 don't delete the insn. */
1681 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1682 && (rtx_equal_p (SET_SRC (set), var)
1683 || (GET_CODE (SET_SRC (set)) == REG
1684 && (prev = prev_nonnote_insn (insn)) != 0
1685 && (prev_set = single_set (prev)) != 0
1686 && SET_DEST (prev_set) == SET_SRC (set)
1687 && rtx_equal_p (SET_SRC (prev_set), var))))
1688 {
1689 /* In unoptimized compilation, we shouldn't call delete_insn
1690 except in jump.c doing warnings. */
1691 PUT_CODE (insn, NOTE);
1692 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1693 NOTE_SOURCE_FILE (insn) = 0;
1694 if (insn == last_parm_insn)
1695 last_parm_insn = PREV_INSN (next);
1696 }
1697 else
1698 {
1699 struct fixup_replacement *replacements = 0;
1700 rtx next_insn = NEXT_INSN (insn);
1701
1702 if (SMALL_REGISTER_CLASSES)
1703 {
1704 /* If the insn that copies the results of a CALL_INSN
1705 into a pseudo now references VAR, we have to use an
1706 intermediate pseudo since we want the life of the
1707 return value register to be only a single insn.
1708
1709 If we don't use an intermediate pseudo, such things as
1710 address computations to make the address of VAR valid
1711 if it is not can be placed between the CALL_INSN and INSN.
1712
1713 To make sure this doesn't happen, we record the destination
1714 of the CALL_INSN and see if the next insn uses both that
1715 and VAR. */
1716
1717 if (call_dest != 0 && GET_CODE (insn) == INSN
1718 && reg_mentioned_p (var, PATTERN (insn))
1719 && reg_mentioned_p (call_dest, PATTERN (insn)))
1720 {
1721 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1722
1723 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1724
1725 PATTERN (insn) = replace_rtx (PATTERN (insn),
1726 call_dest, temp);
1727 }
1728
1729 if (GET_CODE (insn) == CALL_INSN
1730 && GET_CODE (PATTERN (insn)) == SET)
1731 call_dest = SET_DEST (PATTERN (insn));
1732 else if (GET_CODE (insn) == CALL_INSN
1733 && GET_CODE (PATTERN (insn)) == PARALLEL
1734 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1735 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1736 else
1737 call_dest = 0;
1738 }
1739
1740 /* See if we have to do anything to INSN now that VAR is in
1741 memory. If it needs to be loaded into a pseudo, use a single
1742 pseudo for the entire insn in case there is a MATCH_DUP
1743 between two operands. We pass a pointer to the head of
1744 a list of struct fixup_replacements. If fixup_var_refs_1
1745 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1746 it will record them in this list.
1747
1748 If it allocated a pseudo for any replacement, we copy into
1749 it here. */
1750
1751 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1752 &replacements);
1753
1754 /* If this is last_parm_insn, and any instructions were output
1755 after it to fix it up, then we must set last_parm_insn to
1756 the last such instruction emitted. */
1757 if (insn == last_parm_insn)
1758 last_parm_insn = PREV_INSN (next_insn);
1759
1760 while (replacements)
1761 {
1762 if (GET_CODE (replacements->new) == REG)
1763 {
1764 rtx insert_before;
1765 rtx seq;
1766
1767 /* OLD might be a (subreg (mem)). */
1768 if (GET_CODE (replacements->old) == SUBREG)
1769 replacements->old
1770 = fixup_memory_subreg (replacements->old, insn, 0);
1771 else
1772 replacements->old
1773 = fixup_stack_1 (replacements->old, insn);
1774
1775 insert_before = insn;
1776
1777 /* If we are changing the mode, do a conversion.
1778 This might be wasteful, but combine.c will
1779 eliminate much of the waste. */
1780
1781 if (GET_MODE (replacements->new)
1782 != GET_MODE (replacements->old))
1783 {
1784 start_sequence ();
1785 convert_move (replacements->new,
1786 replacements->old, unsignedp);
1787 seq = gen_sequence ();
1788 end_sequence ();
1789 }
1790 else
1791 seq = gen_move_insn (replacements->new,
1792 replacements->old);
1793
1794 emit_insn_before (seq, insert_before);
1795 }
1796
1797 replacements = replacements->next;
1798 }
1799 }
1800
1801 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1802 But don't touch other insns referred to by reg-notes;
1803 we will get them elsewhere. */
1804 while (note)
1805 {
1806 if (GET_CODE (note) != INSN_LIST)
1807 XEXP (note, 0)
1808 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1809 note = XEXP (note, 1);
1810 }
1811 }
1812
1813 if (!ht)
1814 insn = next;
1815 else if (insn_list)
1816 {
1817 insn = XEXP (insn_list, 0);
1818 insn_list = XEXP (insn_list, 1);
1819 }
1820 else
1821 insn = NULL_RTX;
1822 }
1823 }
1824 \f
1825 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1826 See if the rtx expression at *LOC in INSN needs to be changed.
1827
1828 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1829 contain a list of original rtx's and replacements. If we find that we need
1830 to modify this insn by replacing a memory reference with a pseudo or by
1831 making a new MEM to implement a SUBREG, we consult that list to see if
1832 we have already chosen a replacement. If none has already been allocated,
1833 we allocate it and update the list. fixup_var_refs_insns will copy VAR
1834 or the SUBREG, as appropriate, to the pseudo. */
1835
1836 static void
1837 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1838 register rtx var;
1839 enum machine_mode promoted_mode;
1840 register rtx *loc;
1841 rtx insn;
1842 struct fixup_replacement **replacements;
1843 {
1844 register int i;
1845 register rtx x = *loc;
1846 RTX_CODE code = GET_CODE (x);
1847 register const char *fmt;
1848 register rtx tem, tem1;
1849 struct fixup_replacement *replacement;
1850
1851 switch (code)
1852 {
1853 case ADDRESSOF:
1854 if (XEXP (x, 0) == var)
1855 {
1856 /* Prevent sharing of rtl that might lose. */
1857 rtx sub = copy_rtx (XEXP (var, 0));
1858
1859 if (! validate_change (insn, loc, sub, 0))
1860 {
1861 rtx y = gen_reg_rtx (GET_MODE (sub));
1862 rtx seq, new_insn;
1863
1864 /* We should be able to replace with a register or all is lost.
1865 Note that we can't use validate_change to verify this, since
1866 we're not caring for replacing all dups simultaneously. */
1867 if (! validate_replace_rtx (*loc, y, insn))
1868 abort ();
1869
1870 /* Careful! First try to recognize a direct move of the
1871 value, mimicking how things are done in gen_reload wrt
1872 PLUS. Consider what happens when insn is a conditional
1873 move instruction and addsi3 clobbers flags. */
1874
1875 start_sequence ();
1876 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1877 seq = gen_sequence ();
1878 end_sequence ();
1879
1880 if (recog_memoized (new_insn) < 0)
1881 {
1882 /* That failed. Fall back on force_operand and hope. */
1883
1884 start_sequence ();
1885 force_operand (sub, y);
1886 seq = gen_sequence ();
1887 end_sequence ();
1888 }
1889
1890 #ifdef HAVE_cc0
1891 /* Don't separate setter from user. */
1892 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1893 insn = PREV_INSN (insn);
1894 #endif
1895
1896 emit_insn_before (seq, insn);
1897 }
1898 }
1899 return;
1900
1901 case MEM:
1902 if (var == x)
1903 {
1904 /* If we already have a replacement, use it. Otherwise,
1905 try to fix up this address in case it is invalid. */
1906
1907 replacement = find_fixup_replacement (replacements, var);
1908 if (replacement->new)
1909 {
1910 *loc = replacement->new;
1911 return;
1912 }
1913
1914 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1915
1916 /* Unless we are forcing memory to register or we changed the mode,
1917 we can leave things the way they are if the insn is valid. */
1918
1919 INSN_CODE (insn) = -1;
1920 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1921 && recog_memoized (insn) >= 0)
1922 return;
1923
1924 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1925 return;
1926 }
1927
1928 /* If X contains VAR, we need to unshare it here so that we update
1929 each occurrence separately. But all identical MEMs in one insn
1930 must be replaced with the same rtx because of the possibility of
1931 MATCH_DUPs. */
1932
1933 if (reg_mentioned_p (var, x))
1934 {
1935 replacement = find_fixup_replacement (replacements, x);
1936 if (replacement->new == 0)
1937 replacement->new = copy_most_rtx (x, var);
1938
1939 *loc = x = replacement->new;
1940 }
1941 break;
1942
1943 case REG:
1944 case CC0:
1945 case PC:
1946 case CONST_INT:
1947 case CONST:
1948 case SYMBOL_REF:
1949 case LABEL_REF:
1950 case CONST_DOUBLE:
1951 return;
1952
1953 case SIGN_EXTRACT:
1954 case ZERO_EXTRACT:
1955 /* Note that in some cases those types of expressions are altered
1956 by optimize_bit_field, and do not survive to get here. */
1957 if (XEXP (x, 0) == var
1958 || (GET_CODE (XEXP (x, 0)) == SUBREG
1959 && SUBREG_REG (XEXP (x, 0)) == var))
1960 {
1961 /* Get TEM as a valid MEM in the mode presently in the insn.
1962
1963 We don't worry about the possibility of MATCH_DUP here; it
1964 is highly unlikely and would be tricky to handle. */
1965
1966 tem = XEXP (x, 0);
1967 if (GET_CODE (tem) == SUBREG)
1968 {
1969 if (GET_MODE_BITSIZE (GET_MODE (tem))
1970 > GET_MODE_BITSIZE (GET_MODE (var)))
1971 {
1972 replacement = find_fixup_replacement (replacements, var);
1973 if (replacement->new == 0)
1974 replacement->new = gen_reg_rtx (GET_MODE (var));
1975 SUBREG_REG (tem) = replacement->new;
1976 }
1977 else
1978 tem = fixup_memory_subreg (tem, insn, 0);
1979 }
1980 else
1981 tem = fixup_stack_1 (tem, insn);
1982
1983 /* Unless we want to load from memory, get TEM into the proper mode
1984 for an extract from memory. This can only be done if the
1985 extract is at a constant position and length. */
1986
1987 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
1988 && GET_CODE (XEXP (x, 2)) == CONST_INT
1989 && ! mode_dependent_address_p (XEXP (tem, 0))
1990 && ! MEM_VOLATILE_P (tem))
1991 {
1992 enum machine_mode wanted_mode = VOIDmode;
1993 enum machine_mode is_mode = GET_MODE (tem);
1994 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
1995
1996 #ifdef HAVE_extzv
1997 if (GET_CODE (x) == ZERO_EXTRACT)
1998 {
1999 wanted_mode
2000 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
2001 if (wanted_mode == VOIDmode)
2002 wanted_mode = word_mode;
2003 }
2004 #endif
2005 #ifdef HAVE_extv
2006 if (GET_CODE (x) == SIGN_EXTRACT)
2007 {
2008 wanted_mode = insn_data[(int) CODE_FOR_extv].operand[1].mode;
2009 if (wanted_mode == VOIDmode)
2010 wanted_mode = word_mode;
2011 }
2012 #endif
2013 /* If we have a narrower mode, we can do something. */
2014 if (wanted_mode != VOIDmode
2015 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2016 {
2017 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2018 rtx old_pos = XEXP (x, 2);
2019 rtx newmem;
2020
2021 /* If the bytes and bits are counted differently, we
2022 must adjust the offset. */
2023 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2024 offset = (GET_MODE_SIZE (is_mode)
2025 - GET_MODE_SIZE (wanted_mode) - offset);
2026
2027 pos %= GET_MODE_BITSIZE (wanted_mode);
2028
2029 newmem = gen_rtx_MEM (wanted_mode,
2030 plus_constant (XEXP (tem, 0), offset));
2031 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
2032 MEM_COPY_ATTRIBUTES (newmem, tem);
2033
2034 /* Make the change and see if the insn remains valid. */
2035 INSN_CODE (insn) = -1;
2036 XEXP (x, 0) = newmem;
2037 XEXP (x, 2) = GEN_INT (pos);
2038
2039 if (recog_memoized (insn) >= 0)
2040 return;
2041
2042 /* Otherwise, restore old position. XEXP (x, 0) will be
2043 restored later. */
2044 XEXP (x, 2) = old_pos;
2045 }
2046 }
2047
2048 /* If we get here, the bitfield extract insn can't accept a memory
2049 reference. Copy the input into a register. */
2050
2051 tem1 = gen_reg_rtx (GET_MODE (tem));
2052 emit_insn_before (gen_move_insn (tem1, tem), insn);
2053 XEXP (x, 0) = tem1;
2054 return;
2055 }
2056 break;
2057
2058 case SUBREG:
2059 if (SUBREG_REG (x) == var)
2060 {
2061 /* If this is a special SUBREG made because VAR was promoted
2062 from a wider mode, replace it with VAR and call ourself
2063 recursively, this time saying that the object previously
2064 had its current mode (by virtue of the SUBREG). */
2065
2066 if (SUBREG_PROMOTED_VAR_P (x))
2067 {
2068 *loc = var;
2069 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
2070 return;
2071 }
2072
2073 /* If this SUBREG makes VAR wider, it has become a paradoxical
2074 SUBREG with VAR in memory, but these aren't allowed at this
2075 stage of the compilation. So load VAR into a pseudo and take
2076 a SUBREG of that pseudo. */
2077 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2078 {
2079 replacement = find_fixup_replacement (replacements, var);
2080 if (replacement->new == 0)
2081 replacement->new = gen_reg_rtx (GET_MODE (var));
2082 SUBREG_REG (x) = replacement->new;
2083 return;
2084 }
2085
2086 /* See if we have already found a replacement for this SUBREG.
2087 If so, use it. Otherwise, make a MEM and see if the insn
2088 is recognized. If not, or if we should force MEM into a register,
2089 make a pseudo for this SUBREG. */
2090 replacement = find_fixup_replacement (replacements, x);
2091 if (replacement->new)
2092 {
2093 *loc = replacement->new;
2094 return;
2095 }
2096
2097 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
2098
2099 INSN_CODE (insn) = -1;
2100 if (! flag_force_mem && recog_memoized (insn) >= 0)
2101 return;
2102
2103 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2104 return;
2105 }
2106 break;
2107
2108 case SET:
2109 /* First do special simplification of bit-field references. */
2110 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2111 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2112 optimize_bit_field (x, insn, 0);
2113 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2114 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2115 optimize_bit_field (x, insn, NULL_PTR);
2116
2117 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2118 into a register and then store it back out. */
2119 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2120 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2121 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2122 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2123 > GET_MODE_SIZE (GET_MODE (var))))
2124 {
2125 replacement = find_fixup_replacement (replacements, var);
2126 if (replacement->new == 0)
2127 replacement->new = gen_reg_rtx (GET_MODE (var));
2128
2129 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2130 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2131 }
2132
2133 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2134 insn into a pseudo and store the low part of the pseudo into VAR. */
2135 if (GET_CODE (SET_DEST (x)) == SUBREG
2136 && SUBREG_REG (SET_DEST (x)) == var
2137 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2138 > GET_MODE_SIZE (GET_MODE (var))))
2139 {
2140 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2141 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2142 tem)),
2143 insn);
2144 break;
2145 }
2146
2147 {
2148 rtx dest = SET_DEST (x);
2149 rtx src = SET_SRC (x);
2150 #ifdef HAVE_insv
2151 rtx outerdest = dest;
2152 #endif
2153
2154 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2155 || GET_CODE (dest) == SIGN_EXTRACT
2156 || GET_CODE (dest) == ZERO_EXTRACT)
2157 dest = XEXP (dest, 0);
2158
2159 if (GET_CODE (src) == SUBREG)
2160 src = XEXP (src, 0);
2161
2162 /* If VAR does not appear at the top level of the SET
2163 just scan the lower levels of the tree. */
2164
2165 if (src != var && dest != var)
2166 break;
2167
2168 /* We will need to rerecognize this insn. */
2169 INSN_CODE (insn) = -1;
2170
2171 #ifdef HAVE_insv
2172 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
2173 {
2174 /* Since this case will return, ensure we fixup all the
2175 operands here. */
2176 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2177 insn, replacements);
2178 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2179 insn, replacements);
2180 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2181 insn, replacements);
2182
2183 tem = XEXP (outerdest, 0);
2184
2185 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2186 that may appear inside a ZERO_EXTRACT.
2187 This was legitimate when the MEM was a REG. */
2188 if (GET_CODE (tem) == SUBREG
2189 && SUBREG_REG (tem) == var)
2190 tem = fixup_memory_subreg (tem, insn, 0);
2191 else
2192 tem = fixup_stack_1 (tem, insn);
2193
2194 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2195 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2196 && ! mode_dependent_address_p (XEXP (tem, 0))
2197 && ! MEM_VOLATILE_P (tem))
2198 {
2199 enum machine_mode wanted_mode;
2200 enum machine_mode is_mode = GET_MODE (tem);
2201 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2202
2203 wanted_mode = insn_data[(int) CODE_FOR_insv].operand[0].mode;
2204 if (wanted_mode == VOIDmode)
2205 wanted_mode = word_mode;
2206
2207 /* If we have a narrower mode, we can do something. */
2208 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2209 {
2210 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2211 rtx old_pos = XEXP (outerdest, 2);
2212 rtx newmem;
2213
2214 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2215 offset = (GET_MODE_SIZE (is_mode)
2216 - GET_MODE_SIZE (wanted_mode) - offset);
2217
2218 pos %= GET_MODE_BITSIZE (wanted_mode);
2219
2220 newmem = gen_rtx_MEM (wanted_mode,
2221 plus_constant (XEXP (tem, 0),
2222 offset));
2223 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
2224 MEM_COPY_ATTRIBUTES (newmem, tem);
2225
2226 /* Make the change and see if the insn remains valid. */
2227 INSN_CODE (insn) = -1;
2228 XEXP (outerdest, 0) = newmem;
2229 XEXP (outerdest, 2) = GEN_INT (pos);
2230
2231 if (recog_memoized (insn) >= 0)
2232 return;
2233
2234 /* Otherwise, restore old position. XEXP (x, 0) will be
2235 restored later. */
2236 XEXP (outerdest, 2) = old_pos;
2237 }
2238 }
2239
2240 /* If we get here, the bit-field store doesn't allow memory
2241 or isn't located at a constant position. Load the value into
2242 a register, do the store, and put it back into memory. */
2243
2244 tem1 = gen_reg_rtx (GET_MODE (tem));
2245 emit_insn_before (gen_move_insn (tem1, tem), insn);
2246 emit_insn_after (gen_move_insn (tem, tem1), insn);
2247 XEXP (outerdest, 0) = tem1;
2248 return;
2249 }
2250 #endif
2251
2252 /* STRICT_LOW_PART is a no-op on memory references
2253 and it can cause combinations to be unrecognizable,
2254 so eliminate it. */
2255
2256 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2257 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2258
2259 /* A valid insn to copy VAR into or out of a register
2260 must be left alone, to avoid an infinite loop here.
2261 If the reference to VAR is by a subreg, fix that up,
2262 since SUBREG is not valid for a memref.
2263 Also fix up the address of the stack slot.
2264
2265 Note that we must not try to recognize the insn until
2266 after we know that we have valid addresses and no
2267 (subreg (mem ...) ...) constructs, since these interfere
2268 with determining the validity of the insn. */
2269
2270 if ((SET_SRC (x) == var
2271 || (GET_CODE (SET_SRC (x)) == SUBREG
2272 && SUBREG_REG (SET_SRC (x)) == var))
2273 && (GET_CODE (SET_DEST (x)) == REG
2274 || (GET_CODE (SET_DEST (x)) == SUBREG
2275 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2276 && GET_MODE (var) == promoted_mode
2277 && x == single_set (insn))
2278 {
2279 rtx pat;
2280
2281 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2282 if (replacement->new)
2283 SET_SRC (x) = replacement->new;
2284 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2285 SET_SRC (x) = replacement->new
2286 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2287 else
2288 SET_SRC (x) = replacement->new
2289 = fixup_stack_1 (SET_SRC (x), insn);
2290
2291 if (recog_memoized (insn) >= 0)
2292 return;
2293
2294 /* INSN is not valid, but we know that we want to
2295 copy SET_SRC (x) to SET_DEST (x) in some way. So
2296 we generate the move and see whether it requires more
2297 than one insn. If it does, we emit those insns and
2298 delete INSN. Otherwise, we an just replace the pattern
2299 of INSN; we have already verified above that INSN has
2300 no other function that to do X. */
2301
2302 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2303 if (GET_CODE (pat) == SEQUENCE)
2304 {
2305 emit_insn_after (pat, insn);
2306 PUT_CODE (insn, NOTE);
2307 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2308 NOTE_SOURCE_FILE (insn) = 0;
2309 }
2310 else
2311 PATTERN (insn) = pat;
2312
2313 return;
2314 }
2315
2316 if ((SET_DEST (x) == var
2317 || (GET_CODE (SET_DEST (x)) == SUBREG
2318 && SUBREG_REG (SET_DEST (x)) == var))
2319 && (GET_CODE (SET_SRC (x)) == REG
2320 || (GET_CODE (SET_SRC (x)) == SUBREG
2321 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2322 && GET_MODE (var) == promoted_mode
2323 && x == single_set (insn))
2324 {
2325 rtx pat;
2326
2327 if (GET_CODE (SET_DEST (x)) == SUBREG)
2328 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2329 else
2330 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2331
2332 if (recog_memoized (insn) >= 0)
2333 return;
2334
2335 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2336 if (GET_CODE (pat) == SEQUENCE)
2337 {
2338 emit_insn_after (pat, insn);
2339 PUT_CODE (insn, NOTE);
2340 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2341 NOTE_SOURCE_FILE (insn) = 0;
2342 }
2343 else
2344 PATTERN (insn) = pat;
2345
2346 return;
2347 }
2348
2349 /* Otherwise, storing into VAR must be handled specially
2350 by storing into a temporary and copying that into VAR
2351 with a new insn after this one. Note that this case
2352 will be used when storing into a promoted scalar since
2353 the insn will now have different modes on the input
2354 and output and hence will be invalid (except for the case
2355 of setting it to a constant, which does not need any
2356 change if it is valid). We generate extra code in that case,
2357 but combine.c will eliminate it. */
2358
2359 if (dest == var)
2360 {
2361 rtx temp;
2362 rtx fixeddest = SET_DEST (x);
2363
2364 /* STRICT_LOW_PART can be discarded, around a MEM. */
2365 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2366 fixeddest = XEXP (fixeddest, 0);
2367 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2368 if (GET_CODE (fixeddest) == SUBREG)
2369 {
2370 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2371 promoted_mode = GET_MODE (fixeddest);
2372 }
2373 else
2374 fixeddest = fixup_stack_1 (fixeddest, insn);
2375
2376 temp = gen_reg_rtx (promoted_mode);
2377
2378 emit_insn_after (gen_move_insn (fixeddest,
2379 gen_lowpart (GET_MODE (fixeddest),
2380 temp)),
2381 insn);
2382
2383 SET_DEST (x) = temp;
2384 }
2385 }
2386
2387 default:
2388 break;
2389 }
2390
2391 /* Nothing special about this RTX; fix its operands. */
2392
2393 fmt = GET_RTX_FORMAT (code);
2394 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2395 {
2396 if (fmt[i] == 'e')
2397 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2398 else if (fmt[i] == 'E')
2399 {
2400 register int j;
2401 for (j = 0; j < XVECLEN (x, i); j++)
2402 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2403 insn, replacements);
2404 }
2405 }
2406 }
2407 \f
2408 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2409 return an rtx (MEM:m1 newaddr) which is equivalent.
2410 If any insns must be emitted to compute NEWADDR, put them before INSN.
2411
2412 UNCRITICAL nonzero means accept paradoxical subregs.
2413 This is used for subregs found inside REG_NOTES. */
2414
2415 static rtx
2416 fixup_memory_subreg (x, insn, uncritical)
2417 rtx x;
2418 rtx insn;
2419 int uncritical;
2420 {
2421 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2422 rtx addr = XEXP (SUBREG_REG (x), 0);
2423 enum machine_mode mode = GET_MODE (x);
2424 rtx result;
2425
2426 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2427 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2428 && ! uncritical)
2429 abort ();
2430
2431 if (BYTES_BIG_ENDIAN)
2432 offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2433 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2434 addr = plus_constant (addr, offset);
2435 if (!flag_force_addr && memory_address_p (mode, addr))
2436 /* Shortcut if no insns need be emitted. */
2437 return change_address (SUBREG_REG (x), mode, addr);
2438 start_sequence ();
2439 result = change_address (SUBREG_REG (x), mode, addr);
2440 emit_insn_before (gen_sequence (), insn);
2441 end_sequence ();
2442 return result;
2443 }
2444
2445 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2446 Replace subexpressions of X in place.
2447 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2448 Otherwise return X, with its contents possibly altered.
2449
2450 If any insns must be emitted to compute NEWADDR, put them before INSN.
2451
2452 UNCRITICAL is as in fixup_memory_subreg. */
2453
2454 static rtx
2455 walk_fixup_memory_subreg (x, insn, uncritical)
2456 register rtx x;
2457 rtx insn;
2458 int uncritical;
2459 {
2460 register enum rtx_code code;
2461 register const char *fmt;
2462 register int i;
2463
2464 if (x == 0)
2465 return 0;
2466
2467 code = GET_CODE (x);
2468
2469 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2470 return fixup_memory_subreg (x, insn, uncritical);
2471
2472 /* Nothing special about this RTX; fix its operands. */
2473
2474 fmt = GET_RTX_FORMAT (code);
2475 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2476 {
2477 if (fmt[i] == 'e')
2478 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2479 else if (fmt[i] == 'E')
2480 {
2481 register int j;
2482 for (j = 0; j < XVECLEN (x, i); j++)
2483 XVECEXP (x, i, j)
2484 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2485 }
2486 }
2487 return x;
2488 }
2489 \f
2490 /* For each memory ref within X, if it refers to a stack slot
2491 with an out of range displacement, put the address in a temp register
2492 (emitting new insns before INSN to load these registers)
2493 and alter the memory ref to use that register.
2494 Replace each such MEM rtx with a copy, to avoid clobberage. */
2495
2496 static rtx
2497 fixup_stack_1 (x, insn)
2498 rtx x;
2499 rtx insn;
2500 {
2501 register int i;
2502 register RTX_CODE code = GET_CODE (x);
2503 register const char *fmt;
2504
2505 if (code == MEM)
2506 {
2507 register rtx ad = XEXP (x, 0);
2508 /* If we have address of a stack slot but it's not valid
2509 (displacement is too large), compute the sum in a register. */
2510 if (GET_CODE (ad) == PLUS
2511 && GET_CODE (XEXP (ad, 0)) == REG
2512 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2513 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2514 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2515 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2516 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2517 #endif
2518 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2519 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2520 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2521 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2522 {
2523 rtx temp, seq;
2524 if (memory_address_p (GET_MODE (x), ad))
2525 return x;
2526
2527 start_sequence ();
2528 temp = copy_to_reg (ad);
2529 seq = gen_sequence ();
2530 end_sequence ();
2531 emit_insn_before (seq, insn);
2532 return change_address (x, VOIDmode, temp);
2533 }
2534 return x;
2535 }
2536
2537 fmt = GET_RTX_FORMAT (code);
2538 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2539 {
2540 if (fmt[i] == 'e')
2541 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2542 else if (fmt[i] == 'E')
2543 {
2544 register int j;
2545 for (j = 0; j < XVECLEN (x, i); j++)
2546 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2547 }
2548 }
2549 return x;
2550 }
2551 \f
2552 /* Optimization: a bit-field instruction whose field
2553 happens to be a byte or halfword in memory
2554 can be changed to a move instruction.
2555
2556 We call here when INSN is an insn to examine or store into a bit-field.
2557 BODY is the SET-rtx to be altered.
2558
2559 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2560 (Currently this is called only from function.c, and EQUIV_MEM
2561 is always 0.) */
2562
2563 static void
2564 optimize_bit_field (body, insn, equiv_mem)
2565 rtx body;
2566 rtx insn;
2567 rtx *equiv_mem;
2568 {
2569 register rtx bitfield;
2570 int destflag;
2571 rtx seq = 0;
2572 enum machine_mode mode;
2573
2574 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2575 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2576 bitfield = SET_DEST (body), destflag = 1;
2577 else
2578 bitfield = SET_SRC (body), destflag = 0;
2579
2580 /* First check that the field being stored has constant size and position
2581 and is in fact a byte or halfword suitably aligned. */
2582
2583 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2584 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2585 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2586 != BLKmode)
2587 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2588 {
2589 register rtx memref = 0;
2590
2591 /* Now check that the containing word is memory, not a register,
2592 and that it is safe to change the machine mode. */
2593
2594 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2595 memref = XEXP (bitfield, 0);
2596 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2597 && equiv_mem != 0)
2598 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2599 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2600 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2601 memref = SUBREG_REG (XEXP (bitfield, 0));
2602 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2603 && equiv_mem != 0
2604 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2605 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2606
2607 if (memref
2608 && ! mode_dependent_address_p (XEXP (memref, 0))
2609 && ! MEM_VOLATILE_P (memref))
2610 {
2611 /* Now adjust the address, first for any subreg'ing
2612 that we are now getting rid of,
2613 and then for which byte of the word is wanted. */
2614
2615 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2616 rtx insns;
2617
2618 /* Adjust OFFSET to count bits from low-address byte. */
2619 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2620 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2621 - offset - INTVAL (XEXP (bitfield, 1)));
2622
2623 /* Adjust OFFSET to count bytes from low-address byte. */
2624 offset /= BITS_PER_UNIT;
2625 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2626 {
2627 offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
2628 if (BYTES_BIG_ENDIAN)
2629 offset -= (MIN (UNITS_PER_WORD,
2630 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2631 - MIN (UNITS_PER_WORD,
2632 GET_MODE_SIZE (GET_MODE (memref))));
2633 }
2634
2635 start_sequence ();
2636 memref = change_address (memref, mode,
2637 plus_constant (XEXP (memref, 0), offset));
2638 insns = get_insns ();
2639 end_sequence ();
2640 emit_insns_before (insns, insn);
2641
2642 /* Store this memory reference where
2643 we found the bit field reference. */
2644
2645 if (destflag)
2646 {
2647 validate_change (insn, &SET_DEST (body), memref, 1);
2648 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2649 {
2650 rtx src = SET_SRC (body);
2651 while (GET_CODE (src) == SUBREG
2652 && SUBREG_WORD (src) == 0)
2653 src = SUBREG_REG (src);
2654 if (GET_MODE (src) != GET_MODE (memref))
2655 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2656 validate_change (insn, &SET_SRC (body), src, 1);
2657 }
2658 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2659 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2660 /* This shouldn't happen because anything that didn't have
2661 one of these modes should have got converted explicitly
2662 and then referenced through a subreg.
2663 This is so because the original bit-field was
2664 handled by agg_mode and so its tree structure had
2665 the same mode that memref now has. */
2666 abort ();
2667 }
2668 else
2669 {
2670 rtx dest = SET_DEST (body);
2671
2672 while (GET_CODE (dest) == SUBREG
2673 && SUBREG_WORD (dest) == 0
2674 && (GET_MODE_CLASS (GET_MODE (dest))
2675 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2676 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2677 <= UNITS_PER_WORD))
2678 dest = SUBREG_REG (dest);
2679
2680 validate_change (insn, &SET_DEST (body), dest, 1);
2681
2682 if (GET_MODE (dest) == GET_MODE (memref))
2683 validate_change (insn, &SET_SRC (body), memref, 1);
2684 else
2685 {
2686 /* Convert the mem ref to the destination mode. */
2687 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2688
2689 start_sequence ();
2690 convert_move (newreg, memref,
2691 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2692 seq = get_insns ();
2693 end_sequence ();
2694
2695 validate_change (insn, &SET_SRC (body), newreg, 1);
2696 }
2697 }
2698
2699 /* See if we can convert this extraction or insertion into
2700 a simple move insn. We might not be able to do so if this
2701 was, for example, part of a PARALLEL.
2702
2703 If we succeed, write out any needed conversions. If we fail,
2704 it is hard to guess why we failed, so don't do anything
2705 special; just let the optimization be suppressed. */
2706
2707 if (apply_change_group () && seq)
2708 emit_insns_before (seq, insn);
2709 }
2710 }
2711 }
2712 \f
2713 /* These routines are responsible for converting virtual register references
2714 to the actual hard register references once RTL generation is complete.
2715
2716 The following four variables are used for communication between the
2717 routines. They contain the offsets of the virtual registers from their
2718 respective hard registers. */
2719
2720 static int in_arg_offset;
2721 static int var_offset;
2722 static int dynamic_offset;
2723 static int out_arg_offset;
2724 static int cfa_offset;
2725
2726 /* In most machines, the stack pointer register is equivalent to the bottom
2727 of the stack. */
2728
2729 #ifndef STACK_POINTER_OFFSET
2730 #define STACK_POINTER_OFFSET 0
2731 #endif
2732
2733 /* If not defined, pick an appropriate default for the offset of dynamically
2734 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2735 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2736
2737 #ifndef STACK_DYNAMIC_OFFSET
2738
2739 #ifdef ACCUMULATE_OUTGOING_ARGS
2740 /* The bottom of the stack points to the actual arguments. If
2741 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2742 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2743 stack space for register parameters is not pushed by the caller, but
2744 rather part of the fixed stack areas and hence not included in
2745 `current_function_outgoing_args_size'. Nevertheless, we must allow
2746 for it when allocating stack dynamic objects. */
2747
2748 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2749 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2750 (current_function_outgoing_args_size \
2751 + REG_PARM_STACK_SPACE (FNDECL) + (STACK_POINTER_OFFSET))
2752
2753 #else
2754 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2755 (current_function_outgoing_args_size + (STACK_POINTER_OFFSET))
2756 #endif
2757
2758 #else
2759 #define STACK_DYNAMIC_OFFSET(FNDECL) STACK_POINTER_OFFSET
2760 #endif
2761 #endif
2762
2763 /* On a few machines, the CFA coincides with the arg pointer. */
2764
2765 #ifndef ARG_POINTER_CFA_OFFSET
2766 #define ARG_POINTER_CFA_OFFSET 0
2767 #endif
2768
2769
2770 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2771 its address taken. DECL is the decl for the object stored in the
2772 register, for later use if we do need to force REG into the stack.
2773 REG is overwritten by the MEM like in put_reg_into_stack. */
2774
2775 rtx
2776 gen_mem_addressof (reg, decl)
2777 rtx reg;
2778 tree decl;
2779 {
2780 tree type = TREE_TYPE (decl);
2781 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2782 REGNO (reg), decl);
2783
2784 /* If the original REG was a user-variable, then so is the REG whose
2785 address is being taken. Likewise for unchanging. */
2786 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2787 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2788
2789 PUT_CODE (reg, MEM);
2790 PUT_MODE (reg, DECL_MODE (decl));
2791 XEXP (reg, 0) = r;
2792 MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
2793 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type));
2794 MEM_ALIAS_SET (reg) = get_alias_set (decl);
2795
2796 if (TREE_USED (decl) || DECL_INITIAL (decl) != 0)
2797 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), 0);
2798
2799 return reg;
2800 }
2801
2802 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2803
2804 #if 0
2805 void
2806 flush_addressof (decl)
2807 tree decl;
2808 {
2809 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2810 && DECL_RTL (decl) != 0
2811 && GET_CODE (DECL_RTL (decl)) == MEM
2812 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2813 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2814 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2815 }
2816 #endif
2817
2818 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2819
2820 static void
2821 put_addressof_into_stack (r, ht)
2822 rtx r;
2823 struct hash_table *ht;
2824 {
2825 tree decl = ADDRESSOF_DECL (r);
2826 rtx reg = XEXP (r, 0);
2827
2828 if (GET_CODE (reg) != REG)
2829 abort ();
2830
2831 put_reg_into_stack (0, reg, TREE_TYPE (decl), GET_MODE (reg),
2832 DECL_MODE (decl), TREE_SIDE_EFFECTS (decl),
2833 ADDRESSOF_REGNO (r),
2834 TREE_USED (decl) || DECL_INITIAL (decl) != 0, ht);
2835 }
2836
2837 /* List of replacements made below in purge_addressof_1 when creating
2838 bitfield insertions. */
2839 static rtx purge_bitfield_addressof_replacements;
2840
2841 /* List of replacements made below in purge_addressof_1 for patterns
2842 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2843 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2844 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2845 enough in complex cases, e.g. when some field values can be
2846 extracted by usage MEM with narrower mode. */
2847 static rtx purge_addressof_replacements;
2848
2849 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2850 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2851 the stack. If the function returns FALSE then the replacement could not
2852 be made. */
2853
2854 static boolean
2855 purge_addressof_1 (loc, insn, force, store, ht)
2856 rtx *loc;
2857 rtx insn;
2858 int force, store;
2859 struct hash_table *ht;
2860 {
2861 rtx x;
2862 RTX_CODE code;
2863 int i, j;
2864 const char *fmt;
2865 boolean result = true;
2866
2867 /* Re-start here to avoid recursion in common cases. */
2868 restart:
2869
2870 x = *loc;
2871 if (x == 0)
2872 return true;
2873
2874 code = GET_CODE (x);
2875
2876 /* If we don't return in any of the cases below, we will recurse inside
2877 the RTX, which will normally result in any ADDRESSOF being forced into
2878 memory. */
2879 if (code == SET)
2880 {
2881 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
2882 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
2883 return result;
2884 }
2885
2886 else if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM)
2887 {
2888 /* We must create a copy of the rtx because it was created by
2889 overwriting a REG rtx which is always shared. */
2890 rtx sub = copy_rtx (XEXP (XEXP (x, 0), 0));
2891 rtx insns;
2892
2893 if (validate_change (insn, loc, sub, 0)
2894 || validate_replace_rtx (x, sub, insn))
2895 return true;
2896
2897 start_sequence ();
2898 sub = force_operand (sub, NULL_RTX);
2899 if (! validate_change (insn, loc, sub, 0)
2900 && ! validate_replace_rtx (x, sub, insn))
2901 abort ();
2902
2903 insns = gen_sequence ();
2904 end_sequence ();
2905 emit_insn_before (insns, insn);
2906 return true;
2907 }
2908
2909 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
2910 {
2911 rtx sub = XEXP (XEXP (x, 0), 0);
2912 rtx sub2;
2913
2914 if (GET_CODE (sub) == MEM)
2915 {
2916 sub2 = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0)));
2917 MEM_COPY_ATTRIBUTES (sub2, sub);
2918 RTX_UNCHANGING_P (sub2) = RTX_UNCHANGING_P (sub);
2919 sub = sub2;
2920 }
2921 else if (GET_CODE (sub) == REG
2922 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2923 ;
2924 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
2925 {
2926 int size_x, size_sub;
2927
2928 if (!insn)
2929 {
2930 /* When processing REG_NOTES look at the list of
2931 replacements done on the insn to find the register that X
2932 was replaced by. */
2933 rtx tem;
2934
2935 for (tem = purge_bitfield_addressof_replacements;
2936 tem != NULL_RTX;
2937 tem = XEXP (XEXP (tem, 1), 1))
2938 if (rtx_equal_p (x, XEXP (tem, 0)))
2939 {
2940 *loc = XEXP (XEXP (tem, 1), 0);
2941 return true;
2942 }
2943
2944 /* See comment for purge_addressof_replacements. */
2945 for (tem = purge_addressof_replacements;
2946 tem != NULL_RTX;
2947 tem = XEXP (XEXP (tem, 1), 1))
2948 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
2949 {
2950 rtx z = XEXP (XEXP (tem, 1), 0);
2951
2952 if (GET_MODE (x) == GET_MODE (z)
2953 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
2954 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
2955 abort ();
2956
2957 /* It can happen that the note may speak of things
2958 in a wider (or just different) mode than the
2959 code did. This is especially true of
2960 REG_RETVAL. */
2961
2962 if (GET_CODE (z) == SUBREG && SUBREG_WORD (z) == 0)
2963 z = SUBREG_REG (z);
2964
2965 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2966 && (GET_MODE_SIZE (GET_MODE (x))
2967 > GET_MODE_SIZE (GET_MODE (z))))
2968 {
2969 /* This can occur as a result in invalid
2970 pointer casts, e.g. float f; ...
2971 *(long long int *)&f.
2972 ??? We could emit a warning here, but
2973 without a line number that wouldn't be
2974 very helpful. */
2975 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
2976 }
2977 else
2978 z = gen_lowpart (GET_MODE (x), z);
2979
2980 *loc = z;
2981 return true;
2982 }
2983
2984 /* Sometimes we may not be able to find the replacement. For
2985 example when the original insn was a MEM in a wider mode,
2986 and the note is part of a sign extension of a narrowed
2987 version of that MEM. Gcc testcase compile/990829-1.c can
2988 generate an example of this siutation. Rather than complain
2989 we return false, which will prompt our caller to remove the
2990 offending note. */
2991 return false;
2992 }
2993
2994 size_x = GET_MODE_BITSIZE (GET_MODE (x));
2995 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
2996
2997 /* Don't even consider working with paradoxical subregs,
2998 or the moral equivalent seen here. */
2999 if (size_x <= size_sub
3000 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3001 {
3002 /* Do a bitfield insertion to mirror what would happen
3003 in memory. */
3004
3005 rtx val, seq;
3006
3007 if (store)
3008 {
3009 rtx p = PREV_INSN (insn);
3010
3011 start_sequence ();
3012 val = gen_reg_rtx (GET_MODE (x));
3013 if (! validate_change (insn, loc, val, 0))
3014 {
3015 /* Discard the current sequence and put the
3016 ADDRESSOF on stack. */
3017 end_sequence ();
3018 goto give_up;
3019 }
3020 seq = gen_sequence ();
3021 end_sequence ();
3022 emit_insn_before (seq, insn);
3023 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3024 insn, ht);
3025
3026 start_sequence ();
3027 store_bit_field (sub, size_x, 0, GET_MODE (x),
3028 val, GET_MODE_SIZE (GET_MODE (sub)),
3029 GET_MODE_SIZE (GET_MODE (sub)));
3030
3031 /* Make sure to unshare any shared rtl that store_bit_field
3032 might have created. */
3033 unshare_all_rtl_again (get_insns ());
3034
3035 seq = gen_sequence ();
3036 end_sequence ();
3037 p = emit_insn_after (seq, insn);
3038 if (NEXT_INSN (insn))
3039 compute_insns_for_mem (NEXT_INSN (insn),
3040 p ? NEXT_INSN (p) : NULL_RTX,
3041 ht);
3042 }
3043 else
3044 {
3045 rtx p = PREV_INSN (insn);
3046
3047 start_sequence ();
3048 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3049 GET_MODE (x), GET_MODE (x),
3050 GET_MODE_SIZE (GET_MODE (sub)),
3051 GET_MODE_SIZE (GET_MODE (sub)));
3052
3053 if (! validate_change (insn, loc, val, 0))
3054 {
3055 /* Discard the current sequence and put the
3056 ADDRESSOF on stack. */
3057 end_sequence ();
3058 goto give_up;
3059 }
3060
3061 seq = gen_sequence ();
3062 end_sequence ();
3063 emit_insn_before (seq, insn);
3064 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3065 insn, ht);
3066 }
3067
3068 /* Remember the replacement so that the same one can be done
3069 on the REG_NOTES. */
3070 purge_bitfield_addressof_replacements
3071 = gen_rtx_EXPR_LIST (VOIDmode, x,
3072 gen_rtx_EXPR_LIST
3073 (VOIDmode, val,
3074 purge_bitfield_addressof_replacements));
3075
3076 /* We replaced with a reg -- all done. */
3077 return true;
3078 }
3079 }
3080
3081 else if (validate_change (insn, loc, sub, 0))
3082 {
3083 /* Remember the replacement so that the same one can be done
3084 on the REG_NOTES. */
3085 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3086 {
3087 rtx tem;
3088
3089 for (tem = purge_addressof_replacements;
3090 tem != NULL_RTX;
3091 tem = XEXP (XEXP (tem, 1), 1))
3092 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3093 {
3094 XEXP (XEXP (tem, 1), 0) = sub;
3095 return true;
3096 }
3097 purge_addressof_replacements
3098 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3099 gen_rtx_EXPR_LIST (VOIDmode, sub,
3100 purge_addressof_replacements));
3101 return true;
3102 }
3103 goto restart;
3104 }
3105 give_up:;
3106 /* else give up and put it into the stack */
3107 }
3108
3109 else if (code == ADDRESSOF)
3110 {
3111 put_addressof_into_stack (x, ht);
3112 return true;
3113 }
3114 else if (code == SET)
3115 {
3116 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
3117 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
3118 return result;
3119 }
3120
3121 /* Scan all subexpressions. */
3122 fmt = GET_RTX_FORMAT (code);
3123 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3124 {
3125 if (*fmt == 'e')
3126 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3127 else if (*fmt == 'E')
3128 for (j = 0; j < XVECLEN (x, i); j++)
3129 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3130 }
3131
3132 return result;
3133 }
3134
3135 /* Return a new hash table entry in HT. */
3136
3137 static struct hash_entry *
3138 insns_for_mem_newfunc (he, ht, k)
3139 struct hash_entry *he;
3140 struct hash_table *ht;
3141 hash_table_key k ATTRIBUTE_UNUSED;
3142 {
3143 struct insns_for_mem_entry *ifmhe;
3144 if (he)
3145 return he;
3146
3147 ifmhe = ((struct insns_for_mem_entry *)
3148 hash_allocate (ht, sizeof (struct insns_for_mem_entry)));
3149 ifmhe->insns = NULL_RTX;
3150
3151 return &ifmhe->he;
3152 }
3153
3154 /* Return a hash value for K, a REG. */
3155
3156 static unsigned long
3157 insns_for_mem_hash (k)
3158 hash_table_key k;
3159 {
3160 /* K is really a RTX. Just use the address as the hash value. */
3161 return (unsigned long) k;
3162 }
3163
3164 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3165
3166 static boolean
3167 insns_for_mem_comp (k1, k2)
3168 hash_table_key k1;
3169 hash_table_key k2;
3170 {
3171 return k1 == k2;
3172 }
3173
3174 struct insns_for_mem_walk_info {
3175 /* The hash table that we are using to record which INSNs use which
3176 MEMs. */
3177 struct hash_table *ht;
3178
3179 /* The INSN we are currently proessing. */
3180 rtx insn;
3181
3182 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3183 to find the insns that use the REGs in the ADDRESSOFs. */
3184 int pass;
3185 };
3186
3187 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3188 that might be used in an ADDRESSOF expression, record this INSN in
3189 the hash table given by DATA (which is really a pointer to an
3190 insns_for_mem_walk_info structure). */
3191
3192 static int
3193 insns_for_mem_walk (r, data)
3194 rtx *r;
3195 void *data;
3196 {
3197 struct insns_for_mem_walk_info *ifmwi
3198 = (struct insns_for_mem_walk_info *) data;
3199
3200 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3201 && GET_CODE (XEXP (*r, 0)) == REG)
3202 hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0);
3203 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3204 {
3205 /* Lookup this MEM in the hashtable, creating it if necessary. */
3206 struct insns_for_mem_entry *ifme
3207 = (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht,
3208 *r,
3209 /*create=*/0,
3210 /*copy=*/0);
3211
3212 /* If we have not already recorded this INSN, do so now. Since
3213 we process the INSNs in order, we know that if we have
3214 recorded it it must be at the front of the list. */
3215 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3216 {
3217 /* We do the allocation on the same obstack as is used for
3218 the hash table since this memory will not be used once
3219 the hash table is deallocated. */
3220 push_obstacks (&ifmwi->ht->memory, &ifmwi->ht->memory);
3221 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3222 ifme->insns);
3223 pop_obstacks ();
3224 }
3225 }
3226
3227 return 0;
3228 }
3229
3230 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3231 which REGs in HT. */
3232
3233 static void
3234 compute_insns_for_mem (insns, last_insn, ht)
3235 rtx insns;
3236 rtx last_insn;
3237 struct hash_table *ht;
3238 {
3239 rtx insn;
3240 struct insns_for_mem_walk_info ifmwi;
3241 ifmwi.ht = ht;
3242
3243 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3244 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3245 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3246 {
3247 ifmwi.insn = insn;
3248 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3249 }
3250 }
3251
3252 /* Helper function for purge_addressof called through for_each_rtx.
3253 Returns true iff the rtl is an ADDRESSOF. */
3254 static int
3255 is_addressof (rtl, data)
3256 rtx * rtl;
3257 void * data ATTRIBUTE_UNUSED;
3258 {
3259 return GET_CODE (* rtl) == ADDRESSOF;
3260 }
3261
3262 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3263 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3264 stack. */
3265
3266 void
3267 purge_addressof (insns)
3268 rtx insns;
3269 {
3270 rtx insn;
3271 struct hash_table ht;
3272
3273 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3274 requires a fixup pass over the instruction stream to correct
3275 INSNs that depended on the REG being a REG, and not a MEM. But,
3276 these fixup passes are slow. Furthermore, more MEMs are not
3277 mentioned in very many instructions. So, we speed up the process
3278 by pre-calculating which REGs occur in which INSNs; that allows
3279 us to perform the fixup passes much more quickly. */
3280 hash_table_init (&ht,
3281 insns_for_mem_newfunc,
3282 insns_for_mem_hash,
3283 insns_for_mem_comp);
3284 compute_insns_for_mem (insns, NULL_RTX, &ht);
3285
3286 for (insn = insns; insn; insn = NEXT_INSN (insn))
3287 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3288 || GET_CODE (insn) == CALL_INSN)
3289 {
3290 if (! purge_addressof_1 (&PATTERN (insn), insn,
3291 asm_noperands (PATTERN (insn)) > 0, 0, &ht))
3292 /* If we could not replace the ADDRESSOFs in the insn,
3293 something is wrong. */
3294 abort ();
3295
3296 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, &ht))
3297 {
3298 /* If we could not replace the ADDRESSOFs in the insn's notes,
3299 we can just remove the offending notes instead. */
3300 rtx note;
3301
3302 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3303 {
3304 /* If we find a REG_RETVAL note then the insn is a libcall.
3305 Such insns must have REG_EQUAL notes as well, in order
3306 for later passes of the compiler to work. So it is not
3307 safe to delete the notes here, and instead we abort. */
3308 if (REG_NOTE_KIND (note) == REG_RETVAL)
3309 abort ();
3310 if (for_each_rtx (& note, is_addressof, NULL))
3311 remove_note (insn, note);
3312 }
3313 }
3314 }
3315
3316 /* Clean up. */
3317 hash_table_free (&ht);
3318 purge_bitfield_addressof_replacements = 0;
3319 purge_addressof_replacements = 0;
3320 }
3321 \f
3322 /* Pass through the INSNS of function FNDECL and convert virtual register
3323 references to hard register references. */
3324
3325 void
3326 instantiate_virtual_regs (fndecl, insns)
3327 tree fndecl;
3328 rtx insns;
3329 {
3330 rtx insn;
3331 int i;
3332
3333 /* Compute the offsets to use for this function. */
3334 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3335 var_offset = STARTING_FRAME_OFFSET;
3336 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3337 out_arg_offset = STACK_POINTER_OFFSET;
3338 cfa_offset = ARG_POINTER_CFA_OFFSET;
3339
3340 /* Scan all variables and parameters of this function. For each that is
3341 in memory, instantiate all virtual registers if the result is a valid
3342 address. If not, we do it later. That will handle most uses of virtual
3343 regs on many machines. */
3344 instantiate_decls (fndecl, 1);
3345
3346 /* Initialize recognition, indicating that volatile is OK. */
3347 init_recog ();
3348
3349 /* Scan through all the insns, instantiating every virtual register still
3350 present. */
3351 for (insn = insns; insn; insn = NEXT_INSN (insn))
3352 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3353 || GET_CODE (insn) == CALL_INSN)
3354 {
3355 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3356 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3357 }
3358
3359 /* Instantiate the stack slots for the parm registers, for later use in
3360 addressof elimination. */
3361 for (i = 0; i < max_parm_reg; ++i)
3362 if (parm_reg_stack_loc[i])
3363 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3364
3365 /* Now instantiate the remaining register equivalences for debugging info.
3366 These will not be valid addresses. */
3367 instantiate_decls (fndecl, 0);
3368
3369 /* Indicate that, from now on, assign_stack_local should use
3370 frame_pointer_rtx. */
3371 virtuals_instantiated = 1;
3372 }
3373
3374 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3375 all virtual registers in their DECL_RTL's.
3376
3377 If VALID_ONLY, do this only if the resulting address is still valid.
3378 Otherwise, always do it. */
3379
3380 static void
3381 instantiate_decls (fndecl, valid_only)
3382 tree fndecl;
3383 int valid_only;
3384 {
3385 tree decl;
3386
3387 if (DECL_SAVED_INSNS (fndecl))
3388 /* When compiling an inline function, the obstack used for
3389 rtl allocation is the maybepermanent_obstack. Calling
3390 `resume_temporary_allocation' switches us back to that
3391 obstack while we process this function's parameters. */
3392 resume_temporary_allocation ();
3393
3394 /* Process all parameters of the function. */
3395 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3396 {
3397 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3398
3399 instantiate_decl (DECL_RTL (decl), size, valid_only);
3400
3401 /* If the parameter was promoted, then the incoming RTL mode may be
3402 larger than the declared type size. We must use the larger of
3403 the two sizes. */
3404 size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size);
3405 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3406 }
3407
3408 /* Now process all variables defined in the function or its subblocks. */
3409 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3410
3411 if (DECL_INLINE (fndecl) || DECL_DEFER_OUTPUT (fndecl))
3412 {
3413 /* Save all rtl allocated for this function by raising the
3414 high-water mark on the maybepermanent_obstack. */
3415 preserve_data ();
3416 /* All further rtl allocation is now done in the current_obstack. */
3417 rtl_in_current_obstack ();
3418 }
3419 }
3420
3421 /* Subroutine of instantiate_decls: Process all decls in the given
3422 BLOCK node and all its subblocks. */
3423
3424 static void
3425 instantiate_decls_1 (let, valid_only)
3426 tree let;
3427 int valid_only;
3428 {
3429 tree t;
3430
3431 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3432 instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)),
3433 valid_only);
3434
3435 /* Process all subblocks. */
3436 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3437 instantiate_decls_1 (t, valid_only);
3438 }
3439
3440 /* Subroutine of the preceding procedures: Given RTL representing a
3441 decl and the size of the object, do any instantiation required.
3442
3443 If VALID_ONLY is non-zero, it means that the RTL should only be
3444 changed if the new address is valid. */
3445
3446 static void
3447 instantiate_decl (x, size, valid_only)
3448 rtx x;
3449 int size;
3450 int valid_only;
3451 {
3452 enum machine_mode mode;
3453 rtx addr;
3454
3455 /* If this is not a MEM, no need to do anything. Similarly if the
3456 address is a constant or a register that is not a virtual register. */
3457
3458 if (x == 0 || GET_CODE (x) != MEM)
3459 return;
3460
3461 addr = XEXP (x, 0);
3462 if (CONSTANT_P (addr)
3463 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3464 || (GET_CODE (addr) == REG
3465 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3466 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3467 return;
3468
3469 /* If we should only do this if the address is valid, copy the address.
3470 We need to do this so we can undo any changes that might make the
3471 address invalid. This copy is unfortunate, but probably can't be
3472 avoided. */
3473
3474 if (valid_only)
3475 addr = copy_rtx (addr);
3476
3477 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3478
3479 if (valid_only)
3480 {
3481 /* Now verify that the resulting address is valid for every integer or
3482 floating-point mode up to and including SIZE bytes long. We do this
3483 since the object might be accessed in any mode and frame addresses
3484 are shared. */
3485
3486 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3487 mode != VOIDmode && GET_MODE_SIZE (mode) <= size;
3488 mode = GET_MODE_WIDER_MODE (mode))
3489 if (! memory_address_p (mode, addr))
3490 return;
3491
3492 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3493 mode != VOIDmode && GET_MODE_SIZE (mode) <= size;
3494 mode = GET_MODE_WIDER_MODE (mode))
3495 if (! memory_address_p (mode, addr))
3496 return;
3497 }
3498
3499 /* Put back the address now that we have updated it and we either know
3500 it is valid or we don't care whether it is valid. */
3501
3502 XEXP (x, 0) = addr;
3503 }
3504 \f
3505 /* Given a pointer to a piece of rtx and an optional pointer to the
3506 containing object, instantiate any virtual registers present in it.
3507
3508 If EXTRA_INSNS, we always do the replacement and generate
3509 any extra insns before OBJECT. If it zero, we do nothing if replacement
3510 is not valid.
3511
3512 Return 1 if we either had nothing to do or if we were able to do the
3513 needed replacement. Return 0 otherwise; we only return zero if
3514 EXTRA_INSNS is zero.
3515
3516 We first try some simple transformations to avoid the creation of extra
3517 pseudos. */
3518
3519 static int
3520 instantiate_virtual_regs_1 (loc, object, extra_insns)
3521 rtx *loc;
3522 rtx object;
3523 int extra_insns;
3524 {
3525 rtx x;
3526 RTX_CODE code;
3527 rtx new = 0;
3528 HOST_WIDE_INT offset = 0;
3529 rtx temp;
3530 rtx seq;
3531 int i, j;
3532 const char *fmt;
3533
3534 /* Re-start here to avoid recursion in common cases. */
3535 restart:
3536
3537 x = *loc;
3538 if (x == 0)
3539 return 1;
3540
3541 code = GET_CODE (x);
3542
3543 /* Check for some special cases. */
3544 switch (code)
3545 {
3546 case CONST_INT:
3547 case CONST_DOUBLE:
3548 case CONST:
3549 case SYMBOL_REF:
3550 case CODE_LABEL:
3551 case PC:
3552 case CC0:
3553 case ASM_INPUT:
3554 case ADDR_VEC:
3555 case ADDR_DIFF_VEC:
3556 case RETURN:
3557 return 1;
3558
3559 case SET:
3560 /* We are allowed to set the virtual registers. This means that
3561 the actual register should receive the source minus the
3562 appropriate offset. This is used, for example, in the handling
3563 of non-local gotos. */
3564 if (SET_DEST (x) == virtual_incoming_args_rtx)
3565 new = arg_pointer_rtx, offset = - in_arg_offset;
3566 else if (SET_DEST (x) == virtual_stack_vars_rtx)
3567 new = frame_pointer_rtx, offset = - var_offset;
3568 else if (SET_DEST (x) == virtual_stack_dynamic_rtx)
3569 new = stack_pointer_rtx, offset = - dynamic_offset;
3570 else if (SET_DEST (x) == virtual_outgoing_args_rtx)
3571 new = stack_pointer_rtx, offset = - out_arg_offset;
3572 else if (SET_DEST (x) == virtual_cfa_rtx)
3573 new = arg_pointer_rtx, offset = - cfa_offset;
3574
3575 if (new)
3576 {
3577 rtx src = SET_SRC (x);
3578
3579 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3580
3581 /* The only valid sources here are PLUS or REG. Just do
3582 the simplest possible thing to handle them. */
3583 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3584 abort ();
3585
3586 start_sequence ();
3587 if (GET_CODE (src) != REG)
3588 temp = force_operand (src, NULL_RTX);
3589 else
3590 temp = src;
3591 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3592 seq = get_insns ();
3593 end_sequence ();
3594
3595 emit_insns_before (seq, object);
3596 SET_DEST (x) = new;
3597
3598 if (! validate_change (object, &SET_SRC (x), temp, 0)
3599 || ! extra_insns)
3600 abort ();
3601
3602 return 1;
3603 }
3604
3605 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3606 loc = &SET_SRC (x);
3607 goto restart;
3608
3609 case PLUS:
3610 /* Handle special case of virtual register plus constant. */
3611 if (CONSTANT_P (XEXP (x, 1)))
3612 {
3613 rtx old, new_offset;
3614
3615 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3616 if (GET_CODE (XEXP (x, 0)) == PLUS)
3617 {
3618 rtx inner = XEXP (XEXP (x, 0), 0);
3619
3620 if (inner == virtual_incoming_args_rtx)
3621 new = arg_pointer_rtx, offset = in_arg_offset;
3622 else if (inner == virtual_stack_vars_rtx)
3623 new = frame_pointer_rtx, offset = var_offset;
3624 else if (inner == virtual_stack_dynamic_rtx)
3625 new = stack_pointer_rtx, offset = dynamic_offset;
3626 else if (inner == virtual_outgoing_args_rtx)
3627 new = stack_pointer_rtx, offset = out_arg_offset;
3628 else if (inner == virtual_cfa_rtx)
3629 new = arg_pointer_rtx, offset = cfa_offset;
3630 else
3631 {
3632 loc = &XEXP (x, 0);
3633 goto restart;
3634 }
3635
3636 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3637 extra_insns);
3638 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3639 }
3640
3641 else if (XEXP (x, 0) == virtual_incoming_args_rtx)
3642 new = arg_pointer_rtx, offset = in_arg_offset;
3643 else if (XEXP (x, 0) == virtual_stack_vars_rtx)
3644 new = frame_pointer_rtx, offset = var_offset;
3645 else if (XEXP (x, 0) == virtual_stack_dynamic_rtx)
3646 new = stack_pointer_rtx, offset = dynamic_offset;
3647 else if (XEXP (x, 0) == virtual_outgoing_args_rtx)
3648 new = stack_pointer_rtx, offset = out_arg_offset;
3649 else if (XEXP (x, 0) == virtual_cfa_rtx)
3650 new = arg_pointer_rtx, offset = cfa_offset;
3651 else
3652 {
3653 /* We know the second operand is a constant. Unless the
3654 first operand is a REG (which has been already checked),
3655 it needs to be checked. */
3656 if (GET_CODE (XEXP (x, 0)) != REG)
3657 {
3658 loc = &XEXP (x, 0);
3659 goto restart;
3660 }
3661 return 1;
3662 }
3663
3664 new_offset = plus_constant (XEXP (x, 1), offset);
3665
3666 /* If the new constant is zero, try to replace the sum with just
3667 the register. */
3668 if (new_offset == const0_rtx
3669 && validate_change (object, loc, new, 0))
3670 return 1;
3671
3672 /* Next try to replace the register and new offset.
3673 There are two changes to validate here and we can't assume that
3674 in the case of old offset equals new just changing the register
3675 will yield a valid insn. In the interests of a little efficiency,
3676 however, we only call validate change once (we don't queue up the
3677 changes and then call apply_change_group). */
3678
3679 old = XEXP (x, 0);
3680 if (offset == 0
3681 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3682 : (XEXP (x, 0) = new,
3683 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3684 {
3685 if (! extra_insns)
3686 {
3687 XEXP (x, 0) = old;
3688 return 0;
3689 }
3690
3691 /* Otherwise copy the new constant into a register and replace
3692 constant with that register. */
3693 temp = gen_reg_rtx (Pmode);
3694 XEXP (x, 0) = new;
3695 if (validate_change (object, &XEXP (x, 1), temp, 0))
3696 emit_insn_before (gen_move_insn (temp, new_offset), object);
3697 else
3698 {
3699 /* If that didn't work, replace this expression with a
3700 register containing the sum. */
3701
3702 XEXP (x, 0) = old;
3703 new = gen_rtx_PLUS (Pmode, new, new_offset);
3704
3705 start_sequence ();
3706 temp = force_operand (new, NULL_RTX);
3707 seq = get_insns ();
3708 end_sequence ();
3709
3710 emit_insns_before (seq, object);
3711 if (! validate_change (object, loc, temp, 0)
3712 && ! validate_replace_rtx (x, temp, object))
3713 abort ();
3714 }
3715 }
3716
3717 return 1;
3718 }
3719
3720 /* Fall through to generic two-operand expression case. */
3721 case EXPR_LIST:
3722 case CALL:
3723 case COMPARE:
3724 case MINUS:
3725 case MULT:
3726 case DIV: case UDIV:
3727 case MOD: case UMOD:
3728 case AND: case IOR: case XOR:
3729 case ROTATERT: case ROTATE:
3730 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3731 case NE: case EQ:
3732 case GE: case GT: case GEU: case GTU:
3733 case LE: case LT: case LEU: case LTU:
3734 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3735 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3736 loc = &XEXP (x, 0);
3737 goto restart;
3738
3739 case MEM:
3740 /* Most cases of MEM that convert to valid addresses have already been
3741 handled by our scan of decls. The only special handling we
3742 need here is to make a copy of the rtx to ensure it isn't being
3743 shared if we have to change it to a pseudo.
3744
3745 If the rtx is a simple reference to an address via a virtual register,
3746 it can potentially be shared. In such cases, first try to make it
3747 a valid address, which can also be shared. Otherwise, copy it and
3748 proceed normally.
3749
3750 First check for common cases that need no processing. These are
3751 usually due to instantiation already being done on a previous instance
3752 of a shared rtx. */
3753
3754 temp = XEXP (x, 0);
3755 if (CONSTANT_ADDRESS_P (temp)
3756 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3757 || temp == arg_pointer_rtx
3758 #endif
3759 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3760 || temp == hard_frame_pointer_rtx
3761 #endif
3762 || temp == frame_pointer_rtx)
3763 return 1;
3764
3765 if (GET_CODE (temp) == PLUS
3766 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3767 && (XEXP (temp, 0) == frame_pointer_rtx
3768 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3769 || XEXP (temp, 0) == hard_frame_pointer_rtx
3770 #endif
3771 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3772 || XEXP (temp, 0) == arg_pointer_rtx
3773 #endif
3774 ))
3775 return 1;
3776
3777 if (temp == virtual_stack_vars_rtx
3778 || temp == virtual_incoming_args_rtx
3779 || (GET_CODE (temp) == PLUS
3780 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3781 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3782 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3783 {
3784 /* This MEM may be shared. If the substitution can be done without
3785 the need to generate new pseudos, we want to do it in place
3786 so all copies of the shared rtx benefit. The call below will
3787 only make substitutions if the resulting address is still
3788 valid.
3789
3790 Note that we cannot pass X as the object in the recursive call
3791 since the insn being processed may not allow all valid
3792 addresses. However, if we were not passed on object, we can
3793 only modify X without copying it if X will have a valid
3794 address.
3795
3796 ??? Also note that this can still lose if OBJECT is an insn that
3797 has less restrictions on an address that some other insn.
3798 In that case, we will modify the shared address. This case
3799 doesn't seem very likely, though. One case where this could
3800 happen is in the case of a USE or CLOBBER reference, but we
3801 take care of that below. */
3802
3803 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
3804 object ? object : x, 0))
3805 return 1;
3806
3807 /* Otherwise make a copy and process that copy. We copy the entire
3808 RTL expression since it might be a PLUS which could also be
3809 shared. */
3810 *loc = x = copy_rtx (x);
3811 }
3812
3813 /* Fall through to generic unary operation case. */
3814 case SUBREG:
3815 case STRICT_LOW_PART:
3816 case NEG: case NOT:
3817 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
3818 case SIGN_EXTEND: case ZERO_EXTEND:
3819 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3820 case FLOAT: case FIX:
3821 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3822 case ABS:
3823 case SQRT:
3824 case FFS:
3825 /* These case either have just one operand or we know that we need not
3826 check the rest of the operands. */
3827 loc = &XEXP (x, 0);
3828 goto restart;
3829
3830 case USE:
3831 case CLOBBER:
3832 /* If the operand is a MEM, see if the change is a valid MEM. If not,
3833 go ahead and make the invalid one, but do it to a copy. For a REG,
3834 just make the recursive call, since there's no chance of a problem. */
3835
3836 if ((GET_CODE (XEXP (x, 0)) == MEM
3837 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
3838 0))
3839 || (GET_CODE (XEXP (x, 0)) == REG
3840 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
3841 return 1;
3842
3843 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
3844 loc = &XEXP (x, 0);
3845 goto restart;
3846
3847 case REG:
3848 /* Try to replace with a PLUS. If that doesn't work, compute the sum
3849 in front of this insn and substitute the temporary. */
3850 if (x == virtual_incoming_args_rtx)
3851 new = arg_pointer_rtx, offset = in_arg_offset;
3852 else if (x == virtual_stack_vars_rtx)
3853 new = frame_pointer_rtx, offset = var_offset;
3854 else if (x == virtual_stack_dynamic_rtx)
3855 new = stack_pointer_rtx, offset = dynamic_offset;
3856 else if (x == virtual_outgoing_args_rtx)
3857 new = stack_pointer_rtx, offset = out_arg_offset;
3858 else if (x == virtual_cfa_rtx)
3859 new = arg_pointer_rtx, offset = cfa_offset;
3860
3861 if (new)
3862 {
3863 temp = plus_constant (new, offset);
3864 if (!validate_change (object, loc, temp, 0))
3865 {
3866 if (! extra_insns)
3867 return 0;
3868
3869 start_sequence ();
3870 temp = force_operand (temp, NULL_RTX);
3871 seq = get_insns ();
3872 end_sequence ();
3873
3874 emit_insns_before (seq, object);
3875 if (! validate_change (object, loc, temp, 0)
3876 && ! validate_replace_rtx (x, temp, object))
3877 abort ();
3878 }
3879 }
3880
3881 return 1;
3882
3883 case ADDRESSOF:
3884 if (GET_CODE (XEXP (x, 0)) == REG)
3885 return 1;
3886
3887 else if (GET_CODE (XEXP (x, 0)) == MEM)
3888 {
3889 /* If we have a (addressof (mem ..)), do any instantiation inside
3890 since we know we'll be making the inside valid when we finally
3891 remove the ADDRESSOF. */
3892 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
3893 return 1;
3894 }
3895 break;
3896
3897 default:
3898 break;
3899 }
3900
3901 /* Scan all subexpressions. */
3902 fmt = GET_RTX_FORMAT (code);
3903 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3904 if (*fmt == 'e')
3905 {
3906 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
3907 return 0;
3908 }
3909 else if (*fmt == 'E')
3910 for (j = 0; j < XVECLEN (x, i); j++)
3911 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
3912 extra_insns))
3913 return 0;
3914
3915 return 1;
3916 }
3917 \f
3918 /* Optimization: assuming this function does not receive nonlocal gotos,
3919 delete the handlers for such, as well as the insns to establish
3920 and disestablish them. */
3921
3922 static void
3923 delete_handlers ()
3924 {
3925 rtx insn;
3926 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3927 {
3928 /* Delete the handler by turning off the flag that would
3929 prevent jump_optimize from deleting it.
3930 Also permit deletion of the nonlocal labels themselves
3931 if nothing local refers to them. */
3932 if (GET_CODE (insn) == CODE_LABEL)
3933 {
3934 tree t, last_t;
3935
3936 LABEL_PRESERVE_P (insn) = 0;
3937
3938 /* Remove it from the nonlocal_label list, to avoid confusing
3939 flow. */
3940 for (t = nonlocal_labels, last_t = 0; t;
3941 last_t = t, t = TREE_CHAIN (t))
3942 if (DECL_RTL (TREE_VALUE (t)) == insn)
3943 break;
3944 if (t)
3945 {
3946 if (! last_t)
3947 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
3948 else
3949 TREE_CHAIN (last_t) = TREE_CHAIN (t);
3950 }
3951 }
3952 if (GET_CODE (insn) == INSN)
3953 {
3954 int can_delete = 0;
3955 rtx t;
3956 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
3957 if (reg_mentioned_p (t, PATTERN (insn)))
3958 {
3959 can_delete = 1;
3960 break;
3961 }
3962 if (can_delete
3963 || (nonlocal_goto_stack_level != 0
3964 && reg_mentioned_p (nonlocal_goto_stack_level,
3965 PATTERN (insn))))
3966 delete_insn (insn);
3967 }
3968 }
3969 }
3970 \f
3971 int
3972 max_parm_reg_num ()
3973 {
3974 return max_parm_reg;
3975 }
3976
3977 /* Return the first insn following those generated by `assign_parms'. */
3978
3979 rtx
3980 get_first_nonparm_insn ()
3981 {
3982 if (last_parm_insn)
3983 return NEXT_INSN (last_parm_insn);
3984 return get_insns ();
3985 }
3986
3987 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
3988 Crash if there is none. */
3989
3990 rtx
3991 get_first_block_beg ()
3992 {
3993 register rtx searcher;
3994 register rtx insn = get_first_nonparm_insn ();
3995
3996 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
3997 if (GET_CODE (searcher) == NOTE
3998 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
3999 return searcher;
4000
4001 abort (); /* Invalid call to this function. (See comments above.) */
4002 return NULL_RTX;
4003 }
4004
4005 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4006 This means a type for which function calls must pass an address to the
4007 function or get an address back from the function.
4008 EXP may be a type node or an expression (whose type is tested). */
4009
4010 int
4011 aggregate_value_p (exp)
4012 tree exp;
4013 {
4014 int i, regno, nregs;
4015 rtx reg;
4016 tree type;
4017 if (TREE_CODE_CLASS (TREE_CODE (exp)) == 't')
4018 type = exp;
4019 else
4020 type = TREE_TYPE (exp);
4021
4022 if (RETURN_IN_MEMORY (type))
4023 return 1;
4024 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4025 and thus can't be returned in registers. */
4026 if (TREE_ADDRESSABLE (type))
4027 return 1;
4028 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4029 return 1;
4030 /* Make sure we have suitable call-clobbered regs to return
4031 the value in; if not, we must return it in memory. */
4032 reg = hard_function_value (type, 0, 0);
4033
4034 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4035 it is OK. */
4036 if (GET_CODE (reg) != REG)
4037 return 0;
4038
4039 regno = REGNO (reg);
4040 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4041 for (i = 0; i < nregs; i++)
4042 if (! call_used_regs[regno + i])
4043 return 1;
4044 return 0;
4045 }
4046 \f
4047 /* Assign RTL expressions to the function's parameters.
4048 This may involve copying them into registers and using
4049 those registers as the RTL for them. */
4050
4051 void
4052 assign_parms (fndecl)
4053 tree fndecl;
4054 {
4055 register tree parm;
4056 register rtx entry_parm = 0;
4057 register rtx stack_parm = 0;
4058 CUMULATIVE_ARGS args_so_far;
4059 enum machine_mode promoted_mode, passed_mode;
4060 enum machine_mode nominal_mode, promoted_nominal_mode;
4061 int unsignedp;
4062 /* Total space needed so far for args on the stack,
4063 given as a constant and a tree-expression. */
4064 struct args_size stack_args_size;
4065 tree fntype = TREE_TYPE (fndecl);
4066 tree fnargs = DECL_ARGUMENTS (fndecl);
4067 /* This is used for the arg pointer when referring to stack args. */
4068 rtx internal_arg_pointer;
4069 /* This is a dummy PARM_DECL that we used for the function result if
4070 the function returns a structure. */
4071 tree function_result_decl = 0;
4072 #ifdef SETUP_INCOMING_VARARGS
4073 int varargs_setup = 0;
4074 #endif
4075 rtx conversion_insns = 0;
4076 struct args_size alignment_pad;
4077
4078 /* Nonzero if the last arg is named `__builtin_va_alist',
4079 which is used on some machines for old-fashioned non-ANSI varargs.h;
4080 this should be stuck onto the stack as if it had arrived there. */
4081 int hide_last_arg
4082 = (current_function_varargs
4083 && fnargs
4084 && (parm = tree_last (fnargs)) != 0
4085 && DECL_NAME (parm)
4086 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
4087 "__builtin_va_alist")));
4088
4089 /* Nonzero if function takes extra anonymous args.
4090 This means the last named arg must be on the stack
4091 right before the anonymous ones. */
4092 int stdarg
4093 = (TYPE_ARG_TYPES (fntype) != 0
4094 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4095 != void_type_node));
4096
4097 current_function_stdarg = stdarg;
4098
4099 /* If the reg that the virtual arg pointer will be translated into is
4100 not a fixed reg or is the stack pointer, make a copy of the virtual
4101 arg pointer, and address parms via the copy. The frame pointer is
4102 considered fixed even though it is not marked as such.
4103
4104 The second time through, simply use ap to avoid generating rtx. */
4105
4106 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4107 || ! (fixed_regs[ARG_POINTER_REGNUM]
4108 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4109 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4110 else
4111 internal_arg_pointer = virtual_incoming_args_rtx;
4112 current_function_internal_arg_pointer = internal_arg_pointer;
4113
4114 stack_args_size.constant = 0;
4115 stack_args_size.var = 0;
4116
4117 /* If struct value address is treated as the first argument, make it so. */
4118 if (aggregate_value_p (DECL_RESULT (fndecl))
4119 && ! current_function_returns_pcc_struct
4120 && struct_value_incoming_rtx == 0)
4121 {
4122 tree type = build_pointer_type (TREE_TYPE (fntype));
4123
4124 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4125
4126 DECL_ARG_TYPE (function_result_decl) = type;
4127 TREE_CHAIN (function_result_decl) = fnargs;
4128 fnargs = function_result_decl;
4129 }
4130
4131 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4132 parm_reg_stack_loc = (rtx *) xcalloc (max_parm_reg, sizeof (rtx));
4133
4134 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4135 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4136 #else
4137 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4138 #endif
4139
4140 /* We haven't yet found an argument that we must push and pretend the
4141 caller did. */
4142 current_function_pretend_args_size = 0;
4143
4144 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4145 {
4146 int aggregate = AGGREGATE_TYPE_P (TREE_TYPE (parm));
4147 struct args_size stack_offset;
4148 struct args_size arg_size;
4149 int passed_pointer = 0;
4150 int did_conversion = 0;
4151 tree passed_type = DECL_ARG_TYPE (parm);
4152 tree nominal_type = TREE_TYPE (parm);
4153 int pretend_named;
4154
4155 /* Set LAST_NAMED if this is last named arg before some
4156 anonymous args. */
4157 int last_named = ((TREE_CHAIN (parm) == 0
4158 || DECL_NAME (TREE_CHAIN (parm)) == 0)
4159 && (stdarg || current_function_varargs));
4160 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4161 most machines, if this is a varargs/stdarg function, then we treat
4162 the last named arg as if it were anonymous too. */
4163 int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4164
4165 if (TREE_TYPE (parm) == error_mark_node
4166 /* This can happen after weird syntax errors
4167 or if an enum type is defined among the parms. */
4168 || TREE_CODE (parm) != PARM_DECL
4169 || passed_type == NULL)
4170 {
4171 DECL_INCOMING_RTL (parm) = DECL_RTL (parm)
4172 = gen_rtx_MEM (BLKmode, const0_rtx);
4173 TREE_USED (parm) = 1;
4174 continue;
4175 }
4176
4177 /* For varargs.h function, save info about regs and stack space
4178 used by the individual args, not including the va_alist arg. */
4179 if (hide_last_arg && last_named)
4180 current_function_args_info = args_so_far;
4181
4182 /* Find mode of arg as it is passed, and mode of arg
4183 as it should be during execution of this function. */
4184 passed_mode = TYPE_MODE (passed_type);
4185 nominal_mode = TYPE_MODE (nominal_type);
4186
4187 /* If the parm's mode is VOID, its value doesn't matter,
4188 and avoid the usual things like emit_move_insn that could crash. */
4189 if (nominal_mode == VOIDmode)
4190 {
4191 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx;
4192 continue;
4193 }
4194
4195 /* If the parm is to be passed as a transparent union, use the
4196 type of the first field for the tests below. We have already
4197 verified that the modes are the same. */
4198 if (DECL_TRANSPARENT_UNION (parm)
4199 || TYPE_TRANSPARENT_UNION (passed_type))
4200 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4201
4202 /* See if this arg was passed by invisible reference. It is if
4203 it is an object whose size depends on the contents of the
4204 object itself or if the machine requires these objects be passed
4205 that way. */
4206
4207 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4208 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4209 || TREE_ADDRESSABLE (passed_type)
4210 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4211 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4212 passed_type, named_arg)
4213 #endif
4214 )
4215 {
4216 passed_type = nominal_type = build_pointer_type (passed_type);
4217 passed_pointer = 1;
4218 passed_mode = nominal_mode = Pmode;
4219 }
4220
4221 promoted_mode = passed_mode;
4222
4223 #ifdef PROMOTE_FUNCTION_ARGS
4224 /* Compute the mode in which the arg is actually extended to. */
4225 unsignedp = TREE_UNSIGNED (passed_type);
4226 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4227 #endif
4228
4229 /* Let machine desc say which reg (if any) the parm arrives in.
4230 0 means it arrives on the stack. */
4231 #ifdef FUNCTION_INCOMING_ARG
4232 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4233 passed_type, named_arg);
4234 #else
4235 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4236 passed_type, named_arg);
4237 #endif
4238
4239 if (entry_parm == 0)
4240 promoted_mode = passed_mode;
4241
4242 #ifdef SETUP_INCOMING_VARARGS
4243 /* If this is the last named parameter, do any required setup for
4244 varargs or stdargs. We need to know about the case of this being an
4245 addressable type, in which case we skip the registers it
4246 would have arrived in.
4247
4248 For stdargs, LAST_NAMED will be set for two parameters, the one that
4249 is actually the last named, and the dummy parameter. We only
4250 want to do this action once.
4251
4252 Also, indicate when RTL generation is to be suppressed. */
4253 if (last_named && !varargs_setup)
4254 {
4255 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4256 current_function_pretend_args_size, 0);
4257 varargs_setup = 1;
4258 }
4259 #endif
4260
4261 /* Determine parm's home in the stack,
4262 in case it arrives in the stack or we should pretend it did.
4263
4264 Compute the stack position and rtx where the argument arrives
4265 and its size.
4266
4267 There is one complexity here: If this was a parameter that would
4268 have been passed in registers, but wasn't only because it is
4269 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4270 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4271 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4272 0 as it was the previous time. */
4273
4274 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4275 locate_and_pad_parm (promoted_mode, passed_type,
4276 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4277 1,
4278 #else
4279 #ifdef FUNCTION_INCOMING_ARG
4280 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4281 passed_type,
4282 pretend_named) != 0,
4283 #else
4284 FUNCTION_ARG (args_so_far, promoted_mode,
4285 passed_type,
4286 pretend_named) != 0,
4287 #endif
4288 #endif
4289 fndecl, &stack_args_size, &stack_offset, &arg_size,
4290 &alignment_pad);
4291
4292 {
4293 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4294
4295 if (offset_rtx == const0_rtx)
4296 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4297 else
4298 stack_parm = gen_rtx_MEM (promoted_mode,
4299 gen_rtx_PLUS (Pmode,
4300 internal_arg_pointer,
4301 offset_rtx));
4302
4303 /* If this is a memory ref that contains aggregate components,
4304 mark it as such for cse and loop optimize. Likewise if it
4305 is readonly. */
4306 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4307 RTX_UNCHANGING_P (stack_parm) = TREE_READONLY (parm);
4308 MEM_ALIAS_SET (stack_parm) = get_alias_set (parm);
4309 }
4310
4311 /* If this parameter was passed both in registers and in the stack,
4312 use the copy on the stack. */
4313 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4314 entry_parm = 0;
4315
4316 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4317 /* If this parm was passed part in regs and part in memory,
4318 pretend it arrived entirely in memory
4319 by pushing the register-part onto the stack.
4320
4321 In the special case of a DImode or DFmode that is split,
4322 we could put it together in a pseudoreg directly,
4323 but for now that's not worth bothering with. */
4324
4325 if (entry_parm)
4326 {
4327 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4328 passed_type, named_arg);
4329
4330 if (nregs > 0)
4331 {
4332 current_function_pretend_args_size
4333 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4334 / (PARM_BOUNDARY / BITS_PER_UNIT)
4335 * (PARM_BOUNDARY / BITS_PER_UNIT));
4336
4337 /* Handle calls that pass values in multiple non-contiguous
4338 locations. The Irix 6 ABI has examples of this. */
4339 if (GET_CODE (entry_parm) == PARALLEL)
4340 emit_group_store (validize_mem (stack_parm), entry_parm,
4341 int_size_in_bytes (TREE_TYPE (parm)),
4342 (TYPE_ALIGN (TREE_TYPE (parm))
4343 / BITS_PER_UNIT));
4344 else
4345 move_block_from_reg (REGNO (entry_parm),
4346 validize_mem (stack_parm), nregs,
4347 int_size_in_bytes (TREE_TYPE (parm)));
4348
4349 entry_parm = stack_parm;
4350 }
4351 }
4352 #endif
4353
4354 /* If we didn't decide this parm came in a register,
4355 by default it came on the stack. */
4356 if (entry_parm == 0)
4357 entry_parm = stack_parm;
4358
4359 /* Record permanently how this parm was passed. */
4360 DECL_INCOMING_RTL (parm) = entry_parm;
4361
4362 /* If there is actually space on the stack for this parm,
4363 count it in stack_args_size; otherwise set stack_parm to 0
4364 to indicate there is no preallocated stack slot for the parm. */
4365
4366 if (entry_parm == stack_parm
4367 || (GET_CODE (entry_parm) == PARALLEL
4368 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4369 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4370 /* On some machines, even if a parm value arrives in a register
4371 there is still an (uninitialized) stack slot allocated for it.
4372
4373 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4374 whether this parameter already has a stack slot allocated,
4375 because an arg block exists only if current_function_args_size
4376 is larger than some threshold, and we haven't calculated that
4377 yet. So, for now, we just assume that stack slots never exist
4378 in this case. */
4379 || REG_PARM_STACK_SPACE (fndecl) > 0
4380 #endif
4381 )
4382 {
4383 stack_args_size.constant += arg_size.constant;
4384 if (arg_size.var)
4385 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4386 }
4387 else
4388 /* No stack slot was pushed for this parm. */
4389 stack_parm = 0;
4390
4391 /* Update info on where next arg arrives in registers. */
4392
4393 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4394 passed_type, named_arg);
4395
4396 /* If we can't trust the parm stack slot to be aligned enough
4397 for its ultimate type, don't use that slot after entry.
4398 We'll make another stack slot, if we need one. */
4399 {
4400 unsigned int thisparm_boundary
4401 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4402
4403 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4404 stack_parm = 0;
4405 }
4406
4407 /* If parm was passed in memory, and we need to convert it on entry,
4408 don't store it back in that same slot. */
4409 if (entry_parm != 0
4410 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4411 stack_parm = 0;
4412
4413 #if 0
4414 /* Now adjust STACK_PARM to the mode and precise location
4415 where this parameter should live during execution,
4416 if we discover that it must live in the stack during execution.
4417 To make debuggers happier on big-endian machines, we store
4418 the value in the last bytes of the space available. */
4419
4420 if (nominal_mode != BLKmode && nominal_mode != passed_mode
4421 && stack_parm != 0)
4422 {
4423 rtx offset_rtx;
4424
4425 if (BYTES_BIG_ENDIAN
4426 && GET_MODE_SIZE (nominal_mode) < UNITS_PER_WORD)
4427 stack_offset.constant += (GET_MODE_SIZE (passed_mode)
4428 - GET_MODE_SIZE (nominal_mode));
4429
4430 offset_rtx = ARGS_SIZE_RTX (stack_offset);
4431 if (offset_rtx == const0_rtx)
4432 stack_parm = gen_rtx_MEM (nominal_mode, internal_arg_pointer);
4433 else
4434 stack_parm = gen_rtx_MEM (nominal_mode,
4435 gen_rtx_PLUS (Pmode,
4436 internal_arg_pointer,
4437 offset_rtx));
4438
4439 /* If this is a memory ref that contains aggregate components,
4440 mark it as such for cse and loop optimize. */
4441 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4442 }
4443 #endif /* 0 */
4444
4445 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4446 in the mode in which it arrives.
4447 STACK_PARM is an RTX for a stack slot where the parameter can live
4448 during the function (in case we want to put it there).
4449 STACK_PARM is 0 if no stack slot was pushed for it.
4450
4451 Now output code if necessary to convert ENTRY_PARM to
4452 the type in which this function declares it,
4453 and store that result in an appropriate place,
4454 which may be a pseudo reg, may be STACK_PARM,
4455 or may be a local stack slot if STACK_PARM is 0.
4456
4457 Set DECL_RTL to that place. */
4458
4459 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4460 {
4461 /* If a BLKmode arrives in registers, copy it to a stack slot.
4462 Handle calls that pass values in multiple non-contiguous
4463 locations. The Irix 6 ABI has examples of this. */
4464 if (GET_CODE (entry_parm) == REG
4465 || GET_CODE (entry_parm) == PARALLEL)
4466 {
4467 int size_stored
4468 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4469 UNITS_PER_WORD);
4470
4471 /* Note that we will be storing an integral number of words.
4472 So we have to be careful to ensure that we allocate an
4473 integral number of words. We do this below in the
4474 assign_stack_local if space was not allocated in the argument
4475 list. If it was, this will not work if PARM_BOUNDARY is not
4476 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4477 if it becomes a problem. */
4478
4479 if (stack_parm == 0)
4480 {
4481 stack_parm
4482 = assign_stack_local (GET_MODE (entry_parm),
4483 size_stored, 0);
4484
4485 /* If this is a memory ref that contains aggregate
4486 components, mark it as such for cse and loop optimize. */
4487 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4488 }
4489
4490 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4491 abort ();
4492
4493 if (TREE_READONLY (parm))
4494 RTX_UNCHANGING_P (stack_parm) = 1;
4495
4496 /* Handle calls that pass values in multiple non-contiguous
4497 locations. The Irix 6 ABI has examples of this. */
4498 if (GET_CODE (entry_parm) == PARALLEL)
4499 emit_group_store (validize_mem (stack_parm), entry_parm,
4500 int_size_in_bytes (TREE_TYPE (parm)),
4501 (TYPE_ALIGN (TREE_TYPE (parm))
4502 / BITS_PER_UNIT));
4503 else
4504 move_block_from_reg (REGNO (entry_parm),
4505 validize_mem (stack_parm),
4506 size_stored / UNITS_PER_WORD,
4507 int_size_in_bytes (TREE_TYPE (parm)));
4508 }
4509 DECL_RTL (parm) = stack_parm;
4510 }
4511 else if (! ((! optimize
4512 && ! DECL_REGISTER (parm)
4513 && ! DECL_INLINE (fndecl))
4514 /* layout_decl may set this. */
4515 || TREE_ADDRESSABLE (parm)
4516 || TREE_SIDE_EFFECTS (parm)
4517 /* If -ffloat-store specified, don't put explicit
4518 float variables into registers. */
4519 || (flag_float_store
4520 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4521 /* Always assign pseudo to structure return or item passed
4522 by invisible reference. */
4523 || passed_pointer || parm == function_result_decl)
4524 {
4525 /* Store the parm in a pseudoregister during the function, but we
4526 may need to do it in a wider mode. */
4527
4528 register rtx parmreg;
4529 int regno, regnoi = 0, regnor = 0;
4530
4531 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4532
4533 promoted_nominal_mode
4534 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4535
4536 parmreg = gen_reg_rtx (promoted_nominal_mode);
4537 mark_user_reg (parmreg);
4538
4539 /* If this was an item that we received a pointer to, set DECL_RTL
4540 appropriately. */
4541 if (passed_pointer)
4542 {
4543 DECL_RTL (parm)
4544 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)), parmreg);
4545 MEM_SET_IN_STRUCT_P (DECL_RTL (parm), aggregate);
4546 }
4547 else
4548 DECL_RTL (parm) = parmreg;
4549
4550 /* Copy the value into the register. */
4551 if (nominal_mode != passed_mode
4552 || promoted_nominal_mode != promoted_mode)
4553 {
4554 int save_tree_used;
4555 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4556 mode, by the caller. We now have to convert it to
4557 NOMINAL_MODE, if different. However, PARMREG may be in
4558 a different mode than NOMINAL_MODE if it is being stored
4559 promoted.
4560
4561 If ENTRY_PARM is a hard register, it might be in a register
4562 not valid for operating in its mode (e.g., an odd-numbered
4563 register for a DFmode). In that case, moves are the only
4564 thing valid, so we can't do a convert from there. This
4565 occurs when the calling sequence allow such misaligned
4566 usages.
4567
4568 In addition, the conversion may involve a call, which could
4569 clobber parameters which haven't been copied to pseudo
4570 registers yet. Therefore, we must first copy the parm to
4571 a pseudo reg here, and save the conversion until after all
4572 parameters have been moved. */
4573
4574 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4575
4576 emit_move_insn (tempreg, validize_mem (entry_parm));
4577
4578 push_to_sequence (conversion_insns);
4579 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4580
4581 /* TREE_USED gets set erroneously during expand_assignment. */
4582 save_tree_used = TREE_USED (parm);
4583 expand_assignment (parm,
4584 make_tree (nominal_type, tempreg), 0, 0);
4585 TREE_USED (parm) = save_tree_used;
4586 conversion_insns = get_insns ();
4587 did_conversion = 1;
4588 end_sequence ();
4589 }
4590 else
4591 emit_move_insn (parmreg, validize_mem (entry_parm));
4592
4593 /* If we were passed a pointer but the actual value
4594 can safely live in a register, put it in one. */
4595 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4596 && ! ((! optimize
4597 && ! DECL_REGISTER (parm)
4598 && ! DECL_INLINE (fndecl))
4599 /* layout_decl may set this. */
4600 || TREE_ADDRESSABLE (parm)
4601 || TREE_SIDE_EFFECTS (parm)
4602 /* If -ffloat-store specified, don't put explicit
4603 float variables into registers. */
4604 || (flag_float_store
4605 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
4606 {
4607 /* We can't use nominal_mode, because it will have been set to
4608 Pmode above. We must use the actual mode of the parm. */
4609 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4610 mark_user_reg (parmreg);
4611 emit_move_insn (parmreg, DECL_RTL (parm));
4612 DECL_RTL (parm) = parmreg;
4613 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4614 now the parm. */
4615 stack_parm = 0;
4616 }
4617 #ifdef FUNCTION_ARG_CALLEE_COPIES
4618 /* If we are passed an arg by reference and it is our responsibility
4619 to make a copy, do it now.
4620 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4621 original argument, so we must recreate them in the call to
4622 FUNCTION_ARG_CALLEE_COPIES. */
4623 /* ??? Later add code to handle the case that if the argument isn't
4624 modified, don't do the copy. */
4625
4626 else if (passed_pointer
4627 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4628 TYPE_MODE (DECL_ARG_TYPE (parm)),
4629 DECL_ARG_TYPE (parm),
4630 named_arg)
4631 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4632 {
4633 rtx copy;
4634 tree type = DECL_ARG_TYPE (parm);
4635
4636 /* This sequence may involve a library call perhaps clobbering
4637 registers that haven't been copied to pseudos yet. */
4638
4639 push_to_sequence (conversion_insns);
4640
4641 if (TYPE_SIZE (type) == 0
4642 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4643 /* This is a variable sized object. */
4644 copy = gen_rtx_MEM (BLKmode,
4645 allocate_dynamic_stack_space
4646 (expr_size (parm), NULL_RTX,
4647 TYPE_ALIGN (type)));
4648 else
4649 copy = assign_stack_temp (TYPE_MODE (type),
4650 int_size_in_bytes (type), 1);
4651 MEM_SET_IN_STRUCT_P (copy, AGGREGATE_TYPE_P (type));
4652 RTX_UNCHANGING_P (copy) = TREE_READONLY (parm);
4653
4654 store_expr (parm, copy, 0);
4655 emit_move_insn (parmreg, XEXP (copy, 0));
4656 if (current_function_check_memory_usage)
4657 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4658 XEXP (copy, 0), Pmode,
4659 GEN_INT (int_size_in_bytes (type)),
4660 TYPE_MODE (sizetype),
4661 GEN_INT (MEMORY_USE_RW),
4662 TYPE_MODE (integer_type_node));
4663 conversion_insns = get_insns ();
4664 did_conversion = 1;
4665 end_sequence ();
4666 }
4667 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4668
4669 /* In any case, record the parm's desired stack location
4670 in case we later discover it must live in the stack.
4671
4672 If it is a COMPLEX value, store the stack location for both
4673 halves. */
4674
4675 if (GET_CODE (parmreg) == CONCAT)
4676 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4677 else
4678 regno = REGNO (parmreg);
4679
4680 if (regno >= max_parm_reg)
4681 {
4682 rtx *new;
4683 int old_max_parm_reg = max_parm_reg;
4684
4685 /* It's slow to expand this one register at a time,
4686 but it's also rare and we need max_parm_reg to be
4687 precisely correct. */
4688 max_parm_reg = regno + 1;
4689 new = (rtx *) xrealloc (parm_reg_stack_loc,
4690 max_parm_reg * sizeof (rtx));
4691 bzero ((char *) (new + old_max_parm_reg),
4692 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4693 parm_reg_stack_loc = new;
4694 }
4695
4696 if (GET_CODE (parmreg) == CONCAT)
4697 {
4698 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4699
4700 regnor = REGNO (gen_realpart (submode, parmreg));
4701 regnoi = REGNO (gen_imagpart (submode, parmreg));
4702
4703 if (stack_parm != 0)
4704 {
4705 parm_reg_stack_loc[regnor]
4706 = gen_realpart (submode, stack_parm);
4707 parm_reg_stack_loc[regnoi]
4708 = gen_imagpart (submode, stack_parm);
4709 }
4710 else
4711 {
4712 parm_reg_stack_loc[regnor] = 0;
4713 parm_reg_stack_loc[regnoi] = 0;
4714 }
4715 }
4716 else
4717 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4718
4719 /* Mark the register as eliminable if we did no conversion
4720 and it was copied from memory at a fixed offset,
4721 and the arg pointer was not copied to a pseudo-reg.
4722 If the arg pointer is a pseudo reg or the offset formed
4723 an invalid address, such memory-equivalences
4724 as we make here would screw up life analysis for it. */
4725 if (nominal_mode == passed_mode
4726 && ! did_conversion
4727 && stack_parm != 0
4728 && GET_CODE (stack_parm) == MEM
4729 && stack_offset.var == 0
4730 && reg_mentioned_p (virtual_incoming_args_rtx,
4731 XEXP (stack_parm, 0)))
4732 {
4733 rtx linsn = get_last_insn ();
4734 rtx sinsn, set;
4735
4736 /* Mark complex types separately. */
4737 if (GET_CODE (parmreg) == CONCAT)
4738 /* Scan backwards for the set of the real and
4739 imaginary parts. */
4740 for (sinsn = linsn; sinsn != 0;
4741 sinsn = prev_nonnote_insn (sinsn))
4742 {
4743 set = single_set (sinsn);
4744 if (set != 0
4745 && SET_DEST (set) == regno_reg_rtx [regnoi])
4746 REG_NOTES (sinsn)
4747 = gen_rtx_EXPR_LIST (REG_EQUIV,
4748 parm_reg_stack_loc[regnoi],
4749 REG_NOTES (sinsn));
4750 else if (set != 0
4751 && SET_DEST (set) == regno_reg_rtx [regnor])
4752 REG_NOTES (sinsn)
4753 = gen_rtx_EXPR_LIST (REG_EQUIV,
4754 parm_reg_stack_loc[regnor],
4755 REG_NOTES (sinsn));
4756 }
4757 else if ((set = single_set (linsn)) != 0
4758 && SET_DEST (set) == parmreg)
4759 REG_NOTES (linsn)
4760 = gen_rtx_EXPR_LIST (REG_EQUIV,
4761 stack_parm, REG_NOTES (linsn));
4762 }
4763
4764 /* For pointer data type, suggest pointer register. */
4765 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4766 mark_reg_pointer (parmreg,
4767 (TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))
4768 / BITS_PER_UNIT));
4769 }
4770 else
4771 {
4772 /* Value must be stored in the stack slot STACK_PARM
4773 during function execution. */
4774
4775 if (promoted_mode != nominal_mode)
4776 {
4777 /* Conversion is required. */
4778 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4779
4780 emit_move_insn (tempreg, validize_mem (entry_parm));
4781
4782 push_to_sequence (conversion_insns);
4783 entry_parm = convert_to_mode (nominal_mode, tempreg,
4784 TREE_UNSIGNED (TREE_TYPE (parm)));
4785 if (stack_parm)
4786 {
4787 /* ??? This may need a big-endian conversion on sparc64. */
4788 stack_parm = change_address (stack_parm, nominal_mode,
4789 NULL_RTX);
4790 }
4791 conversion_insns = get_insns ();
4792 did_conversion = 1;
4793 end_sequence ();
4794 }
4795
4796 if (entry_parm != stack_parm)
4797 {
4798 if (stack_parm == 0)
4799 {
4800 stack_parm
4801 = assign_stack_local (GET_MODE (entry_parm),
4802 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
4803 /* If this is a memory ref that contains aggregate components,
4804 mark it as such for cse and loop optimize. */
4805 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4806 }
4807
4808 if (promoted_mode != nominal_mode)
4809 {
4810 push_to_sequence (conversion_insns);
4811 emit_move_insn (validize_mem (stack_parm),
4812 validize_mem (entry_parm));
4813 conversion_insns = get_insns ();
4814 end_sequence ();
4815 }
4816 else
4817 emit_move_insn (validize_mem (stack_parm),
4818 validize_mem (entry_parm));
4819 }
4820 if (current_function_check_memory_usage)
4821 {
4822 push_to_sequence (conversion_insns);
4823 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4824 XEXP (stack_parm, 0), Pmode,
4825 GEN_INT (GET_MODE_SIZE (GET_MODE
4826 (entry_parm))),
4827 TYPE_MODE (sizetype),
4828 GEN_INT (MEMORY_USE_RW),
4829 TYPE_MODE (integer_type_node));
4830
4831 conversion_insns = get_insns ();
4832 end_sequence ();
4833 }
4834 DECL_RTL (parm) = stack_parm;
4835 }
4836
4837 /* If this "parameter" was the place where we are receiving the
4838 function's incoming structure pointer, set up the result. */
4839 if (parm == function_result_decl)
4840 {
4841 tree result = DECL_RESULT (fndecl);
4842 tree restype = TREE_TYPE (result);
4843
4844 DECL_RTL (result)
4845 = gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm));
4846
4847 MEM_SET_IN_STRUCT_P (DECL_RTL (result),
4848 AGGREGATE_TYPE_P (restype));
4849 }
4850
4851 if (TREE_THIS_VOLATILE (parm))
4852 MEM_VOLATILE_P (DECL_RTL (parm)) = 1;
4853 if (TREE_READONLY (parm))
4854 RTX_UNCHANGING_P (DECL_RTL (parm)) = 1;
4855 }
4856
4857 /* Output all parameter conversion instructions (possibly including calls)
4858 now that all parameters have been copied out of hard registers. */
4859 emit_insns (conversion_insns);
4860
4861 last_parm_insn = get_last_insn ();
4862
4863 current_function_args_size = stack_args_size.constant;
4864
4865 /* Adjust function incoming argument size for alignment and
4866 minimum length. */
4867
4868 #ifdef REG_PARM_STACK_SPACE
4869 #ifndef MAYBE_REG_PARM_STACK_SPACE
4870 current_function_args_size = MAX (current_function_args_size,
4871 REG_PARM_STACK_SPACE (fndecl));
4872 #endif
4873 #endif
4874
4875 #ifdef STACK_BOUNDARY
4876 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
4877
4878 current_function_args_size
4879 = ((current_function_args_size + STACK_BYTES - 1)
4880 / STACK_BYTES) * STACK_BYTES;
4881 #endif
4882
4883 #ifdef ARGS_GROW_DOWNWARD
4884 current_function_arg_offset_rtx
4885 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
4886 : expand_expr (size_diffop (stack_args_size.var,
4887 size_int (-stack_args_size.constant)),
4888 NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD));
4889 #else
4890 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
4891 #endif
4892
4893 /* See how many bytes, if any, of its args a function should try to pop
4894 on return. */
4895
4896 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
4897 current_function_args_size);
4898
4899 /* For stdarg.h function, save info about
4900 regs and stack space used by the named args. */
4901
4902 if (!hide_last_arg)
4903 current_function_args_info = args_so_far;
4904
4905 /* Set the rtx used for the function return value. Put this in its
4906 own variable so any optimizers that need this information don't have
4907 to include tree.h. Do this here so it gets done when an inlined
4908 function gets output. */
4909
4910 current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl));
4911 }
4912 \f
4913 /* Indicate whether REGNO is an incoming argument to the current function
4914 that was promoted to a wider mode. If so, return the RTX for the
4915 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
4916 that REGNO is promoted from and whether the promotion was signed or
4917 unsigned. */
4918
4919 #ifdef PROMOTE_FUNCTION_ARGS
4920
4921 rtx
4922 promoted_input_arg (regno, pmode, punsignedp)
4923 int regno;
4924 enum machine_mode *pmode;
4925 int *punsignedp;
4926 {
4927 tree arg;
4928
4929 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
4930 arg = TREE_CHAIN (arg))
4931 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
4932 && REGNO (DECL_INCOMING_RTL (arg)) == regno
4933 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
4934 {
4935 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
4936 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
4937
4938 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
4939 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
4940 && mode != DECL_MODE (arg))
4941 {
4942 *pmode = DECL_MODE (arg);
4943 *punsignedp = unsignedp;
4944 return DECL_INCOMING_RTL (arg);
4945 }
4946 }
4947
4948 return 0;
4949 }
4950
4951 #endif
4952 \f
4953 /* Compute the size and offset from the start of the stacked arguments for a
4954 parm passed in mode PASSED_MODE and with type TYPE.
4955
4956 INITIAL_OFFSET_PTR points to the current offset into the stacked
4957 arguments.
4958
4959 The starting offset and size for this parm are returned in *OFFSET_PTR
4960 and *ARG_SIZE_PTR, respectively.
4961
4962 IN_REGS is non-zero if the argument will be passed in registers. It will
4963 never be set if REG_PARM_STACK_SPACE is not defined.
4964
4965 FNDECL is the function in which the argument was defined.
4966
4967 There are two types of rounding that are done. The first, controlled by
4968 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
4969 list to be aligned to the specific boundary (in bits). This rounding
4970 affects the initial and starting offsets, but not the argument size.
4971
4972 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4973 optionally rounds the size of the parm to PARM_BOUNDARY. The
4974 initial offset is not affected by this rounding, while the size always
4975 is and the starting offset may be. */
4976
4977 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
4978 initial_offset_ptr is positive because locate_and_pad_parm's
4979 callers pass in the total size of args so far as
4980 initial_offset_ptr. arg_size_ptr is always positive.*/
4981
4982 void
4983 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
4984 initial_offset_ptr, offset_ptr, arg_size_ptr,
4985 alignment_pad)
4986 enum machine_mode passed_mode;
4987 tree type;
4988 int in_regs ATTRIBUTE_UNUSED;
4989 tree fndecl ATTRIBUTE_UNUSED;
4990 struct args_size *initial_offset_ptr;
4991 struct args_size *offset_ptr;
4992 struct args_size *arg_size_ptr;
4993 struct args_size *alignment_pad;
4994
4995 {
4996 tree sizetree
4997 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4998 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
4999 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5000
5001 #ifdef REG_PARM_STACK_SPACE
5002 /* If we have found a stack parm before we reach the end of the
5003 area reserved for registers, skip that area. */
5004 if (! in_regs)
5005 {
5006 int reg_parm_stack_space = 0;
5007
5008 #ifdef MAYBE_REG_PARM_STACK_SPACE
5009 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5010 #else
5011 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5012 #endif
5013 if (reg_parm_stack_space > 0)
5014 {
5015 if (initial_offset_ptr->var)
5016 {
5017 initial_offset_ptr->var
5018 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5019 ssize_int (reg_parm_stack_space));
5020 initial_offset_ptr->constant = 0;
5021 }
5022 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5023 initial_offset_ptr->constant = reg_parm_stack_space;
5024 }
5025 }
5026 #endif /* REG_PARM_STACK_SPACE */
5027
5028 arg_size_ptr->var = 0;
5029 arg_size_ptr->constant = 0;
5030
5031 #ifdef ARGS_GROW_DOWNWARD
5032 if (initial_offset_ptr->var)
5033 {
5034 offset_ptr->constant = 0;
5035 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5036 initial_offset_ptr->var);
5037 }
5038 else
5039 {
5040 offset_ptr->constant = - initial_offset_ptr->constant;
5041 offset_ptr->var = 0;
5042 }
5043 if (where_pad != none
5044 && (TREE_CODE (sizetree) != INTEGER_CST
5045 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
5046 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5047 SUB_PARM_SIZE (*offset_ptr, sizetree);
5048 if (where_pad != downward)
5049 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5050 if (initial_offset_ptr->var)
5051 arg_size_ptr->var = size_binop (MINUS_EXPR,
5052 size_binop (MINUS_EXPR,
5053 ssize_int (0),
5054 initial_offset_ptr->var),
5055 offset_ptr->var);
5056
5057 else
5058 arg_size_ptr->constant = (- initial_offset_ptr->constant
5059 - offset_ptr->constant);
5060
5061 #else /* !ARGS_GROW_DOWNWARD */
5062 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5063 *offset_ptr = *initial_offset_ptr;
5064
5065 #ifdef PUSH_ROUNDING
5066 if (passed_mode != BLKmode)
5067 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5068 #endif
5069
5070 /* Pad_below needs the pre-rounded size to know how much to pad below
5071 so this must be done before rounding up. */
5072 if (where_pad == downward
5073 /* However, BLKmode args passed in regs have their padding done elsewhere.
5074 The stack slot must be able to hold the entire register. */
5075 && !(in_regs && passed_mode == BLKmode))
5076 pad_below (offset_ptr, passed_mode, sizetree);
5077
5078 if (where_pad != none
5079 && (TREE_CODE (sizetree) != INTEGER_CST
5080 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
5081 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5082
5083 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5084 #endif /* ARGS_GROW_DOWNWARD */
5085 }
5086
5087 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5088 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5089
5090 static void
5091 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5092 struct args_size *offset_ptr;
5093 int boundary;
5094 struct args_size *alignment_pad;
5095 {
5096 tree save_var = NULL_TREE;
5097 HOST_WIDE_INT save_constant = 0;
5098
5099 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5100
5101 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5102 {
5103 save_var = offset_ptr->var;
5104 save_constant = offset_ptr->constant;
5105 }
5106
5107 alignment_pad->var = NULL_TREE;
5108 alignment_pad->constant = 0;
5109
5110 if (boundary > BITS_PER_UNIT)
5111 {
5112 if (offset_ptr->var)
5113 {
5114 offset_ptr->var =
5115 #ifdef ARGS_GROW_DOWNWARD
5116 round_down
5117 #else
5118 round_up
5119 #endif
5120 (ARGS_SIZE_TREE (*offset_ptr),
5121 boundary / BITS_PER_UNIT);
5122 offset_ptr->constant = 0; /*?*/
5123 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5124 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5125 save_var);
5126 }
5127 else
5128 {
5129 offset_ptr->constant =
5130 #ifdef ARGS_GROW_DOWNWARD
5131 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5132 #else
5133 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5134 #endif
5135 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5136 alignment_pad->constant = offset_ptr->constant - save_constant;
5137 }
5138 }
5139 }
5140
5141 #ifndef ARGS_GROW_DOWNWARD
5142 static void
5143 pad_below (offset_ptr, passed_mode, sizetree)
5144 struct args_size *offset_ptr;
5145 enum machine_mode passed_mode;
5146 tree sizetree;
5147 {
5148 if (passed_mode != BLKmode)
5149 {
5150 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5151 offset_ptr->constant
5152 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5153 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5154 - GET_MODE_SIZE (passed_mode));
5155 }
5156 else
5157 {
5158 if (TREE_CODE (sizetree) != INTEGER_CST
5159 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5160 {
5161 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5162 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5163 /* Add it in. */
5164 ADD_PARM_SIZE (*offset_ptr, s2);
5165 SUB_PARM_SIZE (*offset_ptr, sizetree);
5166 }
5167 }
5168 }
5169 #endif
5170 \f
5171 /* Walk the tree of blocks describing the binding levels within a function
5172 and warn about uninitialized variables.
5173 This is done after calling flow_analysis and before global_alloc
5174 clobbers the pseudo-regs to hard regs. */
5175
5176 void
5177 uninitialized_vars_warning (block)
5178 tree block;
5179 {
5180 register tree decl, sub;
5181 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5182 {
5183 if (warn_uninitialized
5184 && TREE_CODE (decl) == VAR_DECL
5185 /* These warnings are unreliable for and aggregates
5186 because assigning the fields one by one can fail to convince
5187 flow.c that the entire aggregate was initialized.
5188 Unions are troublesome because members may be shorter. */
5189 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5190 && DECL_RTL (decl) != 0
5191 && GET_CODE (DECL_RTL (decl)) == REG
5192 /* Global optimizations can make it difficult to determine if a
5193 particular variable has been initialized. However, a VAR_DECL
5194 with a nonzero DECL_INITIAL had an initializer, so do not
5195 claim it is potentially uninitialized.
5196
5197 We do not care about the actual value in DECL_INITIAL, so we do
5198 not worry that it may be a dangling pointer. */
5199 && DECL_INITIAL (decl) == NULL_TREE
5200 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5201 warning_with_decl (decl,
5202 "`%s' might be used uninitialized in this function");
5203 if (extra_warnings
5204 && TREE_CODE (decl) == VAR_DECL
5205 && DECL_RTL (decl) != 0
5206 && GET_CODE (DECL_RTL (decl)) == REG
5207 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5208 warning_with_decl (decl,
5209 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5210 }
5211 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5212 uninitialized_vars_warning (sub);
5213 }
5214
5215 /* Do the appropriate part of uninitialized_vars_warning
5216 but for arguments instead of local variables. */
5217
5218 void
5219 setjmp_args_warning ()
5220 {
5221 register tree decl;
5222 for (decl = DECL_ARGUMENTS (current_function_decl);
5223 decl; decl = TREE_CHAIN (decl))
5224 if (DECL_RTL (decl) != 0
5225 && GET_CODE (DECL_RTL (decl)) == REG
5226 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5227 warning_with_decl (decl, "argument `%s' might be clobbered by `longjmp' or `vfork'");
5228 }
5229
5230 /* If this function call setjmp, put all vars into the stack
5231 unless they were declared `register'. */
5232
5233 void
5234 setjmp_protect (block)
5235 tree block;
5236 {
5237 register tree decl, sub;
5238 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5239 if ((TREE_CODE (decl) == VAR_DECL
5240 || TREE_CODE (decl) == PARM_DECL)
5241 && DECL_RTL (decl) != 0
5242 && (GET_CODE (DECL_RTL (decl)) == REG
5243 || (GET_CODE (DECL_RTL (decl)) == MEM
5244 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5245 /* If this variable came from an inline function, it must be
5246 that its life doesn't overlap the setjmp. If there was a
5247 setjmp in the function, it would already be in memory. We
5248 must exclude such variable because their DECL_RTL might be
5249 set to strange things such as virtual_stack_vars_rtx. */
5250 && ! DECL_FROM_INLINE (decl)
5251 && (
5252 #ifdef NON_SAVING_SETJMP
5253 /* If longjmp doesn't restore the registers,
5254 don't put anything in them. */
5255 NON_SAVING_SETJMP
5256 ||
5257 #endif
5258 ! DECL_REGISTER (decl)))
5259 put_var_into_stack (decl);
5260 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5261 setjmp_protect (sub);
5262 }
5263 \f
5264 /* Like the previous function, but for args instead of local variables. */
5265
5266 void
5267 setjmp_protect_args ()
5268 {
5269 register tree decl;
5270 for (decl = DECL_ARGUMENTS (current_function_decl);
5271 decl; decl = TREE_CHAIN (decl))
5272 if ((TREE_CODE (decl) == VAR_DECL
5273 || TREE_CODE (decl) == PARM_DECL)
5274 && DECL_RTL (decl) != 0
5275 && (GET_CODE (DECL_RTL (decl)) == REG
5276 || (GET_CODE (DECL_RTL (decl)) == MEM
5277 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5278 && (
5279 /* If longjmp doesn't restore the registers,
5280 don't put anything in them. */
5281 #ifdef NON_SAVING_SETJMP
5282 NON_SAVING_SETJMP
5283 ||
5284 #endif
5285 ! DECL_REGISTER (decl)))
5286 put_var_into_stack (decl);
5287 }
5288 \f
5289 /* Return the context-pointer register corresponding to DECL,
5290 or 0 if it does not need one. */
5291
5292 rtx
5293 lookup_static_chain (decl)
5294 tree decl;
5295 {
5296 tree context = decl_function_context (decl);
5297 tree link;
5298
5299 if (context == 0
5300 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5301 return 0;
5302
5303 /* We treat inline_function_decl as an alias for the current function
5304 because that is the inline function whose vars, types, etc.
5305 are being merged into the current function.
5306 See expand_inline_function. */
5307 if (context == current_function_decl || context == inline_function_decl)
5308 return virtual_stack_vars_rtx;
5309
5310 for (link = context_display; link; link = TREE_CHAIN (link))
5311 if (TREE_PURPOSE (link) == context)
5312 return RTL_EXPR_RTL (TREE_VALUE (link));
5313
5314 abort ();
5315 }
5316 \f
5317 /* Convert a stack slot address ADDR for variable VAR
5318 (from a containing function)
5319 into an address valid in this function (using a static chain). */
5320
5321 rtx
5322 fix_lexical_addr (addr, var)
5323 rtx addr;
5324 tree var;
5325 {
5326 rtx basereg;
5327 HOST_WIDE_INT displacement;
5328 tree context = decl_function_context (var);
5329 struct function *fp;
5330 rtx base = 0;
5331
5332 /* If this is the present function, we need not do anything. */
5333 if (context == current_function_decl || context == inline_function_decl)
5334 return addr;
5335
5336 for (fp = outer_function_chain; fp; fp = fp->next)
5337 if (fp->decl == context)
5338 break;
5339
5340 if (fp == 0)
5341 abort ();
5342
5343 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5344 addr = XEXP (XEXP (addr, 0), 0);
5345
5346 /* Decode given address as base reg plus displacement. */
5347 if (GET_CODE (addr) == REG)
5348 basereg = addr, displacement = 0;
5349 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5350 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5351 else
5352 abort ();
5353
5354 /* We accept vars reached via the containing function's
5355 incoming arg pointer and via its stack variables pointer. */
5356 if (basereg == fp->internal_arg_pointer)
5357 {
5358 /* If reached via arg pointer, get the arg pointer value
5359 out of that function's stack frame.
5360
5361 There are two cases: If a separate ap is needed, allocate a
5362 slot in the outer function for it and dereference it that way.
5363 This is correct even if the real ap is actually a pseudo.
5364 Otherwise, just adjust the offset from the frame pointer to
5365 compensate. */
5366
5367 #ifdef NEED_SEPARATE_AP
5368 rtx addr;
5369
5370 if (fp->x_arg_pointer_save_area == 0)
5371 fp->x_arg_pointer_save_area
5372 = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
5373
5374 addr = fix_lexical_addr (XEXP (fp->x_arg_pointer_save_area, 0), var);
5375 addr = memory_address (Pmode, addr);
5376
5377 base = copy_to_reg (gen_rtx_MEM (Pmode, addr));
5378 #else
5379 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5380 base = lookup_static_chain (var);
5381 #endif
5382 }
5383
5384 else if (basereg == virtual_stack_vars_rtx)
5385 {
5386 /* This is the same code as lookup_static_chain, duplicated here to
5387 avoid an extra call to decl_function_context. */
5388 tree link;
5389
5390 for (link = context_display; link; link = TREE_CHAIN (link))
5391 if (TREE_PURPOSE (link) == context)
5392 {
5393 base = RTL_EXPR_RTL (TREE_VALUE (link));
5394 break;
5395 }
5396 }
5397
5398 if (base == 0)
5399 abort ();
5400
5401 /* Use same offset, relative to appropriate static chain or argument
5402 pointer. */
5403 return plus_constant (base, displacement);
5404 }
5405 \f
5406 /* Return the address of the trampoline for entering nested fn FUNCTION.
5407 If necessary, allocate a trampoline (in the stack frame)
5408 and emit rtl to initialize its contents (at entry to this function). */
5409
5410 rtx
5411 trampoline_address (function)
5412 tree function;
5413 {
5414 tree link;
5415 tree rtlexp;
5416 rtx tramp;
5417 struct function *fp;
5418 tree fn_context;
5419
5420 /* Find an existing trampoline and return it. */
5421 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5422 if (TREE_PURPOSE (link) == function)
5423 return
5424 round_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5425
5426 for (fp = outer_function_chain; fp; fp = fp->next)
5427 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5428 if (TREE_PURPOSE (link) == function)
5429 {
5430 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5431 function);
5432 return round_trampoline_addr (tramp);
5433 }
5434
5435 /* None exists; we must make one. */
5436
5437 /* Find the `struct function' for the function containing FUNCTION. */
5438 fp = 0;
5439 fn_context = decl_function_context (function);
5440 if (fn_context != current_function_decl
5441 && fn_context != inline_function_decl)
5442 for (fp = outer_function_chain; fp; fp = fp->next)
5443 if (fp->decl == fn_context)
5444 break;
5445
5446 /* Allocate run-time space for this trampoline
5447 (usually in the defining function's stack frame). */
5448 #ifdef ALLOCATE_TRAMPOLINE
5449 tramp = ALLOCATE_TRAMPOLINE (fp);
5450 #else
5451 /* If rounding needed, allocate extra space
5452 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5453 #ifdef TRAMPOLINE_ALIGNMENT
5454 #define TRAMPOLINE_REAL_SIZE \
5455 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5456 #else
5457 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5458 #endif
5459 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5460 fp ? fp : cfun);
5461 #endif
5462
5463 /* Record the trampoline for reuse and note it for later initialization
5464 by expand_function_end. */
5465 if (fp != 0)
5466 {
5467 push_obstacks (fp->function_maybepermanent_obstack,
5468 fp->function_maybepermanent_obstack);
5469 rtlexp = make_node (RTL_EXPR);
5470 RTL_EXPR_RTL (rtlexp) = tramp;
5471 fp->x_trampoline_list = tree_cons (function, rtlexp,
5472 fp->x_trampoline_list);
5473 pop_obstacks ();
5474 }
5475 else
5476 {
5477 /* Make the RTL_EXPR node temporary, not momentary, so that the
5478 trampoline_list doesn't become garbage. */
5479 int momentary = suspend_momentary ();
5480 rtlexp = make_node (RTL_EXPR);
5481 resume_momentary (momentary);
5482
5483 RTL_EXPR_RTL (rtlexp) = tramp;
5484 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5485 }
5486
5487 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5488 return round_trampoline_addr (tramp);
5489 }
5490
5491 /* Given a trampoline address,
5492 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5493
5494 static rtx
5495 round_trampoline_addr (tramp)
5496 rtx tramp;
5497 {
5498 #ifdef TRAMPOLINE_ALIGNMENT
5499 /* Round address up to desired boundary. */
5500 rtx temp = gen_reg_rtx (Pmode);
5501 temp = expand_binop (Pmode, add_optab, tramp,
5502 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
5503 temp, 0, OPTAB_LIB_WIDEN);
5504 tramp = expand_binop (Pmode, and_optab, temp,
5505 GEN_INT (- TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
5506 temp, 0, OPTAB_LIB_WIDEN);
5507 #endif
5508 return tramp;
5509 }
5510 \f
5511 /* Put all this function's BLOCK nodes including those that are chained
5512 onto the first block into a vector, and return it.
5513 Also store in each NOTE for the beginning or end of a block
5514 the index of that block in the vector.
5515 The arguments are BLOCK, the chain of top-level blocks of the function,
5516 and INSNS, the insn chain of the function. */
5517
5518 void
5519 identify_blocks ()
5520 {
5521 int n_blocks;
5522 tree *block_vector, *last_block_vector;
5523 tree *block_stack;
5524 tree block = DECL_INITIAL (current_function_decl);
5525
5526 if (block == 0)
5527 return;
5528
5529 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5530 depth-first order. */
5531 block_vector = get_block_vector (block, &n_blocks);
5532 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5533
5534 last_block_vector = identify_blocks_1 (get_insns (),
5535 block_vector + 1,
5536 block_vector + n_blocks,
5537 block_stack);
5538
5539 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5540 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5541 if (0 && last_block_vector != block_vector + n_blocks)
5542 abort ();
5543
5544 free (block_vector);
5545 free (block_stack);
5546 }
5547
5548 /* Subroutine of identify_blocks. Do the block substitution on the
5549 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5550
5551 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5552 BLOCK_VECTOR is incremented for each block seen. */
5553
5554 static tree *
5555 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5556 rtx insns;
5557 tree *block_vector;
5558 tree *end_block_vector;
5559 tree *orig_block_stack;
5560 {
5561 rtx insn;
5562 tree *block_stack = orig_block_stack;
5563
5564 for (insn = insns; insn; insn = NEXT_INSN (insn))
5565 {
5566 if (GET_CODE (insn) == NOTE)
5567 {
5568 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5569 {
5570 tree b;
5571
5572 /* If there are more block notes than BLOCKs, something
5573 is badly wrong. */
5574 if (block_vector == end_block_vector)
5575 abort ();
5576
5577 b = *block_vector++;
5578 NOTE_BLOCK (insn) = b;
5579 *block_stack++ = b;
5580 }
5581 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5582 {
5583 /* If there are more NOTE_INSN_BLOCK_ENDs than
5584 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5585 if (block_stack == orig_block_stack)
5586 abort ();
5587
5588 NOTE_BLOCK (insn) = *--block_stack;
5589 }
5590 }
5591 else if (GET_CODE (insn) == CALL_INSN
5592 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5593 {
5594 rtx cp = PATTERN (insn);
5595
5596 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5597 end_block_vector, block_stack);
5598 if (XEXP (cp, 1))
5599 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5600 end_block_vector, block_stack);
5601 if (XEXP (cp, 2))
5602 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5603 end_block_vector, block_stack);
5604 }
5605 }
5606
5607 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5608 something is badly wrong. */
5609 if (block_stack != orig_block_stack)
5610 abort ();
5611
5612 return block_vector;
5613 }
5614
5615 /* Identify BLOCKs referenced by more than one
5616 NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */
5617
5618 void
5619 reorder_blocks ()
5620 {
5621 tree block = DECL_INITIAL (current_function_decl);
5622 varray_type block_stack;
5623
5624 if (block == NULL_TREE)
5625 return;
5626
5627 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5628
5629 /* Prune the old trees away, so that they don't get in the way. */
5630 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5631 BLOCK_CHAIN (block) = NULL_TREE;
5632
5633 reorder_blocks_1 (get_insns (), block, &block_stack);
5634
5635 BLOCK_SUBBLOCKS (block)
5636 = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5637
5638 VARRAY_FREE (block_stack);
5639 }
5640
5641 /* Helper function for reorder_blocks. Process the insn chain beginning
5642 at INSNS. Recurse for CALL_PLACEHOLDER insns. */
5643
5644 static void
5645 reorder_blocks_1 (insns, current_block, p_block_stack)
5646 rtx insns;
5647 tree current_block;
5648 varray_type *p_block_stack;
5649 {
5650 rtx insn;
5651
5652 for (insn = insns; insn; insn = NEXT_INSN (insn))
5653 {
5654 if (GET_CODE (insn) == NOTE)
5655 {
5656 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5657 {
5658 tree block = NOTE_BLOCK (insn);
5659 /* If we have seen this block before, copy it. */
5660 if (TREE_ASM_WRITTEN (block))
5661 {
5662 block = copy_node (block);
5663 NOTE_BLOCK (insn) = block;
5664 }
5665 BLOCK_SUBBLOCKS (block) = 0;
5666 TREE_ASM_WRITTEN (block) = 1;
5667 BLOCK_SUPERCONTEXT (block) = current_block;
5668 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5669 BLOCK_SUBBLOCKS (current_block) = block;
5670 current_block = block;
5671 VARRAY_PUSH_TREE (*p_block_stack, block);
5672 }
5673 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5674 {
5675 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
5676 VARRAY_POP (*p_block_stack);
5677 BLOCK_SUBBLOCKS (current_block)
5678 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5679 current_block = BLOCK_SUPERCONTEXT (current_block);
5680 }
5681 }
5682 else if (GET_CODE (insn) == CALL_INSN
5683 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5684 {
5685 rtx cp = PATTERN (insn);
5686 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
5687 if (XEXP (cp, 1))
5688 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
5689 if (XEXP (cp, 2))
5690 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
5691 }
5692 }
5693 }
5694
5695 /* Reverse the order of elements in the chain T of blocks,
5696 and return the new head of the chain (old last element). */
5697
5698 static tree
5699 blocks_nreverse (t)
5700 tree t;
5701 {
5702 register tree prev = 0, decl, next;
5703 for (decl = t; decl; decl = next)
5704 {
5705 next = BLOCK_CHAIN (decl);
5706 BLOCK_CHAIN (decl) = prev;
5707 prev = decl;
5708 }
5709 return prev;
5710 }
5711
5712 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
5713 non-NULL, list them all into VECTOR, in a depth-first preorder
5714 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
5715 blocks. */
5716
5717 static int
5718 all_blocks (block, vector)
5719 tree block;
5720 tree *vector;
5721 {
5722 int n_blocks = 0;
5723
5724 while (block)
5725 {
5726 TREE_ASM_WRITTEN (block) = 0;
5727
5728 /* Record this block. */
5729 if (vector)
5730 vector[n_blocks] = block;
5731
5732 ++n_blocks;
5733
5734 /* Record the subblocks, and their subblocks... */
5735 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
5736 vector ? vector + n_blocks : 0);
5737 block = BLOCK_CHAIN (block);
5738 }
5739
5740 return n_blocks;
5741 }
5742
5743 /* Return a vector containing all the blocks rooted at BLOCK. The
5744 number of elements in the vector is stored in N_BLOCKS_P. The
5745 vector is dynamically allocated; it is the caller's responsibility
5746 to call `free' on the pointer returned. */
5747
5748 static tree *
5749 get_block_vector (block, n_blocks_p)
5750 tree block;
5751 int *n_blocks_p;
5752 {
5753 tree *block_vector;
5754
5755 *n_blocks_p = all_blocks (block, NULL);
5756 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
5757 all_blocks (block, block_vector);
5758
5759 return block_vector;
5760 }
5761
5762 static int next_block_index = 2;
5763
5764 /* Set BLOCK_NUMBER for all the blocks in FN. */
5765
5766 void
5767 number_blocks (fn)
5768 tree fn;
5769 {
5770 int i;
5771 int n_blocks;
5772 tree *block_vector;
5773
5774 /* For SDB and XCOFF debugging output, we start numbering the blocks
5775 from 1 within each function, rather than keeping a running
5776 count. */
5777 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
5778 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
5779 next_block_index = 1;
5780 #endif
5781
5782 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
5783
5784 /* The top-level BLOCK isn't numbered at all. */
5785 for (i = 1; i < n_blocks; ++i)
5786 /* We number the blocks from two. */
5787 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
5788
5789 free (block_vector);
5790
5791 return;
5792 }
5793
5794 \f
5795 /* Allocate a function structure and reset its contents to the defaults. */
5796 static void
5797 prepare_function_start ()
5798 {
5799 cfun = (struct function *) xcalloc (1, sizeof (struct function));
5800
5801 init_stmt_for_function ();
5802 init_eh_for_function ();
5803
5804 cse_not_expected = ! optimize;
5805
5806 /* Caller save not needed yet. */
5807 caller_save_needed = 0;
5808
5809 /* No stack slots have been made yet. */
5810 stack_slot_list = 0;
5811
5812 current_function_has_nonlocal_label = 0;
5813 current_function_has_nonlocal_goto = 0;
5814
5815 /* There is no stack slot for handling nonlocal gotos. */
5816 nonlocal_goto_handler_slots = 0;
5817 nonlocal_goto_stack_level = 0;
5818
5819 /* No labels have been declared for nonlocal use. */
5820 nonlocal_labels = 0;
5821 nonlocal_goto_handler_labels = 0;
5822
5823 /* No function calls so far in this function. */
5824 function_call_count = 0;
5825
5826 /* No parm regs have been allocated.
5827 (This is important for output_inline_function.) */
5828 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
5829
5830 /* Initialize the RTL mechanism. */
5831 init_emit ();
5832
5833 /* Initialize the queue of pending postincrement and postdecrements,
5834 and some other info in expr.c. */
5835 init_expr ();
5836
5837 /* We haven't done register allocation yet. */
5838 reg_renumber = 0;
5839
5840 init_varasm_status (cfun);
5841
5842 /* Clear out data used for inlining. */
5843 cfun->inlinable = 0;
5844 cfun->original_decl_initial = 0;
5845 cfun->original_arg_vector = 0;
5846
5847 #ifdef STACK_BOUNDARY
5848 cfun->stack_alignment_needed = STACK_BOUNDARY;
5849 cfun->preferred_stack_boundary = STACK_BOUNDARY;
5850 #else
5851 cfun->stack_alignment_needed = 0;
5852 cfun->preferred_stack_boundary = 0;
5853 #endif
5854
5855 /* Set if a call to setjmp is seen. */
5856 current_function_calls_setjmp = 0;
5857
5858 /* Set if a call to longjmp is seen. */
5859 current_function_calls_longjmp = 0;
5860
5861 current_function_calls_alloca = 0;
5862 current_function_contains_functions = 0;
5863 current_function_is_leaf = 0;
5864 current_function_nothrow = 0;
5865 current_function_sp_is_unchanging = 0;
5866 current_function_uses_only_leaf_regs = 0;
5867 current_function_has_computed_jump = 0;
5868 current_function_is_thunk = 0;
5869
5870 current_function_returns_pcc_struct = 0;
5871 current_function_returns_struct = 0;
5872 current_function_epilogue_delay_list = 0;
5873 current_function_uses_const_pool = 0;
5874 current_function_uses_pic_offset_table = 0;
5875 current_function_cannot_inline = 0;
5876
5877 /* We have not yet needed to make a label to jump to for tail-recursion. */
5878 tail_recursion_label = 0;
5879
5880 /* We haven't had a need to make a save area for ap yet. */
5881 arg_pointer_save_area = 0;
5882
5883 /* No stack slots allocated yet. */
5884 frame_offset = 0;
5885
5886 /* No SAVE_EXPRs in this function yet. */
5887 save_expr_regs = 0;
5888
5889 /* No RTL_EXPRs in this function yet. */
5890 rtl_expr_chain = 0;
5891
5892 /* Set up to allocate temporaries. */
5893 init_temp_slots ();
5894
5895 /* Indicate that we need to distinguish between the return value of the
5896 present function and the return value of a function being called. */
5897 rtx_equal_function_value_matters = 1;
5898
5899 /* Indicate that we have not instantiated virtual registers yet. */
5900 virtuals_instantiated = 0;
5901
5902 /* Indicate we have no need of a frame pointer yet. */
5903 frame_pointer_needed = 0;
5904
5905 /* By default assume not varargs or stdarg. */
5906 current_function_varargs = 0;
5907 current_function_stdarg = 0;
5908
5909 /* We haven't made any trampolines for this function yet. */
5910 trampoline_list = 0;
5911
5912 init_pending_stack_adjust ();
5913 inhibit_defer_pop = 0;
5914
5915 current_function_outgoing_args_size = 0;
5916
5917 if (init_lang_status)
5918 (*init_lang_status) (cfun);
5919 if (init_machine_status)
5920 (*init_machine_status) (cfun);
5921 }
5922
5923 /* Initialize the rtl expansion mechanism so that we can do simple things
5924 like generate sequences. This is used to provide a context during global
5925 initialization of some passes. */
5926 void
5927 init_dummy_function_start ()
5928 {
5929 prepare_function_start ();
5930 }
5931
5932 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5933 and initialize static variables for generating RTL for the statements
5934 of the function. */
5935
5936 void
5937 init_function_start (subr, filename, line)
5938 tree subr;
5939 char *filename;
5940 int line;
5941 {
5942 prepare_function_start ();
5943
5944 /* Remember this function for later. */
5945 cfun->next_global = all_functions;
5946 all_functions = cfun;
5947
5948 current_function_name = (*decl_printable_name) (subr, 2);
5949 cfun->decl = subr;
5950
5951 /* Nonzero if this is a nested function that uses a static chain. */
5952
5953 current_function_needs_context
5954 = (decl_function_context (current_function_decl) != 0
5955 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
5956
5957 /* Within function body, compute a type's size as soon it is laid out. */
5958 immediate_size_expand++;
5959
5960 /* Prevent ever trying to delete the first instruction of a function.
5961 Also tell final how to output a linenum before the function prologue.
5962 Note linenums could be missing, e.g. when compiling a Java .class file. */
5963 if (line > 0)
5964 emit_line_note (filename, line);
5965
5966 /* Make sure first insn is a note even if we don't want linenums.
5967 This makes sure the first insn will never be deleted.
5968 Also, final expects a note to appear there. */
5969 emit_note (NULL_PTR, NOTE_INSN_DELETED);
5970
5971 /* Set flags used by final.c. */
5972 if (aggregate_value_p (DECL_RESULT (subr)))
5973 {
5974 #ifdef PCC_STATIC_STRUCT_RETURN
5975 current_function_returns_pcc_struct = 1;
5976 #endif
5977 current_function_returns_struct = 1;
5978 }
5979
5980 /* Warn if this value is an aggregate type,
5981 regardless of which calling convention we are using for it. */
5982 if (warn_aggregate_return
5983 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
5984 warning ("function returns an aggregate");
5985
5986 current_function_returns_pointer
5987 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
5988 }
5989
5990 /* Make sure all values used by the optimization passes have sane
5991 defaults. */
5992 void
5993 init_function_for_compilation ()
5994 {
5995 reg_renumber = 0;
5996
5997 /* No prologue/epilogue insns yet. */
5998 VARRAY_GROW (prologue, 0);
5999 VARRAY_GROW (epilogue, 0);
6000 VARRAY_GROW (sibcall_epilogue, 0);
6001 }
6002
6003 /* Indicate that the current function uses extra args
6004 not explicitly mentioned in the argument list in any fashion. */
6005
6006 void
6007 mark_varargs ()
6008 {
6009 current_function_varargs = 1;
6010 }
6011
6012 /* Expand a call to __main at the beginning of a possible main function. */
6013
6014 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6015 #undef HAS_INIT_SECTION
6016 #define HAS_INIT_SECTION
6017 #endif
6018
6019 void
6020 expand_main_function ()
6021 {
6022 #if !defined (HAS_INIT_SECTION)
6023 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0,
6024 VOIDmode, 0);
6025 #endif /* not HAS_INIT_SECTION */
6026 }
6027 \f
6028 extern struct obstack permanent_obstack;
6029
6030 /* Start the RTL for a new function, and set variables used for
6031 emitting RTL.
6032 SUBR is the FUNCTION_DECL node.
6033 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6034 the function's parameters, which must be run at any return statement. */
6035
6036 void
6037 expand_function_start (subr, parms_have_cleanups)
6038 tree subr;
6039 int parms_have_cleanups;
6040 {
6041 tree tem;
6042 rtx last_ptr = NULL_RTX;
6043
6044 /* Make sure volatile mem refs aren't considered
6045 valid operands of arithmetic insns. */
6046 init_recog_no_volatile ();
6047
6048 /* Set this before generating any memory accesses. */
6049 current_function_check_memory_usage
6050 = (flag_check_memory_usage
6051 && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl));
6052
6053 current_function_instrument_entry_exit
6054 = (flag_instrument_function_entry_exit
6055 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6056
6057 current_function_limit_stack
6058 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6059
6060 /* If function gets a static chain arg, store it in the stack frame.
6061 Do this first, so it gets the first stack slot offset. */
6062 if (current_function_needs_context)
6063 {
6064 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6065
6066 /* Delay copying static chain if it is not a register to avoid
6067 conflicts with regs used for parameters. */
6068 if (! SMALL_REGISTER_CLASSES
6069 || GET_CODE (static_chain_incoming_rtx) == REG)
6070 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6071 }
6072
6073 /* If the parameters of this function need cleaning up, get a label
6074 for the beginning of the code which executes those cleanups. This must
6075 be done before doing anything with return_label. */
6076 if (parms_have_cleanups)
6077 cleanup_label = gen_label_rtx ();
6078 else
6079 cleanup_label = 0;
6080
6081 /* Make the label for return statements to jump to, if this machine
6082 does not have a one-instruction return and uses an epilogue,
6083 or if it returns a structure, or if it has parm cleanups. */
6084 #ifdef HAVE_return
6085 if (cleanup_label == 0 && HAVE_return
6086 && ! current_function_instrument_entry_exit
6087 && ! current_function_returns_pcc_struct
6088 && ! (current_function_returns_struct && ! optimize))
6089 return_label = 0;
6090 else
6091 return_label = gen_label_rtx ();
6092 #else
6093 return_label = gen_label_rtx ();
6094 #endif
6095
6096 /* Initialize rtx used to return the value. */
6097 /* Do this before assign_parms so that we copy the struct value address
6098 before any library calls that assign parms might generate. */
6099
6100 /* Decide whether to return the value in memory or in a register. */
6101 if (aggregate_value_p (DECL_RESULT (subr)))
6102 {
6103 /* Returning something that won't go in a register. */
6104 register rtx value_address = 0;
6105
6106 #ifdef PCC_STATIC_STRUCT_RETURN
6107 if (current_function_returns_pcc_struct)
6108 {
6109 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6110 value_address = assemble_static_space (size);
6111 }
6112 else
6113 #endif
6114 {
6115 /* Expect to be passed the address of a place to store the value.
6116 If it is passed as an argument, assign_parms will take care of
6117 it. */
6118 if (struct_value_incoming_rtx)
6119 {
6120 value_address = gen_reg_rtx (Pmode);
6121 emit_move_insn (value_address, struct_value_incoming_rtx);
6122 }
6123 }
6124 if (value_address)
6125 {
6126 DECL_RTL (DECL_RESULT (subr))
6127 = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6128 MEM_SET_IN_STRUCT_P (DECL_RTL (DECL_RESULT (subr)),
6129 AGGREGATE_TYPE_P (TREE_TYPE
6130 (DECL_RESULT
6131 (subr))));
6132 }
6133 }
6134 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6135 /* If return mode is void, this decl rtl should not be used. */
6136 DECL_RTL (DECL_RESULT (subr)) = 0;
6137 else if (parms_have_cleanups || current_function_instrument_entry_exit)
6138 {
6139 /* If function will end with cleanup code for parms,
6140 compute the return values into a pseudo reg,
6141 which we will copy into the true return register
6142 after the cleanups are done. */
6143
6144 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
6145
6146 #ifdef PROMOTE_FUNCTION_RETURN
6147 tree type = TREE_TYPE (DECL_RESULT (subr));
6148 int unsignedp = TREE_UNSIGNED (type);
6149
6150 mode = promote_mode (type, mode, &unsignedp, 1);
6151 #endif
6152
6153 DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode);
6154 }
6155 else
6156 /* Scalar, returned in a register. */
6157 {
6158 #ifdef FUNCTION_OUTGOING_VALUE
6159 DECL_RTL (DECL_RESULT (subr))
6160 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
6161 #else
6162 DECL_RTL (DECL_RESULT (subr))
6163 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
6164 #endif
6165
6166 /* Mark this reg as the function's return value. */
6167 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
6168 {
6169 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
6170 /* Needed because we may need to move this to memory
6171 in case it's a named return value whose address is taken. */
6172 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6173 }
6174 }
6175
6176 /* Initialize rtx for parameters and local variables.
6177 In some cases this requires emitting insns. */
6178
6179 assign_parms (subr);
6180
6181 /* Copy the static chain now if it wasn't a register. The delay is to
6182 avoid conflicts with the parameter passing registers. */
6183
6184 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6185 if (GET_CODE (static_chain_incoming_rtx) != REG)
6186 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6187
6188 /* The following was moved from init_function_start.
6189 The move is supposed to make sdb output more accurate. */
6190 /* Indicate the beginning of the function body,
6191 as opposed to parm setup. */
6192 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
6193
6194 if (GET_CODE (get_last_insn ()) != NOTE)
6195 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6196 parm_birth_insn = get_last_insn ();
6197
6198 context_display = 0;
6199 if (current_function_needs_context)
6200 {
6201 /* Fetch static chain values for containing functions. */
6202 tem = decl_function_context (current_function_decl);
6203 /* Copy the static chain pointer into a pseudo. If we have
6204 small register classes, copy the value from memory if
6205 static_chain_incoming_rtx is a REG. */
6206 if (tem)
6207 {
6208 /* If the static chain originally came in a register, put it back
6209 there, then move it out in the next insn. The reason for
6210 this peculiar code is to satisfy function integration. */
6211 if (SMALL_REGISTER_CLASSES
6212 && GET_CODE (static_chain_incoming_rtx) == REG)
6213 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6214 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6215 }
6216
6217 while (tem)
6218 {
6219 tree rtlexp = make_node (RTL_EXPR);
6220
6221 RTL_EXPR_RTL (rtlexp) = last_ptr;
6222 context_display = tree_cons (tem, rtlexp, context_display);
6223 tem = decl_function_context (tem);
6224 if (tem == 0)
6225 break;
6226 /* Chain thru stack frames, assuming pointer to next lexical frame
6227 is found at the place we always store it. */
6228 #ifdef FRAME_GROWS_DOWNWARD
6229 last_ptr = plus_constant (last_ptr, - GET_MODE_SIZE (Pmode));
6230 #endif
6231 last_ptr = copy_to_reg (gen_rtx_MEM (Pmode,
6232 memory_address (Pmode,
6233 last_ptr)));
6234
6235 /* If we are not optimizing, ensure that we know that this
6236 piece of context is live over the entire function. */
6237 if (! optimize)
6238 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6239 save_expr_regs);
6240 }
6241 }
6242
6243 if (current_function_instrument_entry_exit)
6244 {
6245 rtx fun = DECL_RTL (current_function_decl);
6246 if (GET_CODE (fun) == MEM)
6247 fun = XEXP (fun, 0);
6248 else
6249 abort ();
6250 emit_library_call (profile_function_entry_libfunc, 0, VOIDmode, 2,
6251 fun, Pmode,
6252 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6253 0,
6254 hard_frame_pointer_rtx),
6255 Pmode);
6256 }
6257
6258 /* After the display initializations is where the tail-recursion label
6259 should go, if we end up needing one. Ensure we have a NOTE here
6260 since some things (like trampolines) get placed before this. */
6261 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
6262
6263 /* Evaluate now the sizes of any types declared among the arguments. */
6264 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
6265 {
6266 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode,
6267 EXPAND_MEMORY_USE_BAD);
6268 /* Flush the queue in case this parameter declaration has
6269 side-effects. */
6270 emit_queue ();
6271 }
6272
6273 /* Make sure there is a line number after the function entry setup code. */
6274 force_next_line_note ();
6275 }
6276 \f
6277 /* Undo the effects of init_dummy_function_start. */
6278 void
6279 expand_dummy_function_end ()
6280 {
6281 /* End any sequences that failed to be closed due to syntax errors. */
6282 while (in_sequence_p ())
6283 end_sequence ();
6284
6285 /* Outside function body, can't compute type's actual size
6286 until next function's body starts. */
6287
6288 free_after_parsing (cfun);
6289 free_after_compilation (cfun);
6290 free (cfun);
6291 cfun = 0;
6292 }
6293
6294 /* Call DOIT for each hard register used as a return value from
6295 the current function. */
6296
6297 void
6298 diddle_return_value (doit, arg)
6299 void (*doit) PARAMS ((rtx, void *));
6300 void *arg;
6301 {
6302 rtx outgoing = current_function_return_rtx;
6303
6304 if (! outgoing)
6305 return;
6306
6307 if (GET_CODE (outgoing) == REG
6308 && REGNO (outgoing) >= FIRST_PSEUDO_REGISTER)
6309 {
6310 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6311 #ifdef FUNCTION_OUTGOING_VALUE
6312 outgoing = FUNCTION_OUTGOING_VALUE (type, current_function_decl);
6313 #else
6314 outgoing = FUNCTION_VALUE (type, current_function_decl);
6315 #endif
6316 /* If this is a BLKmode structure being returned in registers, then use
6317 the mode computed in expand_return. */
6318 if (GET_MODE (outgoing) == BLKmode)
6319 PUT_MODE (outgoing,
6320 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6321 }
6322
6323 if (GET_CODE (outgoing) == REG)
6324 (*doit) (outgoing, arg);
6325 else if (GET_CODE (outgoing) == PARALLEL)
6326 {
6327 int i;
6328
6329 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6330 {
6331 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6332
6333 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6334 (*doit) (x, arg);
6335 }
6336 }
6337 }
6338
6339 static void
6340 do_clobber_return_reg (reg, arg)
6341 rtx reg;
6342 void *arg ATTRIBUTE_UNUSED;
6343 {
6344 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6345 }
6346
6347 void
6348 clobber_return_register ()
6349 {
6350 diddle_return_value (do_clobber_return_reg, NULL);
6351 }
6352
6353 static void
6354 do_use_return_reg (reg, arg)
6355 rtx reg;
6356 void *arg ATTRIBUTE_UNUSED;
6357 {
6358 emit_insn (gen_rtx_USE (VOIDmode, reg));
6359 }
6360
6361 void
6362 use_return_register ()
6363 {
6364 diddle_return_value (do_use_return_reg, NULL);
6365 }
6366
6367 /* Generate RTL for the end of the current function.
6368 FILENAME and LINE are the current position in the source file.
6369
6370 It is up to language-specific callers to do cleanups for parameters--
6371 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6372
6373 void
6374 expand_function_end (filename, line, end_bindings)
6375 char *filename;
6376 int line;
6377 int end_bindings;
6378 {
6379 tree link;
6380
6381 #ifdef TRAMPOLINE_TEMPLATE
6382 static rtx initial_trampoline;
6383 #endif
6384
6385 finish_expr_for_function ();
6386
6387 #ifdef NON_SAVING_SETJMP
6388 /* Don't put any variables in registers if we call setjmp
6389 on a machine that fails to restore the registers. */
6390 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6391 {
6392 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6393 setjmp_protect (DECL_INITIAL (current_function_decl));
6394
6395 setjmp_protect_args ();
6396 }
6397 #endif
6398
6399 /* Save the argument pointer if a save area was made for it. */
6400 if (arg_pointer_save_area)
6401 {
6402 /* arg_pointer_save_area may not be a valid memory address, so we
6403 have to check it and fix it if necessary. */
6404 rtx seq;
6405 start_sequence ();
6406 emit_move_insn (validize_mem (arg_pointer_save_area),
6407 virtual_incoming_args_rtx);
6408 seq = gen_sequence ();
6409 end_sequence ();
6410 emit_insn_before (seq, tail_recursion_reentry);
6411 }
6412
6413 /* Initialize any trampolines required by this function. */
6414 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6415 {
6416 tree function = TREE_PURPOSE (link);
6417 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6418 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6419 #ifdef TRAMPOLINE_TEMPLATE
6420 rtx blktramp;
6421 #endif
6422 rtx seq;
6423
6424 #ifdef TRAMPOLINE_TEMPLATE
6425 /* First make sure this compilation has a template for
6426 initializing trampolines. */
6427 if (initial_trampoline == 0)
6428 {
6429 end_temporary_allocation ();
6430 initial_trampoline
6431 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6432 resume_temporary_allocation ();
6433
6434 ggc_add_rtx_root (&initial_trampoline, 1);
6435 }
6436 #endif
6437
6438 /* Generate insns to initialize the trampoline. */
6439 start_sequence ();
6440 tramp = round_trampoline_addr (XEXP (tramp, 0));
6441 #ifdef TRAMPOLINE_TEMPLATE
6442 blktramp = change_address (initial_trampoline, BLKmode, tramp);
6443 emit_block_move (blktramp, initial_trampoline,
6444 GEN_INT (TRAMPOLINE_SIZE),
6445 TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
6446 #endif
6447 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6448 seq = get_insns ();
6449 end_sequence ();
6450
6451 /* Put those insns at entry to the containing function (this one). */
6452 emit_insns_before (seq, tail_recursion_reentry);
6453 }
6454
6455 /* If we are doing stack checking and this function makes calls,
6456 do a stack probe at the start of the function to ensure we have enough
6457 space for another stack frame. */
6458 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6459 {
6460 rtx insn, seq;
6461
6462 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6463 if (GET_CODE (insn) == CALL_INSN)
6464 {
6465 start_sequence ();
6466 probe_stack_range (STACK_CHECK_PROTECT,
6467 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6468 seq = get_insns ();
6469 end_sequence ();
6470 emit_insns_before (seq, tail_recursion_reentry);
6471 break;
6472 }
6473 }
6474
6475 /* Warn about unused parms if extra warnings were specified. */
6476 if (warn_unused && extra_warnings)
6477 {
6478 tree decl;
6479
6480 for (decl = DECL_ARGUMENTS (current_function_decl);
6481 decl; decl = TREE_CHAIN (decl))
6482 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6483 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6484 warning_with_decl (decl, "unused parameter `%s'");
6485 }
6486
6487 /* Delete handlers for nonlocal gotos if nothing uses them. */
6488 if (nonlocal_goto_handler_slots != 0
6489 && ! current_function_has_nonlocal_label)
6490 delete_handlers ();
6491
6492 /* End any sequences that failed to be closed due to syntax errors. */
6493 while (in_sequence_p ())
6494 end_sequence ();
6495
6496 /* Outside function body, can't compute type's actual size
6497 until next function's body starts. */
6498 immediate_size_expand--;
6499
6500 clear_pending_stack_adjust ();
6501 do_pending_stack_adjust ();
6502
6503 /* Mark the end of the function body.
6504 If control reaches this insn, the function can drop through
6505 without returning a value. */
6506 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
6507
6508 /* Must mark the last line number note in the function, so that the test
6509 coverage code can avoid counting the last line twice. This just tells
6510 the code to ignore the immediately following line note, since there
6511 already exists a copy of this note somewhere above. This line number
6512 note is still needed for debugging though, so we can't delete it. */
6513 if (flag_test_coverage)
6514 emit_note (NULL_PTR, NOTE_REPEATED_LINE_NUMBER);
6515
6516 /* Output a linenumber for the end of the function.
6517 SDB depends on this. */
6518 emit_line_note_force (filename, line);
6519
6520 /* Output the label for the actual return from the function,
6521 if one is expected. This happens either because a function epilogue
6522 is used instead of a return instruction, or because a return was done
6523 with a goto in order to run local cleanups, or because of pcc-style
6524 structure returning. */
6525
6526 if (return_label)
6527 {
6528 /* Before the return label, clobber the return registers so that
6529 they are not propogated live to the rest of the function. This
6530 can only happen with functions that drop through; if there had
6531 been a return statement, there would have either been a return
6532 rtx, or a jump to the return label. */
6533 clobber_return_register ();
6534
6535 emit_label (return_label);
6536 }
6537
6538 /* C++ uses this. */
6539 if (end_bindings)
6540 expand_end_bindings (0, 0, 0);
6541
6542 /* Now handle any leftover exception regions that may have been
6543 created for the parameters. */
6544 {
6545 rtx last = get_last_insn ();
6546 rtx label;
6547
6548 expand_leftover_cleanups ();
6549
6550 /* If there are any catch_clauses remaining, output them now. */
6551 emit_insns (catch_clauses);
6552 catch_clauses = catch_clauses_last = NULL_RTX;
6553 /* If the above emitted any code, may sure we jump around it. */
6554 if (last != get_last_insn ())
6555 {
6556 label = gen_label_rtx ();
6557 last = emit_jump_insn_after (gen_jump (label), last);
6558 last = emit_barrier_after (last);
6559 emit_label (label);
6560 }
6561 }
6562
6563 if (current_function_instrument_entry_exit)
6564 {
6565 rtx fun = DECL_RTL (current_function_decl);
6566 if (GET_CODE (fun) == MEM)
6567 fun = XEXP (fun, 0);
6568 else
6569 abort ();
6570 emit_library_call (profile_function_exit_libfunc, 0, VOIDmode, 2,
6571 fun, Pmode,
6572 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6573 0,
6574 hard_frame_pointer_rtx),
6575 Pmode);
6576 }
6577
6578 /* If we had calls to alloca, and this machine needs
6579 an accurate stack pointer to exit the function,
6580 insert some code to save and restore the stack pointer. */
6581 #ifdef EXIT_IGNORE_STACK
6582 if (! EXIT_IGNORE_STACK)
6583 #endif
6584 if (current_function_calls_alloca)
6585 {
6586 rtx tem = 0;
6587
6588 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6589 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6590 }
6591
6592 /* If scalar return value was computed in a pseudo-reg,
6593 copy that to the hard return register. */
6594 if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0
6595 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG
6596 && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl)))
6597 >= FIRST_PSEUDO_REGISTER))
6598 {
6599 rtx real_decl_result;
6600
6601 #ifdef FUNCTION_OUTGOING_VALUE
6602 real_decl_result
6603 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6604 current_function_decl);
6605 #else
6606 real_decl_result
6607 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6608 current_function_decl);
6609 #endif
6610 REG_FUNCTION_VALUE_P (real_decl_result) = 1;
6611 /* If this is a BLKmode structure being returned in registers, then use
6612 the mode computed in expand_return. */
6613 if (GET_MODE (real_decl_result) == BLKmode)
6614 PUT_MODE (real_decl_result,
6615 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6616 emit_move_insn (real_decl_result,
6617 DECL_RTL (DECL_RESULT (current_function_decl)));
6618
6619 /* The delay slot scheduler assumes that current_function_return_rtx
6620 holds the hard register containing the return value, not a temporary
6621 pseudo. */
6622 current_function_return_rtx = real_decl_result;
6623 }
6624
6625 /* If returning a structure, arrange to return the address of the value
6626 in a place where debuggers expect to find it.
6627
6628 If returning a structure PCC style,
6629 the caller also depends on this value.
6630 And current_function_returns_pcc_struct is not necessarily set. */
6631 if (current_function_returns_struct
6632 || current_function_returns_pcc_struct)
6633 {
6634 rtx value_address = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
6635 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6636 #ifdef FUNCTION_OUTGOING_VALUE
6637 rtx outgoing
6638 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
6639 current_function_decl);
6640 #else
6641 rtx outgoing
6642 = FUNCTION_VALUE (build_pointer_type (type),
6643 current_function_decl);
6644 #endif
6645
6646 /* Mark this as a function return value so integrate will delete the
6647 assignment and USE below when inlining this function. */
6648 REG_FUNCTION_VALUE_P (outgoing) = 1;
6649
6650 emit_move_insn (outgoing, value_address);
6651 }
6652
6653 /* ??? This should no longer be necessary since stupid is no longer with
6654 us, but there are some parts of the compiler (eg reload_combine, and
6655 sh mach_dep_reorg) that still try and compute their own lifetime info
6656 instead of using the general framework. */
6657 use_return_register ();
6658
6659 /* If this is an implementation of __throw, do what's necessary to
6660 communicate between __builtin_eh_return and the epilogue. */
6661 expand_eh_return ();
6662
6663 /* Output a return insn if we are using one.
6664 Otherwise, let the rtl chain end here, to drop through
6665 into the epilogue. */
6666
6667 #ifdef HAVE_return
6668 if (HAVE_return)
6669 {
6670 emit_jump_insn (gen_return ());
6671 emit_barrier ();
6672 }
6673 #endif
6674
6675 /* Fix up any gotos that jumped out to the outermost
6676 binding level of the function.
6677 Must follow emitting RETURN_LABEL. */
6678
6679 /* If you have any cleanups to do at this point,
6680 and they need to create temporary variables,
6681 then you will lose. */
6682 expand_fixups (get_insns ());
6683 }
6684 \f
6685 /* Extend a vector that records the INSN_UIDs of INSNS (either a
6686 sequence or a single insn). */
6687
6688 static void
6689 record_insns (insns, vecp)
6690 rtx insns;
6691 varray_type *vecp;
6692 {
6693 if (GET_CODE (insns) == SEQUENCE)
6694 {
6695 int len = XVECLEN (insns, 0);
6696 int i = VARRAY_SIZE (*vecp);
6697
6698 VARRAY_GROW (*vecp, i + len);
6699 while (--len >= 0)
6700 {
6701 VARRAY_INT (*vecp, i) = INSN_UID (XVECEXP (insns, 0, len));
6702 ++i;
6703 }
6704 }
6705 else
6706 {
6707 int i = VARRAY_SIZE (*vecp);
6708 VARRAY_GROW (*vecp, i + 1);
6709 VARRAY_INT (*vecp, i) = INSN_UID (insns);
6710 }
6711 }
6712
6713 /* Determine how many INSN_UIDs in VEC are part of INSN. */
6714
6715 static int
6716 contains (insn, vec)
6717 rtx insn;
6718 varray_type vec;
6719 {
6720 register int i, j;
6721
6722 if (GET_CODE (insn) == INSN
6723 && GET_CODE (PATTERN (insn)) == SEQUENCE)
6724 {
6725 int count = 0;
6726 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6727 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6728 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
6729 count++;
6730 return count;
6731 }
6732 else
6733 {
6734 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6735 if (INSN_UID (insn) == VARRAY_INT (vec, j))
6736 return 1;
6737 }
6738 return 0;
6739 }
6740
6741 int
6742 prologue_epilogue_contains (insn)
6743 rtx insn;
6744 {
6745 if (contains (insn, prologue))
6746 return 1;
6747 if (contains (insn, epilogue))
6748 return 1;
6749 return 0;
6750 }
6751
6752 int
6753 sibcall_epilogue_contains (insn)
6754 rtx insn;
6755 {
6756 if (sibcall_epilogue)
6757 return contains (insn, sibcall_epilogue);
6758 return 0;
6759 }
6760
6761 #ifdef HAVE_return
6762 /* Insert gen_return at the end of block BB. This also means updating
6763 block_for_insn appropriately. */
6764
6765 static void
6766 emit_return_into_block (bb)
6767 basic_block bb;
6768 {
6769 rtx p, end;
6770
6771 end = emit_jump_insn_after (gen_return (), bb->end);
6772 p = NEXT_INSN (bb->end);
6773 while (1)
6774 {
6775 set_block_for_insn (p, bb);
6776 if (p == end)
6777 break;
6778 p = NEXT_INSN (p);
6779 }
6780 bb->end = end;
6781 }
6782 #endif /* HAVE_return */
6783
6784 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
6785 this into place with notes indicating where the prologue ends and where
6786 the epilogue begins. Update the basic block information when possible. */
6787
6788 void
6789 thread_prologue_and_epilogue_insns (f)
6790 rtx f ATTRIBUTE_UNUSED;
6791 {
6792 int insertted = 0;
6793 edge e;
6794 rtx seq;
6795
6796 #ifdef HAVE_prologue
6797 if (HAVE_prologue)
6798 {
6799 rtx insn;
6800
6801 start_sequence ();
6802 seq = gen_prologue();
6803 emit_insn (seq);
6804
6805 /* Retain a map of the prologue insns. */
6806 if (GET_CODE (seq) != SEQUENCE)
6807 seq = get_insns ();
6808 record_insns (seq, &prologue);
6809 emit_note (NULL, NOTE_INSN_PROLOGUE_END);
6810
6811 /* GDB handles `break f' by setting a breakpoint on the first
6812 line note *after* the prologue. That means that we should
6813 insert a line note here; otherwise, if the next line note
6814 comes part way into the next block, GDB will skip all the way
6815 to that point. */
6816 insn = next_nonnote_insn (f);
6817 while (insn)
6818 {
6819 if (GET_CODE (insn) == NOTE
6820 && NOTE_LINE_NUMBER (insn) >= 0)
6821 {
6822 emit_line_note_force (NOTE_SOURCE_FILE (insn),
6823 NOTE_LINE_NUMBER (insn));
6824 break;
6825 }
6826
6827 insn = PREV_INSN (insn);
6828 }
6829
6830 seq = gen_sequence ();
6831 end_sequence ();
6832
6833 /* If optimization is off, and perhaps in an empty function,
6834 the entry block will have no successors. */
6835 if (ENTRY_BLOCK_PTR->succ)
6836 {
6837 /* Can't deal with multiple successsors of the entry block. */
6838 if (ENTRY_BLOCK_PTR->succ->succ_next)
6839 abort ();
6840
6841 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
6842 insertted = 1;
6843 }
6844 else
6845 emit_insn_after (seq, f);
6846 }
6847 #endif
6848
6849 /* If the exit block has no non-fake predecessors, we don't need
6850 an epilogue. */
6851 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6852 if ((e->flags & EDGE_FAKE) == 0)
6853 break;
6854 if (e == NULL)
6855 goto epilogue_done;
6856
6857 #ifdef HAVE_return
6858 if (optimize && HAVE_return)
6859 {
6860 /* If we're allowed to generate a simple return instruction,
6861 then by definition we don't need a full epilogue. Examine
6862 the block that falls through to EXIT. If it does not
6863 contain any code, examine its predecessors and try to
6864 emit (conditional) return instructions. */
6865
6866 basic_block last;
6867 edge e_next;
6868 rtx label;
6869
6870 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6871 if (e->flags & EDGE_FALLTHRU)
6872 break;
6873 if (e == NULL)
6874 goto epilogue_done;
6875 last = e->src;
6876
6877 /* Verify that there are no active instructions in the last block. */
6878 label = last->end;
6879 while (label && GET_CODE (label) != CODE_LABEL)
6880 {
6881 if (active_insn_p (label))
6882 break;
6883 label = PREV_INSN (label);
6884 }
6885
6886 if (last->head == label && GET_CODE (label) == CODE_LABEL)
6887 {
6888 for (e = last->pred; e ; e = e_next)
6889 {
6890 basic_block bb = e->src;
6891 rtx jump;
6892
6893 e_next = e->pred_next;
6894 if (bb == ENTRY_BLOCK_PTR)
6895 continue;
6896
6897 jump = bb->end;
6898 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
6899 continue;
6900
6901 /* If we have an unconditional jump, we can replace that
6902 with a simple return instruction. */
6903 if (simplejump_p (jump))
6904 {
6905 emit_return_into_block (bb);
6906 flow_delete_insn (jump);
6907 }
6908
6909 /* If we have a conditional jump, we can try to replace
6910 that with a conditional return instruction. */
6911 else if (condjump_p (jump))
6912 {
6913 rtx ret, *loc;
6914
6915 ret = SET_SRC (PATTERN (jump));
6916 if (GET_CODE (XEXP (ret, 1)) == LABEL_REF)
6917 loc = &XEXP (ret, 1);
6918 else
6919 loc = &XEXP (ret, 2);
6920 ret = gen_rtx_RETURN (VOIDmode);
6921
6922 if (! validate_change (jump, loc, ret, 0))
6923 continue;
6924 if (JUMP_LABEL (jump))
6925 LABEL_NUSES (JUMP_LABEL (jump))--;
6926
6927 /* If this block has only one successor, it both jumps
6928 and falls through to the fallthru block, so we can't
6929 delete the edge. */
6930 if (bb->succ->succ_next == NULL)
6931 continue;
6932 }
6933 else
6934 continue;
6935
6936 /* Fix up the CFG for the successful change we just made. */
6937 remove_edge (e);
6938 make_edge (NULL, bb, EXIT_BLOCK_PTR, 0);
6939 }
6940
6941 /* Emit a return insn for the exit fallthru block. Whether
6942 this is still reachable will be determined later. */
6943
6944 emit_barrier_after (last->end);
6945 emit_return_into_block (last);
6946 }
6947 else
6948 {
6949 /* The exit block wasn't empty. We have to use insert_insn_on_edge,
6950 as it may be the exit block can go elsewhere as well
6951 as exiting. */
6952 start_sequence ();
6953 emit_jump_insn (gen_return ());
6954 seq = gen_sequence ();
6955 end_sequence ();
6956 insert_insn_on_edge (seq, e);
6957 insertted = 1;
6958 }
6959 goto epilogue_done;
6960 }
6961 #endif
6962 #ifdef HAVE_epilogue
6963 if (HAVE_epilogue)
6964 {
6965 /* Find the edge that falls through to EXIT. Other edges may exist
6966 due to RETURN instructions, but those don't need epilogues.
6967 There really shouldn't be a mixture -- either all should have
6968 been converted or none, however... */
6969
6970 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6971 if (e->flags & EDGE_FALLTHRU)
6972 break;
6973 if (e == NULL)
6974 goto epilogue_done;
6975
6976 start_sequence ();
6977 emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
6978
6979 seq = gen_epilogue ();
6980 emit_jump_insn (seq);
6981
6982 /* Retain a map of the epilogue insns. */
6983 if (GET_CODE (seq) != SEQUENCE)
6984 seq = get_insns ();
6985 record_insns (seq, &epilogue);
6986
6987 seq = gen_sequence ();
6988 end_sequence();
6989
6990 insert_insn_on_edge (seq, e);
6991 insertted = 1;
6992 }
6993 #endif
6994 epilogue_done:
6995
6996 if (insertted)
6997 commit_edge_insertions ();
6998
6999 #ifdef HAVE_sibcall_epilogue
7000 /* Emit sibling epilogues before any sibling call sites. */
7001 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
7002 {
7003 basic_block bb = e->src;
7004 rtx insn = bb->end;
7005 rtx i;
7006
7007 if (GET_CODE (insn) != CALL_INSN
7008 || ! SIBLING_CALL_P (insn))
7009 continue;
7010
7011 start_sequence ();
7012 seq = gen_sibcall_epilogue ();
7013 end_sequence ();
7014
7015 i = PREV_INSN (insn);
7016 emit_insn_before (seq, insn);
7017
7018 /* Update the UID to basic block map. */
7019 for (i = NEXT_INSN (i); i != insn; i = NEXT_INSN (i))
7020 set_block_for_insn (i, bb);
7021
7022 /* Retain a map of the epilogue insns. Used in life analysis to
7023 avoid getting rid of sibcall epilogue insns. */
7024 record_insns (seq, &sibcall_epilogue);
7025 }
7026 #endif
7027 }
7028
7029 /* Reposition the prologue-end and epilogue-begin notes after instruction
7030 scheduling and delayed branch scheduling. */
7031
7032 void
7033 reposition_prologue_and_epilogue_notes (f)
7034 rtx f ATTRIBUTE_UNUSED;
7035 {
7036 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7037 int len;
7038
7039 if ((len = VARRAY_SIZE (prologue)) > 0)
7040 {
7041 register rtx insn, note = 0;
7042
7043 /* Scan from the beginning until we reach the last prologue insn.
7044 We apparently can't depend on basic_block_{head,end} after
7045 reorg has run. */
7046 for (insn = f; len && insn; insn = NEXT_INSN (insn))
7047 {
7048 if (GET_CODE (insn) == NOTE)
7049 {
7050 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7051 note = insn;
7052 }
7053 else if ((len -= contains (insn, prologue)) == 0)
7054 {
7055 rtx next;
7056 /* Find the prologue-end note if we haven't already, and
7057 move it to just after the last prologue insn. */
7058 if (note == 0)
7059 {
7060 for (note = insn; (note = NEXT_INSN (note));)
7061 if (GET_CODE (note) == NOTE
7062 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7063 break;
7064 }
7065
7066 next = NEXT_INSN (note);
7067
7068 /* Whether or not we can depend on BLOCK_HEAD,
7069 attempt to keep it up-to-date. */
7070 if (BLOCK_HEAD (0) == note)
7071 BLOCK_HEAD (0) = next;
7072
7073 remove_insn (note);
7074 add_insn_after (note, insn);
7075 }
7076 }
7077 }
7078
7079 if ((len = VARRAY_SIZE (epilogue)) > 0)
7080 {
7081 register rtx insn, note = 0;
7082
7083 /* Scan from the end until we reach the first epilogue insn.
7084 We apparently can't depend on basic_block_{head,end} after
7085 reorg has run. */
7086 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
7087 {
7088 if (GET_CODE (insn) == NOTE)
7089 {
7090 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7091 note = insn;
7092 }
7093 else if ((len -= contains (insn, epilogue)) == 0)
7094 {
7095 /* Find the epilogue-begin note if we haven't already, and
7096 move it to just before the first epilogue insn. */
7097 if (note == 0)
7098 {
7099 for (note = insn; (note = PREV_INSN (note));)
7100 if (GET_CODE (note) == NOTE
7101 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7102 break;
7103 }
7104
7105 /* Whether or not we can depend on BLOCK_HEAD,
7106 attempt to keep it up-to-date. */
7107 if (n_basic_blocks
7108 && BLOCK_HEAD (n_basic_blocks-1) == insn)
7109 BLOCK_HEAD (n_basic_blocks-1) = note;
7110
7111 remove_insn (note);
7112 add_insn_before (note, insn);
7113 }
7114 }
7115 }
7116 #endif /* HAVE_prologue or HAVE_epilogue */
7117 }
7118
7119 /* Mark T for GC. */
7120
7121 static void
7122 mark_temp_slot (t)
7123 struct temp_slot *t;
7124 {
7125 while (t)
7126 {
7127 ggc_mark_rtx (t->slot);
7128 ggc_mark_rtx (t->address);
7129 ggc_mark_tree (t->rtl_expr);
7130
7131 t = t->next;
7132 }
7133 }
7134
7135 /* Mark P for GC. */
7136
7137 static void
7138 mark_function_status (p)
7139 struct function *p;
7140 {
7141 int i;
7142 rtx *r;
7143
7144 if (p == 0)
7145 return;
7146
7147 ggc_mark_rtx (p->arg_offset_rtx);
7148
7149 if (p->x_parm_reg_stack_loc)
7150 for (i = p->x_max_parm_reg, r = p->x_parm_reg_stack_loc;
7151 i > 0; --i, ++r)
7152 ggc_mark_rtx (*r);
7153
7154 ggc_mark_rtx (p->return_rtx);
7155 ggc_mark_rtx (p->x_cleanup_label);
7156 ggc_mark_rtx (p->x_return_label);
7157 ggc_mark_rtx (p->x_save_expr_regs);
7158 ggc_mark_rtx (p->x_stack_slot_list);
7159 ggc_mark_rtx (p->x_parm_birth_insn);
7160 ggc_mark_rtx (p->x_tail_recursion_label);
7161 ggc_mark_rtx (p->x_tail_recursion_reentry);
7162 ggc_mark_rtx (p->internal_arg_pointer);
7163 ggc_mark_rtx (p->x_arg_pointer_save_area);
7164 ggc_mark_tree (p->x_rtl_expr_chain);
7165 ggc_mark_rtx (p->x_last_parm_insn);
7166 ggc_mark_tree (p->x_context_display);
7167 ggc_mark_tree (p->x_trampoline_list);
7168 ggc_mark_rtx (p->epilogue_delay_list);
7169
7170 mark_temp_slot (p->x_temp_slots);
7171
7172 {
7173 struct var_refs_queue *q = p->fixup_var_refs_queue;
7174 while (q)
7175 {
7176 ggc_mark_rtx (q->modified);
7177 q = q->next;
7178 }
7179 }
7180
7181 ggc_mark_rtx (p->x_nonlocal_goto_handler_slots);
7182 ggc_mark_rtx (p->x_nonlocal_goto_handler_labels);
7183 ggc_mark_rtx (p->x_nonlocal_goto_stack_level);
7184 ggc_mark_tree (p->x_nonlocal_labels);
7185 }
7186
7187 /* Mark the function chain ARG (which is really a struct function **)
7188 for GC. */
7189
7190 static void
7191 mark_function_chain (arg)
7192 void *arg;
7193 {
7194 struct function *f = *(struct function **) arg;
7195
7196 for (; f; f = f->next_global)
7197 {
7198 ggc_mark_tree (f->decl);
7199
7200 mark_function_status (f);
7201 mark_eh_status (f->eh);
7202 mark_stmt_status (f->stmt);
7203 mark_expr_status (f->expr);
7204 mark_emit_status (f->emit);
7205 mark_varasm_status (f->varasm);
7206
7207 if (mark_machine_status)
7208 (*mark_machine_status) (f);
7209 if (mark_lang_status)
7210 (*mark_lang_status) (f);
7211
7212 if (f->original_arg_vector)
7213 ggc_mark_rtvec ((rtvec) f->original_arg_vector);
7214 if (f->original_decl_initial)
7215 ggc_mark_tree (f->original_decl_initial);
7216 }
7217 }
7218
7219 /* Called once, at initialization, to initialize function.c. */
7220
7221 void
7222 init_function_once ()
7223 {
7224 ggc_add_root (&all_functions, 1, sizeof all_functions,
7225 mark_function_chain);
7226
7227 VARRAY_INT_INIT (prologue, 0, "prologue");
7228 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7229 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
7230 }
This page took 0.386339 seconds and 6 git commands to generate.