]> gcc.gnu.org Git - gcc.git/blob - gcc/function.c
final.c (final): Use xcalloc to allocate line_note_exists.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
27
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
31
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register.
36
37 Call `put_var_into_stack' when you learn, belatedly, that a variable
38 previously given a pseudo-register must in fact go in the stack.
39 This function changes the DECL_RTL to be a stack slot instead of a reg
40 then scans all the RTL instructions so far generated to correct them. */
41
42 #include "config.h"
43 #include "system.h"
44 #include "rtl.h"
45 #include "tree.h"
46 #include "flags.h"
47 #include "except.h"
48 #include "function.h"
49 #include "insn-flags.h"
50 #include "expr.h"
51 #include "insn-codes.h"
52 #include "regs.h"
53 #include "hard-reg-set.h"
54 #include "insn-config.h"
55 #include "recog.h"
56 #include "output.h"
57 #include "basic-block.h"
58 #include "obstack.h"
59 #include "toplev.h"
60 #include "hash.h"
61 #include "ggc.h"
62 #include "tm_p.h"
63
64 #ifndef ACCUMULATE_OUTGOING_ARGS
65 #define ACCUMULATE_OUTGOING_ARGS 0
66 #endif
67
68 #ifndef TRAMPOLINE_ALIGNMENT
69 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
70 #endif
71
72 #ifndef LOCAL_ALIGNMENT
73 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
74 #endif
75
76 #if !defined (PREFERRED_STACK_BOUNDARY) && defined (STACK_BOUNDARY)
77 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
78 #endif
79
80 /* Some systems use __main in a way incompatible with its use in gcc, in these
81 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
82 give the same symbol without quotes for an alternative entry point. You
83 must define both, or neither. */
84 #ifndef NAME__MAIN
85 #define NAME__MAIN "__main"
86 #define SYMBOL__MAIN __main
87 #endif
88
89 /* Round a value to the lowest integer less than it that is a multiple of
90 the required alignment. Avoid using division in case the value is
91 negative. Assume the alignment is a power of two. */
92 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
93
94 /* Similar, but round to the next highest integer that meets the
95 alignment. */
96 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
97
98 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
99 during rtl generation. If they are different register numbers, this is
100 always true. It may also be true if
101 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
102 generation. See fix_lexical_addr for details. */
103
104 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
105 #define NEED_SEPARATE_AP
106 #endif
107
108 /* Nonzero if function being compiled doesn't contain any calls
109 (ignoring the prologue and epilogue). This is set prior to
110 local register allocation and is valid for the remaining
111 compiler passes. */
112 int current_function_is_leaf;
113
114 /* Nonzero if function being compiled doesn't contain any instructions
115 that can throw an exception. This is set prior to final. */
116
117 int current_function_nothrow;
118
119 /* Nonzero if function being compiled doesn't modify the stack pointer
120 (ignoring the prologue and epilogue). This is only valid after
121 life_analysis has run. */
122 int current_function_sp_is_unchanging;
123
124 /* Nonzero if the function being compiled is a leaf function which only
125 uses leaf registers. This is valid after reload (specifically after
126 sched2) and is useful only if the port defines LEAF_REGISTERS. */
127 int current_function_uses_only_leaf_regs;
128
129 /* Nonzero once virtual register instantiation has been done.
130 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
131 static int virtuals_instantiated;
132
133 /* These variables hold pointers to functions to
134 save and restore machine-specific data,
135 in push_function_context and pop_function_context. */
136 void (*init_machine_status) PARAMS ((struct function *));
137 void (*save_machine_status) PARAMS ((struct function *));
138 void (*restore_machine_status) PARAMS ((struct function *));
139 void (*mark_machine_status) PARAMS ((struct function *));
140 void (*free_machine_status) PARAMS ((struct function *));
141
142 /* Likewise, but for language-specific data. */
143 void (*init_lang_status) PARAMS ((struct function *));
144 void (*save_lang_status) PARAMS ((struct function *));
145 void (*restore_lang_status) PARAMS ((struct function *));
146 void (*mark_lang_status) PARAMS ((struct function *));
147 void (*free_lang_status) PARAMS ((struct function *));
148
149 /* The FUNCTION_DECL for an inline function currently being expanded. */
150 tree inline_function_decl;
151
152 /* The currently compiled function. */
153 struct function *cfun = 0;
154
155 /* Global list of all compiled functions. */
156 struct function *all_functions = 0;
157
158 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
159 static varray_type prologue;
160 static varray_type epilogue;
161
162 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
163 in this function. */
164 static varray_type sibcall_epilogue;
165 \f
166 /* In order to evaluate some expressions, such as function calls returning
167 structures in memory, we need to temporarily allocate stack locations.
168 We record each allocated temporary in the following structure.
169
170 Associated with each temporary slot is a nesting level. When we pop up
171 one level, all temporaries associated with the previous level are freed.
172 Normally, all temporaries are freed after the execution of the statement
173 in which they were created. However, if we are inside a ({...}) grouping,
174 the result may be in a temporary and hence must be preserved. If the
175 result could be in a temporary, we preserve it if we can determine which
176 one it is in. If we cannot determine which temporary may contain the
177 result, all temporaries are preserved. A temporary is preserved by
178 pretending it was allocated at the previous nesting level.
179
180 Automatic variables are also assigned temporary slots, at the nesting
181 level where they are defined. They are marked a "kept" so that
182 free_temp_slots will not free them. */
183
184 struct temp_slot
185 {
186 /* Points to next temporary slot. */
187 struct temp_slot *next;
188 /* The rtx to used to reference the slot. */
189 rtx slot;
190 /* The rtx used to represent the address if not the address of the
191 slot above. May be an EXPR_LIST if multiple addresses exist. */
192 rtx address;
193 /* The alignment (in bits) of the slot. */
194 int align;
195 /* The size, in units, of the slot. */
196 HOST_WIDE_INT size;
197 /* The alias set for the slot. If the alias set is zero, we don't
198 know anything about the alias set of the slot. We must only
199 reuse a slot if it is assigned an object of the same alias set.
200 Otherwise, the rest of the compiler may assume that the new use
201 of the slot cannot alias the old use of the slot, which is
202 false. If the slot has alias set zero, then we can't reuse the
203 slot at all, since we have no idea what alias set may have been
204 imposed on the memory. For example, if the stack slot is the
205 call frame for an inline functioned, we have no idea what alias
206 sets will be assigned to various pieces of the call frame. */
207 int alias_set;
208 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
209 tree rtl_expr;
210 /* Non-zero if this temporary is currently in use. */
211 char in_use;
212 /* Non-zero if this temporary has its address taken. */
213 char addr_taken;
214 /* Nesting level at which this slot is being used. */
215 int level;
216 /* Non-zero if this should survive a call to free_temp_slots. */
217 int keep;
218 /* The offset of the slot from the frame_pointer, including extra space
219 for alignment. This info is for combine_temp_slots. */
220 HOST_WIDE_INT base_offset;
221 /* The size of the slot, including extra space for alignment. This
222 info is for combine_temp_slots. */
223 HOST_WIDE_INT full_size;
224 };
225 \f
226 /* This structure is used to record MEMs or pseudos used to replace VAR, any
227 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
228 maintain this list in case two operands of an insn were required to match;
229 in that case we must ensure we use the same replacement. */
230
231 struct fixup_replacement
232 {
233 rtx old;
234 rtx new;
235 struct fixup_replacement *next;
236 };
237
238 struct insns_for_mem_entry {
239 /* The KEY in HE will be a MEM. */
240 struct hash_entry he;
241 /* These are the INSNS which reference the MEM. */
242 rtx insns;
243 };
244
245 /* Forward declarations. */
246
247 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
248 int, struct function *));
249 static rtx assign_stack_temp_for_type PARAMS ((enum machine_mode,
250 HOST_WIDE_INT, int, tree));
251 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
252 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
253 enum machine_mode, enum machine_mode,
254 int, unsigned int, int,
255 struct hash_table *));
256 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int,
257 struct hash_table *));
258 static struct fixup_replacement
259 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
260 static void fixup_var_refs_insns PARAMS ((rtx, enum machine_mode, int,
261 rtx, int, struct hash_table *));
262 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
263 struct fixup_replacement **));
264 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, int));
265 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, int));
266 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
267 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
268 static void instantiate_decls PARAMS ((tree, int));
269 static void instantiate_decls_1 PARAMS ((tree, int));
270 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
271 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
272 static void delete_handlers PARAMS ((void));
273 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
274 struct args_size *));
275 #ifndef ARGS_GROW_DOWNWARD
276 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
277 tree));
278 #endif
279 #ifdef ARGS_GROW_DOWNWARD
280 static tree round_down PARAMS ((tree, int));
281 #endif
282 static rtx round_trampoline_addr PARAMS ((rtx));
283 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
284 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
285 static tree blocks_nreverse PARAMS ((tree));
286 static int all_blocks PARAMS ((tree, tree *));
287 static tree *get_block_vector PARAMS ((tree, int *));
288 /* We always define `record_insns' even if its not used so that we
289 can always export `prologue_epilogue_contains'. */
290 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
291 static int contains PARAMS ((rtx, varray_type));
292 #ifdef HAVE_return
293 static void emit_return_into_block PARAMS ((basic_block));
294 #endif
295 static void put_addressof_into_stack PARAMS ((rtx, struct hash_table *));
296 static boolean purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
297 struct hash_table *));
298 static int is_addressof PARAMS ((rtx *, void *));
299 static struct hash_entry *insns_for_mem_newfunc PARAMS ((struct hash_entry *,
300 struct hash_table *,
301 hash_table_key));
302 static unsigned long insns_for_mem_hash PARAMS ((hash_table_key));
303 static boolean insns_for_mem_comp PARAMS ((hash_table_key, hash_table_key));
304 static int insns_for_mem_walk PARAMS ((rtx *, void *));
305 static void compute_insns_for_mem PARAMS ((rtx, rtx, struct hash_table *));
306 static void mark_temp_slot PARAMS ((struct temp_slot *));
307 static void mark_function_status PARAMS ((struct function *));
308 static void mark_function_chain PARAMS ((void *));
309 static void prepare_function_start PARAMS ((void));
310 static void do_clobber_return_reg PARAMS ((rtx, void *));
311 static void do_use_return_reg PARAMS ((rtx, void *));
312 \f
313 /* Pointer to chain of `struct function' for containing functions. */
314 struct function *outer_function_chain;
315
316 /* Given a function decl for a containing function,
317 return the `struct function' for it. */
318
319 struct function *
320 find_function_data (decl)
321 tree decl;
322 {
323 struct function *p;
324
325 for (p = outer_function_chain; p; p = p->next)
326 if (p->decl == decl)
327 return p;
328
329 abort ();
330 }
331
332 /* Save the current context for compilation of a nested function.
333 This is called from language-specific code. The caller should use
334 the save_lang_status callback to save any language-specific state,
335 since this function knows only about language-independent
336 variables. */
337
338 void
339 push_function_context_to (context)
340 tree context;
341 {
342 struct function *p, *context_data;
343
344 if (context)
345 {
346 context_data = (context == current_function_decl
347 ? cfun
348 : find_function_data (context));
349 context_data->contains_functions = 1;
350 }
351
352 if (cfun == 0)
353 init_dummy_function_start ();
354 p = cfun;
355
356 p->next = outer_function_chain;
357 outer_function_chain = p;
358 p->fixup_var_refs_queue = 0;
359
360 save_tree_status (p);
361 if (save_lang_status)
362 (*save_lang_status) (p);
363 if (save_machine_status)
364 (*save_machine_status) (p);
365
366 cfun = 0;
367 }
368
369 void
370 push_function_context ()
371 {
372 push_function_context_to (current_function_decl);
373 }
374
375 /* Restore the last saved context, at the end of a nested function.
376 This function is called from language-specific code. */
377
378 void
379 pop_function_context_from (context)
380 tree context ATTRIBUTE_UNUSED;
381 {
382 struct function *p = outer_function_chain;
383 struct var_refs_queue *queue;
384 struct var_refs_queue *next;
385
386 cfun = p;
387 outer_function_chain = p->next;
388
389 current_function_decl = p->decl;
390 reg_renumber = 0;
391
392 restore_tree_status (p);
393 restore_emit_status (p);
394
395 if (restore_machine_status)
396 (*restore_machine_status) (p);
397 if (restore_lang_status)
398 (*restore_lang_status) (p);
399
400 /* Finish doing put_var_into_stack for any of our variables
401 which became addressable during the nested function. */
402 for (queue = p->fixup_var_refs_queue; queue; queue = next)
403 {
404 next = queue->next;
405 fixup_var_refs (queue->modified, queue->promoted_mode,
406 queue->unsignedp, 0);
407 free (queue);
408 }
409 p->fixup_var_refs_queue = 0;
410
411 /* Reset variables that have known state during rtx generation. */
412 rtx_equal_function_value_matters = 1;
413 virtuals_instantiated = 0;
414 }
415
416 void
417 pop_function_context ()
418 {
419 pop_function_context_from (current_function_decl);
420 }
421
422 /* Clear out all parts of the state in F that can safely be discarded
423 after the function has been parsed, but not compiled, to let
424 garbage collection reclaim the memory. */
425
426 void
427 free_after_parsing (f)
428 struct function *f;
429 {
430 /* f->expr->forced_labels is used by code generation. */
431 /* f->emit->regno_reg_rtx is used by code generation. */
432 /* f->varasm is used by code generation. */
433 /* f->eh->eh_return_stub_label is used by code generation. */
434
435 if (free_lang_status)
436 (*free_lang_status) (f);
437 free_stmt_status (f);
438 }
439
440 /* Clear out all parts of the state in F that can safely be discarded
441 after the function has been compiled, to let garbage collection
442 reclaim the memory. */
443
444 void
445 free_after_compilation (f)
446 struct function *f;
447 {
448 struct temp_slot *ts;
449 struct temp_slot *next;
450
451 free_eh_status (f);
452 free_expr_status (f);
453 free_emit_status (f);
454 free_varasm_status (f);
455
456 if (free_machine_status)
457 (*free_machine_status) (f);
458
459 if (f->x_parm_reg_stack_loc)
460 free (f->x_parm_reg_stack_loc);
461
462 for (ts = f->x_temp_slots; ts; ts = next)
463 {
464 next = ts->next;
465 free (ts);
466 }
467 f->x_temp_slots = NULL;
468
469 f->arg_offset_rtx = NULL;
470 f->return_rtx = NULL;
471 f->internal_arg_pointer = NULL;
472 f->x_nonlocal_labels = NULL;
473 f->x_nonlocal_goto_handler_slots = NULL;
474 f->x_nonlocal_goto_handler_labels = NULL;
475 f->x_nonlocal_goto_stack_level = NULL;
476 f->x_cleanup_label = NULL;
477 f->x_return_label = NULL;
478 f->x_save_expr_regs = NULL;
479 f->x_stack_slot_list = NULL;
480 f->x_rtl_expr_chain = NULL;
481 f->x_tail_recursion_label = NULL;
482 f->x_tail_recursion_reentry = NULL;
483 f->x_arg_pointer_save_area = NULL;
484 f->x_context_display = NULL;
485 f->x_trampoline_list = NULL;
486 f->x_parm_birth_insn = NULL;
487 f->x_last_parm_insn = NULL;
488 f->x_parm_reg_stack_loc = NULL;
489 f->fixup_var_refs_queue = NULL;
490 f->original_arg_vector = NULL;
491 f->original_decl_initial = NULL;
492 f->inl_last_parm_insn = NULL;
493 f->epilogue_delay_list = NULL;
494 }
495
496 \f
497 /* Allocate fixed slots in the stack frame of the current function. */
498
499 /* Return size needed for stack frame based on slots so far allocated in
500 function F.
501 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
502 the caller may have to do that. */
503
504 HOST_WIDE_INT
505 get_func_frame_size (f)
506 struct function *f;
507 {
508 #ifdef FRAME_GROWS_DOWNWARD
509 return -f->x_frame_offset;
510 #else
511 return f->x_frame_offset;
512 #endif
513 }
514
515 /* Return size needed for stack frame based on slots so far allocated.
516 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
517 the caller may have to do that. */
518 HOST_WIDE_INT
519 get_frame_size ()
520 {
521 return get_func_frame_size (cfun);
522 }
523
524 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
525 with machine mode MODE.
526
527 ALIGN controls the amount of alignment for the address of the slot:
528 0 means according to MODE,
529 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
530 positive specifies alignment boundary in bits.
531
532 We do not round to stack_boundary here.
533
534 FUNCTION specifies the function to allocate in. */
535
536 static rtx
537 assign_stack_local_1 (mode, size, align, function)
538 enum machine_mode mode;
539 HOST_WIDE_INT size;
540 int align;
541 struct function *function;
542 {
543 register rtx x, addr;
544 int bigend_correction = 0;
545 int alignment;
546
547 /* Allocate in the memory associated with the function in whose frame
548 we are assigning. */
549 if (function != cfun)
550 push_obstacks (function->function_obstack,
551 function->function_maybepermanent_obstack);
552
553 if (align == 0)
554 {
555 tree type;
556
557 alignment = GET_MODE_ALIGNMENT (mode);
558 if (mode == BLKmode)
559 alignment = BIGGEST_ALIGNMENT;
560
561 /* Allow the target to (possibly) increase the alignment of this
562 stack slot. */
563 type = type_for_mode (mode, 0);
564 if (type)
565 alignment = LOCAL_ALIGNMENT (type, alignment);
566
567 alignment /= BITS_PER_UNIT;
568 }
569 else if (align == -1)
570 {
571 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
572 size = CEIL_ROUND (size, alignment);
573 }
574 else
575 alignment = align / BITS_PER_UNIT;
576
577 #ifdef FRAME_GROWS_DOWNWARD
578 function->x_frame_offset -= size;
579 #endif
580
581 /* Ignore alignment we can't do with expected alignment of the boundary. */
582 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
583 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
584
585 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
586 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
587
588 /* Round frame offset to that alignment.
589 We must be careful here, since FRAME_OFFSET might be negative and
590 division with a negative dividend isn't as well defined as we might
591 like. So we instead assume that ALIGNMENT is a power of two and
592 use logical operations which are unambiguous. */
593 #ifdef FRAME_GROWS_DOWNWARD
594 function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset, alignment);
595 #else
596 function->x_frame_offset = CEIL_ROUND (function->x_frame_offset, alignment);
597 #endif
598
599 /* On a big-endian machine, if we are allocating more space than we will use,
600 use the least significant bytes of those that are allocated. */
601 if (BYTES_BIG_ENDIAN && mode != BLKmode)
602 bigend_correction = size - GET_MODE_SIZE (mode);
603
604 /* If we have already instantiated virtual registers, return the actual
605 address relative to the frame pointer. */
606 if (function == cfun && virtuals_instantiated)
607 addr = plus_constant (frame_pointer_rtx,
608 (frame_offset + bigend_correction
609 + STARTING_FRAME_OFFSET));
610 else
611 addr = plus_constant (virtual_stack_vars_rtx,
612 function->x_frame_offset + bigend_correction);
613
614 #ifndef FRAME_GROWS_DOWNWARD
615 function->x_frame_offset += size;
616 #endif
617
618 x = gen_rtx_MEM (mode, addr);
619
620 function->x_stack_slot_list
621 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
622
623 if (function != cfun)
624 pop_obstacks ();
625
626 return x;
627 }
628
629 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
630 current function. */
631 rtx
632 assign_stack_local (mode, size, align)
633 enum machine_mode mode;
634 HOST_WIDE_INT size;
635 int align;
636 {
637 return assign_stack_local_1 (mode, size, align, cfun);
638 }
639 \f
640 /* Allocate a temporary stack slot and record it for possible later
641 reuse.
642
643 MODE is the machine mode to be given to the returned rtx.
644
645 SIZE is the size in units of the space required. We do no rounding here
646 since assign_stack_local will do any required rounding.
647
648 KEEP is 1 if this slot is to be retained after a call to
649 free_temp_slots. Automatic variables for a block are allocated
650 with this flag. KEEP is 2 if we allocate a longer term temporary,
651 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
652 if we are to allocate something at an inner level to be treated as
653 a variable in the block (e.g., a SAVE_EXPR).
654
655 TYPE is the type that will be used for the stack slot. */
656
657 static rtx
658 assign_stack_temp_for_type (mode, size, keep, type)
659 enum machine_mode mode;
660 HOST_WIDE_INT size;
661 int keep;
662 tree type;
663 {
664 int align;
665 int alias_set;
666 struct temp_slot *p, *best_p = 0;
667
668 /* If SIZE is -1 it means that somebody tried to allocate a temporary
669 of a variable size. */
670 if (size == -1)
671 abort ();
672
673 /* If we know the alias set for the memory that will be used, use
674 it. If there's no TYPE, then we don't know anything about the
675 alias set for the memory. */
676 if (type)
677 alias_set = get_alias_set (type);
678 else
679 alias_set = 0;
680
681 align = GET_MODE_ALIGNMENT (mode);
682 if (mode == BLKmode)
683 align = BIGGEST_ALIGNMENT;
684
685 if (! type)
686 type = type_for_mode (mode, 0);
687 if (type)
688 align = LOCAL_ALIGNMENT (type, align);
689
690 /* Try to find an available, already-allocated temporary of the proper
691 mode which meets the size and alignment requirements. Choose the
692 smallest one with the closest alignment. */
693 for (p = temp_slots; p; p = p->next)
694 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
695 && ! p->in_use
696 && (!flag_strict_aliasing
697 || (alias_set && p->alias_set == alias_set))
698 && (best_p == 0 || best_p->size > p->size
699 || (best_p->size == p->size && best_p->align > p->align)))
700 {
701 if (p->align == align && p->size == size)
702 {
703 best_p = 0;
704 break;
705 }
706 best_p = p;
707 }
708
709 /* Make our best, if any, the one to use. */
710 if (best_p)
711 {
712 /* If there are enough aligned bytes left over, make them into a new
713 temp_slot so that the extra bytes don't get wasted. Do this only
714 for BLKmode slots, so that we can be sure of the alignment. */
715 if (GET_MODE (best_p->slot) == BLKmode
716 /* We can't split slots if -fstrict-aliasing because the
717 information about the alias set for the new slot will be
718 lost. */
719 && !flag_strict_aliasing)
720 {
721 int alignment = best_p->align / BITS_PER_UNIT;
722 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
723
724 if (best_p->size - rounded_size >= alignment)
725 {
726 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
727 p->in_use = p->addr_taken = 0;
728 p->size = best_p->size - rounded_size;
729 p->base_offset = best_p->base_offset + rounded_size;
730 p->full_size = best_p->full_size - rounded_size;
731 p->slot = gen_rtx_MEM (BLKmode,
732 plus_constant (XEXP (best_p->slot, 0),
733 rounded_size));
734 p->align = best_p->align;
735 p->address = 0;
736 p->rtl_expr = 0;
737 p->next = temp_slots;
738 temp_slots = p;
739
740 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
741 stack_slot_list);
742
743 best_p->size = rounded_size;
744 best_p->full_size = rounded_size;
745 }
746 }
747
748 p = best_p;
749 }
750
751 /* If we still didn't find one, make a new temporary. */
752 if (p == 0)
753 {
754 HOST_WIDE_INT frame_offset_old = frame_offset;
755
756 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
757
758 /* We are passing an explicit alignment request to assign_stack_local.
759 One side effect of that is assign_stack_local will not round SIZE
760 to ensure the frame offset remains suitably aligned.
761
762 So for requests which depended on the rounding of SIZE, we go ahead
763 and round it now. We also make sure ALIGNMENT is at least
764 BIGGEST_ALIGNMENT. */
765 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
766 abort();
767 p->slot = assign_stack_local (mode,
768 (mode == BLKmode
769 ? CEIL_ROUND (size, align / BITS_PER_UNIT)
770 : size),
771 align);
772
773 p->align = align;
774 p->alias_set = alias_set;
775
776 /* The following slot size computation is necessary because we don't
777 know the actual size of the temporary slot until assign_stack_local
778 has performed all the frame alignment and size rounding for the
779 requested temporary. Note that extra space added for alignment
780 can be either above or below this stack slot depending on which
781 way the frame grows. We include the extra space if and only if it
782 is above this slot. */
783 #ifdef FRAME_GROWS_DOWNWARD
784 p->size = frame_offset_old - frame_offset;
785 #else
786 p->size = size;
787 #endif
788
789 /* Now define the fields used by combine_temp_slots. */
790 #ifdef FRAME_GROWS_DOWNWARD
791 p->base_offset = frame_offset;
792 p->full_size = frame_offset_old - frame_offset;
793 #else
794 p->base_offset = frame_offset_old;
795 p->full_size = frame_offset - frame_offset_old;
796 #endif
797 p->address = 0;
798 p->next = temp_slots;
799 temp_slots = p;
800 }
801
802 p->in_use = 1;
803 p->addr_taken = 0;
804 p->rtl_expr = seq_rtl_expr;
805
806 if (keep == 2)
807 {
808 p->level = target_temp_slot_level;
809 p->keep = 0;
810 }
811 else if (keep == 3)
812 {
813 p->level = var_temp_slot_level;
814 p->keep = 0;
815 }
816 else
817 {
818 p->level = temp_slot_level;
819 p->keep = keep;
820 }
821
822 /* We may be reusing an old slot, so clear any MEM flags that may have been
823 set from before. */
824 RTX_UNCHANGING_P (p->slot) = 0;
825 MEM_IN_STRUCT_P (p->slot) = 0;
826 MEM_SCALAR_P (p->slot) = 0;
827 MEM_ALIAS_SET (p->slot) = 0;
828 return p->slot;
829 }
830
831 /* Allocate a temporary stack slot and record it for possible later
832 reuse. First three arguments are same as in preceding function. */
833
834 rtx
835 assign_stack_temp (mode, size, keep)
836 enum machine_mode mode;
837 HOST_WIDE_INT size;
838 int keep;
839 {
840 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
841 }
842 \f
843 /* Assign a temporary of given TYPE.
844 KEEP is as for assign_stack_temp.
845 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
846 it is 0 if a register is OK.
847 DONT_PROMOTE is 1 if we should not promote values in register
848 to wider modes. */
849
850 rtx
851 assign_temp (type, keep, memory_required, dont_promote)
852 tree type;
853 int keep;
854 int memory_required;
855 int dont_promote ATTRIBUTE_UNUSED;
856 {
857 enum machine_mode mode = TYPE_MODE (type);
858 #ifndef PROMOTE_FOR_CALL_ONLY
859 int unsignedp = TREE_UNSIGNED (type);
860 #endif
861
862 if (mode == BLKmode || memory_required)
863 {
864 HOST_WIDE_INT size = int_size_in_bytes (type);
865 rtx tmp;
866
867 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
868 problems with allocating the stack space. */
869 if (size == 0)
870 size = 1;
871
872 /* Unfortunately, we don't yet know how to allocate variable-sized
873 temporaries. However, sometimes we have a fixed upper limit on
874 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
875 instead. This is the case for Chill variable-sized strings. */
876 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
877 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
878 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (type)) == INTEGER_CST)
879 size = TREE_INT_CST_LOW (TYPE_ARRAY_MAX_SIZE (type));
880
881 tmp = assign_stack_temp_for_type (mode, size, keep, type);
882 MEM_SET_IN_STRUCT_P (tmp, AGGREGATE_TYPE_P (type));
883 return tmp;
884 }
885
886 #ifndef PROMOTE_FOR_CALL_ONLY
887 if (! dont_promote)
888 mode = promote_mode (type, mode, &unsignedp, 0);
889 #endif
890
891 return gen_reg_rtx (mode);
892 }
893 \f
894 /* Combine temporary stack slots which are adjacent on the stack.
895
896 This allows for better use of already allocated stack space. This is only
897 done for BLKmode slots because we can be sure that we won't have alignment
898 problems in this case. */
899
900 void
901 combine_temp_slots ()
902 {
903 struct temp_slot *p, *q;
904 struct temp_slot *prev_p, *prev_q;
905 int num_slots;
906
907 /* We can't combine slots, because the information about which slot
908 is in which alias set will be lost. */
909 if (flag_strict_aliasing)
910 return;
911
912 /* If there are a lot of temp slots, don't do anything unless
913 high levels of optimizaton. */
914 if (! flag_expensive_optimizations)
915 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
916 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
917 return;
918
919 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
920 {
921 int delete_p = 0;
922
923 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
924 for (q = p->next, prev_q = p; q; q = prev_q->next)
925 {
926 int delete_q = 0;
927 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
928 {
929 if (p->base_offset + p->full_size == q->base_offset)
930 {
931 /* Q comes after P; combine Q into P. */
932 p->size += q->size;
933 p->full_size += q->full_size;
934 delete_q = 1;
935 }
936 else if (q->base_offset + q->full_size == p->base_offset)
937 {
938 /* P comes after Q; combine P into Q. */
939 q->size += p->size;
940 q->full_size += p->full_size;
941 delete_p = 1;
942 break;
943 }
944 }
945 /* Either delete Q or advance past it. */
946 if (delete_q)
947 {
948 prev_q->next = q->next;
949 free (q);
950 }
951 else
952 prev_q = q;
953 }
954 /* Either delete P or advance past it. */
955 if (delete_p)
956 {
957 if (prev_p)
958 prev_p->next = p->next;
959 else
960 temp_slots = p->next;
961 }
962 else
963 prev_p = p;
964 }
965 }
966 \f
967 /* Find the temp slot corresponding to the object at address X. */
968
969 static struct temp_slot *
970 find_temp_slot_from_address (x)
971 rtx x;
972 {
973 struct temp_slot *p;
974 rtx next;
975
976 for (p = temp_slots; p; p = p->next)
977 {
978 if (! p->in_use)
979 continue;
980
981 else if (XEXP (p->slot, 0) == x
982 || p->address == x
983 || (GET_CODE (x) == PLUS
984 && XEXP (x, 0) == virtual_stack_vars_rtx
985 && GET_CODE (XEXP (x, 1)) == CONST_INT
986 && INTVAL (XEXP (x, 1)) >= p->base_offset
987 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
988 return p;
989
990 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
991 for (next = p->address; next; next = XEXP (next, 1))
992 if (XEXP (next, 0) == x)
993 return p;
994 }
995
996 /* If we have a sum involving a register, see if it points to a temp
997 slot. */
998 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
999 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
1000 return p;
1001 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1002 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1003 return p;
1004
1005 return 0;
1006 }
1007
1008 /* Indicate that NEW is an alternate way of referring to the temp slot
1009 that previously was known by OLD. */
1010
1011 void
1012 update_temp_slot_address (old, new)
1013 rtx old, new;
1014 {
1015 struct temp_slot *p;
1016
1017 if (rtx_equal_p (old, new))
1018 return;
1019
1020 p = find_temp_slot_from_address (old);
1021
1022 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1023 is a register, see if one operand of the PLUS is a temporary
1024 location. If so, NEW points into it. Otherwise, if both OLD and
1025 NEW are a PLUS and if there is a register in common between them.
1026 If so, try a recursive call on those values. */
1027 if (p == 0)
1028 {
1029 if (GET_CODE (old) != PLUS)
1030 return;
1031
1032 if (GET_CODE (new) == REG)
1033 {
1034 update_temp_slot_address (XEXP (old, 0), new);
1035 update_temp_slot_address (XEXP (old, 1), new);
1036 return;
1037 }
1038 else if (GET_CODE (new) != PLUS)
1039 return;
1040
1041 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1042 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1043 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1044 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1045 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1046 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1047 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1048 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1049
1050 return;
1051 }
1052
1053 /* Otherwise add an alias for the temp's address. */
1054 else if (p->address == 0)
1055 p->address = new;
1056 else
1057 {
1058 if (GET_CODE (p->address) != EXPR_LIST)
1059 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1060
1061 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1062 }
1063 }
1064
1065 /* If X could be a reference to a temporary slot, mark the fact that its
1066 address was taken. */
1067
1068 void
1069 mark_temp_addr_taken (x)
1070 rtx x;
1071 {
1072 struct temp_slot *p;
1073
1074 if (x == 0)
1075 return;
1076
1077 /* If X is not in memory or is at a constant address, it cannot be in
1078 a temporary slot. */
1079 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1080 return;
1081
1082 p = find_temp_slot_from_address (XEXP (x, 0));
1083 if (p != 0)
1084 p->addr_taken = 1;
1085 }
1086
1087 /* If X could be a reference to a temporary slot, mark that slot as
1088 belonging to the to one level higher than the current level. If X
1089 matched one of our slots, just mark that one. Otherwise, we can't
1090 easily predict which it is, so upgrade all of them. Kept slots
1091 need not be touched.
1092
1093 This is called when an ({...}) construct occurs and a statement
1094 returns a value in memory. */
1095
1096 void
1097 preserve_temp_slots (x)
1098 rtx x;
1099 {
1100 struct temp_slot *p = 0;
1101
1102 /* If there is no result, we still might have some objects whose address
1103 were taken, so we need to make sure they stay around. */
1104 if (x == 0)
1105 {
1106 for (p = temp_slots; p; p = p->next)
1107 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1108 p->level--;
1109
1110 return;
1111 }
1112
1113 /* If X is a register that is being used as a pointer, see if we have
1114 a temporary slot we know it points to. To be consistent with
1115 the code below, we really should preserve all non-kept slots
1116 if we can't find a match, but that seems to be much too costly. */
1117 if (GET_CODE (x) == REG && REGNO_POINTER_FLAG (REGNO (x)))
1118 p = find_temp_slot_from_address (x);
1119
1120 /* If X is not in memory or is at a constant address, it cannot be in
1121 a temporary slot, but it can contain something whose address was
1122 taken. */
1123 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1124 {
1125 for (p = temp_slots; p; p = p->next)
1126 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1127 p->level--;
1128
1129 return;
1130 }
1131
1132 /* First see if we can find a match. */
1133 if (p == 0)
1134 p = find_temp_slot_from_address (XEXP (x, 0));
1135
1136 if (p != 0)
1137 {
1138 /* Move everything at our level whose address was taken to our new
1139 level in case we used its address. */
1140 struct temp_slot *q;
1141
1142 if (p->level == temp_slot_level)
1143 {
1144 for (q = temp_slots; q; q = q->next)
1145 if (q != p && q->addr_taken && q->level == p->level)
1146 q->level--;
1147
1148 p->level--;
1149 p->addr_taken = 0;
1150 }
1151 return;
1152 }
1153
1154 /* Otherwise, preserve all non-kept slots at this level. */
1155 for (p = temp_slots; p; p = p->next)
1156 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1157 p->level--;
1158 }
1159
1160 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1161 with that RTL_EXPR, promote it into a temporary slot at the present
1162 level so it will not be freed when we free slots made in the
1163 RTL_EXPR. */
1164
1165 void
1166 preserve_rtl_expr_result (x)
1167 rtx x;
1168 {
1169 struct temp_slot *p;
1170
1171 /* If X is not in memory or is at a constant address, it cannot be in
1172 a temporary slot. */
1173 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1174 return;
1175
1176 /* If we can find a match, move it to our level unless it is already at
1177 an upper level. */
1178 p = find_temp_slot_from_address (XEXP (x, 0));
1179 if (p != 0)
1180 {
1181 p->level = MIN (p->level, temp_slot_level);
1182 p->rtl_expr = 0;
1183 }
1184
1185 return;
1186 }
1187
1188 /* Free all temporaries used so far. This is normally called at the end
1189 of generating code for a statement. Don't free any temporaries
1190 currently in use for an RTL_EXPR that hasn't yet been emitted.
1191 We could eventually do better than this since it can be reused while
1192 generating the same RTL_EXPR, but this is complex and probably not
1193 worthwhile. */
1194
1195 void
1196 free_temp_slots ()
1197 {
1198 struct temp_slot *p;
1199
1200 for (p = temp_slots; p; p = p->next)
1201 if (p->in_use && p->level == temp_slot_level && ! p->keep
1202 && p->rtl_expr == 0)
1203 p->in_use = 0;
1204
1205 combine_temp_slots ();
1206 }
1207
1208 /* Free all temporary slots used in T, an RTL_EXPR node. */
1209
1210 void
1211 free_temps_for_rtl_expr (t)
1212 tree t;
1213 {
1214 struct temp_slot *p;
1215
1216 for (p = temp_slots; p; p = p->next)
1217 if (p->rtl_expr == t)
1218 {
1219 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1220 needs to be preserved. This can happen if a temporary in
1221 the RTL_EXPR was addressed; preserve_temp_slots will move
1222 the temporary into a higher level. */
1223 if (temp_slot_level <= p->level)
1224 p->in_use = 0;
1225 else
1226 p->rtl_expr = NULL_TREE;
1227 }
1228
1229 combine_temp_slots ();
1230 }
1231
1232 /* Mark all temporaries ever allocated in this function as not suitable
1233 for reuse until the current level is exited. */
1234
1235 void
1236 mark_all_temps_used ()
1237 {
1238 struct temp_slot *p;
1239
1240 for (p = temp_slots; p; p = p->next)
1241 {
1242 p->in_use = p->keep = 1;
1243 p->level = MIN (p->level, temp_slot_level);
1244 }
1245 }
1246
1247 /* Push deeper into the nesting level for stack temporaries. */
1248
1249 void
1250 push_temp_slots ()
1251 {
1252 temp_slot_level++;
1253 }
1254
1255 /* Likewise, but save the new level as the place to allocate variables
1256 for blocks. */
1257
1258 #if 0
1259 void
1260 push_temp_slots_for_block ()
1261 {
1262 push_temp_slots ();
1263
1264 var_temp_slot_level = temp_slot_level;
1265 }
1266
1267 /* Likewise, but save the new level as the place to allocate temporaries
1268 for TARGET_EXPRs. */
1269
1270 void
1271 push_temp_slots_for_target ()
1272 {
1273 push_temp_slots ();
1274
1275 target_temp_slot_level = temp_slot_level;
1276 }
1277
1278 /* Set and get the value of target_temp_slot_level. The only
1279 permitted use of these functions is to save and restore this value. */
1280
1281 int
1282 get_target_temp_slot_level ()
1283 {
1284 return target_temp_slot_level;
1285 }
1286
1287 void
1288 set_target_temp_slot_level (level)
1289 int level;
1290 {
1291 target_temp_slot_level = level;
1292 }
1293 #endif
1294
1295 /* Pop a temporary nesting level. All slots in use in the current level
1296 are freed. */
1297
1298 void
1299 pop_temp_slots ()
1300 {
1301 struct temp_slot *p;
1302
1303 for (p = temp_slots; p; p = p->next)
1304 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1305 p->in_use = 0;
1306
1307 combine_temp_slots ();
1308
1309 temp_slot_level--;
1310 }
1311
1312 /* Initialize temporary slots. */
1313
1314 void
1315 init_temp_slots ()
1316 {
1317 /* We have not allocated any temporaries yet. */
1318 temp_slots = 0;
1319 temp_slot_level = 0;
1320 var_temp_slot_level = 0;
1321 target_temp_slot_level = 0;
1322 }
1323 \f
1324 /* Retroactively move an auto variable from a register to a stack slot.
1325 This is done when an address-reference to the variable is seen. */
1326
1327 void
1328 put_var_into_stack (decl)
1329 tree decl;
1330 {
1331 register rtx reg;
1332 enum machine_mode promoted_mode, decl_mode;
1333 struct function *function = 0;
1334 tree context;
1335 int can_use_addressof;
1336
1337 context = decl_function_context (decl);
1338
1339 /* Get the current rtl used for this object and its original mode. */
1340 reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl);
1341
1342 /* No need to do anything if decl has no rtx yet
1343 since in that case caller is setting TREE_ADDRESSABLE
1344 and a stack slot will be assigned when the rtl is made. */
1345 if (reg == 0)
1346 return;
1347
1348 /* Get the declared mode for this object. */
1349 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1350 : DECL_MODE (decl));
1351 /* Get the mode it's actually stored in. */
1352 promoted_mode = GET_MODE (reg);
1353
1354 /* If this variable comes from an outer function,
1355 find that function's saved context. */
1356 if (context != current_function_decl && context != inline_function_decl)
1357 for (function = outer_function_chain; function; function = function->next)
1358 if (function->decl == context)
1359 break;
1360
1361 /* If this is a variable-size object with a pseudo to address it,
1362 put that pseudo into the stack, if the var is nonlocal. */
1363 if (DECL_NONLOCAL (decl)
1364 && GET_CODE (reg) == MEM
1365 && GET_CODE (XEXP (reg, 0)) == REG
1366 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1367 {
1368 reg = XEXP (reg, 0);
1369 decl_mode = promoted_mode = GET_MODE (reg);
1370 }
1371
1372 can_use_addressof
1373 = (function == 0
1374 && optimize > 0
1375 /* FIXME make it work for promoted modes too */
1376 && decl_mode == promoted_mode
1377 #ifdef NON_SAVING_SETJMP
1378 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1379 #endif
1380 );
1381
1382 /* If we can't use ADDRESSOF, make sure we see through one we already
1383 generated. */
1384 if (! can_use_addressof && GET_CODE (reg) == MEM
1385 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1386 reg = XEXP (XEXP (reg, 0), 0);
1387
1388 /* Now we should have a value that resides in one or more pseudo regs. */
1389
1390 if (GET_CODE (reg) == REG)
1391 {
1392 /* If this variable lives in the current function and we don't need
1393 to put things in the stack for the sake of setjmp, try to keep it
1394 in a register until we know we actually need the address. */
1395 if (can_use_addressof)
1396 gen_mem_addressof (reg, decl);
1397 else
1398 put_reg_into_stack (function, reg, TREE_TYPE (decl),
1399 promoted_mode, decl_mode,
1400 TREE_SIDE_EFFECTS (decl), 0,
1401 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1402 0);
1403 }
1404 else if (GET_CODE (reg) == CONCAT)
1405 {
1406 /* A CONCAT contains two pseudos; put them both in the stack.
1407 We do it so they end up consecutive. */
1408 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1409 tree part_type = type_for_mode (part_mode, 0);
1410 #ifdef FRAME_GROWS_DOWNWARD
1411 /* Since part 0 should have a lower address, do it second. */
1412 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1413 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1414 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1415 0);
1416 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1417 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1418 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1419 0);
1420 #else
1421 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1422 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1423 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1424 0);
1425 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1426 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1427 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1428 0);
1429 #endif
1430
1431 /* Change the CONCAT into a combined MEM for both parts. */
1432 PUT_CODE (reg, MEM);
1433 MEM_VOLATILE_P (reg) = MEM_VOLATILE_P (XEXP (reg, 0));
1434 MEM_ALIAS_SET (reg) = get_alias_set (decl);
1435 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (TREE_TYPE (decl)));
1436
1437 /* The two parts are in memory order already.
1438 Use the lower parts address as ours. */
1439 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1440 /* Prevent sharing of rtl that might lose. */
1441 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1442 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1443 }
1444 else
1445 return;
1446
1447 if (current_function_check_memory_usage)
1448 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
1449 XEXP (reg, 0), Pmode,
1450 GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
1451 TYPE_MODE (sizetype),
1452 GEN_INT (MEMORY_USE_RW),
1453 TYPE_MODE (integer_type_node));
1454 }
1455
1456 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1457 into the stack frame of FUNCTION (0 means the current function).
1458 DECL_MODE is the machine mode of the user-level data type.
1459 PROMOTED_MODE is the machine mode of the register.
1460 VOLATILE_P is nonzero if this is for a "volatile" decl.
1461 USED_P is nonzero if this reg might have already been used in an insn. */
1462
1463 static void
1464 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1465 original_regno, used_p, ht)
1466 struct function *function;
1467 rtx reg;
1468 tree type;
1469 enum machine_mode promoted_mode, decl_mode;
1470 int volatile_p;
1471 unsigned int original_regno;
1472 int used_p;
1473 struct hash_table *ht;
1474 {
1475 struct function *func = function ? function : cfun;
1476 rtx new = 0;
1477 unsigned int regno = original_regno;
1478
1479 if (regno == 0)
1480 regno = REGNO (reg);
1481
1482 if (regno < func->x_max_parm_reg)
1483 new = func->x_parm_reg_stack_loc[regno];
1484
1485 if (new == 0)
1486 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1487
1488 PUT_CODE (reg, MEM);
1489 PUT_MODE (reg, decl_mode);
1490 XEXP (reg, 0) = XEXP (new, 0);
1491 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1492 MEM_VOLATILE_P (reg) = volatile_p;
1493
1494 /* If this is a memory ref that contains aggregate components,
1495 mark it as such for cse and loop optimize. If we are reusing a
1496 previously generated stack slot, then we need to copy the bit in
1497 case it was set for other reasons. For instance, it is set for
1498 __builtin_va_alist. */
1499 MEM_SET_IN_STRUCT_P (reg,
1500 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1501 MEM_ALIAS_SET (reg) = get_alias_set (type);
1502
1503 /* Now make sure that all refs to the variable, previously made
1504 when it was a register, are fixed up to be valid again. */
1505
1506 if (used_p && function != 0)
1507 {
1508 struct var_refs_queue *temp;
1509
1510 temp
1511 = (struct var_refs_queue *) xmalloc (sizeof (struct var_refs_queue));
1512 temp->modified = reg;
1513 temp->promoted_mode = promoted_mode;
1514 temp->unsignedp = TREE_UNSIGNED (type);
1515 temp->next = function->fixup_var_refs_queue;
1516 function->fixup_var_refs_queue = temp;
1517 }
1518 else if (used_p)
1519 /* Variable is local; fix it up now. */
1520 fixup_var_refs (reg, promoted_mode, TREE_UNSIGNED (type), ht);
1521 }
1522 \f
1523 static void
1524 fixup_var_refs (var, promoted_mode, unsignedp, ht)
1525 rtx var;
1526 enum machine_mode promoted_mode;
1527 int unsignedp;
1528 struct hash_table *ht;
1529 {
1530 tree pending;
1531 rtx first_insn = get_insns ();
1532 struct sequence_stack *stack = seq_stack;
1533 tree rtl_exps = rtl_expr_chain;
1534 rtx insn;
1535
1536 /* Must scan all insns for stack-refs that exceed the limit. */
1537 fixup_var_refs_insns (var, promoted_mode, unsignedp, first_insn,
1538 stack == 0, ht);
1539 /* If there's a hash table, it must record all uses of VAR. */
1540 if (ht)
1541 return;
1542
1543 /* Scan all pending sequences too. */
1544 for (; stack; stack = stack->next)
1545 {
1546 push_to_sequence (stack->first);
1547 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1548 stack->first, stack->next != 0, 0);
1549 /* Update remembered end of sequence
1550 in case we added an insn at the end. */
1551 stack->last = get_last_insn ();
1552 end_sequence ();
1553 }
1554
1555 /* Scan all waiting RTL_EXPRs too. */
1556 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1557 {
1558 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1559 if (seq != const0_rtx && seq != 0)
1560 {
1561 push_to_sequence (seq);
1562 fixup_var_refs_insns (var, promoted_mode, unsignedp, seq, 0,
1563 0);
1564 end_sequence ();
1565 }
1566 }
1567
1568 /* Scan the catch clauses for exception handling too. */
1569 push_to_full_sequence (catch_clauses, catch_clauses_last);
1570 fixup_var_refs_insns (var, promoted_mode, unsignedp, catch_clauses,
1571 0, 0);
1572 end_full_sequence (&catch_clauses, &catch_clauses_last);
1573
1574 /* Scan sequences saved in CALL_PLACEHOLDERS too. */
1575 for (insn = first_insn; insn; insn = NEXT_INSN (insn))
1576 {
1577 if (GET_CODE (insn) == CALL_INSN
1578 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1579 {
1580 int i;
1581
1582 /* Look at the Normal call, sibling call and tail recursion
1583 sequences attached to the CALL_PLACEHOLDER. */
1584 for (i = 0; i < 3; i++)
1585 {
1586 rtx seq = XEXP (PATTERN (insn), i);
1587 if (seq)
1588 {
1589 push_to_sequence (seq);
1590 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1591 seq, 0, 0);
1592 XEXP (PATTERN (insn), i) = get_insns ();
1593 end_sequence ();
1594 }
1595 }
1596 }
1597 }
1598 }
1599 \f
1600 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1601 some part of an insn. Return a struct fixup_replacement whose OLD
1602 value is equal to X. Allocate a new structure if no such entry exists. */
1603
1604 static struct fixup_replacement *
1605 find_fixup_replacement (replacements, x)
1606 struct fixup_replacement **replacements;
1607 rtx x;
1608 {
1609 struct fixup_replacement *p;
1610
1611 /* See if we have already replaced this. */
1612 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1613 ;
1614
1615 if (p == 0)
1616 {
1617 p = (struct fixup_replacement *) oballoc (sizeof (struct fixup_replacement));
1618 p->old = x;
1619 p->new = 0;
1620 p->next = *replacements;
1621 *replacements = p;
1622 }
1623
1624 return p;
1625 }
1626
1627 /* Scan the insn-chain starting with INSN for refs to VAR
1628 and fix them up. TOPLEVEL is nonzero if this chain is the
1629 main chain of insns for the current function. */
1630
1631 static void
1632 fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel, ht)
1633 rtx var;
1634 enum machine_mode promoted_mode;
1635 int unsignedp;
1636 rtx insn;
1637 int toplevel;
1638 struct hash_table *ht;
1639 {
1640 rtx call_dest = 0;
1641 rtx insn_list = NULL_RTX;
1642
1643 /* If we already know which INSNs reference VAR there's no need
1644 to walk the entire instruction chain. */
1645 if (ht)
1646 {
1647 insn_list = ((struct insns_for_mem_entry *)
1648 hash_lookup (ht, var, /*create=*/0, /*copy=*/0))->insns;
1649 insn = insn_list ? XEXP (insn_list, 0) : NULL_RTX;
1650 insn_list = XEXP (insn_list, 1);
1651 }
1652
1653 while (insn)
1654 {
1655 rtx next = NEXT_INSN (insn);
1656 rtx set, prev, prev_set;
1657 rtx note;
1658
1659 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1660 {
1661 /* Remember the notes in case we delete the insn. */
1662 note = REG_NOTES (insn);
1663
1664 /* If this is a CLOBBER of VAR, delete it.
1665
1666 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1667 and REG_RETVAL notes too. */
1668 if (GET_CODE (PATTERN (insn)) == CLOBBER
1669 && (XEXP (PATTERN (insn), 0) == var
1670 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1671 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1672 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1673 {
1674 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1675 /* The REG_LIBCALL note will go away since we are going to
1676 turn INSN into a NOTE, so just delete the
1677 corresponding REG_RETVAL note. */
1678 remove_note (XEXP (note, 0),
1679 find_reg_note (XEXP (note, 0), REG_RETVAL,
1680 NULL_RTX));
1681
1682 /* In unoptimized compilation, we shouldn't call delete_insn
1683 except in jump.c doing warnings. */
1684 PUT_CODE (insn, NOTE);
1685 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1686 NOTE_SOURCE_FILE (insn) = 0;
1687 }
1688
1689 /* The insn to load VAR from a home in the arglist
1690 is now a no-op. When we see it, just delete it.
1691 Similarly if this is storing VAR from a register from which
1692 it was loaded in the previous insn. This will occur
1693 when an ADDRESSOF was made for an arglist slot. */
1694 else if (toplevel
1695 && (set = single_set (insn)) != 0
1696 && SET_DEST (set) == var
1697 /* If this represents the result of an insn group,
1698 don't delete the insn. */
1699 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1700 && (rtx_equal_p (SET_SRC (set), var)
1701 || (GET_CODE (SET_SRC (set)) == REG
1702 && (prev = prev_nonnote_insn (insn)) != 0
1703 && (prev_set = single_set (prev)) != 0
1704 && SET_DEST (prev_set) == SET_SRC (set)
1705 && rtx_equal_p (SET_SRC (prev_set), var))))
1706 {
1707 /* In unoptimized compilation, we shouldn't call delete_insn
1708 except in jump.c doing warnings. */
1709 PUT_CODE (insn, NOTE);
1710 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1711 NOTE_SOURCE_FILE (insn) = 0;
1712 if (insn == last_parm_insn)
1713 last_parm_insn = PREV_INSN (next);
1714 }
1715 else
1716 {
1717 struct fixup_replacement *replacements = 0;
1718 rtx next_insn = NEXT_INSN (insn);
1719
1720 if (SMALL_REGISTER_CLASSES)
1721 {
1722 /* If the insn that copies the results of a CALL_INSN
1723 into a pseudo now references VAR, we have to use an
1724 intermediate pseudo since we want the life of the
1725 return value register to be only a single insn.
1726
1727 If we don't use an intermediate pseudo, such things as
1728 address computations to make the address of VAR valid
1729 if it is not can be placed between the CALL_INSN and INSN.
1730
1731 To make sure this doesn't happen, we record the destination
1732 of the CALL_INSN and see if the next insn uses both that
1733 and VAR. */
1734
1735 if (call_dest != 0 && GET_CODE (insn) == INSN
1736 && reg_mentioned_p (var, PATTERN (insn))
1737 && reg_mentioned_p (call_dest, PATTERN (insn)))
1738 {
1739 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1740
1741 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1742
1743 PATTERN (insn) = replace_rtx (PATTERN (insn),
1744 call_dest, temp);
1745 }
1746
1747 if (GET_CODE (insn) == CALL_INSN
1748 && GET_CODE (PATTERN (insn)) == SET)
1749 call_dest = SET_DEST (PATTERN (insn));
1750 else if (GET_CODE (insn) == CALL_INSN
1751 && GET_CODE (PATTERN (insn)) == PARALLEL
1752 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1753 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1754 else
1755 call_dest = 0;
1756 }
1757
1758 /* See if we have to do anything to INSN now that VAR is in
1759 memory. If it needs to be loaded into a pseudo, use a single
1760 pseudo for the entire insn in case there is a MATCH_DUP
1761 between two operands. We pass a pointer to the head of
1762 a list of struct fixup_replacements. If fixup_var_refs_1
1763 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1764 it will record them in this list.
1765
1766 If it allocated a pseudo for any replacement, we copy into
1767 it here. */
1768
1769 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1770 &replacements);
1771
1772 /* If this is last_parm_insn, and any instructions were output
1773 after it to fix it up, then we must set last_parm_insn to
1774 the last such instruction emitted. */
1775 if (insn == last_parm_insn)
1776 last_parm_insn = PREV_INSN (next_insn);
1777
1778 while (replacements)
1779 {
1780 if (GET_CODE (replacements->new) == REG)
1781 {
1782 rtx insert_before;
1783 rtx seq;
1784
1785 /* OLD might be a (subreg (mem)). */
1786 if (GET_CODE (replacements->old) == SUBREG)
1787 replacements->old
1788 = fixup_memory_subreg (replacements->old, insn, 0);
1789 else
1790 replacements->old
1791 = fixup_stack_1 (replacements->old, insn);
1792
1793 insert_before = insn;
1794
1795 /* If we are changing the mode, do a conversion.
1796 This might be wasteful, but combine.c will
1797 eliminate much of the waste. */
1798
1799 if (GET_MODE (replacements->new)
1800 != GET_MODE (replacements->old))
1801 {
1802 start_sequence ();
1803 convert_move (replacements->new,
1804 replacements->old, unsignedp);
1805 seq = gen_sequence ();
1806 end_sequence ();
1807 }
1808 else
1809 seq = gen_move_insn (replacements->new,
1810 replacements->old);
1811
1812 emit_insn_before (seq, insert_before);
1813 }
1814
1815 replacements = replacements->next;
1816 }
1817 }
1818
1819 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1820 But don't touch other insns referred to by reg-notes;
1821 we will get them elsewhere. */
1822 while (note)
1823 {
1824 if (GET_CODE (note) != INSN_LIST)
1825 XEXP (note, 0)
1826 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1827 note = XEXP (note, 1);
1828 }
1829 }
1830
1831 if (!ht)
1832 insn = next;
1833 else if (insn_list)
1834 {
1835 insn = XEXP (insn_list, 0);
1836 insn_list = XEXP (insn_list, 1);
1837 }
1838 else
1839 insn = NULL_RTX;
1840 }
1841 }
1842 \f
1843 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1844 See if the rtx expression at *LOC in INSN needs to be changed.
1845
1846 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1847 contain a list of original rtx's and replacements. If we find that we need
1848 to modify this insn by replacing a memory reference with a pseudo or by
1849 making a new MEM to implement a SUBREG, we consult that list to see if
1850 we have already chosen a replacement. If none has already been allocated,
1851 we allocate it and update the list. fixup_var_refs_insns will copy VAR
1852 or the SUBREG, as appropriate, to the pseudo. */
1853
1854 static void
1855 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1856 register rtx var;
1857 enum machine_mode promoted_mode;
1858 register rtx *loc;
1859 rtx insn;
1860 struct fixup_replacement **replacements;
1861 {
1862 register int i;
1863 register rtx x = *loc;
1864 RTX_CODE code = GET_CODE (x);
1865 register const char *fmt;
1866 register rtx tem, tem1;
1867 struct fixup_replacement *replacement;
1868
1869 switch (code)
1870 {
1871 case ADDRESSOF:
1872 if (XEXP (x, 0) == var)
1873 {
1874 /* Prevent sharing of rtl that might lose. */
1875 rtx sub = copy_rtx (XEXP (var, 0));
1876
1877 if (! validate_change (insn, loc, sub, 0))
1878 {
1879 rtx y = gen_reg_rtx (GET_MODE (sub));
1880 rtx seq, new_insn;
1881
1882 /* We should be able to replace with a register or all is lost.
1883 Note that we can't use validate_change to verify this, since
1884 we're not caring for replacing all dups simultaneously. */
1885 if (! validate_replace_rtx (*loc, y, insn))
1886 abort ();
1887
1888 /* Careful! First try to recognize a direct move of the
1889 value, mimicking how things are done in gen_reload wrt
1890 PLUS. Consider what happens when insn is a conditional
1891 move instruction and addsi3 clobbers flags. */
1892
1893 start_sequence ();
1894 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1895 seq = gen_sequence ();
1896 end_sequence ();
1897
1898 if (recog_memoized (new_insn) < 0)
1899 {
1900 /* That failed. Fall back on force_operand and hope. */
1901
1902 start_sequence ();
1903 force_operand (sub, y);
1904 seq = gen_sequence ();
1905 end_sequence ();
1906 }
1907
1908 #ifdef HAVE_cc0
1909 /* Don't separate setter from user. */
1910 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1911 insn = PREV_INSN (insn);
1912 #endif
1913
1914 emit_insn_before (seq, insn);
1915 }
1916 }
1917 return;
1918
1919 case MEM:
1920 if (var == x)
1921 {
1922 /* If we already have a replacement, use it. Otherwise,
1923 try to fix up this address in case it is invalid. */
1924
1925 replacement = find_fixup_replacement (replacements, var);
1926 if (replacement->new)
1927 {
1928 *loc = replacement->new;
1929 return;
1930 }
1931
1932 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1933
1934 /* Unless we are forcing memory to register or we changed the mode,
1935 we can leave things the way they are if the insn is valid. */
1936
1937 INSN_CODE (insn) = -1;
1938 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1939 && recog_memoized (insn) >= 0)
1940 return;
1941
1942 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1943 return;
1944 }
1945
1946 /* If X contains VAR, we need to unshare it here so that we update
1947 each occurrence separately. But all identical MEMs in one insn
1948 must be replaced with the same rtx because of the possibility of
1949 MATCH_DUPs. */
1950
1951 if (reg_mentioned_p (var, x))
1952 {
1953 replacement = find_fixup_replacement (replacements, x);
1954 if (replacement->new == 0)
1955 replacement->new = copy_most_rtx (x, var);
1956
1957 *loc = x = replacement->new;
1958 }
1959 break;
1960
1961 case REG:
1962 case CC0:
1963 case PC:
1964 case CONST_INT:
1965 case CONST:
1966 case SYMBOL_REF:
1967 case LABEL_REF:
1968 case CONST_DOUBLE:
1969 return;
1970
1971 case SIGN_EXTRACT:
1972 case ZERO_EXTRACT:
1973 /* Note that in some cases those types of expressions are altered
1974 by optimize_bit_field, and do not survive to get here. */
1975 if (XEXP (x, 0) == var
1976 || (GET_CODE (XEXP (x, 0)) == SUBREG
1977 && SUBREG_REG (XEXP (x, 0)) == var))
1978 {
1979 /* Get TEM as a valid MEM in the mode presently in the insn.
1980
1981 We don't worry about the possibility of MATCH_DUP here; it
1982 is highly unlikely and would be tricky to handle. */
1983
1984 tem = XEXP (x, 0);
1985 if (GET_CODE (tem) == SUBREG)
1986 {
1987 if (GET_MODE_BITSIZE (GET_MODE (tem))
1988 > GET_MODE_BITSIZE (GET_MODE (var)))
1989 {
1990 replacement = find_fixup_replacement (replacements, var);
1991 if (replacement->new == 0)
1992 replacement->new = gen_reg_rtx (GET_MODE (var));
1993 SUBREG_REG (tem) = replacement->new;
1994 }
1995 else
1996 tem = fixup_memory_subreg (tem, insn, 0);
1997 }
1998 else
1999 tem = fixup_stack_1 (tem, insn);
2000
2001 /* Unless we want to load from memory, get TEM into the proper mode
2002 for an extract from memory. This can only be done if the
2003 extract is at a constant position and length. */
2004
2005 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
2006 && GET_CODE (XEXP (x, 2)) == CONST_INT
2007 && ! mode_dependent_address_p (XEXP (tem, 0))
2008 && ! MEM_VOLATILE_P (tem))
2009 {
2010 enum machine_mode wanted_mode = VOIDmode;
2011 enum machine_mode is_mode = GET_MODE (tem);
2012 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2013
2014 #ifdef HAVE_extzv
2015 if (GET_CODE (x) == ZERO_EXTRACT)
2016 {
2017 wanted_mode
2018 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
2019 if (wanted_mode == VOIDmode)
2020 wanted_mode = word_mode;
2021 }
2022 #endif
2023 #ifdef HAVE_extv
2024 if (GET_CODE (x) == SIGN_EXTRACT)
2025 {
2026 wanted_mode = insn_data[(int) CODE_FOR_extv].operand[1].mode;
2027 if (wanted_mode == VOIDmode)
2028 wanted_mode = word_mode;
2029 }
2030 #endif
2031 /* If we have a narrower mode, we can do something. */
2032 if (wanted_mode != VOIDmode
2033 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2034 {
2035 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2036 rtx old_pos = XEXP (x, 2);
2037 rtx newmem;
2038
2039 /* If the bytes and bits are counted differently, we
2040 must adjust the offset. */
2041 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2042 offset = (GET_MODE_SIZE (is_mode)
2043 - GET_MODE_SIZE (wanted_mode) - offset);
2044
2045 pos %= GET_MODE_BITSIZE (wanted_mode);
2046
2047 newmem = gen_rtx_MEM (wanted_mode,
2048 plus_constant (XEXP (tem, 0), offset));
2049 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
2050 MEM_COPY_ATTRIBUTES (newmem, tem);
2051
2052 /* Make the change and see if the insn remains valid. */
2053 INSN_CODE (insn) = -1;
2054 XEXP (x, 0) = newmem;
2055 XEXP (x, 2) = GEN_INT (pos);
2056
2057 if (recog_memoized (insn) >= 0)
2058 return;
2059
2060 /* Otherwise, restore old position. XEXP (x, 0) will be
2061 restored later. */
2062 XEXP (x, 2) = old_pos;
2063 }
2064 }
2065
2066 /* If we get here, the bitfield extract insn can't accept a memory
2067 reference. Copy the input into a register. */
2068
2069 tem1 = gen_reg_rtx (GET_MODE (tem));
2070 emit_insn_before (gen_move_insn (tem1, tem), insn);
2071 XEXP (x, 0) = tem1;
2072 return;
2073 }
2074 break;
2075
2076 case SUBREG:
2077 if (SUBREG_REG (x) == var)
2078 {
2079 /* If this is a special SUBREG made because VAR was promoted
2080 from a wider mode, replace it with VAR and call ourself
2081 recursively, this time saying that the object previously
2082 had its current mode (by virtue of the SUBREG). */
2083
2084 if (SUBREG_PROMOTED_VAR_P (x))
2085 {
2086 *loc = var;
2087 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
2088 return;
2089 }
2090
2091 /* If this SUBREG makes VAR wider, it has become a paradoxical
2092 SUBREG with VAR in memory, but these aren't allowed at this
2093 stage of the compilation. So load VAR into a pseudo and take
2094 a SUBREG of that pseudo. */
2095 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2096 {
2097 replacement = find_fixup_replacement (replacements, var);
2098 if (replacement->new == 0)
2099 replacement->new = gen_reg_rtx (GET_MODE (var));
2100 SUBREG_REG (x) = replacement->new;
2101 return;
2102 }
2103
2104 /* See if we have already found a replacement for this SUBREG.
2105 If so, use it. Otherwise, make a MEM and see if the insn
2106 is recognized. If not, or if we should force MEM into a register,
2107 make a pseudo for this SUBREG. */
2108 replacement = find_fixup_replacement (replacements, x);
2109 if (replacement->new)
2110 {
2111 *loc = replacement->new;
2112 return;
2113 }
2114
2115 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
2116
2117 INSN_CODE (insn) = -1;
2118 if (! flag_force_mem && recog_memoized (insn) >= 0)
2119 return;
2120
2121 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2122 return;
2123 }
2124 break;
2125
2126 case SET:
2127 /* First do special simplification of bit-field references. */
2128 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2129 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2130 optimize_bit_field (x, insn, 0);
2131 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2132 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2133 optimize_bit_field (x, insn, NULL_PTR);
2134
2135 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2136 into a register and then store it back out. */
2137 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2138 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2139 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2140 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2141 > GET_MODE_SIZE (GET_MODE (var))))
2142 {
2143 replacement = find_fixup_replacement (replacements, var);
2144 if (replacement->new == 0)
2145 replacement->new = gen_reg_rtx (GET_MODE (var));
2146
2147 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2148 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2149 }
2150
2151 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2152 insn into a pseudo and store the low part of the pseudo into VAR. */
2153 if (GET_CODE (SET_DEST (x)) == SUBREG
2154 && SUBREG_REG (SET_DEST (x)) == var
2155 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2156 > GET_MODE_SIZE (GET_MODE (var))))
2157 {
2158 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2159 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2160 tem)),
2161 insn);
2162 break;
2163 }
2164
2165 {
2166 rtx dest = SET_DEST (x);
2167 rtx src = SET_SRC (x);
2168 #ifdef HAVE_insv
2169 rtx outerdest = dest;
2170 #endif
2171
2172 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2173 || GET_CODE (dest) == SIGN_EXTRACT
2174 || GET_CODE (dest) == ZERO_EXTRACT)
2175 dest = XEXP (dest, 0);
2176
2177 if (GET_CODE (src) == SUBREG)
2178 src = XEXP (src, 0);
2179
2180 /* If VAR does not appear at the top level of the SET
2181 just scan the lower levels of the tree. */
2182
2183 if (src != var && dest != var)
2184 break;
2185
2186 /* We will need to rerecognize this insn. */
2187 INSN_CODE (insn) = -1;
2188
2189 #ifdef HAVE_insv
2190 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
2191 {
2192 /* Since this case will return, ensure we fixup all the
2193 operands here. */
2194 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2195 insn, replacements);
2196 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2197 insn, replacements);
2198 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2199 insn, replacements);
2200
2201 tem = XEXP (outerdest, 0);
2202
2203 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2204 that may appear inside a ZERO_EXTRACT.
2205 This was legitimate when the MEM was a REG. */
2206 if (GET_CODE (tem) == SUBREG
2207 && SUBREG_REG (tem) == var)
2208 tem = fixup_memory_subreg (tem, insn, 0);
2209 else
2210 tem = fixup_stack_1 (tem, insn);
2211
2212 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2213 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2214 && ! mode_dependent_address_p (XEXP (tem, 0))
2215 && ! MEM_VOLATILE_P (tem))
2216 {
2217 enum machine_mode wanted_mode;
2218 enum machine_mode is_mode = GET_MODE (tem);
2219 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2220
2221 wanted_mode = insn_data[(int) CODE_FOR_insv].operand[0].mode;
2222 if (wanted_mode == VOIDmode)
2223 wanted_mode = word_mode;
2224
2225 /* If we have a narrower mode, we can do something. */
2226 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2227 {
2228 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2229 rtx old_pos = XEXP (outerdest, 2);
2230 rtx newmem;
2231
2232 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2233 offset = (GET_MODE_SIZE (is_mode)
2234 - GET_MODE_SIZE (wanted_mode) - offset);
2235
2236 pos %= GET_MODE_BITSIZE (wanted_mode);
2237
2238 newmem = gen_rtx_MEM (wanted_mode,
2239 plus_constant (XEXP (tem, 0),
2240 offset));
2241 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
2242 MEM_COPY_ATTRIBUTES (newmem, tem);
2243
2244 /* Make the change and see if the insn remains valid. */
2245 INSN_CODE (insn) = -1;
2246 XEXP (outerdest, 0) = newmem;
2247 XEXP (outerdest, 2) = GEN_INT (pos);
2248
2249 if (recog_memoized (insn) >= 0)
2250 return;
2251
2252 /* Otherwise, restore old position. XEXP (x, 0) will be
2253 restored later. */
2254 XEXP (outerdest, 2) = old_pos;
2255 }
2256 }
2257
2258 /* If we get here, the bit-field store doesn't allow memory
2259 or isn't located at a constant position. Load the value into
2260 a register, do the store, and put it back into memory. */
2261
2262 tem1 = gen_reg_rtx (GET_MODE (tem));
2263 emit_insn_before (gen_move_insn (tem1, tem), insn);
2264 emit_insn_after (gen_move_insn (tem, tem1), insn);
2265 XEXP (outerdest, 0) = tem1;
2266 return;
2267 }
2268 #endif
2269
2270 /* STRICT_LOW_PART is a no-op on memory references
2271 and it can cause combinations to be unrecognizable,
2272 so eliminate it. */
2273
2274 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2275 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2276
2277 /* A valid insn to copy VAR into or out of a register
2278 must be left alone, to avoid an infinite loop here.
2279 If the reference to VAR is by a subreg, fix that up,
2280 since SUBREG is not valid for a memref.
2281 Also fix up the address of the stack slot.
2282
2283 Note that we must not try to recognize the insn until
2284 after we know that we have valid addresses and no
2285 (subreg (mem ...) ...) constructs, since these interfere
2286 with determining the validity of the insn. */
2287
2288 if ((SET_SRC (x) == var
2289 || (GET_CODE (SET_SRC (x)) == SUBREG
2290 && SUBREG_REG (SET_SRC (x)) == var))
2291 && (GET_CODE (SET_DEST (x)) == REG
2292 || (GET_CODE (SET_DEST (x)) == SUBREG
2293 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2294 && GET_MODE (var) == promoted_mode
2295 && x == single_set (insn))
2296 {
2297 rtx pat;
2298
2299 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2300 if (replacement->new)
2301 SET_SRC (x) = replacement->new;
2302 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2303 SET_SRC (x) = replacement->new
2304 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2305 else
2306 SET_SRC (x) = replacement->new
2307 = fixup_stack_1 (SET_SRC (x), insn);
2308
2309 if (recog_memoized (insn) >= 0)
2310 return;
2311
2312 /* INSN is not valid, but we know that we want to
2313 copy SET_SRC (x) to SET_DEST (x) in some way. So
2314 we generate the move and see whether it requires more
2315 than one insn. If it does, we emit those insns and
2316 delete INSN. Otherwise, we an just replace the pattern
2317 of INSN; we have already verified above that INSN has
2318 no other function that to do X. */
2319
2320 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2321 if (GET_CODE (pat) == SEQUENCE)
2322 {
2323 emit_insn_after (pat, insn);
2324 PUT_CODE (insn, NOTE);
2325 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2326 NOTE_SOURCE_FILE (insn) = 0;
2327 }
2328 else
2329 PATTERN (insn) = pat;
2330
2331 return;
2332 }
2333
2334 if ((SET_DEST (x) == var
2335 || (GET_CODE (SET_DEST (x)) == SUBREG
2336 && SUBREG_REG (SET_DEST (x)) == var))
2337 && (GET_CODE (SET_SRC (x)) == REG
2338 || (GET_CODE (SET_SRC (x)) == SUBREG
2339 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2340 && GET_MODE (var) == promoted_mode
2341 && x == single_set (insn))
2342 {
2343 rtx pat;
2344
2345 if (GET_CODE (SET_DEST (x)) == SUBREG)
2346 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2347 else
2348 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2349
2350 if (recog_memoized (insn) >= 0)
2351 return;
2352
2353 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2354 if (GET_CODE (pat) == SEQUENCE)
2355 {
2356 emit_insn_after (pat, insn);
2357 PUT_CODE (insn, NOTE);
2358 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2359 NOTE_SOURCE_FILE (insn) = 0;
2360 }
2361 else
2362 PATTERN (insn) = pat;
2363
2364 return;
2365 }
2366
2367 /* Otherwise, storing into VAR must be handled specially
2368 by storing into a temporary and copying that into VAR
2369 with a new insn after this one. Note that this case
2370 will be used when storing into a promoted scalar since
2371 the insn will now have different modes on the input
2372 and output and hence will be invalid (except for the case
2373 of setting it to a constant, which does not need any
2374 change if it is valid). We generate extra code in that case,
2375 but combine.c will eliminate it. */
2376
2377 if (dest == var)
2378 {
2379 rtx temp;
2380 rtx fixeddest = SET_DEST (x);
2381
2382 /* STRICT_LOW_PART can be discarded, around a MEM. */
2383 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2384 fixeddest = XEXP (fixeddest, 0);
2385 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2386 if (GET_CODE (fixeddest) == SUBREG)
2387 {
2388 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2389 promoted_mode = GET_MODE (fixeddest);
2390 }
2391 else
2392 fixeddest = fixup_stack_1 (fixeddest, insn);
2393
2394 temp = gen_reg_rtx (promoted_mode);
2395
2396 emit_insn_after (gen_move_insn (fixeddest,
2397 gen_lowpart (GET_MODE (fixeddest),
2398 temp)),
2399 insn);
2400
2401 SET_DEST (x) = temp;
2402 }
2403 }
2404
2405 default:
2406 break;
2407 }
2408
2409 /* Nothing special about this RTX; fix its operands. */
2410
2411 fmt = GET_RTX_FORMAT (code);
2412 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2413 {
2414 if (fmt[i] == 'e')
2415 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2416 else if (fmt[i] == 'E')
2417 {
2418 register int j;
2419 for (j = 0; j < XVECLEN (x, i); j++)
2420 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2421 insn, replacements);
2422 }
2423 }
2424 }
2425 \f
2426 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2427 return an rtx (MEM:m1 newaddr) which is equivalent.
2428 If any insns must be emitted to compute NEWADDR, put them before INSN.
2429
2430 UNCRITICAL nonzero means accept paradoxical subregs.
2431 This is used for subregs found inside REG_NOTES. */
2432
2433 static rtx
2434 fixup_memory_subreg (x, insn, uncritical)
2435 rtx x;
2436 rtx insn;
2437 int uncritical;
2438 {
2439 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2440 rtx addr = XEXP (SUBREG_REG (x), 0);
2441 enum machine_mode mode = GET_MODE (x);
2442 rtx result;
2443
2444 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2445 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2446 && ! uncritical)
2447 abort ();
2448
2449 if (BYTES_BIG_ENDIAN)
2450 offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2451 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2452 addr = plus_constant (addr, offset);
2453 if (!flag_force_addr && memory_address_p (mode, addr))
2454 /* Shortcut if no insns need be emitted. */
2455 return change_address (SUBREG_REG (x), mode, addr);
2456 start_sequence ();
2457 result = change_address (SUBREG_REG (x), mode, addr);
2458 emit_insn_before (gen_sequence (), insn);
2459 end_sequence ();
2460 return result;
2461 }
2462
2463 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2464 Replace subexpressions of X in place.
2465 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2466 Otherwise return X, with its contents possibly altered.
2467
2468 If any insns must be emitted to compute NEWADDR, put them before INSN.
2469
2470 UNCRITICAL is as in fixup_memory_subreg. */
2471
2472 static rtx
2473 walk_fixup_memory_subreg (x, insn, uncritical)
2474 register rtx x;
2475 rtx insn;
2476 int uncritical;
2477 {
2478 register enum rtx_code code;
2479 register const char *fmt;
2480 register int i;
2481
2482 if (x == 0)
2483 return 0;
2484
2485 code = GET_CODE (x);
2486
2487 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2488 return fixup_memory_subreg (x, insn, uncritical);
2489
2490 /* Nothing special about this RTX; fix its operands. */
2491
2492 fmt = GET_RTX_FORMAT (code);
2493 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2494 {
2495 if (fmt[i] == 'e')
2496 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2497 else if (fmt[i] == 'E')
2498 {
2499 register int j;
2500 for (j = 0; j < XVECLEN (x, i); j++)
2501 XVECEXP (x, i, j)
2502 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2503 }
2504 }
2505 return x;
2506 }
2507 \f
2508 /* For each memory ref within X, if it refers to a stack slot
2509 with an out of range displacement, put the address in a temp register
2510 (emitting new insns before INSN to load these registers)
2511 and alter the memory ref to use that register.
2512 Replace each such MEM rtx with a copy, to avoid clobberage. */
2513
2514 static rtx
2515 fixup_stack_1 (x, insn)
2516 rtx x;
2517 rtx insn;
2518 {
2519 register int i;
2520 register RTX_CODE code = GET_CODE (x);
2521 register const char *fmt;
2522
2523 if (code == MEM)
2524 {
2525 register rtx ad = XEXP (x, 0);
2526 /* If we have address of a stack slot but it's not valid
2527 (displacement is too large), compute the sum in a register. */
2528 if (GET_CODE (ad) == PLUS
2529 && GET_CODE (XEXP (ad, 0)) == REG
2530 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2531 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2532 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2533 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2534 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2535 #endif
2536 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2537 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2538 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2539 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2540 {
2541 rtx temp, seq;
2542 if (memory_address_p (GET_MODE (x), ad))
2543 return x;
2544
2545 start_sequence ();
2546 temp = copy_to_reg (ad);
2547 seq = gen_sequence ();
2548 end_sequence ();
2549 emit_insn_before (seq, insn);
2550 return change_address (x, VOIDmode, temp);
2551 }
2552 return x;
2553 }
2554
2555 fmt = GET_RTX_FORMAT (code);
2556 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2557 {
2558 if (fmt[i] == 'e')
2559 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2560 else if (fmt[i] == 'E')
2561 {
2562 register int j;
2563 for (j = 0; j < XVECLEN (x, i); j++)
2564 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2565 }
2566 }
2567 return x;
2568 }
2569 \f
2570 /* Optimization: a bit-field instruction whose field
2571 happens to be a byte or halfword in memory
2572 can be changed to a move instruction.
2573
2574 We call here when INSN is an insn to examine or store into a bit-field.
2575 BODY is the SET-rtx to be altered.
2576
2577 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2578 (Currently this is called only from function.c, and EQUIV_MEM
2579 is always 0.) */
2580
2581 static void
2582 optimize_bit_field (body, insn, equiv_mem)
2583 rtx body;
2584 rtx insn;
2585 rtx *equiv_mem;
2586 {
2587 register rtx bitfield;
2588 int destflag;
2589 rtx seq = 0;
2590 enum machine_mode mode;
2591
2592 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2593 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2594 bitfield = SET_DEST (body), destflag = 1;
2595 else
2596 bitfield = SET_SRC (body), destflag = 0;
2597
2598 /* First check that the field being stored has constant size and position
2599 and is in fact a byte or halfword suitably aligned. */
2600
2601 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2602 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2603 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2604 != BLKmode)
2605 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2606 {
2607 register rtx memref = 0;
2608
2609 /* Now check that the containing word is memory, not a register,
2610 and that it is safe to change the machine mode. */
2611
2612 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2613 memref = XEXP (bitfield, 0);
2614 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2615 && equiv_mem != 0)
2616 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2617 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2618 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2619 memref = SUBREG_REG (XEXP (bitfield, 0));
2620 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2621 && equiv_mem != 0
2622 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2623 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2624
2625 if (memref
2626 && ! mode_dependent_address_p (XEXP (memref, 0))
2627 && ! MEM_VOLATILE_P (memref))
2628 {
2629 /* Now adjust the address, first for any subreg'ing
2630 that we are now getting rid of,
2631 and then for which byte of the word is wanted. */
2632
2633 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2634 rtx insns;
2635
2636 /* Adjust OFFSET to count bits from low-address byte. */
2637 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2638 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2639 - offset - INTVAL (XEXP (bitfield, 1)));
2640
2641 /* Adjust OFFSET to count bytes from low-address byte. */
2642 offset /= BITS_PER_UNIT;
2643 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2644 {
2645 offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
2646 if (BYTES_BIG_ENDIAN)
2647 offset -= (MIN (UNITS_PER_WORD,
2648 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2649 - MIN (UNITS_PER_WORD,
2650 GET_MODE_SIZE (GET_MODE (memref))));
2651 }
2652
2653 start_sequence ();
2654 memref = change_address (memref, mode,
2655 plus_constant (XEXP (memref, 0), offset));
2656 insns = get_insns ();
2657 end_sequence ();
2658 emit_insns_before (insns, insn);
2659
2660 /* Store this memory reference where
2661 we found the bit field reference. */
2662
2663 if (destflag)
2664 {
2665 validate_change (insn, &SET_DEST (body), memref, 1);
2666 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2667 {
2668 rtx src = SET_SRC (body);
2669 while (GET_CODE (src) == SUBREG
2670 && SUBREG_WORD (src) == 0)
2671 src = SUBREG_REG (src);
2672 if (GET_MODE (src) != GET_MODE (memref))
2673 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2674 validate_change (insn, &SET_SRC (body), src, 1);
2675 }
2676 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2677 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2678 /* This shouldn't happen because anything that didn't have
2679 one of these modes should have got converted explicitly
2680 and then referenced through a subreg.
2681 This is so because the original bit-field was
2682 handled by agg_mode and so its tree structure had
2683 the same mode that memref now has. */
2684 abort ();
2685 }
2686 else
2687 {
2688 rtx dest = SET_DEST (body);
2689
2690 while (GET_CODE (dest) == SUBREG
2691 && SUBREG_WORD (dest) == 0
2692 && (GET_MODE_CLASS (GET_MODE (dest))
2693 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2694 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2695 <= UNITS_PER_WORD))
2696 dest = SUBREG_REG (dest);
2697
2698 validate_change (insn, &SET_DEST (body), dest, 1);
2699
2700 if (GET_MODE (dest) == GET_MODE (memref))
2701 validate_change (insn, &SET_SRC (body), memref, 1);
2702 else
2703 {
2704 /* Convert the mem ref to the destination mode. */
2705 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2706
2707 start_sequence ();
2708 convert_move (newreg, memref,
2709 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2710 seq = get_insns ();
2711 end_sequence ();
2712
2713 validate_change (insn, &SET_SRC (body), newreg, 1);
2714 }
2715 }
2716
2717 /* See if we can convert this extraction or insertion into
2718 a simple move insn. We might not be able to do so if this
2719 was, for example, part of a PARALLEL.
2720
2721 If we succeed, write out any needed conversions. If we fail,
2722 it is hard to guess why we failed, so don't do anything
2723 special; just let the optimization be suppressed. */
2724
2725 if (apply_change_group () && seq)
2726 emit_insns_before (seq, insn);
2727 }
2728 }
2729 }
2730 \f
2731 /* These routines are responsible for converting virtual register references
2732 to the actual hard register references once RTL generation is complete.
2733
2734 The following four variables are used for communication between the
2735 routines. They contain the offsets of the virtual registers from their
2736 respective hard registers. */
2737
2738 static int in_arg_offset;
2739 static int var_offset;
2740 static int dynamic_offset;
2741 static int out_arg_offset;
2742 static int cfa_offset;
2743
2744 /* In most machines, the stack pointer register is equivalent to the bottom
2745 of the stack. */
2746
2747 #ifndef STACK_POINTER_OFFSET
2748 #define STACK_POINTER_OFFSET 0
2749 #endif
2750
2751 /* If not defined, pick an appropriate default for the offset of dynamically
2752 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2753 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2754
2755 #ifndef STACK_DYNAMIC_OFFSET
2756
2757 /* The bottom of the stack points to the actual arguments. If
2758 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2759 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2760 stack space for register parameters is not pushed by the caller, but
2761 rather part of the fixed stack areas and hence not included in
2762 `current_function_outgoing_args_size'. Nevertheless, we must allow
2763 for it when allocating stack dynamic objects. */
2764
2765 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2766 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2767 ((ACCUMULATE_OUTGOING_ARGS \
2768 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2769 + (STACK_POINTER_OFFSET)) \
2770
2771 #else
2772 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2773 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2774 + (STACK_POINTER_OFFSET))
2775 #endif
2776 #endif
2777
2778 /* On most machines, the CFA coincides with the first incoming parm. */
2779
2780 #ifndef ARG_POINTER_CFA_OFFSET
2781 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2782 #endif
2783
2784
2785 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2786 its address taken. DECL is the decl for the object stored in the
2787 register, for later use if we do need to force REG into the stack.
2788 REG is overwritten by the MEM like in put_reg_into_stack. */
2789
2790 rtx
2791 gen_mem_addressof (reg, decl)
2792 rtx reg;
2793 tree decl;
2794 {
2795 tree type = TREE_TYPE (decl);
2796 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2797 REGNO (reg), decl);
2798
2799 /* If the original REG was a user-variable, then so is the REG whose
2800 address is being taken. Likewise for unchanging. */
2801 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2802 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2803
2804 PUT_CODE (reg, MEM);
2805 PUT_MODE (reg, DECL_MODE (decl));
2806 XEXP (reg, 0) = r;
2807 MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
2808 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type));
2809 MEM_ALIAS_SET (reg) = get_alias_set (decl);
2810
2811 if (TREE_USED (decl) || DECL_INITIAL (decl) != 0)
2812 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), 0);
2813
2814 return reg;
2815 }
2816
2817 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2818
2819 void
2820 flush_addressof (decl)
2821 tree decl;
2822 {
2823 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2824 && DECL_RTL (decl) != 0
2825 && GET_CODE (DECL_RTL (decl)) == MEM
2826 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2827 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2828 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2829 }
2830
2831 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2832
2833 static void
2834 put_addressof_into_stack (r, ht)
2835 rtx r;
2836 struct hash_table *ht;
2837 {
2838 tree decl = ADDRESSOF_DECL (r);
2839 rtx reg = XEXP (r, 0);
2840
2841 if (GET_CODE (reg) != REG)
2842 abort ();
2843
2844 put_reg_into_stack (0, reg, TREE_TYPE (decl), GET_MODE (reg),
2845 DECL_MODE (decl), TREE_SIDE_EFFECTS (decl),
2846 ADDRESSOF_REGNO (r),
2847 TREE_USED (decl) || DECL_INITIAL (decl) != 0, ht);
2848 }
2849
2850 /* List of replacements made below in purge_addressof_1 when creating
2851 bitfield insertions. */
2852 static rtx purge_bitfield_addressof_replacements;
2853
2854 /* List of replacements made below in purge_addressof_1 for patterns
2855 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2856 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2857 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2858 enough in complex cases, e.g. when some field values can be
2859 extracted by usage MEM with narrower mode. */
2860 static rtx purge_addressof_replacements;
2861
2862 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2863 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2864 the stack. If the function returns FALSE then the replacement could not
2865 be made. */
2866
2867 static boolean
2868 purge_addressof_1 (loc, insn, force, store, ht)
2869 rtx *loc;
2870 rtx insn;
2871 int force, store;
2872 struct hash_table *ht;
2873 {
2874 rtx x;
2875 RTX_CODE code;
2876 int i, j;
2877 const char *fmt;
2878 boolean result = true;
2879
2880 /* Re-start here to avoid recursion in common cases. */
2881 restart:
2882
2883 x = *loc;
2884 if (x == 0)
2885 return true;
2886
2887 code = GET_CODE (x);
2888
2889 /* If we don't return in any of the cases below, we will recurse inside
2890 the RTX, which will normally result in any ADDRESSOF being forced into
2891 memory. */
2892 if (code == SET)
2893 {
2894 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
2895 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
2896 return result;
2897 }
2898
2899 else if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM)
2900 {
2901 /* We must create a copy of the rtx because it was created by
2902 overwriting a REG rtx which is always shared. */
2903 rtx sub = copy_rtx (XEXP (XEXP (x, 0), 0));
2904 rtx insns;
2905
2906 if (validate_change (insn, loc, sub, 0)
2907 || validate_replace_rtx (x, sub, insn))
2908 return true;
2909
2910 start_sequence ();
2911 sub = force_operand (sub, NULL_RTX);
2912 if (! validate_change (insn, loc, sub, 0)
2913 && ! validate_replace_rtx (x, sub, insn))
2914 abort ();
2915
2916 insns = gen_sequence ();
2917 end_sequence ();
2918 emit_insn_before (insns, insn);
2919 return true;
2920 }
2921
2922 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
2923 {
2924 rtx sub = XEXP (XEXP (x, 0), 0);
2925 rtx sub2;
2926
2927 if (GET_CODE (sub) == MEM)
2928 {
2929 sub2 = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0)));
2930 MEM_COPY_ATTRIBUTES (sub2, sub);
2931 RTX_UNCHANGING_P (sub2) = RTX_UNCHANGING_P (sub);
2932 sub = sub2;
2933 }
2934 else if (GET_CODE (sub) == REG
2935 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2936 ;
2937 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
2938 {
2939 int size_x, size_sub;
2940
2941 if (!insn)
2942 {
2943 /* When processing REG_NOTES look at the list of
2944 replacements done on the insn to find the register that X
2945 was replaced by. */
2946 rtx tem;
2947
2948 for (tem = purge_bitfield_addressof_replacements;
2949 tem != NULL_RTX;
2950 tem = XEXP (XEXP (tem, 1), 1))
2951 if (rtx_equal_p (x, XEXP (tem, 0)))
2952 {
2953 *loc = XEXP (XEXP (tem, 1), 0);
2954 return true;
2955 }
2956
2957 /* See comment for purge_addressof_replacements. */
2958 for (tem = purge_addressof_replacements;
2959 tem != NULL_RTX;
2960 tem = XEXP (XEXP (tem, 1), 1))
2961 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
2962 {
2963 rtx z = XEXP (XEXP (tem, 1), 0);
2964
2965 if (GET_MODE (x) == GET_MODE (z)
2966 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
2967 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
2968 abort ();
2969
2970 /* It can happen that the note may speak of things
2971 in a wider (or just different) mode than the
2972 code did. This is especially true of
2973 REG_RETVAL. */
2974
2975 if (GET_CODE (z) == SUBREG && SUBREG_WORD (z) == 0)
2976 z = SUBREG_REG (z);
2977
2978 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2979 && (GET_MODE_SIZE (GET_MODE (x))
2980 > GET_MODE_SIZE (GET_MODE (z))))
2981 {
2982 /* This can occur as a result in invalid
2983 pointer casts, e.g. float f; ...
2984 *(long long int *)&f.
2985 ??? We could emit a warning here, but
2986 without a line number that wouldn't be
2987 very helpful. */
2988 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
2989 }
2990 else
2991 z = gen_lowpart (GET_MODE (x), z);
2992
2993 *loc = z;
2994 return true;
2995 }
2996
2997 /* Sometimes we may not be able to find the replacement. For
2998 example when the original insn was a MEM in a wider mode,
2999 and the note is part of a sign extension of a narrowed
3000 version of that MEM. Gcc testcase compile/990829-1.c can
3001 generate an example of this siutation. Rather than complain
3002 we return false, which will prompt our caller to remove the
3003 offending note. */
3004 return false;
3005 }
3006
3007 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3008 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3009
3010 /* Don't even consider working with paradoxical subregs,
3011 or the moral equivalent seen here. */
3012 if (size_x <= size_sub
3013 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3014 {
3015 /* Do a bitfield insertion to mirror what would happen
3016 in memory. */
3017
3018 rtx val, seq;
3019
3020 if (store)
3021 {
3022 rtx p = PREV_INSN (insn);
3023
3024 start_sequence ();
3025 val = gen_reg_rtx (GET_MODE (x));
3026 if (! validate_change (insn, loc, val, 0))
3027 {
3028 /* Discard the current sequence and put the
3029 ADDRESSOF on stack. */
3030 end_sequence ();
3031 goto give_up;
3032 }
3033 seq = gen_sequence ();
3034 end_sequence ();
3035 emit_insn_before (seq, insn);
3036 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3037 insn, ht);
3038
3039 start_sequence ();
3040 store_bit_field (sub, size_x, 0, GET_MODE (x),
3041 val, GET_MODE_SIZE (GET_MODE (sub)),
3042 GET_MODE_ALIGNMENT (GET_MODE (sub)));
3043
3044 /* Make sure to unshare any shared rtl that store_bit_field
3045 might have created. */
3046 unshare_all_rtl_again (get_insns ());
3047
3048 seq = gen_sequence ();
3049 end_sequence ();
3050 p = emit_insn_after (seq, insn);
3051 if (NEXT_INSN (insn))
3052 compute_insns_for_mem (NEXT_INSN (insn),
3053 p ? NEXT_INSN (p) : NULL_RTX,
3054 ht);
3055 }
3056 else
3057 {
3058 rtx p = PREV_INSN (insn);
3059
3060 start_sequence ();
3061 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3062 GET_MODE (x), GET_MODE (x),
3063 GET_MODE_SIZE (GET_MODE (sub)),
3064 GET_MODE_SIZE (GET_MODE (sub)));
3065
3066 if (! validate_change (insn, loc, val, 0))
3067 {
3068 /* Discard the current sequence and put the
3069 ADDRESSOF on stack. */
3070 end_sequence ();
3071 goto give_up;
3072 }
3073
3074 seq = gen_sequence ();
3075 end_sequence ();
3076 emit_insn_before (seq, insn);
3077 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3078 insn, ht);
3079 }
3080
3081 /* Remember the replacement so that the same one can be done
3082 on the REG_NOTES. */
3083 purge_bitfield_addressof_replacements
3084 = gen_rtx_EXPR_LIST (VOIDmode, x,
3085 gen_rtx_EXPR_LIST
3086 (VOIDmode, val,
3087 purge_bitfield_addressof_replacements));
3088
3089 /* We replaced with a reg -- all done. */
3090 return true;
3091 }
3092 }
3093
3094 else if (validate_change (insn, loc, sub, 0))
3095 {
3096 /* Remember the replacement so that the same one can be done
3097 on the REG_NOTES. */
3098 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3099 {
3100 rtx tem;
3101
3102 for (tem = purge_addressof_replacements;
3103 tem != NULL_RTX;
3104 tem = XEXP (XEXP (tem, 1), 1))
3105 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3106 {
3107 XEXP (XEXP (tem, 1), 0) = sub;
3108 return true;
3109 }
3110 purge_addressof_replacements
3111 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3112 gen_rtx_EXPR_LIST (VOIDmode, sub,
3113 purge_addressof_replacements));
3114 return true;
3115 }
3116 goto restart;
3117 }
3118 give_up:;
3119 /* else give up and put it into the stack */
3120 }
3121
3122 else if (code == ADDRESSOF)
3123 {
3124 put_addressof_into_stack (x, ht);
3125 return true;
3126 }
3127 else if (code == SET)
3128 {
3129 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
3130 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
3131 return result;
3132 }
3133
3134 /* Scan all subexpressions. */
3135 fmt = GET_RTX_FORMAT (code);
3136 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3137 {
3138 if (*fmt == 'e')
3139 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3140 else if (*fmt == 'E')
3141 for (j = 0; j < XVECLEN (x, i); j++)
3142 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3143 }
3144
3145 return result;
3146 }
3147
3148 /* Return a new hash table entry in HT. */
3149
3150 static struct hash_entry *
3151 insns_for_mem_newfunc (he, ht, k)
3152 struct hash_entry *he;
3153 struct hash_table *ht;
3154 hash_table_key k ATTRIBUTE_UNUSED;
3155 {
3156 struct insns_for_mem_entry *ifmhe;
3157 if (he)
3158 return he;
3159
3160 ifmhe = ((struct insns_for_mem_entry *)
3161 hash_allocate (ht, sizeof (struct insns_for_mem_entry)));
3162 ifmhe->insns = NULL_RTX;
3163
3164 return &ifmhe->he;
3165 }
3166
3167 /* Return a hash value for K, a REG. */
3168
3169 static unsigned long
3170 insns_for_mem_hash (k)
3171 hash_table_key k;
3172 {
3173 /* K is really a RTX. Just use the address as the hash value. */
3174 return (unsigned long) k;
3175 }
3176
3177 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3178
3179 static boolean
3180 insns_for_mem_comp (k1, k2)
3181 hash_table_key k1;
3182 hash_table_key k2;
3183 {
3184 return k1 == k2;
3185 }
3186
3187 struct insns_for_mem_walk_info {
3188 /* The hash table that we are using to record which INSNs use which
3189 MEMs. */
3190 struct hash_table *ht;
3191
3192 /* The INSN we are currently proessing. */
3193 rtx insn;
3194
3195 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3196 to find the insns that use the REGs in the ADDRESSOFs. */
3197 int pass;
3198 };
3199
3200 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3201 that might be used in an ADDRESSOF expression, record this INSN in
3202 the hash table given by DATA (which is really a pointer to an
3203 insns_for_mem_walk_info structure). */
3204
3205 static int
3206 insns_for_mem_walk (r, data)
3207 rtx *r;
3208 void *data;
3209 {
3210 struct insns_for_mem_walk_info *ifmwi
3211 = (struct insns_for_mem_walk_info *) data;
3212
3213 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3214 && GET_CODE (XEXP (*r, 0)) == REG)
3215 hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0);
3216 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3217 {
3218 /* Lookup this MEM in the hashtable, creating it if necessary. */
3219 struct insns_for_mem_entry *ifme
3220 = (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht,
3221 *r,
3222 /*create=*/0,
3223 /*copy=*/0);
3224
3225 /* If we have not already recorded this INSN, do so now. Since
3226 we process the INSNs in order, we know that if we have
3227 recorded it it must be at the front of the list. */
3228 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3229 {
3230 /* We do the allocation on the same obstack as is used for
3231 the hash table since this memory will not be used once
3232 the hash table is deallocated. */
3233 push_obstacks (&ifmwi->ht->memory, &ifmwi->ht->memory);
3234 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3235 ifme->insns);
3236 pop_obstacks ();
3237 }
3238 }
3239
3240 return 0;
3241 }
3242
3243 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3244 which REGs in HT. */
3245
3246 static void
3247 compute_insns_for_mem (insns, last_insn, ht)
3248 rtx insns;
3249 rtx last_insn;
3250 struct hash_table *ht;
3251 {
3252 rtx insn;
3253 struct insns_for_mem_walk_info ifmwi;
3254 ifmwi.ht = ht;
3255
3256 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3257 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3258 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3259 {
3260 ifmwi.insn = insn;
3261 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3262 }
3263 }
3264
3265 /* Helper function for purge_addressof called through for_each_rtx.
3266 Returns true iff the rtl is an ADDRESSOF. */
3267 static int
3268 is_addressof (rtl, data)
3269 rtx * rtl;
3270 void * data ATTRIBUTE_UNUSED;
3271 {
3272 return GET_CODE (* rtl) == ADDRESSOF;
3273 }
3274
3275 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3276 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3277 stack. */
3278
3279 void
3280 purge_addressof (insns)
3281 rtx insns;
3282 {
3283 rtx insn;
3284 struct hash_table ht;
3285
3286 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3287 requires a fixup pass over the instruction stream to correct
3288 INSNs that depended on the REG being a REG, and not a MEM. But,
3289 these fixup passes are slow. Furthermore, most MEMs are not
3290 mentioned in very many instructions. So, we speed up the process
3291 by pre-calculating which REGs occur in which INSNs; that allows
3292 us to perform the fixup passes much more quickly. */
3293 hash_table_init (&ht,
3294 insns_for_mem_newfunc,
3295 insns_for_mem_hash,
3296 insns_for_mem_comp);
3297 compute_insns_for_mem (insns, NULL_RTX, &ht);
3298
3299 for (insn = insns; insn; insn = NEXT_INSN (insn))
3300 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3301 || GET_CODE (insn) == CALL_INSN)
3302 {
3303 if (! purge_addressof_1 (&PATTERN (insn), insn,
3304 asm_noperands (PATTERN (insn)) > 0, 0, &ht))
3305 /* If we could not replace the ADDRESSOFs in the insn,
3306 something is wrong. */
3307 abort ();
3308
3309 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, &ht))
3310 {
3311 /* If we could not replace the ADDRESSOFs in the insn's notes,
3312 we can just remove the offending notes instead. */
3313 rtx note;
3314
3315 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3316 {
3317 /* If we find a REG_RETVAL note then the insn is a libcall.
3318 Such insns must have REG_EQUAL notes as well, in order
3319 for later passes of the compiler to work. So it is not
3320 safe to delete the notes here, and instead we abort. */
3321 if (REG_NOTE_KIND (note) == REG_RETVAL)
3322 abort ();
3323 if (for_each_rtx (& note, is_addressof, NULL))
3324 remove_note (insn, note);
3325 }
3326 }
3327 }
3328
3329 /* Clean up. */
3330 hash_table_free (&ht);
3331 purge_bitfield_addressof_replacements = 0;
3332 purge_addressof_replacements = 0;
3333 }
3334 \f
3335 /* Pass through the INSNS of function FNDECL and convert virtual register
3336 references to hard register references. */
3337
3338 void
3339 instantiate_virtual_regs (fndecl, insns)
3340 tree fndecl;
3341 rtx insns;
3342 {
3343 rtx insn;
3344 unsigned int i;
3345
3346 /* Compute the offsets to use for this function. */
3347 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3348 var_offset = STARTING_FRAME_OFFSET;
3349 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3350 out_arg_offset = STACK_POINTER_OFFSET;
3351 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3352
3353 /* Scan all variables and parameters of this function. For each that is
3354 in memory, instantiate all virtual registers if the result is a valid
3355 address. If not, we do it later. That will handle most uses of virtual
3356 regs on many machines. */
3357 instantiate_decls (fndecl, 1);
3358
3359 /* Initialize recognition, indicating that volatile is OK. */
3360 init_recog ();
3361
3362 /* Scan through all the insns, instantiating every virtual register still
3363 present. */
3364 for (insn = insns; insn; insn = NEXT_INSN (insn))
3365 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3366 || GET_CODE (insn) == CALL_INSN)
3367 {
3368 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3369 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3370 }
3371
3372 /* Instantiate the stack slots for the parm registers, for later use in
3373 addressof elimination. */
3374 for (i = 0; i < max_parm_reg; ++i)
3375 if (parm_reg_stack_loc[i])
3376 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3377
3378 /* Now instantiate the remaining register equivalences for debugging info.
3379 These will not be valid addresses. */
3380 instantiate_decls (fndecl, 0);
3381
3382 /* Indicate that, from now on, assign_stack_local should use
3383 frame_pointer_rtx. */
3384 virtuals_instantiated = 1;
3385 }
3386
3387 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3388 all virtual registers in their DECL_RTL's.
3389
3390 If VALID_ONLY, do this only if the resulting address is still valid.
3391 Otherwise, always do it. */
3392
3393 static void
3394 instantiate_decls (fndecl, valid_only)
3395 tree fndecl;
3396 int valid_only;
3397 {
3398 tree decl;
3399
3400 if (DECL_SAVED_INSNS (fndecl))
3401 /* When compiling an inline function, the obstack used for
3402 rtl allocation is the maybepermanent_obstack. Calling
3403 `resume_temporary_allocation' switches us back to that
3404 obstack while we process this function's parameters. */
3405 resume_temporary_allocation ();
3406
3407 /* Process all parameters of the function. */
3408 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3409 {
3410 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3411
3412 instantiate_decl (DECL_RTL (decl), size, valid_only);
3413
3414 /* If the parameter was promoted, then the incoming RTL mode may be
3415 larger than the declared type size. We must use the larger of
3416 the two sizes. */
3417 size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size);
3418 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3419 }
3420
3421 /* Now process all variables defined in the function or its subblocks. */
3422 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3423
3424 if (DECL_INLINE (fndecl) || DECL_DEFER_OUTPUT (fndecl))
3425 {
3426 /* Save all rtl allocated for this function by raising the
3427 high-water mark on the maybepermanent_obstack. */
3428 preserve_data ();
3429 /* All further rtl allocation is now done in the current_obstack. */
3430 rtl_in_current_obstack ();
3431 }
3432 }
3433
3434 /* Subroutine of instantiate_decls: Process all decls in the given
3435 BLOCK node and all its subblocks. */
3436
3437 static void
3438 instantiate_decls_1 (let, valid_only)
3439 tree let;
3440 int valid_only;
3441 {
3442 tree t;
3443
3444 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3445 instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)),
3446 valid_only);
3447
3448 /* Process all subblocks. */
3449 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3450 instantiate_decls_1 (t, valid_only);
3451 }
3452
3453 /* Subroutine of the preceding procedures: Given RTL representing a
3454 decl and the size of the object, do any instantiation required.
3455
3456 If VALID_ONLY is non-zero, it means that the RTL should only be
3457 changed if the new address is valid. */
3458
3459 static void
3460 instantiate_decl (x, size, valid_only)
3461 rtx x;
3462 HOST_WIDE_INT size;
3463 int valid_only;
3464 {
3465 enum machine_mode mode;
3466 rtx addr;
3467
3468 /* If this is not a MEM, no need to do anything. Similarly if the
3469 address is a constant or a register that is not a virtual register. */
3470
3471 if (x == 0 || GET_CODE (x) != MEM)
3472 return;
3473
3474 addr = XEXP (x, 0);
3475 if (CONSTANT_P (addr)
3476 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3477 || (GET_CODE (addr) == REG
3478 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3479 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3480 return;
3481
3482 /* If we should only do this if the address is valid, copy the address.
3483 We need to do this so we can undo any changes that might make the
3484 address invalid. This copy is unfortunate, but probably can't be
3485 avoided. */
3486
3487 if (valid_only)
3488 addr = copy_rtx (addr);
3489
3490 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3491
3492 if (valid_only && size >= 0)
3493 {
3494 unsigned HOST_WIDE_INT decl_size = size;
3495
3496 /* Now verify that the resulting address is valid for every integer or
3497 floating-point mode up to and including SIZE bytes long. We do this
3498 since the object might be accessed in any mode and frame addresses
3499 are shared. */
3500
3501 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3502 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3503 mode = GET_MODE_WIDER_MODE (mode))
3504 if (! memory_address_p (mode, addr))
3505 return;
3506
3507 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3508 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3509 mode = GET_MODE_WIDER_MODE (mode))
3510 if (! memory_address_p (mode, addr))
3511 return;
3512 }
3513
3514 /* Put back the address now that we have updated it and we either know
3515 it is valid or we don't care whether it is valid. */
3516
3517 XEXP (x, 0) = addr;
3518 }
3519 \f
3520 /* Given a pointer to a piece of rtx and an optional pointer to the
3521 containing object, instantiate any virtual registers present in it.
3522
3523 If EXTRA_INSNS, we always do the replacement and generate
3524 any extra insns before OBJECT. If it zero, we do nothing if replacement
3525 is not valid.
3526
3527 Return 1 if we either had nothing to do or if we were able to do the
3528 needed replacement. Return 0 otherwise; we only return zero if
3529 EXTRA_INSNS is zero.
3530
3531 We first try some simple transformations to avoid the creation of extra
3532 pseudos. */
3533
3534 static int
3535 instantiate_virtual_regs_1 (loc, object, extra_insns)
3536 rtx *loc;
3537 rtx object;
3538 int extra_insns;
3539 {
3540 rtx x;
3541 RTX_CODE code;
3542 rtx new = 0;
3543 HOST_WIDE_INT offset = 0;
3544 rtx temp;
3545 rtx seq;
3546 int i, j;
3547 const char *fmt;
3548
3549 /* Re-start here to avoid recursion in common cases. */
3550 restart:
3551
3552 x = *loc;
3553 if (x == 0)
3554 return 1;
3555
3556 code = GET_CODE (x);
3557
3558 /* Check for some special cases. */
3559 switch (code)
3560 {
3561 case CONST_INT:
3562 case CONST_DOUBLE:
3563 case CONST:
3564 case SYMBOL_REF:
3565 case CODE_LABEL:
3566 case PC:
3567 case CC0:
3568 case ASM_INPUT:
3569 case ADDR_VEC:
3570 case ADDR_DIFF_VEC:
3571 case RETURN:
3572 return 1;
3573
3574 case SET:
3575 /* We are allowed to set the virtual registers. This means that
3576 the actual register should receive the source minus the
3577 appropriate offset. This is used, for example, in the handling
3578 of non-local gotos. */
3579 if (SET_DEST (x) == virtual_incoming_args_rtx)
3580 new = arg_pointer_rtx, offset = - in_arg_offset;
3581 else if (SET_DEST (x) == virtual_stack_vars_rtx)
3582 new = frame_pointer_rtx, offset = - var_offset;
3583 else if (SET_DEST (x) == virtual_stack_dynamic_rtx)
3584 new = stack_pointer_rtx, offset = - dynamic_offset;
3585 else if (SET_DEST (x) == virtual_outgoing_args_rtx)
3586 new = stack_pointer_rtx, offset = - out_arg_offset;
3587 else if (SET_DEST (x) == virtual_cfa_rtx)
3588 new = arg_pointer_rtx, offset = - cfa_offset;
3589
3590 if (new)
3591 {
3592 rtx src = SET_SRC (x);
3593
3594 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3595
3596 /* The only valid sources here are PLUS or REG. Just do
3597 the simplest possible thing to handle them. */
3598 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3599 abort ();
3600
3601 start_sequence ();
3602 if (GET_CODE (src) != REG)
3603 temp = force_operand (src, NULL_RTX);
3604 else
3605 temp = src;
3606 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3607 seq = get_insns ();
3608 end_sequence ();
3609
3610 emit_insns_before (seq, object);
3611 SET_DEST (x) = new;
3612
3613 if (! validate_change (object, &SET_SRC (x), temp, 0)
3614 || ! extra_insns)
3615 abort ();
3616
3617 return 1;
3618 }
3619
3620 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3621 loc = &SET_SRC (x);
3622 goto restart;
3623
3624 case PLUS:
3625 /* Handle special case of virtual register plus constant. */
3626 if (CONSTANT_P (XEXP (x, 1)))
3627 {
3628 rtx old, new_offset;
3629
3630 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3631 if (GET_CODE (XEXP (x, 0)) == PLUS)
3632 {
3633 rtx inner = XEXP (XEXP (x, 0), 0);
3634
3635 if (inner == virtual_incoming_args_rtx)
3636 new = arg_pointer_rtx, offset = in_arg_offset;
3637 else if (inner == virtual_stack_vars_rtx)
3638 new = frame_pointer_rtx, offset = var_offset;
3639 else if (inner == virtual_stack_dynamic_rtx)
3640 new = stack_pointer_rtx, offset = dynamic_offset;
3641 else if (inner == virtual_outgoing_args_rtx)
3642 new = stack_pointer_rtx, offset = out_arg_offset;
3643 else if (inner == virtual_cfa_rtx)
3644 new = arg_pointer_rtx, offset = cfa_offset;
3645 else
3646 {
3647 loc = &XEXP (x, 0);
3648 goto restart;
3649 }
3650
3651 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3652 extra_insns);
3653 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3654 }
3655
3656 else if (XEXP (x, 0) == virtual_incoming_args_rtx)
3657 new = arg_pointer_rtx, offset = in_arg_offset;
3658 else if (XEXP (x, 0) == virtual_stack_vars_rtx)
3659 new = frame_pointer_rtx, offset = var_offset;
3660 else if (XEXP (x, 0) == virtual_stack_dynamic_rtx)
3661 new = stack_pointer_rtx, offset = dynamic_offset;
3662 else if (XEXP (x, 0) == virtual_outgoing_args_rtx)
3663 new = stack_pointer_rtx, offset = out_arg_offset;
3664 else if (XEXP (x, 0) == virtual_cfa_rtx)
3665 new = arg_pointer_rtx, offset = cfa_offset;
3666 else
3667 {
3668 /* We know the second operand is a constant. Unless the
3669 first operand is a REG (which has been already checked),
3670 it needs to be checked. */
3671 if (GET_CODE (XEXP (x, 0)) != REG)
3672 {
3673 loc = &XEXP (x, 0);
3674 goto restart;
3675 }
3676 return 1;
3677 }
3678
3679 new_offset = plus_constant (XEXP (x, 1), offset);
3680
3681 /* If the new constant is zero, try to replace the sum with just
3682 the register. */
3683 if (new_offset == const0_rtx
3684 && validate_change (object, loc, new, 0))
3685 return 1;
3686
3687 /* Next try to replace the register and new offset.
3688 There are two changes to validate here and we can't assume that
3689 in the case of old offset equals new just changing the register
3690 will yield a valid insn. In the interests of a little efficiency,
3691 however, we only call validate change once (we don't queue up the
3692 changes and then call apply_change_group). */
3693
3694 old = XEXP (x, 0);
3695 if (offset == 0
3696 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3697 : (XEXP (x, 0) = new,
3698 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3699 {
3700 if (! extra_insns)
3701 {
3702 XEXP (x, 0) = old;
3703 return 0;
3704 }
3705
3706 /* Otherwise copy the new constant into a register and replace
3707 constant with that register. */
3708 temp = gen_reg_rtx (Pmode);
3709 XEXP (x, 0) = new;
3710 if (validate_change (object, &XEXP (x, 1), temp, 0))
3711 emit_insn_before (gen_move_insn (temp, new_offset), object);
3712 else
3713 {
3714 /* If that didn't work, replace this expression with a
3715 register containing the sum. */
3716
3717 XEXP (x, 0) = old;
3718 new = gen_rtx_PLUS (Pmode, new, new_offset);
3719
3720 start_sequence ();
3721 temp = force_operand (new, NULL_RTX);
3722 seq = get_insns ();
3723 end_sequence ();
3724
3725 emit_insns_before (seq, object);
3726 if (! validate_change (object, loc, temp, 0)
3727 && ! validate_replace_rtx (x, temp, object))
3728 abort ();
3729 }
3730 }
3731
3732 return 1;
3733 }
3734
3735 /* Fall through to generic two-operand expression case. */
3736 case EXPR_LIST:
3737 case CALL:
3738 case COMPARE:
3739 case MINUS:
3740 case MULT:
3741 case DIV: case UDIV:
3742 case MOD: case UMOD:
3743 case AND: case IOR: case XOR:
3744 case ROTATERT: case ROTATE:
3745 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3746 case NE: case EQ:
3747 case GE: case GT: case GEU: case GTU:
3748 case LE: case LT: case LEU: case LTU:
3749 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3750 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3751 loc = &XEXP (x, 0);
3752 goto restart;
3753
3754 case MEM:
3755 /* Most cases of MEM that convert to valid addresses have already been
3756 handled by our scan of decls. The only special handling we
3757 need here is to make a copy of the rtx to ensure it isn't being
3758 shared if we have to change it to a pseudo.
3759
3760 If the rtx is a simple reference to an address via a virtual register,
3761 it can potentially be shared. In such cases, first try to make it
3762 a valid address, which can also be shared. Otherwise, copy it and
3763 proceed normally.
3764
3765 First check for common cases that need no processing. These are
3766 usually due to instantiation already being done on a previous instance
3767 of a shared rtx. */
3768
3769 temp = XEXP (x, 0);
3770 if (CONSTANT_ADDRESS_P (temp)
3771 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3772 || temp == arg_pointer_rtx
3773 #endif
3774 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3775 || temp == hard_frame_pointer_rtx
3776 #endif
3777 || temp == frame_pointer_rtx)
3778 return 1;
3779
3780 if (GET_CODE (temp) == PLUS
3781 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3782 && (XEXP (temp, 0) == frame_pointer_rtx
3783 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3784 || XEXP (temp, 0) == hard_frame_pointer_rtx
3785 #endif
3786 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3787 || XEXP (temp, 0) == arg_pointer_rtx
3788 #endif
3789 ))
3790 return 1;
3791
3792 if (temp == virtual_stack_vars_rtx
3793 || temp == virtual_incoming_args_rtx
3794 || (GET_CODE (temp) == PLUS
3795 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3796 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3797 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3798 {
3799 /* This MEM may be shared. If the substitution can be done without
3800 the need to generate new pseudos, we want to do it in place
3801 so all copies of the shared rtx benefit. The call below will
3802 only make substitutions if the resulting address is still
3803 valid.
3804
3805 Note that we cannot pass X as the object in the recursive call
3806 since the insn being processed may not allow all valid
3807 addresses. However, if we were not passed on object, we can
3808 only modify X without copying it if X will have a valid
3809 address.
3810
3811 ??? Also note that this can still lose if OBJECT is an insn that
3812 has less restrictions on an address that some other insn.
3813 In that case, we will modify the shared address. This case
3814 doesn't seem very likely, though. One case where this could
3815 happen is in the case of a USE or CLOBBER reference, but we
3816 take care of that below. */
3817
3818 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
3819 object ? object : x, 0))
3820 return 1;
3821
3822 /* Otherwise make a copy and process that copy. We copy the entire
3823 RTL expression since it might be a PLUS which could also be
3824 shared. */
3825 *loc = x = copy_rtx (x);
3826 }
3827
3828 /* Fall through to generic unary operation case. */
3829 case SUBREG:
3830 case STRICT_LOW_PART:
3831 case NEG: case NOT:
3832 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
3833 case SIGN_EXTEND: case ZERO_EXTEND:
3834 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3835 case FLOAT: case FIX:
3836 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3837 case ABS:
3838 case SQRT:
3839 case FFS:
3840 /* These case either have just one operand or we know that we need not
3841 check the rest of the operands. */
3842 loc = &XEXP (x, 0);
3843 goto restart;
3844
3845 case USE:
3846 case CLOBBER:
3847 /* If the operand is a MEM, see if the change is a valid MEM. If not,
3848 go ahead and make the invalid one, but do it to a copy. For a REG,
3849 just make the recursive call, since there's no chance of a problem. */
3850
3851 if ((GET_CODE (XEXP (x, 0)) == MEM
3852 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
3853 0))
3854 || (GET_CODE (XEXP (x, 0)) == REG
3855 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
3856 return 1;
3857
3858 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
3859 loc = &XEXP (x, 0);
3860 goto restart;
3861
3862 case REG:
3863 /* Try to replace with a PLUS. If that doesn't work, compute the sum
3864 in front of this insn and substitute the temporary. */
3865 if (x == virtual_incoming_args_rtx)
3866 new = arg_pointer_rtx, offset = in_arg_offset;
3867 else if (x == virtual_stack_vars_rtx)
3868 new = frame_pointer_rtx, offset = var_offset;
3869 else if (x == virtual_stack_dynamic_rtx)
3870 new = stack_pointer_rtx, offset = dynamic_offset;
3871 else if (x == virtual_outgoing_args_rtx)
3872 new = stack_pointer_rtx, offset = out_arg_offset;
3873 else if (x == virtual_cfa_rtx)
3874 new = arg_pointer_rtx, offset = cfa_offset;
3875
3876 if (new)
3877 {
3878 temp = plus_constant (new, offset);
3879 if (!validate_change (object, loc, temp, 0))
3880 {
3881 if (! extra_insns)
3882 return 0;
3883
3884 start_sequence ();
3885 temp = force_operand (temp, NULL_RTX);
3886 seq = get_insns ();
3887 end_sequence ();
3888
3889 emit_insns_before (seq, object);
3890 if (! validate_change (object, loc, temp, 0)
3891 && ! validate_replace_rtx (x, temp, object))
3892 abort ();
3893 }
3894 }
3895
3896 return 1;
3897
3898 case ADDRESSOF:
3899 if (GET_CODE (XEXP (x, 0)) == REG)
3900 return 1;
3901
3902 else if (GET_CODE (XEXP (x, 0)) == MEM)
3903 {
3904 /* If we have a (addressof (mem ..)), do any instantiation inside
3905 since we know we'll be making the inside valid when we finally
3906 remove the ADDRESSOF. */
3907 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
3908 return 1;
3909 }
3910 break;
3911
3912 default:
3913 break;
3914 }
3915
3916 /* Scan all subexpressions. */
3917 fmt = GET_RTX_FORMAT (code);
3918 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3919 if (*fmt == 'e')
3920 {
3921 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
3922 return 0;
3923 }
3924 else if (*fmt == 'E')
3925 for (j = 0; j < XVECLEN (x, i); j++)
3926 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
3927 extra_insns))
3928 return 0;
3929
3930 return 1;
3931 }
3932 \f
3933 /* Optimization: assuming this function does not receive nonlocal gotos,
3934 delete the handlers for such, as well as the insns to establish
3935 and disestablish them. */
3936
3937 static void
3938 delete_handlers ()
3939 {
3940 rtx insn;
3941 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3942 {
3943 /* Delete the handler by turning off the flag that would
3944 prevent jump_optimize from deleting it.
3945 Also permit deletion of the nonlocal labels themselves
3946 if nothing local refers to them. */
3947 if (GET_CODE (insn) == CODE_LABEL)
3948 {
3949 tree t, last_t;
3950
3951 LABEL_PRESERVE_P (insn) = 0;
3952
3953 /* Remove it from the nonlocal_label list, to avoid confusing
3954 flow. */
3955 for (t = nonlocal_labels, last_t = 0; t;
3956 last_t = t, t = TREE_CHAIN (t))
3957 if (DECL_RTL (TREE_VALUE (t)) == insn)
3958 break;
3959 if (t)
3960 {
3961 if (! last_t)
3962 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
3963 else
3964 TREE_CHAIN (last_t) = TREE_CHAIN (t);
3965 }
3966 }
3967 if (GET_CODE (insn) == INSN)
3968 {
3969 int can_delete = 0;
3970 rtx t;
3971 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
3972 if (reg_mentioned_p (t, PATTERN (insn)))
3973 {
3974 can_delete = 1;
3975 break;
3976 }
3977 if (can_delete
3978 || (nonlocal_goto_stack_level != 0
3979 && reg_mentioned_p (nonlocal_goto_stack_level,
3980 PATTERN (insn))))
3981 delete_insn (insn);
3982 }
3983 }
3984 }
3985 \f
3986 int
3987 max_parm_reg_num ()
3988 {
3989 return max_parm_reg;
3990 }
3991
3992 /* Return the first insn following those generated by `assign_parms'. */
3993
3994 rtx
3995 get_first_nonparm_insn ()
3996 {
3997 if (last_parm_insn)
3998 return NEXT_INSN (last_parm_insn);
3999 return get_insns ();
4000 }
4001
4002 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
4003 Crash if there is none. */
4004
4005 rtx
4006 get_first_block_beg ()
4007 {
4008 register rtx searcher;
4009 register rtx insn = get_first_nonparm_insn ();
4010
4011 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
4012 if (GET_CODE (searcher) == NOTE
4013 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
4014 return searcher;
4015
4016 abort (); /* Invalid call to this function. (See comments above.) */
4017 return NULL_RTX;
4018 }
4019
4020 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4021 This means a type for which function calls must pass an address to the
4022 function or get an address back from the function.
4023 EXP may be a type node or an expression (whose type is tested). */
4024
4025 int
4026 aggregate_value_p (exp)
4027 tree exp;
4028 {
4029 int i, regno, nregs;
4030 rtx reg;
4031
4032 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4033
4034 if (RETURN_IN_MEMORY (type))
4035 return 1;
4036 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4037 and thus can't be returned in registers. */
4038 if (TREE_ADDRESSABLE (type))
4039 return 1;
4040 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4041 return 1;
4042 /* Make sure we have suitable call-clobbered regs to return
4043 the value in; if not, we must return it in memory. */
4044 reg = hard_function_value (type, 0, 0);
4045
4046 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4047 it is OK. */
4048 if (GET_CODE (reg) != REG)
4049 return 0;
4050
4051 regno = REGNO (reg);
4052 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4053 for (i = 0; i < nregs; i++)
4054 if (! call_used_regs[regno + i])
4055 return 1;
4056 return 0;
4057 }
4058 \f
4059 /* Assign RTL expressions to the function's parameters.
4060 This may involve copying them into registers and using
4061 those registers as the RTL for them. */
4062
4063 void
4064 assign_parms (fndecl)
4065 tree fndecl;
4066 {
4067 register tree parm;
4068 register rtx entry_parm = 0;
4069 register rtx stack_parm = 0;
4070 CUMULATIVE_ARGS args_so_far;
4071 enum machine_mode promoted_mode, passed_mode;
4072 enum machine_mode nominal_mode, promoted_nominal_mode;
4073 int unsignedp;
4074 /* Total space needed so far for args on the stack,
4075 given as a constant and a tree-expression. */
4076 struct args_size stack_args_size;
4077 tree fntype = TREE_TYPE (fndecl);
4078 tree fnargs = DECL_ARGUMENTS (fndecl);
4079 /* This is used for the arg pointer when referring to stack args. */
4080 rtx internal_arg_pointer;
4081 /* This is a dummy PARM_DECL that we used for the function result if
4082 the function returns a structure. */
4083 tree function_result_decl = 0;
4084 #ifdef SETUP_INCOMING_VARARGS
4085 int varargs_setup = 0;
4086 #endif
4087 rtx conversion_insns = 0;
4088 struct args_size alignment_pad;
4089
4090 /* Nonzero if the last arg is named `__builtin_va_alist',
4091 which is used on some machines for old-fashioned non-ANSI varargs.h;
4092 this should be stuck onto the stack as if it had arrived there. */
4093 int hide_last_arg
4094 = (current_function_varargs
4095 && fnargs
4096 && (parm = tree_last (fnargs)) != 0
4097 && DECL_NAME (parm)
4098 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
4099 "__builtin_va_alist")));
4100
4101 /* Nonzero if function takes extra anonymous args.
4102 This means the last named arg must be on the stack
4103 right before the anonymous ones. */
4104 int stdarg
4105 = (TYPE_ARG_TYPES (fntype) != 0
4106 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4107 != void_type_node));
4108
4109 current_function_stdarg = stdarg;
4110
4111 /* If the reg that the virtual arg pointer will be translated into is
4112 not a fixed reg or is the stack pointer, make a copy of the virtual
4113 arg pointer, and address parms via the copy. The frame pointer is
4114 considered fixed even though it is not marked as such.
4115
4116 The second time through, simply use ap to avoid generating rtx. */
4117
4118 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4119 || ! (fixed_regs[ARG_POINTER_REGNUM]
4120 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4121 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4122 else
4123 internal_arg_pointer = virtual_incoming_args_rtx;
4124 current_function_internal_arg_pointer = internal_arg_pointer;
4125
4126 stack_args_size.constant = 0;
4127 stack_args_size.var = 0;
4128
4129 /* If struct value address is treated as the first argument, make it so. */
4130 if (aggregate_value_p (DECL_RESULT (fndecl))
4131 && ! current_function_returns_pcc_struct
4132 && struct_value_incoming_rtx == 0)
4133 {
4134 tree type = build_pointer_type (TREE_TYPE (fntype));
4135
4136 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4137
4138 DECL_ARG_TYPE (function_result_decl) = type;
4139 TREE_CHAIN (function_result_decl) = fnargs;
4140 fnargs = function_result_decl;
4141 }
4142
4143 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4144 parm_reg_stack_loc = (rtx *) xcalloc (max_parm_reg, sizeof (rtx));
4145
4146 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4147 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4148 #else
4149 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4150 #endif
4151
4152 /* We haven't yet found an argument that we must push and pretend the
4153 caller did. */
4154 current_function_pretend_args_size = 0;
4155
4156 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4157 {
4158 int aggregate = AGGREGATE_TYPE_P (TREE_TYPE (parm));
4159 struct args_size stack_offset;
4160 struct args_size arg_size;
4161 int passed_pointer = 0;
4162 int did_conversion = 0;
4163 tree passed_type = DECL_ARG_TYPE (parm);
4164 tree nominal_type = TREE_TYPE (parm);
4165 int pretend_named;
4166
4167 /* Set LAST_NAMED if this is last named arg before some
4168 anonymous args. */
4169 int last_named = ((TREE_CHAIN (parm) == 0
4170 || DECL_NAME (TREE_CHAIN (parm)) == 0)
4171 && (stdarg || current_function_varargs));
4172 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4173 most machines, if this is a varargs/stdarg function, then we treat
4174 the last named arg as if it were anonymous too. */
4175 int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4176
4177 if (TREE_TYPE (parm) == error_mark_node
4178 /* This can happen after weird syntax errors
4179 or if an enum type is defined among the parms. */
4180 || TREE_CODE (parm) != PARM_DECL
4181 || passed_type == NULL)
4182 {
4183 DECL_INCOMING_RTL (parm) = DECL_RTL (parm)
4184 = gen_rtx_MEM (BLKmode, const0_rtx);
4185 TREE_USED (parm) = 1;
4186 continue;
4187 }
4188
4189 /* For varargs.h function, save info about regs and stack space
4190 used by the individual args, not including the va_alist arg. */
4191 if (hide_last_arg && last_named)
4192 current_function_args_info = args_so_far;
4193
4194 /* Find mode of arg as it is passed, and mode of arg
4195 as it should be during execution of this function. */
4196 passed_mode = TYPE_MODE (passed_type);
4197 nominal_mode = TYPE_MODE (nominal_type);
4198
4199 /* If the parm's mode is VOID, its value doesn't matter,
4200 and avoid the usual things like emit_move_insn that could crash. */
4201 if (nominal_mode == VOIDmode)
4202 {
4203 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx;
4204 continue;
4205 }
4206
4207 /* If the parm is to be passed as a transparent union, use the
4208 type of the first field for the tests below. We have already
4209 verified that the modes are the same. */
4210 if (DECL_TRANSPARENT_UNION (parm)
4211 || TYPE_TRANSPARENT_UNION (passed_type))
4212 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4213
4214 /* See if this arg was passed by invisible reference. It is if
4215 it is an object whose size depends on the contents of the
4216 object itself or if the machine requires these objects be passed
4217 that way. */
4218
4219 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4220 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4221 || TREE_ADDRESSABLE (passed_type)
4222 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4223 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4224 passed_type, named_arg)
4225 #endif
4226 )
4227 {
4228 passed_type = nominal_type = build_pointer_type (passed_type);
4229 passed_pointer = 1;
4230 passed_mode = nominal_mode = Pmode;
4231 }
4232
4233 promoted_mode = passed_mode;
4234
4235 #ifdef PROMOTE_FUNCTION_ARGS
4236 /* Compute the mode in which the arg is actually extended to. */
4237 unsignedp = TREE_UNSIGNED (passed_type);
4238 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4239 #endif
4240
4241 /* Let machine desc say which reg (if any) the parm arrives in.
4242 0 means it arrives on the stack. */
4243 #ifdef FUNCTION_INCOMING_ARG
4244 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4245 passed_type, named_arg);
4246 #else
4247 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4248 passed_type, named_arg);
4249 #endif
4250
4251 if (entry_parm == 0)
4252 promoted_mode = passed_mode;
4253
4254 #ifdef SETUP_INCOMING_VARARGS
4255 /* If this is the last named parameter, do any required setup for
4256 varargs or stdargs. We need to know about the case of this being an
4257 addressable type, in which case we skip the registers it
4258 would have arrived in.
4259
4260 For stdargs, LAST_NAMED will be set for two parameters, the one that
4261 is actually the last named, and the dummy parameter. We only
4262 want to do this action once.
4263
4264 Also, indicate when RTL generation is to be suppressed. */
4265 if (last_named && !varargs_setup)
4266 {
4267 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4268 current_function_pretend_args_size, 0);
4269 varargs_setup = 1;
4270 }
4271 #endif
4272
4273 /* Determine parm's home in the stack,
4274 in case it arrives in the stack or we should pretend it did.
4275
4276 Compute the stack position and rtx where the argument arrives
4277 and its size.
4278
4279 There is one complexity here: If this was a parameter that would
4280 have been passed in registers, but wasn't only because it is
4281 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4282 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4283 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4284 0 as it was the previous time. */
4285
4286 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4287 locate_and_pad_parm (promoted_mode, passed_type,
4288 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4289 1,
4290 #else
4291 #ifdef FUNCTION_INCOMING_ARG
4292 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4293 passed_type,
4294 pretend_named) != 0,
4295 #else
4296 FUNCTION_ARG (args_so_far, promoted_mode,
4297 passed_type,
4298 pretend_named) != 0,
4299 #endif
4300 #endif
4301 fndecl, &stack_args_size, &stack_offset, &arg_size,
4302 &alignment_pad);
4303
4304 {
4305 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4306
4307 if (offset_rtx == const0_rtx)
4308 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4309 else
4310 stack_parm = gen_rtx_MEM (promoted_mode,
4311 gen_rtx_PLUS (Pmode,
4312 internal_arg_pointer,
4313 offset_rtx));
4314
4315 /* If this is a memory ref that contains aggregate components,
4316 mark it as such for cse and loop optimize. Likewise if it
4317 is readonly. */
4318 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4319 RTX_UNCHANGING_P (stack_parm) = TREE_READONLY (parm);
4320 MEM_ALIAS_SET (stack_parm) = get_alias_set (parm);
4321 }
4322
4323 /* If this parameter was passed both in registers and in the stack,
4324 use the copy on the stack. */
4325 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4326 entry_parm = 0;
4327
4328 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4329 /* If this parm was passed part in regs and part in memory,
4330 pretend it arrived entirely in memory
4331 by pushing the register-part onto the stack.
4332
4333 In the special case of a DImode or DFmode that is split,
4334 we could put it together in a pseudoreg directly,
4335 but for now that's not worth bothering with. */
4336
4337 if (entry_parm)
4338 {
4339 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4340 passed_type, named_arg);
4341
4342 if (nregs > 0)
4343 {
4344 current_function_pretend_args_size
4345 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4346 / (PARM_BOUNDARY / BITS_PER_UNIT)
4347 * (PARM_BOUNDARY / BITS_PER_UNIT));
4348
4349 /* Handle calls that pass values in multiple non-contiguous
4350 locations. The Irix 6 ABI has examples of this. */
4351 if (GET_CODE (entry_parm) == PARALLEL)
4352 emit_group_store (validize_mem (stack_parm), entry_parm,
4353 int_size_in_bytes (TREE_TYPE (parm)),
4354 TYPE_ALIGN (TREE_TYPE (parm)));
4355
4356 else
4357 move_block_from_reg (REGNO (entry_parm),
4358 validize_mem (stack_parm), nregs,
4359 int_size_in_bytes (TREE_TYPE (parm)));
4360
4361 entry_parm = stack_parm;
4362 }
4363 }
4364 #endif
4365
4366 /* If we didn't decide this parm came in a register,
4367 by default it came on the stack. */
4368 if (entry_parm == 0)
4369 entry_parm = stack_parm;
4370
4371 /* Record permanently how this parm was passed. */
4372 DECL_INCOMING_RTL (parm) = entry_parm;
4373
4374 /* If there is actually space on the stack for this parm,
4375 count it in stack_args_size; otherwise set stack_parm to 0
4376 to indicate there is no preallocated stack slot for the parm. */
4377
4378 if (entry_parm == stack_parm
4379 || (GET_CODE (entry_parm) == PARALLEL
4380 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4381 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4382 /* On some machines, even if a parm value arrives in a register
4383 there is still an (uninitialized) stack slot allocated for it.
4384
4385 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4386 whether this parameter already has a stack slot allocated,
4387 because an arg block exists only if current_function_args_size
4388 is larger than some threshold, and we haven't calculated that
4389 yet. So, for now, we just assume that stack slots never exist
4390 in this case. */
4391 || REG_PARM_STACK_SPACE (fndecl) > 0
4392 #endif
4393 )
4394 {
4395 stack_args_size.constant += arg_size.constant;
4396 if (arg_size.var)
4397 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4398 }
4399 else
4400 /* No stack slot was pushed for this parm. */
4401 stack_parm = 0;
4402
4403 /* Update info on where next arg arrives in registers. */
4404
4405 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4406 passed_type, named_arg);
4407
4408 /* If we can't trust the parm stack slot to be aligned enough
4409 for its ultimate type, don't use that slot after entry.
4410 We'll make another stack slot, if we need one. */
4411 {
4412 unsigned int thisparm_boundary
4413 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4414
4415 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4416 stack_parm = 0;
4417 }
4418
4419 /* If parm was passed in memory, and we need to convert it on entry,
4420 don't store it back in that same slot. */
4421 if (entry_parm != 0
4422 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4423 stack_parm = 0;
4424
4425 #if 0
4426 /* Now adjust STACK_PARM to the mode and precise location
4427 where this parameter should live during execution,
4428 if we discover that it must live in the stack during execution.
4429 To make debuggers happier on big-endian machines, we store
4430 the value in the last bytes of the space available. */
4431
4432 if (nominal_mode != BLKmode && nominal_mode != passed_mode
4433 && stack_parm != 0)
4434 {
4435 rtx offset_rtx;
4436
4437 if (BYTES_BIG_ENDIAN
4438 && GET_MODE_SIZE (nominal_mode) < UNITS_PER_WORD)
4439 stack_offset.constant += (GET_MODE_SIZE (passed_mode)
4440 - GET_MODE_SIZE (nominal_mode));
4441
4442 offset_rtx = ARGS_SIZE_RTX (stack_offset);
4443 if (offset_rtx == const0_rtx)
4444 stack_parm = gen_rtx_MEM (nominal_mode, internal_arg_pointer);
4445 else
4446 stack_parm = gen_rtx_MEM (nominal_mode,
4447 gen_rtx_PLUS (Pmode,
4448 internal_arg_pointer,
4449 offset_rtx));
4450
4451 /* If this is a memory ref that contains aggregate components,
4452 mark it as such for cse and loop optimize. */
4453 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4454 }
4455 #endif /* 0 */
4456
4457 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4458 in the mode in which it arrives.
4459 STACK_PARM is an RTX for a stack slot where the parameter can live
4460 during the function (in case we want to put it there).
4461 STACK_PARM is 0 if no stack slot was pushed for it.
4462
4463 Now output code if necessary to convert ENTRY_PARM to
4464 the type in which this function declares it,
4465 and store that result in an appropriate place,
4466 which may be a pseudo reg, may be STACK_PARM,
4467 or may be a local stack slot if STACK_PARM is 0.
4468
4469 Set DECL_RTL to that place. */
4470
4471 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4472 {
4473 /* If a BLKmode arrives in registers, copy it to a stack slot.
4474 Handle calls that pass values in multiple non-contiguous
4475 locations. The Irix 6 ABI has examples of this. */
4476 if (GET_CODE (entry_parm) == REG
4477 || GET_CODE (entry_parm) == PARALLEL)
4478 {
4479 int size_stored
4480 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4481 UNITS_PER_WORD);
4482
4483 /* Note that we will be storing an integral number of words.
4484 So we have to be careful to ensure that we allocate an
4485 integral number of words. We do this below in the
4486 assign_stack_local if space was not allocated in the argument
4487 list. If it was, this will not work if PARM_BOUNDARY is not
4488 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4489 if it becomes a problem. */
4490
4491 if (stack_parm == 0)
4492 {
4493 stack_parm
4494 = assign_stack_local (GET_MODE (entry_parm),
4495 size_stored, 0);
4496
4497 /* If this is a memory ref that contains aggregate
4498 components, mark it as such for cse and loop optimize. */
4499 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4500 }
4501
4502 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4503 abort ();
4504
4505 if (TREE_READONLY (parm))
4506 RTX_UNCHANGING_P (stack_parm) = 1;
4507
4508 /* Handle calls that pass values in multiple non-contiguous
4509 locations. The Irix 6 ABI has examples of this. */
4510 if (GET_CODE (entry_parm) == PARALLEL)
4511 emit_group_store (validize_mem (stack_parm), entry_parm,
4512 int_size_in_bytes (TREE_TYPE (parm)),
4513 TYPE_ALIGN (TREE_TYPE (parm)));
4514 else
4515 move_block_from_reg (REGNO (entry_parm),
4516 validize_mem (stack_parm),
4517 size_stored / UNITS_PER_WORD,
4518 int_size_in_bytes (TREE_TYPE (parm)));
4519 }
4520 DECL_RTL (parm) = stack_parm;
4521 }
4522 else if (! ((! optimize
4523 && ! DECL_REGISTER (parm)
4524 && ! DECL_INLINE (fndecl))
4525 /* layout_decl may set this. */
4526 || TREE_ADDRESSABLE (parm)
4527 || TREE_SIDE_EFFECTS (parm)
4528 /* If -ffloat-store specified, don't put explicit
4529 float variables into registers. */
4530 || (flag_float_store
4531 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4532 /* Always assign pseudo to structure return or item passed
4533 by invisible reference. */
4534 || passed_pointer || parm == function_result_decl)
4535 {
4536 /* Store the parm in a pseudoregister during the function, but we
4537 may need to do it in a wider mode. */
4538
4539 register rtx parmreg;
4540 unsigned int regno, regnoi = 0, regnor = 0;
4541
4542 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4543
4544 promoted_nominal_mode
4545 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4546
4547 parmreg = gen_reg_rtx (promoted_nominal_mode);
4548 mark_user_reg (parmreg);
4549
4550 /* If this was an item that we received a pointer to, set DECL_RTL
4551 appropriately. */
4552 if (passed_pointer)
4553 {
4554 DECL_RTL (parm)
4555 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)), parmreg);
4556 MEM_SET_IN_STRUCT_P (DECL_RTL (parm), aggregate);
4557 }
4558 else
4559 DECL_RTL (parm) = parmreg;
4560
4561 /* Copy the value into the register. */
4562 if (nominal_mode != passed_mode
4563 || promoted_nominal_mode != promoted_mode)
4564 {
4565 int save_tree_used;
4566 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4567 mode, by the caller. We now have to convert it to
4568 NOMINAL_MODE, if different. However, PARMREG may be in
4569 a different mode than NOMINAL_MODE if it is being stored
4570 promoted.
4571
4572 If ENTRY_PARM is a hard register, it might be in a register
4573 not valid for operating in its mode (e.g., an odd-numbered
4574 register for a DFmode). In that case, moves are the only
4575 thing valid, so we can't do a convert from there. This
4576 occurs when the calling sequence allow such misaligned
4577 usages.
4578
4579 In addition, the conversion may involve a call, which could
4580 clobber parameters which haven't been copied to pseudo
4581 registers yet. Therefore, we must first copy the parm to
4582 a pseudo reg here, and save the conversion until after all
4583 parameters have been moved. */
4584
4585 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4586
4587 emit_move_insn (tempreg, validize_mem (entry_parm));
4588
4589 push_to_sequence (conversion_insns);
4590 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4591
4592 /* TREE_USED gets set erroneously during expand_assignment. */
4593 save_tree_used = TREE_USED (parm);
4594 expand_assignment (parm,
4595 make_tree (nominal_type, tempreg), 0, 0);
4596 TREE_USED (parm) = save_tree_used;
4597 conversion_insns = get_insns ();
4598 did_conversion = 1;
4599 end_sequence ();
4600 }
4601 else
4602 emit_move_insn (parmreg, validize_mem (entry_parm));
4603
4604 /* If we were passed a pointer but the actual value
4605 can safely live in a register, put it in one. */
4606 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4607 && ! ((! optimize
4608 && ! DECL_REGISTER (parm)
4609 && ! DECL_INLINE (fndecl))
4610 /* layout_decl may set this. */
4611 || TREE_ADDRESSABLE (parm)
4612 || TREE_SIDE_EFFECTS (parm)
4613 /* If -ffloat-store specified, don't put explicit
4614 float variables into registers. */
4615 || (flag_float_store
4616 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
4617 {
4618 /* We can't use nominal_mode, because it will have been set to
4619 Pmode above. We must use the actual mode of the parm. */
4620 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4621 mark_user_reg (parmreg);
4622 emit_move_insn (parmreg, DECL_RTL (parm));
4623 DECL_RTL (parm) = parmreg;
4624 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4625 now the parm. */
4626 stack_parm = 0;
4627 }
4628 #ifdef FUNCTION_ARG_CALLEE_COPIES
4629 /* If we are passed an arg by reference and it is our responsibility
4630 to make a copy, do it now.
4631 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4632 original argument, so we must recreate them in the call to
4633 FUNCTION_ARG_CALLEE_COPIES. */
4634 /* ??? Later add code to handle the case that if the argument isn't
4635 modified, don't do the copy. */
4636
4637 else if (passed_pointer
4638 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4639 TYPE_MODE (DECL_ARG_TYPE (parm)),
4640 DECL_ARG_TYPE (parm),
4641 named_arg)
4642 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4643 {
4644 rtx copy;
4645 tree type = DECL_ARG_TYPE (parm);
4646
4647 /* This sequence may involve a library call perhaps clobbering
4648 registers that haven't been copied to pseudos yet. */
4649
4650 push_to_sequence (conversion_insns);
4651
4652 if (!COMPLETE_TYPE_P (type)
4653 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4654 /* This is a variable sized object. */
4655 copy = gen_rtx_MEM (BLKmode,
4656 allocate_dynamic_stack_space
4657 (expr_size (parm), NULL_RTX,
4658 TYPE_ALIGN (type)));
4659 else
4660 copy = assign_stack_temp (TYPE_MODE (type),
4661 int_size_in_bytes (type), 1);
4662 MEM_SET_IN_STRUCT_P (copy, AGGREGATE_TYPE_P (type));
4663 RTX_UNCHANGING_P (copy) = TREE_READONLY (parm);
4664
4665 store_expr (parm, copy, 0);
4666 emit_move_insn (parmreg, XEXP (copy, 0));
4667 if (current_function_check_memory_usage)
4668 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4669 XEXP (copy, 0), Pmode,
4670 GEN_INT (int_size_in_bytes (type)),
4671 TYPE_MODE (sizetype),
4672 GEN_INT (MEMORY_USE_RW),
4673 TYPE_MODE (integer_type_node));
4674 conversion_insns = get_insns ();
4675 did_conversion = 1;
4676 end_sequence ();
4677 }
4678 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4679
4680 /* In any case, record the parm's desired stack location
4681 in case we later discover it must live in the stack.
4682
4683 If it is a COMPLEX value, store the stack location for both
4684 halves. */
4685
4686 if (GET_CODE (parmreg) == CONCAT)
4687 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4688 else
4689 regno = REGNO (parmreg);
4690
4691 if (regno >= max_parm_reg)
4692 {
4693 rtx *new;
4694 int old_max_parm_reg = max_parm_reg;
4695
4696 /* It's slow to expand this one register at a time,
4697 but it's also rare and we need max_parm_reg to be
4698 precisely correct. */
4699 max_parm_reg = regno + 1;
4700 new = (rtx *) xrealloc (parm_reg_stack_loc,
4701 max_parm_reg * sizeof (rtx));
4702 bzero ((char *) (new + old_max_parm_reg),
4703 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4704 parm_reg_stack_loc = new;
4705 }
4706
4707 if (GET_CODE (parmreg) == CONCAT)
4708 {
4709 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4710
4711 regnor = REGNO (gen_realpart (submode, parmreg));
4712 regnoi = REGNO (gen_imagpart (submode, parmreg));
4713
4714 if (stack_parm != 0)
4715 {
4716 parm_reg_stack_loc[regnor]
4717 = gen_realpart (submode, stack_parm);
4718 parm_reg_stack_loc[regnoi]
4719 = gen_imagpart (submode, stack_parm);
4720 }
4721 else
4722 {
4723 parm_reg_stack_loc[regnor] = 0;
4724 parm_reg_stack_loc[regnoi] = 0;
4725 }
4726 }
4727 else
4728 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4729
4730 /* Mark the register as eliminable if we did no conversion
4731 and it was copied from memory at a fixed offset,
4732 and the arg pointer was not copied to a pseudo-reg.
4733 If the arg pointer is a pseudo reg or the offset formed
4734 an invalid address, such memory-equivalences
4735 as we make here would screw up life analysis for it. */
4736 if (nominal_mode == passed_mode
4737 && ! did_conversion
4738 && stack_parm != 0
4739 && GET_CODE (stack_parm) == MEM
4740 && stack_offset.var == 0
4741 && reg_mentioned_p (virtual_incoming_args_rtx,
4742 XEXP (stack_parm, 0)))
4743 {
4744 rtx linsn = get_last_insn ();
4745 rtx sinsn, set;
4746
4747 /* Mark complex types separately. */
4748 if (GET_CODE (parmreg) == CONCAT)
4749 /* Scan backwards for the set of the real and
4750 imaginary parts. */
4751 for (sinsn = linsn; sinsn != 0;
4752 sinsn = prev_nonnote_insn (sinsn))
4753 {
4754 set = single_set (sinsn);
4755 if (set != 0
4756 && SET_DEST (set) == regno_reg_rtx [regnoi])
4757 REG_NOTES (sinsn)
4758 = gen_rtx_EXPR_LIST (REG_EQUIV,
4759 parm_reg_stack_loc[regnoi],
4760 REG_NOTES (sinsn));
4761 else if (set != 0
4762 && SET_DEST (set) == regno_reg_rtx [regnor])
4763 REG_NOTES (sinsn)
4764 = gen_rtx_EXPR_LIST (REG_EQUIV,
4765 parm_reg_stack_loc[regnor],
4766 REG_NOTES (sinsn));
4767 }
4768 else if ((set = single_set (linsn)) != 0
4769 && SET_DEST (set) == parmreg)
4770 REG_NOTES (linsn)
4771 = gen_rtx_EXPR_LIST (REG_EQUIV,
4772 stack_parm, REG_NOTES (linsn));
4773 }
4774
4775 /* For pointer data type, suggest pointer register. */
4776 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4777 mark_reg_pointer (parmreg,
4778 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4779
4780 }
4781 else
4782 {
4783 /* Value must be stored in the stack slot STACK_PARM
4784 during function execution. */
4785
4786 if (promoted_mode != nominal_mode)
4787 {
4788 /* Conversion is required. */
4789 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4790
4791 emit_move_insn (tempreg, validize_mem (entry_parm));
4792
4793 push_to_sequence (conversion_insns);
4794 entry_parm = convert_to_mode (nominal_mode, tempreg,
4795 TREE_UNSIGNED (TREE_TYPE (parm)));
4796 if (stack_parm)
4797 {
4798 /* ??? This may need a big-endian conversion on sparc64. */
4799 stack_parm = change_address (stack_parm, nominal_mode,
4800 NULL_RTX);
4801 }
4802 conversion_insns = get_insns ();
4803 did_conversion = 1;
4804 end_sequence ();
4805 }
4806
4807 if (entry_parm != stack_parm)
4808 {
4809 if (stack_parm == 0)
4810 {
4811 stack_parm
4812 = assign_stack_local (GET_MODE (entry_parm),
4813 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
4814 /* If this is a memory ref that contains aggregate components,
4815 mark it as such for cse and loop optimize. */
4816 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4817 }
4818
4819 if (promoted_mode != nominal_mode)
4820 {
4821 push_to_sequence (conversion_insns);
4822 emit_move_insn (validize_mem (stack_parm),
4823 validize_mem (entry_parm));
4824 conversion_insns = get_insns ();
4825 end_sequence ();
4826 }
4827 else
4828 emit_move_insn (validize_mem (stack_parm),
4829 validize_mem (entry_parm));
4830 }
4831 if (current_function_check_memory_usage)
4832 {
4833 push_to_sequence (conversion_insns);
4834 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4835 XEXP (stack_parm, 0), Pmode,
4836 GEN_INT (GET_MODE_SIZE (GET_MODE
4837 (entry_parm))),
4838 TYPE_MODE (sizetype),
4839 GEN_INT (MEMORY_USE_RW),
4840 TYPE_MODE (integer_type_node));
4841
4842 conversion_insns = get_insns ();
4843 end_sequence ();
4844 }
4845 DECL_RTL (parm) = stack_parm;
4846 }
4847
4848 /* If this "parameter" was the place where we are receiving the
4849 function's incoming structure pointer, set up the result. */
4850 if (parm == function_result_decl)
4851 {
4852 tree result = DECL_RESULT (fndecl);
4853 tree restype = TREE_TYPE (result);
4854
4855 DECL_RTL (result)
4856 = gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm));
4857
4858 MEM_SET_IN_STRUCT_P (DECL_RTL (result),
4859 AGGREGATE_TYPE_P (restype));
4860 }
4861
4862 if (TREE_THIS_VOLATILE (parm))
4863 MEM_VOLATILE_P (DECL_RTL (parm)) = 1;
4864 if (TREE_READONLY (parm))
4865 RTX_UNCHANGING_P (DECL_RTL (parm)) = 1;
4866 }
4867
4868 /* Output all parameter conversion instructions (possibly including calls)
4869 now that all parameters have been copied out of hard registers. */
4870 emit_insns (conversion_insns);
4871
4872 last_parm_insn = get_last_insn ();
4873
4874 current_function_args_size = stack_args_size.constant;
4875
4876 /* Adjust function incoming argument size for alignment and
4877 minimum length. */
4878
4879 #ifdef REG_PARM_STACK_SPACE
4880 #ifndef MAYBE_REG_PARM_STACK_SPACE
4881 current_function_args_size = MAX (current_function_args_size,
4882 REG_PARM_STACK_SPACE (fndecl));
4883 #endif
4884 #endif
4885
4886 #ifdef STACK_BOUNDARY
4887 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
4888
4889 current_function_args_size
4890 = ((current_function_args_size + STACK_BYTES - 1)
4891 / STACK_BYTES) * STACK_BYTES;
4892 #endif
4893
4894 #ifdef ARGS_GROW_DOWNWARD
4895 current_function_arg_offset_rtx
4896 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
4897 : expand_expr (size_diffop (stack_args_size.var,
4898 size_int (-stack_args_size.constant)),
4899 NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD));
4900 #else
4901 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
4902 #endif
4903
4904 /* See how many bytes, if any, of its args a function should try to pop
4905 on return. */
4906
4907 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
4908 current_function_args_size);
4909
4910 /* For stdarg.h function, save info about
4911 regs and stack space used by the named args. */
4912
4913 if (!hide_last_arg)
4914 current_function_args_info = args_so_far;
4915
4916 /* Set the rtx used for the function return value. Put this in its
4917 own variable so any optimizers that need this information don't have
4918 to include tree.h. Do this here so it gets done when an inlined
4919 function gets output. */
4920
4921 current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl));
4922 }
4923 \f
4924 /* Indicate whether REGNO is an incoming argument to the current function
4925 that was promoted to a wider mode. If so, return the RTX for the
4926 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
4927 that REGNO is promoted from and whether the promotion was signed or
4928 unsigned. */
4929
4930 #ifdef PROMOTE_FUNCTION_ARGS
4931
4932 rtx
4933 promoted_input_arg (regno, pmode, punsignedp)
4934 unsigned int regno;
4935 enum machine_mode *pmode;
4936 int *punsignedp;
4937 {
4938 tree arg;
4939
4940 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
4941 arg = TREE_CHAIN (arg))
4942 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
4943 && REGNO (DECL_INCOMING_RTL (arg)) == regno
4944 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
4945 {
4946 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
4947 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
4948
4949 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
4950 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
4951 && mode != DECL_MODE (arg))
4952 {
4953 *pmode = DECL_MODE (arg);
4954 *punsignedp = unsignedp;
4955 return DECL_INCOMING_RTL (arg);
4956 }
4957 }
4958
4959 return 0;
4960 }
4961
4962 #endif
4963 \f
4964 /* Compute the size and offset from the start of the stacked arguments for a
4965 parm passed in mode PASSED_MODE and with type TYPE.
4966
4967 INITIAL_OFFSET_PTR points to the current offset into the stacked
4968 arguments.
4969
4970 The starting offset and size for this parm are returned in *OFFSET_PTR
4971 and *ARG_SIZE_PTR, respectively.
4972
4973 IN_REGS is non-zero if the argument will be passed in registers. It will
4974 never be set if REG_PARM_STACK_SPACE is not defined.
4975
4976 FNDECL is the function in which the argument was defined.
4977
4978 There are two types of rounding that are done. The first, controlled by
4979 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
4980 list to be aligned to the specific boundary (in bits). This rounding
4981 affects the initial and starting offsets, but not the argument size.
4982
4983 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4984 optionally rounds the size of the parm to PARM_BOUNDARY. The
4985 initial offset is not affected by this rounding, while the size always
4986 is and the starting offset may be. */
4987
4988 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
4989 initial_offset_ptr is positive because locate_and_pad_parm's
4990 callers pass in the total size of args so far as
4991 initial_offset_ptr. arg_size_ptr is always positive.*/
4992
4993 void
4994 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
4995 initial_offset_ptr, offset_ptr, arg_size_ptr,
4996 alignment_pad)
4997 enum machine_mode passed_mode;
4998 tree type;
4999 int in_regs ATTRIBUTE_UNUSED;
5000 tree fndecl ATTRIBUTE_UNUSED;
5001 struct args_size *initial_offset_ptr;
5002 struct args_size *offset_ptr;
5003 struct args_size *arg_size_ptr;
5004 struct args_size *alignment_pad;
5005
5006 {
5007 tree sizetree
5008 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5009 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5010 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5011
5012 #ifdef REG_PARM_STACK_SPACE
5013 /* If we have found a stack parm before we reach the end of the
5014 area reserved for registers, skip that area. */
5015 if (! in_regs)
5016 {
5017 int reg_parm_stack_space = 0;
5018
5019 #ifdef MAYBE_REG_PARM_STACK_SPACE
5020 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5021 #else
5022 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5023 #endif
5024 if (reg_parm_stack_space > 0)
5025 {
5026 if (initial_offset_ptr->var)
5027 {
5028 initial_offset_ptr->var
5029 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5030 ssize_int (reg_parm_stack_space));
5031 initial_offset_ptr->constant = 0;
5032 }
5033 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5034 initial_offset_ptr->constant = reg_parm_stack_space;
5035 }
5036 }
5037 #endif /* REG_PARM_STACK_SPACE */
5038
5039 arg_size_ptr->var = 0;
5040 arg_size_ptr->constant = 0;
5041
5042 #ifdef ARGS_GROW_DOWNWARD
5043 if (initial_offset_ptr->var)
5044 {
5045 offset_ptr->constant = 0;
5046 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5047 initial_offset_ptr->var);
5048 }
5049 else
5050 {
5051 offset_ptr->constant = - initial_offset_ptr->constant;
5052 offset_ptr->var = 0;
5053 }
5054 if (where_pad != none
5055 && (TREE_CODE (sizetree) != INTEGER_CST
5056 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
5057 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5058 SUB_PARM_SIZE (*offset_ptr, sizetree);
5059 if (where_pad != downward)
5060 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5061 if (initial_offset_ptr->var)
5062 arg_size_ptr->var = size_binop (MINUS_EXPR,
5063 size_binop (MINUS_EXPR,
5064 ssize_int (0),
5065 initial_offset_ptr->var),
5066 offset_ptr->var);
5067
5068 else
5069 arg_size_ptr->constant = (- initial_offset_ptr->constant
5070 - offset_ptr->constant);
5071
5072 #else /* !ARGS_GROW_DOWNWARD */
5073 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5074 *offset_ptr = *initial_offset_ptr;
5075
5076 #ifdef PUSH_ROUNDING
5077 if (passed_mode != BLKmode)
5078 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5079 #endif
5080
5081 /* Pad_below needs the pre-rounded size to know how much to pad below
5082 so this must be done before rounding up. */
5083 if (where_pad == downward
5084 /* However, BLKmode args passed in regs have their padding done elsewhere.
5085 The stack slot must be able to hold the entire register. */
5086 && !(in_regs && passed_mode == BLKmode))
5087 pad_below (offset_ptr, passed_mode, sizetree);
5088
5089 if (where_pad != none
5090 && (TREE_CODE (sizetree) != INTEGER_CST
5091 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
5092 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5093
5094 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5095 #endif /* ARGS_GROW_DOWNWARD */
5096 }
5097
5098 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5099 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5100
5101 static void
5102 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5103 struct args_size *offset_ptr;
5104 int boundary;
5105 struct args_size *alignment_pad;
5106 {
5107 tree save_var = NULL_TREE;
5108 HOST_WIDE_INT save_constant = 0;
5109
5110 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5111
5112 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5113 {
5114 save_var = offset_ptr->var;
5115 save_constant = offset_ptr->constant;
5116 }
5117
5118 alignment_pad->var = NULL_TREE;
5119 alignment_pad->constant = 0;
5120
5121 if (boundary > BITS_PER_UNIT)
5122 {
5123 if (offset_ptr->var)
5124 {
5125 offset_ptr->var =
5126 #ifdef ARGS_GROW_DOWNWARD
5127 round_down
5128 #else
5129 round_up
5130 #endif
5131 (ARGS_SIZE_TREE (*offset_ptr),
5132 boundary / BITS_PER_UNIT);
5133 offset_ptr->constant = 0; /*?*/
5134 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5135 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5136 save_var);
5137 }
5138 else
5139 {
5140 offset_ptr->constant =
5141 #ifdef ARGS_GROW_DOWNWARD
5142 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5143 #else
5144 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5145 #endif
5146 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5147 alignment_pad->constant = offset_ptr->constant - save_constant;
5148 }
5149 }
5150 }
5151
5152 #ifndef ARGS_GROW_DOWNWARD
5153 static void
5154 pad_below (offset_ptr, passed_mode, sizetree)
5155 struct args_size *offset_ptr;
5156 enum machine_mode passed_mode;
5157 tree sizetree;
5158 {
5159 if (passed_mode != BLKmode)
5160 {
5161 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5162 offset_ptr->constant
5163 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5164 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5165 - GET_MODE_SIZE (passed_mode));
5166 }
5167 else
5168 {
5169 if (TREE_CODE (sizetree) != INTEGER_CST
5170 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5171 {
5172 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5173 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5174 /* Add it in. */
5175 ADD_PARM_SIZE (*offset_ptr, s2);
5176 SUB_PARM_SIZE (*offset_ptr, sizetree);
5177 }
5178 }
5179 }
5180 #endif
5181 \f
5182 /* Walk the tree of blocks describing the binding levels within a function
5183 and warn about uninitialized variables.
5184 This is done after calling flow_analysis and before global_alloc
5185 clobbers the pseudo-regs to hard regs. */
5186
5187 void
5188 uninitialized_vars_warning (block)
5189 tree block;
5190 {
5191 register tree decl, sub;
5192 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5193 {
5194 if (warn_uninitialized
5195 && TREE_CODE (decl) == VAR_DECL
5196 /* These warnings are unreliable for and aggregates
5197 because assigning the fields one by one can fail to convince
5198 flow.c that the entire aggregate was initialized.
5199 Unions are troublesome because members may be shorter. */
5200 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5201 && DECL_RTL (decl) != 0
5202 && GET_CODE (DECL_RTL (decl)) == REG
5203 /* Global optimizations can make it difficult to determine if a
5204 particular variable has been initialized. However, a VAR_DECL
5205 with a nonzero DECL_INITIAL had an initializer, so do not
5206 claim it is potentially uninitialized.
5207
5208 We do not care about the actual value in DECL_INITIAL, so we do
5209 not worry that it may be a dangling pointer. */
5210 && DECL_INITIAL (decl) == NULL_TREE
5211 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5212 warning_with_decl (decl,
5213 "`%s' might be used uninitialized in this function");
5214 if (extra_warnings
5215 && TREE_CODE (decl) == VAR_DECL
5216 && DECL_RTL (decl) != 0
5217 && GET_CODE (DECL_RTL (decl)) == REG
5218 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5219 warning_with_decl (decl,
5220 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5221 }
5222 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5223 uninitialized_vars_warning (sub);
5224 }
5225
5226 /* Do the appropriate part of uninitialized_vars_warning
5227 but for arguments instead of local variables. */
5228
5229 void
5230 setjmp_args_warning ()
5231 {
5232 register tree decl;
5233 for (decl = DECL_ARGUMENTS (current_function_decl);
5234 decl; decl = TREE_CHAIN (decl))
5235 if (DECL_RTL (decl) != 0
5236 && GET_CODE (DECL_RTL (decl)) == REG
5237 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5238 warning_with_decl (decl, "argument `%s' might be clobbered by `longjmp' or `vfork'");
5239 }
5240
5241 /* If this function call setjmp, put all vars into the stack
5242 unless they were declared `register'. */
5243
5244 void
5245 setjmp_protect (block)
5246 tree block;
5247 {
5248 register tree decl, sub;
5249 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5250 if ((TREE_CODE (decl) == VAR_DECL
5251 || TREE_CODE (decl) == PARM_DECL)
5252 && DECL_RTL (decl) != 0
5253 && (GET_CODE (DECL_RTL (decl)) == REG
5254 || (GET_CODE (DECL_RTL (decl)) == MEM
5255 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5256 /* If this variable came from an inline function, it must be
5257 that its life doesn't overlap the setjmp. If there was a
5258 setjmp in the function, it would already be in memory. We
5259 must exclude such variable because their DECL_RTL might be
5260 set to strange things such as virtual_stack_vars_rtx. */
5261 && ! DECL_FROM_INLINE (decl)
5262 && (
5263 #ifdef NON_SAVING_SETJMP
5264 /* If longjmp doesn't restore the registers,
5265 don't put anything in them. */
5266 NON_SAVING_SETJMP
5267 ||
5268 #endif
5269 ! DECL_REGISTER (decl)))
5270 put_var_into_stack (decl);
5271 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5272 setjmp_protect (sub);
5273 }
5274 \f
5275 /* Like the previous function, but for args instead of local variables. */
5276
5277 void
5278 setjmp_protect_args ()
5279 {
5280 register tree decl;
5281 for (decl = DECL_ARGUMENTS (current_function_decl);
5282 decl; decl = TREE_CHAIN (decl))
5283 if ((TREE_CODE (decl) == VAR_DECL
5284 || TREE_CODE (decl) == PARM_DECL)
5285 && DECL_RTL (decl) != 0
5286 && (GET_CODE (DECL_RTL (decl)) == REG
5287 || (GET_CODE (DECL_RTL (decl)) == MEM
5288 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5289 && (
5290 /* If longjmp doesn't restore the registers,
5291 don't put anything in them. */
5292 #ifdef NON_SAVING_SETJMP
5293 NON_SAVING_SETJMP
5294 ||
5295 #endif
5296 ! DECL_REGISTER (decl)))
5297 put_var_into_stack (decl);
5298 }
5299 \f
5300 /* Return the context-pointer register corresponding to DECL,
5301 or 0 if it does not need one. */
5302
5303 rtx
5304 lookup_static_chain (decl)
5305 tree decl;
5306 {
5307 tree context = decl_function_context (decl);
5308 tree link;
5309
5310 if (context == 0
5311 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5312 return 0;
5313
5314 /* We treat inline_function_decl as an alias for the current function
5315 because that is the inline function whose vars, types, etc.
5316 are being merged into the current function.
5317 See expand_inline_function. */
5318 if (context == current_function_decl || context == inline_function_decl)
5319 return virtual_stack_vars_rtx;
5320
5321 for (link = context_display; link; link = TREE_CHAIN (link))
5322 if (TREE_PURPOSE (link) == context)
5323 return RTL_EXPR_RTL (TREE_VALUE (link));
5324
5325 abort ();
5326 }
5327 \f
5328 /* Convert a stack slot address ADDR for variable VAR
5329 (from a containing function)
5330 into an address valid in this function (using a static chain). */
5331
5332 rtx
5333 fix_lexical_addr (addr, var)
5334 rtx addr;
5335 tree var;
5336 {
5337 rtx basereg;
5338 HOST_WIDE_INT displacement;
5339 tree context = decl_function_context (var);
5340 struct function *fp;
5341 rtx base = 0;
5342
5343 /* If this is the present function, we need not do anything. */
5344 if (context == current_function_decl || context == inline_function_decl)
5345 return addr;
5346
5347 for (fp = outer_function_chain; fp; fp = fp->next)
5348 if (fp->decl == context)
5349 break;
5350
5351 if (fp == 0)
5352 abort ();
5353
5354 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5355 addr = XEXP (XEXP (addr, 0), 0);
5356
5357 /* Decode given address as base reg plus displacement. */
5358 if (GET_CODE (addr) == REG)
5359 basereg = addr, displacement = 0;
5360 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5361 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5362 else
5363 abort ();
5364
5365 /* We accept vars reached via the containing function's
5366 incoming arg pointer and via its stack variables pointer. */
5367 if (basereg == fp->internal_arg_pointer)
5368 {
5369 /* If reached via arg pointer, get the arg pointer value
5370 out of that function's stack frame.
5371
5372 There are two cases: If a separate ap is needed, allocate a
5373 slot in the outer function for it and dereference it that way.
5374 This is correct even if the real ap is actually a pseudo.
5375 Otherwise, just adjust the offset from the frame pointer to
5376 compensate. */
5377
5378 #ifdef NEED_SEPARATE_AP
5379 rtx addr;
5380
5381 if (fp->x_arg_pointer_save_area == 0)
5382 fp->x_arg_pointer_save_area
5383 = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
5384
5385 addr = fix_lexical_addr (XEXP (fp->x_arg_pointer_save_area, 0), var);
5386 addr = memory_address (Pmode, addr);
5387
5388 base = copy_to_reg (gen_rtx_MEM (Pmode, addr));
5389 #else
5390 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5391 base = lookup_static_chain (var);
5392 #endif
5393 }
5394
5395 else if (basereg == virtual_stack_vars_rtx)
5396 {
5397 /* This is the same code as lookup_static_chain, duplicated here to
5398 avoid an extra call to decl_function_context. */
5399 tree link;
5400
5401 for (link = context_display; link; link = TREE_CHAIN (link))
5402 if (TREE_PURPOSE (link) == context)
5403 {
5404 base = RTL_EXPR_RTL (TREE_VALUE (link));
5405 break;
5406 }
5407 }
5408
5409 if (base == 0)
5410 abort ();
5411
5412 /* Use same offset, relative to appropriate static chain or argument
5413 pointer. */
5414 return plus_constant (base, displacement);
5415 }
5416 \f
5417 /* Return the address of the trampoline for entering nested fn FUNCTION.
5418 If necessary, allocate a trampoline (in the stack frame)
5419 and emit rtl to initialize its contents (at entry to this function). */
5420
5421 rtx
5422 trampoline_address (function)
5423 tree function;
5424 {
5425 tree link;
5426 tree rtlexp;
5427 rtx tramp;
5428 struct function *fp;
5429 tree fn_context;
5430
5431 /* Find an existing trampoline and return it. */
5432 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5433 if (TREE_PURPOSE (link) == function)
5434 return
5435 round_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5436
5437 for (fp = outer_function_chain; fp; fp = fp->next)
5438 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5439 if (TREE_PURPOSE (link) == function)
5440 {
5441 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5442 function);
5443 return round_trampoline_addr (tramp);
5444 }
5445
5446 /* None exists; we must make one. */
5447
5448 /* Find the `struct function' for the function containing FUNCTION. */
5449 fp = 0;
5450 fn_context = decl_function_context (function);
5451 if (fn_context != current_function_decl
5452 && fn_context != inline_function_decl)
5453 for (fp = outer_function_chain; fp; fp = fp->next)
5454 if (fp->decl == fn_context)
5455 break;
5456
5457 /* Allocate run-time space for this trampoline
5458 (usually in the defining function's stack frame). */
5459 #ifdef ALLOCATE_TRAMPOLINE
5460 tramp = ALLOCATE_TRAMPOLINE (fp);
5461 #else
5462 /* If rounding needed, allocate extra space
5463 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5464 #ifdef TRAMPOLINE_ALIGNMENT
5465 #define TRAMPOLINE_REAL_SIZE \
5466 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5467 #else
5468 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5469 #endif
5470 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5471 fp ? fp : cfun);
5472 #endif
5473
5474 /* Record the trampoline for reuse and note it for later initialization
5475 by expand_function_end. */
5476 if (fp != 0)
5477 {
5478 push_obstacks (fp->function_maybepermanent_obstack,
5479 fp->function_maybepermanent_obstack);
5480 rtlexp = make_node (RTL_EXPR);
5481 RTL_EXPR_RTL (rtlexp) = tramp;
5482 fp->x_trampoline_list = tree_cons (function, rtlexp,
5483 fp->x_trampoline_list);
5484 pop_obstacks ();
5485 }
5486 else
5487 {
5488 /* Make the RTL_EXPR node temporary, not momentary, so that the
5489 trampoline_list doesn't become garbage. */
5490 int momentary = suspend_momentary ();
5491 rtlexp = make_node (RTL_EXPR);
5492 resume_momentary (momentary);
5493
5494 RTL_EXPR_RTL (rtlexp) = tramp;
5495 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5496 }
5497
5498 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5499 return round_trampoline_addr (tramp);
5500 }
5501
5502 /* Given a trampoline address,
5503 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5504
5505 static rtx
5506 round_trampoline_addr (tramp)
5507 rtx tramp;
5508 {
5509 #ifdef TRAMPOLINE_ALIGNMENT
5510 /* Round address up to desired boundary. */
5511 rtx temp = gen_reg_rtx (Pmode);
5512 temp = expand_binop (Pmode, add_optab, tramp,
5513 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
5514 temp, 0, OPTAB_LIB_WIDEN);
5515 tramp = expand_binop (Pmode, and_optab, temp,
5516 GEN_INT (- TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
5517 temp, 0, OPTAB_LIB_WIDEN);
5518 #endif
5519 return tramp;
5520 }
5521 \f
5522 /* Put all this function's BLOCK nodes including those that are chained
5523 onto the first block into a vector, and return it.
5524 Also store in each NOTE for the beginning or end of a block
5525 the index of that block in the vector.
5526 The arguments are BLOCK, the chain of top-level blocks of the function,
5527 and INSNS, the insn chain of the function. */
5528
5529 void
5530 identify_blocks ()
5531 {
5532 int n_blocks;
5533 tree *block_vector, *last_block_vector;
5534 tree *block_stack;
5535 tree block = DECL_INITIAL (current_function_decl);
5536
5537 if (block == 0)
5538 return;
5539
5540 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5541 depth-first order. */
5542 block_vector = get_block_vector (block, &n_blocks);
5543 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5544
5545 last_block_vector = identify_blocks_1 (get_insns (),
5546 block_vector + 1,
5547 block_vector + n_blocks,
5548 block_stack);
5549
5550 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5551 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5552 if (0 && last_block_vector != block_vector + n_blocks)
5553 abort ();
5554
5555 free (block_vector);
5556 free (block_stack);
5557 }
5558
5559 /* Subroutine of identify_blocks. Do the block substitution on the
5560 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5561
5562 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5563 BLOCK_VECTOR is incremented for each block seen. */
5564
5565 static tree *
5566 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5567 rtx insns;
5568 tree *block_vector;
5569 tree *end_block_vector;
5570 tree *orig_block_stack;
5571 {
5572 rtx insn;
5573 tree *block_stack = orig_block_stack;
5574
5575 for (insn = insns; insn; insn = NEXT_INSN (insn))
5576 {
5577 if (GET_CODE (insn) == NOTE)
5578 {
5579 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5580 {
5581 tree b;
5582
5583 /* If there are more block notes than BLOCKs, something
5584 is badly wrong. */
5585 if (block_vector == end_block_vector)
5586 abort ();
5587
5588 b = *block_vector++;
5589 NOTE_BLOCK (insn) = b;
5590 *block_stack++ = b;
5591 }
5592 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5593 {
5594 /* If there are more NOTE_INSN_BLOCK_ENDs than
5595 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5596 if (block_stack == orig_block_stack)
5597 abort ();
5598
5599 NOTE_BLOCK (insn) = *--block_stack;
5600 }
5601 }
5602 else if (GET_CODE (insn) == CALL_INSN
5603 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5604 {
5605 rtx cp = PATTERN (insn);
5606
5607 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5608 end_block_vector, block_stack);
5609 if (XEXP (cp, 1))
5610 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5611 end_block_vector, block_stack);
5612 if (XEXP (cp, 2))
5613 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5614 end_block_vector, block_stack);
5615 }
5616 }
5617
5618 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5619 something is badly wrong. */
5620 if (block_stack != orig_block_stack)
5621 abort ();
5622
5623 return block_vector;
5624 }
5625
5626 /* Identify BLOCKs referenced by more than one
5627 NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */
5628
5629 void
5630 reorder_blocks ()
5631 {
5632 tree block = DECL_INITIAL (current_function_decl);
5633 varray_type block_stack;
5634
5635 if (block == NULL_TREE)
5636 return;
5637
5638 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5639
5640 /* Prune the old trees away, so that they don't get in the way. */
5641 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5642 BLOCK_CHAIN (block) = NULL_TREE;
5643
5644 reorder_blocks_1 (get_insns (), block, &block_stack);
5645
5646 BLOCK_SUBBLOCKS (block)
5647 = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5648
5649 VARRAY_FREE (block_stack);
5650 }
5651
5652 /* Helper function for reorder_blocks. Process the insn chain beginning
5653 at INSNS. Recurse for CALL_PLACEHOLDER insns. */
5654
5655 static void
5656 reorder_blocks_1 (insns, current_block, p_block_stack)
5657 rtx insns;
5658 tree current_block;
5659 varray_type *p_block_stack;
5660 {
5661 rtx insn;
5662
5663 for (insn = insns; insn; insn = NEXT_INSN (insn))
5664 {
5665 if (GET_CODE (insn) == NOTE)
5666 {
5667 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5668 {
5669 tree block = NOTE_BLOCK (insn);
5670 /* If we have seen this block before, copy it. */
5671 if (TREE_ASM_WRITTEN (block))
5672 {
5673 block = copy_node (block);
5674 NOTE_BLOCK (insn) = block;
5675 }
5676 BLOCK_SUBBLOCKS (block) = 0;
5677 TREE_ASM_WRITTEN (block) = 1;
5678 BLOCK_SUPERCONTEXT (block) = current_block;
5679 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5680 BLOCK_SUBBLOCKS (current_block) = block;
5681 current_block = block;
5682 VARRAY_PUSH_TREE (*p_block_stack, block);
5683 }
5684 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5685 {
5686 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
5687 VARRAY_POP (*p_block_stack);
5688 BLOCK_SUBBLOCKS (current_block)
5689 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5690 current_block = BLOCK_SUPERCONTEXT (current_block);
5691 }
5692 }
5693 else if (GET_CODE (insn) == CALL_INSN
5694 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5695 {
5696 rtx cp = PATTERN (insn);
5697 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
5698 if (XEXP (cp, 1))
5699 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
5700 if (XEXP (cp, 2))
5701 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
5702 }
5703 }
5704 }
5705
5706 /* Reverse the order of elements in the chain T of blocks,
5707 and return the new head of the chain (old last element). */
5708
5709 static tree
5710 blocks_nreverse (t)
5711 tree t;
5712 {
5713 register tree prev = 0, decl, next;
5714 for (decl = t; decl; decl = next)
5715 {
5716 next = BLOCK_CHAIN (decl);
5717 BLOCK_CHAIN (decl) = prev;
5718 prev = decl;
5719 }
5720 return prev;
5721 }
5722
5723 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
5724 non-NULL, list them all into VECTOR, in a depth-first preorder
5725 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
5726 blocks. */
5727
5728 static int
5729 all_blocks (block, vector)
5730 tree block;
5731 tree *vector;
5732 {
5733 int n_blocks = 0;
5734
5735 while (block)
5736 {
5737 TREE_ASM_WRITTEN (block) = 0;
5738
5739 /* Record this block. */
5740 if (vector)
5741 vector[n_blocks] = block;
5742
5743 ++n_blocks;
5744
5745 /* Record the subblocks, and their subblocks... */
5746 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
5747 vector ? vector + n_blocks : 0);
5748 block = BLOCK_CHAIN (block);
5749 }
5750
5751 return n_blocks;
5752 }
5753
5754 /* Return a vector containing all the blocks rooted at BLOCK. The
5755 number of elements in the vector is stored in N_BLOCKS_P. The
5756 vector is dynamically allocated; it is the caller's responsibility
5757 to call `free' on the pointer returned. */
5758
5759 static tree *
5760 get_block_vector (block, n_blocks_p)
5761 tree block;
5762 int *n_blocks_p;
5763 {
5764 tree *block_vector;
5765
5766 *n_blocks_p = all_blocks (block, NULL);
5767 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
5768 all_blocks (block, block_vector);
5769
5770 return block_vector;
5771 }
5772
5773 static int next_block_index = 2;
5774
5775 /* Set BLOCK_NUMBER for all the blocks in FN. */
5776
5777 void
5778 number_blocks (fn)
5779 tree fn;
5780 {
5781 int i;
5782 int n_blocks;
5783 tree *block_vector;
5784
5785 /* For SDB and XCOFF debugging output, we start numbering the blocks
5786 from 1 within each function, rather than keeping a running
5787 count. */
5788 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
5789 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
5790 next_block_index = 1;
5791 #endif
5792
5793 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
5794
5795 /* The top-level BLOCK isn't numbered at all. */
5796 for (i = 1; i < n_blocks; ++i)
5797 /* We number the blocks from two. */
5798 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
5799
5800 free (block_vector);
5801
5802 return;
5803 }
5804
5805 \f
5806 /* Allocate a function structure and reset its contents to the defaults. */
5807 static void
5808 prepare_function_start ()
5809 {
5810 cfun = (struct function *) xcalloc (1, sizeof (struct function));
5811
5812 init_stmt_for_function ();
5813 init_eh_for_function ();
5814
5815 cse_not_expected = ! optimize;
5816
5817 /* Caller save not needed yet. */
5818 caller_save_needed = 0;
5819
5820 /* No stack slots have been made yet. */
5821 stack_slot_list = 0;
5822
5823 current_function_has_nonlocal_label = 0;
5824 current_function_has_nonlocal_goto = 0;
5825
5826 /* There is no stack slot for handling nonlocal gotos. */
5827 nonlocal_goto_handler_slots = 0;
5828 nonlocal_goto_stack_level = 0;
5829
5830 /* No labels have been declared for nonlocal use. */
5831 nonlocal_labels = 0;
5832 nonlocal_goto_handler_labels = 0;
5833
5834 /* No function calls so far in this function. */
5835 function_call_count = 0;
5836
5837 /* No parm regs have been allocated.
5838 (This is important for output_inline_function.) */
5839 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
5840
5841 /* Initialize the RTL mechanism. */
5842 init_emit ();
5843
5844 /* Initialize the queue of pending postincrement and postdecrements,
5845 and some other info in expr.c. */
5846 init_expr ();
5847
5848 /* We haven't done register allocation yet. */
5849 reg_renumber = 0;
5850
5851 init_varasm_status (cfun);
5852
5853 /* Clear out data used for inlining. */
5854 cfun->inlinable = 0;
5855 cfun->original_decl_initial = 0;
5856 cfun->original_arg_vector = 0;
5857
5858 #ifdef STACK_BOUNDARY
5859 cfun->stack_alignment_needed = STACK_BOUNDARY;
5860 cfun->preferred_stack_boundary = STACK_BOUNDARY;
5861 #else
5862 cfun->stack_alignment_needed = 0;
5863 cfun->preferred_stack_boundary = 0;
5864 #endif
5865
5866 /* Set if a call to setjmp is seen. */
5867 current_function_calls_setjmp = 0;
5868
5869 /* Set if a call to longjmp is seen. */
5870 current_function_calls_longjmp = 0;
5871
5872 current_function_calls_alloca = 0;
5873 current_function_contains_functions = 0;
5874 current_function_is_leaf = 0;
5875 current_function_nothrow = 0;
5876 current_function_sp_is_unchanging = 0;
5877 current_function_uses_only_leaf_regs = 0;
5878 current_function_has_computed_jump = 0;
5879 current_function_is_thunk = 0;
5880
5881 current_function_returns_pcc_struct = 0;
5882 current_function_returns_struct = 0;
5883 current_function_epilogue_delay_list = 0;
5884 current_function_uses_const_pool = 0;
5885 current_function_uses_pic_offset_table = 0;
5886 current_function_cannot_inline = 0;
5887
5888 /* We have not yet needed to make a label to jump to for tail-recursion. */
5889 tail_recursion_label = 0;
5890
5891 /* We haven't had a need to make a save area for ap yet. */
5892 arg_pointer_save_area = 0;
5893
5894 /* No stack slots allocated yet. */
5895 frame_offset = 0;
5896
5897 /* No SAVE_EXPRs in this function yet. */
5898 save_expr_regs = 0;
5899
5900 /* No RTL_EXPRs in this function yet. */
5901 rtl_expr_chain = 0;
5902
5903 /* Set up to allocate temporaries. */
5904 init_temp_slots ();
5905
5906 /* Indicate that we need to distinguish between the return value of the
5907 present function and the return value of a function being called. */
5908 rtx_equal_function_value_matters = 1;
5909
5910 /* Indicate that we have not instantiated virtual registers yet. */
5911 virtuals_instantiated = 0;
5912
5913 /* Indicate we have no need of a frame pointer yet. */
5914 frame_pointer_needed = 0;
5915
5916 /* By default assume not varargs or stdarg. */
5917 current_function_varargs = 0;
5918 current_function_stdarg = 0;
5919
5920 /* We haven't made any trampolines for this function yet. */
5921 trampoline_list = 0;
5922
5923 init_pending_stack_adjust ();
5924 inhibit_defer_pop = 0;
5925
5926 current_function_outgoing_args_size = 0;
5927
5928 if (init_lang_status)
5929 (*init_lang_status) (cfun);
5930 if (init_machine_status)
5931 (*init_machine_status) (cfun);
5932 }
5933
5934 /* Initialize the rtl expansion mechanism so that we can do simple things
5935 like generate sequences. This is used to provide a context during global
5936 initialization of some passes. */
5937 void
5938 init_dummy_function_start ()
5939 {
5940 prepare_function_start ();
5941 }
5942
5943 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5944 and initialize static variables for generating RTL for the statements
5945 of the function. */
5946
5947 void
5948 init_function_start (subr, filename, line)
5949 tree subr;
5950 char *filename;
5951 int line;
5952 {
5953 prepare_function_start ();
5954
5955 /* Remember this function for later. */
5956 cfun->next_global = all_functions;
5957 all_functions = cfun;
5958
5959 current_function_name = (*decl_printable_name) (subr, 2);
5960 cfun->decl = subr;
5961
5962 /* Nonzero if this is a nested function that uses a static chain. */
5963
5964 current_function_needs_context
5965 = (decl_function_context (current_function_decl) != 0
5966 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
5967
5968 /* Within function body, compute a type's size as soon it is laid out. */
5969 immediate_size_expand++;
5970
5971 /* Prevent ever trying to delete the first instruction of a function.
5972 Also tell final how to output a linenum before the function prologue.
5973 Note linenums could be missing, e.g. when compiling a Java .class file. */
5974 if (line > 0)
5975 emit_line_note (filename, line);
5976
5977 /* Make sure first insn is a note even if we don't want linenums.
5978 This makes sure the first insn will never be deleted.
5979 Also, final expects a note to appear there. */
5980 emit_note (NULL_PTR, NOTE_INSN_DELETED);
5981
5982 /* Set flags used by final.c. */
5983 if (aggregate_value_p (DECL_RESULT (subr)))
5984 {
5985 #ifdef PCC_STATIC_STRUCT_RETURN
5986 current_function_returns_pcc_struct = 1;
5987 #endif
5988 current_function_returns_struct = 1;
5989 }
5990
5991 /* Warn if this value is an aggregate type,
5992 regardless of which calling convention we are using for it. */
5993 if (warn_aggregate_return
5994 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
5995 warning ("function returns an aggregate");
5996
5997 current_function_returns_pointer
5998 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
5999 }
6000
6001 /* Make sure all values used by the optimization passes have sane
6002 defaults. */
6003 void
6004 init_function_for_compilation ()
6005 {
6006 reg_renumber = 0;
6007
6008 /* No prologue/epilogue insns yet. */
6009 VARRAY_GROW (prologue, 0);
6010 VARRAY_GROW (epilogue, 0);
6011 VARRAY_GROW (sibcall_epilogue, 0);
6012 }
6013
6014 /* Indicate that the current function uses extra args
6015 not explicitly mentioned in the argument list in any fashion. */
6016
6017 void
6018 mark_varargs ()
6019 {
6020 current_function_varargs = 1;
6021 }
6022
6023 /* Expand a call to __main at the beginning of a possible main function. */
6024
6025 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6026 #undef HAS_INIT_SECTION
6027 #define HAS_INIT_SECTION
6028 #endif
6029
6030 void
6031 expand_main_function ()
6032 {
6033 #if !defined (HAS_INIT_SECTION)
6034 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0,
6035 VOIDmode, 0);
6036 #endif /* not HAS_INIT_SECTION */
6037 }
6038 \f
6039 extern struct obstack permanent_obstack;
6040
6041 /* Start the RTL for a new function, and set variables used for
6042 emitting RTL.
6043 SUBR is the FUNCTION_DECL node.
6044 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6045 the function's parameters, which must be run at any return statement. */
6046
6047 void
6048 expand_function_start (subr, parms_have_cleanups)
6049 tree subr;
6050 int parms_have_cleanups;
6051 {
6052 tree tem;
6053 rtx last_ptr = NULL_RTX;
6054
6055 /* Make sure volatile mem refs aren't considered
6056 valid operands of arithmetic insns. */
6057 init_recog_no_volatile ();
6058
6059 /* Set this before generating any memory accesses. */
6060 current_function_check_memory_usage
6061 = (flag_check_memory_usage
6062 && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl));
6063
6064 current_function_instrument_entry_exit
6065 = (flag_instrument_function_entry_exit
6066 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6067
6068 current_function_limit_stack
6069 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6070
6071 /* If function gets a static chain arg, store it in the stack frame.
6072 Do this first, so it gets the first stack slot offset. */
6073 if (current_function_needs_context)
6074 {
6075 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6076
6077 /* Delay copying static chain if it is not a register to avoid
6078 conflicts with regs used for parameters. */
6079 if (! SMALL_REGISTER_CLASSES
6080 || GET_CODE (static_chain_incoming_rtx) == REG)
6081 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6082 }
6083
6084 /* If the parameters of this function need cleaning up, get a label
6085 for the beginning of the code which executes those cleanups. This must
6086 be done before doing anything with return_label. */
6087 if (parms_have_cleanups)
6088 cleanup_label = gen_label_rtx ();
6089 else
6090 cleanup_label = 0;
6091
6092 /* Make the label for return statements to jump to, if this machine
6093 does not have a one-instruction return and uses an epilogue,
6094 or if it returns a structure, or if it has parm cleanups. */
6095 #ifdef HAVE_return
6096 if (cleanup_label == 0 && HAVE_return
6097 && ! current_function_instrument_entry_exit
6098 && ! current_function_returns_pcc_struct
6099 && ! (current_function_returns_struct && ! optimize))
6100 return_label = 0;
6101 else
6102 return_label = gen_label_rtx ();
6103 #else
6104 return_label = gen_label_rtx ();
6105 #endif
6106
6107 /* Initialize rtx used to return the value. */
6108 /* Do this before assign_parms so that we copy the struct value address
6109 before any library calls that assign parms might generate. */
6110
6111 /* Decide whether to return the value in memory or in a register. */
6112 if (aggregate_value_p (DECL_RESULT (subr)))
6113 {
6114 /* Returning something that won't go in a register. */
6115 register rtx value_address = 0;
6116
6117 #ifdef PCC_STATIC_STRUCT_RETURN
6118 if (current_function_returns_pcc_struct)
6119 {
6120 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6121 value_address = assemble_static_space (size);
6122 }
6123 else
6124 #endif
6125 {
6126 /* Expect to be passed the address of a place to store the value.
6127 If it is passed as an argument, assign_parms will take care of
6128 it. */
6129 if (struct_value_incoming_rtx)
6130 {
6131 value_address = gen_reg_rtx (Pmode);
6132 emit_move_insn (value_address, struct_value_incoming_rtx);
6133 }
6134 }
6135 if (value_address)
6136 {
6137 DECL_RTL (DECL_RESULT (subr))
6138 = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6139 MEM_SET_IN_STRUCT_P (DECL_RTL (DECL_RESULT (subr)),
6140 AGGREGATE_TYPE_P (TREE_TYPE
6141 (DECL_RESULT
6142 (subr))));
6143 }
6144 }
6145 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6146 /* If return mode is void, this decl rtl should not be used. */
6147 DECL_RTL (DECL_RESULT (subr)) = 0;
6148 else if (parms_have_cleanups || current_function_instrument_entry_exit)
6149 {
6150 /* If function will end with cleanup code for parms,
6151 compute the return values into a pseudo reg,
6152 which we will copy into the true return register
6153 after the cleanups are done. */
6154
6155 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
6156
6157 #ifdef PROMOTE_FUNCTION_RETURN
6158 tree type = TREE_TYPE (DECL_RESULT (subr));
6159 int unsignedp = TREE_UNSIGNED (type);
6160
6161 mode = promote_mode (type, mode, &unsignedp, 1);
6162 #endif
6163
6164 DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode);
6165 }
6166 else
6167 /* Scalar, returned in a register. */
6168 {
6169 #ifdef FUNCTION_OUTGOING_VALUE
6170 DECL_RTL (DECL_RESULT (subr))
6171 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
6172 #else
6173 DECL_RTL (DECL_RESULT (subr))
6174 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
6175 #endif
6176
6177 /* Mark this reg as the function's return value. */
6178 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
6179 {
6180 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
6181 /* Needed because we may need to move this to memory
6182 in case it's a named return value whose address is taken. */
6183 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6184 }
6185 }
6186
6187 /* Initialize rtx for parameters and local variables.
6188 In some cases this requires emitting insns. */
6189
6190 assign_parms (subr);
6191
6192 /* Copy the static chain now if it wasn't a register. The delay is to
6193 avoid conflicts with the parameter passing registers. */
6194
6195 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6196 if (GET_CODE (static_chain_incoming_rtx) != REG)
6197 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6198
6199 /* The following was moved from init_function_start.
6200 The move is supposed to make sdb output more accurate. */
6201 /* Indicate the beginning of the function body,
6202 as opposed to parm setup. */
6203 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
6204
6205 if (GET_CODE (get_last_insn ()) != NOTE)
6206 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6207 parm_birth_insn = get_last_insn ();
6208
6209 context_display = 0;
6210 if (current_function_needs_context)
6211 {
6212 /* Fetch static chain values for containing functions. */
6213 tem = decl_function_context (current_function_decl);
6214 /* Copy the static chain pointer into a pseudo. If we have
6215 small register classes, copy the value from memory if
6216 static_chain_incoming_rtx is a REG. */
6217 if (tem)
6218 {
6219 /* If the static chain originally came in a register, put it back
6220 there, then move it out in the next insn. The reason for
6221 this peculiar code is to satisfy function integration. */
6222 if (SMALL_REGISTER_CLASSES
6223 && GET_CODE (static_chain_incoming_rtx) == REG)
6224 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6225 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6226 }
6227
6228 while (tem)
6229 {
6230 tree rtlexp = make_node (RTL_EXPR);
6231
6232 RTL_EXPR_RTL (rtlexp) = last_ptr;
6233 context_display = tree_cons (tem, rtlexp, context_display);
6234 tem = decl_function_context (tem);
6235 if (tem == 0)
6236 break;
6237 /* Chain thru stack frames, assuming pointer to next lexical frame
6238 is found at the place we always store it. */
6239 #ifdef FRAME_GROWS_DOWNWARD
6240 last_ptr = plus_constant (last_ptr, - GET_MODE_SIZE (Pmode));
6241 #endif
6242 last_ptr = copy_to_reg (gen_rtx_MEM (Pmode,
6243 memory_address (Pmode,
6244 last_ptr)));
6245
6246 /* If we are not optimizing, ensure that we know that this
6247 piece of context is live over the entire function. */
6248 if (! optimize)
6249 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6250 save_expr_regs);
6251 }
6252 }
6253
6254 if (current_function_instrument_entry_exit)
6255 {
6256 rtx fun = DECL_RTL (current_function_decl);
6257 if (GET_CODE (fun) == MEM)
6258 fun = XEXP (fun, 0);
6259 else
6260 abort ();
6261 emit_library_call (profile_function_entry_libfunc, 0, VOIDmode, 2,
6262 fun, Pmode,
6263 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6264 0,
6265 hard_frame_pointer_rtx),
6266 Pmode);
6267 }
6268
6269 /* After the display initializations is where the tail-recursion label
6270 should go, if we end up needing one. Ensure we have a NOTE here
6271 since some things (like trampolines) get placed before this. */
6272 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
6273
6274 /* Evaluate now the sizes of any types declared among the arguments. */
6275 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
6276 {
6277 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode,
6278 EXPAND_MEMORY_USE_BAD);
6279 /* Flush the queue in case this parameter declaration has
6280 side-effects. */
6281 emit_queue ();
6282 }
6283
6284 /* Make sure there is a line number after the function entry setup code. */
6285 force_next_line_note ();
6286 }
6287 \f
6288 /* Undo the effects of init_dummy_function_start. */
6289 void
6290 expand_dummy_function_end ()
6291 {
6292 /* End any sequences that failed to be closed due to syntax errors. */
6293 while (in_sequence_p ())
6294 end_sequence ();
6295
6296 /* Outside function body, can't compute type's actual size
6297 until next function's body starts. */
6298
6299 free_after_parsing (cfun);
6300 free_after_compilation (cfun);
6301 free (cfun);
6302 cfun = 0;
6303 }
6304
6305 /* Call DOIT for each hard register used as a return value from
6306 the current function. */
6307
6308 void
6309 diddle_return_value (doit, arg)
6310 void (*doit) PARAMS ((rtx, void *));
6311 void *arg;
6312 {
6313 rtx outgoing = current_function_return_rtx;
6314
6315 if (! outgoing)
6316 return;
6317
6318 if (GET_CODE (outgoing) == REG
6319 && REGNO (outgoing) >= FIRST_PSEUDO_REGISTER)
6320 {
6321 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6322 #ifdef FUNCTION_OUTGOING_VALUE
6323 outgoing = FUNCTION_OUTGOING_VALUE (type, current_function_decl);
6324 #else
6325 outgoing = FUNCTION_VALUE (type, current_function_decl);
6326 #endif
6327 /* If this is a BLKmode structure being returned in registers, then use
6328 the mode computed in expand_return. */
6329 if (GET_MODE (outgoing) == BLKmode)
6330 PUT_MODE (outgoing,
6331 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6332 }
6333
6334 if (GET_CODE (outgoing) == REG)
6335 (*doit) (outgoing, arg);
6336 else if (GET_CODE (outgoing) == PARALLEL)
6337 {
6338 int i;
6339
6340 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6341 {
6342 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6343
6344 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6345 (*doit) (x, arg);
6346 }
6347 }
6348 }
6349
6350 static void
6351 do_clobber_return_reg (reg, arg)
6352 rtx reg;
6353 void *arg ATTRIBUTE_UNUSED;
6354 {
6355 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6356 }
6357
6358 void
6359 clobber_return_register ()
6360 {
6361 diddle_return_value (do_clobber_return_reg, NULL);
6362 }
6363
6364 static void
6365 do_use_return_reg (reg, arg)
6366 rtx reg;
6367 void *arg ATTRIBUTE_UNUSED;
6368 {
6369 emit_insn (gen_rtx_USE (VOIDmode, reg));
6370 }
6371
6372 void
6373 use_return_register ()
6374 {
6375 diddle_return_value (do_use_return_reg, NULL);
6376 }
6377
6378 /* Generate RTL for the end of the current function.
6379 FILENAME and LINE are the current position in the source file.
6380
6381 It is up to language-specific callers to do cleanups for parameters--
6382 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6383
6384 void
6385 expand_function_end (filename, line, end_bindings)
6386 char *filename;
6387 int line;
6388 int end_bindings;
6389 {
6390 tree link;
6391
6392 #ifdef TRAMPOLINE_TEMPLATE
6393 static rtx initial_trampoline;
6394 #endif
6395
6396 finish_expr_for_function ();
6397
6398 #ifdef NON_SAVING_SETJMP
6399 /* Don't put any variables in registers if we call setjmp
6400 on a machine that fails to restore the registers. */
6401 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6402 {
6403 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6404 setjmp_protect (DECL_INITIAL (current_function_decl));
6405
6406 setjmp_protect_args ();
6407 }
6408 #endif
6409
6410 /* Save the argument pointer if a save area was made for it. */
6411 if (arg_pointer_save_area)
6412 {
6413 /* arg_pointer_save_area may not be a valid memory address, so we
6414 have to check it and fix it if necessary. */
6415 rtx seq;
6416 start_sequence ();
6417 emit_move_insn (validize_mem (arg_pointer_save_area),
6418 virtual_incoming_args_rtx);
6419 seq = gen_sequence ();
6420 end_sequence ();
6421 emit_insn_before (seq, tail_recursion_reentry);
6422 }
6423
6424 /* Initialize any trampolines required by this function. */
6425 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6426 {
6427 tree function = TREE_PURPOSE (link);
6428 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6429 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6430 #ifdef TRAMPOLINE_TEMPLATE
6431 rtx blktramp;
6432 #endif
6433 rtx seq;
6434
6435 #ifdef TRAMPOLINE_TEMPLATE
6436 /* First make sure this compilation has a template for
6437 initializing trampolines. */
6438 if (initial_trampoline == 0)
6439 {
6440 end_temporary_allocation ();
6441 initial_trampoline
6442 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6443 resume_temporary_allocation ();
6444
6445 ggc_add_rtx_root (&initial_trampoline, 1);
6446 }
6447 #endif
6448
6449 /* Generate insns to initialize the trampoline. */
6450 start_sequence ();
6451 tramp = round_trampoline_addr (XEXP (tramp, 0));
6452 #ifdef TRAMPOLINE_TEMPLATE
6453 blktramp = change_address (initial_trampoline, BLKmode, tramp);
6454 emit_block_move (blktramp, initial_trampoline,
6455 GEN_INT (TRAMPOLINE_SIZE),
6456 TRAMPOLINE_ALIGNMENT);
6457 #endif
6458 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6459 seq = get_insns ();
6460 end_sequence ();
6461
6462 /* Put those insns at entry to the containing function (this one). */
6463 emit_insns_before (seq, tail_recursion_reentry);
6464 }
6465
6466 /* If we are doing stack checking and this function makes calls,
6467 do a stack probe at the start of the function to ensure we have enough
6468 space for another stack frame. */
6469 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6470 {
6471 rtx insn, seq;
6472
6473 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6474 if (GET_CODE (insn) == CALL_INSN)
6475 {
6476 start_sequence ();
6477 probe_stack_range (STACK_CHECK_PROTECT,
6478 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6479 seq = get_insns ();
6480 end_sequence ();
6481 emit_insns_before (seq, tail_recursion_reentry);
6482 break;
6483 }
6484 }
6485
6486 /* Warn about unused parms if extra warnings were specified. */
6487 if (warn_unused && extra_warnings)
6488 {
6489 tree decl;
6490
6491 for (decl = DECL_ARGUMENTS (current_function_decl);
6492 decl; decl = TREE_CHAIN (decl))
6493 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6494 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6495 warning_with_decl (decl, "unused parameter `%s'");
6496 }
6497
6498 /* Delete handlers for nonlocal gotos if nothing uses them. */
6499 if (nonlocal_goto_handler_slots != 0
6500 && ! current_function_has_nonlocal_label)
6501 delete_handlers ();
6502
6503 /* End any sequences that failed to be closed due to syntax errors. */
6504 while (in_sequence_p ())
6505 end_sequence ();
6506
6507 /* Outside function body, can't compute type's actual size
6508 until next function's body starts. */
6509 immediate_size_expand--;
6510
6511 clear_pending_stack_adjust ();
6512 do_pending_stack_adjust ();
6513
6514 /* Mark the end of the function body.
6515 If control reaches this insn, the function can drop through
6516 without returning a value. */
6517 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
6518
6519 /* Must mark the last line number note in the function, so that the test
6520 coverage code can avoid counting the last line twice. This just tells
6521 the code to ignore the immediately following line note, since there
6522 already exists a copy of this note somewhere above. This line number
6523 note is still needed for debugging though, so we can't delete it. */
6524 if (flag_test_coverage)
6525 emit_note (NULL_PTR, NOTE_REPEATED_LINE_NUMBER);
6526
6527 /* Output a linenumber for the end of the function.
6528 SDB depends on this. */
6529 emit_line_note_force (filename, line);
6530
6531 /* Output the label for the actual return from the function,
6532 if one is expected. This happens either because a function epilogue
6533 is used instead of a return instruction, or because a return was done
6534 with a goto in order to run local cleanups, or because of pcc-style
6535 structure returning. */
6536
6537 if (return_label)
6538 {
6539 /* Before the return label, clobber the return registers so that
6540 they are not propogated live to the rest of the function. This
6541 can only happen with functions that drop through; if there had
6542 been a return statement, there would have either been a return
6543 rtx, or a jump to the return label. */
6544 clobber_return_register ();
6545
6546 emit_label (return_label);
6547 }
6548
6549 /* C++ uses this. */
6550 if (end_bindings)
6551 expand_end_bindings (0, 0, 0);
6552
6553 /* Now handle any leftover exception regions that may have been
6554 created for the parameters. */
6555 {
6556 rtx last = get_last_insn ();
6557 rtx label;
6558
6559 expand_leftover_cleanups ();
6560
6561 /* If there are any catch_clauses remaining, output them now. */
6562 emit_insns (catch_clauses);
6563 catch_clauses = catch_clauses_last = NULL_RTX;
6564 /* If the above emitted any code, may sure we jump around it. */
6565 if (last != get_last_insn ())
6566 {
6567 label = gen_label_rtx ();
6568 last = emit_jump_insn_after (gen_jump (label), last);
6569 last = emit_barrier_after (last);
6570 emit_label (label);
6571 }
6572 }
6573
6574 if (current_function_instrument_entry_exit)
6575 {
6576 rtx fun = DECL_RTL (current_function_decl);
6577 if (GET_CODE (fun) == MEM)
6578 fun = XEXP (fun, 0);
6579 else
6580 abort ();
6581 emit_library_call (profile_function_exit_libfunc, 0, VOIDmode, 2,
6582 fun, Pmode,
6583 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6584 0,
6585 hard_frame_pointer_rtx),
6586 Pmode);
6587 }
6588
6589 /* If we had calls to alloca, and this machine needs
6590 an accurate stack pointer to exit the function,
6591 insert some code to save and restore the stack pointer. */
6592 #ifdef EXIT_IGNORE_STACK
6593 if (! EXIT_IGNORE_STACK)
6594 #endif
6595 if (current_function_calls_alloca)
6596 {
6597 rtx tem = 0;
6598
6599 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6600 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6601 }
6602
6603 /* If scalar return value was computed in a pseudo-reg,
6604 copy that to the hard return register. */
6605 if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0
6606 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG
6607 && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl)))
6608 >= FIRST_PSEUDO_REGISTER))
6609 {
6610 rtx real_decl_result;
6611
6612 #ifdef FUNCTION_OUTGOING_VALUE
6613 real_decl_result
6614 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6615 current_function_decl);
6616 #else
6617 real_decl_result
6618 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6619 current_function_decl);
6620 #endif
6621 REG_FUNCTION_VALUE_P (real_decl_result) = 1;
6622 /* If this is a BLKmode structure being returned in registers, then use
6623 the mode computed in expand_return. */
6624 if (GET_MODE (real_decl_result) == BLKmode)
6625 PUT_MODE (real_decl_result,
6626 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6627 emit_move_insn (real_decl_result,
6628 DECL_RTL (DECL_RESULT (current_function_decl)));
6629
6630 /* The delay slot scheduler assumes that current_function_return_rtx
6631 holds the hard register containing the return value, not a temporary
6632 pseudo. */
6633 current_function_return_rtx = real_decl_result;
6634 }
6635
6636 /* If returning a structure, arrange to return the address of the value
6637 in a place where debuggers expect to find it.
6638
6639 If returning a structure PCC style,
6640 the caller also depends on this value.
6641 And current_function_returns_pcc_struct is not necessarily set. */
6642 if (current_function_returns_struct
6643 || current_function_returns_pcc_struct)
6644 {
6645 rtx value_address = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
6646 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6647 #ifdef FUNCTION_OUTGOING_VALUE
6648 rtx outgoing
6649 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
6650 current_function_decl);
6651 #else
6652 rtx outgoing
6653 = FUNCTION_VALUE (build_pointer_type (type),
6654 current_function_decl);
6655 #endif
6656
6657 /* Mark this as a function return value so integrate will delete the
6658 assignment and USE below when inlining this function. */
6659 REG_FUNCTION_VALUE_P (outgoing) = 1;
6660
6661 emit_move_insn (outgoing, value_address);
6662 }
6663
6664 /* ??? This should no longer be necessary since stupid is no longer with
6665 us, but there are some parts of the compiler (eg reload_combine, and
6666 sh mach_dep_reorg) that still try and compute their own lifetime info
6667 instead of using the general framework. */
6668 use_return_register ();
6669
6670 /* If this is an implementation of __throw, do what's necessary to
6671 communicate between __builtin_eh_return and the epilogue. */
6672 expand_eh_return ();
6673
6674 /* Output a return insn if we are using one.
6675 Otherwise, let the rtl chain end here, to drop through
6676 into the epilogue. */
6677
6678 #ifdef HAVE_return
6679 if (HAVE_return)
6680 {
6681 emit_jump_insn (gen_return ());
6682 emit_barrier ();
6683 }
6684 #endif
6685
6686 /* Fix up any gotos that jumped out to the outermost
6687 binding level of the function.
6688 Must follow emitting RETURN_LABEL. */
6689
6690 /* If you have any cleanups to do at this point,
6691 and they need to create temporary variables,
6692 then you will lose. */
6693 expand_fixups (get_insns ());
6694 }
6695 \f
6696 /* Extend a vector that records the INSN_UIDs of INSNS (either a
6697 sequence or a single insn). */
6698
6699 static void
6700 record_insns (insns, vecp)
6701 rtx insns;
6702 varray_type *vecp;
6703 {
6704 if (GET_CODE (insns) == SEQUENCE)
6705 {
6706 int len = XVECLEN (insns, 0);
6707 int i = VARRAY_SIZE (*vecp);
6708
6709 VARRAY_GROW (*vecp, i + len);
6710 while (--len >= 0)
6711 {
6712 VARRAY_INT (*vecp, i) = INSN_UID (XVECEXP (insns, 0, len));
6713 ++i;
6714 }
6715 }
6716 else
6717 {
6718 int i = VARRAY_SIZE (*vecp);
6719 VARRAY_GROW (*vecp, i + 1);
6720 VARRAY_INT (*vecp, i) = INSN_UID (insns);
6721 }
6722 }
6723
6724 /* Determine how many INSN_UIDs in VEC are part of INSN. */
6725
6726 static int
6727 contains (insn, vec)
6728 rtx insn;
6729 varray_type vec;
6730 {
6731 register int i, j;
6732
6733 if (GET_CODE (insn) == INSN
6734 && GET_CODE (PATTERN (insn)) == SEQUENCE)
6735 {
6736 int count = 0;
6737 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6738 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6739 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
6740 count++;
6741 return count;
6742 }
6743 else
6744 {
6745 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6746 if (INSN_UID (insn) == VARRAY_INT (vec, j))
6747 return 1;
6748 }
6749 return 0;
6750 }
6751
6752 int
6753 prologue_epilogue_contains (insn)
6754 rtx insn;
6755 {
6756 if (contains (insn, prologue))
6757 return 1;
6758 if (contains (insn, epilogue))
6759 return 1;
6760 return 0;
6761 }
6762
6763 int
6764 sibcall_epilogue_contains (insn)
6765 rtx insn;
6766 {
6767 if (sibcall_epilogue)
6768 return contains (insn, sibcall_epilogue);
6769 return 0;
6770 }
6771
6772 #ifdef HAVE_return
6773 /* Insert gen_return at the end of block BB. This also means updating
6774 block_for_insn appropriately. */
6775
6776 static void
6777 emit_return_into_block (bb)
6778 basic_block bb;
6779 {
6780 rtx p, end;
6781
6782 end = emit_jump_insn_after (gen_return (), bb->end);
6783 p = NEXT_INSN (bb->end);
6784 while (1)
6785 {
6786 set_block_for_insn (p, bb);
6787 if (p == end)
6788 break;
6789 p = NEXT_INSN (p);
6790 }
6791 bb->end = end;
6792 }
6793 #endif /* HAVE_return */
6794
6795 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
6796 this into place with notes indicating where the prologue ends and where
6797 the epilogue begins. Update the basic block information when possible. */
6798
6799 void
6800 thread_prologue_and_epilogue_insns (f)
6801 rtx f ATTRIBUTE_UNUSED;
6802 {
6803 int insertted = 0;
6804 edge e;
6805 rtx seq;
6806
6807 #ifdef HAVE_prologue
6808 if (HAVE_prologue)
6809 {
6810 rtx insn;
6811
6812 start_sequence ();
6813 seq = gen_prologue();
6814 emit_insn (seq);
6815
6816 /* Retain a map of the prologue insns. */
6817 if (GET_CODE (seq) != SEQUENCE)
6818 seq = get_insns ();
6819 record_insns (seq, &prologue);
6820 emit_note (NULL, NOTE_INSN_PROLOGUE_END);
6821
6822 /* GDB handles `break f' by setting a breakpoint on the first
6823 line note *after* the prologue. That means that we should
6824 insert a line note here; otherwise, if the next line note
6825 comes part way into the next block, GDB will skip all the way
6826 to that point. */
6827 insn = next_nonnote_insn (f);
6828 while (insn)
6829 {
6830 if (GET_CODE (insn) == NOTE
6831 && NOTE_LINE_NUMBER (insn) >= 0)
6832 {
6833 emit_line_note_force (NOTE_SOURCE_FILE (insn),
6834 NOTE_LINE_NUMBER (insn));
6835 break;
6836 }
6837
6838 insn = PREV_INSN (insn);
6839 }
6840
6841 seq = gen_sequence ();
6842 end_sequence ();
6843
6844 /* If optimization is off, and perhaps in an empty function,
6845 the entry block will have no successors. */
6846 if (ENTRY_BLOCK_PTR->succ)
6847 {
6848 /* Can't deal with multiple successsors of the entry block. */
6849 if (ENTRY_BLOCK_PTR->succ->succ_next)
6850 abort ();
6851
6852 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
6853 insertted = 1;
6854 }
6855 else
6856 emit_insn_after (seq, f);
6857 }
6858 #endif
6859
6860 /* If the exit block has no non-fake predecessors, we don't need
6861 an epilogue. */
6862 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6863 if ((e->flags & EDGE_FAKE) == 0)
6864 break;
6865 if (e == NULL)
6866 goto epilogue_done;
6867
6868 #ifdef HAVE_return
6869 if (optimize && HAVE_return)
6870 {
6871 /* If we're allowed to generate a simple return instruction,
6872 then by definition we don't need a full epilogue. Examine
6873 the block that falls through to EXIT. If it does not
6874 contain any code, examine its predecessors and try to
6875 emit (conditional) return instructions. */
6876
6877 basic_block last;
6878 edge e_next;
6879 rtx label;
6880
6881 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6882 if (e->flags & EDGE_FALLTHRU)
6883 break;
6884 if (e == NULL)
6885 goto epilogue_done;
6886 last = e->src;
6887
6888 /* Verify that there are no active instructions in the last block. */
6889 label = last->end;
6890 while (label && GET_CODE (label) != CODE_LABEL)
6891 {
6892 if (active_insn_p (label))
6893 break;
6894 label = PREV_INSN (label);
6895 }
6896
6897 if (last->head == label && GET_CODE (label) == CODE_LABEL)
6898 {
6899 for (e = last->pred; e ; e = e_next)
6900 {
6901 basic_block bb = e->src;
6902 rtx jump;
6903
6904 e_next = e->pred_next;
6905 if (bb == ENTRY_BLOCK_PTR)
6906 continue;
6907
6908 jump = bb->end;
6909 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
6910 continue;
6911
6912 /* If we have an unconditional jump, we can replace that
6913 with a simple return instruction. */
6914 if (simplejump_p (jump))
6915 {
6916 emit_return_into_block (bb);
6917 flow_delete_insn (jump);
6918 }
6919
6920 /* If we have a conditional jump, we can try to replace
6921 that with a conditional return instruction. */
6922 else if (condjump_p (jump))
6923 {
6924 rtx ret, *loc;
6925
6926 ret = SET_SRC (PATTERN (jump));
6927 if (GET_CODE (XEXP (ret, 1)) == LABEL_REF)
6928 loc = &XEXP (ret, 1);
6929 else
6930 loc = &XEXP (ret, 2);
6931 ret = gen_rtx_RETURN (VOIDmode);
6932
6933 if (! validate_change (jump, loc, ret, 0))
6934 continue;
6935 if (JUMP_LABEL (jump))
6936 LABEL_NUSES (JUMP_LABEL (jump))--;
6937
6938 /* If this block has only one successor, it both jumps
6939 and falls through to the fallthru block, so we can't
6940 delete the edge. */
6941 if (bb->succ->succ_next == NULL)
6942 continue;
6943 }
6944 else
6945 continue;
6946
6947 /* Fix up the CFG for the successful change we just made. */
6948 remove_edge (e);
6949 make_edge (NULL, bb, EXIT_BLOCK_PTR, 0);
6950 }
6951
6952 /* Emit a return insn for the exit fallthru block. Whether
6953 this is still reachable will be determined later. */
6954
6955 emit_barrier_after (last->end);
6956 emit_return_into_block (last);
6957 }
6958 else
6959 {
6960 /* The exit block wasn't empty. We have to use insert_insn_on_edge,
6961 as it may be the exit block can go elsewhere as well
6962 as exiting. */
6963 start_sequence ();
6964 emit_jump_insn (gen_return ());
6965 seq = gen_sequence ();
6966 end_sequence ();
6967 insert_insn_on_edge (seq, e);
6968 insertted = 1;
6969 }
6970 goto epilogue_done;
6971 }
6972 #endif
6973 #ifdef HAVE_epilogue
6974 if (HAVE_epilogue)
6975 {
6976 /* Find the edge that falls through to EXIT. Other edges may exist
6977 due to RETURN instructions, but those don't need epilogues.
6978 There really shouldn't be a mixture -- either all should have
6979 been converted or none, however... */
6980
6981 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6982 if (e->flags & EDGE_FALLTHRU)
6983 break;
6984 if (e == NULL)
6985 goto epilogue_done;
6986
6987 start_sequence ();
6988 emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
6989
6990 seq = gen_epilogue ();
6991 emit_jump_insn (seq);
6992
6993 /* Retain a map of the epilogue insns. */
6994 if (GET_CODE (seq) != SEQUENCE)
6995 seq = get_insns ();
6996 record_insns (seq, &epilogue);
6997
6998 seq = gen_sequence ();
6999 end_sequence();
7000
7001 insert_insn_on_edge (seq, e);
7002 insertted = 1;
7003 }
7004 #endif
7005 epilogue_done:
7006
7007 if (insertted)
7008 commit_edge_insertions ();
7009
7010 #ifdef HAVE_sibcall_epilogue
7011 /* Emit sibling epilogues before any sibling call sites. */
7012 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
7013 {
7014 basic_block bb = e->src;
7015 rtx insn = bb->end;
7016 rtx i;
7017
7018 if (GET_CODE (insn) != CALL_INSN
7019 || ! SIBLING_CALL_P (insn))
7020 continue;
7021
7022 start_sequence ();
7023 seq = gen_sibcall_epilogue ();
7024 end_sequence ();
7025
7026 i = PREV_INSN (insn);
7027 emit_insn_before (seq, insn);
7028
7029 /* Update the UID to basic block map. */
7030 for (i = NEXT_INSN (i); i != insn; i = NEXT_INSN (i))
7031 set_block_for_insn (i, bb);
7032
7033 /* Retain a map of the epilogue insns. Used in life analysis to
7034 avoid getting rid of sibcall epilogue insns. */
7035 record_insns (seq, &sibcall_epilogue);
7036 }
7037 #endif
7038 }
7039
7040 /* Reposition the prologue-end and epilogue-begin notes after instruction
7041 scheduling and delayed branch scheduling. */
7042
7043 void
7044 reposition_prologue_and_epilogue_notes (f)
7045 rtx f ATTRIBUTE_UNUSED;
7046 {
7047 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7048 int len;
7049
7050 if ((len = VARRAY_SIZE (prologue)) > 0)
7051 {
7052 register rtx insn, note = 0;
7053
7054 /* Scan from the beginning until we reach the last prologue insn.
7055 We apparently can't depend on basic_block_{head,end} after
7056 reorg has run. */
7057 for (insn = f; len && insn; insn = NEXT_INSN (insn))
7058 {
7059 if (GET_CODE (insn) == NOTE)
7060 {
7061 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7062 note = insn;
7063 }
7064 else if ((len -= contains (insn, prologue)) == 0)
7065 {
7066 rtx next;
7067 /* Find the prologue-end note if we haven't already, and
7068 move it to just after the last prologue insn. */
7069 if (note == 0)
7070 {
7071 for (note = insn; (note = NEXT_INSN (note));)
7072 if (GET_CODE (note) == NOTE
7073 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7074 break;
7075 }
7076
7077 next = NEXT_INSN (note);
7078
7079 /* Whether or not we can depend on BLOCK_HEAD,
7080 attempt to keep it up-to-date. */
7081 if (BLOCK_HEAD (0) == note)
7082 BLOCK_HEAD (0) = next;
7083
7084 remove_insn (note);
7085 add_insn_after (note, insn);
7086 }
7087 }
7088 }
7089
7090 if ((len = VARRAY_SIZE (epilogue)) > 0)
7091 {
7092 register rtx insn, note = 0;
7093
7094 /* Scan from the end until we reach the first epilogue insn.
7095 We apparently can't depend on basic_block_{head,end} after
7096 reorg has run. */
7097 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
7098 {
7099 if (GET_CODE (insn) == NOTE)
7100 {
7101 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7102 note = insn;
7103 }
7104 else if ((len -= contains (insn, epilogue)) == 0)
7105 {
7106 /* Find the epilogue-begin note if we haven't already, and
7107 move it to just before the first epilogue insn. */
7108 if (note == 0)
7109 {
7110 for (note = insn; (note = PREV_INSN (note));)
7111 if (GET_CODE (note) == NOTE
7112 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7113 break;
7114 }
7115
7116 /* Whether or not we can depend on BLOCK_HEAD,
7117 attempt to keep it up-to-date. */
7118 if (n_basic_blocks
7119 && BLOCK_HEAD (n_basic_blocks-1) == insn)
7120 BLOCK_HEAD (n_basic_blocks-1) = note;
7121
7122 remove_insn (note);
7123 add_insn_before (note, insn);
7124 }
7125 }
7126 }
7127 #endif /* HAVE_prologue or HAVE_epilogue */
7128 }
7129
7130 /* Mark T for GC. */
7131
7132 static void
7133 mark_temp_slot (t)
7134 struct temp_slot *t;
7135 {
7136 while (t)
7137 {
7138 ggc_mark_rtx (t->slot);
7139 ggc_mark_rtx (t->address);
7140 ggc_mark_tree (t->rtl_expr);
7141
7142 t = t->next;
7143 }
7144 }
7145
7146 /* Mark P for GC. */
7147
7148 static void
7149 mark_function_status (p)
7150 struct function *p;
7151 {
7152 int i;
7153 rtx *r;
7154
7155 if (p == 0)
7156 return;
7157
7158 ggc_mark_rtx (p->arg_offset_rtx);
7159
7160 if (p->x_parm_reg_stack_loc)
7161 for (i = p->x_max_parm_reg, r = p->x_parm_reg_stack_loc;
7162 i > 0; --i, ++r)
7163 ggc_mark_rtx (*r);
7164
7165 ggc_mark_rtx (p->return_rtx);
7166 ggc_mark_rtx (p->x_cleanup_label);
7167 ggc_mark_rtx (p->x_return_label);
7168 ggc_mark_rtx (p->x_save_expr_regs);
7169 ggc_mark_rtx (p->x_stack_slot_list);
7170 ggc_mark_rtx (p->x_parm_birth_insn);
7171 ggc_mark_rtx (p->x_tail_recursion_label);
7172 ggc_mark_rtx (p->x_tail_recursion_reentry);
7173 ggc_mark_rtx (p->internal_arg_pointer);
7174 ggc_mark_rtx (p->x_arg_pointer_save_area);
7175 ggc_mark_tree (p->x_rtl_expr_chain);
7176 ggc_mark_rtx (p->x_last_parm_insn);
7177 ggc_mark_tree (p->x_context_display);
7178 ggc_mark_tree (p->x_trampoline_list);
7179 ggc_mark_rtx (p->epilogue_delay_list);
7180
7181 mark_temp_slot (p->x_temp_slots);
7182
7183 {
7184 struct var_refs_queue *q = p->fixup_var_refs_queue;
7185 while (q)
7186 {
7187 ggc_mark_rtx (q->modified);
7188 q = q->next;
7189 }
7190 }
7191
7192 ggc_mark_rtx (p->x_nonlocal_goto_handler_slots);
7193 ggc_mark_rtx (p->x_nonlocal_goto_handler_labels);
7194 ggc_mark_rtx (p->x_nonlocal_goto_stack_level);
7195 ggc_mark_tree (p->x_nonlocal_labels);
7196 }
7197
7198 /* Mark the function chain ARG (which is really a struct function **)
7199 for GC. */
7200
7201 static void
7202 mark_function_chain (arg)
7203 void *arg;
7204 {
7205 struct function *f = *(struct function **) arg;
7206
7207 for (; f; f = f->next_global)
7208 {
7209 ggc_mark_tree (f->decl);
7210
7211 mark_function_status (f);
7212 mark_eh_status (f->eh);
7213 mark_stmt_status (f->stmt);
7214 mark_expr_status (f->expr);
7215 mark_emit_status (f->emit);
7216 mark_varasm_status (f->varasm);
7217
7218 if (mark_machine_status)
7219 (*mark_machine_status) (f);
7220 if (mark_lang_status)
7221 (*mark_lang_status) (f);
7222
7223 if (f->original_arg_vector)
7224 ggc_mark_rtvec ((rtvec) f->original_arg_vector);
7225 if (f->original_decl_initial)
7226 ggc_mark_tree (f->original_decl_initial);
7227 }
7228 }
7229
7230 /* Called once, at initialization, to initialize function.c. */
7231
7232 void
7233 init_function_once ()
7234 {
7235 ggc_add_root (&all_functions, 1, sizeof all_functions,
7236 mark_function_chain);
7237
7238 VARRAY_INT_INIT (prologue, 0, "prologue");
7239 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7240 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
7241 }
This page took 0.360725 seconds and 6 git commands to generate.