]> gcc.gnu.org Git - gcc.git/blob - gcc/function.c
calls.c (expand_call): Pass bit alignment to mark_reg_pointer.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
27
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
31
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register.
36
37 Call `put_var_into_stack' when you learn, belatedly, that a variable
38 previously given a pseudo-register must in fact go in the stack.
39 This function changes the DECL_RTL to be a stack slot instead of a reg
40 then scans all the RTL instructions so far generated to correct them. */
41
42 #include "config.h"
43 #include "system.h"
44 #include "rtl.h"
45 #include "tree.h"
46 #include "flags.h"
47 #include "except.h"
48 #include "function.h"
49 #include "insn-flags.h"
50 #include "expr.h"
51 #include "insn-codes.h"
52 #include "regs.h"
53 #include "hard-reg-set.h"
54 #include "insn-config.h"
55 #include "recog.h"
56 #include "output.h"
57 #include "basic-block.h"
58 #include "obstack.h"
59 #include "toplev.h"
60 #include "hash.h"
61 #include "ggc.h"
62 #include "tm_p.h"
63
64 #ifndef ACCUMULATE_OUTGOING_ARGS
65 #define ACCUMULATE_OUTGOING_ARGS 0
66 #endif
67
68 #ifndef TRAMPOLINE_ALIGNMENT
69 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
70 #endif
71
72 #ifndef LOCAL_ALIGNMENT
73 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
74 #endif
75
76 #if !defined (PREFERRED_STACK_BOUNDARY) && defined (STACK_BOUNDARY)
77 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
78 #endif
79
80 /* Some systems use __main in a way incompatible with its use in gcc, in these
81 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
82 give the same symbol without quotes for an alternative entry point. You
83 must define both, or neither. */
84 #ifndef NAME__MAIN
85 #define NAME__MAIN "__main"
86 #define SYMBOL__MAIN __main
87 #endif
88
89 /* Round a value to the lowest integer less than it that is a multiple of
90 the required alignment. Avoid using division in case the value is
91 negative. Assume the alignment is a power of two. */
92 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
93
94 /* Similar, but round to the next highest integer that meets the
95 alignment. */
96 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
97
98 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
99 during rtl generation. If they are different register numbers, this is
100 always true. It may also be true if
101 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
102 generation. See fix_lexical_addr for details. */
103
104 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
105 #define NEED_SEPARATE_AP
106 #endif
107
108 /* Nonzero if function being compiled doesn't contain any calls
109 (ignoring the prologue and epilogue). This is set prior to
110 local register allocation and is valid for the remaining
111 compiler passes. */
112 int current_function_is_leaf;
113
114 /* Nonzero if function being compiled doesn't contain any instructions
115 that can throw an exception. This is set prior to final. */
116
117 int current_function_nothrow;
118
119 /* Nonzero if function being compiled doesn't modify the stack pointer
120 (ignoring the prologue and epilogue). This is only valid after
121 life_analysis has run. */
122 int current_function_sp_is_unchanging;
123
124 /* Nonzero if the function being compiled is a leaf function which only
125 uses leaf registers. This is valid after reload (specifically after
126 sched2) and is useful only if the port defines LEAF_REGISTERS. */
127 int current_function_uses_only_leaf_regs;
128
129 /* Nonzero once virtual register instantiation has been done.
130 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
131 static int virtuals_instantiated;
132
133 /* These variables hold pointers to functions to
134 save and restore machine-specific data,
135 in push_function_context and pop_function_context. */
136 void (*init_machine_status) PARAMS ((struct function *));
137 void (*save_machine_status) PARAMS ((struct function *));
138 void (*restore_machine_status) PARAMS ((struct function *));
139 void (*mark_machine_status) PARAMS ((struct function *));
140 void (*free_machine_status) PARAMS ((struct function *));
141
142 /* Likewise, but for language-specific data. */
143 void (*init_lang_status) PARAMS ((struct function *));
144 void (*save_lang_status) PARAMS ((struct function *));
145 void (*restore_lang_status) PARAMS ((struct function *));
146 void (*mark_lang_status) PARAMS ((struct function *));
147 void (*free_lang_status) PARAMS ((struct function *));
148
149 /* The FUNCTION_DECL for an inline function currently being expanded. */
150 tree inline_function_decl;
151
152 /* The currently compiled function. */
153 struct function *cfun = 0;
154
155 /* Global list of all compiled functions. */
156 struct function *all_functions = 0;
157
158 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
159 static varray_type prologue;
160 static varray_type epilogue;
161
162 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
163 in this function. */
164 static varray_type sibcall_epilogue;
165 \f
166 /* In order to evaluate some expressions, such as function calls returning
167 structures in memory, we need to temporarily allocate stack locations.
168 We record each allocated temporary in the following structure.
169
170 Associated with each temporary slot is a nesting level. When we pop up
171 one level, all temporaries associated with the previous level are freed.
172 Normally, all temporaries are freed after the execution of the statement
173 in which they were created. However, if we are inside a ({...}) grouping,
174 the result may be in a temporary and hence must be preserved. If the
175 result could be in a temporary, we preserve it if we can determine which
176 one it is in. If we cannot determine which temporary may contain the
177 result, all temporaries are preserved. A temporary is preserved by
178 pretending it was allocated at the previous nesting level.
179
180 Automatic variables are also assigned temporary slots, at the nesting
181 level where they are defined. They are marked a "kept" so that
182 free_temp_slots will not free them. */
183
184 struct temp_slot
185 {
186 /* Points to next temporary slot. */
187 struct temp_slot *next;
188 /* The rtx to used to reference the slot. */
189 rtx slot;
190 /* The rtx used to represent the address if not the address of the
191 slot above. May be an EXPR_LIST if multiple addresses exist. */
192 rtx address;
193 /* The alignment (in bits) of the slot. */
194 int align;
195 /* The size, in units, of the slot. */
196 HOST_WIDE_INT size;
197 /* The alias set for the slot. If the alias set is zero, we don't
198 know anything about the alias set of the slot. We must only
199 reuse a slot if it is assigned an object of the same alias set.
200 Otherwise, the rest of the compiler may assume that the new use
201 of the slot cannot alias the old use of the slot, which is
202 false. If the slot has alias set zero, then we can't reuse the
203 slot at all, since we have no idea what alias set may have been
204 imposed on the memory. For example, if the stack slot is the
205 call frame for an inline functioned, we have no idea what alias
206 sets will be assigned to various pieces of the call frame. */
207 int alias_set;
208 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
209 tree rtl_expr;
210 /* Non-zero if this temporary is currently in use. */
211 char in_use;
212 /* Non-zero if this temporary has its address taken. */
213 char addr_taken;
214 /* Nesting level at which this slot is being used. */
215 int level;
216 /* Non-zero if this should survive a call to free_temp_slots. */
217 int keep;
218 /* The offset of the slot from the frame_pointer, including extra space
219 for alignment. This info is for combine_temp_slots. */
220 HOST_WIDE_INT base_offset;
221 /* The size of the slot, including extra space for alignment. This
222 info is for combine_temp_slots. */
223 HOST_WIDE_INT full_size;
224 };
225 \f
226 /* This structure is used to record MEMs or pseudos used to replace VAR, any
227 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
228 maintain this list in case two operands of an insn were required to match;
229 in that case we must ensure we use the same replacement. */
230
231 struct fixup_replacement
232 {
233 rtx old;
234 rtx new;
235 struct fixup_replacement *next;
236 };
237
238 struct insns_for_mem_entry {
239 /* The KEY in HE will be a MEM. */
240 struct hash_entry he;
241 /* These are the INSNS which reference the MEM. */
242 rtx insns;
243 };
244
245 /* Forward declarations. */
246
247 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
248 int, struct function *));
249 static rtx assign_stack_temp_for_type PARAMS ((enum machine_mode,
250 HOST_WIDE_INT, int, tree));
251 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
252 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
253 enum machine_mode, enum machine_mode,
254 int, unsigned int, int,
255 struct hash_table *));
256 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int,
257 struct hash_table *));
258 static struct fixup_replacement
259 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
260 static void fixup_var_refs_insns PARAMS ((rtx, enum machine_mode, int,
261 rtx, int, struct hash_table *));
262 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
263 struct fixup_replacement **));
264 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, int));
265 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, int));
266 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
267 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
268 static void instantiate_decls PARAMS ((tree, int));
269 static void instantiate_decls_1 PARAMS ((tree, int));
270 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
271 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
272 static void delete_handlers PARAMS ((void));
273 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
274 struct args_size *));
275 #ifndef ARGS_GROW_DOWNWARD
276 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
277 tree));
278 #endif
279 #ifdef ARGS_GROW_DOWNWARD
280 static tree round_down PARAMS ((tree, int));
281 #endif
282 static rtx round_trampoline_addr PARAMS ((rtx));
283 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
284 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
285 static tree blocks_nreverse PARAMS ((tree));
286 static int all_blocks PARAMS ((tree, tree *));
287 static tree *get_block_vector PARAMS ((tree, int *));
288 /* We always define `record_insns' even if its not used so that we
289 can always export `prologue_epilogue_contains'. */
290 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
291 static int contains PARAMS ((rtx, varray_type));
292 #ifdef HAVE_return
293 static void emit_return_into_block PARAMS ((basic_block));
294 #endif
295 static void put_addressof_into_stack PARAMS ((rtx, struct hash_table *));
296 static boolean purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
297 struct hash_table *));
298 static int is_addressof PARAMS ((rtx *, void *));
299 static struct hash_entry *insns_for_mem_newfunc PARAMS ((struct hash_entry *,
300 struct hash_table *,
301 hash_table_key));
302 static unsigned long insns_for_mem_hash PARAMS ((hash_table_key));
303 static boolean insns_for_mem_comp PARAMS ((hash_table_key, hash_table_key));
304 static int insns_for_mem_walk PARAMS ((rtx *, void *));
305 static void compute_insns_for_mem PARAMS ((rtx, rtx, struct hash_table *));
306 static void mark_temp_slot PARAMS ((struct temp_slot *));
307 static void mark_function_status PARAMS ((struct function *));
308 static void mark_function_chain PARAMS ((void *));
309 static void prepare_function_start PARAMS ((void));
310 static void do_clobber_return_reg PARAMS ((rtx, void *));
311 static void do_use_return_reg PARAMS ((rtx, void *));
312 \f
313 /* Pointer to chain of `struct function' for containing functions. */
314 struct function *outer_function_chain;
315
316 /* Given a function decl for a containing function,
317 return the `struct function' for it. */
318
319 struct function *
320 find_function_data (decl)
321 tree decl;
322 {
323 struct function *p;
324
325 for (p = outer_function_chain; p; p = p->next)
326 if (p->decl == decl)
327 return p;
328
329 abort ();
330 }
331
332 /* Save the current context for compilation of a nested function.
333 This is called from language-specific code. The caller should use
334 the save_lang_status callback to save any language-specific state,
335 since this function knows only about language-independent
336 variables. */
337
338 void
339 push_function_context_to (context)
340 tree context;
341 {
342 struct function *p, *context_data;
343
344 if (context)
345 {
346 context_data = (context == current_function_decl
347 ? cfun
348 : find_function_data (context));
349 context_data->contains_functions = 1;
350 }
351
352 if (cfun == 0)
353 init_dummy_function_start ();
354 p = cfun;
355
356 p->next = outer_function_chain;
357 outer_function_chain = p;
358 p->fixup_var_refs_queue = 0;
359
360 save_tree_status (p);
361 if (save_lang_status)
362 (*save_lang_status) (p);
363 if (save_machine_status)
364 (*save_machine_status) (p);
365
366 cfun = 0;
367 }
368
369 void
370 push_function_context ()
371 {
372 push_function_context_to (current_function_decl);
373 }
374
375 /* Restore the last saved context, at the end of a nested function.
376 This function is called from language-specific code. */
377
378 void
379 pop_function_context_from (context)
380 tree context ATTRIBUTE_UNUSED;
381 {
382 struct function *p = outer_function_chain;
383 struct var_refs_queue *queue;
384 struct var_refs_queue *next;
385
386 cfun = p;
387 outer_function_chain = p->next;
388
389 current_function_decl = p->decl;
390 reg_renumber = 0;
391
392 restore_tree_status (p);
393 restore_emit_status (p);
394
395 if (restore_machine_status)
396 (*restore_machine_status) (p);
397 if (restore_lang_status)
398 (*restore_lang_status) (p);
399
400 /* Finish doing put_var_into_stack for any of our variables
401 which became addressable during the nested function. */
402 for (queue = p->fixup_var_refs_queue; queue; queue = next)
403 {
404 next = queue->next;
405 fixup_var_refs (queue->modified, queue->promoted_mode,
406 queue->unsignedp, 0);
407 free (queue);
408 }
409 p->fixup_var_refs_queue = 0;
410
411 /* Reset variables that have known state during rtx generation. */
412 rtx_equal_function_value_matters = 1;
413 virtuals_instantiated = 0;
414 }
415
416 void
417 pop_function_context ()
418 {
419 pop_function_context_from (current_function_decl);
420 }
421
422 /* Clear out all parts of the state in F that can safely be discarded
423 after the function has been parsed, but not compiled, to let
424 garbage collection reclaim the memory. */
425
426 void
427 free_after_parsing (f)
428 struct function *f;
429 {
430 /* f->expr->forced_labels is used by code generation. */
431 /* f->emit->regno_reg_rtx is used by code generation. */
432 /* f->varasm is used by code generation. */
433 /* f->eh->eh_return_stub_label is used by code generation. */
434
435 if (free_lang_status)
436 (*free_lang_status) (f);
437 free_stmt_status (f);
438 }
439
440 /* Clear out all parts of the state in F that can safely be discarded
441 after the function has been compiled, to let garbage collection
442 reclaim the memory. */
443
444 void
445 free_after_compilation (f)
446 struct function *f;
447 {
448 free_eh_status (f);
449 free_expr_status (f);
450 free_emit_status (f);
451 free_varasm_status (f);
452
453 if (free_machine_status)
454 (*free_machine_status) (f);
455
456 if (f->x_parm_reg_stack_loc)
457 free (f->x_parm_reg_stack_loc);
458
459 f->arg_offset_rtx = NULL;
460 f->return_rtx = NULL;
461 f->internal_arg_pointer = NULL;
462 f->x_nonlocal_labels = NULL;
463 f->x_nonlocal_goto_handler_slots = NULL;
464 f->x_nonlocal_goto_handler_labels = NULL;
465 f->x_nonlocal_goto_stack_level = NULL;
466 f->x_cleanup_label = NULL;
467 f->x_return_label = NULL;
468 f->x_save_expr_regs = NULL;
469 f->x_stack_slot_list = NULL;
470 f->x_rtl_expr_chain = NULL;
471 f->x_tail_recursion_label = NULL;
472 f->x_tail_recursion_reentry = NULL;
473 f->x_arg_pointer_save_area = NULL;
474 f->x_context_display = NULL;
475 f->x_trampoline_list = NULL;
476 f->x_parm_birth_insn = NULL;
477 f->x_last_parm_insn = NULL;
478 f->x_parm_reg_stack_loc = NULL;
479 f->x_temp_slots = NULL;
480 f->fixup_var_refs_queue = NULL;
481 f->original_arg_vector = NULL;
482 f->original_decl_initial = NULL;
483 f->inl_last_parm_insn = NULL;
484 f->epilogue_delay_list = NULL;
485 }
486
487 \f
488 /* Allocate fixed slots in the stack frame of the current function. */
489
490 /* Return size needed for stack frame based on slots so far allocated in
491 function F.
492 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
493 the caller may have to do that. */
494
495 HOST_WIDE_INT
496 get_func_frame_size (f)
497 struct function *f;
498 {
499 #ifdef FRAME_GROWS_DOWNWARD
500 return -f->x_frame_offset;
501 #else
502 return f->x_frame_offset;
503 #endif
504 }
505
506 /* Return size needed for stack frame based on slots so far allocated.
507 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
508 the caller may have to do that. */
509 HOST_WIDE_INT
510 get_frame_size ()
511 {
512 return get_func_frame_size (cfun);
513 }
514
515 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
516 with machine mode MODE.
517
518 ALIGN controls the amount of alignment for the address of the slot:
519 0 means according to MODE,
520 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
521 positive specifies alignment boundary in bits.
522
523 We do not round to stack_boundary here.
524
525 FUNCTION specifies the function to allocate in. */
526
527 static rtx
528 assign_stack_local_1 (mode, size, align, function)
529 enum machine_mode mode;
530 HOST_WIDE_INT size;
531 int align;
532 struct function *function;
533 {
534 register rtx x, addr;
535 int bigend_correction = 0;
536 int alignment;
537
538 /* Allocate in the memory associated with the function in whose frame
539 we are assigning. */
540 if (function != cfun)
541 push_obstacks (function->function_obstack,
542 function->function_maybepermanent_obstack);
543
544 if (align == 0)
545 {
546 tree type;
547
548 alignment = GET_MODE_ALIGNMENT (mode);
549 if (mode == BLKmode)
550 alignment = BIGGEST_ALIGNMENT;
551
552 /* Allow the target to (possibly) increase the alignment of this
553 stack slot. */
554 type = type_for_mode (mode, 0);
555 if (type)
556 alignment = LOCAL_ALIGNMENT (type, alignment);
557
558 alignment /= BITS_PER_UNIT;
559 }
560 else if (align == -1)
561 {
562 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
563 size = CEIL_ROUND (size, alignment);
564 }
565 else
566 alignment = align / BITS_PER_UNIT;
567
568 #ifdef FRAME_GROWS_DOWNWARD
569 function->x_frame_offset -= size;
570 #endif
571
572 /* Ignore alignment we can't do with expected alignment of the boundary. */
573 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
574 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
575
576 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
577 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
578
579 /* Round frame offset to that alignment.
580 We must be careful here, since FRAME_OFFSET might be negative and
581 division with a negative dividend isn't as well defined as we might
582 like. So we instead assume that ALIGNMENT is a power of two and
583 use logical operations which are unambiguous. */
584 #ifdef FRAME_GROWS_DOWNWARD
585 function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset, alignment);
586 #else
587 function->x_frame_offset = CEIL_ROUND (function->x_frame_offset, alignment);
588 #endif
589
590 /* On a big-endian machine, if we are allocating more space than we will use,
591 use the least significant bytes of those that are allocated. */
592 if (BYTES_BIG_ENDIAN && mode != BLKmode)
593 bigend_correction = size - GET_MODE_SIZE (mode);
594
595 /* If we have already instantiated virtual registers, return the actual
596 address relative to the frame pointer. */
597 if (function == cfun && virtuals_instantiated)
598 addr = plus_constant (frame_pointer_rtx,
599 (frame_offset + bigend_correction
600 + STARTING_FRAME_OFFSET));
601 else
602 addr = plus_constant (virtual_stack_vars_rtx,
603 function->x_frame_offset + bigend_correction);
604
605 #ifndef FRAME_GROWS_DOWNWARD
606 function->x_frame_offset += size;
607 #endif
608
609 x = gen_rtx_MEM (mode, addr);
610
611 function->x_stack_slot_list
612 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
613
614 if (function != cfun)
615 pop_obstacks ();
616
617 return x;
618 }
619
620 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
621 current function. */
622 rtx
623 assign_stack_local (mode, size, align)
624 enum machine_mode mode;
625 HOST_WIDE_INT size;
626 int align;
627 {
628 return assign_stack_local_1 (mode, size, align, cfun);
629 }
630 \f
631 /* Allocate a temporary stack slot and record it for possible later
632 reuse.
633
634 MODE is the machine mode to be given to the returned rtx.
635
636 SIZE is the size in units of the space required. We do no rounding here
637 since assign_stack_local will do any required rounding.
638
639 KEEP is 1 if this slot is to be retained after a call to
640 free_temp_slots. Automatic variables for a block are allocated
641 with this flag. KEEP is 2 if we allocate a longer term temporary,
642 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
643 if we are to allocate something at an inner level to be treated as
644 a variable in the block (e.g., a SAVE_EXPR).
645
646 TYPE is the type that will be used for the stack slot. */
647
648 static rtx
649 assign_stack_temp_for_type (mode, size, keep, type)
650 enum machine_mode mode;
651 HOST_WIDE_INT size;
652 int keep;
653 tree type;
654 {
655 int align;
656 int alias_set;
657 struct temp_slot *p, *best_p = 0;
658
659 /* If SIZE is -1 it means that somebody tried to allocate a temporary
660 of a variable size. */
661 if (size == -1)
662 abort ();
663
664 /* If we know the alias set for the memory that will be used, use
665 it. If there's no TYPE, then we don't know anything about the
666 alias set for the memory. */
667 if (type)
668 alias_set = get_alias_set (type);
669 else
670 alias_set = 0;
671
672 align = GET_MODE_ALIGNMENT (mode);
673 if (mode == BLKmode)
674 align = BIGGEST_ALIGNMENT;
675
676 if (! type)
677 type = type_for_mode (mode, 0);
678 if (type)
679 align = LOCAL_ALIGNMENT (type, align);
680
681 /* Try to find an available, already-allocated temporary of the proper
682 mode which meets the size and alignment requirements. Choose the
683 smallest one with the closest alignment. */
684 for (p = temp_slots; p; p = p->next)
685 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
686 && ! p->in_use
687 && (!flag_strict_aliasing
688 || (alias_set && p->alias_set == alias_set))
689 && (best_p == 0 || best_p->size > p->size
690 || (best_p->size == p->size && best_p->align > p->align)))
691 {
692 if (p->align == align && p->size == size)
693 {
694 best_p = 0;
695 break;
696 }
697 best_p = p;
698 }
699
700 /* Make our best, if any, the one to use. */
701 if (best_p)
702 {
703 /* If there are enough aligned bytes left over, make them into a new
704 temp_slot so that the extra bytes don't get wasted. Do this only
705 for BLKmode slots, so that we can be sure of the alignment. */
706 if (GET_MODE (best_p->slot) == BLKmode
707 /* We can't split slots if -fstrict-aliasing because the
708 information about the alias set for the new slot will be
709 lost. */
710 && !flag_strict_aliasing)
711 {
712 int alignment = best_p->align / BITS_PER_UNIT;
713 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
714
715 if (best_p->size - rounded_size >= alignment)
716 {
717 p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
718 p->in_use = p->addr_taken = 0;
719 p->size = best_p->size - rounded_size;
720 p->base_offset = best_p->base_offset + rounded_size;
721 p->full_size = best_p->full_size - rounded_size;
722 p->slot = gen_rtx_MEM (BLKmode,
723 plus_constant (XEXP (best_p->slot, 0),
724 rounded_size));
725 p->align = best_p->align;
726 p->address = 0;
727 p->rtl_expr = 0;
728 p->next = temp_slots;
729 temp_slots = p;
730
731 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
732 stack_slot_list);
733
734 best_p->size = rounded_size;
735 best_p->full_size = rounded_size;
736 }
737 }
738
739 p = best_p;
740 }
741
742 /* If we still didn't find one, make a new temporary. */
743 if (p == 0)
744 {
745 HOST_WIDE_INT frame_offset_old = frame_offset;
746
747 p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
748
749 /* We are passing an explicit alignment request to assign_stack_local.
750 One side effect of that is assign_stack_local will not round SIZE
751 to ensure the frame offset remains suitably aligned.
752
753 So for requests which depended on the rounding of SIZE, we go ahead
754 and round it now. We also make sure ALIGNMENT is at least
755 BIGGEST_ALIGNMENT. */
756 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
757 abort();
758 p->slot = assign_stack_local (mode,
759 (mode == BLKmode
760 ? CEIL_ROUND (size, align / BITS_PER_UNIT)
761 : size),
762 align);
763
764 p->align = align;
765 p->alias_set = alias_set;
766
767 /* The following slot size computation is necessary because we don't
768 know the actual size of the temporary slot until assign_stack_local
769 has performed all the frame alignment and size rounding for the
770 requested temporary. Note that extra space added for alignment
771 can be either above or below this stack slot depending on which
772 way the frame grows. We include the extra space if and only if it
773 is above this slot. */
774 #ifdef FRAME_GROWS_DOWNWARD
775 p->size = frame_offset_old - frame_offset;
776 #else
777 p->size = size;
778 #endif
779
780 /* Now define the fields used by combine_temp_slots. */
781 #ifdef FRAME_GROWS_DOWNWARD
782 p->base_offset = frame_offset;
783 p->full_size = frame_offset_old - frame_offset;
784 #else
785 p->base_offset = frame_offset_old;
786 p->full_size = frame_offset - frame_offset_old;
787 #endif
788 p->address = 0;
789 p->next = temp_slots;
790 temp_slots = p;
791 }
792
793 p->in_use = 1;
794 p->addr_taken = 0;
795 p->rtl_expr = seq_rtl_expr;
796
797 if (keep == 2)
798 {
799 p->level = target_temp_slot_level;
800 p->keep = 0;
801 }
802 else if (keep == 3)
803 {
804 p->level = var_temp_slot_level;
805 p->keep = 0;
806 }
807 else
808 {
809 p->level = temp_slot_level;
810 p->keep = keep;
811 }
812
813 /* We may be reusing an old slot, so clear any MEM flags that may have been
814 set from before. */
815 RTX_UNCHANGING_P (p->slot) = 0;
816 MEM_IN_STRUCT_P (p->slot) = 0;
817 MEM_SCALAR_P (p->slot) = 0;
818 MEM_ALIAS_SET (p->slot) = 0;
819 return p->slot;
820 }
821
822 /* Allocate a temporary stack slot and record it for possible later
823 reuse. First three arguments are same as in preceding function. */
824
825 rtx
826 assign_stack_temp (mode, size, keep)
827 enum machine_mode mode;
828 HOST_WIDE_INT size;
829 int keep;
830 {
831 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
832 }
833 \f
834 /* Assign a temporary of given TYPE.
835 KEEP is as for assign_stack_temp.
836 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
837 it is 0 if a register is OK.
838 DONT_PROMOTE is 1 if we should not promote values in register
839 to wider modes. */
840
841 rtx
842 assign_temp (type, keep, memory_required, dont_promote)
843 tree type;
844 int keep;
845 int memory_required;
846 int dont_promote ATTRIBUTE_UNUSED;
847 {
848 enum machine_mode mode = TYPE_MODE (type);
849 #ifndef PROMOTE_FOR_CALL_ONLY
850 int unsignedp = TREE_UNSIGNED (type);
851 #endif
852
853 if (mode == BLKmode || memory_required)
854 {
855 HOST_WIDE_INT size = int_size_in_bytes (type);
856 rtx tmp;
857
858 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
859 problems with allocating the stack space. */
860 if (size == 0)
861 size = 1;
862
863 /* Unfortunately, we don't yet know how to allocate variable-sized
864 temporaries. However, sometimes we have a fixed upper limit on
865 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
866 instead. This is the case for Chill variable-sized strings. */
867 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
868 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
869 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (type)) == INTEGER_CST)
870 size = TREE_INT_CST_LOW (TYPE_ARRAY_MAX_SIZE (type));
871
872 tmp = assign_stack_temp_for_type (mode, size, keep, type);
873 MEM_SET_IN_STRUCT_P (tmp, AGGREGATE_TYPE_P (type));
874 return tmp;
875 }
876
877 #ifndef PROMOTE_FOR_CALL_ONLY
878 if (! dont_promote)
879 mode = promote_mode (type, mode, &unsignedp, 0);
880 #endif
881
882 return gen_reg_rtx (mode);
883 }
884 \f
885 /* Combine temporary stack slots which are adjacent on the stack.
886
887 This allows for better use of already allocated stack space. This is only
888 done for BLKmode slots because we can be sure that we won't have alignment
889 problems in this case. */
890
891 void
892 combine_temp_slots ()
893 {
894 struct temp_slot *p, *q;
895 struct temp_slot *prev_p, *prev_q;
896 int num_slots;
897
898 /* We can't combine slots, because the information about which slot
899 is in which alias set will be lost. */
900 if (flag_strict_aliasing)
901 return;
902
903 /* If there are a lot of temp slots, don't do anything unless
904 high levels of optimizaton. */
905 if (! flag_expensive_optimizations)
906 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
907 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
908 return;
909
910 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
911 {
912 int delete_p = 0;
913
914 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
915 for (q = p->next, prev_q = p; q; q = prev_q->next)
916 {
917 int delete_q = 0;
918 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
919 {
920 if (p->base_offset + p->full_size == q->base_offset)
921 {
922 /* Q comes after P; combine Q into P. */
923 p->size += q->size;
924 p->full_size += q->full_size;
925 delete_q = 1;
926 }
927 else if (q->base_offset + q->full_size == p->base_offset)
928 {
929 /* P comes after Q; combine P into Q. */
930 q->size += p->size;
931 q->full_size += p->full_size;
932 delete_p = 1;
933 break;
934 }
935 }
936 /* Either delete Q or advance past it. */
937 if (delete_q)
938 prev_q->next = q->next;
939 else
940 prev_q = q;
941 }
942 /* Either delete P or advance past it. */
943 if (delete_p)
944 {
945 if (prev_p)
946 prev_p->next = p->next;
947 else
948 temp_slots = p->next;
949 }
950 else
951 prev_p = p;
952 }
953 }
954 \f
955 /* Find the temp slot corresponding to the object at address X. */
956
957 static struct temp_slot *
958 find_temp_slot_from_address (x)
959 rtx x;
960 {
961 struct temp_slot *p;
962 rtx next;
963
964 for (p = temp_slots; p; p = p->next)
965 {
966 if (! p->in_use)
967 continue;
968
969 else if (XEXP (p->slot, 0) == x
970 || p->address == x
971 || (GET_CODE (x) == PLUS
972 && XEXP (x, 0) == virtual_stack_vars_rtx
973 && GET_CODE (XEXP (x, 1)) == CONST_INT
974 && INTVAL (XEXP (x, 1)) >= p->base_offset
975 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
976 return p;
977
978 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
979 for (next = p->address; next; next = XEXP (next, 1))
980 if (XEXP (next, 0) == x)
981 return p;
982 }
983
984 /* If we have a sum involving a register, see if it points to a temp
985 slot. */
986 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
987 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
988 return p;
989 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
990 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
991 return p;
992
993 return 0;
994 }
995
996 /* Indicate that NEW is an alternate way of referring to the temp slot
997 that previously was known by OLD. */
998
999 void
1000 update_temp_slot_address (old, new)
1001 rtx old, new;
1002 {
1003 struct temp_slot *p;
1004
1005 if (rtx_equal_p (old, new))
1006 return;
1007
1008 p = find_temp_slot_from_address (old);
1009
1010 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1011 is a register, see if one operand of the PLUS is a temporary
1012 location. If so, NEW points into it. Otherwise, if both OLD and
1013 NEW are a PLUS and if there is a register in common between them.
1014 If so, try a recursive call on those values. */
1015 if (p == 0)
1016 {
1017 if (GET_CODE (old) != PLUS)
1018 return;
1019
1020 if (GET_CODE (new) == REG)
1021 {
1022 update_temp_slot_address (XEXP (old, 0), new);
1023 update_temp_slot_address (XEXP (old, 1), new);
1024 return;
1025 }
1026 else if (GET_CODE (new) != PLUS)
1027 return;
1028
1029 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1030 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1031 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1032 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1033 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1034 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1035 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1036 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1037
1038 return;
1039 }
1040
1041 /* Otherwise add an alias for the temp's address. */
1042 else if (p->address == 0)
1043 p->address = new;
1044 else
1045 {
1046 if (GET_CODE (p->address) != EXPR_LIST)
1047 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1048
1049 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1050 }
1051 }
1052
1053 /* If X could be a reference to a temporary slot, mark the fact that its
1054 address was taken. */
1055
1056 void
1057 mark_temp_addr_taken (x)
1058 rtx x;
1059 {
1060 struct temp_slot *p;
1061
1062 if (x == 0)
1063 return;
1064
1065 /* If X is not in memory or is at a constant address, it cannot be in
1066 a temporary slot. */
1067 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1068 return;
1069
1070 p = find_temp_slot_from_address (XEXP (x, 0));
1071 if (p != 0)
1072 p->addr_taken = 1;
1073 }
1074
1075 /* If X could be a reference to a temporary slot, mark that slot as
1076 belonging to the to one level higher than the current level. If X
1077 matched one of our slots, just mark that one. Otherwise, we can't
1078 easily predict which it is, so upgrade all of them. Kept slots
1079 need not be touched.
1080
1081 This is called when an ({...}) construct occurs and a statement
1082 returns a value in memory. */
1083
1084 void
1085 preserve_temp_slots (x)
1086 rtx x;
1087 {
1088 struct temp_slot *p = 0;
1089
1090 /* If there is no result, we still might have some objects whose address
1091 were taken, so we need to make sure they stay around. */
1092 if (x == 0)
1093 {
1094 for (p = temp_slots; p; p = p->next)
1095 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1096 p->level--;
1097
1098 return;
1099 }
1100
1101 /* If X is a register that is being used as a pointer, see if we have
1102 a temporary slot we know it points to. To be consistent with
1103 the code below, we really should preserve all non-kept slots
1104 if we can't find a match, but that seems to be much too costly. */
1105 if (GET_CODE (x) == REG && REGNO_POINTER_FLAG (REGNO (x)))
1106 p = find_temp_slot_from_address (x);
1107
1108 /* If X is not in memory or is at a constant address, it cannot be in
1109 a temporary slot, but it can contain something whose address was
1110 taken. */
1111 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1112 {
1113 for (p = temp_slots; p; p = p->next)
1114 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1115 p->level--;
1116
1117 return;
1118 }
1119
1120 /* First see if we can find a match. */
1121 if (p == 0)
1122 p = find_temp_slot_from_address (XEXP (x, 0));
1123
1124 if (p != 0)
1125 {
1126 /* Move everything at our level whose address was taken to our new
1127 level in case we used its address. */
1128 struct temp_slot *q;
1129
1130 if (p->level == temp_slot_level)
1131 {
1132 for (q = temp_slots; q; q = q->next)
1133 if (q != p && q->addr_taken && q->level == p->level)
1134 q->level--;
1135
1136 p->level--;
1137 p->addr_taken = 0;
1138 }
1139 return;
1140 }
1141
1142 /* Otherwise, preserve all non-kept slots at this level. */
1143 for (p = temp_slots; p; p = p->next)
1144 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1145 p->level--;
1146 }
1147
1148 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1149 with that RTL_EXPR, promote it into a temporary slot at the present
1150 level so it will not be freed when we free slots made in the
1151 RTL_EXPR. */
1152
1153 void
1154 preserve_rtl_expr_result (x)
1155 rtx x;
1156 {
1157 struct temp_slot *p;
1158
1159 /* If X is not in memory or is at a constant address, it cannot be in
1160 a temporary slot. */
1161 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1162 return;
1163
1164 /* If we can find a match, move it to our level unless it is already at
1165 an upper level. */
1166 p = find_temp_slot_from_address (XEXP (x, 0));
1167 if (p != 0)
1168 {
1169 p->level = MIN (p->level, temp_slot_level);
1170 p->rtl_expr = 0;
1171 }
1172
1173 return;
1174 }
1175
1176 /* Free all temporaries used so far. This is normally called at the end
1177 of generating code for a statement. Don't free any temporaries
1178 currently in use for an RTL_EXPR that hasn't yet been emitted.
1179 We could eventually do better than this since it can be reused while
1180 generating the same RTL_EXPR, but this is complex and probably not
1181 worthwhile. */
1182
1183 void
1184 free_temp_slots ()
1185 {
1186 struct temp_slot *p;
1187
1188 for (p = temp_slots; p; p = p->next)
1189 if (p->in_use && p->level == temp_slot_level && ! p->keep
1190 && p->rtl_expr == 0)
1191 p->in_use = 0;
1192
1193 combine_temp_slots ();
1194 }
1195
1196 /* Free all temporary slots used in T, an RTL_EXPR node. */
1197
1198 void
1199 free_temps_for_rtl_expr (t)
1200 tree t;
1201 {
1202 struct temp_slot *p;
1203
1204 for (p = temp_slots; p; p = p->next)
1205 if (p->rtl_expr == t)
1206 {
1207 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1208 needs to be preserved. This can happen if a temporary in
1209 the RTL_EXPR was addressed; preserve_temp_slots will move
1210 the temporary into a higher level. */
1211 if (temp_slot_level <= p->level)
1212 p->in_use = 0;
1213 else
1214 p->rtl_expr = NULL_TREE;
1215 }
1216
1217 combine_temp_slots ();
1218 }
1219
1220 /* Mark all temporaries ever allocated in this function as not suitable
1221 for reuse until the current level is exited. */
1222
1223 void
1224 mark_all_temps_used ()
1225 {
1226 struct temp_slot *p;
1227
1228 for (p = temp_slots; p; p = p->next)
1229 {
1230 p->in_use = p->keep = 1;
1231 p->level = MIN (p->level, temp_slot_level);
1232 }
1233 }
1234
1235 /* Push deeper into the nesting level for stack temporaries. */
1236
1237 void
1238 push_temp_slots ()
1239 {
1240 temp_slot_level++;
1241 }
1242
1243 /* Likewise, but save the new level as the place to allocate variables
1244 for blocks. */
1245
1246 #if 0
1247 void
1248 push_temp_slots_for_block ()
1249 {
1250 push_temp_slots ();
1251
1252 var_temp_slot_level = temp_slot_level;
1253 }
1254
1255 /* Likewise, but save the new level as the place to allocate temporaries
1256 for TARGET_EXPRs. */
1257
1258 void
1259 push_temp_slots_for_target ()
1260 {
1261 push_temp_slots ();
1262
1263 target_temp_slot_level = temp_slot_level;
1264 }
1265
1266 /* Set and get the value of target_temp_slot_level. The only
1267 permitted use of these functions is to save and restore this value. */
1268
1269 int
1270 get_target_temp_slot_level ()
1271 {
1272 return target_temp_slot_level;
1273 }
1274
1275 void
1276 set_target_temp_slot_level (level)
1277 int level;
1278 {
1279 target_temp_slot_level = level;
1280 }
1281 #endif
1282
1283 /* Pop a temporary nesting level. All slots in use in the current level
1284 are freed. */
1285
1286 void
1287 pop_temp_slots ()
1288 {
1289 struct temp_slot *p;
1290
1291 for (p = temp_slots; p; p = p->next)
1292 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1293 p->in_use = 0;
1294
1295 combine_temp_slots ();
1296
1297 temp_slot_level--;
1298 }
1299
1300 /* Initialize temporary slots. */
1301
1302 void
1303 init_temp_slots ()
1304 {
1305 /* We have not allocated any temporaries yet. */
1306 temp_slots = 0;
1307 temp_slot_level = 0;
1308 var_temp_slot_level = 0;
1309 target_temp_slot_level = 0;
1310 }
1311 \f
1312 /* Retroactively move an auto variable from a register to a stack slot.
1313 This is done when an address-reference to the variable is seen. */
1314
1315 void
1316 put_var_into_stack (decl)
1317 tree decl;
1318 {
1319 register rtx reg;
1320 enum machine_mode promoted_mode, decl_mode;
1321 struct function *function = 0;
1322 tree context;
1323 int can_use_addressof;
1324
1325 context = decl_function_context (decl);
1326
1327 /* Get the current rtl used for this object and its original mode. */
1328 reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl);
1329
1330 /* No need to do anything if decl has no rtx yet
1331 since in that case caller is setting TREE_ADDRESSABLE
1332 and a stack slot will be assigned when the rtl is made. */
1333 if (reg == 0)
1334 return;
1335
1336 /* Get the declared mode for this object. */
1337 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1338 : DECL_MODE (decl));
1339 /* Get the mode it's actually stored in. */
1340 promoted_mode = GET_MODE (reg);
1341
1342 /* If this variable comes from an outer function,
1343 find that function's saved context. */
1344 if (context != current_function_decl && context != inline_function_decl)
1345 for (function = outer_function_chain; function; function = function->next)
1346 if (function->decl == context)
1347 break;
1348
1349 /* If this is a variable-size object with a pseudo to address it,
1350 put that pseudo into the stack, if the var is nonlocal. */
1351 if (DECL_NONLOCAL (decl)
1352 && GET_CODE (reg) == MEM
1353 && GET_CODE (XEXP (reg, 0)) == REG
1354 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1355 {
1356 reg = XEXP (reg, 0);
1357 decl_mode = promoted_mode = GET_MODE (reg);
1358 }
1359
1360 can_use_addressof
1361 = (function == 0
1362 && optimize > 0
1363 /* FIXME make it work for promoted modes too */
1364 && decl_mode == promoted_mode
1365 #ifdef NON_SAVING_SETJMP
1366 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1367 #endif
1368 );
1369
1370 /* If we can't use ADDRESSOF, make sure we see through one we already
1371 generated. */
1372 if (! can_use_addressof && GET_CODE (reg) == MEM
1373 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1374 reg = XEXP (XEXP (reg, 0), 0);
1375
1376 /* Now we should have a value that resides in one or more pseudo regs. */
1377
1378 if (GET_CODE (reg) == REG)
1379 {
1380 /* If this variable lives in the current function and we don't need
1381 to put things in the stack for the sake of setjmp, try to keep it
1382 in a register until we know we actually need the address. */
1383 if (can_use_addressof)
1384 gen_mem_addressof (reg, decl);
1385 else
1386 put_reg_into_stack (function, reg, TREE_TYPE (decl),
1387 promoted_mode, decl_mode,
1388 TREE_SIDE_EFFECTS (decl), 0,
1389 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1390 0);
1391 }
1392 else if (GET_CODE (reg) == CONCAT)
1393 {
1394 /* A CONCAT contains two pseudos; put them both in the stack.
1395 We do it so they end up consecutive. */
1396 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1397 tree part_type = type_for_mode (part_mode, 0);
1398 #ifdef FRAME_GROWS_DOWNWARD
1399 /* Since part 0 should have a lower address, do it second. */
1400 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1401 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1402 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1403 0);
1404 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1405 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1406 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1407 0);
1408 #else
1409 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1410 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1411 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1412 0);
1413 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1414 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1415 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1416 0);
1417 #endif
1418
1419 /* Change the CONCAT into a combined MEM for both parts. */
1420 PUT_CODE (reg, MEM);
1421 MEM_VOLATILE_P (reg) = MEM_VOLATILE_P (XEXP (reg, 0));
1422 MEM_ALIAS_SET (reg) = get_alias_set (decl);
1423 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (TREE_TYPE (decl)));
1424
1425 /* The two parts are in memory order already.
1426 Use the lower parts address as ours. */
1427 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1428 /* Prevent sharing of rtl that might lose. */
1429 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1430 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1431 }
1432 else
1433 return;
1434
1435 if (current_function_check_memory_usage)
1436 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
1437 XEXP (reg, 0), Pmode,
1438 GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
1439 TYPE_MODE (sizetype),
1440 GEN_INT (MEMORY_USE_RW),
1441 TYPE_MODE (integer_type_node));
1442 }
1443
1444 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1445 into the stack frame of FUNCTION (0 means the current function).
1446 DECL_MODE is the machine mode of the user-level data type.
1447 PROMOTED_MODE is the machine mode of the register.
1448 VOLATILE_P is nonzero if this is for a "volatile" decl.
1449 USED_P is nonzero if this reg might have already been used in an insn. */
1450
1451 static void
1452 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1453 original_regno, used_p, ht)
1454 struct function *function;
1455 rtx reg;
1456 tree type;
1457 enum machine_mode promoted_mode, decl_mode;
1458 int volatile_p;
1459 unsigned int original_regno;
1460 int used_p;
1461 struct hash_table *ht;
1462 {
1463 struct function *func = function ? function : cfun;
1464 rtx new = 0;
1465 unsigned int regno = original_regno;
1466
1467 if (regno == 0)
1468 regno = REGNO (reg);
1469
1470 if (regno < func->x_max_parm_reg)
1471 new = func->x_parm_reg_stack_loc[regno];
1472
1473 if (new == 0)
1474 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1475
1476 PUT_CODE (reg, MEM);
1477 PUT_MODE (reg, decl_mode);
1478 XEXP (reg, 0) = XEXP (new, 0);
1479 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1480 MEM_VOLATILE_P (reg) = volatile_p;
1481
1482 /* If this is a memory ref that contains aggregate components,
1483 mark it as such for cse and loop optimize. If we are reusing a
1484 previously generated stack slot, then we need to copy the bit in
1485 case it was set for other reasons. For instance, it is set for
1486 __builtin_va_alist. */
1487 MEM_SET_IN_STRUCT_P (reg,
1488 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1489 MEM_ALIAS_SET (reg) = get_alias_set (type);
1490
1491 /* Now make sure that all refs to the variable, previously made
1492 when it was a register, are fixed up to be valid again. */
1493
1494 if (used_p && function != 0)
1495 {
1496 struct var_refs_queue *temp;
1497
1498 temp
1499 = (struct var_refs_queue *) xmalloc (sizeof (struct var_refs_queue));
1500 temp->modified = reg;
1501 temp->promoted_mode = promoted_mode;
1502 temp->unsignedp = TREE_UNSIGNED (type);
1503 temp->next = function->fixup_var_refs_queue;
1504 function->fixup_var_refs_queue = temp;
1505 }
1506 else if (used_p)
1507 /* Variable is local; fix it up now. */
1508 fixup_var_refs (reg, promoted_mode, TREE_UNSIGNED (type), ht);
1509 }
1510 \f
1511 static void
1512 fixup_var_refs (var, promoted_mode, unsignedp, ht)
1513 rtx var;
1514 enum machine_mode promoted_mode;
1515 int unsignedp;
1516 struct hash_table *ht;
1517 {
1518 tree pending;
1519 rtx first_insn = get_insns ();
1520 struct sequence_stack *stack = seq_stack;
1521 tree rtl_exps = rtl_expr_chain;
1522 rtx insn;
1523
1524 /* Must scan all insns for stack-refs that exceed the limit. */
1525 fixup_var_refs_insns (var, promoted_mode, unsignedp, first_insn,
1526 stack == 0, ht);
1527 /* If there's a hash table, it must record all uses of VAR. */
1528 if (ht)
1529 return;
1530
1531 /* Scan all pending sequences too. */
1532 for (; stack; stack = stack->next)
1533 {
1534 push_to_sequence (stack->first);
1535 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1536 stack->first, stack->next != 0, 0);
1537 /* Update remembered end of sequence
1538 in case we added an insn at the end. */
1539 stack->last = get_last_insn ();
1540 end_sequence ();
1541 }
1542
1543 /* Scan all waiting RTL_EXPRs too. */
1544 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1545 {
1546 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1547 if (seq != const0_rtx && seq != 0)
1548 {
1549 push_to_sequence (seq);
1550 fixup_var_refs_insns (var, promoted_mode, unsignedp, seq, 0,
1551 0);
1552 end_sequence ();
1553 }
1554 }
1555
1556 /* Scan the catch clauses for exception handling too. */
1557 push_to_full_sequence (catch_clauses, catch_clauses_last);
1558 fixup_var_refs_insns (var, promoted_mode, unsignedp, catch_clauses,
1559 0, 0);
1560 end_full_sequence (&catch_clauses, &catch_clauses_last);
1561
1562 /* Scan sequences saved in CALL_PLACEHOLDERS too. */
1563 for (insn = first_insn; insn; insn = NEXT_INSN (insn))
1564 {
1565 if (GET_CODE (insn) == CALL_INSN
1566 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1567 {
1568 int i;
1569
1570 /* Look at the Normal call, sibling call and tail recursion
1571 sequences attached to the CALL_PLACEHOLDER. */
1572 for (i = 0; i < 3; i++)
1573 {
1574 rtx seq = XEXP (PATTERN (insn), i);
1575 if (seq)
1576 {
1577 push_to_sequence (seq);
1578 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1579 seq, 0, 0);
1580 XEXP (PATTERN (insn), i) = get_insns ();
1581 end_sequence ();
1582 }
1583 }
1584 }
1585 }
1586 }
1587 \f
1588 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1589 some part of an insn. Return a struct fixup_replacement whose OLD
1590 value is equal to X. Allocate a new structure if no such entry exists. */
1591
1592 static struct fixup_replacement *
1593 find_fixup_replacement (replacements, x)
1594 struct fixup_replacement **replacements;
1595 rtx x;
1596 {
1597 struct fixup_replacement *p;
1598
1599 /* See if we have already replaced this. */
1600 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1601 ;
1602
1603 if (p == 0)
1604 {
1605 p = (struct fixup_replacement *) oballoc (sizeof (struct fixup_replacement));
1606 p->old = x;
1607 p->new = 0;
1608 p->next = *replacements;
1609 *replacements = p;
1610 }
1611
1612 return p;
1613 }
1614
1615 /* Scan the insn-chain starting with INSN for refs to VAR
1616 and fix them up. TOPLEVEL is nonzero if this chain is the
1617 main chain of insns for the current function. */
1618
1619 static void
1620 fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel, ht)
1621 rtx var;
1622 enum machine_mode promoted_mode;
1623 int unsignedp;
1624 rtx insn;
1625 int toplevel;
1626 struct hash_table *ht;
1627 {
1628 rtx call_dest = 0;
1629 rtx insn_list = NULL_RTX;
1630
1631 /* If we already know which INSNs reference VAR there's no need
1632 to walk the entire instruction chain. */
1633 if (ht)
1634 {
1635 insn_list = ((struct insns_for_mem_entry *)
1636 hash_lookup (ht, var, /*create=*/0, /*copy=*/0))->insns;
1637 insn = insn_list ? XEXP (insn_list, 0) : NULL_RTX;
1638 insn_list = XEXP (insn_list, 1);
1639 }
1640
1641 while (insn)
1642 {
1643 rtx next = NEXT_INSN (insn);
1644 rtx set, prev, prev_set;
1645 rtx note;
1646
1647 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1648 {
1649 /* Remember the notes in case we delete the insn. */
1650 note = REG_NOTES (insn);
1651
1652 /* If this is a CLOBBER of VAR, delete it.
1653
1654 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1655 and REG_RETVAL notes too. */
1656 if (GET_CODE (PATTERN (insn)) == CLOBBER
1657 && (XEXP (PATTERN (insn), 0) == var
1658 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1659 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1660 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1661 {
1662 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1663 /* The REG_LIBCALL note will go away since we are going to
1664 turn INSN into a NOTE, so just delete the
1665 corresponding REG_RETVAL note. */
1666 remove_note (XEXP (note, 0),
1667 find_reg_note (XEXP (note, 0), REG_RETVAL,
1668 NULL_RTX));
1669
1670 /* In unoptimized compilation, we shouldn't call delete_insn
1671 except in jump.c doing warnings. */
1672 PUT_CODE (insn, NOTE);
1673 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1674 NOTE_SOURCE_FILE (insn) = 0;
1675 }
1676
1677 /* The insn to load VAR from a home in the arglist
1678 is now a no-op. When we see it, just delete it.
1679 Similarly if this is storing VAR from a register from which
1680 it was loaded in the previous insn. This will occur
1681 when an ADDRESSOF was made for an arglist slot. */
1682 else if (toplevel
1683 && (set = single_set (insn)) != 0
1684 && SET_DEST (set) == var
1685 /* If this represents the result of an insn group,
1686 don't delete the insn. */
1687 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1688 && (rtx_equal_p (SET_SRC (set), var)
1689 || (GET_CODE (SET_SRC (set)) == REG
1690 && (prev = prev_nonnote_insn (insn)) != 0
1691 && (prev_set = single_set (prev)) != 0
1692 && SET_DEST (prev_set) == SET_SRC (set)
1693 && rtx_equal_p (SET_SRC (prev_set), var))))
1694 {
1695 /* In unoptimized compilation, we shouldn't call delete_insn
1696 except in jump.c doing warnings. */
1697 PUT_CODE (insn, NOTE);
1698 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1699 NOTE_SOURCE_FILE (insn) = 0;
1700 if (insn == last_parm_insn)
1701 last_parm_insn = PREV_INSN (next);
1702 }
1703 else
1704 {
1705 struct fixup_replacement *replacements = 0;
1706 rtx next_insn = NEXT_INSN (insn);
1707
1708 if (SMALL_REGISTER_CLASSES)
1709 {
1710 /* If the insn that copies the results of a CALL_INSN
1711 into a pseudo now references VAR, we have to use an
1712 intermediate pseudo since we want the life of the
1713 return value register to be only a single insn.
1714
1715 If we don't use an intermediate pseudo, such things as
1716 address computations to make the address of VAR valid
1717 if it is not can be placed between the CALL_INSN and INSN.
1718
1719 To make sure this doesn't happen, we record the destination
1720 of the CALL_INSN and see if the next insn uses both that
1721 and VAR. */
1722
1723 if (call_dest != 0 && GET_CODE (insn) == INSN
1724 && reg_mentioned_p (var, PATTERN (insn))
1725 && reg_mentioned_p (call_dest, PATTERN (insn)))
1726 {
1727 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1728
1729 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1730
1731 PATTERN (insn) = replace_rtx (PATTERN (insn),
1732 call_dest, temp);
1733 }
1734
1735 if (GET_CODE (insn) == CALL_INSN
1736 && GET_CODE (PATTERN (insn)) == SET)
1737 call_dest = SET_DEST (PATTERN (insn));
1738 else if (GET_CODE (insn) == CALL_INSN
1739 && GET_CODE (PATTERN (insn)) == PARALLEL
1740 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1741 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1742 else
1743 call_dest = 0;
1744 }
1745
1746 /* See if we have to do anything to INSN now that VAR is in
1747 memory. If it needs to be loaded into a pseudo, use a single
1748 pseudo for the entire insn in case there is a MATCH_DUP
1749 between two operands. We pass a pointer to the head of
1750 a list of struct fixup_replacements. If fixup_var_refs_1
1751 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1752 it will record them in this list.
1753
1754 If it allocated a pseudo for any replacement, we copy into
1755 it here. */
1756
1757 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1758 &replacements);
1759
1760 /* If this is last_parm_insn, and any instructions were output
1761 after it to fix it up, then we must set last_parm_insn to
1762 the last such instruction emitted. */
1763 if (insn == last_parm_insn)
1764 last_parm_insn = PREV_INSN (next_insn);
1765
1766 while (replacements)
1767 {
1768 if (GET_CODE (replacements->new) == REG)
1769 {
1770 rtx insert_before;
1771 rtx seq;
1772
1773 /* OLD might be a (subreg (mem)). */
1774 if (GET_CODE (replacements->old) == SUBREG)
1775 replacements->old
1776 = fixup_memory_subreg (replacements->old, insn, 0);
1777 else
1778 replacements->old
1779 = fixup_stack_1 (replacements->old, insn);
1780
1781 insert_before = insn;
1782
1783 /* If we are changing the mode, do a conversion.
1784 This might be wasteful, but combine.c will
1785 eliminate much of the waste. */
1786
1787 if (GET_MODE (replacements->new)
1788 != GET_MODE (replacements->old))
1789 {
1790 start_sequence ();
1791 convert_move (replacements->new,
1792 replacements->old, unsignedp);
1793 seq = gen_sequence ();
1794 end_sequence ();
1795 }
1796 else
1797 seq = gen_move_insn (replacements->new,
1798 replacements->old);
1799
1800 emit_insn_before (seq, insert_before);
1801 }
1802
1803 replacements = replacements->next;
1804 }
1805 }
1806
1807 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1808 But don't touch other insns referred to by reg-notes;
1809 we will get them elsewhere. */
1810 while (note)
1811 {
1812 if (GET_CODE (note) != INSN_LIST)
1813 XEXP (note, 0)
1814 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1815 note = XEXP (note, 1);
1816 }
1817 }
1818
1819 if (!ht)
1820 insn = next;
1821 else if (insn_list)
1822 {
1823 insn = XEXP (insn_list, 0);
1824 insn_list = XEXP (insn_list, 1);
1825 }
1826 else
1827 insn = NULL_RTX;
1828 }
1829 }
1830 \f
1831 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1832 See if the rtx expression at *LOC in INSN needs to be changed.
1833
1834 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1835 contain a list of original rtx's and replacements. If we find that we need
1836 to modify this insn by replacing a memory reference with a pseudo or by
1837 making a new MEM to implement a SUBREG, we consult that list to see if
1838 we have already chosen a replacement. If none has already been allocated,
1839 we allocate it and update the list. fixup_var_refs_insns will copy VAR
1840 or the SUBREG, as appropriate, to the pseudo. */
1841
1842 static void
1843 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1844 register rtx var;
1845 enum machine_mode promoted_mode;
1846 register rtx *loc;
1847 rtx insn;
1848 struct fixup_replacement **replacements;
1849 {
1850 register int i;
1851 register rtx x = *loc;
1852 RTX_CODE code = GET_CODE (x);
1853 register const char *fmt;
1854 register rtx tem, tem1;
1855 struct fixup_replacement *replacement;
1856
1857 switch (code)
1858 {
1859 case ADDRESSOF:
1860 if (XEXP (x, 0) == var)
1861 {
1862 /* Prevent sharing of rtl that might lose. */
1863 rtx sub = copy_rtx (XEXP (var, 0));
1864
1865 if (! validate_change (insn, loc, sub, 0))
1866 {
1867 rtx y = gen_reg_rtx (GET_MODE (sub));
1868 rtx seq, new_insn;
1869
1870 /* We should be able to replace with a register or all is lost.
1871 Note that we can't use validate_change to verify this, since
1872 we're not caring for replacing all dups simultaneously. */
1873 if (! validate_replace_rtx (*loc, y, insn))
1874 abort ();
1875
1876 /* Careful! First try to recognize a direct move of the
1877 value, mimicking how things are done in gen_reload wrt
1878 PLUS. Consider what happens when insn is a conditional
1879 move instruction and addsi3 clobbers flags. */
1880
1881 start_sequence ();
1882 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1883 seq = gen_sequence ();
1884 end_sequence ();
1885
1886 if (recog_memoized (new_insn) < 0)
1887 {
1888 /* That failed. Fall back on force_operand and hope. */
1889
1890 start_sequence ();
1891 force_operand (sub, y);
1892 seq = gen_sequence ();
1893 end_sequence ();
1894 }
1895
1896 #ifdef HAVE_cc0
1897 /* Don't separate setter from user. */
1898 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1899 insn = PREV_INSN (insn);
1900 #endif
1901
1902 emit_insn_before (seq, insn);
1903 }
1904 }
1905 return;
1906
1907 case MEM:
1908 if (var == x)
1909 {
1910 /* If we already have a replacement, use it. Otherwise,
1911 try to fix up this address in case it is invalid. */
1912
1913 replacement = find_fixup_replacement (replacements, var);
1914 if (replacement->new)
1915 {
1916 *loc = replacement->new;
1917 return;
1918 }
1919
1920 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1921
1922 /* Unless we are forcing memory to register or we changed the mode,
1923 we can leave things the way they are if the insn is valid. */
1924
1925 INSN_CODE (insn) = -1;
1926 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1927 && recog_memoized (insn) >= 0)
1928 return;
1929
1930 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1931 return;
1932 }
1933
1934 /* If X contains VAR, we need to unshare it here so that we update
1935 each occurrence separately. But all identical MEMs in one insn
1936 must be replaced with the same rtx because of the possibility of
1937 MATCH_DUPs. */
1938
1939 if (reg_mentioned_p (var, x))
1940 {
1941 replacement = find_fixup_replacement (replacements, x);
1942 if (replacement->new == 0)
1943 replacement->new = copy_most_rtx (x, var);
1944
1945 *loc = x = replacement->new;
1946 }
1947 break;
1948
1949 case REG:
1950 case CC0:
1951 case PC:
1952 case CONST_INT:
1953 case CONST:
1954 case SYMBOL_REF:
1955 case LABEL_REF:
1956 case CONST_DOUBLE:
1957 return;
1958
1959 case SIGN_EXTRACT:
1960 case ZERO_EXTRACT:
1961 /* Note that in some cases those types of expressions are altered
1962 by optimize_bit_field, and do not survive to get here. */
1963 if (XEXP (x, 0) == var
1964 || (GET_CODE (XEXP (x, 0)) == SUBREG
1965 && SUBREG_REG (XEXP (x, 0)) == var))
1966 {
1967 /* Get TEM as a valid MEM in the mode presently in the insn.
1968
1969 We don't worry about the possibility of MATCH_DUP here; it
1970 is highly unlikely and would be tricky to handle. */
1971
1972 tem = XEXP (x, 0);
1973 if (GET_CODE (tem) == SUBREG)
1974 {
1975 if (GET_MODE_BITSIZE (GET_MODE (tem))
1976 > GET_MODE_BITSIZE (GET_MODE (var)))
1977 {
1978 replacement = find_fixup_replacement (replacements, var);
1979 if (replacement->new == 0)
1980 replacement->new = gen_reg_rtx (GET_MODE (var));
1981 SUBREG_REG (tem) = replacement->new;
1982 }
1983 else
1984 tem = fixup_memory_subreg (tem, insn, 0);
1985 }
1986 else
1987 tem = fixup_stack_1 (tem, insn);
1988
1989 /* Unless we want to load from memory, get TEM into the proper mode
1990 for an extract from memory. This can only be done if the
1991 extract is at a constant position and length. */
1992
1993 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
1994 && GET_CODE (XEXP (x, 2)) == CONST_INT
1995 && ! mode_dependent_address_p (XEXP (tem, 0))
1996 && ! MEM_VOLATILE_P (tem))
1997 {
1998 enum machine_mode wanted_mode = VOIDmode;
1999 enum machine_mode is_mode = GET_MODE (tem);
2000 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2001
2002 #ifdef HAVE_extzv
2003 if (GET_CODE (x) == ZERO_EXTRACT)
2004 {
2005 wanted_mode
2006 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
2007 if (wanted_mode == VOIDmode)
2008 wanted_mode = word_mode;
2009 }
2010 #endif
2011 #ifdef HAVE_extv
2012 if (GET_CODE (x) == SIGN_EXTRACT)
2013 {
2014 wanted_mode = insn_data[(int) CODE_FOR_extv].operand[1].mode;
2015 if (wanted_mode == VOIDmode)
2016 wanted_mode = word_mode;
2017 }
2018 #endif
2019 /* If we have a narrower mode, we can do something. */
2020 if (wanted_mode != VOIDmode
2021 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2022 {
2023 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2024 rtx old_pos = XEXP (x, 2);
2025 rtx newmem;
2026
2027 /* If the bytes and bits are counted differently, we
2028 must adjust the offset. */
2029 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2030 offset = (GET_MODE_SIZE (is_mode)
2031 - GET_MODE_SIZE (wanted_mode) - offset);
2032
2033 pos %= GET_MODE_BITSIZE (wanted_mode);
2034
2035 newmem = gen_rtx_MEM (wanted_mode,
2036 plus_constant (XEXP (tem, 0), offset));
2037 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
2038 MEM_COPY_ATTRIBUTES (newmem, tem);
2039
2040 /* Make the change and see if the insn remains valid. */
2041 INSN_CODE (insn) = -1;
2042 XEXP (x, 0) = newmem;
2043 XEXP (x, 2) = GEN_INT (pos);
2044
2045 if (recog_memoized (insn) >= 0)
2046 return;
2047
2048 /* Otherwise, restore old position. XEXP (x, 0) will be
2049 restored later. */
2050 XEXP (x, 2) = old_pos;
2051 }
2052 }
2053
2054 /* If we get here, the bitfield extract insn can't accept a memory
2055 reference. Copy the input into a register. */
2056
2057 tem1 = gen_reg_rtx (GET_MODE (tem));
2058 emit_insn_before (gen_move_insn (tem1, tem), insn);
2059 XEXP (x, 0) = tem1;
2060 return;
2061 }
2062 break;
2063
2064 case SUBREG:
2065 if (SUBREG_REG (x) == var)
2066 {
2067 /* If this is a special SUBREG made because VAR was promoted
2068 from a wider mode, replace it with VAR and call ourself
2069 recursively, this time saying that the object previously
2070 had its current mode (by virtue of the SUBREG). */
2071
2072 if (SUBREG_PROMOTED_VAR_P (x))
2073 {
2074 *loc = var;
2075 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
2076 return;
2077 }
2078
2079 /* If this SUBREG makes VAR wider, it has become a paradoxical
2080 SUBREG with VAR in memory, but these aren't allowed at this
2081 stage of the compilation. So load VAR into a pseudo and take
2082 a SUBREG of that pseudo. */
2083 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2084 {
2085 replacement = find_fixup_replacement (replacements, var);
2086 if (replacement->new == 0)
2087 replacement->new = gen_reg_rtx (GET_MODE (var));
2088 SUBREG_REG (x) = replacement->new;
2089 return;
2090 }
2091
2092 /* See if we have already found a replacement for this SUBREG.
2093 If so, use it. Otherwise, make a MEM and see if the insn
2094 is recognized. If not, or if we should force MEM into a register,
2095 make a pseudo for this SUBREG. */
2096 replacement = find_fixup_replacement (replacements, x);
2097 if (replacement->new)
2098 {
2099 *loc = replacement->new;
2100 return;
2101 }
2102
2103 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
2104
2105 INSN_CODE (insn) = -1;
2106 if (! flag_force_mem && recog_memoized (insn) >= 0)
2107 return;
2108
2109 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2110 return;
2111 }
2112 break;
2113
2114 case SET:
2115 /* First do special simplification of bit-field references. */
2116 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2117 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2118 optimize_bit_field (x, insn, 0);
2119 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2120 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2121 optimize_bit_field (x, insn, NULL_PTR);
2122
2123 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2124 into a register and then store it back out. */
2125 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2126 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2127 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2128 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2129 > GET_MODE_SIZE (GET_MODE (var))))
2130 {
2131 replacement = find_fixup_replacement (replacements, var);
2132 if (replacement->new == 0)
2133 replacement->new = gen_reg_rtx (GET_MODE (var));
2134
2135 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2136 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2137 }
2138
2139 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2140 insn into a pseudo and store the low part of the pseudo into VAR. */
2141 if (GET_CODE (SET_DEST (x)) == SUBREG
2142 && SUBREG_REG (SET_DEST (x)) == var
2143 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2144 > GET_MODE_SIZE (GET_MODE (var))))
2145 {
2146 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2147 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2148 tem)),
2149 insn);
2150 break;
2151 }
2152
2153 {
2154 rtx dest = SET_DEST (x);
2155 rtx src = SET_SRC (x);
2156 #ifdef HAVE_insv
2157 rtx outerdest = dest;
2158 #endif
2159
2160 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2161 || GET_CODE (dest) == SIGN_EXTRACT
2162 || GET_CODE (dest) == ZERO_EXTRACT)
2163 dest = XEXP (dest, 0);
2164
2165 if (GET_CODE (src) == SUBREG)
2166 src = XEXP (src, 0);
2167
2168 /* If VAR does not appear at the top level of the SET
2169 just scan the lower levels of the tree. */
2170
2171 if (src != var && dest != var)
2172 break;
2173
2174 /* We will need to rerecognize this insn. */
2175 INSN_CODE (insn) = -1;
2176
2177 #ifdef HAVE_insv
2178 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
2179 {
2180 /* Since this case will return, ensure we fixup all the
2181 operands here. */
2182 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2183 insn, replacements);
2184 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2185 insn, replacements);
2186 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2187 insn, replacements);
2188
2189 tem = XEXP (outerdest, 0);
2190
2191 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2192 that may appear inside a ZERO_EXTRACT.
2193 This was legitimate when the MEM was a REG. */
2194 if (GET_CODE (tem) == SUBREG
2195 && SUBREG_REG (tem) == var)
2196 tem = fixup_memory_subreg (tem, insn, 0);
2197 else
2198 tem = fixup_stack_1 (tem, insn);
2199
2200 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2201 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2202 && ! mode_dependent_address_p (XEXP (tem, 0))
2203 && ! MEM_VOLATILE_P (tem))
2204 {
2205 enum machine_mode wanted_mode;
2206 enum machine_mode is_mode = GET_MODE (tem);
2207 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2208
2209 wanted_mode = insn_data[(int) CODE_FOR_insv].operand[0].mode;
2210 if (wanted_mode == VOIDmode)
2211 wanted_mode = word_mode;
2212
2213 /* If we have a narrower mode, we can do something. */
2214 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2215 {
2216 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2217 rtx old_pos = XEXP (outerdest, 2);
2218 rtx newmem;
2219
2220 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2221 offset = (GET_MODE_SIZE (is_mode)
2222 - GET_MODE_SIZE (wanted_mode) - offset);
2223
2224 pos %= GET_MODE_BITSIZE (wanted_mode);
2225
2226 newmem = gen_rtx_MEM (wanted_mode,
2227 plus_constant (XEXP (tem, 0),
2228 offset));
2229 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
2230 MEM_COPY_ATTRIBUTES (newmem, tem);
2231
2232 /* Make the change and see if the insn remains valid. */
2233 INSN_CODE (insn) = -1;
2234 XEXP (outerdest, 0) = newmem;
2235 XEXP (outerdest, 2) = GEN_INT (pos);
2236
2237 if (recog_memoized (insn) >= 0)
2238 return;
2239
2240 /* Otherwise, restore old position. XEXP (x, 0) will be
2241 restored later. */
2242 XEXP (outerdest, 2) = old_pos;
2243 }
2244 }
2245
2246 /* If we get here, the bit-field store doesn't allow memory
2247 or isn't located at a constant position. Load the value into
2248 a register, do the store, and put it back into memory. */
2249
2250 tem1 = gen_reg_rtx (GET_MODE (tem));
2251 emit_insn_before (gen_move_insn (tem1, tem), insn);
2252 emit_insn_after (gen_move_insn (tem, tem1), insn);
2253 XEXP (outerdest, 0) = tem1;
2254 return;
2255 }
2256 #endif
2257
2258 /* STRICT_LOW_PART is a no-op on memory references
2259 and it can cause combinations to be unrecognizable,
2260 so eliminate it. */
2261
2262 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2263 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2264
2265 /* A valid insn to copy VAR into or out of a register
2266 must be left alone, to avoid an infinite loop here.
2267 If the reference to VAR is by a subreg, fix that up,
2268 since SUBREG is not valid for a memref.
2269 Also fix up the address of the stack slot.
2270
2271 Note that we must not try to recognize the insn until
2272 after we know that we have valid addresses and no
2273 (subreg (mem ...) ...) constructs, since these interfere
2274 with determining the validity of the insn. */
2275
2276 if ((SET_SRC (x) == var
2277 || (GET_CODE (SET_SRC (x)) == SUBREG
2278 && SUBREG_REG (SET_SRC (x)) == var))
2279 && (GET_CODE (SET_DEST (x)) == REG
2280 || (GET_CODE (SET_DEST (x)) == SUBREG
2281 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2282 && GET_MODE (var) == promoted_mode
2283 && x == single_set (insn))
2284 {
2285 rtx pat;
2286
2287 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2288 if (replacement->new)
2289 SET_SRC (x) = replacement->new;
2290 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2291 SET_SRC (x) = replacement->new
2292 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2293 else
2294 SET_SRC (x) = replacement->new
2295 = fixup_stack_1 (SET_SRC (x), insn);
2296
2297 if (recog_memoized (insn) >= 0)
2298 return;
2299
2300 /* INSN is not valid, but we know that we want to
2301 copy SET_SRC (x) to SET_DEST (x) in some way. So
2302 we generate the move and see whether it requires more
2303 than one insn. If it does, we emit those insns and
2304 delete INSN. Otherwise, we an just replace the pattern
2305 of INSN; we have already verified above that INSN has
2306 no other function that to do X. */
2307
2308 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2309 if (GET_CODE (pat) == SEQUENCE)
2310 {
2311 emit_insn_after (pat, insn);
2312 PUT_CODE (insn, NOTE);
2313 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2314 NOTE_SOURCE_FILE (insn) = 0;
2315 }
2316 else
2317 PATTERN (insn) = pat;
2318
2319 return;
2320 }
2321
2322 if ((SET_DEST (x) == var
2323 || (GET_CODE (SET_DEST (x)) == SUBREG
2324 && SUBREG_REG (SET_DEST (x)) == var))
2325 && (GET_CODE (SET_SRC (x)) == REG
2326 || (GET_CODE (SET_SRC (x)) == SUBREG
2327 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2328 && GET_MODE (var) == promoted_mode
2329 && x == single_set (insn))
2330 {
2331 rtx pat;
2332
2333 if (GET_CODE (SET_DEST (x)) == SUBREG)
2334 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2335 else
2336 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2337
2338 if (recog_memoized (insn) >= 0)
2339 return;
2340
2341 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2342 if (GET_CODE (pat) == SEQUENCE)
2343 {
2344 emit_insn_after (pat, insn);
2345 PUT_CODE (insn, NOTE);
2346 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2347 NOTE_SOURCE_FILE (insn) = 0;
2348 }
2349 else
2350 PATTERN (insn) = pat;
2351
2352 return;
2353 }
2354
2355 /* Otherwise, storing into VAR must be handled specially
2356 by storing into a temporary and copying that into VAR
2357 with a new insn after this one. Note that this case
2358 will be used when storing into a promoted scalar since
2359 the insn will now have different modes on the input
2360 and output and hence will be invalid (except for the case
2361 of setting it to a constant, which does not need any
2362 change if it is valid). We generate extra code in that case,
2363 but combine.c will eliminate it. */
2364
2365 if (dest == var)
2366 {
2367 rtx temp;
2368 rtx fixeddest = SET_DEST (x);
2369
2370 /* STRICT_LOW_PART can be discarded, around a MEM. */
2371 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2372 fixeddest = XEXP (fixeddest, 0);
2373 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2374 if (GET_CODE (fixeddest) == SUBREG)
2375 {
2376 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2377 promoted_mode = GET_MODE (fixeddest);
2378 }
2379 else
2380 fixeddest = fixup_stack_1 (fixeddest, insn);
2381
2382 temp = gen_reg_rtx (promoted_mode);
2383
2384 emit_insn_after (gen_move_insn (fixeddest,
2385 gen_lowpart (GET_MODE (fixeddest),
2386 temp)),
2387 insn);
2388
2389 SET_DEST (x) = temp;
2390 }
2391 }
2392
2393 default:
2394 break;
2395 }
2396
2397 /* Nothing special about this RTX; fix its operands. */
2398
2399 fmt = GET_RTX_FORMAT (code);
2400 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2401 {
2402 if (fmt[i] == 'e')
2403 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2404 else if (fmt[i] == 'E')
2405 {
2406 register int j;
2407 for (j = 0; j < XVECLEN (x, i); j++)
2408 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2409 insn, replacements);
2410 }
2411 }
2412 }
2413 \f
2414 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2415 return an rtx (MEM:m1 newaddr) which is equivalent.
2416 If any insns must be emitted to compute NEWADDR, put them before INSN.
2417
2418 UNCRITICAL nonzero means accept paradoxical subregs.
2419 This is used for subregs found inside REG_NOTES. */
2420
2421 static rtx
2422 fixup_memory_subreg (x, insn, uncritical)
2423 rtx x;
2424 rtx insn;
2425 int uncritical;
2426 {
2427 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2428 rtx addr = XEXP (SUBREG_REG (x), 0);
2429 enum machine_mode mode = GET_MODE (x);
2430 rtx result;
2431
2432 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2433 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2434 && ! uncritical)
2435 abort ();
2436
2437 if (BYTES_BIG_ENDIAN)
2438 offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2439 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2440 addr = plus_constant (addr, offset);
2441 if (!flag_force_addr && memory_address_p (mode, addr))
2442 /* Shortcut if no insns need be emitted. */
2443 return change_address (SUBREG_REG (x), mode, addr);
2444 start_sequence ();
2445 result = change_address (SUBREG_REG (x), mode, addr);
2446 emit_insn_before (gen_sequence (), insn);
2447 end_sequence ();
2448 return result;
2449 }
2450
2451 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2452 Replace subexpressions of X in place.
2453 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2454 Otherwise return X, with its contents possibly altered.
2455
2456 If any insns must be emitted to compute NEWADDR, put them before INSN.
2457
2458 UNCRITICAL is as in fixup_memory_subreg. */
2459
2460 static rtx
2461 walk_fixup_memory_subreg (x, insn, uncritical)
2462 register rtx x;
2463 rtx insn;
2464 int uncritical;
2465 {
2466 register enum rtx_code code;
2467 register const char *fmt;
2468 register int i;
2469
2470 if (x == 0)
2471 return 0;
2472
2473 code = GET_CODE (x);
2474
2475 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2476 return fixup_memory_subreg (x, insn, uncritical);
2477
2478 /* Nothing special about this RTX; fix its operands. */
2479
2480 fmt = GET_RTX_FORMAT (code);
2481 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2482 {
2483 if (fmt[i] == 'e')
2484 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2485 else if (fmt[i] == 'E')
2486 {
2487 register int j;
2488 for (j = 0; j < XVECLEN (x, i); j++)
2489 XVECEXP (x, i, j)
2490 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2491 }
2492 }
2493 return x;
2494 }
2495 \f
2496 /* For each memory ref within X, if it refers to a stack slot
2497 with an out of range displacement, put the address in a temp register
2498 (emitting new insns before INSN to load these registers)
2499 and alter the memory ref to use that register.
2500 Replace each such MEM rtx with a copy, to avoid clobberage. */
2501
2502 static rtx
2503 fixup_stack_1 (x, insn)
2504 rtx x;
2505 rtx insn;
2506 {
2507 register int i;
2508 register RTX_CODE code = GET_CODE (x);
2509 register const char *fmt;
2510
2511 if (code == MEM)
2512 {
2513 register rtx ad = XEXP (x, 0);
2514 /* If we have address of a stack slot but it's not valid
2515 (displacement is too large), compute the sum in a register. */
2516 if (GET_CODE (ad) == PLUS
2517 && GET_CODE (XEXP (ad, 0)) == REG
2518 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2519 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2520 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2521 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2522 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2523 #endif
2524 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2525 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2526 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2527 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2528 {
2529 rtx temp, seq;
2530 if (memory_address_p (GET_MODE (x), ad))
2531 return x;
2532
2533 start_sequence ();
2534 temp = copy_to_reg (ad);
2535 seq = gen_sequence ();
2536 end_sequence ();
2537 emit_insn_before (seq, insn);
2538 return change_address (x, VOIDmode, temp);
2539 }
2540 return x;
2541 }
2542
2543 fmt = GET_RTX_FORMAT (code);
2544 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2545 {
2546 if (fmt[i] == 'e')
2547 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2548 else if (fmt[i] == 'E')
2549 {
2550 register int j;
2551 for (j = 0; j < XVECLEN (x, i); j++)
2552 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2553 }
2554 }
2555 return x;
2556 }
2557 \f
2558 /* Optimization: a bit-field instruction whose field
2559 happens to be a byte or halfword in memory
2560 can be changed to a move instruction.
2561
2562 We call here when INSN is an insn to examine or store into a bit-field.
2563 BODY is the SET-rtx to be altered.
2564
2565 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2566 (Currently this is called only from function.c, and EQUIV_MEM
2567 is always 0.) */
2568
2569 static void
2570 optimize_bit_field (body, insn, equiv_mem)
2571 rtx body;
2572 rtx insn;
2573 rtx *equiv_mem;
2574 {
2575 register rtx bitfield;
2576 int destflag;
2577 rtx seq = 0;
2578 enum machine_mode mode;
2579
2580 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2581 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2582 bitfield = SET_DEST (body), destflag = 1;
2583 else
2584 bitfield = SET_SRC (body), destflag = 0;
2585
2586 /* First check that the field being stored has constant size and position
2587 and is in fact a byte or halfword suitably aligned. */
2588
2589 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2590 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2591 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2592 != BLKmode)
2593 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2594 {
2595 register rtx memref = 0;
2596
2597 /* Now check that the containing word is memory, not a register,
2598 and that it is safe to change the machine mode. */
2599
2600 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2601 memref = XEXP (bitfield, 0);
2602 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2603 && equiv_mem != 0)
2604 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2605 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2606 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2607 memref = SUBREG_REG (XEXP (bitfield, 0));
2608 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2609 && equiv_mem != 0
2610 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2611 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2612
2613 if (memref
2614 && ! mode_dependent_address_p (XEXP (memref, 0))
2615 && ! MEM_VOLATILE_P (memref))
2616 {
2617 /* Now adjust the address, first for any subreg'ing
2618 that we are now getting rid of,
2619 and then for which byte of the word is wanted. */
2620
2621 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2622 rtx insns;
2623
2624 /* Adjust OFFSET to count bits from low-address byte. */
2625 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2626 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2627 - offset - INTVAL (XEXP (bitfield, 1)));
2628
2629 /* Adjust OFFSET to count bytes from low-address byte. */
2630 offset /= BITS_PER_UNIT;
2631 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2632 {
2633 offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
2634 if (BYTES_BIG_ENDIAN)
2635 offset -= (MIN (UNITS_PER_WORD,
2636 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2637 - MIN (UNITS_PER_WORD,
2638 GET_MODE_SIZE (GET_MODE (memref))));
2639 }
2640
2641 start_sequence ();
2642 memref = change_address (memref, mode,
2643 plus_constant (XEXP (memref, 0), offset));
2644 insns = get_insns ();
2645 end_sequence ();
2646 emit_insns_before (insns, insn);
2647
2648 /* Store this memory reference where
2649 we found the bit field reference. */
2650
2651 if (destflag)
2652 {
2653 validate_change (insn, &SET_DEST (body), memref, 1);
2654 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2655 {
2656 rtx src = SET_SRC (body);
2657 while (GET_CODE (src) == SUBREG
2658 && SUBREG_WORD (src) == 0)
2659 src = SUBREG_REG (src);
2660 if (GET_MODE (src) != GET_MODE (memref))
2661 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2662 validate_change (insn, &SET_SRC (body), src, 1);
2663 }
2664 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2665 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2666 /* This shouldn't happen because anything that didn't have
2667 one of these modes should have got converted explicitly
2668 and then referenced through a subreg.
2669 This is so because the original bit-field was
2670 handled by agg_mode and so its tree structure had
2671 the same mode that memref now has. */
2672 abort ();
2673 }
2674 else
2675 {
2676 rtx dest = SET_DEST (body);
2677
2678 while (GET_CODE (dest) == SUBREG
2679 && SUBREG_WORD (dest) == 0
2680 && (GET_MODE_CLASS (GET_MODE (dest))
2681 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2682 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2683 <= UNITS_PER_WORD))
2684 dest = SUBREG_REG (dest);
2685
2686 validate_change (insn, &SET_DEST (body), dest, 1);
2687
2688 if (GET_MODE (dest) == GET_MODE (memref))
2689 validate_change (insn, &SET_SRC (body), memref, 1);
2690 else
2691 {
2692 /* Convert the mem ref to the destination mode. */
2693 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2694
2695 start_sequence ();
2696 convert_move (newreg, memref,
2697 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2698 seq = get_insns ();
2699 end_sequence ();
2700
2701 validate_change (insn, &SET_SRC (body), newreg, 1);
2702 }
2703 }
2704
2705 /* See if we can convert this extraction or insertion into
2706 a simple move insn. We might not be able to do so if this
2707 was, for example, part of a PARALLEL.
2708
2709 If we succeed, write out any needed conversions. If we fail,
2710 it is hard to guess why we failed, so don't do anything
2711 special; just let the optimization be suppressed. */
2712
2713 if (apply_change_group () && seq)
2714 emit_insns_before (seq, insn);
2715 }
2716 }
2717 }
2718 \f
2719 /* These routines are responsible for converting virtual register references
2720 to the actual hard register references once RTL generation is complete.
2721
2722 The following four variables are used for communication between the
2723 routines. They contain the offsets of the virtual registers from their
2724 respective hard registers. */
2725
2726 static int in_arg_offset;
2727 static int var_offset;
2728 static int dynamic_offset;
2729 static int out_arg_offset;
2730 static int cfa_offset;
2731
2732 /* In most machines, the stack pointer register is equivalent to the bottom
2733 of the stack. */
2734
2735 #ifndef STACK_POINTER_OFFSET
2736 #define STACK_POINTER_OFFSET 0
2737 #endif
2738
2739 /* If not defined, pick an appropriate default for the offset of dynamically
2740 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2741 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2742
2743 #ifndef STACK_DYNAMIC_OFFSET
2744
2745 /* The bottom of the stack points to the actual arguments. If
2746 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2747 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2748 stack space for register parameters is not pushed by the caller, but
2749 rather part of the fixed stack areas and hence not included in
2750 `current_function_outgoing_args_size'. Nevertheless, we must allow
2751 for it when allocating stack dynamic objects. */
2752
2753 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2754 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2755 ((ACCUMULATE_OUTGOING_ARGS \
2756 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2757 + (STACK_POINTER_OFFSET)) \
2758
2759 #else
2760 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2761 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2762 + (STACK_POINTER_OFFSET))
2763 #endif
2764 #endif
2765
2766 /* On most machines, the CFA coincides with the first incoming parm. */
2767
2768 #ifndef ARG_POINTER_CFA_OFFSET
2769 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2770 #endif
2771
2772
2773 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2774 its address taken. DECL is the decl for the object stored in the
2775 register, for later use if we do need to force REG into the stack.
2776 REG is overwritten by the MEM like in put_reg_into_stack. */
2777
2778 rtx
2779 gen_mem_addressof (reg, decl)
2780 rtx reg;
2781 tree decl;
2782 {
2783 tree type = TREE_TYPE (decl);
2784 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2785 REGNO (reg), decl);
2786
2787 /* If the original REG was a user-variable, then so is the REG whose
2788 address is being taken. Likewise for unchanging. */
2789 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2790 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2791
2792 PUT_CODE (reg, MEM);
2793 PUT_MODE (reg, DECL_MODE (decl));
2794 XEXP (reg, 0) = r;
2795 MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
2796 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type));
2797 MEM_ALIAS_SET (reg) = get_alias_set (decl);
2798
2799 if (TREE_USED (decl) || DECL_INITIAL (decl) != 0)
2800 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), 0);
2801
2802 return reg;
2803 }
2804
2805 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2806
2807 void
2808 flush_addressof (decl)
2809 tree decl;
2810 {
2811 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2812 && DECL_RTL (decl) != 0
2813 && GET_CODE (DECL_RTL (decl)) == MEM
2814 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2815 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2816 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2817 }
2818
2819 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2820
2821 static void
2822 put_addressof_into_stack (r, ht)
2823 rtx r;
2824 struct hash_table *ht;
2825 {
2826 tree decl = ADDRESSOF_DECL (r);
2827 rtx reg = XEXP (r, 0);
2828
2829 if (GET_CODE (reg) != REG)
2830 abort ();
2831
2832 put_reg_into_stack (0, reg, TREE_TYPE (decl), GET_MODE (reg),
2833 DECL_MODE (decl), TREE_SIDE_EFFECTS (decl),
2834 ADDRESSOF_REGNO (r),
2835 TREE_USED (decl) || DECL_INITIAL (decl) != 0, ht);
2836 }
2837
2838 /* List of replacements made below in purge_addressof_1 when creating
2839 bitfield insertions. */
2840 static rtx purge_bitfield_addressof_replacements;
2841
2842 /* List of replacements made below in purge_addressof_1 for patterns
2843 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2844 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2845 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2846 enough in complex cases, e.g. when some field values can be
2847 extracted by usage MEM with narrower mode. */
2848 static rtx purge_addressof_replacements;
2849
2850 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2851 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2852 the stack. If the function returns FALSE then the replacement could not
2853 be made. */
2854
2855 static boolean
2856 purge_addressof_1 (loc, insn, force, store, ht)
2857 rtx *loc;
2858 rtx insn;
2859 int force, store;
2860 struct hash_table *ht;
2861 {
2862 rtx x;
2863 RTX_CODE code;
2864 int i, j;
2865 const char *fmt;
2866 boolean result = true;
2867
2868 /* Re-start here to avoid recursion in common cases. */
2869 restart:
2870
2871 x = *loc;
2872 if (x == 0)
2873 return true;
2874
2875 code = GET_CODE (x);
2876
2877 /* If we don't return in any of the cases below, we will recurse inside
2878 the RTX, which will normally result in any ADDRESSOF being forced into
2879 memory. */
2880 if (code == SET)
2881 {
2882 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
2883 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
2884 return result;
2885 }
2886
2887 else if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM)
2888 {
2889 /* We must create a copy of the rtx because it was created by
2890 overwriting a REG rtx which is always shared. */
2891 rtx sub = copy_rtx (XEXP (XEXP (x, 0), 0));
2892 rtx insns;
2893
2894 if (validate_change (insn, loc, sub, 0)
2895 || validate_replace_rtx (x, sub, insn))
2896 return true;
2897
2898 start_sequence ();
2899 sub = force_operand (sub, NULL_RTX);
2900 if (! validate_change (insn, loc, sub, 0)
2901 && ! validate_replace_rtx (x, sub, insn))
2902 abort ();
2903
2904 insns = gen_sequence ();
2905 end_sequence ();
2906 emit_insn_before (insns, insn);
2907 return true;
2908 }
2909
2910 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
2911 {
2912 rtx sub = XEXP (XEXP (x, 0), 0);
2913 rtx sub2;
2914
2915 if (GET_CODE (sub) == MEM)
2916 {
2917 sub2 = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0)));
2918 MEM_COPY_ATTRIBUTES (sub2, sub);
2919 RTX_UNCHANGING_P (sub2) = RTX_UNCHANGING_P (sub);
2920 sub = sub2;
2921 }
2922 else if (GET_CODE (sub) == REG
2923 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2924 ;
2925 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
2926 {
2927 int size_x, size_sub;
2928
2929 if (!insn)
2930 {
2931 /* When processing REG_NOTES look at the list of
2932 replacements done on the insn to find the register that X
2933 was replaced by. */
2934 rtx tem;
2935
2936 for (tem = purge_bitfield_addressof_replacements;
2937 tem != NULL_RTX;
2938 tem = XEXP (XEXP (tem, 1), 1))
2939 if (rtx_equal_p (x, XEXP (tem, 0)))
2940 {
2941 *loc = XEXP (XEXP (tem, 1), 0);
2942 return true;
2943 }
2944
2945 /* See comment for purge_addressof_replacements. */
2946 for (tem = purge_addressof_replacements;
2947 tem != NULL_RTX;
2948 tem = XEXP (XEXP (tem, 1), 1))
2949 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
2950 {
2951 rtx z = XEXP (XEXP (tem, 1), 0);
2952
2953 if (GET_MODE (x) == GET_MODE (z)
2954 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
2955 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
2956 abort ();
2957
2958 /* It can happen that the note may speak of things
2959 in a wider (or just different) mode than the
2960 code did. This is especially true of
2961 REG_RETVAL. */
2962
2963 if (GET_CODE (z) == SUBREG && SUBREG_WORD (z) == 0)
2964 z = SUBREG_REG (z);
2965
2966 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2967 && (GET_MODE_SIZE (GET_MODE (x))
2968 > GET_MODE_SIZE (GET_MODE (z))))
2969 {
2970 /* This can occur as a result in invalid
2971 pointer casts, e.g. float f; ...
2972 *(long long int *)&f.
2973 ??? We could emit a warning here, but
2974 without a line number that wouldn't be
2975 very helpful. */
2976 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
2977 }
2978 else
2979 z = gen_lowpart (GET_MODE (x), z);
2980
2981 *loc = z;
2982 return true;
2983 }
2984
2985 /* Sometimes we may not be able to find the replacement. For
2986 example when the original insn was a MEM in a wider mode,
2987 and the note is part of a sign extension of a narrowed
2988 version of that MEM. Gcc testcase compile/990829-1.c can
2989 generate an example of this siutation. Rather than complain
2990 we return false, which will prompt our caller to remove the
2991 offending note. */
2992 return false;
2993 }
2994
2995 size_x = GET_MODE_BITSIZE (GET_MODE (x));
2996 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
2997
2998 /* Don't even consider working with paradoxical subregs,
2999 or the moral equivalent seen here. */
3000 if (size_x <= size_sub
3001 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3002 {
3003 /* Do a bitfield insertion to mirror what would happen
3004 in memory. */
3005
3006 rtx val, seq;
3007
3008 if (store)
3009 {
3010 rtx p = PREV_INSN (insn);
3011
3012 start_sequence ();
3013 val = gen_reg_rtx (GET_MODE (x));
3014 if (! validate_change (insn, loc, val, 0))
3015 {
3016 /* Discard the current sequence and put the
3017 ADDRESSOF on stack. */
3018 end_sequence ();
3019 goto give_up;
3020 }
3021 seq = gen_sequence ();
3022 end_sequence ();
3023 emit_insn_before (seq, insn);
3024 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3025 insn, ht);
3026
3027 start_sequence ();
3028 store_bit_field (sub, size_x, 0, GET_MODE (x),
3029 val, GET_MODE_SIZE (GET_MODE (sub)),
3030 GET_MODE_ALIGNMENT (GET_MODE (sub)));
3031
3032 /* Make sure to unshare any shared rtl that store_bit_field
3033 might have created. */
3034 unshare_all_rtl_again (get_insns ());
3035
3036 seq = gen_sequence ();
3037 end_sequence ();
3038 p = emit_insn_after (seq, insn);
3039 if (NEXT_INSN (insn))
3040 compute_insns_for_mem (NEXT_INSN (insn),
3041 p ? NEXT_INSN (p) : NULL_RTX,
3042 ht);
3043 }
3044 else
3045 {
3046 rtx p = PREV_INSN (insn);
3047
3048 start_sequence ();
3049 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3050 GET_MODE (x), GET_MODE (x),
3051 GET_MODE_SIZE (GET_MODE (sub)),
3052 GET_MODE_SIZE (GET_MODE (sub)));
3053
3054 if (! validate_change (insn, loc, val, 0))
3055 {
3056 /* Discard the current sequence and put the
3057 ADDRESSOF on stack. */
3058 end_sequence ();
3059 goto give_up;
3060 }
3061
3062 seq = gen_sequence ();
3063 end_sequence ();
3064 emit_insn_before (seq, insn);
3065 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3066 insn, ht);
3067 }
3068
3069 /* Remember the replacement so that the same one can be done
3070 on the REG_NOTES. */
3071 purge_bitfield_addressof_replacements
3072 = gen_rtx_EXPR_LIST (VOIDmode, x,
3073 gen_rtx_EXPR_LIST
3074 (VOIDmode, val,
3075 purge_bitfield_addressof_replacements));
3076
3077 /* We replaced with a reg -- all done. */
3078 return true;
3079 }
3080 }
3081
3082 else if (validate_change (insn, loc, sub, 0))
3083 {
3084 /* Remember the replacement so that the same one can be done
3085 on the REG_NOTES. */
3086 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3087 {
3088 rtx tem;
3089
3090 for (tem = purge_addressof_replacements;
3091 tem != NULL_RTX;
3092 tem = XEXP (XEXP (tem, 1), 1))
3093 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3094 {
3095 XEXP (XEXP (tem, 1), 0) = sub;
3096 return true;
3097 }
3098 purge_addressof_replacements
3099 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3100 gen_rtx_EXPR_LIST (VOIDmode, sub,
3101 purge_addressof_replacements));
3102 return true;
3103 }
3104 goto restart;
3105 }
3106 give_up:;
3107 /* else give up and put it into the stack */
3108 }
3109
3110 else if (code == ADDRESSOF)
3111 {
3112 put_addressof_into_stack (x, ht);
3113 return true;
3114 }
3115 else if (code == SET)
3116 {
3117 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
3118 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
3119 return result;
3120 }
3121
3122 /* Scan all subexpressions. */
3123 fmt = GET_RTX_FORMAT (code);
3124 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3125 {
3126 if (*fmt == 'e')
3127 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3128 else if (*fmt == 'E')
3129 for (j = 0; j < XVECLEN (x, i); j++)
3130 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3131 }
3132
3133 return result;
3134 }
3135
3136 /* Return a new hash table entry in HT. */
3137
3138 static struct hash_entry *
3139 insns_for_mem_newfunc (he, ht, k)
3140 struct hash_entry *he;
3141 struct hash_table *ht;
3142 hash_table_key k ATTRIBUTE_UNUSED;
3143 {
3144 struct insns_for_mem_entry *ifmhe;
3145 if (he)
3146 return he;
3147
3148 ifmhe = ((struct insns_for_mem_entry *)
3149 hash_allocate (ht, sizeof (struct insns_for_mem_entry)));
3150 ifmhe->insns = NULL_RTX;
3151
3152 return &ifmhe->he;
3153 }
3154
3155 /* Return a hash value for K, a REG. */
3156
3157 static unsigned long
3158 insns_for_mem_hash (k)
3159 hash_table_key k;
3160 {
3161 /* K is really a RTX. Just use the address as the hash value. */
3162 return (unsigned long) k;
3163 }
3164
3165 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3166
3167 static boolean
3168 insns_for_mem_comp (k1, k2)
3169 hash_table_key k1;
3170 hash_table_key k2;
3171 {
3172 return k1 == k2;
3173 }
3174
3175 struct insns_for_mem_walk_info {
3176 /* The hash table that we are using to record which INSNs use which
3177 MEMs. */
3178 struct hash_table *ht;
3179
3180 /* The INSN we are currently proessing. */
3181 rtx insn;
3182
3183 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3184 to find the insns that use the REGs in the ADDRESSOFs. */
3185 int pass;
3186 };
3187
3188 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3189 that might be used in an ADDRESSOF expression, record this INSN in
3190 the hash table given by DATA (which is really a pointer to an
3191 insns_for_mem_walk_info structure). */
3192
3193 static int
3194 insns_for_mem_walk (r, data)
3195 rtx *r;
3196 void *data;
3197 {
3198 struct insns_for_mem_walk_info *ifmwi
3199 = (struct insns_for_mem_walk_info *) data;
3200
3201 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3202 && GET_CODE (XEXP (*r, 0)) == REG)
3203 hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0);
3204 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3205 {
3206 /* Lookup this MEM in the hashtable, creating it if necessary. */
3207 struct insns_for_mem_entry *ifme
3208 = (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht,
3209 *r,
3210 /*create=*/0,
3211 /*copy=*/0);
3212
3213 /* If we have not already recorded this INSN, do so now. Since
3214 we process the INSNs in order, we know that if we have
3215 recorded it it must be at the front of the list. */
3216 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3217 {
3218 /* We do the allocation on the same obstack as is used for
3219 the hash table since this memory will not be used once
3220 the hash table is deallocated. */
3221 push_obstacks (&ifmwi->ht->memory, &ifmwi->ht->memory);
3222 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3223 ifme->insns);
3224 pop_obstacks ();
3225 }
3226 }
3227
3228 return 0;
3229 }
3230
3231 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3232 which REGs in HT. */
3233
3234 static void
3235 compute_insns_for_mem (insns, last_insn, ht)
3236 rtx insns;
3237 rtx last_insn;
3238 struct hash_table *ht;
3239 {
3240 rtx insn;
3241 struct insns_for_mem_walk_info ifmwi;
3242 ifmwi.ht = ht;
3243
3244 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3245 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3246 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3247 {
3248 ifmwi.insn = insn;
3249 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3250 }
3251 }
3252
3253 /* Helper function for purge_addressof called through for_each_rtx.
3254 Returns true iff the rtl is an ADDRESSOF. */
3255 static int
3256 is_addressof (rtl, data)
3257 rtx * rtl;
3258 void * data ATTRIBUTE_UNUSED;
3259 {
3260 return GET_CODE (* rtl) == ADDRESSOF;
3261 }
3262
3263 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3264 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3265 stack. */
3266
3267 void
3268 purge_addressof (insns)
3269 rtx insns;
3270 {
3271 rtx insn;
3272 struct hash_table ht;
3273
3274 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3275 requires a fixup pass over the instruction stream to correct
3276 INSNs that depended on the REG being a REG, and not a MEM. But,
3277 these fixup passes are slow. Furthermore, more MEMs are not
3278 mentioned in very many instructions. So, we speed up the process
3279 by pre-calculating which REGs occur in which INSNs; that allows
3280 us to perform the fixup passes much more quickly. */
3281 hash_table_init (&ht,
3282 insns_for_mem_newfunc,
3283 insns_for_mem_hash,
3284 insns_for_mem_comp);
3285 compute_insns_for_mem (insns, NULL_RTX, &ht);
3286
3287 for (insn = insns; insn; insn = NEXT_INSN (insn))
3288 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3289 || GET_CODE (insn) == CALL_INSN)
3290 {
3291 if (! purge_addressof_1 (&PATTERN (insn), insn,
3292 asm_noperands (PATTERN (insn)) > 0, 0, &ht))
3293 /* If we could not replace the ADDRESSOFs in the insn,
3294 something is wrong. */
3295 abort ();
3296
3297 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, &ht))
3298 {
3299 /* If we could not replace the ADDRESSOFs in the insn's notes,
3300 we can just remove the offending notes instead. */
3301 rtx note;
3302
3303 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3304 {
3305 /* If we find a REG_RETVAL note then the insn is a libcall.
3306 Such insns must have REG_EQUAL notes as well, in order
3307 for later passes of the compiler to work. So it is not
3308 safe to delete the notes here, and instead we abort. */
3309 if (REG_NOTE_KIND (note) == REG_RETVAL)
3310 abort ();
3311 if (for_each_rtx (& note, is_addressof, NULL))
3312 remove_note (insn, note);
3313 }
3314 }
3315 }
3316
3317 /* Clean up. */
3318 hash_table_free (&ht);
3319 purge_bitfield_addressof_replacements = 0;
3320 purge_addressof_replacements = 0;
3321 }
3322 \f
3323 /* Pass through the INSNS of function FNDECL and convert virtual register
3324 references to hard register references. */
3325
3326 void
3327 instantiate_virtual_regs (fndecl, insns)
3328 tree fndecl;
3329 rtx insns;
3330 {
3331 rtx insn;
3332 unsigned int i;
3333
3334 /* Compute the offsets to use for this function. */
3335 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3336 var_offset = STARTING_FRAME_OFFSET;
3337 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3338 out_arg_offset = STACK_POINTER_OFFSET;
3339 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3340
3341 /* Scan all variables and parameters of this function. For each that is
3342 in memory, instantiate all virtual registers if the result is a valid
3343 address. If not, we do it later. That will handle most uses of virtual
3344 regs on many machines. */
3345 instantiate_decls (fndecl, 1);
3346
3347 /* Initialize recognition, indicating that volatile is OK. */
3348 init_recog ();
3349
3350 /* Scan through all the insns, instantiating every virtual register still
3351 present. */
3352 for (insn = insns; insn; insn = NEXT_INSN (insn))
3353 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3354 || GET_CODE (insn) == CALL_INSN)
3355 {
3356 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3357 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3358 }
3359
3360 /* Instantiate the stack slots for the parm registers, for later use in
3361 addressof elimination. */
3362 for (i = 0; i < max_parm_reg; ++i)
3363 if (parm_reg_stack_loc[i])
3364 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3365
3366 /* Now instantiate the remaining register equivalences for debugging info.
3367 These will not be valid addresses. */
3368 instantiate_decls (fndecl, 0);
3369
3370 /* Indicate that, from now on, assign_stack_local should use
3371 frame_pointer_rtx. */
3372 virtuals_instantiated = 1;
3373 }
3374
3375 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3376 all virtual registers in their DECL_RTL's.
3377
3378 If VALID_ONLY, do this only if the resulting address is still valid.
3379 Otherwise, always do it. */
3380
3381 static void
3382 instantiate_decls (fndecl, valid_only)
3383 tree fndecl;
3384 int valid_only;
3385 {
3386 tree decl;
3387
3388 if (DECL_SAVED_INSNS (fndecl))
3389 /* When compiling an inline function, the obstack used for
3390 rtl allocation is the maybepermanent_obstack. Calling
3391 `resume_temporary_allocation' switches us back to that
3392 obstack while we process this function's parameters. */
3393 resume_temporary_allocation ();
3394
3395 /* Process all parameters of the function. */
3396 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3397 {
3398 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3399
3400 instantiate_decl (DECL_RTL (decl), size, valid_only);
3401
3402 /* If the parameter was promoted, then the incoming RTL mode may be
3403 larger than the declared type size. We must use the larger of
3404 the two sizes. */
3405 size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size);
3406 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3407 }
3408
3409 /* Now process all variables defined in the function or its subblocks. */
3410 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3411
3412 if (DECL_INLINE (fndecl) || DECL_DEFER_OUTPUT (fndecl))
3413 {
3414 /* Save all rtl allocated for this function by raising the
3415 high-water mark on the maybepermanent_obstack. */
3416 preserve_data ();
3417 /* All further rtl allocation is now done in the current_obstack. */
3418 rtl_in_current_obstack ();
3419 }
3420 }
3421
3422 /* Subroutine of instantiate_decls: Process all decls in the given
3423 BLOCK node and all its subblocks. */
3424
3425 static void
3426 instantiate_decls_1 (let, valid_only)
3427 tree let;
3428 int valid_only;
3429 {
3430 tree t;
3431
3432 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3433 instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)),
3434 valid_only);
3435
3436 /* Process all subblocks. */
3437 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3438 instantiate_decls_1 (t, valid_only);
3439 }
3440
3441 /* Subroutine of the preceding procedures: Given RTL representing a
3442 decl and the size of the object, do any instantiation required.
3443
3444 If VALID_ONLY is non-zero, it means that the RTL should only be
3445 changed if the new address is valid. */
3446
3447 static void
3448 instantiate_decl (x, size, valid_only)
3449 rtx x;
3450 HOST_WIDE_INT size;
3451 int valid_only;
3452 {
3453 enum machine_mode mode;
3454 rtx addr;
3455
3456 /* If this is not a MEM, no need to do anything. Similarly if the
3457 address is a constant or a register that is not a virtual register. */
3458
3459 if (x == 0 || GET_CODE (x) != MEM)
3460 return;
3461
3462 addr = XEXP (x, 0);
3463 if (CONSTANT_P (addr)
3464 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3465 || (GET_CODE (addr) == REG
3466 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3467 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3468 return;
3469
3470 /* If we should only do this if the address is valid, copy the address.
3471 We need to do this so we can undo any changes that might make the
3472 address invalid. This copy is unfortunate, but probably can't be
3473 avoided. */
3474
3475 if (valid_only)
3476 addr = copy_rtx (addr);
3477
3478 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3479
3480 if (valid_only && size >= 0)
3481 {
3482 unsigned HOST_WIDE_INT decl_size = size;
3483
3484 /* Now verify that the resulting address is valid for every integer or
3485 floating-point mode up to and including SIZE bytes long. We do this
3486 since the object might be accessed in any mode and frame addresses
3487 are shared. */
3488
3489 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3490 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3491 mode = GET_MODE_WIDER_MODE (mode))
3492 if (! memory_address_p (mode, addr))
3493 return;
3494
3495 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3496 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3497 mode = GET_MODE_WIDER_MODE (mode))
3498 if (! memory_address_p (mode, addr))
3499 return;
3500 }
3501
3502 /* Put back the address now that we have updated it and we either know
3503 it is valid or we don't care whether it is valid. */
3504
3505 XEXP (x, 0) = addr;
3506 }
3507 \f
3508 /* Given a pointer to a piece of rtx and an optional pointer to the
3509 containing object, instantiate any virtual registers present in it.
3510
3511 If EXTRA_INSNS, we always do the replacement and generate
3512 any extra insns before OBJECT. If it zero, we do nothing if replacement
3513 is not valid.
3514
3515 Return 1 if we either had nothing to do or if we were able to do the
3516 needed replacement. Return 0 otherwise; we only return zero if
3517 EXTRA_INSNS is zero.
3518
3519 We first try some simple transformations to avoid the creation of extra
3520 pseudos. */
3521
3522 static int
3523 instantiate_virtual_regs_1 (loc, object, extra_insns)
3524 rtx *loc;
3525 rtx object;
3526 int extra_insns;
3527 {
3528 rtx x;
3529 RTX_CODE code;
3530 rtx new = 0;
3531 HOST_WIDE_INT offset = 0;
3532 rtx temp;
3533 rtx seq;
3534 int i, j;
3535 const char *fmt;
3536
3537 /* Re-start here to avoid recursion in common cases. */
3538 restart:
3539
3540 x = *loc;
3541 if (x == 0)
3542 return 1;
3543
3544 code = GET_CODE (x);
3545
3546 /* Check for some special cases. */
3547 switch (code)
3548 {
3549 case CONST_INT:
3550 case CONST_DOUBLE:
3551 case CONST:
3552 case SYMBOL_REF:
3553 case CODE_LABEL:
3554 case PC:
3555 case CC0:
3556 case ASM_INPUT:
3557 case ADDR_VEC:
3558 case ADDR_DIFF_VEC:
3559 case RETURN:
3560 return 1;
3561
3562 case SET:
3563 /* We are allowed to set the virtual registers. This means that
3564 the actual register should receive the source minus the
3565 appropriate offset. This is used, for example, in the handling
3566 of non-local gotos. */
3567 if (SET_DEST (x) == virtual_incoming_args_rtx)
3568 new = arg_pointer_rtx, offset = - in_arg_offset;
3569 else if (SET_DEST (x) == virtual_stack_vars_rtx)
3570 new = frame_pointer_rtx, offset = - var_offset;
3571 else if (SET_DEST (x) == virtual_stack_dynamic_rtx)
3572 new = stack_pointer_rtx, offset = - dynamic_offset;
3573 else if (SET_DEST (x) == virtual_outgoing_args_rtx)
3574 new = stack_pointer_rtx, offset = - out_arg_offset;
3575 else if (SET_DEST (x) == virtual_cfa_rtx)
3576 new = arg_pointer_rtx, offset = - cfa_offset;
3577
3578 if (new)
3579 {
3580 rtx src = SET_SRC (x);
3581
3582 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3583
3584 /* The only valid sources here are PLUS or REG. Just do
3585 the simplest possible thing to handle them. */
3586 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3587 abort ();
3588
3589 start_sequence ();
3590 if (GET_CODE (src) != REG)
3591 temp = force_operand (src, NULL_RTX);
3592 else
3593 temp = src;
3594 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3595 seq = get_insns ();
3596 end_sequence ();
3597
3598 emit_insns_before (seq, object);
3599 SET_DEST (x) = new;
3600
3601 if (! validate_change (object, &SET_SRC (x), temp, 0)
3602 || ! extra_insns)
3603 abort ();
3604
3605 return 1;
3606 }
3607
3608 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3609 loc = &SET_SRC (x);
3610 goto restart;
3611
3612 case PLUS:
3613 /* Handle special case of virtual register plus constant. */
3614 if (CONSTANT_P (XEXP (x, 1)))
3615 {
3616 rtx old, new_offset;
3617
3618 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3619 if (GET_CODE (XEXP (x, 0)) == PLUS)
3620 {
3621 rtx inner = XEXP (XEXP (x, 0), 0);
3622
3623 if (inner == virtual_incoming_args_rtx)
3624 new = arg_pointer_rtx, offset = in_arg_offset;
3625 else if (inner == virtual_stack_vars_rtx)
3626 new = frame_pointer_rtx, offset = var_offset;
3627 else if (inner == virtual_stack_dynamic_rtx)
3628 new = stack_pointer_rtx, offset = dynamic_offset;
3629 else if (inner == virtual_outgoing_args_rtx)
3630 new = stack_pointer_rtx, offset = out_arg_offset;
3631 else if (inner == virtual_cfa_rtx)
3632 new = arg_pointer_rtx, offset = cfa_offset;
3633 else
3634 {
3635 loc = &XEXP (x, 0);
3636 goto restart;
3637 }
3638
3639 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3640 extra_insns);
3641 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3642 }
3643
3644 else if (XEXP (x, 0) == virtual_incoming_args_rtx)
3645 new = arg_pointer_rtx, offset = in_arg_offset;
3646 else if (XEXP (x, 0) == virtual_stack_vars_rtx)
3647 new = frame_pointer_rtx, offset = var_offset;
3648 else if (XEXP (x, 0) == virtual_stack_dynamic_rtx)
3649 new = stack_pointer_rtx, offset = dynamic_offset;
3650 else if (XEXP (x, 0) == virtual_outgoing_args_rtx)
3651 new = stack_pointer_rtx, offset = out_arg_offset;
3652 else if (XEXP (x, 0) == virtual_cfa_rtx)
3653 new = arg_pointer_rtx, offset = cfa_offset;
3654 else
3655 {
3656 /* We know the second operand is a constant. Unless the
3657 first operand is a REG (which has been already checked),
3658 it needs to be checked. */
3659 if (GET_CODE (XEXP (x, 0)) != REG)
3660 {
3661 loc = &XEXP (x, 0);
3662 goto restart;
3663 }
3664 return 1;
3665 }
3666
3667 new_offset = plus_constant (XEXP (x, 1), offset);
3668
3669 /* If the new constant is zero, try to replace the sum with just
3670 the register. */
3671 if (new_offset == const0_rtx
3672 && validate_change (object, loc, new, 0))
3673 return 1;
3674
3675 /* Next try to replace the register and new offset.
3676 There are two changes to validate here and we can't assume that
3677 in the case of old offset equals new just changing the register
3678 will yield a valid insn. In the interests of a little efficiency,
3679 however, we only call validate change once (we don't queue up the
3680 changes and then call apply_change_group). */
3681
3682 old = XEXP (x, 0);
3683 if (offset == 0
3684 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3685 : (XEXP (x, 0) = new,
3686 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3687 {
3688 if (! extra_insns)
3689 {
3690 XEXP (x, 0) = old;
3691 return 0;
3692 }
3693
3694 /* Otherwise copy the new constant into a register and replace
3695 constant with that register. */
3696 temp = gen_reg_rtx (Pmode);
3697 XEXP (x, 0) = new;
3698 if (validate_change (object, &XEXP (x, 1), temp, 0))
3699 emit_insn_before (gen_move_insn (temp, new_offset), object);
3700 else
3701 {
3702 /* If that didn't work, replace this expression with a
3703 register containing the sum. */
3704
3705 XEXP (x, 0) = old;
3706 new = gen_rtx_PLUS (Pmode, new, new_offset);
3707
3708 start_sequence ();
3709 temp = force_operand (new, NULL_RTX);
3710 seq = get_insns ();
3711 end_sequence ();
3712
3713 emit_insns_before (seq, object);
3714 if (! validate_change (object, loc, temp, 0)
3715 && ! validate_replace_rtx (x, temp, object))
3716 abort ();
3717 }
3718 }
3719
3720 return 1;
3721 }
3722
3723 /* Fall through to generic two-operand expression case. */
3724 case EXPR_LIST:
3725 case CALL:
3726 case COMPARE:
3727 case MINUS:
3728 case MULT:
3729 case DIV: case UDIV:
3730 case MOD: case UMOD:
3731 case AND: case IOR: case XOR:
3732 case ROTATERT: case ROTATE:
3733 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3734 case NE: case EQ:
3735 case GE: case GT: case GEU: case GTU:
3736 case LE: case LT: case LEU: case LTU:
3737 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3738 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3739 loc = &XEXP (x, 0);
3740 goto restart;
3741
3742 case MEM:
3743 /* Most cases of MEM that convert to valid addresses have already been
3744 handled by our scan of decls. The only special handling we
3745 need here is to make a copy of the rtx to ensure it isn't being
3746 shared if we have to change it to a pseudo.
3747
3748 If the rtx is a simple reference to an address via a virtual register,
3749 it can potentially be shared. In such cases, first try to make it
3750 a valid address, which can also be shared. Otherwise, copy it and
3751 proceed normally.
3752
3753 First check for common cases that need no processing. These are
3754 usually due to instantiation already being done on a previous instance
3755 of a shared rtx. */
3756
3757 temp = XEXP (x, 0);
3758 if (CONSTANT_ADDRESS_P (temp)
3759 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3760 || temp == arg_pointer_rtx
3761 #endif
3762 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3763 || temp == hard_frame_pointer_rtx
3764 #endif
3765 || temp == frame_pointer_rtx)
3766 return 1;
3767
3768 if (GET_CODE (temp) == PLUS
3769 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3770 && (XEXP (temp, 0) == frame_pointer_rtx
3771 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3772 || XEXP (temp, 0) == hard_frame_pointer_rtx
3773 #endif
3774 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3775 || XEXP (temp, 0) == arg_pointer_rtx
3776 #endif
3777 ))
3778 return 1;
3779
3780 if (temp == virtual_stack_vars_rtx
3781 || temp == virtual_incoming_args_rtx
3782 || (GET_CODE (temp) == PLUS
3783 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3784 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3785 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3786 {
3787 /* This MEM may be shared. If the substitution can be done without
3788 the need to generate new pseudos, we want to do it in place
3789 so all copies of the shared rtx benefit. The call below will
3790 only make substitutions if the resulting address is still
3791 valid.
3792
3793 Note that we cannot pass X as the object in the recursive call
3794 since the insn being processed may not allow all valid
3795 addresses. However, if we were not passed on object, we can
3796 only modify X without copying it if X will have a valid
3797 address.
3798
3799 ??? Also note that this can still lose if OBJECT is an insn that
3800 has less restrictions on an address that some other insn.
3801 In that case, we will modify the shared address. This case
3802 doesn't seem very likely, though. One case where this could
3803 happen is in the case of a USE or CLOBBER reference, but we
3804 take care of that below. */
3805
3806 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
3807 object ? object : x, 0))
3808 return 1;
3809
3810 /* Otherwise make a copy and process that copy. We copy the entire
3811 RTL expression since it might be a PLUS which could also be
3812 shared. */
3813 *loc = x = copy_rtx (x);
3814 }
3815
3816 /* Fall through to generic unary operation case. */
3817 case SUBREG:
3818 case STRICT_LOW_PART:
3819 case NEG: case NOT:
3820 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
3821 case SIGN_EXTEND: case ZERO_EXTEND:
3822 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3823 case FLOAT: case FIX:
3824 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3825 case ABS:
3826 case SQRT:
3827 case FFS:
3828 /* These case either have just one operand or we know that we need not
3829 check the rest of the operands. */
3830 loc = &XEXP (x, 0);
3831 goto restart;
3832
3833 case USE:
3834 case CLOBBER:
3835 /* If the operand is a MEM, see if the change is a valid MEM. If not,
3836 go ahead and make the invalid one, but do it to a copy. For a REG,
3837 just make the recursive call, since there's no chance of a problem. */
3838
3839 if ((GET_CODE (XEXP (x, 0)) == MEM
3840 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
3841 0))
3842 || (GET_CODE (XEXP (x, 0)) == REG
3843 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
3844 return 1;
3845
3846 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
3847 loc = &XEXP (x, 0);
3848 goto restart;
3849
3850 case REG:
3851 /* Try to replace with a PLUS. If that doesn't work, compute the sum
3852 in front of this insn and substitute the temporary. */
3853 if (x == virtual_incoming_args_rtx)
3854 new = arg_pointer_rtx, offset = in_arg_offset;
3855 else if (x == virtual_stack_vars_rtx)
3856 new = frame_pointer_rtx, offset = var_offset;
3857 else if (x == virtual_stack_dynamic_rtx)
3858 new = stack_pointer_rtx, offset = dynamic_offset;
3859 else if (x == virtual_outgoing_args_rtx)
3860 new = stack_pointer_rtx, offset = out_arg_offset;
3861 else if (x == virtual_cfa_rtx)
3862 new = arg_pointer_rtx, offset = cfa_offset;
3863
3864 if (new)
3865 {
3866 temp = plus_constant (new, offset);
3867 if (!validate_change (object, loc, temp, 0))
3868 {
3869 if (! extra_insns)
3870 return 0;
3871
3872 start_sequence ();
3873 temp = force_operand (temp, NULL_RTX);
3874 seq = get_insns ();
3875 end_sequence ();
3876
3877 emit_insns_before (seq, object);
3878 if (! validate_change (object, loc, temp, 0)
3879 && ! validate_replace_rtx (x, temp, object))
3880 abort ();
3881 }
3882 }
3883
3884 return 1;
3885
3886 case ADDRESSOF:
3887 if (GET_CODE (XEXP (x, 0)) == REG)
3888 return 1;
3889
3890 else if (GET_CODE (XEXP (x, 0)) == MEM)
3891 {
3892 /* If we have a (addressof (mem ..)), do any instantiation inside
3893 since we know we'll be making the inside valid when we finally
3894 remove the ADDRESSOF. */
3895 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
3896 return 1;
3897 }
3898 break;
3899
3900 default:
3901 break;
3902 }
3903
3904 /* Scan all subexpressions. */
3905 fmt = GET_RTX_FORMAT (code);
3906 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3907 if (*fmt == 'e')
3908 {
3909 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
3910 return 0;
3911 }
3912 else if (*fmt == 'E')
3913 for (j = 0; j < XVECLEN (x, i); j++)
3914 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
3915 extra_insns))
3916 return 0;
3917
3918 return 1;
3919 }
3920 \f
3921 /* Optimization: assuming this function does not receive nonlocal gotos,
3922 delete the handlers for such, as well as the insns to establish
3923 and disestablish them. */
3924
3925 static void
3926 delete_handlers ()
3927 {
3928 rtx insn;
3929 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3930 {
3931 /* Delete the handler by turning off the flag that would
3932 prevent jump_optimize from deleting it.
3933 Also permit deletion of the nonlocal labels themselves
3934 if nothing local refers to them. */
3935 if (GET_CODE (insn) == CODE_LABEL)
3936 {
3937 tree t, last_t;
3938
3939 LABEL_PRESERVE_P (insn) = 0;
3940
3941 /* Remove it from the nonlocal_label list, to avoid confusing
3942 flow. */
3943 for (t = nonlocal_labels, last_t = 0; t;
3944 last_t = t, t = TREE_CHAIN (t))
3945 if (DECL_RTL (TREE_VALUE (t)) == insn)
3946 break;
3947 if (t)
3948 {
3949 if (! last_t)
3950 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
3951 else
3952 TREE_CHAIN (last_t) = TREE_CHAIN (t);
3953 }
3954 }
3955 if (GET_CODE (insn) == INSN)
3956 {
3957 int can_delete = 0;
3958 rtx t;
3959 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
3960 if (reg_mentioned_p (t, PATTERN (insn)))
3961 {
3962 can_delete = 1;
3963 break;
3964 }
3965 if (can_delete
3966 || (nonlocal_goto_stack_level != 0
3967 && reg_mentioned_p (nonlocal_goto_stack_level,
3968 PATTERN (insn))))
3969 delete_insn (insn);
3970 }
3971 }
3972 }
3973 \f
3974 int
3975 max_parm_reg_num ()
3976 {
3977 return max_parm_reg;
3978 }
3979
3980 /* Return the first insn following those generated by `assign_parms'. */
3981
3982 rtx
3983 get_first_nonparm_insn ()
3984 {
3985 if (last_parm_insn)
3986 return NEXT_INSN (last_parm_insn);
3987 return get_insns ();
3988 }
3989
3990 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
3991 Crash if there is none. */
3992
3993 rtx
3994 get_first_block_beg ()
3995 {
3996 register rtx searcher;
3997 register rtx insn = get_first_nonparm_insn ();
3998
3999 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
4000 if (GET_CODE (searcher) == NOTE
4001 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
4002 return searcher;
4003
4004 abort (); /* Invalid call to this function. (See comments above.) */
4005 return NULL_RTX;
4006 }
4007
4008 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4009 This means a type for which function calls must pass an address to the
4010 function or get an address back from the function.
4011 EXP may be a type node or an expression (whose type is tested). */
4012
4013 int
4014 aggregate_value_p (exp)
4015 tree exp;
4016 {
4017 int i, regno, nregs;
4018 rtx reg;
4019
4020 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4021
4022 if (RETURN_IN_MEMORY (type))
4023 return 1;
4024 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4025 and thus can't be returned in registers. */
4026 if (TREE_ADDRESSABLE (type))
4027 return 1;
4028 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4029 return 1;
4030 /* Make sure we have suitable call-clobbered regs to return
4031 the value in; if not, we must return it in memory. */
4032 reg = hard_function_value (type, 0, 0);
4033
4034 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4035 it is OK. */
4036 if (GET_CODE (reg) != REG)
4037 return 0;
4038
4039 regno = REGNO (reg);
4040 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4041 for (i = 0; i < nregs; i++)
4042 if (! call_used_regs[regno + i])
4043 return 1;
4044 return 0;
4045 }
4046 \f
4047 /* Assign RTL expressions to the function's parameters.
4048 This may involve copying them into registers and using
4049 those registers as the RTL for them. */
4050
4051 void
4052 assign_parms (fndecl)
4053 tree fndecl;
4054 {
4055 register tree parm;
4056 register rtx entry_parm = 0;
4057 register rtx stack_parm = 0;
4058 CUMULATIVE_ARGS args_so_far;
4059 enum machine_mode promoted_mode, passed_mode;
4060 enum machine_mode nominal_mode, promoted_nominal_mode;
4061 int unsignedp;
4062 /* Total space needed so far for args on the stack,
4063 given as a constant and a tree-expression. */
4064 struct args_size stack_args_size;
4065 tree fntype = TREE_TYPE (fndecl);
4066 tree fnargs = DECL_ARGUMENTS (fndecl);
4067 /* This is used for the arg pointer when referring to stack args. */
4068 rtx internal_arg_pointer;
4069 /* This is a dummy PARM_DECL that we used for the function result if
4070 the function returns a structure. */
4071 tree function_result_decl = 0;
4072 #ifdef SETUP_INCOMING_VARARGS
4073 int varargs_setup = 0;
4074 #endif
4075 rtx conversion_insns = 0;
4076 struct args_size alignment_pad;
4077
4078 /* Nonzero if the last arg is named `__builtin_va_alist',
4079 which is used on some machines for old-fashioned non-ANSI varargs.h;
4080 this should be stuck onto the stack as if it had arrived there. */
4081 int hide_last_arg
4082 = (current_function_varargs
4083 && fnargs
4084 && (parm = tree_last (fnargs)) != 0
4085 && DECL_NAME (parm)
4086 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
4087 "__builtin_va_alist")));
4088
4089 /* Nonzero if function takes extra anonymous args.
4090 This means the last named arg must be on the stack
4091 right before the anonymous ones. */
4092 int stdarg
4093 = (TYPE_ARG_TYPES (fntype) != 0
4094 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4095 != void_type_node));
4096
4097 current_function_stdarg = stdarg;
4098
4099 /* If the reg that the virtual arg pointer will be translated into is
4100 not a fixed reg or is the stack pointer, make a copy of the virtual
4101 arg pointer, and address parms via the copy. The frame pointer is
4102 considered fixed even though it is not marked as such.
4103
4104 The second time through, simply use ap to avoid generating rtx. */
4105
4106 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4107 || ! (fixed_regs[ARG_POINTER_REGNUM]
4108 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4109 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4110 else
4111 internal_arg_pointer = virtual_incoming_args_rtx;
4112 current_function_internal_arg_pointer = internal_arg_pointer;
4113
4114 stack_args_size.constant = 0;
4115 stack_args_size.var = 0;
4116
4117 /* If struct value address is treated as the first argument, make it so. */
4118 if (aggregate_value_p (DECL_RESULT (fndecl))
4119 && ! current_function_returns_pcc_struct
4120 && struct_value_incoming_rtx == 0)
4121 {
4122 tree type = build_pointer_type (TREE_TYPE (fntype));
4123
4124 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4125
4126 DECL_ARG_TYPE (function_result_decl) = type;
4127 TREE_CHAIN (function_result_decl) = fnargs;
4128 fnargs = function_result_decl;
4129 }
4130
4131 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4132 parm_reg_stack_loc = (rtx *) xcalloc (max_parm_reg, sizeof (rtx));
4133
4134 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4135 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4136 #else
4137 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4138 #endif
4139
4140 /* We haven't yet found an argument that we must push and pretend the
4141 caller did. */
4142 current_function_pretend_args_size = 0;
4143
4144 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4145 {
4146 int aggregate = AGGREGATE_TYPE_P (TREE_TYPE (parm));
4147 struct args_size stack_offset;
4148 struct args_size arg_size;
4149 int passed_pointer = 0;
4150 int did_conversion = 0;
4151 tree passed_type = DECL_ARG_TYPE (parm);
4152 tree nominal_type = TREE_TYPE (parm);
4153 int pretend_named;
4154
4155 /* Set LAST_NAMED if this is last named arg before some
4156 anonymous args. */
4157 int last_named = ((TREE_CHAIN (parm) == 0
4158 || DECL_NAME (TREE_CHAIN (parm)) == 0)
4159 && (stdarg || current_function_varargs));
4160 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4161 most machines, if this is a varargs/stdarg function, then we treat
4162 the last named arg as if it were anonymous too. */
4163 int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4164
4165 if (TREE_TYPE (parm) == error_mark_node
4166 /* This can happen after weird syntax errors
4167 or if an enum type is defined among the parms. */
4168 || TREE_CODE (parm) != PARM_DECL
4169 || passed_type == NULL)
4170 {
4171 DECL_INCOMING_RTL (parm) = DECL_RTL (parm)
4172 = gen_rtx_MEM (BLKmode, const0_rtx);
4173 TREE_USED (parm) = 1;
4174 continue;
4175 }
4176
4177 /* For varargs.h function, save info about regs and stack space
4178 used by the individual args, not including the va_alist arg. */
4179 if (hide_last_arg && last_named)
4180 current_function_args_info = args_so_far;
4181
4182 /* Find mode of arg as it is passed, and mode of arg
4183 as it should be during execution of this function. */
4184 passed_mode = TYPE_MODE (passed_type);
4185 nominal_mode = TYPE_MODE (nominal_type);
4186
4187 /* If the parm's mode is VOID, its value doesn't matter,
4188 and avoid the usual things like emit_move_insn that could crash. */
4189 if (nominal_mode == VOIDmode)
4190 {
4191 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx;
4192 continue;
4193 }
4194
4195 /* If the parm is to be passed as a transparent union, use the
4196 type of the first field for the tests below. We have already
4197 verified that the modes are the same. */
4198 if (DECL_TRANSPARENT_UNION (parm)
4199 || TYPE_TRANSPARENT_UNION (passed_type))
4200 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4201
4202 /* See if this arg was passed by invisible reference. It is if
4203 it is an object whose size depends on the contents of the
4204 object itself or if the machine requires these objects be passed
4205 that way. */
4206
4207 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4208 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4209 || TREE_ADDRESSABLE (passed_type)
4210 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4211 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4212 passed_type, named_arg)
4213 #endif
4214 )
4215 {
4216 passed_type = nominal_type = build_pointer_type (passed_type);
4217 passed_pointer = 1;
4218 passed_mode = nominal_mode = Pmode;
4219 }
4220
4221 promoted_mode = passed_mode;
4222
4223 #ifdef PROMOTE_FUNCTION_ARGS
4224 /* Compute the mode in which the arg is actually extended to. */
4225 unsignedp = TREE_UNSIGNED (passed_type);
4226 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4227 #endif
4228
4229 /* Let machine desc say which reg (if any) the parm arrives in.
4230 0 means it arrives on the stack. */
4231 #ifdef FUNCTION_INCOMING_ARG
4232 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4233 passed_type, named_arg);
4234 #else
4235 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4236 passed_type, named_arg);
4237 #endif
4238
4239 if (entry_parm == 0)
4240 promoted_mode = passed_mode;
4241
4242 #ifdef SETUP_INCOMING_VARARGS
4243 /* If this is the last named parameter, do any required setup for
4244 varargs or stdargs. We need to know about the case of this being an
4245 addressable type, in which case we skip the registers it
4246 would have arrived in.
4247
4248 For stdargs, LAST_NAMED will be set for two parameters, the one that
4249 is actually the last named, and the dummy parameter. We only
4250 want to do this action once.
4251
4252 Also, indicate when RTL generation is to be suppressed. */
4253 if (last_named && !varargs_setup)
4254 {
4255 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4256 current_function_pretend_args_size, 0);
4257 varargs_setup = 1;
4258 }
4259 #endif
4260
4261 /* Determine parm's home in the stack,
4262 in case it arrives in the stack or we should pretend it did.
4263
4264 Compute the stack position and rtx where the argument arrives
4265 and its size.
4266
4267 There is one complexity here: If this was a parameter that would
4268 have been passed in registers, but wasn't only because it is
4269 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4270 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4271 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4272 0 as it was the previous time. */
4273
4274 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4275 locate_and_pad_parm (promoted_mode, passed_type,
4276 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4277 1,
4278 #else
4279 #ifdef FUNCTION_INCOMING_ARG
4280 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4281 passed_type,
4282 pretend_named) != 0,
4283 #else
4284 FUNCTION_ARG (args_so_far, promoted_mode,
4285 passed_type,
4286 pretend_named) != 0,
4287 #endif
4288 #endif
4289 fndecl, &stack_args_size, &stack_offset, &arg_size,
4290 &alignment_pad);
4291
4292 {
4293 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4294
4295 if (offset_rtx == const0_rtx)
4296 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4297 else
4298 stack_parm = gen_rtx_MEM (promoted_mode,
4299 gen_rtx_PLUS (Pmode,
4300 internal_arg_pointer,
4301 offset_rtx));
4302
4303 /* If this is a memory ref that contains aggregate components,
4304 mark it as such for cse and loop optimize. Likewise if it
4305 is readonly. */
4306 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4307 RTX_UNCHANGING_P (stack_parm) = TREE_READONLY (parm);
4308 MEM_ALIAS_SET (stack_parm) = get_alias_set (parm);
4309 }
4310
4311 /* If this parameter was passed both in registers and in the stack,
4312 use the copy on the stack. */
4313 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4314 entry_parm = 0;
4315
4316 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4317 /* If this parm was passed part in regs and part in memory,
4318 pretend it arrived entirely in memory
4319 by pushing the register-part onto the stack.
4320
4321 In the special case of a DImode or DFmode that is split,
4322 we could put it together in a pseudoreg directly,
4323 but for now that's not worth bothering with. */
4324
4325 if (entry_parm)
4326 {
4327 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4328 passed_type, named_arg);
4329
4330 if (nregs > 0)
4331 {
4332 current_function_pretend_args_size
4333 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4334 / (PARM_BOUNDARY / BITS_PER_UNIT)
4335 * (PARM_BOUNDARY / BITS_PER_UNIT));
4336
4337 /* Handle calls that pass values in multiple non-contiguous
4338 locations. The Irix 6 ABI has examples of this. */
4339 if (GET_CODE (entry_parm) == PARALLEL)
4340 emit_group_store (validize_mem (stack_parm), entry_parm,
4341 int_size_in_bytes (TREE_TYPE (parm)),
4342 TYPE_ALIGN (TREE_TYPE (parm)));
4343
4344 else
4345 move_block_from_reg (REGNO (entry_parm),
4346 validize_mem (stack_parm), nregs,
4347 int_size_in_bytes (TREE_TYPE (parm)));
4348
4349 entry_parm = stack_parm;
4350 }
4351 }
4352 #endif
4353
4354 /* If we didn't decide this parm came in a register,
4355 by default it came on the stack. */
4356 if (entry_parm == 0)
4357 entry_parm = stack_parm;
4358
4359 /* Record permanently how this parm was passed. */
4360 DECL_INCOMING_RTL (parm) = entry_parm;
4361
4362 /* If there is actually space on the stack for this parm,
4363 count it in stack_args_size; otherwise set stack_parm to 0
4364 to indicate there is no preallocated stack slot for the parm. */
4365
4366 if (entry_parm == stack_parm
4367 || (GET_CODE (entry_parm) == PARALLEL
4368 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4369 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4370 /* On some machines, even if a parm value arrives in a register
4371 there is still an (uninitialized) stack slot allocated for it.
4372
4373 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4374 whether this parameter already has a stack slot allocated,
4375 because an arg block exists only if current_function_args_size
4376 is larger than some threshold, and we haven't calculated that
4377 yet. So, for now, we just assume that stack slots never exist
4378 in this case. */
4379 || REG_PARM_STACK_SPACE (fndecl) > 0
4380 #endif
4381 )
4382 {
4383 stack_args_size.constant += arg_size.constant;
4384 if (arg_size.var)
4385 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4386 }
4387 else
4388 /* No stack slot was pushed for this parm. */
4389 stack_parm = 0;
4390
4391 /* Update info on where next arg arrives in registers. */
4392
4393 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4394 passed_type, named_arg);
4395
4396 /* If we can't trust the parm stack slot to be aligned enough
4397 for its ultimate type, don't use that slot after entry.
4398 We'll make another stack slot, if we need one. */
4399 {
4400 unsigned int thisparm_boundary
4401 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4402
4403 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4404 stack_parm = 0;
4405 }
4406
4407 /* If parm was passed in memory, and we need to convert it on entry,
4408 don't store it back in that same slot. */
4409 if (entry_parm != 0
4410 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4411 stack_parm = 0;
4412
4413 #if 0
4414 /* Now adjust STACK_PARM to the mode and precise location
4415 where this parameter should live during execution,
4416 if we discover that it must live in the stack during execution.
4417 To make debuggers happier on big-endian machines, we store
4418 the value in the last bytes of the space available. */
4419
4420 if (nominal_mode != BLKmode && nominal_mode != passed_mode
4421 && stack_parm != 0)
4422 {
4423 rtx offset_rtx;
4424
4425 if (BYTES_BIG_ENDIAN
4426 && GET_MODE_SIZE (nominal_mode) < UNITS_PER_WORD)
4427 stack_offset.constant += (GET_MODE_SIZE (passed_mode)
4428 - GET_MODE_SIZE (nominal_mode));
4429
4430 offset_rtx = ARGS_SIZE_RTX (stack_offset);
4431 if (offset_rtx == const0_rtx)
4432 stack_parm = gen_rtx_MEM (nominal_mode, internal_arg_pointer);
4433 else
4434 stack_parm = gen_rtx_MEM (nominal_mode,
4435 gen_rtx_PLUS (Pmode,
4436 internal_arg_pointer,
4437 offset_rtx));
4438
4439 /* If this is a memory ref that contains aggregate components,
4440 mark it as such for cse and loop optimize. */
4441 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4442 }
4443 #endif /* 0 */
4444
4445 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4446 in the mode in which it arrives.
4447 STACK_PARM is an RTX for a stack slot where the parameter can live
4448 during the function (in case we want to put it there).
4449 STACK_PARM is 0 if no stack slot was pushed for it.
4450
4451 Now output code if necessary to convert ENTRY_PARM to
4452 the type in which this function declares it,
4453 and store that result in an appropriate place,
4454 which may be a pseudo reg, may be STACK_PARM,
4455 or may be a local stack slot if STACK_PARM is 0.
4456
4457 Set DECL_RTL to that place. */
4458
4459 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4460 {
4461 /* If a BLKmode arrives in registers, copy it to a stack slot.
4462 Handle calls that pass values in multiple non-contiguous
4463 locations. The Irix 6 ABI has examples of this. */
4464 if (GET_CODE (entry_parm) == REG
4465 || GET_CODE (entry_parm) == PARALLEL)
4466 {
4467 int size_stored
4468 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4469 UNITS_PER_WORD);
4470
4471 /* Note that we will be storing an integral number of words.
4472 So we have to be careful to ensure that we allocate an
4473 integral number of words. We do this below in the
4474 assign_stack_local if space was not allocated in the argument
4475 list. If it was, this will not work if PARM_BOUNDARY is not
4476 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4477 if it becomes a problem. */
4478
4479 if (stack_parm == 0)
4480 {
4481 stack_parm
4482 = assign_stack_local (GET_MODE (entry_parm),
4483 size_stored, 0);
4484
4485 /* If this is a memory ref that contains aggregate
4486 components, mark it as such for cse and loop optimize. */
4487 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4488 }
4489
4490 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4491 abort ();
4492
4493 if (TREE_READONLY (parm))
4494 RTX_UNCHANGING_P (stack_parm) = 1;
4495
4496 /* Handle calls that pass values in multiple non-contiguous
4497 locations. The Irix 6 ABI has examples of this. */
4498 if (GET_CODE (entry_parm) == PARALLEL)
4499 emit_group_store (validize_mem (stack_parm), entry_parm,
4500 int_size_in_bytes (TREE_TYPE (parm)),
4501 TYPE_ALIGN (TREE_TYPE (parm)));
4502 else
4503 move_block_from_reg (REGNO (entry_parm),
4504 validize_mem (stack_parm),
4505 size_stored / UNITS_PER_WORD,
4506 int_size_in_bytes (TREE_TYPE (parm)));
4507 }
4508 DECL_RTL (parm) = stack_parm;
4509 }
4510 else if (! ((! optimize
4511 && ! DECL_REGISTER (parm)
4512 && ! DECL_INLINE (fndecl))
4513 /* layout_decl may set this. */
4514 || TREE_ADDRESSABLE (parm)
4515 || TREE_SIDE_EFFECTS (parm)
4516 /* If -ffloat-store specified, don't put explicit
4517 float variables into registers. */
4518 || (flag_float_store
4519 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4520 /* Always assign pseudo to structure return or item passed
4521 by invisible reference. */
4522 || passed_pointer || parm == function_result_decl)
4523 {
4524 /* Store the parm in a pseudoregister during the function, but we
4525 may need to do it in a wider mode. */
4526
4527 register rtx parmreg;
4528 unsigned int regno, regnoi = 0, regnor = 0;
4529
4530 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4531
4532 promoted_nominal_mode
4533 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4534
4535 parmreg = gen_reg_rtx (promoted_nominal_mode);
4536 mark_user_reg (parmreg);
4537
4538 /* If this was an item that we received a pointer to, set DECL_RTL
4539 appropriately. */
4540 if (passed_pointer)
4541 {
4542 DECL_RTL (parm)
4543 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)), parmreg);
4544 MEM_SET_IN_STRUCT_P (DECL_RTL (parm), aggregate);
4545 }
4546 else
4547 DECL_RTL (parm) = parmreg;
4548
4549 /* Copy the value into the register. */
4550 if (nominal_mode != passed_mode
4551 || promoted_nominal_mode != promoted_mode)
4552 {
4553 int save_tree_used;
4554 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4555 mode, by the caller. We now have to convert it to
4556 NOMINAL_MODE, if different. However, PARMREG may be in
4557 a different mode than NOMINAL_MODE if it is being stored
4558 promoted.
4559
4560 If ENTRY_PARM is a hard register, it might be in a register
4561 not valid for operating in its mode (e.g., an odd-numbered
4562 register for a DFmode). In that case, moves are the only
4563 thing valid, so we can't do a convert from there. This
4564 occurs when the calling sequence allow such misaligned
4565 usages.
4566
4567 In addition, the conversion may involve a call, which could
4568 clobber parameters which haven't been copied to pseudo
4569 registers yet. Therefore, we must first copy the parm to
4570 a pseudo reg here, and save the conversion until after all
4571 parameters have been moved. */
4572
4573 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4574
4575 emit_move_insn (tempreg, validize_mem (entry_parm));
4576
4577 push_to_sequence (conversion_insns);
4578 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4579
4580 /* TREE_USED gets set erroneously during expand_assignment. */
4581 save_tree_used = TREE_USED (parm);
4582 expand_assignment (parm,
4583 make_tree (nominal_type, tempreg), 0, 0);
4584 TREE_USED (parm) = save_tree_used;
4585 conversion_insns = get_insns ();
4586 did_conversion = 1;
4587 end_sequence ();
4588 }
4589 else
4590 emit_move_insn (parmreg, validize_mem (entry_parm));
4591
4592 /* If we were passed a pointer but the actual value
4593 can safely live in a register, put it in one. */
4594 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4595 && ! ((! optimize
4596 && ! DECL_REGISTER (parm)
4597 && ! DECL_INLINE (fndecl))
4598 /* layout_decl may set this. */
4599 || TREE_ADDRESSABLE (parm)
4600 || TREE_SIDE_EFFECTS (parm)
4601 /* If -ffloat-store specified, don't put explicit
4602 float variables into registers. */
4603 || (flag_float_store
4604 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
4605 {
4606 /* We can't use nominal_mode, because it will have been set to
4607 Pmode above. We must use the actual mode of the parm. */
4608 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4609 mark_user_reg (parmreg);
4610 emit_move_insn (parmreg, DECL_RTL (parm));
4611 DECL_RTL (parm) = parmreg;
4612 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4613 now the parm. */
4614 stack_parm = 0;
4615 }
4616 #ifdef FUNCTION_ARG_CALLEE_COPIES
4617 /* If we are passed an arg by reference and it is our responsibility
4618 to make a copy, do it now.
4619 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4620 original argument, so we must recreate them in the call to
4621 FUNCTION_ARG_CALLEE_COPIES. */
4622 /* ??? Later add code to handle the case that if the argument isn't
4623 modified, don't do the copy. */
4624
4625 else if (passed_pointer
4626 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4627 TYPE_MODE (DECL_ARG_TYPE (parm)),
4628 DECL_ARG_TYPE (parm),
4629 named_arg)
4630 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4631 {
4632 rtx copy;
4633 tree type = DECL_ARG_TYPE (parm);
4634
4635 /* This sequence may involve a library call perhaps clobbering
4636 registers that haven't been copied to pseudos yet. */
4637
4638 push_to_sequence (conversion_insns);
4639
4640 if (!COMPLETE_TYPE_P (type)
4641 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4642 /* This is a variable sized object. */
4643 copy = gen_rtx_MEM (BLKmode,
4644 allocate_dynamic_stack_space
4645 (expr_size (parm), NULL_RTX,
4646 TYPE_ALIGN (type)));
4647 else
4648 copy = assign_stack_temp (TYPE_MODE (type),
4649 int_size_in_bytes (type), 1);
4650 MEM_SET_IN_STRUCT_P (copy, AGGREGATE_TYPE_P (type));
4651 RTX_UNCHANGING_P (copy) = TREE_READONLY (parm);
4652
4653 store_expr (parm, copy, 0);
4654 emit_move_insn (parmreg, XEXP (copy, 0));
4655 if (current_function_check_memory_usage)
4656 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4657 XEXP (copy, 0), Pmode,
4658 GEN_INT (int_size_in_bytes (type)),
4659 TYPE_MODE (sizetype),
4660 GEN_INT (MEMORY_USE_RW),
4661 TYPE_MODE (integer_type_node));
4662 conversion_insns = get_insns ();
4663 did_conversion = 1;
4664 end_sequence ();
4665 }
4666 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4667
4668 /* In any case, record the parm's desired stack location
4669 in case we later discover it must live in the stack.
4670
4671 If it is a COMPLEX value, store the stack location for both
4672 halves. */
4673
4674 if (GET_CODE (parmreg) == CONCAT)
4675 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4676 else
4677 regno = REGNO (parmreg);
4678
4679 if (regno >= max_parm_reg)
4680 {
4681 rtx *new;
4682 int old_max_parm_reg = max_parm_reg;
4683
4684 /* It's slow to expand this one register at a time,
4685 but it's also rare and we need max_parm_reg to be
4686 precisely correct. */
4687 max_parm_reg = regno + 1;
4688 new = (rtx *) xrealloc (parm_reg_stack_loc,
4689 max_parm_reg * sizeof (rtx));
4690 bzero ((char *) (new + old_max_parm_reg),
4691 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4692 parm_reg_stack_loc = new;
4693 }
4694
4695 if (GET_CODE (parmreg) == CONCAT)
4696 {
4697 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4698
4699 regnor = REGNO (gen_realpart (submode, parmreg));
4700 regnoi = REGNO (gen_imagpart (submode, parmreg));
4701
4702 if (stack_parm != 0)
4703 {
4704 parm_reg_stack_loc[regnor]
4705 = gen_realpart (submode, stack_parm);
4706 parm_reg_stack_loc[regnoi]
4707 = gen_imagpart (submode, stack_parm);
4708 }
4709 else
4710 {
4711 parm_reg_stack_loc[regnor] = 0;
4712 parm_reg_stack_loc[regnoi] = 0;
4713 }
4714 }
4715 else
4716 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4717
4718 /* Mark the register as eliminable if we did no conversion
4719 and it was copied from memory at a fixed offset,
4720 and the arg pointer was not copied to a pseudo-reg.
4721 If the arg pointer is a pseudo reg or the offset formed
4722 an invalid address, such memory-equivalences
4723 as we make here would screw up life analysis for it. */
4724 if (nominal_mode == passed_mode
4725 && ! did_conversion
4726 && stack_parm != 0
4727 && GET_CODE (stack_parm) == MEM
4728 && stack_offset.var == 0
4729 && reg_mentioned_p (virtual_incoming_args_rtx,
4730 XEXP (stack_parm, 0)))
4731 {
4732 rtx linsn = get_last_insn ();
4733 rtx sinsn, set;
4734
4735 /* Mark complex types separately. */
4736 if (GET_CODE (parmreg) == CONCAT)
4737 /* Scan backwards for the set of the real and
4738 imaginary parts. */
4739 for (sinsn = linsn; sinsn != 0;
4740 sinsn = prev_nonnote_insn (sinsn))
4741 {
4742 set = single_set (sinsn);
4743 if (set != 0
4744 && SET_DEST (set) == regno_reg_rtx [regnoi])
4745 REG_NOTES (sinsn)
4746 = gen_rtx_EXPR_LIST (REG_EQUIV,
4747 parm_reg_stack_loc[regnoi],
4748 REG_NOTES (sinsn));
4749 else if (set != 0
4750 && SET_DEST (set) == regno_reg_rtx [regnor])
4751 REG_NOTES (sinsn)
4752 = gen_rtx_EXPR_LIST (REG_EQUIV,
4753 parm_reg_stack_loc[regnor],
4754 REG_NOTES (sinsn));
4755 }
4756 else if ((set = single_set (linsn)) != 0
4757 && SET_DEST (set) == parmreg)
4758 REG_NOTES (linsn)
4759 = gen_rtx_EXPR_LIST (REG_EQUIV,
4760 stack_parm, REG_NOTES (linsn));
4761 }
4762
4763 /* For pointer data type, suggest pointer register. */
4764 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4765 mark_reg_pointer (parmreg,
4766 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4767
4768 }
4769 else
4770 {
4771 /* Value must be stored in the stack slot STACK_PARM
4772 during function execution. */
4773
4774 if (promoted_mode != nominal_mode)
4775 {
4776 /* Conversion is required. */
4777 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4778
4779 emit_move_insn (tempreg, validize_mem (entry_parm));
4780
4781 push_to_sequence (conversion_insns);
4782 entry_parm = convert_to_mode (nominal_mode, tempreg,
4783 TREE_UNSIGNED (TREE_TYPE (parm)));
4784 if (stack_parm)
4785 {
4786 /* ??? This may need a big-endian conversion on sparc64. */
4787 stack_parm = change_address (stack_parm, nominal_mode,
4788 NULL_RTX);
4789 }
4790 conversion_insns = get_insns ();
4791 did_conversion = 1;
4792 end_sequence ();
4793 }
4794
4795 if (entry_parm != stack_parm)
4796 {
4797 if (stack_parm == 0)
4798 {
4799 stack_parm
4800 = assign_stack_local (GET_MODE (entry_parm),
4801 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
4802 /* If this is a memory ref that contains aggregate components,
4803 mark it as such for cse and loop optimize. */
4804 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4805 }
4806
4807 if (promoted_mode != nominal_mode)
4808 {
4809 push_to_sequence (conversion_insns);
4810 emit_move_insn (validize_mem (stack_parm),
4811 validize_mem (entry_parm));
4812 conversion_insns = get_insns ();
4813 end_sequence ();
4814 }
4815 else
4816 emit_move_insn (validize_mem (stack_parm),
4817 validize_mem (entry_parm));
4818 }
4819 if (current_function_check_memory_usage)
4820 {
4821 push_to_sequence (conversion_insns);
4822 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4823 XEXP (stack_parm, 0), Pmode,
4824 GEN_INT (GET_MODE_SIZE (GET_MODE
4825 (entry_parm))),
4826 TYPE_MODE (sizetype),
4827 GEN_INT (MEMORY_USE_RW),
4828 TYPE_MODE (integer_type_node));
4829
4830 conversion_insns = get_insns ();
4831 end_sequence ();
4832 }
4833 DECL_RTL (parm) = stack_parm;
4834 }
4835
4836 /* If this "parameter" was the place where we are receiving the
4837 function's incoming structure pointer, set up the result. */
4838 if (parm == function_result_decl)
4839 {
4840 tree result = DECL_RESULT (fndecl);
4841 tree restype = TREE_TYPE (result);
4842
4843 DECL_RTL (result)
4844 = gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm));
4845
4846 MEM_SET_IN_STRUCT_P (DECL_RTL (result),
4847 AGGREGATE_TYPE_P (restype));
4848 }
4849
4850 if (TREE_THIS_VOLATILE (parm))
4851 MEM_VOLATILE_P (DECL_RTL (parm)) = 1;
4852 if (TREE_READONLY (parm))
4853 RTX_UNCHANGING_P (DECL_RTL (parm)) = 1;
4854 }
4855
4856 /* Output all parameter conversion instructions (possibly including calls)
4857 now that all parameters have been copied out of hard registers. */
4858 emit_insns (conversion_insns);
4859
4860 last_parm_insn = get_last_insn ();
4861
4862 current_function_args_size = stack_args_size.constant;
4863
4864 /* Adjust function incoming argument size for alignment and
4865 minimum length. */
4866
4867 #ifdef REG_PARM_STACK_SPACE
4868 #ifndef MAYBE_REG_PARM_STACK_SPACE
4869 current_function_args_size = MAX (current_function_args_size,
4870 REG_PARM_STACK_SPACE (fndecl));
4871 #endif
4872 #endif
4873
4874 #ifdef STACK_BOUNDARY
4875 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
4876
4877 current_function_args_size
4878 = ((current_function_args_size + STACK_BYTES - 1)
4879 / STACK_BYTES) * STACK_BYTES;
4880 #endif
4881
4882 #ifdef ARGS_GROW_DOWNWARD
4883 current_function_arg_offset_rtx
4884 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
4885 : expand_expr (size_diffop (stack_args_size.var,
4886 size_int (-stack_args_size.constant)),
4887 NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD));
4888 #else
4889 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
4890 #endif
4891
4892 /* See how many bytes, if any, of its args a function should try to pop
4893 on return. */
4894
4895 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
4896 current_function_args_size);
4897
4898 /* For stdarg.h function, save info about
4899 regs and stack space used by the named args. */
4900
4901 if (!hide_last_arg)
4902 current_function_args_info = args_so_far;
4903
4904 /* Set the rtx used for the function return value. Put this in its
4905 own variable so any optimizers that need this information don't have
4906 to include tree.h. Do this here so it gets done when an inlined
4907 function gets output. */
4908
4909 current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl));
4910 }
4911 \f
4912 /* Indicate whether REGNO is an incoming argument to the current function
4913 that was promoted to a wider mode. If so, return the RTX for the
4914 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
4915 that REGNO is promoted from and whether the promotion was signed or
4916 unsigned. */
4917
4918 #ifdef PROMOTE_FUNCTION_ARGS
4919
4920 rtx
4921 promoted_input_arg (regno, pmode, punsignedp)
4922 unsigned int regno;
4923 enum machine_mode *pmode;
4924 int *punsignedp;
4925 {
4926 tree arg;
4927
4928 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
4929 arg = TREE_CHAIN (arg))
4930 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
4931 && REGNO (DECL_INCOMING_RTL (arg)) == regno
4932 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
4933 {
4934 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
4935 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
4936
4937 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
4938 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
4939 && mode != DECL_MODE (arg))
4940 {
4941 *pmode = DECL_MODE (arg);
4942 *punsignedp = unsignedp;
4943 return DECL_INCOMING_RTL (arg);
4944 }
4945 }
4946
4947 return 0;
4948 }
4949
4950 #endif
4951 \f
4952 /* Compute the size and offset from the start of the stacked arguments for a
4953 parm passed in mode PASSED_MODE and with type TYPE.
4954
4955 INITIAL_OFFSET_PTR points to the current offset into the stacked
4956 arguments.
4957
4958 The starting offset and size for this parm are returned in *OFFSET_PTR
4959 and *ARG_SIZE_PTR, respectively.
4960
4961 IN_REGS is non-zero if the argument will be passed in registers. It will
4962 never be set if REG_PARM_STACK_SPACE is not defined.
4963
4964 FNDECL is the function in which the argument was defined.
4965
4966 There are two types of rounding that are done. The first, controlled by
4967 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
4968 list to be aligned to the specific boundary (in bits). This rounding
4969 affects the initial and starting offsets, but not the argument size.
4970
4971 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4972 optionally rounds the size of the parm to PARM_BOUNDARY. The
4973 initial offset is not affected by this rounding, while the size always
4974 is and the starting offset may be. */
4975
4976 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
4977 initial_offset_ptr is positive because locate_and_pad_parm's
4978 callers pass in the total size of args so far as
4979 initial_offset_ptr. arg_size_ptr is always positive.*/
4980
4981 void
4982 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
4983 initial_offset_ptr, offset_ptr, arg_size_ptr,
4984 alignment_pad)
4985 enum machine_mode passed_mode;
4986 tree type;
4987 int in_regs ATTRIBUTE_UNUSED;
4988 tree fndecl ATTRIBUTE_UNUSED;
4989 struct args_size *initial_offset_ptr;
4990 struct args_size *offset_ptr;
4991 struct args_size *arg_size_ptr;
4992 struct args_size *alignment_pad;
4993
4994 {
4995 tree sizetree
4996 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4997 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
4998 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
4999
5000 #ifdef REG_PARM_STACK_SPACE
5001 /* If we have found a stack parm before we reach the end of the
5002 area reserved for registers, skip that area. */
5003 if (! in_regs)
5004 {
5005 int reg_parm_stack_space = 0;
5006
5007 #ifdef MAYBE_REG_PARM_STACK_SPACE
5008 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5009 #else
5010 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5011 #endif
5012 if (reg_parm_stack_space > 0)
5013 {
5014 if (initial_offset_ptr->var)
5015 {
5016 initial_offset_ptr->var
5017 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5018 ssize_int (reg_parm_stack_space));
5019 initial_offset_ptr->constant = 0;
5020 }
5021 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5022 initial_offset_ptr->constant = reg_parm_stack_space;
5023 }
5024 }
5025 #endif /* REG_PARM_STACK_SPACE */
5026
5027 arg_size_ptr->var = 0;
5028 arg_size_ptr->constant = 0;
5029
5030 #ifdef ARGS_GROW_DOWNWARD
5031 if (initial_offset_ptr->var)
5032 {
5033 offset_ptr->constant = 0;
5034 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5035 initial_offset_ptr->var);
5036 }
5037 else
5038 {
5039 offset_ptr->constant = - initial_offset_ptr->constant;
5040 offset_ptr->var = 0;
5041 }
5042 if (where_pad != none
5043 && (TREE_CODE (sizetree) != INTEGER_CST
5044 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
5045 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5046 SUB_PARM_SIZE (*offset_ptr, sizetree);
5047 if (where_pad != downward)
5048 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5049 if (initial_offset_ptr->var)
5050 arg_size_ptr->var = size_binop (MINUS_EXPR,
5051 size_binop (MINUS_EXPR,
5052 ssize_int (0),
5053 initial_offset_ptr->var),
5054 offset_ptr->var);
5055
5056 else
5057 arg_size_ptr->constant = (- initial_offset_ptr->constant
5058 - offset_ptr->constant);
5059
5060 #else /* !ARGS_GROW_DOWNWARD */
5061 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5062 *offset_ptr = *initial_offset_ptr;
5063
5064 #ifdef PUSH_ROUNDING
5065 if (passed_mode != BLKmode)
5066 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5067 #endif
5068
5069 /* Pad_below needs the pre-rounded size to know how much to pad below
5070 so this must be done before rounding up. */
5071 if (where_pad == downward
5072 /* However, BLKmode args passed in regs have their padding done elsewhere.
5073 The stack slot must be able to hold the entire register. */
5074 && !(in_regs && passed_mode == BLKmode))
5075 pad_below (offset_ptr, passed_mode, sizetree);
5076
5077 if (where_pad != none
5078 && (TREE_CODE (sizetree) != INTEGER_CST
5079 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
5080 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5081
5082 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5083 #endif /* ARGS_GROW_DOWNWARD */
5084 }
5085
5086 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5087 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5088
5089 static void
5090 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5091 struct args_size *offset_ptr;
5092 int boundary;
5093 struct args_size *alignment_pad;
5094 {
5095 tree save_var = NULL_TREE;
5096 HOST_WIDE_INT save_constant = 0;
5097
5098 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5099
5100 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5101 {
5102 save_var = offset_ptr->var;
5103 save_constant = offset_ptr->constant;
5104 }
5105
5106 alignment_pad->var = NULL_TREE;
5107 alignment_pad->constant = 0;
5108
5109 if (boundary > BITS_PER_UNIT)
5110 {
5111 if (offset_ptr->var)
5112 {
5113 offset_ptr->var =
5114 #ifdef ARGS_GROW_DOWNWARD
5115 round_down
5116 #else
5117 round_up
5118 #endif
5119 (ARGS_SIZE_TREE (*offset_ptr),
5120 boundary / BITS_PER_UNIT);
5121 offset_ptr->constant = 0; /*?*/
5122 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5123 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5124 save_var);
5125 }
5126 else
5127 {
5128 offset_ptr->constant =
5129 #ifdef ARGS_GROW_DOWNWARD
5130 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5131 #else
5132 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5133 #endif
5134 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5135 alignment_pad->constant = offset_ptr->constant - save_constant;
5136 }
5137 }
5138 }
5139
5140 #ifndef ARGS_GROW_DOWNWARD
5141 static void
5142 pad_below (offset_ptr, passed_mode, sizetree)
5143 struct args_size *offset_ptr;
5144 enum machine_mode passed_mode;
5145 tree sizetree;
5146 {
5147 if (passed_mode != BLKmode)
5148 {
5149 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5150 offset_ptr->constant
5151 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5152 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5153 - GET_MODE_SIZE (passed_mode));
5154 }
5155 else
5156 {
5157 if (TREE_CODE (sizetree) != INTEGER_CST
5158 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5159 {
5160 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5161 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5162 /* Add it in. */
5163 ADD_PARM_SIZE (*offset_ptr, s2);
5164 SUB_PARM_SIZE (*offset_ptr, sizetree);
5165 }
5166 }
5167 }
5168 #endif
5169 \f
5170 /* Walk the tree of blocks describing the binding levels within a function
5171 and warn about uninitialized variables.
5172 This is done after calling flow_analysis and before global_alloc
5173 clobbers the pseudo-regs to hard regs. */
5174
5175 void
5176 uninitialized_vars_warning (block)
5177 tree block;
5178 {
5179 register tree decl, sub;
5180 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5181 {
5182 if (warn_uninitialized
5183 && TREE_CODE (decl) == VAR_DECL
5184 /* These warnings are unreliable for and aggregates
5185 because assigning the fields one by one can fail to convince
5186 flow.c that the entire aggregate was initialized.
5187 Unions are troublesome because members may be shorter. */
5188 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5189 && DECL_RTL (decl) != 0
5190 && GET_CODE (DECL_RTL (decl)) == REG
5191 /* Global optimizations can make it difficult to determine if a
5192 particular variable has been initialized. However, a VAR_DECL
5193 with a nonzero DECL_INITIAL had an initializer, so do not
5194 claim it is potentially uninitialized.
5195
5196 We do not care about the actual value in DECL_INITIAL, so we do
5197 not worry that it may be a dangling pointer. */
5198 && DECL_INITIAL (decl) == NULL_TREE
5199 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5200 warning_with_decl (decl,
5201 "`%s' might be used uninitialized in this function");
5202 if (extra_warnings
5203 && TREE_CODE (decl) == VAR_DECL
5204 && DECL_RTL (decl) != 0
5205 && GET_CODE (DECL_RTL (decl)) == REG
5206 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5207 warning_with_decl (decl,
5208 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5209 }
5210 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5211 uninitialized_vars_warning (sub);
5212 }
5213
5214 /* Do the appropriate part of uninitialized_vars_warning
5215 but for arguments instead of local variables. */
5216
5217 void
5218 setjmp_args_warning ()
5219 {
5220 register tree decl;
5221 for (decl = DECL_ARGUMENTS (current_function_decl);
5222 decl; decl = TREE_CHAIN (decl))
5223 if (DECL_RTL (decl) != 0
5224 && GET_CODE (DECL_RTL (decl)) == REG
5225 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5226 warning_with_decl (decl, "argument `%s' might be clobbered by `longjmp' or `vfork'");
5227 }
5228
5229 /* If this function call setjmp, put all vars into the stack
5230 unless they were declared `register'. */
5231
5232 void
5233 setjmp_protect (block)
5234 tree block;
5235 {
5236 register tree decl, sub;
5237 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5238 if ((TREE_CODE (decl) == VAR_DECL
5239 || TREE_CODE (decl) == PARM_DECL)
5240 && DECL_RTL (decl) != 0
5241 && (GET_CODE (DECL_RTL (decl)) == REG
5242 || (GET_CODE (DECL_RTL (decl)) == MEM
5243 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5244 /* If this variable came from an inline function, it must be
5245 that its life doesn't overlap the setjmp. If there was a
5246 setjmp in the function, it would already be in memory. We
5247 must exclude such variable because their DECL_RTL might be
5248 set to strange things such as virtual_stack_vars_rtx. */
5249 && ! DECL_FROM_INLINE (decl)
5250 && (
5251 #ifdef NON_SAVING_SETJMP
5252 /* If longjmp doesn't restore the registers,
5253 don't put anything in them. */
5254 NON_SAVING_SETJMP
5255 ||
5256 #endif
5257 ! DECL_REGISTER (decl)))
5258 put_var_into_stack (decl);
5259 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5260 setjmp_protect (sub);
5261 }
5262 \f
5263 /* Like the previous function, but for args instead of local variables. */
5264
5265 void
5266 setjmp_protect_args ()
5267 {
5268 register tree decl;
5269 for (decl = DECL_ARGUMENTS (current_function_decl);
5270 decl; decl = TREE_CHAIN (decl))
5271 if ((TREE_CODE (decl) == VAR_DECL
5272 || TREE_CODE (decl) == PARM_DECL)
5273 && DECL_RTL (decl) != 0
5274 && (GET_CODE (DECL_RTL (decl)) == REG
5275 || (GET_CODE (DECL_RTL (decl)) == MEM
5276 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5277 && (
5278 /* If longjmp doesn't restore the registers,
5279 don't put anything in them. */
5280 #ifdef NON_SAVING_SETJMP
5281 NON_SAVING_SETJMP
5282 ||
5283 #endif
5284 ! DECL_REGISTER (decl)))
5285 put_var_into_stack (decl);
5286 }
5287 \f
5288 /* Return the context-pointer register corresponding to DECL,
5289 or 0 if it does not need one. */
5290
5291 rtx
5292 lookup_static_chain (decl)
5293 tree decl;
5294 {
5295 tree context = decl_function_context (decl);
5296 tree link;
5297
5298 if (context == 0
5299 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5300 return 0;
5301
5302 /* We treat inline_function_decl as an alias for the current function
5303 because that is the inline function whose vars, types, etc.
5304 are being merged into the current function.
5305 See expand_inline_function. */
5306 if (context == current_function_decl || context == inline_function_decl)
5307 return virtual_stack_vars_rtx;
5308
5309 for (link = context_display; link; link = TREE_CHAIN (link))
5310 if (TREE_PURPOSE (link) == context)
5311 return RTL_EXPR_RTL (TREE_VALUE (link));
5312
5313 abort ();
5314 }
5315 \f
5316 /* Convert a stack slot address ADDR for variable VAR
5317 (from a containing function)
5318 into an address valid in this function (using a static chain). */
5319
5320 rtx
5321 fix_lexical_addr (addr, var)
5322 rtx addr;
5323 tree var;
5324 {
5325 rtx basereg;
5326 HOST_WIDE_INT displacement;
5327 tree context = decl_function_context (var);
5328 struct function *fp;
5329 rtx base = 0;
5330
5331 /* If this is the present function, we need not do anything. */
5332 if (context == current_function_decl || context == inline_function_decl)
5333 return addr;
5334
5335 for (fp = outer_function_chain; fp; fp = fp->next)
5336 if (fp->decl == context)
5337 break;
5338
5339 if (fp == 0)
5340 abort ();
5341
5342 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5343 addr = XEXP (XEXP (addr, 0), 0);
5344
5345 /* Decode given address as base reg plus displacement. */
5346 if (GET_CODE (addr) == REG)
5347 basereg = addr, displacement = 0;
5348 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5349 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5350 else
5351 abort ();
5352
5353 /* We accept vars reached via the containing function's
5354 incoming arg pointer and via its stack variables pointer. */
5355 if (basereg == fp->internal_arg_pointer)
5356 {
5357 /* If reached via arg pointer, get the arg pointer value
5358 out of that function's stack frame.
5359
5360 There are two cases: If a separate ap is needed, allocate a
5361 slot in the outer function for it and dereference it that way.
5362 This is correct even if the real ap is actually a pseudo.
5363 Otherwise, just adjust the offset from the frame pointer to
5364 compensate. */
5365
5366 #ifdef NEED_SEPARATE_AP
5367 rtx addr;
5368
5369 if (fp->x_arg_pointer_save_area == 0)
5370 fp->x_arg_pointer_save_area
5371 = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
5372
5373 addr = fix_lexical_addr (XEXP (fp->x_arg_pointer_save_area, 0), var);
5374 addr = memory_address (Pmode, addr);
5375
5376 base = copy_to_reg (gen_rtx_MEM (Pmode, addr));
5377 #else
5378 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5379 base = lookup_static_chain (var);
5380 #endif
5381 }
5382
5383 else if (basereg == virtual_stack_vars_rtx)
5384 {
5385 /* This is the same code as lookup_static_chain, duplicated here to
5386 avoid an extra call to decl_function_context. */
5387 tree link;
5388
5389 for (link = context_display; link; link = TREE_CHAIN (link))
5390 if (TREE_PURPOSE (link) == context)
5391 {
5392 base = RTL_EXPR_RTL (TREE_VALUE (link));
5393 break;
5394 }
5395 }
5396
5397 if (base == 0)
5398 abort ();
5399
5400 /* Use same offset, relative to appropriate static chain or argument
5401 pointer. */
5402 return plus_constant (base, displacement);
5403 }
5404 \f
5405 /* Return the address of the trampoline for entering nested fn FUNCTION.
5406 If necessary, allocate a trampoline (in the stack frame)
5407 and emit rtl to initialize its contents (at entry to this function). */
5408
5409 rtx
5410 trampoline_address (function)
5411 tree function;
5412 {
5413 tree link;
5414 tree rtlexp;
5415 rtx tramp;
5416 struct function *fp;
5417 tree fn_context;
5418
5419 /* Find an existing trampoline and return it. */
5420 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5421 if (TREE_PURPOSE (link) == function)
5422 return
5423 round_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5424
5425 for (fp = outer_function_chain; fp; fp = fp->next)
5426 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5427 if (TREE_PURPOSE (link) == function)
5428 {
5429 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5430 function);
5431 return round_trampoline_addr (tramp);
5432 }
5433
5434 /* None exists; we must make one. */
5435
5436 /* Find the `struct function' for the function containing FUNCTION. */
5437 fp = 0;
5438 fn_context = decl_function_context (function);
5439 if (fn_context != current_function_decl
5440 && fn_context != inline_function_decl)
5441 for (fp = outer_function_chain; fp; fp = fp->next)
5442 if (fp->decl == fn_context)
5443 break;
5444
5445 /* Allocate run-time space for this trampoline
5446 (usually in the defining function's stack frame). */
5447 #ifdef ALLOCATE_TRAMPOLINE
5448 tramp = ALLOCATE_TRAMPOLINE (fp);
5449 #else
5450 /* If rounding needed, allocate extra space
5451 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5452 #ifdef TRAMPOLINE_ALIGNMENT
5453 #define TRAMPOLINE_REAL_SIZE \
5454 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5455 #else
5456 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5457 #endif
5458 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5459 fp ? fp : cfun);
5460 #endif
5461
5462 /* Record the trampoline for reuse and note it for later initialization
5463 by expand_function_end. */
5464 if (fp != 0)
5465 {
5466 push_obstacks (fp->function_maybepermanent_obstack,
5467 fp->function_maybepermanent_obstack);
5468 rtlexp = make_node (RTL_EXPR);
5469 RTL_EXPR_RTL (rtlexp) = tramp;
5470 fp->x_trampoline_list = tree_cons (function, rtlexp,
5471 fp->x_trampoline_list);
5472 pop_obstacks ();
5473 }
5474 else
5475 {
5476 /* Make the RTL_EXPR node temporary, not momentary, so that the
5477 trampoline_list doesn't become garbage. */
5478 int momentary = suspend_momentary ();
5479 rtlexp = make_node (RTL_EXPR);
5480 resume_momentary (momentary);
5481
5482 RTL_EXPR_RTL (rtlexp) = tramp;
5483 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5484 }
5485
5486 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5487 return round_trampoline_addr (tramp);
5488 }
5489
5490 /* Given a trampoline address,
5491 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5492
5493 static rtx
5494 round_trampoline_addr (tramp)
5495 rtx tramp;
5496 {
5497 #ifdef TRAMPOLINE_ALIGNMENT
5498 /* Round address up to desired boundary. */
5499 rtx temp = gen_reg_rtx (Pmode);
5500 temp = expand_binop (Pmode, add_optab, tramp,
5501 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
5502 temp, 0, OPTAB_LIB_WIDEN);
5503 tramp = expand_binop (Pmode, and_optab, temp,
5504 GEN_INT (- TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
5505 temp, 0, OPTAB_LIB_WIDEN);
5506 #endif
5507 return tramp;
5508 }
5509 \f
5510 /* Put all this function's BLOCK nodes including those that are chained
5511 onto the first block into a vector, and return it.
5512 Also store in each NOTE for the beginning or end of a block
5513 the index of that block in the vector.
5514 The arguments are BLOCK, the chain of top-level blocks of the function,
5515 and INSNS, the insn chain of the function. */
5516
5517 void
5518 identify_blocks ()
5519 {
5520 int n_blocks;
5521 tree *block_vector, *last_block_vector;
5522 tree *block_stack;
5523 tree block = DECL_INITIAL (current_function_decl);
5524
5525 if (block == 0)
5526 return;
5527
5528 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5529 depth-first order. */
5530 block_vector = get_block_vector (block, &n_blocks);
5531 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5532
5533 last_block_vector = identify_blocks_1 (get_insns (),
5534 block_vector + 1,
5535 block_vector + n_blocks,
5536 block_stack);
5537
5538 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5539 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5540 if (0 && last_block_vector != block_vector + n_blocks)
5541 abort ();
5542
5543 free (block_vector);
5544 free (block_stack);
5545 }
5546
5547 /* Subroutine of identify_blocks. Do the block substitution on the
5548 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5549
5550 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5551 BLOCK_VECTOR is incremented for each block seen. */
5552
5553 static tree *
5554 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5555 rtx insns;
5556 tree *block_vector;
5557 tree *end_block_vector;
5558 tree *orig_block_stack;
5559 {
5560 rtx insn;
5561 tree *block_stack = orig_block_stack;
5562
5563 for (insn = insns; insn; insn = NEXT_INSN (insn))
5564 {
5565 if (GET_CODE (insn) == NOTE)
5566 {
5567 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5568 {
5569 tree b;
5570
5571 /* If there are more block notes than BLOCKs, something
5572 is badly wrong. */
5573 if (block_vector == end_block_vector)
5574 abort ();
5575
5576 b = *block_vector++;
5577 NOTE_BLOCK (insn) = b;
5578 *block_stack++ = b;
5579 }
5580 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5581 {
5582 /* If there are more NOTE_INSN_BLOCK_ENDs than
5583 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5584 if (block_stack == orig_block_stack)
5585 abort ();
5586
5587 NOTE_BLOCK (insn) = *--block_stack;
5588 }
5589 }
5590 else if (GET_CODE (insn) == CALL_INSN
5591 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5592 {
5593 rtx cp = PATTERN (insn);
5594
5595 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5596 end_block_vector, block_stack);
5597 if (XEXP (cp, 1))
5598 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5599 end_block_vector, block_stack);
5600 if (XEXP (cp, 2))
5601 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5602 end_block_vector, block_stack);
5603 }
5604 }
5605
5606 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5607 something is badly wrong. */
5608 if (block_stack != orig_block_stack)
5609 abort ();
5610
5611 return block_vector;
5612 }
5613
5614 /* Identify BLOCKs referenced by more than one
5615 NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */
5616
5617 void
5618 reorder_blocks ()
5619 {
5620 tree block = DECL_INITIAL (current_function_decl);
5621 varray_type block_stack;
5622
5623 if (block == NULL_TREE)
5624 return;
5625
5626 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5627
5628 /* Prune the old trees away, so that they don't get in the way. */
5629 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5630 BLOCK_CHAIN (block) = NULL_TREE;
5631
5632 reorder_blocks_1 (get_insns (), block, &block_stack);
5633
5634 BLOCK_SUBBLOCKS (block)
5635 = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5636
5637 VARRAY_FREE (block_stack);
5638 }
5639
5640 /* Helper function for reorder_blocks. Process the insn chain beginning
5641 at INSNS. Recurse for CALL_PLACEHOLDER insns. */
5642
5643 static void
5644 reorder_blocks_1 (insns, current_block, p_block_stack)
5645 rtx insns;
5646 tree current_block;
5647 varray_type *p_block_stack;
5648 {
5649 rtx insn;
5650
5651 for (insn = insns; insn; insn = NEXT_INSN (insn))
5652 {
5653 if (GET_CODE (insn) == NOTE)
5654 {
5655 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5656 {
5657 tree block = NOTE_BLOCK (insn);
5658 /* If we have seen this block before, copy it. */
5659 if (TREE_ASM_WRITTEN (block))
5660 {
5661 block = copy_node (block);
5662 NOTE_BLOCK (insn) = block;
5663 }
5664 BLOCK_SUBBLOCKS (block) = 0;
5665 TREE_ASM_WRITTEN (block) = 1;
5666 BLOCK_SUPERCONTEXT (block) = current_block;
5667 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5668 BLOCK_SUBBLOCKS (current_block) = block;
5669 current_block = block;
5670 VARRAY_PUSH_TREE (*p_block_stack, block);
5671 }
5672 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5673 {
5674 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
5675 VARRAY_POP (*p_block_stack);
5676 BLOCK_SUBBLOCKS (current_block)
5677 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5678 current_block = BLOCK_SUPERCONTEXT (current_block);
5679 }
5680 }
5681 else if (GET_CODE (insn) == CALL_INSN
5682 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5683 {
5684 rtx cp = PATTERN (insn);
5685 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
5686 if (XEXP (cp, 1))
5687 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
5688 if (XEXP (cp, 2))
5689 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
5690 }
5691 }
5692 }
5693
5694 /* Reverse the order of elements in the chain T of blocks,
5695 and return the new head of the chain (old last element). */
5696
5697 static tree
5698 blocks_nreverse (t)
5699 tree t;
5700 {
5701 register tree prev = 0, decl, next;
5702 for (decl = t; decl; decl = next)
5703 {
5704 next = BLOCK_CHAIN (decl);
5705 BLOCK_CHAIN (decl) = prev;
5706 prev = decl;
5707 }
5708 return prev;
5709 }
5710
5711 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
5712 non-NULL, list them all into VECTOR, in a depth-first preorder
5713 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
5714 blocks. */
5715
5716 static int
5717 all_blocks (block, vector)
5718 tree block;
5719 tree *vector;
5720 {
5721 int n_blocks = 0;
5722
5723 while (block)
5724 {
5725 TREE_ASM_WRITTEN (block) = 0;
5726
5727 /* Record this block. */
5728 if (vector)
5729 vector[n_blocks] = block;
5730
5731 ++n_blocks;
5732
5733 /* Record the subblocks, and their subblocks... */
5734 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
5735 vector ? vector + n_blocks : 0);
5736 block = BLOCK_CHAIN (block);
5737 }
5738
5739 return n_blocks;
5740 }
5741
5742 /* Return a vector containing all the blocks rooted at BLOCK. The
5743 number of elements in the vector is stored in N_BLOCKS_P. The
5744 vector is dynamically allocated; it is the caller's responsibility
5745 to call `free' on the pointer returned. */
5746
5747 static tree *
5748 get_block_vector (block, n_blocks_p)
5749 tree block;
5750 int *n_blocks_p;
5751 {
5752 tree *block_vector;
5753
5754 *n_blocks_p = all_blocks (block, NULL);
5755 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
5756 all_blocks (block, block_vector);
5757
5758 return block_vector;
5759 }
5760
5761 static int next_block_index = 2;
5762
5763 /* Set BLOCK_NUMBER for all the blocks in FN. */
5764
5765 void
5766 number_blocks (fn)
5767 tree fn;
5768 {
5769 int i;
5770 int n_blocks;
5771 tree *block_vector;
5772
5773 /* For SDB and XCOFF debugging output, we start numbering the blocks
5774 from 1 within each function, rather than keeping a running
5775 count. */
5776 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
5777 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
5778 next_block_index = 1;
5779 #endif
5780
5781 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
5782
5783 /* The top-level BLOCK isn't numbered at all. */
5784 for (i = 1; i < n_blocks; ++i)
5785 /* We number the blocks from two. */
5786 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
5787
5788 free (block_vector);
5789
5790 return;
5791 }
5792
5793 \f
5794 /* Allocate a function structure and reset its contents to the defaults. */
5795 static void
5796 prepare_function_start ()
5797 {
5798 cfun = (struct function *) xcalloc (1, sizeof (struct function));
5799
5800 init_stmt_for_function ();
5801 init_eh_for_function ();
5802
5803 cse_not_expected = ! optimize;
5804
5805 /* Caller save not needed yet. */
5806 caller_save_needed = 0;
5807
5808 /* No stack slots have been made yet. */
5809 stack_slot_list = 0;
5810
5811 current_function_has_nonlocal_label = 0;
5812 current_function_has_nonlocal_goto = 0;
5813
5814 /* There is no stack slot for handling nonlocal gotos. */
5815 nonlocal_goto_handler_slots = 0;
5816 nonlocal_goto_stack_level = 0;
5817
5818 /* No labels have been declared for nonlocal use. */
5819 nonlocal_labels = 0;
5820 nonlocal_goto_handler_labels = 0;
5821
5822 /* No function calls so far in this function. */
5823 function_call_count = 0;
5824
5825 /* No parm regs have been allocated.
5826 (This is important for output_inline_function.) */
5827 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
5828
5829 /* Initialize the RTL mechanism. */
5830 init_emit ();
5831
5832 /* Initialize the queue of pending postincrement and postdecrements,
5833 and some other info in expr.c. */
5834 init_expr ();
5835
5836 /* We haven't done register allocation yet. */
5837 reg_renumber = 0;
5838
5839 init_varasm_status (cfun);
5840
5841 /* Clear out data used for inlining. */
5842 cfun->inlinable = 0;
5843 cfun->original_decl_initial = 0;
5844 cfun->original_arg_vector = 0;
5845
5846 #ifdef STACK_BOUNDARY
5847 cfun->stack_alignment_needed = STACK_BOUNDARY;
5848 cfun->preferred_stack_boundary = STACK_BOUNDARY;
5849 #else
5850 cfun->stack_alignment_needed = 0;
5851 cfun->preferred_stack_boundary = 0;
5852 #endif
5853
5854 /* Set if a call to setjmp is seen. */
5855 current_function_calls_setjmp = 0;
5856
5857 /* Set if a call to longjmp is seen. */
5858 current_function_calls_longjmp = 0;
5859
5860 current_function_calls_alloca = 0;
5861 current_function_contains_functions = 0;
5862 current_function_is_leaf = 0;
5863 current_function_nothrow = 0;
5864 current_function_sp_is_unchanging = 0;
5865 current_function_uses_only_leaf_regs = 0;
5866 current_function_has_computed_jump = 0;
5867 current_function_is_thunk = 0;
5868
5869 current_function_returns_pcc_struct = 0;
5870 current_function_returns_struct = 0;
5871 current_function_epilogue_delay_list = 0;
5872 current_function_uses_const_pool = 0;
5873 current_function_uses_pic_offset_table = 0;
5874 current_function_cannot_inline = 0;
5875
5876 /* We have not yet needed to make a label to jump to for tail-recursion. */
5877 tail_recursion_label = 0;
5878
5879 /* We haven't had a need to make a save area for ap yet. */
5880 arg_pointer_save_area = 0;
5881
5882 /* No stack slots allocated yet. */
5883 frame_offset = 0;
5884
5885 /* No SAVE_EXPRs in this function yet. */
5886 save_expr_regs = 0;
5887
5888 /* No RTL_EXPRs in this function yet. */
5889 rtl_expr_chain = 0;
5890
5891 /* Set up to allocate temporaries. */
5892 init_temp_slots ();
5893
5894 /* Indicate that we need to distinguish between the return value of the
5895 present function and the return value of a function being called. */
5896 rtx_equal_function_value_matters = 1;
5897
5898 /* Indicate that we have not instantiated virtual registers yet. */
5899 virtuals_instantiated = 0;
5900
5901 /* Indicate we have no need of a frame pointer yet. */
5902 frame_pointer_needed = 0;
5903
5904 /* By default assume not varargs or stdarg. */
5905 current_function_varargs = 0;
5906 current_function_stdarg = 0;
5907
5908 /* We haven't made any trampolines for this function yet. */
5909 trampoline_list = 0;
5910
5911 init_pending_stack_adjust ();
5912 inhibit_defer_pop = 0;
5913
5914 current_function_outgoing_args_size = 0;
5915
5916 if (init_lang_status)
5917 (*init_lang_status) (cfun);
5918 if (init_machine_status)
5919 (*init_machine_status) (cfun);
5920 }
5921
5922 /* Initialize the rtl expansion mechanism so that we can do simple things
5923 like generate sequences. This is used to provide a context during global
5924 initialization of some passes. */
5925 void
5926 init_dummy_function_start ()
5927 {
5928 prepare_function_start ();
5929 }
5930
5931 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5932 and initialize static variables for generating RTL for the statements
5933 of the function. */
5934
5935 void
5936 init_function_start (subr, filename, line)
5937 tree subr;
5938 char *filename;
5939 int line;
5940 {
5941 prepare_function_start ();
5942
5943 /* Remember this function for later. */
5944 cfun->next_global = all_functions;
5945 all_functions = cfun;
5946
5947 current_function_name = (*decl_printable_name) (subr, 2);
5948 cfun->decl = subr;
5949
5950 /* Nonzero if this is a nested function that uses a static chain. */
5951
5952 current_function_needs_context
5953 = (decl_function_context (current_function_decl) != 0
5954 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
5955
5956 /* Within function body, compute a type's size as soon it is laid out. */
5957 immediate_size_expand++;
5958
5959 /* Prevent ever trying to delete the first instruction of a function.
5960 Also tell final how to output a linenum before the function prologue.
5961 Note linenums could be missing, e.g. when compiling a Java .class file. */
5962 if (line > 0)
5963 emit_line_note (filename, line);
5964
5965 /* Make sure first insn is a note even if we don't want linenums.
5966 This makes sure the first insn will never be deleted.
5967 Also, final expects a note to appear there. */
5968 emit_note (NULL_PTR, NOTE_INSN_DELETED);
5969
5970 /* Set flags used by final.c. */
5971 if (aggregate_value_p (DECL_RESULT (subr)))
5972 {
5973 #ifdef PCC_STATIC_STRUCT_RETURN
5974 current_function_returns_pcc_struct = 1;
5975 #endif
5976 current_function_returns_struct = 1;
5977 }
5978
5979 /* Warn if this value is an aggregate type,
5980 regardless of which calling convention we are using for it. */
5981 if (warn_aggregate_return
5982 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
5983 warning ("function returns an aggregate");
5984
5985 current_function_returns_pointer
5986 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
5987 }
5988
5989 /* Make sure all values used by the optimization passes have sane
5990 defaults. */
5991 void
5992 init_function_for_compilation ()
5993 {
5994 reg_renumber = 0;
5995
5996 /* No prologue/epilogue insns yet. */
5997 VARRAY_GROW (prologue, 0);
5998 VARRAY_GROW (epilogue, 0);
5999 VARRAY_GROW (sibcall_epilogue, 0);
6000 }
6001
6002 /* Indicate that the current function uses extra args
6003 not explicitly mentioned in the argument list in any fashion. */
6004
6005 void
6006 mark_varargs ()
6007 {
6008 current_function_varargs = 1;
6009 }
6010
6011 /* Expand a call to __main at the beginning of a possible main function. */
6012
6013 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6014 #undef HAS_INIT_SECTION
6015 #define HAS_INIT_SECTION
6016 #endif
6017
6018 void
6019 expand_main_function ()
6020 {
6021 #if !defined (HAS_INIT_SECTION)
6022 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0,
6023 VOIDmode, 0);
6024 #endif /* not HAS_INIT_SECTION */
6025 }
6026 \f
6027 extern struct obstack permanent_obstack;
6028
6029 /* Start the RTL for a new function, and set variables used for
6030 emitting RTL.
6031 SUBR is the FUNCTION_DECL node.
6032 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6033 the function's parameters, which must be run at any return statement. */
6034
6035 void
6036 expand_function_start (subr, parms_have_cleanups)
6037 tree subr;
6038 int parms_have_cleanups;
6039 {
6040 tree tem;
6041 rtx last_ptr = NULL_RTX;
6042
6043 /* Make sure volatile mem refs aren't considered
6044 valid operands of arithmetic insns. */
6045 init_recog_no_volatile ();
6046
6047 /* Set this before generating any memory accesses. */
6048 current_function_check_memory_usage
6049 = (flag_check_memory_usage
6050 && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl));
6051
6052 current_function_instrument_entry_exit
6053 = (flag_instrument_function_entry_exit
6054 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6055
6056 current_function_limit_stack
6057 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6058
6059 /* If function gets a static chain arg, store it in the stack frame.
6060 Do this first, so it gets the first stack slot offset. */
6061 if (current_function_needs_context)
6062 {
6063 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6064
6065 /* Delay copying static chain if it is not a register to avoid
6066 conflicts with regs used for parameters. */
6067 if (! SMALL_REGISTER_CLASSES
6068 || GET_CODE (static_chain_incoming_rtx) == REG)
6069 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6070 }
6071
6072 /* If the parameters of this function need cleaning up, get a label
6073 for the beginning of the code which executes those cleanups. This must
6074 be done before doing anything with return_label. */
6075 if (parms_have_cleanups)
6076 cleanup_label = gen_label_rtx ();
6077 else
6078 cleanup_label = 0;
6079
6080 /* Make the label for return statements to jump to, if this machine
6081 does not have a one-instruction return and uses an epilogue,
6082 or if it returns a structure, or if it has parm cleanups. */
6083 #ifdef HAVE_return
6084 if (cleanup_label == 0 && HAVE_return
6085 && ! current_function_instrument_entry_exit
6086 && ! current_function_returns_pcc_struct
6087 && ! (current_function_returns_struct && ! optimize))
6088 return_label = 0;
6089 else
6090 return_label = gen_label_rtx ();
6091 #else
6092 return_label = gen_label_rtx ();
6093 #endif
6094
6095 /* Initialize rtx used to return the value. */
6096 /* Do this before assign_parms so that we copy the struct value address
6097 before any library calls that assign parms might generate. */
6098
6099 /* Decide whether to return the value in memory or in a register. */
6100 if (aggregate_value_p (DECL_RESULT (subr)))
6101 {
6102 /* Returning something that won't go in a register. */
6103 register rtx value_address = 0;
6104
6105 #ifdef PCC_STATIC_STRUCT_RETURN
6106 if (current_function_returns_pcc_struct)
6107 {
6108 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6109 value_address = assemble_static_space (size);
6110 }
6111 else
6112 #endif
6113 {
6114 /* Expect to be passed the address of a place to store the value.
6115 If it is passed as an argument, assign_parms will take care of
6116 it. */
6117 if (struct_value_incoming_rtx)
6118 {
6119 value_address = gen_reg_rtx (Pmode);
6120 emit_move_insn (value_address, struct_value_incoming_rtx);
6121 }
6122 }
6123 if (value_address)
6124 {
6125 DECL_RTL (DECL_RESULT (subr))
6126 = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6127 MEM_SET_IN_STRUCT_P (DECL_RTL (DECL_RESULT (subr)),
6128 AGGREGATE_TYPE_P (TREE_TYPE
6129 (DECL_RESULT
6130 (subr))));
6131 }
6132 }
6133 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6134 /* If return mode is void, this decl rtl should not be used. */
6135 DECL_RTL (DECL_RESULT (subr)) = 0;
6136 else if (parms_have_cleanups || current_function_instrument_entry_exit)
6137 {
6138 /* If function will end with cleanup code for parms,
6139 compute the return values into a pseudo reg,
6140 which we will copy into the true return register
6141 after the cleanups are done. */
6142
6143 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
6144
6145 #ifdef PROMOTE_FUNCTION_RETURN
6146 tree type = TREE_TYPE (DECL_RESULT (subr));
6147 int unsignedp = TREE_UNSIGNED (type);
6148
6149 mode = promote_mode (type, mode, &unsignedp, 1);
6150 #endif
6151
6152 DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode);
6153 }
6154 else
6155 /* Scalar, returned in a register. */
6156 {
6157 #ifdef FUNCTION_OUTGOING_VALUE
6158 DECL_RTL (DECL_RESULT (subr))
6159 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
6160 #else
6161 DECL_RTL (DECL_RESULT (subr))
6162 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
6163 #endif
6164
6165 /* Mark this reg as the function's return value. */
6166 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
6167 {
6168 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
6169 /* Needed because we may need to move this to memory
6170 in case it's a named return value whose address is taken. */
6171 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6172 }
6173 }
6174
6175 /* Initialize rtx for parameters and local variables.
6176 In some cases this requires emitting insns. */
6177
6178 assign_parms (subr);
6179
6180 /* Copy the static chain now if it wasn't a register. The delay is to
6181 avoid conflicts with the parameter passing registers. */
6182
6183 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6184 if (GET_CODE (static_chain_incoming_rtx) != REG)
6185 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6186
6187 /* The following was moved from init_function_start.
6188 The move is supposed to make sdb output more accurate. */
6189 /* Indicate the beginning of the function body,
6190 as opposed to parm setup. */
6191 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
6192
6193 if (GET_CODE (get_last_insn ()) != NOTE)
6194 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6195 parm_birth_insn = get_last_insn ();
6196
6197 context_display = 0;
6198 if (current_function_needs_context)
6199 {
6200 /* Fetch static chain values for containing functions. */
6201 tem = decl_function_context (current_function_decl);
6202 /* Copy the static chain pointer into a pseudo. If we have
6203 small register classes, copy the value from memory if
6204 static_chain_incoming_rtx is a REG. */
6205 if (tem)
6206 {
6207 /* If the static chain originally came in a register, put it back
6208 there, then move it out in the next insn. The reason for
6209 this peculiar code is to satisfy function integration. */
6210 if (SMALL_REGISTER_CLASSES
6211 && GET_CODE (static_chain_incoming_rtx) == REG)
6212 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6213 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6214 }
6215
6216 while (tem)
6217 {
6218 tree rtlexp = make_node (RTL_EXPR);
6219
6220 RTL_EXPR_RTL (rtlexp) = last_ptr;
6221 context_display = tree_cons (tem, rtlexp, context_display);
6222 tem = decl_function_context (tem);
6223 if (tem == 0)
6224 break;
6225 /* Chain thru stack frames, assuming pointer to next lexical frame
6226 is found at the place we always store it. */
6227 #ifdef FRAME_GROWS_DOWNWARD
6228 last_ptr = plus_constant (last_ptr, - GET_MODE_SIZE (Pmode));
6229 #endif
6230 last_ptr = copy_to_reg (gen_rtx_MEM (Pmode,
6231 memory_address (Pmode,
6232 last_ptr)));
6233
6234 /* If we are not optimizing, ensure that we know that this
6235 piece of context is live over the entire function. */
6236 if (! optimize)
6237 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6238 save_expr_regs);
6239 }
6240 }
6241
6242 if (current_function_instrument_entry_exit)
6243 {
6244 rtx fun = DECL_RTL (current_function_decl);
6245 if (GET_CODE (fun) == MEM)
6246 fun = XEXP (fun, 0);
6247 else
6248 abort ();
6249 emit_library_call (profile_function_entry_libfunc, 0, VOIDmode, 2,
6250 fun, Pmode,
6251 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6252 0,
6253 hard_frame_pointer_rtx),
6254 Pmode);
6255 }
6256
6257 /* After the display initializations is where the tail-recursion label
6258 should go, if we end up needing one. Ensure we have a NOTE here
6259 since some things (like trampolines) get placed before this. */
6260 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
6261
6262 /* Evaluate now the sizes of any types declared among the arguments. */
6263 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
6264 {
6265 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode,
6266 EXPAND_MEMORY_USE_BAD);
6267 /* Flush the queue in case this parameter declaration has
6268 side-effects. */
6269 emit_queue ();
6270 }
6271
6272 /* Make sure there is a line number after the function entry setup code. */
6273 force_next_line_note ();
6274 }
6275 \f
6276 /* Undo the effects of init_dummy_function_start. */
6277 void
6278 expand_dummy_function_end ()
6279 {
6280 /* End any sequences that failed to be closed due to syntax errors. */
6281 while (in_sequence_p ())
6282 end_sequence ();
6283
6284 /* Outside function body, can't compute type's actual size
6285 until next function's body starts. */
6286
6287 free_after_parsing (cfun);
6288 free_after_compilation (cfun);
6289 free (cfun);
6290 cfun = 0;
6291 }
6292
6293 /* Call DOIT for each hard register used as a return value from
6294 the current function. */
6295
6296 void
6297 diddle_return_value (doit, arg)
6298 void (*doit) PARAMS ((rtx, void *));
6299 void *arg;
6300 {
6301 rtx outgoing = current_function_return_rtx;
6302
6303 if (! outgoing)
6304 return;
6305
6306 if (GET_CODE (outgoing) == REG
6307 && REGNO (outgoing) >= FIRST_PSEUDO_REGISTER)
6308 {
6309 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6310 #ifdef FUNCTION_OUTGOING_VALUE
6311 outgoing = FUNCTION_OUTGOING_VALUE (type, current_function_decl);
6312 #else
6313 outgoing = FUNCTION_VALUE (type, current_function_decl);
6314 #endif
6315 /* If this is a BLKmode structure being returned in registers, then use
6316 the mode computed in expand_return. */
6317 if (GET_MODE (outgoing) == BLKmode)
6318 PUT_MODE (outgoing,
6319 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6320 }
6321
6322 if (GET_CODE (outgoing) == REG)
6323 (*doit) (outgoing, arg);
6324 else if (GET_CODE (outgoing) == PARALLEL)
6325 {
6326 int i;
6327
6328 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6329 {
6330 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6331
6332 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6333 (*doit) (x, arg);
6334 }
6335 }
6336 }
6337
6338 static void
6339 do_clobber_return_reg (reg, arg)
6340 rtx reg;
6341 void *arg ATTRIBUTE_UNUSED;
6342 {
6343 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6344 }
6345
6346 void
6347 clobber_return_register ()
6348 {
6349 diddle_return_value (do_clobber_return_reg, NULL);
6350 }
6351
6352 static void
6353 do_use_return_reg (reg, arg)
6354 rtx reg;
6355 void *arg ATTRIBUTE_UNUSED;
6356 {
6357 emit_insn (gen_rtx_USE (VOIDmode, reg));
6358 }
6359
6360 void
6361 use_return_register ()
6362 {
6363 diddle_return_value (do_use_return_reg, NULL);
6364 }
6365
6366 /* Generate RTL for the end of the current function.
6367 FILENAME and LINE are the current position in the source file.
6368
6369 It is up to language-specific callers to do cleanups for parameters--
6370 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6371
6372 void
6373 expand_function_end (filename, line, end_bindings)
6374 char *filename;
6375 int line;
6376 int end_bindings;
6377 {
6378 tree link;
6379
6380 #ifdef TRAMPOLINE_TEMPLATE
6381 static rtx initial_trampoline;
6382 #endif
6383
6384 finish_expr_for_function ();
6385
6386 #ifdef NON_SAVING_SETJMP
6387 /* Don't put any variables in registers if we call setjmp
6388 on a machine that fails to restore the registers. */
6389 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6390 {
6391 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6392 setjmp_protect (DECL_INITIAL (current_function_decl));
6393
6394 setjmp_protect_args ();
6395 }
6396 #endif
6397
6398 /* Save the argument pointer if a save area was made for it. */
6399 if (arg_pointer_save_area)
6400 {
6401 /* arg_pointer_save_area may not be a valid memory address, so we
6402 have to check it and fix it if necessary. */
6403 rtx seq;
6404 start_sequence ();
6405 emit_move_insn (validize_mem (arg_pointer_save_area),
6406 virtual_incoming_args_rtx);
6407 seq = gen_sequence ();
6408 end_sequence ();
6409 emit_insn_before (seq, tail_recursion_reentry);
6410 }
6411
6412 /* Initialize any trampolines required by this function. */
6413 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6414 {
6415 tree function = TREE_PURPOSE (link);
6416 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6417 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6418 #ifdef TRAMPOLINE_TEMPLATE
6419 rtx blktramp;
6420 #endif
6421 rtx seq;
6422
6423 #ifdef TRAMPOLINE_TEMPLATE
6424 /* First make sure this compilation has a template for
6425 initializing trampolines. */
6426 if (initial_trampoline == 0)
6427 {
6428 end_temporary_allocation ();
6429 initial_trampoline
6430 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6431 resume_temporary_allocation ();
6432
6433 ggc_add_rtx_root (&initial_trampoline, 1);
6434 }
6435 #endif
6436
6437 /* Generate insns to initialize the trampoline. */
6438 start_sequence ();
6439 tramp = round_trampoline_addr (XEXP (tramp, 0));
6440 #ifdef TRAMPOLINE_TEMPLATE
6441 blktramp = change_address (initial_trampoline, BLKmode, tramp);
6442 emit_block_move (blktramp, initial_trampoline,
6443 GEN_INT (TRAMPOLINE_SIZE),
6444 TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
6445 #endif
6446 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6447 seq = get_insns ();
6448 end_sequence ();
6449
6450 /* Put those insns at entry to the containing function (this one). */
6451 emit_insns_before (seq, tail_recursion_reentry);
6452 }
6453
6454 /* If we are doing stack checking and this function makes calls,
6455 do a stack probe at the start of the function to ensure we have enough
6456 space for another stack frame. */
6457 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6458 {
6459 rtx insn, seq;
6460
6461 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6462 if (GET_CODE (insn) == CALL_INSN)
6463 {
6464 start_sequence ();
6465 probe_stack_range (STACK_CHECK_PROTECT,
6466 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6467 seq = get_insns ();
6468 end_sequence ();
6469 emit_insns_before (seq, tail_recursion_reentry);
6470 break;
6471 }
6472 }
6473
6474 /* Warn about unused parms if extra warnings were specified. */
6475 if (warn_unused && extra_warnings)
6476 {
6477 tree decl;
6478
6479 for (decl = DECL_ARGUMENTS (current_function_decl);
6480 decl; decl = TREE_CHAIN (decl))
6481 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6482 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6483 warning_with_decl (decl, "unused parameter `%s'");
6484 }
6485
6486 /* Delete handlers for nonlocal gotos if nothing uses them. */
6487 if (nonlocal_goto_handler_slots != 0
6488 && ! current_function_has_nonlocal_label)
6489 delete_handlers ();
6490
6491 /* End any sequences that failed to be closed due to syntax errors. */
6492 while (in_sequence_p ())
6493 end_sequence ();
6494
6495 /* Outside function body, can't compute type's actual size
6496 until next function's body starts. */
6497 immediate_size_expand--;
6498
6499 clear_pending_stack_adjust ();
6500 do_pending_stack_adjust ();
6501
6502 /* Mark the end of the function body.
6503 If control reaches this insn, the function can drop through
6504 without returning a value. */
6505 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
6506
6507 /* Must mark the last line number note in the function, so that the test
6508 coverage code can avoid counting the last line twice. This just tells
6509 the code to ignore the immediately following line note, since there
6510 already exists a copy of this note somewhere above. This line number
6511 note is still needed for debugging though, so we can't delete it. */
6512 if (flag_test_coverage)
6513 emit_note (NULL_PTR, NOTE_REPEATED_LINE_NUMBER);
6514
6515 /* Output a linenumber for the end of the function.
6516 SDB depends on this. */
6517 emit_line_note_force (filename, line);
6518
6519 /* Output the label for the actual return from the function,
6520 if one is expected. This happens either because a function epilogue
6521 is used instead of a return instruction, or because a return was done
6522 with a goto in order to run local cleanups, or because of pcc-style
6523 structure returning. */
6524
6525 if (return_label)
6526 {
6527 /* Before the return label, clobber the return registers so that
6528 they are not propogated live to the rest of the function. This
6529 can only happen with functions that drop through; if there had
6530 been a return statement, there would have either been a return
6531 rtx, or a jump to the return label. */
6532 clobber_return_register ();
6533
6534 emit_label (return_label);
6535 }
6536
6537 /* C++ uses this. */
6538 if (end_bindings)
6539 expand_end_bindings (0, 0, 0);
6540
6541 /* Now handle any leftover exception regions that may have been
6542 created for the parameters. */
6543 {
6544 rtx last = get_last_insn ();
6545 rtx label;
6546
6547 expand_leftover_cleanups ();
6548
6549 /* If there are any catch_clauses remaining, output them now. */
6550 emit_insns (catch_clauses);
6551 catch_clauses = catch_clauses_last = NULL_RTX;
6552 /* If the above emitted any code, may sure we jump around it. */
6553 if (last != get_last_insn ())
6554 {
6555 label = gen_label_rtx ();
6556 last = emit_jump_insn_after (gen_jump (label), last);
6557 last = emit_barrier_after (last);
6558 emit_label (label);
6559 }
6560 }
6561
6562 if (current_function_instrument_entry_exit)
6563 {
6564 rtx fun = DECL_RTL (current_function_decl);
6565 if (GET_CODE (fun) == MEM)
6566 fun = XEXP (fun, 0);
6567 else
6568 abort ();
6569 emit_library_call (profile_function_exit_libfunc, 0, VOIDmode, 2,
6570 fun, Pmode,
6571 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6572 0,
6573 hard_frame_pointer_rtx),
6574 Pmode);
6575 }
6576
6577 /* If we had calls to alloca, and this machine needs
6578 an accurate stack pointer to exit the function,
6579 insert some code to save and restore the stack pointer. */
6580 #ifdef EXIT_IGNORE_STACK
6581 if (! EXIT_IGNORE_STACK)
6582 #endif
6583 if (current_function_calls_alloca)
6584 {
6585 rtx tem = 0;
6586
6587 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6588 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6589 }
6590
6591 /* If scalar return value was computed in a pseudo-reg,
6592 copy that to the hard return register. */
6593 if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0
6594 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG
6595 && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl)))
6596 >= FIRST_PSEUDO_REGISTER))
6597 {
6598 rtx real_decl_result;
6599
6600 #ifdef FUNCTION_OUTGOING_VALUE
6601 real_decl_result
6602 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6603 current_function_decl);
6604 #else
6605 real_decl_result
6606 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6607 current_function_decl);
6608 #endif
6609 REG_FUNCTION_VALUE_P (real_decl_result) = 1;
6610 /* If this is a BLKmode structure being returned in registers, then use
6611 the mode computed in expand_return. */
6612 if (GET_MODE (real_decl_result) == BLKmode)
6613 PUT_MODE (real_decl_result,
6614 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6615 emit_move_insn (real_decl_result,
6616 DECL_RTL (DECL_RESULT (current_function_decl)));
6617
6618 /* The delay slot scheduler assumes that current_function_return_rtx
6619 holds the hard register containing the return value, not a temporary
6620 pseudo. */
6621 current_function_return_rtx = real_decl_result;
6622 }
6623
6624 /* If returning a structure, arrange to return the address of the value
6625 in a place where debuggers expect to find it.
6626
6627 If returning a structure PCC style,
6628 the caller also depends on this value.
6629 And current_function_returns_pcc_struct is not necessarily set. */
6630 if (current_function_returns_struct
6631 || current_function_returns_pcc_struct)
6632 {
6633 rtx value_address = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
6634 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6635 #ifdef FUNCTION_OUTGOING_VALUE
6636 rtx outgoing
6637 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
6638 current_function_decl);
6639 #else
6640 rtx outgoing
6641 = FUNCTION_VALUE (build_pointer_type (type),
6642 current_function_decl);
6643 #endif
6644
6645 /* Mark this as a function return value so integrate will delete the
6646 assignment and USE below when inlining this function. */
6647 REG_FUNCTION_VALUE_P (outgoing) = 1;
6648
6649 emit_move_insn (outgoing, value_address);
6650 }
6651
6652 /* ??? This should no longer be necessary since stupid is no longer with
6653 us, but there are some parts of the compiler (eg reload_combine, and
6654 sh mach_dep_reorg) that still try and compute their own lifetime info
6655 instead of using the general framework. */
6656 use_return_register ();
6657
6658 /* If this is an implementation of __throw, do what's necessary to
6659 communicate between __builtin_eh_return and the epilogue. */
6660 expand_eh_return ();
6661
6662 /* Output a return insn if we are using one.
6663 Otherwise, let the rtl chain end here, to drop through
6664 into the epilogue. */
6665
6666 #ifdef HAVE_return
6667 if (HAVE_return)
6668 {
6669 emit_jump_insn (gen_return ());
6670 emit_barrier ();
6671 }
6672 #endif
6673
6674 /* Fix up any gotos that jumped out to the outermost
6675 binding level of the function.
6676 Must follow emitting RETURN_LABEL. */
6677
6678 /* If you have any cleanups to do at this point,
6679 and they need to create temporary variables,
6680 then you will lose. */
6681 expand_fixups (get_insns ());
6682 }
6683 \f
6684 /* Extend a vector that records the INSN_UIDs of INSNS (either a
6685 sequence or a single insn). */
6686
6687 static void
6688 record_insns (insns, vecp)
6689 rtx insns;
6690 varray_type *vecp;
6691 {
6692 if (GET_CODE (insns) == SEQUENCE)
6693 {
6694 int len = XVECLEN (insns, 0);
6695 int i = VARRAY_SIZE (*vecp);
6696
6697 VARRAY_GROW (*vecp, i + len);
6698 while (--len >= 0)
6699 {
6700 VARRAY_INT (*vecp, i) = INSN_UID (XVECEXP (insns, 0, len));
6701 ++i;
6702 }
6703 }
6704 else
6705 {
6706 int i = VARRAY_SIZE (*vecp);
6707 VARRAY_GROW (*vecp, i + 1);
6708 VARRAY_INT (*vecp, i) = INSN_UID (insns);
6709 }
6710 }
6711
6712 /* Determine how many INSN_UIDs in VEC are part of INSN. */
6713
6714 static int
6715 contains (insn, vec)
6716 rtx insn;
6717 varray_type vec;
6718 {
6719 register int i, j;
6720
6721 if (GET_CODE (insn) == INSN
6722 && GET_CODE (PATTERN (insn)) == SEQUENCE)
6723 {
6724 int count = 0;
6725 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6726 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6727 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
6728 count++;
6729 return count;
6730 }
6731 else
6732 {
6733 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6734 if (INSN_UID (insn) == VARRAY_INT (vec, j))
6735 return 1;
6736 }
6737 return 0;
6738 }
6739
6740 int
6741 prologue_epilogue_contains (insn)
6742 rtx insn;
6743 {
6744 if (contains (insn, prologue))
6745 return 1;
6746 if (contains (insn, epilogue))
6747 return 1;
6748 return 0;
6749 }
6750
6751 int
6752 sibcall_epilogue_contains (insn)
6753 rtx insn;
6754 {
6755 if (sibcall_epilogue)
6756 return contains (insn, sibcall_epilogue);
6757 return 0;
6758 }
6759
6760 #ifdef HAVE_return
6761 /* Insert gen_return at the end of block BB. This also means updating
6762 block_for_insn appropriately. */
6763
6764 static void
6765 emit_return_into_block (bb)
6766 basic_block bb;
6767 {
6768 rtx p, end;
6769
6770 end = emit_jump_insn_after (gen_return (), bb->end);
6771 p = NEXT_INSN (bb->end);
6772 while (1)
6773 {
6774 set_block_for_insn (p, bb);
6775 if (p == end)
6776 break;
6777 p = NEXT_INSN (p);
6778 }
6779 bb->end = end;
6780 }
6781 #endif /* HAVE_return */
6782
6783 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
6784 this into place with notes indicating where the prologue ends and where
6785 the epilogue begins. Update the basic block information when possible. */
6786
6787 void
6788 thread_prologue_and_epilogue_insns (f)
6789 rtx f ATTRIBUTE_UNUSED;
6790 {
6791 int insertted = 0;
6792 edge e;
6793 rtx seq;
6794
6795 #ifdef HAVE_prologue
6796 if (HAVE_prologue)
6797 {
6798 rtx insn;
6799
6800 start_sequence ();
6801 seq = gen_prologue();
6802 emit_insn (seq);
6803
6804 /* Retain a map of the prologue insns. */
6805 if (GET_CODE (seq) != SEQUENCE)
6806 seq = get_insns ();
6807 record_insns (seq, &prologue);
6808 emit_note (NULL, NOTE_INSN_PROLOGUE_END);
6809
6810 /* GDB handles `break f' by setting a breakpoint on the first
6811 line note *after* the prologue. That means that we should
6812 insert a line note here; otherwise, if the next line note
6813 comes part way into the next block, GDB will skip all the way
6814 to that point. */
6815 insn = next_nonnote_insn (f);
6816 while (insn)
6817 {
6818 if (GET_CODE (insn) == NOTE
6819 && NOTE_LINE_NUMBER (insn) >= 0)
6820 {
6821 emit_line_note_force (NOTE_SOURCE_FILE (insn),
6822 NOTE_LINE_NUMBER (insn));
6823 break;
6824 }
6825
6826 insn = PREV_INSN (insn);
6827 }
6828
6829 seq = gen_sequence ();
6830 end_sequence ();
6831
6832 /* If optimization is off, and perhaps in an empty function,
6833 the entry block will have no successors. */
6834 if (ENTRY_BLOCK_PTR->succ)
6835 {
6836 /* Can't deal with multiple successsors of the entry block. */
6837 if (ENTRY_BLOCK_PTR->succ->succ_next)
6838 abort ();
6839
6840 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
6841 insertted = 1;
6842 }
6843 else
6844 emit_insn_after (seq, f);
6845 }
6846 #endif
6847
6848 /* If the exit block has no non-fake predecessors, we don't need
6849 an epilogue. */
6850 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6851 if ((e->flags & EDGE_FAKE) == 0)
6852 break;
6853 if (e == NULL)
6854 goto epilogue_done;
6855
6856 #ifdef HAVE_return
6857 if (optimize && HAVE_return)
6858 {
6859 /* If we're allowed to generate a simple return instruction,
6860 then by definition we don't need a full epilogue. Examine
6861 the block that falls through to EXIT. If it does not
6862 contain any code, examine its predecessors and try to
6863 emit (conditional) return instructions. */
6864
6865 basic_block last;
6866 edge e_next;
6867 rtx label;
6868
6869 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6870 if (e->flags & EDGE_FALLTHRU)
6871 break;
6872 if (e == NULL)
6873 goto epilogue_done;
6874 last = e->src;
6875
6876 /* Verify that there are no active instructions in the last block. */
6877 label = last->end;
6878 while (label && GET_CODE (label) != CODE_LABEL)
6879 {
6880 if (active_insn_p (label))
6881 break;
6882 label = PREV_INSN (label);
6883 }
6884
6885 if (last->head == label && GET_CODE (label) == CODE_LABEL)
6886 {
6887 for (e = last->pred; e ; e = e_next)
6888 {
6889 basic_block bb = e->src;
6890 rtx jump;
6891
6892 e_next = e->pred_next;
6893 if (bb == ENTRY_BLOCK_PTR)
6894 continue;
6895
6896 jump = bb->end;
6897 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
6898 continue;
6899
6900 /* If we have an unconditional jump, we can replace that
6901 with a simple return instruction. */
6902 if (simplejump_p (jump))
6903 {
6904 emit_return_into_block (bb);
6905 flow_delete_insn (jump);
6906 }
6907
6908 /* If we have a conditional jump, we can try to replace
6909 that with a conditional return instruction. */
6910 else if (condjump_p (jump))
6911 {
6912 rtx ret, *loc;
6913
6914 ret = SET_SRC (PATTERN (jump));
6915 if (GET_CODE (XEXP (ret, 1)) == LABEL_REF)
6916 loc = &XEXP (ret, 1);
6917 else
6918 loc = &XEXP (ret, 2);
6919 ret = gen_rtx_RETURN (VOIDmode);
6920
6921 if (! validate_change (jump, loc, ret, 0))
6922 continue;
6923 if (JUMP_LABEL (jump))
6924 LABEL_NUSES (JUMP_LABEL (jump))--;
6925
6926 /* If this block has only one successor, it both jumps
6927 and falls through to the fallthru block, so we can't
6928 delete the edge. */
6929 if (bb->succ->succ_next == NULL)
6930 continue;
6931 }
6932 else
6933 continue;
6934
6935 /* Fix up the CFG for the successful change we just made. */
6936 remove_edge (e);
6937 make_edge (NULL, bb, EXIT_BLOCK_PTR, 0);
6938 }
6939
6940 /* Emit a return insn for the exit fallthru block. Whether
6941 this is still reachable will be determined later. */
6942
6943 emit_barrier_after (last->end);
6944 emit_return_into_block (last);
6945 }
6946 else
6947 {
6948 /* The exit block wasn't empty. We have to use insert_insn_on_edge,
6949 as it may be the exit block can go elsewhere as well
6950 as exiting. */
6951 start_sequence ();
6952 emit_jump_insn (gen_return ());
6953 seq = gen_sequence ();
6954 end_sequence ();
6955 insert_insn_on_edge (seq, e);
6956 insertted = 1;
6957 }
6958 goto epilogue_done;
6959 }
6960 #endif
6961 #ifdef HAVE_epilogue
6962 if (HAVE_epilogue)
6963 {
6964 /* Find the edge that falls through to EXIT. Other edges may exist
6965 due to RETURN instructions, but those don't need epilogues.
6966 There really shouldn't be a mixture -- either all should have
6967 been converted or none, however... */
6968
6969 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6970 if (e->flags & EDGE_FALLTHRU)
6971 break;
6972 if (e == NULL)
6973 goto epilogue_done;
6974
6975 start_sequence ();
6976 emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
6977
6978 seq = gen_epilogue ();
6979 emit_jump_insn (seq);
6980
6981 /* Retain a map of the epilogue insns. */
6982 if (GET_CODE (seq) != SEQUENCE)
6983 seq = get_insns ();
6984 record_insns (seq, &epilogue);
6985
6986 seq = gen_sequence ();
6987 end_sequence();
6988
6989 insert_insn_on_edge (seq, e);
6990 insertted = 1;
6991 }
6992 #endif
6993 epilogue_done:
6994
6995 if (insertted)
6996 commit_edge_insertions ();
6997
6998 #ifdef HAVE_sibcall_epilogue
6999 /* Emit sibling epilogues before any sibling call sites. */
7000 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
7001 {
7002 basic_block bb = e->src;
7003 rtx insn = bb->end;
7004 rtx i;
7005
7006 if (GET_CODE (insn) != CALL_INSN
7007 || ! SIBLING_CALL_P (insn))
7008 continue;
7009
7010 start_sequence ();
7011 seq = gen_sibcall_epilogue ();
7012 end_sequence ();
7013
7014 i = PREV_INSN (insn);
7015 emit_insn_before (seq, insn);
7016
7017 /* Update the UID to basic block map. */
7018 for (i = NEXT_INSN (i); i != insn; i = NEXT_INSN (i))
7019 set_block_for_insn (i, bb);
7020
7021 /* Retain a map of the epilogue insns. Used in life analysis to
7022 avoid getting rid of sibcall epilogue insns. */
7023 record_insns (seq, &sibcall_epilogue);
7024 }
7025 #endif
7026 }
7027
7028 /* Reposition the prologue-end and epilogue-begin notes after instruction
7029 scheduling and delayed branch scheduling. */
7030
7031 void
7032 reposition_prologue_and_epilogue_notes (f)
7033 rtx f ATTRIBUTE_UNUSED;
7034 {
7035 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7036 int len;
7037
7038 if ((len = VARRAY_SIZE (prologue)) > 0)
7039 {
7040 register rtx insn, note = 0;
7041
7042 /* Scan from the beginning until we reach the last prologue insn.
7043 We apparently can't depend on basic_block_{head,end} after
7044 reorg has run. */
7045 for (insn = f; len && insn; insn = NEXT_INSN (insn))
7046 {
7047 if (GET_CODE (insn) == NOTE)
7048 {
7049 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7050 note = insn;
7051 }
7052 else if ((len -= contains (insn, prologue)) == 0)
7053 {
7054 rtx next;
7055 /* Find the prologue-end note if we haven't already, and
7056 move it to just after the last prologue insn. */
7057 if (note == 0)
7058 {
7059 for (note = insn; (note = NEXT_INSN (note));)
7060 if (GET_CODE (note) == NOTE
7061 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7062 break;
7063 }
7064
7065 next = NEXT_INSN (note);
7066
7067 /* Whether or not we can depend on BLOCK_HEAD,
7068 attempt to keep it up-to-date. */
7069 if (BLOCK_HEAD (0) == note)
7070 BLOCK_HEAD (0) = next;
7071
7072 remove_insn (note);
7073 add_insn_after (note, insn);
7074 }
7075 }
7076 }
7077
7078 if ((len = VARRAY_SIZE (epilogue)) > 0)
7079 {
7080 register rtx insn, note = 0;
7081
7082 /* Scan from the end until we reach the first epilogue insn.
7083 We apparently can't depend on basic_block_{head,end} after
7084 reorg has run. */
7085 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
7086 {
7087 if (GET_CODE (insn) == NOTE)
7088 {
7089 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7090 note = insn;
7091 }
7092 else if ((len -= contains (insn, epilogue)) == 0)
7093 {
7094 /* Find the epilogue-begin note if we haven't already, and
7095 move it to just before the first epilogue insn. */
7096 if (note == 0)
7097 {
7098 for (note = insn; (note = PREV_INSN (note));)
7099 if (GET_CODE (note) == NOTE
7100 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7101 break;
7102 }
7103
7104 /* Whether or not we can depend on BLOCK_HEAD,
7105 attempt to keep it up-to-date. */
7106 if (n_basic_blocks
7107 && BLOCK_HEAD (n_basic_blocks-1) == insn)
7108 BLOCK_HEAD (n_basic_blocks-1) = note;
7109
7110 remove_insn (note);
7111 add_insn_before (note, insn);
7112 }
7113 }
7114 }
7115 #endif /* HAVE_prologue or HAVE_epilogue */
7116 }
7117
7118 /* Mark T for GC. */
7119
7120 static void
7121 mark_temp_slot (t)
7122 struct temp_slot *t;
7123 {
7124 while (t)
7125 {
7126 ggc_mark_rtx (t->slot);
7127 ggc_mark_rtx (t->address);
7128 ggc_mark_tree (t->rtl_expr);
7129
7130 t = t->next;
7131 }
7132 }
7133
7134 /* Mark P for GC. */
7135
7136 static void
7137 mark_function_status (p)
7138 struct function *p;
7139 {
7140 int i;
7141 rtx *r;
7142
7143 if (p == 0)
7144 return;
7145
7146 ggc_mark_rtx (p->arg_offset_rtx);
7147
7148 if (p->x_parm_reg_stack_loc)
7149 for (i = p->x_max_parm_reg, r = p->x_parm_reg_stack_loc;
7150 i > 0; --i, ++r)
7151 ggc_mark_rtx (*r);
7152
7153 ggc_mark_rtx (p->return_rtx);
7154 ggc_mark_rtx (p->x_cleanup_label);
7155 ggc_mark_rtx (p->x_return_label);
7156 ggc_mark_rtx (p->x_save_expr_regs);
7157 ggc_mark_rtx (p->x_stack_slot_list);
7158 ggc_mark_rtx (p->x_parm_birth_insn);
7159 ggc_mark_rtx (p->x_tail_recursion_label);
7160 ggc_mark_rtx (p->x_tail_recursion_reentry);
7161 ggc_mark_rtx (p->internal_arg_pointer);
7162 ggc_mark_rtx (p->x_arg_pointer_save_area);
7163 ggc_mark_tree (p->x_rtl_expr_chain);
7164 ggc_mark_rtx (p->x_last_parm_insn);
7165 ggc_mark_tree (p->x_context_display);
7166 ggc_mark_tree (p->x_trampoline_list);
7167 ggc_mark_rtx (p->epilogue_delay_list);
7168
7169 mark_temp_slot (p->x_temp_slots);
7170
7171 {
7172 struct var_refs_queue *q = p->fixup_var_refs_queue;
7173 while (q)
7174 {
7175 ggc_mark_rtx (q->modified);
7176 q = q->next;
7177 }
7178 }
7179
7180 ggc_mark_rtx (p->x_nonlocal_goto_handler_slots);
7181 ggc_mark_rtx (p->x_nonlocal_goto_handler_labels);
7182 ggc_mark_rtx (p->x_nonlocal_goto_stack_level);
7183 ggc_mark_tree (p->x_nonlocal_labels);
7184 }
7185
7186 /* Mark the function chain ARG (which is really a struct function **)
7187 for GC. */
7188
7189 static void
7190 mark_function_chain (arg)
7191 void *arg;
7192 {
7193 struct function *f = *(struct function **) arg;
7194
7195 for (; f; f = f->next_global)
7196 {
7197 ggc_mark_tree (f->decl);
7198
7199 mark_function_status (f);
7200 mark_eh_status (f->eh);
7201 mark_stmt_status (f->stmt);
7202 mark_expr_status (f->expr);
7203 mark_emit_status (f->emit);
7204 mark_varasm_status (f->varasm);
7205
7206 if (mark_machine_status)
7207 (*mark_machine_status) (f);
7208 if (mark_lang_status)
7209 (*mark_lang_status) (f);
7210
7211 if (f->original_arg_vector)
7212 ggc_mark_rtvec ((rtvec) f->original_arg_vector);
7213 if (f->original_decl_initial)
7214 ggc_mark_tree (f->original_decl_initial);
7215 }
7216 }
7217
7218 /* Called once, at initialization, to initialize function.c. */
7219
7220 void
7221 init_function_once ()
7222 {
7223 ggc_add_root (&all_functions, 1, sizeof all_functions,
7224 mark_function_chain);
7225
7226 VARRAY_INT_INIT (prologue, 0, "prologue");
7227 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7228 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
7229 }
This page took 0.449168 seconds and 6 git commands to generate.