]> gcc.gnu.org Git - gcc.git/blob - gcc/function.c
* Rework fields used to describe positions of bitfields and
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
27
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
31
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register.
36
37 Call `put_var_into_stack' when you learn, belatedly, that a variable
38 previously given a pseudo-register must in fact go in the stack.
39 This function changes the DECL_RTL to be a stack slot instead of a reg
40 then scans all the RTL instructions so far generated to correct them. */
41
42 #include "config.h"
43 #include "system.h"
44 #include "rtl.h"
45 #include "tree.h"
46 #include "flags.h"
47 #include "except.h"
48 #include "function.h"
49 #include "insn-flags.h"
50 #include "expr.h"
51 #include "insn-codes.h"
52 #include "regs.h"
53 #include "hard-reg-set.h"
54 #include "insn-config.h"
55 #include "recog.h"
56 #include "output.h"
57 #include "basic-block.h"
58 #include "obstack.h"
59 #include "toplev.h"
60 #include "hash.h"
61 #include "ggc.h"
62 #include "tm_p.h"
63
64 #ifndef TRAMPOLINE_ALIGNMENT
65 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
66 #endif
67
68 #ifndef LOCAL_ALIGNMENT
69 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
70 #endif
71
72 #if !defined (PREFERRED_STACK_BOUNDARY) && defined (STACK_BOUNDARY)
73 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
74 #endif
75
76 /* Some systems use __main in a way incompatible with its use in gcc, in these
77 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
78 give the same symbol without quotes for an alternative entry point. You
79 must define both, or neither. */
80 #ifndef NAME__MAIN
81 #define NAME__MAIN "__main"
82 #define SYMBOL__MAIN __main
83 #endif
84
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
89
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
93
94 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
95 during rtl generation. If they are different register numbers, this is
96 always true. It may also be true if
97 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
98 generation. See fix_lexical_addr for details. */
99
100 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
101 #define NEED_SEPARATE_AP
102 #endif
103
104 /* Nonzero if function being compiled doesn't contain any calls
105 (ignoring the prologue and epilogue). This is set prior to
106 local register allocation and is valid for the remaining
107 compiler passes. */
108 int current_function_is_leaf;
109
110 /* Nonzero if function being compiled doesn't contain any instructions
111 that can throw an exception. This is set prior to final. */
112
113 int current_function_nothrow;
114
115 /* Nonzero if function being compiled doesn't modify the stack pointer
116 (ignoring the prologue and epilogue). This is only valid after
117 life_analysis has run. */
118 int current_function_sp_is_unchanging;
119
120 /* Nonzero if the function being compiled is a leaf function which only
121 uses leaf registers. This is valid after reload (specifically after
122 sched2) and is useful only if the port defines LEAF_REGISTERS. */
123 int current_function_uses_only_leaf_regs;
124
125 /* Nonzero once virtual register instantiation has been done.
126 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
127 static int virtuals_instantiated;
128
129 /* These variables hold pointers to functions to
130 save and restore machine-specific data,
131 in push_function_context and pop_function_context. */
132 void (*init_machine_status) PARAMS ((struct function *));
133 void (*save_machine_status) PARAMS ((struct function *));
134 void (*restore_machine_status) PARAMS ((struct function *));
135 void (*mark_machine_status) PARAMS ((struct function *));
136 void (*free_machine_status) PARAMS ((struct function *));
137
138 /* Likewise, but for language-specific data. */
139 void (*init_lang_status) PARAMS ((struct function *));
140 void (*save_lang_status) PARAMS ((struct function *));
141 void (*restore_lang_status) PARAMS ((struct function *));
142 void (*mark_lang_status) PARAMS ((struct function *));
143 void (*free_lang_status) PARAMS ((struct function *));
144
145 /* The FUNCTION_DECL for an inline function currently being expanded. */
146 tree inline_function_decl;
147
148 /* The currently compiled function. */
149 struct function *cfun = 0;
150
151 /* Global list of all compiled functions. */
152 struct function *all_functions = 0;
153
154 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
155 static varray_type prologue;
156 static varray_type epilogue;
157
158 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
159 in this function. */
160 static varray_type sibcall_epilogue;
161 \f
162 /* In order to evaluate some expressions, such as function calls returning
163 structures in memory, we need to temporarily allocate stack locations.
164 We record each allocated temporary in the following structure.
165
166 Associated with each temporary slot is a nesting level. When we pop up
167 one level, all temporaries associated with the previous level are freed.
168 Normally, all temporaries are freed after the execution of the statement
169 in which they were created. However, if we are inside a ({...}) grouping,
170 the result may be in a temporary and hence must be preserved. If the
171 result could be in a temporary, we preserve it if we can determine which
172 one it is in. If we cannot determine which temporary may contain the
173 result, all temporaries are preserved. A temporary is preserved by
174 pretending it was allocated at the previous nesting level.
175
176 Automatic variables are also assigned temporary slots, at the nesting
177 level where they are defined. They are marked a "kept" so that
178 free_temp_slots will not free them. */
179
180 struct temp_slot
181 {
182 /* Points to next temporary slot. */
183 struct temp_slot *next;
184 /* The rtx to used to reference the slot. */
185 rtx slot;
186 /* The rtx used to represent the address if not the address of the
187 slot above. May be an EXPR_LIST if multiple addresses exist. */
188 rtx address;
189 /* The alignment (in bits) of the slot. */
190 int align;
191 /* The size, in units, of the slot. */
192 HOST_WIDE_INT size;
193 /* The alias set for the slot. If the alias set is zero, we don't
194 know anything about the alias set of the slot. We must only
195 reuse a slot if it is assigned an object of the same alias set.
196 Otherwise, the rest of the compiler may assume that the new use
197 of the slot cannot alias the old use of the slot, which is
198 false. If the slot has alias set zero, then we can't reuse the
199 slot at all, since we have no idea what alias set may have been
200 imposed on the memory. For example, if the stack slot is the
201 call frame for an inline functioned, we have no idea what alias
202 sets will be assigned to various pieces of the call frame. */
203 int alias_set;
204 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
205 tree rtl_expr;
206 /* Non-zero if this temporary is currently in use. */
207 char in_use;
208 /* Non-zero if this temporary has its address taken. */
209 char addr_taken;
210 /* Nesting level at which this slot is being used. */
211 int level;
212 /* Non-zero if this should survive a call to free_temp_slots. */
213 int keep;
214 /* The offset of the slot from the frame_pointer, including extra space
215 for alignment. This info is for combine_temp_slots. */
216 HOST_WIDE_INT base_offset;
217 /* The size of the slot, including extra space for alignment. This
218 info is for combine_temp_slots. */
219 HOST_WIDE_INT full_size;
220 };
221 \f
222 /* This structure is used to record MEMs or pseudos used to replace VAR, any
223 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
224 maintain this list in case two operands of an insn were required to match;
225 in that case we must ensure we use the same replacement. */
226
227 struct fixup_replacement
228 {
229 rtx old;
230 rtx new;
231 struct fixup_replacement *next;
232 };
233
234 struct insns_for_mem_entry {
235 /* The KEY in HE will be a MEM. */
236 struct hash_entry he;
237 /* These are the INSNS which reference the MEM. */
238 rtx insns;
239 };
240
241 /* Forward declarations. */
242
243 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
244 int, struct function *));
245 static rtx assign_stack_temp_for_type PARAMS ((enum machine_mode,
246 HOST_WIDE_INT, int, tree));
247 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
248 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
249 enum machine_mode, enum machine_mode,
250 int, unsigned int, int,
251 struct hash_table *));
252 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int,
253 struct hash_table *));
254 static struct fixup_replacement
255 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
256 static void fixup_var_refs_insns PARAMS ((rtx, enum machine_mode, int,
257 rtx, int, struct hash_table *));
258 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
259 struct fixup_replacement **));
260 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, int));
261 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, int));
262 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
263 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
264 static void instantiate_decls PARAMS ((tree, int));
265 static void instantiate_decls_1 PARAMS ((tree, int));
266 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
267 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
268 static void delete_handlers PARAMS ((void));
269 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
270 struct args_size *));
271 #ifndef ARGS_GROW_DOWNWARD
272 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
273 tree));
274 #endif
275 #ifdef ARGS_GROW_DOWNWARD
276 static tree round_down PARAMS ((tree, int));
277 #endif
278 static rtx round_trampoline_addr PARAMS ((rtx));
279 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
280 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
281 static tree blocks_nreverse PARAMS ((tree));
282 static int all_blocks PARAMS ((tree, tree *));
283 static tree *get_block_vector PARAMS ((tree, int *));
284 /* We always define `record_insns' even if its not used so that we
285 can always export `prologue_epilogue_contains'. */
286 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
287 static int contains PARAMS ((rtx, varray_type));
288 #ifdef HAVE_return
289 static void emit_return_into_block PARAMS ((basic_block));
290 #endif
291 static void put_addressof_into_stack PARAMS ((rtx, struct hash_table *));
292 static boolean purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
293 struct hash_table *));
294 static int is_addressof PARAMS ((rtx *, void *));
295 static struct hash_entry *insns_for_mem_newfunc PARAMS ((struct hash_entry *,
296 struct hash_table *,
297 hash_table_key));
298 static unsigned long insns_for_mem_hash PARAMS ((hash_table_key));
299 static boolean insns_for_mem_comp PARAMS ((hash_table_key, hash_table_key));
300 static int insns_for_mem_walk PARAMS ((rtx *, void *));
301 static void compute_insns_for_mem PARAMS ((rtx, rtx, struct hash_table *));
302 static void mark_temp_slot PARAMS ((struct temp_slot *));
303 static void mark_function_status PARAMS ((struct function *));
304 static void mark_function_chain PARAMS ((void *));
305 static void prepare_function_start PARAMS ((void));
306 static void do_clobber_return_reg PARAMS ((rtx, void *));
307 static void do_use_return_reg PARAMS ((rtx, void *));
308 \f
309 /* Pointer to chain of `struct function' for containing functions. */
310 struct function *outer_function_chain;
311
312 /* Given a function decl for a containing function,
313 return the `struct function' for it. */
314
315 struct function *
316 find_function_data (decl)
317 tree decl;
318 {
319 struct function *p;
320
321 for (p = outer_function_chain; p; p = p->next)
322 if (p->decl == decl)
323 return p;
324
325 abort ();
326 }
327
328 /* Save the current context for compilation of a nested function.
329 This is called from language-specific code. The caller should use
330 the save_lang_status callback to save any language-specific state,
331 since this function knows only about language-independent
332 variables. */
333
334 void
335 push_function_context_to (context)
336 tree context;
337 {
338 struct function *p, *context_data;
339
340 if (context)
341 {
342 context_data = (context == current_function_decl
343 ? cfun
344 : find_function_data (context));
345 context_data->contains_functions = 1;
346 }
347
348 if (cfun == 0)
349 init_dummy_function_start ();
350 p = cfun;
351
352 p->next = outer_function_chain;
353 outer_function_chain = p;
354 p->fixup_var_refs_queue = 0;
355
356 save_tree_status (p);
357 if (save_lang_status)
358 (*save_lang_status) (p);
359 if (save_machine_status)
360 (*save_machine_status) (p);
361
362 cfun = 0;
363 }
364
365 void
366 push_function_context ()
367 {
368 push_function_context_to (current_function_decl);
369 }
370
371 /* Restore the last saved context, at the end of a nested function.
372 This function is called from language-specific code. */
373
374 void
375 pop_function_context_from (context)
376 tree context ATTRIBUTE_UNUSED;
377 {
378 struct function *p = outer_function_chain;
379 struct var_refs_queue *queue;
380 struct var_refs_queue *next;
381
382 cfun = p;
383 outer_function_chain = p->next;
384
385 current_function_decl = p->decl;
386 reg_renumber = 0;
387
388 restore_tree_status (p);
389 restore_emit_status (p);
390
391 if (restore_machine_status)
392 (*restore_machine_status) (p);
393 if (restore_lang_status)
394 (*restore_lang_status) (p);
395
396 /* Finish doing put_var_into_stack for any of our variables
397 which became addressable during the nested function. */
398 for (queue = p->fixup_var_refs_queue; queue; queue = next)
399 {
400 next = queue->next;
401 fixup_var_refs (queue->modified, queue->promoted_mode,
402 queue->unsignedp, 0);
403 free (queue);
404 }
405 p->fixup_var_refs_queue = 0;
406
407 /* Reset variables that have known state during rtx generation. */
408 rtx_equal_function_value_matters = 1;
409 virtuals_instantiated = 0;
410 }
411
412 void
413 pop_function_context ()
414 {
415 pop_function_context_from (current_function_decl);
416 }
417
418 /* Clear out all parts of the state in F that can safely be discarded
419 after the function has been parsed, but not compiled, to let
420 garbage collection reclaim the memory. */
421
422 void
423 free_after_parsing (f)
424 struct function *f;
425 {
426 /* f->expr->forced_labels is used by code generation. */
427 /* f->emit->regno_reg_rtx is used by code generation. */
428 /* f->varasm is used by code generation. */
429 /* f->eh->eh_return_stub_label is used by code generation. */
430
431 if (free_lang_status)
432 (*free_lang_status) (f);
433 free_stmt_status (f);
434 }
435
436 /* Clear out all parts of the state in F that can safely be discarded
437 after the function has been compiled, to let garbage collection
438 reclaim the memory. */
439
440 void
441 free_after_compilation (f)
442 struct function *f;
443 {
444 free_eh_status (f);
445 free_expr_status (f);
446 free_emit_status (f);
447 free_varasm_status (f);
448
449 if (free_machine_status)
450 (*free_machine_status) (f);
451
452 if (f->x_parm_reg_stack_loc)
453 free (f->x_parm_reg_stack_loc);
454
455 f->arg_offset_rtx = NULL;
456 f->return_rtx = NULL;
457 f->internal_arg_pointer = NULL;
458 f->x_nonlocal_labels = NULL;
459 f->x_nonlocal_goto_handler_slots = NULL;
460 f->x_nonlocal_goto_handler_labels = NULL;
461 f->x_nonlocal_goto_stack_level = NULL;
462 f->x_cleanup_label = NULL;
463 f->x_return_label = NULL;
464 f->x_save_expr_regs = NULL;
465 f->x_stack_slot_list = NULL;
466 f->x_rtl_expr_chain = NULL;
467 f->x_tail_recursion_label = NULL;
468 f->x_tail_recursion_reentry = NULL;
469 f->x_arg_pointer_save_area = NULL;
470 f->x_context_display = NULL;
471 f->x_trampoline_list = NULL;
472 f->x_parm_birth_insn = NULL;
473 f->x_last_parm_insn = NULL;
474 f->x_parm_reg_stack_loc = NULL;
475 f->x_temp_slots = NULL;
476 f->fixup_var_refs_queue = NULL;
477 f->original_arg_vector = NULL;
478 f->original_decl_initial = NULL;
479 f->inl_last_parm_insn = NULL;
480 f->epilogue_delay_list = NULL;
481 }
482
483 \f
484 /* Allocate fixed slots in the stack frame of the current function. */
485
486 /* Return size needed for stack frame based on slots so far allocated in
487 function F.
488 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
489 the caller may have to do that. */
490
491 HOST_WIDE_INT
492 get_func_frame_size (f)
493 struct function *f;
494 {
495 #ifdef FRAME_GROWS_DOWNWARD
496 return -f->x_frame_offset;
497 #else
498 return f->x_frame_offset;
499 #endif
500 }
501
502 /* Return size needed for stack frame based on slots so far allocated.
503 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
504 the caller may have to do that. */
505 HOST_WIDE_INT
506 get_frame_size ()
507 {
508 return get_func_frame_size (cfun);
509 }
510
511 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
512 with machine mode MODE.
513
514 ALIGN controls the amount of alignment for the address of the slot:
515 0 means according to MODE,
516 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
517 positive specifies alignment boundary in bits.
518
519 We do not round to stack_boundary here.
520
521 FUNCTION specifies the function to allocate in. */
522
523 static rtx
524 assign_stack_local_1 (mode, size, align, function)
525 enum machine_mode mode;
526 HOST_WIDE_INT size;
527 int align;
528 struct function *function;
529 {
530 register rtx x, addr;
531 int bigend_correction = 0;
532 int alignment;
533
534 /* Allocate in the memory associated with the function in whose frame
535 we are assigning. */
536 if (function != cfun)
537 push_obstacks (function->function_obstack,
538 function->function_maybepermanent_obstack);
539
540 if (align == 0)
541 {
542 tree type;
543
544 alignment = GET_MODE_ALIGNMENT (mode);
545 if (mode == BLKmode)
546 alignment = BIGGEST_ALIGNMENT;
547
548 /* Allow the target to (possibly) increase the alignment of this
549 stack slot. */
550 type = type_for_mode (mode, 0);
551 if (type)
552 alignment = LOCAL_ALIGNMENT (type, alignment);
553
554 alignment /= BITS_PER_UNIT;
555 }
556 else if (align == -1)
557 {
558 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
559 size = CEIL_ROUND (size, alignment);
560 }
561 else
562 alignment = align / BITS_PER_UNIT;
563
564 #ifdef FRAME_GROWS_DOWNWARD
565 function->x_frame_offset -= size;
566 #endif
567
568 /* Ignore alignment we can't do with expected alignment of the boundary. */
569 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
570 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
571
572 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
573 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
574
575 /* Round frame offset to that alignment.
576 We must be careful here, since FRAME_OFFSET might be negative and
577 division with a negative dividend isn't as well defined as we might
578 like. So we instead assume that ALIGNMENT is a power of two and
579 use logical operations which are unambiguous. */
580 #ifdef FRAME_GROWS_DOWNWARD
581 function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset, alignment);
582 #else
583 function->x_frame_offset = CEIL_ROUND (function->x_frame_offset, alignment);
584 #endif
585
586 /* On a big-endian machine, if we are allocating more space than we will use,
587 use the least significant bytes of those that are allocated. */
588 if (BYTES_BIG_ENDIAN && mode != BLKmode)
589 bigend_correction = size - GET_MODE_SIZE (mode);
590
591 /* If we have already instantiated virtual registers, return the actual
592 address relative to the frame pointer. */
593 if (function == cfun && virtuals_instantiated)
594 addr = plus_constant (frame_pointer_rtx,
595 (frame_offset + bigend_correction
596 + STARTING_FRAME_OFFSET));
597 else
598 addr = plus_constant (virtual_stack_vars_rtx,
599 function->x_frame_offset + bigend_correction);
600
601 #ifndef FRAME_GROWS_DOWNWARD
602 function->x_frame_offset += size;
603 #endif
604
605 x = gen_rtx_MEM (mode, addr);
606
607 function->x_stack_slot_list
608 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
609
610 if (function != cfun)
611 pop_obstacks ();
612
613 return x;
614 }
615
616 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
617 current function. */
618 rtx
619 assign_stack_local (mode, size, align)
620 enum machine_mode mode;
621 HOST_WIDE_INT size;
622 int align;
623 {
624 return assign_stack_local_1 (mode, size, align, cfun);
625 }
626 \f
627 /* Allocate a temporary stack slot and record it for possible later
628 reuse.
629
630 MODE is the machine mode to be given to the returned rtx.
631
632 SIZE is the size in units of the space required. We do no rounding here
633 since assign_stack_local will do any required rounding.
634
635 KEEP is 1 if this slot is to be retained after a call to
636 free_temp_slots. Automatic variables for a block are allocated
637 with this flag. KEEP is 2 if we allocate a longer term temporary,
638 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
639 if we are to allocate something at an inner level to be treated as
640 a variable in the block (e.g., a SAVE_EXPR).
641
642 TYPE is the type that will be used for the stack slot. */
643
644 static rtx
645 assign_stack_temp_for_type (mode, size, keep, type)
646 enum machine_mode mode;
647 HOST_WIDE_INT size;
648 int keep;
649 tree type;
650 {
651 int align;
652 int alias_set;
653 struct temp_slot *p, *best_p = 0;
654
655 /* If SIZE is -1 it means that somebody tried to allocate a temporary
656 of a variable size. */
657 if (size == -1)
658 abort ();
659
660 /* If we know the alias set for the memory that will be used, use
661 it. If there's no TYPE, then we don't know anything about the
662 alias set for the memory. */
663 if (type)
664 alias_set = get_alias_set (type);
665 else
666 alias_set = 0;
667
668 align = GET_MODE_ALIGNMENT (mode);
669 if (mode == BLKmode)
670 align = BIGGEST_ALIGNMENT;
671
672 if (! type)
673 type = type_for_mode (mode, 0);
674 if (type)
675 align = LOCAL_ALIGNMENT (type, align);
676
677 /* Try to find an available, already-allocated temporary of the proper
678 mode which meets the size and alignment requirements. Choose the
679 smallest one with the closest alignment. */
680 for (p = temp_slots; p; p = p->next)
681 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
682 && ! p->in_use
683 && (!flag_strict_aliasing
684 || (alias_set && p->alias_set == alias_set))
685 && (best_p == 0 || best_p->size > p->size
686 || (best_p->size == p->size && best_p->align > p->align)))
687 {
688 if (p->align == align && p->size == size)
689 {
690 best_p = 0;
691 break;
692 }
693 best_p = p;
694 }
695
696 /* Make our best, if any, the one to use. */
697 if (best_p)
698 {
699 /* If there are enough aligned bytes left over, make them into a new
700 temp_slot so that the extra bytes don't get wasted. Do this only
701 for BLKmode slots, so that we can be sure of the alignment. */
702 if (GET_MODE (best_p->slot) == BLKmode
703 /* We can't split slots if -fstrict-aliasing because the
704 information about the alias set for the new slot will be
705 lost. */
706 && !flag_strict_aliasing)
707 {
708 int alignment = best_p->align / BITS_PER_UNIT;
709 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
710
711 if (best_p->size - rounded_size >= alignment)
712 {
713 p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
714 p->in_use = p->addr_taken = 0;
715 p->size = best_p->size - rounded_size;
716 p->base_offset = best_p->base_offset + rounded_size;
717 p->full_size = best_p->full_size - rounded_size;
718 p->slot = gen_rtx_MEM (BLKmode,
719 plus_constant (XEXP (best_p->slot, 0),
720 rounded_size));
721 p->align = best_p->align;
722 p->address = 0;
723 p->rtl_expr = 0;
724 p->next = temp_slots;
725 temp_slots = p;
726
727 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
728 stack_slot_list);
729
730 best_p->size = rounded_size;
731 best_p->full_size = rounded_size;
732 }
733 }
734
735 p = best_p;
736 }
737
738 /* If we still didn't find one, make a new temporary. */
739 if (p == 0)
740 {
741 HOST_WIDE_INT frame_offset_old = frame_offset;
742
743 p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
744
745 /* We are passing an explicit alignment request to assign_stack_local.
746 One side effect of that is assign_stack_local will not round SIZE
747 to ensure the frame offset remains suitably aligned.
748
749 So for requests which depended on the rounding of SIZE, we go ahead
750 and round it now. We also make sure ALIGNMENT is at least
751 BIGGEST_ALIGNMENT. */
752 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
753 abort();
754 p->slot = assign_stack_local (mode,
755 (mode == BLKmode
756 ? CEIL_ROUND (size, align / BITS_PER_UNIT)
757 : size),
758 align);
759
760 p->align = align;
761 p->alias_set = alias_set;
762
763 /* The following slot size computation is necessary because we don't
764 know the actual size of the temporary slot until assign_stack_local
765 has performed all the frame alignment and size rounding for the
766 requested temporary. Note that extra space added for alignment
767 can be either above or below this stack slot depending on which
768 way the frame grows. We include the extra space if and only if it
769 is above this slot. */
770 #ifdef FRAME_GROWS_DOWNWARD
771 p->size = frame_offset_old - frame_offset;
772 #else
773 p->size = size;
774 #endif
775
776 /* Now define the fields used by combine_temp_slots. */
777 #ifdef FRAME_GROWS_DOWNWARD
778 p->base_offset = frame_offset;
779 p->full_size = frame_offset_old - frame_offset;
780 #else
781 p->base_offset = frame_offset_old;
782 p->full_size = frame_offset - frame_offset_old;
783 #endif
784 p->address = 0;
785 p->next = temp_slots;
786 temp_slots = p;
787 }
788
789 p->in_use = 1;
790 p->addr_taken = 0;
791 p->rtl_expr = seq_rtl_expr;
792
793 if (keep == 2)
794 {
795 p->level = target_temp_slot_level;
796 p->keep = 0;
797 }
798 else if (keep == 3)
799 {
800 p->level = var_temp_slot_level;
801 p->keep = 0;
802 }
803 else
804 {
805 p->level = temp_slot_level;
806 p->keep = keep;
807 }
808
809 /* We may be reusing an old slot, so clear any MEM flags that may have been
810 set from before. */
811 RTX_UNCHANGING_P (p->slot) = 0;
812 MEM_IN_STRUCT_P (p->slot) = 0;
813 MEM_SCALAR_P (p->slot) = 0;
814 MEM_ALIAS_SET (p->slot) = 0;
815 return p->slot;
816 }
817
818 /* Allocate a temporary stack slot and record it for possible later
819 reuse. First three arguments are same as in preceding function. */
820
821 rtx
822 assign_stack_temp (mode, size, keep)
823 enum machine_mode mode;
824 HOST_WIDE_INT size;
825 int keep;
826 {
827 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
828 }
829 \f
830 /* Assign a temporary of given TYPE.
831 KEEP is as for assign_stack_temp.
832 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
833 it is 0 if a register is OK.
834 DONT_PROMOTE is 1 if we should not promote values in register
835 to wider modes. */
836
837 rtx
838 assign_temp (type, keep, memory_required, dont_promote)
839 tree type;
840 int keep;
841 int memory_required;
842 int dont_promote ATTRIBUTE_UNUSED;
843 {
844 enum machine_mode mode = TYPE_MODE (type);
845 #ifndef PROMOTE_FOR_CALL_ONLY
846 int unsignedp = TREE_UNSIGNED (type);
847 #endif
848
849 if (mode == BLKmode || memory_required)
850 {
851 HOST_WIDE_INT size = int_size_in_bytes (type);
852 rtx tmp;
853
854 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
855 problems with allocating the stack space. */
856 if (size == 0)
857 size = 1;
858
859 /* Unfortunately, we don't yet know how to allocate variable-sized
860 temporaries. However, sometimes we have a fixed upper limit on
861 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
862 instead. This is the case for Chill variable-sized strings. */
863 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
864 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
865 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (type)) == INTEGER_CST)
866 size = TREE_INT_CST_LOW (TYPE_ARRAY_MAX_SIZE (type));
867
868 tmp = assign_stack_temp_for_type (mode, size, keep, type);
869 MEM_SET_IN_STRUCT_P (tmp, AGGREGATE_TYPE_P (type));
870 return tmp;
871 }
872
873 #ifndef PROMOTE_FOR_CALL_ONLY
874 if (! dont_promote)
875 mode = promote_mode (type, mode, &unsignedp, 0);
876 #endif
877
878 return gen_reg_rtx (mode);
879 }
880 \f
881 /* Combine temporary stack slots which are adjacent on the stack.
882
883 This allows for better use of already allocated stack space. This is only
884 done for BLKmode slots because we can be sure that we won't have alignment
885 problems in this case. */
886
887 void
888 combine_temp_slots ()
889 {
890 struct temp_slot *p, *q;
891 struct temp_slot *prev_p, *prev_q;
892 int num_slots;
893
894 /* We can't combine slots, because the information about which slot
895 is in which alias set will be lost. */
896 if (flag_strict_aliasing)
897 return;
898
899 /* If there are a lot of temp slots, don't do anything unless
900 high levels of optimizaton. */
901 if (! flag_expensive_optimizations)
902 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
903 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
904 return;
905
906 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
907 {
908 int delete_p = 0;
909
910 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
911 for (q = p->next, prev_q = p; q; q = prev_q->next)
912 {
913 int delete_q = 0;
914 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
915 {
916 if (p->base_offset + p->full_size == q->base_offset)
917 {
918 /* Q comes after P; combine Q into P. */
919 p->size += q->size;
920 p->full_size += q->full_size;
921 delete_q = 1;
922 }
923 else if (q->base_offset + q->full_size == p->base_offset)
924 {
925 /* P comes after Q; combine P into Q. */
926 q->size += p->size;
927 q->full_size += p->full_size;
928 delete_p = 1;
929 break;
930 }
931 }
932 /* Either delete Q or advance past it. */
933 if (delete_q)
934 prev_q->next = q->next;
935 else
936 prev_q = q;
937 }
938 /* Either delete P or advance past it. */
939 if (delete_p)
940 {
941 if (prev_p)
942 prev_p->next = p->next;
943 else
944 temp_slots = p->next;
945 }
946 else
947 prev_p = p;
948 }
949 }
950 \f
951 /* Find the temp slot corresponding to the object at address X. */
952
953 static struct temp_slot *
954 find_temp_slot_from_address (x)
955 rtx x;
956 {
957 struct temp_slot *p;
958 rtx next;
959
960 for (p = temp_slots; p; p = p->next)
961 {
962 if (! p->in_use)
963 continue;
964
965 else if (XEXP (p->slot, 0) == x
966 || p->address == x
967 || (GET_CODE (x) == PLUS
968 && XEXP (x, 0) == virtual_stack_vars_rtx
969 && GET_CODE (XEXP (x, 1)) == CONST_INT
970 && INTVAL (XEXP (x, 1)) >= p->base_offset
971 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
972 return p;
973
974 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
975 for (next = p->address; next; next = XEXP (next, 1))
976 if (XEXP (next, 0) == x)
977 return p;
978 }
979
980 /* If we have a sum involving a register, see if it points to a temp
981 slot. */
982 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
983 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
984 return p;
985 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
986 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
987 return p;
988
989 return 0;
990 }
991
992 /* Indicate that NEW is an alternate way of referring to the temp slot
993 that previously was known by OLD. */
994
995 void
996 update_temp_slot_address (old, new)
997 rtx old, new;
998 {
999 struct temp_slot *p;
1000
1001 if (rtx_equal_p (old, new))
1002 return;
1003
1004 p = find_temp_slot_from_address (old);
1005
1006 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1007 is a register, see if one operand of the PLUS is a temporary
1008 location. If so, NEW points into it. Otherwise, if both OLD and
1009 NEW are a PLUS and if there is a register in common between them.
1010 If so, try a recursive call on those values. */
1011 if (p == 0)
1012 {
1013 if (GET_CODE (old) != PLUS)
1014 return;
1015
1016 if (GET_CODE (new) == REG)
1017 {
1018 update_temp_slot_address (XEXP (old, 0), new);
1019 update_temp_slot_address (XEXP (old, 1), new);
1020 return;
1021 }
1022 else if (GET_CODE (new) != PLUS)
1023 return;
1024
1025 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1026 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1027 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1028 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1029 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1030 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1031 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1032 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1033
1034 return;
1035 }
1036
1037 /* Otherwise add an alias for the temp's address. */
1038 else if (p->address == 0)
1039 p->address = new;
1040 else
1041 {
1042 if (GET_CODE (p->address) != EXPR_LIST)
1043 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1044
1045 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1046 }
1047 }
1048
1049 /* If X could be a reference to a temporary slot, mark the fact that its
1050 address was taken. */
1051
1052 void
1053 mark_temp_addr_taken (x)
1054 rtx x;
1055 {
1056 struct temp_slot *p;
1057
1058 if (x == 0)
1059 return;
1060
1061 /* If X is not in memory or is at a constant address, it cannot be in
1062 a temporary slot. */
1063 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1064 return;
1065
1066 p = find_temp_slot_from_address (XEXP (x, 0));
1067 if (p != 0)
1068 p->addr_taken = 1;
1069 }
1070
1071 /* If X could be a reference to a temporary slot, mark that slot as
1072 belonging to the to one level higher than the current level. If X
1073 matched one of our slots, just mark that one. Otherwise, we can't
1074 easily predict which it is, so upgrade all of them. Kept slots
1075 need not be touched.
1076
1077 This is called when an ({...}) construct occurs and a statement
1078 returns a value in memory. */
1079
1080 void
1081 preserve_temp_slots (x)
1082 rtx x;
1083 {
1084 struct temp_slot *p = 0;
1085
1086 /* If there is no result, we still might have some objects whose address
1087 were taken, so we need to make sure they stay around. */
1088 if (x == 0)
1089 {
1090 for (p = temp_slots; p; p = p->next)
1091 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1092 p->level--;
1093
1094 return;
1095 }
1096
1097 /* If X is a register that is being used as a pointer, see if we have
1098 a temporary slot we know it points to. To be consistent with
1099 the code below, we really should preserve all non-kept slots
1100 if we can't find a match, but that seems to be much too costly. */
1101 if (GET_CODE (x) == REG && REGNO_POINTER_FLAG (REGNO (x)))
1102 p = find_temp_slot_from_address (x);
1103
1104 /* If X is not in memory or is at a constant address, it cannot be in
1105 a temporary slot, but it can contain something whose address was
1106 taken. */
1107 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1108 {
1109 for (p = temp_slots; p; p = p->next)
1110 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1111 p->level--;
1112
1113 return;
1114 }
1115
1116 /* First see if we can find a match. */
1117 if (p == 0)
1118 p = find_temp_slot_from_address (XEXP (x, 0));
1119
1120 if (p != 0)
1121 {
1122 /* Move everything at our level whose address was taken to our new
1123 level in case we used its address. */
1124 struct temp_slot *q;
1125
1126 if (p->level == temp_slot_level)
1127 {
1128 for (q = temp_slots; q; q = q->next)
1129 if (q != p && q->addr_taken && q->level == p->level)
1130 q->level--;
1131
1132 p->level--;
1133 p->addr_taken = 0;
1134 }
1135 return;
1136 }
1137
1138 /* Otherwise, preserve all non-kept slots at this level. */
1139 for (p = temp_slots; p; p = p->next)
1140 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1141 p->level--;
1142 }
1143
1144 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1145 with that RTL_EXPR, promote it into a temporary slot at the present
1146 level so it will not be freed when we free slots made in the
1147 RTL_EXPR. */
1148
1149 void
1150 preserve_rtl_expr_result (x)
1151 rtx x;
1152 {
1153 struct temp_slot *p;
1154
1155 /* If X is not in memory or is at a constant address, it cannot be in
1156 a temporary slot. */
1157 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1158 return;
1159
1160 /* If we can find a match, move it to our level unless it is already at
1161 an upper level. */
1162 p = find_temp_slot_from_address (XEXP (x, 0));
1163 if (p != 0)
1164 {
1165 p->level = MIN (p->level, temp_slot_level);
1166 p->rtl_expr = 0;
1167 }
1168
1169 return;
1170 }
1171
1172 /* Free all temporaries used so far. This is normally called at the end
1173 of generating code for a statement. Don't free any temporaries
1174 currently in use for an RTL_EXPR that hasn't yet been emitted.
1175 We could eventually do better than this since it can be reused while
1176 generating the same RTL_EXPR, but this is complex and probably not
1177 worthwhile. */
1178
1179 void
1180 free_temp_slots ()
1181 {
1182 struct temp_slot *p;
1183
1184 for (p = temp_slots; p; p = p->next)
1185 if (p->in_use && p->level == temp_slot_level && ! p->keep
1186 && p->rtl_expr == 0)
1187 p->in_use = 0;
1188
1189 combine_temp_slots ();
1190 }
1191
1192 /* Free all temporary slots used in T, an RTL_EXPR node. */
1193
1194 void
1195 free_temps_for_rtl_expr (t)
1196 tree t;
1197 {
1198 struct temp_slot *p;
1199
1200 for (p = temp_slots; p; p = p->next)
1201 if (p->rtl_expr == t)
1202 {
1203 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1204 needs to be preserved. This can happen if a temporary in
1205 the RTL_EXPR was addressed; preserve_temp_slots will move
1206 the temporary into a higher level. */
1207 if (temp_slot_level <= p->level)
1208 p->in_use = 0;
1209 else
1210 p->rtl_expr = NULL_TREE;
1211 }
1212
1213 combine_temp_slots ();
1214 }
1215
1216 /* Mark all temporaries ever allocated in this function as not suitable
1217 for reuse until the current level is exited. */
1218
1219 void
1220 mark_all_temps_used ()
1221 {
1222 struct temp_slot *p;
1223
1224 for (p = temp_slots; p; p = p->next)
1225 {
1226 p->in_use = p->keep = 1;
1227 p->level = MIN (p->level, temp_slot_level);
1228 }
1229 }
1230
1231 /* Push deeper into the nesting level for stack temporaries. */
1232
1233 void
1234 push_temp_slots ()
1235 {
1236 temp_slot_level++;
1237 }
1238
1239 /* Likewise, but save the new level as the place to allocate variables
1240 for blocks. */
1241
1242 #if 0
1243 void
1244 push_temp_slots_for_block ()
1245 {
1246 push_temp_slots ();
1247
1248 var_temp_slot_level = temp_slot_level;
1249 }
1250
1251 /* Likewise, but save the new level as the place to allocate temporaries
1252 for TARGET_EXPRs. */
1253
1254 void
1255 push_temp_slots_for_target ()
1256 {
1257 push_temp_slots ();
1258
1259 target_temp_slot_level = temp_slot_level;
1260 }
1261
1262 /* Set and get the value of target_temp_slot_level. The only
1263 permitted use of these functions is to save and restore this value. */
1264
1265 int
1266 get_target_temp_slot_level ()
1267 {
1268 return target_temp_slot_level;
1269 }
1270
1271 void
1272 set_target_temp_slot_level (level)
1273 int level;
1274 {
1275 target_temp_slot_level = level;
1276 }
1277 #endif
1278
1279 /* Pop a temporary nesting level. All slots in use in the current level
1280 are freed. */
1281
1282 void
1283 pop_temp_slots ()
1284 {
1285 struct temp_slot *p;
1286
1287 for (p = temp_slots; p; p = p->next)
1288 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1289 p->in_use = 0;
1290
1291 combine_temp_slots ();
1292
1293 temp_slot_level--;
1294 }
1295
1296 /* Initialize temporary slots. */
1297
1298 void
1299 init_temp_slots ()
1300 {
1301 /* We have not allocated any temporaries yet. */
1302 temp_slots = 0;
1303 temp_slot_level = 0;
1304 var_temp_slot_level = 0;
1305 target_temp_slot_level = 0;
1306 }
1307 \f
1308 /* Retroactively move an auto variable from a register to a stack slot.
1309 This is done when an address-reference to the variable is seen. */
1310
1311 void
1312 put_var_into_stack (decl)
1313 tree decl;
1314 {
1315 register rtx reg;
1316 enum machine_mode promoted_mode, decl_mode;
1317 struct function *function = 0;
1318 tree context;
1319 int can_use_addressof;
1320
1321 context = decl_function_context (decl);
1322
1323 /* Get the current rtl used for this object and its original mode. */
1324 reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl);
1325
1326 /* No need to do anything if decl has no rtx yet
1327 since in that case caller is setting TREE_ADDRESSABLE
1328 and a stack slot will be assigned when the rtl is made. */
1329 if (reg == 0)
1330 return;
1331
1332 /* Get the declared mode for this object. */
1333 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1334 : DECL_MODE (decl));
1335 /* Get the mode it's actually stored in. */
1336 promoted_mode = GET_MODE (reg);
1337
1338 /* If this variable comes from an outer function,
1339 find that function's saved context. */
1340 if (context != current_function_decl && context != inline_function_decl)
1341 for (function = outer_function_chain; function; function = function->next)
1342 if (function->decl == context)
1343 break;
1344
1345 /* If this is a variable-size object with a pseudo to address it,
1346 put that pseudo into the stack, if the var is nonlocal. */
1347 if (DECL_NONLOCAL (decl)
1348 && GET_CODE (reg) == MEM
1349 && GET_CODE (XEXP (reg, 0)) == REG
1350 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1351 {
1352 reg = XEXP (reg, 0);
1353 decl_mode = promoted_mode = GET_MODE (reg);
1354 }
1355
1356 can_use_addressof
1357 = (function == 0
1358 && optimize > 0
1359 /* FIXME make it work for promoted modes too */
1360 && decl_mode == promoted_mode
1361 #ifdef NON_SAVING_SETJMP
1362 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1363 #endif
1364 );
1365
1366 /* If we can't use ADDRESSOF, make sure we see through one we already
1367 generated. */
1368 if (! can_use_addressof && GET_CODE (reg) == MEM
1369 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1370 reg = XEXP (XEXP (reg, 0), 0);
1371
1372 /* Now we should have a value that resides in one or more pseudo regs. */
1373
1374 if (GET_CODE (reg) == REG)
1375 {
1376 /* If this variable lives in the current function and we don't need
1377 to put things in the stack for the sake of setjmp, try to keep it
1378 in a register until we know we actually need the address. */
1379 if (can_use_addressof)
1380 gen_mem_addressof (reg, decl);
1381 else
1382 put_reg_into_stack (function, reg, TREE_TYPE (decl),
1383 promoted_mode, decl_mode,
1384 TREE_SIDE_EFFECTS (decl), 0,
1385 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1386 0);
1387 }
1388 else if (GET_CODE (reg) == CONCAT)
1389 {
1390 /* A CONCAT contains two pseudos; put them both in the stack.
1391 We do it so they end up consecutive. */
1392 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1393 tree part_type = type_for_mode (part_mode, 0);
1394 #ifdef FRAME_GROWS_DOWNWARD
1395 /* Since part 0 should have a lower address, do it second. */
1396 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1397 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1398 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1399 0);
1400 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1401 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1402 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1403 0);
1404 #else
1405 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1406 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1407 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1408 0);
1409 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1410 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1411 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1412 0);
1413 #endif
1414
1415 /* Change the CONCAT into a combined MEM for both parts. */
1416 PUT_CODE (reg, MEM);
1417 MEM_VOLATILE_P (reg) = MEM_VOLATILE_P (XEXP (reg, 0));
1418 MEM_ALIAS_SET (reg) = get_alias_set (decl);
1419 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (TREE_TYPE (decl)));
1420
1421 /* The two parts are in memory order already.
1422 Use the lower parts address as ours. */
1423 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1424 /* Prevent sharing of rtl that might lose. */
1425 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1426 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1427 }
1428 else
1429 return;
1430
1431 if (current_function_check_memory_usage)
1432 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
1433 XEXP (reg, 0), Pmode,
1434 GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
1435 TYPE_MODE (sizetype),
1436 GEN_INT (MEMORY_USE_RW),
1437 TYPE_MODE (integer_type_node));
1438 }
1439
1440 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1441 into the stack frame of FUNCTION (0 means the current function).
1442 DECL_MODE is the machine mode of the user-level data type.
1443 PROMOTED_MODE is the machine mode of the register.
1444 VOLATILE_P is nonzero if this is for a "volatile" decl.
1445 USED_P is nonzero if this reg might have already been used in an insn. */
1446
1447 static void
1448 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1449 original_regno, used_p, ht)
1450 struct function *function;
1451 rtx reg;
1452 tree type;
1453 enum machine_mode promoted_mode, decl_mode;
1454 int volatile_p;
1455 unsigned int original_regno;
1456 int used_p;
1457 struct hash_table *ht;
1458 {
1459 struct function *func = function ? function : cfun;
1460 rtx new = 0;
1461 unsigned int regno = original_regno;
1462
1463 if (regno == 0)
1464 regno = REGNO (reg);
1465
1466 if (regno < func->x_max_parm_reg)
1467 new = func->x_parm_reg_stack_loc[regno];
1468
1469 if (new == 0)
1470 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1471
1472 PUT_CODE (reg, MEM);
1473 PUT_MODE (reg, decl_mode);
1474 XEXP (reg, 0) = XEXP (new, 0);
1475 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1476 MEM_VOLATILE_P (reg) = volatile_p;
1477
1478 /* If this is a memory ref that contains aggregate components,
1479 mark it as such for cse and loop optimize. If we are reusing a
1480 previously generated stack slot, then we need to copy the bit in
1481 case it was set for other reasons. For instance, it is set for
1482 __builtin_va_alist. */
1483 MEM_SET_IN_STRUCT_P (reg,
1484 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1485 MEM_ALIAS_SET (reg) = get_alias_set (type);
1486
1487 /* Now make sure that all refs to the variable, previously made
1488 when it was a register, are fixed up to be valid again. */
1489
1490 if (used_p && function != 0)
1491 {
1492 struct var_refs_queue *temp;
1493
1494 temp
1495 = (struct var_refs_queue *) xmalloc (sizeof (struct var_refs_queue));
1496 temp->modified = reg;
1497 temp->promoted_mode = promoted_mode;
1498 temp->unsignedp = TREE_UNSIGNED (type);
1499 temp->next = function->fixup_var_refs_queue;
1500 function->fixup_var_refs_queue = temp;
1501 }
1502 else if (used_p)
1503 /* Variable is local; fix it up now. */
1504 fixup_var_refs (reg, promoted_mode, TREE_UNSIGNED (type), ht);
1505 }
1506 \f
1507 static void
1508 fixup_var_refs (var, promoted_mode, unsignedp, ht)
1509 rtx var;
1510 enum machine_mode promoted_mode;
1511 int unsignedp;
1512 struct hash_table *ht;
1513 {
1514 tree pending;
1515 rtx first_insn = get_insns ();
1516 struct sequence_stack *stack = seq_stack;
1517 tree rtl_exps = rtl_expr_chain;
1518 rtx insn;
1519
1520 /* Must scan all insns for stack-refs that exceed the limit. */
1521 fixup_var_refs_insns (var, promoted_mode, unsignedp, first_insn,
1522 stack == 0, ht);
1523 /* If there's a hash table, it must record all uses of VAR. */
1524 if (ht)
1525 return;
1526
1527 /* Scan all pending sequences too. */
1528 for (; stack; stack = stack->next)
1529 {
1530 push_to_sequence (stack->first);
1531 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1532 stack->first, stack->next != 0, 0);
1533 /* Update remembered end of sequence
1534 in case we added an insn at the end. */
1535 stack->last = get_last_insn ();
1536 end_sequence ();
1537 }
1538
1539 /* Scan all waiting RTL_EXPRs too. */
1540 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1541 {
1542 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1543 if (seq != const0_rtx && seq != 0)
1544 {
1545 push_to_sequence (seq);
1546 fixup_var_refs_insns (var, promoted_mode, unsignedp, seq, 0,
1547 0);
1548 end_sequence ();
1549 }
1550 }
1551
1552 /* Scan the catch clauses for exception handling too. */
1553 push_to_full_sequence (catch_clauses, catch_clauses_last);
1554 fixup_var_refs_insns (var, promoted_mode, unsignedp, catch_clauses,
1555 0, 0);
1556 end_full_sequence (&catch_clauses, &catch_clauses_last);
1557
1558 /* Scan sequences saved in CALL_PLACEHOLDERS too. */
1559 for (insn = first_insn; insn; insn = NEXT_INSN (insn))
1560 {
1561 if (GET_CODE (insn) == CALL_INSN
1562 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1563 {
1564 int i;
1565
1566 /* Look at the Normal call, sibling call and tail recursion
1567 sequences attached to the CALL_PLACEHOLDER. */
1568 for (i = 0; i < 3; i++)
1569 {
1570 rtx seq = XEXP (PATTERN (insn), i);
1571 if (seq)
1572 {
1573 push_to_sequence (seq);
1574 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1575 seq, 0, 0);
1576 XEXP (PATTERN (insn), i) = get_insns ();
1577 end_sequence ();
1578 }
1579 }
1580 }
1581 }
1582 }
1583 \f
1584 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1585 some part of an insn. Return a struct fixup_replacement whose OLD
1586 value is equal to X. Allocate a new structure if no such entry exists. */
1587
1588 static struct fixup_replacement *
1589 find_fixup_replacement (replacements, x)
1590 struct fixup_replacement **replacements;
1591 rtx x;
1592 {
1593 struct fixup_replacement *p;
1594
1595 /* See if we have already replaced this. */
1596 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1597 ;
1598
1599 if (p == 0)
1600 {
1601 p = (struct fixup_replacement *) oballoc (sizeof (struct fixup_replacement));
1602 p->old = x;
1603 p->new = 0;
1604 p->next = *replacements;
1605 *replacements = p;
1606 }
1607
1608 return p;
1609 }
1610
1611 /* Scan the insn-chain starting with INSN for refs to VAR
1612 and fix them up. TOPLEVEL is nonzero if this chain is the
1613 main chain of insns for the current function. */
1614
1615 static void
1616 fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel, ht)
1617 rtx var;
1618 enum machine_mode promoted_mode;
1619 int unsignedp;
1620 rtx insn;
1621 int toplevel;
1622 struct hash_table *ht;
1623 {
1624 rtx call_dest = 0;
1625 rtx insn_list = NULL_RTX;
1626
1627 /* If we already know which INSNs reference VAR there's no need
1628 to walk the entire instruction chain. */
1629 if (ht)
1630 {
1631 insn_list = ((struct insns_for_mem_entry *)
1632 hash_lookup (ht, var, /*create=*/0, /*copy=*/0))->insns;
1633 insn = insn_list ? XEXP (insn_list, 0) : NULL_RTX;
1634 insn_list = XEXP (insn_list, 1);
1635 }
1636
1637 while (insn)
1638 {
1639 rtx next = NEXT_INSN (insn);
1640 rtx set, prev, prev_set;
1641 rtx note;
1642
1643 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1644 {
1645 /* Remember the notes in case we delete the insn. */
1646 note = REG_NOTES (insn);
1647
1648 /* If this is a CLOBBER of VAR, delete it.
1649
1650 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1651 and REG_RETVAL notes too. */
1652 if (GET_CODE (PATTERN (insn)) == CLOBBER
1653 && (XEXP (PATTERN (insn), 0) == var
1654 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1655 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1656 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1657 {
1658 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1659 /* The REG_LIBCALL note will go away since we are going to
1660 turn INSN into a NOTE, so just delete the
1661 corresponding REG_RETVAL note. */
1662 remove_note (XEXP (note, 0),
1663 find_reg_note (XEXP (note, 0), REG_RETVAL,
1664 NULL_RTX));
1665
1666 /* In unoptimized compilation, we shouldn't call delete_insn
1667 except in jump.c doing warnings. */
1668 PUT_CODE (insn, NOTE);
1669 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1670 NOTE_SOURCE_FILE (insn) = 0;
1671 }
1672
1673 /* The insn to load VAR from a home in the arglist
1674 is now a no-op. When we see it, just delete it.
1675 Similarly if this is storing VAR from a register from which
1676 it was loaded in the previous insn. This will occur
1677 when an ADDRESSOF was made for an arglist slot. */
1678 else if (toplevel
1679 && (set = single_set (insn)) != 0
1680 && SET_DEST (set) == var
1681 /* If this represents the result of an insn group,
1682 don't delete the insn. */
1683 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1684 && (rtx_equal_p (SET_SRC (set), var)
1685 || (GET_CODE (SET_SRC (set)) == REG
1686 && (prev = prev_nonnote_insn (insn)) != 0
1687 && (prev_set = single_set (prev)) != 0
1688 && SET_DEST (prev_set) == SET_SRC (set)
1689 && rtx_equal_p (SET_SRC (prev_set), var))))
1690 {
1691 /* In unoptimized compilation, we shouldn't call delete_insn
1692 except in jump.c doing warnings. */
1693 PUT_CODE (insn, NOTE);
1694 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1695 NOTE_SOURCE_FILE (insn) = 0;
1696 if (insn == last_parm_insn)
1697 last_parm_insn = PREV_INSN (next);
1698 }
1699 else
1700 {
1701 struct fixup_replacement *replacements = 0;
1702 rtx next_insn = NEXT_INSN (insn);
1703
1704 if (SMALL_REGISTER_CLASSES)
1705 {
1706 /* If the insn that copies the results of a CALL_INSN
1707 into a pseudo now references VAR, we have to use an
1708 intermediate pseudo since we want the life of the
1709 return value register to be only a single insn.
1710
1711 If we don't use an intermediate pseudo, such things as
1712 address computations to make the address of VAR valid
1713 if it is not can be placed between the CALL_INSN and INSN.
1714
1715 To make sure this doesn't happen, we record the destination
1716 of the CALL_INSN and see if the next insn uses both that
1717 and VAR. */
1718
1719 if (call_dest != 0 && GET_CODE (insn) == INSN
1720 && reg_mentioned_p (var, PATTERN (insn))
1721 && reg_mentioned_p (call_dest, PATTERN (insn)))
1722 {
1723 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1724
1725 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1726
1727 PATTERN (insn) = replace_rtx (PATTERN (insn),
1728 call_dest, temp);
1729 }
1730
1731 if (GET_CODE (insn) == CALL_INSN
1732 && GET_CODE (PATTERN (insn)) == SET)
1733 call_dest = SET_DEST (PATTERN (insn));
1734 else if (GET_CODE (insn) == CALL_INSN
1735 && GET_CODE (PATTERN (insn)) == PARALLEL
1736 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1737 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1738 else
1739 call_dest = 0;
1740 }
1741
1742 /* See if we have to do anything to INSN now that VAR is in
1743 memory. If it needs to be loaded into a pseudo, use a single
1744 pseudo for the entire insn in case there is a MATCH_DUP
1745 between two operands. We pass a pointer to the head of
1746 a list of struct fixup_replacements. If fixup_var_refs_1
1747 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1748 it will record them in this list.
1749
1750 If it allocated a pseudo for any replacement, we copy into
1751 it here. */
1752
1753 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1754 &replacements);
1755
1756 /* If this is last_parm_insn, and any instructions were output
1757 after it to fix it up, then we must set last_parm_insn to
1758 the last such instruction emitted. */
1759 if (insn == last_parm_insn)
1760 last_parm_insn = PREV_INSN (next_insn);
1761
1762 while (replacements)
1763 {
1764 if (GET_CODE (replacements->new) == REG)
1765 {
1766 rtx insert_before;
1767 rtx seq;
1768
1769 /* OLD might be a (subreg (mem)). */
1770 if (GET_CODE (replacements->old) == SUBREG)
1771 replacements->old
1772 = fixup_memory_subreg (replacements->old, insn, 0);
1773 else
1774 replacements->old
1775 = fixup_stack_1 (replacements->old, insn);
1776
1777 insert_before = insn;
1778
1779 /* If we are changing the mode, do a conversion.
1780 This might be wasteful, but combine.c will
1781 eliminate much of the waste. */
1782
1783 if (GET_MODE (replacements->new)
1784 != GET_MODE (replacements->old))
1785 {
1786 start_sequence ();
1787 convert_move (replacements->new,
1788 replacements->old, unsignedp);
1789 seq = gen_sequence ();
1790 end_sequence ();
1791 }
1792 else
1793 seq = gen_move_insn (replacements->new,
1794 replacements->old);
1795
1796 emit_insn_before (seq, insert_before);
1797 }
1798
1799 replacements = replacements->next;
1800 }
1801 }
1802
1803 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1804 But don't touch other insns referred to by reg-notes;
1805 we will get them elsewhere. */
1806 while (note)
1807 {
1808 if (GET_CODE (note) != INSN_LIST)
1809 XEXP (note, 0)
1810 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1811 note = XEXP (note, 1);
1812 }
1813 }
1814
1815 if (!ht)
1816 insn = next;
1817 else if (insn_list)
1818 {
1819 insn = XEXP (insn_list, 0);
1820 insn_list = XEXP (insn_list, 1);
1821 }
1822 else
1823 insn = NULL_RTX;
1824 }
1825 }
1826 \f
1827 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1828 See if the rtx expression at *LOC in INSN needs to be changed.
1829
1830 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1831 contain a list of original rtx's and replacements. If we find that we need
1832 to modify this insn by replacing a memory reference with a pseudo or by
1833 making a new MEM to implement a SUBREG, we consult that list to see if
1834 we have already chosen a replacement. If none has already been allocated,
1835 we allocate it and update the list. fixup_var_refs_insns will copy VAR
1836 or the SUBREG, as appropriate, to the pseudo. */
1837
1838 static void
1839 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1840 register rtx var;
1841 enum machine_mode promoted_mode;
1842 register rtx *loc;
1843 rtx insn;
1844 struct fixup_replacement **replacements;
1845 {
1846 register int i;
1847 register rtx x = *loc;
1848 RTX_CODE code = GET_CODE (x);
1849 register const char *fmt;
1850 register rtx tem, tem1;
1851 struct fixup_replacement *replacement;
1852
1853 switch (code)
1854 {
1855 case ADDRESSOF:
1856 if (XEXP (x, 0) == var)
1857 {
1858 /* Prevent sharing of rtl that might lose. */
1859 rtx sub = copy_rtx (XEXP (var, 0));
1860
1861 if (! validate_change (insn, loc, sub, 0))
1862 {
1863 rtx y = gen_reg_rtx (GET_MODE (sub));
1864 rtx seq, new_insn;
1865
1866 /* We should be able to replace with a register or all is lost.
1867 Note that we can't use validate_change to verify this, since
1868 we're not caring for replacing all dups simultaneously. */
1869 if (! validate_replace_rtx (*loc, y, insn))
1870 abort ();
1871
1872 /* Careful! First try to recognize a direct move of the
1873 value, mimicking how things are done in gen_reload wrt
1874 PLUS. Consider what happens when insn is a conditional
1875 move instruction and addsi3 clobbers flags. */
1876
1877 start_sequence ();
1878 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1879 seq = gen_sequence ();
1880 end_sequence ();
1881
1882 if (recog_memoized (new_insn) < 0)
1883 {
1884 /* That failed. Fall back on force_operand and hope. */
1885
1886 start_sequence ();
1887 force_operand (sub, y);
1888 seq = gen_sequence ();
1889 end_sequence ();
1890 }
1891
1892 #ifdef HAVE_cc0
1893 /* Don't separate setter from user. */
1894 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1895 insn = PREV_INSN (insn);
1896 #endif
1897
1898 emit_insn_before (seq, insn);
1899 }
1900 }
1901 return;
1902
1903 case MEM:
1904 if (var == x)
1905 {
1906 /* If we already have a replacement, use it. Otherwise,
1907 try to fix up this address in case it is invalid. */
1908
1909 replacement = find_fixup_replacement (replacements, var);
1910 if (replacement->new)
1911 {
1912 *loc = replacement->new;
1913 return;
1914 }
1915
1916 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1917
1918 /* Unless we are forcing memory to register or we changed the mode,
1919 we can leave things the way they are if the insn is valid. */
1920
1921 INSN_CODE (insn) = -1;
1922 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1923 && recog_memoized (insn) >= 0)
1924 return;
1925
1926 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1927 return;
1928 }
1929
1930 /* If X contains VAR, we need to unshare it here so that we update
1931 each occurrence separately. But all identical MEMs in one insn
1932 must be replaced with the same rtx because of the possibility of
1933 MATCH_DUPs. */
1934
1935 if (reg_mentioned_p (var, x))
1936 {
1937 replacement = find_fixup_replacement (replacements, x);
1938 if (replacement->new == 0)
1939 replacement->new = copy_most_rtx (x, var);
1940
1941 *loc = x = replacement->new;
1942 }
1943 break;
1944
1945 case REG:
1946 case CC0:
1947 case PC:
1948 case CONST_INT:
1949 case CONST:
1950 case SYMBOL_REF:
1951 case LABEL_REF:
1952 case CONST_DOUBLE:
1953 return;
1954
1955 case SIGN_EXTRACT:
1956 case ZERO_EXTRACT:
1957 /* Note that in some cases those types of expressions are altered
1958 by optimize_bit_field, and do not survive to get here. */
1959 if (XEXP (x, 0) == var
1960 || (GET_CODE (XEXP (x, 0)) == SUBREG
1961 && SUBREG_REG (XEXP (x, 0)) == var))
1962 {
1963 /* Get TEM as a valid MEM in the mode presently in the insn.
1964
1965 We don't worry about the possibility of MATCH_DUP here; it
1966 is highly unlikely and would be tricky to handle. */
1967
1968 tem = XEXP (x, 0);
1969 if (GET_CODE (tem) == SUBREG)
1970 {
1971 if (GET_MODE_BITSIZE (GET_MODE (tem))
1972 > GET_MODE_BITSIZE (GET_MODE (var)))
1973 {
1974 replacement = find_fixup_replacement (replacements, var);
1975 if (replacement->new == 0)
1976 replacement->new = gen_reg_rtx (GET_MODE (var));
1977 SUBREG_REG (tem) = replacement->new;
1978 }
1979 else
1980 tem = fixup_memory_subreg (tem, insn, 0);
1981 }
1982 else
1983 tem = fixup_stack_1 (tem, insn);
1984
1985 /* Unless we want to load from memory, get TEM into the proper mode
1986 for an extract from memory. This can only be done if the
1987 extract is at a constant position and length. */
1988
1989 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
1990 && GET_CODE (XEXP (x, 2)) == CONST_INT
1991 && ! mode_dependent_address_p (XEXP (tem, 0))
1992 && ! MEM_VOLATILE_P (tem))
1993 {
1994 enum machine_mode wanted_mode = VOIDmode;
1995 enum machine_mode is_mode = GET_MODE (tem);
1996 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
1997
1998 #ifdef HAVE_extzv
1999 if (GET_CODE (x) == ZERO_EXTRACT)
2000 {
2001 wanted_mode
2002 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
2003 if (wanted_mode == VOIDmode)
2004 wanted_mode = word_mode;
2005 }
2006 #endif
2007 #ifdef HAVE_extv
2008 if (GET_CODE (x) == SIGN_EXTRACT)
2009 {
2010 wanted_mode = insn_data[(int) CODE_FOR_extv].operand[1].mode;
2011 if (wanted_mode == VOIDmode)
2012 wanted_mode = word_mode;
2013 }
2014 #endif
2015 /* If we have a narrower mode, we can do something. */
2016 if (wanted_mode != VOIDmode
2017 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2018 {
2019 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2020 rtx old_pos = XEXP (x, 2);
2021 rtx newmem;
2022
2023 /* If the bytes and bits are counted differently, we
2024 must adjust the offset. */
2025 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2026 offset = (GET_MODE_SIZE (is_mode)
2027 - GET_MODE_SIZE (wanted_mode) - offset);
2028
2029 pos %= GET_MODE_BITSIZE (wanted_mode);
2030
2031 newmem = gen_rtx_MEM (wanted_mode,
2032 plus_constant (XEXP (tem, 0), offset));
2033 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
2034 MEM_COPY_ATTRIBUTES (newmem, tem);
2035
2036 /* Make the change and see if the insn remains valid. */
2037 INSN_CODE (insn) = -1;
2038 XEXP (x, 0) = newmem;
2039 XEXP (x, 2) = GEN_INT (pos);
2040
2041 if (recog_memoized (insn) >= 0)
2042 return;
2043
2044 /* Otherwise, restore old position. XEXP (x, 0) will be
2045 restored later. */
2046 XEXP (x, 2) = old_pos;
2047 }
2048 }
2049
2050 /* If we get here, the bitfield extract insn can't accept a memory
2051 reference. Copy the input into a register. */
2052
2053 tem1 = gen_reg_rtx (GET_MODE (tem));
2054 emit_insn_before (gen_move_insn (tem1, tem), insn);
2055 XEXP (x, 0) = tem1;
2056 return;
2057 }
2058 break;
2059
2060 case SUBREG:
2061 if (SUBREG_REG (x) == var)
2062 {
2063 /* If this is a special SUBREG made because VAR was promoted
2064 from a wider mode, replace it with VAR and call ourself
2065 recursively, this time saying that the object previously
2066 had its current mode (by virtue of the SUBREG). */
2067
2068 if (SUBREG_PROMOTED_VAR_P (x))
2069 {
2070 *loc = var;
2071 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
2072 return;
2073 }
2074
2075 /* If this SUBREG makes VAR wider, it has become a paradoxical
2076 SUBREG with VAR in memory, but these aren't allowed at this
2077 stage of the compilation. So load VAR into a pseudo and take
2078 a SUBREG of that pseudo. */
2079 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2080 {
2081 replacement = find_fixup_replacement (replacements, var);
2082 if (replacement->new == 0)
2083 replacement->new = gen_reg_rtx (GET_MODE (var));
2084 SUBREG_REG (x) = replacement->new;
2085 return;
2086 }
2087
2088 /* See if we have already found a replacement for this SUBREG.
2089 If so, use it. Otherwise, make a MEM and see if the insn
2090 is recognized. If not, or if we should force MEM into a register,
2091 make a pseudo for this SUBREG. */
2092 replacement = find_fixup_replacement (replacements, x);
2093 if (replacement->new)
2094 {
2095 *loc = replacement->new;
2096 return;
2097 }
2098
2099 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
2100
2101 INSN_CODE (insn) = -1;
2102 if (! flag_force_mem && recog_memoized (insn) >= 0)
2103 return;
2104
2105 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2106 return;
2107 }
2108 break;
2109
2110 case SET:
2111 /* First do special simplification of bit-field references. */
2112 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2113 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2114 optimize_bit_field (x, insn, 0);
2115 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2116 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2117 optimize_bit_field (x, insn, NULL_PTR);
2118
2119 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2120 into a register and then store it back out. */
2121 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2122 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2123 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2124 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2125 > GET_MODE_SIZE (GET_MODE (var))))
2126 {
2127 replacement = find_fixup_replacement (replacements, var);
2128 if (replacement->new == 0)
2129 replacement->new = gen_reg_rtx (GET_MODE (var));
2130
2131 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2132 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2133 }
2134
2135 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2136 insn into a pseudo and store the low part of the pseudo into VAR. */
2137 if (GET_CODE (SET_DEST (x)) == SUBREG
2138 && SUBREG_REG (SET_DEST (x)) == var
2139 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2140 > GET_MODE_SIZE (GET_MODE (var))))
2141 {
2142 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2143 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2144 tem)),
2145 insn);
2146 break;
2147 }
2148
2149 {
2150 rtx dest = SET_DEST (x);
2151 rtx src = SET_SRC (x);
2152 #ifdef HAVE_insv
2153 rtx outerdest = dest;
2154 #endif
2155
2156 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2157 || GET_CODE (dest) == SIGN_EXTRACT
2158 || GET_CODE (dest) == ZERO_EXTRACT)
2159 dest = XEXP (dest, 0);
2160
2161 if (GET_CODE (src) == SUBREG)
2162 src = XEXP (src, 0);
2163
2164 /* If VAR does not appear at the top level of the SET
2165 just scan the lower levels of the tree. */
2166
2167 if (src != var && dest != var)
2168 break;
2169
2170 /* We will need to rerecognize this insn. */
2171 INSN_CODE (insn) = -1;
2172
2173 #ifdef HAVE_insv
2174 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
2175 {
2176 /* Since this case will return, ensure we fixup all the
2177 operands here. */
2178 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2179 insn, replacements);
2180 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2181 insn, replacements);
2182 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2183 insn, replacements);
2184
2185 tem = XEXP (outerdest, 0);
2186
2187 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2188 that may appear inside a ZERO_EXTRACT.
2189 This was legitimate when the MEM was a REG. */
2190 if (GET_CODE (tem) == SUBREG
2191 && SUBREG_REG (tem) == var)
2192 tem = fixup_memory_subreg (tem, insn, 0);
2193 else
2194 tem = fixup_stack_1 (tem, insn);
2195
2196 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2197 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2198 && ! mode_dependent_address_p (XEXP (tem, 0))
2199 && ! MEM_VOLATILE_P (tem))
2200 {
2201 enum machine_mode wanted_mode;
2202 enum machine_mode is_mode = GET_MODE (tem);
2203 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2204
2205 wanted_mode = insn_data[(int) CODE_FOR_insv].operand[0].mode;
2206 if (wanted_mode == VOIDmode)
2207 wanted_mode = word_mode;
2208
2209 /* If we have a narrower mode, we can do something. */
2210 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2211 {
2212 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2213 rtx old_pos = XEXP (outerdest, 2);
2214 rtx newmem;
2215
2216 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2217 offset = (GET_MODE_SIZE (is_mode)
2218 - GET_MODE_SIZE (wanted_mode) - offset);
2219
2220 pos %= GET_MODE_BITSIZE (wanted_mode);
2221
2222 newmem = gen_rtx_MEM (wanted_mode,
2223 plus_constant (XEXP (tem, 0),
2224 offset));
2225 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
2226 MEM_COPY_ATTRIBUTES (newmem, tem);
2227
2228 /* Make the change and see if the insn remains valid. */
2229 INSN_CODE (insn) = -1;
2230 XEXP (outerdest, 0) = newmem;
2231 XEXP (outerdest, 2) = GEN_INT (pos);
2232
2233 if (recog_memoized (insn) >= 0)
2234 return;
2235
2236 /* Otherwise, restore old position. XEXP (x, 0) will be
2237 restored later. */
2238 XEXP (outerdest, 2) = old_pos;
2239 }
2240 }
2241
2242 /* If we get here, the bit-field store doesn't allow memory
2243 or isn't located at a constant position. Load the value into
2244 a register, do the store, and put it back into memory. */
2245
2246 tem1 = gen_reg_rtx (GET_MODE (tem));
2247 emit_insn_before (gen_move_insn (tem1, tem), insn);
2248 emit_insn_after (gen_move_insn (tem, tem1), insn);
2249 XEXP (outerdest, 0) = tem1;
2250 return;
2251 }
2252 #endif
2253
2254 /* STRICT_LOW_PART is a no-op on memory references
2255 and it can cause combinations to be unrecognizable,
2256 so eliminate it. */
2257
2258 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2259 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2260
2261 /* A valid insn to copy VAR into or out of a register
2262 must be left alone, to avoid an infinite loop here.
2263 If the reference to VAR is by a subreg, fix that up,
2264 since SUBREG is not valid for a memref.
2265 Also fix up the address of the stack slot.
2266
2267 Note that we must not try to recognize the insn until
2268 after we know that we have valid addresses and no
2269 (subreg (mem ...) ...) constructs, since these interfere
2270 with determining the validity of the insn. */
2271
2272 if ((SET_SRC (x) == var
2273 || (GET_CODE (SET_SRC (x)) == SUBREG
2274 && SUBREG_REG (SET_SRC (x)) == var))
2275 && (GET_CODE (SET_DEST (x)) == REG
2276 || (GET_CODE (SET_DEST (x)) == SUBREG
2277 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2278 && GET_MODE (var) == promoted_mode
2279 && x == single_set (insn))
2280 {
2281 rtx pat;
2282
2283 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2284 if (replacement->new)
2285 SET_SRC (x) = replacement->new;
2286 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2287 SET_SRC (x) = replacement->new
2288 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2289 else
2290 SET_SRC (x) = replacement->new
2291 = fixup_stack_1 (SET_SRC (x), insn);
2292
2293 if (recog_memoized (insn) >= 0)
2294 return;
2295
2296 /* INSN is not valid, but we know that we want to
2297 copy SET_SRC (x) to SET_DEST (x) in some way. So
2298 we generate the move and see whether it requires more
2299 than one insn. If it does, we emit those insns and
2300 delete INSN. Otherwise, we an just replace the pattern
2301 of INSN; we have already verified above that INSN has
2302 no other function that to do X. */
2303
2304 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2305 if (GET_CODE (pat) == SEQUENCE)
2306 {
2307 emit_insn_after (pat, insn);
2308 PUT_CODE (insn, NOTE);
2309 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2310 NOTE_SOURCE_FILE (insn) = 0;
2311 }
2312 else
2313 PATTERN (insn) = pat;
2314
2315 return;
2316 }
2317
2318 if ((SET_DEST (x) == var
2319 || (GET_CODE (SET_DEST (x)) == SUBREG
2320 && SUBREG_REG (SET_DEST (x)) == var))
2321 && (GET_CODE (SET_SRC (x)) == REG
2322 || (GET_CODE (SET_SRC (x)) == SUBREG
2323 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2324 && GET_MODE (var) == promoted_mode
2325 && x == single_set (insn))
2326 {
2327 rtx pat;
2328
2329 if (GET_CODE (SET_DEST (x)) == SUBREG)
2330 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2331 else
2332 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2333
2334 if (recog_memoized (insn) >= 0)
2335 return;
2336
2337 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2338 if (GET_CODE (pat) == SEQUENCE)
2339 {
2340 emit_insn_after (pat, insn);
2341 PUT_CODE (insn, NOTE);
2342 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2343 NOTE_SOURCE_FILE (insn) = 0;
2344 }
2345 else
2346 PATTERN (insn) = pat;
2347
2348 return;
2349 }
2350
2351 /* Otherwise, storing into VAR must be handled specially
2352 by storing into a temporary and copying that into VAR
2353 with a new insn after this one. Note that this case
2354 will be used when storing into a promoted scalar since
2355 the insn will now have different modes on the input
2356 and output and hence will be invalid (except for the case
2357 of setting it to a constant, which does not need any
2358 change if it is valid). We generate extra code in that case,
2359 but combine.c will eliminate it. */
2360
2361 if (dest == var)
2362 {
2363 rtx temp;
2364 rtx fixeddest = SET_DEST (x);
2365
2366 /* STRICT_LOW_PART can be discarded, around a MEM. */
2367 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2368 fixeddest = XEXP (fixeddest, 0);
2369 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2370 if (GET_CODE (fixeddest) == SUBREG)
2371 {
2372 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2373 promoted_mode = GET_MODE (fixeddest);
2374 }
2375 else
2376 fixeddest = fixup_stack_1 (fixeddest, insn);
2377
2378 temp = gen_reg_rtx (promoted_mode);
2379
2380 emit_insn_after (gen_move_insn (fixeddest,
2381 gen_lowpart (GET_MODE (fixeddest),
2382 temp)),
2383 insn);
2384
2385 SET_DEST (x) = temp;
2386 }
2387 }
2388
2389 default:
2390 break;
2391 }
2392
2393 /* Nothing special about this RTX; fix its operands. */
2394
2395 fmt = GET_RTX_FORMAT (code);
2396 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2397 {
2398 if (fmt[i] == 'e')
2399 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2400 else if (fmt[i] == 'E')
2401 {
2402 register int j;
2403 for (j = 0; j < XVECLEN (x, i); j++)
2404 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2405 insn, replacements);
2406 }
2407 }
2408 }
2409 \f
2410 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2411 return an rtx (MEM:m1 newaddr) which is equivalent.
2412 If any insns must be emitted to compute NEWADDR, put them before INSN.
2413
2414 UNCRITICAL nonzero means accept paradoxical subregs.
2415 This is used for subregs found inside REG_NOTES. */
2416
2417 static rtx
2418 fixup_memory_subreg (x, insn, uncritical)
2419 rtx x;
2420 rtx insn;
2421 int uncritical;
2422 {
2423 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2424 rtx addr = XEXP (SUBREG_REG (x), 0);
2425 enum machine_mode mode = GET_MODE (x);
2426 rtx result;
2427
2428 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2429 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2430 && ! uncritical)
2431 abort ();
2432
2433 if (BYTES_BIG_ENDIAN)
2434 offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2435 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2436 addr = plus_constant (addr, offset);
2437 if (!flag_force_addr && memory_address_p (mode, addr))
2438 /* Shortcut if no insns need be emitted. */
2439 return change_address (SUBREG_REG (x), mode, addr);
2440 start_sequence ();
2441 result = change_address (SUBREG_REG (x), mode, addr);
2442 emit_insn_before (gen_sequence (), insn);
2443 end_sequence ();
2444 return result;
2445 }
2446
2447 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2448 Replace subexpressions of X in place.
2449 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2450 Otherwise return X, with its contents possibly altered.
2451
2452 If any insns must be emitted to compute NEWADDR, put them before INSN.
2453
2454 UNCRITICAL is as in fixup_memory_subreg. */
2455
2456 static rtx
2457 walk_fixup_memory_subreg (x, insn, uncritical)
2458 register rtx x;
2459 rtx insn;
2460 int uncritical;
2461 {
2462 register enum rtx_code code;
2463 register const char *fmt;
2464 register int i;
2465
2466 if (x == 0)
2467 return 0;
2468
2469 code = GET_CODE (x);
2470
2471 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2472 return fixup_memory_subreg (x, insn, uncritical);
2473
2474 /* Nothing special about this RTX; fix its operands. */
2475
2476 fmt = GET_RTX_FORMAT (code);
2477 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2478 {
2479 if (fmt[i] == 'e')
2480 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2481 else if (fmt[i] == 'E')
2482 {
2483 register int j;
2484 for (j = 0; j < XVECLEN (x, i); j++)
2485 XVECEXP (x, i, j)
2486 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2487 }
2488 }
2489 return x;
2490 }
2491 \f
2492 /* For each memory ref within X, if it refers to a stack slot
2493 with an out of range displacement, put the address in a temp register
2494 (emitting new insns before INSN to load these registers)
2495 and alter the memory ref to use that register.
2496 Replace each such MEM rtx with a copy, to avoid clobberage. */
2497
2498 static rtx
2499 fixup_stack_1 (x, insn)
2500 rtx x;
2501 rtx insn;
2502 {
2503 register int i;
2504 register RTX_CODE code = GET_CODE (x);
2505 register const char *fmt;
2506
2507 if (code == MEM)
2508 {
2509 register rtx ad = XEXP (x, 0);
2510 /* If we have address of a stack slot but it's not valid
2511 (displacement is too large), compute the sum in a register. */
2512 if (GET_CODE (ad) == PLUS
2513 && GET_CODE (XEXP (ad, 0)) == REG
2514 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2515 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2516 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2517 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2518 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2519 #endif
2520 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2521 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2522 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2523 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2524 {
2525 rtx temp, seq;
2526 if (memory_address_p (GET_MODE (x), ad))
2527 return x;
2528
2529 start_sequence ();
2530 temp = copy_to_reg (ad);
2531 seq = gen_sequence ();
2532 end_sequence ();
2533 emit_insn_before (seq, insn);
2534 return change_address (x, VOIDmode, temp);
2535 }
2536 return x;
2537 }
2538
2539 fmt = GET_RTX_FORMAT (code);
2540 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2541 {
2542 if (fmt[i] == 'e')
2543 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2544 else if (fmt[i] == 'E')
2545 {
2546 register int j;
2547 for (j = 0; j < XVECLEN (x, i); j++)
2548 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2549 }
2550 }
2551 return x;
2552 }
2553 \f
2554 /* Optimization: a bit-field instruction whose field
2555 happens to be a byte or halfword in memory
2556 can be changed to a move instruction.
2557
2558 We call here when INSN is an insn to examine or store into a bit-field.
2559 BODY is the SET-rtx to be altered.
2560
2561 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2562 (Currently this is called only from function.c, and EQUIV_MEM
2563 is always 0.) */
2564
2565 static void
2566 optimize_bit_field (body, insn, equiv_mem)
2567 rtx body;
2568 rtx insn;
2569 rtx *equiv_mem;
2570 {
2571 register rtx bitfield;
2572 int destflag;
2573 rtx seq = 0;
2574 enum machine_mode mode;
2575
2576 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2577 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2578 bitfield = SET_DEST (body), destflag = 1;
2579 else
2580 bitfield = SET_SRC (body), destflag = 0;
2581
2582 /* First check that the field being stored has constant size and position
2583 and is in fact a byte or halfword suitably aligned. */
2584
2585 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2586 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2587 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2588 != BLKmode)
2589 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2590 {
2591 register rtx memref = 0;
2592
2593 /* Now check that the containing word is memory, not a register,
2594 and that it is safe to change the machine mode. */
2595
2596 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2597 memref = XEXP (bitfield, 0);
2598 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2599 && equiv_mem != 0)
2600 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2601 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2602 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2603 memref = SUBREG_REG (XEXP (bitfield, 0));
2604 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2605 && equiv_mem != 0
2606 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2607 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2608
2609 if (memref
2610 && ! mode_dependent_address_p (XEXP (memref, 0))
2611 && ! MEM_VOLATILE_P (memref))
2612 {
2613 /* Now adjust the address, first for any subreg'ing
2614 that we are now getting rid of,
2615 and then for which byte of the word is wanted. */
2616
2617 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2618 rtx insns;
2619
2620 /* Adjust OFFSET to count bits from low-address byte. */
2621 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2622 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2623 - offset - INTVAL (XEXP (bitfield, 1)));
2624
2625 /* Adjust OFFSET to count bytes from low-address byte. */
2626 offset /= BITS_PER_UNIT;
2627 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2628 {
2629 offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
2630 if (BYTES_BIG_ENDIAN)
2631 offset -= (MIN (UNITS_PER_WORD,
2632 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2633 - MIN (UNITS_PER_WORD,
2634 GET_MODE_SIZE (GET_MODE (memref))));
2635 }
2636
2637 start_sequence ();
2638 memref = change_address (memref, mode,
2639 plus_constant (XEXP (memref, 0), offset));
2640 insns = get_insns ();
2641 end_sequence ();
2642 emit_insns_before (insns, insn);
2643
2644 /* Store this memory reference where
2645 we found the bit field reference. */
2646
2647 if (destflag)
2648 {
2649 validate_change (insn, &SET_DEST (body), memref, 1);
2650 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2651 {
2652 rtx src = SET_SRC (body);
2653 while (GET_CODE (src) == SUBREG
2654 && SUBREG_WORD (src) == 0)
2655 src = SUBREG_REG (src);
2656 if (GET_MODE (src) != GET_MODE (memref))
2657 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2658 validate_change (insn, &SET_SRC (body), src, 1);
2659 }
2660 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2661 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2662 /* This shouldn't happen because anything that didn't have
2663 one of these modes should have got converted explicitly
2664 and then referenced through a subreg.
2665 This is so because the original bit-field was
2666 handled by agg_mode and so its tree structure had
2667 the same mode that memref now has. */
2668 abort ();
2669 }
2670 else
2671 {
2672 rtx dest = SET_DEST (body);
2673
2674 while (GET_CODE (dest) == SUBREG
2675 && SUBREG_WORD (dest) == 0
2676 && (GET_MODE_CLASS (GET_MODE (dest))
2677 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2678 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2679 <= UNITS_PER_WORD))
2680 dest = SUBREG_REG (dest);
2681
2682 validate_change (insn, &SET_DEST (body), dest, 1);
2683
2684 if (GET_MODE (dest) == GET_MODE (memref))
2685 validate_change (insn, &SET_SRC (body), memref, 1);
2686 else
2687 {
2688 /* Convert the mem ref to the destination mode. */
2689 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2690
2691 start_sequence ();
2692 convert_move (newreg, memref,
2693 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2694 seq = get_insns ();
2695 end_sequence ();
2696
2697 validate_change (insn, &SET_SRC (body), newreg, 1);
2698 }
2699 }
2700
2701 /* See if we can convert this extraction or insertion into
2702 a simple move insn. We might not be able to do so if this
2703 was, for example, part of a PARALLEL.
2704
2705 If we succeed, write out any needed conversions. If we fail,
2706 it is hard to guess why we failed, so don't do anything
2707 special; just let the optimization be suppressed. */
2708
2709 if (apply_change_group () && seq)
2710 emit_insns_before (seq, insn);
2711 }
2712 }
2713 }
2714 \f
2715 /* These routines are responsible for converting virtual register references
2716 to the actual hard register references once RTL generation is complete.
2717
2718 The following four variables are used for communication between the
2719 routines. They contain the offsets of the virtual registers from their
2720 respective hard registers. */
2721
2722 static int in_arg_offset;
2723 static int var_offset;
2724 static int dynamic_offset;
2725 static int out_arg_offset;
2726 static int cfa_offset;
2727
2728 /* In most machines, the stack pointer register is equivalent to the bottom
2729 of the stack. */
2730
2731 #ifndef STACK_POINTER_OFFSET
2732 #define STACK_POINTER_OFFSET 0
2733 #endif
2734
2735 /* If not defined, pick an appropriate default for the offset of dynamically
2736 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2737 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2738
2739 #ifndef STACK_DYNAMIC_OFFSET
2740
2741 #ifdef ACCUMULATE_OUTGOING_ARGS
2742 /* The bottom of the stack points to the actual arguments. If
2743 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2744 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2745 stack space for register parameters is not pushed by the caller, but
2746 rather part of the fixed stack areas and hence not included in
2747 `current_function_outgoing_args_size'. Nevertheless, we must allow
2748 for it when allocating stack dynamic objects. */
2749
2750 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2751 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2752 (current_function_outgoing_args_size \
2753 + REG_PARM_STACK_SPACE (FNDECL) + (STACK_POINTER_OFFSET))
2754
2755 #else
2756 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2757 (current_function_outgoing_args_size + (STACK_POINTER_OFFSET))
2758 #endif
2759
2760 #else
2761 #define STACK_DYNAMIC_OFFSET(FNDECL) STACK_POINTER_OFFSET
2762 #endif
2763 #endif
2764
2765 /* On most machines, the CFA coincides with the first incoming parm. */
2766
2767 #ifndef ARG_POINTER_CFA_OFFSET
2768 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2769 #endif
2770
2771
2772 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2773 its address taken. DECL is the decl for the object stored in the
2774 register, for later use if we do need to force REG into the stack.
2775 REG is overwritten by the MEM like in put_reg_into_stack. */
2776
2777 rtx
2778 gen_mem_addressof (reg, decl)
2779 rtx reg;
2780 tree decl;
2781 {
2782 tree type = TREE_TYPE (decl);
2783 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2784 REGNO (reg), decl);
2785
2786 /* If the original REG was a user-variable, then so is the REG whose
2787 address is being taken. Likewise for unchanging. */
2788 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2789 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2790
2791 PUT_CODE (reg, MEM);
2792 PUT_MODE (reg, DECL_MODE (decl));
2793 XEXP (reg, 0) = r;
2794 MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
2795 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type));
2796 MEM_ALIAS_SET (reg) = get_alias_set (decl);
2797
2798 if (TREE_USED (decl) || DECL_INITIAL (decl) != 0)
2799 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), 0);
2800
2801 return reg;
2802 }
2803
2804 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2805
2806 #if 0
2807 void
2808 flush_addressof (decl)
2809 tree decl;
2810 {
2811 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2812 && DECL_RTL (decl) != 0
2813 && GET_CODE (DECL_RTL (decl)) == MEM
2814 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2815 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2816 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2817 }
2818 #endif
2819
2820 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2821
2822 static void
2823 put_addressof_into_stack (r, ht)
2824 rtx r;
2825 struct hash_table *ht;
2826 {
2827 tree decl = ADDRESSOF_DECL (r);
2828 rtx reg = XEXP (r, 0);
2829
2830 if (GET_CODE (reg) != REG)
2831 abort ();
2832
2833 put_reg_into_stack (0, reg, TREE_TYPE (decl), GET_MODE (reg),
2834 DECL_MODE (decl), TREE_SIDE_EFFECTS (decl),
2835 ADDRESSOF_REGNO (r),
2836 TREE_USED (decl) || DECL_INITIAL (decl) != 0, ht);
2837 }
2838
2839 /* List of replacements made below in purge_addressof_1 when creating
2840 bitfield insertions. */
2841 static rtx purge_bitfield_addressof_replacements;
2842
2843 /* List of replacements made below in purge_addressof_1 for patterns
2844 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2845 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2846 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2847 enough in complex cases, e.g. when some field values can be
2848 extracted by usage MEM with narrower mode. */
2849 static rtx purge_addressof_replacements;
2850
2851 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2852 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2853 the stack. If the function returns FALSE then the replacement could not
2854 be made. */
2855
2856 static boolean
2857 purge_addressof_1 (loc, insn, force, store, ht)
2858 rtx *loc;
2859 rtx insn;
2860 int force, store;
2861 struct hash_table *ht;
2862 {
2863 rtx x;
2864 RTX_CODE code;
2865 int i, j;
2866 const char *fmt;
2867 boolean result = true;
2868
2869 /* Re-start here to avoid recursion in common cases. */
2870 restart:
2871
2872 x = *loc;
2873 if (x == 0)
2874 return true;
2875
2876 code = GET_CODE (x);
2877
2878 /* If we don't return in any of the cases below, we will recurse inside
2879 the RTX, which will normally result in any ADDRESSOF being forced into
2880 memory. */
2881 if (code == SET)
2882 {
2883 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
2884 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
2885 return result;
2886 }
2887
2888 else if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM)
2889 {
2890 /* We must create a copy of the rtx because it was created by
2891 overwriting a REG rtx which is always shared. */
2892 rtx sub = copy_rtx (XEXP (XEXP (x, 0), 0));
2893 rtx insns;
2894
2895 if (validate_change (insn, loc, sub, 0)
2896 || validate_replace_rtx (x, sub, insn))
2897 return true;
2898
2899 start_sequence ();
2900 sub = force_operand (sub, NULL_RTX);
2901 if (! validate_change (insn, loc, sub, 0)
2902 && ! validate_replace_rtx (x, sub, insn))
2903 abort ();
2904
2905 insns = gen_sequence ();
2906 end_sequence ();
2907 emit_insn_before (insns, insn);
2908 return true;
2909 }
2910
2911 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
2912 {
2913 rtx sub = XEXP (XEXP (x, 0), 0);
2914 rtx sub2;
2915
2916 if (GET_CODE (sub) == MEM)
2917 {
2918 sub2 = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0)));
2919 MEM_COPY_ATTRIBUTES (sub2, sub);
2920 RTX_UNCHANGING_P (sub2) = RTX_UNCHANGING_P (sub);
2921 sub = sub2;
2922 }
2923 else if (GET_CODE (sub) == REG
2924 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2925 ;
2926 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
2927 {
2928 int size_x, size_sub;
2929
2930 if (!insn)
2931 {
2932 /* When processing REG_NOTES look at the list of
2933 replacements done on the insn to find the register that X
2934 was replaced by. */
2935 rtx tem;
2936
2937 for (tem = purge_bitfield_addressof_replacements;
2938 tem != NULL_RTX;
2939 tem = XEXP (XEXP (tem, 1), 1))
2940 if (rtx_equal_p (x, XEXP (tem, 0)))
2941 {
2942 *loc = XEXP (XEXP (tem, 1), 0);
2943 return true;
2944 }
2945
2946 /* See comment for purge_addressof_replacements. */
2947 for (tem = purge_addressof_replacements;
2948 tem != NULL_RTX;
2949 tem = XEXP (XEXP (tem, 1), 1))
2950 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
2951 {
2952 rtx z = XEXP (XEXP (tem, 1), 0);
2953
2954 if (GET_MODE (x) == GET_MODE (z)
2955 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
2956 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
2957 abort ();
2958
2959 /* It can happen that the note may speak of things
2960 in a wider (or just different) mode than the
2961 code did. This is especially true of
2962 REG_RETVAL. */
2963
2964 if (GET_CODE (z) == SUBREG && SUBREG_WORD (z) == 0)
2965 z = SUBREG_REG (z);
2966
2967 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2968 && (GET_MODE_SIZE (GET_MODE (x))
2969 > GET_MODE_SIZE (GET_MODE (z))))
2970 {
2971 /* This can occur as a result in invalid
2972 pointer casts, e.g. float f; ...
2973 *(long long int *)&f.
2974 ??? We could emit a warning here, but
2975 without a line number that wouldn't be
2976 very helpful. */
2977 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
2978 }
2979 else
2980 z = gen_lowpart (GET_MODE (x), z);
2981
2982 *loc = z;
2983 return true;
2984 }
2985
2986 /* Sometimes we may not be able to find the replacement. For
2987 example when the original insn was a MEM in a wider mode,
2988 and the note is part of a sign extension of a narrowed
2989 version of that MEM. Gcc testcase compile/990829-1.c can
2990 generate an example of this siutation. Rather than complain
2991 we return false, which will prompt our caller to remove the
2992 offending note. */
2993 return false;
2994 }
2995
2996 size_x = GET_MODE_BITSIZE (GET_MODE (x));
2997 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
2998
2999 /* Don't even consider working with paradoxical subregs,
3000 or the moral equivalent seen here. */
3001 if (size_x <= size_sub
3002 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3003 {
3004 /* Do a bitfield insertion to mirror what would happen
3005 in memory. */
3006
3007 rtx val, seq;
3008
3009 if (store)
3010 {
3011 rtx p = PREV_INSN (insn);
3012
3013 start_sequence ();
3014 val = gen_reg_rtx (GET_MODE (x));
3015 if (! validate_change (insn, loc, val, 0))
3016 {
3017 /* Discard the current sequence and put the
3018 ADDRESSOF on stack. */
3019 end_sequence ();
3020 goto give_up;
3021 }
3022 seq = gen_sequence ();
3023 end_sequence ();
3024 emit_insn_before (seq, insn);
3025 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3026 insn, ht);
3027
3028 start_sequence ();
3029 store_bit_field (sub, size_x, 0, GET_MODE (x),
3030 val, GET_MODE_SIZE (GET_MODE (sub)),
3031 GET_MODE_SIZE (GET_MODE (sub)));
3032
3033 /* Make sure to unshare any shared rtl that store_bit_field
3034 might have created. */
3035 unshare_all_rtl_again (get_insns ());
3036
3037 seq = gen_sequence ();
3038 end_sequence ();
3039 p = emit_insn_after (seq, insn);
3040 if (NEXT_INSN (insn))
3041 compute_insns_for_mem (NEXT_INSN (insn),
3042 p ? NEXT_INSN (p) : NULL_RTX,
3043 ht);
3044 }
3045 else
3046 {
3047 rtx p = PREV_INSN (insn);
3048
3049 start_sequence ();
3050 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3051 GET_MODE (x), GET_MODE (x),
3052 GET_MODE_SIZE (GET_MODE (sub)),
3053 GET_MODE_SIZE (GET_MODE (sub)));
3054
3055 if (! validate_change (insn, loc, val, 0))
3056 {
3057 /* Discard the current sequence and put the
3058 ADDRESSOF on stack. */
3059 end_sequence ();
3060 goto give_up;
3061 }
3062
3063 seq = gen_sequence ();
3064 end_sequence ();
3065 emit_insn_before (seq, insn);
3066 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3067 insn, ht);
3068 }
3069
3070 /* Remember the replacement so that the same one can be done
3071 on the REG_NOTES. */
3072 purge_bitfield_addressof_replacements
3073 = gen_rtx_EXPR_LIST (VOIDmode, x,
3074 gen_rtx_EXPR_LIST
3075 (VOIDmode, val,
3076 purge_bitfield_addressof_replacements));
3077
3078 /* We replaced with a reg -- all done. */
3079 return true;
3080 }
3081 }
3082
3083 else if (validate_change (insn, loc, sub, 0))
3084 {
3085 /* Remember the replacement so that the same one can be done
3086 on the REG_NOTES. */
3087 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3088 {
3089 rtx tem;
3090
3091 for (tem = purge_addressof_replacements;
3092 tem != NULL_RTX;
3093 tem = XEXP (XEXP (tem, 1), 1))
3094 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3095 {
3096 XEXP (XEXP (tem, 1), 0) = sub;
3097 return true;
3098 }
3099 purge_addressof_replacements
3100 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3101 gen_rtx_EXPR_LIST (VOIDmode, sub,
3102 purge_addressof_replacements));
3103 return true;
3104 }
3105 goto restart;
3106 }
3107 give_up:;
3108 /* else give up and put it into the stack */
3109 }
3110
3111 else if (code == ADDRESSOF)
3112 {
3113 put_addressof_into_stack (x, ht);
3114 return true;
3115 }
3116 else if (code == SET)
3117 {
3118 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
3119 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
3120 return result;
3121 }
3122
3123 /* Scan all subexpressions. */
3124 fmt = GET_RTX_FORMAT (code);
3125 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3126 {
3127 if (*fmt == 'e')
3128 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3129 else if (*fmt == 'E')
3130 for (j = 0; j < XVECLEN (x, i); j++)
3131 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3132 }
3133
3134 return result;
3135 }
3136
3137 /* Return a new hash table entry in HT. */
3138
3139 static struct hash_entry *
3140 insns_for_mem_newfunc (he, ht, k)
3141 struct hash_entry *he;
3142 struct hash_table *ht;
3143 hash_table_key k ATTRIBUTE_UNUSED;
3144 {
3145 struct insns_for_mem_entry *ifmhe;
3146 if (he)
3147 return he;
3148
3149 ifmhe = ((struct insns_for_mem_entry *)
3150 hash_allocate (ht, sizeof (struct insns_for_mem_entry)));
3151 ifmhe->insns = NULL_RTX;
3152
3153 return &ifmhe->he;
3154 }
3155
3156 /* Return a hash value for K, a REG. */
3157
3158 static unsigned long
3159 insns_for_mem_hash (k)
3160 hash_table_key k;
3161 {
3162 /* K is really a RTX. Just use the address as the hash value. */
3163 return (unsigned long) k;
3164 }
3165
3166 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3167
3168 static boolean
3169 insns_for_mem_comp (k1, k2)
3170 hash_table_key k1;
3171 hash_table_key k2;
3172 {
3173 return k1 == k2;
3174 }
3175
3176 struct insns_for_mem_walk_info {
3177 /* The hash table that we are using to record which INSNs use which
3178 MEMs. */
3179 struct hash_table *ht;
3180
3181 /* The INSN we are currently proessing. */
3182 rtx insn;
3183
3184 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3185 to find the insns that use the REGs in the ADDRESSOFs. */
3186 int pass;
3187 };
3188
3189 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3190 that might be used in an ADDRESSOF expression, record this INSN in
3191 the hash table given by DATA (which is really a pointer to an
3192 insns_for_mem_walk_info structure). */
3193
3194 static int
3195 insns_for_mem_walk (r, data)
3196 rtx *r;
3197 void *data;
3198 {
3199 struct insns_for_mem_walk_info *ifmwi
3200 = (struct insns_for_mem_walk_info *) data;
3201
3202 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3203 && GET_CODE (XEXP (*r, 0)) == REG)
3204 hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0);
3205 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3206 {
3207 /* Lookup this MEM in the hashtable, creating it if necessary. */
3208 struct insns_for_mem_entry *ifme
3209 = (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht,
3210 *r,
3211 /*create=*/0,
3212 /*copy=*/0);
3213
3214 /* If we have not already recorded this INSN, do so now. Since
3215 we process the INSNs in order, we know that if we have
3216 recorded it it must be at the front of the list. */
3217 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3218 {
3219 /* We do the allocation on the same obstack as is used for
3220 the hash table since this memory will not be used once
3221 the hash table is deallocated. */
3222 push_obstacks (&ifmwi->ht->memory, &ifmwi->ht->memory);
3223 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3224 ifme->insns);
3225 pop_obstacks ();
3226 }
3227 }
3228
3229 return 0;
3230 }
3231
3232 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3233 which REGs in HT. */
3234
3235 static void
3236 compute_insns_for_mem (insns, last_insn, ht)
3237 rtx insns;
3238 rtx last_insn;
3239 struct hash_table *ht;
3240 {
3241 rtx insn;
3242 struct insns_for_mem_walk_info ifmwi;
3243 ifmwi.ht = ht;
3244
3245 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3246 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3247 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3248 {
3249 ifmwi.insn = insn;
3250 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3251 }
3252 }
3253
3254 /* Helper function for purge_addressof called through for_each_rtx.
3255 Returns true iff the rtl is an ADDRESSOF. */
3256 static int
3257 is_addressof (rtl, data)
3258 rtx * rtl;
3259 void * data ATTRIBUTE_UNUSED;
3260 {
3261 return GET_CODE (* rtl) == ADDRESSOF;
3262 }
3263
3264 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3265 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3266 stack. */
3267
3268 void
3269 purge_addressof (insns)
3270 rtx insns;
3271 {
3272 rtx insn;
3273 struct hash_table ht;
3274
3275 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3276 requires a fixup pass over the instruction stream to correct
3277 INSNs that depended on the REG being a REG, and not a MEM. But,
3278 these fixup passes are slow. Furthermore, more MEMs are not
3279 mentioned in very many instructions. So, we speed up the process
3280 by pre-calculating which REGs occur in which INSNs; that allows
3281 us to perform the fixup passes much more quickly. */
3282 hash_table_init (&ht,
3283 insns_for_mem_newfunc,
3284 insns_for_mem_hash,
3285 insns_for_mem_comp);
3286 compute_insns_for_mem (insns, NULL_RTX, &ht);
3287
3288 for (insn = insns; insn; insn = NEXT_INSN (insn))
3289 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3290 || GET_CODE (insn) == CALL_INSN)
3291 {
3292 if (! purge_addressof_1 (&PATTERN (insn), insn,
3293 asm_noperands (PATTERN (insn)) > 0, 0, &ht))
3294 /* If we could not replace the ADDRESSOFs in the insn,
3295 something is wrong. */
3296 abort ();
3297
3298 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, &ht))
3299 {
3300 /* If we could not replace the ADDRESSOFs in the insn's notes,
3301 we can just remove the offending notes instead. */
3302 rtx note;
3303
3304 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3305 {
3306 /* If we find a REG_RETVAL note then the insn is a libcall.
3307 Such insns must have REG_EQUAL notes as well, in order
3308 for later passes of the compiler to work. So it is not
3309 safe to delete the notes here, and instead we abort. */
3310 if (REG_NOTE_KIND (note) == REG_RETVAL)
3311 abort ();
3312 if (for_each_rtx (& note, is_addressof, NULL))
3313 remove_note (insn, note);
3314 }
3315 }
3316 }
3317
3318 /* Clean up. */
3319 hash_table_free (&ht);
3320 purge_bitfield_addressof_replacements = 0;
3321 purge_addressof_replacements = 0;
3322 }
3323 \f
3324 /* Pass through the INSNS of function FNDECL and convert virtual register
3325 references to hard register references. */
3326
3327 void
3328 instantiate_virtual_regs (fndecl, insns)
3329 tree fndecl;
3330 rtx insns;
3331 {
3332 rtx insn;
3333 unsigned int i;
3334
3335 /* Compute the offsets to use for this function. */
3336 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3337 var_offset = STARTING_FRAME_OFFSET;
3338 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3339 out_arg_offset = STACK_POINTER_OFFSET;
3340 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3341
3342 /* Scan all variables and parameters of this function. For each that is
3343 in memory, instantiate all virtual registers if the result is a valid
3344 address. If not, we do it later. That will handle most uses of virtual
3345 regs on many machines. */
3346 instantiate_decls (fndecl, 1);
3347
3348 /* Initialize recognition, indicating that volatile is OK. */
3349 init_recog ();
3350
3351 /* Scan through all the insns, instantiating every virtual register still
3352 present. */
3353 for (insn = insns; insn; insn = NEXT_INSN (insn))
3354 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3355 || GET_CODE (insn) == CALL_INSN)
3356 {
3357 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3358 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3359 }
3360
3361 /* Instantiate the stack slots for the parm registers, for later use in
3362 addressof elimination. */
3363 for (i = 0; i < max_parm_reg; ++i)
3364 if (parm_reg_stack_loc[i])
3365 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3366
3367 /* Now instantiate the remaining register equivalences for debugging info.
3368 These will not be valid addresses. */
3369 instantiate_decls (fndecl, 0);
3370
3371 /* Indicate that, from now on, assign_stack_local should use
3372 frame_pointer_rtx. */
3373 virtuals_instantiated = 1;
3374 }
3375
3376 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3377 all virtual registers in their DECL_RTL's.
3378
3379 If VALID_ONLY, do this only if the resulting address is still valid.
3380 Otherwise, always do it. */
3381
3382 static void
3383 instantiate_decls (fndecl, valid_only)
3384 tree fndecl;
3385 int valid_only;
3386 {
3387 tree decl;
3388
3389 if (DECL_SAVED_INSNS (fndecl))
3390 /* When compiling an inline function, the obstack used for
3391 rtl allocation is the maybepermanent_obstack. Calling
3392 `resume_temporary_allocation' switches us back to that
3393 obstack while we process this function's parameters. */
3394 resume_temporary_allocation ();
3395
3396 /* Process all parameters of the function. */
3397 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3398 {
3399 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3400
3401 instantiate_decl (DECL_RTL (decl), size, valid_only);
3402
3403 /* If the parameter was promoted, then the incoming RTL mode may be
3404 larger than the declared type size. We must use the larger of
3405 the two sizes. */
3406 size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size);
3407 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3408 }
3409
3410 /* Now process all variables defined in the function or its subblocks. */
3411 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3412
3413 if (DECL_INLINE (fndecl) || DECL_DEFER_OUTPUT (fndecl))
3414 {
3415 /* Save all rtl allocated for this function by raising the
3416 high-water mark on the maybepermanent_obstack. */
3417 preserve_data ();
3418 /* All further rtl allocation is now done in the current_obstack. */
3419 rtl_in_current_obstack ();
3420 }
3421 }
3422
3423 /* Subroutine of instantiate_decls: Process all decls in the given
3424 BLOCK node and all its subblocks. */
3425
3426 static void
3427 instantiate_decls_1 (let, valid_only)
3428 tree let;
3429 int valid_only;
3430 {
3431 tree t;
3432
3433 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3434 instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)),
3435 valid_only);
3436
3437 /* Process all subblocks. */
3438 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3439 instantiate_decls_1 (t, valid_only);
3440 }
3441
3442 /* Subroutine of the preceding procedures: Given RTL representing a
3443 decl and the size of the object, do any instantiation required.
3444
3445 If VALID_ONLY is non-zero, it means that the RTL should only be
3446 changed if the new address is valid. */
3447
3448 static void
3449 instantiate_decl (x, size, valid_only)
3450 rtx x;
3451 HOST_WIDE_INT size;
3452 int valid_only;
3453 {
3454 enum machine_mode mode;
3455 rtx addr;
3456
3457 /* If this is not a MEM, no need to do anything. Similarly if the
3458 address is a constant or a register that is not a virtual register. */
3459
3460 if (x == 0 || GET_CODE (x) != MEM)
3461 return;
3462
3463 addr = XEXP (x, 0);
3464 if (CONSTANT_P (addr)
3465 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3466 || (GET_CODE (addr) == REG
3467 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3468 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3469 return;
3470
3471 /* If we should only do this if the address is valid, copy the address.
3472 We need to do this so we can undo any changes that might make the
3473 address invalid. This copy is unfortunate, but probably can't be
3474 avoided. */
3475
3476 if (valid_only)
3477 addr = copy_rtx (addr);
3478
3479 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3480
3481 if (valid_only && size >= 0)
3482 {
3483 unsigned HOST_WIDE_INT decl_size = size;
3484
3485 /* Now verify that the resulting address is valid for every integer or
3486 floating-point mode up to and including SIZE bytes long. We do this
3487 since the object might be accessed in any mode and frame addresses
3488 are shared. */
3489
3490 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3491 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3492 mode = GET_MODE_WIDER_MODE (mode))
3493 if (! memory_address_p (mode, addr))
3494 return;
3495
3496 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3497 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3498 mode = GET_MODE_WIDER_MODE (mode))
3499 if (! memory_address_p (mode, addr))
3500 return;
3501 }
3502
3503 /* Put back the address now that we have updated it and we either know
3504 it is valid or we don't care whether it is valid. */
3505
3506 XEXP (x, 0) = addr;
3507 }
3508 \f
3509 /* Given a pointer to a piece of rtx and an optional pointer to the
3510 containing object, instantiate any virtual registers present in it.
3511
3512 If EXTRA_INSNS, we always do the replacement and generate
3513 any extra insns before OBJECT. If it zero, we do nothing if replacement
3514 is not valid.
3515
3516 Return 1 if we either had nothing to do or if we were able to do the
3517 needed replacement. Return 0 otherwise; we only return zero if
3518 EXTRA_INSNS is zero.
3519
3520 We first try some simple transformations to avoid the creation of extra
3521 pseudos. */
3522
3523 static int
3524 instantiate_virtual_regs_1 (loc, object, extra_insns)
3525 rtx *loc;
3526 rtx object;
3527 int extra_insns;
3528 {
3529 rtx x;
3530 RTX_CODE code;
3531 rtx new = 0;
3532 HOST_WIDE_INT offset = 0;
3533 rtx temp;
3534 rtx seq;
3535 int i, j;
3536 const char *fmt;
3537
3538 /* Re-start here to avoid recursion in common cases. */
3539 restart:
3540
3541 x = *loc;
3542 if (x == 0)
3543 return 1;
3544
3545 code = GET_CODE (x);
3546
3547 /* Check for some special cases. */
3548 switch (code)
3549 {
3550 case CONST_INT:
3551 case CONST_DOUBLE:
3552 case CONST:
3553 case SYMBOL_REF:
3554 case CODE_LABEL:
3555 case PC:
3556 case CC0:
3557 case ASM_INPUT:
3558 case ADDR_VEC:
3559 case ADDR_DIFF_VEC:
3560 case RETURN:
3561 return 1;
3562
3563 case SET:
3564 /* We are allowed to set the virtual registers. This means that
3565 the actual register should receive the source minus the
3566 appropriate offset. This is used, for example, in the handling
3567 of non-local gotos. */
3568 if (SET_DEST (x) == virtual_incoming_args_rtx)
3569 new = arg_pointer_rtx, offset = - in_arg_offset;
3570 else if (SET_DEST (x) == virtual_stack_vars_rtx)
3571 new = frame_pointer_rtx, offset = - var_offset;
3572 else if (SET_DEST (x) == virtual_stack_dynamic_rtx)
3573 new = stack_pointer_rtx, offset = - dynamic_offset;
3574 else if (SET_DEST (x) == virtual_outgoing_args_rtx)
3575 new = stack_pointer_rtx, offset = - out_arg_offset;
3576 else if (SET_DEST (x) == virtual_cfa_rtx)
3577 new = arg_pointer_rtx, offset = - cfa_offset;
3578
3579 if (new)
3580 {
3581 rtx src = SET_SRC (x);
3582
3583 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3584
3585 /* The only valid sources here are PLUS or REG. Just do
3586 the simplest possible thing to handle them. */
3587 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3588 abort ();
3589
3590 start_sequence ();
3591 if (GET_CODE (src) != REG)
3592 temp = force_operand (src, NULL_RTX);
3593 else
3594 temp = src;
3595 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3596 seq = get_insns ();
3597 end_sequence ();
3598
3599 emit_insns_before (seq, object);
3600 SET_DEST (x) = new;
3601
3602 if (! validate_change (object, &SET_SRC (x), temp, 0)
3603 || ! extra_insns)
3604 abort ();
3605
3606 return 1;
3607 }
3608
3609 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3610 loc = &SET_SRC (x);
3611 goto restart;
3612
3613 case PLUS:
3614 /* Handle special case of virtual register plus constant. */
3615 if (CONSTANT_P (XEXP (x, 1)))
3616 {
3617 rtx old, new_offset;
3618
3619 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3620 if (GET_CODE (XEXP (x, 0)) == PLUS)
3621 {
3622 rtx inner = XEXP (XEXP (x, 0), 0);
3623
3624 if (inner == virtual_incoming_args_rtx)
3625 new = arg_pointer_rtx, offset = in_arg_offset;
3626 else if (inner == virtual_stack_vars_rtx)
3627 new = frame_pointer_rtx, offset = var_offset;
3628 else if (inner == virtual_stack_dynamic_rtx)
3629 new = stack_pointer_rtx, offset = dynamic_offset;
3630 else if (inner == virtual_outgoing_args_rtx)
3631 new = stack_pointer_rtx, offset = out_arg_offset;
3632 else if (inner == virtual_cfa_rtx)
3633 new = arg_pointer_rtx, offset = cfa_offset;
3634 else
3635 {
3636 loc = &XEXP (x, 0);
3637 goto restart;
3638 }
3639
3640 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3641 extra_insns);
3642 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3643 }
3644
3645 else if (XEXP (x, 0) == virtual_incoming_args_rtx)
3646 new = arg_pointer_rtx, offset = in_arg_offset;
3647 else if (XEXP (x, 0) == virtual_stack_vars_rtx)
3648 new = frame_pointer_rtx, offset = var_offset;
3649 else if (XEXP (x, 0) == virtual_stack_dynamic_rtx)
3650 new = stack_pointer_rtx, offset = dynamic_offset;
3651 else if (XEXP (x, 0) == virtual_outgoing_args_rtx)
3652 new = stack_pointer_rtx, offset = out_arg_offset;
3653 else if (XEXP (x, 0) == virtual_cfa_rtx)
3654 new = arg_pointer_rtx, offset = cfa_offset;
3655 else
3656 {
3657 /* We know the second operand is a constant. Unless the
3658 first operand is a REG (which has been already checked),
3659 it needs to be checked. */
3660 if (GET_CODE (XEXP (x, 0)) != REG)
3661 {
3662 loc = &XEXP (x, 0);
3663 goto restart;
3664 }
3665 return 1;
3666 }
3667
3668 new_offset = plus_constant (XEXP (x, 1), offset);
3669
3670 /* If the new constant is zero, try to replace the sum with just
3671 the register. */
3672 if (new_offset == const0_rtx
3673 && validate_change (object, loc, new, 0))
3674 return 1;
3675
3676 /* Next try to replace the register and new offset.
3677 There are two changes to validate here and we can't assume that
3678 in the case of old offset equals new just changing the register
3679 will yield a valid insn. In the interests of a little efficiency,
3680 however, we only call validate change once (we don't queue up the
3681 changes and then call apply_change_group). */
3682
3683 old = XEXP (x, 0);
3684 if (offset == 0
3685 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3686 : (XEXP (x, 0) = new,
3687 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3688 {
3689 if (! extra_insns)
3690 {
3691 XEXP (x, 0) = old;
3692 return 0;
3693 }
3694
3695 /* Otherwise copy the new constant into a register and replace
3696 constant with that register. */
3697 temp = gen_reg_rtx (Pmode);
3698 XEXP (x, 0) = new;
3699 if (validate_change (object, &XEXP (x, 1), temp, 0))
3700 emit_insn_before (gen_move_insn (temp, new_offset), object);
3701 else
3702 {
3703 /* If that didn't work, replace this expression with a
3704 register containing the sum. */
3705
3706 XEXP (x, 0) = old;
3707 new = gen_rtx_PLUS (Pmode, new, new_offset);
3708
3709 start_sequence ();
3710 temp = force_operand (new, NULL_RTX);
3711 seq = get_insns ();
3712 end_sequence ();
3713
3714 emit_insns_before (seq, object);
3715 if (! validate_change (object, loc, temp, 0)
3716 && ! validate_replace_rtx (x, temp, object))
3717 abort ();
3718 }
3719 }
3720
3721 return 1;
3722 }
3723
3724 /* Fall through to generic two-operand expression case. */
3725 case EXPR_LIST:
3726 case CALL:
3727 case COMPARE:
3728 case MINUS:
3729 case MULT:
3730 case DIV: case UDIV:
3731 case MOD: case UMOD:
3732 case AND: case IOR: case XOR:
3733 case ROTATERT: case ROTATE:
3734 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3735 case NE: case EQ:
3736 case GE: case GT: case GEU: case GTU:
3737 case LE: case LT: case LEU: case LTU:
3738 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3739 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3740 loc = &XEXP (x, 0);
3741 goto restart;
3742
3743 case MEM:
3744 /* Most cases of MEM that convert to valid addresses have already been
3745 handled by our scan of decls. The only special handling we
3746 need here is to make a copy of the rtx to ensure it isn't being
3747 shared if we have to change it to a pseudo.
3748
3749 If the rtx is a simple reference to an address via a virtual register,
3750 it can potentially be shared. In such cases, first try to make it
3751 a valid address, which can also be shared. Otherwise, copy it and
3752 proceed normally.
3753
3754 First check for common cases that need no processing. These are
3755 usually due to instantiation already being done on a previous instance
3756 of a shared rtx. */
3757
3758 temp = XEXP (x, 0);
3759 if (CONSTANT_ADDRESS_P (temp)
3760 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3761 || temp == arg_pointer_rtx
3762 #endif
3763 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3764 || temp == hard_frame_pointer_rtx
3765 #endif
3766 || temp == frame_pointer_rtx)
3767 return 1;
3768
3769 if (GET_CODE (temp) == PLUS
3770 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3771 && (XEXP (temp, 0) == frame_pointer_rtx
3772 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3773 || XEXP (temp, 0) == hard_frame_pointer_rtx
3774 #endif
3775 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3776 || XEXP (temp, 0) == arg_pointer_rtx
3777 #endif
3778 ))
3779 return 1;
3780
3781 if (temp == virtual_stack_vars_rtx
3782 || temp == virtual_incoming_args_rtx
3783 || (GET_CODE (temp) == PLUS
3784 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3785 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3786 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3787 {
3788 /* This MEM may be shared. If the substitution can be done without
3789 the need to generate new pseudos, we want to do it in place
3790 so all copies of the shared rtx benefit. The call below will
3791 only make substitutions if the resulting address is still
3792 valid.
3793
3794 Note that we cannot pass X as the object in the recursive call
3795 since the insn being processed may not allow all valid
3796 addresses. However, if we were not passed on object, we can
3797 only modify X without copying it if X will have a valid
3798 address.
3799
3800 ??? Also note that this can still lose if OBJECT is an insn that
3801 has less restrictions on an address that some other insn.
3802 In that case, we will modify the shared address. This case
3803 doesn't seem very likely, though. One case where this could
3804 happen is in the case of a USE or CLOBBER reference, but we
3805 take care of that below. */
3806
3807 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
3808 object ? object : x, 0))
3809 return 1;
3810
3811 /* Otherwise make a copy and process that copy. We copy the entire
3812 RTL expression since it might be a PLUS which could also be
3813 shared. */
3814 *loc = x = copy_rtx (x);
3815 }
3816
3817 /* Fall through to generic unary operation case. */
3818 case SUBREG:
3819 case STRICT_LOW_PART:
3820 case NEG: case NOT:
3821 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
3822 case SIGN_EXTEND: case ZERO_EXTEND:
3823 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3824 case FLOAT: case FIX:
3825 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3826 case ABS:
3827 case SQRT:
3828 case FFS:
3829 /* These case either have just one operand or we know that we need not
3830 check the rest of the operands. */
3831 loc = &XEXP (x, 0);
3832 goto restart;
3833
3834 case USE:
3835 case CLOBBER:
3836 /* If the operand is a MEM, see if the change is a valid MEM. If not,
3837 go ahead and make the invalid one, but do it to a copy. For a REG,
3838 just make the recursive call, since there's no chance of a problem. */
3839
3840 if ((GET_CODE (XEXP (x, 0)) == MEM
3841 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
3842 0))
3843 || (GET_CODE (XEXP (x, 0)) == REG
3844 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
3845 return 1;
3846
3847 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
3848 loc = &XEXP (x, 0);
3849 goto restart;
3850
3851 case REG:
3852 /* Try to replace with a PLUS. If that doesn't work, compute the sum
3853 in front of this insn and substitute the temporary. */
3854 if (x == virtual_incoming_args_rtx)
3855 new = arg_pointer_rtx, offset = in_arg_offset;
3856 else if (x == virtual_stack_vars_rtx)
3857 new = frame_pointer_rtx, offset = var_offset;
3858 else if (x == virtual_stack_dynamic_rtx)
3859 new = stack_pointer_rtx, offset = dynamic_offset;
3860 else if (x == virtual_outgoing_args_rtx)
3861 new = stack_pointer_rtx, offset = out_arg_offset;
3862 else if (x == virtual_cfa_rtx)
3863 new = arg_pointer_rtx, offset = cfa_offset;
3864
3865 if (new)
3866 {
3867 temp = plus_constant (new, offset);
3868 if (!validate_change (object, loc, temp, 0))
3869 {
3870 if (! extra_insns)
3871 return 0;
3872
3873 start_sequence ();
3874 temp = force_operand (temp, NULL_RTX);
3875 seq = get_insns ();
3876 end_sequence ();
3877
3878 emit_insns_before (seq, object);
3879 if (! validate_change (object, loc, temp, 0)
3880 && ! validate_replace_rtx (x, temp, object))
3881 abort ();
3882 }
3883 }
3884
3885 return 1;
3886
3887 case ADDRESSOF:
3888 if (GET_CODE (XEXP (x, 0)) == REG)
3889 return 1;
3890
3891 else if (GET_CODE (XEXP (x, 0)) == MEM)
3892 {
3893 /* If we have a (addressof (mem ..)), do any instantiation inside
3894 since we know we'll be making the inside valid when we finally
3895 remove the ADDRESSOF. */
3896 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
3897 return 1;
3898 }
3899 break;
3900
3901 default:
3902 break;
3903 }
3904
3905 /* Scan all subexpressions. */
3906 fmt = GET_RTX_FORMAT (code);
3907 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3908 if (*fmt == 'e')
3909 {
3910 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
3911 return 0;
3912 }
3913 else if (*fmt == 'E')
3914 for (j = 0; j < XVECLEN (x, i); j++)
3915 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
3916 extra_insns))
3917 return 0;
3918
3919 return 1;
3920 }
3921 \f
3922 /* Optimization: assuming this function does not receive nonlocal gotos,
3923 delete the handlers for such, as well as the insns to establish
3924 and disestablish them. */
3925
3926 static void
3927 delete_handlers ()
3928 {
3929 rtx insn;
3930 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3931 {
3932 /* Delete the handler by turning off the flag that would
3933 prevent jump_optimize from deleting it.
3934 Also permit deletion of the nonlocal labels themselves
3935 if nothing local refers to them. */
3936 if (GET_CODE (insn) == CODE_LABEL)
3937 {
3938 tree t, last_t;
3939
3940 LABEL_PRESERVE_P (insn) = 0;
3941
3942 /* Remove it from the nonlocal_label list, to avoid confusing
3943 flow. */
3944 for (t = nonlocal_labels, last_t = 0; t;
3945 last_t = t, t = TREE_CHAIN (t))
3946 if (DECL_RTL (TREE_VALUE (t)) == insn)
3947 break;
3948 if (t)
3949 {
3950 if (! last_t)
3951 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
3952 else
3953 TREE_CHAIN (last_t) = TREE_CHAIN (t);
3954 }
3955 }
3956 if (GET_CODE (insn) == INSN)
3957 {
3958 int can_delete = 0;
3959 rtx t;
3960 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
3961 if (reg_mentioned_p (t, PATTERN (insn)))
3962 {
3963 can_delete = 1;
3964 break;
3965 }
3966 if (can_delete
3967 || (nonlocal_goto_stack_level != 0
3968 && reg_mentioned_p (nonlocal_goto_stack_level,
3969 PATTERN (insn))))
3970 delete_insn (insn);
3971 }
3972 }
3973 }
3974 \f
3975 int
3976 max_parm_reg_num ()
3977 {
3978 return max_parm_reg;
3979 }
3980
3981 /* Return the first insn following those generated by `assign_parms'. */
3982
3983 rtx
3984 get_first_nonparm_insn ()
3985 {
3986 if (last_parm_insn)
3987 return NEXT_INSN (last_parm_insn);
3988 return get_insns ();
3989 }
3990
3991 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
3992 Crash if there is none. */
3993
3994 rtx
3995 get_first_block_beg ()
3996 {
3997 register rtx searcher;
3998 register rtx insn = get_first_nonparm_insn ();
3999
4000 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
4001 if (GET_CODE (searcher) == NOTE
4002 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
4003 return searcher;
4004
4005 abort (); /* Invalid call to this function. (See comments above.) */
4006 return NULL_RTX;
4007 }
4008
4009 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4010 This means a type for which function calls must pass an address to the
4011 function or get an address back from the function.
4012 EXP may be a type node or an expression (whose type is tested). */
4013
4014 int
4015 aggregate_value_p (exp)
4016 tree exp;
4017 {
4018 int i, regno, nregs;
4019 rtx reg;
4020
4021 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4022
4023 if (RETURN_IN_MEMORY (type))
4024 return 1;
4025 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4026 and thus can't be returned in registers. */
4027 if (TREE_ADDRESSABLE (type))
4028 return 1;
4029 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4030 return 1;
4031 /* Make sure we have suitable call-clobbered regs to return
4032 the value in; if not, we must return it in memory. */
4033 reg = hard_function_value (type, 0, 0);
4034
4035 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4036 it is OK. */
4037 if (GET_CODE (reg) != REG)
4038 return 0;
4039
4040 regno = REGNO (reg);
4041 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4042 for (i = 0; i < nregs; i++)
4043 if (! call_used_regs[regno + i])
4044 return 1;
4045 return 0;
4046 }
4047 \f
4048 /* Assign RTL expressions to the function's parameters.
4049 This may involve copying them into registers and using
4050 those registers as the RTL for them. */
4051
4052 void
4053 assign_parms (fndecl)
4054 tree fndecl;
4055 {
4056 register tree parm;
4057 register rtx entry_parm = 0;
4058 register rtx stack_parm = 0;
4059 CUMULATIVE_ARGS args_so_far;
4060 enum machine_mode promoted_mode, passed_mode;
4061 enum machine_mode nominal_mode, promoted_nominal_mode;
4062 int unsignedp;
4063 /* Total space needed so far for args on the stack,
4064 given as a constant and a tree-expression. */
4065 struct args_size stack_args_size;
4066 tree fntype = TREE_TYPE (fndecl);
4067 tree fnargs = DECL_ARGUMENTS (fndecl);
4068 /* This is used for the arg pointer when referring to stack args. */
4069 rtx internal_arg_pointer;
4070 /* This is a dummy PARM_DECL that we used for the function result if
4071 the function returns a structure. */
4072 tree function_result_decl = 0;
4073 #ifdef SETUP_INCOMING_VARARGS
4074 int varargs_setup = 0;
4075 #endif
4076 rtx conversion_insns = 0;
4077 struct args_size alignment_pad;
4078
4079 /* Nonzero if the last arg is named `__builtin_va_alist',
4080 which is used on some machines for old-fashioned non-ANSI varargs.h;
4081 this should be stuck onto the stack as if it had arrived there. */
4082 int hide_last_arg
4083 = (current_function_varargs
4084 && fnargs
4085 && (parm = tree_last (fnargs)) != 0
4086 && DECL_NAME (parm)
4087 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
4088 "__builtin_va_alist")));
4089
4090 /* Nonzero if function takes extra anonymous args.
4091 This means the last named arg must be on the stack
4092 right before the anonymous ones. */
4093 int stdarg
4094 = (TYPE_ARG_TYPES (fntype) != 0
4095 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4096 != void_type_node));
4097
4098 current_function_stdarg = stdarg;
4099
4100 /* If the reg that the virtual arg pointer will be translated into is
4101 not a fixed reg or is the stack pointer, make a copy of the virtual
4102 arg pointer, and address parms via the copy. The frame pointer is
4103 considered fixed even though it is not marked as such.
4104
4105 The second time through, simply use ap to avoid generating rtx. */
4106
4107 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4108 || ! (fixed_regs[ARG_POINTER_REGNUM]
4109 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4110 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4111 else
4112 internal_arg_pointer = virtual_incoming_args_rtx;
4113 current_function_internal_arg_pointer = internal_arg_pointer;
4114
4115 stack_args_size.constant = 0;
4116 stack_args_size.var = 0;
4117
4118 /* If struct value address is treated as the first argument, make it so. */
4119 if (aggregate_value_p (DECL_RESULT (fndecl))
4120 && ! current_function_returns_pcc_struct
4121 && struct_value_incoming_rtx == 0)
4122 {
4123 tree type = build_pointer_type (TREE_TYPE (fntype));
4124
4125 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4126
4127 DECL_ARG_TYPE (function_result_decl) = type;
4128 TREE_CHAIN (function_result_decl) = fnargs;
4129 fnargs = function_result_decl;
4130 }
4131
4132 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4133 parm_reg_stack_loc = (rtx *) xcalloc (max_parm_reg, sizeof (rtx));
4134
4135 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4136 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4137 #else
4138 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4139 #endif
4140
4141 /* We haven't yet found an argument that we must push and pretend the
4142 caller did. */
4143 current_function_pretend_args_size = 0;
4144
4145 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4146 {
4147 int aggregate = AGGREGATE_TYPE_P (TREE_TYPE (parm));
4148 struct args_size stack_offset;
4149 struct args_size arg_size;
4150 int passed_pointer = 0;
4151 int did_conversion = 0;
4152 tree passed_type = DECL_ARG_TYPE (parm);
4153 tree nominal_type = TREE_TYPE (parm);
4154 int pretend_named;
4155
4156 /* Set LAST_NAMED if this is last named arg before some
4157 anonymous args. */
4158 int last_named = ((TREE_CHAIN (parm) == 0
4159 || DECL_NAME (TREE_CHAIN (parm)) == 0)
4160 && (stdarg || current_function_varargs));
4161 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4162 most machines, if this is a varargs/stdarg function, then we treat
4163 the last named arg as if it were anonymous too. */
4164 int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4165
4166 if (TREE_TYPE (parm) == error_mark_node
4167 /* This can happen after weird syntax errors
4168 or if an enum type is defined among the parms. */
4169 || TREE_CODE (parm) != PARM_DECL
4170 || passed_type == NULL)
4171 {
4172 DECL_INCOMING_RTL (parm) = DECL_RTL (parm)
4173 = gen_rtx_MEM (BLKmode, const0_rtx);
4174 TREE_USED (parm) = 1;
4175 continue;
4176 }
4177
4178 /* For varargs.h function, save info about regs and stack space
4179 used by the individual args, not including the va_alist arg. */
4180 if (hide_last_arg && last_named)
4181 current_function_args_info = args_so_far;
4182
4183 /* Find mode of arg as it is passed, and mode of arg
4184 as it should be during execution of this function. */
4185 passed_mode = TYPE_MODE (passed_type);
4186 nominal_mode = TYPE_MODE (nominal_type);
4187
4188 /* If the parm's mode is VOID, its value doesn't matter,
4189 and avoid the usual things like emit_move_insn that could crash. */
4190 if (nominal_mode == VOIDmode)
4191 {
4192 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx;
4193 continue;
4194 }
4195
4196 /* If the parm is to be passed as a transparent union, use the
4197 type of the first field for the tests below. We have already
4198 verified that the modes are the same. */
4199 if (DECL_TRANSPARENT_UNION (parm)
4200 || TYPE_TRANSPARENT_UNION (passed_type))
4201 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4202
4203 /* See if this arg was passed by invisible reference. It is if
4204 it is an object whose size depends on the contents of the
4205 object itself or if the machine requires these objects be passed
4206 that way. */
4207
4208 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4209 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4210 || TREE_ADDRESSABLE (passed_type)
4211 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4212 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4213 passed_type, named_arg)
4214 #endif
4215 )
4216 {
4217 passed_type = nominal_type = build_pointer_type (passed_type);
4218 passed_pointer = 1;
4219 passed_mode = nominal_mode = Pmode;
4220 }
4221
4222 promoted_mode = passed_mode;
4223
4224 #ifdef PROMOTE_FUNCTION_ARGS
4225 /* Compute the mode in which the arg is actually extended to. */
4226 unsignedp = TREE_UNSIGNED (passed_type);
4227 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4228 #endif
4229
4230 /* Let machine desc say which reg (if any) the parm arrives in.
4231 0 means it arrives on the stack. */
4232 #ifdef FUNCTION_INCOMING_ARG
4233 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4234 passed_type, named_arg);
4235 #else
4236 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4237 passed_type, named_arg);
4238 #endif
4239
4240 if (entry_parm == 0)
4241 promoted_mode = passed_mode;
4242
4243 #ifdef SETUP_INCOMING_VARARGS
4244 /* If this is the last named parameter, do any required setup for
4245 varargs or stdargs. We need to know about the case of this being an
4246 addressable type, in which case we skip the registers it
4247 would have arrived in.
4248
4249 For stdargs, LAST_NAMED will be set for two parameters, the one that
4250 is actually the last named, and the dummy parameter. We only
4251 want to do this action once.
4252
4253 Also, indicate when RTL generation is to be suppressed. */
4254 if (last_named && !varargs_setup)
4255 {
4256 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4257 current_function_pretend_args_size, 0);
4258 varargs_setup = 1;
4259 }
4260 #endif
4261
4262 /* Determine parm's home in the stack,
4263 in case it arrives in the stack or we should pretend it did.
4264
4265 Compute the stack position and rtx where the argument arrives
4266 and its size.
4267
4268 There is one complexity here: If this was a parameter that would
4269 have been passed in registers, but wasn't only because it is
4270 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4271 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4272 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4273 0 as it was the previous time. */
4274
4275 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4276 locate_and_pad_parm (promoted_mode, passed_type,
4277 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4278 1,
4279 #else
4280 #ifdef FUNCTION_INCOMING_ARG
4281 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4282 passed_type,
4283 pretend_named) != 0,
4284 #else
4285 FUNCTION_ARG (args_so_far, promoted_mode,
4286 passed_type,
4287 pretend_named) != 0,
4288 #endif
4289 #endif
4290 fndecl, &stack_args_size, &stack_offset, &arg_size,
4291 &alignment_pad);
4292
4293 {
4294 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4295
4296 if (offset_rtx == const0_rtx)
4297 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4298 else
4299 stack_parm = gen_rtx_MEM (promoted_mode,
4300 gen_rtx_PLUS (Pmode,
4301 internal_arg_pointer,
4302 offset_rtx));
4303
4304 /* If this is a memory ref that contains aggregate components,
4305 mark it as such for cse and loop optimize. Likewise if it
4306 is readonly. */
4307 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4308 RTX_UNCHANGING_P (stack_parm) = TREE_READONLY (parm);
4309 MEM_ALIAS_SET (stack_parm) = get_alias_set (parm);
4310 }
4311
4312 /* If this parameter was passed both in registers and in the stack,
4313 use the copy on the stack. */
4314 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4315 entry_parm = 0;
4316
4317 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4318 /* If this parm was passed part in regs and part in memory,
4319 pretend it arrived entirely in memory
4320 by pushing the register-part onto the stack.
4321
4322 In the special case of a DImode or DFmode that is split,
4323 we could put it together in a pseudoreg directly,
4324 but for now that's not worth bothering with. */
4325
4326 if (entry_parm)
4327 {
4328 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4329 passed_type, named_arg);
4330
4331 if (nregs > 0)
4332 {
4333 current_function_pretend_args_size
4334 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4335 / (PARM_BOUNDARY / BITS_PER_UNIT)
4336 * (PARM_BOUNDARY / BITS_PER_UNIT));
4337
4338 /* Handle calls that pass values in multiple non-contiguous
4339 locations. The Irix 6 ABI has examples of this. */
4340 if (GET_CODE (entry_parm) == PARALLEL)
4341 emit_group_store (validize_mem (stack_parm), entry_parm,
4342 int_size_in_bytes (TREE_TYPE (parm)),
4343 (TYPE_ALIGN (TREE_TYPE (parm))
4344 / BITS_PER_UNIT));
4345 else
4346 move_block_from_reg (REGNO (entry_parm),
4347 validize_mem (stack_parm), nregs,
4348 int_size_in_bytes (TREE_TYPE (parm)));
4349
4350 entry_parm = stack_parm;
4351 }
4352 }
4353 #endif
4354
4355 /* If we didn't decide this parm came in a register,
4356 by default it came on the stack. */
4357 if (entry_parm == 0)
4358 entry_parm = stack_parm;
4359
4360 /* Record permanently how this parm was passed. */
4361 DECL_INCOMING_RTL (parm) = entry_parm;
4362
4363 /* If there is actually space on the stack for this parm,
4364 count it in stack_args_size; otherwise set stack_parm to 0
4365 to indicate there is no preallocated stack slot for the parm. */
4366
4367 if (entry_parm == stack_parm
4368 || (GET_CODE (entry_parm) == PARALLEL
4369 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4370 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4371 /* On some machines, even if a parm value arrives in a register
4372 there is still an (uninitialized) stack slot allocated for it.
4373
4374 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4375 whether this parameter already has a stack slot allocated,
4376 because an arg block exists only if current_function_args_size
4377 is larger than some threshold, and we haven't calculated that
4378 yet. So, for now, we just assume that stack slots never exist
4379 in this case. */
4380 || REG_PARM_STACK_SPACE (fndecl) > 0
4381 #endif
4382 )
4383 {
4384 stack_args_size.constant += arg_size.constant;
4385 if (arg_size.var)
4386 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4387 }
4388 else
4389 /* No stack slot was pushed for this parm. */
4390 stack_parm = 0;
4391
4392 /* Update info on where next arg arrives in registers. */
4393
4394 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4395 passed_type, named_arg);
4396
4397 /* If we can't trust the parm stack slot to be aligned enough
4398 for its ultimate type, don't use that slot after entry.
4399 We'll make another stack slot, if we need one. */
4400 {
4401 unsigned int thisparm_boundary
4402 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4403
4404 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4405 stack_parm = 0;
4406 }
4407
4408 /* If parm was passed in memory, and we need to convert it on entry,
4409 don't store it back in that same slot. */
4410 if (entry_parm != 0
4411 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4412 stack_parm = 0;
4413
4414 #if 0
4415 /* Now adjust STACK_PARM to the mode and precise location
4416 where this parameter should live during execution,
4417 if we discover that it must live in the stack during execution.
4418 To make debuggers happier on big-endian machines, we store
4419 the value in the last bytes of the space available. */
4420
4421 if (nominal_mode != BLKmode && nominal_mode != passed_mode
4422 && stack_parm != 0)
4423 {
4424 rtx offset_rtx;
4425
4426 if (BYTES_BIG_ENDIAN
4427 && GET_MODE_SIZE (nominal_mode) < UNITS_PER_WORD)
4428 stack_offset.constant += (GET_MODE_SIZE (passed_mode)
4429 - GET_MODE_SIZE (nominal_mode));
4430
4431 offset_rtx = ARGS_SIZE_RTX (stack_offset);
4432 if (offset_rtx == const0_rtx)
4433 stack_parm = gen_rtx_MEM (nominal_mode, internal_arg_pointer);
4434 else
4435 stack_parm = gen_rtx_MEM (nominal_mode,
4436 gen_rtx_PLUS (Pmode,
4437 internal_arg_pointer,
4438 offset_rtx));
4439
4440 /* If this is a memory ref that contains aggregate components,
4441 mark it as such for cse and loop optimize. */
4442 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4443 }
4444 #endif /* 0 */
4445
4446 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4447 in the mode in which it arrives.
4448 STACK_PARM is an RTX for a stack slot where the parameter can live
4449 during the function (in case we want to put it there).
4450 STACK_PARM is 0 if no stack slot was pushed for it.
4451
4452 Now output code if necessary to convert ENTRY_PARM to
4453 the type in which this function declares it,
4454 and store that result in an appropriate place,
4455 which may be a pseudo reg, may be STACK_PARM,
4456 or may be a local stack slot if STACK_PARM is 0.
4457
4458 Set DECL_RTL to that place. */
4459
4460 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4461 {
4462 /* If a BLKmode arrives in registers, copy it to a stack slot.
4463 Handle calls that pass values in multiple non-contiguous
4464 locations. The Irix 6 ABI has examples of this. */
4465 if (GET_CODE (entry_parm) == REG
4466 || GET_CODE (entry_parm) == PARALLEL)
4467 {
4468 int size_stored
4469 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4470 UNITS_PER_WORD);
4471
4472 /* Note that we will be storing an integral number of words.
4473 So we have to be careful to ensure that we allocate an
4474 integral number of words. We do this below in the
4475 assign_stack_local if space was not allocated in the argument
4476 list. If it was, this will not work if PARM_BOUNDARY is not
4477 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4478 if it becomes a problem. */
4479
4480 if (stack_parm == 0)
4481 {
4482 stack_parm
4483 = assign_stack_local (GET_MODE (entry_parm),
4484 size_stored, 0);
4485
4486 /* If this is a memory ref that contains aggregate
4487 components, mark it as such for cse and loop optimize. */
4488 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4489 }
4490
4491 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4492 abort ();
4493
4494 if (TREE_READONLY (parm))
4495 RTX_UNCHANGING_P (stack_parm) = 1;
4496
4497 /* Handle calls that pass values in multiple non-contiguous
4498 locations. The Irix 6 ABI has examples of this. */
4499 if (GET_CODE (entry_parm) == PARALLEL)
4500 emit_group_store (validize_mem (stack_parm), entry_parm,
4501 int_size_in_bytes (TREE_TYPE (parm)),
4502 (TYPE_ALIGN (TREE_TYPE (parm))
4503 / BITS_PER_UNIT));
4504 else
4505 move_block_from_reg (REGNO (entry_parm),
4506 validize_mem (stack_parm),
4507 size_stored / UNITS_PER_WORD,
4508 int_size_in_bytes (TREE_TYPE (parm)));
4509 }
4510 DECL_RTL (parm) = stack_parm;
4511 }
4512 else if (! ((! optimize
4513 && ! DECL_REGISTER (parm)
4514 && ! DECL_INLINE (fndecl))
4515 /* layout_decl may set this. */
4516 || TREE_ADDRESSABLE (parm)
4517 || TREE_SIDE_EFFECTS (parm)
4518 /* If -ffloat-store specified, don't put explicit
4519 float variables into registers. */
4520 || (flag_float_store
4521 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4522 /* Always assign pseudo to structure return or item passed
4523 by invisible reference. */
4524 || passed_pointer || parm == function_result_decl)
4525 {
4526 /* Store the parm in a pseudoregister during the function, but we
4527 may need to do it in a wider mode. */
4528
4529 register rtx parmreg;
4530 unsigned int regno, regnoi = 0, regnor = 0;
4531
4532 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4533
4534 promoted_nominal_mode
4535 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4536
4537 parmreg = gen_reg_rtx (promoted_nominal_mode);
4538 mark_user_reg (parmreg);
4539
4540 /* If this was an item that we received a pointer to, set DECL_RTL
4541 appropriately. */
4542 if (passed_pointer)
4543 {
4544 DECL_RTL (parm)
4545 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)), parmreg);
4546 MEM_SET_IN_STRUCT_P (DECL_RTL (parm), aggregate);
4547 }
4548 else
4549 DECL_RTL (parm) = parmreg;
4550
4551 /* Copy the value into the register. */
4552 if (nominal_mode != passed_mode
4553 || promoted_nominal_mode != promoted_mode)
4554 {
4555 int save_tree_used;
4556 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4557 mode, by the caller. We now have to convert it to
4558 NOMINAL_MODE, if different. However, PARMREG may be in
4559 a different mode than NOMINAL_MODE if it is being stored
4560 promoted.
4561
4562 If ENTRY_PARM is a hard register, it might be in a register
4563 not valid for operating in its mode (e.g., an odd-numbered
4564 register for a DFmode). In that case, moves are the only
4565 thing valid, so we can't do a convert from there. This
4566 occurs when the calling sequence allow such misaligned
4567 usages.
4568
4569 In addition, the conversion may involve a call, which could
4570 clobber parameters which haven't been copied to pseudo
4571 registers yet. Therefore, we must first copy the parm to
4572 a pseudo reg here, and save the conversion until after all
4573 parameters have been moved. */
4574
4575 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4576
4577 emit_move_insn (tempreg, validize_mem (entry_parm));
4578
4579 push_to_sequence (conversion_insns);
4580 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4581
4582 /* TREE_USED gets set erroneously during expand_assignment. */
4583 save_tree_used = TREE_USED (parm);
4584 expand_assignment (parm,
4585 make_tree (nominal_type, tempreg), 0, 0);
4586 TREE_USED (parm) = save_tree_used;
4587 conversion_insns = get_insns ();
4588 did_conversion = 1;
4589 end_sequence ();
4590 }
4591 else
4592 emit_move_insn (parmreg, validize_mem (entry_parm));
4593
4594 /* If we were passed a pointer but the actual value
4595 can safely live in a register, put it in one. */
4596 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4597 && ! ((! optimize
4598 && ! DECL_REGISTER (parm)
4599 && ! DECL_INLINE (fndecl))
4600 /* layout_decl may set this. */
4601 || TREE_ADDRESSABLE (parm)
4602 || TREE_SIDE_EFFECTS (parm)
4603 /* If -ffloat-store specified, don't put explicit
4604 float variables into registers. */
4605 || (flag_float_store
4606 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
4607 {
4608 /* We can't use nominal_mode, because it will have been set to
4609 Pmode above. We must use the actual mode of the parm. */
4610 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4611 mark_user_reg (parmreg);
4612 emit_move_insn (parmreg, DECL_RTL (parm));
4613 DECL_RTL (parm) = parmreg;
4614 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4615 now the parm. */
4616 stack_parm = 0;
4617 }
4618 #ifdef FUNCTION_ARG_CALLEE_COPIES
4619 /* If we are passed an arg by reference and it is our responsibility
4620 to make a copy, do it now.
4621 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4622 original argument, so we must recreate them in the call to
4623 FUNCTION_ARG_CALLEE_COPIES. */
4624 /* ??? Later add code to handle the case that if the argument isn't
4625 modified, don't do the copy. */
4626
4627 else if (passed_pointer
4628 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4629 TYPE_MODE (DECL_ARG_TYPE (parm)),
4630 DECL_ARG_TYPE (parm),
4631 named_arg)
4632 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4633 {
4634 rtx copy;
4635 tree type = DECL_ARG_TYPE (parm);
4636
4637 /* This sequence may involve a library call perhaps clobbering
4638 registers that haven't been copied to pseudos yet. */
4639
4640 push_to_sequence (conversion_insns);
4641
4642 if (!COMPLETE_TYPE_P (type)
4643 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4644 /* This is a variable sized object. */
4645 copy = gen_rtx_MEM (BLKmode,
4646 allocate_dynamic_stack_space
4647 (expr_size (parm), NULL_RTX,
4648 TYPE_ALIGN (type)));
4649 else
4650 copy = assign_stack_temp (TYPE_MODE (type),
4651 int_size_in_bytes (type), 1);
4652 MEM_SET_IN_STRUCT_P (copy, AGGREGATE_TYPE_P (type));
4653 RTX_UNCHANGING_P (copy) = TREE_READONLY (parm);
4654
4655 store_expr (parm, copy, 0);
4656 emit_move_insn (parmreg, XEXP (copy, 0));
4657 if (current_function_check_memory_usage)
4658 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4659 XEXP (copy, 0), Pmode,
4660 GEN_INT (int_size_in_bytes (type)),
4661 TYPE_MODE (sizetype),
4662 GEN_INT (MEMORY_USE_RW),
4663 TYPE_MODE (integer_type_node));
4664 conversion_insns = get_insns ();
4665 did_conversion = 1;
4666 end_sequence ();
4667 }
4668 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4669
4670 /* In any case, record the parm's desired stack location
4671 in case we later discover it must live in the stack.
4672
4673 If it is a COMPLEX value, store the stack location for both
4674 halves. */
4675
4676 if (GET_CODE (parmreg) == CONCAT)
4677 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4678 else
4679 regno = REGNO (parmreg);
4680
4681 if (regno >= max_parm_reg)
4682 {
4683 rtx *new;
4684 int old_max_parm_reg = max_parm_reg;
4685
4686 /* It's slow to expand this one register at a time,
4687 but it's also rare and we need max_parm_reg to be
4688 precisely correct. */
4689 max_parm_reg = regno + 1;
4690 new = (rtx *) xrealloc (parm_reg_stack_loc,
4691 max_parm_reg * sizeof (rtx));
4692 bzero ((char *) (new + old_max_parm_reg),
4693 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4694 parm_reg_stack_loc = new;
4695 }
4696
4697 if (GET_CODE (parmreg) == CONCAT)
4698 {
4699 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4700
4701 regnor = REGNO (gen_realpart (submode, parmreg));
4702 regnoi = REGNO (gen_imagpart (submode, parmreg));
4703
4704 if (stack_parm != 0)
4705 {
4706 parm_reg_stack_loc[regnor]
4707 = gen_realpart (submode, stack_parm);
4708 parm_reg_stack_loc[regnoi]
4709 = gen_imagpart (submode, stack_parm);
4710 }
4711 else
4712 {
4713 parm_reg_stack_loc[regnor] = 0;
4714 parm_reg_stack_loc[regnoi] = 0;
4715 }
4716 }
4717 else
4718 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4719
4720 /* Mark the register as eliminable if we did no conversion
4721 and it was copied from memory at a fixed offset,
4722 and the arg pointer was not copied to a pseudo-reg.
4723 If the arg pointer is a pseudo reg or the offset formed
4724 an invalid address, such memory-equivalences
4725 as we make here would screw up life analysis for it. */
4726 if (nominal_mode == passed_mode
4727 && ! did_conversion
4728 && stack_parm != 0
4729 && GET_CODE (stack_parm) == MEM
4730 && stack_offset.var == 0
4731 && reg_mentioned_p (virtual_incoming_args_rtx,
4732 XEXP (stack_parm, 0)))
4733 {
4734 rtx linsn = get_last_insn ();
4735 rtx sinsn, set;
4736
4737 /* Mark complex types separately. */
4738 if (GET_CODE (parmreg) == CONCAT)
4739 /* Scan backwards for the set of the real and
4740 imaginary parts. */
4741 for (sinsn = linsn; sinsn != 0;
4742 sinsn = prev_nonnote_insn (sinsn))
4743 {
4744 set = single_set (sinsn);
4745 if (set != 0
4746 && SET_DEST (set) == regno_reg_rtx [regnoi])
4747 REG_NOTES (sinsn)
4748 = gen_rtx_EXPR_LIST (REG_EQUIV,
4749 parm_reg_stack_loc[regnoi],
4750 REG_NOTES (sinsn));
4751 else if (set != 0
4752 && SET_DEST (set) == regno_reg_rtx [regnor])
4753 REG_NOTES (sinsn)
4754 = gen_rtx_EXPR_LIST (REG_EQUIV,
4755 parm_reg_stack_loc[regnor],
4756 REG_NOTES (sinsn));
4757 }
4758 else if ((set = single_set (linsn)) != 0
4759 && SET_DEST (set) == parmreg)
4760 REG_NOTES (linsn)
4761 = gen_rtx_EXPR_LIST (REG_EQUIV,
4762 stack_parm, REG_NOTES (linsn));
4763 }
4764
4765 /* For pointer data type, suggest pointer register. */
4766 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4767 mark_reg_pointer (parmreg,
4768 (TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))
4769 / BITS_PER_UNIT));
4770 }
4771 else
4772 {
4773 /* Value must be stored in the stack slot STACK_PARM
4774 during function execution. */
4775
4776 if (promoted_mode != nominal_mode)
4777 {
4778 /* Conversion is required. */
4779 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4780
4781 emit_move_insn (tempreg, validize_mem (entry_parm));
4782
4783 push_to_sequence (conversion_insns);
4784 entry_parm = convert_to_mode (nominal_mode, tempreg,
4785 TREE_UNSIGNED (TREE_TYPE (parm)));
4786 if (stack_parm)
4787 {
4788 /* ??? This may need a big-endian conversion on sparc64. */
4789 stack_parm = change_address (stack_parm, nominal_mode,
4790 NULL_RTX);
4791 }
4792 conversion_insns = get_insns ();
4793 did_conversion = 1;
4794 end_sequence ();
4795 }
4796
4797 if (entry_parm != stack_parm)
4798 {
4799 if (stack_parm == 0)
4800 {
4801 stack_parm
4802 = assign_stack_local (GET_MODE (entry_parm),
4803 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
4804 /* If this is a memory ref that contains aggregate components,
4805 mark it as such for cse and loop optimize. */
4806 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4807 }
4808
4809 if (promoted_mode != nominal_mode)
4810 {
4811 push_to_sequence (conversion_insns);
4812 emit_move_insn (validize_mem (stack_parm),
4813 validize_mem (entry_parm));
4814 conversion_insns = get_insns ();
4815 end_sequence ();
4816 }
4817 else
4818 emit_move_insn (validize_mem (stack_parm),
4819 validize_mem (entry_parm));
4820 }
4821 if (current_function_check_memory_usage)
4822 {
4823 push_to_sequence (conversion_insns);
4824 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4825 XEXP (stack_parm, 0), Pmode,
4826 GEN_INT (GET_MODE_SIZE (GET_MODE
4827 (entry_parm))),
4828 TYPE_MODE (sizetype),
4829 GEN_INT (MEMORY_USE_RW),
4830 TYPE_MODE (integer_type_node));
4831
4832 conversion_insns = get_insns ();
4833 end_sequence ();
4834 }
4835 DECL_RTL (parm) = stack_parm;
4836 }
4837
4838 /* If this "parameter" was the place where we are receiving the
4839 function's incoming structure pointer, set up the result. */
4840 if (parm == function_result_decl)
4841 {
4842 tree result = DECL_RESULT (fndecl);
4843 tree restype = TREE_TYPE (result);
4844
4845 DECL_RTL (result)
4846 = gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm));
4847
4848 MEM_SET_IN_STRUCT_P (DECL_RTL (result),
4849 AGGREGATE_TYPE_P (restype));
4850 }
4851
4852 if (TREE_THIS_VOLATILE (parm))
4853 MEM_VOLATILE_P (DECL_RTL (parm)) = 1;
4854 if (TREE_READONLY (parm))
4855 RTX_UNCHANGING_P (DECL_RTL (parm)) = 1;
4856 }
4857
4858 /* Output all parameter conversion instructions (possibly including calls)
4859 now that all parameters have been copied out of hard registers. */
4860 emit_insns (conversion_insns);
4861
4862 last_parm_insn = get_last_insn ();
4863
4864 current_function_args_size = stack_args_size.constant;
4865
4866 /* Adjust function incoming argument size for alignment and
4867 minimum length. */
4868
4869 #ifdef REG_PARM_STACK_SPACE
4870 #ifndef MAYBE_REG_PARM_STACK_SPACE
4871 current_function_args_size = MAX (current_function_args_size,
4872 REG_PARM_STACK_SPACE (fndecl));
4873 #endif
4874 #endif
4875
4876 #ifdef STACK_BOUNDARY
4877 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
4878
4879 current_function_args_size
4880 = ((current_function_args_size + STACK_BYTES - 1)
4881 / STACK_BYTES) * STACK_BYTES;
4882 #endif
4883
4884 #ifdef ARGS_GROW_DOWNWARD
4885 current_function_arg_offset_rtx
4886 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
4887 : expand_expr (size_diffop (stack_args_size.var,
4888 size_int (-stack_args_size.constant)),
4889 NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD));
4890 #else
4891 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
4892 #endif
4893
4894 /* See how many bytes, if any, of its args a function should try to pop
4895 on return. */
4896
4897 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
4898 current_function_args_size);
4899
4900 /* For stdarg.h function, save info about
4901 regs and stack space used by the named args. */
4902
4903 if (!hide_last_arg)
4904 current_function_args_info = args_so_far;
4905
4906 /* Set the rtx used for the function return value. Put this in its
4907 own variable so any optimizers that need this information don't have
4908 to include tree.h. Do this here so it gets done when an inlined
4909 function gets output. */
4910
4911 current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl));
4912 }
4913 \f
4914 /* Indicate whether REGNO is an incoming argument to the current function
4915 that was promoted to a wider mode. If so, return the RTX for the
4916 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
4917 that REGNO is promoted from and whether the promotion was signed or
4918 unsigned. */
4919
4920 #ifdef PROMOTE_FUNCTION_ARGS
4921
4922 rtx
4923 promoted_input_arg (regno, pmode, punsignedp)
4924 unsigned int regno;
4925 enum machine_mode *pmode;
4926 int *punsignedp;
4927 {
4928 tree arg;
4929
4930 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
4931 arg = TREE_CHAIN (arg))
4932 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
4933 && REGNO (DECL_INCOMING_RTL (arg)) == regno
4934 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
4935 {
4936 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
4937 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
4938
4939 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
4940 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
4941 && mode != DECL_MODE (arg))
4942 {
4943 *pmode = DECL_MODE (arg);
4944 *punsignedp = unsignedp;
4945 return DECL_INCOMING_RTL (arg);
4946 }
4947 }
4948
4949 return 0;
4950 }
4951
4952 #endif
4953 \f
4954 /* Compute the size and offset from the start of the stacked arguments for a
4955 parm passed in mode PASSED_MODE and with type TYPE.
4956
4957 INITIAL_OFFSET_PTR points to the current offset into the stacked
4958 arguments.
4959
4960 The starting offset and size for this parm are returned in *OFFSET_PTR
4961 and *ARG_SIZE_PTR, respectively.
4962
4963 IN_REGS is non-zero if the argument will be passed in registers. It will
4964 never be set if REG_PARM_STACK_SPACE is not defined.
4965
4966 FNDECL is the function in which the argument was defined.
4967
4968 There are two types of rounding that are done. The first, controlled by
4969 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
4970 list to be aligned to the specific boundary (in bits). This rounding
4971 affects the initial and starting offsets, but not the argument size.
4972
4973 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4974 optionally rounds the size of the parm to PARM_BOUNDARY. The
4975 initial offset is not affected by this rounding, while the size always
4976 is and the starting offset may be. */
4977
4978 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
4979 initial_offset_ptr is positive because locate_and_pad_parm's
4980 callers pass in the total size of args so far as
4981 initial_offset_ptr. arg_size_ptr is always positive.*/
4982
4983 void
4984 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
4985 initial_offset_ptr, offset_ptr, arg_size_ptr,
4986 alignment_pad)
4987 enum machine_mode passed_mode;
4988 tree type;
4989 int in_regs ATTRIBUTE_UNUSED;
4990 tree fndecl ATTRIBUTE_UNUSED;
4991 struct args_size *initial_offset_ptr;
4992 struct args_size *offset_ptr;
4993 struct args_size *arg_size_ptr;
4994 struct args_size *alignment_pad;
4995
4996 {
4997 tree sizetree
4998 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4999 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5000 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5001
5002 #ifdef REG_PARM_STACK_SPACE
5003 /* If we have found a stack parm before we reach the end of the
5004 area reserved for registers, skip that area. */
5005 if (! in_regs)
5006 {
5007 int reg_parm_stack_space = 0;
5008
5009 #ifdef MAYBE_REG_PARM_STACK_SPACE
5010 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5011 #else
5012 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5013 #endif
5014 if (reg_parm_stack_space > 0)
5015 {
5016 if (initial_offset_ptr->var)
5017 {
5018 initial_offset_ptr->var
5019 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5020 ssize_int (reg_parm_stack_space));
5021 initial_offset_ptr->constant = 0;
5022 }
5023 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5024 initial_offset_ptr->constant = reg_parm_stack_space;
5025 }
5026 }
5027 #endif /* REG_PARM_STACK_SPACE */
5028
5029 arg_size_ptr->var = 0;
5030 arg_size_ptr->constant = 0;
5031
5032 #ifdef ARGS_GROW_DOWNWARD
5033 if (initial_offset_ptr->var)
5034 {
5035 offset_ptr->constant = 0;
5036 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5037 initial_offset_ptr->var);
5038 }
5039 else
5040 {
5041 offset_ptr->constant = - initial_offset_ptr->constant;
5042 offset_ptr->var = 0;
5043 }
5044 if (where_pad != none
5045 && (TREE_CODE (sizetree) != INTEGER_CST
5046 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
5047 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5048 SUB_PARM_SIZE (*offset_ptr, sizetree);
5049 if (where_pad != downward)
5050 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5051 if (initial_offset_ptr->var)
5052 arg_size_ptr->var = size_binop (MINUS_EXPR,
5053 size_binop (MINUS_EXPR,
5054 ssize_int (0),
5055 initial_offset_ptr->var),
5056 offset_ptr->var);
5057
5058 else
5059 arg_size_ptr->constant = (- initial_offset_ptr->constant
5060 - offset_ptr->constant);
5061
5062 #else /* !ARGS_GROW_DOWNWARD */
5063 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5064 *offset_ptr = *initial_offset_ptr;
5065
5066 #ifdef PUSH_ROUNDING
5067 if (passed_mode != BLKmode)
5068 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5069 #endif
5070
5071 /* Pad_below needs the pre-rounded size to know how much to pad below
5072 so this must be done before rounding up. */
5073 if (where_pad == downward
5074 /* However, BLKmode args passed in regs have their padding done elsewhere.
5075 The stack slot must be able to hold the entire register. */
5076 && !(in_regs && passed_mode == BLKmode))
5077 pad_below (offset_ptr, passed_mode, sizetree);
5078
5079 if (where_pad != none
5080 && (TREE_CODE (sizetree) != INTEGER_CST
5081 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
5082 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5083
5084 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5085 #endif /* ARGS_GROW_DOWNWARD */
5086 }
5087
5088 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5089 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5090
5091 static void
5092 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5093 struct args_size *offset_ptr;
5094 int boundary;
5095 struct args_size *alignment_pad;
5096 {
5097 tree save_var = NULL_TREE;
5098 HOST_WIDE_INT save_constant = 0;
5099
5100 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5101
5102 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5103 {
5104 save_var = offset_ptr->var;
5105 save_constant = offset_ptr->constant;
5106 }
5107
5108 alignment_pad->var = NULL_TREE;
5109 alignment_pad->constant = 0;
5110
5111 if (boundary > BITS_PER_UNIT)
5112 {
5113 if (offset_ptr->var)
5114 {
5115 offset_ptr->var =
5116 #ifdef ARGS_GROW_DOWNWARD
5117 round_down
5118 #else
5119 round_up
5120 #endif
5121 (ARGS_SIZE_TREE (*offset_ptr),
5122 boundary / BITS_PER_UNIT);
5123 offset_ptr->constant = 0; /*?*/
5124 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5125 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5126 save_var);
5127 }
5128 else
5129 {
5130 offset_ptr->constant =
5131 #ifdef ARGS_GROW_DOWNWARD
5132 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5133 #else
5134 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5135 #endif
5136 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5137 alignment_pad->constant = offset_ptr->constant - save_constant;
5138 }
5139 }
5140 }
5141
5142 #ifndef ARGS_GROW_DOWNWARD
5143 static void
5144 pad_below (offset_ptr, passed_mode, sizetree)
5145 struct args_size *offset_ptr;
5146 enum machine_mode passed_mode;
5147 tree sizetree;
5148 {
5149 if (passed_mode != BLKmode)
5150 {
5151 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5152 offset_ptr->constant
5153 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5154 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5155 - GET_MODE_SIZE (passed_mode));
5156 }
5157 else
5158 {
5159 if (TREE_CODE (sizetree) != INTEGER_CST
5160 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5161 {
5162 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5163 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5164 /* Add it in. */
5165 ADD_PARM_SIZE (*offset_ptr, s2);
5166 SUB_PARM_SIZE (*offset_ptr, sizetree);
5167 }
5168 }
5169 }
5170 #endif
5171 \f
5172 /* Walk the tree of blocks describing the binding levels within a function
5173 and warn about uninitialized variables.
5174 This is done after calling flow_analysis and before global_alloc
5175 clobbers the pseudo-regs to hard regs. */
5176
5177 void
5178 uninitialized_vars_warning (block)
5179 tree block;
5180 {
5181 register tree decl, sub;
5182 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5183 {
5184 if (warn_uninitialized
5185 && TREE_CODE (decl) == VAR_DECL
5186 /* These warnings are unreliable for and aggregates
5187 because assigning the fields one by one can fail to convince
5188 flow.c that the entire aggregate was initialized.
5189 Unions are troublesome because members may be shorter. */
5190 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5191 && DECL_RTL (decl) != 0
5192 && GET_CODE (DECL_RTL (decl)) == REG
5193 /* Global optimizations can make it difficult to determine if a
5194 particular variable has been initialized. However, a VAR_DECL
5195 with a nonzero DECL_INITIAL had an initializer, so do not
5196 claim it is potentially uninitialized.
5197
5198 We do not care about the actual value in DECL_INITIAL, so we do
5199 not worry that it may be a dangling pointer. */
5200 && DECL_INITIAL (decl) == NULL_TREE
5201 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5202 warning_with_decl (decl,
5203 "`%s' might be used uninitialized in this function");
5204 if (extra_warnings
5205 && TREE_CODE (decl) == VAR_DECL
5206 && DECL_RTL (decl) != 0
5207 && GET_CODE (DECL_RTL (decl)) == REG
5208 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5209 warning_with_decl (decl,
5210 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5211 }
5212 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5213 uninitialized_vars_warning (sub);
5214 }
5215
5216 /* Do the appropriate part of uninitialized_vars_warning
5217 but for arguments instead of local variables. */
5218
5219 void
5220 setjmp_args_warning ()
5221 {
5222 register tree decl;
5223 for (decl = DECL_ARGUMENTS (current_function_decl);
5224 decl; decl = TREE_CHAIN (decl))
5225 if (DECL_RTL (decl) != 0
5226 && GET_CODE (DECL_RTL (decl)) == REG
5227 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5228 warning_with_decl (decl, "argument `%s' might be clobbered by `longjmp' or `vfork'");
5229 }
5230
5231 /* If this function call setjmp, put all vars into the stack
5232 unless they were declared `register'. */
5233
5234 void
5235 setjmp_protect (block)
5236 tree block;
5237 {
5238 register tree decl, sub;
5239 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5240 if ((TREE_CODE (decl) == VAR_DECL
5241 || TREE_CODE (decl) == PARM_DECL)
5242 && DECL_RTL (decl) != 0
5243 && (GET_CODE (DECL_RTL (decl)) == REG
5244 || (GET_CODE (DECL_RTL (decl)) == MEM
5245 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5246 /* If this variable came from an inline function, it must be
5247 that its life doesn't overlap the setjmp. If there was a
5248 setjmp in the function, it would already be in memory. We
5249 must exclude such variable because their DECL_RTL might be
5250 set to strange things such as virtual_stack_vars_rtx. */
5251 && ! DECL_FROM_INLINE (decl)
5252 && (
5253 #ifdef NON_SAVING_SETJMP
5254 /* If longjmp doesn't restore the registers,
5255 don't put anything in them. */
5256 NON_SAVING_SETJMP
5257 ||
5258 #endif
5259 ! DECL_REGISTER (decl)))
5260 put_var_into_stack (decl);
5261 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5262 setjmp_protect (sub);
5263 }
5264 \f
5265 /* Like the previous function, but for args instead of local variables. */
5266
5267 void
5268 setjmp_protect_args ()
5269 {
5270 register tree decl;
5271 for (decl = DECL_ARGUMENTS (current_function_decl);
5272 decl; decl = TREE_CHAIN (decl))
5273 if ((TREE_CODE (decl) == VAR_DECL
5274 || TREE_CODE (decl) == PARM_DECL)
5275 && DECL_RTL (decl) != 0
5276 && (GET_CODE (DECL_RTL (decl)) == REG
5277 || (GET_CODE (DECL_RTL (decl)) == MEM
5278 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5279 && (
5280 /* If longjmp doesn't restore the registers,
5281 don't put anything in them. */
5282 #ifdef NON_SAVING_SETJMP
5283 NON_SAVING_SETJMP
5284 ||
5285 #endif
5286 ! DECL_REGISTER (decl)))
5287 put_var_into_stack (decl);
5288 }
5289 \f
5290 /* Return the context-pointer register corresponding to DECL,
5291 or 0 if it does not need one. */
5292
5293 rtx
5294 lookup_static_chain (decl)
5295 tree decl;
5296 {
5297 tree context = decl_function_context (decl);
5298 tree link;
5299
5300 if (context == 0
5301 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5302 return 0;
5303
5304 /* We treat inline_function_decl as an alias for the current function
5305 because that is the inline function whose vars, types, etc.
5306 are being merged into the current function.
5307 See expand_inline_function. */
5308 if (context == current_function_decl || context == inline_function_decl)
5309 return virtual_stack_vars_rtx;
5310
5311 for (link = context_display; link; link = TREE_CHAIN (link))
5312 if (TREE_PURPOSE (link) == context)
5313 return RTL_EXPR_RTL (TREE_VALUE (link));
5314
5315 abort ();
5316 }
5317 \f
5318 /* Convert a stack slot address ADDR for variable VAR
5319 (from a containing function)
5320 into an address valid in this function (using a static chain). */
5321
5322 rtx
5323 fix_lexical_addr (addr, var)
5324 rtx addr;
5325 tree var;
5326 {
5327 rtx basereg;
5328 HOST_WIDE_INT displacement;
5329 tree context = decl_function_context (var);
5330 struct function *fp;
5331 rtx base = 0;
5332
5333 /* If this is the present function, we need not do anything. */
5334 if (context == current_function_decl || context == inline_function_decl)
5335 return addr;
5336
5337 for (fp = outer_function_chain; fp; fp = fp->next)
5338 if (fp->decl == context)
5339 break;
5340
5341 if (fp == 0)
5342 abort ();
5343
5344 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5345 addr = XEXP (XEXP (addr, 0), 0);
5346
5347 /* Decode given address as base reg plus displacement. */
5348 if (GET_CODE (addr) == REG)
5349 basereg = addr, displacement = 0;
5350 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5351 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5352 else
5353 abort ();
5354
5355 /* We accept vars reached via the containing function's
5356 incoming arg pointer and via its stack variables pointer. */
5357 if (basereg == fp->internal_arg_pointer)
5358 {
5359 /* If reached via arg pointer, get the arg pointer value
5360 out of that function's stack frame.
5361
5362 There are two cases: If a separate ap is needed, allocate a
5363 slot in the outer function for it and dereference it that way.
5364 This is correct even if the real ap is actually a pseudo.
5365 Otherwise, just adjust the offset from the frame pointer to
5366 compensate. */
5367
5368 #ifdef NEED_SEPARATE_AP
5369 rtx addr;
5370
5371 if (fp->x_arg_pointer_save_area == 0)
5372 fp->x_arg_pointer_save_area
5373 = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
5374
5375 addr = fix_lexical_addr (XEXP (fp->x_arg_pointer_save_area, 0), var);
5376 addr = memory_address (Pmode, addr);
5377
5378 base = copy_to_reg (gen_rtx_MEM (Pmode, addr));
5379 #else
5380 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5381 base = lookup_static_chain (var);
5382 #endif
5383 }
5384
5385 else if (basereg == virtual_stack_vars_rtx)
5386 {
5387 /* This is the same code as lookup_static_chain, duplicated here to
5388 avoid an extra call to decl_function_context. */
5389 tree link;
5390
5391 for (link = context_display; link; link = TREE_CHAIN (link))
5392 if (TREE_PURPOSE (link) == context)
5393 {
5394 base = RTL_EXPR_RTL (TREE_VALUE (link));
5395 break;
5396 }
5397 }
5398
5399 if (base == 0)
5400 abort ();
5401
5402 /* Use same offset, relative to appropriate static chain or argument
5403 pointer. */
5404 return plus_constant (base, displacement);
5405 }
5406 \f
5407 /* Return the address of the trampoline for entering nested fn FUNCTION.
5408 If necessary, allocate a trampoline (in the stack frame)
5409 and emit rtl to initialize its contents (at entry to this function). */
5410
5411 rtx
5412 trampoline_address (function)
5413 tree function;
5414 {
5415 tree link;
5416 tree rtlexp;
5417 rtx tramp;
5418 struct function *fp;
5419 tree fn_context;
5420
5421 /* Find an existing trampoline and return it. */
5422 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5423 if (TREE_PURPOSE (link) == function)
5424 return
5425 round_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5426
5427 for (fp = outer_function_chain; fp; fp = fp->next)
5428 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5429 if (TREE_PURPOSE (link) == function)
5430 {
5431 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5432 function);
5433 return round_trampoline_addr (tramp);
5434 }
5435
5436 /* None exists; we must make one. */
5437
5438 /* Find the `struct function' for the function containing FUNCTION. */
5439 fp = 0;
5440 fn_context = decl_function_context (function);
5441 if (fn_context != current_function_decl
5442 && fn_context != inline_function_decl)
5443 for (fp = outer_function_chain; fp; fp = fp->next)
5444 if (fp->decl == fn_context)
5445 break;
5446
5447 /* Allocate run-time space for this trampoline
5448 (usually in the defining function's stack frame). */
5449 #ifdef ALLOCATE_TRAMPOLINE
5450 tramp = ALLOCATE_TRAMPOLINE (fp);
5451 #else
5452 /* If rounding needed, allocate extra space
5453 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5454 #ifdef TRAMPOLINE_ALIGNMENT
5455 #define TRAMPOLINE_REAL_SIZE \
5456 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5457 #else
5458 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5459 #endif
5460 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5461 fp ? fp : cfun);
5462 #endif
5463
5464 /* Record the trampoline for reuse and note it for later initialization
5465 by expand_function_end. */
5466 if (fp != 0)
5467 {
5468 push_obstacks (fp->function_maybepermanent_obstack,
5469 fp->function_maybepermanent_obstack);
5470 rtlexp = make_node (RTL_EXPR);
5471 RTL_EXPR_RTL (rtlexp) = tramp;
5472 fp->x_trampoline_list = tree_cons (function, rtlexp,
5473 fp->x_trampoline_list);
5474 pop_obstacks ();
5475 }
5476 else
5477 {
5478 /* Make the RTL_EXPR node temporary, not momentary, so that the
5479 trampoline_list doesn't become garbage. */
5480 int momentary = suspend_momentary ();
5481 rtlexp = make_node (RTL_EXPR);
5482 resume_momentary (momentary);
5483
5484 RTL_EXPR_RTL (rtlexp) = tramp;
5485 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5486 }
5487
5488 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5489 return round_trampoline_addr (tramp);
5490 }
5491
5492 /* Given a trampoline address,
5493 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5494
5495 static rtx
5496 round_trampoline_addr (tramp)
5497 rtx tramp;
5498 {
5499 #ifdef TRAMPOLINE_ALIGNMENT
5500 /* Round address up to desired boundary. */
5501 rtx temp = gen_reg_rtx (Pmode);
5502 temp = expand_binop (Pmode, add_optab, tramp,
5503 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
5504 temp, 0, OPTAB_LIB_WIDEN);
5505 tramp = expand_binop (Pmode, and_optab, temp,
5506 GEN_INT (- TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
5507 temp, 0, OPTAB_LIB_WIDEN);
5508 #endif
5509 return tramp;
5510 }
5511 \f
5512 /* Put all this function's BLOCK nodes including those that are chained
5513 onto the first block into a vector, and return it.
5514 Also store in each NOTE for the beginning or end of a block
5515 the index of that block in the vector.
5516 The arguments are BLOCK, the chain of top-level blocks of the function,
5517 and INSNS, the insn chain of the function. */
5518
5519 void
5520 identify_blocks ()
5521 {
5522 int n_blocks;
5523 tree *block_vector, *last_block_vector;
5524 tree *block_stack;
5525 tree block = DECL_INITIAL (current_function_decl);
5526
5527 if (block == 0)
5528 return;
5529
5530 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5531 depth-first order. */
5532 block_vector = get_block_vector (block, &n_blocks);
5533 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5534
5535 last_block_vector = identify_blocks_1 (get_insns (),
5536 block_vector + 1,
5537 block_vector + n_blocks,
5538 block_stack);
5539
5540 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5541 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5542 if (0 && last_block_vector != block_vector + n_blocks)
5543 abort ();
5544
5545 free (block_vector);
5546 free (block_stack);
5547 }
5548
5549 /* Subroutine of identify_blocks. Do the block substitution on the
5550 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5551
5552 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5553 BLOCK_VECTOR is incremented for each block seen. */
5554
5555 static tree *
5556 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5557 rtx insns;
5558 tree *block_vector;
5559 tree *end_block_vector;
5560 tree *orig_block_stack;
5561 {
5562 rtx insn;
5563 tree *block_stack = orig_block_stack;
5564
5565 for (insn = insns; insn; insn = NEXT_INSN (insn))
5566 {
5567 if (GET_CODE (insn) == NOTE)
5568 {
5569 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5570 {
5571 tree b;
5572
5573 /* If there are more block notes than BLOCKs, something
5574 is badly wrong. */
5575 if (block_vector == end_block_vector)
5576 abort ();
5577
5578 b = *block_vector++;
5579 NOTE_BLOCK (insn) = b;
5580 *block_stack++ = b;
5581 }
5582 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5583 {
5584 /* If there are more NOTE_INSN_BLOCK_ENDs than
5585 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5586 if (block_stack == orig_block_stack)
5587 abort ();
5588
5589 NOTE_BLOCK (insn) = *--block_stack;
5590 }
5591 }
5592 else if (GET_CODE (insn) == CALL_INSN
5593 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5594 {
5595 rtx cp = PATTERN (insn);
5596
5597 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5598 end_block_vector, block_stack);
5599 if (XEXP (cp, 1))
5600 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5601 end_block_vector, block_stack);
5602 if (XEXP (cp, 2))
5603 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5604 end_block_vector, block_stack);
5605 }
5606 }
5607
5608 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5609 something is badly wrong. */
5610 if (block_stack != orig_block_stack)
5611 abort ();
5612
5613 return block_vector;
5614 }
5615
5616 /* Identify BLOCKs referenced by more than one
5617 NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */
5618
5619 void
5620 reorder_blocks ()
5621 {
5622 tree block = DECL_INITIAL (current_function_decl);
5623 varray_type block_stack;
5624
5625 if (block == NULL_TREE)
5626 return;
5627
5628 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5629
5630 /* Prune the old trees away, so that they don't get in the way. */
5631 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5632 BLOCK_CHAIN (block) = NULL_TREE;
5633
5634 reorder_blocks_1 (get_insns (), block, &block_stack);
5635
5636 BLOCK_SUBBLOCKS (block)
5637 = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5638
5639 VARRAY_FREE (block_stack);
5640 }
5641
5642 /* Helper function for reorder_blocks. Process the insn chain beginning
5643 at INSNS. Recurse for CALL_PLACEHOLDER insns. */
5644
5645 static void
5646 reorder_blocks_1 (insns, current_block, p_block_stack)
5647 rtx insns;
5648 tree current_block;
5649 varray_type *p_block_stack;
5650 {
5651 rtx insn;
5652
5653 for (insn = insns; insn; insn = NEXT_INSN (insn))
5654 {
5655 if (GET_CODE (insn) == NOTE)
5656 {
5657 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5658 {
5659 tree block = NOTE_BLOCK (insn);
5660 /* If we have seen this block before, copy it. */
5661 if (TREE_ASM_WRITTEN (block))
5662 {
5663 block = copy_node (block);
5664 NOTE_BLOCK (insn) = block;
5665 }
5666 BLOCK_SUBBLOCKS (block) = 0;
5667 TREE_ASM_WRITTEN (block) = 1;
5668 BLOCK_SUPERCONTEXT (block) = current_block;
5669 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5670 BLOCK_SUBBLOCKS (current_block) = block;
5671 current_block = block;
5672 VARRAY_PUSH_TREE (*p_block_stack, block);
5673 }
5674 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5675 {
5676 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
5677 VARRAY_POP (*p_block_stack);
5678 BLOCK_SUBBLOCKS (current_block)
5679 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5680 current_block = BLOCK_SUPERCONTEXT (current_block);
5681 }
5682 }
5683 else if (GET_CODE (insn) == CALL_INSN
5684 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5685 {
5686 rtx cp = PATTERN (insn);
5687 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
5688 if (XEXP (cp, 1))
5689 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
5690 if (XEXP (cp, 2))
5691 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
5692 }
5693 }
5694 }
5695
5696 /* Reverse the order of elements in the chain T of blocks,
5697 and return the new head of the chain (old last element). */
5698
5699 static tree
5700 blocks_nreverse (t)
5701 tree t;
5702 {
5703 register tree prev = 0, decl, next;
5704 for (decl = t; decl; decl = next)
5705 {
5706 next = BLOCK_CHAIN (decl);
5707 BLOCK_CHAIN (decl) = prev;
5708 prev = decl;
5709 }
5710 return prev;
5711 }
5712
5713 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
5714 non-NULL, list them all into VECTOR, in a depth-first preorder
5715 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
5716 blocks. */
5717
5718 static int
5719 all_blocks (block, vector)
5720 tree block;
5721 tree *vector;
5722 {
5723 int n_blocks = 0;
5724
5725 while (block)
5726 {
5727 TREE_ASM_WRITTEN (block) = 0;
5728
5729 /* Record this block. */
5730 if (vector)
5731 vector[n_blocks] = block;
5732
5733 ++n_blocks;
5734
5735 /* Record the subblocks, and their subblocks... */
5736 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
5737 vector ? vector + n_blocks : 0);
5738 block = BLOCK_CHAIN (block);
5739 }
5740
5741 return n_blocks;
5742 }
5743
5744 /* Return a vector containing all the blocks rooted at BLOCK. The
5745 number of elements in the vector is stored in N_BLOCKS_P. The
5746 vector is dynamically allocated; it is the caller's responsibility
5747 to call `free' on the pointer returned. */
5748
5749 static tree *
5750 get_block_vector (block, n_blocks_p)
5751 tree block;
5752 int *n_blocks_p;
5753 {
5754 tree *block_vector;
5755
5756 *n_blocks_p = all_blocks (block, NULL);
5757 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
5758 all_blocks (block, block_vector);
5759
5760 return block_vector;
5761 }
5762
5763 static int next_block_index = 2;
5764
5765 /* Set BLOCK_NUMBER for all the blocks in FN. */
5766
5767 void
5768 number_blocks (fn)
5769 tree fn;
5770 {
5771 int i;
5772 int n_blocks;
5773 tree *block_vector;
5774
5775 /* For SDB and XCOFF debugging output, we start numbering the blocks
5776 from 1 within each function, rather than keeping a running
5777 count. */
5778 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
5779 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
5780 next_block_index = 1;
5781 #endif
5782
5783 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
5784
5785 /* The top-level BLOCK isn't numbered at all. */
5786 for (i = 1; i < n_blocks; ++i)
5787 /* We number the blocks from two. */
5788 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
5789
5790 free (block_vector);
5791
5792 return;
5793 }
5794
5795 \f
5796 /* Allocate a function structure and reset its contents to the defaults. */
5797 static void
5798 prepare_function_start ()
5799 {
5800 cfun = (struct function *) xcalloc (1, sizeof (struct function));
5801
5802 init_stmt_for_function ();
5803 init_eh_for_function ();
5804
5805 cse_not_expected = ! optimize;
5806
5807 /* Caller save not needed yet. */
5808 caller_save_needed = 0;
5809
5810 /* No stack slots have been made yet. */
5811 stack_slot_list = 0;
5812
5813 current_function_has_nonlocal_label = 0;
5814 current_function_has_nonlocal_goto = 0;
5815
5816 /* There is no stack slot for handling nonlocal gotos. */
5817 nonlocal_goto_handler_slots = 0;
5818 nonlocal_goto_stack_level = 0;
5819
5820 /* No labels have been declared for nonlocal use. */
5821 nonlocal_labels = 0;
5822 nonlocal_goto_handler_labels = 0;
5823
5824 /* No function calls so far in this function. */
5825 function_call_count = 0;
5826
5827 /* No parm regs have been allocated.
5828 (This is important for output_inline_function.) */
5829 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
5830
5831 /* Initialize the RTL mechanism. */
5832 init_emit ();
5833
5834 /* Initialize the queue of pending postincrement and postdecrements,
5835 and some other info in expr.c. */
5836 init_expr ();
5837
5838 /* We haven't done register allocation yet. */
5839 reg_renumber = 0;
5840
5841 init_varasm_status (cfun);
5842
5843 /* Clear out data used for inlining. */
5844 cfun->inlinable = 0;
5845 cfun->original_decl_initial = 0;
5846 cfun->original_arg_vector = 0;
5847
5848 #ifdef STACK_BOUNDARY
5849 cfun->stack_alignment_needed = STACK_BOUNDARY;
5850 cfun->preferred_stack_boundary = STACK_BOUNDARY;
5851 #else
5852 cfun->stack_alignment_needed = 0;
5853 cfun->preferred_stack_boundary = 0;
5854 #endif
5855
5856 /* Set if a call to setjmp is seen. */
5857 current_function_calls_setjmp = 0;
5858
5859 /* Set if a call to longjmp is seen. */
5860 current_function_calls_longjmp = 0;
5861
5862 current_function_calls_alloca = 0;
5863 current_function_contains_functions = 0;
5864 current_function_is_leaf = 0;
5865 current_function_nothrow = 0;
5866 current_function_sp_is_unchanging = 0;
5867 current_function_uses_only_leaf_regs = 0;
5868 current_function_has_computed_jump = 0;
5869 current_function_is_thunk = 0;
5870
5871 current_function_returns_pcc_struct = 0;
5872 current_function_returns_struct = 0;
5873 current_function_epilogue_delay_list = 0;
5874 current_function_uses_const_pool = 0;
5875 current_function_uses_pic_offset_table = 0;
5876 current_function_cannot_inline = 0;
5877
5878 /* We have not yet needed to make a label to jump to for tail-recursion. */
5879 tail_recursion_label = 0;
5880
5881 /* We haven't had a need to make a save area for ap yet. */
5882 arg_pointer_save_area = 0;
5883
5884 /* No stack slots allocated yet. */
5885 frame_offset = 0;
5886
5887 /* No SAVE_EXPRs in this function yet. */
5888 save_expr_regs = 0;
5889
5890 /* No RTL_EXPRs in this function yet. */
5891 rtl_expr_chain = 0;
5892
5893 /* Set up to allocate temporaries. */
5894 init_temp_slots ();
5895
5896 /* Indicate that we need to distinguish between the return value of the
5897 present function and the return value of a function being called. */
5898 rtx_equal_function_value_matters = 1;
5899
5900 /* Indicate that we have not instantiated virtual registers yet. */
5901 virtuals_instantiated = 0;
5902
5903 /* Indicate we have no need of a frame pointer yet. */
5904 frame_pointer_needed = 0;
5905
5906 /* By default assume not varargs or stdarg. */
5907 current_function_varargs = 0;
5908 current_function_stdarg = 0;
5909
5910 /* We haven't made any trampolines for this function yet. */
5911 trampoline_list = 0;
5912
5913 init_pending_stack_adjust ();
5914 inhibit_defer_pop = 0;
5915
5916 current_function_outgoing_args_size = 0;
5917
5918 if (init_lang_status)
5919 (*init_lang_status) (cfun);
5920 if (init_machine_status)
5921 (*init_machine_status) (cfun);
5922 }
5923
5924 /* Initialize the rtl expansion mechanism so that we can do simple things
5925 like generate sequences. This is used to provide a context during global
5926 initialization of some passes. */
5927 void
5928 init_dummy_function_start ()
5929 {
5930 prepare_function_start ();
5931 }
5932
5933 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5934 and initialize static variables for generating RTL for the statements
5935 of the function. */
5936
5937 void
5938 init_function_start (subr, filename, line)
5939 tree subr;
5940 char *filename;
5941 int line;
5942 {
5943 prepare_function_start ();
5944
5945 /* Remember this function for later. */
5946 cfun->next_global = all_functions;
5947 all_functions = cfun;
5948
5949 current_function_name = (*decl_printable_name) (subr, 2);
5950 cfun->decl = subr;
5951
5952 /* Nonzero if this is a nested function that uses a static chain. */
5953
5954 current_function_needs_context
5955 = (decl_function_context (current_function_decl) != 0
5956 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
5957
5958 /* Within function body, compute a type's size as soon it is laid out. */
5959 immediate_size_expand++;
5960
5961 /* Prevent ever trying to delete the first instruction of a function.
5962 Also tell final how to output a linenum before the function prologue.
5963 Note linenums could be missing, e.g. when compiling a Java .class file. */
5964 if (line > 0)
5965 emit_line_note (filename, line);
5966
5967 /* Make sure first insn is a note even if we don't want linenums.
5968 This makes sure the first insn will never be deleted.
5969 Also, final expects a note to appear there. */
5970 emit_note (NULL_PTR, NOTE_INSN_DELETED);
5971
5972 /* Set flags used by final.c. */
5973 if (aggregate_value_p (DECL_RESULT (subr)))
5974 {
5975 #ifdef PCC_STATIC_STRUCT_RETURN
5976 current_function_returns_pcc_struct = 1;
5977 #endif
5978 current_function_returns_struct = 1;
5979 }
5980
5981 /* Warn if this value is an aggregate type,
5982 regardless of which calling convention we are using for it. */
5983 if (warn_aggregate_return
5984 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
5985 warning ("function returns an aggregate");
5986
5987 current_function_returns_pointer
5988 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
5989 }
5990
5991 /* Make sure all values used by the optimization passes have sane
5992 defaults. */
5993 void
5994 init_function_for_compilation ()
5995 {
5996 reg_renumber = 0;
5997
5998 /* No prologue/epilogue insns yet. */
5999 VARRAY_GROW (prologue, 0);
6000 VARRAY_GROW (epilogue, 0);
6001 VARRAY_GROW (sibcall_epilogue, 0);
6002 }
6003
6004 /* Indicate that the current function uses extra args
6005 not explicitly mentioned in the argument list in any fashion. */
6006
6007 void
6008 mark_varargs ()
6009 {
6010 current_function_varargs = 1;
6011 }
6012
6013 /* Expand a call to __main at the beginning of a possible main function. */
6014
6015 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6016 #undef HAS_INIT_SECTION
6017 #define HAS_INIT_SECTION
6018 #endif
6019
6020 void
6021 expand_main_function ()
6022 {
6023 #if !defined (HAS_INIT_SECTION)
6024 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0,
6025 VOIDmode, 0);
6026 #endif /* not HAS_INIT_SECTION */
6027 }
6028 \f
6029 extern struct obstack permanent_obstack;
6030
6031 /* Start the RTL for a new function, and set variables used for
6032 emitting RTL.
6033 SUBR is the FUNCTION_DECL node.
6034 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6035 the function's parameters, which must be run at any return statement. */
6036
6037 void
6038 expand_function_start (subr, parms_have_cleanups)
6039 tree subr;
6040 int parms_have_cleanups;
6041 {
6042 tree tem;
6043 rtx last_ptr = NULL_RTX;
6044
6045 /* Make sure volatile mem refs aren't considered
6046 valid operands of arithmetic insns. */
6047 init_recog_no_volatile ();
6048
6049 /* Set this before generating any memory accesses. */
6050 current_function_check_memory_usage
6051 = (flag_check_memory_usage
6052 && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl));
6053
6054 current_function_instrument_entry_exit
6055 = (flag_instrument_function_entry_exit
6056 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6057
6058 current_function_limit_stack
6059 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6060
6061 /* If function gets a static chain arg, store it in the stack frame.
6062 Do this first, so it gets the first stack slot offset. */
6063 if (current_function_needs_context)
6064 {
6065 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6066
6067 /* Delay copying static chain if it is not a register to avoid
6068 conflicts with regs used for parameters. */
6069 if (! SMALL_REGISTER_CLASSES
6070 || GET_CODE (static_chain_incoming_rtx) == REG)
6071 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6072 }
6073
6074 /* If the parameters of this function need cleaning up, get a label
6075 for the beginning of the code which executes those cleanups. This must
6076 be done before doing anything with return_label. */
6077 if (parms_have_cleanups)
6078 cleanup_label = gen_label_rtx ();
6079 else
6080 cleanup_label = 0;
6081
6082 /* Make the label for return statements to jump to, if this machine
6083 does not have a one-instruction return and uses an epilogue,
6084 or if it returns a structure, or if it has parm cleanups. */
6085 #ifdef HAVE_return
6086 if (cleanup_label == 0 && HAVE_return
6087 && ! current_function_instrument_entry_exit
6088 && ! current_function_returns_pcc_struct
6089 && ! (current_function_returns_struct && ! optimize))
6090 return_label = 0;
6091 else
6092 return_label = gen_label_rtx ();
6093 #else
6094 return_label = gen_label_rtx ();
6095 #endif
6096
6097 /* Initialize rtx used to return the value. */
6098 /* Do this before assign_parms so that we copy the struct value address
6099 before any library calls that assign parms might generate. */
6100
6101 /* Decide whether to return the value in memory or in a register. */
6102 if (aggregate_value_p (DECL_RESULT (subr)))
6103 {
6104 /* Returning something that won't go in a register. */
6105 register rtx value_address = 0;
6106
6107 #ifdef PCC_STATIC_STRUCT_RETURN
6108 if (current_function_returns_pcc_struct)
6109 {
6110 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6111 value_address = assemble_static_space (size);
6112 }
6113 else
6114 #endif
6115 {
6116 /* Expect to be passed the address of a place to store the value.
6117 If it is passed as an argument, assign_parms will take care of
6118 it. */
6119 if (struct_value_incoming_rtx)
6120 {
6121 value_address = gen_reg_rtx (Pmode);
6122 emit_move_insn (value_address, struct_value_incoming_rtx);
6123 }
6124 }
6125 if (value_address)
6126 {
6127 DECL_RTL (DECL_RESULT (subr))
6128 = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6129 MEM_SET_IN_STRUCT_P (DECL_RTL (DECL_RESULT (subr)),
6130 AGGREGATE_TYPE_P (TREE_TYPE
6131 (DECL_RESULT
6132 (subr))));
6133 }
6134 }
6135 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6136 /* If return mode is void, this decl rtl should not be used. */
6137 DECL_RTL (DECL_RESULT (subr)) = 0;
6138 else if (parms_have_cleanups || current_function_instrument_entry_exit)
6139 {
6140 /* If function will end with cleanup code for parms,
6141 compute the return values into a pseudo reg,
6142 which we will copy into the true return register
6143 after the cleanups are done. */
6144
6145 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
6146
6147 #ifdef PROMOTE_FUNCTION_RETURN
6148 tree type = TREE_TYPE (DECL_RESULT (subr));
6149 int unsignedp = TREE_UNSIGNED (type);
6150
6151 mode = promote_mode (type, mode, &unsignedp, 1);
6152 #endif
6153
6154 DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode);
6155 }
6156 else
6157 /* Scalar, returned in a register. */
6158 {
6159 #ifdef FUNCTION_OUTGOING_VALUE
6160 DECL_RTL (DECL_RESULT (subr))
6161 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
6162 #else
6163 DECL_RTL (DECL_RESULT (subr))
6164 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
6165 #endif
6166
6167 /* Mark this reg as the function's return value. */
6168 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
6169 {
6170 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
6171 /* Needed because we may need to move this to memory
6172 in case it's a named return value whose address is taken. */
6173 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6174 }
6175 }
6176
6177 /* Initialize rtx for parameters and local variables.
6178 In some cases this requires emitting insns. */
6179
6180 assign_parms (subr);
6181
6182 /* Copy the static chain now if it wasn't a register. The delay is to
6183 avoid conflicts with the parameter passing registers. */
6184
6185 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6186 if (GET_CODE (static_chain_incoming_rtx) != REG)
6187 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6188
6189 /* The following was moved from init_function_start.
6190 The move is supposed to make sdb output more accurate. */
6191 /* Indicate the beginning of the function body,
6192 as opposed to parm setup. */
6193 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
6194
6195 if (GET_CODE (get_last_insn ()) != NOTE)
6196 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6197 parm_birth_insn = get_last_insn ();
6198
6199 context_display = 0;
6200 if (current_function_needs_context)
6201 {
6202 /* Fetch static chain values for containing functions. */
6203 tem = decl_function_context (current_function_decl);
6204 /* Copy the static chain pointer into a pseudo. If we have
6205 small register classes, copy the value from memory if
6206 static_chain_incoming_rtx is a REG. */
6207 if (tem)
6208 {
6209 /* If the static chain originally came in a register, put it back
6210 there, then move it out in the next insn. The reason for
6211 this peculiar code is to satisfy function integration. */
6212 if (SMALL_REGISTER_CLASSES
6213 && GET_CODE (static_chain_incoming_rtx) == REG)
6214 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6215 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6216 }
6217
6218 while (tem)
6219 {
6220 tree rtlexp = make_node (RTL_EXPR);
6221
6222 RTL_EXPR_RTL (rtlexp) = last_ptr;
6223 context_display = tree_cons (tem, rtlexp, context_display);
6224 tem = decl_function_context (tem);
6225 if (tem == 0)
6226 break;
6227 /* Chain thru stack frames, assuming pointer to next lexical frame
6228 is found at the place we always store it. */
6229 #ifdef FRAME_GROWS_DOWNWARD
6230 last_ptr = plus_constant (last_ptr, - GET_MODE_SIZE (Pmode));
6231 #endif
6232 last_ptr = copy_to_reg (gen_rtx_MEM (Pmode,
6233 memory_address (Pmode,
6234 last_ptr)));
6235
6236 /* If we are not optimizing, ensure that we know that this
6237 piece of context is live over the entire function. */
6238 if (! optimize)
6239 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6240 save_expr_regs);
6241 }
6242 }
6243
6244 if (current_function_instrument_entry_exit)
6245 {
6246 rtx fun = DECL_RTL (current_function_decl);
6247 if (GET_CODE (fun) == MEM)
6248 fun = XEXP (fun, 0);
6249 else
6250 abort ();
6251 emit_library_call (profile_function_entry_libfunc, 0, VOIDmode, 2,
6252 fun, Pmode,
6253 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6254 0,
6255 hard_frame_pointer_rtx),
6256 Pmode);
6257 }
6258
6259 /* After the display initializations is where the tail-recursion label
6260 should go, if we end up needing one. Ensure we have a NOTE here
6261 since some things (like trampolines) get placed before this. */
6262 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
6263
6264 /* Evaluate now the sizes of any types declared among the arguments. */
6265 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
6266 {
6267 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode,
6268 EXPAND_MEMORY_USE_BAD);
6269 /* Flush the queue in case this parameter declaration has
6270 side-effects. */
6271 emit_queue ();
6272 }
6273
6274 /* Make sure there is a line number after the function entry setup code. */
6275 force_next_line_note ();
6276 }
6277 \f
6278 /* Undo the effects of init_dummy_function_start. */
6279 void
6280 expand_dummy_function_end ()
6281 {
6282 /* End any sequences that failed to be closed due to syntax errors. */
6283 while (in_sequence_p ())
6284 end_sequence ();
6285
6286 /* Outside function body, can't compute type's actual size
6287 until next function's body starts. */
6288
6289 free_after_parsing (cfun);
6290 free_after_compilation (cfun);
6291 free (cfun);
6292 cfun = 0;
6293 }
6294
6295 /* Call DOIT for each hard register used as a return value from
6296 the current function. */
6297
6298 void
6299 diddle_return_value (doit, arg)
6300 void (*doit) PARAMS ((rtx, void *));
6301 void *arg;
6302 {
6303 rtx outgoing = current_function_return_rtx;
6304
6305 if (! outgoing)
6306 return;
6307
6308 if (GET_CODE (outgoing) == REG
6309 && REGNO (outgoing) >= FIRST_PSEUDO_REGISTER)
6310 {
6311 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6312 #ifdef FUNCTION_OUTGOING_VALUE
6313 outgoing = FUNCTION_OUTGOING_VALUE (type, current_function_decl);
6314 #else
6315 outgoing = FUNCTION_VALUE (type, current_function_decl);
6316 #endif
6317 /* If this is a BLKmode structure being returned in registers, then use
6318 the mode computed in expand_return. */
6319 if (GET_MODE (outgoing) == BLKmode)
6320 PUT_MODE (outgoing,
6321 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6322 }
6323
6324 if (GET_CODE (outgoing) == REG)
6325 (*doit) (outgoing, arg);
6326 else if (GET_CODE (outgoing) == PARALLEL)
6327 {
6328 int i;
6329
6330 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6331 {
6332 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6333
6334 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6335 (*doit) (x, arg);
6336 }
6337 }
6338 }
6339
6340 static void
6341 do_clobber_return_reg (reg, arg)
6342 rtx reg;
6343 void *arg ATTRIBUTE_UNUSED;
6344 {
6345 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6346 }
6347
6348 void
6349 clobber_return_register ()
6350 {
6351 diddle_return_value (do_clobber_return_reg, NULL);
6352 }
6353
6354 static void
6355 do_use_return_reg (reg, arg)
6356 rtx reg;
6357 void *arg ATTRIBUTE_UNUSED;
6358 {
6359 emit_insn (gen_rtx_USE (VOIDmode, reg));
6360 }
6361
6362 void
6363 use_return_register ()
6364 {
6365 diddle_return_value (do_use_return_reg, NULL);
6366 }
6367
6368 /* Generate RTL for the end of the current function.
6369 FILENAME and LINE are the current position in the source file.
6370
6371 It is up to language-specific callers to do cleanups for parameters--
6372 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6373
6374 void
6375 expand_function_end (filename, line, end_bindings)
6376 char *filename;
6377 int line;
6378 int end_bindings;
6379 {
6380 tree link;
6381
6382 #ifdef TRAMPOLINE_TEMPLATE
6383 static rtx initial_trampoline;
6384 #endif
6385
6386 finish_expr_for_function ();
6387
6388 #ifdef NON_SAVING_SETJMP
6389 /* Don't put any variables in registers if we call setjmp
6390 on a machine that fails to restore the registers. */
6391 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6392 {
6393 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6394 setjmp_protect (DECL_INITIAL (current_function_decl));
6395
6396 setjmp_protect_args ();
6397 }
6398 #endif
6399
6400 /* Save the argument pointer if a save area was made for it. */
6401 if (arg_pointer_save_area)
6402 {
6403 /* arg_pointer_save_area may not be a valid memory address, so we
6404 have to check it and fix it if necessary. */
6405 rtx seq;
6406 start_sequence ();
6407 emit_move_insn (validize_mem (arg_pointer_save_area),
6408 virtual_incoming_args_rtx);
6409 seq = gen_sequence ();
6410 end_sequence ();
6411 emit_insn_before (seq, tail_recursion_reentry);
6412 }
6413
6414 /* Initialize any trampolines required by this function. */
6415 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6416 {
6417 tree function = TREE_PURPOSE (link);
6418 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6419 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6420 #ifdef TRAMPOLINE_TEMPLATE
6421 rtx blktramp;
6422 #endif
6423 rtx seq;
6424
6425 #ifdef TRAMPOLINE_TEMPLATE
6426 /* First make sure this compilation has a template for
6427 initializing trampolines. */
6428 if (initial_trampoline == 0)
6429 {
6430 end_temporary_allocation ();
6431 initial_trampoline
6432 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6433 resume_temporary_allocation ();
6434
6435 ggc_add_rtx_root (&initial_trampoline, 1);
6436 }
6437 #endif
6438
6439 /* Generate insns to initialize the trampoline. */
6440 start_sequence ();
6441 tramp = round_trampoline_addr (XEXP (tramp, 0));
6442 #ifdef TRAMPOLINE_TEMPLATE
6443 blktramp = change_address (initial_trampoline, BLKmode, tramp);
6444 emit_block_move (blktramp, initial_trampoline,
6445 GEN_INT (TRAMPOLINE_SIZE),
6446 TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
6447 #endif
6448 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6449 seq = get_insns ();
6450 end_sequence ();
6451
6452 /* Put those insns at entry to the containing function (this one). */
6453 emit_insns_before (seq, tail_recursion_reentry);
6454 }
6455
6456 /* If we are doing stack checking and this function makes calls,
6457 do a stack probe at the start of the function to ensure we have enough
6458 space for another stack frame. */
6459 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6460 {
6461 rtx insn, seq;
6462
6463 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6464 if (GET_CODE (insn) == CALL_INSN)
6465 {
6466 start_sequence ();
6467 probe_stack_range (STACK_CHECK_PROTECT,
6468 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6469 seq = get_insns ();
6470 end_sequence ();
6471 emit_insns_before (seq, tail_recursion_reentry);
6472 break;
6473 }
6474 }
6475
6476 /* Warn about unused parms if extra warnings were specified. */
6477 if (warn_unused && extra_warnings)
6478 {
6479 tree decl;
6480
6481 for (decl = DECL_ARGUMENTS (current_function_decl);
6482 decl; decl = TREE_CHAIN (decl))
6483 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6484 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6485 warning_with_decl (decl, "unused parameter `%s'");
6486 }
6487
6488 /* Delete handlers for nonlocal gotos if nothing uses them. */
6489 if (nonlocal_goto_handler_slots != 0
6490 && ! current_function_has_nonlocal_label)
6491 delete_handlers ();
6492
6493 /* End any sequences that failed to be closed due to syntax errors. */
6494 while (in_sequence_p ())
6495 end_sequence ();
6496
6497 /* Outside function body, can't compute type's actual size
6498 until next function's body starts. */
6499 immediate_size_expand--;
6500
6501 clear_pending_stack_adjust ();
6502 do_pending_stack_adjust ();
6503
6504 /* Mark the end of the function body.
6505 If control reaches this insn, the function can drop through
6506 without returning a value. */
6507 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
6508
6509 /* Must mark the last line number note in the function, so that the test
6510 coverage code can avoid counting the last line twice. This just tells
6511 the code to ignore the immediately following line note, since there
6512 already exists a copy of this note somewhere above. This line number
6513 note is still needed for debugging though, so we can't delete it. */
6514 if (flag_test_coverage)
6515 emit_note (NULL_PTR, NOTE_REPEATED_LINE_NUMBER);
6516
6517 /* Output a linenumber for the end of the function.
6518 SDB depends on this. */
6519 emit_line_note_force (filename, line);
6520
6521 /* Output the label for the actual return from the function,
6522 if one is expected. This happens either because a function epilogue
6523 is used instead of a return instruction, or because a return was done
6524 with a goto in order to run local cleanups, or because of pcc-style
6525 structure returning. */
6526
6527 if (return_label)
6528 {
6529 /* Before the return label, clobber the return registers so that
6530 they are not propogated live to the rest of the function. This
6531 can only happen with functions that drop through; if there had
6532 been a return statement, there would have either been a return
6533 rtx, or a jump to the return label. */
6534 clobber_return_register ();
6535
6536 emit_label (return_label);
6537 }
6538
6539 /* C++ uses this. */
6540 if (end_bindings)
6541 expand_end_bindings (0, 0, 0);
6542
6543 /* Now handle any leftover exception regions that may have been
6544 created for the parameters. */
6545 {
6546 rtx last = get_last_insn ();
6547 rtx label;
6548
6549 expand_leftover_cleanups ();
6550
6551 /* If there are any catch_clauses remaining, output them now. */
6552 emit_insns (catch_clauses);
6553 catch_clauses = catch_clauses_last = NULL_RTX;
6554 /* If the above emitted any code, may sure we jump around it. */
6555 if (last != get_last_insn ())
6556 {
6557 label = gen_label_rtx ();
6558 last = emit_jump_insn_after (gen_jump (label), last);
6559 last = emit_barrier_after (last);
6560 emit_label (label);
6561 }
6562 }
6563
6564 if (current_function_instrument_entry_exit)
6565 {
6566 rtx fun = DECL_RTL (current_function_decl);
6567 if (GET_CODE (fun) == MEM)
6568 fun = XEXP (fun, 0);
6569 else
6570 abort ();
6571 emit_library_call (profile_function_exit_libfunc, 0, VOIDmode, 2,
6572 fun, Pmode,
6573 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6574 0,
6575 hard_frame_pointer_rtx),
6576 Pmode);
6577 }
6578
6579 /* If we had calls to alloca, and this machine needs
6580 an accurate stack pointer to exit the function,
6581 insert some code to save and restore the stack pointer. */
6582 #ifdef EXIT_IGNORE_STACK
6583 if (! EXIT_IGNORE_STACK)
6584 #endif
6585 if (current_function_calls_alloca)
6586 {
6587 rtx tem = 0;
6588
6589 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6590 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6591 }
6592
6593 /* If scalar return value was computed in a pseudo-reg,
6594 copy that to the hard return register. */
6595 if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0
6596 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG
6597 && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl)))
6598 >= FIRST_PSEUDO_REGISTER))
6599 {
6600 rtx real_decl_result;
6601
6602 #ifdef FUNCTION_OUTGOING_VALUE
6603 real_decl_result
6604 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6605 current_function_decl);
6606 #else
6607 real_decl_result
6608 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6609 current_function_decl);
6610 #endif
6611 REG_FUNCTION_VALUE_P (real_decl_result) = 1;
6612 /* If this is a BLKmode structure being returned in registers, then use
6613 the mode computed in expand_return. */
6614 if (GET_MODE (real_decl_result) == BLKmode)
6615 PUT_MODE (real_decl_result,
6616 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6617 emit_move_insn (real_decl_result,
6618 DECL_RTL (DECL_RESULT (current_function_decl)));
6619
6620 /* The delay slot scheduler assumes that current_function_return_rtx
6621 holds the hard register containing the return value, not a temporary
6622 pseudo. */
6623 current_function_return_rtx = real_decl_result;
6624 }
6625
6626 /* If returning a structure, arrange to return the address of the value
6627 in a place where debuggers expect to find it.
6628
6629 If returning a structure PCC style,
6630 the caller also depends on this value.
6631 And current_function_returns_pcc_struct is not necessarily set. */
6632 if (current_function_returns_struct
6633 || current_function_returns_pcc_struct)
6634 {
6635 rtx value_address = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
6636 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6637 #ifdef FUNCTION_OUTGOING_VALUE
6638 rtx outgoing
6639 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
6640 current_function_decl);
6641 #else
6642 rtx outgoing
6643 = FUNCTION_VALUE (build_pointer_type (type),
6644 current_function_decl);
6645 #endif
6646
6647 /* Mark this as a function return value so integrate will delete the
6648 assignment and USE below when inlining this function. */
6649 REG_FUNCTION_VALUE_P (outgoing) = 1;
6650
6651 emit_move_insn (outgoing, value_address);
6652 }
6653
6654 /* ??? This should no longer be necessary since stupid is no longer with
6655 us, but there are some parts of the compiler (eg reload_combine, and
6656 sh mach_dep_reorg) that still try and compute their own lifetime info
6657 instead of using the general framework. */
6658 use_return_register ();
6659
6660 /* If this is an implementation of __throw, do what's necessary to
6661 communicate between __builtin_eh_return and the epilogue. */
6662 expand_eh_return ();
6663
6664 /* Output a return insn if we are using one.
6665 Otherwise, let the rtl chain end here, to drop through
6666 into the epilogue. */
6667
6668 #ifdef HAVE_return
6669 if (HAVE_return)
6670 {
6671 emit_jump_insn (gen_return ());
6672 emit_barrier ();
6673 }
6674 #endif
6675
6676 /* Fix up any gotos that jumped out to the outermost
6677 binding level of the function.
6678 Must follow emitting RETURN_LABEL. */
6679
6680 /* If you have any cleanups to do at this point,
6681 and they need to create temporary variables,
6682 then you will lose. */
6683 expand_fixups (get_insns ());
6684 }
6685 \f
6686 /* Extend a vector that records the INSN_UIDs of INSNS (either a
6687 sequence or a single insn). */
6688
6689 static void
6690 record_insns (insns, vecp)
6691 rtx insns;
6692 varray_type *vecp;
6693 {
6694 if (GET_CODE (insns) == SEQUENCE)
6695 {
6696 int len = XVECLEN (insns, 0);
6697 int i = VARRAY_SIZE (*vecp);
6698
6699 VARRAY_GROW (*vecp, i + len);
6700 while (--len >= 0)
6701 {
6702 VARRAY_INT (*vecp, i) = INSN_UID (XVECEXP (insns, 0, len));
6703 ++i;
6704 }
6705 }
6706 else
6707 {
6708 int i = VARRAY_SIZE (*vecp);
6709 VARRAY_GROW (*vecp, i + 1);
6710 VARRAY_INT (*vecp, i) = INSN_UID (insns);
6711 }
6712 }
6713
6714 /* Determine how many INSN_UIDs in VEC are part of INSN. */
6715
6716 static int
6717 contains (insn, vec)
6718 rtx insn;
6719 varray_type vec;
6720 {
6721 register int i, j;
6722
6723 if (GET_CODE (insn) == INSN
6724 && GET_CODE (PATTERN (insn)) == SEQUENCE)
6725 {
6726 int count = 0;
6727 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6728 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6729 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
6730 count++;
6731 return count;
6732 }
6733 else
6734 {
6735 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6736 if (INSN_UID (insn) == VARRAY_INT (vec, j))
6737 return 1;
6738 }
6739 return 0;
6740 }
6741
6742 int
6743 prologue_epilogue_contains (insn)
6744 rtx insn;
6745 {
6746 if (contains (insn, prologue))
6747 return 1;
6748 if (contains (insn, epilogue))
6749 return 1;
6750 return 0;
6751 }
6752
6753 int
6754 sibcall_epilogue_contains (insn)
6755 rtx insn;
6756 {
6757 if (sibcall_epilogue)
6758 return contains (insn, sibcall_epilogue);
6759 return 0;
6760 }
6761
6762 #ifdef HAVE_return
6763 /* Insert gen_return at the end of block BB. This also means updating
6764 block_for_insn appropriately. */
6765
6766 static void
6767 emit_return_into_block (bb)
6768 basic_block bb;
6769 {
6770 rtx p, end;
6771
6772 end = emit_jump_insn_after (gen_return (), bb->end);
6773 p = NEXT_INSN (bb->end);
6774 while (1)
6775 {
6776 set_block_for_insn (p, bb);
6777 if (p == end)
6778 break;
6779 p = NEXT_INSN (p);
6780 }
6781 bb->end = end;
6782 }
6783 #endif /* HAVE_return */
6784
6785 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
6786 this into place with notes indicating where the prologue ends and where
6787 the epilogue begins. Update the basic block information when possible. */
6788
6789 void
6790 thread_prologue_and_epilogue_insns (f)
6791 rtx f ATTRIBUTE_UNUSED;
6792 {
6793 int insertted = 0;
6794 edge e;
6795 rtx seq;
6796
6797 #ifdef HAVE_prologue
6798 if (HAVE_prologue)
6799 {
6800 rtx insn;
6801
6802 start_sequence ();
6803 seq = gen_prologue();
6804 emit_insn (seq);
6805
6806 /* Retain a map of the prologue insns. */
6807 if (GET_CODE (seq) != SEQUENCE)
6808 seq = get_insns ();
6809 record_insns (seq, &prologue);
6810 emit_note (NULL, NOTE_INSN_PROLOGUE_END);
6811
6812 /* GDB handles `break f' by setting a breakpoint on the first
6813 line note *after* the prologue. That means that we should
6814 insert a line note here; otherwise, if the next line note
6815 comes part way into the next block, GDB will skip all the way
6816 to that point. */
6817 insn = next_nonnote_insn (f);
6818 while (insn)
6819 {
6820 if (GET_CODE (insn) == NOTE
6821 && NOTE_LINE_NUMBER (insn) >= 0)
6822 {
6823 emit_line_note_force (NOTE_SOURCE_FILE (insn),
6824 NOTE_LINE_NUMBER (insn));
6825 break;
6826 }
6827
6828 insn = PREV_INSN (insn);
6829 }
6830
6831 seq = gen_sequence ();
6832 end_sequence ();
6833
6834 /* If optimization is off, and perhaps in an empty function,
6835 the entry block will have no successors. */
6836 if (ENTRY_BLOCK_PTR->succ)
6837 {
6838 /* Can't deal with multiple successsors of the entry block. */
6839 if (ENTRY_BLOCK_PTR->succ->succ_next)
6840 abort ();
6841
6842 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
6843 insertted = 1;
6844 }
6845 else
6846 emit_insn_after (seq, f);
6847 }
6848 #endif
6849
6850 /* If the exit block has no non-fake predecessors, we don't need
6851 an epilogue. */
6852 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6853 if ((e->flags & EDGE_FAKE) == 0)
6854 break;
6855 if (e == NULL)
6856 goto epilogue_done;
6857
6858 #ifdef HAVE_return
6859 if (optimize && HAVE_return)
6860 {
6861 /* If we're allowed to generate a simple return instruction,
6862 then by definition we don't need a full epilogue. Examine
6863 the block that falls through to EXIT. If it does not
6864 contain any code, examine its predecessors and try to
6865 emit (conditional) return instructions. */
6866
6867 basic_block last;
6868 edge e_next;
6869 rtx label;
6870
6871 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6872 if (e->flags & EDGE_FALLTHRU)
6873 break;
6874 if (e == NULL)
6875 goto epilogue_done;
6876 last = e->src;
6877
6878 /* Verify that there are no active instructions in the last block. */
6879 label = last->end;
6880 while (label && GET_CODE (label) != CODE_LABEL)
6881 {
6882 if (active_insn_p (label))
6883 break;
6884 label = PREV_INSN (label);
6885 }
6886
6887 if (last->head == label && GET_CODE (label) == CODE_LABEL)
6888 {
6889 for (e = last->pred; e ; e = e_next)
6890 {
6891 basic_block bb = e->src;
6892 rtx jump;
6893
6894 e_next = e->pred_next;
6895 if (bb == ENTRY_BLOCK_PTR)
6896 continue;
6897
6898 jump = bb->end;
6899 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
6900 continue;
6901
6902 /* If we have an unconditional jump, we can replace that
6903 with a simple return instruction. */
6904 if (simplejump_p (jump))
6905 {
6906 emit_return_into_block (bb);
6907 flow_delete_insn (jump);
6908 }
6909
6910 /* If we have a conditional jump, we can try to replace
6911 that with a conditional return instruction. */
6912 else if (condjump_p (jump))
6913 {
6914 rtx ret, *loc;
6915
6916 ret = SET_SRC (PATTERN (jump));
6917 if (GET_CODE (XEXP (ret, 1)) == LABEL_REF)
6918 loc = &XEXP (ret, 1);
6919 else
6920 loc = &XEXP (ret, 2);
6921 ret = gen_rtx_RETURN (VOIDmode);
6922
6923 if (! validate_change (jump, loc, ret, 0))
6924 continue;
6925 if (JUMP_LABEL (jump))
6926 LABEL_NUSES (JUMP_LABEL (jump))--;
6927
6928 /* If this block has only one successor, it both jumps
6929 and falls through to the fallthru block, so we can't
6930 delete the edge. */
6931 if (bb->succ->succ_next == NULL)
6932 continue;
6933 }
6934 else
6935 continue;
6936
6937 /* Fix up the CFG for the successful change we just made. */
6938 remove_edge (e);
6939 make_edge (NULL, bb, EXIT_BLOCK_PTR, 0);
6940 }
6941
6942 /* Emit a return insn for the exit fallthru block. Whether
6943 this is still reachable will be determined later. */
6944
6945 emit_barrier_after (last->end);
6946 emit_return_into_block (last);
6947 }
6948 else
6949 {
6950 /* The exit block wasn't empty. We have to use insert_insn_on_edge,
6951 as it may be the exit block can go elsewhere as well
6952 as exiting. */
6953 start_sequence ();
6954 emit_jump_insn (gen_return ());
6955 seq = gen_sequence ();
6956 end_sequence ();
6957 insert_insn_on_edge (seq, e);
6958 insertted = 1;
6959 }
6960 goto epilogue_done;
6961 }
6962 #endif
6963 #ifdef HAVE_epilogue
6964 if (HAVE_epilogue)
6965 {
6966 /* Find the edge that falls through to EXIT. Other edges may exist
6967 due to RETURN instructions, but those don't need epilogues.
6968 There really shouldn't be a mixture -- either all should have
6969 been converted or none, however... */
6970
6971 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6972 if (e->flags & EDGE_FALLTHRU)
6973 break;
6974 if (e == NULL)
6975 goto epilogue_done;
6976
6977 start_sequence ();
6978 emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
6979
6980 seq = gen_epilogue ();
6981 emit_jump_insn (seq);
6982
6983 /* Retain a map of the epilogue insns. */
6984 if (GET_CODE (seq) != SEQUENCE)
6985 seq = get_insns ();
6986 record_insns (seq, &epilogue);
6987
6988 seq = gen_sequence ();
6989 end_sequence();
6990
6991 insert_insn_on_edge (seq, e);
6992 insertted = 1;
6993 }
6994 #endif
6995 epilogue_done:
6996
6997 if (insertted)
6998 commit_edge_insertions ();
6999
7000 #ifdef HAVE_sibcall_epilogue
7001 /* Emit sibling epilogues before any sibling call sites. */
7002 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
7003 {
7004 basic_block bb = e->src;
7005 rtx insn = bb->end;
7006 rtx i;
7007
7008 if (GET_CODE (insn) != CALL_INSN
7009 || ! SIBLING_CALL_P (insn))
7010 continue;
7011
7012 start_sequence ();
7013 seq = gen_sibcall_epilogue ();
7014 end_sequence ();
7015
7016 i = PREV_INSN (insn);
7017 emit_insn_before (seq, insn);
7018
7019 /* Update the UID to basic block map. */
7020 for (i = NEXT_INSN (i); i != insn; i = NEXT_INSN (i))
7021 set_block_for_insn (i, bb);
7022
7023 /* Retain a map of the epilogue insns. Used in life analysis to
7024 avoid getting rid of sibcall epilogue insns. */
7025 record_insns (seq, &sibcall_epilogue);
7026 }
7027 #endif
7028 }
7029
7030 /* Reposition the prologue-end and epilogue-begin notes after instruction
7031 scheduling and delayed branch scheduling. */
7032
7033 void
7034 reposition_prologue_and_epilogue_notes (f)
7035 rtx f ATTRIBUTE_UNUSED;
7036 {
7037 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7038 int len;
7039
7040 if ((len = VARRAY_SIZE (prologue)) > 0)
7041 {
7042 register rtx insn, note = 0;
7043
7044 /* Scan from the beginning until we reach the last prologue insn.
7045 We apparently can't depend on basic_block_{head,end} after
7046 reorg has run. */
7047 for (insn = f; len && insn; insn = NEXT_INSN (insn))
7048 {
7049 if (GET_CODE (insn) == NOTE)
7050 {
7051 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7052 note = insn;
7053 }
7054 else if ((len -= contains (insn, prologue)) == 0)
7055 {
7056 rtx next;
7057 /* Find the prologue-end note if we haven't already, and
7058 move it to just after the last prologue insn. */
7059 if (note == 0)
7060 {
7061 for (note = insn; (note = NEXT_INSN (note));)
7062 if (GET_CODE (note) == NOTE
7063 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7064 break;
7065 }
7066
7067 next = NEXT_INSN (note);
7068
7069 /* Whether or not we can depend on BLOCK_HEAD,
7070 attempt to keep it up-to-date. */
7071 if (BLOCK_HEAD (0) == note)
7072 BLOCK_HEAD (0) = next;
7073
7074 remove_insn (note);
7075 add_insn_after (note, insn);
7076 }
7077 }
7078 }
7079
7080 if ((len = VARRAY_SIZE (epilogue)) > 0)
7081 {
7082 register rtx insn, note = 0;
7083
7084 /* Scan from the end until we reach the first epilogue insn.
7085 We apparently can't depend on basic_block_{head,end} after
7086 reorg has run. */
7087 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
7088 {
7089 if (GET_CODE (insn) == NOTE)
7090 {
7091 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7092 note = insn;
7093 }
7094 else if ((len -= contains (insn, epilogue)) == 0)
7095 {
7096 /* Find the epilogue-begin note if we haven't already, and
7097 move it to just before the first epilogue insn. */
7098 if (note == 0)
7099 {
7100 for (note = insn; (note = PREV_INSN (note));)
7101 if (GET_CODE (note) == NOTE
7102 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7103 break;
7104 }
7105
7106 /* Whether or not we can depend on BLOCK_HEAD,
7107 attempt to keep it up-to-date. */
7108 if (n_basic_blocks
7109 && BLOCK_HEAD (n_basic_blocks-1) == insn)
7110 BLOCK_HEAD (n_basic_blocks-1) = note;
7111
7112 remove_insn (note);
7113 add_insn_before (note, insn);
7114 }
7115 }
7116 }
7117 #endif /* HAVE_prologue or HAVE_epilogue */
7118 }
7119
7120 /* Mark T for GC. */
7121
7122 static void
7123 mark_temp_slot (t)
7124 struct temp_slot *t;
7125 {
7126 while (t)
7127 {
7128 ggc_mark_rtx (t->slot);
7129 ggc_mark_rtx (t->address);
7130 ggc_mark_tree (t->rtl_expr);
7131
7132 t = t->next;
7133 }
7134 }
7135
7136 /* Mark P for GC. */
7137
7138 static void
7139 mark_function_status (p)
7140 struct function *p;
7141 {
7142 int i;
7143 rtx *r;
7144
7145 if (p == 0)
7146 return;
7147
7148 ggc_mark_rtx (p->arg_offset_rtx);
7149
7150 if (p->x_parm_reg_stack_loc)
7151 for (i = p->x_max_parm_reg, r = p->x_parm_reg_stack_loc;
7152 i > 0; --i, ++r)
7153 ggc_mark_rtx (*r);
7154
7155 ggc_mark_rtx (p->return_rtx);
7156 ggc_mark_rtx (p->x_cleanup_label);
7157 ggc_mark_rtx (p->x_return_label);
7158 ggc_mark_rtx (p->x_save_expr_regs);
7159 ggc_mark_rtx (p->x_stack_slot_list);
7160 ggc_mark_rtx (p->x_parm_birth_insn);
7161 ggc_mark_rtx (p->x_tail_recursion_label);
7162 ggc_mark_rtx (p->x_tail_recursion_reentry);
7163 ggc_mark_rtx (p->internal_arg_pointer);
7164 ggc_mark_rtx (p->x_arg_pointer_save_area);
7165 ggc_mark_tree (p->x_rtl_expr_chain);
7166 ggc_mark_rtx (p->x_last_parm_insn);
7167 ggc_mark_tree (p->x_context_display);
7168 ggc_mark_tree (p->x_trampoline_list);
7169 ggc_mark_rtx (p->epilogue_delay_list);
7170
7171 mark_temp_slot (p->x_temp_slots);
7172
7173 {
7174 struct var_refs_queue *q = p->fixup_var_refs_queue;
7175 while (q)
7176 {
7177 ggc_mark_rtx (q->modified);
7178 q = q->next;
7179 }
7180 }
7181
7182 ggc_mark_rtx (p->x_nonlocal_goto_handler_slots);
7183 ggc_mark_rtx (p->x_nonlocal_goto_handler_labels);
7184 ggc_mark_rtx (p->x_nonlocal_goto_stack_level);
7185 ggc_mark_tree (p->x_nonlocal_labels);
7186 }
7187
7188 /* Mark the function chain ARG (which is really a struct function **)
7189 for GC. */
7190
7191 static void
7192 mark_function_chain (arg)
7193 void *arg;
7194 {
7195 struct function *f = *(struct function **) arg;
7196
7197 for (; f; f = f->next_global)
7198 {
7199 ggc_mark_tree (f->decl);
7200
7201 mark_function_status (f);
7202 mark_eh_status (f->eh);
7203 mark_stmt_status (f->stmt);
7204 mark_expr_status (f->expr);
7205 mark_emit_status (f->emit);
7206 mark_varasm_status (f->varasm);
7207
7208 if (mark_machine_status)
7209 (*mark_machine_status) (f);
7210 if (mark_lang_status)
7211 (*mark_lang_status) (f);
7212
7213 if (f->original_arg_vector)
7214 ggc_mark_rtvec ((rtvec) f->original_arg_vector);
7215 if (f->original_decl_initial)
7216 ggc_mark_tree (f->original_decl_initial);
7217 }
7218 }
7219
7220 /* Called once, at initialization, to initialize function.c. */
7221
7222 void
7223 init_function_once ()
7224 {
7225 ggc_add_root (&all_functions, 1, sizeof all_functions,
7226 mark_function_chain);
7227
7228 VARRAY_INT_INIT (prologue, 0, "prologue");
7229 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7230 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
7231 }
This page took 0.557295 seconds and 6 git commands to generate.