]> gcc.gnu.org Git - gcc.git/blob - gcc/function.c
* cse.c: Fix formatting.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
35
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
40
41 #include "config.h"
42 #include "system.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "flags.h"
46 #include "except.h"
47 #include "function.h"
48 #include "insn-flags.h"
49 #include "expr.h"
50 #include "insn-codes.h"
51 #include "regs.h"
52 #include "hard-reg-set.h"
53 #include "insn-config.h"
54 #include "recog.h"
55 #include "output.h"
56 #include "basic-block.h"
57 #include "obstack.h"
58 #include "toplev.h"
59 #include "hash.h"
60 #include "ggc.h"
61 #include "tm_p.h"
62
63 #ifndef ACCUMULATE_OUTGOING_ARGS
64 #define ACCUMULATE_OUTGOING_ARGS 0
65 #endif
66
67 #ifndef TRAMPOLINE_ALIGNMENT
68 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
69 #endif
70
71 #ifndef LOCAL_ALIGNMENT
72 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
73 #endif
74
75 #if !defined (PREFERRED_STACK_BOUNDARY) && defined (STACK_BOUNDARY)
76 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
77 #endif
78
79 /* Some systems use __main in a way incompatible with its use in gcc, in these
80 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
81 give the same symbol without quotes for an alternative entry point. You
82 must define both, or neither. */
83 #ifndef NAME__MAIN
84 #define NAME__MAIN "__main"
85 #define SYMBOL__MAIN __main
86 #endif
87
88 /* Round a value to the lowest integer less than it that is a multiple of
89 the required alignment. Avoid using division in case the value is
90 negative. Assume the alignment is a power of two. */
91 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
92
93 /* Similar, but round to the next highest integer that meets the
94 alignment. */
95 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
96
97 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
98 during rtl generation. If they are different register numbers, this is
99 always true. It may also be true if
100 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
101 generation. See fix_lexical_addr for details. */
102
103 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
104 #define NEED_SEPARATE_AP
105 #endif
106
107 /* Nonzero if function being compiled doesn't contain any calls
108 (ignoring the prologue and epilogue). This is set prior to
109 local register allocation and is valid for the remaining
110 compiler passes. */
111 int current_function_is_leaf;
112
113 /* Nonzero if function being compiled doesn't contain any instructions
114 that can throw an exception. This is set prior to final. */
115
116 int current_function_nothrow;
117
118 /* Nonzero if function being compiled doesn't modify the stack pointer
119 (ignoring the prologue and epilogue). This is only valid after
120 life_analysis has run. */
121 int current_function_sp_is_unchanging;
122
123 /* Nonzero if the function being compiled is a leaf function which only
124 uses leaf registers. This is valid after reload (specifically after
125 sched2) and is useful only if the port defines LEAF_REGISTERS. */
126 int current_function_uses_only_leaf_regs;
127
128 /* Nonzero once virtual register instantiation has been done.
129 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
130 static int virtuals_instantiated;
131
132 /* These variables hold pointers to functions to
133 save and restore machine-specific data,
134 in push_function_context and pop_function_context. */
135 void (*init_machine_status) PARAMS ((struct function *));
136 void (*save_machine_status) PARAMS ((struct function *));
137 void (*restore_machine_status) PARAMS ((struct function *));
138 void (*mark_machine_status) PARAMS ((struct function *));
139 void (*free_machine_status) PARAMS ((struct function *));
140
141 /* Likewise, but for language-specific data. */
142 void (*init_lang_status) PARAMS ((struct function *));
143 void (*save_lang_status) PARAMS ((struct function *));
144 void (*restore_lang_status) PARAMS ((struct function *));
145 void (*mark_lang_status) PARAMS ((struct function *));
146 void (*free_lang_status) PARAMS ((struct function *));
147
148 /* The FUNCTION_DECL for an inline function currently being expanded. */
149 tree inline_function_decl;
150
151 /* The currently compiled function. */
152 struct function *cfun = 0;
153
154 /* Global list of all compiled functions. */
155 struct function *all_functions = 0;
156
157 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
158 static varray_type prologue;
159 static varray_type epilogue;
160
161 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
162 in this function. */
163 static varray_type sibcall_epilogue;
164 \f
165 /* In order to evaluate some expressions, such as function calls returning
166 structures in memory, we need to temporarily allocate stack locations.
167 We record each allocated temporary in the following structure.
168
169 Associated with each temporary slot is a nesting level. When we pop up
170 one level, all temporaries associated with the previous level are freed.
171 Normally, all temporaries are freed after the execution of the statement
172 in which they were created. However, if we are inside a ({...}) grouping,
173 the result may be in a temporary and hence must be preserved. If the
174 result could be in a temporary, we preserve it if we can determine which
175 one it is in. If we cannot determine which temporary may contain the
176 result, all temporaries are preserved. A temporary is preserved by
177 pretending it was allocated at the previous nesting level.
178
179 Automatic variables are also assigned temporary slots, at the nesting
180 level where they are defined. They are marked a "kept" so that
181 free_temp_slots will not free them. */
182
183 struct temp_slot
184 {
185 /* Points to next temporary slot. */
186 struct temp_slot *next;
187 /* The rtx to used to reference the slot. */
188 rtx slot;
189 /* The rtx used to represent the address if not the address of the
190 slot above. May be an EXPR_LIST if multiple addresses exist. */
191 rtx address;
192 /* The alignment (in bits) of the slot. */
193 int align;
194 /* The size, in units, of the slot. */
195 HOST_WIDE_INT size;
196 /* The alias set for the slot. If the alias set is zero, we don't
197 know anything about the alias set of the slot. We must only
198 reuse a slot if it is assigned an object of the same alias set.
199 Otherwise, the rest of the compiler may assume that the new use
200 of the slot cannot alias the old use of the slot, which is
201 false. If the slot has alias set zero, then we can't reuse the
202 slot at all, since we have no idea what alias set may have been
203 imposed on the memory. For example, if the stack slot is the
204 call frame for an inline functioned, we have no idea what alias
205 sets will be assigned to various pieces of the call frame. */
206 HOST_WIDE_INT alias_set;
207 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
208 tree rtl_expr;
209 /* Non-zero if this temporary is currently in use. */
210 char in_use;
211 /* Non-zero if this temporary has its address taken. */
212 char addr_taken;
213 /* Nesting level at which this slot is being used. */
214 int level;
215 /* Non-zero if this should survive a call to free_temp_slots. */
216 int keep;
217 /* The offset of the slot from the frame_pointer, including extra space
218 for alignment. This info is for combine_temp_slots. */
219 HOST_WIDE_INT base_offset;
220 /* The size of the slot, including extra space for alignment. This
221 info is for combine_temp_slots. */
222 HOST_WIDE_INT full_size;
223 };
224 \f
225 /* This structure is used to record MEMs or pseudos used to replace VAR, any
226 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
227 maintain this list in case two operands of an insn were required to match;
228 in that case we must ensure we use the same replacement. */
229
230 struct fixup_replacement
231 {
232 rtx old;
233 rtx new;
234 struct fixup_replacement *next;
235 };
236
237 struct insns_for_mem_entry {
238 /* The KEY in HE will be a MEM. */
239 struct hash_entry he;
240 /* These are the INSNS which reference the MEM. */
241 rtx insns;
242 };
243
244 /* Forward declarations. */
245
246 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
247 int, struct function *));
248 static rtx assign_stack_temp_for_type PARAMS ((enum machine_mode,
249 HOST_WIDE_INT, int, tree));
250 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
251 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
252 enum machine_mode, enum machine_mode,
253 int, unsigned int, int,
254 struct hash_table *));
255 static void schedule_fixup_var_refs PARAMS ((struct function *, rtx, tree,
256 enum machine_mode,
257 struct hash_table *));
258 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int,
259 struct hash_table *));
260 static struct fixup_replacement
261 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
262 static void fixup_var_refs_insns PARAMS ((rtx, enum machine_mode, int,
263 rtx, int, struct hash_table *));
264 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
265 struct fixup_replacement **));
266 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, int));
267 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, int));
268 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
269 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
270 static void instantiate_decls PARAMS ((tree, int));
271 static void instantiate_decls_1 PARAMS ((tree, int));
272 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
273 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
274 static void delete_handlers PARAMS ((void));
275 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
276 struct args_size *));
277 #ifndef ARGS_GROW_DOWNWARD
278 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
279 tree));
280 #endif
281 static rtx round_trampoline_addr PARAMS ((rtx));
282 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
283 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
284 static tree blocks_nreverse PARAMS ((tree));
285 static int all_blocks PARAMS ((tree, tree *));
286 static tree *get_block_vector PARAMS ((tree, int *));
287 /* We always define `record_insns' even if its not used so that we
288 can always export `prologue_epilogue_contains'. */
289 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
290 static int contains PARAMS ((rtx, varray_type));
291 #ifdef HAVE_return
292 static void emit_return_into_block PARAMS ((basic_block, rtx));
293 #endif
294 static void put_addressof_into_stack PARAMS ((rtx, struct hash_table *));
295 static boolean purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
296 struct hash_table *));
297 static int is_addressof PARAMS ((rtx *, void *));
298 static struct hash_entry *insns_for_mem_newfunc PARAMS ((struct hash_entry *,
299 struct hash_table *,
300 hash_table_key));
301 static unsigned long insns_for_mem_hash PARAMS ((hash_table_key));
302 static boolean insns_for_mem_comp PARAMS ((hash_table_key, hash_table_key));
303 static int insns_for_mem_walk PARAMS ((rtx *, void *));
304 static void compute_insns_for_mem PARAMS ((rtx, rtx, struct hash_table *));
305 static void mark_temp_slot PARAMS ((struct temp_slot *));
306 static void mark_function_status PARAMS ((struct function *));
307 static void mark_function_chain PARAMS ((void *));
308 static void prepare_function_start PARAMS ((void));
309 static void do_clobber_return_reg PARAMS ((rtx, void *));
310 static void do_use_return_reg PARAMS ((rtx, void *));
311 \f
312 /* Pointer to chain of `struct function' for containing functions. */
313 struct function *outer_function_chain;
314
315 /* Given a function decl for a containing function,
316 return the `struct function' for it. */
317
318 struct function *
319 find_function_data (decl)
320 tree decl;
321 {
322 struct function *p;
323
324 for (p = outer_function_chain; p; p = p->next)
325 if (p->decl == decl)
326 return p;
327
328 abort ();
329 }
330
331 /* Save the current context for compilation of a nested function.
332 This is called from language-specific code. The caller should use
333 the save_lang_status callback to save any language-specific state,
334 since this function knows only about language-independent
335 variables. */
336
337 void
338 push_function_context_to (context)
339 tree context;
340 {
341 struct function *p, *context_data;
342
343 if (context)
344 {
345 context_data = (context == current_function_decl
346 ? cfun
347 : find_function_data (context));
348 context_data->contains_functions = 1;
349 }
350
351 if (cfun == 0)
352 init_dummy_function_start ();
353 p = cfun;
354
355 p->next = outer_function_chain;
356 outer_function_chain = p;
357 p->fixup_var_refs_queue = 0;
358
359 save_tree_status (p);
360 if (save_lang_status)
361 (*save_lang_status) (p);
362 if (save_machine_status)
363 (*save_machine_status) (p);
364
365 cfun = 0;
366 }
367
368 void
369 push_function_context ()
370 {
371 push_function_context_to (current_function_decl);
372 }
373
374 /* Restore the last saved context, at the end of a nested function.
375 This function is called from language-specific code. */
376
377 void
378 pop_function_context_from (context)
379 tree context ATTRIBUTE_UNUSED;
380 {
381 struct function *p = outer_function_chain;
382 struct var_refs_queue *queue;
383 struct var_refs_queue *next;
384
385 cfun = p;
386 outer_function_chain = p->next;
387
388 current_function_decl = p->decl;
389 reg_renumber = 0;
390
391 restore_tree_status (p);
392 restore_emit_status (p);
393
394 if (restore_machine_status)
395 (*restore_machine_status) (p);
396 if (restore_lang_status)
397 (*restore_lang_status) (p);
398
399 /* Finish doing put_var_into_stack for any of our variables
400 which became addressable during the nested function. */
401 for (queue = p->fixup_var_refs_queue; queue; queue = next)
402 {
403 next = queue->next;
404 fixup_var_refs (queue->modified, queue->promoted_mode,
405 queue->unsignedp, 0);
406 free (queue);
407 }
408 p->fixup_var_refs_queue = 0;
409
410 /* Reset variables that have known state during rtx generation. */
411 rtx_equal_function_value_matters = 1;
412 virtuals_instantiated = 0;
413 }
414
415 void
416 pop_function_context ()
417 {
418 pop_function_context_from (current_function_decl);
419 }
420
421 /* Clear out all parts of the state in F that can safely be discarded
422 after the function has been parsed, but not compiled, to let
423 garbage collection reclaim the memory. */
424
425 void
426 free_after_parsing (f)
427 struct function *f;
428 {
429 /* f->expr->forced_labels is used by code generation. */
430 /* f->emit->regno_reg_rtx is used by code generation. */
431 /* f->varasm is used by code generation. */
432 /* f->eh->eh_return_stub_label is used by code generation. */
433
434 if (free_lang_status)
435 (*free_lang_status) (f);
436 free_stmt_status (f);
437 }
438
439 /* Clear out all parts of the state in F that can safely be discarded
440 after the function has been compiled, to let garbage collection
441 reclaim the memory. */
442
443 void
444 free_after_compilation (f)
445 struct function *f;
446 {
447 struct temp_slot *ts;
448 struct temp_slot *next;
449
450 free_eh_status (f);
451 free_expr_status (f);
452 free_emit_status (f);
453 free_varasm_status (f);
454
455 if (free_machine_status)
456 (*free_machine_status) (f);
457
458 if (f->x_parm_reg_stack_loc)
459 free (f->x_parm_reg_stack_loc);
460
461 for (ts = f->x_temp_slots; ts; ts = next)
462 {
463 next = ts->next;
464 free (ts);
465 }
466 f->x_temp_slots = NULL;
467
468 f->arg_offset_rtx = NULL;
469 f->return_rtx = NULL;
470 f->internal_arg_pointer = NULL;
471 f->x_nonlocal_labels = NULL;
472 f->x_nonlocal_goto_handler_slots = NULL;
473 f->x_nonlocal_goto_handler_labels = NULL;
474 f->x_nonlocal_goto_stack_level = NULL;
475 f->x_cleanup_label = NULL;
476 f->x_return_label = NULL;
477 f->x_save_expr_regs = NULL;
478 f->x_stack_slot_list = NULL;
479 f->x_rtl_expr_chain = NULL;
480 f->x_tail_recursion_label = NULL;
481 f->x_tail_recursion_reentry = NULL;
482 f->x_arg_pointer_save_area = NULL;
483 f->x_context_display = NULL;
484 f->x_trampoline_list = NULL;
485 f->x_parm_birth_insn = NULL;
486 f->x_last_parm_insn = NULL;
487 f->x_parm_reg_stack_loc = NULL;
488 f->fixup_var_refs_queue = NULL;
489 f->original_arg_vector = NULL;
490 f->original_decl_initial = NULL;
491 f->inl_last_parm_insn = NULL;
492 f->epilogue_delay_list = NULL;
493 }
494 \f
495 /* Allocate fixed slots in the stack frame of the current function. */
496
497 /* Return size needed for stack frame based on slots so far allocated in
498 function F.
499 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
500 the caller may have to do that. */
501
502 HOST_WIDE_INT
503 get_func_frame_size (f)
504 struct function *f;
505 {
506 #ifdef FRAME_GROWS_DOWNWARD
507 return -f->x_frame_offset;
508 #else
509 return f->x_frame_offset;
510 #endif
511 }
512
513 /* Return size needed for stack frame based on slots so far allocated.
514 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
515 the caller may have to do that. */
516 HOST_WIDE_INT
517 get_frame_size ()
518 {
519 return get_func_frame_size (cfun);
520 }
521
522 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
523 with machine mode MODE.
524
525 ALIGN controls the amount of alignment for the address of the slot:
526 0 means according to MODE,
527 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
528 positive specifies alignment boundary in bits.
529
530 We do not round to stack_boundary here.
531
532 FUNCTION specifies the function to allocate in. */
533
534 static rtx
535 assign_stack_local_1 (mode, size, align, function)
536 enum machine_mode mode;
537 HOST_WIDE_INT size;
538 int align;
539 struct function *function;
540 {
541 register rtx x, addr;
542 int bigend_correction = 0;
543 int alignment;
544
545 /* Allocate in the memory associated with the function in whose frame
546 we are assigning. */
547 if (function != cfun)
548 push_obstacks (function->function_obstack,
549 function->function_maybepermanent_obstack);
550
551 if (align == 0)
552 {
553 tree type;
554
555 if (mode == BLKmode)
556 alignment = BIGGEST_ALIGNMENT;
557 else
558 alignment = GET_MODE_ALIGNMENT (mode);
559
560 /* Allow the target to (possibly) increase the alignment of this
561 stack slot. */
562 type = type_for_mode (mode, 0);
563 if (type)
564 alignment = LOCAL_ALIGNMENT (type, alignment);
565
566 alignment /= BITS_PER_UNIT;
567 }
568 else if (align == -1)
569 {
570 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
571 size = CEIL_ROUND (size, alignment);
572 }
573 else
574 alignment = align / BITS_PER_UNIT;
575
576 #ifdef FRAME_GROWS_DOWNWARD
577 function->x_frame_offset -= size;
578 #endif
579
580 /* Ignore alignment we can't do with expected alignment of the boundary. */
581 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
582 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
583
584 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
585 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
586
587 /* Round frame offset to that alignment.
588 We must be careful here, since FRAME_OFFSET might be negative and
589 division with a negative dividend isn't as well defined as we might
590 like. So we instead assume that ALIGNMENT is a power of two and
591 use logical operations which are unambiguous. */
592 #ifdef FRAME_GROWS_DOWNWARD
593 function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset, alignment);
594 #else
595 function->x_frame_offset = CEIL_ROUND (function->x_frame_offset, alignment);
596 #endif
597
598 /* On a big-endian machine, if we are allocating more space than we will use,
599 use the least significant bytes of those that are allocated. */
600 if (BYTES_BIG_ENDIAN && mode != BLKmode)
601 bigend_correction = size - GET_MODE_SIZE (mode);
602
603 /* If we have already instantiated virtual registers, return the actual
604 address relative to the frame pointer. */
605 if (function == cfun && virtuals_instantiated)
606 addr = plus_constant (frame_pointer_rtx,
607 (frame_offset + bigend_correction
608 + STARTING_FRAME_OFFSET));
609 else
610 addr = plus_constant (virtual_stack_vars_rtx,
611 function->x_frame_offset + bigend_correction);
612
613 #ifndef FRAME_GROWS_DOWNWARD
614 function->x_frame_offset += size;
615 #endif
616
617 x = gen_rtx_MEM (mode, addr);
618
619 function->x_stack_slot_list
620 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
621
622 if (function != cfun)
623 pop_obstacks ();
624
625 return x;
626 }
627
628 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
629 current function. */
630
631 rtx
632 assign_stack_local (mode, size, align)
633 enum machine_mode mode;
634 HOST_WIDE_INT size;
635 int align;
636 {
637 return assign_stack_local_1 (mode, size, align, cfun);
638 }
639 \f
640 /* Allocate a temporary stack slot and record it for possible later
641 reuse.
642
643 MODE is the machine mode to be given to the returned rtx.
644
645 SIZE is the size in units of the space required. We do no rounding here
646 since assign_stack_local will do any required rounding.
647
648 KEEP is 1 if this slot is to be retained after a call to
649 free_temp_slots. Automatic variables for a block are allocated
650 with this flag. KEEP is 2 if we allocate a longer term temporary,
651 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
652 if we are to allocate something at an inner level to be treated as
653 a variable in the block (e.g., a SAVE_EXPR).
654
655 TYPE is the type that will be used for the stack slot. */
656
657 static rtx
658 assign_stack_temp_for_type (mode, size, keep, type)
659 enum machine_mode mode;
660 HOST_WIDE_INT size;
661 int keep;
662 tree type;
663 {
664 int align;
665 HOST_WIDE_INT alias_set;
666 struct temp_slot *p, *best_p = 0;
667
668 /* If SIZE is -1 it means that somebody tried to allocate a temporary
669 of a variable size. */
670 if (size == -1)
671 abort ();
672
673 /* If we know the alias set for the memory that will be used, use
674 it. If there's no TYPE, then we don't know anything about the
675 alias set for the memory. */
676 if (type)
677 alias_set = get_alias_set (type);
678 else
679 alias_set = 0;
680
681 if (mode == BLKmode)
682 align = BIGGEST_ALIGNMENT;
683 else
684 align = GET_MODE_ALIGNMENT (mode);
685
686 if (! type)
687 type = type_for_mode (mode, 0);
688
689 if (type)
690 align = LOCAL_ALIGNMENT (type, align);
691
692 /* Try to find an available, already-allocated temporary of the proper
693 mode which meets the size and alignment requirements. Choose the
694 smallest one with the closest alignment. */
695 for (p = temp_slots; p; p = p->next)
696 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
697 && ! p->in_use
698 && (! flag_strict_aliasing
699 || (alias_set && p->alias_set == alias_set))
700 && (best_p == 0 || best_p->size > p->size
701 || (best_p->size == p->size && best_p->align > p->align)))
702 {
703 if (p->align == align && p->size == size)
704 {
705 best_p = 0;
706 break;
707 }
708 best_p = p;
709 }
710
711 /* Make our best, if any, the one to use. */
712 if (best_p)
713 {
714 /* If there are enough aligned bytes left over, make them into a new
715 temp_slot so that the extra bytes don't get wasted. Do this only
716 for BLKmode slots, so that we can be sure of the alignment. */
717 if (GET_MODE (best_p->slot) == BLKmode)
718 {
719 int alignment = best_p->align / BITS_PER_UNIT;
720 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
721
722 if (best_p->size - rounded_size >= alignment)
723 {
724 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
725 p->in_use = p->addr_taken = 0;
726 p->size = best_p->size - rounded_size;
727 p->base_offset = best_p->base_offset + rounded_size;
728 p->full_size = best_p->full_size - rounded_size;
729 p->slot = gen_rtx_MEM (BLKmode,
730 plus_constant (XEXP (best_p->slot, 0),
731 rounded_size));
732 p->align = best_p->align;
733 p->address = 0;
734 p->rtl_expr = 0;
735 p->alias_set = best_p->alias_set;
736 p->next = temp_slots;
737 temp_slots = p;
738
739 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
740 stack_slot_list);
741
742 best_p->size = rounded_size;
743 best_p->full_size = rounded_size;
744 }
745 }
746
747 p = best_p;
748 }
749
750 /* If we still didn't find one, make a new temporary. */
751 if (p == 0)
752 {
753 HOST_WIDE_INT frame_offset_old = frame_offset;
754
755 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
756
757 /* We are passing an explicit alignment request to assign_stack_local.
758 One side effect of that is assign_stack_local will not round SIZE
759 to ensure the frame offset remains suitably aligned.
760
761 So for requests which depended on the rounding of SIZE, we go ahead
762 and round it now. We also make sure ALIGNMENT is at least
763 BIGGEST_ALIGNMENT. */
764 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
765 abort();
766 p->slot = assign_stack_local (mode,
767 (mode == BLKmode
768 ? CEIL_ROUND (size, align / BITS_PER_UNIT)
769 : size),
770 align);
771
772 p->align = align;
773 p->alias_set = alias_set;
774
775 /* The following slot size computation is necessary because we don't
776 know the actual size of the temporary slot until assign_stack_local
777 has performed all the frame alignment and size rounding for the
778 requested temporary. Note that extra space added for alignment
779 can be either above or below this stack slot depending on which
780 way the frame grows. We include the extra space if and only if it
781 is above this slot. */
782 #ifdef FRAME_GROWS_DOWNWARD
783 p->size = frame_offset_old - frame_offset;
784 #else
785 p->size = size;
786 #endif
787
788 /* Now define the fields used by combine_temp_slots. */
789 #ifdef FRAME_GROWS_DOWNWARD
790 p->base_offset = frame_offset;
791 p->full_size = frame_offset_old - frame_offset;
792 #else
793 p->base_offset = frame_offset_old;
794 p->full_size = frame_offset - frame_offset_old;
795 #endif
796 p->address = 0;
797 p->next = temp_slots;
798 temp_slots = p;
799 }
800
801 p->in_use = 1;
802 p->addr_taken = 0;
803 p->rtl_expr = seq_rtl_expr;
804
805 if (keep == 2)
806 {
807 p->level = target_temp_slot_level;
808 p->keep = 0;
809 }
810 else if (keep == 3)
811 {
812 p->level = var_temp_slot_level;
813 p->keep = 0;
814 }
815 else
816 {
817 p->level = temp_slot_level;
818 p->keep = keep;
819 }
820
821 /* We may be reusing an old slot, so clear any MEM flags that may have been
822 set from before. */
823 RTX_UNCHANGING_P (p->slot) = 0;
824 MEM_IN_STRUCT_P (p->slot) = 0;
825 MEM_SCALAR_P (p->slot) = 0;
826 MEM_ALIAS_SET (p->slot) = alias_set;
827
828 if (type != 0)
829 MEM_SET_IN_STRUCT_P (p->slot, AGGREGATE_TYPE_P (type));
830
831 return p->slot;
832 }
833
834 /* Allocate a temporary stack slot and record it for possible later
835 reuse. First three arguments are same as in preceding function. */
836
837 rtx
838 assign_stack_temp (mode, size, keep)
839 enum machine_mode mode;
840 HOST_WIDE_INT size;
841 int keep;
842 {
843 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
844 }
845 \f
846 /* Assign a temporary of given TYPE.
847 KEEP is as for assign_stack_temp.
848 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
849 it is 0 if a register is OK.
850 DONT_PROMOTE is 1 if we should not promote values in register
851 to wider modes. */
852
853 rtx
854 assign_temp (type, keep, memory_required, dont_promote)
855 tree type;
856 int keep;
857 int memory_required;
858 int dont_promote ATTRIBUTE_UNUSED;
859 {
860 enum machine_mode mode = TYPE_MODE (type);
861 #ifndef PROMOTE_FOR_CALL_ONLY
862 int unsignedp = TREE_UNSIGNED (type);
863 #endif
864
865 if (mode == BLKmode || memory_required)
866 {
867 HOST_WIDE_INT size = int_size_in_bytes (type);
868 rtx tmp;
869
870 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
871 problems with allocating the stack space. */
872 if (size == 0)
873 size = 1;
874
875 /* Unfortunately, we don't yet know how to allocate variable-sized
876 temporaries. However, sometimes we have a fixed upper limit on
877 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
878 instead. This is the case for Chill variable-sized strings. */
879 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
880 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
881 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
882 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
883
884 tmp = assign_stack_temp_for_type (mode, size, keep, type);
885 return tmp;
886 }
887
888 #ifndef PROMOTE_FOR_CALL_ONLY
889 if (! dont_promote)
890 mode = promote_mode (type, mode, &unsignedp, 0);
891 #endif
892
893 return gen_reg_rtx (mode);
894 }
895 \f
896 /* Combine temporary stack slots which are adjacent on the stack.
897
898 This allows for better use of already allocated stack space. This is only
899 done for BLKmode slots because we can be sure that we won't have alignment
900 problems in this case. */
901
902 void
903 combine_temp_slots ()
904 {
905 struct temp_slot *p, *q;
906 struct temp_slot *prev_p, *prev_q;
907 int num_slots;
908
909 /* We can't combine slots, because the information about which slot
910 is in which alias set will be lost. */
911 if (flag_strict_aliasing)
912 return;
913
914 /* If there are a lot of temp slots, don't do anything unless
915 high levels of optimizaton. */
916 if (! flag_expensive_optimizations)
917 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
918 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
919 return;
920
921 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
922 {
923 int delete_p = 0;
924
925 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
926 for (q = p->next, prev_q = p; q; q = prev_q->next)
927 {
928 int delete_q = 0;
929 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
930 {
931 if (p->base_offset + p->full_size == q->base_offset)
932 {
933 /* Q comes after P; combine Q into P. */
934 p->size += q->size;
935 p->full_size += q->full_size;
936 delete_q = 1;
937 }
938 else if (q->base_offset + q->full_size == p->base_offset)
939 {
940 /* P comes after Q; combine P into Q. */
941 q->size += p->size;
942 q->full_size += p->full_size;
943 delete_p = 1;
944 break;
945 }
946 }
947 /* Either delete Q or advance past it. */
948 if (delete_q)
949 {
950 prev_q->next = q->next;
951 free (q);
952 }
953 else
954 prev_q = q;
955 }
956 /* Either delete P or advance past it. */
957 if (delete_p)
958 {
959 if (prev_p)
960 prev_p->next = p->next;
961 else
962 temp_slots = p->next;
963 }
964 else
965 prev_p = p;
966 }
967 }
968 \f
969 /* Find the temp slot corresponding to the object at address X. */
970
971 static struct temp_slot *
972 find_temp_slot_from_address (x)
973 rtx x;
974 {
975 struct temp_slot *p;
976 rtx next;
977
978 for (p = temp_slots; p; p = p->next)
979 {
980 if (! p->in_use)
981 continue;
982
983 else if (XEXP (p->slot, 0) == x
984 || p->address == x
985 || (GET_CODE (x) == PLUS
986 && XEXP (x, 0) == virtual_stack_vars_rtx
987 && GET_CODE (XEXP (x, 1)) == CONST_INT
988 && INTVAL (XEXP (x, 1)) >= p->base_offset
989 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
990 return p;
991
992 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
993 for (next = p->address; next; next = XEXP (next, 1))
994 if (XEXP (next, 0) == x)
995 return p;
996 }
997
998 /* If we have a sum involving a register, see if it points to a temp
999 slot. */
1000 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
1001 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
1002 return p;
1003 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1004 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1005 return p;
1006
1007 return 0;
1008 }
1009
1010 /* Indicate that NEW is an alternate way of referring to the temp slot
1011 that previously was known by OLD. */
1012
1013 void
1014 update_temp_slot_address (old, new)
1015 rtx old, new;
1016 {
1017 struct temp_slot *p;
1018
1019 if (rtx_equal_p (old, new))
1020 return;
1021
1022 p = find_temp_slot_from_address (old);
1023
1024 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1025 is a register, see if one operand of the PLUS is a temporary
1026 location. If so, NEW points into it. Otherwise, if both OLD and
1027 NEW are a PLUS and if there is a register in common between them.
1028 If so, try a recursive call on those values. */
1029 if (p == 0)
1030 {
1031 if (GET_CODE (old) != PLUS)
1032 return;
1033
1034 if (GET_CODE (new) == REG)
1035 {
1036 update_temp_slot_address (XEXP (old, 0), new);
1037 update_temp_slot_address (XEXP (old, 1), new);
1038 return;
1039 }
1040 else if (GET_CODE (new) != PLUS)
1041 return;
1042
1043 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1044 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1045 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1046 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1047 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1048 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1049 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1050 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1051
1052 return;
1053 }
1054
1055 /* Otherwise add an alias for the temp's address. */
1056 else if (p->address == 0)
1057 p->address = new;
1058 else
1059 {
1060 if (GET_CODE (p->address) != EXPR_LIST)
1061 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1062
1063 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1064 }
1065 }
1066
1067 /* If X could be a reference to a temporary slot, mark the fact that its
1068 address was taken. */
1069
1070 void
1071 mark_temp_addr_taken (x)
1072 rtx x;
1073 {
1074 struct temp_slot *p;
1075
1076 if (x == 0)
1077 return;
1078
1079 /* If X is not in memory or is at a constant address, it cannot be in
1080 a temporary slot. */
1081 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1082 return;
1083
1084 p = find_temp_slot_from_address (XEXP (x, 0));
1085 if (p != 0)
1086 p->addr_taken = 1;
1087 }
1088
1089 /* If X could be a reference to a temporary slot, mark that slot as
1090 belonging to the to one level higher than the current level. If X
1091 matched one of our slots, just mark that one. Otherwise, we can't
1092 easily predict which it is, so upgrade all of them. Kept slots
1093 need not be touched.
1094
1095 This is called when an ({...}) construct occurs and a statement
1096 returns a value in memory. */
1097
1098 void
1099 preserve_temp_slots (x)
1100 rtx x;
1101 {
1102 struct temp_slot *p = 0;
1103
1104 /* If there is no result, we still might have some objects whose address
1105 were taken, so we need to make sure they stay around. */
1106 if (x == 0)
1107 {
1108 for (p = temp_slots; p; p = p->next)
1109 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1110 p->level--;
1111
1112 return;
1113 }
1114
1115 /* If X is a register that is being used as a pointer, see if we have
1116 a temporary slot we know it points to. To be consistent with
1117 the code below, we really should preserve all non-kept slots
1118 if we can't find a match, but that seems to be much too costly. */
1119 if (GET_CODE (x) == REG && REGNO_POINTER_FLAG (REGNO (x)))
1120 p = find_temp_slot_from_address (x);
1121
1122 /* If X is not in memory or is at a constant address, it cannot be in
1123 a temporary slot, but it can contain something whose address was
1124 taken. */
1125 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1126 {
1127 for (p = temp_slots; p; p = p->next)
1128 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1129 p->level--;
1130
1131 return;
1132 }
1133
1134 /* First see if we can find a match. */
1135 if (p == 0)
1136 p = find_temp_slot_from_address (XEXP (x, 0));
1137
1138 if (p != 0)
1139 {
1140 /* Move everything at our level whose address was taken to our new
1141 level in case we used its address. */
1142 struct temp_slot *q;
1143
1144 if (p->level == temp_slot_level)
1145 {
1146 for (q = temp_slots; q; q = q->next)
1147 if (q != p && q->addr_taken && q->level == p->level)
1148 q->level--;
1149
1150 p->level--;
1151 p->addr_taken = 0;
1152 }
1153 return;
1154 }
1155
1156 /* Otherwise, preserve all non-kept slots at this level. */
1157 for (p = temp_slots; p; p = p->next)
1158 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1159 p->level--;
1160 }
1161
1162 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1163 with that RTL_EXPR, promote it into a temporary slot at the present
1164 level so it will not be freed when we free slots made in the
1165 RTL_EXPR. */
1166
1167 void
1168 preserve_rtl_expr_result (x)
1169 rtx x;
1170 {
1171 struct temp_slot *p;
1172
1173 /* If X is not in memory or is at a constant address, it cannot be in
1174 a temporary slot. */
1175 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1176 return;
1177
1178 /* If we can find a match, move it to our level unless it is already at
1179 an upper level. */
1180 p = find_temp_slot_from_address (XEXP (x, 0));
1181 if (p != 0)
1182 {
1183 p->level = MIN (p->level, temp_slot_level);
1184 p->rtl_expr = 0;
1185 }
1186
1187 return;
1188 }
1189
1190 /* Free all temporaries used so far. This is normally called at the end
1191 of generating code for a statement. Don't free any temporaries
1192 currently in use for an RTL_EXPR that hasn't yet been emitted.
1193 We could eventually do better than this since it can be reused while
1194 generating the same RTL_EXPR, but this is complex and probably not
1195 worthwhile. */
1196
1197 void
1198 free_temp_slots ()
1199 {
1200 struct temp_slot *p;
1201
1202 for (p = temp_slots; p; p = p->next)
1203 if (p->in_use && p->level == temp_slot_level && ! p->keep
1204 && p->rtl_expr == 0)
1205 p->in_use = 0;
1206
1207 combine_temp_slots ();
1208 }
1209
1210 /* Free all temporary slots used in T, an RTL_EXPR node. */
1211
1212 void
1213 free_temps_for_rtl_expr (t)
1214 tree t;
1215 {
1216 struct temp_slot *p;
1217
1218 for (p = temp_slots; p; p = p->next)
1219 if (p->rtl_expr == t)
1220 {
1221 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1222 needs to be preserved. This can happen if a temporary in
1223 the RTL_EXPR was addressed; preserve_temp_slots will move
1224 the temporary into a higher level. */
1225 if (temp_slot_level <= p->level)
1226 p->in_use = 0;
1227 else
1228 p->rtl_expr = NULL_TREE;
1229 }
1230
1231 combine_temp_slots ();
1232 }
1233
1234 /* Mark all temporaries ever allocated in this function as not suitable
1235 for reuse until the current level is exited. */
1236
1237 void
1238 mark_all_temps_used ()
1239 {
1240 struct temp_slot *p;
1241
1242 for (p = temp_slots; p; p = p->next)
1243 {
1244 p->in_use = p->keep = 1;
1245 p->level = MIN (p->level, temp_slot_level);
1246 }
1247 }
1248
1249 /* Push deeper into the nesting level for stack temporaries. */
1250
1251 void
1252 push_temp_slots ()
1253 {
1254 temp_slot_level++;
1255 }
1256
1257 /* Likewise, but save the new level as the place to allocate variables
1258 for blocks. */
1259
1260 #if 0
1261 void
1262 push_temp_slots_for_block ()
1263 {
1264 push_temp_slots ();
1265
1266 var_temp_slot_level = temp_slot_level;
1267 }
1268
1269 /* Likewise, but save the new level as the place to allocate temporaries
1270 for TARGET_EXPRs. */
1271
1272 void
1273 push_temp_slots_for_target ()
1274 {
1275 push_temp_slots ();
1276
1277 target_temp_slot_level = temp_slot_level;
1278 }
1279
1280 /* Set and get the value of target_temp_slot_level. The only
1281 permitted use of these functions is to save and restore this value. */
1282
1283 int
1284 get_target_temp_slot_level ()
1285 {
1286 return target_temp_slot_level;
1287 }
1288
1289 void
1290 set_target_temp_slot_level (level)
1291 int level;
1292 {
1293 target_temp_slot_level = level;
1294 }
1295 #endif
1296
1297 /* Pop a temporary nesting level. All slots in use in the current level
1298 are freed. */
1299
1300 void
1301 pop_temp_slots ()
1302 {
1303 struct temp_slot *p;
1304
1305 for (p = temp_slots; p; p = p->next)
1306 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1307 p->in_use = 0;
1308
1309 combine_temp_slots ();
1310
1311 temp_slot_level--;
1312 }
1313
1314 /* Initialize temporary slots. */
1315
1316 void
1317 init_temp_slots ()
1318 {
1319 /* We have not allocated any temporaries yet. */
1320 temp_slots = 0;
1321 temp_slot_level = 0;
1322 var_temp_slot_level = 0;
1323 target_temp_slot_level = 0;
1324 }
1325 \f
1326 /* Retroactively move an auto variable from a register to a stack slot.
1327 This is done when an address-reference to the variable is seen. */
1328
1329 void
1330 put_var_into_stack (decl)
1331 tree decl;
1332 {
1333 register rtx reg;
1334 enum machine_mode promoted_mode, decl_mode;
1335 struct function *function = 0;
1336 tree context;
1337 int can_use_addressof;
1338 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1339 int usedp = (TREE_USED (decl)
1340 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1341
1342 context = decl_function_context (decl);
1343
1344 /* Get the current rtl used for this object and its original mode. */
1345 reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl);
1346
1347 /* No need to do anything if decl has no rtx yet
1348 since in that case caller is setting TREE_ADDRESSABLE
1349 and a stack slot will be assigned when the rtl is made. */
1350 if (reg == 0)
1351 return;
1352
1353 /* Get the declared mode for this object. */
1354 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1355 : DECL_MODE (decl));
1356 /* Get the mode it's actually stored in. */
1357 promoted_mode = GET_MODE (reg);
1358
1359 /* If this variable comes from an outer function,
1360 find that function's saved context. */
1361 if (context != current_function_decl && context != inline_function_decl)
1362 for (function = outer_function_chain; function; function = function->next)
1363 if (function->decl == context)
1364 break;
1365
1366 /* If this is a variable-size object with a pseudo to address it,
1367 put that pseudo into the stack, if the var is nonlocal. */
1368 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1369 && GET_CODE (reg) == MEM
1370 && GET_CODE (XEXP (reg, 0)) == REG
1371 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1372 {
1373 reg = XEXP (reg, 0);
1374 decl_mode = promoted_mode = GET_MODE (reg);
1375 }
1376
1377 can_use_addressof
1378 = (function == 0
1379 && optimize > 0
1380 /* FIXME make it work for promoted modes too */
1381 && decl_mode == promoted_mode
1382 #ifdef NON_SAVING_SETJMP
1383 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1384 #endif
1385 );
1386
1387 /* If we can't use ADDRESSOF, make sure we see through one we already
1388 generated. */
1389 if (! can_use_addressof && GET_CODE (reg) == MEM
1390 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1391 reg = XEXP (XEXP (reg, 0), 0);
1392
1393 /* Now we should have a value that resides in one or more pseudo regs. */
1394
1395 if (GET_CODE (reg) == REG)
1396 {
1397 /* If this variable lives in the current function and we don't need
1398 to put things in the stack for the sake of setjmp, try to keep it
1399 in a register until we know we actually need the address. */
1400 if (can_use_addressof)
1401 gen_mem_addressof (reg, decl);
1402 else
1403 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1404 decl_mode, volatilep, 0, usedp, 0);
1405 }
1406 else if (GET_CODE (reg) == CONCAT)
1407 {
1408 /* A CONCAT contains two pseudos; put them both in the stack.
1409 We do it so they end up consecutive.
1410 We fixup references to the parts only after we fixup references
1411 to the whole CONCAT, lest we do double fixups for the latter
1412 references. */
1413 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1414 tree part_type = type_for_mode (part_mode, 0);
1415 rtx lopart = XEXP (reg, 0);
1416 rtx hipart = XEXP (reg, 1);
1417 #ifdef FRAME_GROWS_DOWNWARD
1418 /* Since part 0 should have a lower address, do it second. */
1419 put_reg_into_stack (function, hipart, part_type, part_mode,
1420 part_mode, volatilep, 0, 0, 0);
1421 put_reg_into_stack (function, lopart, part_type, part_mode,
1422 part_mode, volatilep, 0, 0, 0);
1423 #else
1424 put_reg_into_stack (function, lopart, part_type, part_mode,
1425 part_mode, volatilep, 0, 0, 0);
1426 put_reg_into_stack (function, hipart, part_type, part_mode,
1427 part_mode, volatilep, 0, 0, 0);
1428 #endif
1429
1430 /* Change the CONCAT into a combined MEM for both parts. */
1431 PUT_CODE (reg, MEM);
1432 set_mem_attributes (reg, decl, 1);
1433
1434 /* The two parts are in memory order already.
1435 Use the lower parts address as ours. */
1436 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1437 /* Prevent sharing of rtl that might lose. */
1438 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1439 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1440 if (usedp)
1441 {
1442 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1443 promoted_mode, 0);
1444 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1445 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1446 }
1447 }
1448 else
1449 return;
1450
1451 if (current_function_check_memory_usage)
1452 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
1453 XEXP (reg, 0), Pmode,
1454 GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
1455 TYPE_MODE (sizetype),
1456 GEN_INT (MEMORY_USE_RW),
1457 TYPE_MODE (integer_type_node));
1458 }
1459
1460 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1461 into the stack frame of FUNCTION (0 means the current function).
1462 DECL_MODE is the machine mode of the user-level data type.
1463 PROMOTED_MODE is the machine mode of the register.
1464 VOLATILE_P is nonzero if this is for a "volatile" decl.
1465 USED_P is nonzero if this reg might have already been used in an insn. */
1466
1467 static void
1468 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1469 original_regno, used_p, ht)
1470 struct function *function;
1471 rtx reg;
1472 tree type;
1473 enum machine_mode promoted_mode, decl_mode;
1474 int volatile_p;
1475 unsigned int original_regno;
1476 int used_p;
1477 struct hash_table *ht;
1478 {
1479 struct function *func = function ? function : cfun;
1480 rtx new = 0;
1481 unsigned int regno = original_regno;
1482
1483 if (regno == 0)
1484 regno = REGNO (reg);
1485
1486 if (regno < func->x_max_parm_reg)
1487 new = func->x_parm_reg_stack_loc[regno];
1488
1489 if (new == 0)
1490 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1491
1492 PUT_CODE (reg, MEM);
1493 PUT_MODE (reg, decl_mode);
1494 XEXP (reg, 0) = XEXP (new, 0);
1495 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1496 MEM_VOLATILE_P (reg) = volatile_p;
1497
1498 /* If this is a memory ref that contains aggregate components,
1499 mark it as such for cse and loop optimize. If we are reusing a
1500 previously generated stack slot, then we need to copy the bit in
1501 case it was set for other reasons. For instance, it is set for
1502 __builtin_va_alist. */
1503 if (type)
1504 {
1505 MEM_SET_IN_STRUCT_P (reg,
1506 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1507 MEM_ALIAS_SET (reg) = get_alias_set (type);
1508 }
1509 if (used_p)
1510 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1511 }
1512
1513 /* Make sure that all refs to the variable, previously made
1514 when it was a register, are fixed up to be valid again.
1515 See function above for meaning of arguments. */
1516 static void
1517 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht)
1518 struct function *function;
1519 rtx reg;
1520 tree type;
1521 enum machine_mode promoted_mode;
1522 struct hash_table *ht;
1523 {
1524 int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1525
1526 if (function != 0)
1527 {
1528 struct var_refs_queue *temp;
1529
1530 temp
1531 = (struct var_refs_queue *) xmalloc (sizeof (struct var_refs_queue));
1532 temp->modified = reg;
1533 temp->promoted_mode = promoted_mode;
1534 temp->unsignedp = unsigned_p;
1535 temp->next = function->fixup_var_refs_queue;
1536 function->fixup_var_refs_queue = temp;
1537 }
1538 else
1539 /* Variable is local; fix it up now. */
1540 fixup_var_refs (reg, promoted_mode, unsigned_p, ht);
1541 }
1542 \f
1543 static void
1544 fixup_var_refs (var, promoted_mode, unsignedp, ht)
1545 rtx var;
1546 enum machine_mode promoted_mode;
1547 int unsignedp;
1548 struct hash_table *ht;
1549 {
1550 tree pending;
1551 rtx first_insn = get_insns ();
1552 struct sequence_stack *stack = seq_stack;
1553 tree rtl_exps = rtl_expr_chain;
1554 rtx insn;
1555
1556 /* Must scan all insns for stack-refs that exceed the limit. */
1557 fixup_var_refs_insns (var, promoted_mode, unsignedp, first_insn,
1558 stack == 0, ht);
1559 /* If there's a hash table, it must record all uses of VAR. */
1560 if (ht)
1561 return;
1562
1563 /* Scan all pending sequences too. */
1564 for (; stack; stack = stack->next)
1565 {
1566 push_to_sequence (stack->first);
1567 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1568 stack->first, stack->next != 0, 0);
1569 /* Update remembered end of sequence
1570 in case we added an insn at the end. */
1571 stack->last = get_last_insn ();
1572 end_sequence ();
1573 }
1574
1575 /* Scan all waiting RTL_EXPRs too. */
1576 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1577 {
1578 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1579 if (seq != const0_rtx && seq != 0)
1580 {
1581 push_to_sequence (seq);
1582 fixup_var_refs_insns (var, promoted_mode, unsignedp, seq, 0, 0);
1583 end_sequence ();
1584 }
1585 }
1586
1587 /* Scan the catch clauses for exception handling too. */
1588 push_to_full_sequence (catch_clauses, catch_clauses_last);
1589 fixup_var_refs_insns (var, promoted_mode, unsignedp, catch_clauses, 0, 0);
1590 end_full_sequence (&catch_clauses, &catch_clauses_last);
1591
1592 /* Scan sequences saved in CALL_PLACEHOLDERS too. */
1593 for (insn = first_insn; insn; insn = NEXT_INSN (insn))
1594 {
1595 if (GET_CODE (insn) == CALL_INSN
1596 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1597 {
1598 int i;
1599
1600 /* Look at the Normal call, sibling call and tail recursion
1601 sequences attached to the CALL_PLACEHOLDER. */
1602 for (i = 0; i < 3; i++)
1603 {
1604 rtx seq = XEXP (PATTERN (insn), i);
1605 if (seq)
1606 {
1607 push_to_sequence (seq);
1608 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1609 seq, 0, 0);
1610 XEXP (PATTERN (insn), i) = get_insns ();
1611 end_sequence ();
1612 }
1613 }
1614 }
1615 }
1616 }
1617 \f
1618 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1619 some part of an insn. Return a struct fixup_replacement whose OLD
1620 value is equal to X. Allocate a new structure if no such entry exists. */
1621
1622 static struct fixup_replacement *
1623 find_fixup_replacement (replacements, x)
1624 struct fixup_replacement **replacements;
1625 rtx x;
1626 {
1627 struct fixup_replacement *p;
1628
1629 /* See if we have already replaced this. */
1630 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1631 ;
1632
1633 if (p == 0)
1634 {
1635 p = (struct fixup_replacement *) oballoc (sizeof (struct fixup_replacement));
1636 p->old = x;
1637 p->new = 0;
1638 p->next = *replacements;
1639 *replacements = p;
1640 }
1641
1642 return p;
1643 }
1644
1645 /* Scan the insn-chain starting with INSN for refs to VAR
1646 and fix them up. TOPLEVEL is nonzero if this chain is the
1647 main chain of insns for the current function. */
1648
1649 static void
1650 fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel, ht)
1651 rtx var;
1652 enum machine_mode promoted_mode;
1653 int unsignedp;
1654 rtx insn;
1655 int toplevel;
1656 struct hash_table *ht;
1657 {
1658 rtx call_dest = 0;
1659 rtx insn_list = NULL_RTX;
1660
1661 /* If we already know which INSNs reference VAR there's no need
1662 to walk the entire instruction chain. */
1663 if (ht)
1664 {
1665 insn_list = ((struct insns_for_mem_entry *)
1666 hash_lookup (ht, var, /*create=*/0, /*copy=*/0))->insns;
1667 insn = insn_list ? XEXP (insn_list, 0) : NULL_RTX;
1668 insn_list = XEXP (insn_list, 1);
1669 }
1670
1671 while (insn)
1672 {
1673 rtx next = NEXT_INSN (insn);
1674 rtx set, prev, prev_set;
1675 rtx note;
1676
1677 if (INSN_P (insn))
1678 {
1679 /* Remember the notes in case we delete the insn. */
1680 note = REG_NOTES (insn);
1681
1682 /* If this is a CLOBBER of VAR, delete it.
1683
1684 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1685 and REG_RETVAL notes too. */
1686 if (GET_CODE (PATTERN (insn)) == CLOBBER
1687 && (XEXP (PATTERN (insn), 0) == var
1688 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1689 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1690 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1691 {
1692 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1693 /* The REG_LIBCALL note will go away since we are going to
1694 turn INSN into a NOTE, so just delete the
1695 corresponding REG_RETVAL note. */
1696 remove_note (XEXP (note, 0),
1697 find_reg_note (XEXP (note, 0), REG_RETVAL,
1698 NULL_RTX));
1699
1700 /* In unoptimized compilation, we shouldn't call delete_insn
1701 except in jump.c doing warnings. */
1702 PUT_CODE (insn, NOTE);
1703 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1704 NOTE_SOURCE_FILE (insn) = 0;
1705 }
1706
1707 /* The insn to load VAR from a home in the arglist
1708 is now a no-op. When we see it, just delete it.
1709 Similarly if this is storing VAR from a register from which
1710 it was loaded in the previous insn. This will occur
1711 when an ADDRESSOF was made for an arglist slot. */
1712 else if (toplevel
1713 && (set = single_set (insn)) != 0
1714 && SET_DEST (set) == var
1715 /* If this represents the result of an insn group,
1716 don't delete the insn. */
1717 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1718 && (rtx_equal_p (SET_SRC (set), var)
1719 || (GET_CODE (SET_SRC (set)) == REG
1720 && (prev = prev_nonnote_insn (insn)) != 0
1721 && (prev_set = single_set (prev)) != 0
1722 && SET_DEST (prev_set) == SET_SRC (set)
1723 && rtx_equal_p (SET_SRC (prev_set), var))))
1724 {
1725 /* In unoptimized compilation, we shouldn't call delete_insn
1726 except in jump.c doing warnings. */
1727 PUT_CODE (insn, NOTE);
1728 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1729 NOTE_SOURCE_FILE (insn) = 0;
1730 if (insn == last_parm_insn)
1731 last_parm_insn = PREV_INSN (next);
1732 }
1733 else
1734 {
1735 struct fixup_replacement *replacements = 0;
1736 rtx next_insn = NEXT_INSN (insn);
1737
1738 if (SMALL_REGISTER_CLASSES)
1739 {
1740 /* If the insn that copies the results of a CALL_INSN
1741 into a pseudo now references VAR, we have to use an
1742 intermediate pseudo since we want the life of the
1743 return value register to be only a single insn.
1744
1745 If we don't use an intermediate pseudo, such things as
1746 address computations to make the address of VAR valid
1747 if it is not can be placed between the CALL_INSN and INSN.
1748
1749 To make sure this doesn't happen, we record the destination
1750 of the CALL_INSN and see if the next insn uses both that
1751 and VAR. */
1752
1753 if (call_dest != 0 && GET_CODE (insn) == INSN
1754 && reg_mentioned_p (var, PATTERN (insn))
1755 && reg_mentioned_p (call_dest, PATTERN (insn)))
1756 {
1757 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1758
1759 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1760
1761 PATTERN (insn) = replace_rtx (PATTERN (insn),
1762 call_dest, temp);
1763 }
1764
1765 if (GET_CODE (insn) == CALL_INSN
1766 && GET_CODE (PATTERN (insn)) == SET)
1767 call_dest = SET_DEST (PATTERN (insn));
1768 else if (GET_CODE (insn) == CALL_INSN
1769 && GET_CODE (PATTERN (insn)) == PARALLEL
1770 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1771 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1772 else
1773 call_dest = 0;
1774 }
1775
1776 /* See if we have to do anything to INSN now that VAR is in
1777 memory. If it needs to be loaded into a pseudo, use a single
1778 pseudo for the entire insn in case there is a MATCH_DUP
1779 between two operands. We pass a pointer to the head of
1780 a list of struct fixup_replacements. If fixup_var_refs_1
1781 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1782 it will record them in this list.
1783
1784 If it allocated a pseudo for any replacement, we copy into
1785 it here. */
1786
1787 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1788 &replacements);
1789
1790 /* If this is last_parm_insn, and any instructions were output
1791 after it to fix it up, then we must set last_parm_insn to
1792 the last such instruction emitted. */
1793 if (insn == last_parm_insn)
1794 last_parm_insn = PREV_INSN (next_insn);
1795
1796 while (replacements)
1797 {
1798 if (GET_CODE (replacements->new) == REG)
1799 {
1800 rtx insert_before;
1801 rtx seq;
1802
1803 /* OLD might be a (subreg (mem)). */
1804 if (GET_CODE (replacements->old) == SUBREG)
1805 replacements->old
1806 = fixup_memory_subreg (replacements->old, insn, 0);
1807 else
1808 replacements->old
1809 = fixup_stack_1 (replacements->old, insn);
1810
1811 insert_before = insn;
1812
1813 /* If we are changing the mode, do a conversion.
1814 This might be wasteful, but combine.c will
1815 eliminate much of the waste. */
1816
1817 if (GET_MODE (replacements->new)
1818 != GET_MODE (replacements->old))
1819 {
1820 start_sequence ();
1821 convert_move (replacements->new,
1822 replacements->old, unsignedp);
1823 seq = gen_sequence ();
1824 end_sequence ();
1825 }
1826 else
1827 seq = gen_move_insn (replacements->new,
1828 replacements->old);
1829
1830 emit_insn_before (seq, insert_before);
1831 }
1832
1833 replacements = replacements->next;
1834 }
1835 }
1836
1837 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1838 But don't touch other insns referred to by reg-notes;
1839 we will get them elsewhere. */
1840 while (note)
1841 {
1842 if (GET_CODE (note) != INSN_LIST)
1843 XEXP (note, 0)
1844 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1845 note = XEXP (note, 1);
1846 }
1847 }
1848
1849 if (!ht)
1850 insn = next;
1851 else if (insn_list)
1852 {
1853 insn = XEXP (insn_list, 0);
1854 insn_list = XEXP (insn_list, 1);
1855 }
1856 else
1857 insn = NULL_RTX;
1858 }
1859 }
1860 \f
1861 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1862 See if the rtx expression at *LOC in INSN needs to be changed.
1863
1864 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1865 contain a list of original rtx's and replacements. If we find that we need
1866 to modify this insn by replacing a memory reference with a pseudo or by
1867 making a new MEM to implement a SUBREG, we consult that list to see if
1868 we have already chosen a replacement. If none has already been allocated,
1869 we allocate it and update the list. fixup_var_refs_insns will copy VAR
1870 or the SUBREG, as appropriate, to the pseudo. */
1871
1872 static void
1873 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1874 register rtx var;
1875 enum machine_mode promoted_mode;
1876 register rtx *loc;
1877 rtx insn;
1878 struct fixup_replacement **replacements;
1879 {
1880 register int i;
1881 register rtx x = *loc;
1882 RTX_CODE code = GET_CODE (x);
1883 register const char *fmt;
1884 register rtx tem, tem1;
1885 struct fixup_replacement *replacement;
1886
1887 switch (code)
1888 {
1889 case ADDRESSOF:
1890 if (XEXP (x, 0) == var)
1891 {
1892 /* Prevent sharing of rtl that might lose. */
1893 rtx sub = copy_rtx (XEXP (var, 0));
1894
1895 if (! validate_change (insn, loc, sub, 0))
1896 {
1897 rtx y = gen_reg_rtx (GET_MODE (sub));
1898 rtx seq, new_insn;
1899
1900 /* We should be able to replace with a register or all is lost.
1901 Note that we can't use validate_change to verify this, since
1902 we're not caring for replacing all dups simultaneously. */
1903 if (! validate_replace_rtx (*loc, y, insn))
1904 abort ();
1905
1906 /* Careful! First try to recognize a direct move of the
1907 value, mimicking how things are done in gen_reload wrt
1908 PLUS. Consider what happens when insn is a conditional
1909 move instruction and addsi3 clobbers flags. */
1910
1911 start_sequence ();
1912 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1913 seq = gen_sequence ();
1914 end_sequence ();
1915
1916 if (recog_memoized (new_insn) < 0)
1917 {
1918 /* That failed. Fall back on force_operand and hope. */
1919
1920 start_sequence ();
1921 force_operand (sub, y);
1922 seq = gen_sequence ();
1923 end_sequence ();
1924 }
1925
1926 #ifdef HAVE_cc0
1927 /* Don't separate setter from user. */
1928 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1929 insn = PREV_INSN (insn);
1930 #endif
1931
1932 emit_insn_before (seq, insn);
1933 }
1934 }
1935 return;
1936
1937 case MEM:
1938 if (var == x)
1939 {
1940 /* If we already have a replacement, use it. Otherwise,
1941 try to fix up this address in case it is invalid. */
1942
1943 replacement = find_fixup_replacement (replacements, var);
1944 if (replacement->new)
1945 {
1946 *loc = replacement->new;
1947 return;
1948 }
1949
1950 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1951
1952 /* Unless we are forcing memory to register or we changed the mode,
1953 we can leave things the way they are if the insn is valid. */
1954
1955 INSN_CODE (insn) = -1;
1956 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1957 && recog_memoized (insn) >= 0)
1958 return;
1959
1960 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1961 return;
1962 }
1963
1964 /* If X contains VAR, we need to unshare it here so that we update
1965 each occurrence separately. But all identical MEMs in one insn
1966 must be replaced with the same rtx because of the possibility of
1967 MATCH_DUPs. */
1968
1969 if (reg_mentioned_p (var, x))
1970 {
1971 replacement = find_fixup_replacement (replacements, x);
1972 if (replacement->new == 0)
1973 replacement->new = copy_most_rtx (x, var);
1974
1975 *loc = x = replacement->new;
1976 }
1977 break;
1978
1979 case REG:
1980 case CC0:
1981 case PC:
1982 case CONST_INT:
1983 case CONST:
1984 case SYMBOL_REF:
1985 case LABEL_REF:
1986 case CONST_DOUBLE:
1987 return;
1988
1989 case SIGN_EXTRACT:
1990 case ZERO_EXTRACT:
1991 /* Note that in some cases those types of expressions are altered
1992 by optimize_bit_field, and do not survive to get here. */
1993 if (XEXP (x, 0) == var
1994 || (GET_CODE (XEXP (x, 0)) == SUBREG
1995 && SUBREG_REG (XEXP (x, 0)) == var))
1996 {
1997 /* Get TEM as a valid MEM in the mode presently in the insn.
1998
1999 We don't worry about the possibility of MATCH_DUP here; it
2000 is highly unlikely and would be tricky to handle. */
2001
2002 tem = XEXP (x, 0);
2003 if (GET_CODE (tem) == SUBREG)
2004 {
2005 if (GET_MODE_BITSIZE (GET_MODE (tem))
2006 > GET_MODE_BITSIZE (GET_MODE (var)))
2007 {
2008 replacement = find_fixup_replacement (replacements, var);
2009 if (replacement->new == 0)
2010 replacement->new = gen_reg_rtx (GET_MODE (var));
2011 SUBREG_REG (tem) = replacement->new;
2012 }
2013 else
2014 tem = fixup_memory_subreg (tem, insn, 0);
2015 }
2016 else
2017 tem = fixup_stack_1 (tem, insn);
2018
2019 /* Unless we want to load from memory, get TEM into the proper mode
2020 for an extract from memory. This can only be done if the
2021 extract is at a constant position and length. */
2022
2023 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
2024 && GET_CODE (XEXP (x, 2)) == CONST_INT
2025 && ! mode_dependent_address_p (XEXP (tem, 0))
2026 && ! MEM_VOLATILE_P (tem))
2027 {
2028 enum machine_mode wanted_mode = VOIDmode;
2029 enum machine_mode is_mode = GET_MODE (tem);
2030 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2031
2032 #ifdef HAVE_extzv
2033 if (GET_CODE (x) == ZERO_EXTRACT)
2034 {
2035 wanted_mode
2036 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
2037 if (wanted_mode == VOIDmode)
2038 wanted_mode = word_mode;
2039 }
2040 #endif
2041 #ifdef HAVE_extv
2042 if (GET_CODE (x) == SIGN_EXTRACT)
2043 {
2044 wanted_mode = insn_data[(int) CODE_FOR_extv].operand[1].mode;
2045 if (wanted_mode == VOIDmode)
2046 wanted_mode = word_mode;
2047 }
2048 #endif
2049 /* If we have a narrower mode, we can do something. */
2050 if (wanted_mode != VOIDmode
2051 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2052 {
2053 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2054 rtx old_pos = XEXP (x, 2);
2055 rtx newmem;
2056
2057 /* If the bytes and bits are counted differently, we
2058 must adjust the offset. */
2059 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2060 offset = (GET_MODE_SIZE (is_mode)
2061 - GET_MODE_SIZE (wanted_mode) - offset);
2062
2063 pos %= GET_MODE_BITSIZE (wanted_mode);
2064
2065 newmem = gen_rtx_MEM (wanted_mode,
2066 plus_constant (XEXP (tem, 0), offset));
2067 MEM_COPY_ATTRIBUTES (newmem, tem);
2068
2069 /* Make the change and see if the insn remains valid. */
2070 INSN_CODE (insn) = -1;
2071 XEXP (x, 0) = newmem;
2072 XEXP (x, 2) = GEN_INT (pos);
2073
2074 if (recog_memoized (insn) >= 0)
2075 return;
2076
2077 /* Otherwise, restore old position. XEXP (x, 0) will be
2078 restored later. */
2079 XEXP (x, 2) = old_pos;
2080 }
2081 }
2082
2083 /* If we get here, the bitfield extract insn can't accept a memory
2084 reference. Copy the input into a register. */
2085
2086 tem1 = gen_reg_rtx (GET_MODE (tem));
2087 emit_insn_before (gen_move_insn (tem1, tem), insn);
2088 XEXP (x, 0) = tem1;
2089 return;
2090 }
2091 break;
2092
2093 case SUBREG:
2094 if (SUBREG_REG (x) == var)
2095 {
2096 /* If this is a special SUBREG made because VAR was promoted
2097 from a wider mode, replace it with VAR and call ourself
2098 recursively, this time saying that the object previously
2099 had its current mode (by virtue of the SUBREG). */
2100
2101 if (SUBREG_PROMOTED_VAR_P (x))
2102 {
2103 *loc = var;
2104 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
2105 return;
2106 }
2107
2108 /* If this SUBREG makes VAR wider, it has become a paradoxical
2109 SUBREG with VAR in memory, but these aren't allowed at this
2110 stage of the compilation. So load VAR into a pseudo and take
2111 a SUBREG of that pseudo. */
2112 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2113 {
2114 replacement = find_fixup_replacement (replacements, var);
2115 if (replacement->new == 0)
2116 replacement->new = gen_reg_rtx (GET_MODE (var));
2117 SUBREG_REG (x) = replacement->new;
2118 return;
2119 }
2120
2121 /* See if we have already found a replacement for this SUBREG.
2122 If so, use it. Otherwise, make a MEM and see if the insn
2123 is recognized. If not, or if we should force MEM into a register,
2124 make a pseudo for this SUBREG. */
2125 replacement = find_fixup_replacement (replacements, x);
2126 if (replacement->new)
2127 {
2128 *loc = replacement->new;
2129 return;
2130 }
2131
2132 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
2133
2134 INSN_CODE (insn) = -1;
2135 if (! flag_force_mem && recog_memoized (insn) >= 0)
2136 return;
2137
2138 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2139 return;
2140 }
2141 break;
2142
2143 case SET:
2144 /* First do special simplification of bit-field references. */
2145 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2146 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2147 optimize_bit_field (x, insn, 0);
2148 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2149 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2150 optimize_bit_field (x, insn, NULL_PTR);
2151
2152 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2153 into a register and then store it back out. */
2154 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2155 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2156 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2157 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2158 > GET_MODE_SIZE (GET_MODE (var))))
2159 {
2160 replacement = find_fixup_replacement (replacements, var);
2161 if (replacement->new == 0)
2162 replacement->new = gen_reg_rtx (GET_MODE (var));
2163
2164 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2165 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2166 }
2167
2168 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2169 insn into a pseudo and store the low part of the pseudo into VAR. */
2170 if (GET_CODE (SET_DEST (x)) == SUBREG
2171 && SUBREG_REG (SET_DEST (x)) == var
2172 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2173 > GET_MODE_SIZE (GET_MODE (var))))
2174 {
2175 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2176 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2177 tem)),
2178 insn);
2179 break;
2180 }
2181
2182 {
2183 rtx dest = SET_DEST (x);
2184 rtx src = SET_SRC (x);
2185 #ifdef HAVE_insv
2186 rtx outerdest = dest;
2187 #endif
2188
2189 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2190 || GET_CODE (dest) == SIGN_EXTRACT
2191 || GET_CODE (dest) == ZERO_EXTRACT)
2192 dest = XEXP (dest, 0);
2193
2194 if (GET_CODE (src) == SUBREG)
2195 src = XEXP (src, 0);
2196
2197 /* If VAR does not appear at the top level of the SET
2198 just scan the lower levels of the tree. */
2199
2200 if (src != var && dest != var)
2201 break;
2202
2203 /* We will need to rerecognize this insn. */
2204 INSN_CODE (insn) = -1;
2205
2206 #ifdef HAVE_insv
2207 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
2208 {
2209 /* Since this case will return, ensure we fixup all the
2210 operands here. */
2211 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2212 insn, replacements);
2213 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2214 insn, replacements);
2215 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2216 insn, replacements);
2217
2218 tem = XEXP (outerdest, 0);
2219
2220 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2221 that may appear inside a ZERO_EXTRACT.
2222 This was legitimate when the MEM was a REG. */
2223 if (GET_CODE (tem) == SUBREG
2224 && SUBREG_REG (tem) == var)
2225 tem = fixup_memory_subreg (tem, insn, 0);
2226 else
2227 tem = fixup_stack_1 (tem, insn);
2228
2229 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2230 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2231 && ! mode_dependent_address_p (XEXP (tem, 0))
2232 && ! MEM_VOLATILE_P (tem))
2233 {
2234 enum machine_mode wanted_mode;
2235 enum machine_mode is_mode = GET_MODE (tem);
2236 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2237
2238 wanted_mode = insn_data[(int) CODE_FOR_insv].operand[0].mode;
2239 if (wanted_mode == VOIDmode)
2240 wanted_mode = word_mode;
2241
2242 /* If we have a narrower mode, we can do something. */
2243 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2244 {
2245 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2246 rtx old_pos = XEXP (outerdest, 2);
2247 rtx newmem;
2248
2249 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2250 offset = (GET_MODE_SIZE (is_mode)
2251 - GET_MODE_SIZE (wanted_mode) - offset);
2252
2253 pos %= GET_MODE_BITSIZE (wanted_mode);
2254
2255 newmem = gen_rtx_MEM (wanted_mode,
2256 plus_constant (XEXP (tem, 0),
2257 offset));
2258 MEM_COPY_ATTRIBUTES (newmem, tem);
2259
2260 /* Make the change and see if the insn remains valid. */
2261 INSN_CODE (insn) = -1;
2262 XEXP (outerdest, 0) = newmem;
2263 XEXP (outerdest, 2) = GEN_INT (pos);
2264
2265 if (recog_memoized (insn) >= 0)
2266 return;
2267
2268 /* Otherwise, restore old position. XEXP (x, 0) will be
2269 restored later. */
2270 XEXP (outerdest, 2) = old_pos;
2271 }
2272 }
2273
2274 /* If we get here, the bit-field store doesn't allow memory
2275 or isn't located at a constant position. Load the value into
2276 a register, do the store, and put it back into memory. */
2277
2278 tem1 = gen_reg_rtx (GET_MODE (tem));
2279 emit_insn_before (gen_move_insn (tem1, tem), insn);
2280 emit_insn_after (gen_move_insn (tem, tem1), insn);
2281 XEXP (outerdest, 0) = tem1;
2282 return;
2283 }
2284 #endif
2285
2286 /* STRICT_LOW_PART is a no-op on memory references
2287 and it can cause combinations to be unrecognizable,
2288 so eliminate it. */
2289
2290 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2291 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2292
2293 /* A valid insn to copy VAR into or out of a register
2294 must be left alone, to avoid an infinite loop here.
2295 If the reference to VAR is by a subreg, fix that up,
2296 since SUBREG is not valid for a memref.
2297 Also fix up the address of the stack slot.
2298
2299 Note that we must not try to recognize the insn until
2300 after we know that we have valid addresses and no
2301 (subreg (mem ...) ...) constructs, since these interfere
2302 with determining the validity of the insn. */
2303
2304 if ((SET_SRC (x) == var
2305 || (GET_CODE (SET_SRC (x)) == SUBREG
2306 && SUBREG_REG (SET_SRC (x)) == var))
2307 && (GET_CODE (SET_DEST (x)) == REG
2308 || (GET_CODE (SET_DEST (x)) == SUBREG
2309 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2310 && GET_MODE (var) == promoted_mode
2311 && x == single_set (insn))
2312 {
2313 rtx pat;
2314
2315 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2316 if (replacement->new)
2317 SET_SRC (x) = replacement->new;
2318 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2319 SET_SRC (x) = replacement->new
2320 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2321 else
2322 SET_SRC (x) = replacement->new
2323 = fixup_stack_1 (SET_SRC (x), insn);
2324
2325 if (recog_memoized (insn) >= 0)
2326 return;
2327
2328 /* INSN is not valid, but we know that we want to
2329 copy SET_SRC (x) to SET_DEST (x) in some way. So
2330 we generate the move and see whether it requires more
2331 than one insn. If it does, we emit those insns and
2332 delete INSN. Otherwise, we an just replace the pattern
2333 of INSN; we have already verified above that INSN has
2334 no other function that to do X. */
2335
2336 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2337 if (GET_CODE (pat) == SEQUENCE)
2338 {
2339 emit_insn_after (pat, insn);
2340 PUT_CODE (insn, NOTE);
2341 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2342 NOTE_SOURCE_FILE (insn) = 0;
2343 }
2344 else
2345 PATTERN (insn) = pat;
2346
2347 return;
2348 }
2349
2350 if ((SET_DEST (x) == var
2351 || (GET_CODE (SET_DEST (x)) == SUBREG
2352 && SUBREG_REG (SET_DEST (x)) == var))
2353 && (GET_CODE (SET_SRC (x)) == REG
2354 || (GET_CODE (SET_SRC (x)) == SUBREG
2355 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2356 && GET_MODE (var) == promoted_mode
2357 && x == single_set (insn))
2358 {
2359 rtx pat;
2360
2361 if (GET_CODE (SET_DEST (x)) == SUBREG)
2362 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2363 else
2364 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2365
2366 if (recog_memoized (insn) >= 0)
2367 return;
2368
2369 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2370 if (GET_CODE (pat) == SEQUENCE)
2371 {
2372 emit_insn_after (pat, insn);
2373 PUT_CODE (insn, NOTE);
2374 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2375 NOTE_SOURCE_FILE (insn) = 0;
2376 }
2377 else
2378 PATTERN (insn) = pat;
2379
2380 return;
2381 }
2382
2383 /* Otherwise, storing into VAR must be handled specially
2384 by storing into a temporary and copying that into VAR
2385 with a new insn after this one. Note that this case
2386 will be used when storing into a promoted scalar since
2387 the insn will now have different modes on the input
2388 and output and hence will be invalid (except for the case
2389 of setting it to a constant, which does not need any
2390 change if it is valid). We generate extra code in that case,
2391 but combine.c will eliminate it. */
2392
2393 if (dest == var)
2394 {
2395 rtx temp;
2396 rtx fixeddest = SET_DEST (x);
2397
2398 /* STRICT_LOW_PART can be discarded, around a MEM. */
2399 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2400 fixeddest = XEXP (fixeddest, 0);
2401 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2402 if (GET_CODE (fixeddest) == SUBREG)
2403 {
2404 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2405 promoted_mode = GET_MODE (fixeddest);
2406 }
2407 else
2408 fixeddest = fixup_stack_1 (fixeddest, insn);
2409
2410 temp = gen_reg_rtx (promoted_mode);
2411
2412 emit_insn_after (gen_move_insn (fixeddest,
2413 gen_lowpart (GET_MODE (fixeddest),
2414 temp)),
2415 insn);
2416
2417 SET_DEST (x) = temp;
2418 }
2419 }
2420
2421 default:
2422 break;
2423 }
2424
2425 /* Nothing special about this RTX; fix its operands. */
2426
2427 fmt = GET_RTX_FORMAT (code);
2428 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2429 {
2430 if (fmt[i] == 'e')
2431 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2432 else if (fmt[i] == 'E')
2433 {
2434 register int j;
2435 for (j = 0; j < XVECLEN (x, i); j++)
2436 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2437 insn, replacements);
2438 }
2439 }
2440 }
2441 \f
2442 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2443 return an rtx (MEM:m1 newaddr) which is equivalent.
2444 If any insns must be emitted to compute NEWADDR, put them before INSN.
2445
2446 UNCRITICAL nonzero means accept paradoxical subregs.
2447 This is used for subregs found inside REG_NOTES. */
2448
2449 static rtx
2450 fixup_memory_subreg (x, insn, uncritical)
2451 rtx x;
2452 rtx insn;
2453 int uncritical;
2454 {
2455 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2456 rtx addr = XEXP (SUBREG_REG (x), 0);
2457 enum machine_mode mode = GET_MODE (x);
2458 rtx result;
2459
2460 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2461 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2462 && ! uncritical)
2463 abort ();
2464
2465 if (BYTES_BIG_ENDIAN)
2466 offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2467 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2468 addr = plus_constant (addr, offset);
2469 if (!flag_force_addr && memory_address_p (mode, addr))
2470 /* Shortcut if no insns need be emitted. */
2471 return change_address (SUBREG_REG (x), mode, addr);
2472 start_sequence ();
2473 result = change_address (SUBREG_REG (x), mode, addr);
2474 emit_insn_before (gen_sequence (), insn);
2475 end_sequence ();
2476 return result;
2477 }
2478
2479 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2480 Replace subexpressions of X in place.
2481 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2482 Otherwise return X, with its contents possibly altered.
2483
2484 If any insns must be emitted to compute NEWADDR, put them before INSN.
2485
2486 UNCRITICAL is as in fixup_memory_subreg. */
2487
2488 static rtx
2489 walk_fixup_memory_subreg (x, insn, uncritical)
2490 register rtx x;
2491 rtx insn;
2492 int uncritical;
2493 {
2494 register enum rtx_code code;
2495 register const char *fmt;
2496 register int i;
2497
2498 if (x == 0)
2499 return 0;
2500
2501 code = GET_CODE (x);
2502
2503 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2504 return fixup_memory_subreg (x, insn, uncritical);
2505
2506 /* Nothing special about this RTX; fix its operands. */
2507
2508 fmt = GET_RTX_FORMAT (code);
2509 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2510 {
2511 if (fmt[i] == 'e')
2512 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2513 else if (fmt[i] == 'E')
2514 {
2515 register int j;
2516 for (j = 0; j < XVECLEN (x, i); j++)
2517 XVECEXP (x, i, j)
2518 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2519 }
2520 }
2521 return x;
2522 }
2523 \f
2524 /* For each memory ref within X, if it refers to a stack slot
2525 with an out of range displacement, put the address in a temp register
2526 (emitting new insns before INSN to load these registers)
2527 and alter the memory ref to use that register.
2528 Replace each such MEM rtx with a copy, to avoid clobberage. */
2529
2530 static rtx
2531 fixup_stack_1 (x, insn)
2532 rtx x;
2533 rtx insn;
2534 {
2535 register int i;
2536 register RTX_CODE code = GET_CODE (x);
2537 register const char *fmt;
2538
2539 if (code == MEM)
2540 {
2541 register rtx ad = XEXP (x, 0);
2542 /* If we have address of a stack slot but it's not valid
2543 (displacement is too large), compute the sum in a register. */
2544 if (GET_CODE (ad) == PLUS
2545 && GET_CODE (XEXP (ad, 0)) == REG
2546 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2547 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2548 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2549 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2550 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2551 #endif
2552 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2553 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2554 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2555 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2556 {
2557 rtx temp, seq;
2558 if (memory_address_p (GET_MODE (x), ad))
2559 return x;
2560
2561 start_sequence ();
2562 temp = copy_to_reg (ad);
2563 seq = gen_sequence ();
2564 end_sequence ();
2565 emit_insn_before (seq, insn);
2566 return change_address (x, VOIDmode, temp);
2567 }
2568 return x;
2569 }
2570
2571 fmt = GET_RTX_FORMAT (code);
2572 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2573 {
2574 if (fmt[i] == 'e')
2575 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2576 else if (fmt[i] == 'E')
2577 {
2578 register int j;
2579 for (j = 0; j < XVECLEN (x, i); j++)
2580 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2581 }
2582 }
2583 return x;
2584 }
2585 \f
2586 /* Optimization: a bit-field instruction whose field
2587 happens to be a byte or halfword in memory
2588 can be changed to a move instruction.
2589
2590 We call here when INSN is an insn to examine or store into a bit-field.
2591 BODY is the SET-rtx to be altered.
2592
2593 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2594 (Currently this is called only from function.c, and EQUIV_MEM
2595 is always 0.) */
2596
2597 static void
2598 optimize_bit_field (body, insn, equiv_mem)
2599 rtx body;
2600 rtx insn;
2601 rtx *equiv_mem;
2602 {
2603 register rtx bitfield;
2604 int destflag;
2605 rtx seq = 0;
2606 enum machine_mode mode;
2607
2608 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2609 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2610 bitfield = SET_DEST (body), destflag = 1;
2611 else
2612 bitfield = SET_SRC (body), destflag = 0;
2613
2614 /* First check that the field being stored has constant size and position
2615 and is in fact a byte or halfword suitably aligned. */
2616
2617 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2618 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2619 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2620 != BLKmode)
2621 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2622 {
2623 register rtx memref = 0;
2624
2625 /* Now check that the containing word is memory, not a register,
2626 and that it is safe to change the machine mode. */
2627
2628 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2629 memref = XEXP (bitfield, 0);
2630 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2631 && equiv_mem != 0)
2632 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2633 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2634 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2635 memref = SUBREG_REG (XEXP (bitfield, 0));
2636 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2637 && equiv_mem != 0
2638 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2639 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2640
2641 if (memref
2642 && ! mode_dependent_address_p (XEXP (memref, 0))
2643 && ! MEM_VOLATILE_P (memref))
2644 {
2645 /* Now adjust the address, first for any subreg'ing
2646 that we are now getting rid of,
2647 and then for which byte of the word is wanted. */
2648
2649 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2650 rtx insns;
2651
2652 /* Adjust OFFSET to count bits from low-address byte. */
2653 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2654 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2655 - offset - INTVAL (XEXP (bitfield, 1)));
2656
2657 /* Adjust OFFSET to count bytes from low-address byte. */
2658 offset /= BITS_PER_UNIT;
2659 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2660 {
2661 offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
2662 if (BYTES_BIG_ENDIAN)
2663 offset -= (MIN (UNITS_PER_WORD,
2664 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2665 - MIN (UNITS_PER_WORD,
2666 GET_MODE_SIZE (GET_MODE (memref))));
2667 }
2668
2669 start_sequence ();
2670 memref = change_address (memref, mode,
2671 plus_constant (XEXP (memref, 0), offset));
2672 insns = get_insns ();
2673 end_sequence ();
2674 emit_insns_before (insns, insn);
2675
2676 /* Store this memory reference where
2677 we found the bit field reference. */
2678
2679 if (destflag)
2680 {
2681 validate_change (insn, &SET_DEST (body), memref, 1);
2682 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2683 {
2684 rtx src = SET_SRC (body);
2685 while (GET_CODE (src) == SUBREG
2686 && SUBREG_WORD (src) == 0)
2687 src = SUBREG_REG (src);
2688 if (GET_MODE (src) != GET_MODE (memref))
2689 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2690 validate_change (insn, &SET_SRC (body), src, 1);
2691 }
2692 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2693 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2694 /* This shouldn't happen because anything that didn't have
2695 one of these modes should have got converted explicitly
2696 and then referenced through a subreg.
2697 This is so because the original bit-field was
2698 handled by agg_mode and so its tree structure had
2699 the same mode that memref now has. */
2700 abort ();
2701 }
2702 else
2703 {
2704 rtx dest = SET_DEST (body);
2705
2706 while (GET_CODE (dest) == SUBREG
2707 && SUBREG_WORD (dest) == 0
2708 && (GET_MODE_CLASS (GET_MODE (dest))
2709 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2710 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2711 <= UNITS_PER_WORD))
2712 dest = SUBREG_REG (dest);
2713
2714 validate_change (insn, &SET_DEST (body), dest, 1);
2715
2716 if (GET_MODE (dest) == GET_MODE (memref))
2717 validate_change (insn, &SET_SRC (body), memref, 1);
2718 else
2719 {
2720 /* Convert the mem ref to the destination mode. */
2721 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2722
2723 start_sequence ();
2724 convert_move (newreg, memref,
2725 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2726 seq = get_insns ();
2727 end_sequence ();
2728
2729 validate_change (insn, &SET_SRC (body), newreg, 1);
2730 }
2731 }
2732
2733 /* See if we can convert this extraction or insertion into
2734 a simple move insn. We might not be able to do so if this
2735 was, for example, part of a PARALLEL.
2736
2737 If we succeed, write out any needed conversions. If we fail,
2738 it is hard to guess why we failed, so don't do anything
2739 special; just let the optimization be suppressed. */
2740
2741 if (apply_change_group () && seq)
2742 emit_insns_before (seq, insn);
2743 }
2744 }
2745 }
2746 \f
2747 /* These routines are responsible for converting virtual register references
2748 to the actual hard register references once RTL generation is complete.
2749
2750 The following four variables are used for communication between the
2751 routines. They contain the offsets of the virtual registers from their
2752 respective hard registers. */
2753
2754 static int in_arg_offset;
2755 static int var_offset;
2756 static int dynamic_offset;
2757 static int out_arg_offset;
2758 static int cfa_offset;
2759
2760 /* In most machines, the stack pointer register is equivalent to the bottom
2761 of the stack. */
2762
2763 #ifndef STACK_POINTER_OFFSET
2764 #define STACK_POINTER_OFFSET 0
2765 #endif
2766
2767 /* If not defined, pick an appropriate default for the offset of dynamically
2768 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2769 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2770
2771 #ifndef STACK_DYNAMIC_OFFSET
2772
2773 /* The bottom of the stack points to the actual arguments. If
2774 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2775 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2776 stack space for register parameters is not pushed by the caller, but
2777 rather part of the fixed stack areas and hence not included in
2778 `current_function_outgoing_args_size'. Nevertheless, we must allow
2779 for it when allocating stack dynamic objects. */
2780
2781 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2782 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2783 ((ACCUMULATE_OUTGOING_ARGS \
2784 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2785 + (STACK_POINTER_OFFSET)) \
2786
2787 #else
2788 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2789 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2790 + (STACK_POINTER_OFFSET))
2791 #endif
2792 #endif
2793
2794 /* On most machines, the CFA coincides with the first incoming parm. */
2795
2796 #ifndef ARG_POINTER_CFA_OFFSET
2797 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2798 #endif
2799
2800 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2801 its address taken. DECL is the decl for the object stored in the
2802 register, for later use if we do need to force REG into the stack.
2803 REG is overwritten by the MEM like in put_reg_into_stack. */
2804
2805 rtx
2806 gen_mem_addressof (reg, decl)
2807 rtx reg;
2808 tree decl;
2809 {
2810 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2811 REGNO (reg), decl);
2812
2813 /* If the original REG was a user-variable, then so is the REG whose
2814 address is being taken. Likewise for unchanging. */
2815 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2816 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2817
2818 PUT_CODE (reg, MEM);
2819 XEXP (reg, 0) = r;
2820 if (decl)
2821 {
2822 tree type = TREE_TYPE (decl);
2823
2824 PUT_MODE (reg, DECL_MODE (decl));
2825 MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
2826 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type));
2827 MEM_ALIAS_SET (reg) = get_alias_set (decl);
2828
2829 if (TREE_USED (decl) || DECL_INITIAL (decl) != 0)
2830 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), 0);
2831 }
2832 else
2833 fixup_var_refs (reg, GET_MODE (reg), 0, 0);
2834
2835 return reg;
2836 }
2837
2838 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2839
2840 void
2841 flush_addressof (decl)
2842 tree decl;
2843 {
2844 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2845 && DECL_RTL (decl) != 0
2846 && GET_CODE (DECL_RTL (decl)) == MEM
2847 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2848 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2849 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2850 }
2851
2852 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2853
2854 static void
2855 put_addressof_into_stack (r, ht)
2856 rtx r;
2857 struct hash_table *ht;
2858 {
2859 tree decl, type;
2860 int volatile_p, used_p;
2861
2862 rtx reg = XEXP (r, 0);
2863
2864 if (GET_CODE (reg) != REG)
2865 abort ();
2866
2867 decl = ADDRESSOF_DECL (r);
2868 if (decl)
2869 {
2870 type = TREE_TYPE (decl);
2871 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2872 && TREE_THIS_VOLATILE (decl));
2873 used_p = (TREE_USED (decl)
2874 || (TREE_CODE (decl) != SAVE_EXPR
2875 && DECL_INITIAL (decl) != 0));
2876 }
2877 else
2878 {
2879 type = NULL_TREE;
2880 volatile_p = 0;
2881 used_p = 1;
2882 }
2883
2884 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2885 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2886 }
2887
2888 /* List of replacements made below in purge_addressof_1 when creating
2889 bitfield insertions. */
2890 static rtx purge_bitfield_addressof_replacements;
2891
2892 /* List of replacements made below in purge_addressof_1 for patterns
2893 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2894 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2895 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2896 enough in complex cases, e.g. when some field values can be
2897 extracted by usage MEM with narrower mode. */
2898 static rtx purge_addressof_replacements;
2899
2900 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2901 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2902 the stack. If the function returns FALSE then the replacement could not
2903 be made. */
2904
2905 static boolean
2906 purge_addressof_1 (loc, insn, force, store, ht)
2907 rtx *loc;
2908 rtx insn;
2909 int force, store;
2910 struct hash_table *ht;
2911 {
2912 rtx x;
2913 RTX_CODE code;
2914 int i, j;
2915 const char *fmt;
2916 boolean result = true;
2917
2918 /* Re-start here to avoid recursion in common cases. */
2919 restart:
2920
2921 x = *loc;
2922 if (x == 0)
2923 return true;
2924
2925 code = GET_CODE (x);
2926
2927 /* If we don't return in any of the cases below, we will recurse inside
2928 the RTX, which will normally result in any ADDRESSOF being forced into
2929 memory. */
2930 if (code == SET)
2931 {
2932 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
2933 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
2934 return result;
2935 }
2936
2937 else if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM)
2938 {
2939 /* We must create a copy of the rtx because it was created by
2940 overwriting a REG rtx which is always shared. */
2941 rtx sub = copy_rtx (XEXP (XEXP (x, 0), 0));
2942 rtx insns;
2943
2944 if (validate_change (insn, loc, sub, 0)
2945 || validate_replace_rtx (x, sub, insn))
2946 return true;
2947
2948 start_sequence ();
2949 sub = force_operand (sub, NULL_RTX);
2950 if (! validate_change (insn, loc, sub, 0)
2951 && ! validate_replace_rtx (x, sub, insn))
2952 abort ();
2953
2954 insns = gen_sequence ();
2955 end_sequence ();
2956 emit_insn_before (insns, insn);
2957 return true;
2958 }
2959
2960 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
2961 {
2962 rtx sub = XEXP (XEXP (x, 0), 0);
2963 rtx sub2;
2964
2965 if (GET_CODE (sub) == MEM)
2966 {
2967 sub2 = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0)));
2968 MEM_COPY_ATTRIBUTES (sub2, sub);
2969 sub = sub2;
2970 }
2971 else if (GET_CODE (sub) == REG
2972 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2973 ;
2974 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
2975 {
2976 int size_x, size_sub;
2977
2978 if (!insn)
2979 {
2980 /* When processing REG_NOTES look at the list of
2981 replacements done on the insn to find the register that X
2982 was replaced by. */
2983 rtx tem;
2984
2985 for (tem = purge_bitfield_addressof_replacements;
2986 tem != NULL_RTX;
2987 tem = XEXP (XEXP (tem, 1), 1))
2988 if (rtx_equal_p (x, XEXP (tem, 0)))
2989 {
2990 *loc = XEXP (XEXP (tem, 1), 0);
2991 return true;
2992 }
2993
2994 /* See comment for purge_addressof_replacements. */
2995 for (tem = purge_addressof_replacements;
2996 tem != NULL_RTX;
2997 tem = XEXP (XEXP (tem, 1), 1))
2998 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
2999 {
3000 rtx z = XEXP (XEXP (tem, 1), 0);
3001
3002 if (GET_MODE (x) == GET_MODE (z)
3003 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3004 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3005 abort ();
3006
3007 /* It can happen that the note may speak of things
3008 in a wider (or just different) mode than the
3009 code did. This is especially true of
3010 REG_RETVAL. */
3011
3012 if (GET_CODE (z) == SUBREG && SUBREG_WORD (z) == 0)
3013 z = SUBREG_REG (z);
3014
3015 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3016 && (GET_MODE_SIZE (GET_MODE (x))
3017 > GET_MODE_SIZE (GET_MODE (z))))
3018 {
3019 /* This can occur as a result in invalid
3020 pointer casts, e.g. float f; ...
3021 *(long long int *)&f.
3022 ??? We could emit a warning here, but
3023 without a line number that wouldn't be
3024 very helpful. */
3025 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3026 }
3027 else
3028 z = gen_lowpart (GET_MODE (x), z);
3029
3030 *loc = z;
3031 return true;
3032 }
3033
3034 /* Sometimes we may not be able to find the replacement. For
3035 example when the original insn was a MEM in a wider mode,
3036 and the note is part of a sign extension of a narrowed
3037 version of that MEM. Gcc testcase compile/990829-1.c can
3038 generate an example of this siutation. Rather than complain
3039 we return false, which will prompt our caller to remove the
3040 offending note. */
3041 return false;
3042 }
3043
3044 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3045 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3046
3047 /* Don't even consider working with paradoxical subregs,
3048 or the moral equivalent seen here. */
3049 if (size_x <= size_sub
3050 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3051 {
3052 /* Do a bitfield insertion to mirror what would happen
3053 in memory. */
3054
3055 rtx val, seq;
3056
3057 if (store)
3058 {
3059 rtx p = PREV_INSN (insn);
3060
3061 start_sequence ();
3062 val = gen_reg_rtx (GET_MODE (x));
3063 if (! validate_change (insn, loc, val, 0))
3064 {
3065 /* Discard the current sequence and put the
3066 ADDRESSOF on stack. */
3067 end_sequence ();
3068 goto give_up;
3069 }
3070 seq = gen_sequence ();
3071 end_sequence ();
3072 emit_insn_before (seq, insn);
3073 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3074 insn, ht);
3075
3076 start_sequence ();
3077 store_bit_field (sub, size_x, 0, GET_MODE (x),
3078 val, GET_MODE_SIZE (GET_MODE (sub)),
3079 GET_MODE_ALIGNMENT (GET_MODE (sub)));
3080
3081 /* Make sure to unshare any shared rtl that store_bit_field
3082 might have created. */
3083 unshare_all_rtl_again (get_insns ());
3084
3085 seq = gen_sequence ();
3086 end_sequence ();
3087 p = emit_insn_after (seq, insn);
3088 if (NEXT_INSN (insn))
3089 compute_insns_for_mem (NEXT_INSN (insn),
3090 p ? NEXT_INSN (p) : NULL_RTX,
3091 ht);
3092 }
3093 else
3094 {
3095 rtx p = PREV_INSN (insn);
3096
3097 start_sequence ();
3098 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3099 GET_MODE (x), GET_MODE (x),
3100 GET_MODE_SIZE (GET_MODE (sub)),
3101 GET_MODE_SIZE (GET_MODE (sub)));
3102
3103 if (! validate_change (insn, loc, val, 0))
3104 {
3105 /* Discard the current sequence and put the
3106 ADDRESSOF on stack. */
3107 end_sequence ();
3108 goto give_up;
3109 }
3110
3111 seq = gen_sequence ();
3112 end_sequence ();
3113 emit_insn_before (seq, insn);
3114 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3115 insn, ht);
3116 }
3117
3118 /* Remember the replacement so that the same one can be done
3119 on the REG_NOTES. */
3120 purge_bitfield_addressof_replacements
3121 = gen_rtx_EXPR_LIST (VOIDmode, x,
3122 gen_rtx_EXPR_LIST
3123 (VOIDmode, val,
3124 purge_bitfield_addressof_replacements));
3125
3126 /* We replaced with a reg -- all done. */
3127 return true;
3128 }
3129 }
3130
3131 else if (validate_change (insn, loc, sub, 0))
3132 {
3133 /* Remember the replacement so that the same one can be done
3134 on the REG_NOTES. */
3135 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3136 {
3137 rtx tem;
3138
3139 for (tem = purge_addressof_replacements;
3140 tem != NULL_RTX;
3141 tem = XEXP (XEXP (tem, 1), 1))
3142 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3143 {
3144 XEXP (XEXP (tem, 1), 0) = sub;
3145 return true;
3146 }
3147 purge_addressof_replacements
3148 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3149 gen_rtx_EXPR_LIST (VOIDmode, sub,
3150 purge_addressof_replacements));
3151 return true;
3152 }
3153 goto restart;
3154 }
3155 give_up:;
3156 /* else give up and put it into the stack */
3157 }
3158
3159 else if (code == ADDRESSOF)
3160 {
3161 put_addressof_into_stack (x, ht);
3162 return true;
3163 }
3164 else if (code == SET)
3165 {
3166 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
3167 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
3168 return result;
3169 }
3170
3171 /* Scan all subexpressions. */
3172 fmt = GET_RTX_FORMAT (code);
3173 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3174 {
3175 if (*fmt == 'e')
3176 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3177 else if (*fmt == 'E')
3178 for (j = 0; j < XVECLEN (x, i); j++)
3179 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3180 }
3181
3182 return result;
3183 }
3184
3185 /* Return a new hash table entry in HT. */
3186
3187 static struct hash_entry *
3188 insns_for_mem_newfunc (he, ht, k)
3189 struct hash_entry *he;
3190 struct hash_table *ht;
3191 hash_table_key k ATTRIBUTE_UNUSED;
3192 {
3193 struct insns_for_mem_entry *ifmhe;
3194 if (he)
3195 return he;
3196
3197 ifmhe = ((struct insns_for_mem_entry *)
3198 hash_allocate (ht, sizeof (struct insns_for_mem_entry)));
3199 ifmhe->insns = NULL_RTX;
3200
3201 return &ifmhe->he;
3202 }
3203
3204 /* Return a hash value for K, a REG. */
3205
3206 static unsigned long
3207 insns_for_mem_hash (k)
3208 hash_table_key k;
3209 {
3210 /* K is really a RTX. Just use the address as the hash value. */
3211 return (unsigned long) k;
3212 }
3213
3214 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3215
3216 static boolean
3217 insns_for_mem_comp (k1, k2)
3218 hash_table_key k1;
3219 hash_table_key k2;
3220 {
3221 return k1 == k2;
3222 }
3223
3224 struct insns_for_mem_walk_info {
3225 /* The hash table that we are using to record which INSNs use which
3226 MEMs. */
3227 struct hash_table *ht;
3228
3229 /* The INSN we are currently proessing. */
3230 rtx insn;
3231
3232 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3233 to find the insns that use the REGs in the ADDRESSOFs. */
3234 int pass;
3235 };
3236
3237 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3238 that might be used in an ADDRESSOF expression, record this INSN in
3239 the hash table given by DATA (which is really a pointer to an
3240 insns_for_mem_walk_info structure). */
3241
3242 static int
3243 insns_for_mem_walk (r, data)
3244 rtx *r;
3245 void *data;
3246 {
3247 struct insns_for_mem_walk_info *ifmwi
3248 = (struct insns_for_mem_walk_info *) data;
3249
3250 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3251 && GET_CODE (XEXP (*r, 0)) == REG)
3252 hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0);
3253 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3254 {
3255 /* Lookup this MEM in the hashtable, creating it if necessary. */
3256 struct insns_for_mem_entry *ifme
3257 = (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht,
3258 *r,
3259 /*create=*/0,
3260 /*copy=*/0);
3261
3262 /* If we have not already recorded this INSN, do so now. Since
3263 we process the INSNs in order, we know that if we have
3264 recorded it it must be at the front of the list. */
3265 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3266 {
3267 /* We do the allocation on the same obstack as is used for
3268 the hash table since this memory will not be used once
3269 the hash table is deallocated. */
3270 push_obstacks (&ifmwi->ht->memory, &ifmwi->ht->memory);
3271 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3272 ifme->insns);
3273 pop_obstacks ();
3274 }
3275 }
3276
3277 return 0;
3278 }
3279
3280 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3281 which REGs in HT. */
3282
3283 static void
3284 compute_insns_for_mem (insns, last_insn, ht)
3285 rtx insns;
3286 rtx last_insn;
3287 struct hash_table *ht;
3288 {
3289 rtx insn;
3290 struct insns_for_mem_walk_info ifmwi;
3291 ifmwi.ht = ht;
3292
3293 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3294 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3295 if (INSN_P (insn))
3296 {
3297 ifmwi.insn = insn;
3298 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3299 }
3300 }
3301
3302 /* Helper function for purge_addressof called through for_each_rtx.
3303 Returns true iff the rtl is an ADDRESSOF. */
3304 static int
3305 is_addressof (rtl, data)
3306 rtx *rtl;
3307 void *data ATTRIBUTE_UNUSED;
3308 {
3309 return GET_CODE (*rtl) == ADDRESSOF;
3310 }
3311
3312 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3313 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3314 stack. */
3315
3316 void
3317 purge_addressof (insns)
3318 rtx insns;
3319 {
3320 rtx insn;
3321 struct hash_table ht;
3322
3323 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3324 requires a fixup pass over the instruction stream to correct
3325 INSNs that depended on the REG being a REG, and not a MEM. But,
3326 these fixup passes are slow. Furthermore, most MEMs are not
3327 mentioned in very many instructions. So, we speed up the process
3328 by pre-calculating which REGs occur in which INSNs; that allows
3329 us to perform the fixup passes much more quickly. */
3330 hash_table_init (&ht,
3331 insns_for_mem_newfunc,
3332 insns_for_mem_hash,
3333 insns_for_mem_comp);
3334 compute_insns_for_mem (insns, NULL_RTX, &ht);
3335
3336 for (insn = insns; insn; insn = NEXT_INSN (insn))
3337 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3338 || GET_CODE (insn) == CALL_INSN)
3339 {
3340 if (! purge_addressof_1 (&PATTERN (insn), insn,
3341 asm_noperands (PATTERN (insn)) > 0, 0, &ht))
3342 /* If we could not replace the ADDRESSOFs in the insn,
3343 something is wrong. */
3344 abort ();
3345
3346 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, &ht))
3347 {
3348 /* If we could not replace the ADDRESSOFs in the insn's notes,
3349 we can just remove the offending notes instead. */
3350 rtx note;
3351
3352 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3353 {
3354 /* If we find a REG_RETVAL note then the insn is a libcall.
3355 Such insns must have REG_EQUAL notes as well, in order
3356 for later passes of the compiler to work. So it is not
3357 safe to delete the notes here, and instead we abort. */
3358 if (REG_NOTE_KIND (note) == REG_RETVAL)
3359 abort ();
3360 if (for_each_rtx (&note, is_addressof, NULL))
3361 remove_note (insn, note);
3362 }
3363 }
3364 }
3365
3366 /* Clean up. */
3367 hash_table_free (&ht);
3368 purge_bitfield_addressof_replacements = 0;
3369 purge_addressof_replacements = 0;
3370
3371 /* REGs are shared. purge_addressof will destructively replace a REG
3372 with a MEM, which creates shared MEMs.
3373
3374 Unfortunately, the children of put_reg_into_stack assume that MEMs
3375 referring to the same stack slot are shared (fixup_var_refs and
3376 the associated hash table code).
3377
3378 So, we have to do another unsharing pass after we have flushed any
3379 REGs that had their address taken into the stack.
3380
3381 It may be worth tracking whether or not we converted any REGs into
3382 MEMs to avoid this overhead when it is not needed. */
3383 unshare_all_rtl_again (get_insns ());
3384 }
3385 \f
3386 /* Pass through the INSNS of function FNDECL and convert virtual register
3387 references to hard register references. */
3388
3389 void
3390 instantiate_virtual_regs (fndecl, insns)
3391 tree fndecl;
3392 rtx insns;
3393 {
3394 rtx insn;
3395 unsigned int i;
3396
3397 /* Compute the offsets to use for this function. */
3398 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3399 var_offset = STARTING_FRAME_OFFSET;
3400 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3401 out_arg_offset = STACK_POINTER_OFFSET;
3402 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3403
3404 /* Scan all variables and parameters of this function. For each that is
3405 in memory, instantiate all virtual registers if the result is a valid
3406 address. If not, we do it later. That will handle most uses of virtual
3407 regs on many machines. */
3408 instantiate_decls (fndecl, 1);
3409
3410 /* Initialize recognition, indicating that volatile is OK. */
3411 init_recog ();
3412
3413 /* Scan through all the insns, instantiating every virtual register still
3414 present. */
3415 for (insn = insns; insn; insn = NEXT_INSN (insn))
3416 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3417 || GET_CODE (insn) == CALL_INSN)
3418 {
3419 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3420 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3421 }
3422
3423 /* Instantiate the stack slots for the parm registers, for later use in
3424 addressof elimination. */
3425 for (i = 0; i < max_parm_reg; ++i)
3426 if (parm_reg_stack_loc[i])
3427 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3428
3429 /* Now instantiate the remaining register equivalences for debugging info.
3430 These will not be valid addresses. */
3431 instantiate_decls (fndecl, 0);
3432
3433 /* Indicate that, from now on, assign_stack_local should use
3434 frame_pointer_rtx. */
3435 virtuals_instantiated = 1;
3436 }
3437
3438 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3439 all virtual registers in their DECL_RTL's.
3440
3441 If VALID_ONLY, do this only if the resulting address is still valid.
3442 Otherwise, always do it. */
3443
3444 static void
3445 instantiate_decls (fndecl, valid_only)
3446 tree fndecl;
3447 int valid_only;
3448 {
3449 tree decl;
3450
3451 if (DECL_SAVED_INSNS (fndecl))
3452 /* When compiling an inline function, the obstack used for
3453 rtl allocation is the maybepermanent_obstack. Calling
3454 `resume_temporary_allocation' switches us back to that
3455 obstack while we process this function's parameters. */
3456 resume_temporary_allocation ();
3457
3458 /* Process all parameters of the function. */
3459 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3460 {
3461 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3462
3463 instantiate_decl (DECL_RTL (decl), size, valid_only);
3464
3465 /* If the parameter was promoted, then the incoming RTL mode may be
3466 larger than the declared type size. We must use the larger of
3467 the two sizes. */
3468 size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size);
3469 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3470 }
3471
3472 /* Now process all variables defined in the function or its subblocks. */
3473 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3474
3475 if (DECL_INLINE (fndecl) || DECL_DEFER_OUTPUT (fndecl))
3476 {
3477 /* Save all rtl allocated for this function by raising the
3478 high-water mark on the maybepermanent_obstack. */
3479 preserve_data ();
3480 /* All further rtl allocation is now done in the current_obstack. */
3481 rtl_in_current_obstack ();
3482 }
3483 }
3484
3485 /* Subroutine of instantiate_decls: Process all decls in the given
3486 BLOCK node and all its subblocks. */
3487
3488 static void
3489 instantiate_decls_1 (let, valid_only)
3490 tree let;
3491 int valid_only;
3492 {
3493 tree t;
3494
3495 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3496 instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)),
3497 valid_only);
3498
3499 /* Process all subblocks. */
3500 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3501 instantiate_decls_1 (t, valid_only);
3502 }
3503
3504 /* Subroutine of the preceding procedures: Given RTL representing a
3505 decl and the size of the object, do any instantiation required.
3506
3507 If VALID_ONLY is non-zero, it means that the RTL should only be
3508 changed if the new address is valid. */
3509
3510 static void
3511 instantiate_decl (x, size, valid_only)
3512 rtx x;
3513 HOST_WIDE_INT size;
3514 int valid_only;
3515 {
3516 enum machine_mode mode;
3517 rtx addr;
3518
3519 /* If this is not a MEM, no need to do anything. Similarly if the
3520 address is a constant or a register that is not a virtual register. */
3521
3522 if (x == 0 || GET_CODE (x) != MEM)
3523 return;
3524
3525 addr = XEXP (x, 0);
3526 if (CONSTANT_P (addr)
3527 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3528 || (GET_CODE (addr) == REG
3529 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3530 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3531 return;
3532
3533 /* If we should only do this if the address is valid, copy the address.
3534 We need to do this so we can undo any changes that might make the
3535 address invalid. This copy is unfortunate, but probably can't be
3536 avoided. */
3537
3538 if (valid_only)
3539 addr = copy_rtx (addr);
3540
3541 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3542
3543 if (valid_only && size >= 0)
3544 {
3545 unsigned HOST_WIDE_INT decl_size = size;
3546
3547 /* Now verify that the resulting address is valid for every integer or
3548 floating-point mode up to and including SIZE bytes long. We do this
3549 since the object might be accessed in any mode and frame addresses
3550 are shared. */
3551
3552 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3553 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3554 mode = GET_MODE_WIDER_MODE (mode))
3555 if (! memory_address_p (mode, addr))
3556 return;
3557
3558 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3559 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3560 mode = GET_MODE_WIDER_MODE (mode))
3561 if (! memory_address_p (mode, addr))
3562 return;
3563 }
3564
3565 /* Put back the address now that we have updated it and we either know
3566 it is valid or we don't care whether it is valid. */
3567
3568 XEXP (x, 0) = addr;
3569 }
3570 \f
3571 /* Given a pointer to a piece of rtx and an optional pointer to the
3572 containing object, instantiate any virtual registers present in it.
3573
3574 If EXTRA_INSNS, we always do the replacement and generate
3575 any extra insns before OBJECT. If it zero, we do nothing if replacement
3576 is not valid.
3577
3578 Return 1 if we either had nothing to do or if we were able to do the
3579 needed replacement. Return 0 otherwise; we only return zero if
3580 EXTRA_INSNS is zero.
3581
3582 We first try some simple transformations to avoid the creation of extra
3583 pseudos. */
3584
3585 static int
3586 instantiate_virtual_regs_1 (loc, object, extra_insns)
3587 rtx *loc;
3588 rtx object;
3589 int extra_insns;
3590 {
3591 rtx x;
3592 RTX_CODE code;
3593 rtx new = 0;
3594 HOST_WIDE_INT offset = 0;
3595 rtx temp;
3596 rtx seq;
3597 int i, j;
3598 const char *fmt;
3599
3600 /* Re-start here to avoid recursion in common cases. */
3601 restart:
3602
3603 x = *loc;
3604 if (x == 0)
3605 return 1;
3606
3607 code = GET_CODE (x);
3608
3609 /* Check for some special cases. */
3610 switch (code)
3611 {
3612 case CONST_INT:
3613 case CONST_DOUBLE:
3614 case CONST:
3615 case SYMBOL_REF:
3616 case CODE_LABEL:
3617 case PC:
3618 case CC0:
3619 case ASM_INPUT:
3620 case ADDR_VEC:
3621 case ADDR_DIFF_VEC:
3622 case RETURN:
3623 return 1;
3624
3625 case SET:
3626 /* We are allowed to set the virtual registers. This means that
3627 the actual register should receive the source minus the
3628 appropriate offset. This is used, for example, in the handling
3629 of non-local gotos. */
3630 if (SET_DEST (x) == virtual_incoming_args_rtx)
3631 new = arg_pointer_rtx, offset = -in_arg_offset;
3632 else if (SET_DEST (x) == virtual_stack_vars_rtx)
3633 new = frame_pointer_rtx, offset = -var_offset;
3634 else if (SET_DEST (x) == virtual_stack_dynamic_rtx)
3635 new = stack_pointer_rtx, offset = -dynamic_offset;
3636 else if (SET_DEST (x) == virtual_outgoing_args_rtx)
3637 new = stack_pointer_rtx, offset = -out_arg_offset;
3638 else if (SET_DEST (x) == virtual_cfa_rtx)
3639 new = arg_pointer_rtx, offset = -cfa_offset;
3640
3641 if (new)
3642 {
3643 rtx src = SET_SRC (x);
3644
3645 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3646
3647 /* The only valid sources here are PLUS or REG. Just do
3648 the simplest possible thing to handle them. */
3649 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3650 abort ();
3651
3652 start_sequence ();
3653 if (GET_CODE (src) != REG)
3654 temp = force_operand (src, NULL_RTX);
3655 else
3656 temp = src;
3657 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3658 seq = get_insns ();
3659 end_sequence ();
3660
3661 emit_insns_before (seq, object);
3662 SET_DEST (x) = new;
3663
3664 if (! validate_change (object, &SET_SRC (x), temp, 0)
3665 || ! extra_insns)
3666 abort ();
3667
3668 return 1;
3669 }
3670
3671 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3672 loc = &SET_SRC (x);
3673 goto restart;
3674
3675 case PLUS:
3676 /* Handle special case of virtual register plus constant. */
3677 if (CONSTANT_P (XEXP (x, 1)))
3678 {
3679 rtx old, new_offset;
3680
3681 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3682 if (GET_CODE (XEXP (x, 0)) == PLUS)
3683 {
3684 rtx inner = XEXP (XEXP (x, 0), 0);
3685
3686 if (inner == virtual_incoming_args_rtx)
3687 new = arg_pointer_rtx, offset = in_arg_offset;
3688 else if (inner == virtual_stack_vars_rtx)
3689 new = frame_pointer_rtx, offset = var_offset;
3690 else if (inner == virtual_stack_dynamic_rtx)
3691 new = stack_pointer_rtx, offset = dynamic_offset;
3692 else if (inner == virtual_outgoing_args_rtx)
3693 new = stack_pointer_rtx, offset = out_arg_offset;
3694 else if (inner == virtual_cfa_rtx)
3695 new = arg_pointer_rtx, offset = cfa_offset;
3696 else
3697 {
3698 loc = &XEXP (x, 0);
3699 goto restart;
3700 }
3701
3702 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3703 extra_insns);
3704 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3705 }
3706
3707 else if (XEXP (x, 0) == virtual_incoming_args_rtx)
3708 new = arg_pointer_rtx, offset = in_arg_offset;
3709 else if (XEXP (x, 0) == virtual_stack_vars_rtx)
3710 new = frame_pointer_rtx, offset = var_offset;
3711 else if (XEXP (x, 0) == virtual_stack_dynamic_rtx)
3712 new = stack_pointer_rtx, offset = dynamic_offset;
3713 else if (XEXP (x, 0) == virtual_outgoing_args_rtx)
3714 new = stack_pointer_rtx, offset = out_arg_offset;
3715 else if (XEXP (x, 0) == virtual_cfa_rtx)
3716 new = arg_pointer_rtx, offset = cfa_offset;
3717 else
3718 {
3719 /* We know the second operand is a constant. Unless the
3720 first operand is a REG (which has been already checked),
3721 it needs to be checked. */
3722 if (GET_CODE (XEXP (x, 0)) != REG)
3723 {
3724 loc = &XEXP (x, 0);
3725 goto restart;
3726 }
3727 return 1;
3728 }
3729
3730 new_offset = plus_constant (XEXP (x, 1), offset);
3731
3732 /* If the new constant is zero, try to replace the sum with just
3733 the register. */
3734 if (new_offset == const0_rtx
3735 && validate_change (object, loc, new, 0))
3736 return 1;
3737
3738 /* Next try to replace the register and new offset.
3739 There are two changes to validate here and we can't assume that
3740 in the case of old offset equals new just changing the register
3741 will yield a valid insn. In the interests of a little efficiency,
3742 however, we only call validate change once (we don't queue up the
3743 changes and then call apply_change_group). */
3744
3745 old = XEXP (x, 0);
3746 if (offset == 0
3747 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3748 : (XEXP (x, 0) = new,
3749 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3750 {
3751 if (! extra_insns)
3752 {
3753 XEXP (x, 0) = old;
3754 return 0;
3755 }
3756
3757 /* Otherwise copy the new constant into a register and replace
3758 constant with that register. */
3759 temp = gen_reg_rtx (Pmode);
3760 XEXP (x, 0) = new;
3761 if (validate_change (object, &XEXP (x, 1), temp, 0))
3762 emit_insn_before (gen_move_insn (temp, new_offset), object);
3763 else
3764 {
3765 /* If that didn't work, replace this expression with a
3766 register containing the sum. */
3767
3768 XEXP (x, 0) = old;
3769 new = gen_rtx_PLUS (Pmode, new, new_offset);
3770
3771 start_sequence ();
3772 temp = force_operand (new, NULL_RTX);
3773 seq = get_insns ();
3774 end_sequence ();
3775
3776 emit_insns_before (seq, object);
3777 if (! validate_change (object, loc, temp, 0)
3778 && ! validate_replace_rtx (x, temp, object))
3779 abort ();
3780 }
3781 }
3782
3783 return 1;
3784 }
3785
3786 /* Fall through to generic two-operand expression case. */
3787 case EXPR_LIST:
3788 case CALL:
3789 case COMPARE:
3790 case MINUS:
3791 case MULT:
3792 case DIV: case UDIV:
3793 case MOD: case UMOD:
3794 case AND: case IOR: case XOR:
3795 case ROTATERT: case ROTATE:
3796 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3797 case NE: case EQ:
3798 case GE: case GT: case GEU: case GTU:
3799 case LE: case LT: case LEU: case LTU:
3800 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3801 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3802 loc = &XEXP (x, 0);
3803 goto restart;
3804
3805 case MEM:
3806 /* Most cases of MEM that convert to valid addresses have already been
3807 handled by our scan of decls. The only special handling we
3808 need here is to make a copy of the rtx to ensure it isn't being
3809 shared if we have to change it to a pseudo.
3810
3811 If the rtx is a simple reference to an address via a virtual register,
3812 it can potentially be shared. In such cases, first try to make it
3813 a valid address, which can also be shared. Otherwise, copy it and
3814 proceed normally.
3815
3816 First check for common cases that need no processing. These are
3817 usually due to instantiation already being done on a previous instance
3818 of a shared rtx. */
3819
3820 temp = XEXP (x, 0);
3821 if (CONSTANT_ADDRESS_P (temp)
3822 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3823 || temp == arg_pointer_rtx
3824 #endif
3825 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3826 || temp == hard_frame_pointer_rtx
3827 #endif
3828 || temp == frame_pointer_rtx)
3829 return 1;
3830
3831 if (GET_CODE (temp) == PLUS
3832 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3833 && (XEXP (temp, 0) == frame_pointer_rtx
3834 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3835 || XEXP (temp, 0) == hard_frame_pointer_rtx
3836 #endif
3837 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3838 || XEXP (temp, 0) == arg_pointer_rtx
3839 #endif
3840 ))
3841 return 1;
3842
3843 if (temp == virtual_stack_vars_rtx
3844 || temp == virtual_incoming_args_rtx
3845 || (GET_CODE (temp) == PLUS
3846 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3847 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3848 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3849 {
3850 /* This MEM may be shared. If the substitution can be done without
3851 the need to generate new pseudos, we want to do it in place
3852 so all copies of the shared rtx benefit. The call below will
3853 only make substitutions if the resulting address is still
3854 valid.
3855
3856 Note that we cannot pass X as the object in the recursive call
3857 since the insn being processed may not allow all valid
3858 addresses. However, if we were not passed on object, we can
3859 only modify X without copying it if X will have a valid
3860 address.
3861
3862 ??? Also note that this can still lose if OBJECT is an insn that
3863 has less restrictions on an address that some other insn.
3864 In that case, we will modify the shared address. This case
3865 doesn't seem very likely, though. One case where this could
3866 happen is in the case of a USE or CLOBBER reference, but we
3867 take care of that below. */
3868
3869 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
3870 object ? object : x, 0))
3871 return 1;
3872
3873 /* Otherwise make a copy and process that copy. We copy the entire
3874 RTL expression since it might be a PLUS which could also be
3875 shared. */
3876 *loc = x = copy_rtx (x);
3877 }
3878
3879 /* Fall through to generic unary operation case. */
3880 case SUBREG:
3881 case STRICT_LOW_PART:
3882 case NEG: case NOT:
3883 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
3884 case SIGN_EXTEND: case ZERO_EXTEND:
3885 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3886 case FLOAT: case FIX:
3887 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3888 case ABS:
3889 case SQRT:
3890 case FFS:
3891 /* These case either have just one operand or we know that we need not
3892 check the rest of the operands. */
3893 loc = &XEXP (x, 0);
3894 goto restart;
3895
3896 case USE:
3897 case CLOBBER:
3898 /* If the operand is a MEM, see if the change is a valid MEM. If not,
3899 go ahead and make the invalid one, but do it to a copy. For a REG,
3900 just make the recursive call, since there's no chance of a problem. */
3901
3902 if ((GET_CODE (XEXP (x, 0)) == MEM
3903 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
3904 0))
3905 || (GET_CODE (XEXP (x, 0)) == REG
3906 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
3907 return 1;
3908
3909 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
3910 loc = &XEXP (x, 0);
3911 goto restart;
3912
3913 case REG:
3914 /* Try to replace with a PLUS. If that doesn't work, compute the sum
3915 in front of this insn and substitute the temporary. */
3916 if (x == virtual_incoming_args_rtx)
3917 new = arg_pointer_rtx, offset = in_arg_offset;
3918 else if (x == virtual_stack_vars_rtx)
3919 new = frame_pointer_rtx, offset = var_offset;
3920 else if (x == virtual_stack_dynamic_rtx)
3921 new = stack_pointer_rtx, offset = dynamic_offset;
3922 else if (x == virtual_outgoing_args_rtx)
3923 new = stack_pointer_rtx, offset = out_arg_offset;
3924 else if (x == virtual_cfa_rtx)
3925 new = arg_pointer_rtx, offset = cfa_offset;
3926
3927 if (new)
3928 {
3929 temp = plus_constant (new, offset);
3930 if (!validate_change (object, loc, temp, 0))
3931 {
3932 if (! extra_insns)
3933 return 0;
3934
3935 start_sequence ();
3936 temp = force_operand (temp, NULL_RTX);
3937 seq = get_insns ();
3938 end_sequence ();
3939
3940 emit_insns_before (seq, object);
3941 if (! validate_change (object, loc, temp, 0)
3942 && ! validate_replace_rtx (x, temp, object))
3943 abort ();
3944 }
3945 }
3946
3947 return 1;
3948
3949 case ADDRESSOF:
3950 if (GET_CODE (XEXP (x, 0)) == REG)
3951 return 1;
3952
3953 else if (GET_CODE (XEXP (x, 0)) == MEM)
3954 {
3955 /* If we have a (addressof (mem ..)), do any instantiation inside
3956 since we know we'll be making the inside valid when we finally
3957 remove the ADDRESSOF. */
3958 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
3959 return 1;
3960 }
3961 break;
3962
3963 default:
3964 break;
3965 }
3966
3967 /* Scan all subexpressions. */
3968 fmt = GET_RTX_FORMAT (code);
3969 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3970 if (*fmt == 'e')
3971 {
3972 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
3973 return 0;
3974 }
3975 else if (*fmt == 'E')
3976 for (j = 0; j < XVECLEN (x, i); j++)
3977 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
3978 extra_insns))
3979 return 0;
3980
3981 return 1;
3982 }
3983 \f
3984 /* Optimization: assuming this function does not receive nonlocal gotos,
3985 delete the handlers for such, as well as the insns to establish
3986 and disestablish them. */
3987
3988 static void
3989 delete_handlers ()
3990 {
3991 rtx insn;
3992 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3993 {
3994 /* Delete the handler by turning off the flag that would
3995 prevent jump_optimize from deleting it.
3996 Also permit deletion of the nonlocal labels themselves
3997 if nothing local refers to them. */
3998 if (GET_CODE (insn) == CODE_LABEL)
3999 {
4000 tree t, last_t;
4001
4002 LABEL_PRESERVE_P (insn) = 0;
4003
4004 /* Remove it from the nonlocal_label list, to avoid confusing
4005 flow. */
4006 for (t = nonlocal_labels, last_t = 0; t;
4007 last_t = t, t = TREE_CHAIN (t))
4008 if (DECL_RTL (TREE_VALUE (t)) == insn)
4009 break;
4010 if (t)
4011 {
4012 if (! last_t)
4013 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4014 else
4015 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4016 }
4017 }
4018 if (GET_CODE (insn) == INSN)
4019 {
4020 int can_delete = 0;
4021 rtx t;
4022 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4023 if (reg_mentioned_p (t, PATTERN (insn)))
4024 {
4025 can_delete = 1;
4026 break;
4027 }
4028 if (can_delete
4029 || (nonlocal_goto_stack_level != 0
4030 && reg_mentioned_p (nonlocal_goto_stack_level,
4031 PATTERN (insn))))
4032 delete_insn (insn);
4033 }
4034 }
4035 }
4036 \f
4037 int
4038 max_parm_reg_num ()
4039 {
4040 return max_parm_reg;
4041 }
4042
4043 /* Return the first insn following those generated by `assign_parms'. */
4044
4045 rtx
4046 get_first_nonparm_insn ()
4047 {
4048 if (last_parm_insn)
4049 return NEXT_INSN (last_parm_insn);
4050 return get_insns ();
4051 }
4052
4053 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
4054 Crash if there is none. */
4055
4056 rtx
4057 get_first_block_beg ()
4058 {
4059 register rtx searcher;
4060 register rtx insn = get_first_nonparm_insn ();
4061
4062 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
4063 if (GET_CODE (searcher) == NOTE
4064 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
4065 return searcher;
4066
4067 abort (); /* Invalid call to this function. (See comments above.) */
4068 return NULL_RTX;
4069 }
4070
4071 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4072 This means a type for which function calls must pass an address to the
4073 function or get an address back from the function.
4074 EXP may be a type node or an expression (whose type is tested). */
4075
4076 int
4077 aggregate_value_p (exp)
4078 tree exp;
4079 {
4080 int i, regno, nregs;
4081 rtx reg;
4082
4083 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4084
4085 if (TREE_CODE (type) == VOID_TYPE)
4086 return 0;
4087 if (RETURN_IN_MEMORY (type))
4088 return 1;
4089 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4090 and thus can't be returned in registers. */
4091 if (TREE_ADDRESSABLE (type))
4092 return 1;
4093 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4094 return 1;
4095 /* Make sure we have suitable call-clobbered regs to return
4096 the value in; if not, we must return it in memory. */
4097 reg = hard_function_value (type, 0, 0);
4098
4099 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4100 it is OK. */
4101 if (GET_CODE (reg) != REG)
4102 return 0;
4103
4104 regno = REGNO (reg);
4105 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4106 for (i = 0; i < nregs; i++)
4107 if (! call_used_regs[regno + i])
4108 return 1;
4109 return 0;
4110 }
4111 \f
4112 /* Assign RTL expressions to the function's parameters.
4113 This may involve copying them into registers and using
4114 those registers as the RTL for them. */
4115
4116 void
4117 assign_parms (fndecl)
4118 tree fndecl;
4119 {
4120 register tree parm;
4121 register rtx entry_parm = 0;
4122 register rtx stack_parm = 0;
4123 CUMULATIVE_ARGS args_so_far;
4124 enum machine_mode promoted_mode, passed_mode;
4125 enum machine_mode nominal_mode, promoted_nominal_mode;
4126 int unsignedp;
4127 /* Total space needed so far for args on the stack,
4128 given as a constant and a tree-expression. */
4129 struct args_size stack_args_size;
4130 tree fntype = TREE_TYPE (fndecl);
4131 tree fnargs = DECL_ARGUMENTS (fndecl);
4132 /* This is used for the arg pointer when referring to stack args. */
4133 rtx internal_arg_pointer;
4134 /* This is a dummy PARM_DECL that we used for the function result if
4135 the function returns a structure. */
4136 tree function_result_decl = 0;
4137 #ifdef SETUP_INCOMING_VARARGS
4138 int varargs_setup = 0;
4139 #endif
4140 rtx conversion_insns = 0;
4141 struct args_size alignment_pad;
4142
4143 /* Nonzero if the last arg is named `__builtin_va_alist',
4144 which is used on some machines for old-fashioned non-ANSI varargs.h;
4145 this should be stuck onto the stack as if it had arrived there. */
4146 int hide_last_arg
4147 = (current_function_varargs
4148 && fnargs
4149 && (parm = tree_last (fnargs)) != 0
4150 && DECL_NAME (parm)
4151 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
4152 "__builtin_va_alist")));
4153
4154 /* Nonzero if function takes extra anonymous args.
4155 This means the last named arg must be on the stack
4156 right before the anonymous ones. */
4157 int stdarg
4158 = (TYPE_ARG_TYPES (fntype) != 0
4159 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4160 != void_type_node));
4161
4162 current_function_stdarg = stdarg;
4163
4164 /* If the reg that the virtual arg pointer will be translated into is
4165 not a fixed reg or is the stack pointer, make a copy of the virtual
4166 arg pointer, and address parms via the copy. The frame pointer is
4167 considered fixed even though it is not marked as such.
4168
4169 The second time through, simply use ap to avoid generating rtx. */
4170
4171 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4172 || ! (fixed_regs[ARG_POINTER_REGNUM]
4173 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4174 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4175 else
4176 internal_arg_pointer = virtual_incoming_args_rtx;
4177 current_function_internal_arg_pointer = internal_arg_pointer;
4178
4179 stack_args_size.constant = 0;
4180 stack_args_size.var = 0;
4181
4182 /* If struct value address is treated as the first argument, make it so. */
4183 if (aggregate_value_p (DECL_RESULT (fndecl))
4184 && ! current_function_returns_pcc_struct
4185 && struct_value_incoming_rtx == 0)
4186 {
4187 tree type = build_pointer_type (TREE_TYPE (fntype));
4188
4189 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4190
4191 DECL_ARG_TYPE (function_result_decl) = type;
4192 TREE_CHAIN (function_result_decl) = fnargs;
4193 fnargs = function_result_decl;
4194 }
4195
4196 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4197 parm_reg_stack_loc = (rtx *) xcalloc (max_parm_reg, sizeof (rtx));
4198
4199 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4200 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4201 #else
4202 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4203 #endif
4204
4205 /* We haven't yet found an argument that we must push and pretend the
4206 caller did. */
4207 current_function_pretend_args_size = 0;
4208
4209 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4210 {
4211 struct args_size stack_offset;
4212 struct args_size arg_size;
4213 int passed_pointer = 0;
4214 int did_conversion = 0;
4215 tree passed_type = DECL_ARG_TYPE (parm);
4216 tree nominal_type = TREE_TYPE (parm);
4217 int pretend_named;
4218
4219 /* Set LAST_NAMED if this is last named arg before some
4220 anonymous args. */
4221 int last_named = ((TREE_CHAIN (parm) == 0
4222 || DECL_NAME (TREE_CHAIN (parm)) == 0)
4223 && (stdarg || current_function_varargs));
4224 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4225 most machines, if this is a varargs/stdarg function, then we treat
4226 the last named arg as if it were anonymous too. */
4227 int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4228
4229 if (TREE_TYPE (parm) == error_mark_node
4230 /* This can happen after weird syntax errors
4231 or if an enum type is defined among the parms. */
4232 || TREE_CODE (parm) != PARM_DECL
4233 || passed_type == NULL)
4234 {
4235 DECL_INCOMING_RTL (parm) = DECL_RTL (parm)
4236 = gen_rtx_MEM (BLKmode, const0_rtx);
4237 TREE_USED (parm) = 1;
4238 continue;
4239 }
4240
4241 /* For varargs.h function, save info about regs and stack space
4242 used by the individual args, not including the va_alist arg. */
4243 if (hide_last_arg && last_named)
4244 current_function_args_info = args_so_far;
4245
4246 /* Find mode of arg as it is passed, and mode of arg
4247 as it should be during execution of this function. */
4248 passed_mode = TYPE_MODE (passed_type);
4249 nominal_mode = TYPE_MODE (nominal_type);
4250
4251 /* If the parm's mode is VOID, its value doesn't matter,
4252 and avoid the usual things like emit_move_insn that could crash. */
4253 if (nominal_mode == VOIDmode)
4254 {
4255 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx;
4256 continue;
4257 }
4258
4259 /* If the parm is to be passed as a transparent union, use the
4260 type of the first field for the tests below. We have already
4261 verified that the modes are the same. */
4262 if (DECL_TRANSPARENT_UNION (parm)
4263 || (TREE_CODE (passed_type) == UNION_TYPE
4264 && TYPE_TRANSPARENT_UNION (passed_type)))
4265 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4266
4267 /* See if this arg was passed by invisible reference. It is if
4268 it is an object whose size depends on the contents of the
4269 object itself or if the machine requires these objects be passed
4270 that way. */
4271
4272 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4273 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4274 || TREE_ADDRESSABLE (passed_type)
4275 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4276 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4277 passed_type, named_arg)
4278 #endif
4279 )
4280 {
4281 passed_type = nominal_type = build_pointer_type (passed_type);
4282 passed_pointer = 1;
4283 passed_mode = nominal_mode = Pmode;
4284 }
4285
4286 promoted_mode = passed_mode;
4287
4288 #ifdef PROMOTE_FUNCTION_ARGS
4289 /* Compute the mode in which the arg is actually extended to. */
4290 unsignedp = TREE_UNSIGNED (passed_type);
4291 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4292 #endif
4293
4294 /* Let machine desc say which reg (if any) the parm arrives in.
4295 0 means it arrives on the stack. */
4296 #ifdef FUNCTION_INCOMING_ARG
4297 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4298 passed_type, named_arg);
4299 #else
4300 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4301 passed_type, named_arg);
4302 #endif
4303
4304 if (entry_parm == 0)
4305 promoted_mode = passed_mode;
4306
4307 #ifdef SETUP_INCOMING_VARARGS
4308 /* If this is the last named parameter, do any required setup for
4309 varargs or stdargs. We need to know about the case of this being an
4310 addressable type, in which case we skip the registers it
4311 would have arrived in.
4312
4313 For stdargs, LAST_NAMED will be set for two parameters, the one that
4314 is actually the last named, and the dummy parameter. We only
4315 want to do this action once.
4316
4317 Also, indicate when RTL generation is to be suppressed. */
4318 if (last_named && !varargs_setup)
4319 {
4320 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4321 current_function_pretend_args_size, 0);
4322 varargs_setup = 1;
4323 }
4324 #endif
4325
4326 /* Determine parm's home in the stack,
4327 in case it arrives in the stack or we should pretend it did.
4328
4329 Compute the stack position and rtx where the argument arrives
4330 and its size.
4331
4332 There is one complexity here: If this was a parameter that would
4333 have been passed in registers, but wasn't only because it is
4334 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4335 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4336 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4337 0 as it was the previous time. */
4338
4339 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4340 locate_and_pad_parm (promoted_mode, passed_type,
4341 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4342 1,
4343 #else
4344 #ifdef FUNCTION_INCOMING_ARG
4345 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4346 passed_type,
4347 pretend_named) != 0,
4348 #else
4349 FUNCTION_ARG (args_so_far, promoted_mode,
4350 passed_type,
4351 pretend_named) != 0,
4352 #endif
4353 #endif
4354 fndecl, &stack_args_size, &stack_offset, &arg_size,
4355 &alignment_pad);
4356
4357 {
4358 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4359
4360 if (offset_rtx == const0_rtx)
4361 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4362 else
4363 stack_parm = gen_rtx_MEM (promoted_mode,
4364 gen_rtx_PLUS (Pmode,
4365 internal_arg_pointer,
4366 offset_rtx));
4367
4368 set_mem_attributes (stack_parm, parm, 1);
4369 }
4370
4371 /* If this parameter was passed both in registers and in the stack,
4372 use the copy on the stack. */
4373 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4374 entry_parm = 0;
4375
4376 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4377 /* If this parm was passed part in regs and part in memory,
4378 pretend it arrived entirely in memory
4379 by pushing the register-part onto the stack.
4380
4381 In the special case of a DImode or DFmode that is split,
4382 we could put it together in a pseudoreg directly,
4383 but for now that's not worth bothering with. */
4384
4385 if (entry_parm)
4386 {
4387 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4388 passed_type, named_arg);
4389
4390 if (nregs > 0)
4391 {
4392 current_function_pretend_args_size
4393 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4394 / (PARM_BOUNDARY / BITS_PER_UNIT)
4395 * (PARM_BOUNDARY / BITS_PER_UNIT));
4396
4397 /* Handle calls that pass values in multiple non-contiguous
4398 locations. The Irix 6 ABI has examples of this. */
4399 if (GET_CODE (entry_parm) == PARALLEL)
4400 emit_group_store (validize_mem (stack_parm), entry_parm,
4401 int_size_in_bytes (TREE_TYPE (parm)),
4402 TYPE_ALIGN (TREE_TYPE (parm)));
4403
4404 else
4405 move_block_from_reg (REGNO (entry_parm),
4406 validize_mem (stack_parm), nregs,
4407 int_size_in_bytes (TREE_TYPE (parm)));
4408
4409 entry_parm = stack_parm;
4410 }
4411 }
4412 #endif
4413
4414 /* If we didn't decide this parm came in a register,
4415 by default it came on the stack. */
4416 if (entry_parm == 0)
4417 entry_parm = stack_parm;
4418
4419 /* Record permanently how this parm was passed. */
4420 DECL_INCOMING_RTL (parm) = entry_parm;
4421
4422 /* If there is actually space on the stack for this parm,
4423 count it in stack_args_size; otherwise set stack_parm to 0
4424 to indicate there is no preallocated stack slot for the parm. */
4425
4426 if (entry_parm == stack_parm
4427 || (GET_CODE (entry_parm) == PARALLEL
4428 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4429 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4430 /* On some machines, even if a parm value arrives in a register
4431 there is still an (uninitialized) stack slot allocated for it.
4432
4433 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4434 whether this parameter already has a stack slot allocated,
4435 because an arg block exists only if current_function_args_size
4436 is larger than some threshold, and we haven't calculated that
4437 yet. So, for now, we just assume that stack slots never exist
4438 in this case. */
4439 || REG_PARM_STACK_SPACE (fndecl) > 0
4440 #endif
4441 )
4442 {
4443 stack_args_size.constant += arg_size.constant;
4444 if (arg_size.var)
4445 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4446 }
4447 else
4448 /* No stack slot was pushed for this parm. */
4449 stack_parm = 0;
4450
4451 /* Update info on where next arg arrives in registers. */
4452
4453 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4454 passed_type, named_arg);
4455
4456 /* If we can't trust the parm stack slot to be aligned enough
4457 for its ultimate type, don't use that slot after entry.
4458 We'll make another stack slot, if we need one. */
4459 {
4460 unsigned int thisparm_boundary
4461 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4462
4463 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4464 stack_parm = 0;
4465 }
4466
4467 /* If parm was passed in memory, and we need to convert it on entry,
4468 don't store it back in that same slot. */
4469 if (entry_parm != 0
4470 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4471 stack_parm = 0;
4472
4473 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4474 in the mode in which it arrives.
4475 STACK_PARM is an RTX for a stack slot where the parameter can live
4476 during the function (in case we want to put it there).
4477 STACK_PARM is 0 if no stack slot was pushed for it.
4478
4479 Now output code if necessary to convert ENTRY_PARM to
4480 the type in which this function declares it,
4481 and store that result in an appropriate place,
4482 which may be a pseudo reg, may be STACK_PARM,
4483 or may be a local stack slot if STACK_PARM is 0.
4484
4485 Set DECL_RTL to that place. */
4486
4487 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4488 {
4489 /* If a BLKmode arrives in registers, copy it to a stack slot.
4490 Handle calls that pass values in multiple non-contiguous
4491 locations. The Irix 6 ABI has examples of this. */
4492 if (GET_CODE (entry_parm) == REG
4493 || GET_CODE (entry_parm) == PARALLEL)
4494 {
4495 int size_stored
4496 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4497 UNITS_PER_WORD);
4498
4499 /* Note that we will be storing an integral number of words.
4500 So we have to be careful to ensure that we allocate an
4501 integral number of words. We do this below in the
4502 assign_stack_local if space was not allocated in the argument
4503 list. If it was, this will not work if PARM_BOUNDARY is not
4504 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4505 if it becomes a problem. */
4506
4507 if (stack_parm == 0)
4508 {
4509 stack_parm
4510 = assign_stack_local (GET_MODE (entry_parm),
4511 size_stored, 0);
4512 set_mem_attributes (stack_parm, parm, 1);
4513 }
4514
4515 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4516 abort ();
4517
4518 /* Handle calls that pass values in multiple non-contiguous
4519 locations. The Irix 6 ABI has examples of this. */
4520 if (GET_CODE (entry_parm) == PARALLEL)
4521 emit_group_store (validize_mem (stack_parm), entry_parm,
4522 int_size_in_bytes (TREE_TYPE (parm)),
4523 TYPE_ALIGN (TREE_TYPE (parm)));
4524 else
4525 move_block_from_reg (REGNO (entry_parm),
4526 validize_mem (stack_parm),
4527 size_stored / UNITS_PER_WORD,
4528 int_size_in_bytes (TREE_TYPE (parm)));
4529 }
4530 DECL_RTL (parm) = stack_parm;
4531 }
4532 else if (! ((! optimize
4533 && ! DECL_REGISTER (parm)
4534 && ! DECL_INLINE (fndecl))
4535 /* layout_decl may set this. */
4536 || TREE_ADDRESSABLE (parm)
4537 || TREE_SIDE_EFFECTS (parm)
4538 /* If -ffloat-store specified, don't put explicit
4539 float variables into registers. */
4540 || (flag_float_store
4541 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4542 /* Always assign pseudo to structure return or item passed
4543 by invisible reference. */
4544 || passed_pointer || parm == function_result_decl)
4545 {
4546 /* Store the parm in a pseudoregister during the function, but we
4547 may need to do it in a wider mode. */
4548
4549 register rtx parmreg;
4550 unsigned int regno, regnoi = 0, regnor = 0;
4551
4552 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4553
4554 promoted_nominal_mode
4555 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4556
4557 parmreg = gen_reg_rtx (promoted_nominal_mode);
4558 mark_user_reg (parmreg);
4559
4560 /* If this was an item that we received a pointer to, set DECL_RTL
4561 appropriately. */
4562 if (passed_pointer)
4563 {
4564 DECL_RTL (parm)
4565 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)), parmreg);
4566 set_mem_attributes (DECL_RTL (parm), parm, 1);
4567 }
4568 else
4569 DECL_RTL (parm) = parmreg;
4570
4571 /* Copy the value into the register. */
4572 if (nominal_mode != passed_mode
4573 || promoted_nominal_mode != promoted_mode)
4574 {
4575 int save_tree_used;
4576 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4577 mode, by the caller. We now have to convert it to
4578 NOMINAL_MODE, if different. However, PARMREG may be in
4579 a different mode than NOMINAL_MODE if it is being stored
4580 promoted.
4581
4582 If ENTRY_PARM is a hard register, it might be in a register
4583 not valid for operating in its mode (e.g., an odd-numbered
4584 register for a DFmode). In that case, moves are the only
4585 thing valid, so we can't do a convert from there. This
4586 occurs when the calling sequence allow such misaligned
4587 usages.
4588
4589 In addition, the conversion may involve a call, which could
4590 clobber parameters which haven't been copied to pseudo
4591 registers yet. Therefore, we must first copy the parm to
4592 a pseudo reg here, and save the conversion until after all
4593 parameters have been moved. */
4594
4595 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4596
4597 emit_move_insn (tempreg, validize_mem (entry_parm));
4598
4599 push_to_sequence (conversion_insns);
4600 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4601
4602 /* TREE_USED gets set erroneously during expand_assignment. */
4603 save_tree_used = TREE_USED (parm);
4604 expand_assignment (parm,
4605 make_tree (nominal_type, tempreg), 0, 0);
4606 TREE_USED (parm) = save_tree_used;
4607 conversion_insns = get_insns ();
4608 did_conversion = 1;
4609 end_sequence ();
4610 }
4611 else
4612 emit_move_insn (parmreg, validize_mem (entry_parm));
4613
4614 /* If we were passed a pointer but the actual value
4615 can safely live in a register, put it in one. */
4616 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4617 && ! ((! optimize
4618 && ! DECL_REGISTER (parm)
4619 && ! DECL_INLINE (fndecl))
4620 /* layout_decl may set this. */
4621 || TREE_ADDRESSABLE (parm)
4622 || TREE_SIDE_EFFECTS (parm)
4623 /* If -ffloat-store specified, don't put explicit
4624 float variables into registers. */
4625 || (flag_float_store
4626 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
4627 {
4628 /* We can't use nominal_mode, because it will have been set to
4629 Pmode above. We must use the actual mode of the parm. */
4630 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4631 mark_user_reg (parmreg);
4632 emit_move_insn (parmreg, DECL_RTL (parm));
4633 DECL_RTL (parm) = parmreg;
4634 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4635 now the parm. */
4636 stack_parm = 0;
4637 }
4638 #ifdef FUNCTION_ARG_CALLEE_COPIES
4639 /* If we are passed an arg by reference and it is our responsibility
4640 to make a copy, do it now.
4641 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4642 original argument, so we must recreate them in the call to
4643 FUNCTION_ARG_CALLEE_COPIES. */
4644 /* ??? Later add code to handle the case that if the argument isn't
4645 modified, don't do the copy. */
4646
4647 else if (passed_pointer
4648 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4649 TYPE_MODE (DECL_ARG_TYPE (parm)),
4650 DECL_ARG_TYPE (parm),
4651 named_arg)
4652 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4653 {
4654 rtx copy;
4655 tree type = DECL_ARG_TYPE (parm);
4656
4657 /* This sequence may involve a library call perhaps clobbering
4658 registers that haven't been copied to pseudos yet. */
4659
4660 push_to_sequence (conversion_insns);
4661
4662 if (!COMPLETE_TYPE_P (type)
4663 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4664 /* This is a variable sized object. */
4665 copy = gen_rtx_MEM (BLKmode,
4666 allocate_dynamic_stack_space
4667 (expr_size (parm), NULL_RTX,
4668 TYPE_ALIGN (type)));
4669 else
4670 copy = assign_stack_temp (TYPE_MODE (type),
4671 int_size_in_bytes (type), 1);
4672 set_mem_attributes (copy, parm, 1);
4673
4674 store_expr (parm, copy, 0);
4675 emit_move_insn (parmreg, XEXP (copy, 0));
4676 if (current_function_check_memory_usage)
4677 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4678 XEXP (copy, 0), Pmode,
4679 GEN_INT (int_size_in_bytes (type)),
4680 TYPE_MODE (sizetype),
4681 GEN_INT (MEMORY_USE_RW),
4682 TYPE_MODE (integer_type_node));
4683 conversion_insns = get_insns ();
4684 did_conversion = 1;
4685 end_sequence ();
4686 }
4687 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4688
4689 /* In any case, record the parm's desired stack location
4690 in case we later discover it must live in the stack.
4691
4692 If it is a COMPLEX value, store the stack location for both
4693 halves. */
4694
4695 if (GET_CODE (parmreg) == CONCAT)
4696 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4697 else
4698 regno = REGNO (parmreg);
4699
4700 if (regno >= max_parm_reg)
4701 {
4702 rtx *new;
4703 int old_max_parm_reg = max_parm_reg;
4704
4705 /* It's slow to expand this one register at a time,
4706 but it's also rare and we need max_parm_reg to be
4707 precisely correct. */
4708 max_parm_reg = regno + 1;
4709 new = (rtx *) xrealloc (parm_reg_stack_loc,
4710 max_parm_reg * sizeof (rtx));
4711 bzero ((char *) (new + old_max_parm_reg),
4712 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4713 parm_reg_stack_loc = new;
4714 }
4715
4716 if (GET_CODE (parmreg) == CONCAT)
4717 {
4718 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4719
4720 regnor = REGNO (gen_realpart (submode, parmreg));
4721 regnoi = REGNO (gen_imagpart (submode, parmreg));
4722
4723 if (stack_parm != 0)
4724 {
4725 parm_reg_stack_loc[regnor]
4726 = gen_realpart (submode, stack_parm);
4727 parm_reg_stack_loc[regnoi]
4728 = gen_imagpart (submode, stack_parm);
4729 }
4730 else
4731 {
4732 parm_reg_stack_loc[regnor] = 0;
4733 parm_reg_stack_loc[regnoi] = 0;
4734 }
4735 }
4736 else
4737 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4738
4739 /* Mark the register as eliminable if we did no conversion
4740 and it was copied from memory at a fixed offset,
4741 and the arg pointer was not copied to a pseudo-reg.
4742 If the arg pointer is a pseudo reg or the offset formed
4743 an invalid address, such memory-equivalences
4744 as we make here would screw up life analysis for it. */
4745 if (nominal_mode == passed_mode
4746 && ! did_conversion
4747 && stack_parm != 0
4748 && GET_CODE (stack_parm) == MEM
4749 && stack_offset.var == 0
4750 && reg_mentioned_p (virtual_incoming_args_rtx,
4751 XEXP (stack_parm, 0)))
4752 {
4753 rtx linsn = get_last_insn ();
4754 rtx sinsn, set;
4755
4756 /* Mark complex types separately. */
4757 if (GET_CODE (parmreg) == CONCAT)
4758 /* Scan backwards for the set of the real and
4759 imaginary parts. */
4760 for (sinsn = linsn; sinsn != 0;
4761 sinsn = prev_nonnote_insn (sinsn))
4762 {
4763 set = single_set (sinsn);
4764 if (set != 0
4765 && SET_DEST (set) == regno_reg_rtx [regnoi])
4766 REG_NOTES (sinsn)
4767 = gen_rtx_EXPR_LIST (REG_EQUIV,
4768 parm_reg_stack_loc[regnoi],
4769 REG_NOTES (sinsn));
4770 else if (set != 0
4771 && SET_DEST (set) == regno_reg_rtx [regnor])
4772 REG_NOTES (sinsn)
4773 = gen_rtx_EXPR_LIST (REG_EQUIV,
4774 parm_reg_stack_loc[regnor],
4775 REG_NOTES (sinsn));
4776 }
4777 else if ((set = single_set (linsn)) != 0
4778 && SET_DEST (set) == parmreg)
4779 REG_NOTES (linsn)
4780 = gen_rtx_EXPR_LIST (REG_EQUIV,
4781 stack_parm, REG_NOTES (linsn));
4782 }
4783
4784 /* For pointer data type, suggest pointer register. */
4785 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4786 mark_reg_pointer (parmreg,
4787 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4788
4789 }
4790 else
4791 {
4792 /* Value must be stored in the stack slot STACK_PARM
4793 during function execution. */
4794
4795 if (promoted_mode != nominal_mode)
4796 {
4797 /* Conversion is required. */
4798 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4799
4800 emit_move_insn (tempreg, validize_mem (entry_parm));
4801
4802 push_to_sequence (conversion_insns);
4803 entry_parm = convert_to_mode (nominal_mode, tempreg,
4804 TREE_UNSIGNED (TREE_TYPE (parm)));
4805 if (stack_parm)
4806 {
4807 /* ??? This may need a big-endian conversion on sparc64. */
4808 stack_parm = change_address (stack_parm, nominal_mode,
4809 NULL_RTX);
4810 }
4811 conversion_insns = get_insns ();
4812 did_conversion = 1;
4813 end_sequence ();
4814 }
4815
4816 if (entry_parm != stack_parm)
4817 {
4818 if (stack_parm == 0)
4819 {
4820 stack_parm
4821 = assign_stack_local (GET_MODE (entry_parm),
4822 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
4823 set_mem_attributes (stack_parm, parm, 1);
4824 }
4825
4826 if (promoted_mode != nominal_mode)
4827 {
4828 push_to_sequence (conversion_insns);
4829 emit_move_insn (validize_mem (stack_parm),
4830 validize_mem (entry_parm));
4831 conversion_insns = get_insns ();
4832 end_sequence ();
4833 }
4834 else
4835 emit_move_insn (validize_mem (stack_parm),
4836 validize_mem (entry_parm));
4837 }
4838 if (current_function_check_memory_usage)
4839 {
4840 push_to_sequence (conversion_insns);
4841 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4842 XEXP (stack_parm, 0), Pmode,
4843 GEN_INT (GET_MODE_SIZE (GET_MODE
4844 (entry_parm))),
4845 TYPE_MODE (sizetype),
4846 GEN_INT (MEMORY_USE_RW),
4847 TYPE_MODE (integer_type_node));
4848
4849 conversion_insns = get_insns ();
4850 end_sequence ();
4851 }
4852 DECL_RTL (parm) = stack_parm;
4853 }
4854
4855 /* If this "parameter" was the place where we are receiving the
4856 function's incoming structure pointer, set up the result. */
4857 if (parm == function_result_decl)
4858 {
4859 tree result = DECL_RESULT (fndecl);
4860
4861 DECL_RTL (result)
4862 = gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm));
4863
4864 set_mem_attributes (DECL_RTL (result), result, 1);
4865 }
4866 }
4867
4868 /* Output all parameter conversion instructions (possibly including calls)
4869 now that all parameters have been copied out of hard registers. */
4870 emit_insns (conversion_insns);
4871
4872 last_parm_insn = get_last_insn ();
4873
4874 current_function_args_size = stack_args_size.constant;
4875
4876 /* Adjust function incoming argument size for alignment and
4877 minimum length. */
4878
4879 #ifdef REG_PARM_STACK_SPACE
4880 #ifndef MAYBE_REG_PARM_STACK_SPACE
4881 current_function_args_size = MAX (current_function_args_size,
4882 REG_PARM_STACK_SPACE (fndecl));
4883 #endif
4884 #endif
4885
4886 #ifdef STACK_BOUNDARY
4887 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
4888
4889 current_function_args_size
4890 = ((current_function_args_size + STACK_BYTES - 1)
4891 / STACK_BYTES) * STACK_BYTES;
4892 #endif
4893
4894 #ifdef ARGS_GROW_DOWNWARD
4895 current_function_arg_offset_rtx
4896 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
4897 : expand_expr (size_diffop (stack_args_size.var,
4898 size_int (-stack_args_size.constant)),
4899 NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD));
4900 #else
4901 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
4902 #endif
4903
4904 /* See how many bytes, if any, of its args a function should try to pop
4905 on return. */
4906
4907 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
4908 current_function_args_size);
4909
4910 /* For stdarg.h function, save info about
4911 regs and stack space used by the named args. */
4912
4913 if (!hide_last_arg)
4914 current_function_args_info = args_so_far;
4915
4916 /* Set the rtx used for the function return value. Put this in its
4917 own variable so any optimizers that need this information don't have
4918 to include tree.h. Do this here so it gets done when an inlined
4919 function gets output. */
4920
4921 current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl));
4922 }
4923 \f
4924 /* Indicate whether REGNO is an incoming argument to the current function
4925 that was promoted to a wider mode. If so, return the RTX for the
4926 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
4927 that REGNO is promoted from and whether the promotion was signed or
4928 unsigned. */
4929
4930 #ifdef PROMOTE_FUNCTION_ARGS
4931
4932 rtx
4933 promoted_input_arg (regno, pmode, punsignedp)
4934 unsigned int regno;
4935 enum machine_mode *pmode;
4936 int *punsignedp;
4937 {
4938 tree arg;
4939
4940 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
4941 arg = TREE_CHAIN (arg))
4942 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
4943 && REGNO (DECL_INCOMING_RTL (arg)) == regno
4944 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
4945 {
4946 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
4947 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
4948
4949 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
4950 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
4951 && mode != DECL_MODE (arg))
4952 {
4953 *pmode = DECL_MODE (arg);
4954 *punsignedp = unsignedp;
4955 return DECL_INCOMING_RTL (arg);
4956 }
4957 }
4958
4959 return 0;
4960 }
4961
4962 #endif
4963 \f
4964 /* Compute the size and offset from the start of the stacked arguments for a
4965 parm passed in mode PASSED_MODE and with type TYPE.
4966
4967 INITIAL_OFFSET_PTR points to the current offset into the stacked
4968 arguments.
4969
4970 The starting offset and size for this parm are returned in *OFFSET_PTR
4971 and *ARG_SIZE_PTR, respectively.
4972
4973 IN_REGS is non-zero if the argument will be passed in registers. It will
4974 never be set if REG_PARM_STACK_SPACE is not defined.
4975
4976 FNDECL is the function in which the argument was defined.
4977
4978 There are two types of rounding that are done. The first, controlled by
4979 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
4980 list to be aligned to the specific boundary (in bits). This rounding
4981 affects the initial and starting offsets, but not the argument size.
4982
4983 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4984 optionally rounds the size of the parm to PARM_BOUNDARY. The
4985 initial offset is not affected by this rounding, while the size always
4986 is and the starting offset may be. */
4987
4988 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
4989 initial_offset_ptr is positive because locate_and_pad_parm's
4990 callers pass in the total size of args so far as
4991 initial_offset_ptr. arg_size_ptr is always positive.*/
4992
4993 void
4994 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
4995 initial_offset_ptr, offset_ptr, arg_size_ptr,
4996 alignment_pad)
4997 enum machine_mode passed_mode;
4998 tree type;
4999 int in_regs ATTRIBUTE_UNUSED;
5000 tree fndecl ATTRIBUTE_UNUSED;
5001 struct args_size *initial_offset_ptr;
5002 struct args_size *offset_ptr;
5003 struct args_size *arg_size_ptr;
5004 struct args_size *alignment_pad;
5005
5006 {
5007 tree sizetree
5008 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5009 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5010 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5011
5012 #ifdef REG_PARM_STACK_SPACE
5013 /* If we have found a stack parm before we reach the end of the
5014 area reserved for registers, skip that area. */
5015 if (! in_regs)
5016 {
5017 int reg_parm_stack_space = 0;
5018
5019 #ifdef MAYBE_REG_PARM_STACK_SPACE
5020 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5021 #else
5022 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5023 #endif
5024 if (reg_parm_stack_space > 0)
5025 {
5026 if (initial_offset_ptr->var)
5027 {
5028 initial_offset_ptr->var
5029 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5030 ssize_int (reg_parm_stack_space));
5031 initial_offset_ptr->constant = 0;
5032 }
5033 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5034 initial_offset_ptr->constant = reg_parm_stack_space;
5035 }
5036 }
5037 #endif /* REG_PARM_STACK_SPACE */
5038
5039 arg_size_ptr->var = 0;
5040 arg_size_ptr->constant = 0;
5041
5042 #ifdef ARGS_GROW_DOWNWARD
5043 if (initial_offset_ptr->var)
5044 {
5045 offset_ptr->constant = 0;
5046 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5047 initial_offset_ptr->var);
5048 }
5049 else
5050 {
5051 offset_ptr->constant = -initial_offset_ptr->constant;
5052 offset_ptr->var = 0;
5053 }
5054 if (where_pad != none
5055 && (TREE_CODE (sizetree) != INTEGER_CST
5056 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
5057 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5058 SUB_PARM_SIZE (*offset_ptr, sizetree);
5059 if (where_pad != downward)
5060 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5061 if (initial_offset_ptr->var)
5062 arg_size_ptr->var = size_binop (MINUS_EXPR,
5063 size_binop (MINUS_EXPR,
5064 ssize_int (0),
5065 initial_offset_ptr->var),
5066 offset_ptr->var);
5067
5068 else
5069 arg_size_ptr->constant = (-initial_offset_ptr->constant
5070 - offset_ptr->constant);
5071
5072 #else /* !ARGS_GROW_DOWNWARD */
5073 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5074 *offset_ptr = *initial_offset_ptr;
5075
5076 #ifdef PUSH_ROUNDING
5077 if (passed_mode != BLKmode)
5078 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5079 #endif
5080
5081 /* Pad_below needs the pre-rounded size to know how much to pad below
5082 so this must be done before rounding up. */
5083 if (where_pad == downward
5084 /* However, BLKmode args passed in regs have their padding done elsewhere.
5085 The stack slot must be able to hold the entire register. */
5086 && !(in_regs && passed_mode == BLKmode))
5087 pad_below (offset_ptr, passed_mode, sizetree);
5088
5089 if (where_pad != none
5090 && (TREE_CODE (sizetree) != INTEGER_CST
5091 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
5092 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5093
5094 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5095 #endif /* ARGS_GROW_DOWNWARD */
5096 }
5097
5098 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5099 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5100
5101 static void
5102 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5103 struct args_size *offset_ptr;
5104 int boundary;
5105 struct args_size *alignment_pad;
5106 {
5107 tree save_var = NULL_TREE;
5108 HOST_WIDE_INT save_constant = 0;
5109
5110 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5111
5112 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5113 {
5114 save_var = offset_ptr->var;
5115 save_constant = offset_ptr->constant;
5116 }
5117
5118 alignment_pad->var = NULL_TREE;
5119 alignment_pad->constant = 0;
5120
5121 if (boundary > BITS_PER_UNIT)
5122 {
5123 if (offset_ptr->var)
5124 {
5125 offset_ptr->var =
5126 #ifdef ARGS_GROW_DOWNWARD
5127 round_down
5128 #else
5129 round_up
5130 #endif
5131 (ARGS_SIZE_TREE (*offset_ptr),
5132 boundary / BITS_PER_UNIT);
5133 offset_ptr->constant = 0; /*?*/
5134 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5135 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5136 save_var);
5137 }
5138 else
5139 {
5140 offset_ptr->constant =
5141 #ifdef ARGS_GROW_DOWNWARD
5142 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5143 #else
5144 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5145 #endif
5146 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5147 alignment_pad->constant = offset_ptr->constant - save_constant;
5148 }
5149 }
5150 }
5151
5152 #ifndef ARGS_GROW_DOWNWARD
5153 static void
5154 pad_below (offset_ptr, passed_mode, sizetree)
5155 struct args_size *offset_ptr;
5156 enum machine_mode passed_mode;
5157 tree sizetree;
5158 {
5159 if (passed_mode != BLKmode)
5160 {
5161 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5162 offset_ptr->constant
5163 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5164 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5165 - GET_MODE_SIZE (passed_mode));
5166 }
5167 else
5168 {
5169 if (TREE_CODE (sizetree) != INTEGER_CST
5170 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5171 {
5172 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5173 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5174 /* Add it in. */
5175 ADD_PARM_SIZE (*offset_ptr, s2);
5176 SUB_PARM_SIZE (*offset_ptr, sizetree);
5177 }
5178 }
5179 }
5180 #endif
5181 \f
5182 /* Walk the tree of blocks describing the binding levels within a function
5183 and warn about uninitialized variables.
5184 This is done after calling flow_analysis and before global_alloc
5185 clobbers the pseudo-regs to hard regs. */
5186
5187 void
5188 uninitialized_vars_warning (block)
5189 tree block;
5190 {
5191 register tree decl, sub;
5192 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5193 {
5194 if (warn_uninitialized
5195 && TREE_CODE (decl) == VAR_DECL
5196 /* These warnings are unreliable for and aggregates
5197 because assigning the fields one by one can fail to convince
5198 flow.c that the entire aggregate was initialized.
5199 Unions are troublesome because members may be shorter. */
5200 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5201 && DECL_RTL (decl) != 0
5202 && GET_CODE (DECL_RTL (decl)) == REG
5203 /* Global optimizations can make it difficult to determine if a
5204 particular variable has been initialized. However, a VAR_DECL
5205 with a nonzero DECL_INITIAL had an initializer, so do not
5206 claim it is potentially uninitialized.
5207
5208 We do not care about the actual value in DECL_INITIAL, so we do
5209 not worry that it may be a dangling pointer. */
5210 && DECL_INITIAL (decl) == NULL_TREE
5211 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5212 warning_with_decl (decl,
5213 "`%s' might be used uninitialized in this function");
5214 if (extra_warnings
5215 && TREE_CODE (decl) == VAR_DECL
5216 && DECL_RTL (decl) != 0
5217 && GET_CODE (DECL_RTL (decl)) == REG
5218 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5219 warning_with_decl (decl,
5220 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5221 }
5222 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5223 uninitialized_vars_warning (sub);
5224 }
5225
5226 /* Do the appropriate part of uninitialized_vars_warning
5227 but for arguments instead of local variables. */
5228
5229 void
5230 setjmp_args_warning ()
5231 {
5232 register tree decl;
5233 for (decl = DECL_ARGUMENTS (current_function_decl);
5234 decl; decl = TREE_CHAIN (decl))
5235 if (DECL_RTL (decl) != 0
5236 && GET_CODE (DECL_RTL (decl)) == REG
5237 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5238 warning_with_decl (decl,
5239 "argument `%s' might be clobbered by `longjmp' or `vfork'");
5240 }
5241
5242 /* If this function call setjmp, put all vars into the stack
5243 unless they were declared `register'. */
5244
5245 void
5246 setjmp_protect (block)
5247 tree block;
5248 {
5249 register tree decl, sub;
5250 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5251 if ((TREE_CODE (decl) == VAR_DECL
5252 || TREE_CODE (decl) == PARM_DECL)
5253 && DECL_RTL (decl) != 0
5254 && (GET_CODE (DECL_RTL (decl)) == REG
5255 || (GET_CODE (DECL_RTL (decl)) == MEM
5256 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5257 /* If this variable came from an inline function, it must be
5258 that its life doesn't overlap the setjmp. If there was a
5259 setjmp in the function, it would already be in memory. We
5260 must exclude such variable because their DECL_RTL might be
5261 set to strange things such as virtual_stack_vars_rtx. */
5262 && ! DECL_FROM_INLINE (decl)
5263 && (
5264 #ifdef NON_SAVING_SETJMP
5265 /* If longjmp doesn't restore the registers,
5266 don't put anything in them. */
5267 NON_SAVING_SETJMP
5268 ||
5269 #endif
5270 ! DECL_REGISTER (decl)))
5271 put_var_into_stack (decl);
5272 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5273 setjmp_protect (sub);
5274 }
5275 \f
5276 /* Like the previous function, but for args instead of local variables. */
5277
5278 void
5279 setjmp_protect_args ()
5280 {
5281 register tree decl;
5282 for (decl = DECL_ARGUMENTS (current_function_decl);
5283 decl; decl = TREE_CHAIN (decl))
5284 if ((TREE_CODE (decl) == VAR_DECL
5285 || TREE_CODE (decl) == PARM_DECL)
5286 && DECL_RTL (decl) != 0
5287 && (GET_CODE (DECL_RTL (decl)) == REG
5288 || (GET_CODE (DECL_RTL (decl)) == MEM
5289 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5290 && (
5291 /* If longjmp doesn't restore the registers,
5292 don't put anything in them. */
5293 #ifdef NON_SAVING_SETJMP
5294 NON_SAVING_SETJMP
5295 ||
5296 #endif
5297 ! DECL_REGISTER (decl)))
5298 put_var_into_stack (decl);
5299 }
5300 \f
5301 /* Return the context-pointer register corresponding to DECL,
5302 or 0 if it does not need one. */
5303
5304 rtx
5305 lookup_static_chain (decl)
5306 tree decl;
5307 {
5308 tree context = decl_function_context (decl);
5309 tree link;
5310
5311 if (context == 0
5312 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5313 return 0;
5314
5315 /* We treat inline_function_decl as an alias for the current function
5316 because that is the inline function whose vars, types, etc.
5317 are being merged into the current function.
5318 See expand_inline_function. */
5319 if (context == current_function_decl || context == inline_function_decl)
5320 return virtual_stack_vars_rtx;
5321
5322 for (link = context_display; link; link = TREE_CHAIN (link))
5323 if (TREE_PURPOSE (link) == context)
5324 return RTL_EXPR_RTL (TREE_VALUE (link));
5325
5326 abort ();
5327 }
5328 \f
5329 /* Convert a stack slot address ADDR for variable VAR
5330 (from a containing function)
5331 into an address valid in this function (using a static chain). */
5332
5333 rtx
5334 fix_lexical_addr (addr, var)
5335 rtx addr;
5336 tree var;
5337 {
5338 rtx basereg;
5339 HOST_WIDE_INT displacement;
5340 tree context = decl_function_context (var);
5341 struct function *fp;
5342 rtx base = 0;
5343
5344 /* If this is the present function, we need not do anything. */
5345 if (context == current_function_decl || context == inline_function_decl)
5346 return addr;
5347
5348 for (fp = outer_function_chain; fp; fp = fp->next)
5349 if (fp->decl == context)
5350 break;
5351
5352 if (fp == 0)
5353 abort ();
5354
5355 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5356 addr = XEXP (XEXP (addr, 0), 0);
5357
5358 /* Decode given address as base reg plus displacement. */
5359 if (GET_CODE (addr) == REG)
5360 basereg = addr, displacement = 0;
5361 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5362 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5363 else
5364 abort ();
5365
5366 /* We accept vars reached via the containing function's
5367 incoming arg pointer and via its stack variables pointer. */
5368 if (basereg == fp->internal_arg_pointer)
5369 {
5370 /* If reached via arg pointer, get the arg pointer value
5371 out of that function's stack frame.
5372
5373 There are two cases: If a separate ap is needed, allocate a
5374 slot in the outer function for it and dereference it that way.
5375 This is correct even if the real ap is actually a pseudo.
5376 Otherwise, just adjust the offset from the frame pointer to
5377 compensate. */
5378
5379 #ifdef NEED_SEPARATE_AP
5380 rtx addr;
5381
5382 if (fp->x_arg_pointer_save_area == 0)
5383 fp->x_arg_pointer_save_area
5384 = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
5385
5386 addr = fix_lexical_addr (XEXP (fp->x_arg_pointer_save_area, 0), var);
5387 addr = memory_address (Pmode, addr);
5388
5389 base = gen_rtx_MEM (Pmode, addr);
5390 MEM_ALIAS_SET (base) = get_frame_alias_set ();
5391 base = copy_to_reg (base);
5392 #else
5393 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5394 base = lookup_static_chain (var);
5395 #endif
5396 }
5397
5398 else if (basereg == virtual_stack_vars_rtx)
5399 {
5400 /* This is the same code as lookup_static_chain, duplicated here to
5401 avoid an extra call to decl_function_context. */
5402 tree link;
5403
5404 for (link = context_display; link; link = TREE_CHAIN (link))
5405 if (TREE_PURPOSE (link) == context)
5406 {
5407 base = RTL_EXPR_RTL (TREE_VALUE (link));
5408 break;
5409 }
5410 }
5411
5412 if (base == 0)
5413 abort ();
5414
5415 /* Use same offset, relative to appropriate static chain or argument
5416 pointer. */
5417 return plus_constant (base, displacement);
5418 }
5419 \f
5420 /* Return the address of the trampoline for entering nested fn FUNCTION.
5421 If necessary, allocate a trampoline (in the stack frame)
5422 and emit rtl to initialize its contents (at entry to this function). */
5423
5424 rtx
5425 trampoline_address (function)
5426 tree function;
5427 {
5428 tree link;
5429 tree rtlexp;
5430 rtx tramp;
5431 struct function *fp;
5432 tree fn_context;
5433
5434 /* Find an existing trampoline and return it. */
5435 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5436 if (TREE_PURPOSE (link) == function)
5437 return
5438 round_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5439
5440 for (fp = outer_function_chain; fp; fp = fp->next)
5441 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5442 if (TREE_PURPOSE (link) == function)
5443 {
5444 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5445 function);
5446 return round_trampoline_addr (tramp);
5447 }
5448
5449 /* None exists; we must make one. */
5450
5451 /* Find the `struct function' for the function containing FUNCTION. */
5452 fp = 0;
5453 fn_context = decl_function_context (function);
5454 if (fn_context != current_function_decl
5455 && fn_context != inline_function_decl)
5456 for (fp = outer_function_chain; fp; fp = fp->next)
5457 if (fp->decl == fn_context)
5458 break;
5459
5460 /* Allocate run-time space for this trampoline
5461 (usually in the defining function's stack frame). */
5462 #ifdef ALLOCATE_TRAMPOLINE
5463 tramp = ALLOCATE_TRAMPOLINE (fp);
5464 #else
5465 /* If rounding needed, allocate extra space
5466 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5467 #ifdef TRAMPOLINE_ALIGNMENT
5468 #define TRAMPOLINE_REAL_SIZE \
5469 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5470 #else
5471 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5472 #endif
5473 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5474 fp ? fp : cfun);
5475 #endif
5476
5477 /* Record the trampoline for reuse and note it for later initialization
5478 by expand_function_end. */
5479 if (fp != 0)
5480 {
5481 push_obstacks (fp->function_maybepermanent_obstack,
5482 fp->function_maybepermanent_obstack);
5483 rtlexp = make_node (RTL_EXPR);
5484 RTL_EXPR_RTL (rtlexp) = tramp;
5485 fp->x_trampoline_list = tree_cons (function, rtlexp,
5486 fp->x_trampoline_list);
5487 pop_obstacks ();
5488 }
5489 else
5490 {
5491 /* Make the RTL_EXPR node temporary, not momentary, so that the
5492 trampoline_list doesn't become garbage. */
5493 int momentary = suspend_momentary ();
5494 rtlexp = make_node (RTL_EXPR);
5495 resume_momentary (momentary);
5496
5497 RTL_EXPR_RTL (rtlexp) = tramp;
5498 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5499 }
5500
5501 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5502 return round_trampoline_addr (tramp);
5503 }
5504
5505 /* Given a trampoline address,
5506 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5507
5508 static rtx
5509 round_trampoline_addr (tramp)
5510 rtx tramp;
5511 {
5512 #ifdef TRAMPOLINE_ALIGNMENT
5513 /* Round address up to desired boundary. */
5514 rtx temp = gen_reg_rtx (Pmode);
5515 temp = expand_binop (Pmode, add_optab, tramp,
5516 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
5517 temp, 0, OPTAB_LIB_WIDEN);
5518 tramp = expand_binop (Pmode, and_optab, temp,
5519 GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
5520 temp, 0, OPTAB_LIB_WIDEN);
5521 #endif
5522 return tramp;
5523 }
5524 \f
5525 /* Put all this function's BLOCK nodes including those that are chained
5526 onto the first block into a vector, and return it.
5527 Also store in each NOTE for the beginning or end of a block
5528 the index of that block in the vector.
5529 The arguments are BLOCK, the chain of top-level blocks of the function,
5530 and INSNS, the insn chain of the function. */
5531
5532 void
5533 identify_blocks ()
5534 {
5535 int n_blocks;
5536 tree *block_vector, *last_block_vector;
5537 tree *block_stack;
5538 tree block = DECL_INITIAL (current_function_decl);
5539
5540 if (block == 0)
5541 return;
5542
5543 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5544 depth-first order. */
5545 block_vector = get_block_vector (block, &n_blocks);
5546 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5547
5548 last_block_vector = identify_blocks_1 (get_insns (),
5549 block_vector + 1,
5550 block_vector + n_blocks,
5551 block_stack);
5552
5553 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5554 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5555 if (0 && last_block_vector != block_vector + n_blocks)
5556 abort ();
5557
5558 free (block_vector);
5559 free (block_stack);
5560 }
5561
5562 /* Subroutine of identify_blocks. Do the block substitution on the
5563 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5564
5565 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5566 BLOCK_VECTOR is incremented for each block seen. */
5567
5568 static tree *
5569 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5570 rtx insns;
5571 tree *block_vector;
5572 tree *end_block_vector;
5573 tree *orig_block_stack;
5574 {
5575 rtx insn;
5576 tree *block_stack = orig_block_stack;
5577
5578 for (insn = insns; insn; insn = NEXT_INSN (insn))
5579 {
5580 if (GET_CODE (insn) == NOTE)
5581 {
5582 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5583 {
5584 tree b;
5585
5586 /* If there are more block notes than BLOCKs, something
5587 is badly wrong. */
5588 if (block_vector == end_block_vector)
5589 abort ();
5590
5591 b = *block_vector++;
5592 NOTE_BLOCK (insn) = b;
5593 *block_stack++ = b;
5594 }
5595 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5596 {
5597 /* If there are more NOTE_INSN_BLOCK_ENDs than
5598 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5599 if (block_stack == orig_block_stack)
5600 abort ();
5601
5602 NOTE_BLOCK (insn) = *--block_stack;
5603 }
5604 }
5605 else if (GET_CODE (insn) == CALL_INSN
5606 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5607 {
5608 rtx cp = PATTERN (insn);
5609
5610 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5611 end_block_vector, block_stack);
5612 if (XEXP (cp, 1))
5613 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5614 end_block_vector, block_stack);
5615 if (XEXP (cp, 2))
5616 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5617 end_block_vector, block_stack);
5618 }
5619 }
5620
5621 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5622 something is badly wrong. */
5623 if (block_stack != orig_block_stack)
5624 abort ();
5625
5626 return block_vector;
5627 }
5628
5629 /* Identify BLOCKs referenced by more than one
5630 NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */
5631
5632 void
5633 reorder_blocks ()
5634 {
5635 tree block = DECL_INITIAL (current_function_decl);
5636 varray_type block_stack;
5637
5638 if (block == NULL_TREE)
5639 return;
5640
5641 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5642
5643 /* Prune the old trees away, so that they don't get in the way. */
5644 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5645 BLOCK_CHAIN (block) = NULL_TREE;
5646
5647 reorder_blocks_1 (get_insns (), block, &block_stack);
5648
5649 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5650
5651 VARRAY_FREE (block_stack);
5652 }
5653
5654 /* Helper function for reorder_blocks. Process the insn chain beginning
5655 at INSNS. Recurse for CALL_PLACEHOLDER insns. */
5656
5657 static void
5658 reorder_blocks_1 (insns, current_block, p_block_stack)
5659 rtx insns;
5660 tree current_block;
5661 varray_type *p_block_stack;
5662 {
5663 rtx insn;
5664
5665 for (insn = insns; insn; insn = NEXT_INSN (insn))
5666 {
5667 if (GET_CODE (insn) == NOTE)
5668 {
5669 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5670 {
5671 tree block = NOTE_BLOCK (insn);
5672 /* If we have seen this block before, copy it. */
5673 if (TREE_ASM_WRITTEN (block))
5674 {
5675 block = copy_node (block);
5676 NOTE_BLOCK (insn) = block;
5677 }
5678 BLOCK_SUBBLOCKS (block) = 0;
5679 TREE_ASM_WRITTEN (block) = 1;
5680 BLOCK_SUPERCONTEXT (block) = current_block;
5681 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5682 BLOCK_SUBBLOCKS (current_block) = block;
5683 current_block = block;
5684 VARRAY_PUSH_TREE (*p_block_stack, block);
5685 }
5686 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5687 {
5688 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
5689 VARRAY_POP (*p_block_stack);
5690 BLOCK_SUBBLOCKS (current_block)
5691 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5692 current_block = BLOCK_SUPERCONTEXT (current_block);
5693 }
5694 }
5695 else if (GET_CODE (insn) == CALL_INSN
5696 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5697 {
5698 rtx cp = PATTERN (insn);
5699 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
5700 if (XEXP (cp, 1))
5701 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
5702 if (XEXP (cp, 2))
5703 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
5704 }
5705 }
5706 }
5707
5708 /* Reverse the order of elements in the chain T of blocks,
5709 and return the new head of the chain (old last element). */
5710
5711 static tree
5712 blocks_nreverse (t)
5713 tree t;
5714 {
5715 register tree prev = 0, decl, next;
5716 for (decl = t; decl; decl = next)
5717 {
5718 next = BLOCK_CHAIN (decl);
5719 BLOCK_CHAIN (decl) = prev;
5720 prev = decl;
5721 }
5722 return prev;
5723 }
5724
5725 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
5726 non-NULL, list them all into VECTOR, in a depth-first preorder
5727 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
5728 blocks. */
5729
5730 static int
5731 all_blocks (block, vector)
5732 tree block;
5733 tree *vector;
5734 {
5735 int n_blocks = 0;
5736
5737 while (block)
5738 {
5739 TREE_ASM_WRITTEN (block) = 0;
5740
5741 /* Record this block. */
5742 if (vector)
5743 vector[n_blocks] = block;
5744
5745 ++n_blocks;
5746
5747 /* Record the subblocks, and their subblocks... */
5748 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
5749 vector ? vector + n_blocks : 0);
5750 block = BLOCK_CHAIN (block);
5751 }
5752
5753 return n_blocks;
5754 }
5755
5756 /* Return a vector containing all the blocks rooted at BLOCK. The
5757 number of elements in the vector is stored in N_BLOCKS_P. The
5758 vector is dynamically allocated; it is the caller's responsibility
5759 to call `free' on the pointer returned. */
5760
5761 static tree *
5762 get_block_vector (block, n_blocks_p)
5763 tree block;
5764 int *n_blocks_p;
5765 {
5766 tree *block_vector;
5767
5768 *n_blocks_p = all_blocks (block, NULL);
5769 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
5770 all_blocks (block, block_vector);
5771
5772 return block_vector;
5773 }
5774
5775 static int next_block_index = 2;
5776
5777 /* Set BLOCK_NUMBER for all the blocks in FN. */
5778
5779 void
5780 number_blocks (fn)
5781 tree fn;
5782 {
5783 int i;
5784 int n_blocks;
5785 tree *block_vector;
5786
5787 /* For SDB and XCOFF debugging output, we start numbering the blocks
5788 from 1 within each function, rather than keeping a running
5789 count. */
5790 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
5791 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
5792 next_block_index = 1;
5793 #endif
5794
5795 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
5796
5797 /* The top-level BLOCK isn't numbered at all. */
5798 for (i = 1; i < n_blocks; ++i)
5799 /* We number the blocks from two. */
5800 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
5801
5802 free (block_vector);
5803
5804 return;
5805 }
5806 \f
5807 /* Allocate a function structure and reset its contents to the defaults. */
5808 static void
5809 prepare_function_start ()
5810 {
5811 cfun = (struct function *) xcalloc (1, sizeof (struct function));
5812
5813 init_stmt_for_function ();
5814 init_eh_for_function ();
5815
5816 cse_not_expected = ! optimize;
5817
5818 /* Caller save not needed yet. */
5819 caller_save_needed = 0;
5820
5821 /* No stack slots have been made yet. */
5822 stack_slot_list = 0;
5823
5824 current_function_has_nonlocal_label = 0;
5825 current_function_has_nonlocal_goto = 0;
5826
5827 /* There is no stack slot for handling nonlocal gotos. */
5828 nonlocal_goto_handler_slots = 0;
5829 nonlocal_goto_stack_level = 0;
5830
5831 /* No labels have been declared for nonlocal use. */
5832 nonlocal_labels = 0;
5833 nonlocal_goto_handler_labels = 0;
5834
5835 /* No function calls so far in this function. */
5836 function_call_count = 0;
5837
5838 /* No parm regs have been allocated.
5839 (This is important for output_inline_function.) */
5840 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
5841
5842 /* Initialize the RTL mechanism. */
5843 init_emit ();
5844
5845 /* Initialize the queue of pending postincrement and postdecrements,
5846 and some other info in expr.c. */
5847 init_expr ();
5848
5849 /* We haven't done register allocation yet. */
5850 reg_renumber = 0;
5851
5852 init_varasm_status (cfun);
5853
5854 /* Clear out data used for inlining. */
5855 cfun->inlinable = 0;
5856 cfun->original_decl_initial = 0;
5857 cfun->original_arg_vector = 0;
5858
5859 #ifdef STACK_BOUNDARY
5860 cfun->stack_alignment_needed = STACK_BOUNDARY;
5861 cfun->preferred_stack_boundary = STACK_BOUNDARY;
5862 #else
5863 cfun->stack_alignment_needed = 0;
5864 cfun->preferred_stack_boundary = 0;
5865 #endif
5866
5867 /* Set if a call to setjmp is seen. */
5868 current_function_calls_setjmp = 0;
5869
5870 /* Set if a call to longjmp is seen. */
5871 current_function_calls_longjmp = 0;
5872
5873 current_function_calls_alloca = 0;
5874 current_function_contains_functions = 0;
5875 current_function_is_leaf = 0;
5876 current_function_nothrow = 0;
5877 current_function_sp_is_unchanging = 0;
5878 current_function_uses_only_leaf_regs = 0;
5879 current_function_has_computed_jump = 0;
5880 current_function_is_thunk = 0;
5881
5882 current_function_returns_pcc_struct = 0;
5883 current_function_returns_struct = 0;
5884 current_function_epilogue_delay_list = 0;
5885 current_function_uses_const_pool = 0;
5886 current_function_uses_pic_offset_table = 0;
5887 current_function_cannot_inline = 0;
5888
5889 /* We have not yet needed to make a label to jump to for tail-recursion. */
5890 tail_recursion_label = 0;
5891
5892 /* We haven't had a need to make a save area for ap yet. */
5893 arg_pointer_save_area = 0;
5894
5895 /* No stack slots allocated yet. */
5896 frame_offset = 0;
5897
5898 /* No SAVE_EXPRs in this function yet. */
5899 save_expr_regs = 0;
5900
5901 /* No RTL_EXPRs in this function yet. */
5902 rtl_expr_chain = 0;
5903
5904 /* Set up to allocate temporaries. */
5905 init_temp_slots ();
5906
5907 /* Indicate that we need to distinguish between the return value of the
5908 present function and the return value of a function being called. */
5909 rtx_equal_function_value_matters = 1;
5910
5911 /* Indicate that we have not instantiated virtual registers yet. */
5912 virtuals_instantiated = 0;
5913
5914 /* Indicate we have no need of a frame pointer yet. */
5915 frame_pointer_needed = 0;
5916
5917 /* By default assume not varargs or stdarg. */
5918 current_function_varargs = 0;
5919 current_function_stdarg = 0;
5920
5921 /* We haven't made any trampolines for this function yet. */
5922 trampoline_list = 0;
5923
5924 init_pending_stack_adjust ();
5925 inhibit_defer_pop = 0;
5926
5927 current_function_outgoing_args_size = 0;
5928
5929 if (init_lang_status)
5930 (*init_lang_status) (cfun);
5931 if (init_machine_status)
5932 (*init_machine_status) (cfun);
5933 }
5934
5935 /* Initialize the rtl expansion mechanism so that we can do simple things
5936 like generate sequences. This is used to provide a context during global
5937 initialization of some passes. */
5938 void
5939 init_dummy_function_start ()
5940 {
5941 prepare_function_start ();
5942 }
5943
5944 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5945 and initialize static variables for generating RTL for the statements
5946 of the function. */
5947
5948 void
5949 init_function_start (subr, filename, line)
5950 tree subr;
5951 const char *filename;
5952 int line;
5953 {
5954 prepare_function_start ();
5955
5956 /* Remember this function for later. */
5957 cfun->next_global = all_functions;
5958 all_functions = cfun;
5959
5960 current_function_name = (*decl_printable_name) (subr, 2);
5961 cfun->decl = subr;
5962
5963 /* Nonzero if this is a nested function that uses a static chain. */
5964
5965 current_function_needs_context
5966 = (decl_function_context (current_function_decl) != 0
5967 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
5968
5969 /* Within function body, compute a type's size as soon it is laid out. */
5970 immediate_size_expand++;
5971
5972 /* Prevent ever trying to delete the first instruction of a function.
5973 Also tell final how to output a linenum before the function prologue.
5974 Note linenums could be missing, e.g. when compiling a Java .class file. */
5975 if (line > 0)
5976 emit_line_note (filename, line);
5977
5978 /* Make sure first insn is a note even if we don't want linenums.
5979 This makes sure the first insn will never be deleted.
5980 Also, final expects a note to appear there. */
5981 emit_note (NULL_PTR, NOTE_INSN_DELETED);
5982
5983 /* Set flags used by final.c. */
5984 if (aggregate_value_p (DECL_RESULT (subr)))
5985 {
5986 #ifdef PCC_STATIC_STRUCT_RETURN
5987 current_function_returns_pcc_struct = 1;
5988 #endif
5989 current_function_returns_struct = 1;
5990 }
5991
5992 /* Warn if this value is an aggregate type,
5993 regardless of which calling convention we are using for it. */
5994 if (warn_aggregate_return
5995 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
5996 warning ("function returns an aggregate");
5997
5998 current_function_returns_pointer
5999 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
6000 }
6001
6002 /* Make sure all values used by the optimization passes have sane
6003 defaults. */
6004 void
6005 init_function_for_compilation ()
6006 {
6007 reg_renumber = 0;
6008
6009 /* No prologue/epilogue insns yet. */
6010 VARRAY_GROW (prologue, 0);
6011 VARRAY_GROW (epilogue, 0);
6012 VARRAY_GROW (sibcall_epilogue, 0);
6013 }
6014
6015 /* Indicate that the current function uses extra args
6016 not explicitly mentioned in the argument list in any fashion. */
6017
6018 void
6019 mark_varargs ()
6020 {
6021 current_function_varargs = 1;
6022 }
6023
6024 /* Expand a call to __main at the beginning of a possible main function. */
6025
6026 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6027 #undef HAS_INIT_SECTION
6028 #define HAS_INIT_SECTION
6029 #endif
6030
6031 void
6032 expand_main_function ()
6033 {
6034 #if !defined (HAS_INIT_SECTION)
6035 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0,
6036 VOIDmode, 0);
6037 #endif /* not HAS_INIT_SECTION */
6038 }
6039 \f
6040 extern struct obstack permanent_obstack;
6041
6042 /* Start the RTL for a new function, and set variables used for
6043 emitting RTL.
6044 SUBR is the FUNCTION_DECL node.
6045 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6046 the function's parameters, which must be run at any return statement. */
6047
6048 void
6049 expand_function_start (subr, parms_have_cleanups)
6050 tree subr;
6051 int parms_have_cleanups;
6052 {
6053 tree tem;
6054 rtx last_ptr = NULL_RTX;
6055
6056 /* Make sure volatile mem refs aren't considered
6057 valid operands of arithmetic insns. */
6058 init_recog_no_volatile ();
6059
6060 /* Set this before generating any memory accesses. */
6061 current_function_check_memory_usage
6062 = (flag_check_memory_usage
6063 && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl));
6064
6065 current_function_instrument_entry_exit
6066 = (flag_instrument_function_entry_exit
6067 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6068
6069 current_function_limit_stack
6070 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6071
6072 /* If function gets a static chain arg, store it in the stack frame.
6073 Do this first, so it gets the first stack slot offset. */
6074 if (current_function_needs_context)
6075 {
6076 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6077
6078 /* Delay copying static chain if it is not a register to avoid
6079 conflicts with regs used for parameters. */
6080 if (! SMALL_REGISTER_CLASSES
6081 || GET_CODE (static_chain_incoming_rtx) == REG)
6082 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6083 }
6084
6085 /* If the parameters of this function need cleaning up, get a label
6086 for the beginning of the code which executes those cleanups. This must
6087 be done before doing anything with return_label. */
6088 if (parms_have_cleanups)
6089 cleanup_label = gen_label_rtx ();
6090 else
6091 cleanup_label = 0;
6092
6093 /* Make the label for return statements to jump to, if this machine
6094 does not have a one-instruction return and uses an epilogue,
6095 or if it returns a structure, or if it has parm cleanups. */
6096 #ifdef HAVE_return
6097 if (cleanup_label == 0 && HAVE_return
6098 && ! current_function_instrument_entry_exit
6099 && ! current_function_returns_pcc_struct
6100 && ! (current_function_returns_struct && ! optimize))
6101 return_label = 0;
6102 else
6103 return_label = gen_label_rtx ();
6104 #else
6105 return_label = gen_label_rtx ();
6106 #endif
6107
6108 /* Initialize rtx used to return the value. */
6109 /* Do this before assign_parms so that we copy the struct value address
6110 before any library calls that assign parms might generate. */
6111
6112 /* Decide whether to return the value in memory or in a register. */
6113 if (aggregate_value_p (DECL_RESULT (subr)))
6114 {
6115 /* Returning something that won't go in a register. */
6116 register rtx value_address = 0;
6117
6118 #ifdef PCC_STATIC_STRUCT_RETURN
6119 if (current_function_returns_pcc_struct)
6120 {
6121 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6122 value_address = assemble_static_space (size);
6123 }
6124 else
6125 #endif
6126 {
6127 /* Expect to be passed the address of a place to store the value.
6128 If it is passed as an argument, assign_parms will take care of
6129 it. */
6130 if (struct_value_incoming_rtx)
6131 {
6132 value_address = gen_reg_rtx (Pmode);
6133 emit_move_insn (value_address, struct_value_incoming_rtx);
6134 }
6135 }
6136 if (value_address)
6137 {
6138 DECL_RTL (DECL_RESULT (subr))
6139 = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6140 set_mem_attributes (DECL_RTL (DECL_RESULT (subr)),
6141 DECL_RESULT (subr), 1);
6142 }
6143 }
6144 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6145 /* If return mode is void, this decl rtl should not be used. */
6146 DECL_RTL (DECL_RESULT (subr)) = 0;
6147 else if (parms_have_cleanups || current_function_instrument_entry_exit)
6148 {
6149 /* If function will end with cleanup code for parms,
6150 compute the return values into a pseudo reg,
6151 which we will copy into the true return register
6152 after the cleanups are done. */
6153
6154 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
6155
6156 #ifdef PROMOTE_FUNCTION_RETURN
6157 tree type = TREE_TYPE (DECL_RESULT (subr));
6158 int unsignedp = TREE_UNSIGNED (type);
6159
6160 mode = promote_mode (type, mode, &unsignedp, 1);
6161 #endif
6162
6163 DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode);
6164 }
6165 else
6166 /* Scalar, returned in a register. */
6167 {
6168 DECL_RTL (DECL_RESULT (subr))
6169 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)), subr, 1);
6170
6171 /* Mark this reg as the function's return value. */
6172 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
6173 {
6174 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
6175 /* Needed because we may need to move this to memory
6176 in case it's a named return value whose address is taken. */
6177 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6178 }
6179 }
6180
6181 /* Initialize rtx for parameters and local variables.
6182 In some cases this requires emitting insns. */
6183
6184 assign_parms (subr);
6185
6186 /* Copy the static chain now if it wasn't a register. The delay is to
6187 avoid conflicts with the parameter passing registers. */
6188
6189 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6190 if (GET_CODE (static_chain_incoming_rtx) != REG)
6191 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6192
6193 /* The following was moved from init_function_start.
6194 The move is supposed to make sdb output more accurate. */
6195 /* Indicate the beginning of the function body,
6196 as opposed to parm setup. */
6197 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
6198
6199 if (GET_CODE (get_last_insn ()) != NOTE)
6200 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6201 parm_birth_insn = get_last_insn ();
6202
6203 context_display = 0;
6204 if (current_function_needs_context)
6205 {
6206 /* Fetch static chain values for containing functions. */
6207 tem = decl_function_context (current_function_decl);
6208 /* Copy the static chain pointer into a pseudo. If we have
6209 small register classes, copy the value from memory if
6210 static_chain_incoming_rtx is a REG. */
6211 if (tem)
6212 {
6213 /* If the static chain originally came in a register, put it back
6214 there, then move it out in the next insn. The reason for
6215 this peculiar code is to satisfy function integration. */
6216 if (SMALL_REGISTER_CLASSES
6217 && GET_CODE (static_chain_incoming_rtx) == REG)
6218 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6219 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6220 }
6221
6222 while (tem)
6223 {
6224 tree rtlexp = make_node (RTL_EXPR);
6225
6226 RTL_EXPR_RTL (rtlexp) = last_ptr;
6227 context_display = tree_cons (tem, rtlexp, context_display);
6228 tem = decl_function_context (tem);
6229 if (tem == 0)
6230 break;
6231 /* Chain thru stack frames, assuming pointer to next lexical frame
6232 is found at the place we always store it. */
6233 #ifdef FRAME_GROWS_DOWNWARD
6234 last_ptr = plus_constant (last_ptr, -GET_MODE_SIZE (Pmode));
6235 #endif
6236 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6237 MEM_ALIAS_SET (last_ptr) = get_frame_alias_set ();
6238 last_ptr = copy_to_reg (last_ptr);
6239
6240 /* If we are not optimizing, ensure that we know that this
6241 piece of context is live over the entire function. */
6242 if (! optimize)
6243 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6244 save_expr_regs);
6245 }
6246 }
6247
6248 if (current_function_instrument_entry_exit)
6249 {
6250 rtx fun = DECL_RTL (current_function_decl);
6251 if (GET_CODE (fun) == MEM)
6252 fun = XEXP (fun, 0);
6253 else
6254 abort ();
6255 emit_library_call (profile_function_entry_libfunc, 0, VOIDmode, 2,
6256 fun, Pmode,
6257 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6258 0,
6259 hard_frame_pointer_rtx),
6260 Pmode);
6261 }
6262
6263 /* After the display initializations is where the tail-recursion label
6264 should go, if we end up needing one. Ensure we have a NOTE here
6265 since some things (like trampolines) get placed before this. */
6266 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
6267
6268 /* Evaluate now the sizes of any types declared among the arguments. */
6269 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
6270 {
6271 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode,
6272 EXPAND_MEMORY_USE_BAD);
6273 /* Flush the queue in case this parameter declaration has
6274 side-effects. */
6275 emit_queue ();
6276 }
6277
6278 /* Make sure there is a line number after the function entry setup code. */
6279 force_next_line_note ();
6280 }
6281 \f
6282 /* Undo the effects of init_dummy_function_start. */
6283 void
6284 expand_dummy_function_end ()
6285 {
6286 /* End any sequences that failed to be closed due to syntax errors. */
6287 while (in_sequence_p ())
6288 end_sequence ();
6289
6290 /* Outside function body, can't compute type's actual size
6291 until next function's body starts. */
6292
6293 free_after_parsing (cfun);
6294 free_after_compilation (cfun);
6295 free (cfun);
6296 cfun = 0;
6297 }
6298
6299 /* Call DOIT for each hard register used as a return value from
6300 the current function. */
6301
6302 void
6303 diddle_return_value (doit, arg)
6304 void (*doit) PARAMS ((rtx, void *));
6305 void *arg;
6306 {
6307 rtx outgoing = current_function_return_rtx;
6308 int pcc;
6309
6310 if (! outgoing)
6311 return;
6312
6313 pcc = (current_function_returns_struct
6314 || current_function_returns_pcc_struct);
6315
6316 if ((GET_CODE (outgoing) == REG
6317 && REGNO (outgoing) >= FIRST_PSEUDO_REGISTER)
6318 || pcc)
6319 {
6320 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6321
6322 /* A PCC-style return returns a pointer to the memory in which
6323 the structure is stored. */
6324 if (pcc)
6325 type = build_pointer_type (type);
6326
6327 #ifdef FUNCTION_OUTGOING_VALUE
6328 outgoing = FUNCTION_OUTGOING_VALUE (type, current_function_decl);
6329 #else
6330 outgoing = FUNCTION_VALUE (type, current_function_decl);
6331 #endif
6332 /* If this is a BLKmode structure being returned in registers, then use
6333 the mode computed in expand_return. */
6334 if (GET_MODE (outgoing) == BLKmode)
6335 PUT_MODE (outgoing,
6336 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6337 REG_FUNCTION_VALUE_P (outgoing) = 1;
6338 }
6339
6340 if (GET_CODE (outgoing) == REG)
6341 (*doit) (outgoing, arg);
6342 else if (GET_CODE (outgoing) == PARALLEL)
6343 {
6344 int i;
6345
6346 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6347 {
6348 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6349
6350 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6351 (*doit) (x, arg);
6352 }
6353 }
6354 }
6355
6356 static void
6357 do_clobber_return_reg (reg, arg)
6358 rtx reg;
6359 void *arg ATTRIBUTE_UNUSED;
6360 {
6361 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6362 }
6363
6364 void
6365 clobber_return_register ()
6366 {
6367 diddle_return_value (do_clobber_return_reg, NULL);
6368 }
6369
6370 static void
6371 do_use_return_reg (reg, arg)
6372 rtx reg;
6373 void *arg ATTRIBUTE_UNUSED;
6374 {
6375 emit_insn (gen_rtx_USE (VOIDmode, reg));
6376 }
6377
6378 void
6379 use_return_register ()
6380 {
6381 diddle_return_value (do_use_return_reg, NULL);
6382 }
6383
6384 /* Generate RTL for the end of the current function.
6385 FILENAME and LINE are the current position in the source file.
6386
6387 It is up to language-specific callers to do cleanups for parameters--
6388 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6389
6390 void
6391 expand_function_end (filename, line, end_bindings)
6392 const char *filename;
6393 int line;
6394 int end_bindings;
6395 {
6396 tree link;
6397
6398 #ifdef TRAMPOLINE_TEMPLATE
6399 static rtx initial_trampoline;
6400 #endif
6401
6402 finish_expr_for_function ();
6403
6404 #ifdef NON_SAVING_SETJMP
6405 /* Don't put any variables in registers if we call setjmp
6406 on a machine that fails to restore the registers. */
6407 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6408 {
6409 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6410 setjmp_protect (DECL_INITIAL (current_function_decl));
6411
6412 setjmp_protect_args ();
6413 }
6414 #endif
6415
6416 /* Save the argument pointer if a save area was made for it. */
6417 if (arg_pointer_save_area)
6418 {
6419 /* arg_pointer_save_area may not be a valid memory address, so we
6420 have to check it and fix it if necessary. */
6421 rtx seq;
6422 start_sequence ();
6423 emit_move_insn (validize_mem (arg_pointer_save_area),
6424 virtual_incoming_args_rtx);
6425 seq = gen_sequence ();
6426 end_sequence ();
6427 emit_insn_before (seq, tail_recursion_reentry);
6428 }
6429
6430 /* Initialize any trampolines required by this function. */
6431 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6432 {
6433 tree function = TREE_PURPOSE (link);
6434 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6435 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6436 #ifdef TRAMPOLINE_TEMPLATE
6437 rtx blktramp;
6438 #endif
6439 rtx seq;
6440
6441 #ifdef TRAMPOLINE_TEMPLATE
6442 /* First make sure this compilation has a template for
6443 initializing trampolines. */
6444 if (initial_trampoline == 0)
6445 {
6446 end_temporary_allocation ();
6447 initial_trampoline
6448 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6449 resume_temporary_allocation ();
6450
6451 ggc_add_rtx_root (&initial_trampoline, 1);
6452 }
6453 #endif
6454
6455 /* Generate insns to initialize the trampoline. */
6456 start_sequence ();
6457 tramp = round_trampoline_addr (XEXP (tramp, 0));
6458 #ifdef TRAMPOLINE_TEMPLATE
6459 blktramp = change_address (initial_trampoline, BLKmode, tramp);
6460 emit_block_move (blktramp, initial_trampoline,
6461 GEN_INT (TRAMPOLINE_SIZE),
6462 TRAMPOLINE_ALIGNMENT);
6463 #endif
6464 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6465 seq = get_insns ();
6466 end_sequence ();
6467
6468 /* Put those insns at entry to the containing function (this one). */
6469 emit_insns_before (seq, tail_recursion_reentry);
6470 }
6471
6472 /* If we are doing stack checking and this function makes calls,
6473 do a stack probe at the start of the function to ensure we have enough
6474 space for another stack frame. */
6475 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6476 {
6477 rtx insn, seq;
6478
6479 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6480 if (GET_CODE (insn) == CALL_INSN)
6481 {
6482 start_sequence ();
6483 probe_stack_range (STACK_CHECK_PROTECT,
6484 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6485 seq = get_insns ();
6486 end_sequence ();
6487 emit_insns_before (seq, tail_recursion_reentry);
6488 break;
6489 }
6490 }
6491
6492 /* Warn about unused parms if extra warnings were specified. */
6493 /* Either ``-W -Wunused'' or ``-Wunused-parameter'' enables this
6494 warning. WARN_UNUSED_PARAMETER is negative when set by
6495 -Wunused. */
6496 if (warn_unused_parameter > 0
6497 || (warn_unused_parameter < 0 && extra_warnings))
6498 {
6499 tree decl;
6500
6501 for (decl = DECL_ARGUMENTS (current_function_decl);
6502 decl; decl = TREE_CHAIN (decl))
6503 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6504 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6505 warning_with_decl (decl, "unused parameter `%s'");
6506 }
6507
6508 /* Delete handlers for nonlocal gotos if nothing uses them. */
6509 if (nonlocal_goto_handler_slots != 0
6510 && ! current_function_has_nonlocal_label)
6511 delete_handlers ();
6512
6513 /* End any sequences that failed to be closed due to syntax errors. */
6514 while (in_sequence_p ())
6515 end_sequence ();
6516
6517 /* Outside function body, can't compute type's actual size
6518 until next function's body starts. */
6519 immediate_size_expand--;
6520
6521 clear_pending_stack_adjust ();
6522 do_pending_stack_adjust ();
6523
6524 /* Mark the end of the function body.
6525 If control reaches this insn, the function can drop through
6526 without returning a value. */
6527 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
6528
6529 /* Must mark the last line number note in the function, so that the test
6530 coverage code can avoid counting the last line twice. This just tells
6531 the code to ignore the immediately following line note, since there
6532 already exists a copy of this note somewhere above. This line number
6533 note is still needed for debugging though, so we can't delete it. */
6534 if (flag_test_coverage)
6535 emit_note (NULL_PTR, NOTE_INSN_REPEATED_LINE_NUMBER);
6536
6537 /* Output a linenumber for the end of the function.
6538 SDB depends on this. */
6539 emit_line_note_force (filename, line);
6540
6541 /* Output the label for the actual return from the function,
6542 if one is expected. This happens either because a function epilogue
6543 is used instead of a return instruction, or because a return was done
6544 with a goto in order to run local cleanups, or because of pcc-style
6545 structure returning. */
6546
6547 if (return_label)
6548 {
6549 /* Before the return label, clobber the return registers so that
6550 they are not propogated live to the rest of the function. This
6551 can only happen with functions that drop through; if there had
6552 been a return statement, there would have either been a return
6553 rtx, or a jump to the return label. */
6554 clobber_return_register ();
6555
6556 emit_label (return_label);
6557 }
6558
6559 /* C++ uses this. */
6560 if (end_bindings)
6561 expand_end_bindings (0, 0, 0);
6562
6563 /* Now handle any leftover exception regions that may have been
6564 created for the parameters. */
6565 {
6566 rtx last = get_last_insn ();
6567 rtx label;
6568
6569 expand_leftover_cleanups ();
6570
6571 /* If there are any catch_clauses remaining, output them now. */
6572 emit_insns (catch_clauses);
6573 catch_clauses = catch_clauses_last = NULL_RTX;
6574 /* If the above emitted any code, may sure we jump around it. */
6575 if (last != get_last_insn ())
6576 {
6577 label = gen_label_rtx ();
6578 last = emit_jump_insn_after (gen_jump (label), last);
6579 last = emit_barrier_after (last);
6580 emit_label (label);
6581 }
6582 }
6583
6584 if (current_function_instrument_entry_exit)
6585 {
6586 rtx fun = DECL_RTL (current_function_decl);
6587 if (GET_CODE (fun) == MEM)
6588 fun = XEXP (fun, 0);
6589 else
6590 abort ();
6591 emit_library_call (profile_function_exit_libfunc, 0, VOIDmode, 2,
6592 fun, Pmode,
6593 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6594 0,
6595 hard_frame_pointer_rtx),
6596 Pmode);
6597 }
6598
6599 /* If we had calls to alloca, and this machine needs
6600 an accurate stack pointer to exit the function,
6601 insert some code to save and restore the stack pointer. */
6602 #ifdef EXIT_IGNORE_STACK
6603 if (! EXIT_IGNORE_STACK)
6604 #endif
6605 if (current_function_calls_alloca)
6606 {
6607 rtx tem = 0;
6608
6609 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6610 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6611 }
6612
6613 /* If scalar return value was computed in a pseudo-reg,
6614 copy that to the hard return register. */
6615 if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0
6616 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG
6617 && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl)))
6618 >= FIRST_PSEUDO_REGISTER))
6619 {
6620 rtx real_decl_result;
6621
6622 #ifdef FUNCTION_OUTGOING_VALUE
6623 real_decl_result
6624 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6625 current_function_decl);
6626 #else
6627 real_decl_result
6628 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6629 current_function_decl);
6630 #endif
6631 REG_FUNCTION_VALUE_P (real_decl_result) = 1;
6632 /* If this is a BLKmode structure being returned in registers, then use
6633 the mode computed in expand_return. */
6634 if (GET_MODE (real_decl_result) == BLKmode)
6635 PUT_MODE (real_decl_result,
6636 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6637 emit_move_insn (real_decl_result,
6638 DECL_RTL (DECL_RESULT (current_function_decl)));
6639
6640 /* The delay slot scheduler assumes that current_function_return_rtx
6641 holds the hard register containing the return value, not a temporary
6642 pseudo. */
6643 current_function_return_rtx = real_decl_result;
6644 }
6645
6646 /* If returning a structure, arrange to return the address of the value
6647 in a place where debuggers expect to find it.
6648
6649 If returning a structure PCC style,
6650 the caller also depends on this value.
6651 And current_function_returns_pcc_struct is not necessarily set. */
6652 if (current_function_returns_struct
6653 || current_function_returns_pcc_struct)
6654 {
6655 rtx value_address =
6656 XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
6657 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6658 #ifdef FUNCTION_OUTGOING_VALUE
6659 rtx outgoing
6660 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
6661 current_function_decl);
6662 #else
6663 rtx outgoing
6664 = FUNCTION_VALUE (build_pointer_type (type),
6665 current_function_decl);
6666 #endif
6667
6668 /* Mark this as a function return value so integrate will delete the
6669 assignment and USE below when inlining this function. */
6670 REG_FUNCTION_VALUE_P (outgoing) = 1;
6671
6672 emit_move_insn (outgoing, value_address);
6673 }
6674
6675 /* ??? This should no longer be necessary since stupid is no longer with
6676 us, but there are some parts of the compiler (eg reload_combine, and
6677 sh mach_dep_reorg) that still try and compute their own lifetime info
6678 instead of using the general framework. */
6679 use_return_register ();
6680
6681 /* If this is an implementation of __throw, do what's necessary to
6682 communicate between __builtin_eh_return and the epilogue. */
6683 expand_eh_return ();
6684
6685 /* Output a return insn if we are using one.
6686 Otherwise, let the rtl chain end here, to drop through
6687 into the epilogue. */
6688
6689 #ifdef HAVE_return
6690 if (HAVE_return)
6691 {
6692 emit_jump_insn (gen_return ());
6693 emit_barrier ();
6694 }
6695 #endif
6696
6697 /* Fix up any gotos that jumped out to the outermost
6698 binding level of the function.
6699 Must follow emitting RETURN_LABEL. */
6700
6701 /* If you have any cleanups to do at this point,
6702 and they need to create temporary variables,
6703 then you will lose. */
6704 expand_fixups (get_insns ());
6705 }
6706 \f
6707 /* Extend a vector that records the INSN_UIDs of INSNS (either a
6708 sequence or a single insn). */
6709
6710 static void
6711 record_insns (insns, vecp)
6712 rtx insns;
6713 varray_type *vecp;
6714 {
6715 if (GET_CODE (insns) == SEQUENCE)
6716 {
6717 int len = XVECLEN (insns, 0);
6718 int i = VARRAY_SIZE (*vecp);
6719
6720 VARRAY_GROW (*vecp, i + len);
6721 while (--len >= 0)
6722 {
6723 VARRAY_INT (*vecp, i) = INSN_UID (XVECEXP (insns, 0, len));
6724 ++i;
6725 }
6726 }
6727 else
6728 {
6729 int i = VARRAY_SIZE (*vecp);
6730 VARRAY_GROW (*vecp, i + 1);
6731 VARRAY_INT (*vecp, i) = INSN_UID (insns);
6732 }
6733 }
6734
6735 /* Determine how many INSN_UIDs in VEC are part of INSN. */
6736
6737 static int
6738 contains (insn, vec)
6739 rtx insn;
6740 varray_type vec;
6741 {
6742 register int i, j;
6743
6744 if (GET_CODE (insn) == INSN
6745 && GET_CODE (PATTERN (insn)) == SEQUENCE)
6746 {
6747 int count = 0;
6748 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6749 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6750 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
6751 count++;
6752 return count;
6753 }
6754 else
6755 {
6756 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6757 if (INSN_UID (insn) == VARRAY_INT (vec, j))
6758 return 1;
6759 }
6760 return 0;
6761 }
6762
6763 int
6764 prologue_epilogue_contains (insn)
6765 rtx insn;
6766 {
6767 if (contains (insn, prologue))
6768 return 1;
6769 if (contains (insn, epilogue))
6770 return 1;
6771 return 0;
6772 }
6773
6774 int
6775 sibcall_epilogue_contains (insn)
6776 rtx insn;
6777 {
6778 if (sibcall_epilogue)
6779 return contains (insn, sibcall_epilogue);
6780 return 0;
6781 }
6782
6783 #ifdef HAVE_return
6784 /* Insert gen_return at the end of block BB. This also means updating
6785 block_for_insn appropriately. */
6786
6787 static void
6788 emit_return_into_block (bb, line_note)
6789 basic_block bb;
6790 rtx line_note;
6791 {
6792 rtx p, end;
6793
6794 p = NEXT_INSN (bb->end);
6795 end = emit_jump_insn_after (gen_return (), bb->end);
6796 if (line_note)
6797 emit_line_note_after (NOTE_SOURCE_FILE (line_note),
6798 NOTE_LINE_NUMBER (line_note), bb->end);
6799
6800 while (1)
6801 {
6802 set_block_for_insn (p, bb);
6803 if (p == bb->end)
6804 break;
6805 p = PREV_INSN (p);
6806 }
6807 bb->end = end;
6808 }
6809 #endif /* HAVE_return */
6810
6811 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
6812 this into place with notes indicating where the prologue ends and where
6813 the epilogue begins. Update the basic block information when possible. */
6814
6815 void
6816 thread_prologue_and_epilogue_insns (f)
6817 rtx f ATTRIBUTE_UNUSED;
6818 {
6819 int inserted = 0;
6820 edge e;
6821 rtx seq;
6822 #ifdef HAVE_prologue
6823 rtx prologue_end = NULL_RTX;
6824 #endif
6825 #if defined (HAVE_epilogue) || defined(HAVE_return)
6826 rtx epilogue_end = NULL_RTX;
6827 #endif
6828
6829 #ifdef HAVE_prologue
6830 if (HAVE_prologue)
6831 {
6832 start_sequence ();
6833 seq = gen_prologue ();
6834 emit_insn (seq);
6835
6836 /* Retain a map of the prologue insns. */
6837 if (GET_CODE (seq) != SEQUENCE)
6838 seq = get_insns ();
6839 record_insns (seq, &prologue);
6840 prologue_end = emit_note (NULL, NOTE_INSN_PROLOGUE_END);
6841
6842 seq = gen_sequence ();
6843 end_sequence ();
6844
6845 /* If optimization is off, and perhaps in an empty function,
6846 the entry block will have no successors. */
6847 if (ENTRY_BLOCK_PTR->succ)
6848 {
6849 /* Can't deal with multiple successsors of the entry block. */
6850 if (ENTRY_BLOCK_PTR->succ->succ_next)
6851 abort ();
6852
6853 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
6854 inserted = 1;
6855 }
6856 else
6857 emit_insn_after (seq, f);
6858 }
6859 #endif
6860
6861 /* If the exit block has no non-fake predecessors, we don't need
6862 an epilogue. */
6863 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
6864 if ((e->flags & EDGE_FAKE) == 0)
6865 break;
6866 if (e == NULL)
6867 goto epilogue_done;
6868
6869 #ifdef HAVE_return
6870 if (optimize && HAVE_return)
6871 {
6872 /* If we're allowed to generate a simple return instruction,
6873 then by definition we don't need a full epilogue. Examine
6874 the block that falls through to EXIT. If it does not
6875 contain any code, examine its predecessors and try to
6876 emit (conditional) return instructions. */
6877
6878 basic_block last;
6879 edge e_next;
6880 rtx label;
6881
6882 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
6883 if (e->flags & EDGE_FALLTHRU)
6884 break;
6885 if (e == NULL)
6886 goto epilogue_done;
6887 last = e->src;
6888
6889 /* Verify that there are no active instructions in the last block. */
6890 label = last->end;
6891 while (label && GET_CODE (label) != CODE_LABEL)
6892 {
6893 if (active_insn_p (label))
6894 break;
6895 label = PREV_INSN (label);
6896 }
6897
6898 if (last->head == label && GET_CODE (label) == CODE_LABEL)
6899 {
6900 rtx epilogue_line_note = NULL_RTX;
6901
6902 /* Locate the line number associated with the closing brace,
6903 if we can find one. */
6904 for (seq = get_last_insn ();
6905 seq && ! active_insn_p (seq);
6906 seq = PREV_INSN (seq))
6907 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
6908 {
6909 epilogue_line_note = seq;
6910 break;
6911 }
6912
6913 for (e = last->pred; e; e = e_next)
6914 {
6915 basic_block bb = e->src;
6916 rtx jump;
6917
6918 e_next = e->pred_next;
6919 if (bb == ENTRY_BLOCK_PTR)
6920 continue;
6921
6922 jump = bb->end;
6923 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
6924 continue;
6925
6926 /* If we have an unconditional jump, we can replace that
6927 with a simple return instruction. */
6928 if (simplejump_p (jump))
6929 {
6930 emit_return_into_block (bb, epilogue_line_note);
6931 flow_delete_insn (jump);
6932 }
6933
6934 /* If we have a conditional jump, we can try to replace
6935 that with a conditional return instruction. */
6936 else if (condjump_p (jump))
6937 {
6938 rtx ret, *loc;
6939
6940 ret = SET_SRC (PATTERN (jump));
6941 if (GET_CODE (XEXP (ret, 1)) == LABEL_REF)
6942 loc = &XEXP (ret, 1);
6943 else
6944 loc = &XEXP (ret, 2);
6945 ret = gen_rtx_RETURN (VOIDmode);
6946
6947 if (! validate_change (jump, loc, ret, 0))
6948 continue;
6949 if (JUMP_LABEL (jump))
6950 LABEL_NUSES (JUMP_LABEL (jump))--;
6951
6952 /* If this block has only one successor, it both jumps
6953 and falls through to the fallthru block, so we can't
6954 delete the edge. */
6955 if (bb->succ->succ_next == NULL)
6956 continue;
6957 }
6958 else
6959 continue;
6960
6961 /* Fix up the CFG for the successful change we just made. */
6962 redirect_edge_succ (e, EXIT_BLOCK_PTR);
6963 }
6964
6965 /* Emit a return insn for the exit fallthru block. Whether
6966 this is still reachable will be determined later. */
6967
6968 emit_barrier_after (last->end);
6969 emit_return_into_block (last, epilogue_line_note);
6970 epilogue_end = last->end;
6971 goto epilogue_done;
6972 }
6973 }
6974 #endif
6975 #ifdef HAVE_epilogue
6976 if (HAVE_epilogue)
6977 {
6978 /* Find the edge that falls through to EXIT. Other edges may exist
6979 due to RETURN instructions, but those don't need epilogues.
6980 There really shouldn't be a mixture -- either all should have
6981 been converted or none, however... */
6982
6983 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
6984 if (e->flags & EDGE_FALLTHRU)
6985 break;
6986 if (e == NULL)
6987 goto epilogue_done;
6988
6989 start_sequence ();
6990 epilogue_end = emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
6991
6992 seq = gen_epilogue ();
6993 emit_jump_insn (seq);
6994
6995 /* Retain a map of the epilogue insns. */
6996 if (GET_CODE (seq) != SEQUENCE)
6997 seq = get_insns ();
6998 record_insns (seq, &epilogue);
6999
7000 seq = gen_sequence ();
7001 end_sequence ();
7002
7003 insert_insn_on_edge (seq, e);
7004 inserted = 1;
7005 }
7006 #endif
7007 epilogue_done:
7008
7009 if (inserted)
7010 commit_edge_insertions ();
7011
7012 #ifdef HAVE_sibcall_epilogue
7013 /* Emit sibling epilogues before any sibling call sites. */
7014 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7015 {
7016 basic_block bb = e->src;
7017 rtx insn = bb->end;
7018 rtx i;
7019 rtx newinsn;
7020
7021 if (GET_CODE (insn) != CALL_INSN
7022 || ! SIBLING_CALL_P (insn))
7023 continue;
7024
7025 start_sequence ();
7026 seq = gen_sibcall_epilogue ();
7027 end_sequence ();
7028
7029 i = PREV_INSN (insn);
7030 newinsn = emit_insn_before (seq, insn);
7031
7032 /* Update the UID to basic block map. */
7033 for (i = NEXT_INSN (i); i != insn; i = NEXT_INSN (i))
7034 set_block_for_insn (i, bb);
7035
7036 /* Retain a map of the epilogue insns. Used in life analysis to
7037 avoid getting rid of sibcall epilogue insns. */
7038 record_insns (GET_CODE (seq) == SEQUENCE
7039 ? seq : newinsn, &sibcall_epilogue);
7040 }
7041 #endif
7042
7043 #ifdef HAVE_prologue
7044 if (prologue_end)
7045 {
7046 rtx insn, prev;
7047
7048 /* GDB handles `break f' by setting a breakpoint on the first
7049 line note after the prologue. Which means (1) that if
7050 there are line number notes before where we inserted the
7051 prologue we should move them, and (2) we should generate a
7052 note before the end of the first basic block, if there isn't
7053 one already there. */
7054
7055 for (insn = prologue_end; insn; insn = prev)
7056 {
7057 prev = PREV_INSN (insn);
7058 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7059 {
7060 /* Note that we cannot reorder the first insn in the
7061 chain, since rest_of_compilation relies on that
7062 remaining constant. */
7063 if (prev == NULL)
7064 break;
7065 reorder_insns (insn, insn, prologue_end);
7066 }
7067 }
7068
7069 /* Find the last line number note in the first block. */
7070 for (insn = BASIC_BLOCK (0)->end;
7071 insn != prologue_end;
7072 insn = PREV_INSN (insn))
7073 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7074 break;
7075
7076 /* If we didn't find one, make a copy of the first line number
7077 we run across. */
7078 if (! insn)
7079 {
7080 for (insn = next_active_insn (prologue_end);
7081 insn;
7082 insn = PREV_INSN (insn))
7083 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7084 {
7085 emit_line_note_after (NOTE_SOURCE_FILE (insn),
7086 NOTE_LINE_NUMBER (insn),
7087 prologue_end);
7088 break;
7089 }
7090 }
7091 }
7092 #endif
7093 #ifdef HAVE_epilogue
7094 if (epilogue_end)
7095 {
7096 rtx insn, next;
7097
7098 /* Similarly, move any line notes that appear after the epilogue.
7099 There is no need, however, to be quite so anal about the existance
7100 of such a note. */
7101 for (insn = epilogue_end; insn; insn = next)
7102 {
7103 next = NEXT_INSN (insn);
7104 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7105 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7106 }
7107 }
7108 #endif
7109 }
7110
7111 /* Reposition the prologue-end and epilogue-begin notes after instruction
7112 scheduling and delayed branch scheduling. */
7113
7114 void
7115 reposition_prologue_and_epilogue_notes (f)
7116 rtx f ATTRIBUTE_UNUSED;
7117 {
7118 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7119 int len;
7120
7121 if ((len = VARRAY_SIZE (prologue)) > 0)
7122 {
7123 register rtx insn, note = 0;
7124
7125 /* Scan from the beginning until we reach the last prologue insn.
7126 We apparently can't depend on basic_block_{head,end} after
7127 reorg has run. */
7128 for (insn = f; len && insn; insn = NEXT_INSN (insn))
7129 {
7130 if (GET_CODE (insn) == NOTE)
7131 {
7132 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7133 note = insn;
7134 }
7135 else if ((len -= contains (insn, prologue)) == 0)
7136 {
7137 rtx next;
7138 /* Find the prologue-end note if we haven't already, and
7139 move it to just after the last prologue insn. */
7140 if (note == 0)
7141 {
7142 for (note = insn; (note = NEXT_INSN (note));)
7143 if (GET_CODE (note) == NOTE
7144 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7145 break;
7146 }
7147
7148 next = NEXT_INSN (note);
7149
7150 /* Whether or not we can depend on BLOCK_HEAD,
7151 attempt to keep it up-to-date. */
7152 if (BLOCK_HEAD (0) == note)
7153 BLOCK_HEAD (0) = next;
7154
7155 remove_insn (note);
7156 add_insn_after (note, insn);
7157 }
7158 }
7159 }
7160
7161 if ((len = VARRAY_SIZE (epilogue)) > 0)
7162 {
7163 register rtx insn, note = 0;
7164
7165 /* Scan from the end until we reach the first epilogue insn.
7166 We apparently can't depend on basic_block_{head,end} after
7167 reorg has run. */
7168 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
7169 {
7170 if (GET_CODE (insn) == NOTE)
7171 {
7172 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7173 note = insn;
7174 }
7175 else if ((len -= contains (insn, epilogue)) == 0)
7176 {
7177 /* Find the epilogue-begin note if we haven't already, and
7178 move it to just before the first epilogue insn. */
7179 if (note == 0)
7180 {
7181 for (note = insn; (note = PREV_INSN (note));)
7182 if (GET_CODE (note) == NOTE
7183 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7184 break;
7185 }
7186
7187 /* Whether or not we can depend on BLOCK_HEAD,
7188 attempt to keep it up-to-date. */
7189 if (n_basic_blocks
7190 && BLOCK_HEAD (n_basic_blocks-1) == insn)
7191 BLOCK_HEAD (n_basic_blocks-1) = note;
7192
7193 remove_insn (note);
7194 add_insn_before (note, insn);
7195 }
7196 }
7197 }
7198 #endif /* HAVE_prologue or HAVE_epilogue */
7199 }
7200
7201 /* Mark T for GC. */
7202
7203 static void
7204 mark_temp_slot (t)
7205 struct temp_slot *t;
7206 {
7207 while (t)
7208 {
7209 ggc_mark_rtx (t->slot);
7210 ggc_mark_rtx (t->address);
7211 ggc_mark_tree (t->rtl_expr);
7212
7213 t = t->next;
7214 }
7215 }
7216
7217 /* Mark P for GC. */
7218
7219 static void
7220 mark_function_status (p)
7221 struct function *p;
7222 {
7223 int i;
7224 rtx *r;
7225
7226 if (p == 0)
7227 return;
7228
7229 ggc_mark_rtx (p->arg_offset_rtx);
7230
7231 if (p->x_parm_reg_stack_loc)
7232 for (i = p->x_max_parm_reg, r = p->x_parm_reg_stack_loc;
7233 i > 0; --i, ++r)
7234 ggc_mark_rtx (*r);
7235
7236 ggc_mark_rtx (p->return_rtx);
7237 ggc_mark_rtx (p->x_cleanup_label);
7238 ggc_mark_rtx (p->x_return_label);
7239 ggc_mark_rtx (p->x_save_expr_regs);
7240 ggc_mark_rtx (p->x_stack_slot_list);
7241 ggc_mark_rtx (p->x_parm_birth_insn);
7242 ggc_mark_rtx (p->x_tail_recursion_label);
7243 ggc_mark_rtx (p->x_tail_recursion_reentry);
7244 ggc_mark_rtx (p->internal_arg_pointer);
7245 ggc_mark_rtx (p->x_arg_pointer_save_area);
7246 ggc_mark_tree (p->x_rtl_expr_chain);
7247 ggc_mark_rtx (p->x_last_parm_insn);
7248 ggc_mark_tree (p->x_context_display);
7249 ggc_mark_tree (p->x_trampoline_list);
7250 ggc_mark_rtx (p->epilogue_delay_list);
7251
7252 mark_temp_slot (p->x_temp_slots);
7253
7254 {
7255 struct var_refs_queue *q = p->fixup_var_refs_queue;
7256 while (q)
7257 {
7258 ggc_mark_rtx (q->modified);
7259 q = q->next;
7260 }
7261 }
7262
7263 ggc_mark_rtx (p->x_nonlocal_goto_handler_slots);
7264 ggc_mark_rtx (p->x_nonlocal_goto_handler_labels);
7265 ggc_mark_rtx (p->x_nonlocal_goto_stack_level);
7266 ggc_mark_tree (p->x_nonlocal_labels);
7267 }
7268
7269 /* Mark the function chain ARG (which is really a struct function **)
7270 for GC. */
7271
7272 static void
7273 mark_function_chain (arg)
7274 void *arg;
7275 {
7276 struct function *f = *(struct function **) arg;
7277
7278 for (; f; f = f->next_global)
7279 {
7280 ggc_mark_tree (f->decl);
7281
7282 mark_function_status (f);
7283 mark_eh_status (f->eh);
7284 mark_stmt_status (f->stmt);
7285 mark_expr_status (f->expr);
7286 mark_emit_status (f->emit);
7287 mark_varasm_status (f->varasm);
7288
7289 if (mark_machine_status)
7290 (*mark_machine_status) (f);
7291 if (mark_lang_status)
7292 (*mark_lang_status) (f);
7293
7294 if (f->original_arg_vector)
7295 ggc_mark_rtvec ((rtvec) f->original_arg_vector);
7296 if (f->original_decl_initial)
7297 ggc_mark_tree (f->original_decl_initial);
7298 }
7299 }
7300
7301 /* Called once, at initialization, to initialize function.c. */
7302
7303 void
7304 init_function_once ()
7305 {
7306 ggc_add_root (&all_functions, 1, sizeof all_functions,
7307 mark_function_chain);
7308
7309 VARRAY_INT_INIT (prologue, 0, "prologue");
7310 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7311 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
7312 }
This page took 0.503119 seconds and 6 git commands to generate.