]> gcc.gnu.org Git - gcc.git/blob - gcc/function.c
top level:
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
27
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
31
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register.
36
37 Call `put_var_into_stack' when you learn, belatedly, that a variable
38 previously given a pseudo-register must in fact go in the stack.
39 This function changes the DECL_RTL to be a stack slot instead of a reg
40 then scans all the RTL instructions so far generated to correct them. */
41
42 #include "config.h"
43 #include "system.h"
44 #include "rtl.h"
45 #include "tree.h"
46 #include "flags.h"
47 #include "except.h"
48 #include "function.h"
49 #include "insn-flags.h"
50 #include "expr.h"
51 #include "insn-codes.h"
52 #include "regs.h"
53 #include "hard-reg-set.h"
54 #include "insn-config.h"
55 #include "recog.h"
56 #include "output.h"
57 #include "basic-block.h"
58 #include "obstack.h"
59 #include "toplev.h"
60 #include "hash.h"
61 #include "ggc.h"
62 #include "tm_p.h"
63
64 #ifndef ACCUMULATE_OUTGOING_ARGS
65 #define ACCUMULATE_OUTGOING_ARGS 0
66 #endif
67
68 #ifndef TRAMPOLINE_ALIGNMENT
69 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
70 #endif
71
72 #ifndef LOCAL_ALIGNMENT
73 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
74 #endif
75
76 #if !defined (PREFERRED_STACK_BOUNDARY) && defined (STACK_BOUNDARY)
77 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
78 #endif
79
80 /* Some systems use __main in a way incompatible with its use in gcc, in these
81 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
82 give the same symbol without quotes for an alternative entry point. You
83 must define both, or neither. */
84 #ifndef NAME__MAIN
85 #define NAME__MAIN "__main"
86 #define SYMBOL__MAIN __main
87 #endif
88
89 /* Round a value to the lowest integer less than it that is a multiple of
90 the required alignment. Avoid using division in case the value is
91 negative. Assume the alignment is a power of two. */
92 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
93
94 /* Similar, but round to the next highest integer that meets the
95 alignment. */
96 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
97
98 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
99 during rtl generation. If they are different register numbers, this is
100 always true. It may also be true if
101 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
102 generation. See fix_lexical_addr for details. */
103
104 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
105 #define NEED_SEPARATE_AP
106 #endif
107
108 /* Nonzero if function being compiled doesn't contain any calls
109 (ignoring the prologue and epilogue). This is set prior to
110 local register allocation and is valid for the remaining
111 compiler passes. */
112 int current_function_is_leaf;
113
114 /* Nonzero if function being compiled doesn't contain any instructions
115 that can throw an exception. This is set prior to final. */
116
117 int current_function_nothrow;
118
119 /* Nonzero if function being compiled doesn't modify the stack pointer
120 (ignoring the prologue and epilogue). This is only valid after
121 life_analysis has run. */
122 int current_function_sp_is_unchanging;
123
124 /* Nonzero if the function being compiled is a leaf function which only
125 uses leaf registers. This is valid after reload (specifically after
126 sched2) and is useful only if the port defines LEAF_REGISTERS. */
127 int current_function_uses_only_leaf_regs;
128
129 /* Nonzero once virtual register instantiation has been done.
130 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
131 static int virtuals_instantiated;
132
133 /* These variables hold pointers to functions to
134 save and restore machine-specific data,
135 in push_function_context and pop_function_context. */
136 void (*init_machine_status) PARAMS ((struct function *));
137 void (*save_machine_status) PARAMS ((struct function *));
138 void (*restore_machine_status) PARAMS ((struct function *));
139 void (*mark_machine_status) PARAMS ((struct function *));
140 void (*free_machine_status) PARAMS ((struct function *));
141
142 /* Likewise, but for language-specific data. */
143 void (*init_lang_status) PARAMS ((struct function *));
144 void (*save_lang_status) PARAMS ((struct function *));
145 void (*restore_lang_status) PARAMS ((struct function *));
146 void (*mark_lang_status) PARAMS ((struct function *));
147 void (*free_lang_status) PARAMS ((struct function *));
148
149 /* The FUNCTION_DECL for an inline function currently being expanded. */
150 tree inline_function_decl;
151
152 /* The currently compiled function. */
153 struct function *cfun = 0;
154
155 /* Global list of all compiled functions. */
156 struct function *all_functions = 0;
157
158 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
159 static varray_type prologue;
160 static varray_type epilogue;
161
162 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
163 in this function. */
164 static varray_type sibcall_epilogue;
165 \f
166 /* In order to evaluate some expressions, such as function calls returning
167 structures in memory, we need to temporarily allocate stack locations.
168 We record each allocated temporary in the following structure.
169
170 Associated with each temporary slot is a nesting level. When we pop up
171 one level, all temporaries associated with the previous level are freed.
172 Normally, all temporaries are freed after the execution of the statement
173 in which they were created. However, if we are inside a ({...}) grouping,
174 the result may be in a temporary and hence must be preserved. If the
175 result could be in a temporary, we preserve it if we can determine which
176 one it is in. If we cannot determine which temporary may contain the
177 result, all temporaries are preserved. A temporary is preserved by
178 pretending it was allocated at the previous nesting level.
179
180 Automatic variables are also assigned temporary slots, at the nesting
181 level where they are defined. They are marked a "kept" so that
182 free_temp_slots will not free them. */
183
184 struct temp_slot
185 {
186 /* Points to next temporary slot. */
187 struct temp_slot *next;
188 /* The rtx to used to reference the slot. */
189 rtx slot;
190 /* The rtx used to represent the address if not the address of the
191 slot above. May be an EXPR_LIST if multiple addresses exist. */
192 rtx address;
193 /* The alignment (in bits) of the slot. */
194 int align;
195 /* The size, in units, of the slot. */
196 HOST_WIDE_INT size;
197 /* The alias set for the slot. If the alias set is zero, we don't
198 know anything about the alias set of the slot. We must only
199 reuse a slot if it is assigned an object of the same alias set.
200 Otherwise, the rest of the compiler may assume that the new use
201 of the slot cannot alias the old use of the slot, which is
202 false. If the slot has alias set zero, then we can't reuse the
203 slot at all, since we have no idea what alias set may have been
204 imposed on the memory. For example, if the stack slot is the
205 call frame for an inline functioned, we have no idea what alias
206 sets will be assigned to various pieces of the call frame. */
207 int alias_set;
208 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
209 tree rtl_expr;
210 /* Non-zero if this temporary is currently in use. */
211 char in_use;
212 /* Non-zero if this temporary has its address taken. */
213 char addr_taken;
214 /* Nesting level at which this slot is being used. */
215 int level;
216 /* Non-zero if this should survive a call to free_temp_slots. */
217 int keep;
218 /* The offset of the slot from the frame_pointer, including extra space
219 for alignment. This info is for combine_temp_slots. */
220 HOST_WIDE_INT base_offset;
221 /* The size of the slot, including extra space for alignment. This
222 info is for combine_temp_slots. */
223 HOST_WIDE_INT full_size;
224 };
225 \f
226 /* This structure is used to record MEMs or pseudos used to replace VAR, any
227 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
228 maintain this list in case two operands of an insn were required to match;
229 in that case we must ensure we use the same replacement. */
230
231 struct fixup_replacement
232 {
233 rtx old;
234 rtx new;
235 struct fixup_replacement *next;
236 };
237
238 struct insns_for_mem_entry {
239 /* The KEY in HE will be a MEM. */
240 struct hash_entry he;
241 /* These are the INSNS which reference the MEM. */
242 rtx insns;
243 };
244
245 /* Forward declarations. */
246
247 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
248 int, struct function *));
249 static rtx assign_stack_temp_for_type PARAMS ((enum machine_mode,
250 HOST_WIDE_INT, int, tree));
251 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
252 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
253 enum machine_mode, enum machine_mode,
254 int, unsigned int, int,
255 struct hash_table *));
256 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int,
257 struct hash_table *));
258 static struct fixup_replacement
259 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
260 static void fixup_var_refs_insns PARAMS ((rtx, enum machine_mode, int,
261 rtx, int, struct hash_table *));
262 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
263 struct fixup_replacement **));
264 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, int));
265 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, int));
266 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
267 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
268 static void instantiate_decls PARAMS ((tree, int));
269 static void instantiate_decls_1 PARAMS ((tree, int));
270 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
271 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
272 static void delete_handlers PARAMS ((void));
273 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
274 struct args_size *));
275 #ifndef ARGS_GROW_DOWNWARD
276 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
277 tree));
278 #endif
279 #ifdef ARGS_GROW_DOWNWARD
280 static tree round_down PARAMS ((tree, int));
281 #endif
282 static rtx round_trampoline_addr PARAMS ((rtx));
283 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
284 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
285 static tree blocks_nreverse PARAMS ((tree));
286 static int all_blocks PARAMS ((tree, tree *));
287 static tree *get_block_vector PARAMS ((tree, int *));
288 /* We always define `record_insns' even if its not used so that we
289 can always export `prologue_epilogue_contains'. */
290 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
291 static int contains PARAMS ((rtx, varray_type));
292 #ifdef HAVE_return
293 static void emit_return_into_block PARAMS ((basic_block));
294 #endif
295 static void put_addressof_into_stack PARAMS ((rtx, struct hash_table *));
296 static boolean purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
297 struct hash_table *));
298 static int is_addressof PARAMS ((rtx *, void *));
299 static struct hash_entry *insns_for_mem_newfunc PARAMS ((struct hash_entry *,
300 struct hash_table *,
301 hash_table_key));
302 static unsigned long insns_for_mem_hash PARAMS ((hash_table_key));
303 static boolean insns_for_mem_comp PARAMS ((hash_table_key, hash_table_key));
304 static int insns_for_mem_walk PARAMS ((rtx *, void *));
305 static void compute_insns_for_mem PARAMS ((rtx, rtx, struct hash_table *));
306 static void mark_temp_slot PARAMS ((struct temp_slot *));
307 static void mark_function_status PARAMS ((struct function *));
308 static void mark_function_chain PARAMS ((void *));
309 static void prepare_function_start PARAMS ((void));
310 static void do_clobber_return_reg PARAMS ((rtx, void *));
311 static void do_use_return_reg PARAMS ((rtx, void *));
312 \f
313 /* Pointer to chain of `struct function' for containing functions. */
314 struct function *outer_function_chain;
315
316 /* Given a function decl for a containing function,
317 return the `struct function' for it. */
318
319 struct function *
320 find_function_data (decl)
321 tree decl;
322 {
323 struct function *p;
324
325 for (p = outer_function_chain; p; p = p->next)
326 if (p->decl == decl)
327 return p;
328
329 abort ();
330 }
331
332 /* Save the current context for compilation of a nested function.
333 This is called from language-specific code. The caller should use
334 the save_lang_status callback to save any language-specific state,
335 since this function knows only about language-independent
336 variables. */
337
338 void
339 push_function_context_to (context)
340 tree context;
341 {
342 struct function *p, *context_data;
343
344 if (context)
345 {
346 context_data = (context == current_function_decl
347 ? cfun
348 : find_function_data (context));
349 context_data->contains_functions = 1;
350 }
351
352 if (cfun == 0)
353 init_dummy_function_start ();
354 p = cfun;
355
356 p->next = outer_function_chain;
357 outer_function_chain = p;
358 p->fixup_var_refs_queue = 0;
359
360 save_tree_status (p);
361 if (save_lang_status)
362 (*save_lang_status) (p);
363 if (save_machine_status)
364 (*save_machine_status) (p);
365
366 cfun = 0;
367 }
368
369 void
370 push_function_context ()
371 {
372 push_function_context_to (current_function_decl);
373 }
374
375 /* Restore the last saved context, at the end of a nested function.
376 This function is called from language-specific code. */
377
378 void
379 pop_function_context_from (context)
380 tree context ATTRIBUTE_UNUSED;
381 {
382 struct function *p = outer_function_chain;
383 struct var_refs_queue *queue;
384 struct var_refs_queue *next;
385
386 cfun = p;
387 outer_function_chain = p->next;
388
389 current_function_decl = p->decl;
390 reg_renumber = 0;
391
392 restore_tree_status (p);
393 restore_emit_status (p);
394
395 if (restore_machine_status)
396 (*restore_machine_status) (p);
397 if (restore_lang_status)
398 (*restore_lang_status) (p);
399
400 /* Finish doing put_var_into_stack for any of our variables
401 which became addressable during the nested function. */
402 for (queue = p->fixup_var_refs_queue; queue; queue = next)
403 {
404 next = queue->next;
405 fixup_var_refs (queue->modified, queue->promoted_mode,
406 queue->unsignedp, 0);
407 free (queue);
408 }
409 p->fixup_var_refs_queue = 0;
410
411 /* Reset variables that have known state during rtx generation. */
412 rtx_equal_function_value_matters = 1;
413 virtuals_instantiated = 0;
414 }
415
416 void
417 pop_function_context ()
418 {
419 pop_function_context_from (current_function_decl);
420 }
421
422 /* Clear out all parts of the state in F that can safely be discarded
423 after the function has been parsed, but not compiled, to let
424 garbage collection reclaim the memory. */
425
426 void
427 free_after_parsing (f)
428 struct function *f;
429 {
430 /* f->expr->forced_labels is used by code generation. */
431 /* f->emit->regno_reg_rtx is used by code generation. */
432 /* f->varasm is used by code generation. */
433 /* f->eh->eh_return_stub_label is used by code generation. */
434
435 if (free_lang_status)
436 (*free_lang_status) (f);
437 free_stmt_status (f);
438 }
439
440 /* Clear out all parts of the state in F that can safely be discarded
441 after the function has been compiled, to let garbage collection
442 reclaim the memory. */
443
444 void
445 free_after_compilation (f)
446 struct function *f;
447 {
448 struct temp_slot *ts;
449 struct temp_slot *next;
450
451 free_eh_status (f);
452 free_expr_status (f);
453 free_emit_status (f);
454 free_varasm_status (f);
455
456 if (free_machine_status)
457 (*free_machine_status) (f);
458
459 if (f->x_parm_reg_stack_loc)
460 free (f->x_parm_reg_stack_loc);
461
462 for (ts = f->x_temp_slots; ts; ts = next)
463 {
464 next = ts->next;
465 free (ts);
466 }
467 f->x_temp_slots = NULL;
468
469 f->arg_offset_rtx = NULL;
470 f->return_rtx = NULL;
471 f->internal_arg_pointer = NULL;
472 f->x_nonlocal_labels = NULL;
473 f->x_nonlocal_goto_handler_slots = NULL;
474 f->x_nonlocal_goto_handler_labels = NULL;
475 f->x_nonlocal_goto_stack_level = NULL;
476 f->x_cleanup_label = NULL;
477 f->x_return_label = NULL;
478 f->x_save_expr_regs = NULL;
479 f->x_stack_slot_list = NULL;
480 f->x_rtl_expr_chain = NULL;
481 f->x_tail_recursion_label = NULL;
482 f->x_tail_recursion_reentry = NULL;
483 f->x_arg_pointer_save_area = NULL;
484 f->x_context_display = NULL;
485 f->x_trampoline_list = NULL;
486 f->x_parm_birth_insn = NULL;
487 f->x_last_parm_insn = NULL;
488 f->x_parm_reg_stack_loc = NULL;
489 f->fixup_var_refs_queue = NULL;
490 f->original_arg_vector = NULL;
491 f->original_decl_initial = NULL;
492 f->inl_last_parm_insn = NULL;
493 f->epilogue_delay_list = NULL;
494 }
495
496 \f
497 /* Allocate fixed slots in the stack frame of the current function. */
498
499 /* Return size needed for stack frame based on slots so far allocated in
500 function F.
501 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
502 the caller may have to do that. */
503
504 HOST_WIDE_INT
505 get_func_frame_size (f)
506 struct function *f;
507 {
508 #ifdef FRAME_GROWS_DOWNWARD
509 return -f->x_frame_offset;
510 #else
511 return f->x_frame_offset;
512 #endif
513 }
514
515 /* Return size needed for stack frame based on slots so far allocated.
516 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
517 the caller may have to do that. */
518 HOST_WIDE_INT
519 get_frame_size ()
520 {
521 return get_func_frame_size (cfun);
522 }
523
524 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
525 with machine mode MODE.
526
527 ALIGN controls the amount of alignment for the address of the slot:
528 0 means according to MODE,
529 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
530 positive specifies alignment boundary in bits.
531
532 We do not round to stack_boundary here.
533
534 FUNCTION specifies the function to allocate in. */
535
536 static rtx
537 assign_stack_local_1 (mode, size, align, function)
538 enum machine_mode mode;
539 HOST_WIDE_INT size;
540 int align;
541 struct function *function;
542 {
543 register rtx x, addr;
544 int bigend_correction = 0;
545 int alignment;
546
547 /* Allocate in the memory associated with the function in whose frame
548 we are assigning. */
549 if (function != cfun)
550 push_obstacks (function->function_obstack,
551 function->function_maybepermanent_obstack);
552
553 if (align == 0)
554 {
555 tree type;
556
557 alignment = GET_MODE_ALIGNMENT (mode);
558 if (mode == BLKmode)
559 alignment = BIGGEST_ALIGNMENT;
560
561 /* Allow the target to (possibly) increase the alignment of this
562 stack slot. */
563 type = type_for_mode (mode, 0);
564 if (type)
565 alignment = LOCAL_ALIGNMENT (type, alignment);
566
567 alignment /= BITS_PER_UNIT;
568 }
569 else if (align == -1)
570 {
571 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
572 size = CEIL_ROUND (size, alignment);
573 }
574 else
575 alignment = align / BITS_PER_UNIT;
576
577 #ifdef FRAME_GROWS_DOWNWARD
578 function->x_frame_offset -= size;
579 #endif
580
581 /* Ignore alignment we can't do with expected alignment of the boundary. */
582 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
583 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
584
585 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
586 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
587
588 /* Round frame offset to that alignment.
589 We must be careful here, since FRAME_OFFSET might be negative and
590 division with a negative dividend isn't as well defined as we might
591 like. So we instead assume that ALIGNMENT is a power of two and
592 use logical operations which are unambiguous. */
593 #ifdef FRAME_GROWS_DOWNWARD
594 function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset, alignment);
595 #else
596 function->x_frame_offset = CEIL_ROUND (function->x_frame_offset, alignment);
597 #endif
598
599 /* On a big-endian machine, if we are allocating more space than we will use,
600 use the least significant bytes of those that are allocated. */
601 if (BYTES_BIG_ENDIAN && mode != BLKmode)
602 bigend_correction = size - GET_MODE_SIZE (mode);
603
604 /* If we have already instantiated virtual registers, return the actual
605 address relative to the frame pointer. */
606 if (function == cfun && virtuals_instantiated)
607 addr = plus_constant (frame_pointer_rtx,
608 (frame_offset + bigend_correction
609 + STARTING_FRAME_OFFSET));
610 else
611 addr = plus_constant (virtual_stack_vars_rtx,
612 function->x_frame_offset + bigend_correction);
613
614 #ifndef FRAME_GROWS_DOWNWARD
615 function->x_frame_offset += size;
616 #endif
617
618 x = gen_rtx_MEM (mode, addr);
619
620 function->x_stack_slot_list
621 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
622
623 if (function != cfun)
624 pop_obstacks ();
625
626 return x;
627 }
628
629 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
630 current function. */
631 rtx
632 assign_stack_local (mode, size, align)
633 enum machine_mode mode;
634 HOST_WIDE_INT size;
635 int align;
636 {
637 return assign_stack_local_1 (mode, size, align, cfun);
638 }
639 \f
640 /* Allocate a temporary stack slot and record it for possible later
641 reuse.
642
643 MODE is the machine mode to be given to the returned rtx.
644
645 SIZE is the size in units of the space required. We do no rounding here
646 since assign_stack_local will do any required rounding.
647
648 KEEP is 1 if this slot is to be retained after a call to
649 free_temp_slots. Automatic variables for a block are allocated
650 with this flag. KEEP is 2 if we allocate a longer term temporary,
651 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
652 if we are to allocate something at an inner level to be treated as
653 a variable in the block (e.g., a SAVE_EXPR).
654
655 TYPE is the type that will be used for the stack slot. */
656
657 static rtx
658 assign_stack_temp_for_type (mode, size, keep, type)
659 enum machine_mode mode;
660 HOST_WIDE_INT size;
661 int keep;
662 tree type;
663 {
664 int align;
665 int alias_set;
666 struct temp_slot *p, *best_p = 0;
667
668 /* If SIZE is -1 it means that somebody tried to allocate a temporary
669 of a variable size. */
670 if (size == -1)
671 abort ();
672
673 /* If we know the alias set for the memory that will be used, use
674 it. If there's no TYPE, then we don't know anything about the
675 alias set for the memory. */
676 if (type)
677 alias_set = get_alias_set (type);
678 else
679 alias_set = 0;
680
681 align = GET_MODE_ALIGNMENT (mode);
682 if (mode == BLKmode)
683 align = BIGGEST_ALIGNMENT;
684
685 if (! type)
686 type = type_for_mode (mode, 0);
687 if (type)
688 align = LOCAL_ALIGNMENT (type, align);
689
690 /* Try to find an available, already-allocated temporary of the proper
691 mode which meets the size and alignment requirements. Choose the
692 smallest one with the closest alignment. */
693 for (p = temp_slots; p; p = p->next)
694 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
695 && ! p->in_use
696 && (!flag_strict_aliasing
697 || (alias_set && p->alias_set == alias_set))
698 && (best_p == 0 || best_p->size > p->size
699 || (best_p->size == p->size && best_p->align > p->align)))
700 {
701 if (p->align == align && p->size == size)
702 {
703 best_p = 0;
704 break;
705 }
706 best_p = p;
707 }
708
709 /* Make our best, if any, the one to use. */
710 if (best_p)
711 {
712 /* If there are enough aligned bytes left over, make them into a new
713 temp_slot so that the extra bytes don't get wasted. Do this only
714 for BLKmode slots, so that we can be sure of the alignment. */
715 if (GET_MODE (best_p->slot) == BLKmode
716 /* We can't split slots if -fstrict-aliasing because the
717 information about the alias set for the new slot will be
718 lost. */
719 && !flag_strict_aliasing)
720 {
721 int alignment = best_p->align / BITS_PER_UNIT;
722 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
723
724 if (best_p->size - rounded_size >= alignment)
725 {
726 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
727 p->in_use = p->addr_taken = 0;
728 p->size = best_p->size - rounded_size;
729 p->base_offset = best_p->base_offset + rounded_size;
730 p->full_size = best_p->full_size - rounded_size;
731 p->slot = gen_rtx_MEM (BLKmode,
732 plus_constant (XEXP (best_p->slot, 0),
733 rounded_size));
734 p->align = best_p->align;
735 p->address = 0;
736 p->rtl_expr = 0;
737 p->next = temp_slots;
738 temp_slots = p;
739
740 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
741 stack_slot_list);
742
743 best_p->size = rounded_size;
744 best_p->full_size = rounded_size;
745 }
746 }
747
748 p = best_p;
749 }
750
751 /* If we still didn't find one, make a new temporary. */
752 if (p == 0)
753 {
754 HOST_WIDE_INT frame_offset_old = frame_offset;
755
756 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
757
758 /* We are passing an explicit alignment request to assign_stack_local.
759 One side effect of that is assign_stack_local will not round SIZE
760 to ensure the frame offset remains suitably aligned.
761
762 So for requests which depended on the rounding of SIZE, we go ahead
763 and round it now. We also make sure ALIGNMENT is at least
764 BIGGEST_ALIGNMENT. */
765 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
766 abort();
767 p->slot = assign_stack_local (mode,
768 (mode == BLKmode
769 ? CEIL_ROUND (size, align / BITS_PER_UNIT)
770 : size),
771 align);
772
773 p->align = align;
774 p->alias_set = alias_set;
775
776 /* The following slot size computation is necessary because we don't
777 know the actual size of the temporary slot until assign_stack_local
778 has performed all the frame alignment and size rounding for the
779 requested temporary. Note that extra space added for alignment
780 can be either above or below this stack slot depending on which
781 way the frame grows. We include the extra space if and only if it
782 is above this slot. */
783 #ifdef FRAME_GROWS_DOWNWARD
784 p->size = frame_offset_old - frame_offset;
785 #else
786 p->size = size;
787 #endif
788
789 /* Now define the fields used by combine_temp_slots. */
790 #ifdef FRAME_GROWS_DOWNWARD
791 p->base_offset = frame_offset;
792 p->full_size = frame_offset_old - frame_offset;
793 #else
794 p->base_offset = frame_offset_old;
795 p->full_size = frame_offset - frame_offset_old;
796 #endif
797 p->address = 0;
798 p->next = temp_slots;
799 temp_slots = p;
800 }
801
802 p->in_use = 1;
803 p->addr_taken = 0;
804 p->rtl_expr = seq_rtl_expr;
805
806 if (keep == 2)
807 {
808 p->level = target_temp_slot_level;
809 p->keep = 0;
810 }
811 else if (keep == 3)
812 {
813 p->level = var_temp_slot_level;
814 p->keep = 0;
815 }
816 else
817 {
818 p->level = temp_slot_level;
819 p->keep = keep;
820 }
821
822 /* We may be reusing an old slot, so clear any MEM flags that may have been
823 set from before. */
824 RTX_UNCHANGING_P (p->slot) = 0;
825 MEM_IN_STRUCT_P (p->slot) = 0;
826 MEM_SCALAR_P (p->slot) = 0;
827 MEM_ALIAS_SET (p->slot) = 0;
828 return p->slot;
829 }
830
831 /* Allocate a temporary stack slot and record it for possible later
832 reuse. First three arguments are same as in preceding function. */
833
834 rtx
835 assign_stack_temp (mode, size, keep)
836 enum machine_mode mode;
837 HOST_WIDE_INT size;
838 int keep;
839 {
840 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
841 }
842 \f
843 /* Assign a temporary of given TYPE.
844 KEEP is as for assign_stack_temp.
845 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
846 it is 0 if a register is OK.
847 DONT_PROMOTE is 1 if we should not promote values in register
848 to wider modes. */
849
850 rtx
851 assign_temp (type, keep, memory_required, dont_promote)
852 tree type;
853 int keep;
854 int memory_required;
855 int dont_promote ATTRIBUTE_UNUSED;
856 {
857 enum machine_mode mode = TYPE_MODE (type);
858 #ifndef PROMOTE_FOR_CALL_ONLY
859 int unsignedp = TREE_UNSIGNED (type);
860 #endif
861
862 if (mode == BLKmode || memory_required)
863 {
864 HOST_WIDE_INT size = int_size_in_bytes (type);
865 rtx tmp;
866
867 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
868 problems with allocating the stack space. */
869 if (size == 0)
870 size = 1;
871
872 /* Unfortunately, we don't yet know how to allocate variable-sized
873 temporaries. However, sometimes we have a fixed upper limit on
874 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
875 instead. This is the case for Chill variable-sized strings. */
876 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
877 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
878 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (type)) == INTEGER_CST)
879 size = TREE_INT_CST_LOW (TYPE_ARRAY_MAX_SIZE (type));
880
881 tmp = assign_stack_temp_for_type (mode, size, keep, type);
882 MEM_SET_IN_STRUCT_P (tmp, AGGREGATE_TYPE_P (type));
883 return tmp;
884 }
885
886 #ifndef PROMOTE_FOR_CALL_ONLY
887 if (! dont_promote)
888 mode = promote_mode (type, mode, &unsignedp, 0);
889 #endif
890
891 return gen_reg_rtx (mode);
892 }
893 \f
894 /* Combine temporary stack slots which are adjacent on the stack.
895
896 This allows for better use of already allocated stack space. This is only
897 done for BLKmode slots because we can be sure that we won't have alignment
898 problems in this case. */
899
900 void
901 combine_temp_slots ()
902 {
903 struct temp_slot *p, *q;
904 struct temp_slot *prev_p, *prev_q;
905 int num_slots;
906
907 /* We can't combine slots, because the information about which slot
908 is in which alias set will be lost. */
909 if (flag_strict_aliasing)
910 return;
911
912 /* If there are a lot of temp slots, don't do anything unless
913 high levels of optimizaton. */
914 if (! flag_expensive_optimizations)
915 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
916 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
917 return;
918
919 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
920 {
921 int delete_p = 0;
922
923 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
924 for (q = p->next, prev_q = p; q; q = prev_q->next)
925 {
926 int delete_q = 0;
927 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
928 {
929 if (p->base_offset + p->full_size == q->base_offset)
930 {
931 /* Q comes after P; combine Q into P. */
932 p->size += q->size;
933 p->full_size += q->full_size;
934 delete_q = 1;
935 }
936 else if (q->base_offset + q->full_size == p->base_offset)
937 {
938 /* P comes after Q; combine P into Q. */
939 q->size += p->size;
940 q->full_size += p->full_size;
941 delete_p = 1;
942 break;
943 }
944 }
945 /* Either delete Q or advance past it. */
946 if (delete_q)
947 {
948 prev_q->next = q->next;
949 free (q);
950 }
951 else
952 prev_q = q;
953 }
954 /* Either delete P or advance past it. */
955 if (delete_p)
956 {
957 if (prev_p)
958 prev_p->next = p->next;
959 else
960 temp_slots = p->next;
961 }
962 else
963 prev_p = p;
964 }
965 }
966 \f
967 /* Find the temp slot corresponding to the object at address X. */
968
969 static struct temp_slot *
970 find_temp_slot_from_address (x)
971 rtx x;
972 {
973 struct temp_slot *p;
974 rtx next;
975
976 for (p = temp_slots; p; p = p->next)
977 {
978 if (! p->in_use)
979 continue;
980
981 else if (XEXP (p->slot, 0) == x
982 || p->address == x
983 || (GET_CODE (x) == PLUS
984 && XEXP (x, 0) == virtual_stack_vars_rtx
985 && GET_CODE (XEXP (x, 1)) == CONST_INT
986 && INTVAL (XEXP (x, 1)) >= p->base_offset
987 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
988 return p;
989
990 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
991 for (next = p->address; next; next = XEXP (next, 1))
992 if (XEXP (next, 0) == x)
993 return p;
994 }
995
996 /* If we have a sum involving a register, see if it points to a temp
997 slot. */
998 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
999 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
1000 return p;
1001 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1002 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1003 return p;
1004
1005 return 0;
1006 }
1007
1008 /* Indicate that NEW is an alternate way of referring to the temp slot
1009 that previously was known by OLD. */
1010
1011 void
1012 update_temp_slot_address (old, new)
1013 rtx old, new;
1014 {
1015 struct temp_slot *p;
1016
1017 if (rtx_equal_p (old, new))
1018 return;
1019
1020 p = find_temp_slot_from_address (old);
1021
1022 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1023 is a register, see if one operand of the PLUS is a temporary
1024 location. If so, NEW points into it. Otherwise, if both OLD and
1025 NEW are a PLUS and if there is a register in common between them.
1026 If so, try a recursive call on those values. */
1027 if (p == 0)
1028 {
1029 if (GET_CODE (old) != PLUS)
1030 return;
1031
1032 if (GET_CODE (new) == REG)
1033 {
1034 update_temp_slot_address (XEXP (old, 0), new);
1035 update_temp_slot_address (XEXP (old, 1), new);
1036 return;
1037 }
1038 else if (GET_CODE (new) != PLUS)
1039 return;
1040
1041 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1042 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1043 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1044 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1045 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1046 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1047 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1048 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1049
1050 return;
1051 }
1052
1053 /* Otherwise add an alias for the temp's address. */
1054 else if (p->address == 0)
1055 p->address = new;
1056 else
1057 {
1058 if (GET_CODE (p->address) != EXPR_LIST)
1059 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1060
1061 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1062 }
1063 }
1064
1065 /* If X could be a reference to a temporary slot, mark the fact that its
1066 address was taken. */
1067
1068 void
1069 mark_temp_addr_taken (x)
1070 rtx x;
1071 {
1072 struct temp_slot *p;
1073
1074 if (x == 0)
1075 return;
1076
1077 /* If X is not in memory or is at a constant address, it cannot be in
1078 a temporary slot. */
1079 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1080 return;
1081
1082 p = find_temp_slot_from_address (XEXP (x, 0));
1083 if (p != 0)
1084 p->addr_taken = 1;
1085 }
1086
1087 /* If X could be a reference to a temporary slot, mark that slot as
1088 belonging to the to one level higher than the current level. If X
1089 matched one of our slots, just mark that one. Otherwise, we can't
1090 easily predict which it is, so upgrade all of them. Kept slots
1091 need not be touched.
1092
1093 This is called when an ({...}) construct occurs and a statement
1094 returns a value in memory. */
1095
1096 void
1097 preserve_temp_slots (x)
1098 rtx x;
1099 {
1100 struct temp_slot *p = 0;
1101
1102 /* If there is no result, we still might have some objects whose address
1103 were taken, so we need to make sure they stay around. */
1104 if (x == 0)
1105 {
1106 for (p = temp_slots; p; p = p->next)
1107 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1108 p->level--;
1109
1110 return;
1111 }
1112
1113 /* If X is a register that is being used as a pointer, see if we have
1114 a temporary slot we know it points to. To be consistent with
1115 the code below, we really should preserve all non-kept slots
1116 if we can't find a match, but that seems to be much too costly. */
1117 if (GET_CODE (x) == REG && REGNO_POINTER_FLAG (REGNO (x)))
1118 p = find_temp_slot_from_address (x);
1119
1120 /* If X is not in memory or is at a constant address, it cannot be in
1121 a temporary slot, but it can contain something whose address was
1122 taken. */
1123 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1124 {
1125 for (p = temp_slots; p; p = p->next)
1126 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1127 p->level--;
1128
1129 return;
1130 }
1131
1132 /* First see if we can find a match. */
1133 if (p == 0)
1134 p = find_temp_slot_from_address (XEXP (x, 0));
1135
1136 if (p != 0)
1137 {
1138 /* Move everything at our level whose address was taken to our new
1139 level in case we used its address. */
1140 struct temp_slot *q;
1141
1142 if (p->level == temp_slot_level)
1143 {
1144 for (q = temp_slots; q; q = q->next)
1145 if (q != p && q->addr_taken && q->level == p->level)
1146 q->level--;
1147
1148 p->level--;
1149 p->addr_taken = 0;
1150 }
1151 return;
1152 }
1153
1154 /* Otherwise, preserve all non-kept slots at this level. */
1155 for (p = temp_slots; p; p = p->next)
1156 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1157 p->level--;
1158 }
1159
1160 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1161 with that RTL_EXPR, promote it into a temporary slot at the present
1162 level so it will not be freed when we free slots made in the
1163 RTL_EXPR. */
1164
1165 void
1166 preserve_rtl_expr_result (x)
1167 rtx x;
1168 {
1169 struct temp_slot *p;
1170
1171 /* If X is not in memory or is at a constant address, it cannot be in
1172 a temporary slot. */
1173 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1174 return;
1175
1176 /* If we can find a match, move it to our level unless it is already at
1177 an upper level. */
1178 p = find_temp_slot_from_address (XEXP (x, 0));
1179 if (p != 0)
1180 {
1181 p->level = MIN (p->level, temp_slot_level);
1182 p->rtl_expr = 0;
1183 }
1184
1185 return;
1186 }
1187
1188 /* Free all temporaries used so far. This is normally called at the end
1189 of generating code for a statement. Don't free any temporaries
1190 currently in use for an RTL_EXPR that hasn't yet been emitted.
1191 We could eventually do better than this since it can be reused while
1192 generating the same RTL_EXPR, but this is complex and probably not
1193 worthwhile. */
1194
1195 void
1196 free_temp_slots ()
1197 {
1198 struct temp_slot *p;
1199
1200 for (p = temp_slots; p; p = p->next)
1201 if (p->in_use && p->level == temp_slot_level && ! p->keep
1202 && p->rtl_expr == 0)
1203 p->in_use = 0;
1204
1205 combine_temp_slots ();
1206 }
1207
1208 /* Free all temporary slots used in T, an RTL_EXPR node. */
1209
1210 void
1211 free_temps_for_rtl_expr (t)
1212 tree t;
1213 {
1214 struct temp_slot *p;
1215
1216 for (p = temp_slots; p; p = p->next)
1217 if (p->rtl_expr == t)
1218 {
1219 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1220 needs to be preserved. This can happen if a temporary in
1221 the RTL_EXPR was addressed; preserve_temp_slots will move
1222 the temporary into a higher level. */
1223 if (temp_slot_level <= p->level)
1224 p->in_use = 0;
1225 else
1226 p->rtl_expr = NULL_TREE;
1227 }
1228
1229 combine_temp_slots ();
1230 }
1231
1232 /* Mark all temporaries ever allocated in this function as not suitable
1233 for reuse until the current level is exited. */
1234
1235 void
1236 mark_all_temps_used ()
1237 {
1238 struct temp_slot *p;
1239
1240 for (p = temp_slots; p; p = p->next)
1241 {
1242 p->in_use = p->keep = 1;
1243 p->level = MIN (p->level, temp_slot_level);
1244 }
1245 }
1246
1247 /* Push deeper into the nesting level for stack temporaries. */
1248
1249 void
1250 push_temp_slots ()
1251 {
1252 temp_slot_level++;
1253 }
1254
1255 /* Likewise, but save the new level as the place to allocate variables
1256 for blocks. */
1257
1258 #if 0
1259 void
1260 push_temp_slots_for_block ()
1261 {
1262 push_temp_slots ();
1263
1264 var_temp_slot_level = temp_slot_level;
1265 }
1266
1267 /* Likewise, but save the new level as the place to allocate temporaries
1268 for TARGET_EXPRs. */
1269
1270 void
1271 push_temp_slots_for_target ()
1272 {
1273 push_temp_slots ();
1274
1275 target_temp_slot_level = temp_slot_level;
1276 }
1277
1278 /* Set and get the value of target_temp_slot_level. The only
1279 permitted use of these functions is to save and restore this value. */
1280
1281 int
1282 get_target_temp_slot_level ()
1283 {
1284 return target_temp_slot_level;
1285 }
1286
1287 void
1288 set_target_temp_slot_level (level)
1289 int level;
1290 {
1291 target_temp_slot_level = level;
1292 }
1293 #endif
1294
1295 /* Pop a temporary nesting level. All slots in use in the current level
1296 are freed. */
1297
1298 void
1299 pop_temp_slots ()
1300 {
1301 struct temp_slot *p;
1302
1303 for (p = temp_slots; p; p = p->next)
1304 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1305 p->in_use = 0;
1306
1307 combine_temp_slots ();
1308
1309 temp_slot_level--;
1310 }
1311
1312 /* Initialize temporary slots. */
1313
1314 void
1315 init_temp_slots ()
1316 {
1317 /* We have not allocated any temporaries yet. */
1318 temp_slots = 0;
1319 temp_slot_level = 0;
1320 var_temp_slot_level = 0;
1321 target_temp_slot_level = 0;
1322 }
1323 \f
1324 /* Retroactively move an auto variable from a register to a stack slot.
1325 This is done when an address-reference to the variable is seen. */
1326
1327 void
1328 put_var_into_stack (decl)
1329 tree decl;
1330 {
1331 register rtx reg;
1332 enum machine_mode promoted_mode, decl_mode;
1333 struct function *function = 0;
1334 tree context;
1335 int can_use_addressof;
1336
1337 context = decl_function_context (decl);
1338
1339 /* Get the current rtl used for this object and its original mode. */
1340 reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl);
1341
1342 /* No need to do anything if decl has no rtx yet
1343 since in that case caller is setting TREE_ADDRESSABLE
1344 and a stack slot will be assigned when the rtl is made. */
1345 if (reg == 0)
1346 return;
1347
1348 /* Get the declared mode for this object. */
1349 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1350 : DECL_MODE (decl));
1351 /* Get the mode it's actually stored in. */
1352 promoted_mode = GET_MODE (reg);
1353
1354 /* If this variable comes from an outer function,
1355 find that function's saved context. */
1356 if (context != current_function_decl && context != inline_function_decl)
1357 for (function = outer_function_chain; function; function = function->next)
1358 if (function->decl == context)
1359 break;
1360
1361 /* If this is a variable-size object with a pseudo to address it,
1362 put that pseudo into the stack, if the var is nonlocal. */
1363 if (DECL_NONLOCAL (decl)
1364 && GET_CODE (reg) == MEM
1365 && GET_CODE (XEXP (reg, 0)) == REG
1366 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1367 {
1368 reg = XEXP (reg, 0);
1369 decl_mode = promoted_mode = GET_MODE (reg);
1370 }
1371
1372 can_use_addressof
1373 = (function == 0
1374 && optimize > 0
1375 /* FIXME make it work for promoted modes too */
1376 && decl_mode == promoted_mode
1377 #ifdef NON_SAVING_SETJMP
1378 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1379 #endif
1380 );
1381
1382 /* If we can't use ADDRESSOF, make sure we see through one we already
1383 generated. */
1384 if (! can_use_addressof && GET_CODE (reg) == MEM
1385 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1386 reg = XEXP (XEXP (reg, 0), 0);
1387
1388 /* Now we should have a value that resides in one or more pseudo regs. */
1389
1390 if (GET_CODE (reg) == REG)
1391 {
1392 /* If this variable lives in the current function and we don't need
1393 to put things in the stack for the sake of setjmp, try to keep it
1394 in a register until we know we actually need the address. */
1395 if (can_use_addressof)
1396 gen_mem_addressof (reg, decl);
1397 else
1398 put_reg_into_stack (function, reg, TREE_TYPE (decl),
1399 promoted_mode, decl_mode,
1400 TREE_SIDE_EFFECTS (decl), 0,
1401 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1402 0);
1403 }
1404 else if (GET_CODE (reg) == CONCAT)
1405 {
1406 /* A CONCAT contains two pseudos; put them both in the stack.
1407 We do it so they end up consecutive. */
1408 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1409 tree part_type = type_for_mode (part_mode, 0);
1410 #ifdef FRAME_GROWS_DOWNWARD
1411 /* Since part 0 should have a lower address, do it second. */
1412 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1413 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1414 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1415 0);
1416 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1417 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1418 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1419 0);
1420 #else
1421 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1422 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1423 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1424 0);
1425 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1426 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1427 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1428 0);
1429 #endif
1430
1431 /* Change the CONCAT into a combined MEM for both parts. */
1432 PUT_CODE (reg, MEM);
1433 MEM_VOLATILE_P (reg) = MEM_VOLATILE_P (XEXP (reg, 0));
1434 MEM_ALIAS_SET (reg) = get_alias_set (decl);
1435 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (TREE_TYPE (decl)));
1436
1437 /* The two parts are in memory order already.
1438 Use the lower parts address as ours. */
1439 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1440 /* Prevent sharing of rtl that might lose. */
1441 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1442 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1443 }
1444 else
1445 return;
1446
1447 if (current_function_check_memory_usage)
1448 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
1449 XEXP (reg, 0), Pmode,
1450 GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
1451 TYPE_MODE (sizetype),
1452 GEN_INT (MEMORY_USE_RW),
1453 TYPE_MODE (integer_type_node));
1454 }
1455
1456 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1457 into the stack frame of FUNCTION (0 means the current function).
1458 DECL_MODE is the machine mode of the user-level data type.
1459 PROMOTED_MODE is the machine mode of the register.
1460 VOLATILE_P is nonzero if this is for a "volatile" decl.
1461 USED_P is nonzero if this reg might have already been used in an insn. */
1462
1463 static void
1464 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1465 original_regno, used_p, ht)
1466 struct function *function;
1467 rtx reg;
1468 tree type;
1469 enum machine_mode promoted_mode, decl_mode;
1470 int volatile_p;
1471 unsigned int original_regno;
1472 int used_p;
1473 struct hash_table *ht;
1474 {
1475 struct function *func = function ? function : cfun;
1476 rtx new = 0;
1477 unsigned int regno = original_regno;
1478
1479 if (regno == 0)
1480 regno = REGNO (reg);
1481
1482 if (regno < func->x_max_parm_reg)
1483 new = func->x_parm_reg_stack_loc[regno];
1484
1485 if (new == 0)
1486 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1487
1488 PUT_CODE (reg, MEM);
1489 PUT_MODE (reg, decl_mode);
1490 XEXP (reg, 0) = XEXP (new, 0);
1491 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1492 MEM_VOLATILE_P (reg) = volatile_p;
1493
1494 /* If this is a memory ref that contains aggregate components,
1495 mark it as such for cse and loop optimize. If we are reusing a
1496 previously generated stack slot, then we need to copy the bit in
1497 case it was set for other reasons. For instance, it is set for
1498 __builtin_va_alist. */
1499 MEM_SET_IN_STRUCT_P (reg,
1500 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1501 MEM_ALIAS_SET (reg) = get_alias_set (type);
1502
1503 /* Now make sure that all refs to the variable, previously made
1504 when it was a register, are fixed up to be valid again. */
1505
1506 if (used_p && function != 0)
1507 {
1508 struct var_refs_queue *temp;
1509
1510 temp
1511 = (struct var_refs_queue *) xmalloc (sizeof (struct var_refs_queue));
1512 temp->modified = reg;
1513 temp->promoted_mode = promoted_mode;
1514 temp->unsignedp = TREE_UNSIGNED (type);
1515 temp->next = function->fixup_var_refs_queue;
1516 function->fixup_var_refs_queue = temp;
1517 }
1518 else if (used_p)
1519 /* Variable is local; fix it up now. */
1520 fixup_var_refs (reg, promoted_mode, TREE_UNSIGNED (type), ht);
1521 }
1522 \f
1523 static void
1524 fixup_var_refs (var, promoted_mode, unsignedp, ht)
1525 rtx var;
1526 enum machine_mode promoted_mode;
1527 int unsignedp;
1528 struct hash_table *ht;
1529 {
1530 tree pending;
1531 rtx first_insn = get_insns ();
1532 struct sequence_stack *stack = seq_stack;
1533 tree rtl_exps = rtl_expr_chain;
1534 rtx insn;
1535
1536 /* Must scan all insns for stack-refs that exceed the limit. */
1537 fixup_var_refs_insns (var, promoted_mode, unsignedp, first_insn,
1538 stack == 0, ht);
1539 /* If there's a hash table, it must record all uses of VAR. */
1540 if (ht)
1541 return;
1542
1543 /* Scan all pending sequences too. */
1544 for (; stack; stack = stack->next)
1545 {
1546 push_to_sequence (stack->first);
1547 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1548 stack->first, stack->next != 0, 0);
1549 /* Update remembered end of sequence
1550 in case we added an insn at the end. */
1551 stack->last = get_last_insn ();
1552 end_sequence ();
1553 }
1554
1555 /* Scan all waiting RTL_EXPRs too. */
1556 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1557 {
1558 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1559 if (seq != const0_rtx && seq != 0)
1560 {
1561 push_to_sequence (seq);
1562 fixup_var_refs_insns (var, promoted_mode, unsignedp, seq, 0,
1563 0);
1564 end_sequence ();
1565 }
1566 }
1567
1568 /* Scan the catch clauses for exception handling too. */
1569 push_to_full_sequence (catch_clauses, catch_clauses_last);
1570 fixup_var_refs_insns (var, promoted_mode, unsignedp, catch_clauses,
1571 0, 0);
1572 end_full_sequence (&catch_clauses, &catch_clauses_last);
1573
1574 /* Scan sequences saved in CALL_PLACEHOLDERS too. */
1575 for (insn = first_insn; insn; insn = NEXT_INSN (insn))
1576 {
1577 if (GET_CODE (insn) == CALL_INSN
1578 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1579 {
1580 int i;
1581
1582 /* Look at the Normal call, sibling call and tail recursion
1583 sequences attached to the CALL_PLACEHOLDER. */
1584 for (i = 0; i < 3; i++)
1585 {
1586 rtx seq = XEXP (PATTERN (insn), i);
1587 if (seq)
1588 {
1589 push_to_sequence (seq);
1590 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1591 seq, 0, 0);
1592 XEXP (PATTERN (insn), i) = get_insns ();
1593 end_sequence ();
1594 }
1595 }
1596 }
1597 }
1598 }
1599 \f
1600 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1601 some part of an insn. Return a struct fixup_replacement whose OLD
1602 value is equal to X. Allocate a new structure if no such entry exists. */
1603
1604 static struct fixup_replacement *
1605 find_fixup_replacement (replacements, x)
1606 struct fixup_replacement **replacements;
1607 rtx x;
1608 {
1609 struct fixup_replacement *p;
1610
1611 /* See if we have already replaced this. */
1612 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1613 ;
1614
1615 if (p == 0)
1616 {
1617 p = (struct fixup_replacement *) oballoc (sizeof (struct fixup_replacement));
1618 p->old = x;
1619 p->new = 0;
1620 p->next = *replacements;
1621 *replacements = p;
1622 }
1623
1624 return p;
1625 }
1626
1627 /* Scan the insn-chain starting with INSN for refs to VAR
1628 and fix them up. TOPLEVEL is nonzero if this chain is the
1629 main chain of insns for the current function. */
1630
1631 static void
1632 fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel, ht)
1633 rtx var;
1634 enum machine_mode promoted_mode;
1635 int unsignedp;
1636 rtx insn;
1637 int toplevel;
1638 struct hash_table *ht;
1639 {
1640 rtx call_dest = 0;
1641 rtx insn_list = NULL_RTX;
1642
1643 /* If we already know which INSNs reference VAR there's no need
1644 to walk the entire instruction chain. */
1645 if (ht)
1646 {
1647 insn_list = ((struct insns_for_mem_entry *)
1648 hash_lookup (ht, var, /*create=*/0, /*copy=*/0))->insns;
1649 insn = insn_list ? XEXP (insn_list, 0) : NULL_RTX;
1650 insn_list = XEXP (insn_list, 1);
1651 }
1652
1653 while (insn)
1654 {
1655 rtx next = NEXT_INSN (insn);
1656 rtx set, prev, prev_set;
1657 rtx note;
1658
1659 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1660 {
1661 /* Remember the notes in case we delete the insn. */
1662 note = REG_NOTES (insn);
1663
1664 /* If this is a CLOBBER of VAR, delete it.
1665
1666 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1667 and REG_RETVAL notes too. */
1668 if (GET_CODE (PATTERN (insn)) == CLOBBER
1669 && (XEXP (PATTERN (insn), 0) == var
1670 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1671 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1672 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1673 {
1674 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1675 /* The REG_LIBCALL note will go away since we are going to
1676 turn INSN into a NOTE, so just delete the
1677 corresponding REG_RETVAL note. */
1678 remove_note (XEXP (note, 0),
1679 find_reg_note (XEXP (note, 0), REG_RETVAL,
1680 NULL_RTX));
1681
1682 /* In unoptimized compilation, we shouldn't call delete_insn
1683 except in jump.c doing warnings. */
1684 PUT_CODE (insn, NOTE);
1685 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1686 NOTE_SOURCE_FILE (insn) = 0;
1687 }
1688
1689 /* The insn to load VAR from a home in the arglist
1690 is now a no-op. When we see it, just delete it.
1691 Similarly if this is storing VAR from a register from which
1692 it was loaded in the previous insn. This will occur
1693 when an ADDRESSOF was made for an arglist slot. */
1694 else if (toplevel
1695 && (set = single_set (insn)) != 0
1696 && SET_DEST (set) == var
1697 /* If this represents the result of an insn group,
1698 don't delete the insn. */
1699 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1700 && (rtx_equal_p (SET_SRC (set), var)
1701 || (GET_CODE (SET_SRC (set)) == REG
1702 && (prev = prev_nonnote_insn (insn)) != 0
1703 && (prev_set = single_set (prev)) != 0
1704 && SET_DEST (prev_set) == SET_SRC (set)
1705 && rtx_equal_p (SET_SRC (prev_set), var))))
1706 {
1707 /* In unoptimized compilation, we shouldn't call delete_insn
1708 except in jump.c doing warnings. */
1709 PUT_CODE (insn, NOTE);
1710 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1711 NOTE_SOURCE_FILE (insn) = 0;
1712 if (insn == last_parm_insn)
1713 last_parm_insn = PREV_INSN (next);
1714 }
1715 else
1716 {
1717 struct fixup_replacement *replacements = 0;
1718 rtx next_insn = NEXT_INSN (insn);
1719
1720 if (SMALL_REGISTER_CLASSES)
1721 {
1722 /* If the insn that copies the results of a CALL_INSN
1723 into a pseudo now references VAR, we have to use an
1724 intermediate pseudo since we want the life of the
1725 return value register to be only a single insn.
1726
1727 If we don't use an intermediate pseudo, such things as
1728 address computations to make the address of VAR valid
1729 if it is not can be placed between the CALL_INSN and INSN.
1730
1731 To make sure this doesn't happen, we record the destination
1732 of the CALL_INSN and see if the next insn uses both that
1733 and VAR. */
1734
1735 if (call_dest != 0 && GET_CODE (insn) == INSN
1736 && reg_mentioned_p (var, PATTERN (insn))
1737 && reg_mentioned_p (call_dest, PATTERN (insn)))
1738 {
1739 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1740
1741 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1742
1743 PATTERN (insn) = replace_rtx (PATTERN (insn),
1744 call_dest, temp);
1745 }
1746
1747 if (GET_CODE (insn) == CALL_INSN
1748 && GET_CODE (PATTERN (insn)) == SET)
1749 call_dest = SET_DEST (PATTERN (insn));
1750 else if (GET_CODE (insn) == CALL_INSN
1751 && GET_CODE (PATTERN (insn)) == PARALLEL
1752 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1753 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1754 else
1755 call_dest = 0;
1756 }
1757
1758 /* See if we have to do anything to INSN now that VAR is in
1759 memory. If it needs to be loaded into a pseudo, use a single
1760 pseudo for the entire insn in case there is a MATCH_DUP
1761 between two operands. We pass a pointer to the head of
1762 a list of struct fixup_replacements. If fixup_var_refs_1
1763 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1764 it will record them in this list.
1765
1766 If it allocated a pseudo for any replacement, we copy into
1767 it here. */
1768
1769 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1770 &replacements);
1771
1772 /* If this is last_parm_insn, and any instructions were output
1773 after it to fix it up, then we must set last_parm_insn to
1774 the last such instruction emitted. */
1775 if (insn == last_parm_insn)
1776 last_parm_insn = PREV_INSN (next_insn);
1777
1778 while (replacements)
1779 {
1780 if (GET_CODE (replacements->new) == REG)
1781 {
1782 rtx insert_before;
1783 rtx seq;
1784
1785 /* OLD might be a (subreg (mem)). */
1786 if (GET_CODE (replacements->old) == SUBREG)
1787 replacements->old
1788 = fixup_memory_subreg (replacements->old, insn, 0);
1789 else
1790 replacements->old
1791 = fixup_stack_1 (replacements->old, insn);
1792
1793 insert_before = insn;
1794
1795 /* If we are changing the mode, do a conversion.
1796 This might be wasteful, but combine.c will
1797 eliminate much of the waste. */
1798
1799 if (GET_MODE (replacements->new)
1800 != GET_MODE (replacements->old))
1801 {
1802 start_sequence ();
1803 convert_move (replacements->new,
1804 replacements->old, unsignedp);
1805 seq = gen_sequence ();
1806 end_sequence ();
1807 }
1808 else
1809 seq = gen_move_insn (replacements->new,
1810 replacements->old);
1811
1812 emit_insn_before (seq, insert_before);
1813 }
1814
1815 replacements = replacements->next;
1816 }
1817 }
1818
1819 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1820 But don't touch other insns referred to by reg-notes;
1821 we will get them elsewhere. */
1822 while (note)
1823 {
1824 if (GET_CODE (note) != INSN_LIST)
1825 XEXP (note, 0)
1826 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1827 note = XEXP (note, 1);
1828 }
1829 }
1830
1831 if (!ht)
1832 insn = next;
1833 else if (insn_list)
1834 {
1835 insn = XEXP (insn_list, 0);
1836 insn_list = XEXP (insn_list, 1);
1837 }
1838 else
1839 insn = NULL_RTX;
1840 }
1841 }
1842 \f
1843 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1844 See if the rtx expression at *LOC in INSN needs to be changed.
1845
1846 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1847 contain a list of original rtx's and replacements. If we find that we need
1848 to modify this insn by replacing a memory reference with a pseudo or by
1849 making a new MEM to implement a SUBREG, we consult that list to see if
1850 we have already chosen a replacement. If none has already been allocated,
1851 we allocate it and update the list. fixup_var_refs_insns will copy VAR
1852 or the SUBREG, as appropriate, to the pseudo. */
1853
1854 static void
1855 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1856 register rtx var;
1857 enum machine_mode promoted_mode;
1858 register rtx *loc;
1859 rtx insn;
1860 struct fixup_replacement **replacements;
1861 {
1862 register int i;
1863 register rtx x = *loc;
1864 RTX_CODE code = GET_CODE (x);
1865 register const char *fmt;
1866 register rtx tem, tem1;
1867 struct fixup_replacement *replacement;
1868
1869 switch (code)
1870 {
1871 case ADDRESSOF:
1872 if (XEXP (x, 0) == var)
1873 {
1874 /* Prevent sharing of rtl that might lose. */
1875 rtx sub = copy_rtx (XEXP (var, 0));
1876
1877 if (! validate_change (insn, loc, sub, 0))
1878 {
1879 rtx y = gen_reg_rtx (GET_MODE (sub));
1880 rtx seq, new_insn;
1881
1882 /* We should be able to replace with a register or all is lost.
1883 Note that we can't use validate_change to verify this, since
1884 we're not caring for replacing all dups simultaneously. */
1885 if (! validate_replace_rtx (*loc, y, insn))
1886 abort ();
1887
1888 /* Careful! First try to recognize a direct move of the
1889 value, mimicking how things are done in gen_reload wrt
1890 PLUS. Consider what happens when insn is a conditional
1891 move instruction and addsi3 clobbers flags. */
1892
1893 start_sequence ();
1894 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1895 seq = gen_sequence ();
1896 end_sequence ();
1897
1898 if (recog_memoized (new_insn) < 0)
1899 {
1900 /* That failed. Fall back on force_operand and hope. */
1901
1902 start_sequence ();
1903 force_operand (sub, y);
1904 seq = gen_sequence ();
1905 end_sequence ();
1906 }
1907
1908 #ifdef HAVE_cc0
1909 /* Don't separate setter from user. */
1910 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1911 insn = PREV_INSN (insn);
1912 #endif
1913
1914 emit_insn_before (seq, insn);
1915 }
1916 }
1917 return;
1918
1919 case MEM:
1920 if (var == x)
1921 {
1922 /* If we already have a replacement, use it. Otherwise,
1923 try to fix up this address in case it is invalid. */
1924
1925 replacement = find_fixup_replacement (replacements, var);
1926 if (replacement->new)
1927 {
1928 *loc = replacement->new;
1929 return;
1930 }
1931
1932 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1933
1934 /* Unless we are forcing memory to register or we changed the mode,
1935 we can leave things the way they are if the insn is valid. */
1936
1937 INSN_CODE (insn) = -1;
1938 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1939 && recog_memoized (insn) >= 0)
1940 return;
1941
1942 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1943 return;
1944 }
1945
1946 /* If X contains VAR, we need to unshare it here so that we update
1947 each occurrence separately. But all identical MEMs in one insn
1948 must be replaced with the same rtx because of the possibility of
1949 MATCH_DUPs. */
1950
1951 if (reg_mentioned_p (var, x))
1952 {
1953 replacement = find_fixup_replacement (replacements, x);
1954 if (replacement->new == 0)
1955 replacement->new = copy_most_rtx (x, var);
1956
1957 *loc = x = replacement->new;
1958 }
1959 break;
1960
1961 case REG:
1962 case CC0:
1963 case PC:
1964 case CONST_INT:
1965 case CONST:
1966 case SYMBOL_REF:
1967 case LABEL_REF:
1968 case CONST_DOUBLE:
1969 return;
1970
1971 case SIGN_EXTRACT:
1972 case ZERO_EXTRACT:
1973 /* Note that in some cases those types of expressions are altered
1974 by optimize_bit_field, and do not survive to get here. */
1975 if (XEXP (x, 0) == var
1976 || (GET_CODE (XEXP (x, 0)) == SUBREG
1977 && SUBREG_REG (XEXP (x, 0)) == var))
1978 {
1979 /* Get TEM as a valid MEM in the mode presently in the insn.
1980
1981 We don't worry about the possibility of MATCH_DUP here; it
1982 is highly unlikely and would be tricky to handle. */
1983
1984 tem = XEXP (x, 0);
1985 if (GET_CODE (tem) == SUBREG)
1986 {
1987 if (GET_MODE_BITSIZE (GET_MODE (tem))
1988 > GET_MODE_BITSIZE (GET_MODE (var)))
1989 {
1990 replacement = find_fixup_replacement (replacements, var);
1991 if (replacement->new == 0)
1992 replacement->new = gen_reg_rtx (GET_MODE (var));
1993 SUBREG_REG (tem) = replacement->new;
1994 }
1995 else
1996 tem = fixup_memory_subreg (tem, insn, 0);
1997 }
1998 else
1999 tem = fixup_stack_1 (tem, insn);
2000
2001 /* Unless we want to load from memory, get TEM into the proper mode
2002 for an extract from memory. This can only be done if the
2003 extract is at a constant position and length. */
2004
2005 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
2006 && GET_CODE (XEXP (x, 2)) == CONST_INT
2007 && ! mode_dependent_address_p (XEXP (tem, 0))
2008 && ! MEM_VOLATILE_P (tem))
2009 {
2010 enum machine_mode wanted_mode = VOIDmode;
2011 enum machine_mode is_mode = GET_MODE (tem);
2012 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2013
2014 #ifdef HAVE_extzv
2015 if (GET_CODE (x) == ZERO_EXTRACT)
2016 {
2017 wanted_mode
2018 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
2019 if (wanted_mode == VOIDmode)
2020 wanted_mode = word_mode;
2021 }
2022 #endif
2023 #ifdef HAVE_extv
2024 if (GET_CODE (x) == SIGN_EXTRACT)
2025 {
2026 wanted_mode = insn_data[(int) CODE_FOR_extv].operand[1].mode;
2027 if (wanted_mode == VOIDmode)
2028 wanted_mode = word_mode;
2029 }
2030 #endif
2031 /* If we have a narrower mode, we can do something. */
2032 if (wanted_mode != VOIDmode
2033 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2034 {
2035 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2036 rtx old_pos = XEXP (x, 2);
2037 rtx newmem;
2038
2039 /* If the bytes and bits are counted differently, we
2040 must adjust the offset. */
2041 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2042 offset = (GET_MODE_SIZE (is_mode)
2043 - GET_MODE_SIZE (wanted_mode) - offset);
2044
2045 pos %= GET_MODE_BITSIZE (wanted_mode);
2046
2047 newmem = gen_rtx_MEM (wanted_mode,
2048 plus_constant (XEXP (tem, 0), offset));
2049 MEM_COPY_ATTRIBUTES (newmem, tem);
2050
2051 /* Make the change and see if the insn remains valid. */
2052 INSN_CODE (insn) = -1;
2053 XEXP (x, 0) = newmem;
2054 XEXP (x, 2) = GEN_INT (pos);
2055
2056 if (recog_memoized (insn) >= 0)
2057 return;
2058
2059 /* Otherwise, restore old position. XEXP (x, 0) will be
2060 restored later. */
2061 XEXP (x, 2) = old_pos;
2062 }
2063 }
2064
2065 /* If we get here, the bitfield extract insn can't accept a memory
2066 reference. Copy the input into a register. */
2067
2068 tem1 = gen_reg_rtx (GET_MODE (tem));
2069 emit_insn_before (gen_move_insn (tem1, tem), insn);
2070 XEXP (x, 0) = tem1;
2071 return;
2072 }
2073 break;
2074
2075 case SUBREG:
2076 if (SUBREG_REG (x) == var)
2077 {
2078 /* If this is a special SUBREG made because VAR was promoted
2079 from a wider mode, replace it with VAR and call ourself
2080 recursively, this time saying that the object previously
2081 had its current mode (by virtue of the SUBREG). */
2082
2083 if (SUBREG_PROMOTED_VAR_P (x))
2084 {
2085 *loc = var;
2086 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
2087 return;
2088 }
2089
2090 /* If this SUBREG makes VAR wider, it has become a paradoxical
2091 SUBREG with VAR in memory, but these aren't allowed at this
2092 stage of the compilation. So load VAR into a pseudo and take
2093 a SUBREG of that pseudo. */
2094 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2095 {
2096 replacement = find_fixup_replacement (replacements, var);
2097 if (replacement->new == 0)
2098 replacement->new = gen_reg_rtx (GET_MODE (var));
2099 SUBREG_REG (x) = replacement->new;
2100 return;
2101 }
2102
2103 /* See if we have already found a replacement for this SUBREG.
2104 If so, use it. Otherwise, make a MEM and see if the insn
2105 is recognized. If not, or if we should force MEM into a register,
2106 make a pseudo for this SUBREG. */
2107 replacement = find_fixup_replacement (replacements, x);
2108 if (replacement->new)
2109 {
2110 *loc = replacement->new;
2111 return;
2112 }
2113
2114 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
2115
2116 INSN_CODE (insn) = -1;
2117 if (! flag_force_mem && recog_memoized (insn) >= 0)
2118 return;
2119
2120 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2121 return;
2122 }
2123 break;
2124
2125 case SET:
2126 /* First do special simplification of bit-field references. */
2127 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2128 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2129 optimize_bit_field (x, insn, 0);
2130 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2131 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2132 optimize_bit_field (x, insn, NULL_PTR);
2133
2134 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2135 into a register and then store it back out. */
2136 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2137 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2138 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2139 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2140 > GET_MODE_SIZE (GET_MODE (var))))
2141 {
2142 replacement = find_fixup_replacement (replacements, var);
2143 if (replacement->new == 0)
2144 replacement->new = gen_reg_rtx (GET_MODE (var));
2145
2146 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2147 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2148 }
2149
2150 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2151 insn into a pseudo and store the low part of the pseudo into VAR. */
2152 if (GET_CODE (SET_DEST (x)) == SUBREG
2153 && SUBREG_REG (SET_DEST (x)) == var
2154 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2155 > GET_MODE_SIZE (GET_MODE (var))))
2156 {
2157 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2158 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2159 tem)),
2160 insn);
2161 break;
2162 }
2163
2164 {
2165 rtx dest = SET_DEST (x);
2166 rtx src = SET_SRC (x);
2167 #ifdef HAVE_insv
2168 rtx outerdest = dest;
2169 #endif
2170
2171 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2172 || GET_CODE (dest) == SIGN_EXTRACT
2173 || GET_CODE (dest) == ZERO_EXTRACT)
2174 dest = XEXP (dest, 0);
2175
2176 if (GET_CODE (src) == SUBREG)
2177 src = XEXP (src, 0);
2178
2179 /* If VAR does not appear at the top level of the SET
2180 just scan the lower levels of the tree. */
2181
2182 if (src != var && dest != var)
2183 break;
2184
2185 /* We will need to rerecognize this insn. */
2186 INSN_CODE (insn) = -1;
2187
2188 #ifdef HAVE_insv
2189 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
2190 {
2191 /* Since this case will return, ensure we fixup all the
2192 operands here. */
2193 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2194 insn, replacements);
2195 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2196 insn, replacements);
2197 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2198 insn, replacements);
2199
2200 tem = XEXP (outerdest, 0);
2201
2202 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2203 that may appear inside a ZERO_EXTRACT.
2204 This was legitimate when the MEM was a REG. */
2205 if (GET_CODE (tem) == SUBREG
2206 && SUBREG_REG (tem) == var)
2207 tem = fixup_memory_subreg (tem, insn, 0);
2208 else
2209 tem = fixup_stack_1 (tem, insn);
2210
2211 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2212 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2213 && ! mode_dependent_address_p (XEXP (tem, 0))
2214 && ! MEM_VOLATILE_P (tem))
2215 {
2216 enum machine_mode wanted_mode;
2217 enum machine_mode is_mode = GET_MODE (tem);
2218 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2219
2220 wanted_mode = insn_data[(int) CODE_FOR_insv].operand[0].mode;
2221 if (wanted_mode == VOIDmode)
2222 wanted_mode = word_mode;
2223
2224 /* If we have a narrower mode, we can do something. */
2225 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2226 {
2227 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2228 rtx old_pos = XEXP (outerdest, 2);
2229 rtx newmem;
2230
2231 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2232 offset = (GET_MODE_SIZE (is_mode)
2233 - GET_MODE_SIZE (wanted_mode) - offset);
2234
2235 pos %= GET_MODE_BITSIZE (wanted_mode);
2236
2237 newmem = gen_rtx_MEM (wanted_mode,
2238 plus_constant (XEXP (tem, 0),
2239 offset));
2240 MEM_COPY_ATTRIBUTES (newmem, tem);
2241
2242 /* Make the change and see if the insn remains valid. */
2243 INSN_CODE (insn) = -1;
2244 XEXP (outerdest, 0) = newmem;
2245 XEXP (outerdest, 2) = GEN_INT (pos);
2246
2247 if (recog_memoized (insn) >= 0)
2248 return;
2249
2250 /* Otherwise, restore old position. XEXP (x, 0) will be
2251 restored later. */
2252 XEXP (outerdest, 2) = old_pos;
2253 }
2254 }
2255
2256 /* If we get here, the bit-field store doesn't allow memory
2257 or isn't located at a constant position. Load the value into
2258 a register, do the store, and put it back into memory. */
2259
2260 tem1 = gen_reg_rtx (GET_MODE (tem));
2261 emit_insn_before (gen_move_insn (tem1, tem), insn);
2262 emit_insn_after (gen_move_insn (tem, tem1), insn);
2263 XEXP (outerdest, 0) = tem1;
2264 return;
2265 }
2266 #endif
2267
2268 /* STRICT_LOW_PART is a no-op on memory references
2269 and it can cause combinations to be unrecognizable,
2270 so eliminate it. */
2271
2272 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2273 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2274
2275 /* A valid insn to copy VAR into or out of a register
2276 must be left alone, to avoid an infinite loop here.
2277 If the reference to VAR is by a subreg, fix that up,
2278 since SUBREG is not valid for a memref.
2279 Also fix up the address of the stack slot.
2280
2281 Note that we must not try to recognize the insn until
2282 after we know that we have valid addresses and no
2283 (subreg (mem ...) ...) constructs, since these interfere
2284 with determining the validity of the insn. */
2285
2286 if ((SET_SRC (x) == var
2287 || (GET_CODE (SET_SRC (x)) == SUBREG
2288 && SUBREG_REG (SET_SRC (x)) == var))
2289 && (GET_CODE (SET_DEST (x)) == REG
2290 || (GET_CODE (SET_DEST (x)) == SUBREG
2291 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2292 && GET_MODE (var) == promoted_mode
2293 && x == single_set (insn))
2294 {
2295 rtx pat;
2296
2297 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2298 if (replacement->new)
2299 SET_SRC (x) = replacement->new;
2300 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2301 SET_SRC (x) = replacement->new
2302 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2303 else
2304 SET_SRC (x) = replacement->new
2305 = fixup_stack_1 (SET_SRC (x), insn);
2306
2307 if (recog_memoized (insn) >= 0)
2308 return;
2309
2310 /* INSN is not valid, but we know that we want to
2311 copy SET_SRC (x) to SET_DEST (x) in some way. So
2312 we generate the move and see whether it requires more
2313 than one insn. If it does, we emit those insns and
2314 delete INSN. Otherwise, we an just replace the pattern
2315 of INSN; we have already verified above that INSN has
2316 no other function that to do X. */
2317
2318 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2319 if (GET_CODE (pat) == SEQUENCE)
2320 {
2321 emit_insn_after (pat, insn);
2322 PUT_CODE (insn, NOTE);
2323 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2324 NOTE_SOURCE_FILE (insn) = 0;
2325 }
2326 else
2327 PATTERN (insn) = pat;
2328
2329 return;
2330 }
2331
2332 if ((SET_DEST (x) == var
2333 || (GET_CODE (SET_DEST (x)) == SUBREG
2334 && SUBREG_REG (SET_DEST (x)) == var))
2335 && (GET_CODE (SET_SRC (x)) == REG
2336 || (GET_CODE (SET_SRC (x)) == SUBREG
2337 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2338 && GET_MODE (var) == promoted_mode
2339 && x == single_set (insn))
2340 {
2341 rtx pat;
2342
2343 if (GET_CODE (SET_DEST (x)) == SUBREG)
2344 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2345 else
2346 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2347
2348 if (recog_memoized (insn) >= 0)
2349 return;
2350
2351 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2352 if (GET_CODE (pat) == SEQUENCE)
2353 {
2354 emit_insn_after (pat, insn);
2355 PUT_CODE (insn, NOTE);
2356 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2357 NOTE_SOURCE_FILE (insn) = 0;
2358 }
2359 else
2360 PATTERN (insn) = pat;
2361
2362 return;
2363 }
2364
2365 /* Otherwise, storing into VAR must be handled specially
2366 by storing into a temporary and copying that into VAR
2367 with a new insn after this one. Note that this case
2368 will be used when storing into a promoted scalar since
2369 the insn will now have different modes on the input
2370 and output and hence will be invalid (except for the case
2371 of setting it to a constant, which does not need any
2372 change if it is valid). We generate extra code in that case,
2373 but combine.c will eliminate it. */
2374
2375 if (dest == var)
2376 {
2377 rtx temp;
2378 rtx fixeddest = SET_DEST (x);
2379
2380 /* STRICT_LOW_PART can be discarded, around a MEM. */
2381 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2382 fixeddest = XEXP (fixeddest, 0);
2383 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2384 if (GET_CODE (fixeddest) == SUBREG)
2385 {
2386 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2387 promoted_mode = GET_MODE (fixeddest);
2388 }
2389 else
2390 fixeddest = fixup_stack_1 (fixeddest, insn);
2391
2392 temp = gen_reg_rtx (promoted_mode);
2393
2394 emit_insn_after (gen_move_insn (fixeddest,
2395 gen_lowpart (GET_MODE (fixeddest),
2396 temp)),
2397 insn);
2398
2399 SET_DEST (x) = temp;
2400 }
2401 }
2402
2403 default:
2404 break;
2405 }
2406
2407 /* Nothing special about this RTX; fix its operands. */
2408
2409 fmt = GET_RTX_FORMAT (code);
2410 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2411 {
2412 if (fmt[i] == 'e')
2413 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2414 else if (fmt[i] == 'E')
2415 {
2416 register int j;
2417 for (j = 0; j < XVECLEN (x, i); j++)
2418 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2419 insn, replacements);
2420 }
2421 }
2422 }
2423 \f
2424 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2425 return an rtx (MEM:m1 newaddr) which is equivalent.
2426 If any insns must be emitted to compute NEWADDR, put them before INSN.
2427
2428 UNCRITICAL nonzero means accept paradoxical subregs.
2429 This is used for subregs found inside REG_NOTES. */
2430
2431 static rtx
2432 fixup_memory_subreg (x, insn, uncritical)
2433 rtx x;
2434 rtx insn;
2435 int uncritical;
2436 {
2437 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2438 rtx addr = XEXP (SUBREG_REG (x), 0);
2439 enum machine_mode mode = GET_MODE (x);
2440 rtx result;
2441
2442 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2443 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2444 && ! uncritical)
2445 abort ();
2446
2447 if (BYTES_BIG_ENDIAN)
2448 offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2449 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2450 addr = plus_constant (addr, offset);
2451 if (!flag_force_addr && memory_address_p (mode, addr))
2452 /* Shortcut if no insns need be emitted. */
2453 return change_address (SUBREG_REG (x), mode, addr);
2454 start_sequence ();
2455 result = change_address (SUBREG_REG (x), mode, addr);
2456 emit_insn_before (gen_sequence (), insn);
2457 end_sequence ();
2458 return result;
2459 }
2460
2461 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2462 Replace subexpressions of X in place.
2463 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2464 Otherwise return X, with its contents possibly altered.
2465
2466 If any insns must be emitted to compute NEWADDR, put them before INSN.
2467
2468 UNCRITICAL is as in fixup_memory_subreg. */
2469
2470 static rtx
2471 walk_fixup_memory_subreg (x, insn, uncritical)
2472 register rtx x;
2473 rtx insn;
2474 int uncritical;
2475 {
2476 register enum rtx_code code;
2477 register const char *fmt;
2478 register int i;
2479
2480 if (x == 0)
2481 return 0;
2482
2483 code = GET_CODE (x);
2484
2485 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2486 return fixup_memory_subreg (x, insn, uncritical);
2487
2488 /* Nothing special about this RTX; fix its operands. */
2489
2490 fmt = GET_RTX_FORMAT (code);
2491 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2492 {
2493 if (fmt[i] == 'e')
2494 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2495 else if (fmt[i] == 'E')
2496 {
2497 register int j;
2498 for (j = 0; j < XVECLEN (x, i); j++)
2499 XVECEXP (x, i, j)
2500 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2501 }
2502 }
2503 return x;
2504 }
2505 \f
2506 /* For each memory ref within X, if it refers to a stack slot
2507 with an out of range displacement, put the address in a temp register
2508 (emitting new insns before INSN to load these registers)
2509 and alter the memory ref to use that register.
2510 Replace each such MEM rtx with a copy, to avoid clobberage. */
2511
2512 static rtx
2513 fixup_stack_1 (x, insn)
2514 rtx x;
2515 rtx insn;
2516 {
2517 register int i;
2518 register RTX_CODE code = GET_CODE (x);
2519 register const char *fmt;
2520
2521 if (code == MEM)
2522 {
2523 register rtx ad = XEXP (x, 0);
2524 /* If we have address of a stack slot but it's not valid
2525 (displacement is too large), compute the sum in a register. */
2526 if (GET_CODE (ad) == PLUS
2527 && GET_CODE (XEXP (ad, 0)) == REG
2528 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2529 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2530 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2531 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2532 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2533 #endif
2534 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2535 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2536 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2537 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2538 {
2539 rtx temp, seq;
2540 if (memory_address_p (GET_MODE (x), ad))
2541 return x;
2542
2543 start_sequence ();
2544 temp = copy_to_reg (ad);
2545 seq = gen_sequence ();
2546 end_sequence ();
2547 emit_insn_before (seq, insn);
2548 return change_address (x, VOIDmode, temp);
2549 }
2550 return x;
2551 }
2552
2553 fmt = GET_RTX_FORMAT (code);
2554 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2555 {
2556 if (fmt[i] == 'e')
2557 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2558 else if (fmt[i] == 'E')
2559 {
2560 register int j;
2561 for (j = 0; j < XVECLEN (x, i); j++)
2562 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2563 }
2564 }
2565 return x;
2566 }
2567 \f
2568 /* Optimization: a bit-field instruction whose field
2569 happens to be a byte or halfword in memory
2570 can be changed to a move instruction.
2571
2572 We call here when INSN is an insn to examine or store into a bit-field.
2573 BODY is the SET-rtx to be altered.
2574
2575 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2576 (Currently this is called only from function.c, and EQUIV_MEM
2577 is always 0.) */
2578
2579 static void
2580 optimize_bit_field (body, insn, equiv_mem)
2581 rtx body;
2582 rtx insn;
2583 rtx *equiv_mem;
2584 {
2585 register rtx bitfield;
2586 int destflag;
2587 rtx seq = 0;
2588 enum machine_mode mode;
2589
2590 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2591 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2592 bitfield = SET_DEST (body), destflag = 1;
2593 else
2594 bitfield = SET_SRC (body), destflag = 0;
2595
2596 /* First check that the field being stored has constant size and position
2597 and is in fact a byte or halfword suitably aligned. */
2598
2599 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2600 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2601 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2602 != BLKmode)
2603 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2604 {
2605 register rtx memref = 0;
2606
2607 /* Now check that the containing word is memory, not a register,
2608 and that it is safe to change the machine mode. */
2609
2610 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2611 memref = XEXP (bitfield, 0);
2612 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2613 && equiv_mem != 0)
2614 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2615 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2616 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2617 memref = SUBREG_REG (XEXP (bitfield, 0));
2618 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2619 && equiv_mem != 0
2620 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2621 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2622
2623 if (memref
2624 && ! mode_dependent_address_p (XEXP (memref, 0))
2625 && ! MEM_VOLATILE_P (memref))
2626 {
2627 /* Now adjust the address, first for any subreg'ing
2628 that we are now getting rid of,
2629 and then for which byte of the word is wanted. */
2630
2631 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2632 rtx insns;
2633
2634 /* Adjust OFFSET to count bits from low-address byte. */
2635 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2636 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2637 - offset - INTVAL (XEXP (bitfield, 1)));
2638
2639 /* Adjust OFFSET to count bytes from low-address byte. */
2640 offset /= BITS_PER_UNIT;
2641 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2642 {
2643 offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
2644 if (BYTES_BIG_ENDIAN)
2645 offset -= (MIN (UNITS_PER_WORD,
2646 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2647 - MIN (UNITS_PER_WORD,
2648 GET_MODE_SIZE (GET_MODE (memref))));
2649 }
2650
2651 start_sequence ();
2652 memref = change_address (memref, mode,
2653 plus_constant (XEXP (memref, 0), offset));
2654 insns = get_insns ();
2655 end_sequence ();
2656 emit_insns_before (insns, insn);
2657
2658 /* Store this memory reference where
2659 we found the bit field reference. */
2660
2661 if (destflag)
2662 {
2663 validate_change (insn, &SET_DEST (body), memref, 1);
2664 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2665 {
2666 rtx src = SET_SRC (body);
2667 while (GET_CODE (src) == SUBREG
2668 && SUBREG_WORD (src) == 0)
2669 src = SUBREG_REG (src);
2670 if (GET_MODE (src) != GET_MODE (memref))
2671 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2672 validate_change (insn, &SET_SRC (body), src, 1);
2673 }
2674 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2675 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2676 /* This shouldn't happen because anything that didn't have
2677 one of these modes should have got converted explicitly
2678 and then referenced through a subreg.
2679 This is so because the original bit-field was
2680 handled by agg_mode and so its tree structure had
2681 the same mode that memref now has. */
2682 abort ();
2683 }
2684 else
2685 {
2686 rtx dest = SET_DEST (body);
2687
2688 while (GET_CODE (dest) == SUBREG
2689 && SUBREG_WORD (dest) == 0
2690 && (GET_MODE_CLASS (GET_MODE (dest))
2691 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2692 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2693 <= UNITS_PER_WORD))
2694 dest = SUBREG_REG (dest);
2695
2696 validate_change (insn, &SET_DEST (body), dest, 1);
2697
2698 if (GET_MODE (dest) == GET_MODE (memref))
2699 validate_change (insn, &SET_SRC (body), memref, 1);
2700 else
2701 {
2702 /* Convert the mem ref to the destination mode. */
2703 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2704
2705 start_sequence ();
2706 convert_move (newreg, memref,
2707 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2708 seq = get_insns ();
2709 end_sequence ();
2710
2711 validate_change (insn, &SET_SRC (body), newreg, 1);
2712 }
2713 }
2714
2715 /* See if we can convert this extraction or insertion into
2716 a simple move insn. We might not be able to do so if this
2717 was, for example, part of a PARALLEL.
2718
2719 If we succeed, write out any needed conversions. If we fail,
2720 it is hard to guess why we failed, so don't do anything
2721 special; just let the optimization be suppressed. */
2722
2723 if (apply_change_group () && seq)
2724 emit_insns_before (seq, insn);
2725 }
2726 }
2727 }
2728 \f
2729 /* These routines are responsible for converting virtual register references
2730 to the actual hard register references once RTL generation is complete.
2731
2732 The following four variables are used for communication between the
2733 routines. They contain the offsets of the virtual registers from their
2734 respective hard registers. */
2735
2736 static int in_arg_offset;
2737 static int var_offset;
2738 static int dynamic_offset;
2739 static int out_arg_offset;
2740 static int cfa_offset;
2741
2742 /* In most machines, the stack pointer register is equivalent to the bottom
2743 of the stack. */
2744
2745 #ifndef STACK_POINTER_OFFSET
2746 #define STACK_POINTER_OFFSET 0
2747 #endif
2748
2749 /* If not defined, pick an appropriate default for the offset of dynamically
2750 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2751 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2752
2753 #ifndef STACK_DYNAMIC_OFFSET
2754
2755 /* The bottom of the stack points to the actual arguments. If
2756 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2757 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2758 stack space for register parameters is not pushed by the caller, but
2759 rather part of the fixed stack areas and hence not included in
2760 `current_function_outgoing_args_size'. Nevertheless, we must allow
2761 for it when allocating stack dynamic objects. */
2762
2763 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2764 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2765 ((ACCUMULATE_OUTGOING_ARGS \
2766 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2767 + (STACK_POINTER_OFFSET)) \
2768
2769 #else
2770 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2771 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2772 + (STACK_POINTER_OFFSET))
2773 #endif
2774 #endif
2775
2776 /* On most machines, the CFA coincides with the first incoming parm. */
2777
2778 #ifndef ARG_POINTER_CFA_OFFSET
2779 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2780 #endif
2781
2782
2783 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2784 its address taken. DECL is the decl for the object stored in the
2785 register, for later use if we do need to force REG into the stack.
2786 REG is overwritten by the MEM like in put_reg_into_stack. */
2787
2788 rtx
2789 gen_mem_addressof (reg, decl)
2790 rtx reg;
2791 tree decl;
2792 {
2793 tree type = TREE_TYPE (decl);
2794 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2795 REGNO (reg), decl);
2796
2797 /* If the original REG was a user-variable, then so is the REG whose
2798 address is being taken. Likewise for unchanging. */
2799 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2800 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2801
2802 PUT_CODE (reg, MEM);
2803 PUT_MODE (reg, DECL_MODE (decl));
2804 XEXP (reg, 0) = r;
2805 MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
2806 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type));
2807 MEM_ALIAS_SET (reg) = get_alias_set (decl);
2808
2809 if (TREE_USED (decl) || DECL_INITIAL (decl) != 0)
2810 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), 0);
2811
2812 return reg;
2813 }
2814
2815 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2816
2817 void
2818 flush_addressof (decl)
2819 tree decl;
2820 {
2821 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2822 && DECL_RTL (decl) != 0
2823 && GET_CODE (DECL_RTL (decl)) == MEM
2824 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2825 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2826 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2827 }
2828
2829 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2830
2831 static void
2832 put_addressof_into_stack (r, ht)
2833 rtx r;
2834 struct hash_table *ht;
2835 {
2836 tree decl = ADDRESSOF_DECL (r);
2837 rtx reg = XEXP (r, 0);
2838
2839 if (GET_CODE (reg) != REG)
2840 abort ();
2841
2842 put_reg_into_stack (0, reg, TREE_TYPE (decl), GET_MODE (reg),
2843 DECL_MODE (decl), TREE_SIDE_EFFECTS (decl),
2844 ADDRESSOF_REGNO (r),
2845 TREE_USED (decl) || DECL_INITIAL (decl) != 0, ht);
2846 }
2847
2848 /* List of replacements made below in purge_addressof_1 when creating
2849 bitfield insertions. */
2850 static rtx purge_bitfield_addressof_replacements;
2851
2852 /* List of replacements made below in purge_addressof_1 for patterns
2853 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2854 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2855 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2856 enough in complex cases, e.g. when some field values can be
2857 extracted by usage MEM with narrower mode. */
2858 static rtx purge_addressof_replacements;
2859
2860 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2861 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2862 the stack. If the function returns FALSE then the replacement could not
2863 be made. */
2864
2865 static boolean
2866 purge_addressof_1 (loc, insn, force, store, ht)
2867 rtx *loc;
2868 rtx insn;
2869 int force, store;
2870 struct hash_table *ht;
2871 {
2872 rtx x;
2873 RTX_CODE code;
2874 int i, j;
2875 const char *fmt;
2876 boolean result = true;
2877
2878 /* Re-start here to avoid recursion in common cases. */
2879 restart:
2880
2881 x = *loc;
2882 if (x == 0)
2883 return true;
2884
2885 code = GET_CODE (x);
2886
2887 /* If we don't return in any of the cases below, we will recurse inside
2888 the RTX, which will normally result in any ADDRESSOF being forced into
2889 memory. */
2890 if (code == SET)
2891 {
2892 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
2893 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
2894 return result;
2895 }
2896
2897 else if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM)
2898 {
2899 /* We must create a copy of the rtx because it was created by
2900 overwriting a REG rtx which is always shared. */
2901 rtx sub = copy_rtx (XEXP (XEXP (x, 0), 0));
2902 rtx insns;
2903
2904 if (validate_change (insn, loc, sub, 0)
2905 || validate_replace_rtx (x, sub, insn))
2906 return true;
2907
2908 start_sequence ();
2909 sub = force_operand (sub, NULL_RTX);
2910 if (! validate_change (insn, loc, sub, 0)
2911 && ! validate_replace_rtx (x, sub, insn))
2912 abort ();
2913
2914 insns = gen_sequence ();
2915 end_sequence ();
2916 emit_insn_before (insns, insn);
2917 return true;
2918 }
2919
2920 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
2921 {
2922 rtx sub = XEXP (XEXP (x, 0), 0);
2923 rtx sub2;
2924
2925 if (GET_CODE (sub) == MEM)
2926 {
2927 sub2 = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0)));
2928 MEM_COPY_ATTRIBUTES (sub2, sub);
2929 sub = sub2;
2930 }
2931 else if (GET_CODE (sub) == REG
2932 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2933 ;
2934 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
2935 {
2936 int size_x, size_sub;
2937
2938 if (!insn)
2939 {
2940 /* When processing REG_NOTES look at the list of
2941 replacements done on the insn to find the register that X
2942 was replaced by. */
2943 rtx tem;
2944
2945 for (tem = purge_bitfield_addressof_replacements;
2946 tem != NULL_RTX;
2947 tem = XEXP (XEXP (tem, 1), 1))
2948 if (rtx_equal_p (x, XEXP (tem, 0)))
2949 {
2950 *loc = XEXP (XEXP (tem, 1), 0);
2951 return true;
2952 }
2953
2954 /* See comment for purge_addressof_replacements. */
2955 for (tem = purge_addressof_replacements;
2956 tem != NULL_RTX;
2957 tem = XEXP (XEXP (tem, 1), 1))
2958 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
2959 {
2960 rtx z = XEXP (XEXP (tem, 1), 0);
2961
2962 if (GET_MODE (x) == GET_MODE (z)
2963 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
2964 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
2965 abort ();
2966
2967 /* It can happen that the note may speak of things
2968 in a wider (or just different) mode than the
2969 code did. This is especially true of
2970 REG_RETVAL. */
2971
2972 if (GET_CODE (z) == SUBREG && SUBREG_WORD (z) == 0)
2973 z = SUBREG_REG (z);
2974
2975 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2976 && (GET_MODE_SIZE (GET_MODE (x))
2977 > GET_MODE_SIZE (GET_MODE (z))))
2978 {
2979 /* This can occur as a result in invalid
2980 pointer casts, e.g. float f; ...
2981 *(long long int *)&f.
2982 ??? We could emit a warning here, but
2983 without a line number that wouldn't be
2984 very helpful. */
2985 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
2986 }
2987 else
2988 z = gen_lowpart (GET_MODE (x), z);
2989
2990 *loc = z;
2991 return true;
2992 }
2993
2994 /* Sometimes we may not be able to find the replacement. For
2995 example when the original insn was a MEM in a wider mode,
2996 and the note is part of a sign extension of a narrowed
2997 version of that MEM. Gcc testcase compile/990829-1.c can
2998 generate an example of this siutation. Rather than complain
2999 we return false, which will prompt our caller to remove the
3000 offending note. */
3001 return false;
3002 }
3003
3004 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3005 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3006
3007 /* Don't even consider working with paradoxical subregs,
3008 or the moral equivalent seen here. */
3009 if (size_x <= size_sub
3010 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3011 {
3012 /* Do a bitfield insertion to mirror what would happen
3013 in memory. */
3014
3015 rtx val, seq;
3016
3017 if (store)
3018 {
3019 rtx p = PREV_INSN (insn);
3020
3021 start_sequence ();
3022 val = gen_reg_rtx (GET_MODE (x));
3023 if (! validate_change (insn, loc, val, 0))
3024 {
3025 /* Discard the current sequence and put the
3026 ADDRESSOF on stack. */
3027 end_sequence ();
3028 goto give_up;
3029 }
3030 seq = gen_sequence ();
3031 end_sequence ();
3032 emit_insn_before (seq, insn);
3033 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3034 insn, ht);
3035
3036 start_sequence ();
3037 store_bit_field (sub, size_x, 0, GET_MODE (x),
3038 val, GET_MODE_SIZE (GET_MODE (sub)),
3039 GET_MODE_ALIGNMENT (GET_MODE (sub)));
3040
3041 /* Make sure to unshare any shared rtl that store_bit_field
3042 might have created. */
3043 unshare_all_rtl_again (get_insns ());
3044
3045 seq = gen_sequence ();
3046 end_sequence ();
3047 p = emit_insn_after (seq, insn);
3048 if (NEXT_INSN (insn))
3049 compute_insns_for_mem (NEXT_INSN (insn),
3050 p ? NEXT_INSN (p) : NULL_RTX,
3051 ht);
3052 }
3053 else
3054 {
3055 rtx p = PREV_INSN (insn);
3056
3057 start_sequence ();
3058 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3059 GET_MODE (x), GET_MODE (x),
3060 GET_MODE_SIZE (GET_MODE (sub)),
3061 GET_MODE_SIZE (GET_MODE (sub)));
3062
3063 if (! validate_change (insn, loc, val, 0))
3064 {
3065 /* Discard the current sequence and put the
3066 ADDRESSOF on stack. */
3067 end_sequence ();
3068 goto give_up;
3069 }
3070
3071 seq = gen_sequence ();
3072 end_sequence ();
3073 emit_insn_before (seq, insn);
3074 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3075 insn, ht);
3076 }
3077
3078 /* Remember the replacement so that the same one can be done
3079 on the REG_NOTES. */
3080 purge_bitfield_addressof_replacements
3081 = gen_rtx_EXPR_LIST (VOIDmode, x,
3082 gen_rtx_EXPR_LIST
3083 (VOIDmode, val,
3084 purge_bitfield_addressof_replacements));
3085
3086 /* We replaced with a reg -- all done. */
3087 return true;
3088 }
3089 }
3090
3091 else if (validate_change (insn, loc, sub, 0))
3092 {
3093 /* Remember the replacement so that the same one can be done
3094 on the REG_NOTES. */
3095 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3096 {
3097 rtx tem;
3098
3099 for (tem = purge_addressof_replacements;
3100 tem != NULL_RTX;
3101 tem = XEXP (XEXP (tem, 1), 1))
3102 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3103 {
3104 XEXP (XEXP (tem, 1), 0) = sub;
3105 return true;
3106 }
3107 purge_addressof_replacements
3108 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3109 gen_rtx_EXPR_LIST (VOIDmode, sub,
3110 purge_addressof_replacements));
3111 return true;
3112 }
3113 goto restart;
3114 }
3115 give_up:;
3116 /* else give up and put it into the stack */
3117 }
3118
3119 else if (code == ADDRESSOF)
3120 {
3121 put_addressof_into_stack (x, ht);
3122 return true;
3123 }
3124 else if (code == SET)
3125 {
3126 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
3127 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
3128 return result;
3129 }
3130
3131 /* Scan all subexpressions. */
3132 fmt = GET_RTX_FORMAT (code);
3133 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3134 {
3135 if (*fmt == 'e')
3136 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3137 else if (*fmt == 'E')
3138 for (j = 0; j < XVECLEN (x, i); j++)
3139 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3140 }
3141
3142 return result;
3143 }
3144
3145 /* Return a new hash table entry in HT. */
3146
3147 static struct hash_entry *
3148 insns_for_mem_newfunc (he, ht, k)
3149 struct hash_entry *he;
3150 struct hash_table *ht;
3151 hash_table_key k ATTRIBUTE_UNUSED;
3152 {
3153 struct insns_for_mem_entry *ifmhe;
3154 if (he)
3155 return he;
3156
3157 ifmhe = ((struct insns_for_mem_entry *)
3158 hash_allocate (ht, sizeof (struct insns_for_mem_entry)));
3159 ifmhe->insns = NULL_RTX;
3160
3161 return &ifmhe->he;
3162 }
3163
3164 /* Return a hash value for K, a REG. */
3165
3166 static unsigned long
3167 insns_for_mem_hash (k)
3168 hash_table_key k;
3169 {
3170 /* K is really a RTX. Just use the address as the hash value. */
3171 return (unsigned long) k;
3172 }
3173
3174 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3175
3176 static boolean
3177 insns_for_mem_comp (k1, k2)
3178 hash_table_key k1;
3179 hash_table_key k2;
3180 {
3181 return k1 == k2;
3182 }
3183
3184 struct insns_for_mem_walk_info {
3185 /* The hash table that we are using to record which INSNs use which
3186 MEMs. */
3187 struct hash_table *ht;
3188
3189 /* The INSN we are currently proessing. */
3190 rtx insn;
3191
3192 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3193 to find the insns that use the REGs in the ADDRESSOFs. */
3194 int pass;
3195 };
3196
3197 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3198 that might be used in an ADDRESSOF expression, record this INSN in
3199 the hash table given by DATA (which is really a pointer to an
3200 insns_for_mem_walk_info structure). */
3201
3202 static int
3203 insns_for_mem_walk (r, data)
3204 rtx *r;
3205 void *data;
3206 {
3207 struct insns_for_mem_walk_info *ifmwi
3208 = (struct insns_for_mem_walk_info *) data;
3209
3210 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3211 && GET_CODE (XEXP (*r, 0)) == REG)
3212 hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0);
3213 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3214 {
3215 /* Lookup this MEM in the hashtable, creating it if necessary. */
3216 struct insns_for_mem_entry *ifme
3217 = (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht,
3218 *r,
3219 /*create=*/0,
3220 /*copy=*/0);
3221
3222 /* If we have not already recorded this INSN, do so now. Since
3223 we process the INSNs in order, we know that if we have
3224 recorded it it must be at the front of the list. */
3225 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3226 {
3227 /* We do the allocation on the same obstack as is used for
3228 the hash table since this memory will not be used once
3229 the hash table is deallocated. */
3230 push_obstacks (&ifmwi->ht->memory, &ifmwi->ht->memory);
3231 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3232 ifme->insns);
3233 pop_obstacks ();
3234 }
3235 }
3236
3237 return 0;
3238 }
3239
3240 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3241 which REGs in HT. */
3242
3243 static void
3244 compute_insns_for_mem (insns, last_insn, ht)
3245 rtx insns;
3246 rtx last_insn;
3247 struct hash_table *ht;
3248 {
3249 rtx insn;
3250 struct insns_for_mem_walk_info ifmwi;
3251 ifmwi.ht = ht;
3252
3253 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3254 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3255 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3256 {
3257 ifmwi.insn = insn;
3258 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3259 }
3260 }
3261
3262 /* Helper function for purge_addressof called through for_each_rtx.
3263 Returns true iff the rtl is an ADDRESSOF. */
3264 static int
3265 is_addressof (rtl, data)
3266 rtx * rtl;
3267 void * data ATTRIBUTE_UNUSED;
3268 {
3269 return GET_CODE (* rtl) == ADDRESSOF;
3270 }
3271
3272 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3273 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3274 stack. */
3275
3276 void
3277 purge_addressof (insns)
3278 rtx insns;
3279 {
3280 rtx insn;
3281 struct hash_table ht;
3282
3283 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3284 requires a fixup pass over the instruction stream to correct
3285 INSNs that depended on the REG being a REG, and not a MEM. But,
3286 these fixup passes are slow. Furthermore, most MEMs are not
3287 mentioned in very many instructions. So, we speed up the process
3288 by pre-calculating which REGs occur in which INSNs; that allows
3289 us to perform the fixup passes much more quickly. */
3290 hash_table_init (&ht,
3291 insns_for_mem_newfunc,
3292 insns_for_mem_hash,
3293 insns_for_mem_comp);
3294 compute_insns_for_mem (insns, NULL_RTX, &ht);
3295
3296 for (insn = insns; insn; insn = NEXT_INSN (insn))
3297 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3298 || GET_CODE (insn) == CALL_INSN)
3299 {
3300 if (! purge_addressof_1 (&PATTERN (insn), insn,
3301 asm_noperands (PATTERN (insn)) > 0, 0, &ht))
3302 /* If we could not replace the ADDRESSOFs in the insn,
3303 something is wrong. */
3304 abort ();
3305
3306 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, &ht))
3307 {
3308 /* If we could not replace the ADDRESSOFs in the insn's notes,
3309 we can just remove the offending notes instead. */
3310 rtx note;
3311
3312 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3313 {
3314 /* If we find a REG_RETVAL note then the insn is a libcall.
3315 Such insns must have REG_EQUAL notes as well, in order
3316 for later passes of the compiler to work. So it is not
3317 safe to delete the notes here, and instead we abort. */
3318 if (REG_NOTE_KIND (note) == REG_RETVAL)
3319 abort ();
3320 if (for_each_rtx (& note, is_addressof, NULL))
3321 remove_note (insn, note);
3322 }
3323 }
3324 }
3325
3326 /* Clean up. */
3327 hash_table_free (&ht);
3328 purge_bitfield_addressof_replacements = 0;
3329 purge_addressof_replacements = 0;
3330
3331 /* REGs are shared. purge_addressof will destructively replace a REG
3332 with a MEM, which creates shared MEMs.
3333
3334 Unfortunately, the children of put_reg_into_stack assume that MEMs
3335 referring to the same stack slot are shared (fixup_var_refs and
3336 the associated hash table code).
3337
3338 So, we have to do another unsharing pass after we have flushed any
3339 REGs that had their address taken into the stack.
3340
3341 It may be worth tracking whether or not we converted any REGs into
3342 MEMs to avoid this overhead when it is not needed. */
3343 unshare_all_rtl_again (get_insns ());
3344 }
3345 \f
3346 /* Pass through the INSNS of function FNDECL and convert virtual register
3347 references to hard register references. */
3348
3349 void
3350 instantiate_virtual_regs (fndecl, insns)
3351 tree fndecl;
3352 rtx insns;
3353 {
3354 rtx insn;
3355 unsigned int i;
3356
3357 /* Compute the offsets to use for this function. */
3358 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3359 var_offset = STARTING_FRAME_OFFSET;
3360 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3361 out_arg_offset = STACK_POINTER_OFFSET;
3362 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3363
3364 /* Scan all variables and parameters of this function. For each that is
3365 in memory, instantiate all virtual registers if the result is a valid
3366 address. If not, we do it later. That will handle most uses of virtual
3367 regs on many machines. */
3368 instantiate_decls (fndecl, 1);
3369
3370 /* Initialize recognition, indicating that volatile is OK. */
3371 init_recog ();
3372
3373 /* Scan through all the insns, instantiating every virtual register still
3374 present. */
3375 for (insn = insns; insn; insn = NEXT_INSN (insn))
3376 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3377 || GET_CODE (insn) == CALL_INSN)
3378 {
3379 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3380 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3381 }
3382
3383 /* Instantiate the stack slots for the parm registers, for later use in
3384 addressof elimination. */
3385 for (i = 0; i < max_parm_reg; ++i)
3386 if (parm_reg_stack_loc[i])
3387 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3388
3389 /* Now instantiate the remaining register equivalences for debugging info.
3390 These will not be valid addresses. */
3391 instantiate_decls (fndecl, 0);
3392
3393 /* Indicate that, from now on, assign_stack_local should use
3394 frame_pointer_rtx. */
3395 virtuals_instantiated = 1;
3396 }
3397
3398 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3399 all virtual registers in their DECL_RTL's.
3400
3401 If VALID_ONLY, do this only if the resulting address is still valid.
3402 Otherwise, always do it. */
3403
3404 static void
3405 instantiate_decls (fndecl, valid_only)
3406 tree fndecl;
3407 int valid_only;
3408 {
3409 tree decl;
3410
3411 if (DECL_SAVED_INSNS (fndecl))
3412 /* When compiling an inline function, the obstack used for
3413 rtl allocation is the maybepermanent_obstack. Calling
3414 `resume_temporary_allocation' switches us back to that
3415 obstack while we process this function's parameters. */
3416 resume_temporary_allocation ();
3417
3418 /* Process all parameters of the function. */
3419 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3420 {
3421 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3422
3423 instantiate_decl (DECL_RTL (decl), size, valid_only);
3424
3425 /* If the parameter was promoted, then the incoming RTL mode may be
3426 larger than the declared type size. We must use the larger of
3427 the two sizes. */
3428 size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size);
3429 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3430 }
3431
3432 /* Now process all variables defined in the function or its subblocks. */
3433 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3434
3435 if (DECL_INLINE (fndecl) || DECL_DEFER_OUTPUT (fndecl))
3436 {
3437 /* Save all rtl allocated for this function by raising the
3438 high-water mark on the maybepermanent_obstack. */
3439 preserve_data ();
3440 /* All further rtl allocation is now done in the current_obstack. */
3441 rtl_in_current_obstack ();
3442 }
3443 }
3444
3445 /* Subroutine of instantiate_decls: Process all decls in the given
3446 BLOCK node and all its subblocks. */
3447
3448 static void
3449 instantiate_decls_1 (let, valid_only)
3450 tree let;
3451 int valid_only;
3452 {
3453 tree t;
3454
3455 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3456 instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)),
3457 valid_only);
3458
3459 /* Process all subblocks. */
3460 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3461 instantiate_decls_1 (t, valid_only);
3462 }
3463
3464 /* Subroutine of the preceding procedures: Given RTL representing a
3465 decl and the size of the object, do any instantiation required.
3466
3467 If VALID_ONLY is non-zero, it means that the RTL should only be
3468 changed if the new address is valid. */
3469
3470 static void
3471 instantiate_decl (x, size, valid_only)
3472 rtx x;
3473 HOST_WIDE_INT size;
3474 int valid_only;
3475 {
3476 enum machine_mode mode;
3477 rtx addr;
3478
3479 /* If this is not a MEM, no need to do anything. Similarly if the
3480 address is a constant or a register that is not a virtual register. */
3481
3482 if (x == 0 || GET_CODE (x) != MEM)
3483 return;
3484
3485 addr = XEXP (x, 0);
3486 if (CONSTANT_P (addr)
3487 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3488 || (GET_CODE (addr) == REG
3489 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3490 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3491 return;
3492
3493 /* If we should only do this if the address is valid, copy the address.
3494 We need to do this so we can undo any changes that might make the
3495 address invalid. This copy is unfortunate, but probably can't be
3496 avoided. */
3497
3498 if (valid_only)
3499 addr = copy_rtx (addr);
3500
3501 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3502
3503 if (valid_only && size >= 0)
3504 {
3505 unsigned HOST_WIDE_INT decl_size = size;
3506
3507 /* Now verify that the resulting address is valid for every integer or
3508 floating-point mode up to and including SIZE bytes long. We do this
3509 since the object might be accessed in any mode and frame addresses
3510 are shared. */
3511
3512 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3513 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3514 mode = GET_MODE_WIDER_MODE (mode))
3515 if (! memory_address_p (mode, addr))
3516 return;
3517
3518 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3519 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3520 mode = GET_MODE_WIDER_MODE (mode))
3521 if (! memory_address_p (mode, addr))
3522 return;
3523 }
3524
3525 /* Put back the address now that we have updated it and we either know
3526 it is valid or we don't care whether it is valid. */
3527
3528 XEXP (x, 0) = addr;
3529 }
3530 \f
3531 /* Given a pointer to a piece of rtx and an optional pointer to the
3532 containing object, instantiate any virtual registers present in it.
3533
3534 If EXTRA_INSNS, we always do the replacement and generate
3535 any extra insns before OBJECT. If it zero, we do nothing if replacement
3536 is not valid.
3537
3538 Return 1 if we either had nothing to do or if we were able to do the
3539 needed replacement. Return 0 otherwise; we only return zero if
3540 EXTRA_INSNS is zero.
3541
3542 We first try some simple transformations to avoid the creation of extra
3543 pseudos. */
3544
3545 static int
3546 instantiate_virtual_regs_1 (loc, object, extra_insns)
3547 rtx *loc;
3548 rtx object;
3549 int extra_insns;
3550 {
3551 rtx x;
3552 RTX_CODE code;
3553 rtx new = 0;
3554 HOST_WIDE_INT offset = 0;
3555 rtx temp;
3556 rtx seq;
3557 int i, j;
3558 const char *fmt;
3559
3560 /* Re-start here to avoid recursion in common cases. */
3561 restart:
3562
3563 x = *loc;
3564 if (x == 0)
3565 return 1;
3566
3567 code = GET_CODE (x);
3568
3569 /* Check for some special cases. */
3570 switch (code)
3571 {
3572 case CONST_INT:
3573 case CONST_DOUBLE:
3574 case CONST:
3575 case SYMBOL_REF:
3576 case CODE_LABEL:
3577 case PC:
3578 case CC0:
3579 case ASM_INPUT:
3580 case ADDR_VEC:
3581 case ADDR_DIFF_VEC:
3582 case RETURN:
3583 return 1;
3584
3585 case SET:
3586 /* We are allowed to set the virtual registers. This means that
3587 the actual register should receive the source minus the
3588 appropriate offset. This is used, for example, in the handling
3589 of non-local gotos. */
3590 if (SET_DEST (x) == virtual_incoming_args_rtx)
3591 new = arg_pointer_rtx, offset = - in_arg_offset;
3592 else if (SET_DEST (x) == virtual_stack_vars_rtx)
3593 new = frame_pointer_rtx, offset = - var_offset;
3594 else if (SET_DEST (x) == virtual_stack_dynamic_rtx)
3595 new = stack_pointer_rtx, offset = - dynamic_offset;
3596 else if (SET_DEST (x) == virtual_outgoing_args_rtx)
3597 new = stack_pointer_rtx, offset = - out_arg_offset;
3598 else if (SET_DEST (x) == virtual_cfa_rtx)
3599 new = arg_pointer_rtx, offset = - cfa_offset;
3600
3601 if (new)
3602 {
3603 rtx src = SET_SRC (x);
3604
3605 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3606
3607 /* The only valid sources here are PLUS or REG. Just do
3608 the simplest possible thing to handle them. */
3609 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3610 abort ();
3611
3612 start_sequence ();
3613 if (GET_CODE (src) != REG)
3614 temp = force_operand (src, NULL_RTX);
3615 else
3616 temp = src;
3617 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3618 seq = get_insns ();
3619 end_sequence ();
3620
3621 emit_insns_before (seq, object);
3622 SET_DEST (x) = new;
3623
3624 if (! validate_change (object, &SET_SRC (x), temp, 0)
3625 || ! extra_insns)
3626 abort ();
3627
3628 return 1;
3629 }
3630
3631 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3632 loc = &SET_SRC (x);
3633 goto restart;
3634
3635 case PLUS:
3636 /* Handle special case of virtual register plus constant. */
3637 if (CONSTANT_P (XEXP (x, 1)))
3638 {
3639 rtx old, new_offset;
3640
3641 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3642 if (GET_CODE (XEXP (x, 0)) == PLUS)
3643 {
3644 rtx inner = XEXP (XEXP (x, 0), 0);
3645
3646 if (inner == virtual_incoming_args_rtx)
3647 new = arg_pointer_rtx, offset = in_arg_offset;
3648 else if (inner == virtual_stack_vars_rtx)
3649 new = frame_pointer_rtx, offset = var_offset;
3650 else if (inner == virtual_stack_dynamic_rtx)
3651 new = stack_pointer_rtx, offset = dynamic_offset;
3652 else if (inner == virtual_outgoing_args_rtx)
3653 new = stack_pointer_rtx, offset = out_arg_offset;
3654 else if (inner == virtual_cfa_rtx)
3655 new = arg_pointer_rtx, offset = cfa_offset;
3656 else
3657 {
3658 loc = &XEXP (x, 0);
3659 goto restart;
3660 }
3661
3662 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3663 extra_insns);
3664 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3665 }
3666
3667 else if (XEXP (x, 0) == virtual_incoming_args_rtx)
3668 new = arg_pointer_rtx, offset = in_arg_offset;
3669 else if (XEXP (x, 0) == virtual_stack_vars_rtx)
3670 new = frame_pointer_rtx, offset = var_offset;
3671 else if (XEXP (x, 0) == virtual_stack_dynamic_rtx)
3672 new = stack_pointer_rtx, offset = dynamic_offset;
3673 else if (XEXP (x, 0) == virtual_outgoing_args_rtx)
3674 new = stack_pointer_rtx, offset = out_arg_offset;
3675 else if (XEXP (x, 0) == virtual_cfa_rtx)
3676 new = arg_pointer_rtx, offset = cfa_offset;
3677 else
3678 {
3679 /* We know the second operand is a constant. Unless the
3680 first operand is a REG (which has been already checked),
3681 it needs to be checked. */
3682 if (GET_CODE (XEXP (x, 0)) != REG)
3683 {
3684 loc = &XEXP (x, 0);
3685 goto restart;
3686 }
3687 return 1;
3688 }
3689
3690 new_offset = plus_constant (XEXP (x, 1), offset);
3691
3692 /* If the new constant is zero, try to replace the sum with just
3693 the register. */
3694 if (new_offset == const0_rtx
3695 && validate_change (object, loc, new, 0))
3696 return 1;
3697
3698 /* Next try to replace the register and new offset.
3699 There are two changes to validate here and we can't assume that
3700 in the case of old offset equals new just changing the register
3701 will yield a valid insn. In the interests of a little efficiency,
3702 however, we only call validate change once (we don't queue up the
3703 changes and then call apply_change_group). */
3704
3705 old = XEXP (x, 0);
3706 if (offset == 0
3707 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3708 : (XEXP (x, 0) = new,
3709 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3710 {
3711 if (! extra_insns)
3712 {
3713 XEXP (x, 0) = old;
3714 return 0;
3715 }
3716
3717 /* Otherwise copy the new constant into a register and replace
3718 constant with that register. */
3719 temp = gen_reg_rtx (Pmode);
3720 XEXP (x, 0) = new;
3721 if (validate_change (object, &XEXP (x, 1), temp, 0))
3722 emit_insn_before (gen_move_insn (temp, new_offset), object);
3723 else
3724 {
3725 /* If that didn't work, replace this expression with a
3726 register containing the sum. */
3727
3728 XEXP (x, 0) = old;
3729 new = gen_rtx_PLUS (Pmode, new, new_offset);
3730
3731 start_sequence ();
3732 temp = force_operand (new, NULL_RTX);
3733 seq = get_insns ();
3734 end_sequence ();
3735
3736 emit_insns_before (seq, object);
3737 if (! validate_change (object, loc, temp, 0)
3738 && ! validate_replace_rtx (x, temp, object))
3739 abort ();
3740 }
3741 }
3742
3743 return 1;
3744 }
3745
3746 /* Fall through to generic two-operand expression case. */
3747 case EXPR_LIST:
3748 case CALL:
3749 case COMPARE:
3750 case MINUS:
3751 case MULT:
3752 case DIV: case UDIV:
3753 case MOD: case UMOD:
3754 case AND: case IOR: case XOR:
3755 case ROTATERT: case ROTATE:
3756 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3757 case NE: case EQ:
3758 case GE: case GT: case GEU: case GTU:
3759 case LE: case LT: case LEU: case LTU:
3760 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3761 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3762 loc = &XEXP (x, 0);
3763 goto restart;
3764
3765 case MEM:
3766 /* Most cases of MEM that convert to valid addresses have already been
3767 handled by our scan of decls. The only special handling we
3768 need here is to make a copy of the rtx to ensure it isn't being
3769 shared if we have to change it to a pseudo.
3770
3771 If the rtx is a simple reference to an address via a virtual register,
3772 it can potentially be shared. In such cases, first try to make it
3773 a valid address, which can also be shared. Otherwise, copy it and
3774 proceed normally.
3775
3776 First check for common cases that need no processing. These are
3777 usually due to instantiation already being done on a previous instance
3778 of a shared rtx. */
3779
3780 temp = XEXP (x, 0);
3781 if (CONSTANT_ADDRESS_P (temp)
3782 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3783 || temp == arg_pointer_rtx
3784 #endif
3785 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3786 || temp == hard_frame_pointer_rtx
3787 #endif
3788 || temp == frame_pointer_rtx)
3789 return 1;
3790
3791 if (GET_CODE (temp) == PLUS
3792 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3793 && (XEXP (temp, 0) == frame_pointer_rtx
3794 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3795 || XEXP (temp, 0) == hard_frame_pointer_rtx
3796 #endif
3797 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3798 || XEXP (temp, 0) == arg_pointer_rtx
3799 #endif
3800 ))
3801 return 1;
3802
3803 if (temp == virtual_stack_vars_rtx
3804 || temp == virtual_incoming_args_rtx
3805 || (GET_CODE (temp) == PLUS
3806 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3807 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3808 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3809 {
3810 /* This MEM may be shared. If the substitution can be done without
3811 the need to generate new pseudos, we want to do it in place
3812 so all copies of the shared rtx benefit. The call below will
3813 only make substitutions if the resulting address is still
3814 valid.
3815
3816 Note that we cannot pass X as the object in the recursive call
3817 since the insn being processed may not allow all valid
3818 addresses. However, if we were not passed on object, we can
3819 only modify X without copying it if X will have a valid
3820 address.
3821
3822 ??? Also note that this can still lose if OBJECT is an insn that
3823 has less restrictions on an address that some other insn.
3824 In that case, we will modify the shared address. This case
3825 doesn't seem very likely, though. One case where this could
3826 happen is in the case of a USE or CLOBBER reference, but we
3827 take care of that below. */
3828
3829 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
3830 object ? object : x, 0))
3831 return 1;
3832
3833 /* Otherwise make a copy and process that copy. We copy the entire
3834 RTL expression since it might be a PLUS which could also be
3835 shared. */
3836 *loc = x = copy_rtx (x);
3837 }
3838
3839 /* Fall through to generic unary operation case. */
3840 case SUBREG:
3841 case STRICT_LOW_PART:
3842 case NEG: case NOT:
3843 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
3844 case SIGN_EXTEND: case ZERO_EXTEND:
3845 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3846 case FLOAT: case FIX:
3847 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3848 case ABS:
3849 case SQRT:
3850 case FFS:
3851 /* These case either have just one operand or we know that we need not
3852 check the rest of the operands. */
3853 loc = &XEXP (x, 0);
3854 goto restart;
3855
3856 case USE:
3857 case CLOBBER:
3858 /* If the operand is a MEM, see if the change is a valid MEM. If not,
3859 go ahead and make the invalid one, but do it to a copy. For a REG,
3860 just make the recursive call, since there's no chance of a problem. */
3861
3862 if ((GET_CODE (XEXP (x, 0)) == MEM
3863 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
3864 0))
3865 || (GET_CODE (XEXP (x, 0)) == REG
3866 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
3867 return 1;
3868
3869 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
3870 loc = &XEXP (x, 0);
3871 goto restart;
3872
3873 case REG:
3874 /* Try to replace with a PLUS. If that doesn't work, compute the sum
3875 in front of this insn and substitute the temporary. */
3876 if (x == virtual_incoming_args_rtx)
3877 new = arg_pointer_rtx, offset = in_arg_offset;
3878 else if (x == virtual_stack_vars_rtx)
3879 new = frame_pointer_rtx, offset = var_offset;
3880 else if (x == virtual_stack_dynamic_rtx)
3881 new = stack_pointer_rtx, offset = dynamic_offset;
3882 else if (x == virtual_outgoing_args_rtx)
3883 new = stack_pointer_rtx, offset = out_arg_offset;
3884 else if (x == virtual_cfa_rtx)
3885 new = arg_pointer_rtx, offset = cfa_offset;
3886
3887 if (new)
3888 {
3889 temp = plus_constant (new, offset);
3890 if (!validate_change (object, loc, temp, 0))
3891 {
3892 if (! extra_insns)
3893 return 0;
3894
3895 start_sequence ();
3896 temp = force_operand (temp, NULL_RTX);
3897 seq = get_insns ();
3898 end_sequence ();
3899
3900 emit_insns_before (seq, object);
3901 if (! validate_change (object, loc, temp, 0)
3902 && ! validate_replace_rtx (x, temp, object))
3903 abort ();
3904 }
3905 }
3906
3907 return 1;
3908
3909 case ADDRESSOF:
3910 if (GET_CODE (XEXP (x, 0)) == REG)
3911 return 1;
3912
3913 else if (GET_CODE (XEXP (x, 0)) == MEM)
3914 {
3915 /* If we have a (addressof (mem ..)), do any instantiation inside
3916 since we know we'll be making the inside valid when we finally
3917 remove the ADDRESSOF. */
3918 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
3919 return 1;
3920 }
3921 break;
3922
3923 default:
3924 break;
3925 }
3926
3927 /* Scan all subexpressions. */
3928 fmt = GET_RTX_FORMAT (code);
3929 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3930 if (*fmt == 'e')
3931 {
3932 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
3933 return 0;
3934 }
3935 else if (*fmt == 'E')
3936 for (j = 0; j < XVECLEN (x, i); j++)
3937 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
3938 extra_insns))
3939 return 0;
3940
3941 return 1;
3942 }
3943 \f
3944 /* Optimization: assuming this function does not receive nonlocal gotos,
3945 delete the handlers for such, as well as the insns to establish
3946 and disestablish them. */
3947
3948 static void
3949 delete_handlers ()
3950 {
3951 rtx insn;
3952 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3953 {
3954 /* Delete the handler by turning off the flag that would
3955 prevent jump_optimize from deleting it.
3956 Also permit deletion of the nonlocal labels themselves
3957 if nothing local refers to them. */
3958 if (GET_CODE (insn) == CODE_LABEL)
3959 {
3960 tree t, last_t;
3961
3962 LABEL_PRESERVE_P (insn) = 0;
3963
3964 /* Remove it from the nonlocal_label list, to avoid confusing
3965 flow. */
3966 for (t = nonlocal_labels, last_t = 0; t;
3967 last_t = t, t = TREE_CHAIN (t))
3968 if (DECL_RTL (TREE_VALUE (t)) == insn)
3969 break;
3970 if (t)
3971 {
3972 if (! last_t)
3973 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
3974 else
3975 TREE_CHAIN (last_t) = TREE_CHAIN (t);
3976 }
3977 }
3978 if (GET_CODE (insn) == INSN)
3979 {
3980 int can_delete = 0;
3981 rtx t;
3982 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
3983 if (reg_mentioned_p (t, PATTERN (insn)))
3984 {
3985 can_delete = 1;
3986 break;
3987 }
3988 if (can_delete
3989 || (nonlocal_goto_stack_level != 0
3990 && reg_mentioned_p (nonlocal_goto_stack_level,
3991 PATTERN (insn))))
3992 delete_insn (insn);
3993 }
3994 }
3995 }
3996 \f
3997 int
3998 max_parm_reg_num ()
3999 {
4000 return max_parm_reg;
4001 }
4002
4003 /* Return the first insn following those generated by `assign_parms'. */
4004
4005 rtx
4006 get_first_nonparm_insn ()
4007 {
4008 if (last_parm_insn)
4009 return NEXT_INSN (last_parm_insn);
4010 return get_insns ();
4011 }
4012
4013 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
4014 Crash if there is none. */
4015
4016 rtx
4017 get_first_block_beg ()
4018 {
4019 register rtx searcher;
4020 register rtx insn = get_first_nonparm_insn ();
4021
4022 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
4023 if (GET_CODE (searcher) == NOTE
4024 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
4025 return searcher;
4026
4027 abort (); /* Invalid call to this function. (See comments above.) */
4028 return NULL_RTX;
4029 }
4030
4031 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4032 This means a type for which function calls must pass an address to the
4033 function or get an address back from the function.
4034 EXP may be a type node or an expression (whose type is tested). */
4035
4036 int
4037 aggregate_value_p (exp)
4038 tree exp;
4039 {
4040 int i, regno, nregs;
4041 rtx reg;
4042
4043 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4044
4045 if (TREE_CODE (type) == VOID_TYPE)
4046 return 0;
4047 if (RETURN_IN_MEMORY (type))
4048 return 1;
4049 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4050 and thus can't be returned in registers. */
4051 if (TREE_ADDRESSABLE (type))
4052 return 1;
4053 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4054 return 1;
4055 /* Make sure we have suitable call-clobbered regs to return
4056 the value in; if not, we must return it in memory. */
4057 reg = hard_function_value (type, 0, 0);
4058
4059 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4060 it is OK. */
4061 if (GET_CODE (reg) != REG)
4062 return 0;
4063
4064 regno = REGNO (reg);
4065 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4066 for (i = 0; i < nregs; i++)
4067 if (! call_used_regs[regno + i])
4068 return 1;
4069 return 0;
4070 }
4071 \f
4072 /* Assign RTL expressions to the function's parameters.
4073 This may involve copying them into registers and using
4074 those registers as the RTL for them. */
4075
4076 void
4077 assign_parms (fndecl)
4078 tree fndecl;
4079 {
4080 register tree parm;
4081 register rtx entry_parm = 0;
4082 register rtx stack_parm = 0;
4083 CUMULATIVE_ARGS args_so_far;
4084 enum machine_mode promoted_mode, passed_mode;
4085 enum machine_mode nominal_mode, promoted_nominal_mode;
4086 int unsignedp;
4087 /* Total space needed so far for args on the stack,
4088 given as a constant and a tree-expression. */
4089 struct args_size stack_args_size;
4090 tree fntype = TREE_TYPE (fndecl);
4091 tree fnargs = DECL_ARGUMENTS (fndecl);
4092 /* This is used for the arg pointer when referring to stack args. */
4093 rtx internal_arg_pointer;
4094 /* This is a dummy PARM_DECL that we used for the function result if
4095 the function returns a structure. */
4096 tree function_result_decl = 0;
4097 #ifdef SETUP_INCOMING_VARARGS
4098 int varargs_setup = 0;
4099 #endif
4100 rtx conversion_insns = 0;
4101 struct args_size alignment_pad;
4102
4103 /* Nonzero if the last arg is named `__builtin_va_alist',
4104 which is used on some machines for old-fashioned non-ANSI varargs.h;
4105 this should be stuck onto the stack as if it had arrived there. */
4106 int hide_last_arg
4107 = (current_function_varargs
4108 && fnargs
4109 && (parm = tree_last (fnargs)) != 0
4110 && DECL_NAME (parm)
4111 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
4112 "__builtin_va_alist")));
4113
4114 /* Nonzero if function takes extra anonymous args.
4115 This means the last named arg must be on the stack
4116 right before the anonymous ones. */
4117 int stdarg
4118 = (TYPE_ARG_TYPES (fntype) != 0
4119 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4120 != void_type_node));
4121
4122 current_function_stdarg = stdarg;
4123
4124 /* If the reg that the virtual arg pointer will be translated into is
4125 not a fixed reg or is the stack pointer, make a copy of the virtual
4126 arg pointer, and address parms via the copy. The frame pointer is
4127 considered fixed even though it is not marked as such.
4128
4129 The second time through, simply use ap to avoid generating rtx. */
4130
4131 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4132 || ! (fixed_regs[ARG_POINTER_REGNUM]
4133 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4134 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4135 else
4136 internal_arg_pointer = virtual_incoming_args_rtx;
4137 current_function_internal_arg_pointer = internal_arg_pointer;
4138
4139 stack_args_size.constant = 0;
4140 stack_args_size.var = 0;
4141
4142 /* If struct value address is treated as the first argument, make it so. */
4143 if (aggregate_value_p (DECL_RESULT (fndecl))
4144 && ! current_function_returns_pcc_struct
4145 && struct_value_incoming_rtx == 0)
4146 {
4147 tree type = build_pointer_type (TREE_TYPE (fntype));
4148
4149 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4150
4151 DECL_ARG_TYPE (function_result_decl) = type;
4152 TREE_CHAIN (function_result_decl) = fnargs;
4153 fnargs = function_result_decl;
4154 }
4155
4156 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4157 parm_reg_stack_loc = (rtx *) xcalloc (max_parm_reg, sizeof (rtx));
4158
4159 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4160 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4161 #else
4162 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4163 #endif
4164
4165 /* We haven't yet found an argument that we must push and pretend the
4166 caller did. */
4167 current_function_pretend_args_size = 0;
4168
4169 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4170 {
4171 int aggregate = AGGREGATE_TYPE_P (TREE_TYPE (parm));
4172 struct args_size stack_offset;
4173 struct args_size arg_size;
4174 int passed_pointer = 0;
4175 int did_conversion = 0;
4176 tree passed_type = DECL_ARG_TYPE (parm);
4177 tree nominal_type = TREE_TYPE (parm);
4178 int pretend_named;
4179
4180 /* Set LAST_NAMED if this is last named arg before some
4181 anonymous args. */
4182 int last_named = ((TREE_CHAIN (parm) == 0
4183 || DECL_NAME (TREE_CHAIN (parm)) == 0)
4184 && (stdarg || current_function_varargs));
4185 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4186 most machines, if this is a varargs/stdarg function, then we treat
4187 the last named arg as if it were anonymous too. */
4188 int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4189
4190 if (TREE_TYPE (parm) == error_mark_node
4191 /* This can happen after weird syntax errors
4192 or if an enum type is defined among the parms. */
4193 || TREE_CODE (parm) != PARM_DECL
4194 || passed_type == NULL)
4195 {
4196 DECL_INCOMING_RTL (parm) = DECL_RTL (parm)
4197 = gen_rtx_MEM (BLKmode, const0_rtx);
4198 TREE_USED (parm) = 1;
4199 continue;
4200 }
4201
4202 /* For varargs.h function, save info about regs and stack space
4203 used by the individual args, not including the va_alist arg. */
4204 if (hide_last_arg && last_named)
4205 current_function_args_info = args_so_far;
4206
4207 /* Find mode of arg as it is passed, and mode of arg
4208 as it should be during execution of this function. */
4209 passed_mode = TYPE_MODE (passed_type);
4210 nominal_mode = TYPE_MODE (nominal_type);
4211
4212 /* If the parm's mode is VOID, its value doesn't matter,
4213 and avoid the usual things like emit_move_insn that could crash. */
4214 if (nominal_mode == VOIDmode)
4215 {
4216 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx;
4217 continue;
4218 }
4219
4220 /* If the parm is to be passed as a transparent union, use the
4221 type of the first field for the tests below. We have already
4222 verified that the modes are the same. */
4223 if (DECL_TRANSPARENT_UNION (parm)
4224 || TYPE_TRANSPARENT_UNION (passed_type))
4225 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4226
4227 /* See if this arg was passed by invisible reference. It is if
4228 it is an object whose size depends on the contents of the
4229 object itself or if the machine requires these objects be passed
4230 that way. */
4231
4232 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4233 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4234 || TREE_ADDRESSABLE (passed_type)
4235 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4236 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4237 passed_type, named_arg)
4238 #endif
4239 )
4240 {
4241 passed_type = nominal_type = build_pointer_type (passed_type);
4242 passed_pointer = 1;
4243 passed_mode = nominal_mode = Pmode;
4244 }
4245
4246 promoted_mode = passed_mode;
4247
4248 #ifdef PROMOTE_FUNCTION_ARGS
4249 /* Compute the mode in which the arg is actually extended to. */
4250 unsignedp = TREE_UNSIGNED (passed_type);
4251 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4252 #endif
4253
4254 /* Let machine desc say which reg (if any) the parm arrives in.
4255 0 means it arrives on the stack. */
4256 #ifdef FUNCTION_INCOMING_ARG
4257 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4258 passed_type, named_arg);
4259 #else
4260 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4261 passed_type, named_arg);
4262 #endif
4263
4264 if (entry_parm == 0)
4265 promoted_mode = passed_mode;
4266
4267 #ifdef SETUP_INCOMING_VARARGS
4268 /* If this is the last named parameter, do any required setup for
4269 varargs or stdargs. We need to know about the case of this being an
4270 addressable type, in which case we skip the registers it
4271 would have arrived in.
4272
4273 For stdargs, LAST_NAMED will be set for two parameters, the one that
4274 is actually the last named, and the dummy parameter. We only
4275 want to do this action once.
4276
4277 Also, indicate when RTL generation is to be suppressed. */
4278 if (last_named && !varargs_setup)
4279 {
4280 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4281 current_function_pretend_args_size, 0);
4282 varargs_setup = 1;
4283 }
4284 #endif
4285
4286 /* Determine parm's home in the stack,
4287 in case it arrives in the stack or we should pretend it did.
4288
4289 Compute the stack position and rtx where the argument arrives
4290 and its size.
4291
4292 There is one complexity here: If this was a parameter that would
4293 have been passed in registers, but wasn't only because it is
4294 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4295 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4296 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4297 0 as it was the previous time. */
4298
4299 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4300 locate_and_pad_parm (promoted_mode, passed_type,
4301 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4302 1,
4303 #else
4304 #ifdef FUNCTION_INCOMING_ARG
4305 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4306 passed_type,
4307 pretend_named) != 0,
4308 #else
4309 FUNCTION_ARG (args_so_far, promoted_mode,
4310 passed_type,
4311 pretend_named) != 0,
4312 #endif
4313 #endif
4314 fndecl, &stack_args_size, &stack_offset, &arg_size,
4315 &alignment_pad);
4316
4317 {
4318 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4319
4320 if (offset_rtx == const0_rtx)
4321 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4322 else
4323 stack_parm = gen_rtx_MEM (promoted_mode,
4324 gen_rtx_PLUS (Pmode,
4325 internal_arg_pointer,
4326 offset_rtx));
4327
4328 /* If this is a memory ref that contains aggregate components,
4329 mark it as such for cse and loop optimize. Likewise if it
4330 is readonly. */
4331 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4332 RTX_UNCHANGING_P (stack_parm) = TREE_READONLY (parm);
4333 MEM_ALIAS_SET (stack_parm) = get_alias_set (parm);
4334 }
4335
4336 /* If this parameter was passed both in registers and in the stack,
4337 use the copy on the stack. */
4338 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4339 entry_parm = 0;
4340
4341 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4342 /* If this parm was passed part in regs and part in memory,
4343 pretend it arrived entirely in memory
4344 by pushing the register-part onto the stack.
4345
4346 In the special case of a DImode or DFmode that is split,
4347 we could put it together in a pseudoreg directly,
4348 but for now that's not worth bothering with. */
4349
4350 if (entry_parm)
4351 {
4352 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4353 passed_type, named_arg);
4354
4355 if (nregs > 0)
4356 {
4357 current_function_pretend_args_size
4358 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4359 / (PARM_BOUNDARY / BITS_PER_UNIT)
4360 * (PARM_BOUNDARY / BITS_PER_UNIT));
4361
4362 /* Handle calls that pass values in multiple non-contiguous
4363 locations. The Irix 6 ABI has examples of this. */
4364 if (GET_CODE (entry_parm) == PARALLEL)
4365 emit_group_store (validize_mem (stack_parm), entry_parm,
4366 int_size_in_bytes (TREE_TYPE (parm)),
4367 TYPE_ALIGN (TREE_TYPE (parm)));
4368
4369 else
4370 move_block_from_reg (REGNO (entry_parm),
4371 validize_mem (stack_parm), nregs,
4372 int_size_in_bytes (TREE_TYPE (parm)));
4373
4374 entry_parm = stack_parm;
4375 }
4376 }
4377 #endif
4378
4379 /* If we didn't decide this parm came in a register,
4380 by default it came on the stack. */
4381 if (entry_parm == 0)
4382 entry_parm = stack_parm;
4383
4384 /* Record permanently how this parm was passed. */
4385 DECL_INCOMING_RTL (parm) = entry_parm;
4386
4387 /* If there is actually space on the stack for this parm,
4388 count it in stack_args_size; otherwise set stack_parm to 0
4389 to indicate there is no preallocated stack slot for the parm. */
4390
4391 if (entry_parm == stack_parm
4392 || (GET_CODE (entry_parm) == PARALLEL
4393 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4394 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4395 /* On some machines, even if a parm value arrives in a register
4396 there is still an (uninitialized) stack slot allocated for it.
4397
4398 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4399 whether this parameter already has a stack slot allocated,
4400 because an arg block exists only if current_function_args_size
4401 is larger than some threshold, and we haven't calculated that
4402 yet. So, for now, we just assume that stack slots never exist
4403 in this case. */
4404 || REG_PARM_STACK_SPACE (fndecl) > 0
4405 #endif
4406 )
4407 {
4408 stack_args_size.constant += arg_size.constant;
4409 if (arg_size.var)
4410 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4411 }
4412 else
4413 /* No stack slot was pushed for this parm. */
4414 stack_parm = 0;
4415
4416 /* Update info on where next arg arrives in registers. */
4417
4418 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4419 passed_type, named_arg);
4420
4421 /* If we can't trust the parm stack slot to be aligned enough
4422 for its ultimate type, don't use that slot after entry.
4423 We'll make another stack slot, if we need one. */
4424 {
4425 unsigned int thisparm_boundary
4426 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4427
4428 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4429 stack_parm = 0;
4430 }
4431
4432 /* If parm was passed in memory, and we need to convert it on entry,
4433 don't store it back in that same slot. */
4434 if (entry_parm != 0
4435 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4436 stack_parm = 0;
4437
4438 #if 0
4439 /* Now adjust STACK_PARM to the mode and precise location
4440 where this parameter should live during execution,
4441 if we discover that it must live in the stack during execution.
4442 To make debuggers happier on big-endian machines, we store
4443 the value in the last bytes of the space available. */
4444
4445 if (nominal_mode != BLKmode && nominal_mode != passed_mode
4446 && stack_parm != 0)
4447 {
4448 rtx offset_rtx;
4449
4450 if (BYTES_BIG_ENDIAN
4451 && GET_MODE_SIZE (nominal_mode) < UNITS_PER_WORD)
4452 stack_offset.constant += (GET_MODE_SIZE (passed_mode)
4453 - GET_MODE_SIZE (nominal_mode));
4454
4455 offset_rtx = ARGS_SIZE_RTX (stack_offset);
4456 if (offset_rtx == const0_rtx)
4457 stack_parm = gen_rtx_MEM (nominal_mode, internal_arg_pointer);
4458 else
4459 stack_parm = gen_rtx_MEM (nominal_mode,
4460 gen_rtx_PLUS (Pmode,
4461 internal_arg_pointer,
4462 offset_rtx));
4463
4464 /* If this is a memory ref that contains aggregate components,
4465 mark it as such for cse and loop optimize. */
4466 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4467 }
4468 #endif /* 0 */
4469
4470 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4471 in the mode in which it arrives.
4472 STACK_PARM is an RTX for a stack slot where the parameter can live
4473 during the function (in case we want to put it there).
4474 STACK_PARM is 0 if no stack slot was pushed for it.
4475
4476 Now output code if necessary to convert ENTRY_PARM to
4477 the type in which this function declares it,
4478 and store that result in an appropriate place,
4479 which may be a pseudo reg, may be STACK_PARM,
4480 or may be a local stack slot if STACK_PARM is 0.
4481
4482 Set DECL_RTL to that place. */
4483
4484 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4485 {
4486 /* If a BLKmode arrives in registers, copy it to a stack slot.
4487 Handle calls that pass values in multiple non-contiguous
4488 locations. The Irix 6 ABI has examples of this. */
4489 if (GET_CODE (entry_parm) == REG
4490 || GET_CODE (entry_parm) == PARALLEL)
4491 {
4492 int size_stored
4493 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4494 UNITS_PER_WORD);
4495
4496 /* Note that we will be storing an integral number of words.
4497 So we have to be careful to ensure that we allocate an
4498 integral number of words. We do this below in the
4499 assign_stack_local if space was not allocated in the argument
4500 list. If it was, this will not work if PARM_BOUNDARY is not
4501 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4502 if it becomes a problem. */
4503
4504 if (stack_parm == 0)
4505 {
4506 stack_parm
4507 = assign_stack_local (GET_MODE (entry_parm),
4508 size_stored, 0);
4509
4510 /* If this is a memory ref that contains aggregate
4511 components, mark it as such for cse and loop optimize. */
4512 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4513 }
4514
4515 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4516 abort ();
4517
4518 if (TREE_READONLY (parm))
4519 RTX_UNCHANGING_P (stack_parm) = 1;
4520
4521 /* Handle calls that pass values in multiple non-contiguous
4522 locations. The Irix 6 ABI has examples of this. */
4523 if (GET_CODE (entry_parm) == PARALLEL)
4524 emit_group_store (validize_mem (stack_parm), entry_parm,
4525 int_size_in_bytes (TREE_TYPE (parm)),
4526 TYPE_ALIGN (TREE_TYPE (parm)));
4527 else
4528 move_block_from_reg (REGNO (entry_parm),
4529 validize_mem (stack_parm),
4530 size_stored / UNITS_PER_WORD,
4531 int_size_in_bytes (TREE_TYPE (parm)));
4532 }
4533 DECL_RTL (parm) = stack_parm;
4534 }
4535 else if (! ((! optimize
4536 && ! DECL_REGISTER (parm)
4537 && ! DECL_INLINE (fndecl))
4538 /* layout_decl may set this. */
4539 || TREE_ADDRESSABLE (parm)
4540 || TREE_SIDE_EFFECTS (parm)
4541 /* If -ffloat-store specified, don't put explicit
4542 float variables into registers. */
4543 || (flag_float_store
4544 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4545 /* Always assign pseudo to structure return or item passed
4546 by invisible reference. */
4547 || passed_pointer || parm == function_result_decl)
4548 {
4549 /* Store the parm in a pseudoregister during the function, but we
4550 may need to do it in a wider mode. */
4551
4552 register rtx parmreg;
4553 unsigned int regno, regnoi = 0, regnor = 0;
4554
4555 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4556
4557 promoted_nominal_mode
4558 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4559
4560 parmreg = gen_reg_rtx (promoted_nominal_mode);
4561 mark_user_reg (parmreg);
4562
4563 /* If this was an item that we received a pointer to, set DECL_RTL
4564 appropriately. */
4565 if (passed_pointer)
4566 {
4567 DECL_RTL (parm)
4568 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)), parmreg);
4569 MEM_SET_IN_STRUCT_P (DECL_RTL (parm), aggregate);
4570 }
4571 else
4572 DECL_RTL (parm) = parmreg;
4573
4574 /* Copy the value into the register. */
4575 if (nominal_mode != passed_mode
4576 || promoted_nominal_mode != promoted_mode)
4577 {
4578 int save_tree_used;
4579 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4580 mode, by the caller. We now have to convert it to
4581 NOMINAL_MODE, if different. However, PARMREG may be in
4582 a different mode than NOMINAL_MODE if it is being stored
4583 promoted.
4584
4585 If ENTRY_PARM is a hard register, it might be in a register
4586 not valid for operating in its mode (e.g., an odd-numbered
4587 register for a DFmode). In that case, moves are the only
4588 thing valid, so we can't do a convert from there. This
4589 occurs when the calling sequence allow such misaligned
4590 usages.
4591
4592 In addition, the conversion may involve a call, which could
4593 clobber parameters which haven't been copied to pseudo
4594 registers yet. Therefore, we must first copy the parm to
4595 a pseudo reg here, and save the conversion until after all
4596 parameters have been moved. */
4597
4598 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4599
4600 emit_move_insn (tempreg, validize_mem (entry_parm));
4601
4602 push_to_sequence (conversion_insns);
4603 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4604
4605 /* TREE_USED gets set erroneously during expand_assignment. */
4606 save_tree_used = TREE_USED (parm);
4607 expand_assignment (parm,
4608 make_tree (nominal_type, tempreg), 0, 0);
4609 TREE_USED (parm) = save_tree_used;
4610 conversion_insns = get_insns ();
4611 did_conversion = 1;
4612 end_sequence ();
4613 }
4614 else
4615 emit_move_insn (parmreg, validize_mem (entry_parm));
4616
4617 /* If we were passed a pointer but the actual value
4618 can safely live in a register, put it in one. */
4619 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4620 && ! ((! optimize
4621 && ! DECL_REGISTER (parm)
4622 && ! DECL_INLINE (fndecl))
4623 /* layout_decl may set this. */
4624 || TREE_ADDRESSABLE (parm)
4625 || TREE_SIDE_EFFECTS (parm)
4626 /* If -ffloat-store specified, don't put explicit
4627 float variables into registers. */
4628 || (flag_float_store
4629 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
4630 {
4631 /* We can't use nominal_mode, because it will have been set to
4632 Pmode above. We must use the actual mode of the parm. */
4633 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4634 mark_user_reg (parmreg);
4635 emit_move_insn (parmreg, DECL_RTL (parm));
4636 DECL_RTL (parm) = parmreg;
4637 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4638 now the parm. */
4639 stack_parm = 0;
4640 }
4641 #ifdef FUNCTION_ARG_CALLEE_COPIES
4642 /* If we are passed an arg by reference and it is our responsibility
4643 to make a copy, do it now.
4644 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4645 original argument, so we must recreate them in the call to
4646 FUNCTION_ARG_CALLEE_COPIES. */
4647 /* ??? Later add code to handle the case that if the argument isn't
4648 modified, don't do the copy. */
4649
4650 else if (passed_pointer
4651 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4652 TYPE_MODE (DECL_ARG_TYPE (parm)),
4653 DECL_ARG_TYPE (parm),
4654 named_arg)
4655 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4656 {
4657 rtx copy;
4658 tree type = DECL_ARG_TYPE (parm);
4659
4660 /* This sequence may involve a library call perhaps clobbering
4661 registers that haven't been copied to pseudos yet. */
4662
4663 push_to_sequence (conversion_insns);
4664
4665 if (!COMPLETE_TYPE_P (type)
4666 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4667 /* This is a variable sized object. */
4668 copy = gen_rtx_MEM (BLKmode,
4669 allocate_dynamic_stack_space
4670 (expr_size (parm), NULL_RTX,
4671 TYPE_ALIGN (type)));
4672 else
4673 copy = assign_stack_temp (TYPE_MODE (type),
4674 int_size_in_bytes (type), 1);
4675 MEM_SET_IN_STRUCT_P (copy, AGGREGATE_TYPE_P (type));
4676 RTX_UNCHANGING_P (copy) = TREE_READONLY (parm);
4677
4678 store_expr (parm, copy, 0);
4679 emit_move_insn (parmreg, XEXP (copy, 0));
4680 if (current_function_check_memory_usage)
4681 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4682 XEXP (copy, 0), Pmode,
4683 GEN_INT (int_size_in_bytes (type)),
4684 TYPE_MODE (sizetype),
4685 GEN_INT (MEMORY_USE_RW),
4686 TYPE_MODE (integer_type_node));
4687 conversion_insns = get_insns ();
4688 did_conversion = 1;
4689 end_sequence ();
4690 }
4691 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4692
4693 /* In any case, record the parm's desired stack location
4694 in case we later discover it must live in the stack.
4695
4696 If it is a COMPLEX value, store the stack location for both
4697 halves. */
4698
4699 if (GET_CODE (parmreg) == CONCAT)
4700 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4701 else
4702 regno = REGNO (parmreg);
4703
4704 if (regno >= max_parm_reg)
4705 {
4706 rtx *new;
4707 int old_max_parm_reg = max_parm_reg;
4708
4709 /* It's slow to expand this one register at a time,
4710 but it's also rare and we need max_parm_reg to be
4711 precisely correct. */
4712 max_parm_reg = regno + 1;
4713 new = (rtx *) xrealloc (parm_reg_stack_loc,
4714 max_parm_reg * sizeof (rtx));
4715 bzero ((char *) (new + old_max_parm_reg),
4716 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4717 parm_reg_stack_loc = new;
4718 }
4719
4720 if (GET_CODE (parmreg) == CONCAT)
4721 {
4722 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4723
4724 regnor = REGNO (gen_realpart (submode, parmreg));
4725 regnoi = REGNO (gen_imagpart (submode, parmreg));
4726
4727 if (stack_parm != 0)
4728 {
4729 parm_reg_stack_loc[regnor]
4730 = gen_realpart (submode, stack_parm);
4731 parm_reg_stack_loc[regnoi]
4732 = gen_imagpart (submode, stack_parm);
4733 }
4734 else
4735 {
4736 parm_reg_stack_loc[regnor] = 0;
4737 parm_reg_stack_loc[regnoi] = 0;
4738 }
4739 }
4740 else
4741 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4742
4743 /* Mark the register as eliminable if we did no conversion
4744 and it was copied from memory at a fixed offset,
4745 and the arg pointer was not copied to a pseudo-reg.
4746 If the arg pointer is a pseudo reg or the offset formed
4747 an invalid address, such memory-equivalences
4748 as we make here would screw up life analysis for it. */
4749 if (nominal_mode == passed_mode
4750 && ! did_conversion
4751 && stack_parm != 0
4752 && GET_CODE (stack_parm) == MEM
4753 && stack_offset.var == 0
4754 && reg_mentioned_p (virtual_incoming_args_rtx,
4755 XEXP (stack_parm, 0)))
4756 {
4757 rtx linsn = get_last_insn ();
4758 rtx sinsn, set;
4759
4760 /* Mark complex types separately. */
4761 if (GET_CODE (parmreg) == CONCAT)
4762 /* Scan backwards for the set of the real and
4763 imaginary parts. */
4764 for (sinsn = linsn; sinsn != 0;
4765 sinsn = prev_nonnote_insn (sinsn))
4766 {
4767 set = single_set (sinsn);
4768 if (set != 0
4769 && SET_DEST (set) == regno_reg_rtx [regnoi])
4770 REG_NOTES (sinsn)
4771 = gen_rtx_EXPR_LIST (REG_EQUIV,
4772 parm_reg_stack_loc[regnoi],
4773 REG_NOTES (sinsn));
4774 else if (set != 0
4775 && SET_DEST (set) == regno_reg_rtx [regnor])
4776 REG_NOTES (sinsn)
4777 = gen_rtx_EXPR_LIST (REG_EQUIV,
4778 parm_reg_stack_loc[regnor],
4779 REG_NOTES (sinsn));
4780 }
4781 else if ((set = single_set (linsn)) != 0
4782 && SET_DEST (set) == parmreg)
4783 REG_NOTES (linsn)
4784 = gen_rtx_EXPR_LIST (REG_EQUIV,
4785 stack_parm, REG_NOTES (linsn));
4786 }
4787
4788 /* For pointer data type, suggest pointer register. */
4789 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4790 mark_reg_pointer (parmreg,
4791 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4792
4793 }
4794 else
4795 {
4796 /* Value must be stored in the stack slot STACK_PARM
4797 during function execution. */
4798
4799 if (promoted_mode != nominal_mode)
4800 {
4801 /* Conversion is required. */
4802 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4803
4804 emit_move_insn (tempreg, validize_mem (entry_parm));
4805
4806 push_to_sequence (conversion_insns);
4807 entry_parm = convert_to_mode (nominal_mode, tempreg,
4808 TREE_UNSIGNED (TREE_TYPE (parm)));
4809 if (stack_parm)
4810 {
4811 /* ??? This may need a big-endian conversion on sparc64. */
4812 stack_parm = change_address (stack_parm, nominal_mode,
4813 NULL_RTX);
4814 }
4815 conversion_insns = get_insns ();
4816 did_conversion = 1;
4817 end_sequence ();
4818 }
4819
4820 if (entry_parm != stack_parm)
4821 {
4822 if (stack_parm == 0)
4823 {
4824 stack_parm
4825 = assign_stack_local (GET_MODE (entry_parm),
4826 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
4827 /* If this is a memory ref that contains aggregate components,
4828 mark it as such for cse and loop optimize. */
4829 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4830 }
4831
4832 if (promoted_mode != nominal_mode)
4833 {
4834 push_to_sequence (conversion_insns);
4835 emit_move_insn (validize_mem (stack_parm),
4836 validize_mem (entry_parm));
4837 conversion_insns = get_insns ();
4838 end_sequence ();
4839 }
4840 else
4841 emit_move_insn (validize_mem (stack_parm),
4842 validize_mem (entry_parm));
4843 }
4844 if (current_function_check_memory_usage)
4845 {
4846 push_to_sequence (conversion_insns);
4847 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4848 XEXP (stack_parm, 0), Pmode,
4849 GEN_INT (GET_MODE_SIZE (GET_MODE
4850 (entry_parm))),
4851 TYPE_MODE (sizetype),
4852 GEN_INT (MEMORY_USE_RW),
4853 TYPE_MODE (integer_type_node));
4854
4855 conversion_insns = get_insns ();
4856 end_sequence ();
4857 }
4858 DECL_RTL (parm) = stack_parm;
4859 }
4860
4861 /* If this "parameter" was the place where we are receiving the
4862 function's incoming structure pointer, set up the result. */
4863 if (parm == function_result_decl)
4864 {
4865 tree result = DECL_RESULT (fndecl);
4866 tree restype = TREE_TYPE (result);
4867
4868 DECL_RTL (result)
4869 = gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm));
4870
4871 MEM_SET_IN_STRUCT_P (DECL_RTL (result),
4872 AGGREGATE_TYPE_P (restype));
4873 }
4874
4875 if (TREE_THIS_VOLATILE (parm))
4876 MEM_VOLATILE_P (DECL_RTL (parm)) = 1;
4877 if (TREE_READONLY (parm))
4878 RTX_UNCHANGING_P (DECL_RTL (parm)) = 1;
4879 }
4880
4881 /* Output all parameter conversion instructions (possibly including calls)
4882 now that all parameters have been copied out of hard registers. */
4883 emit_insns (conversion_insns);
4884
4885 last_parm_insn = get_last_insn ();
4886
4887 current_function_args_size = stack_args_size.constant;
4888
4889 /* Adjust function incoming argument size for alignment and
4890 minimum length. */
4891
4892 #ifdef REG_PARM_STACK_SPACE
4893 #ifndef MAYBE_REG_PARM_STACK_SPACE
4894 current_function_args_size = MAX (current_function_args_size,
4895 REG_PARM_STACK_SPACE (fndecl));
4896 #endif
4897 #endif
4898
4899 #ifdef STACK_BOUNDARY
4900 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
4901
4902 current_function_args_size
4903 = ((current_function_args_size + STACK_BYTES - 1)
4904 / STACK_BYTES) * STACK_BYTES;
4905 #endif
4906
4907 #ifdef ARGS_GROW_DOWNWARD
4908 current_function_arg_offset_rtx
4909 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
4910 : expand_expr (size_diffop (stack_args_size.var,
4911 size_int (-stack_args_size.constant)),
4912 NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD));
4913 #else
4914 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
4915 #endif
4916
4917 /* See how many bytes, if any, of its args a function should try to pop
4918 on return. */
4919
4920 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
4921 current_function_args_size);
4922
4923 /* For stdarg.h function, save info about
4924 regs and stack space used by the named args. */
4925
4926 if (!hide_last_arg)
4927 current_function_args_info = args_so_far;
4928
4929 /* Set the rtx used for the function return value. Put this in its
4930 own variable so any optimizers that need this information don't have
4931 to include tree.h. Do this here so it gets done when an inlined
4932 function gets output. */
4933
4934 current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl));
4935 }
4936 \f
4937 /* Indicate whether REGNO is an incoming argument to the current function
4938 that was promoted to a wider mode. If so, return the RTX for the
4939 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
4940 that REGNO is promoted from and whether the promotion was signed or
4941 unsigned. */
4942
4943 #ifdef PROMOTE_FUNCTION_ARGS
4944
4945 rtx
4946 promoted_input_arg (regno, pmode, punsignedp)
4947 unsigned int regno;
4948 enum machine_mode *pmode;
4949 int *punsignedp;
4950 {
4951 tree arg;
4952
4953 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
4954 arg = TREE_CHAIN (arg))
4955 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
4956 && REGNO (DECL_INCOMING_RTL (arg)) == regno
4957 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
4958 {
4959 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
4960 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
4961
4962 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
4963 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
4964 && mode != DECL_MODE (arg))
4965 {
4966 *pmode = DECL_MODE (arg);
4967 *punsignedp = unsignedp;
4968 return DECL_INCOMING_RTL (arg);
4969 }
4970 }
4971
4972 return 0;
4973 }
4974
4975 #endif
4976 \f
4977 /* Compute the size and offset from the start of the stacked arguments for a
4978 parm passed in mode PASSED_MODE and with type TYPE.
4979
4980 INITIAL_OFFSET_PTR points to the current offset into the stacked
4981 arguments.
4982
4983 The starting offset and size for this parm are returned in *OFFSET_PTR
4984 and *ARG_SIZE_PTR, respectively.
4985
4986 IN_REGS is non-zero if the argument will be passed in registers. It will
4987 never be set if REG_PARM_STACK_SPACE is not defined.
4988
4989 FNDECL is the function in which the argument was defined.
4990
4991 There are two types of rounding that are done. The first, controlled by
4992 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
4993 list to be aligned to the specific boundary (in bits). This rounding
4994 affects the initial and starting offsets, but not the argument size.
4995
4996 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4997 optionally rounds the size of the parm to PARM_BOUNDARY. The
4998 initial offset is not affected by this rounding, while the size always
4999 is and the starting offset may be. */
5000
5001 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
5002 initial_offset_ptr is positive because locate_and_pad_parm's
5003 callers pass in the total size of args so far as
5004 initial_offset_ptr. arg_size_ptr is always positive.*/
5005
5006 void
5007 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
5008 initial_offset_ptr, offset_ptr, arg_size_ptr,
5009 alignment_pad)
5010 enum machine_mode passed_mode;
5011 tree type;
5012 int in_regs ATTRIBUTE_UNUSED;
5013 tree fndecl ATTRIBUTE_UNUSED;
5014 struct args_size *initial_offset_ptr;
5015 struct args_size *offset_ptr;
5016 struct args_size *arg_size_ptr;
5017 struct args_size *alignment_pad;
5018
5019 {
5020 tree sizetree
5021 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5022 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5023 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5024
5025 #ifdef REG_PARM_STACK_SPACE
5026 /* If we have found a stack parm before we reach the end of the
5027 area reserved for registers, skip that area. */
5028 if (! in_regs)
5029 {
5030 int reg_parm_stack_space = 0;
5031
5032 #ifdef MAYBE_REG_PARM_STACK_SPACE
5033 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5034 #else
5035 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5036 #endif
5037 if (reg_parm_stack_space > 0)
5038 {
5039 if (initial_offset_ptr->var)
5040 {
5041 initial_offset_ptr->var
5042 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5043 ssize_int (reg_parm_stack_space));
5044 initial_offset_ptr->constant = 0;
5045 }
5046 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5047 initial_offset_ptr->constant = reg_parm_stack_space;
5048 }
5049 }
5050 #endif /* REG_PARM_STACK_SPACE */
5051
5052 arg_size_ptr->var = 0;
5053 arg_size_ptr->constant = 0;
5054
5055 #ifdef ARGS_GROW_DOWNWARD
5056 if (initial_offset_ptr->var)
5057 {
5058 offset_ptr->constant = 0;
5059 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5060 initial_offset_ptr->var);
5061 }
5062 else
5063 {
5064 offset_ptr->constant = - initial_offset_ptr->constant;
5065 offset_ptr->var = 0;
5066 }
5067 if (where_pad != none
5068 && (TREE_CODE (sizetree) != INTEGER_CST
5069 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
5070 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5071 SUB_PARM_SIZE (*offset_ptr, sizetree);
5072 if (where_pad != downward)
5073 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5074 if (initial_offset_ptr->var)
5075 arg_size_ptr->var = size_binop (MINUS_EXPR,
5076 size_binop (MINUS_EXPR,
5077 ssize_int (0),
5078 initial_offset_ptr->var),
5079 offset_ptr->var);
5080
5081 else
5082 arg_size_ptr->constant = (- initial_offset_ptr->constant
5083 - offset_ptr->constant);
5084
5085 #else /* !ARGS_GROW_DOWNWARD */
5086 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5087 *offset_ptr = *initial_offset_ptr;
5088
5089 #ifdef PUSH_ROUNDING
5090 if (passed_mode != BLKmode)
5091 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5092 #endif
5093
5094 /* Pad_below needs the pre-rounded size to know how much to pad below
5095 so this must be done before rounding up. */
5096 if (where_pad == downward
5097 /* However, BLKmode args passed in regs have their padding done elsewhere.
5098 The stack slot must be able to hold the entire register. */
5099 && !(in_regs && passed_mode == BLKmode))
5100 pad_below (offset_ptr, passed_mode, sizetree);
5101
5102 if (where_pad != none
5103 && (TREE_CODE (sizetree) != INTEGER_CST
5104 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
5105 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5106
5107 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5108 #endif /* ARGS_GROW_DOWNWARD */
5109 }
5110
5111 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5112 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5113
5114 static void
5115 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5116 struct args_size *offset_ptr;
5117 int boundary;
5118 struct args_size *alignment_pad;
5119 {
5120 tree save_var = NULL_TREE;
5121 HOST_WIDE_INT save_constant = 0;
5122
5123 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5124
5125 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5126 {
5127 save_var = offset_ptr->var;
5128 save_constant = offset_ptr->constant;
5129 }
5130
5131 alignment_pad->var = NULL_TREE;
5132 alignment_pad->constant = 0;
5133
5134 if (boundary > BITS_PER_UNIT)
5135 {
5136 if (offset_ptr->var)
5137 {
5138 offset_ptr->var =
5139 #ifdef ARGS_GROW_DOWNWARD
5140 round_down
5141 #else
5142 round_up
5143 #endif
5144 (ARGS_SIZE_TREE (*offset_ptr),
5145 boundary / BITS_PER_UNIT);
5146 offset_ptr->constant = 0; /*?*/
5147 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5148 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5149 save_var);
5150 }
5151 else
5152 {
5153 offset_ptr->constant =
5154 #ifdef ARGS_GROW_DOWNWARD
5155 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5156 #else
5157 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5158 #endif
5159 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5160 alignment_pad->constant = offset_ptr->constant - save_constant;
5161 }
5162 }
5163 }
5164
5165 #ifndef ARGS_GROW_DOWNWARD
5166 static void
5167 pad_below (offset_ptr, passed_mode, sizetree)
5168 struct args_size *offset_ptr;
5169 enum machine_mode passed_mode;
5170 tree sizetree;
5171 {
5172 if (passed_mode != BLKmode)
5173 {
5174 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5175 offset_ptr->constant
5176 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5177 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5178 - GET_MODE_SIZE (passed_mode));
5179 }
5180 else
5181 {
5182 if (TREE_CODE (sizetree) != INTEGER_CST
5183 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5184 {
5185 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5186 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5187 /* Add it in. */
5188 ADD_PARM_SIZE (*offset_ptr, s2);
5189 SUB_PARM_SIZE (*offset_ptr, sizetree);
5190 }
5191 }
5192 }
5193 #endif
5194 \f
5195 /* Walk the tree of blocks describing the binding levels within a function
5196 and warn about uninitialized variables.
5197 This is done after calling flow_analysis and before global_alloc
5198 clobbers the pseudo-regs to hard regs. */
5199
5200 void
5201 uninitialized_vars_warning (block)
5202 tree block;
5203 {
5204 register tree decl, sub;
5205 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5206 {
5207 if (warn_uninitialized
5208 && TREE_CODE (decl) == VAR_DECL
5209 /* These warnings are unreliable for and aggregates
5210 because assigning the fields one by one can fail to convince
5211 flow.c that the entire aggregate was initialized.
5212 Unions are troublesome because members may be shorter. */
5213 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5214 && DECL_RTL (decl) != 0
5215 && GET_CODE (DECL_RTL (decl)) == REG
5216 /* Global optimizations can make it difficult to determine if a
5217 particular variable has been initialized. However, a VAR_DECL
5218 with a nonzero DECL_INITIAL had an initializer, so do not
5219 claim it is potentially uninitialized.
5220
5221 We do not care about the actual value in DECL_INITIAL, so we do
5222 not worry that it may be a dangling pointer. */
5223 && DECL_INITIAL (decl) == NULL_TREE
5224 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5225 warning_with_decl (decl,
5226 "`%s' might be used uninitialized in this function");
5227 if (extra_warnings
5228 && TREE_CODE (decl) == VAR_DECL
5229 && DECL_RTL (decl) != 0
5230 && GET_CODE (DECL_RTL (decl)) == REG
5231 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5232 warning_with_decl (decl,
5233 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5234 }
5235 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5236 uninitialized_vars_warning (sub);
5237 }
5238
5239 /* Do the appropriate part of uninitialized_vars_warning
5240 but for arguments instead of local variables. */
5241
5242 void
5243 setjmp_args_warning ()
5244 {
5245 register tree decl;
5246 for (decl = DECL_ARGUMENTS (current_function_decl);
5247 decl; decl = TREE_CHAIN (decl))
5248 if (DECL_RTL (decl) != 0
5249 && GET_CODE (DECL_RTL (decl)) == REG
5250 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5251 warning_with_decl (decl, "argument `%s' might be clobbered by `longjmp' or `vfork'");
5252 }
5253
5254 /* If this function call setjmp, put all vars into the stack
5255 unless they were declared `register'. */
5256
5257 void
5258 setjmp_protect (block)
5259 tree block;
5260 {
5261 register tree decl, sub;
5262 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5263 if ((TREE_CODE (decl) == VAR_DECL
5264 || TREE_CODE (decl) == PARM_DECL)
5265 && DECL_RTL (decl) != 0
5266 && (GET_CODE (DECL_RTL (decl)) == REG
5267 || (GET_CODE (DECL_RTL (decl)) == MEM
5268 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5269 /* If this variable came from an inline function, it must be
5270 that its life doesn't overlap the setjmp. If there was a
5271 setjmp in the function, it would already be in memory. We
5272 must exclude such variable because their DECL_RTL might be
5273 set to strange things such as virtual_stack_vars_rtx. */
5274 && ! DECL_FROM_INLINE (decl)
5275 && (
5276 #ifdef NON_SAVING_SETJMP
5277 /* If longjmp doesn't restore the registers,
5278 don't put anything in them. */
5279 NON_SAVING_SETJMP
5280 ||
5281 #endif
5282 ! DECL_REGISTER (decl)))
5283 put_var_into_stack (decl);
5284 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5285 setjmp_protect (sub);
5286 }
5287 \f
5288 /* Like the previous function, but for args instead of local variables. */
5289
5290 void
5291 setjmp_protect_args ()
5292 {
5293 register tree decl;
5294 for (decl = DECL_ARGUMENTS (current_function_decl);
5295 decl; decl = TREE_CHAIN (decl))
5296 if ((TREE_CODE (decl) == VAR_DECL
5297 || TREE_CODE (decl) == PARM_DECL)
5298 && DECL_RTL (decl) != 0
5299 && (GET_CODE (DECL_RTL (decl)) == REG
5300 || (GET_CODE (DECL_RTL (decl)) == MEM
5301 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5302 && (
5303 /* If longjmp doesn't restore the registers,
5304 don't put anything in them. */
5305 #ifdef NON_SAVING_SETJMP
5306 NON_SAVING_SETJMP
5307 ||
5308 #endif
5309 ! DECL_REGISTER (decl)))
5310 put_var_into_stack (decl);
5311 }
5312 \f
5313 /* Return the context-pointer register corresponding to DECL,
5314 or 0 if it does not need one. */
5315
5316 rtx
5317 lookup_static_chain (decl)
5318 tree decl;
5319 {
5320 tree context = decl_function_context (decl);
5321 tree link;
5322
5323 if (context == 0
5324 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5325 return 0;
5326
5327 /* We treat inline_function_decl as an alias for the current function
5328 because that is the inline function whose vars, types, etc.
5329 are being merged into the current function.
5330 See expand_inline_function. */
5331 if (context == current_function_decl || context == inline_function_decl)
5332 return virtual_stack_vars_rtx;
5333
5334 for (link = context_display; link; link = TREE_CHAIN (link))
5335 if (TREE_PURPOSE (link) == context)
5336 return RTL_EXPR_RTL (TREE_VALUE (link));
5337
5338 abort ();
5339 }
5340 \f
5341 /* Convert a stack slot address ADDR for variable VAR
5342 (from a containing function)
5343 into an address valid in this function (using a static chain). */
5344
5345 rtx
5346 fix_lexical_addr (addr, var)
5347 rtx addr;
5348 tree var;
5349 {
5350 rtx basereg;
5351 HOST_WIDE_INT displacement;
5352 tree context = decl_function_context (var);
5353 struct function *fp;
5354 rtx base = 0;
5355
5356 /* If this is the present function, we need not do anything. */
5357 if (context == current_function_decl || context == inline_function_decl)
5358 return addr;
5359
5360 for (fp = outer_function_chain; fp; fp = fp->next)
5361 if (fp->decl == context)
5362 break;
5363
5364 if (fp == 0)
5365 abort ();
5366
5367 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5368 addr = XEXP (XEXP (addr, 0), 0);
5369
5370 /* Decode given address as base reg plus displacement. */
5371 if (GET_CODE (addr) == REG)
5372 basereg = addr, displacement = 0;
5373 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5374 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5375 else
5376 abort ();
5377
5378 /* We accept vars reached via the containing function's
5379 incoming arg pointer and via its stack variables pointer. */
5380 if (basereg == fp->internal_arg_pointer)
5381 {
5382 /* If reached via arg pointer, get the arg pointer value
5383 out of that function's stack frame.
5384
5385 There are two cases: If a separate ap is needed, allocate a
5386 slot in the outer function for it and dereference it that way.
5387 This is correct even if the real ap is actually a pseudo.
5388 Otherwise, just adjust the offset from the frame pointer to
5389 compensate. */
5390
5391 #ifdef NEED_SEPARATE_AP
5392 rtx addr;
5393
5394 if (fp->x_arg_pointer_save_area == 0)
5395 fp->x_arg_pointer_save_area
5396 = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
5397
5398 addr = fix_lexical_addr (XEXP (fp->x_arg_pointer_save_area, 0), var);
5399 addr = memory_address (Pmode, addr);
5400
5401 base = copy_to_reg (gen_rtx_MEM (Pmode, addr));
5402 #else
5403 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5404 base = lookup_static_chain (var);
5405 #endif
5406 }
5407
5408 else if (basereg == virtual_stack_vars_rtx)
5409 {
5410 /* This is the same code as lookup_static_chain, duplicated here to
5411 avoid an extra call to decl_function_context. */
5412 tree link;
5413
5414 for (link = context_display; link; link = TREE_CHAIN (link))
5415 if (TREE_PURPOSE (link) == context)
5416 {
5417 base = RTL_EXPR_RTL (TREE_VALUE (link));
5418 break;
5419 }
5420 }
5421
5422 if (base == 0)
5423 abort ();
5424
5425 /* Use same offset, relative to appropriate static chain or argument
5426 pointer. */
5427 return plus_constant (base, displacement);
5428 }
5429 \f
5430 /* Return the address of the trampoline for entering nested fn FUNCTION.
5431 If necessary, allocate a trampoline (in the stack frame)
5432 and emit rtl to initialize its contents (at entry to this function). */
5433
5434 rtx
5435 trampoline_address (function)
5436 tree function;
5437 {
5438 tree link;
5439 tree rtlexp;
5440 rtx tramp;
5441 struct function *fp;
5442 tree fn_context;
5443
5444 /* Find an existing trampoline and return it. */
5445 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5446 if (TREE_PURPOSE (link) == function)
5447 return
5448 round_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5449
5450 for (fp = outer_function_chain; fp; fp = fp->next)
5451 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5452 if (TREE_PURPOSE (link) == function)
5453 {
5454 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5455 function);
5456 return round_trampoline_addr (tramp);
5457 }
5458
5459 /* None exists; we must make one. */
5460
5461 /* Find the `struct function' for the function containing FUNCTION. */
5462 fp = 0;
5463 fn_context = decl_function_context (function);
5464 if (fn_context != current_function_decl
5465 && fn_context != inline_function_decl)
5466 for (fp = outer_function_chain; fp; fp = fp->next)
5467 if (fp->decl == fn_context)
5468 break;
5469
5470 /* Allocate run-time space for this trampoline
5471 (usually in the defining function's stack frame). */
5472 #ifdef ALLOCATE_TRAMPOLINE
5473 tramp = ALLOCATE_TRAMPOLINE (fp);
5474 #else
5475 /* If rounding needed, allocate extra space
5476 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5477 #ifdef TRAMPOLINE_ALIGNMENT
5478 #define TRAMPOLINE_REAL_SIZE \
5479 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5480 #else
5481 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5482 #endif
5483 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5484 fp ? fp : cfun);
5485 #endif
5486
5487 /* Record the trampoline for reuse and note it for later initialization
5488 by expand_function_end. */
5489 if (fp != 0)
5490 {
5491 push_obstacks (fp->function_maybepermanent_obstack,
5492 fp->function_maybepermanent_obstack);
5493 rtlexp = make_node (RTL_EXPR);
5494 RTL_EXPR_RTL (rtlexp) = tramp;
5495 fp->x_trampoline_list = tree_cons (function, rtlexp,
5496 fp->x_trampoline_list);
5497 pop_obstacks ();
5498 }
5499 else
5500 {
5501 /* Make the RTL_EXPR node temporary, not momentary, so that the
5502 trampoline_list doesn't become garbage. */
5503 int momentary = suspend_momentary ();
5504 rtlexp = make_node (RTL_EXPR);
5505 resume_momentary (momentary);
5506
5507 RTL_EXPR_RTL (rtlexp) = tramp;
5508 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5509 }
5510
5511 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5512 return round_trampoline_addr (tramp);
5513 }
5514
5515 /* Given a trampoline address,
5516 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5517
5518 static rtx
5519 round_trampoline_addr (tramp)
5520 rtx tramp;
5521 {
5522 #ifdef TRAMPOLINE_ALIGNMENT
5523 /* Round address up to desired boundary. */
5524 rtx temp = gen_reg_rtx (Pmode);
5525 temp = expand_binop (Pmode, add_optab, tramp,
5526 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
5527 temp, 0, OPTAB_LIB_WIDEN);
5528 tramp = expand_binop (Pmode, and_optab, temp,
5529 GEN_INT (- TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
5530 temp, 0, OPTAB_LIB_WIDEN);
5531 #endif
5532 return tramp;
5533 }
5534 \f
5535 /* Put all this function's BLOCK nodes including those that are chained
5536 onto the first block into a vector, and return it.
5537 Also store in each NOTE for the beginning or end of a block
5538 the index of that block in the vector.
5539 The arguments are BLOCK, the chain of top-level blocks of the function,
5540 and INSNS, the insn chain of the function. */
5541
5542 void
5543 identify_blocks ()
5544 {
5545 int n_blocks;
5546 tree *block_vector, *last_block_vector;
5547 tree *block_stack;
5548 tree block = DECL_INITIAL (current_function_decl);
5549
5550 if (block == 0)
5551 return;
5552
5553 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5554 depth-first order. */
5555 block_vector = get_block_vector (block, &n_blocks);
5556 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5557
5558 last_block_vector = identify_blocks_1 (get_insns (),
5559 block_vector + 1,
5560 block_vector + n_blocks,
5561 block_stack);
5562
5563 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5564 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5565 if (0 && last_block_vector != block_vector + n_blocks)
5566 abort ();
5567
5568 free (block_vector);
5569 free (block_stack);
5570 }
5571
5572 /* Subroutine of identify_blocks. Do the block substitution on the
5573 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5574
5575 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5576 BLOCK_VECTOR is incremented for each block seen. */
5577
5578 static tree *
5579 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5580 rtx insns;
5581 tree *block_vector;
5582 tree *end_block_vector;
5583 tree *orig_block_stack;
5584 {
5585 rtx insn;
5586 tree *block_stack = orig_block_stack;
5587
5588 for (insn = insns; insn; insn = NEXT_INSN (insn))
5589 {
5590 if (GET_CODE (insn) == NOTE)
5591 {
5592 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5593 {
5594 tree b;
5595
5596 /* If there are more block notes than BLOCKs, something
5597 is badly wrong. */
5598 if (block_vector == end_block_vector)
5599 abort ();
5600
5601 b = *block_vector++;
5602 NOTE_BLOCK (insn) = b;
5603 *block_stack++ = b;
5604 }
5605 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5606 {
5607 /* If there are more NOTE_INSN_BLOCK_ENDs than
5608 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5609 if (block_stack == orig_block_stack)
5610 abort ();
5611
5612 NOTE_BLOCK (insn) = *--block_stack;
5613 }
5614 }
5615 else if (GET_CODE (insn) == CALL_INSN
5616 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5617 {
5618 rtx cp = PATTERN (insn);
5619
5620 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5621 end_block_vector, block_stack);
5622 if (XEXP (cp, 1))
5623 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5624 end_block_vector, block_stack);
5625 if (XEXP (cp, 2))
5626 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5627 end_block_vector, block_stack);
5628 }
5629 }
5630
5631 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5632 something is badly wrong. */
5633 if (block_stack != orig_block_stack)
5634 abort ();
5635
5636 return block_vector;
5637 }
5638
5639 /* Identify BLOCKs referenced by more than one
5640 NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */
5641
5642 void
5643 reorder_blocks ()
5644 {
5645 tree block = DECL_INITIAL (current_function_decl);
5646 varray_type block_stack;
5647
5648 if (block == NULL_TREE)
5649 return;
5650
5651 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5652
5653 /* Prune the old trees away, so that they don't get in the way. */
5654 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5655 BLOCK_CHAIN (block) = NULL_TREE;
5656
5657 reorder_blocks_1 (get_insns (), block, &block_stack);
5658
5659 BLOCK_SUBBLOCKS (block)
5660 = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5661
5662 VARRAY_FREE (block_stack);
5663 }
5664
5665 /* Helper function for reorder_blocks. Process the insn chain beginning
5666 at INSNS. Recurse for CALL_PLACEHOLDER insns. */
5667
5668 static void
5669 reorder_blocks_1 (insns, current_block, p_block_stack)
5670 rtx insns;
5671 tree current_block;
5672 varray_type *p_block_stack;
5673 {
5674 rtx insn;
5675
5676 for (insn = insns; insn; insn = NEXT_INSN (insn))
5677 {
5678 if (GET_CODE (insn) == NOTE)
5679 {
5680 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5681 {
5682 tree block = NOTE_BLOCK (insn);
5683 /* If we have seen this block before, copy it. */
5684 if (TREE_ASM_WRITTEN (block))
5685 {
5686 block = copy_node (block);
5687 NOTE_BLOCK (insn) = block;
5688 }
5689 BLOCK_SUBBLOCKS (block) = 0;
5690 TREE_ASM_WRITTEN (block) = 1;
5691 BLOCK_SUPERCONTEXT (block) = current_block;
5692 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5693 BLOCK_SUBBLOCKS (current_block) = block;
5694 current_block = block;
5695 VARRAY_PUSH_TREE (*p_block_stack, block);
5696 }
5697 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5698 {
5699 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
5700 VARRAY_POP (*p_block_stack);
5701 BLOCK_SUBBLOCKS (current_block)
5702 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5703 current_block = BLOCK_SUPERCONTEXT (current_block);
5704 }
5705 }
5706 else if (GET_CODE (insn) == CALL_INSN
5707 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5708 {
5709 rtx cp = PATTERN (insn);
5710 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
5711 if (XEXP (cp, 1))
5712 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
5713 if (XEXP (cp, 2))
5714 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
5715 }
5716 }
5717 }
5718
5719 /* Reverse the order of elements in the chain T of blocks,
5720 and return the new head of the chain (old last element). */
5721
5722 static tree
5723 blocks_nreverse (t)
5724 tree t;
5725 {
5726 register tree prev = 0, decl, next;
5727 for (decl = t; decl; decl = next)
5728 {
5729 next = BLOCK_CHAIN (decl);
5730 BLOCK_CHAIN (decl) = prev;
5731 prev = decl;
5732 }
5733 return prev;
5734 }
5735
5736 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
5737 non-NULL, list them all into VECTOR, in a depth-first preorder
5738 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
5739 blocks. */
5740
5741 static int
5742 all_blocks (block, vector)
5743 tree block;
5744 tree *vector;
5745 {
5746 int n_blocks = 0;
5747
5748 while (block)
5749 {
5750 TREE_ASM_WRITTEN (block) = 0;
5751
5752 /* Record this block. */
5753 if (vector)
5754 vector[n_blocks] = block;
5755
5756 ++n_blocks;
5757
5758 /* Record the subblocks, and their subblocks... */
5759 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
5760 vector ? vector + n_blocks : 0);
5761 block = BLOCK_CHAIN (block);
5762 }
5763
5764 return n_blocks;
5765 }
5766
5767 /* Return a vector containing all the blocks rooted at BLOCK. The
5768 number of elements in the vector is stored in N_BLOCKS_P. The
5769 vector is dynamically allocated; it is the caller's responsibility
5770 to call `free' on the pointer returned. */
5771
5772 static tree *
5773 get_block_vector (block, n_blocks_p)
5774 tree block;
5775 int *n_blocks_p;
5776 {
5777 tree *block_vector;
5778
5779 *n_blocks_p = all_blocks (block, NULL);
5780 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
5781 all_blocks (block, block_vector);
5782
5783 return block_vector;
5784 }
5785
5786 static int next_block_index = 2;
5787
5788 /* Set BLOCK_NUMBER for all the blocks in FN. */
5789
5790 void
5791 number_blocks (fn)
5792 tree fn;
5793 {
5794 int i;
5795 int n_blocks;
5796 tree *block_vector;
5797
5798 /* For SDB and XCOFF debugging output, we start numbering the blocks
5799 from 1 within each function, rather than keeping a running
5800 count. */
5801 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
5802 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
5803 next_block_index = 1;
5804 #endif
5805
5806 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
5807
5808 /* The top-level BLOCK isn't numbered at all. */
5809 for (i = 1; i < n_blocks; ++i)
5810 /* We number the blocks from two. */
5811 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
5812
5813 free (block_vector);
5814
5815 return;
5816 }
5817
5818 \f
5819 /* Allocate a function structure and reset its contents to the defaults. */
5820 static void
5821 prepare_function_start ()
5822 {
5823 cfun = (struct function *) xcalloc (1, sizeof (struct function));
5824
5825 init_stmt_for_function ();
5826 init_eh_for_function ();
5827
5828 cse_not_expected = ! optimize;
5829
5830 /* Caller save not needed yet. */
5831 caller_save_needed = 0;
5832
5833 /* No stack slots have been made yet. */
5834 stack_slot_list = 0;
5835
5836 current_function_has_nonlocal_label = 0;
5837 current_function_has_nonlocal_goto = 0;
5838
5839 /* There is no stack slot for handling nonlocal gotos. */
5840 nonlocal_goto_handler_slots = 0;
5841 nonlocal_goto_stack_level = 0;
5842
5843 /* No labels have been declared for nonlocal use. */
5844 nonlocal_labels = 0;
5845 nonlocal_goto_handler_labels = 0;
5846
5847 /* No function calls so far in this function. */
5848 function_call_count = 0;
5849
5850 /* No parm regs have been allocated.
5851 (This is important for output_inline_function.) */
5852 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
5853
5854 /* Initialize the RTL mechanism. */
5855 init_emit ();
5856
5857 /* Initialize the queue of pending postincrement and postdecrements,
5858 and some other info in expr.c. */
5859 init_expr ();
5860
5861 /* We haven't done register allocation yet. */
5862 reg_renumber = 0;
5863
5864 init_varasm_status (cfun);
5865
5866 /* Clear out data used for inlining. */
5867 cfun->inlinable = 0;
5868 cfun->original_decl_initial = 0;
5869 cfun->original_arg_vector = 0;
5870
5871 #ifdef STACK_BOUNDARY
5872 cfun->stack_alignment_needed = STACK_BOUNDARY;
5873 cfun->preferred_stack_boundary = STACK_BOUNDARY;
5874 #else
5875 cfun->stack_alignment_needed = 0;
5876 cfun->preferred_stack_boundary = 0;
5877 #endif
5878
5879 /* Set if a call to setjmp is seen. */
5880 current_function_calls_setjmp = 0;
5881
5882 /* Set if a call to longjmp is seen. */
5883 current_function_calls_longjmp = 0;
5884
5885 current_function_calls_alloca = 0;
5886 current_function_contains_functions = 0;
5887 current_function_is_leaf = 0;
5888 current_function_nothrow = 0;
5889 current_function_sp_is_unchanging = 0;
5890 current_function_uses_only_leaf_regs = 0;
5891 current_function_has_computed_jump = 0;
5892 current_function_is_thunk = 0;
5893
5894 current_function_returns_pcc_struct = 0;
5895 current_function_returns_struct = 0;
5896 current_function_epilogue_delay_list = 0;
5897 current_function_uses_const_pool = 0;
5898 current_function_uses_pic_offset_table = 0;
5899 current_function_cannot_inline = 0;
5900
5901 /* We have not yet needed to make a label to jump to for tail-recursion. */
5902 tail_recursion_label = 0;
5903
5904 /* We haven't had a need to make a save area for ap yet. */
5905 arg_pointer_save_area = 0;
5906
5907 /* No stack slots allocated yet. */
5908 frame_offset = 0;
5909
5910 /* No SAVE_EXPRs in this function yet. */
5911 save_expr_regs = 0;
5912
5913 /* No RTL_EXPRs in this function yet. */
5914 rtl_expr_chain = 0;
5915
5916 /* Set up to allocate temporaries. */
5917 init_temp_slots ();
5918
5919 /* Indicate that we need to distinguish between the return value of the
5920 present function and the return value of a function being called. */
5921 rtx_equal_function_value_matters = 1;
5922
5923 /* Indicate that we have not instantiated virtual registers yet. */
5924 virtuals_instantiated = 0;
5925
5926 /* Indicate we have no need of a frame pointer yet. */
5927 frame_pointer_needed = 0;
5928
5929 /* By default assume not varargs or stdarg. */
5930 current_function_varargs = 0;
5931 current_function_stdarg = 0;
5932
5933 /* We haven't made any trampolines for this function yet. */
5934 trampoline_list = 0;
5935
5936 init_pending_stack_adjust ();
5937 inhibit_defer_pop = 0;
5938
5939 current_function_outgoing_args_size = 0;
5940
5941 if (init_lang_status)
5942 (*init_lang_status) (cfun);
5943 if (init_machine_status)
5944 (*init_machine_status) (cfun);
5945 }
5946
5947 /* Initialize the rtl expansion mechanism so that we can do simple things
5948 like generate sequences. This is used to provide a context during global
5949 initialization of some passes. */
5950 void
5951 init_dummy_function_start ()
5952 {
5953 prepare_function_start ();
5954 }
5955
5956 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5957 and initialize static variables for generating RTL for the statements
5958 of the function. */
5959
5960 void
5961 init_function_start (subr, filename, line)
5962 tree subr;
5963 const char *filename;
5964 int line;
5965 {
5966 prepare_function_start ();
5967
5968 /* Remember this function for later. */
5969 cfun->next_global = all_functions;
5970 all_functions = cfun;
5971
5972 current_function_name = (*decl_printable_name) (subr, 2);
5973 cfun->decl = subr;
5974
5975 /* Nonzero if this is a nested function that uses a static chain. */
5976
5977 current_function_needs_context
5978 = (decl_function_context (current_function_decl) != 0
5979 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
5980
5981 /* Within function body, compute a type's size as soon it is laid out. */
5982 immediate_size_expand++;
5983
5984 /* Prevent ever trying to delete the first instruction of a function.
5985 Also tell final how to output a linenum before the function prologue.
5986 Note linenums could be missing, e.g. when compiling a Java .class file. */
5987 if (line > 0)
5988 emit_line_note (filename, line);
5989
5990 /* Make sure first insn is a note even if we don't want linenums.
5991 This makes sure the first insn will never be deleted.
5992 Also, final expects a note to appear there. */
5993 emit_note (NULL_PTR, NOTE_INSN_DELETED);
5994
5995 /* Set flags used by final.c. */
5996 if (aggregate_value_p (DECL_RESULT (subr)))
5997 {
5998 #ifdef PCC_STATIC_STRUCT_RETURN
5999 current_function_returns_pcc_struct = 1;
6000 #endif
6001 current_function_returns_struct = 1;
6002 }
6003
6004 /* Warn if this value is an aggregate type,
6005 regardless of which calling convention we are using for it. */
6006 if (warn_aggregate_return
6007 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6008 warning ("function returns an aggregate");
6009
6010 current_function_returns_pointer
6011 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
6012 }
6013
6014 /* Make sure all values used by the optimization passes have sane
6015 defaults. */
6016 void
6017 init_function_for_compilation ()
6018 {
6019 reg_renumber = 0;
6020
6021 /* No prologue/epilogue insns yet. */
6022 VARRAY_GROW (prologue, 0);
6023 VARRAY_GROW (epilogue, 0);
6024 VARRAY_GROW (sibcall_epilogue, 0);
6025 }
6026
6027 /* Indicate that the current function uses extra args
6028 not explicitly mentioned in the argument list in any fashion. */
6029
6030 void
6031 mark_varargs ()
6032 {
6033 current_function_varargs = 1;
6034 }
6035
6036 /* Expand a call to __main at the beginning of a possible main function. */
6037
6038 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6039 #undef HAS_INIT_SECTION
6040 #define HAS_INIT_SECTION
6041 #endif
6042
6043 void
6044 expand_main_function ()
6045 {
6046 #if !defined (HAS_INIT_SECTION)
6047 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0,
6048 VOIDmode, 0);
6049 #endif /* not HAS_INIT_SECTION */
6050 }
6051 \f
6052 extern struct obstack permanent_obstack;
6053
6054 /* Start the RTL for a new function, and set variables used for
6055 emitting RTL.
6056 SUBR is the FUNCTION_DECL node.
6057 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6058 the function's parameters, which must be run at any return statement. */
6059
6060 void
6061 expand_function_start (subr, parms_have_cleanups)
6062 tree subr;
6063 int parms_have_cleanups;
6064 {
6065 tree tem;
6066 rtx last_ptr = NULL_RTX;
6067
6068 /* Make sure volatile mem refs aren't considered
6069 valid operands of arithmetic insns. */
6070 init_recog_no_volatile ();
6071
6072 /* Set this before generating any memory accesses. */
6073 current_function_check_memory_usage
6074 = (flag_check_memory_usage
6075 && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl));
6076
6077 current_function_instrument_entry_exit
6078 = (flag_instrument_function_entry_exit
6079 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6080
6081 current_function_limit_stack
6082 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6083
6084 /* If function gets a static chain arg, store it in the stack frame.
6085 Do this first, so it gets the first stack slot offset. */
6086 if (current_function_needs_context)
6087 {
6088 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6089
6090 /* Delay copying static chain if it is not a register to avoid
6091 conflicts with regs used for parameters. */
6092 if (! SMALL_REGISTER_CLASSES
6093 || GET_CODE (static_chain_incoming_rtx) == REG)
6094 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6095 }
6096
6097 /* If the parameters of this function need cleaning up, get a label
6098 for the beginning of the code which executes those cleanups. This must
6099 be done before doing anything with return_label. */
6100 if (parms_have_cleanups)
6101 cleanup_label = gen_label_rtx ();
6102 else
6103 cleanup_label = 0;
6104
6105 /* Make the label for return statements to jump to, if this machine
6106 does not have a one-instruction return and uses an epilogue,
6107 or if it returns a structure, or if it has parm cleanups. */
6108 #ifdef HAVE_return
6109 if (cleanup_label == 0 && HAVE_return
6110 && ! current_function_instrument_entry_exit
6111 && ! current_function_returns_pcc_struct
6112 && ! (current_function_returns_struct && ! optimize))
6113 return_label = 0;
6114 else
6115 return_label = gen_label_rtx ();
6116 #else
6117 return_label = gen_label_rtx ();
6118 #endif
6119
6120 /* Initialize rtx used to return the value. */
6121 /* Do this before assign_parms so that we copy the struct value address
6122 before any library calls that assign parms might generate. */
6123
6124 /* Decide whether to return the value in memory or in a register. */
6125 if (aggregate_value_p (DECL_RESULT (subr)))
6126 {
6127 /* Returning something that won't go in a register. */
6128 register rtx value_address = 0;
6129
6130 #ifdef PCC_STATIC_STRUCT_RETURN
6131 if (current_function_returns_pcc_struct)
6132 {
6133 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6134 value_address = assemble_static_space (size);
6135 }
6136 else
6137 #endif
6138 {
6139 /* Expect to be passed the address of a place to store the value.
6140 If it is passed as an argument, assign_parms will take care of
6141 it. */
6142 if (struct_value_incoming_rtx)
6143 {
6144 value_address = gen_reg_rtx (Pmode);
6145 emit_move_insn (value_address, struct_value_incoming_rtx);
6146 }
6147 }
6148 if (value_address)
6149 {
6150 DECL_RTL (DECL_RESULT (subr))
6151 = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6152 MEM_SET_IN_STRUCT_P (DECL_RTL (DECL_RESULT (subr)),
6153 AGGREGATE_TYPE_P (TREE_TYPE
6154 (DECL_RESULT
6155 (subr))));
6156 }
6157 }
6158 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6159 /* If return mode is void, this decl rtl should not be used. */
6160 DECL_RTL (DECL_RESULT (subr)) = 0;
6161 else if (parms_have_cleanups || current_function_instrument_entry_exit)
6162 {
6163 /* If function will end with cleanup code for parms,
6164 compute the return values into a pseudo reg,
6165 which we will copy into the true return register
6166 after the cleanups are done. */
6167
6168 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
6169
6170 #ifdef PROMOTE_FUNCTION_RETURN
6171 tree type = TREE_TYPE (DECL_RESULT (subr));
6172 int unsignedp = TREE_UNSIGNED (type);
6173
6174 mode = promote_mode (type, mode, &unsignedp, 1);
6175 #endif
6176
6177 DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode);
6178 }
6179 else
6180 /* Scalar, returned in a register. */
6181 {
6182 DECL_RTL (DECL_RESULT (subr))
6183 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)), subr, 1);
6184
6185 /* Mark this reg as the function's return value. */
6186 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
6187 {
6188 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
6189 /* Needed because we may need to move this to memory
6190 in case it's a named return value whose address is taken. */
6191 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6192 }
6193 }
6194
6195 /* Initialize rtx for parameters and local variables.
6196 In some cases this requires emitting insns. */
6197
6198 assign_parms (subr);
6199
6200 /* Copy the static chain now if it wasn't a register. The delay is to
6201 avoid conflicts with the parameter passing registers. */
6202
6203 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6204 if (GET_CODE (static_chain_incoming_rtx) != REG)
6205 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6206
6207 /* The following was moved from init_function_start.
6208 The move is supposed to make sdb output more accurate. */
6209 /* Indicate the beginning of the function body,
6210 as opposed to parm setup. */
6211 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
6212
6213 if (GET_CODE (get_last_insn ()) != NOTE)
6214 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6215 parm_birth_insn = get_last_insn ();
6216
6217 context_display = 0;
6218 if (current_function_needs_context)
6219 {
6220 /* Fetch static chain values for containing functions. */
6221 tem = decl_function_context (current_function_decl);
6222 /* Copy the static chain pointer into a pseudo. If we have
6223 small register classes, copy the value from memory if
6224 static_chain_incoming_rtx is a REG. */
6225 if (tem)
6226 {
6227 /* If the static chain originally came in a register, put it back
6228 there, then move it out in the next insn. The reason for
6229 this peculiar code is to satisfy function integration. */
6230 if (SMALL_REGISTER_CLASSES
6231 && GET_CODE (static_chain_incoming_rtx) == REG)
6232 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6233 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6234 }
6235
6236 while (tem)
6237 {
6238 tree rtlexp = make_node (RTL_EXPR);
6239
6240 RTL_EXPR_RTL (rtlexp) = last_ptr;
6241 context_display = tree_cons (tem, rtlexp, context_display);
6242 tem = decl_function_context (tem);
6243 if (tem == 0)
6244 break;
6245 /* Chain thru stack frames, assuming pointer to next lexical frame
6246 is found at the place we always store it. */
6247 #ifdef FRAME_GROWS_DOWNWARD
6248 last_ptr = plus_constant (last_ptr, - GET_MODE_SIZE (Pmode));
6249 #endif
6250 last_ptr = copy_to_reg (gen_rtx_MEM (Pmode,
6251 memory_address (Pmode,
6252 last_ptr)));
6253
6254 /* If we are not optimizing, ensure that we know that this
6255 piece of context is live over the entire function. */
6256 if (! optimize)
6257 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6258 save_expr_regs);
6259 }
6260 }
6261
6262 if (current_function_instrument_entry_exit)
6263 {
6264 rtx fun = DECL_RTL (current_function_decl);
6265 if (GET_CODE (fun) == MEM)
6266 fun = XEXP (fun, 0);
6267 else
6268 abort ();
6269 emit_library_call (profile_function_entry_libfunc, 0, VOIDmode, 2,
6270 fun, Pmode,
6271 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6272 0,
6273 hard_frame_pointer_rtx),
6274 Pmode);
6275 }
6276
6277 /* After the display initializations is where the tail-recursion label
6278 should go, if we end up needing one. Ensure we have a NOTE here
6279 since some things (like trampolines) get placed before this. */
6280 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
6281
6282 /* Evaluate now the sizes of any types declared among the arguments. */
6283 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
6284 {
6285 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode,
6286 EXPAND_MEMORY_USE_BAD);
6287 /* Flush the queue in case this parameter declaration has
6288 side-effects. */
6289 emit_queue ();
6290 }
6291
6292 /* Make sure there is a line number after the function entry setup code. */
6293 force_next_line_note ();
6294 }
6295 \f
6296 /* Undo the effects of init_dummy_function_start. */
6297 void
6298 expand_dummy_function_end ()
6299 {
6300 /* End any sequences that failed to be closed due to syntax errors. */
6301 while (in_sequence_p ())
6302 end_sequence ();
6303
6304 /* Outside function body, can't compute type's actual size
6305 until next function's body starts. */
6306
6307 free_after_parsing (cfun);
6308 free_after_compilation (cfun);
6309 free (cfun);
6310 cfun = 0;
6311 }
6312
6313 /* Call DOIT for each hard register used as a return value from
6314 the current function. */
6315
6316 void
6317 diddle_return_value (doit, arg)
6318 void (*doit) PARAMS ((rtx, void *));
6319 void *arg;
6320 {
6321 rtx outgoing = current_function_return_rtx;
6322
6323 if (! outgoing)
6324 return;
6325
6326 if (GET_CODE (outgoing) == REG
6327 && REGNO (outgoing) >= FIRST_PSEUDO_REGISTER)
6328 {
6329 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6330 #ifdef FUNCTION_OUTGOING_VALUE
6331 outgoing = FUNCTION_OUTGOING_VALUE (type, current_function_decl);
6332 #else
6333 outgoing = FUNCTION_VALUE (type, current_function_decl);
6334 #endif
6335 /* If this is a BLKmode structure being returned in registers, then use
6336 the mode computed in expand_return. */
6337 if (GET_MODE (outgoing) == BLKmode)
6338 PUT_MODE (outgoing,
6339 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6340 }
6341
6342 if (GET_CODE (outgoing) == REG)
6343 (*doit) (outgoing, arg);
6344 else if (GET_CODE (outgoing) == PARALLEL)
6345 {
6346 int i;
6347
6348 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6349 {
6350 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6351
6352 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6353 (*doit) (x, arg);
6354 }
6355 }
6356 }
6357
6358 static void
6359 do_clobber_return_reg (reg, arg)
6360 rtx reg;
6361 void *arg ATTRIBUTE_UNUSED;
6362 {
6363 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6364 }
6365
6366 void
6367 clobber_return_register ()
6368 {
6369 diddle_return_value (do_clobber_return_reg, NULL);
6370 }
6371
6372 static void
6373 do_use_return_reg (reg, arg)
6374 rtx reg;
6375 void *arg ATTRIBUTE_UNUSED;
6376 {
6377 emit_insn (gen_rtx_USE (VOIDmode, reg));
6378 }
6379
6380 void
6381 use_return_register ()
6382 {
6383 diddle_return_value (do_use_return_reg, NULL);
6384 }
6385
6386 /* Generate RTL for the end of the current function.
6387 FILENAME and LINE are the current position in the source file.
6388
6389 It is up to language-specific callers to do cleanups for parameters--
6390 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6391
6392 void
6393 expand_function_end (filename, line, end_bindings)
6394 const char *filename;
6395 int line;
6396 int end_bindings;
6397 {
6398 tree link;
6399
6400 #ifdef TRAMPOLINE_TEMPLATE
6401 static rtx initial_trampoline;
6402 #endif
6403
6404 finish_expr_for_function ();
6405
6406 #ifdef NON_SAVING_SETJMP
6407 /* Don't put any variables in registers if we call setjmp
6408 on a machine that fails to restore the registers. */
6409 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6410 {
6411 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6412 setjmp_protect (DECL_INITIAL (current_function_decl));
6413
6414 setjmp_protect_args ();
6415 }
6416 #endif
6417
6418 /* Save the argument pointer if a save area was made for it. */
6419 if (arg_pointer_save_area)
6420 {
6421 /* arg_pointer_save_area may not be a valid memory address, so we
6422 have to check it and fix it if necessary. */
6423 rtx seq;
6424 start_sequence ();
6425 emit_move_insn (validize_mem (arg_pointer_save_area),
6426 virtual_incoming_args_rtx);
6427 seq = gen_sequence ();
6428 end_sequence ();
6429 emit_insn_before (seq, tail_recursion_reentry);
6430 }
6431
6432 /* Initialize any trampolines required by this function. */
6433 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6434 {
6435 tree function = TREE_PURPOSE (link);
6436 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6437 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6438 #ifdef TRAMPOLINE_TEMPLATE
6439 rtx blktramp;
6440 #endif
6441 rtx seq;
6442
6443 #ifdef TRAMPOLINE_TEMPLATE
6444 /* First make sure this compilation has a template for
6445 initializing trampolines. */
6446 if (initial_trampoline == 0)
6447 {
6448 end_temporary_allocation ();
6449 initial_trampoline
6450 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6451 resume_temporary_allocation ();
6452
6453 ggc_add_rtx_root (&initial_trampoline, 1);
6454 }
6455 #endif
6456
6457 /* Generate insns to initialize the trampoline. */
6458 start_sequence ();
6459 tramp = round_trampoline_addr (XEXP (tramp, 0));
6460 #ifdef TRAMPOLINE_TEMPLATE
6461 blktramp = change_address (initial_trampoline, BLKmode, tramp);
6462 emit_block_move (blktramp, initial_trampoline,
6463 GEN_INT (TRAMPOLINE_SIZE),
6464 TRAMPOLINE_ALIGNMENT);
6465 #endif
6466 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6467 seq = get_insns ();
6468 end_sequence ();
6469
6470 /* Put those insns at entry to the containing function (this one). */
6471 emit_insns_before (seq, tail_recursion_reentry);
6472 }
6473
6474 /* If we are doing stack checking and this function makes calls,
6475 do a stack probe at the start of the function to ensure we have enough
6476 space for another stack frame. */
6477 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6478 {
6479 rtx insn, seq;
6480
6481 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6482 if (GET_CODE (insn) == CALL_INSN)
6483 {
6484 start_sequence ();
6485 probe_stack_range (STACK_CHECK_PROTECT,
6486 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6487 seq = get_insns ();
6488 end_sequence ();
6489 emit_insns_before (seq, tail_recursion_reentry);
6490 break;
6491 }
6492 }
6493
6494 /* Warn about unused parms if extra warnings were specified. */
6495 if (warn_unused && extra_warnings)
6496 {
6497 tree decl;
6498
6499 for (decl = DECL_ARGUMENTS (current_function_decl);
6500 decl; decl = TREE_CHAIN (decl))
6501 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6502 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6503 warning_with_decl (decl, "unused parameter `%s'");
6504 }
6505
6506 /* Delete handlers for nonlocal gotos if nothing uses them. */
6507 if (nonlocal_goto_handler_slots != 0
6508 && ! current_function_has_nonlocal_label)
6509 delete_handlers ();
6510
6511 /* End any sequences that failed to be closed due to syntax errors. */
6512 while (in_sequence_p ())
6513 end_sequence ();
6514
6515 /* Outside function body, can't compute type's actual size
6516 until next function's body starts. */
6517 immediate_size_expand--;
6518
6519 clear_pending_stack_adjust ();
6520 do_pending_stack_adjust ();
6521
6522 /* Mark the end of the function body.
6523 If control reaches this insn, the function can drop through
6524 without returning a value. */
6525 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
6526
6527 /* Must mark the last line number note in the function, so that the test
6528 coverage code can avoid counting the last line twice. This just tells
6529 the code to ignore the immediately following line note, since there
6530 already exists a copy of this note somewhere above. This line number
6531 note is still needed for debugging though, so we can't delete it. */
6532 if (flag_test_coverage)
6533 emit_note (NULL_PTR, NOTE_INSN_REPEATED_LINE_NUMBER);
6534
6535 /* Output a linenumber for the end of the function.
6536 SDB depends on this. */
6537 emit_line_note_force (filename, line);
6538
6539 /* Output the label for the actual return from the function,
6540 if one is expected. This happens either because a function epilogue
6541 is used instead of a return instruction, or because a return was done
6542 with a goto in order to run local cleanups, or because of pcc-style
6543 structure returning. */
6544
6545 if (return_label)
6546 {
6547 /* Before the return label, clobber the return registers so that
6548 they are not propogated live to the rest of the function. This
6549 can only happen with functions that drop through; if there had
6550 been a return statement, there would have either been a return
6551 rtx, or a jump to the return label. */
6552 clobber_return_register ();
6553
6554 emit_label (return_label);
6555 }
6556
6557 /* C++ uses this. */
6558 if (end_bindings)
6559 expand_end_bindings (0, 0, 0);
6560
6561 /* Now handle any leftover exception regions that may have been
6562 created for the parameters. */
6563 {
6564 rtx last = get_last_insn ();
6565 rtx label;
6566
6567 expand_leftover_cleanups ();
6568
6569 /* If there are any catch_clauses remaining, output them now. */
6570 emit_insns (catch_clauses);
6571 catch_clauses = catch_clauses_last = NULL_RTX;
6572 /* If the above emitted any code, may sure we jump around it. */
6573 if (last != get_last_insn ())
6574 {
6575 label = gen_label_rtx ();
6576 last = emit_jump_insn_after (gen_jump (label), last);
6577 last = emit_barrier_after (last);
6578 emit_label (label);
6579 }
6580 }
6581
6582 if (current_function_instrument_entry_exit)
6583 {
6584 rtx fun = DECL_RTL (current_function_decl);
6585 if (GET_CODE (fun) == MEM)
6586 fun = XEXP (fun, 0);
6587 else
6588 abort ();
6589 emit_library_call (profile_function_exit_libfunc, 0, VOIDmode, 2,
6590 fun, Pmode,
6591 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6592 0,
6593 hard_frame_pointer_rtx),
6594 Pmode);
6595 }
6596
6597 /* If we had calls to alloca, and this machine needs
6598 an accurate stack pointer to exit the function,
6599 insert some code to save and restore the stack pointer. */
6600 #ifdef EXIT_IGNORE_STACK
6601 if (! EXIT_IGNORE_STACK)
6602 #endif
6603 if (current_function_calls_alloca)
6604 {
6605 rtx tem = 0;
6606
6607 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6608 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6609 }
6610
6611 /* If scalar return value was computed in a pseudo-reg,
6612 copy that to the hard return register. */
6613 if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0
6614 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG
6615 && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl)))
6616 >= FIRST_PSEUDO_REGISTER))
6617 {
6618 rtx real_decl_result;
6619
6620 #ifdef FUNCTION_OUTGOING_VALUE
6621 real_decl_result
6622 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6623 current_function_decl);
6624 #else
6625 real_decl_result
6626 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6627 current_function_decl);
6628 #endif
6629 REG_FUNCTION_VALUE_P (real_decl_result) = 1;
6630 /* If this is a BLKmode structure being returned in registers, then use
6631 the mode computed in expand_return. */
6632 if (GET_MODE (real_decl_result) == BLKmode)
6633 PUT_MODE (real_decl_result,
6634 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6635 emit_move_insn (real_decl_result,
6636 DECL_RTL (DECL_RESULT (current_function_decl)));
6637
6638 /* The delay slot scheduler assumes that current_function_return_rtx
6639 holds the hard register containing the return value, not a temporary
6640 pseudo. */
6641 current_function_return_rtx = real_decl_result;
6642 }
6643
6644 /* If returning a structure, arrange to return the address of the value
6645 in a place where debuggers expect to find it.
6646
6647 If returning a structure PCC style,
6648 the caller also depends on this value.
6649 And current_function_returns_pcc_struct is not necessarily set. */
6650 if (current_function_returns_struct
6651 || current_function_returns_pcc_struct)
6652 {
6653 rtx value_address = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
6654 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6655 #ifdef FUNCTION_OUTGOING_VALUE
6656 rtx outgoing
6657 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
6658 current_function_decl);
6659 #else
6660 rtx outgoing
6661 = FUNCTION_VALUE (build_pointer_type (type),
6662 current_function_decl);
6663 #endif
6664
6665 /* Mark this as a function return value so integrate will delete the
6666 assignment and USE below when inlining this function. */
6667 REG_FUNCTION_VALUE_P (outgoing) = 1;
6668
6669 emit_move_insn (outgoing, value_address);
6670 }
6671
6672 /* ??? This should no longer be necessary since stupid is no longer with
6673 us, but there are some parts of the compiler (eg reload_combine, and
6674 sh mach_dep_reorg) that still try and compute their own lifetime info
6675 instead of using the general framework. */
6676 use_return_register ();
6677
6678 /* If this is an implementation of __throw, do what's necessary to
6679 communicate between __builtin_eh_return and the epilogue. */
6680 expand_eh_return ();
6681
6682 /* Output a return insn if we are using one.
6683 Otherwise, let the rtl chain end here, to drop through
6684 into the epilogue. */
6685
6686 #ifdef HAVE_return
6687 if (HAVE_return)
6688 {
6689 emit_jump_insn (gen_return ());
6690 emit_barrier ();
6691 }
6692 #endif
6693
6694 /* Fix up any gotos that jumped out to the outermost
6695 binding level of the function.
6696 Must follow emitting RETURN_LABEL. */
6697
6698 /* If you have any cleanups to do at this point,
6699 and they need to create temporary variables,
6700 then you will lose. */
6701 expand_fixups (get_insns ());
6702 }
6703 \f
6704 /* Extend a vector that records the INSN_UIDs of INSNS (either a
6705 sequence or a single insn). */
6706
6707 static void
6708 record_insns (insns, vecp)
6709 rtx insns;
6710 varray_type *vecp;
6711 {
6712 if (GET_CODE (insns) == SEQUENCE)
6713 {
6714 int len = XVECLEN (insns, 0);
6715 int i = VARRAY_SIZE (*vecp);
6716
6717 VARRAY_GROW (*vecp, i + len);
6718 while (--len >= 0)
6719 {
6720 VARRAY_INT (*vecp, i) = INSN_UID (XVECEXP (insns, 0, len));
6721 ++i;
6722 }
6723 }
6724 else
6725 {
6726 int i = VARRAY_SIZE (*vecp);
6727 VARRAY_GROW (*vecp, i + 1);
6728 VARRAY_INT (*vecp, i) = INSN_UID (insns);
6729 }
6730 }
6731
6732 /* Determine how many INSN_UIDs in VEC are part of INSN. */
6733
6734 static int
6735 contains (insn, vec)
6736 rtx insn;
6737 varray_type vec;
6738 {
6739 register int i, j;
6740
6741 if (GET_CODE (insn) == INSN
6742 && GET_CODE (PATTERN (insn)) == SEQUENCE)
6743 {
6744 int count = 0;
6745 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6746 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6747 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
6748 count++;
6749 return count;
6750 }
6751 else
6752 {
6753 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6754 if (INSN_UID (insn) == VARRAY_INT (vec, j))
6755 return 1;
6756 }
6757 return 0;
6758 }
6759
6760 int
6761 prologue_epilogue_contains (insn)
6762 rtx insn;
6763 {
6764 if (contains (insn, prologue))
6765 return 1;
6766 if (contains (insn, epilogue))
6767 return 1;
6768 return 0;
6769 }
6770
6771 int
6772 sibcall_epilogue_contains (insn)
6773 rtx insn;
6774 {
6775 if (sibcall_epilogue)
6776 return contains (insn, sibcall_epilogue);
6777 return 0;
6778 }
6779
6780 #ifdef HAVE_return
6781 /* Insert gen_return at the end of block BB. This also means updating
6782 block_for_insn appropriately. */
6783
6784 static void
6785 emit_return_into_block (bb)
6786 basic_block bb;
6787 {
6788 rtx p, end;
6789
6790 end = emit_jump_insn_after (gen_return (), bb->end);
6791 p = NEXT_INSN (bb->end);
6792 while (1)
6793 {
6794 set_block_for_insn (p, bb);
6795 if (p == end)
6796 break;
6797 p = NEXT_INSN (p);
6798 }
6799 bb->end = end;
6800 }
6801 #endif /* HAVE_return */
6802
6803 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
6804 this into place with notes indicating where the prologue ends and where
6805 the epilogue begins. Update the basic block information when possible. */
6806
6807 void
6808 thread_prologue_and_epilogue_insns (f)
6809 rtx f ATTRIBUTE_UNUSED;
6810 {
6811 int insertted = 0;
6812 edge e;
6813 rtx seq;
6814
6815 #ifdef HAVE_prologue
6816 if (HAVE_prologue)
6817 {
6818 rtx insn;
6819
6820 start_sequence ();
6821 seq = gen_prologue();
6822 emit_insn (seq);
6823
6824 /* Retain a map of the prologue insns. */
6825 if (GET_CODE (seq) != SEQUENCE)
6826 seq = get_insns ();
6827 record_insns (seq, &prologue);
6828 emit_note (NULL, NOTE_INSN_PROLOGUE_END);
6829
6830 /* GDB handles `break f' by setting a breakpoint on the first
6831 line note *after* the prologue. That means that we should
6832 insert a line note here; otherwise, if the next line note
6833 comes part way into the next block, GDB will skip all the way
6834 to that point. */
6835 insn = next_nonnote_insn (f);
6836 while (insn)
6837 {
6838 if (GET_CODE (insn) == NOTE
6839 && NOTE_LINE_NUMBER (insn) >= 0)
6840 {
6841 emit_line_note_force (NOTE_SOURCE_FILE (insn),
6842 NOTE_LINE_NUMBER (insn));
6843 break;
6844 }
6845
6846 insn = PREV_INSN (insn);
6847 }
6848
6849 seq = gen_sequence ();
6850 end_sequence ();
6851
6852 /* If optimization is off, and perhaps in an empty function,
6853 the entry block will have no successors. */
6854 if (ENTRY_BLOCK_PTR->succ)
6855 {
6856 /* Can't deal with multiple successsors of the entry block. */
6857 if (ENTRY_BLOCK_PTR->succ->succ_next)
6858 abort ();
6859
6860 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
6861 insertted = 1;
6862 }
6863 else
6864 emit_insn_after (seq, f);
6865 }
6866 #endif
6867
6868 /* If the exit block has no non-fake predecessors, we don't need
6869 an epilogue. */
6870 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6871 if ((e->flags & EDGE_FAKE) == 0)
6872 break;
6873 if (e == NULL)
6874 goto epilogue_done;
6875
6876 #ifdef HAVE_return
6877 if (optimize && HAVE_return)
6878 {
6879 /* If we're allowed to generate a simple return instruction,
6880 then by definition we don't need a full epilogue. Examine
6881 the block that falls through to EXIT. If it does not
6882 contain any code, examine its predecessors and try to
6883 emit (conditional) return instructions. */
6884
6885 basic_block last;
6886 edge e_next;
6887 rtx label;
6888
6889 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6890 if (e->flags & EDGE_FALLTHRU)
6891 break;
6892 if (e == NULL)
6893 goto epilogue_done;
6894 last = e->src;
6895
6896 /* Verify that there are no active instructions in the last block. */
6897 label = last->end;
6898 while (label && GET_CODE (label) != CODE_LABEL)
6899 {
6900 if (active_insn_p (label))
6901 break;
6902 label = PREV_INSN (label);
6903 }
6904
6905 if (last->head == label && GET_CODE (label) == CODE_LABEL)
6906 {
6907 for (e = last->pred; e ; e = e_next)
6908 {
6909 basic_block bb = e->src;
6910 rtx jump;
6911
6912 e_next = e->pred_next;
6913 if (bb == ENTRY_BLOCK_PTR)
6914 continue;
6915
6916 jump = bb->end;
6917 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
6918 continue;
6919
6920 /* If we have an unconditional jump, we can replace that
6921 with a simple return instruction. */
6922 if (simplejump_p (jump))
6923 {
6924 emit_return_into_block (bb);
6925 flow_delete_insn (jump);
6926 }
6927
6928 /* If we have a conditional jump, we can try to replace
6929 that with a conditional return instruction. */
6930 else if (condjump_p (jump))
6931 {
6932 rtx ret, *loc;
6933
6934 ret = SET_SRC (PATTERN (jump));
6935 if (GET_CODE (XEXP (ret, 1)) == LABEL_REF)
6936 loc = &XEXP (ret, 1);
6937 else
6938 loc = &XEXP (ret, 2);
6939 ret = gen_rtx_RETURN (VOIDmode);
6940
6941 if (! validate_change (jump, loc, ret, 0))
6942 continue;
6943 if (JUMP_LABEL (jump))
6944 LABEL_NUSES (JUMP_LABEL (jump))--;
6945
6946 /* If this block has only one successor, it both jumps
6947 and falls through to the fallthru block, so we can't
6948 delete the edge. */
6949 if (bb->succ->succ_next == NULL)
6950 continue;
6951 }
6952 else
6953 continue;
6954
6955 /* Fix up the CFG for the successful change we just made. */
6956 remove_edge (e);
6957 make_edge (NULL, bb, EXIT_BLOCK_PTR, 0);
6958 }
6959
6960 /* Emit a return insn for the exit fallthru block. Whether
6961 this is still reachable will be determined later. */
6962
6963 emit_barrier_after (last->end);
6964 emit_return_into_block (last);
6965 }
6966 else
6967 {
6968 /* The exit block wasn't empty. We have to use insert_insn_on_edge,
6969 as it may be the exit block can go elsewhere as well
6970 as exiting. */
6971 start_sequence ();
6972 emit_jump_insn (gen_return ());
6973 seq = gen_sequence ();
6974 end_sequence ();
6975 insert_insn_on_edge (seq, e);
6976 insertted = 1;
6977 }
6978 goto epilogue_done;
6979 }
6980 #endif
6981 #ifdef HAVE_epilogue
6982 if (HAVE_epilogue)
6983 {
6984 /* Find the edge that falls through to EXIT. Other edges may exist
6985 due to RETURN instructions, but those don't need epilogues.
6986 There really shouldn't be a mixture -- either all should have
6987 been converted or none, however... */
6988
6989 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6990 if (e->flags & EDGE_FALLTHRU)
6991 break;
6992 if (e == NULL)
6993 goto epilogue_done;
6994
6995 start_sequence ();
6996 emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
6997
6998 seq = gen_epilogue ();
6999 emit_jump_insn (seq);
7000
7001 /* Retain a map of the epilogue insns. */
7002 if (GET_CODE (seq) != SEQUENCE)
7003 seq = get_insns ();
7004 record_insns (seq, &epilogue);
7005
7006 seq = gen_sequence ();
7007 end_sequence();
7008
7009 insert_insn_on_edge (seq, e);
7010 insertted = 1;
7011 }
7012 #endif
7013 epilogue_done:
7014
7015 if (insertted)
7016 commit_edge_insertions ();
7017
7018 #ifdef HAVE_sibcall_epilogue
7019 /* Emit sibling epilogues before any sibling call sites. */
7020 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
7021 {
7022 basic_block bb = e->src;
7023 rtx insn = bb->end;
7024 rtx i;
7025 rtx newinsn;
7026
7027 if (GET_CODE (insn) != CALL_INSN
7028 || ! SIBLING_CALL_P (insn))
7029 continue;
7030
7031 start_sequence ();
7032 seq = gen_sibcall_epilogue ();
7033 end_sequence ();
7034
7035 i = PREV_INSN (insn);
7036 newinsn = emit_insn_before (seq, insn);
7037
7038 /* Update the UID to basic block map. */
7039 for (i = NEXT_INSN (i); i != insn; i = NEXT_INSN (i))
7040 set_block_for_insn (i, bb);
7041
7042 /* Retain a map of the epilogue insns. Used in life analysis to
7043 avoid getting rid of sibcall epilogue insns. */
7044 record_insns (GET_CODE (seq) == SEQUENCE
7045 ? seq : newinsn, &sibcall_epilogue);
7046 }
7047 #endif
7048 }
7049
7050 /* Reposition the prologue-end and epilogue-begin notes after instruction
7051 scheduling and delayed branch scheduling. */
7052
7053 void
7054 reposition_prologue_and_epilogue_notes (f)
7055 rtx f ATTRIBUTE_UNUSED;
7056 {
7057 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7058 int len;
7059
7060 if ((len = VARRAY_SIZE (prologue)) > 0)
7061 {
7062 register rtx insn, note = 0;
7063
7064 /* Scan from the beginning until we reach the last prologue insn.
7065 We apparently can't depend on basic_block_{head,end} after
7066 reorg has run. */
7067 for (insn = f; len && insn; insn = NEXT_INSN (insn))
7068 {
7069 if (GET_CODE (insn) == NOTE)
7070 {
7071 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7072 note = insn;
7073 }
7074 else if ((len -= contains (insn, prologue)) == 0)
7075 {
7076 rtx next;
7077 /* Find the prologue-end note if we haven't already, and
7078 move it to just after the last prologue insn. */
7079 if (note == 0)
7080 {
7081 for (note = insn; (note = NEXT_INSN (note));)
7082 if (GET_CODE (note) == NOTE
7083 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7084 break;
7085 }
7086
7087 next = NEXT_INSN (note);
7088
7089 /* Whether or not we can depend on BLOCK_HEAD,
7090 attempt to keep it up-to-date. */
7091 if (BLOCK_HEAD (0) == note)
7092 BLOCK_HEAD (0) = next;
7093
7094 remove_insn (note);
7095 add_insn_after (note, insn);
7096 }
7097 }
7098 }
7099
7100 if ((len = VARRAY_SIZE (epilogue)) > 0)
7101 {
7102 register rtx insn, note = 0;
7103
7104 /* Scan from the end until we reach the first epilogue insn.
7105 We apparently can't depend on basic_block_{head,end} after
7106 reorg has run. */
7107 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
7108 {
7109 if (GET_CODE (insn) == NOTE)
7110 {
7111 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7112 note = insn;
7113 }
7114 else if ((len -= contains (insn, epilogue)) == 0)
7115 {
7116 /* Find the epilogue-begin note if we haven't already, and
7117 move it to just before the first epilogue insn. */
7118 if (note == 0)
7119 {
7120 for (note = insn; (note = PREV_INSN (note));)
7121 if (GET_CODE (note) == NOTE
7122 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7123 break;
7124 }
7125
7126 /* Whether or not we can depend on BLOCK_HEAD,
7127 attempt to keep it up-to-date. */
7128 if (n_basic_blocks
7129 && BLOCK_HEAD (n_basic_blocks-1) == insn)
7130 BLOCK_HEAD (n_basic_blocks-1) = note;
7131
7132 remove_insn (note);
7133 add_insn_before (note, insn);
7134 }
7135 }
7136 }
7137 #endif /* HAVE_prologue or HAVE_epilogue */
7138 }
7139
7140 /* Mark T for GC. */
7141
7142 static void
7143 mark_temp_slot (t)
7144 struct temp_slot *t;
7145 {
7146 while (t)
7147 {
7148 ggc_mark_rtx (t->slot);
7149 ggc_mark_rtx (t->address);
7150 ggc_mark_tree (t->rtl_expr);
7151
7152 t = t->next;
7153 }
7154 }
7155
7156 /* Mark P for GC. */
7157
7158 static void
7159 mark_function_status (p)
7160 struct function *p;
7161 {
7162 int i;
7163 rtx *r;
7164
7165 if (p == 0)
7166 return;
7167
7168 ggc_mark_rtx (p->arg_offset_rtx);
7169
7170 if (p->x_parm_reg_stack_loc)
7171 for (i = p->x_max_parm_reg, r = p->x_parm_reg_stack_loc;
7172 i > 0; --i, ++r)
7173 ggc_mark_rtx (*r);
7174
7175 ggc_mark_rtx (p->return_rtx);
7176 ggc_mark_rtx (p->x_cleanup_label);
7177 ggc_mark_rtx (p->x_return_label);
7178 ggc_mark_rtx (p->x_save_expr_regs);
7179 ggc_mark_rtx (p->x_stack_slot_list);
7180 ggc_mark_rtx (p->x_parm_birth_insn);
7181 ggc_mark_rtx (p->x_tail_recursion_label);
7182 ggc_mark_rtx (p->x_tail_recursion_reentry);
7183 ggc_mark_rtx (p->internal_arg_pointer);
7184 ggc_mark_rtx (p->x_arg_pointer_save_area);
7185 ggc_mark_tree (p->x_rtl_expr_chain);
7186 ggc_mark_rtx (p->x_last_parm_insn);
7187 ggc_mark_tree (p->x_context_display);
7188 ggc_mark_tree (p->x_trampoline_list);
7189 ggc_mark_rtx (p->epilogue_delay_list);
7190
7191 mark_temp_slot (p->x_temp_slots);
7192
7193 {
7194 struct var_refs_queue *q = p->fixup_var_refs_queue;
7195 while (q)
7196 {
7197 ggc_mark_rtx (q->modified);
7198 q = q->next;
7199 }
7200 }
7201
7202 ggc_mark_rtx (p->x_nonlocal_goto_handler_slots);
7203 ggc_mark_rtx (p->x_nonlocal_goto_handler_labels);
7204 ggc_mark_rtx (p->x_nonlocal_goto_stack_level);
7205 ggc_mark_tree (p->x_nonlocal_labels);
7206 }
7207
7208 /* Mark the function chain ARG (which is really a struct function **)
7209 for GC. */
7210
7211 static void
7212 mark_function_chain (arg)
7213 void *arg;
7214 {
7215 struct function *f = *(struct function **) arg;
7216
7217 for (; f; f = f->next_global)
7218 {
7219 ggc_mark_tree (f->decl);
7220
7221 mark_function_status (f);
7222 mark_eh_status (f->eh);
7223 mark_stmt_status (f->stmt);
7224 mark_expr_status (f->expr);
7225 mark_emit_status (f->emit);
7226 mark_varasm_status (f->varasm);
7227
7228 if (mark_machine_status)
7229 (*mark_machine_status) (f);
7230 if (mark_lang_status)
7231 (*mark_lang_status) (f);
7232
7233 if (f->original_arg_vector)
7234 ggc_mark_rtvec ((rtvec) f->original_arg_vector);
7235 if (f->original_decl_initial)
7236 ggc_mark_tree (f->original_decl_initial);
7237 }
7238 }
7239
7240 /* Called once, at initialization, to initialize function.c. */
7241
7242 void
7243 init_function_once ()
7244 {
7245 ggc_add_root (&all_functions, 1, sizeof all_functions,
7246 mark_function_chain);
7247
7248 VARRAY_INT_INIT (prologue, 0, "prologue");
7249 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7250 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
7251 }
This page took 0.387851 seconds and 6 git commands to generate.