]> gcc.gnu.org Git - gcc.git/blob - gcc/function.c
stmt.c (expand_asm_operands): Twiddle generating_concat_p so that CONCATs are not...
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
35
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
40
41 #include "config.h"
42 #include "system.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "flags.h"
46 #include "except.h"
47 #include "function.h"
48 #include "insn-flags.h"
49 #include "expr.h"
50 #include "insn-codes.h"
51 #include "regs.h"
52 #include "hard-reg-set.h"
53 #include "insn-config.h"
54 #include "recog.h"
55 #include "output.h"
56 #include "basic-block.h"
57 #include "obstack.h"
58 #include "toplev.h"
59 #include "hash.h"
60 #include "ggc.h"
61 #include "tm_p.h"
62
63 #ifndef ACCUMULATE_OUTGOING_ARGS
64 #define ACCUMULATE_OUTGOING_ARGS 0
65 #endif
66
67 #ifndef TRAMPOLINE_ALIGNMENT
68 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
69 #endif
70
71 #ifndef LOCAL_ALIGNMENT
72 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
73 #endif
74
75 #if !defined (PREFERRED_STACK_BOUNDARY) && defined (STACK_BOUNDARY)
76 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
77 #endif
78
79 /* Some systems use __main in a way incompatible with its use in gcc, in these
80 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
81 give the same symbol without quotes for an alternative entry point. You
82 must define both, or neither. */
83 #ifndef NAME__MAIN
84 #define NAME__MAIN "__main"
85 #define SYMBOL__MAIN __main
86 #endif
87
88 /* Round a value to the lowest integer less than it that is a multiple of
89 the required alignment. Avoid using division in case the value is
90 negative. Assume the alignment is a power of two. */
91 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
92
93 /* Similar, but round to the next highest integer that meets the
94 alignment. */
95 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
96
97 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
98 during rtl generation. If they are different register numbers, this is
99 always true. It may also be true if
100 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
101 generation. See fix_lexical_addr for details. */
102
103 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
104 #define NEED_SEPARATE_AP
105 #endif
106
107 /* Nonzero if function being compiled doesn't contain any calls
108 (ignoring the prologue and epilogue). This is set prior to
109 local register allocation and is valid for the remaining
110 compiler passes. */
111 int current_function_is_leaf;
112
113 /* Nonzero if function being compiled doesn't contain any instructions
114 that can throw an exception. This is set prior to final. */
115
116 int current_function_nothrow;
117
118 /* Nonzero if function being compiled doesn't modify the stack pointer
119 (ignoring the prologue and epilogue). This is only valid after
120 life_analysis has run. */
121 int current_function_sp_is_unchanging;
122
123 /* Nonzero if the function being compiled is a leaf function which only
124 uses leaf registers. This is valid after reload (specifically after
125 sched2) and is useful only if the port defines LEAF_REGISTERS. */
126 int current_function_uses_only_leaf_regs;
127
128 /* Nonzero once virtual register instantiation has been done.
129 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
130 static int virtuals_instantiated;
131
132 /* These variables hold pointers to functions to
133 save and restore machine-specific data,
134 in push_function_context and pop_function_context. */
135 void (*init_machine_status) PARAMS ((struct function *));
136 void (*save_machine_status) PARAMS ((struct function *));
137 void (*restore_machine_status) PARAMS ((struct function *));
138 void (*mark_machine_status) PARAMS ((struct function *));
139 void (*free_machine_status) PARAMS ((struct function *));
140
141 /* Likewise, but for language-specific data. */
142 void (*init_lang_status) PARAMS ((struct function *));
143 void (*save_lang_status) PARAMS ((struct function *));
144 void (*restore_lang_status) PARAMS ((struct function *));
145 void (*mark_lang_status) PARAMS ((struct function *));
146 void (*free_lang_status) PARAMS ((struct function *));
147
148 /* The FUNCTION_DECL for an inline function currently being expanded. */
149 tree inline_function_decl;
150
151 /* The currently compiled function. */
152 struct function *cfun = 0;
153
154 /* Global list of all compiled functions. */
155 struct function *all_functions = 0;
156
157 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
158 static varray_type prologue;
159 static varray_type epilogue;
160
161 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
162 in this function. */
163 static varray_type sibcall_epilogue;
164 \f
165 /* In order to evaluate some expressions, such as function calls returning
166 structures in memory, we need to temporarily allocate stack locations.
167 We record each allocated temporary in the following structure.
168
169 Associated with each temporary slot is a nesting level. When we pop up
170 one level, all temporaries associated with the previous level are freed.
171 Normally, all temporaries are freed after the execution of the statement
172 in which they were created. However, if we are inside a ({...}) grouping,
173 the result may be in a temporary and hence must be preserved. If the
174 result could be in a temporary, we preserve it if we can determine which
175 one it is in. If we cannot determine which temporary may contain the
176 result, all temporaries are preserved. A temporary is preserved by
177 pretending it was allocated at the previous nesting level.
178
179 Automatic variables are also assigned temporary slots, at the nesting
180 level where they are defined. They are marked a "kept" so that
181 free_temp_slots will not free them. */
182
183 struct temp_slot
184 {
185 /* Points to next temporary slot. */
186 struct temp_slot *next;
187 /* The rtx to used to reference the slot. */
188 rtx slot;
189 /* The rtx used to represent the address if not the address of the
190 slot above. May be an EXPR_LIST if multiple addresses exist. */
191 rtx address;
192 /* The alignment (in bits) of the slot. */
193 int align;
194 /* The size, in units, of the slot. */
195 HOST_WIDE_INT size;
196 /* The alias set for the slot. If the alias set is zero, we don't
197 know anything about the alias set of the slot. We must only
198 reuse a slot if it is assigned an object of the same alias set.
199 Otherwise, the rest of the compiler may assume that the new use
200 of the slot cannot alias the old use of the slot, which is
201 false. If the slot has alias set zero, then we can't reuse the
202 slot at all, since we have no idea what alias set may have been
203 imposed on the memory. For example, if the stack slot is the
204 call frame for an inline functioned, we have no idea what alias
205 sets will be assigned to various pieces of the call frame. */
206 HOST_WIDE_INT alias_set;
207 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
208 tree rtl_expr;
209 /* Non-zero if this temporary is currently in use. */
210 char in_use;
211 /* Non-zero if this temporary has its address taken. */
212 char addr_taken;
213 /* Nesting level at which this slot is being used. */
214 int level;
215 /* Non-zero if this should survive a call to free_temp_slots. */
216 int keep;
217 /* The offset of the slot from the frame_pointer, including extra space
218 for alignment. This info is for combine_temp_slots. */
219 HOST_WIDE_INT base_offset;
220 /* The size of the slot, including extra space for alignment. This
221 info is for combine_temp_slots. */
222 HOST_WIDE_INT full_size;
223 };
224 \f
225 /* This structure is used to record MEMs or pseudos used to replace VAR, any
226 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
227 maintain this list in case two operands of an insn were required to match;
228 in that case we must ensure we use the same replacement. */
229
230 struct fixup_replacement
231 {
232 rtx old;
233 rtx new;
234 struct fixup_replacement *next;
235 };
236
237 struct insns_for_mem_entry {
238 /* The KEY in HE will be a MEM. */
239 struct hash_entry he;
240 /* These are the INSNS which reference the MEM. */
241 rtx insns;
242 };
243
244 /* Forward declarations. */
245
246 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
247 int, struct function *));
248 static rtx assign_stack_temp_for_type PARAMS ((enum machine_mode,
249 HOST_WIDE_INT, int, tree));
250 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
251 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
252 enum machine_mode, enum machine_mode,
253 int, unsigned int, int,
254 struct hash_table *));
255 static void schedule_fixup_var_refs PARAMS ((struct function *, rtx, tree,
256 enum machine_mode,
257 struct hash_table *));
258 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int,
259 struct hash_table *));
260 static struct fixup_replacement
261 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
262 static void fixup_var_refs_insns PARAMS ((rtx, enum machine_mode, int,
263 rtx, int, struct hash_table *));
264 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
265 struct fixup_replacement **));
266 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, int));
267 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, int));
268 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
269 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
270 static void instantiate_decls PARAMS ((tree, int));
271 static void instantiate_decls_1 PARAMS ((tree, int));
272 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
273 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
274 static void delete_handlers PARAMS ((void));
275 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
276 struct args_size *));
277 #ifndef ARGS_GROW_DOWNWARD
278 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
279 tree));
280 #endif
281 static rtx round_trampoline_addr PARAMS ((rtx));
282 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
283 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
284 static tree blocks_nreverse PARAMS ((tree));
285 static int all_blocks PARAMS ((tree, tree *));
286 static tree *get_block_vector PARAMS ((tree, int *));
287 /* We always define `record_insns' even if its not used so that we
288 can always export `prologue_epilogue_contains'. */
289 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
290 static int contains PARAMS ((rtx, varray_type));
291 #ifdef HAVE_return
292 static void emit_return_into_block PARAMS ((basic_block, rtx));
293 #endif
294 static void put_addressof_into_stack PARAMS ((rtx, struct hash_table *));
295 static boolean purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
296 struct hash_table *));
297 #ifdef HAVE_epilogue
298 static void keep_stack_depressed PARAMS ((rtx));
299 #endif
300 static int is_addressof PARAMS ((rtx *, void *));
301 static struct hash_entry *insns_for_mem_newfunc PARAMS ((struct hash_entry *,
302 struct hash_table *,
303 hash_table_key));
304 static unsigned long insns_for_mem_hash PARAMS ((hash_table_key));
305 static boolean insns_for_mem_comp PARAMS ((hash_table_key, hash_table_key));
306 static int insns_for_mem_walk PARAMS ((rtx *, void *));
307 static void compute_insns_for_mem PARAMS ((rtx, rtx, struct hash_table *));
308 static void mark_temp_slot PARAMS ((struct temp_slot *));
309 static void mark_function_status PARAMS ((struct function *));
310 static void mark_function_chain PARAMS ((void *));
311 static void prepare_function_start PARAMS ((void));
312 static void do_clobber_return_reg PARAMS ((rtx, void *));
313 static void do_use_return_reg PARAMS ((rtx, void *));
314 \f
315 /* Pointer to chain of `struct function' for containing functions. */
316 struct function *outer_function_chain;
317
318 /* Given a function decl for a containing function,
319 return the `struct function' for it. */
320
321 struct function *
322 find_function_data (decl)
323 tree decl;
324 {
325 struct function *p;
326
327 for (p = outer_function_chain; p; p = p->next)
328 if (p->decl == decl)
329 return p;
330
331 abort ();
332 }
333
334 /* Save the current context for compilation of a nested function.
335 This is called from language-specific code. The caller should use
336 the save_lang_status callback to save any language-specific state,
337 since this function knows only about language-independent
338 variables. */
339
340 void
341 push_function_context_to (context)
342 tree context;
343 {
344 struct function *p, *context_data;
345
346 if (context)
347 {
348 context_data = (context == current_function_decl
349 ? cfun
350 : find_function_data (context));
351 context_data->contains_functions = 1;
352 }
353
354 if (cfun == 0)
355 init_dummy_function_start ();
356 p = cfun;
357
358 p->next = outer_function_chain;
359 outer_function_chain = p;
360 p->fixup_var_refs_queue = 0;
361
362 save_tree_status (p);
363 if (save_lang_status)
364 (*save_lang_status) (p);
365 if (save_machine_status)
366 (*save_machine_status) (p);
367
368 cfun = 0;
369 }
370
371 void
372 push_function_context ()
373 {
374 push_function_context_to (current_function_decl);
375 }
376
377 /* Restore the last saved context, at the end of a nested function.
378 This function is called from language-specific code. */
379
380 void
381 pop_function_context_from (context)
382 tree context ATTRIBUTE_UNUSED;
383 {
384 struct function *p = outer_function_chain;
385 struct var_refs_queue *queue;
386 struct var_refs_queue *next;
387
388 cfun = p;
389 outer_function_chain = p->next;
390
391 current_function_decl = p->decl;
392 reg_renumber = 0;
393
394 restore_tree_status (p);
395 restore_emit_status (p);
396
397 if (restore_machine_status)
398 (*restore_machine_status) (p);
399 if (restore_lang_status)
400 (*restore_lang_status) (p);
401
402 /* Finish doing put_var_into_stack for any of our variables
403 which became addressable during the nested function. */
404 for (queue = p->fixup_var_refs_queue; queue; queue = next)
405 {
406 next = queue->next;
407 fixup_var_refs (queue->modified, queue->promoted_mode,
408 queue->unsignedp, 0);
409 free (queue);
410 }
411 p->fixup_var_refs_queue = 0;
412
413 /* Reset variables that have known state during rtx generation. */
414 rtx_equal_function_value_matters = 1;
415 virtuals_instantiated = 0;
416 generating_concat_p = 1;
417 }
418
419 void
420 pop_function_context ()
421 {
422 pop_function_context_from (current_function_decl);
423 }
424
425 /* Clear out all parts of the state in F that can safely be discarded
426 after the function has been parsed, but not compiled, to let
427 garbage collection reclaim the memory. */
428
429 void
430 free_after_parsing (f)
431 struct function *f;
432 {
433 /* f->expr->forced_labels is used by code generation. */
434 /* f->emit->regno_reg_rtx is used by code generation. */
435 /* f->varasm is used by code generation. */
436 /* f->eh->eh_return_stub_label is used by code generation. */
437
438 if (free_lang_status)
439 (*free_lang_status) (f);
440 free_stmt_status (f);
441 }
442
443 /* Clear out all parts of the state in F that can safely be discarded
444 after the function has been compiled, to let garbage collection
445 reclaim the memory. */
446
447 void
448 free_after_compilation (f)
449 struct function *f;
450 {
451 struct temp_slot *ts;
452 struct temp_slot *next;
453
454 free_eh_status (f);
455 free_expr_status (f);
456 free_emit_status (f);
457 free_varasm_status (f);
458
459 if (free_machine_status)
460 (*free_machine_status) (f);
461
462 if (f->x_parm_reg_stack_loc)
463 free (f->x_parm_reg_stack_loc);
464
465 for (ts = f->x_temp_slots; ts; ts = next)
466 {
467 next = ts->next;
468 free (ts);
469 }
470 f->x_temp_slots = NULL;
471
472 f->arg_offset_rtx = NULL;
473 f->return_rtx = NULL;
474 f->internal_arg_pointer = NULL;
475 f->x_nonlocal_labels = NULL;
476 f->x_nonlocal_goto_handler_slots = NULL;
477 f->x_nonlocal_goto_handler_labels = NULL;
478 f->x_nonlocal_goto_stack_level = NULL;
479 f->x_cleanup_label = NULL;
480 f->x_return_label = NULL;
481 f->x_save_expr_regs = NULL;
482 f->x_stack_slot_list = NULL;
483 f->x_rtl_expr_chain = NULL;
484 f->x_tail_recursion_label = NULL;
485 f->x_tail_recursion_reentry = NULL;
486 f->x_arg_pointer_save_area = NULL;
487 f->x_context_display = NULL;
488 f->x_trampoline_list = NULL;
489 f->x_parm_birth_insn = NULL;
490 f->x_last_parm_insn = NULL;
491 f->x_parm_reg_stack_loc = NULL;
492 f->fixup_var_refs_queue = NULL;
493 f->original_arg_vector = NULL;
494 f->original_decl_initial = NULL;
495 f->inl_last_parm_insn = NULL;
496 f->epilogue_delay_list = NULL;
497 }
498 \f
499 /* Allocate fixed slots in the stack frame of the current function. */
500
501 /* Return size needed for stack frame based on slots so far allocated in
502 function F.
503 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
504 the caller may have to do that. */
505
506 HOST_WIDE_INT
507 get_func_frame_size (f)
508 struct function *f;
509 {
510 #ifdef FRAME_GROWS_DOWNWARD
511 return -f->x_frame_offset;
512 #else
513 return f->x_frame_offset;
514 #endif
515 }
516
517 /* Return size needed for stack frame based on slots so far allocated.
518 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
519 the caller may have to do that. */
520 HOST_WIDE_INT
521 get_frame_size ()
522 {
523 return get_func_frame_size (cfun);
524 }
525
526 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
527 with machine mode MODE.
528
529 ALIGN controls the amount of alignment for the address of the slot:
530 0 means according to MODE,
531 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
532 positive specifies alignment boundary in bits.
533
534 We do not round to stack_boundary here.
535
536 FUNCTION specifies the function to allocate in. */
537
538 static rtx
539 assign_stack_local_1 (mode, size, align, function)
540 enum machine_mode mode;
541 HOST_WIDE_INT size;
542 int align;
543 struct function *function;
544 {
545 register rtx x, addr;
546 int bigend_correction = 0;
547 int alignment;
548
549 /* Allocate in the memory associated with the function in whose frame
550 we are assigning. */
551 if (function != cfun)
552 push_obstacks (function->function_obstack,
553 function->function_maybepermanent_obstack);
554
555 if (align == 0)
556 {
557 tree type;
558
559 if (mode == BLKmode)
560 alignment = BIGGEST_ALIGNMENT;
561 else
562 alignment = GET_MODE_ALIGNMENT (mode);
563
564 /* Allow the target to (possibly) increase the alignment of this
565 stack slot. */
566 type = type_for_mode (mode, 0);
567 if (type)
568 alignment = LOCAL_ALIGNMENT (type, alignment);
569
570 alignment /= BITS_PER_UNIT;
571 }
572 else if (align == -1)
573 {
574 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
575 size = CEIL_ROUND (size, alignment);
576 }
577 else
578 alignment = align / BITS_PER_UNIT;
579
580 #ifdef FRAME_GROWS_DOWNWARD
581 function->x_frame_offset -= size;
582 #endif
583
584 /* Ignore alignment we can't do with expected alignment of the boundary. */
585 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
586 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
587
588 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
589 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
590
591 /* Round frame offset to that alignment.
592 We must be careful here, since FRAME_OFFSET might be negative and
593 division with a negative dividend isn't as well defined as we might
594 like. So we instead assume that ALIGNMENT is a power of two and
595 use logical operations which are unambiguous. */
596 #ifdef FRAME_GROWS_DOWNWARD
597 function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset, alignment);
598 #else
599 function->x_frame_offset = CEIL_ROUND (function->x_frame_offset, alignment);
600 #endif
601
602 /* On a big-endian machine, if we are allocating more space than we will use,
603 use the least significant bytes of those that are allocated. */
604 if (BYTES_BIG_ENDIAN && mode != BLKmode)
605 bigend_correction = size - GET_MODE_SIZE (mode);
606
607 /* If we have already instantiated virtual registers, return the actual
608 address relative to the frame pointer. */
609 if (function == cfun && virtuals_instantiated)
610 addr = plus_constant (frame_pointer_rtx,
611 (frame_offset + bigend_correction
612 + STARTING_FRAME_OFFSET));
613 else
614 addr = plus_constant (virtual_stack_vars_rtx,
615 function->x_frame_offset + bigend_correction);
616
617 #ifndef FRAME_GROWS_DOWNWARD
618 function->x_frame_offset += size;
619 #endif
620
621 x = gen_rtx_MEM (mode, addr);
622
623 function->x_stack_slot_list
624 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
625
626 if (function != cfun)
627 pop_obstacks ();
628
629 return x;
630 }
631
632 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
633 current function. */
634
635 rtx
636 assign_stack_local (mode, size, align)
637 enum machine_mode mode;
638 HOST_WIDE_INT size;
639 int align;
640 {
641 return assign_stack_local_1 (mode, size, align, cfun);
642 }
643 \f
644 /* Allocate a temporary stack slot and record it for possible later
645 reuse.
646
647 MODE is the machine mode to be given to the returned rtx.
648
649 SIZE is the size in units of the space required. We do no rounding here
650 since assign_stack_local will do any required rounding.
651
652 KEEP is 1 if this slot is to be retained after a call to
653 free_temp_slots. Automatic variables for a block are allocated
654 with this flag. KEEP is 2 if we allocate a longer term temporary,
655 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
656 if we are to allocate something at an inner level to be treated as
657 a variable in the block (e.g., a SAVE_EXPR).
658
659 TYPE is the type that will be used for the stack slot. */
660
661 static rtx
662 assign_stack_temp_for_type (mode, size, keep, type)
663 enum machine_mode mode;
664 HOST_WIDE_INT size;
665 int keep;
666 tree type;
667 {
668 int align;
669 HOST_WIDE_INT alias_set;
670 struct temp_slot *p, *best_p = 0;
671
672 /* If SIZE is -1 it means that somebody tried to allocate a temporary
673 of a variable size. */
674 if (size == -1)
675 abort ();
676
677 /* If we know the alias set for the memory that will be used, use
678 it. If there's no TYPE, then we don't know anything about the
679 alias set for the memory. */
680 if (type)
681 alias_set = get_alias_set (type);
682 else
683 alias_set = 0;
684
685 if (mode == BLKmode)
686 align = BIGGEST_ALIGNMENT;
687 else
688 align = GET_MODE_ALIGNMENT (mode);
689
690 if (! type)
691 type = type_for_mode (mode, 0);
692
693 if (type)
694 align = LOCAL_ALIGNMENT (type, align);
695
696 /* Try to find an available, already-allocated temporary of the proper
697 mode which meets the size and alignment requirements. Choose the
698 smallest one with the closest alignment. */
699 for (p = temp_slots; p; p = p->next)
700 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
701 && ! p->in_use
702 && (! flag_strict_aliasing
703 || (alias_set && p->alias_set == alias_set))
704 && (best_p == 0 || best_p->size > p->size
705 || (best_p->size == p->size && best_p->align > p->align)))
706 {
707 if (p->align == align && p->size == size)
708 {
709 best_p = 0;
710 break;
711 }
712 best_p = p;
713 }
714
715 /* Make our best, if any, the one to use. */
716 if (best_p)
717 {
718 /* If there are enough aligned bytes left over, make them into a new
719 temp_slot so that the extra bytes don't get wasted. Do this only
720 for BLKmode slots, so that we can be sure of the alignment. */
721 if (GET_MODE (best_p->slot) == BLKmode)
722 {
723 int alignment = best_p->align / BITS_PER_UNIT;
724 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
725
726 if (best_p->size - rounded_size >= alignment)
727 {
728 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
729 p->in_use = p->addr_taken = 0;
730 p->size = best_p->size - rounded_size;
731 p->base_offset = best_p->base_offset + rounded_size;
732 p->full_size = best_p->full_size - rounded_size;
733 p->slot = gen_rtx_MEM (BLKmode,
734 plus_constant (XEXP (best_p->slot, 0),
735 rounded_size));
736 p->align = best_p->align;
737 p->address = 0;
738 p->rtl_expr = 0;
739 p->alias_set = best_p->alias_set;
740 p->next = temp_slots;
741 temp_slots = p;
742
743 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
744 stack_slot_list);
745
746 best_p->size = rounded_size;
747 best_p->full_size = rounded_size;
748 }
749 }
750
751 p = best_p;
752 }
753
754 /* If we still didn't find one, make a new temporary. */
755 if (p == 0)
756 {
757 HOST_WIDE_INT frame_offset_old = frame_offset;
758
759 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
760
761 /* We are passing an explicit alignment request to assign_stack_local.
762 One side effect of that is assign_stack_local will not round SIZE
763 to ensure the frame offset remains suitably aligned.
764
765 So for requests which depended on the rounding of SIZE, we go ahead
766 and round it now. We also make sure ALIGNMENT is at least
767 BIGGEST_ALIGNMENT. */
768 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
769 abort();
770 p->slot = assign_stack_local (mode,
771 (mode == BLKmode
772 ? CEIL_ROUND (size, align / BITS_PER_UNIT)
773 : size),
774 align);
775
776 p->align = align;
777 p->alias_set = alias_set;
778
779 /* The following slot size computation is necessary because we don't
780 know the actual size of the temporary slot until assign_stack_local
781 has performed all the frame alignment and size rounding for the
782 requested temporary. Note that extra space added for alignment
783 can be either above or below this stack slot depending on which
784 way the frame grows. We include the extra space if and only if it
785 is above this slot. */
786 #ifdef FRAME_GROWS_DOWNWARD
787 p->size = frame_offset_old - frame_offset;
788 #else
789 p->size = size;
790 #endif
791
792 /* Now define the fields used by combine_temp_slots. */
793 #ifdef FRAME_GROWS_DOWNWARD
794 p->base_offset = frame_offset;
795 p->full_size = frame_offset_old - frame_offset;
796 #else
797 p->base_offset = frame_offset_old;
798 p->full_size = frame_offset - frame_offset_old;
799 #endif
800 p->address = 0;
801 p->next = temp_slots;
802 temp_slots = p;
803 }
804
805 p->in_use = 1;
806 p->addr_taken = 0;
807 p->rtl_expr = seq_rtl_expr;
808
809 if (keep == 2)
810 {
811 p->level = target_temp_slot_level;
812 p->keep = 0;
813 }
814 else if (keep == 3)
815 {
816 p->level = var_temp_slot_level;
817 p->keep = 0;
818 }
819 else
820 {
821 p->level = temp_slot_level;
822 p->keep = keep;
823 }
824
825 /* We may be reusing an old slot, so clear any MEM flags that may have been
826 set from before. */
827 RTX_UNCHANGING_P (p->slot) = 0;
828 MEM_IN_STRUCT_P (p->slot) = 0;
829 MEM_SCALAR_P (p->slot) = 0;
830 MEM_ALIAS_SET (p->slot) = alias_set;
831
832 if (type != 0)
833 MEM_SET_IN_STRUCT_P (p->slot, AGGREGATE_TYPE_P (type));
834
835 return p->slot;
836 }
837
838 /* Allocate a temporary stack slot and record it for possible later
839 reuse. First three arguments are same as in preceding function. */
840
841 rtx
842 assign_stack_temp (mode, size, keep)
843 enum machine_mode mode;
844 HOST_WIDE_INT size;
845 int keep;
846 {
847 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
848 }
849 \f
850 /* Assign a temporary of given TYPE.
851 KEEP is as for assign_stack_temp.
852 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
853 it is 0 if a register is OK.
854 DONT_PROMOTE is 1 if we should not promote values in register
855 to wider modes. */
856
857 rtx
858 assign_temp (type, keep, memory_required, dont_promote)
859 tree type;
860 int keep;
861 int memory_required;
862 int dont_promote ATTRIBUTE_UNUSED;
863 {
864 enum machine_mode mode = TYPE_MODE (type);
865 #ifndef PROMOTE_FOR_CALL_ONLY
866 int unsignedp = TREE_UNSIGNED (type);
867 #endif
868
869 if (mode == BLKmode || memory_required)
870 {
871 HOST_WIDE_INT size = int_size_in_bytes (type);
872 rtx tmp;
873
874 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
875 problems with allocating the stack space. */
876 if (size == 0)
877 size = 1;
878
879 /* Unfortunately, we don't yet know how to allocate variable-sized
880 temporaries. However, sometimes we have a fixed upper limit on
881 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
882 instead. This is the case for Chill variable-sized strings. */
883 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
884 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
885 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
886 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
887
888 tmp = assign_stack_temp_for_type (mode, size, keep, type);
889 return tmp;
890 }
891
892 #ifndef PROMOTE_FOR_CALL_ONLY
893 if (! dont_promote)
894 mode = promote_mode (type, mode, &unsignedp, 0);
895 #endif
896
897 return gen_reg_rtx (mode);
898 }
899 \f
900 /* Combine temporary stack slots which are adjacent on the stack.
901
902 This allows for better use of already allocated stack space. This is only
903 done for BLKmode slots because we can be sure that we won't have alignment
904 problems in this case. */
905
906 void
907 combine_temp_slots ()
908 {
909 struct temp_slot *p, *q;
910 struct temp_slot *prev_p, *prev_q;
911 int num_slots;
912
913 /* We can't combine slots, because the information about which slot
914 is in which alias set will be lost. */
915 if (flag_strict_aliasing)
916 return;
917
918 /* If there are a lot of temp slots, don't do anything unless
919 high levels of optimizaton. */
920 if (! flag_expensive_optimizations)
921 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
922 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
923 return;
924
925 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
926 {
927 int delete_p = 0;
928
929 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
930 for (q = p->next, prev_q = p; q; q = prev_q->next)
931 {
932 int delete_q = 0;
933 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
934 {
935 if (p->base_offset + p->full_size == q->base_offset)
936 {
937 /* Q comes after P; combine Q into P. */
938 p->size += q->size;
939 p->full_size += q->full_size;
940 delete_q = 1;
941 }
942 else if (q->base_offset + q->full_size == p->base_offset)
943 {
944 /* P comes after Q; combine P into Q. */
945 q->size += p->size;
946 q->full_size += p->full_size;
947 delete_p = 1;
948 break;
949 }
950 }
951 /* Either delete Q or advance past it. */
952 if (delete_q)
953 {
954 prev_q->next = q->next;
955 free (q);
956 }
957 else
958 prev_q = q;
959 }
960 /* Either delete P or advance past it. */
961 if (delete_p)
962 {
963 if (prev_p)
964 prev_p->next = p->next;
965 else
966 temp_slots = p->next;
967 }
968 else
969 prev_p = p;
970 }
971 }
972 \f
973 /* Find the temp slot corresponding to the object at address X. */
974
975 static struct temp_slot *
976 find_temp_slot_from_address (x)
977 rtx x;
978 {
979 struct temp_slot *p;
980 rtx next;
981
982 for (p = temp_slots; p; p = p->next)
983 {
984 if (! p->in_use)
985 continue;
986
987 else if (XEXP (p->slot, 0) == x
988 || p->address == x
989 || (GET_CODE (x) == PLUS
990 && XEXP (x, 0) == virtual_stack_vars_rtx
991 && GET_CODE (XEXP (x, 1)) == CONST_INT
992 && INTVAL (XEXP (x, 1)) >= p->base_offset
993 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
994 return p;
995
996 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
997 for (next = p->address; next; next = XEXP (next, 1))
998 if (XEXP (next, 0) == x)
999 return p;
1000 }
1001
1002 /* If we have a sum involving a register, see if it points to a temp
1003 slot. */
1004 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
1005 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
1006 return p;
1007 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1008 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1009 return p;
1010
1011 return 0;
1012 }
1013
1014 /* Indicate that NEW is an alternate way of referring to the temp slot
1015 that previously was known by OLD. */
1016
1017 void
1018 update_temp_slot_address (old, new)
1019 rtx old, new;
1020 {
1021 struct temp_slot *p;
1022
1023 if (rtx_equal_p (old, new))
1024 return;
1025
1026 p = find_temp_slot_from_address (old);
1027
1028 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1029 is a register, see if one operand of the PLUS is a temporary
1030 location. If so, NEW points into it. Otherwise, if both OLD and
1031 NEW are a PLUS and if there is a register in common between them.
1032 If so, try a recursive call on those values. */
1033 if (p == 0)
1034 {
1035 if (GET_CODE (old) != PLUS)
1036 return;
1037
1038 if (GET_CODE (new) == REG)
1039 {
1040 update_temp_slot_address (XEXP (old, 0), new);
1041 update_temp_slot_address (XEXP (old, 1), new);
1042 return;
1043 }
1044 else if (GET_CODE (new) != PLUS)
1045 return;
1046
1047 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1048 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1049 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1050 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1051 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1052 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1053 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1054 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1055
1056 return;
1057 }
1058
1059 /* Otherwise add an alias for the temp's address. */
1060 else if (p->address == 0)
1061 p->address = new;
1062 else
1063 {
1064 if (GET_CODE (p->address) != EXPR_LIST)
1065 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1066
1067 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1068 }
1069 }
1070
1071 /* If X could be a reference to a temporary slot, mark the fact that its
1072 address was taken. */
1073
1074 void
1075 mark_temp_addr_taken (x)
1076 rtx x;
1077 {
1078 struct temp_slot *p;
1079
1080 if (x == 0)
1081 return;
1082
1083 /* If X is not in memory or is at a constant address, it cannot be in
1084 a temporary slot. */
1085 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1086 return;
1087
1088 p = find_temp_slot_from_address (XEXP (x, 0));
1089 if (p != 0)
1090 p->addr_taken = 1;
1091 }
1092
1093 /* If X could be a reference to a temporary slot, mark that slot as
1094 belonging to the to one level higher than the current level. If X
1095 matched one of our slots, just mark that one. Otherwise, we can't
1096 easily predict which it is, so upgrade all of them. Kept slots
1097 need not be touched.
1098
1099 This is called when an ({...}) construct occurs and a statement
1100 returns a value in memory. */
1101
1102 void
1103 preserve_temp_slots (x)
1104 rtx x;
1105 {
1106 struct temp_slot *p = 0;
1107
1108 /* If there is no result, we still might have some objects whose address
1109 were taken, so we need to make sure they stay around. */
1110 if (x == 0)
1111 {
1112 for (p = temp_slots; p; p = p->next)
1113 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1114 p->level--;
1115
1116 return;
1117 }
1118
1119 /* If X is a register that is being used as a pointer, see if we have
1120 a temporary slot we know it points to. To be consistent with
1121 the code below, we really should preserve all non-kept slots
1122 if we can't find a match, but that seems to be much too costly. */
1123 if (GET_CODE (x) == REG && REGNO_POINTER_FLAG (REGNO (x)))
1124 p = find_temp_slot_from_address (x);
1125
1126 /* If X is not in memory or is at a constant address, it cannot be in
1127 a temporary slot, but it can contain something whose address was
1128 taken. */
1129 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1130 {
1131 for (p = temp_slots; p; p = p->next)
1132 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1133 p->level--;
1134
1135 return;
1136 }
1137
1138 /* First see if we can find a match. */
1139 if (p == 0)
1140 p = find_temp_slot_from_address (XEXP (x, 0));
1141
1142 if (p != 0)
1143 {
1144 /* Move everything at our level whose address was taken to our new
1145 level in case we used its address. */
1146 struct temp_slot *q;
1147
1148 if (p->level == temp_slot_level)
1149 {
1150 for (q = temp_slots; q; q = q->next)
1151 if (q != p && q->addr_taken && q->level == p->level)
1152 q->level--;
1153
1154 p->level--;
1155 p->addr_taken = 0;
1156 }
1157 return;
1158 }
1159
1160 /* Otherwise, preserve all non-kept slots at this level. */
1161 for (p = temp_slots; p; p = p->next)
1162 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1163 p->level--;
1164 }
1165
1166 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1167 with that RTL_EXPR, promote it into a temporary slot at the present
1168 level so it will not be freed when we free slots made in the
1169 RTL_EXPR. */
1170
1171 void
1172 preserve_rtl_expr_result (x)
1173 rtx x;
1174 {
1175 struct temp_slot *p;
1176
1177 /* If X is not in memory or is at a constant address, it cannot be in
1178 a temporary slot. */
1179 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1180 return;
1181
1182 /* If we can find a match, move it to our level unless it is already at
1183 an upper level. */
1184 p = find_temp_slot_from_address (XEXP (x, 0));
1185 if (p != 0)
1186 {
1187 p->level = MIN (p->level, temp_slot_level);
1188 p->rtl_expr = 0;
1189 }
1190
1191 return;
1192 }
1193
1194 /* Free all temporaries used so far. This is normally called at the end
1195 of generating code for a statement. Don't free any temporaries
1196 currently in use for an RTL_EXPR that hasn't yet been emitted.
1197 We could eventually do better than this since it can be reused while
1198 generating the same RTL_EXPR, but this is complex and probably not
1199 worthwhile. */
1200
1201 void
1202 free_temp_slots ()
1203 {
1204 struct temp_slot *p;
1205
1206 for (p = temp_slots; p; p = p->next)
1207 if (p->in_use && p->level == temp_slot_level && ! p->keep
1208 && p->rtl_expr == 0)
1209 p->in_use = 0;
1210
1211 combine_temp_slots ();
1212 }
1213
1214 /* Free all temporary slots used in T, an RTL_EXPR node. */
1215
1216 void
1217 free_temps_for_rtl_expr (t)
1218 tree t;
1219 {
1220 struct temp_slot *p;
1221
1222 for (p = temp_slots; p; p = p->next)
1223 if (p->rtl_expr == t)
1224 {
1225 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1226 needs to be preserved. This can happen if a temporary in
1227 the RTL_EXPR was addressed; preserve_temp_slots will move
1228 the temporary into a higher level. */
1229 if (temp_slot_level <= p->level)
1230 p->in_use = 0;
1231 else
1232 p->rtl_expr = NULL_TREE;
1233 }
1234
1235 combine_temp_slots ();
1236 }
1237
1238 /* Mark all temporaries ever allocated in this function as not suitable
1239 for reuse until the current level is exited. */
1240
1241 void
1242 mark_all_temps_used ()
1243 {
1244 struct temp_slot *p;
1245
1246 for (p = temp_slots; p; p = p->next)
1247 {
1248 p->in_use = p->keep = 1;
1249 p->level = MIN (p->level, temp_slot_level);
1250 }
1251 }
1252
1253 /* Push deeper into the nesting level for stack temporaries. */
1254
1255 void
1256 push_temp_slots ()
1257 {
1258 temp_slot_level++;
1259 }
1260
1261 /* Likewise, but save the new level as the place to allocate variables
1262 for blocks. */
1263
1264 #if 0
1265 void
1266 push_temp_slots_for_block ()
1267 {
1268 push_temp_slots ();
1269
1270 var_temp_slot_level = temp_slot_level;
1271 }
1272
1273 /* Likewise, but save the new level as the place to allocate temporaries
1274 for TARGET_EXPRs. */
1275
1276 void
1277 push_temp_slots_for_target ()
1278 {
1279 push_temp_slots ();
1280
1281 target_temp_slot_level = temp_slot_level;
1282 }
1283
1284 /* Set and get the value of target_temp_slot_level. The only
1285 permitted use of these functions is to save and restore this value. */
1286
1287 int
1288 get_target_temp_slot_level ()
1289 {
1290 return target_temp_slot_level;
1291 }
1292
1293 void
1294 set_target_temp_slot_level (level)
1295 int level;
1296 {
1297 target_temp_slot_level = level;
1298 }
1299 #endif
1300
1301 /* Pop a temporary nesting level. All slots in use in the current level
1302 are freed. */
1303
1304 void
1305 pop_temp_slots ()
1306 {
1307 struct temp_slot *p;
1308
1309 for (p = temp_slots; p; p = p->next)
1310 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1311 p->in_use = 0;
1312
1313 combine_temp_slots ();
1314
1315 temp_slot_level--;
1316 }
1317
1318 /* Initialize temporary slots. */
1319
1320 void
1321 init_temp_slots ()
1322 {
1323 /* We have not allocated any temporaries yet. */
1324 temp_slots = 0;
1325 temp_slot_level = 0;
1326 var_temp_slot_level = 0;
1327 target_temp_slot_level = 0;
1328 }
1329 \f
1330 /* Retroactively move an auto variable from a register to a stack slot.
1331 This is done when an address-reference to the variable is seen. */
1332
1333 void
1334 put_var_into_stack (decl)
1335 tree decl;
1336 {
1337 register rtx reg;
1338 enum machine_mode promoted_mode, decl_mode;
1339 struct function *function = 0;
1340 tree context;
1341 int can_use_addressof;
1342 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1343 int usedp = (TREE_USED (decl)
1344 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1345
1346 context = decl_function_context (decl);
1347
1348 /* Get the current rtl used for this object and its original mode. */
1349 reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl);
1350
1351 /* No need to do anything if decl has no rtx yet
1352 since in that case caller is setting TREE_ADDRESSABLE
1353 and a stack slot will be assigned when the rtl is made. */
1354 if (reg == 0)
1355 return;
1356
1357 /* Get the declared mode for this object. */
1358 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1359 : DECL_MODE (decl));
1360 /* Get the mode it's actually stored in. */
1361 promoted_mode = GET_MODE (reg);
1362
1363 /* If this variable comes from an outer function,
1364 find that function's saved context. */
1365 if (context != current_function_decl && context != inline_function_decl)
1366 for (function = outer_function_chain; function; function = function->next)
1367 if (function->decl == context)
1368 break;
1369
1370 /* If this is a variable-size object with a pseudo to address it,
1371 put that pseudo into the stack, if the var is nonlocal. */
1372 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1373 && GET_CODE (reg) == MEM
1374 && GET_CODE (XEXP (reg, 0)) == REG
1375 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1376 {
1377 reg = XEXP (reg, 0);
1378 decl_mode = promoted_mode = GET_MODE (reg);
1379 }
1380
1381 can_use_addressof
1382 = (function == 0
1383 && optimize > 0
1384 /* FIXME make it work for promoted modes too */
1385 && decl_mode == promoted_mode
1386 #ifdef NON_SAVING_SETJMP
1387 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1388 #endif
1389 );
1390
1391 /* If we can't use ADDRESSOF, make sure we see through one we already
1392 generated. */
1393 if (! can_use_addressof && GET_CODE (reg) == MEM
1394 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1395 reg = XEXP (XEXP (reg, 0), 0);
1396
1397 /* Now we should have a value that resides in one or more pseudo regs. */
1398
1399 if (GET_CODE (reg) == REG)
1400 {
1401 /* If this variable lives in the current function and we don't need
1402 to put things in the stack for the sake of setjmp, try to keep it
1403 in a register until we know we actually need the address. */
1404 if (can_use_addressof)
1405 gen_mem_addressof (reg, decl);
1406 else
1407 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1408 decl_mode, volatilep, 0, usedp, 0);
1409 }
1410 else if (GET_CODE (reg) == CONCAT)
1411 {
1412 /* A CONCAT contains two pseudos; put them both in the stack.
1413 We do it so they end up consecutive.
1414 We fixup references to the parts only after we fixup references
1415 to the whole CONCAT, lest we do double fixups for the latter
1416 references. */
1417 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1418 tree part_type = type_for_mode (part_mode, 0);
1419 rtx lopart = XEXP (reg, 0);
1420 rtx hipart = XEXP (reg, 1);
1421 #ifdef FRAME_GROWS_DOWNWARD
1422 /* Since part 0 should have a lower address, do it second. */
1423 put_reg_into_stack (function, hipart, part_type, part_mode,
1424 part_mode, volatilep, 0, 0, 0);
1425 put_reg_into_stack (function, lopart, part_type, part_mode,
1426 part_mode, volatilep, 0, 0, 0);
1427 #else
1428 put_reg_into_stack (function, lopart, part_type, part_mode,
1429 part_mode, volatilep, 0, 0, 0);
1430 put_reg_into_stack (function, hipart, part_type, part_mode,
1431 part_mode, volatilep, 0, 0, 0);
1432 #endif
1433
1434 /* Change the CONCAT into a combined MEM for both parts. */
1435 PUT_CODE (reg, MEM);
1436 set_mem_attributes (reg, decl, 1);
1437
1438 /* The two parts are in memory order already.
1439 Use the lower parts address as ours. */
1440 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1441 /* Prevent sharing of rtl that might lose. */
1442 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1443 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1444 if (usedp)
1445 {
1446 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1447 promoted_mode, 0);
1448 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1449 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1450 }
1451 }
1452 else
1453 return;
1454
1455 if (current_function_check_memory_usage)
1456 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
1457 XEXP (reg, 0), Pmode,
1458 GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
1459 TYPE_MODE (sizetype),
1460 GEN_INT (MEMORY_USE_RW),
1461 TYPE_MODE (integer_type_node));
1462 }
1463
1464 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1465 into the stack frame of FUNCTION (0 means the current function).
1466 DECL_MODE is the machine mode of the user-level data type.
1467 PROMOTED_MODE is the machine mode of the register.
1468 VOLATILE_P is nonzero if this is for a "volatile" decl.
1469 USED_P is nonzero if this reg might have already been used in an insn. */
1470
1471 static void
1472 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1473 original_regno, used_p, ht)
1474 struct function *function;
1475 rtx reg;
1476 tree type;
1477 enum machine_mode promoted_mode, decl_mode;
1478 int volatile_p;
1479 unsigned int original_regno;
1480 int used_p;
1481 struct hash_table *ht;
1482 {
1483 struct function *func = function ? function : cfun;
1484 rtx new = 0;
1485 unsigned int regno = original_regno;
1486
1487 if (regno == 0)
1488 regno = REGNO (reg);
1489
1490 if (regno < func->x_max_parm_reg)
1491 new = func->x_parm_reg_stack_loc[regno];
1492
1493 if (new == 0)
1494 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1495
1496 PUT_CODE (reg, MEM);
1497 PUT_MODE (reg, decl_mode);
1498 XEXP (reg, 0) = XEXP (new, 0);
1499 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1500 MEM_VOLATILE_P (reg) = volatile_p;
1501
1502 /* If this is a memory ref that contains aggregate components,
1503 mark it as such for cse and loop optimize. If we are reusing a
1504 previously generated stack slot, then we need to copy the bit in
1505 case it was set for other reasons. For instance, it is set for
1506 __builtin_va_alist. */
1507 if (type)
1508 {
1509 MEM_SET_IN_STRUCT_P (reg,
1510 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1511 MEM_ALIAS_SET (reg) = get_alias_set (type);
1512 }
1513 if (used_p)
1514 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1515 }
1516
1517 /* Make sure that all refs to the variable, previously made
1518 when it was a register, are fixed up to be valid again.
1519 See function above for meaning of arguments. */
1520 static void
1521 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht)
1522 struct function *function;
1523 rtx reg;
1524 tree type;
1525 enum machine_mode promoted_mode;
1526 struct hash_table *ht;
1527 {
1528 int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1529
1530 if (function != 0)
1531 {
1532 struct var_refs_queue *temp;
1533
1534 temp
1535 = (struct var_refs_queue *) xmalloc (sizeof (struct var_refs_queue));
1536 temp->modified = reg;
1537 temp->promoted_mode = promoted_mode;
1538 temp->unsignedp = unsigned_p;
1539 temp->next = function->fixup_var_refs_queue;
1540 function->fixup_var_refs_queue = temp;
1541 }
1542 else
1543 /* Variable is local; fix it up now. */
1544 fixup_var_refs (reg, promoted_mode, unsigned_p, ht);
1545 }
1546 \f
1547 static void
1548 fixup_var_refs (var, promoted_mode, unsignedp, ht)
1549 rtx var;
1550 enum machine_mode promoted_mode;
1551 int unsignedp;
1552 struct hash_table *ht;
1553 {
1554 tree pending;
1555 rtx first_insn = get_insns ();
1556 struct sequence_stack *stack = seq_stack;
1557 tree rtl_exps = rtl_expr_chain;
1558 rtx insn;
1559
1560 /* Must scan all insns for stack-refs that exceed the limit. */
1561 fixup_var_refs_insns (var, promoted_mode, unsignedp, first_insn,
1562 stack == 0, ht);
1563 /* If there's a hash table, it must record all uses of VAR. */
1564 if (ht)
1565 return;
1566
1567 /* Scan all pending sequences too. */
1568 for (; stack; stack = stack->next)
1569 {
1570 push_to_sequence (stack->first);
1571 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1572 stack->first, stack->next != 0, 0);
1573 /* Update remembered end of sequence
1574 in case we added an insn at the end. */
1575 stack->last = get_last_insn ();
1576 end_sequence ();
1577 }
1578
1579 /* Scan all waiting RTL_EXPRs too. */
1580 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1581 {
1582 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1583 if (seq != const0_rtx && seq != 0)
1584 {
1585 push_to_sequence (seq);
1586 fixup_var_refs_insns (var, promoted_mode, unsignedp, seq, 0, 0);
1587 end_sequence ();
1588 }
1589 }
1590
1591 /* Scan the catch clauses for exception handling too. */
1592 push_to_full_sequence (catch_clauses, catch_clauses_last);
1593 fixup_var_refs_insns (var, promoted_mode, unsignedp, catch_clauses, 0, 0);
1594 end_full_sequence (&catch_clauses, &catch_clauses_last);
1595
1596 /* Scan sequences saved in CALL_PLACEHOLDERS too. */
1597 for (insn = first_insn; insn; insn = NEXT_INSN (insn))
1598 {
1599 if (GET_CODE (insn) == CALL_INSN
1600 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1601 {
1602 int i;
1603
1604 /* Look at the Normal call, sibling call and tail recursion
1605 sequences attached to the CALL_PLACEHOLDER. */
1606 for (i = 0; i < 3; i++)
1607 {
1608 rtx seq = XEXP (PATTERN (insn), i);
1609 if (seq)
1610 {
1611 push_to_sequence (seq);
1612 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1613 seq, 0, 0);
1614 XEXP (PATTERN (insn), i) = get_insns ();
1615 end_sequence ();
1616 }
1617 }
1618 }
1619 }
1620 }
1621 \f
1622 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1623 some part of an insn. Return a struct fixup_replacement whose OLD
1624 value is equal to X. Allocate a new structure if no such entry exists. */
1625
1626 static struct fixup_replacement *
1627 find_fixup_replacement (replacements, x)
1628 struct fixup_replacement **replacements;
1629 rtx x;
1630 {
1631 struct fixup_replacement *p;
1632
1633 /* See if we have already replaced this. */
1634 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1635 ;
1636
1637 if (p == 0)
1638 {
1639 p = (struct fixup_replacement *) oballoc (sizeof (struct fixup_replacement));
1640 p->old = x;
1641 p->new = 0;
1642 p->next = *replacements;
1643 *replacements = p;
1644 }
1645
1646 return p;
1647 }
1648
1649 /* Scan the insn-chain starting with INSN for refs to VAR
1650 and fix them up. TOPLEVEL is nonzero if this chain is the
1651 main chain of insns for the current function. */
1652
1653 static void
1654 fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel, ht)
1655 rtx var;
1656 enum machine_mode promoted_mode;
1657 int unsignedp;
1658 rtx insn;
1659 int toplevel;
1660 struct hash_table *ht;
1661 {
1662 rtx call_dest = 0;
1663 rtx insn_list = NULL_RTX;
1664
1665 /* If we already know which INSNs reference VAR there's no need
1666 to walk the entire instruction chain. */
1667 if (ht)
1668 {
1669 insn_list = ((struct insns_for_mem_entry *)
1670 hash_lookup (ht, var, /*create=*/0, /*copy=*/0))->insns;
1671 insn = insn_list ? XEXP (insn_list, 0) : NULL_RTX;
1672 insn_list = XEXP (insn_list, 1);
1673 }
1674
1675 while (insn)
1676 {
1677 rtx next = NEXT_INSN (insn);
1678 rtx set, prev, prev_set;
1679 rtx note;
1680
1681 if (INSN_P (insn))
1682 {
1683 /* Remember the notes in case we delete the insn. */
1684 note = REG_NOTES (insn);
1685
1686 /* If this is a CLOBBER of VAR, delete it.
1687
1688 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1689 and REG_RETVAL notes too. */
1690 if (GET_CODE (PATTERN (insn)) == CLOBBER
1691 && (XEXP (PATTERN (insn), 0) == var
1692 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1693 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1694 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1695 {
1696 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1697 /* The REG_LIBCALL note will go away since we are going to
1698 turn INSN into a NOTE, so just delete the
1699 corresponding REG_RETVAL note. */
1700 remove_note (XEXP (note, 0),
1701 find_reg_note (XEXP (note, 0), REG_RETVAL,
1702 NULL_RTX));
1703
1704 /* In unoptimized compilation, we shouldn't call delete_insn
1705 except in jump.c doing warnings. */
1706 PUT_CODE (insn, NOTE);
1707 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1708 NOTE_SOURCE_FILE (insn) = 0;
1709 }
1710
1711 /* The insn to load VAR from a home in the arglist
1712 is now a no-op. When we see it, just delete it.
1713 Similarly if this is storing VAR from a register from which
1714 it was loaded in the previous insn. This will occur
1715 when an ADDRESSOF was made for an arglist slot. */
1716 else if (toplevel
1717 && (set = single_set (insn)) != 0
1718 && SET_DEST (set) == var
1719 /* If this represents the result of an insn group,
1720 don't delete the insn. */
1721 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1722 && (rtx_equal_p (SET_SRC (set), var)
1723 || (GET_CODE (SET_SRC (set)) == REG
1724 && (prev = prev_nonnote_insn (insn)) != 0
1725 && (prev_set = single_set (prev)) != 0
1726 && SET_DEST (prev_set) == SET_SRC (set)
1727 && rtx_equal_p (SET_SRC (prev_set), var))))
1728 {
1729 /* In unoptimized compilation, we shouldn't call delete_insn
1730 except in jump.c doing warnings. */
1731 PUT_CODE (insn, NOTE);
1732 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1733 NOTE_SOURCE_FILE (insn) = 0;
1734 if (insn == last_parm_insn)
1735 last_parm_insn = PREV_INSN (next);
1736 }
1737 else
1738 {
1739 struct fixup_replacement *replacements = 0;
1740 rtx next_insn = NEXT_INSN (insn);
1741
1742 if (SMALL_REGISTER_CLASSES)
1743 {
1744 /* If the insn that copies the results of a CALL_INSN
1745 into a pseudo now references VAR, we have to use an
1746 intermediate pseudo since we want the life of the
1747 return value register to be only a single insn.
1748
1749 If we don't use an intermediate pseudo, such things as
1750 address computations to make the address of VAR valid
1751 if it is not can be placed between the CALL_INSN and INSN.
1752
1753 To make sure this doesn't happen, we record the destination
1754 of the CALL_INSN and see if the next insn uses both that
1755 and VAR. */
1756
1757 if (call_dest != 0 && GET_CODE (insn) == INSN
1758 && reg_mentioned_p (var, PATTERN (insn))
1759 && reg_mentioned_p (call_dest, PATTERN (insn)))
1760 {
1761 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1762
1763 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1764
1765 PATTERN (insn) = replace_rtx (PATTERN (insn),
1766 call_dest, temp);
1767 }
1768
1769 if (GET_CODE (insn) == CALL_INSN
1770 && GET_CODE (PATTERN (insn)) == SET)
1771 call_dest = SET_DEST (PATTERN (insn));
1772 else if (GET_CODE (insn) == CALL_INSN
1773 && GET_CODE (PATTERN (insn)) == PARALLEL
1774 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1775 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1776 else
1777 call_dest = 0;
1778 }
1779
1780 /* See if we have to do anything to INSN now that VAR is in
1781 memory. If it needs to be loaded into a pseudo, use a single
1782 pseudo for the entire insn in case there is a MATCH_DUP
1783 between two operands. We pass a pointer to the head of
1784 a list of struct fixup_replacements. If fixup_var_refs_1
1785 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1786 it will record them in this list.
1787
1788 If it allocated a pseudo for any replacement, we copy into
1789 it here. */
1790
1791 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1792 &replacements);
1793
1794 /* If this is last_parm_insn, and any instructions were output
1795 after it to fix it up, then we must set last_parm_insn to
1796 the last such instruction emitted. */
1797 if (insn == last_parm_insn)
1798 last_parm_insn = PREV_INSN (next_insn);
1799
1800 while (replacements)
1801 {
1802 if (GET_CODE (replacements->new) == REG)
1803 {
1804 rtx insert_before;
1805 rtx seq;
1806
1807 /* OLD might be a (subreg (mem)). */
1808 if (GET_CODE (replacements->old) == SUBREG)
1809 replacements->old
1810 = fixup_memory_subreg (replacements->old, insn, 0);
1811 else
1812 replacements->old
1813 = fixup_stack_1 (replacements->old, insn);
1814
1815 insert_before = insn;
1816
1817 /* If we are changing the mode, do a conversion.
1818 This might be wasteful, but combine.c will
1819 eliminate much of the waste. */
1820
1821 if (GET_MODE (replacements->new)
1822 != GET_MODE (replacements->old))
1823 {
1824 start_sequence ();
1825 convert_move (replacements->new,
1826 replacements->old, unsignedp);
1827 seq = gen_sequence ();
1828 end_sequence ();
1829 }
1830 else
1831 seq = gen_move_insn (replacements->new,
1832 replacements->old);
1833
1834 emit_insn_before (seq, insert_before);
1835 }
1836
1837 replacements = replacements->next;
1838 }
1839 }
1840
1841 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1842 But don't touch other insns referred to by reg-notes;
1843 we will get them elsewhere. */
1844 while (note)
1845 {
1846 if (GET_CODE (note) != INSN_LIST)
1847 XEXP (note, 0)
1848 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1849 note = XEXP (note, 1);
1850 }
1851 }
1852
1853 if (!ht)
1854 insn = next;
1855 else if (insn_list)
1856 {
1857 insn = XEXP (insn_list, 0);
1858 insn_list = XEXP (insn_list, 1);
1859 }
1860 else
1861 insn = NULL_RTX;
1862 }
1863 }
1864 \f
1865 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1866 See if the rtx expression at *LOC in INSN needs to be changed.
1867
1868 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1869 contain a list of original rtx's and replacements. If we find that we need
1870 to modify this insn by replacing a memory reference with a pseudo or by
1871 making a new MEM to implement a SUBREG, we consult that list to see if
1872 we have already chosen a replacement. If none has already been allocated,
1873 we allocate it and update the list. fixup_var_refs_insns will copy VAR
1874 or the SUBREG, as appropriate, to the pseudo. */
1875
1876 static void
1877 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1878 register rtx var;
1879 enum machine_mode promoted_mode;
1880 register rtx *loc;
1881 rtx insn;
1882 struct fixup_replacement **replacements;
1883 {
1884 register int i;
1885 register rtx x = *loc;
1886 RTX_CODE code = GET_CODE (x);
1887 register const char *fmt;
1888 register rtx tem, tem1;
1889 struct fixup_replacement *replacement;
1890
1891 switch (code)
1892 {
1893 case ADDRESSOF:
1894 if (XEXP (x, 0) == var)
1895 {
1896 /* Prevent sharing of rtl that might lose. */
1897 rtx sub = copy_rtx (XEXP (var, 0));
1898
1899 if (! validate_change (insn, loc, sub, 0))
1900 {
1901 rtx y = gen_reg_rtx (GET_MODE (sub));
1902 rtx seq, new_insn;
1903
1904 /* We should be able to replace with a register or all is lost.
1905 Note that we can't use validate_change to verify this, since
1906 we're not caring for replacing all dups simultaneously. */
1907 if (! validate_replace_rtx (*loc, y, insn))
1908 abort ();
1909
1910 /* Careful! First try to recognize a direct move of the
1911 value, mimicking how things are done in gen_reload wrt
1912 PLUS. Consider what happens when insn is a conditional
1913 move instruction and addsi3 clobbers flags. */
1914
1915 start_sequence ();
1916 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1917 seq = gen_sequence ();
1918 end_sequence ();
1919
1920 if (recog_memoized (new_insn) < 0)
1921 {
1922 /* That failed. Fall back on force_operand and hope. */
1923
1924 start_sequence ();
1925 force_operand (sub, y);
1926 seq = gen_sequence ();
1927 end_sequence ();
1928 }
1929
1930 #ifdef HAVE_cc0
1931 /* Don't separate setter from user. */
1932 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1933 insn = PREV_INSN (insn);
1934 #endif
1935
1936 emit_insn_before (seq, insn);
1937 }
1938 }
1939 return;
1940
1941 case MEM:
1942 if (var == x)
1943 {
1944 /* If we already have a replacement, use it. Otherwise,
1945 try to fix up this address in case it is invalid. */
1946
1947 replacement = find_fixup_replacement (replacements, var);
1948 if (replacement->new)
1949 {
1950 *loc = replacement->new;
1951 return;
1952 }
1953
1954 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1955
1956 /* Unless we are forcing memory to register or we changed the mode,
1957 we can leave things the way they are if the insn is valid. */
1958
1959 INSN_CODE (insn) = -1;
1960 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1961 && recog_memoized (insn) >= 0)
1962 return;
1963
1964 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1965 return;
1966 }
1967
1968 /* If X contains VAR, we need to unshare it here so that we update
1969 each occurrence separately. But all identical MEMs in one insn
1970 must be replaced with the same rtx because of the possibility of
1971 MATCH_DUPs. */
1972
1973 if (reg_mentioned_p (var, x))
1974 {
1975 replacement = find_fixup_replacement (replacements, x);
1976 if (replacement->new == 0)
1977 replacement->new = copy_most_rtx (x, var);
1978
1979 *loc = x = replacement->new;
1980 code = GET_CODE (x);
1981 }
1982 break;
1983
1984 case REG:
1985 case CC0:
1986 case PC:
1987 case CONST_INT:
1988 case CONST:
1989 case SYMBOL_REF:
1990 case LABEL_REF:
1991 case CONST_DOUBLE:
1992 return;
1993
1994 case SIGN_EXTRACT:
1995 case ZERO_EXTRACT:
1996 /* Note that in some cases those types of expressions are altered
1997 by optimize_bit_field, and do not survive to get here. */
1998 if (XEXP (x, 0) == var
1999 || (GET_CODE (XEXP (x, 0)) == SUBREG
2000 && SUBREG_REG (XEXP (x, 0)) == var))
2001 {
2002 /* Get TEM as a valid MEM in the mode presently in the insn.
2003
2004 We don't worry about the possibility of MATCH_DUP here; it
2005 is highly unlikely and would be tricky to handle. */
2006
2007 tem = XEXP (x, 0);
2008 if (GET_CODE (tem) == SUBREG)
2009 {
2010 if (GET_MODE_BITSIZE (GET_MODE (tem))
2011 > GET_MODE_BITSIZE (GET_MODE (var)))
2012 {
2013 replacement = find_fixup_replacement (replacements, var);
2014 if (replacement->new == 0)
2015 replacement->new = gen_reg_rtx (GET_MODE (var));
2016 SUBREG_REG (tem) = replacement->new;
2017 }
2018 else
2019 tem = fixup_memory_subreg (tem, insn, 0);
2020 }
2021 else
2022 tem = fixup_stack_1 (tem, insn);
2023
2024 /* Unless we want to load from memory, get TEM into the proper mode
2025 for an extract from memory. This can only be done if the
2026 extract is at a constant position and length. */
2027
2028 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
2029 && GET_CODE (XEXP (x, 2)) == CONST_INT
2030 && ! mode_dependent_address_p (XEXP (tem, 0))
2031 && ! MEM_VOLATILE_P (tem))
2032 {
2033 enum machine_mode wanted_mode = VOIDmode;
2034 enum machine_mode is_mode = GET_MODE (tem);
2035 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2036
2037 #ifdef HAVE_extzv
2038 if (GET_CODE (x) == ZERO_EXTRACT)
2039 {
2040 wanted_mode
2041 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
2042 if (wanted_mode == VOIDmode)
2043 wanted_mode = word_mode;
2044 }
2045 #endif
2046 #ifdef HAVE_extv
2047 if (GET_CODE (x) == SIGN_EXTRACT)
2048 {
2049 wanted_mode = insn_data[(int) CODE_FOR_extv].operand[1].mode;
2050 if (wanted_mode == VOIDmode)
2051 wanted_mode = word_mode;
2052 }
2053 #endif
2054 /* If we have a narrower mode, we can do something. */
2055 if (wanted_mode != VOIDmode
2056 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2057 {
2058 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2059 rtx old_pos = XEXP (x, 2);
2060 rtx newmem;
2061
2062 /* If the bytes and bits are counted differently, we
2063 must adjust the offset. */
2064 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2065 offset = (GET_MODE_SIZE (is_mode)
2066 - GET_MODE_SIZE (wanted_mode) - offset);
2067
2068 pos %= GET_MODE_BITSIZE (wanted_mode);
2069
2070 newmem = gen_rtx_MEM (wanted_mode,
2071 plus_constant (XEXP (tem, 0), offset));
2072 MEM_COPY_ATTRIBUTES (newmem, tem);
2073
2074 /* Make the change and see if the insn remains valid. */
2075 INSN_CODE (insn) = -1;
2076 XEXP (x, 0) = newmem;
2077 XEXP (x, 2) = GEN_INT (pos);
2078
2079 if (recog_memoized (insn) >= 0)
2080 return;
2081
2082 /* Otherwise, restore old position. XEXP (x, 0) will be
2083 restored later. */
2084 XEXP (x, 2) = old_pos;
2085 }
2086 }
2087
2088 /* If we get here, the bitfield extract insn can't accept a memory
2089 reference. Copy the input into a register. */
2090
2091 tem1 = gen_reg_rtx (GET_MODE (tem));
2092 emit_insn_before (gen_move_insn (tem1, tem), insn);
2093 XEXP (x, 0) = tem1;
2094 return;
2095 }
2096 break;
2097
2098 case SUBREG:
2099 if (SUBREG_REG (x) == var)
2100 {
2101 /* If this is a special SUBREG made because VAR was promoted
2102 from a wider mode, replace it with VAR and call ourself
2103 recursively, this time saying that the object previously
2104 had its current mode (by virtue of the SUBREG). */
2105
2106 if (SUBREG_PROMOTED_VAR_P (x))
2107 {
2108 *loc = var;
2109 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
2110 return;
2111 }
2112
2113 /* If this SUBREG makes VAR wider, it has become a paradoxical
2114 SUBREG with VAR in memory, but these aren't allowed at this
2115 stage of the compilation. So load VAR into a pseudo and take
2116 a SUBREG of that pseudo. */
2117 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2118 {
2119 replacement = find_fixup_replacement (replacements, var);
2120 if (replacement->new == 0)
2121 replacement->new = gen_reg_rtx (GET_MODE (var));
2122 SUBREG_REG (x) = replacement->new;
2123 return;
2124 }
2125
2126 /* See if we have already found a replacement for this SUBREG.
2127 If so, use it. Otherwise, make a MEM and see if the insn
2128 is recognized. If not, or if we should force MEM into a register,
2129 make a pseudo for this SUBREG. */
2130 replacement = find_fixup_replacement (replacements, x);
2131 if (replacement->new)
2132 {
2133 *loc = replacement->new;
2134 return;
2135 }
2136
2137 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
2138
2139 INSN_CODE (insn) = -1;
2140 if (! flag_force_mem && recog_memoized (insn) >= 0)
2141 return;
2142
2143 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2144 return;
2145 }
2146 break;
2147
2148 case SET:
2149 /* First do special simplification of bit-field references. */
2150 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2151 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2152 optimize_bit_field (x, insn, 0);
2153 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2154 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2155 optimize_bit_field (x, insn, NULL_PTR);
2156
2157 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2158 into a register and then store it back out. */
2159 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2160 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2161 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2162 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2163 > GET_MODE_SIZE (GET_MODE (var))))
2164 {
2165 replacement = find_fixup_replacement (replacements, var);
2166 if (replacement->new == 0)
2167 replacement->new = gen_reg_rtx (GET_MODE (var));
2168
2169 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2170 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2171 }
2172
2173 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2174 insn into a pseudo and store the low part of the pseudo into VAR. */
2175 if (GET_CODE (SET_DEST (x)) == SUBREG
2176 && SUBREG_REG (SET_DEST (x)) == var
2177 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2178 > GET_MODE_SIZE (GET_MODE (var))))
2179 {
2180 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2181 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2182 tem)),
2183 insn);
2184 break;
2185 }
2186
2187 {
2188 rtx dest = SET_DEST (x);
2189 rtx src = SET_SRC (x);
2190 #ifdef HAVE_insv
2191 rtx outerdest = dest;
2192 #endif
2193
2194 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2195 || GET_CODE (dest) == SIGN_EXTRACT
2196 || GET_CODE (dest) == ZERO_EXTRACT)
2197 dest = XEXP (dest, 0);
2198
2199 if (GET_CODE (src) == SUBREG)
2200 src = XEXP (src, 0);
2201
2202 /* If VAR does not appear at the top level of the SET
2203 just scan the lower levels of the tree. */
2204
2205 if (src != var && dest != var)
2206 break;
2207
2208 /* We will need to rerecognize this insn. */
2209 INSN_CODE (insn) = -1;
2210
2211 #ifdef HAVE_insv
2212 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
2213 {
2214 /* Since this case will return, ensure we fixup all the
2215 operands here. */
2216 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2217 insn, replacements);
2218 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2219 insn, replacements);
2220 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2221 insn, replacements);
2222
2223 tem = XEXP (outerdest, 0);
2224
2225 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2226 that may appear inside a ZERO_EXTRACT.
2227 This was legitimate when the MEM was a REG. */
2228 if (GET_CODE (tem) == SUBREG
2229 && SUBREG_REG (tem) == var)
2230 tem = fixup_memory_subreg (tem, insn, 0);
2231 else
2232 tem = fixup_stack_1 (tem, insn);
2233
2234 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2235 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2236 && ! mode_dependent_address_p (XEXP (tem, 0))
2237 && ! MEM_VOLATILE_P (tem))
2238 {
2239 enum machine_mode wanted_mode;
2240 enum machine_mode is_mode = GET_MODE (tem);
2241 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2242
2243 wanted_mode = insn_data[(int) CODE_FOR_insv].operand[0].mode;
2244 if (wanted_mode == VOIDmode)
2245 wanted_mode = word_mode;
2246
2247 /* If we have a narrower mode, we can do something. */
2248 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2249 {
2250 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2251 rtx old_pos = XEXP (outerdest, 2);
2252 rtx newmem;
2253
2254 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2255 offset = (GET_MODE_SIZE (is_mode)
2256 - GET_MODE_SIZE (wanted_mode) - offset);
2257
2258 pos %= GET_MODE_BITSIZE (wanted_mode);
2259
2260 newmem = gen_rtx_MEM (wanted_mode,
2261 plus_constant (XEXP (tem, 0),
2262 offset));
2263 MEM_COPY_ATTRIBUTES (newmem, tem);
2264
2265 /* Make the change and see if the insn remains valid. */
2266 INSN_CODE (insn) = -1;
2267 XEXP (outerdest, 0) = newmem;
2268 XEXP (outerdest, 2) = GEN_INT (pos);
2269
2270 if (recog_memoized (insn) >= 0)
2271 return;
2272
2273 /* Otherwise, restore old position. XEXP (x, 0) will be
2274 restored later. */
2275 XEXP (outerdest, 2) = old_pos;
2276 }
2277 }
2278
2279 /* If we get here, the bit-field store doesn't allow memory
2280 or isn't located at a constant position. Load the value into
2281 a register, do the store, and put it back into memory. */
2282
2283 tem1 = gen_reg_rtx (GET_MODE (tem));
2284 emit_insn_before (gen_move_insn (tem1, tem), insn);
2285 emit_insn_after (gen_move_insn (tem, tem1), insn);
2286 XEXP (outerdest, 0) = tem1;
2287 return;
2288 }
2289 #endif
2290
2291 /* STRICT_LOW_PART is a no-op on memory references
2292 and it can cause combinations to be unrecognizable,
2293 so eliminate it. */
2294
2295 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2296 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2297
2298 /* A valid insn to copy VAR into or out of a register
2299 must be left alone, to avoid an infinite loop here.
2300 If the reference to VAR is by a subreg, fix that up,
2301 since SUBREG is not valid for a memref.
2302 Also fix up the address of the stack slot.
2303
2304 Note that we must not try to recognize the insn until
2305 after we know that we have valid addresses and no
2306 (subreg (mem ...) ...) constructs, since these interfere
2307 with determining the validity of the insn. */
2308
2309 if ((SET_SRC (x) == var
2310 || (GET_CODE (SET_SRC (x)) == SUBREG
2311 && SUBREG_REG (SET_SRC (x)) == var))
2312 && (GET_CODE (SET_DEST (x)) == REG
2313 || (GET_CODE (SET_DEST (x)) == SUBREG
2314 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2315 && GET_MODE (var) == promoted_mode
2316 && x == single_set (insn))
2317 {
2318 rtx pat;
2319
2320 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2321 if (replacement->new)
2322 SET_SRC (x) = replacement->new;
2323 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2324 SET_SRC (x) = replacement->new
2325 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2326 else
2327 SET_SRC (x) = replacement->new
2328 = fixup_stack_1 (SET_SRC (x), insn);
2329
2330 if (recog_memoized (insn) >= 0)
2331 return;
2332
2333 /* INSN is not valid, but we know that we want to
2334 copy SET_SRC (x) to SET_DEST (x) in some way. So
2335 we generate the move and see whether it requires more
2336 than one insn. If it does, we emit those insns and
2337 delete INSN. Otherwise, we an just replace the pattern
2338 of INSN; we have already verified above that INSN has
2339 no other function that to do X. */
2340
2341 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2342 if (GET_CODE (pat) == SEQUENCE)
2343 {
2344 emit_insn_after (pat, insn);
2345 PUT_CODE (insn, NOTE);
2346 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2347 NOTE_SOURCE_FILE (insn) = 0;
2348 }
2349 else
2350 PATTERN (insn) = pat;
2351
2352 return;
2353 }
2354
2355 if ((SET_DEST (x) == var
2356 || (GET_CODE (SET_DEST (x)) == SUBREG
2357 && SUBREG_REG (SET_DEST (x)) == var))
2358 && (GET_CODE (SET_SRC (x)) == REG
2359 || (GET_CODE (SET_SRC (x)) == SUBREG
2360 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2361 && GET_MODE (var) == promoted_mode
2362 && x == single_set (insn))
2363 {
2364 rtx pat;
2365
2366 if (GET_CODE (SET_DEST (x)) == SUBREG)
2367 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2368 else
2369 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2370
2371 if (recog_memoized (insn) >= 0)
2372 return;
2373
2374 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2375 if (GET_CODE (pat) == SEQUENCE)
2376 {
2377 emit_insn_after (pat, insn);
2378 PUT_CODE (insn, NOTE);
2379 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2380 NOTE_SOURCE_FILE (insn) = 0;
2381 }
2382 else
2383 PATTERN (insn) = pat;
2384
2385 return;
2386 }
2387
2388 /* Otherwise, storing into VAR must be handled specially
2389 by storing into a temporary and copying that into VAR
2390 with a new insn after this one. Note that this case
2391 will be used when storing into a promoted scalar since
2392 the insn will now have different modes on the input
2393 and output and hence will be invalid (except for the case
2394 of setting it to a constant, which does not need any
2395 change if it is valid). We generate extra code in that case,
2396 but combine.c will eliminate it. */
2397
2398 if (dest == var)
2399 {
2400 rtx temp;
2401 rtx fixeddest = SET_DEST (x);
2402
2403 /* STRICT_LOW_PART can be discarded, around a MEM. */
2404 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2405 fixeddest = XEXP (fixeddest, 0);
2406 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2407 if (GET_CODE (fixeddest) == SUBREG)
2408 {
2409 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2410 promoted_mode = GET_MODE (fixeddest);
2411 }
2412 else
2413 fixeddest = fixup_stack_1 (fixeddest, insn);
2414
2415 temp = gen_reg_rtx (promoted_mode);
2416
2417 emit_insn_after (gen_move_insn (fixeddest,
2418 gen_lowpart (GET_MODE (fixeddest),
2419 temp)),
2420 insn);
2421
2422 SET_DEST (x) = temp;
2423 }
2424 }
2425
2426 default:
2427 break;
2428 }
2429
2430 /* Nothing special about this RTX; fix its operands. */
2431
2432 fmt = GET_RTX_FORMAT (code);
2433 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2434 {
2435 if (fmt[i] == 'e')
2436 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2437 else if (fmt[i] == 'E')
2438 {
2439 register int j;
2440 for (j = 0; j < XVECLEN (x, i); j++)
2441 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2442 insn, replacements);
2443 }
2444 }
2445 }
2446 \f
2447 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2448 return an rtx (MEM:m1 newaddr) which is equivalent.
2449 If any insns must be emitted to compute NEWADDR, put them before INSN.
2450
2451 UNCRITICAL nonzero means accept paradoxical subregs.
2452 This is used for subregs found inside REG_NOTES. */
2453
2454 static rtx
2455 fixup_memory_subreg (x, insn, uncritical)
2456 rtx x;
2457 rtx insn;
2458 int uncritical;
2459 {
2460 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2461 rtx addr = XEXP (SUBREG_REG (x), 0);
2462 enum machine_mode mode = GET_MODE (x);
2463 rtx result;
2464
2465 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2466 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2467 && ! uncritical)
2468 abort ();
2469
2470 if (BYTES_BIG_ENDIAN)
2471 offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2472 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2473 addr = plus_constant (addr, offset);
2474 if (!flag_force_addr && memory_address_p (mode, addr))
2475 /* Shortcut if no insns need be emitted. */
2476 return change_address (SUBREG_REG (x), mode, addr);
2477 start_sequence ();
2478 result = change_address (SUBREG_REG (x), mode, addr);
2479 emit_insn_before (gen_sequence (), insn);
2480 end_sequence ();
2481 return result;
2482 }
2483
2484 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2485 Replace subexpressions of X in place.
2486 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2487 Otherwise return X, with its contents possibly altered.
2488
2489 If any insns must be emitted to compute NEWADDR, put them before INSN.
2490
2491 UNCRITICAL is as in fixup_memory_subreg. */
2492
2493 static rtx
2494 walk_fixup_memory_subreg (x, insn, uncritical)
2495 register rtx x;
2496 rtx insn;
2497 int uncritical;
2498 {
2499 register enum rtx_code code;
2500 register const char *fmt;
2501 register int i;
2502
2503 if (x == 0)
2504 return 0;
2505
2506 code = GET_CODE (x);
2507
2508 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2509 return fixup_memory_subreg (x, insn, uncritical);
2510
2511 /* Nothing special about this RTX; fix its operands. */
2512
2513 fmt = GET_RTX_FORMAT (code);
2514 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2515 {
2516 if (fmt[i] == 'e')
2517 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2518 else if (fmt[i] == 'E')
2519 {
2520 register int j;
2521 for (j = 0; j < XVECLEN (x, i); j++)
2522 XVECEXP (x, i, j)
2523 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2524 }
2525 }
2526 return x;
2527 }
2528 \f
2529 /* For each memory ref within X, if it refers to a stack slot
2530 with an out of range displacement, put the address in a temp register
2531 (emitting new insns before INSN to load these registers)
2532 and alter the memory ref to use that register.
2533 Replace each such MEM rtx with a copy, to avoid clobberage. */
2534
2535 static rtx
2536 fixup_stack_1 (x, insn)
2537 rtx x;
2538 rtx insn;
2539 {
2540 register int i;
2541 register RTX_CODE code = GET_CODE (x);
2542 register const char *fmt;
2543
2544 if (code == MEM)
2545 {
2546 register rtx ad = XEXP (x, 0);
2547 /* If we have address of a stack slot but it's not valid
2548 (displacement is too large), compute the sum in a register. */
2549 if (GET_CODE (ad) == PLUS
2550 && GET_CODE (XEXP (ad, 0)) == REG
2551 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2552 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2553 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2554 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2555 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2556 #endif
2557 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2558 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2559 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2560 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2561 {
2562 rtx temp, seq;
2563 if (memory_address_p (GET_MODE (x), ad))
2564 return x;
2565
2566 start_sequence ();
2567 temp = copy_to_reg (ad);
2568 seq = gen_sequence ();
2569 end_sequence ();
2570 emit_insn_before (seq, insn);
2571 return change_address (x, VOIDmode, temp);
2572 }
2573 return x;
2574 }
2575
2576 fmt = GET_RTX_FORMAT (code);
2577 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2578 {
2579 if (fmt[i] == 'e')
2580 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2581 else if (fmt[i] == 'E')
2582 {
2583 register int j;
2584 for (j = 0; j < XVECLEN (x, i); j++)
2585 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2586 }
2587 }
2588 return x;
2589 }
2590 \f
2591 /* Optimization: a bit-field instruction whose field
2592 happens to be a byte or halfword in memory
2593 can be changed to a move instruction.
2594
2595 We call here when INSN is an insn to examine or store into a bit-field.
2596 BODY is the SET-rtx to be altered.
2597
2598 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2599 (Currently this is called only from function.c, and EQUIV_MEM
2600 is always 0.) */
2601
2602 static void
2603 optimize_bit_field (body, insn, equiv_mem)
2604 rtx body;
2605 rtx insn;
2606 rtx *equiv_mem;
2607 {
2608 register rtx bitfield;
2609 int destflag;
2610 rtx seq = 0;
2611 enum machine_mode mode;
2612
2613 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2614 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2615 bitfield = SET_DEST (body), destflag = 1;
2616 else
2617 bitfield = SET_SRC (body), destflag = 0;
2618
2619 /* First check that the field being stored has constant size and position
2620 and is in fact a byte or halfword suitably aligned. */
2621
2622 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2623 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2624 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2625 != BLKmode)
2626 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2627 {
2628 register rtx memref = 0;
2629
2630 /* Now check that the containing word is memory, not a register,
2631 and that it is safe to change the machine mode. */
2632
2633 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2634 memref = XEXP (bitfield, 0);
2635 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2636 && equiv_mem != 0)
2637 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2638 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2639 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2640 memref = SUBREG_REG (XEXP (bitfield, 0));
2641 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2642 && equiv_mem != 0
2643 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2644 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2645
2646 if (memref
2647 && ! mode_dependent_address_p (XEXP (memref, 0))
2648 && ! MEM_VOLATILE_P (memref))
2649 {
2650 /* Now adjust the address, first for any subreg'ing
2651 that we are now getting rid of,
2652 and then for which byte of the word is wanted. */
2653
2654 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2655 rtx insns;
2656
2657 /* Adjust OFFSET to count bits from low-address byte. */
2658 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2659 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2660 - offset - INTVAL (XEXP (bitfield, 1)));
2661
2662 /* Adjust OFFSET to count bytes from low-address byte. */
2663 offset /= BITS_PER_UNIT;
2664 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2665 {
2666 offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
2667 if (BYTES_BIG_ENDIAN)
2668 offset -= (MIN (UNITS_PER_WORD,
2669 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2670 - MIN (UNITS_PER_WORD,
2671 GET_MODE_SIZE (GET_MODE (memref))));
2672 }
2673
2674 start_sequence ();
2675 memref = change_address (memref, mode,
2676 plus_constant (XEXP (memref, 0), offset));
2677 insns = get_insns ();
2678 end_sequence ();
2679 emit_insns_before (insns, insn);
2680
2681 /* Store this memory reference where
2682 we found the bit field reference. */
2683
2684 if (destflag)
2685 {
2686 validate_change (insn, &SET_DEST (body), memref, 1);
2687 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2688 {
2689 rtx src = SET_SRC (body);
2690 while (GET_CODE (src) == SUBREG
2691 && SUBREG_WORD (src) == 0)
2692 src = SUBREG_REG (src);
2693 if (GET_MODE (src) != GET_MODE (memref))
2694 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2695 validate_change (insn, &SET_SRC (body), src, 1);
2696 }
2697 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2698 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2699 /* This shouldn't happen because anything that didn't have
2700 one of these modes should have got converted explicitly
2701 and then referenced through a subreg.
2702 This is so because the original bit-field was
2703 handled by agg_mode and so its tree structure had
2704 the same mode that memref now has. */
2705 abort ();
2706 }
2707 else
2708 {
2709 rtx dest = SET_DEST (body);
2710
2711 while (GET_CODE (dest) == SUBREG
2712 && SUBREG_WORD (dest) == 0
2713 && (GET_MODE_CLASS (GET_MODE (dest))
2714 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2715 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2716 <= UNITS_PER_WORD))
2717 dest = SUBREG_REG (dest);
2718
2719 validate_change (insn, &SET_DEST (body), dest, 1);
2720
2721 if (GET_MODE (dest) == GET_MODE (memref))
2722 validate_change (insn, &SET_SRC (body), memref, 1);
2723 else
2724 {
2725 /* Convert the mem ref to the destination mode. */
2726 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2727
2728 start_sequence ();
2729 convert_move (newreg, memref,
2730 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2731 seq = get_insns ();
2732 end_sequence ();
2733
2734 validate_change (insn, &SET_SRC (body), newreg, 1);
2735 }
2736 }
2737
2738 /* See if we can convert this extraction or insertion into
2739 a simple move insn. We might not be able to do so if this
2740 was, for example, part of a PARALLEL.
2741
2742 If we succeed, write out any needed conversions. If we fail,
2743 it is hard to guess why we failed, so don't do anything
2744 special; just let the optimization be suppressed. */
2745
2746 if (apply_change_group () && seq)
2747 emit_insns_before (seq, insn);
2748 }
2749 }
2750 }
2751 \f
2752 /* These routines are responsible for converting virtual register references
2753 to the actual hard register references once RTL generation is complete.
2754
2755 The following four variables are used for communication between the
2756 routines. They contain the offsets of the virtual registers from their
2757 respective hard registers. */
2758
2759 static int in_arg_offset;
2760 static int var_offset;
2761 static int dynamic_offset;
2762 static int out_arg_offset;
2763 static int cfa_offset;
2764
2765 /* In most machines, the stack pointer register is equivalent to the bottom
2766 of the stack. */
2767
2768 #ifndef STACK_POINTER_OFFSET
2769 #define STACK_POINTER_OFFSET 0
2770 #endif
2771
2772 /* If not defined, pick an appropriate default for the offset of dynamically
2773 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2774 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2775
2776 #ifndef STACK_DYNAMIC_OFFSET
2777
2778 /* The bottom of the stack points to the actual arguments. If
2779 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2780 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2781 stack space for register parameters is not pushed by the caller, but
2782 rather part of the fixed stack areas and hence not included in
2783 `current_function_outgoing_args_size'. Nevertheless, we must allow
2784 for it when allocating stack dynamic objects. */
2785
2786 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2787 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2788 ((ACCUMULATE_OUTGOING_ARGS \
2789 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2790 + (STACK_POINTER_OFFSET)) \
2791
2792 #else
2793 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2794 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2795 + (STACK_POINTER_OFFSET))
2796 #endif
2797 #endif
2798
2799 /* On most machines, the CFA coincides with the first incoming parm. */
2800
2801 #ifndef ARG_POINTER_CFA_OFFSET
2802 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2803 #endif
2804
2805 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2806 its address taken. DECL is the decl for the object stored in the
2807 register, for later use if we do need to force REG into the stack.
2808 REG is overwritten by the MEM like in put_reg_into_stack. */
2809
2810 rtx
2811 gen_mem_addressof (reg, decl)
2812 rtx reg;
2813 tree decl;
2814 {
2815 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2816 REGNO (reg), decl);
2817
2818 /* If the original REG was a user-variable, then so is the REG whose
2819 address is being taken. Likewise for unchanging. */
2820 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2821 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2822
2823 PUT_CODE (reg, MEM);
2824 XEXP (reg, 0) = r;
2825 if (decl)
2826 {
2827 tree type = TREE_TYPE (decl);
2828
2829 PUT_MODE (reg, DECL_MODE (decl));
2830 MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
2831 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type));
2832 MEM_ALIAS_SET (reg) = get_alias_set (decl);
2833
2834 if (TREE_USED (decl) || DECL_INITIAL (decl) != 0)
2835 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), 0);
2836 }
2837 else
2838 {
2839 /* We have no alias information about this newly created MEM. */
2840 MEM_ALIAS_SET (reg) = 0;
2841
2842 fixup_var_refs (reg, GET_MODE (reg), 0, 0);
2843 }
2844
2845 return reg;
2846 }
2847
2848 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2849
2850 void
2851 flush_addressof (decl)
2852 tree decl;
2853 {
2854 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2855 && DECL_RTL (decl) != 0
2856 && GET_CODE (DECL_RTL (decl)) == MEM
2857 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2858 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2859 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2860 }
2861
2862 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2863
2864 static void
2865 put_addressof_into_stack (r, ht)
2866 rtx r;
2867 struct hash_table *ht;
2868 {
2869 tree decl, type;
2870 int volatile_p, used_p;
2871
2872 rtx reg = XEXP (r, 0);
2873
2874 if (GET_CODE (reg) != REG)
2875 abort ();
2876
2877 decl = ADDRESSOF_DECL (r);
2878 if (decl)
2879 {
2880 type = TREE_TYPE (decl);
2881 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2882 && TREE_THIS_VOLATILE (decl));
2883 used_p = (TREE_USED (decl)
2884 || (TREE_CODE (decl) != SAVE_EXPR
2885 && DECL_INITIAL (decl) != 0));
2886 }
2887 else
2888 {
2889 type = NULL_TREE;
2890 volatile_p = 0;
2891 used_p = 1;
2892 }
2893
2894 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2895 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2896 }
2897
2898 /* List of replacements made below in purge_addressof_1 when creating
2899 bitfield insertions. */
2900 static rtx purge_bitfield_addressof_replacements;
2901
2902 /* List of replacements made below in purge_addressof_1 for patterns
2903 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2904 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2905 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2906 enough in complex cases, e.g. when some field values can be
2907 extracted by usage MEM with narrower mode. */
2908 static rtx purge_addressof_replacements;
2909
2910 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2911 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2912 the stack. If the function returns FALSE then the replacement could not
2913 be made. */
2914
2915 static boolean
2916 purge_addressof_1 (loc, insn, force, store, ht)
2917 rtx *loc;
2918 rtx insn;
2919 int force, store;
2920 struct hash_table *ht;
2921 {
2922 rtx x;
2923 RTX_CODE code;
2924 int i, j;
2925 const char *fmt;
2926 boolean result = true;
2927
2928 /* Re-start here to avoid recursion in common cases. */
2929 restart:
2930
2931 x = *loc;
2932 if (x == 0)
2933 return true;
2934
2935 code = GET_CODE (x);
2936
2937 /* If we don't return in any of the cases below, we will recurse inside
2938 the RTX, which will normally result in any ADDRESSOF being forced into
2939 memory. */
2940 if (code == SET)
2941 {
2942 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
2943 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
2944 return result;
2945 }
2946
2947 else if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM)
2948 {
2949 /* We must create a copy of the rtx because it was created by
2950 overwriting a REG rtx which is always shared. */
2951 rtx sub = copy_rtx (XEXP (XEXP (x, 0), 0));
2952 rtx insns;
2953
2954 if (validate_change (insn, loc, sub, 0)
2955 || validate_replace_rtx (x, sub, insn))
2956 return true;
2957
2958 start_sequence ();
2959 sub = force_operand (sub, NULL_RTX);
2960 if (! validate_change (insn, loc, sub, 0)
2961 && ! validate_replace_rtx (x, sub, insn))
2962 abort ();
2963
2964 insns = gen_sequence ();
2965 end_sequence ();
2966 emit_insn_before (insns, insn);
2967 return true;
2968 }
2969
2970 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
2971 {
2972 rtx sub = XEXP (XEXP (x, 0), 0);
2973 rtx sub2;
2974
2975 if (GET_CODE (sub) == MEM)
2976 {
2977 sub2 = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0)));
2978 MEM_COPY_ATTRIBUTES (sub2, sub);
2979 sub = sub2;
2980 }
2981 else if (GET_CODE (sub) == REG
2982 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2983 ;
2984 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
2985 {
2986 int size_x, size_sub;
2987
2988 if (!insn)
2989 {
2990 /* When processing REG_NOTES look at the list of
2991 replacements done on the insn to find the register that X
2992 was replaced by. */
2993 rtx tem;
2994
2995 for (tem = purge_bitfield_addressof_replacements;
2996 tem != NULL_RTX;
2997 tem = XEXP (XEXP (tem, 1), 1))
2998 if (rtx_equal_p (x, XEXP (tem, 0)))
2999 {
3000 *loc = XEXP (XEXP (tem, 1), 0);
3001 return true;
3002 }
3003
3004 /* See comment for purge_addressof_replacements. */
3005 for (tem = purge_addressof_replacements;
3006 tem != NULL_RTX;
3007 tem = XEXP (XEXP (tem, 1), 1))
3008 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3009 {
3010 rtx z = XEXP (XEXP (tem, 1), 0);
3011
3012 if (GET_MODE (x) == GET_MODE (z)
3013 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3014 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3015 abort ();
3016
3017 /* It can happen that the note may speak of things
3018 in a wider (or just different) mode than the
3019 code did. This is especially true of
3020 REG_RETVAL. */
3021
3022 if (GET_CODE (z) == SUBREG && SUBREG_WORD (z) == 0)
3023 z = SUBREG_REG (z);
3024
3025 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3026 && (GET_MODE_SIZE (GET_MODE (x))
3027 > GET_MODE_SIZE (GET_MODE (z))))
3028 {
3029 /* This can occur as a result in invalid
3030 pointer casts, e.g. float f; ...
3031 *(long long int *)&f.
3032 ??? We could emit a warning here, but
3033 without a line number that wouldn't be
3034 very helpful. */
3035 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3036 }
3037 else
3038 z = gen_lowpart (GET_MODE (x), z);
3039
3040 *loc = z;
3041 return true;
3042 }
3043
3044 /* Sometimes we may not be able to find the replacement. For
3045 example when the original insn was a MEM in a wider mode,
3046 and the note is part of a sign extension of a narrowed
3047 version of that MEM. Gcc testcase compile/990829-1.c can
3048 generate an example of this siutation. Rather than complain
3049 we return false, which will prompt our caller to remove the
3050 offending note. */
3051 return false;
3052 }
3053
3054 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3055 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3056
3057 /* Don't even consider working with paradoxical subregs,
3058 or the moral equivalent seen here. */
3059 if (size_x <= size_sub
3060 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3061 {
3062 /* Do a bitfield insertion to mirror what would happen
3063 in memory. */
3064
3065 rtx val, seq;
3066
3067 if (store)
3068 {
3069 rtx p = PREV_INSN (insn);
3070
3071 start_sequence ();
3072 val = gen_reg_rtx (GET_MODE (x));
3073 if (! validate_change (insn, loc, val, 0))
3074 {
3075 /* Discard the current sequence and put the
3076 ADDRESSOF on stack. */
3077 end_sequence ();
3078 goto give_up;
3079 }
3080 seq = gen_sequence ();
3081 end_sequence ();
3082 emit_insn_before (seq, insn);
3083 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3084 insn, ht);
3085
3086 start_sequence ();
3087 store_bit_field (sub, size_x, 0, GET_MODE (x),
3088 val, GET_MODE_SIZE (GET_MODE (sub)),
3089 GET_MODE_ALIGNMENT (GET_MODE (sub)));
3090
3091 /* Make sure to unshare any shared rtl that store_bit_field
3092 might have created. */
3093 unshare_all_rtl_again (get_insns ());
3094
3095 seq = gen_sequence ();
3096 end_sequence ();
3097 p = emit_insn_after (seq, insn);
3098 if (NEXT_INSN (insn))
3099 compute_insns_for_mem (NEXT_INSN (insn),
3100 p ? NEXT_INSN (p) : NULL_RTX,
3101 ht);
3102 }
3103 else
3104 {
3105 rtx p = PREV_INSN (insn);
3106
3107 start_sequence ();
3108 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3109 GET_MODE (x), GET_MODE (x),
3110 GET_MODE_SIZE (GET_MODE (sub)),
3111 GET_MODE_SIZE (GET_MODE (sub)));
3112
3113 if (! validate_change (insn, loc, val, 0))
3114 {
3115 /* Discard the current sequence and put the
3116 ADDRESSOF on stack. */
3117 end_sequence ();
3118 goto give_up;
3119 }
3120
3121 seq = gen_sequence ();
3122 end_sequence ();
3123 emit_insn_before (seq, insn);
3124 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3125 insn, ht);
3126 }
3127
3128 /* Remember the replacement so that the same one can be done
3129 on the REG_NOTES. */
3130 purge_bitfield_addressof_replacements
3131 = gen_rtx_EXPR_LIST (VOIDmode, x,
3132 gen_rtx_EXPR_LIST
3133 (VOIDmode, val,
3134 purge_bitfield_addressof_replacements));
3135
3136 /* We replaced with a reg -- all done. */
3137 return true;
3138 }
3139 }
3140
3141 else if (validate_change (insn, loc, sub, 0))
3142 {
3143 /* Remember the replacement so that the same one can be done
3144 on the REG_NOTES. */
3145 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3146 {
3147 rtx tem;
3148
3149 for (tem = purge_addressof_replacements;
3150 tem != NULL_RTX;
3151 tem = XEXP (XEXP (tem, 1), 1))
3152 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3153 {
3154 XEXP (XEXP (tem, 1), 0) = sub;
3155 return true;
3156 }
3157 purge_addressof_replacements
3158 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3159 gen_rtx_EXPR_LIST (VOIDmode, sub,
3160 purge_addressof_replacements));
3161 return true;
3162 }
3163 goto restart;
3164 }
3165 give_up:;
3166 /* else give up and put it into the stack */
3167 }
3168
3169 else if (code == ADDRESSOF)
3170 {
3171 put_addressof_into_stack (x, ht);
3172 return true;
3173 }
3174 else if (code == SET)
3175 {
3176 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
3177 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
3178 return result;
3179 }
3180
3181 /* Scan all subexpressions. */
3182 fmt = GET_RTX_FORMAT (code);
3183 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3184 {
3185 if (*fmt == 'e')
3186 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3187 else if (*fmt == 'E')
3188 for (j = 0; j < XVECLEN (x, i); j++)
3189 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3190 }
3191
3192 return result;
3193 }
3194
3195 /* Return a new hash table entry in HT. */
3196
3197 static struct hash_entry *
3198 insns_for_mem_newfunc (he, ht, k)
3199 struct hash_entry *he;
3200 struct hash_table *ht;
3201 hash_table_key k ATTRIBUTE_UNUSED;
3202 {
3203 struct insns_for_mem_entry *ifmhe;
3204 if (he)
3205 return he;
3206
3207 ifmhe = ((struct insns_for_mem_entry *)
3208 hash_allocate (ht, sizeof (struct insns_for_mem_entry)));
3209 ifmhe->insns = NULL_RTX;
3210
3211 return &ifmhe->he;
3212 }
3213
3214 /* Return a hash value for K, a REG. */
3215
3216 static unsigned long
3217 insns_for_mem_hash (k)
3218 hash_table_key k;
3219 {
3220 /* K is really a RTX. Just use the address as the hash value. */
3221 return (unsigned long) k;
3222 }
3223
3224 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3225
3226 static boolean
3227 insns_for_mem_comp (k1, k2)
3228 hash_table_key k1;
3229 hash_table_key k2;
3230 {
3231 return k1 == k2;
3232 }
3233
3234 struct insns_for_mem_walk_info {
3235 /* The hash table that we are using to record which INSNs use which
3236 MEMs. */
3237 struct hash_table *ht;
3238
3239 /* The INSN we are currently proessing. */
3240 rtx insn;
3241
3242 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3243 to find the insns that use the REGs in the ADDRESSOFs. */
3244 int pass;
3245 };
3246
3247 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3248 that might be used in an ADDRESSOF expression, record this INSN in
3249 the hash table given by DATA (which is really a pointer to an
3250 insns_for_mem_walk_info structure). */
3251
3252 static int
3253 insns_for_mem_walk (r, data)
3254 rtx *r;
3255 void *data;
3256 {
3257 struct insns_for_mem_walk_info *ifmwi
3258 = (struct insns_for_mem_walk_info *) data;
3259
3260 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3261 && GET_CODE (XEXP (*r, 0)) == REG)
3262 hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0);
3263 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3264 {
3265 /* Lookup this MEM in the hashtable, creating it if necessary. */
3266 struct insns_for_mem_entry *ifme
3267 = (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht,
3268 *r,
3269 /*create=*/0,
3270 /*copy=*/0);
3271
3272 /* If we have not already recorded this INSN, do so now. Since
3273 we process the INSNs in order, we know that if we have
3274 recorded it it must be at the front of the list. */
3275 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3276 {
3277 /* We do the allocation on the same obstack as is used for
3278 the hash table since this memory will not be used once
3279 the hash table is deallocated. */
3280 push_obstacks (&ifmwi->ht->memory, &ifmwi->ht->memory);
3281 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3282 ifme->insns);
3283 pop_obstacks ();
3284 }
3285 }
3286
3287 return 0;
3288 }
3289
3290 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3291 which REGs in HT. */
3292
3293 static void
3294 compute_insns_for_mem (insns, last_insn, ht)
3295 rtx insns;
3296 rtx last_insn;
3297 struct hash_table *ht;
3298 {
3299 rtx insn;
3300 struct insns_for_mem_walk_info ifmwi;
3301 ifmwi.ht = ht;
3302
3303 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3304 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3305 if (INSN_P (insn))
3306 {
3307 ifmwi.insn = insn;
3308 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3309 }
3310 }
3311
3312 /* Helper function for purge_addressof called through for_each_rtx.
3313 Returns true iff the rtl is an ADDRESSOF. */
3314 static int
3315 is_addressof (rtl, data)
3316 rtx *rtl;
3317 void *data ATTRIBUTE_UNUSED;
3318 {
3319 return GET_CODE (*rtl) == ADDRESSOF;
3320 }
3321
3322 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3323 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3324 stack. */
3325
3326 void
3327 purge_addressof (insns)
3328 rtx insns;
3329 {
3330 rtx insn;
3331 struct hash_table ht;
3332
3333 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3334 requires a fixup pass over the instruction stream to correct
3335 INSNs that depended on the REG being a REG, and not a MEM. But,
3336 these fixup passes are slow. Furthermore, most MEMs are not
3337 mentioned in very many instructions. So, we speed up the process
3338 by pre-calculating which REGs occur in which INSNs; that allows
3339 us to perform the fixup passes much more quickly. */
3340 hash_table_init (&ht,
3341 insns_for_mem_newfunc,
3342 insns_for_mem_hash,
3343 insns_for_mem_comp);
3344 compute_insns_for_mem (insns, NULL_RTX, &ht);
3345
3346 for (insn = insns; insn; insn = NEXT_INSN (insn))
3347 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3348 || GET_CODE (insn) == CALL_INSN)
3349 {
3350 if (! purge_addressof_1 (&PATTERN (insn), insn,
3351 asm_noperands (PATTERN (insn)) > 0, 0, &ht))
3352 /* If we could not replace the ADDRESSOFs in the insn,
3353 something is wrong. */
3354 abort ();
3355
3356 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, &ht))
3357 {
3358 /* If we could not replace the ADDRESSOFs in the insn's notes,
3359 we can just remove the offending notes instead. */
3360 rtx note;
3361
3362 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3363 {
3364 /* If we find a REG_RETVAL note then the insn is a libcall.
3365 Such insns must have REG_EQUAL notes as well, in order
3366 for later passes of the compiler to work. So it is not
3367 safe to delete the notes here, and instead we abort. */
3368 if (REG_NOTE_KIND (note) == REG_RETVAL)
3369 abort ();
3370 if (for_each_rtx (&note, is_addressof, NULL))
3371 remove_note (insn, note);
3372 }
3373 }
3374 }
3375
3376 /* Clean up. */
3377 hash_table_free (&ht);
3378 purge_bitfield_addressof_replacements = 0;
3379 purge_addressof_replacements = 0;
3380
3381 /* REGs are shared. purge_addressof will destructively replace a REG
3382 with a MEM, which creates shared MEMs.
3383
3384 Unfortunately, the children of put_reg_into_stack assume that MEMs
3385 referring to the same stack slot are shared (fixup_var_refs and
3386 the associated hash table code).
3387
3388 So, we have to do another unsharing pass after we have flushed any
3389 REGs that had their address taken into the stack.
3390
3391 It may be worth tracking whether or not we converted any REGs into
3392 MEMs to avoid this overhead when it is not needed. */
3393 unshare_all_rtl_again (get_insns ());
3394 }
3395 \f
3396 /* Pass through the INSNS of function FNDECL and convert virtual register
3397 references to hard register references. */
3398
3399 void
3400 instantiate_virtual_regs (fndecl, insns)
3401 tree fndecl;
3402 rtx insns;
3403 {
3404 rtx insn;
3405 unsigned int i;
3406
3407 /* Compute the offsets to use for this function. */
3408 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3409 var_offset = STARTING_FRAME_OFFSET;
3410 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3411 out_arg_offset = STACK_POINTER_OFFSET;
3412 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3413
3414 /* Scan all variables and parameters of this function. For each that is
3415 in memory, instantiate all virtual registers if the result is a valid
3416 address. If not, we do it later. That will handle most uses of virtual
3417 regs on many machines. */
3418 instantiate_decls (fndecl, 1);
3419
3420 /* Initialize recognition, indicating that volatile is OK. */
3421 init_recog ();
3422
3423 /* Scan through all the insns, instantiating every virtual register still
3424 present. */
3425 for (insn = insns; insn; insn = NEXT_INSN (insn))
3426 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3427 || GET_CODE (insn) == CALL_INSN)
3428 {
3429 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3430 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3431 }
3432
3433 /* Instantiate the stack slots for the parm registers, for later use in
3434 addressof elimination. */
3435 for (i = 0; i < max_parm_reg; ++i)
3436 if (parm_reg_stack_loc[i])
3437 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3438
3439 /* Now instantiate the remaining register equivalences for debugging info.
3440 These will not be valid addresses. */
3441 instantiate_decls (fndecl, 0);
3442
3443 /* Indicate that, from now on, assign_stack_local should use
3444 frame_pointer_rtx. */
3445 virtuals_instantiated = 1;
3446 }
3447
3448 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3449 all virtual registers in their DECL_RTL's.
3450
3451 If VALID_ONLY, do this only if the resulting address is still valid.
3452 Otherwise, always do it. */
3453
3454 static void
3455 instantiate_decls (fndecl, valid_only)
3456 tree fndecl;
3457 int valid_only;
3458 {
3459 tree decl;
3460
3461 if (DECL_SAVED_INSNS (fndecl))
3462 /* When compiling an inline function, the obstack used for
3463 rtl allocation is the maybepermanent_obstack. Calling
3464 `resume_temporary_allocation' switches us back to that
3465 obstack while we process this function's parameters. */
3466 resume_temporary_allocation ();
3467
3468 /* Process all parameters of the function. */
3469 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3470 {
3471 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3472
3473 instantiate_decl (DECL_RTL (decl), size, valid_only);
3474
3475 /* If the parameter was promoted, then the incoming RTL mode may be
3476 larger than the declared type size. We must use the larger of
3477 the two sizes. */
3478 size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size);
3479 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3480 }
3481
3482 /* Now process all variables defined in the function or its subblocks. */
3483 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3484
3485 if (DECL_INLINE (fndecl) || DECL_DEFER_OUTPUT (fndecl))
3486 {
3487 /* Save all rtl allocated for this function by raising the
3488 high-water mark on the maybepermanent_obstack. */
3489 preserve_data ();
3490 /* All further rtl allocation is now done in the current_obstack. */
3491 rtl_in_current_obstack ();
3492 }
3493 }
3494
3495 /* Subroutine of instantiate_decls: Process all decls in the given
3496 BLOCK node and all its subblocks. */
3497
3498 static void
3499 instantiate_decls_1 (let, valid_only)
3500 tree let;
3501 int valid_only;
3502 {
3503 tree t;
3504
3505 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3506 instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)),
3507 valid_only);
3508
3509 /* Process all subblocks. */
3510 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3511 instantiate_decls_1 (t, valid_only);
3512 }
3513
3514 /* Subroutine of the preceding procedures: Given RTL representing a
3515 decl and the size of the object, do any instantiation required.
3516
3517 If VALID_ONLY is non-zero, it means that the RTL should only be
3518 changed if the new address is valid. */
3519
3520 static void
3521 instantiate_decl (x, size, valid_only)
3522 rtx x;
3523 HOST_WIDE_INT size;
3524 int valid_only;
3525 {
3526 enum machine_mode mode;
3527 rtx addr;
3528
3529 /* If this is not a MEM, no need to do anything. Similarly if the
3530 address is a constant or a register that is not a virtual register. */
3531
3532 if (x == 0 || GET_CODE (x) != MEM)
3533 return;
3534
3535 addr = XEXP (x, 0);
3536 if (CONSTANT_P (addr)
3537 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3538 || (GET_CODE (addr) == REG
3539 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3540 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3541 return;
3542
3543 /* If we should only do this if the address is valid, copy the address.
3544 We need to do this so we can undo any changes that might make the
3545 address invalid. This copy is unfortunate, but probably can't be
3546 avoided. */
3547
3548 if (valid_only)
3549 addr = copy_rtx (addr);
3550
3551 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3552
3553 if (valid_only && size >= 0)
3554 {
3555 unsigned HOST_WIDE_INT decl_size = size;
3556
3557 /* Now verify that the resulting address is valid for every integer or
3558 floating-point mode up to and including SIZE bytes long. We do this
3559 since the object might be accessed in any mode and frame addresses
3560 are shared. */
3561
3562 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3563 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3564 mode = GET_MODE_WIDER_MODE (mode))
3565 if (! memory_address_p (mode, addr))
3566 return;
3567
3568 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3569 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3570 mode = GET_MODE_WIDER_MODE (mode))
3571 if (! memory_address_p (mode, addr))
3572 return;
3573 }
3574
3575 /* Put back the address now that we have updated it and we either know
3576 it is valid or we don't care whether it is valid. */
3577
3578 XEXP (x, 0) = addr;
3579 }
3580 \f
3581 /* Given a pointer to a piece of rtx and an optional pointer to the
3582 containing object, instantiate any virtual registers present in it.
3583
3584 If EXTRA_INSNS, we always do the replacement and generate
3585 any extra insns before OBJECT. If it zero, we do nothing if replacement
3586 is not valid.
3587
3588 Return 1 if we either had nothing to do or if we were able to do the
3589 needed replacement. Return 0 otherwise; we only return zero if
3590 EXTRA_INSNS is zero.
3591
3592 We first try some simple transformations to avoid the creation of extra
3593 pseudos. */
3594
3595 static int
3596 instantiate_virtual_regs_1 (loc, object, extra_insns)
3597 rtx *loc;
3598 rtx object;
3599 int extra_insns;
3600 {
3601 rtx x;
3602 RTX_CODE code;
3603 rtx new = 0;
3604 HOST_WIDE_INT offset = 0;
3605 rtx temp;
3606 rtx seq;
3607 int i, j;
3608 const char *fmt;
3609
3610 /* Re-start here to avoid recursion in common cases. */
3611 restart:
3612
3613 x = *loc;
3614 if (x == 0)
3615 return 1;
3616
3617 code = GET_CODE (x);
3618
3619 /* Check for some special cases. */
3620 switch (code)
3621 {
3622 case CONST_INT:
3623 case CONST_DOUBLE:
3624 case CONST:
3625 case SYMBOL_REF:
3626 case CODE_LABEL:
3627 case PC:
3628 case CC0:
3629 case ASM_INPUT:
3630 case ADDR_VEC:
3631 case ADDR_DIFF_VEC:
3632 case RETURN:
3633 return 1;
3634
3635 case SET:
3636 /* We are allowed to set the virtual registers. This means that
3637 the actual register should receive the source minus the
3638 appropriate offset. This is used, for example, in the handling
3639 of non-local gotos. */
3640 if (SET_DEST (x) == virtual_incoming_args_rtx)
3641 new = arg_pointer_rtx, offset = -in_arg_offset;
3642 else if (SET_DEST (x) == virtual_stack_vars_rtx)
3643 new = frame_pointer_rtx, offset = -var_offset;
3644 else if (SET_DEST (x) == virtual_stack_dynamic_rtx)
3645 new = stack_pointer_rtx, offset = -dynamic_offset;
3646 else if (SET_DEST (x) == virtual_outgoing_args_rtx)
3647 new = stack_pointer_rtx, offset = -out_arg_offset;
3648 else if (SET_DEST (x) == virtual_cfa_rtx)
3649 new = arg_pointer_rtx, offset = -cfa_offset;
3650
3651 if (new)
3652 {
3653 rtx src = SET_SRC (x);
3654
3655 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3656
3657 /* The only valid sources here are PLUS or REG. Just do
3658 the simplest possible thing to handle them. */
3659 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3660 abort ();
3661
3662 start_sequence ();
3663 if (GET_CODE (src) != REG)
3664 temp = force_operand (src, NULL_RTX);
3665 else
3666 temp = src;
3667 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3668 seq = get_insns ();
3669 end_sequence ();
3670
3671 emit_insns_before (seq, object);
3672 SET_DEST (x) = new;
3673
3674 if (! validate_change (object, &SET_SRC (x), temp, 0)
3675 || ! extra_insns)
3676 abort ();
3677
3678 return 1;
3679 }
3680
3681 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3682 loc = &SET_SRC (x);
3683 goto restart;
3684
3685 case PLUS:
3686 /* Handle special case of virtual register plus constant. */
3687 if (CONSTANT_P (XEXP (x, 1)))
3688 {
3689 rtx old, new_offset;
3690
3691 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3692 if (GET_CODE (XEXP (x, 0)) == PLUS)
3693 {
3694 rtx inner = XEXP (XEXP (x, 0), 0);
3695
3696 if (inner == virtual_incoming_args_rtx)
3697 new = arg_pointer_rtx, offset = in_arg_offset;
3698 else if (inner == virtual_stack_vars_rtx)
3699 new = frame_pointer_rtx, offset = var_offset;
3700 else if (inner == virtual_stack_dynamic_rtx)
3701 new = stack_pointer_rtx, offset = dynamic_offset;
3702 else if (inner == virtual_outgoing_args_rtx)
3703 new = stack_pointer_rtx, offset = out_arg_offset;
3704 else if (inner == virtual_cfa_rtx)
3705 new = arg_pointer_rtx, offset = cfa_offset;
3706 else
3707 {
3708 loc = &XEXP (x, 0);
3709 goto restart;
3710 }
3711
3712 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3713 extra_insns);
3714 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3715 }
3716
3717 else if (XEXP (x, 0) == virtual_incoming_args_rtx)
3718 new = arg_pointer_rtx, offset = in_arg_offset;
3719 else if (XEXP (x, 0) == virtual_stack_vars_rtx)
3720 new = frame_pointer_rtx, offset = var_offset;
3721 else if (XEXP (x, 0) == virtual_stack_dynamic_rtx)
3722 new = stack_pointer_rtx, offset = dynamic_offset;
3723 else if (XEXP (x, 0) == virtual_outgoing_args_rtx)
3724 new = stack_pointer_rtx, offset = out_arg_offset;
3725 else if (XEXP (x, 0) == virtual_cfa_rtx)
3726 new = arg_pointer_rtx, offset = cfa_offset;
3727 else
3728 {
3729 /* We know the second operand is a constant. Unless the
3730 first operand is a REG (which has been already checked),
3731 it needs to be checked. */
3732 if (GET_CODE (XEXP (x, 0)) != REG)
3733 {
3734 loc = &XEXP (x, 0);
3735 goto restart;
3736 }
3737 return 1;
3738 }
3739
3740 new_offset = plus_constant (XEXP (x, 1), offset);
3741
3742 /* If the new constant is zero, try to replace the sum with just
3743 the register. */
3744 if (new_offset == const0_rtx
3745 && validate_change (object, loc, new, 0))
3746 return 1;
3747
3748 /* Next try to replace the register and new offset.
3749 There are two changes to validate here and we can't assume that
3750 in the case of old offset equals new just changing the register
3751 will yield a valid insn. In the interests of a little efficiency,
3752 however, we only call validate change once (we don't queue up the
3753 changes and then call apply_change_group). */
3754
3755 old = XEXP (x, 0);
3756 if (offset == 0
3757 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3758 : (XEXP (x, 0) = new,
3759 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3760 {
3761 if (! extra_insns)
3762 {
3763 XEXP (x, 0) = old;
3764 return 0;
3765 }
3766
3767 /* Otherwise copy the new constant into a register and replace
3768 constant with that register. */
3769 temp = gen_reg_rtx (Pmode);
3770 XEXP (x, 0) = new;
3771 if (validate_change (object, &XEXP (x, 1), temp, 0))
3772 emit_insn_before (gen_move_insn (temp, new_offset), object);
3773 else
3774 {
3775 /* If that didn't work, replace this expression with a
3776 register containing the sum. */
3777
3778 XEXP (x, 0) = old;
3779 new = gen_rtx_PLUS (Pmode, new, new_offset);
3780
3781 start_sequence ();
3782 temp = force_operand (new, NULL_RTX);
3783 seq = get_insns ();
3784 end_sequence ();
3785
3786 emit_insns_before (seq, object);
3787 if (! validate_change (object, loc, temp, 0)
3788 && ! validate_replace_rtx (x, temp, object))
3789 abort ();
3790 }
3791 }
3792
3793 return 1;
3794 }
3795
3796 /* Fall through to generic two-operand expression case. */
3797 case EXPR_LIST:
3798 case CALL:
3799 case COMPARE:
3800 case MINUS:
3801 case MULT:
3802 case DIV: case UDIV:
3803 case MOD: case UMOD:
3804 case AND: case IOR: case XOR:
3805 case ROTATERT: case ROTATE:
3806 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3807 case NE: case EQ:
3808 case GE: case GT: case GEU: case GTU:
3809 case LE: case LT: case LEU: case LTU:
3810 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3811 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3812 loc = &XEXP (x, 0);
3813 goto restart;
3814
3815 case MEM:
3816 /* Most cases of MEM that convert to valid addresses have already been
3817 handled by our scan of decls. The only special handling we
3818 need here is to make a copy of the rtx to ensure it isn't being
3819 shared if we have to change it to a pseudo.
3820
3821 If the rtx is a simple reference to an address via a virtual register,
3822 it can potentially be shared. In such cases, first try to make it
3823 a valid address, which can also be shared. Otherwise, copy it and
3824 proceed normally.
3825
3826 First check for common cases that need no processing. These are
3827 usually due to instantiation already being done on a previous instance
3828 of a shared rtx. */
3829
3830 temp = XEXP (x, 0);
3831 if (CONSTANT_ADDRESS_P (temp)
3832 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3833 || temp == arg_pointer_rtx
3834 #endif
3835 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3836 || temp == hard_frame_pointer_rtx
3837 #endif
3838 || temp == frame_pointer_rtx)
3839 return 1;
3840
3841 if (GET_CODE (temp) == PLUS
3842 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3843 && (XEXP (temp, 0) == frame_pointer_rtx
3844 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3845 || XEXP (temp, 0) == hard_frame_pointer_rtx
3846 #endif
3847 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3848 || XEXP (temp, 0) == arg_pointer_rtx
3849 #endif
3850 ))
3851 return 1;
3852
3853 if (temp == virtual_stack_vars_rtx
3854 || temp == virtual_incoming_args_rtx
3855 || (GET_CODE (temp) == PLUS
3856 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3857 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3858 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3859 {
3860 /* This MEM may be shared. If the substitution can be done without
3861 the need to generate new pseudos, we want to do it in place
3862 so all copies of the shared rtx benefit. The call below will
3863 only make substitutions if the resulting address is still
3864 valid.
3865
3866 Note that we cannot pass X as the object in the recursive call
3867 since the insn being processed may not allow all valid
3868 addresses. However, if we were not passed on object, we can
3869 only modify X without copying it if X will have a valid
3870 address.
3871
3872 ??? Also note that this can still lose if OBJECT is an insn that
3873 has less restrictions on an address that some other insn.
3874 In that case, we will modify the shared address. This case
3875 doesn't seem very likely, though. One case where this could
3876 happen is in the case of a USE or CLOBBER reference, but we
3877 take care of that below. */
3878
3879 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
3880 object ? object : x, 0))
3881 return 1;
3882
3883 /* Otherwise make a copy and process that copy. We copy the entire
3884 RTL expression since it might be a PLUS which could also be
3885 shared. */
3886 *loc = x = copy_rtx (x);
3887 }
3888
3889 /* Fall through to generic unary operation case. */
3890 case SUBREG:
3891 case STRICT_LOW_PART:
3892 case NEG: case NOT:
3893 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
3894 case SIGN_EXTEND: case ZERO_EXTEND:
3895 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3896 case FLOAT: case FIX:
3897 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3898 case ABS:
3899 case SQRT:
3900 case FFS:
3901 /* These case either have just one operand or we know that we need not
3902 check the rest of the operands. */
3903 loc = &XEXP (x, 0);
3904 goto restart;
3905
3906 case USE:
3907 case CLOBBER:
3908 /* If the operand is a MEM, see if the change is a valid MEM. If not,
3909 go ahead and make the invalid one, but do it to a copy. For a REG,
3910 just make the recursive call, since there's no chance of a problem. */
3911
3912 if ((GET_CODE (XEXP (x, 0)) == MEM
3913 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
3914 0))
3915 || (GET_CODE (XEXP (x, 0)) == REG
3916 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
3917 return 1;
3918
3919 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
3920 loc = &XEXP (x, 0);
3921 goto restart;
3922
3923 case REG:
3924 /* Try to replace with a PLUS. If that doesn't work, compute the sum
3925 in front of this insn and substitute the temporary. */
3926 if (x == virtual_incoming_args_rtx)
3927 new = arg_pointer_rtx, offset = in_arg_offset;
3928 else if (x == virtual_stack_vars_rtx)
3929 new = frame_pointer_rtx, offset = var_offset;
3930 else if (x == virtual_stack_dynamic_rtx)
3931 new = stack_pointer_rtx, offset = dynamic_offset;
3932 else if (x == virtual_outgoing_args_rtx)
3933 new = stack_pointer_rtx, offset = out_arg_offset;
3934 else if (x == virtual_cfa_rtx)
3935 new = arg_pointer_rtx, offset = cfa_offset;
3936
3937 if (new)
3938 {
3939 temp = plus_constant (new, offset);
3940 if (!validate_change (object, loc, temp, 0))
3941 {
3942 if (! extra_insns)
3943 return 0;
3944
3945 start_sequence ();
3946 temp = force_operand (temp, NULL_RTX);
3947 seq = get_insns ();
3948 end_sequence ();
3949
3950 emit_insns_before (seq, object);
3951 if (! validate_change (object, loc, temp, 0)
3952 && ! validate_replace_rtx (x, temp, object))
3953 abort ();
3954 }
3955 }
3956
3957 return 1;
3958
3959 case ADDRESSOF:
3960 if (GET_CODE (XEXP (x, 0)) == REG)
3961 return 1;
3962
3963 else if (GET_CODE (XEXP (x, 0)) == MEM)
3964 {
3965 /* If we have a (addressof (mem ..)), do any instantiation inside
3966 since we know we'll be making the inside valid when we finally
3967 remove the ADDRESSOF. */
3968 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
3969 return 1;
3970 }
3971 break;
3972
3973 default:
3974 break;
3975 }
3976
3977 /* Scan all subexpressions. */
3978 fmt = GET_RTX_FORMAT (code);
3979 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3980 if (*fmt == 'e')
3981 {
3982 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
3983 return 0;
3984 }
3985 else if (*fmt == 'E')
3986 for (j = 0; j < XVECLEN (x, i); j++)
3987 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
3988 extra_insns))
3989 return 0;
3990
3991 return 1;
3992 }
3993 \f
3994 /* Optimization: assuming this function does not receive nonlocal gotos,
3995 delete the handlers for such, as well as the insns to establish
3996 and disestablish them. */
3997
3998 static void
3999 delete_handlers ()
4000 {
4001 rtx insn;
4002 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4003 {
4004 /* Delete the handler by turning off the flag that would
4005 prevent jump_optimize from deleting it.
4006 Also permit deletion of the nonlocal labels themselves
4007 if nothing local refers to them. */
4008 if (GET_CODE (insn) == CODE_LABEL)
4009 {
4010 tree t, last_t;
4011
4012 LABEL_PRESERVE_P (insn) = 0;
4013
4014 /* Remove it from the nonlocal_label list, to avoid confusing
4015 flow. */
4016 for (t = nonlocal_labels, last_t = 0; t;
4017 last_t = t, t = TREE_CHAIN (t))
4018 if (DECL_RTL (TREE_VALUE (t)) == insn)
4019 break;
4020 if (t)
4021 {
4022 if (! last_t)
4023 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4024 else
4025 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4026 }
4027 }
4028 if (GET_CODE (insn) == INSN)
4029 {
4030 int can_delete = 0;
4031 rtx t;
4032 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4033 if (reg_mentioned_p (t, PATTERN (insn)))
4034 {
4035 can_delete = 1;
4036 break;
4037 }
4038 if (can_delete
4039 || (nonlocal_goto_stack_level != 0
4040 && reg_mentioned_p (nonlocal_goto_stack_level,
4041 PATTERN (insn))))
4042 delete_insn (insn);
4043 }
4044 }
4045 }
4046 \f
4047 int
4048 max_parm_reg_num ()
4049 {
4050 return max_parm_reg;
4051 }
4052
4053 /* Return the first insn following those generated by `assign_parms'. */
4054
4055 rtx
4056 get_first_nonparm_insn ()
4057 {
4058 if (last_parm_insn)
4059 return NEXT_INSN (last_parm_insn);
4060 return get_insns ();
4061 }
4062
4063 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
4064 Crash if there is none. */
4065
4066 rtx
4067 get_first_block_beg ()
4068 {
4069 register rtx searcher;
4070 register rtx insn = get_first_nonparm_insn ();
4071
4072 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
4073 if (GET_CODE (searcher) == NOTE
4074 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
4075 return searcher;
4076
4077 abort (); /* Invalid call to this function. (See comments above.) */
4078 return NULL_RTX;
4079 }
4080
4081 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4082 This means a type for which function calls must pass an address to the
4083 function or get an address back from the function.
4084 EXP may be a type node or an expression (whose type is tested). */
4085
4086 int
4087 aggregate_value_p (exp)
4088 tree exp;
4089 {
4090 int i, regno, nregs;
4091 rtx reg;
4092
4093 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4094
4095 if (TREE_CODE (type) == VOID_TYPE)
4096 return 0;
4097 if (RETURN_IN_MEMORY (type))
4098 return 1;
4099 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4100 and thus can't be returned in registers. */
4101 if (TREE_ADDRESSABLE (type))
4102 return 1;
4103 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4104 return 1;
4105 /* Make sure we have suitable call-clobbered regs to return
4106 the value in; if not, we must return it in memory. */
4107 reg = hard_function_value (type, 0, 0);
4108
4109 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4110 it is OK. */
4111 if (GET_CODE (reg) != REG)
4112 return 0;
4113
4114 regno = REGNO (reg);
4115 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4116 for (i = 0; i < nregs; i++)
4117 if (! call_used_regs[regno + i])
4118 return 1;
4119 return 0;
4120 }
4121 \f
4122 /* Assign RTL expressions to the function's parameters.
4123 This may involve copying them into registers and using
4124 those registers as the RTL for them. */
4125
4126 void
4127 assign_parms (fndecl)
4128 tree fndecl;
4129 {
4130 register tree parm;
4131 register rtx entry_parm = 0;
4132 register rtx stack_parm = 0;
4133 CUMULATIVE_ARGS args_so_far;
4134 enum machine_mode promoted_mode, passed_mode;
4135 enum machine_mode nominal_mode, promoted_nominal_mode;
4136 int unsignedp;
4137 /* Total space needed so far for args on the stack,
4138 given as a constant and a tree-expression. */
4139 struct args_size stack_args_size;
4140 tree fntype = TREE_TYPE (fndecl);
4141 tree fnargs = DECL_ARGUMENTS (fndecl);
4142 /* This is used for the arg pointer when referring to stack args. */
4143 rtx internal_arg_pointer;
4144 /* This is a dummy PARM_DECL that we used for the function result if
4145 the function returns a structure. */
4146 tree function_result_decl = 0;
4147 #ifdef SETUP_INCOMING_VARARGS
4148 int varargs_setup = 0;
4149 #endif
4150 rtx conversion_insns = 0;
4151 struct args_size alignment_pad;
4152
4153 /* Nonzero if the last arg is named `__builtin_va_alist',
4154 which is used on some machines for old-fashioned non-ANSI varargs.h;
4155 this should be stuck onto the stack as if it had arrived there. */
4156 int hide_last_arg
4157 = (current_function_varargs
4158 && fnargs
4159 && (parm = tree_last (fnargs)) != 0
4160 && DECL_NAME (parm)
4161 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
4162 "__builtin_va_alist")));
4163
4164 /* Nonzero if function takes extra anonymous args.
4165 This means the last named arg must be on the stack
4166 right before the anonymous ones. */
4167 int stdarg
4168 = (TYPE_ARG_TYPES (fntype) != 0
4169 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4170 != void_type_node));
4171
4172 current_function_stdarg = stdarg;
4173
4174 /* If the reg that the virtual arg pointer will be translated into is
4175 not a fixed reg or is the stack pointer, make a copy of the virtual
4176 arg pointer, and address parms via the copy. The frame pointer is
4177 considered fixed even though it is not marked as such.
4178
4179 The second time through, simply use ap to avoid generating rtx. */
4180
4181 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4182 || ! (fixed_regs[ARG_POINTER_REGNUM]
4183 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4184 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4185 else
4186 internal_arg_pointer = virtual_incoming_args_rtx;
4187 current_function_internal_arg_pointer = internal_arg_pointer;
4188
4189 stack_args_size.constant = 0;
4190 stack_args_size.var = 0;
4191
4192 /* If struct value address is treated as the first argument, make it so. */
4193 if (aggregate_value_p (DECL_RESULT (fndecl))
4194 && ! current_function_returns_pcc_struct
4195 && struct_value_incoming_rtx == 0)
4196 {
4197 tree type = build_pointer_type (TREE_TYPE (fntype));
4198
4199 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4200
4201 DECL_ARG_TYPE (function_result_decl) = type;
4202 TREE_CHAIN (function_result_decl) = fnargs;
4203 fnargs = function_result_decl;
4204 }
4205
4206 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4207 parm_reg_stack_loc = (rtx *) xcalloc (max_parm_reg, sizeof (rtx));
4208
4209 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4210 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4211 #else
4212 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4213 #endif
4214
4215 /* We haven't yet found an argument that we must push and pretend the
4216 caller did. */
4217 current_function_pretend_args_size = 0;
4218
4219 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4220 {
4221 struct args_size stack_offset;
4222 struct args_size arg_size;
4223 int passed_pointer = 0;
4224 int did_conversion = 0;
4225 tree passed_type = DECL_ARG_TYPE (parm);
4226 tree nominal_type = TREE_TYPE (parm);
4227 int pretend_named;
4228
4229 /* Set LAST_NAMED if this is last named arg before some
4230 anonymous args. */
4231 int last_named = ((TREE_CHAIN (parm) == 0
4232 || DECL_NAME (TREE_CHAIN (parm)) == 0)
4233 && (stdarg || current_function_varargs));
4234 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4235 most machines, if this is a varargs/stdarg function, then we treat
4236 the last named arg as if it were anonymous too. */
4237 int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4238
4239 if (TREE_TYPE (parm) == error_mark_node
4240 /* This can happen after weird syntax errors
4241 or if an enum type is defined among the parms. */
4242 || TREE_CODE (parm) != PARM_DECL
4243 || passed_type == NULL)
4244 {
4245 DECL_INCOMING_RTL (parm) = DECL_RTL (parm)
4246 = gen_rtx_MEM (BLKmode, const0_rtx);
4247 TREE_USED (parm) = 1;
4248 continue;
4249 }
4250
4251 /* For varargs.h function, save info about regs and stack space
4252 used by the individual args, not including the va_alist arg. */
4253 if (hide_last_arg && last_named)
4254 current_function_args_info = args_so_far;
4255
4256 /* Find mode of arg as it is passed, and mode of arg
4257 as it should be during execution of this function. */
4258 passed_mode = TYPE_MODE (passed_type);
4259 nominal_mode = TYPE_MODE (nominal_type);
4260
4261 /* If the parm's mode is VOID, its value doesn't matter,
4262 and avoid the usual things like emit_move_insn that could crash. */
4263 if (nominal_mode == VOIDmode)
4264 {
4265 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx;
4266 continue;
4267 }
4268
4269 /* If the parm is to be passed as a transparent union, use the
4270 type of the first field for the tests below. We have already
4271 verified that the modes are the same. */
4272 if (DECL_TRANSPARENT_UNION (parm)
4273 || (TREE_CODE (passed_type) == UNION_TYPE
4274 && TYPE_TRANSPARENT_UNION (passed_type)))
4275 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4276
4277 /* See if this arg was passed by invisible reference. It is if
4278 it is an object whose size depends on the contents of the
4279 object itself or if the machine requires these objects be passed
4280 that way. */
4281
4282 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4283 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4284 || TREE_ADDRESSABLE (passed_type)
4285 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4286 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4287 passed_type, named_arg)
4288 #endif
4289 )
4290 {
4291 passed_type = nominal_type = build_pointer_type (passed_type);
4292 passed_pointer = 1;
4293 passed_mode = nominal_mode = Pmode;
4294 }
4295
4296 promoted_mode = passed_mode;
4297
4298 #ifdef PROMOTE_FUNCTION_ARGS
4299 /* Compute the mode in which the arg is actually extended to. */
4300 unsignedp = TREE_UNSIGNED (passed_type);
4301 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4302 #endif
4303
4304 /* Let machine desc say which reg (if any) the parm arrives in.
4305 0 means it arrives on the stack. */
4306 #ifdef FUNCTION_INCOMING_ARG
4307 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4308 passed_type, named_arg);
4309 #else
4310 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4311 passed_type, named_arg);
4312 #endif
4313
4314 if (entry_parm == 0)
4315 promoted_mode = passed_mode;
4316
4317 #ifdef SETUP_INCOMING_VARARGS
4318 /* If this is the last named parameter, do any required setup for
4319 varargs or stdargs. We need to know about the case of this being an
4320 addressable type, in which case we skip the registers it
4321 would have arrived in.
4322
4323 For stdargs, LAST_NAMED will be set for two parameters, the one that
4324 is actually the last named, and the dummy parameter. We only
4325 want to do this action once.
4326
4327 Also, indicate when RTL generation is to be suppressed. */
4328 if (last_named && !varargs_setup)
4329 {
4330 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4331 current_function_pretend_args_size, 0);
4332 varargs_setup = 1;
4333 }
4334 #endif
4335
4336 /* Determine parm's home in the stack,
4337 in case it arrives in the stack or we should pretend it did.
4338
4339 Compute the stack position and rtx where the argument arrives
4340 and its size.
4341
4342 There is one complexity here: If this was a parameter that would
4343 have been passed in registers, but wasn't only because it is
4344 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4345 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4346 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4347 0 as it was the previous time. */
4348
4349 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4350 locate_and_pad_parm (promoted_mode, passed_type,
4351 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4352 1,
4353 #else
4354 #ifdef FUNCTION_INCOMING_ARG
4355 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4356 passed_type,
4357 pretend_named) != 0,
4358 #else
4359 FUNCTION_ARG (args_so_far, promoted_mode,
4360 passed_type,
4361 pretend_named) != 0,
4362 #endif
4363 #endif
4364 fndecl, &stack_args_size, &stack_offset, &arg_size,
4365 &alignment_pad);
4366
4367 {
4368 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4369
4370 if (offset_rtx == const0_rtx)
4371 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4372 else
4373 stack_parm = gen_rtx_MEM (promoted_mode,
4374 gen_rtx_PLUS (Pmode,
4375 internal_arg_pointer,
4376 offset_rtx));
4377
4378 set_mem_attributes (stack_parm, parm, 1);
4379 }
4380
4381 /* If this parameter was passed both in registers and in the stack,
4382 use the copy on the stack. */
4383 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4384 entry_parm = 0;
4385
4386 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4387 /* If this parm was passed part in regs and part in memory,
4388 pretend it arrived entirely in memory
4389 by pushing the register-part onto the stack.
4390
4391 In the special case of a DImode or DFmode that is split,
4392 we could put it together in a pseudoreg directly,
4393 but for now that's not worth bothering with. */
4394
4395 if (entry_parm)
4396 {
4397 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4398 passed_type, named_arg);
4399
4400 if (nregs > 0)
4401 {
4402 current_function_pretend_args_size
4403 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4404 / (PARM_BOUNDARY / BITS_PER_UNIT)
4405 * (PARM_BOUNDARY / BITS_PER_UNIT));
4406
4407 /* Handle calls that pass values in multiple non-contiguous
4408 locations. The Irix 6 ABI has examples of this. */
4409 if (GET_CODE (entry_parm) == PARALLEL)
4410 emit_group_store (validize_mem (stack_parm), entry_parm,
4411 int_size_in_bytes (TREE_TYPE (parm)),
4412 TYPE_ALIGN (TREE_TYPE (parm)));
4413
4414 else
4415 move_block_from_reg (REGNO (entry_parm),
4416 validize_mem (stack_parm), nregs,
4417 int_size_in_bytes (TREE_TYPE (parm)));
4418
4419 entry_parm = stack_parm;
4420 }
4421 }
4422 #endif
4423
4424 /* If we didn't decide this parm came in a register,
4425 by default it came on the stack. */
4426 if (entry_parm == 0)
4427 entry_parm = stack_parm;
4428
4429 /* Record permanently how this parm was passed. */
4430 DECL_INCOMING_RTL (parm) = entry_parm;
4431
4432 /* If there is actually space on the stack for this parm,
4433 count it in stack_args_size; otherwise set stack_parm to 0
4434 to indicate there is no preallocated stack slot for the parm. */
4435
4436 if (entry_parm == stack_parm
4437 || (GET_CODE (entry_parm) == PARALLEL
4438 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4439 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4440 /* On some machines, even if a parm value arrives in a register
4441 there is still an (uninitialized) stack slot allocated for it.
4442
4443 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4444 whether this parameter already has a stack slot allocated,
4445 because an arg block exists only if current_function_args_size
4446 is larger than some threshold, and we haven't calculated that
4447 yet. So, for now, we just assume that stack slots never exist
4448 in this case. */
4449 || REG_PARM_STACK_SPACE (fndecl) > 0
4450 #endif
4451 )
4452 {
4453 stack_args_size.constant += arg_size.constant;
4454 if (arg_size.var)
4455 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4456 }
4457 else
4458 /* No stack slot was pushed for this parm. */
4459 stack_parm = 0;
4460
4461 /* Update info on where next arg arrives in registers. */
4462
4463 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4464 passed_type, named_arg);
4465
4466 /* If we can't trust the parm stack slot to be aligned enough
4467 for its ultimate type, don't use that slot after entry.
4468 We'll make another stack slot, if we need one. */
4469 {
4470 unsigned int thisparm_boundary
4471 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4472
4473 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4474 stack_parm = 0;
4475 }
4476
4477 /* If parm was passed in memory, and we need to convert it on entry,
4478 don't store it back in that same slot. */
4479 if (entry_parm != 0
4480 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4481 stack_parm = 0;
4482
4483 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4484 in the mode in which it arrives.
4485 STACK_PARM is an RTX for a stack slot where the parameter can live
4486 during the function (in case we want to put it there).
4487 STACK_PARM is 0 if no stack slot was pushed for it.
4488
4489 Now output code if necessary to convert ENTRY_PARM to
4490 the type in which this function declares it,
4491 and store that result in an appropriate place,
4492 which may be a pseudo reg, may be STACK_PARM,
4493 or may be a local stack slot if STACK_PARM is 0.
4494
4495 Set DECL_RTL to that place. */
4496
4497 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4498 {
4499 /* If a BLKmode arrives in registers, copy it to a stack slot.
4500 Handle calls that pass values in multiple non-contiguous
4501 locations. The Irix 6 ABI has examples of this. */
4502 if (GET_CODE (entry_parm) == REG
4503 || GET_CODE (entry_parm) == PARALLEL)
4504 {
4505 int size_stored
4506 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4507 UNITS_PER_WORD);
4508
4509 /* Note that we will be storing an integral number of words.
4510 So we have to be careful to ensure that we allocate an
4511 integral number of words. We do this below in the
4512 assign_stack_local if space was not allocated in the argument
4513 list. If it was, this will not work if PARM_BOUNDARY is not
4514 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4515 if it becomes a problem. */
4516
4517 if (stack_parm == 0)
4518 {
4519 stack_parm
4520 = assign_stack_local (GET_MODE (entry_parm),
4521 size_stored, 0);
4522 set_mem_attributes (stack_parm, parm, 1);
4523 }
4524
4525 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4526 abort ();
4527
4528 /* Handle calls that pass values in multiple non-contiguous
4529 locations. The Irix 6 ABI has examples of this. */
4530 if (GET_CODE (entry_parm) == PARALLEL)
4531 emit_group_store (validize_mem (stack_parm), entry_parm,
4532 int_size_in_bytes (TREE_TYPE (parm)),
4533 TYPE_ALIGN (TREE_TYPE (parm)));
4534 else
4535 move_block_from_reg (REGNO (entry_parm),
4536 validize_mem (stack_parm),
4537 size_stored / UNITS_PER_WORD,
4538 int_size_in_bytes (TREE_TYPE (parm)));
4539 }
4540 DECL_RTL (parm) = stack_parm;
4541 }
4542 else if (! ((! optimize
4543 && ! DECL_REGISTER (parm)
4544 && ! DECL_INLINE (fndecl))
4545 /* layout_decl may set this. */
4546 || TREE_ADDRESSABLE (parm)
4547 || TREE_SIDE_EFFECTS (parm)
4548 /* If -ffloat-store specified, don't put explicit
4549 float variables into registers. */
4550 || (flag_float_store
4551 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4552 /* Always assign pseudo to structure return or item passed
4553 by invisible reference. */
4554 || passed_pointer || parm == function_result_decl)
4555 {
4556 /* Store the parm in a pseudoregister during the function, but we
4557 may need to do it in a wider mode. */
4558
4559 register rtx parmreg;
4560 unsigned int regno, regnoi = 0, regnor = 0;
4561
4562 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4563
4564 promoted_nominal_mode
4565 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4566
4567 parmreg = gen_reg_rtx (promoted_nominal_mode);
4568 mark_user_reg (parmreg);
4569
4570 /* If this was an item that we received a pointer to, set DECL_RTL
4571 appropriately. */
4572 if (passed_pointer)
4573 {
4574 DECL_RTL (parm)
4575 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)), parmreg);
4576 set_mem_attributes (DECL_RTL (parm), parm, 1);
4577 }
4578 else
4579 DECL_RTL (parm) = parmreg;
4580
4581 /* Copy the value into the register. */
4582 if (nominal_mode != passed_mode
4583 || promoted_nominal_mode != promoted_mode)
4584 {
4585 int save_tree_used;
4586 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4587 mode, by the caller. We now have to convert it to
4588 NOMINAL_MODE, if different. However, PARMREG may be in
4589 a different mode than NOMINAL_MODE if it is being stored
4590 promoted.
4591
4592 If ENTRY_PARM is a hard register, it might be in a register
4593 not valid for operating in its mode (e.g., an odd-numbered
4594 register for a DFmode). In that case, moves are the only
4595 thing valid, so we can't do a convert from there. This
4596 occurs when the calling sequence allow such misaligned
4597 usages.
4598
4599 In addition, the conversion may involve a call, which could
4600 clobber parameters which haven't been copied to pseudo
4601 registers yet. Therefore, we must first copy the parm to
4602 a pseudo reg here, and save the conversion until after all
4603 parameters have been moved. */
4604
4605 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4606
4607 emit_move_insn (tempreg, validize_mem (entry_parm));
4608
4609 push_to_sequence (conversion_insns);
4610 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4611
4612 /* TREE_USED gets set erroneously during expand_assignment. */
4613 save_tree_used = TREE_USED (parm);
4614 expand_assignment (parm,
4615 make_tree (nominal_type, tempreg), 0, 0);
4616 TREE_USED (parm) = save_tree_used;
4617 conversion_insns = get_insns ();
4618 did_conversion = 1;
4619 end_sequence ();
4620 }
4621 else
4622 emit_move_insn (parmreg, validize_mem (entry_parm));
4623
4624 /* If we were passed a pointer but the actual value
4625 can safely live in a register, put it in one. */
4626 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4627 && ! ((! optimize
4628 && ! DECL_REGISTER (parm)
4629 && ! DECL_INLINE (fndecl))
4630 /* layout_decl may set this. */
4631 || TREE_ADDRESSABLE (parm)
4632 || TREE_SIDE_EFFECTS (parm)
4633 /* If -ffloat-store specified, don't put explicit
4634 float variables into registers. */
4635 || (flag_float_store
4636 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
4637 {
4638 /* We can't use nominal_mode, because it will have been set to
4639 Pmode above. We must use the actual mode of the parm. */
4640 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4641 mark_user_reg (parmreg);
4642 emit_move_insn (parmreg, DECL_RTL (parm));
4643 DECL_RTL (parm) = parmreg;
4644 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4645 now the parm. */
4646 stack_parm = 0;
4647 }
4648 #ifdef FUNCTION_ARG_CALLEE_COPIES
4649 /* If we are passed an arg by reference and it is our responsibility
4650 to make a copy, do it now.
4651 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4652 original argument, so we must recreate them in the call to
4653 FUNCTION_ARG_CALLEE_COPIES. */
4654 /* ??? Later add code to handle the case that if the argument isn't
4655 modified, don't do the copy. */
4656
4657 else if (passed_pointer
4658 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4659 TYPE_MODE (DECL_ARG_TYPE (parm)),
4660 DECL_ARG_TYPE (parm),
4661 named_arg)
4662 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4663 {
4664 rtx copy;
4665 tree type = DECL_ARG_TYPE (parm);
4666
4667 /* This sequence may involve a library call perhaps clobbering
4668 registers that haven't been copied to pseudos yet. */
4669
4670 push_to_sequence (conversion_insns);
4671
4672 if (!COMPLETE_TYPE_P (type)
4673 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4674 /* This is a variable sized object. */
4675 copy = gen_rtx_MEM (BLKmode,
4676 allocate_dynamic_stack_space
4677 (expr_size (parm), NULL_RTX,
4678 TYPE_ALIGN (type)));
4679 else
4680 copy = assign_stack_temp (TYPE_MODE (type),
4681 int_size_in_bytes (type), 1);
4682 set_mem_attributes (copy, parm, 1);
4683
4684 store_expr (parm, copy, 0);
4685 emit_move_insn (parmreg, XEXP (copy, 0));
4686 if (current_function_check_memory_usage)
4687 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4688 XEXP (copy, 0), Pmode,
4689 GEN_INT (int_size_in_bytes (type)),
4690 TYPE_MODE (sizetype),
4691 GEN_INT (MEMORY_USE_RW),
4692 TYPE_MODE (integer_type_node));
4693 conversion_insns = get_insns ();
4694 did_conversion = 1;
4695 end_sequence ();
4696 }
4697 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4698
4699 /* In any case, record the parm's desired stack location
4700 in case we later discover it must live in the stack.
4701
4702 If it is a COMPLEX value, store the stack location for both
4703 halves. */
4704
4705 if (GET_CODE (parmreg) == CONCAT)
4706 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4707 else
4708 regno = REGNO (parmreg);
4709
4710 if (regno >= max_parm_reg)
4711 {
4712 rtx *new;
4713 int old_max_parm_reg = max_parm_reg;
4714
4715 /* It's slow to expand this one register at a time,
4716 but it's also rare and we need max_parm_reg to be
4717 precisely correct. */
4718 max_parm_reg = regno + 1;
4719 new = (rtx *) xrealloc (parm_reg_stack_loc,
4720 max_parm_reg * sizeof (rtx));
4721 bzero ((char *) (new + old_max_parm_reg),
4722 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4723 parm_reg_stack_loc = new;
4724 }
4725
4726 if (GET_CODE (parmreg) == CONCAT)
4727 {
4728 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4729
4730 regnor = REGNO (gen_realpart (submode, parmreg));
4731 regnoi = REGNO (gen_imagpart (submode, parmreg));
4732
4733 if (stack_parm != 0)
4734 {
4735 parm_reg_stack_loc[regnor]
4736 = gen_realpart (submode, stack_parm);
4737 parm_reg_stack_loc[regnoi]
4738 = gen_imagpart (submode, stack_parm);
4739 }
4740 else
4741 {
4742 parm_reg_stack_loc[regnor] = 0;
4743 parm_reg_stack_loc[regnoi] = 0;
4744 }
4745 }
4746 else
4747 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4748
4749 /* Mark the register as eliminable if we did no conversion
4750 and it was copied from memory at a fixed offset,
4751 and the arg pointer was not copied to a pseudo-reg.
4752 If the arg pointer is a pseudo reg or the offset formed
4753 an invalid address, such memory-equivalences
4754 as we make here would screw up life analysis for it. */
4755 if (nominal_mode == passed_mode
4756 && ! did_conversion
4757 && stack_parm != 0
4758 && GET_CODE (stack_parm) == MEM
4759 && stack_offset.var == 0
4760 && reg_mentioned_p (virtual_incoming_args_rtx,
4761 XEXP (stack_parm, 0)))
4762 {
4763 rtx linsn = get_last_insn ();
4764 rtx sinsn, set;
4765
4766 /* Mark complex types separately. */
4767 if (GET_CODE (parmreg) == CONCAT)
4768 /* Scan backwards for the set of the real and
4769 imaginary parts. */
4770 for (sinsn = linsn; sinsn != 0;
4771 sinsn = prev_nonnote_insn (sinsn))
4772 {
4773 set = single_set (sinsn);
4774 if (set != 0
4775 && SET_DEST (set) == regno_reg_rtx [regnoi])
4776 REG_NOTES (sinsn)
4777 = gen_rtx_EXPR_LIST (REG_EQUIV,
4778 parm_reg_stack_loc[regnoi],
4779 REG_NOTES (sinsn));
4780 else if (set != 0
4781 && SET_DEST (set) == regno_reg_rtx [regnor])
4782 REG_NOTES (sinsn)
4783 = gen_rtx_EXPR_LIST (REG_EQUIV,
4784 parm_reg_stack_loc[regnor],
4785 REG_NOTES (sinsn));
4786 }
4787 else if ((set = single_set (linsn)) != 0
4788 && SET_DEST (set) == parmreg)
4789 REG_NOTES (linsn)
4790 = gen_rtx_EXPR_LIST (REG_EQUIV,
4791 stack_parm, REG_NOTES (linsn));
4792 }
4793
4794 /* For pointer data type, suggest pointer register. */
4795 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4796 mark_reg_pointer (parmreg,
4797 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4798
4799 }
4800 else
4801 {
4802 /* Value must be stored in the stack slot STACK_PARM
4803 during function execution. */
4804
4805 if (promoted_mode != nominal_mode)
4806 {
4807 /* Conversion is required. */
4808 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4809
4810 emit_move_insn (tempreg, validize_mem (entry_parm));
4811
4812 push_to_sequence (conversion_insns);
4813 entry_parm = convert_to_mode (nominal_mode, tempreg,
4814 TREE_UNSIGNED (TREE_TYPE (parm)));
4815 if (stack_parm)
4816 {
4817 /* ??? This may need a big-endian conversion on sparc64. */
4818 stack_parm = change_address (stack_parm, nominal_mode,
4819 NULL_RTX);
4820 }
4821 conversion_insns = get_insns ();
4822 did_conversion = 1;
4823 end_sequence ();
4824 }
4825
4826 if (entry_parm != stack_parm)
4827 {
4828 if (stack_parm == 0)
4829 {
4830 stack_parm
4831 = assign_stack_local (GET_MODE (entry_parm),
4832 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
4833 set_mem_attributes (stack_parm, parm, 1);
4834 }
4835
4836 if (promoted_mode != nominal_mode)
4837 {
4838 push_to_sequence (conversion_insns);
4839 emit_move_insn (validize_mem (stack_parm),
4840 validize_mem (entry_parm));
4841 conversion_insns = get_insns ();
4842 end_sequence ();
4843 }
4844 else
4845 emit_move_insn (validize_mem (stack_parm),
4846 validize_mem (entry_parm));
4847 }
4848 if (current_function_check_memory_usage)
4849 {
4850 push_to_sequence (conversion_insns);
4851 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4852 XEXP (stack_parm, 0), Pmode,
4853 GEN_INT (GET_MODE_SIZE (GET_MODE
4854 (entry_parm))),
4855 TYPE_MODE (sizetype),
4856 GEN_INT (MEMORY_USE_RW),
4857 TYPE_MODE (integer_type_node));
4858
4859 conversion_insns = get_insns ();
4860 end_sequence ();
4861 }
4862 DECL_RTL (parm) = stack_parm;
4863 }
4864
4865 /* If this "parameter" was the place where we are receiving the
4866 function's incoming structure pointer, set up the result. */
4867 if (parm == function_result_decl)
4868 {
4869 tree result = DECL_RESULT (fndecl);
4870
4871 DECL_RTL (result)
4872 = gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm));
4873
4874 set_mem_attributes (DECL_RTL (result), result, 1);
4875 }
4876 }
4877
4878 /* Output all parameter conversion instructions (possibly including calls)
4879 now that all parameters have been copied out of hard registers. */
4880 emit_insns (conversion_insns);
4881
4882 last_parm_insn = get_last_insn ();
4883
4884 current_function_args_size = stack_args_size.constant;
4885
4886 /* Adjust function incoming argument size for alignment and
4887 minimum length. */
4888
4889 #ifdef REG_PARM_STACK_SPACE
4890 #ifndef MAYBE_REG_PARM_STACK_SPACE
4891 current_function_args_size = MAX (current_function_args_size,
4892 REG_PARM_STACK_SPACE (fndecl));
4893 #endif
4894 #endif
4895
4896 #ifdef STACK_BOUNDARY
4897 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
4898
4899 current_function_args_size
4900 = ((current_function_args_size + STACK_BYTES - 1)
4901 / STACK_BYTES) * STACK_BYTES;
4902 #endif
4903
4904 #ifdef ARGS_GROW_DOWNWARD
4905 current_function_arg_offset_rtx
4906 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
4907 : expand_expr (size_diffop (stack_args_size.var,
4908 size_int (-stack_args_size.constant)),
4909 NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD));
4910 #else
4911 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
4912 #endif
4913
4914 /* See how many bytes, if any, of its args a function should try to pop
4915 on return. */
4916
4917 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
4918 current_function_args_size);
4919
4920 /* For stdarg.h function, save info about
4921 regs and stack space used by the named args. */
4922
4923 if (!hide_last_arg)
4924 current_function_args_info = args_so_far;
4925
4926 /* Set the rtx used for the function return value. Put this in its
4927 own variable so any optimizers that need this information don't have
4928 to include tree.h. Do this here so it gets done when an inlined
4929 function gets output. */
4930
4931 current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl));
4932 }
4933 \f
4934 /* Indicate whether REGNO is an incoming argument to the current function
4935 that was promoted to a wider mode. If so, return the RTX for the
4936 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
4937 that REGNO is promoted from and whether the promotion was signed or
4938 unsigned. */
4939
4940 #ifdef PROMOTE_FUNCTION_ARGS
4941
4942 rtx
4943 promoted_input_arg (regno, pmode, punsignedp)
4944 unsigned int regno;
4945 enum machine_mode *pmode;
4946 int *punsignedp;
4947 {
4948 tree arg;
4949
4950 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
4951 arg = TREE_CHAIN (arg))
4952 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
4953 && REGNO (DECL_INCOMING_RTL (arg)) == regno
4954 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
4955 {
4956 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
4957 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
4958
4959 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
4960 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
4961 && mode != DECL_MODE (arg))
4962 {
4963 *pmode = DECL_MODE (arg);
4964 *punsignedp = unsignedp;
4965 return DECL_INCOMING_RTL (arg);
4966 }
4967 }
4968
4969 return 0;
4970 }
4971
4972 #endif
4973 \f
4974 /* Compute the size and offset from the start of the stacked arguments for a
4975 parm passed in mode PASSED_MODE and with type TYPE.
4976
4977 INITIAL_OFFSET_PTR points to the current offset into the stacked
4978 arguments.
4979
4980 The starting offset and size for this parm are returned in *OFFSET_PTR
4981 and *ARG_SIZE_PTR, respectively.
4982
4983 IN_REGS is non-zero if the argument will be passed in registers. It will
4984 never be set if REG_PARM_STACK_SPACE is not defined.
4985
4986 FNDECL is the function in which the argument was defined.
4987
4988 There are two types of rounding that are done. The first, controlled by
4989 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
4990 list to be aligned to the specific boundary (in bits). This rounding
4991 affects the initial and starting offsets, but not the argument size.
4992
4993 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4994 optionally rounds the size of the parm to PARM_BOUNDARY. The
4995 initial offset is not affected by this rounding, while the size always
4996 is and the starting offset may be. */
4997
4998 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
4999 initial_offset_ptr is positive because locate_and_pad_parm's
5000 callers pass in the total size of args so far as
5001 initial_offset_ptr. arg_size_ptr is always positive.*/
5002
5003 void
5004 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
5005 initial_offset_ptr, offset_ptr, arg_size_ptr,
5006 alignment_pad)
5007 enum machine_mode passed_mode;
5008 tree type;
5009 int in_regs ATTRIBUTE_UNUSED;
5010 tree fndecl ATTRIBUTE_UNUSED;
5011 struct args_size *initial_offset_ptr;
5012 struct args_size *offset_ptr;
5013 struct args_size *arg_size_ptr;
5014 struct args_size *alignment_pad;
5015
5016 {
5017 tree sizetree
5018 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5019 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5020 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5021
5022 #ifdef REG_PARM_STACK_SPACE
5023 /* If we have found a stack parm before we reach the end of the
5024 area reserved for registers, skip that area. */
5025 if (! in_regs)
5026 {
5027 int reg_parm_stack_space = 0;
5028
5029 #ifdef MAYBE_REG_PARM_STACK_SPACE
5030 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5031 #else
5032 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5033 #endif
5034 if (reg_parm_stack_space > 0)
5035 {
5036 if (initial_offset_ptr->var)
5037 {
5038 initial_offset_ptr->var
5039 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5040 ssize_int (reg_parm_stack_space));
5041 initial_offset_ptr->constant = 0;
5042 }
5043 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5044 initial_offset_ptr->constant = reg_parm_stack_space;
5045 }
5046 }
5047 #endif /* REG_PARM_STACK_SPACE */
5048
5049 arg_size_ptr->var = 0;
5050 arg_size_ptr->constant = 0;
5051
5052 #ifdef ARGS_GROW_DOWNWARD
5053 if (initial_offset_ptr->var)
5054 {
5055 offset_ptr->constant = 0;
5056 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5057 initial_offset_ptr->var);
5058 }
5059 else
5060 {
5061 offset_ptr->constant = -initial_offset_ptr->constant;
5062 offset_ptr->var = 0;
5063 }
5064 if (where_pad != none
5065 && (TREE_CODE (sizetree) != INTEGER_CST
5066 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
5067 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5068 SUB_PARM_SIZE (*offset_ptr, sizetree);
5069 if (where_pad != downward)
5070 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5071 if (initial_offset_ptr->var)
5072 arg_size_ptr->var = size_binop (MINUS_EXPR,
5073 size_binop (MINUS_EXPR,
5074 ssize_int (0),
5075 initial_offset_ptr->var),
5076 offset_ptr->var);
5077
5078 else
5079 arg_size_ptr->constant = (-initial_offset_ptr->constant
5080 - offset_ptr->constant);
5081
5082 #else /* !ARGS_GROW_DOWNWARD */
5083 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5084 *offset_ptr = *initial_offset_ptr;
5085
5086 #ifdef PUSH_ROUNDING
5087 if (passed_mode != BLKmode)
5088 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5089 #endif
5090
5091 /* Pad_below needs the pre-rounded size to know how much to pad below
5092 so this must be done before rounding up. */
5093 if (where_pad == downward
5094 /* However, BLKmode args passed in regs have their padding done elsewhere.
5095 The stack slot must be able to hold the entire register. */
5096 && !(in_regs && passed_mode == BLKmode))
5097 pad_below (offset_ptr, passed_mode, sizetree);
5098
5099 if (where_pad != none
5100 && (TREE_CODE (sizetree) != INTEGER_CST
5101 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
5102 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5103
5104 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5105 #endif /* ARGS_GROW_DOWNWARD */
5106 }
5107
5108 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5109 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5110
5111 static void
5112 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5113 struct args_size *offset_ptr;
5114 int boundary;
5115 struct args_size *alignment_pad;
5116 {
5117 tree save_var = NULL_TREE;
5118 HOST_WIDE_INT save_constant = 0;
5119
5120 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5121
5122 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5123 {
5124 save_var = offset_ptr->var;
5125 save_constant = offset_ptr->constant;
5126 }
5127
5128 alignment_pad->var = NULL_TREE;
5129 alignment_pad->constant = 0;
5130
5131 if (boundary > BITS_PER_UNIT)
5132 {
5133 if (offset_ptr->var)
5134 {
5135 offset_ptr->var =
5136 #ifdef ARGS_GROW_DOWNWARD
5137 round_down
5138 #else
5139 round_up
5140 #endif
5141 (ARGS_SIZE_TREE (*offset_ptr),
5142 boundary / BITS_PER_UNIT);
5143 offset_ptr->constant = 0; /*?*/
5144 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5145 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5146 save_var);
5147 }
5148 else
5149 {
5150 offset_ptr->constant =
5151 #ifdef ARGS_GROW_DOWNWARD
5152 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5153 #else
5154 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5155 #endif
5156 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5157 alignment_pad->constant = offset_ptr->constant - save_constant;
5158 }
5159 }
5160 }
5161
5162 #ifndef ARGS_GROW_DOWNWARD
5163 static void
5164 pad_below (offset_ptr, passed_mode, sizetree)
5165 struct args_size *offset_ptr;
5166 enum machine_mode passed_mode;
5167 tree sizetree;
5168 {
5169 if (passed_mode != BLKmode)
5170 {
5171 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5172 offset_ptr->constant
5173 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5174 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5175 - GET_MODE_SIZE (passed_mode));
5176 }
5177 else
5178 {
5179 if (TREE_CODE (sizetree) != INTEGER_CST
5180 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5181 {
5182 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5183 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5184 /* Add it in. */
5185 ADD_PARM_SIZE (*offset_ptr, s2);
5186 SUB_PARM_SIZE (*offset_ptr, sizetree);
5187 }
5188 }
5189 }
5190 #endif
5191 \f
5192 /* Walk the tree of blocks describing the binding levels within a function
5193 and warn about uninitialized variables.
5194 This is done after calling flow_analysis and before global_alloc
5195 clobbers the pseudo-regs to hard regs. */
5196
5197 void
5198 uninitialized_vars_warning (block)
5199 tree block;
5200 {
5201 register tree decl, sub;
5202 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5203 {
5204 if (warn_uninitialized
5205 && TREE_CODE (decl) == VAR_DECL
5206 /* These warnings are unreliable for and aggregates
5207 because assigning the fields one by one can fail to convince
5208 flow.c that the entire aggregate was initialized.
5209 Unions are troublesome because members may be shorter. */
5210 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5211 && DECL_RTL (decl) != 0
5212 && GET_CODE (DECL_RTL (decl)) == REG
5213 /* Global optimizations can make it difficult to determine if a
5214 particular variable has been initialized. However, a VAR_DECL
5215 with a nonzero DECL_INITIAL had an initializer, so do not
5216 claim it is potentially uninitialized.
5217
5218 We do not care about the actual value in DECL_INITIAL, so we do
5219 not worry that it may be a dangling pointer. */
5220 && DECL_INITIAL (decl) == NULL_TREE
5221 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5222 warning_with_decl (decl,
5223 "`%s' might be used uninitialized in this function");
5224 if (extra_warnings
5225 && TREE_CODE (decl) == VAR_DECL
5226 && DECL_RTL (decl) != 0
5227 && GET_CODE (DECL_RTL (decl)) == REG
5228 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5229 warning_with_decl (decl,
5230 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5231 }
5232 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5233 uninitialized_vars_warning (sub);
5234 }
5235
5236 /* Do the appropriate part of uninitialized_vars_warning
5237 but for arguments instead of local variables. */
5238
5239 void
5240 setjmp_args_warning ()
5241 {
5242 register tree decl;
5243 for (decl = DECL_ARGUMENTS (current_function_decl);
5244 decl; decl = TREE_CHAIN (decl))
5245 if (DECL_RTL (decl) != 0
5246 && GET_CODE (DECL_RTL (decl)) == REG
5247 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5248 warning_with_decl (decl,
5249 "argument `%s' might be clobbered by `longjmp' or `vfork'");
5250 }
5251
5252 /* If this function call setjmp, put all vars into the stack
5253 unless they were declared `register'. */
5254
5255 void
5256 setjmp_protect (block)
5257 tree block;
5258 {
5259 register tree decl, sub;
5260 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5261 if ((TREE_CODE (decl) == VAR_DECL
5262 || TREE_CODE (decl) == PARM_DECL)
5263 && DECL_RTL (decl) != 0
5264 && (GET_CODE (DECL_RTL (decl)) == REG
5265 || (GET_CODE (DECL_RTL (decl)) == MEM
5266 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5267 /* If this variable came from an inline function, it must be
5268 that its life doesn't overlap the setjmp. If there was a
5269 setjmp in the function, it would already be in memory. We
5270 must exclude such variable because their DECL_RTL might be
5271 set to strange things such as virtual_stack_vars_rtx. */
5272 && ! DECL_FROM_INLINE (decl)
5273 && (
5274 #ifdef NON_SAVING_SETJMP
5275 /* If longjmp doesn't restore the registers,
5276 don't put anything in them. */
5277 NON_SAVING_SETJMP
5278 ||
5279 #endif
5280 ! DECL_REGISTER (decl)))
5281 put_var_into_stack (decl);
5282 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5283 setjmp_protect (sub);
5284 }
5285 \f
5286 /* Like the previous function, but for args instead of local variables. */
5287
5288 void
5289 setjmp_protect_args ()
5290 {
5291 register tree decl;
5292 for (decl = DECL_ARGUMENTS (current_function_decl);
5293 decl; decl = TREE_CHAIN (decl))
5294 if ((TREE_CODE (decl) == VAR_DECL
5295 || TREE_CODE (decl) == PARM_DECL)
5296 && DECL_RTL (decl) != 0
5297 && (GET_CODE (DECL_RTL (decl)) == REG
5298 || (GET_CODE (DECL_RTL (decl)) == MEM
5299 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5300 && (
5301 /* If longjmp doesn't restore the registers,
5302 don't put anything in them. */
5303 #ifdef NON_SAVING_SETJMP
5304 NON_SAVING_SETJMP
5305 ||
5306 #endif
5307 ! DECL_REGISTER (decl)))
5308 put_var_into_stack (decl);
5309 }
5310 \f
5311 /* Return the context-pointer register corresponding to DECL,
5312 or 0 if it does not need one. */
5313
5314 rtx
5315 lookup_static_chain (decl)
5316 tree decl;
5317 {
5318 tree context = decl_function_context (decl);
5319 tree link;
5320
5321 if (context == 0
5322 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5323 return 0;
5324
5325 /* We treat inline_function_decl as an alias for the current function
5326 because that is the inline function whose vars, types, etc.
5327 are being merged into the current function.
5328 See expand_inline_function. */
5329 if (context == current_function_decl || context == inline_function_decl)
5330 return virtual_stack_vars_rtx;
5331
5332 for (link = context_display; link; link = TREE_CHAIN (link))
5333 if (TREE_PURPOSE (link) == context)
5334 return RTL_EXPR_RTL (TREE_VALUE (link));
5335
5336 abort ();
5337 }
5338 \f
5339 /* Convert a stack slot address ADDR for variable VAR
5340 (from a containing function)
5341 into an address valid in this function (using a static chain). */
5342
5343 rtx
5344 fix_lexical_addr (addr, var)
5345 rtx addr;
5346 tree var;
5347 {
5348 rtx basereg;
5349 HOST_WIDE_INT displacement;
5350 tree context = decl_function_context (var);
5351 struct function *fp;
5352 rtx base = 0;
5353
5354 /* If this is the present function, we need not do anything. */
5355 if (context == current_function_decl || context == inline_function_decl)
5356 return addr;
5357
5358 for (fp = outer_function_chain; fp; fp = fp->next)
5359 if (fp->decl == context)
5360 break;
5361
5362 if (fp == 0)
5363 abort ();
5364
5365 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5366 addr = XEXP (XEXP (addr, 0), 0);
5367
5368 /* Decode given address as base reg plus displacement. */
5369 if (GET_CODE (addr) == REG)
5370 basereg = addr, displacement = 0;
5371 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5372 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5373 else
5374 abort ();
5375
5376 /* We accept vars reached via the containing function's
5377 incoming arg pointer and via its stack variables pointer. */
5378 if (basereg == fp->internal_arg_pointer)
5379 {
5380 /* If reached via arg pointer, get the arg pointer value
5381 out of that function's stack frame.
5382
5383 There are two cases: If a separate ap is needed, allocate a
5384 slot in the outer function for it and dereference it that way.
5385 This is correct even if the real ap is actually a pseudo.
5386 Otherwise, just adjust the offset from the frame pointer to
5387 compensate. */
5388
5389 #ifdef NEED_SEPARATE_AP
5390 rtx addr;
5391
5392 if (fp->x_arg_pointer_save_area == 0)
5393 fp->x_arg_pointer_save_area
5394 = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
5395
5396 addr = fix_lexical_addr (XEXP (fp->x_arg_pointer_save_area, 0), var);
5397 addr = memory_address (Pmode, addr);
5398
5399 base = gen_rtx_MEM (Pmode, addr);
5400 MEM_ALIAS_SET (base) = get_frame_alias_set ();
5401 base = copy_to_reg (base);
5402 #else
5403 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5404 base = lookup_static_chain (var);
5405 #endif
5406 }
5407
5408 else if (basereg == virtual_stack_vars_rtx)
5409 {
5410 /* This is the same code as lookup_static_chain, duplicated here to
5411 avoid an extra call to decl_function_context. */
5412 tree link;
5413
5414 for (link = context_display; link; link = TREE_CHAIN (link))
5415 if (TREE_PURPOSE (link) == context)
5416 {
5417 base = RTL_EXPR_RTL (TREE_VALUE (link));
5418 break;
5419 }
5420 }
5421
5422 if (base == 0)
5423 abort ();
5424
5425 /* Use same offset, relative to appropriate static chain or argument
5426 pointer. */
5427 return plus_constant (base, displacement);
5428 }
5429 \f
5430 /* Return the address of the trampoline for entering nested fn FUNCTION.
5431 If necessary, allocate a trampoline (in the stack frame)
5432 and emit rtl to initialize its contents (at entry to this function). */
5433
5434 rtx
5435 trampoline_address (function)
5436 tree function;
5437 {
5438 tree link;
5439 tree rtlexp;
5440 rtx tramp;
5441 struct function *fp;
5442 tree fn_context;
5443
5444 /* Find an existing trampoline and return it. */
5445 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5446 if (TREE_PURPOSE (link) == function)
5447 return
5448 round_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5449
5450 for (fp = outer_function_chain; fp; fp = fp->next)
5451 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5452 if (TREE_PURPOSE (link) == function)
5453 {
5454 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5455 function);
5456 return round_trampoline_addr (tramp);
5457 }
5458
5459 /* None exists; we must make one. */
5460
5461 /* Find the `struct function' for the function containing FUNCTION. */
5462 fp = 0;
5463 fn_context = decl_function_context (function);
5464 if (fn_context != current_function_decl
5465 && fn_context != inline_function_decl)
5466 for (fp = outer_function_chain; fp; fp = fp->next)
5467 if (fp->decl == fn_context)
5468 break;
5469
5470 /* Allocate run-time space for this trampoline
5471 (usually in the defining function's stack frame). */
5472 #ifdef ALLOCATE_TRAMPOLINE
5473 tramp = ALLOCATE_TRAMPOLINE (fp);
5474 #else
5475 /* If rounding needed, allocate extra space
5476 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5477 #ifdef TRAMPOLINE_ALIGNMENT
5478 #define TRAMPOLINE_REAL_SIZE \
5479 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5480 #else
5481 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5482 #endif
5483 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5484 fp ? fp : cfun);
5485 #endif
5486
5487 /* Record the trampoline for reuse and note it for later initialization
5488 by expand_function_end. */
5489 if (fp != 0)
5490 {
5491 push_obstacks (fp->function_maybepermanent_obstack,
5492 fp->function_maybepermanent_obstack);
5493 rtlexp = make_node (RTL_EXPR);
5494 RTL_EXPR_RTL (rtlexp) = tramp;
5495 fp->x_trampoline_list = tree_cons (function, rtlexp,
5496 fp->x_trampoline_list);
5497 pop_obstacks ();
5498 }
5499 else
5500 {
5501 /* Make the RTL_EXPR node temporary, not momentary, so that the
5502 trampoline_list doesn't become garbage. */
5503 int momentary = suspend_momentary ();
5504 rtlexp = make_node (RTL_EXPR);
5505 resume_momentary (momentary);
5506
5507 RTL_EXPR_RTL (rtlexp) = tramp;
5508 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5509 }
5510
5511 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5512 return round_trampoline_addr (tramp);
5513 }
5514
5515 /* Given a trampoline address,
5516 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5517
5518 static rtx
5519 round_trampoline_addr (tramp)
5520 rtx tramp;
5521 {
5522 #ifdef TRAMPOLINE_ALIGNMENT
5523 /* Round address up to desired boundary. */
5524 rtx temp = gen_reg_rtx (Pmode);
5525 temp = expand_binop (Pmode, add_optab, tramp,
5526 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
5527 temp, 0, OPTAB_LIB_WIDEN);
5528 tramp = expand_binop (Pmode, and_optab, temp,
5529 GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
5530 temp, 0, OPTAB_LIB_WIDEN);
5531 #endif
5532 return tramp;
5533 }
5534 \f
5535 /* Put all this function's BLOCK nodes including those that are chained
5536 onto the first block into a vector, and return it.
5537 Also store in each NOTE for the beginning or end of a block
5538 the index of that block in the vector.
5539 The arguments are BLOCK, the chain of top-level blocks of the function,
5540 and INSNS, the insn chain of the function. */
5541
5542 void
5543 identify_blocks ()
5544 {
5545 int n_blocks;
5546 tree *block_vector, *last_block_vector;
5547 tree *block_stack;
5548 tree block = DECL_INITIAL (current_function_decl);
5549
5550 if (block == 0)
5551 return;
5552
5553 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5554 depth-first order. */
5555 block_vector = get_block_vector (block, &n_blocks);
5556 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5557
5558 last_block_vector = identify_blocks_1 (get_insns (),
5559 block_vector + 1,
5560 block_vector + n_blocks,
5561 block_stack);
5562
5563 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5564 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5565 if (0 && last_block_vector != block_vector + n_blocks)
5566 abort ();
5567
5568 free (block_vector);
5569 free (block_stack);
5570 }
5571
5572 /* Subroutine of identify_blocks. Do the block substitution on the
5573 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5574
5575 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5576 BLOCK_VECTOR is incremented for each block seen. */
5577
5578 static tree *
5579 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5580 rtx insns;
5581 tree *block_vector;
5582 tree *end_block_vector;
5583 tree *orig_block_stack;
5584 {
5585 rtx insn;
5586 tree *block_stack = orig_block_stack;
5587
5588 for (insn = insns; insn; insn = NEXT_INSN (insn))
5589 {
5590 if (GET_CODE (insn) == NOTE)
5591 {
5592 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5593 {
5594 tree b;
5595
5596 /* If there are more block notes than BLOCKs, something
5597 is badly wrong. */
5598 if (block_vector == end_block_vector)
5599 abort ();
5600
5601 b = *block_vector++;
5602 NOTE_BLOCK (insn) = b;
5603 *block_stack++ = b;
5604 }
5605 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5606 {
5607 /* If there are more NOTE_INSN_BLOCK_ENDs than
5608 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5609 if (block_stack == orig_block_stack)
5610 abort ();
5611
5612 NOTE_BLOCK (insn) = *--block_stack;
5613 }
5614 }
5615 else if (GET_CODE (insn) == CALL_INSN
5616 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5617 {
5618 rtx cp = PATTERN (insn);
5619
5620 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5621 end_block_vector, block_stack);
5622 if (XEXP (cp, 1))
5623 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5624 end_block_vector, block_stack);
5625 if (XEXP (cp, 2))
5626 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5627 end_block_vector, block_stack);
5628 }
5629 }
5630
5631 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5632 something is badly wrong. */
5633 if (block_stack != orig_block_stack)
5634 abort ();
5635
5636 return block_vector;
5637 }
5638
5639 /* Identify BLOCKs referenced by more than one
5640 NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */
5641
5642 void
5643 reorder_blocks ()
5644 {
5645 tree block = DECL_INITIAL (current_function_decl);
5646 varray_type block_stack;
5647
5648 if (block == NULL_TREE)
5649 return;
5650
5651 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5652
5653 /* Prune the old trees away, so that they don't get in the way. */
5654 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5655 BLOCK_CHAIN (block) = NULL_TREE;
5656
5657 reorder_blocks_1 (get_insns (), block, &block_stack);
5658
5659 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5660
5661 VARRAY_FREE (block_stack);
5662 }
5663
5664 /* Helper function for reorder_blocks. Process the insn chain beginning
5665 at INSNS. Recurse for CALL_PLACEHOLDER insns. */
5666
5667 static void
5668 reorder_blocks_1 (insns, current_block, p_block_stack)
5669 rtx insns;
5670 tree current_block;
5671 varray_type *p_block_stack;
5672 {
5673 rtx insn;
5674
5675 for (insn = insns; insn; insn = NEXT_INSN (insn))
5676 {
5677 if (GET_CODE (insn) == NOTE)
5678 {
5679 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5680 {
5681 tree block = NOTE_BLOCK (insn);
5682 /* If we have seen this block before, copy it. */
5683 if (TREE_ASM_WRITTEN (block))
5684 {
5685 block = copy_node (block);
5686 NOTE_BLOCK (insn) = block;
5687 }
5688 BLOCK_SUBBLOCKS (block) = 0;
5689 TREE_ASM_WRITTEN (block) = 1;
5690 BLOCK_SUPERCONTEXT (block) = current_block;
5691 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5692 BLOCK_SUBBLOCKS (current_block) = block;
5693 current_block = block;
5694 VARRAY_PUSH_TREE (*p_block_stack, block);
5695 }
5696 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5697 {
5698 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
5699 VARRAY_POP (*p_block_stack);
5700 BLOCK_SUBBLOCKS (current_block)
5701 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5702 current_block = BLOCK_SUPERCONTEXT (current_block);
5703 }
5704 }
5705 else if (GET_CODE (insn) == CALL_INSN
5706 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5707 {
5708 rtx cp = PATTERN (insn);
5709 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
5710 if (XEXP (cp, 1))
5711 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
5712 if (XEXP (cp, 2))
5713 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
5714 }
5715 }
5716 }
5717
5718 /* Reverse the order of elements in the chain T of blocks,
5719 and return the new head of the chain (old last element). */
5720
5721 static tree
5722 blocks_nreverse (t)
5723 tree t;
5724 {
5725 register tree prev = 0, decl, next;
5726 for (decl = t; decl; decl = next)
5727 {
5728 next = BLOCK_CHAIN (decl);
5729 BLOCK_CHAIN (decl) = prev;
5730 prev = decl;
5731 }
5732 return prev;
5733 }
5734
5735 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
5736 non-NULL, list them all into VECTOR, in a depth-first preorder
5737 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
5738 blocks. */
5739
5740 static int
5741 all_blocks (block, vector)
5742 tree block;
5743 tree *vector;
5744 {
5745 int n_blocks = 0;
5746
5747 while (block)
5748 {
5749 TREE_ASM_WRITTEN (block) = 0;
5750
5751 /* Record this block. */
5752 if (vector)
5753 vector[n_blocks] = block;
5754
5755 ++n_blocks;
5756
5757 /* Record the subblocks, and their subblocks... */
5758 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
5759 vector ? vector + n_blocks : 0);
5760 block = BLOCK_CHAIN (block);
5761 }
5762
5763 return n_blocks;
5764 }
5765
5766 /* Return a vector containing all the blocks rooted at BLOCK. The
5767 number of elements in the vector is stored in N_BLOCKS_P. The
5768 vector is dynamically allocated; it is the caller's responsibility
5769 to call `free' on the pointer returned. */
5770
5771 static tree *
5772 get_block_vector (block, n_blocks_p)
5773 tree block;
5774 int *n_blocks_p;
5775 {
5776 tree *block_vector;
5777
5778 *n_blocks_p = all_blocks (block, NULL);
5779 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
5780 all_blocks (block, block_vector);
5781
5782 return block_vector;
5783 }
5784
5785 static int next_block_index = 2;
5786
5787 /* Set BLOCK_NUMBER for all the blocks in FN. */
5788
5789 void
5790 number_blocks (fn)
5791 tree fn;
5792 {
5793 int i;
5794 int n_blocks;
5795 tree *block_vector;
5796
5797 /* For SDB and XCOFF debugging output, we start numbering the blocks
5798 from 1 within each function, rather than keeping a running
5799 count. */
5800 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
5801 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
5802 next_block_index = 1;
5803 #endif
5804
5805 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
5806
5807 /* The top-level BLOCK isn't numbered at all. */
5808 for (i = 1; i < n_blocks; ++i)
5809 /* We number the blocks from two. */
5810 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
5811
5812 free (block_vector);
5813
5814 return;
5815 }
5816 \f
5817 /* Allocate a function structure and reset its contents to the defaults. */
5818 static void
5819 prepare_function_start ()
5820 {
5821 cfun = (struct function *) xcalloc (1, sizeof (struct function));
5822
5823 init_stmt_for_function ();
5824 init_eh_for_function ();
5825
5826 cse_not_expected = ! optimize;
5827
5828 /* Caller save not needed yet. */
5829 caller_save_needed = 0;
5830
5831 /* No stack slots have been made yet. */
5832 stack_slot_list = 0;
5833
5834 current_function_has_nonlocal_label = 0;
5835 current_function_has_nonlocal_goto = 0;
5836
5837 /* There is no stack slot for handling nonlocal gotos. */
5838 nonlocal_goto_handler_slots = 0;
5839 nonlocal_goto_stack_level = 0;
5840
5841 /* No labels have been declared for nonlocal use. */
5842 nonlocal_labels = 0;
5843 nonlocal_goto_handler_labels = 0;
5844
5845 /* No function calls so far in this function. */
5846 function_call_count = 0;
5847
5848 /* No parm regs have been allocated.
5849 (This is important for output_inline_function.) */
5850 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
5851
5852 /* Initialize the RTL mechanism. */
5853 init_emit ();
5854
5855 /* Initialize the queue of pending postincrement and postdecrements,
5856 and some other info in expr.c. */
5857 init_expr ();
5858
5859 /* We haven't done register allocation yet. */
5860 reg_renumber = 0;
5861
5862 init_varasm_status (cfun);
5863
5864 /* Clear out data used for inlining. */
5865 cfun->inlinable = 0;
5866 cfun->original_decl_initial = 0;
5867 cfun->original_arg_vector = 0;
5868
5869 #ifdef STACK_BOUNDARY
5870 cfun->stack_alignment_needed = STACK_BOUNDARY;
5871 cfun->preferred_stack_boundary = STACK_BOUNDARY;
5872 #else
5873 cfun->stack_alignment_needed = 0;
5874 cfun->preferred_stack_boundary = 0;
5875 #endif
5876
5877 /* Set if a call to setjmp is seen. */
5878 current_function_calls_setjmp = 0;
5879
5880 /* Set if a call to longjmp is seen. */
5881 current_function_calls_longjmp = 0;
5882
5883 current_function_calls_alloca = 0;
5884 current_function_contains_functions = 0;
5885 current_function_is_leaf = 0;
5886 current_function_nothrow = 0;
5887 current_function_sp_is_unchanging = 0;
5888 current_function_uses_only_leaf_regs = 0;
5889 current_function_has_computed_jump = 0;
5890 current_function_is_thunk = 0;
5891
5892 current_function_returns_pcc_struct = 0;
5893 current_function_returns_struct = 0;
5894 current_function_epilogue_delay_list = 0;
5895 current_function_uses_const_pool = 0;
5896 current_function_uses_pic_offset_table = 0;
5897 current_function_cannot_inline = 0;
5898
5899 /* We have not yet needed to make a label to jump to for tail-recursion. */
5900 tail_recursion_label = 0;
5901
5902 /* We haven't had a need to make a save area for ap yet. */
5903 arg_pointer_save_area = 0;
5904
5905 /* No stack slots allocated yet. */
5906 frame_offset = 0;
5907
5908 /* No SAVE_EXPRs in this function yet. */
5909 save_expr_regs = 0;
5910
5911 /* No RTL_EXPRs in this function yet. */
5912 rtl_expr_chain = 0;
5913
5914 /* Set up to allocate temporaries. */
5915 init_temp_slots ();
5916
5917 /* Indicate that we need to distinguish between the return value of the
5918 present function and the return value of a function being called. */
5919 rtx_equal_function_value_matters = 1;
5920
5921 /* Indicate that we have not instantiated virtual registers yet. */
5922 virtuals_instantiated = 0;
5923
5924 /* Indicate that we want CONCATs now. */
5925 generating_concat_p = 1;
5926
5927 /* Indicate we have no need of a frame pointer yet. */
5928 frame_pointer_needed = 0;
5929
5930 /* By default assume not varargs or stdarg. */
5931 current_function_varargs = 0;
5932 current_function_stdarg = 0;
5933
5934 /* We haven't made any trampolines for this function yet. */
5935 trampoline_list = 0;
5936
5937 init_pending_stack_adjust ();
5938 inhibit_defer_pop = 0;
5939
5940 current_function_outgoing_args_size = 0;
5941
5942 if (init_lang_status)
5943 (*init_lang_status) (cfun);
5944 if (init_machine_status)
5945 (*init_machine_status) (cfun);
5946 }
5947
5948 /* Initialize the rtl expansion mechanism so that we can do simple things
5949 like generate sequences. This is used to provide a context during global
5950 initialization of some passes. */
5951 void
5952 init_dummy_function_start ()
5953 {
5954 prepare_function_start ();
5955 }
5956
5957 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5958 and initialize static variables for generating RTL for the statements
5959 of the function. */
5960
5961 void
5962 init_function_start (subr, filename, line)
5963 tree subr;
5964 const char *filename;
5965 int line;
5966 {
5967 prepare_function_start ();
5968
5969 /* Remember this function for later. */
5970 cfun->next_global = all_functions;
5971 all_functions = cfun;
5972
5973 current_function_name = (*decl_printable_name) (subr, 2);
5974 cfun->decl = subr;
5975
5976 /* Nonzero if this is a nested function that uses a static chain. */
5977
5978 current_function_needs_context
5979 = (decl_function_context (current_function_decl) != 0
5980 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
5981
5982 /* Within function body, compute a type's size as soon it is laid out. */
5983 immediate_size_expand++;
5984
5985 /* Prevent ever trying to delete the first instruction of a function.
5986 Also tell final how to output a linenum before the function prologue.
5987 Note linenums could be missing, e.g. when compiling a Java .class file. */
5988 if (line > 0)
5989 emit_line_note (filename, line);
5990
5991 /* Make sure first insn is a note even if we don't want linenums.
5992 This makes sure the first insn will never be deleted.
5993 Also, final expects a note to appear there. */
5994 emit_note (NULL_PTR, NOTE_INSN_DELETED);
5995
5996 /* Set flags used by final.c. */
5997 if (aggregate_value_p (DECL_RESULT (subr)))
5998 {
5999 #ifdef PCC_STATIC_STRUCT_RETURN
6000 current_function_returns_pcc_struct = 1;
6001 #endif
6002 current_function_returns_struct = 1;
6003 }
6004
6005 /* Warn if this value is an aggregate type,
6006 regardless of which calling convention we are using for it. */
6007 if (warn_aggregate_return
6008 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6009 warning ("function returns an aggregate");
6010
6011 current_function_returns_pointer
6012 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
6013 }
6014
6015 /* Make sure all values used by the optimization passes have sane
6016 defaults. */
6017 void
6018 init_function_for_compilation ()
6019 {
6020 reg_renumber = 0;
6021
6022 /* No prologue/epilogue insns yet. */
6023 VARRAY_GROW (prologue, 0);
6024 VARRAY_GROW (epilogue, 0);
6025 VARRAY_GROW (sibcall_epilogue, 0);
6026 }
6027
6028 /* Indicate that the current function uses extra args
6029 not explicitly mentioned in the argument list in any fashion. */
6030
6031 void
6032 mark_varargs ()
6033 {
6034 current_function_varargs = 1;
6035 }
6036
6037 /* Expand a call to __main at the beginning of a possible main function. */
6038
6039 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6040 #undef HAS_INIT_SECTION
6041 #define HAS_INIT_SECTION
6042 #endif
6043
6044 void
6045 expand_main_function ()
6046 {
6047 #if !defined (HAS_INIT_SECTION)
6048 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0,
6049 VOIDmode, 0);
6050 #endif /* not HAS_INIT_SECTION */
6051 }
6052 \f
6053 extern struct obstack permanent_obstack;
6054
6055 /* Start the RTL for a new function, and set variables used for
6056 emitting RTL.
6057 SUBR is the FUNCTION_DECL node.
6058 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6059 the function's parameters, which must be run at any return statement. */
6060
6061 void
6062 expand_function_start (subr, parms_have_cleanups)
6063 tree subr;
6064 int parms_have_cleanups;
6065 {
6066 tree tem;
6067 rtx last_ptr = NULL_RTX;
6068
6069 /* Make sure volatile mem refs aren't considered
6070 valid operands of arithmetic insns. */
6071 init_recog_no_volatile ();
6072
6073 /* Set this before generating any memory accesses. */
6074 current_function_check_memory_usage
6075 = (flag_check_memory_usage
6076 && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl));
6077
6078 current_function_instrument_entry_exit
6079 = (flag_instrument_function_entry_exit
6080 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6081
6082 current_function_limit_stack
6083 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6084
6085 /* If function gets a static chain arg, store it in the stack frame.
6086 Do this first, so it gets the first stack slot offset. */
6087 if (current_function_needs_context)
6088 {
6089 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6090
6091 /* Delay copying static chain if it is not a register to avoid
6092 conflicts with regs used for parameters. */
6093 if (! SMALL_REGISTER_CLASSES
6094 || GET_CODE (static_chain_incoming_rtx) == REG)
6095 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6096 }
6097
6098 /* If the parameters of this function need cleaning up, get a label
6099 for the beginning of the code which executes those cleanups. This must
6100 be done before doing anything with return_label. */
6101 if (parms_have_cleanups)
6102 cleanup_label = gen_label_rtx ();
6103 else
6104 cleanup_label = 0;
6105
6106 /* Make the label for return statements to jump to, if this machine
6107 does not have a one-instruction return and uses an epilogue,
6108 or if it returns a structure, or if it has parm cleanups. */
6109 #ifdef HAVE_return
6110 if (cleanup_label == 0 && HAVE_return
6111 && ! current_function_instrument_entry_exit
6112 && ! current_function_returns_pcc_struct
6113 && ! (current_function_returns_struct && ! optimize))
6114 return_label = 0;
6115 else
6116 return_label = gen_label_rtx ();
6117 #else
6118 return_label = gen_label_rtx ();
6119 #endif
6120
6121 /* Initialize rtx used to return the value. */
6122 /* Do this before assign_parms so that we copy the struct value address
6123 before any library calls that assign parms might generate. */
6124
6125 /* Decide whether to return the value in memory or in a register. */
6126 if (aggregate_value_p (DECL_RESULT (subr)))
6127 {
6128 /* Returning something that won't go in a register. */
6129 register rtx value_address = 0;
6130
6131 #ifdef PCC_STATIC_STRUCT_RETURN
6132 if (current_function_returns_pcc_struct)
6133 {
6134 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6135 value_address = assemble_static_space (size);
6136 }
6137 else
6138 #endif
6139 {
6140 /* Expect to be passed the address of a place to store the value.
6141 If it is passed as an argument, assign_parms will take care of
6142 it. */
6143 if (struct_value_incoming_rtx)
6144 {
6145 value_address = gen_reg_rtx (Pmode);
6146 emit_move_insn (value_address, struct_value_incoming_rtx);
6147 }
6148 }
6149 if (value_address)
6150 {
6151 DECL_RTL (DECL_RESULT (subr))
6152 = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6153 set_mem_attributes (DECL_RTL (DECL_RESULT (subr)),
6154 DECL_RESULT (subr), 1);
6155 }
6156 }
6157 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6158 /* If return mode is void, this decl rtl should not be used. */
6159 DECL_RTL (DECL_RESULT (subr)) = 0;
6160 else if (parms_have_cleanups || current_function_instrument_entry_exit)
6161 {
6162 /* If function will end with cleanup code for parms,
6163 compute the return values into a pseudo reg,
6164 which we will copy into the true return register
6165 after the cleanups are done. */
6166
6167 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
6168
6169 #ifdef PROMOTE_FUNCTION_RETURN
6170 tree type = TREE_TYPE (DECL_RESULT (subr));
6171 int unsignedp = TREE_UNSIGNED (type);
6172
6173 mode = promote_mode (type, mode, &unsignedp, 1);
6174 #endif
6175
6176 DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode);
6177 }
6178 else
6179 /* Scalar, returned in a register. */
6180 {
6181 DECL_RTL (DECL_RESULT (subr))
6182 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)), subr, 1);
6183
6184 /* Mark this reg as the function's return value. */
6185 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
6186 {
6187 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
6188 /* Needed because we may need to move this to memory
6189 in case it's a named return value whose address is taken. */
6190 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6191 }
6192 }
6193
6194 /* Initialize rtx for parameters and local variables.
6195 In some cases this requires emitting insns. */
6196
6197 assign_parms (subr);
6198
6199 /* Copy the static chain now if it wasn't a register. The delay is to
6200 avoid conflicts with the parameter passing registers. */
6201
6202 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6203 if (GET_CODE (static_chain_incoming_rtx) != REG)
6204 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6205
6206 /* The following was moved from init_function_start.
6207 The move is supposed to make sdb output more accurate. */
6208 /* Indicate the beginning of the function body,
6209 as opposed to parm setup. */
6210 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
6211
6212 if (GET_CODE (get_last_insn ()) != NOTE)
6213 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6214 parm_birth_insn = get_last_insn ();
6215
6216 context_display = 0;
6217 if (current_function_needs_context)
6218 {
6219 /* Fetch static chain values for containing functions. */
6220 tem = decl_function_context (current_function_decl);
6221 /* Copy the static chain pointer into a pseudo. If we have
6222 small register classes, copy the value from memory if
6223 static_chain_incoming_rtx is a REG. */
6224 if (tem)
6225 {
6226 /* If the static chain originally came in a register, put it back
6227 there, then move it out in the next insn. The reason for
6228 this peculiar code is to satisfy function integration. */
6229 if (SMALL_REGISTER_CLASSES
6230 && GET_CODE (static_chain_incoming_rtx) == REG)
6231 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6232 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6233 }
6234
6235 while (tem)
6236 {
6237 tree rtlexp = make_node (RTL_EXPR);
6238
6239 RTL_EXPR_RTL (rtlexp) = last_ptr;
6240 context_display = tree_cons (tem, rtlexp, context_display);
6241 tem = decl_function_context (tem);
6242 if (tem == 0)
6243 break;
6244 /* Chain thru stack frames, assuming pointer to next lexical frame
6245 is found at the place we always store it. */
6246 #ifdef FRAME_GROWS_DOWNWARD
6247 last_ptr = plus_constant (last_ptr, -GET_MODE_SIZE (Pmode));
6248 #endif
6249 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6250 MEM_ALIAS_SET (last_ptr) = get_frame_alias_set ();
6251 last_ptr = copy_to_reg (last_ptr);
6252
6253 /* If we are not optimizing, ensure that we know that this
6254 piece of context is live over the entire function. */
6255 if (! optimize)
6256 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6257 save_expr_regs);
6258 }
6259 }
6260
6261 if (current_function_instrument_entry_exit)
6262 {
6263 rtx fun = DECL_RTL (current_function_decl);
6264 if (GET_CODE (fun) == MEM)
6265 fun = XEXP (fun, 0);
6266 else
6267 abort ();
6268 emit_library_call (profile_function_entry_libfunc, 0, VOIDmode, 2,
6269 fun, Pmode,
6270 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6271 0,
6272 hard_frame_pointer_rtx),
6273 Pmode);
6274 }
6275
6276 /* After the display initializations is where the tail-recursion label
6277 should go, if we end up needing one. Ensure we have a NOTE here
6278 since some things (like trampolines) get placed before this. */
6279 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
6280
6281 /* Evaluate now the sizes of any types declared among the arguments. */
6282 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
6283 {
6284 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode,
6285 EXPAND_MEMORY_USE_BAD);
6286 /* Flush the queue in case this parameter declaration has
6287 side-effects. */
6288 emit_queue ();
6289 }
6290
6291 /* Make sure there is a line number after the function entry setup code. */
6292 force_next_line_note ();
6293 }
6294 \f
6295 /* Undo the effects of init_dummy_function_start. */
6296 void
6297 expand_dummy_function_end ()
6298 {
6299 /* End any sequences that failed to be closed due to syntax errors. */
6300 while (in_sequence_p ())
6301 end_sequence ();
6302
6303 /* Outside function body, can't compute type's actual size
6304 until next function's body starts. */
6305
6306 free_after_parsing (cfun);
6307 free_after_compilation (cfun);
6308 free (cfun);
6309 cfun = 0;
6310 }
6311
6312 /* Call DOIT for each hard register used as a return value from
6313 the current function. */
6314
6315 void
6316 diddle_return_value (doit, arg)
6317 void (*doit) PARAMS ((rtx, void *));
6318 void *arg;
6319 {
6320 rtx outgoing = current_function_return_rtx;
6321 int pcc;
6322
6323 if (! outgoing)
6324 return;
6325
6326 pcc = (current_function_returns_struct
6327 || current_function_returns_pcc_struct);
6328
6329 if ((GET_CODE (outgoing) == REG
6330 && REGNO (outgoing) >= FIRST_PSEUDO_REGISTER)
6331 || pcc)
6332 {
6333 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6334
6335 /* A PCC-style return returns a pointer to the memory in which
6336 the structure is stored. */
6337 if (pcc)
6338 type = build_pointer_type (type);
6339
6340 #ifdef FUNCTION_OUTGOING_VALUE
6341 outgoing = FUNCTION_OUTGOING_VALUE (type, current_function_decl);
6342 #else
6343 outgoing = FUNCTION_VALUE (type, current_function_decl);
6344 #endif
6345 /* If this is a BLKmode structure being returned in registers, then use
6346 the mode computed in expand_return. */
6347 if (GET_MODE (outgoing) == BLKmode)
6348 PUT_MODE (outgoing,
6349 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6350 REG_FUNCTION_VALUE_P (outgoing) = 1;
6351 }
6352
6353 if (GET_CODE (outgoing) == REG)
6354 (*doit) (outgoing, arg);
6355 else if (GET_CODE (outgoing) == PARALLEL)
6356 {
6357 int i;
6358
6359 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6360 {
6361 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6362
6363 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6364 (*doit) (x, arg);
6365 }
6366 }
6367 }
6368
6369 static void
6370 do_clobber_return_reg (reg, arg)
6371 rtx reg;
6372 void *arg ATTRIBUTE_UNUSED;
6373 {
6374 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6375 }
6376
6377 void
6378 clobber_return_register ()
6379 {
6380 diddle_return_value (do_clobber_return_reg, NULL);
6381 }
6382
6383 static void
6384 do_use_return_reg (reg, arg)
6385 rtx reg;
6386 void *arg ATTRIBUTE_UNUSED;
6387 {
6388 emit_insn (gen_rtx_USE (VOIDmode, reg));
6389 }
6390
6391 void
6392 use_return_register ()
6393 {
6394 diddle_return_value (do_use_return_reg, NULL);
6395 }
6396
6397 /* Generate RTL for the end of the current function.
6398 FILENAME and LINE are the current position in the source file.
6399
6400 It is up to language-specific callers to do cleanups for parameters--
6401 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6402
6403 void
6404 expand_function_end (filename, line, end_bindings)
6405 const char *filename;
6406 int line;
6407 int end_bindings;
6408 {
6409 tree link;
6410
6411 #ifdef TRAMPOLINE_TEMPLATE
6412 static rtx initial_trampoline;
6413 #endif
6414
6415 finish_expr_for_function ();
6416
6417 #ifdef NON_SAVING_SETJMP
6418 /* Don't put any variables in registers if we call setjmp
6419 on a machine that fails to restore the registers. */
6420 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6421 {
6422 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6423 setjmp_protect (DECL_INITIAL (current_function_decl));
6424
6425 setjmp_protect_args ();
6426 }
6427 #endif
6428
6429 /* Save the argument pointer if a save area was made for it. */
6430 if (arg_pointer_save_area)
6431 {
6432 /* arg_pointer_save_area may not be a valid memory address, so we
6433 have to check it and fix it if necessary. */
6434 rtx seq;
6435 start_sequence ();
6436 emit_move_insn (validize_mem (arg_pointer_save_area),
6437 virtual_incoming_args_rtx);
6438 seq = gen_sequence ();
6439 end_sequence ();
6440 emit_insn_before (seq, tail_recursion_reentry);
6441 }
6442
6443 /* Initialize any trampolines required by this function. */
6444 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6445 {
6446 tree function = TREE_PURPOSE (link);
6447 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6448 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6449 #ifdef TRAMPOLINE_TEMPLATE
6450 rtx blktramp;
6451 #endif
6452 rtx seq;
6453
6454 #ifdef TRAMPOLINE_TEMPLATE
6455 /* First make sure this compilation has a template for
6456 initializing trampolines. */
6457 if (initial_trampoline == 0)
6458 {
6459 end_temporary_allocation ();
6460 initial_trampoline
6461 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6462 resume_temporary_allocation ();
6463
6464 ggc_add_rtx_root (&initial_trampoline, 1);
6465 }
6466 #endif
6467
6468 /* Generate insns to initialize the trampoline. */
6469 start_sequence ();
6470 tramp = round_trampoline_addr (XEXP (tramp, 0));
6471 #ifdef TRAMPOLINE_TEMPLATE
6472 blktramp = change_address (initial_trampoline, BLKmode, tramp);
6473 emit_block_move (blktramp, initial_trampoline,
6474 GEN_INT (TRAMPOLINE_SIZE),
6475 TRAMPOLINE_ALIGNMENT);
6476 #endif
6477 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6478 seq = get_insns ();
6479 end_sequence ();
6480
6481 /* Put those insns at entry to the containing function (this one). */
6482 emit_insns_before (seq, tail_recursion_reentry);
6483 }
6484
6485 /* If we are doing stack checking and this function makes calls,
6486 do a stack probe at the start of the function to ensure we have enough
6487 space for another stack frame. */
6488 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6489 {
6490 rtx insn, seq;
6491
6492 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6493 if (GET_CODE (insn) == CALL_INSN)
6494 {
6495 start_sequence ();
6496 probe_stack_range (STACK_CHECK_PROTECT,
6497 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6498 seq = get_insns ();
6499 end_sequence ();
6500 emit_insns_before (seq, tail_recursion_reentry);
6501 break;
6502 }
6503 }
6504
6505 /* Warn about unused parms if extra warnings were specified. */
6506 /* Either ``-W -Wunused'' or ``-Wunused-parameter'' enables this
6507 warning. WARN_UNUSED_PARAMETER is negative when set by
6508 -Wunused. */
6509 if (warn_unused_parameter > 0
6510 || (warn_unused_parameter < 0 && extra_warnings))
6511 {
6512 tree decl;
6513
6514 for (decl = DECL_ARGUMENTS (current_function_decl);
6515 decl; decl = TREE_CHAIN (decl))
6516 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6517 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6518 warning_with_decl (decl, "unused parameter `%s'");
6519 }
6520
6521 /* Delete handlers for nonlocal gotos if nothing uses them. */
6522 if (nonlocal_goto_handler_slots != 0
6523 && ! current_function_has_nonlocal_label)
6524 delete_handlers ();
6525
6526 /* End any sequences that failed to be closed due to syntax errors. */
6527 while (in_sequence_p ())
6528 end_sequence ();
6529
6530 /* Outside function body, can't compute type's actual size
6531 until next function's body starts. */
6532 immediate_size_expand--;
6533
6534 clear_pending_stack_adjust ();
6535 do_pending_stack_adjust ();
6536
6537 /* Mark the end of the function body.
6538 If control reaches this insn, the function can drop through
6539 without returning a value. */
6540 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
6541
6542 /* Must mark the last line number note in the function, so that the test
6543 coverage code can avoid counting the last line twice. This just tells
6544 the code to ignore the immediately following line note, since there
6545 already exists a copy of this note somewhere above. This line number
6546 note is still needed for debugging though, so we can't delete it. */
6547 if (flag_test_coverage)
6548 emit_note (NULL_PTR, NOTE_INSN_REPEATED_LINE_NUMBER);
6549
6550 /* Output a linenumber for the end of the function.
6551 SDB depends on this. */
6552 emit_line_note_force (filename, line);
6553
6554 /* Output the label for the actual return from the function,
6555 if one is expected. This happens either because a function epilogue
6556 is used instead of a return instruction, or because a return was done
6557 with a goto in order to run local cleanups, or because of pcc-style
6558 structure returning. */
6559
6560 if (return_label)
6561 {
6562 /* Before the return label, clobber the return registers so that
6563 they are not propogated live to the rest of the function. This
6564 can only happen with functions that drop through; if there had
6565 been a return statement, there would have either been a return
6566 rtx, or a jump to the return label. */
6567 clobber_return_register ();
6568
6569 emit_label (return_label);
6570 }
6571
6572 /* C++ uses this. */
6573 if (end_bindings)
6574 expand_end_bindings (0, 0, 0);
6575
6576 /* Now handle any leftover exception regions that may have been
6577 created for the parameters. */
6578 {
6579 rtx last = get_last_insn ();
6580 rtx label;
6581
6582 expand_leftover_cleanups ();
6583
6584 /* If there are any catch_clauses remaining, output them now. */
6585 emit_insns (catch_clauses);
6586 catch_clauses = catch_clauses_last = NULL_RTX;
6587 /* If the above emitted any code, may sure we jump around it. */
6588 if (last != get_last_insn ())
6589 {
6590 label = gen_label_rtx ();
6591 last = emit_jump_insn_after (gen_jump (label), last);
6592 last = emit_barrier_after (last);
6593 emit_label (label);
6594 }
6595 }
6596
6597 if (current_function_instrument_entry_exit)
6598 {
6599 rtx fun = DECL_RTL (current_function_decl);
6600 if (GET_CODE (fun) == MEM)
6601 fun = XEXP (fun, 0);
6602 else
6603 abort ();
6604 emit_library_call (profile_function_exit_libfunc, 0, VOIDmode, 2,
6605 fun, Pmode,
6606 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6607 0,
6608 hard_frame_pointer_rtx),
6609 Pmode);
6610 }
6611
6612 /* If we had calls to alloca, and this machine needs
6613 an accurate stack pointer to exit the function,
6614 insert some code to save and restore the stack pointer. */
6615 #ifdef EXIT_IGNORE_STACK
6616 if (! EXIT_IGNORE_STACK)
6617 #endif
6618 if (current_function_calls_alloca)
6619 {
6620 rtx tem = 0;
6621
6622 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6623 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6624 }
6625
6626 /* If scalar return value was computed in a pseudo-reg,
6627 copy that to the hard return register. */
6628 if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0
6629 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG
6630 && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl)))
6631 >= FIRST_PSEUDO_REGISTER))
6632 {
6633 rtx real_decl_result;
6634
6635 #ifdef FUNCTION_OUTGOING_VALUE
6636 real_decl_result
6637 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6638 current_function_decl);
6639 #else
6640 real_decl_result
6641 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6642 current_function_decl);
6643 #endif
6644 REG_FUNCTION_VALUE_P (real_decl_result) = 1;
6645 /* If this is a BLKmode structure being returned in registers, then use
6646 the mode computed in expand_return. */
6647 if (GET_MODE (real_decl_result) == BLKmode)
6648 PUT_MODE (real_decl_result,
6649 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6650 emit_move_insn (real_decl_result,
6651 DECL_RTL (DECL_RESULT (current_function_decl)));
6652
6653 /* The delay slot scheduler assumes that current_function_return_rtx
6654 holds the hard register containing the return value, not a temporary
6655 pseudo. */
6656 current_function_return_rtx = real_decl_result;
6657 }
6658
6659 /* If returning a structure, arrange to return the address of the value
6660 in a place where debuggers expect to find it.
6661
6662 If returning a structure PCC style,
6663 the caller also depends on this value.
6664 And current_function_returns_pcc_struct is not necessarily set. */
6665 if (current_function_returns_struct
6666 || current_function_returns_pcc_struct)
6667 {
6668 rtx value_address =
6669 XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
6670 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6671 #ifdef FUNCTION_OUTGOING_VALUE
6672 rtx outgoing
6673 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
6674 current_function_decl);
6675 #else
6676 rtx outgoing
6677 = FUNCTION_VALUE (build_pointer_type (type),
6678 current_function_decl);
6679 #endif
6680
6681 /* Mark this as a function return value so integrate will delete the
6682 assignment and USE below when inlining this function. */
6683 REG_FUNCTION_VALUE_P (outgoing) = 1;
6684
6685 emit_move_insn (outgoing, value_address);
6686 }
6687
6688 /* ??? This should no longer be necessary since stupid is no longer with
6689 us, but there are some parts of the compiler (eg reload_combine, and
6690 sh mach_dep_reorg) that still try and compute their own lifetime info
6691 instead of using the general framework. */
6692 use_return_register ();
6693
6694 /* If this is an implementation of __throw, do what's necessary to
6695 communicate between __builtin_eh_return and the epilogue. */
6696 expand_eh_return ();
6697
6698 /* Output a return insn if we are using one.
6699 Otherwise, let the rtl chain end here, to drop through
6700 into the epilogue. */
6701
6702 #ifdef HAVE_return
6703 if (HAVE_return)
6704 {
6705 emit_jump_insn (gen_return ());
6706 emit_barrier ();
6707 }
6708 #endif
6709
6710 /* Fix up any gotos that jumped out to the outermost
6711 binding level of the function.
6712 Must follow emitting RETURN_LABEL. */
6713
6714 /* If you have any cleanups to do at this point,
6715 and they need to create temporary variables,
6716 then you will lose. */
6717 expand_fixups (get_insns ());
6718 }
6719 \f
6720 /* Extend a vector that records the INSN_UIDs of INSNS (either a
6721 sequence or a single insn). */
6722
6723 static void
6724 record_insns (insns, vecp)
6725 rtx insns;
6726 varray_type *vecp;
6727 {
6728 if (GET_CODE (insns) == SEQUENCE)
6729 {
6730 int len = XVECLEN (insns, 0);
6731 int i = VARRAY_SIZE (*vecp);
6732
6733 VARRAY_GROW (*vecp, i + len);
6734 while (--len >= 0)
6735 {
6736 VARRAY_INT (*vecp, i) = INSN_UID (XVECEXP (insns, 0, len));
6737 ++i;
6738 }
6739 }
6740 else
6741 {
6742 int i = VARRAY_SIZE (*vecp);
6743 VARRAY_GROW (*vecp, i + 1);
6744 VARRAY_INT (*vecp, i) = INSN_UID (insns);
6745 }
6746 }
6747
6748 /* Determine how many INSN_UIDs in VEC are part of INSN. */
6749
6750 static int
6751 contains (insn, vec)
6752 rtx insn;
6753 varray_type vec;
6754 {
6755 register int i, j;
6756
6757 if (GET_CODE (insn) == INSN
6758 && GET_CODE (PATTERN (insn)) == SEQUENCE)
6759 {
6760 int count = 0;
6761 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6762 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6763 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
6764 count++;
6765 return count;
6766 }
6767 else
6768 {
6769 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6770 if (INSN_UID (insn) == VARRAY_INT (vec, j))
6771 return 1;
6772 }
6773 return 0;
6774 }
6775
6776 int
6777 prologue_epilogue_contains (insn)
6778 rtx insn;
6779 {
6780 if (contains (insn, prologue))
6781 return 1;
6782 if (contains (insn, epilogue))
6783 return 1;
6784 return 0;
6785 }
6786
6787 int
6788 sibcall_epilogue_contains (insn)
6789 rtx insn;
6790 {
6791 if (sibcall_epilogue)
6792 return contains (insn, sibcall_epilogue);
6793 return 0;
6794 }
6795
6796 #ifdef HAVE_return
6797 /* Insert gen_return at the end of block BB. This also means updating
6798 block_for_insn appropriately. */
6799
6800 static void
6801 emit_return_into_block (bb, line_note)
6802 basic_block bb;
6803 rtx line_note;
6804 {
6805 rtx p, end;
6806
6807 p = NEXT_INSN (bb->end);
6808 end = emit_jump_insn_after (gen_return (), bb->end);
6809 if (line_note)
6810 emit_line_note_after (NOTE_SOURCE_FILE (line_note),
6811 NOTE_LINE_NUMBER (line_note), bb->end);
6812
6813 while (1)
6814 {
6815 set_block_for_insn (p, bb);
6816 if (p == bb->end)
6817 break;
6818 p = PREV_INSN (p);
6819 }
6820 bb->end = end;
6821 }
6822 #endif /* HAVE_return */
6823
6824 #ifdef HAVE_epilogue
6825
6826 /* Modify SEQ, a SEQUENCE that is part of the epilogue, to no modifications
6827 to the stack pointer. */
6828
6829 static void
6830 keep_stack_depressed (seq)
6831 rtx seq;
6832 {
6833 int i;
6834 rtx sp_from_reg = 0;
6835 int sp_modified_unknown = 0;
6836
6837 /* If the epilogue is just a single instruction, it's OK as is */
6838
6839 if (GET_CODE (seq) != SEQUENCE) return;
6840
6841 /* Scan all insns in SEQ looking for ones that modified the stack
6842 pointer. Record if it modified the stack pointer by copying it
6843 from the frame pointer or if it modified it in some other way.
6844 Then modify any subsequent stack pointer references to take that
6845 into account. We start by only allowing SP to be copied from a
6846 register (presumably FP) and then be subsequently referenced. */
6847
6848 for (i = 0; i < XVECLEN (seq, 0); i++)
6849 {
6850 rtx insn = XVECEXP (seq, 0, i);
6851
6852 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6853 continue;
6854
6855 if (reg_set_p (stack_pointer_rtx, insn))
6856 {
6857 rtx set = single_set (insn);
6858
6859 /* If SP is set as a side-effect, we can't support this. */
6860 if (set == 0)
6861 abort ();
6862
6863 if (GET_CODE (SET_SRC (set)) == REG)
6864 sp_from_reg = SET_SRC (set);
6865 else
6866 sp_modified_unknown = 1;
6867
6868 /* Don't allow the SP modification to happen. */
6869 PUT_CODE (insn, NOTE);
6870 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
6871 NOTE_SOURCE_FILE (insn) = 0;
6872 }
6873 else if (reg_referenced_p (stack_pointer_rtx, PATTERN (insn)))
6874 {
6875 if (sp_modified_unknown)
6876 abort ();
6877
6878 else if (sp_from_reg != 0)
6879 PATTERN (insn)
6880 = replace_rtx (PATTERN (insn), stack_pointer_rtx, sp_from_reg);
6881 }
6882 }
6883 }
6884 #endif
6885
6886 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
6887 this into place with notes indicating where the prologue ends and where
6888 the epilogue begins. Update the basic block information when possible. */
6889
6890 void
6891 thread_prologue_and_epilogue_insns (f)
6892 rtx f ATTRIBUTE_UNUSED;
6893 {
6894 int inserted = 0;
6895 edge e;
6896 rtx seq;
6897 #ifdef HAVE_prologue
6898 rtx prologue_end = NULL_RTX;
6899 #endif
6900 #if defined (HAVE_epilogue) || defined(HAVE_return)
6901 rtx epilogue_end = NULL_RTX;
6902 #endif
6903
6904 #ifdef HAVE_prologue
6905 if (HAVE_prologue)
6906 {
6907 start_sequence ();
6908 seq = gen_prologue ();
6909 emit_insn (seq);
6910
6911 /* Retain a map of the prologue insns. */
6912 if (GET_CODE (seq) != SEQUENCE)
6913 seq = get_insns ();
6914 record_insns (seq, &prologue);
6915 prologue_end = emit_note (NULL, NOTE_INSN_PROLOGUE_END);
6916
6917 seq = gen_sequence ();
6918 end_sequence ();
6919
6920 /* If optimization is off, and perhaps in an empty function,
6921 the entry block will have no successors. */
6922 if (ENTRY_BLOCK_PTR->succ)
6923 {
6924 /* Can't deal with multiple successsors of the entry block. */
6925 if (ENTRY_BLOCK_PTR->succ->succ_next)
6926 abort ();
6927
6928 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
6929 inserted = 1;
6930 }
6931 else
6932 emit_insn_after (seq, f);
6933 }
6934 #endif
6935
6936 /* If the exit block has no non-fake predecessors, we don't need
6937 an epilogue. */
6938 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
6939 if ((e->flags & EDGE_FAKE) == 0)
6940 break;
6941 if (e == NULL)
6942 goto epilogue_done;
6943
6944 #ifdef HAVE_return
6945 if (optimize && HAVE_return)
6946 {
6947 /* If we're allowed to generate a simple return instruction,
6948 then by definition we don't need a full epilogue. Examine
6949 the block that falls through to EXIT. If it does not
6950 contain any code, examine its predecessors and try to
6951 emit (conditional) return instructions. */
6952
6953 basic_block last;
6954 edge e_next;
6955 rtx label;
6956
6957 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
6958 if (e->flags & EDGE_FALLTHRU)
6959 break;
6960 if (e == NULL)
6961 goto epilogue_done;
6962 last = e->src;
6963
6964 /* Verify that there are no active instructions in the last block. */
6965 label = last->end;
6966 while (label && GET_CODE (label) != CODE_LABEL)
6967 {
6968 if (active_insn_p (label))
6969 break;
6970 label = PREV_INSN (label);
6971 }
6972
6973 if (last->head == label && GET_CODE (label) == CODE_LABEL)
6974 {
6975 rtx epilogue_line_note = NULL_RTX;
6976
6977 /* Locate the line number associated with the closing brace,
6978 if we can find one. */
6979 for (seq = get_last_insn ();
6980 seq && ! active_insn_p (seq);
6981 seq = PREV_INSN (seq))
6982 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
6983 {
6984 epilogue_line_note = seq;
6985 break;
6986 }
6987
6988 for (e = last->pred; e; e = e_next)
6989 {
6990 basic_block bb = e->src;
6991 rtx jump;
6992
6993 e_next = e->pred_next;
6994 if (bb == ENTRY_BLOCK_PTR)
6995 continue;
6996
6997 jump = bb->end;
6998 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
6999 continue;
7000
7001 /* If we have an unconditional jump, we can replace that
7002 with a simple return instruction. */
7003 if (simplejump_p (jump))
7004 {
7005 emit_return_into_block (bb, epilogue_line_note);
7006 flow_delete_insn (jump);
7007 }
7008
7009 /* If we have a conditional jump, we can try to replace
7010 that with a conditional return instruction. */
7011 else if (condjump_p (jump))
7012 {
7013 rtx ret, *loc;
7014
7015 ret = SET_SRC (PATTERN (jump));
7016 if (GET_CODE (XEXP (ret, 1)) == LABEL_REF)
7017 loc = &XEXP (ret, 1);
7018 else
7019 loc = &XEXP (ret, 2);
7020 ret = gen_rtx_RETURN (VOIDmode);
7021
7022 if (! validate_change (jump, loc, ret, 0))
7023 continue;
7024 if (JUMP_LABEL (jump))
7025 LABEL_NUSES (JUMP_LABEL (jump))--;
7026
7027 /* If this block has only one successor, it both jumps
7028 and falls through to the fallthru block, so we can't
7029 delete the edge. */
7030 if (bb->succ->succ_next == NULL)
7031 continue;
7032 }
7033 else
7034 continue;
7035
7036 /* Fix up the CFG for the successful change we just made. */
7037 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7038 }
7039
7040 /* Emit a return insn for the exit fallthru block. Whether
7041 this is still reachable will be determined later. */
7042
7043 emit_barrier_after (last->end);
7044 emit_return_into_block (last, epilogue_line_note);
7045 epilogue_end = last->end;
7046 goto epilogue_done;
7047 }
7048 }
7049 #endif
7050 #ifdef HAVE_epilogue
7051 if (HAVE_epilogue)
7052 {
7053 /* Find the edge that falls through to EXIT. Other edges may exist
7054 due to RETURN instructions, but those don't need epilogues.
7055 There really shouldn't be a mixture -- either all should have
7056 been converted or none, however... */
7057
7058 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7059 if (e->flags & EDGE_FALLTHRU)
7060 break;
7061 if (e == NULL)
7062 goto epilogue_done;
7063
7064 start_sequence ();
7065 epilogue_end = emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
7066
7067 seq = gen_epilogue ();
7068
7069 /* If this function returns with the stack depressed, massage
7070 the epilogue to actually do that. */
7071 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7072 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7073 keep_stack_depressed (seq);
7074
7075 emit_jump_insn (seq);
7076
7077 /* Retain a map of the epilogue insns. */
7078 if (GET_CODE (seq) != SEQUENCE)
7079 seq = get_insns ();
7080 record_insns (seq, &epilogue);
7081
7082 seq = gen_sequence ();
7083 end_sequence ();
7084
7085 insert_insn_on_edge (seq, e);
7086 inserted = 1;
7087 }
7088 #endif
7089 epilogue_done:
7090
7091 if (inserted)
7092 commit_edge_insertions ();
7093
7094 #ifdef HAVE_sibcall_epilogue
7095 /* Emit sibling epilogues before any sibling call sites. */
7096 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7097 {
7098 basic_block bb = e->src;
7099 rtx insn = bb->end;
7100 rtx i;
7101 rtx newinsn;
7102
7103 if (GET_CODE (insn) != CALL_INSN
7104 || ! SIBLING_CALL_P (insn))
7105 continue;
7106
7107 start_sequence ();
7108 seq = gen_sibcall_epilogue ();
7109 end_sequence ();
7110
7111 i = PREV_INSN (insn);
7112 newinsn = emit_insn_before (seq, insn);
7113
7114 /* Update the UID to basic block map. */
7115 for (i = NEXT_INSN (i); i != insn; i = NEXT_INSN (i))
7116 set_block_for_insn (i, bb);
7117
7118 /* Retain a map of the epilogue insns. Used in life analysis to
7119 avoid getting rid of sibcall epilogue insns. */
7120 record_insns (GET_CODE (seq) == SEQUENCE
7121 ? seq : newinsn, &sibcall_epilogue);
7122 }
7123 #endif
7124
7125 #ifdef HAVE_prologue
7126 if (prologue_end)
7127 {
7128 rtx insn, prev;
7129
7130 /* GDB handles `break f' by setting a breakpoint on the first
7131 line note after the prologue. Which means (1) that if
7132 there are line number notes before where we inserted the
7133 prologue we should move them, and (2) we should generate a
7134 note before the end of the first basic block, if there isn't
7135 one already there. */
7136
7137 for (insn = prologue_end; insn; insn = prev)
7138 {
7139 prev = PREV_INSN (insn);
7140 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7141 {
7142 /* Note that we cannot reorder the first insn in the
7143 chain, since rest_of_compilation relies on that
7144 remaining constant. */
7145 if (prev == NULL)
7146 break;
7147 reorder_insns (insn, insn, prologue_end);
7148 }
7149 }
7150
7151 /* Find the last line number note in the first block. */
7152 for (insn = BASIC_BLOCK (0)->end;
7153 insn != prologue_end;
7154 insn = PREV_INSN (insn))
7155 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7156 break;
7157
7158 /* If we didn't find one, make a copy of the first line number
7159 we run across. */
7160 if (! insn)
7161 {
7162 for (insn = next_active_insn (prologue_end);
7163 insn;
7164 insn = PREV_INSN (insn))
7165 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7166 {
7167 emit_line_note_after (NOTE_SOURCE_FILE (insn),
7168 NOTE_LINE_NUMBER (insn),
7169 prologue_end);
7170 break;
7171 }
7172 }
7173 }
7174 #endif
7175 #ifdef HAVE_epilogue
7176 if (epilogue_end)
7177 {
7178 rtx insn, next;
7179
7180 /* Similarly, move any line notes that appear after the epilogue.
7181 There is no need, however, to be quite so anal about the existance
7182 of such a note. */
7183 for (insn = epilogue_end; insn; insn = next)
7184 {
7185 next = NEXT_INSN (insn);
7186 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7187 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7188 }
7189 }
7190 #endif
7191 }
7192
7193 /* Reposition the prologue-end and epilogue-begin notes after instruction
7194 scheduling and delayed branch scheduling. */
7195
7196 void
7197 reposition_prologue_and_epilogue_notes (f)
7198 rtx f ATTRIBUTE_UNUSED;
7199 {
7200 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7201 int len;
7202
7203 if ((len = VARRAY_SIZE (prologue)) > 0)
7204 {
7205 register rtx insn, note = 0;
7206
7207 /* Scan from the beginning until we reach the last prologue insn.
7208 We apparently can't depend on basic_block_{head,end} after
7209 reorg has run. */
7210 for (insn = f; len && insn; insn = NEXT_INSN (insn))
7211 {
7212 if (GET_CODE (insn) == NOTE)
7213 {
7214 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7215 note = insn;
7216 }
7217 else if ((len -= contains (insn, prologue)) == 0)
7218 {
7219 rtx next;
7220 /* Find the prologue-end note if we haven't already, and
7221 move it to just after the last prologue insn. */
7222 if (note == 0)
7223 {
7224 for (note = insn; (note = NEXT_INSN (note));)
7225 if (GET_CODE (note) == NOTE
7226 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7227 break;
7228 }
7229
7230 next = NEXT_INSN (note);
7231
7232 /* Whether or not we can depend on BLOCK_HEAD,
7233 attempt to keep it up-to-date. */
7234 if (BLOCK_HEAD (0) == note)
7235 BLOCK_HEAD (0) = next;
7236
7237 remove_insn (note);
7238 add_insn_after (note, insn);
7239 }
7240 }
7241 }
7242
7243 if ((len = VARRAY_SIZE (epilogue)) > 0)
7244 {
7245 register rtx insn, note = 0;
7246
7247 /* Scan from the end until we reach the first epilogue insn.
7248 We apparently can't depend on basic_block_{head,end} after
7249 reorg has run. */
7250 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
7251 {
7252 if (GET_CODE (insn) == NOTE)
7253 {
7254 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7255 note = insn;
7256 }
7257 else if ((len -= contains (insn, epilogue)) == 0)
7258 {
7259 /* Find the epilogue-begin note if we haven't already, and
7260 move it to just before the first epilogue insn. */
7261 if (note == 0)
7262 {
7263 for (note = insn; (note = PREV_INSN (note));)
7264 if (GET_CODE (note) == NOTE
7265 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7266 break;
7267 }
7268
7269 /* Whether or not we can depend on BLOCK_HEAD,
7270 attempt to keep it up-to-date. */
7271 if (n_basic_blocks
7272 && BLOCK_HEAD (n_basic_blocks-1) == insn)
7273 BLOCK_HEAD (n_basic_blocks-1) = note;
7274
7275 remove_insn (note);
7276 add_insn_before (note, insn);
7277 }
7278 }
7279 }
7280 #endif /* HAVE_prologue or HAVE_epilogue */
7281 }
7282
7283 /* Mark T for GC. */
7284
7285 static void
7286 mark_temp_slot (t)
7287 struct temp_slot *t;
7288 {
7289 while (t)
7290 {
7291 ggc_mark_rtx (t->slot);
7292 ggc_mark_rtx (t->address);
7293 ggc_mark_tree (t->rtl_expr);
7294
7295 t = t->next;
7296 }
7297 }
7298
7299 /* Mark P for GC. */
7300
7301 static void
7302 mark_function_status (p)
7303 struct function *p;
7304 {
7305 int i;
7306 rtx *r;
7307
7308 if (p == 0)
7309 return;
7310
7311 ggc_mark_rtx (p->arg_offset_rtx);
7312
7313 if (p->x_parm_reg_stack_loc)
7314 for (i = p->x_max_parm_reg, r = p->x_parm_reg_stack_loc;
7315 i > 0; --i, ++r)
7316 ggc_mark_rtx (*r);
7317
7318 ggc_mark_rtx (p->return_rtx);
7319 ggc_mark_rtx (p->x_cleanup_label);
7320 ggc_mark_rtx (p->x_return_label);
7321 ggc_mark_rtx (p->x_save_expr_regs);
7322 ggc_mark_rtx (p->x_stack_slot_list);
7323 ggc_mark_rtx (p->x_parm_birth_insn);
7324 ggc_mark_rtx (p->x_tail_recursion_label);
7325 ggc_mark_rtx (p->x_tail_recursion_reentry);
7326 ggc_mark_rtx (p->internal_arg_pointer);
7327 ggc_mark_rtx (p->x_arg_pointer_save_area);
7328 ggc_mark_tree (p->x_rtl_expr_chain);
7329 ggc_mark_rtx (p->x_last_parm_insn);
7330 ggc_mark_tree (p->x_context_display);
7331 ggc_mark_tree (p->x_trampoline_list);
7332 ggc_mark_rtx (p->epilogue_delay_list);
7333
7334 mark_temp_slot (p->x_temp_slots);
7335
7336 {
7337 struct var_refs_queue *q = p->fixup_var_refs_queue;
7338 while (q)
7339 {
7340 ggc_mark_rtx (q->modified);
7341 q = q->next;
7342 }
7343 }
7344
7345 ggc_mark_rtx (p->x_nonlocal_goto_handler_slots);
7346 ggc_mark_rtx (p->x_nonlocal_goto_handler_labels);
7347 ggc_mark_rtx (p->x_nonlocal_goto_stack_level);
7348 ggc_mark_tree (p->x_nonlocal_labels);
7349 }
7350
7351 /* Mark the function chain ARG (which is really a struct function **)
7352 for GC. */
7353
7354 static void
7355 mark_function_chain (arg)
7356 void *arg;
7357 {
7358 struct function *f = *(struct function **) arg;
7359
7360 for (; f; f = f->next_global)
7361 {
7362 ggc_mark_tree (f->decl);
7363
7364 mark_function_status (f);
7365 mark_eh_status (f->eh);
7366 mark_stmt_status (f->stmt);
7367 mark_expr_status (f->expr);
7368 mark_emit_status (f->emit);
7369 mark_varasm_status (f->varasm);
7370
7371 if (mark_machine_status)
7372 (*mark_machine_status) (f);
7373 if (mark_lang_status)
7374 (*mark_lang_status) (f);
7375
7376 if (f->original_arg_vector)
7377 ggc_mark_rtvec ((rtvec) f->original_arg_vector);
7378 if (f->original_decl_initial)
7379 ggc_mark_tree (f->original_decl_initial);
7380 }
7381 }
7382
7383 /* Called once, at initialization, to initialize function.c. */
7384
7385 void
7386 init_function_once ()
7387 {
7388 ggc_add_root (&all_functions, 1, sizeof all_functions,
7389 mark_function_chain);
7390
7391 VARRAY_INT_INIT (prologue, 0, "prologue");
7392 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7393 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
7394 }
This page took 0.370083 seconds and 6 git commands to generate.