]> gcc.gnu.org Git - gcc.git/blob - gcc/function.c
expr.c (store_constructor): SIZE now signed.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
27
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
31
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register.
36
37 Call `put_var_into_stack' when you learn, belatedly, that a variable
38 previously given a pseudo-register must in fact go in the stack.
39 This function changes the DECL_RTL to be a stack slot instead of a reg
40 then scans all the RTL instructions so far generated to correct them. */
41
42 #include "config.h"
43 #include "system.h"
44 #include "rtl.h"
45 #include "tree.h"
46 #include "flags.h"
47 #include "except.h"
48 #include "function.h"
49 #include "insn-flags.h"
50 #include "expr.h"
51 #include "insn-codes.h"
52 #include "regs.h"
53 #include "hard-reg-set.h"
54 #include "insn-config.h"
55 #include "recog.h"
56 #include "output.h"
57 #include "basic-block.h"
58 #include "obstack.h"
59 #include "toplev.h"
60 #include "hash.h"
61 #include "ggc.h"
62 #include "tm_p.h"
63
64 #ifndef TRAMPOLINE_ALIGNMENT
65 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
66 #endif
67
68 #ifndef LOCAL_ALIGNMENT
69 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
70 #endif
71
72 #if !defined (PREFERRED_STACK_BOUNDARY) && defined (STACK_BOUNDARY)
73 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
74 #endif
75
76 /* Some systems use __main in a way incompatible with its use in gcc, in these
77 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
78 give the same symbol without quotes for an alternative entry point. You
79 must define both, or neither. */
80 #ifndef NAME__MAIN
81 #define NAME__MAIN "__main"
82 #define SYMBOL__MAIN __main
83 #endif
84
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
89
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
93
94 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
95 during rtl generation. If they are different register numbers, this is
96 always true. It may also be true if
97 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
98 generation. See fix_lexical_addr for details. */
99
100 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
101 #define NEED_SEPARATE_AP
102 #endif
103
104 /* Nonzero if function being compiled doesn't contain any calls
105 (ignoring the prologue and epilogue). This is set prior to
106 local register allocation and is valid for the remaining
107 compiler passes. */
108 int current_function_is_leaf;
109
110 /* Nonzero if function being compiled doesn't contain any instructions
111 that can throw an exception. This is set prior to final. */
112
113 int current_function_nothrow;
114
115 /* Nonzero if function being compiled doesn't modify the stack pointer
116 (ignoring the prologue and epilogue). This is only valid after
117 life_analysis has run. */
118 int current_function_sp_is_unchanging;
119
120 /* Nonzero if the function being compiled is a leaf function which only
121 uses leaf registers. This is valid after reload (specifically after
122 sched2) and is useful only if the port defines LEAF_REGISTERS. */
123 int current_function_uses_only_leaf_regs;
124
125 /* Nonzero once virtual register instantiation has been done.
126 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
127 static int virtuals_instantiated;
128
129 /* These variables hold pointers to functions to
130 save and restore machine-specific data,
131 in push_function_context and pop_function_context. */
132 void (*init_machine_status) PARAMS ((struct function *));
133 void (*save_machine_status) PARAMS ((struct function *));
134 void (*restore_machine_status) PARAMS ((struct function *));
135 void (*mark_machine_status) PARAMS ((struct function *));
136 void (*free_machine_status) PARAMS ((struct function *));
137
138 /* Likewise, but for language-specific data. */
139 void (*init_lang_status) PARAMS ((struct function *));
140 void (*save_lang_status) PARAMS ((struct function *));
141 void (*restore_lang_status) PARAMS ((struct function *));
142 void (*mark_lang_status) PARAMS ((struct function *));
143 void (*free_lang_status) PARAMS ((struct function *));
144
145 /* The FUNCTION_DECL for an inline function currently being expanded. */
146 tree inline_function_decl;
147
148 /* The currently compiled function. */
149 struct function *cfun = 0;
150
151 /* Global list of all compiled functions. */
152 struct function *all_functions = 0;
153
154 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
155 static varray_type prologue;
156 static varray_type epilogue;
157
158 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
159 in this function. */
160 static varray_type sibcall_epilogue;
161 \f
162 /* In order to evaluate some expressions, such as function calls returning
163 structures in memory, we need to temporarily allocate stack locations.
164 We record each allocated temporary in the following structure.
165
166 Associated with each temporary slot is a nesting level. When we pop up
167 one level, all temporaries associated with the previous level are freed.
168 Normally, all temporaries are freed after the execution of the statement
169 in which they were created. However, if we are inside a ({...}) grouping,
170 the result may be in a temporary and hence must be preserved. If the
171 result could be in a temporary, we preserve it if we can determine which
172 one it is in. If we cannot determine which temporary may contain the
173 result, all temporaries are preserved. A temporary is preserved by
174 pretending it was allocated at the previous nesting level.
175
176 Automatic variables are also assigned temporary slots, at the nesting
177 level where they are defined. They are marked a "kept" so that
178 free_temp_slots will not free them. */
179
180 struct temp_slot
181 {
182 /* Points to next temporary slot. */
183 struct temp_slot *next;
184 /* The rtx to used to reference the slot. */
185 rtx slot;
186 /* The rtx used to represent the address if not the address of the
187 slot above. May be an EXPR_LIST if multiple addresses exist. */
188 rtx address;
189 /* The alignment (in bits) of the slot. */
190 int align;
191 /* The size, in units, of the slot. */
192 HOST_WIDE_INT size;
193 /* The alias set for the slot. If the alias set is zero, we don't
194 know anything about the alias set of the slot. We must only
195 reuse a slot if it is assigned an object of the same alias set.
196 Otherwise, the rest of the compiler may assume that the new use
197 of the slot cannot alias the old use of the slot, which is
198 false. If the slot has alias set zero, then we can't reuse the
199 slot at all, since we have no idea what alias set may have been
200 imposed on the memory. For example, if the stack slot is the
201 call frame for an inline functioned, we have no idea what alias
202 sets will be assigned to various pieces of the call frame. */
203 int alias_set;
204 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
205 tree rtl_expr;
206 /* Non-zero if this temporary is currently in use. */
207 char in_use;
208 /* Non-zero if this temporary has its address taken. */
209 char addr_taken;
210 /* Nesting level at which this slot is being used. */
211 int level;
212 /* Non-zero if this should survive a call to free_temp_slots. */
213 int keep;
214 /* The offset of the slot from the frame_pointer, including extra space
215 for alignment. This info is for combine_temp_slots. */
216 HOST_WIDE_INT base_offset;
217 /* The size of the slot, including extra space for alignment. This
218 info is for combine_temp_slots. */
219 HOST_WIDE_INT full_size;
220 };
221 \f
222 /* This structure is used to record MEMs or pseudos used to replace VAR, any
223 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
224 maintain this list in case two operands of an insn were required to match;
225 in that case we must ensure we use the same replacement. */
226
227 struct fixup_replacement
228 {
229 rtx old;
230 rtx new;
231 struct fixup_replacement *next;
232 };
233
234 struct insns_for_mem_entry {
235 /* The KEY in HE will be a MEM. */
236 struct hash_entry he;
237 /* These are the INSNS which reference the MEM. */
238 rtx insns;
239 };
240
241 /* Forward declarations. */
242
243 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
244 int, struct function *));
245 static rtx assign_stack_temp_for_type PARAMS ((enum machine_mode,
246 HOST_WIDE_INT, int, tree));
247 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
248 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
249 enum machine_mode, enum machine_mode,
250 int, unsigned int, int,
251 struct hash_table *));
252 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int,
253 struct hash_table *));
254 static struct fixup_replacement
255 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
256 static void fixup_var_refs_insns PARAMS ((rtx, enum machine_mode, int,
257 rtx, int, struct hash_table *));
258 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
259 struct fixup_replacement **));
260 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, int));
261 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, int));
262 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
263 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
264 static void instantiate_decls PARAMS ((tree, int));
265 static void instantiate_decls_1 PARAMS ((tree, int));
266 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
267 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
268 static void delete_handlers PARAMS ((void));
269 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
270 struct args_size *));
271 #ifndef ARGS_GROW_DOWNWARD
272 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
273 tree));
274 #endif
275 #ifdef ARGS_GROW_DOWNWARD
276 static tree round_down PARAMS ((tree, int));
277 #endif
278 static rtx round_trampoline_addr PARAMS ((rtx));
279 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
280 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
281 static tree blocks_nreverse PARAMS ((tree));
282 static int all_blocks PARAMS ((tree, tree *));
283 static tree *get_block_vector PARAMS ((tree, int *));
284 /* We always define `record_insns' even if its not used so that we
285 can always export `prologue_epilogue_contains'. */
286 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
287 static int contains PARAMS ((rtx, varray_type));
288 #ifdef HAVE_return
289 static void emit_return_into_block PARAMS ((basic_block));
290 #endif
291 static void put_addressof_into_stack PARAMS ((rtx, struct hash_table *));
292 static boolean purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
293 struct hash_table *));
294 static int is_addressof PARAMS ((rtx *, void *));
295 static struct hash_entry *insns_for_mem_newfunc PARAMS ((struct hash_entry *,
296 struct hash_table *,
297 hash_table_key));
298 static unsigned long insns_for_mem_hash PARAMS ((hash_table_key));
299 static boolean insns_for_mem_comp PARAMS ((hash_table_key, hash_table_key));
300 static int insns_for_mem_walk PARAMS ((rtx *, void *));
301 static void compute_insns_for_mem PARAMS ((rtx, rtx, struct hash_table *));
302 static void mark_temp_slot PARAMS ((struct temp_slot *));
303 static void mark_function_status PARAMS ((struct function *));
304 static void mark_function_chain PARAMS ((void *));
305 static void prepare_function_start PARAMS ((void));
306 static void do_clobber_return_reg PARAMS ((rtx, void *));
307 static void do_use_return_reg PARAMS ((rtx, void *));
308 \f
309 /* Pointer to chain of `struct function' for containing functions. */
310 struct function *outer_function_chain;
311
312 /* Given a function decl for a containing function,
313 return the `struct function' for it. */
314
315 struct function *
316 find_function_data (decl)
317 tree decl;
318 {
319 struct function *p;
320
321 for (p = outer_function_chain; p; p = p->next)
322 if (p->decl == decl)
323 return p;
324
325 abort ();
326 }
327
328 /* Save the current context for compilation of a nested function.
329 This is called from language-specific code. The caller should use
330 the save_lang_status callback to save any language-specific state,
331 since this function knows only about language-independent
332 variables. */
333
334 void
335 push_function_context_to (context)
336 tree context;
337 {
338 struct function *p, *context_data;
339
340 if (context)
341 {
342 context_data = (context == current_function_decl
343 ? cfun
344 : find_function_data (context));
345 context_data->contains_functions = 1;
346 }
347
348 if (cfun == 0)
349 init_dummy_function_start ();
350 p = cfun;
351
352 p->next = outer_function_chain;
353 outer_function_chain = p;
354 p->fixup_var_refs_queue = 0;
355
356 save_tree_status (p);
357 if (save_lang_status)
358 (*save_lang_status) (p);
359 if (save_machine_status)
360 (*save_machine_status) (p);
361
362 cfun = 0;
363 }
364
365 void
366 push_function_context ()
367 {
368 push_function_context_to (current_function_decl);
369 }
370
371 /* Restore the last saved context, at the end of a nested function.
372 This function is called from language-specific code. */
373
374 void
375 pop_function_context_from (context)
376 tree context ATTRIBUTE_UNUSED;
377 {
378 struct function *p = outer_function_chain;
379 struct var_refs_queue *queue;
380 struct var_refs_queue *next;
381
382 cfun = p;
383 outer_function_chain = p->next;
384
385 current_function_decl = p->decl;
386 reg_renumber = 0;
387
388 restore_tree_status (p);
389 restore_emit_status (p);
390
391 if (restore_machine_status)
392 (*restore_machine_status) (p);
393 if (restore_lang_status)
394 (*restore_lang_status) (p);
395
396 /* Finish doing put_var_into_stack for any of our variables
397 which became addressable during the nested function. */
398 for (queue = p->fixup_var_refs_queue; queue; queue = next)
399 {
400 next = queue->next;
401 fixup_var_refs (queue->modified, queue->promoted_mode,
402 queue->unsignedp, 0);
403 free (queue);
404 }
405 p->fixup_var_refs_queue = 0;
406
407 /* Reset variables that have known state during rtx generation. */
408 rtx_equal_function_value_matters = 1;
409 virtuals_instantiated = 0;
410 }
411
412 void
413 pop_function_context ()
414 {
415 pop_function_context_from (current_function_decl);
416 }
417
418 /* Clear out all parts of the state in F that can safely be discarded
419 after the function has been parsed, but not compiled, to let
420 garbage collection reclaim the memory. */
421
422 void
423 free_after_parsing (f)
424 struct function *f;
425 {
426 /* f->expr->forced_labels is used by code generation. */
427 /* f->emit->regno_reg_rtx is used by code generation. */
428 /* f->varasm is used by code generation. */
429 /* f->eh->eh_return_stub_label is used by code generation. */
430
431 if (free_lang_status)
432 (*free_lang_status) (f);
433 free_stmt_status (f);
434 }
435
436 /* Clear out all parts of the state in F that can safely be discarded
437 after the function has been compiled, to let garbage collection
438 reclaim the memory. */
439
440 void
441 free_after_compilation (f)
442 struct function *f;
443 {
444 free_eh_status (f);
445 free_expr_status (f);
446 free_emit_status (f);
447 free_varasm_status (f);
448
449 if (free_machine_status)
450 (*free_machine_status) (f);
451
452 if (f->x_parm_reg_stack_loc)
453 free (f->x_parm_reg_stack_loc);
454
455 f->arg_offset_rtx = NULL;
456 f->return_rtx = NULL;
457 f->internal_arg_pointer = NULL;
458 f->x_nonlocal_labels = NULL;
459 f->x_nonlocal_goto_handler_slots = NULL;
460 f->x_nonlocal_goto_handler_labels = NULL;
461 f->x_nonlocal_goto_stack_level = NULL;
462 f->x_cleanup_label = NULL;
463 f->x_return_label = NULL;
464 f->x_save_expr_regs = NULL;
465 f->x_stack_slot_list = NULL;
466 f->x_rtl_expr_chain = NULL;
467 f->x_tail_recursion_label = NULL;
468 f->x_tail_recursion_reentry = NULL;
469 f->x_arg_pointer_save_area = NULL;
470 f->x_context_display = NULL;
471 f->x_trampoline_list = NULL;
472 f->x_parm_birth_insn = NULL;
473 f->x_last_parm_insn = NULL;
474 f->x_parm_reg_stack_loc = NULL;
475 f->x_temp_slots = NULL;
476 f->fixup_var_refs_queue = NULL;
477 f->original_arg_vector = NULL;
478 f->original_decl_initial = NULL;
479 f->inl_last_parm_insn = NULL;
480 f->epilogue_delay_list = NULL;
481 }
482
483 \f
484 /* Allocate fixed slots in the stack frame of the current function. */
485
486 /* Return size needed for stack frame based on slots so far allocated in
487 function F.
488 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
489 the caller may have to do that. */
490
491 HOST_WIDE_INT
492 get_func_frame_size (f)
493 struct function *f;
494 {
495 #ifdef FRAME_GROWS_DOWNWARD
496 return -f->x_frame_offset;
497 #else
498 return f->x_frame_offset;
499 #endif
500 }
501
502 /* Return size needed for stack frame based on slots so far allocated.
503 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
504 the caller may have to do that. */
505 HOST_WIDE_INT
506 get_frame_size ()
507 {
508 return get_func_frame_size (cfun);
509 }
510
511 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
512 with machine mode MODE.
513
514 ALIGN controls the amount of alignment for the address of the slot:
515 0 means according to MODE,
516 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
517 positive specifies alignment boundary in bits.
518
519 We do not round to stack_boundary here.
520
521 FUNCTION specifies the function to allocate in. */
522
523 static rtx
524 assign_stack_local_1 (mode, size, align, function)
525 enum machine_mode mode;
526 HOST_WIDE_INT size;
527 int align;
528 struct function *function;
529 {
530 register rtx x, addr;
531 int bigend_correction = 0;
532 int alignment;
533
534 /* Allocate in the memory associated with the function in whose frame
535 we are assigning. */
536 if (function != cfun)
537 push_obstacks (function->function_obstack,
538 function->function_maybepermanent_obstack);
539
540 if (align == 0)
541 {
542 tree type;
543
544 alignment = GET_MODE_ALIGNMENT (mode);
545 if (mode == BLKmode)
546 alignment = BIGGEST_ALIGNMENT;
547
548 /* Allow the target to (possibly) increase the alignment of this
549 stack slot. */
550 type = type_for_mode (mode, 0);
551 if (type)
552 alignment = LOCAL_ALIGNMENT (type, alignment);
553
554 alignment /= BITS_PER_UNIT;
555 }
556 else if (align == -1)
557 {
558 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
559 size = CEIL_ROUND (size, alignment);
560 }
561 else
562 alignment = align / BITS_PER_UNIT;
563
564 #ifdef FRAME_GROWS_DOWNWARD
565 function->x_frame_offset -= size;
566 #endif
567
568 /* Ignore alignment we can't do with expected alignment of the boundary. */
569 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
570 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
571
572 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
573 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
574
575 /* Round frame offset to that alignment.
576 We must be careful here, since FRAME_OFFSET might be negative and
577 division with a negative dividend isn't as well defined as we might
578 like. So we instead assume that ALIGNMENT is a power of two and
579 use logical operations which are unambiguous. */
580 #ifdef FRAME_GROWS_DOWNWARD
581 function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset, alignment);
582 #else
583 function->x_frame_offset = CEIL_ROUND (function->x_frame_offset, alignment);
584 #endif
585
586 /* On a big-endian machine, if we are allocating more space than we will use,
587 use the least significant bytes of those that are allocated. */
588 if (BYTES_BIG_ENDIAN && mode != BLKmode)
589 bigend_correction = size - GET_MODE_SIZE (mode);
590
591 /* If we have already instantiated virtual registers, return the actual
592 address relative to the frame pointer. */
593 if (function == cfun && virtuals_instantiated)
594 addr = plus_constant (frame_pointer_rtx,
595 (frame_offset + bigend_correction
596 + STARTING_FRAME_OFFSET));
597 else
598 addr = plus_constant (virtual_stack_vars_rtx,
599 function->x_frame_offset + bigend_correction);
600
601 #ifndef FRAME_GROWS_DOWNWARD
602 function->x_frame_offset += size;
603 #endif
604
605 x = gen_rtx_MEM (mode, addr);
606
607 function->x_stack_slot_list
608 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
609
610 if (function != cfun)
611 pop_obstacks ();
612
613 return x;
614 }
615
616 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
617 current function. */
618 rtx
619 assign_stack_local (mode, size, align)
620 enum machine_mode mode;
621 HOST_WIDE_INT size;
622 int align;
623 {
624 return assign_stack_local_1 (mode, size, align, cfun);
625 }
626 \f
627 /* Allocate a temporary stack slot and record it for possible later
628 reuse.
629
630 MODE is the machine mode to be given to the returned rtx.
631
632 SIZE is the size in units of the space required. We do no rounding here
633 since assign_stack_local will do any required rounding.
634
635 KEEP is 1 if this slot is to be retained after a call to
636 free_temp_slots. Automatic variables for a block are allocated
637 with this flag. KEEP is 2 if we allocate a longer term temporary,
638 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
639 if we are to allocate something at an inner level to be treated as
640 a variable in the block (e.g., a SAVE_EXPR).
641
642 TYPE is the type that will be used for the stack slot. */
643
644 static rtx
645 assign_stack_temp_for_type (mode, size, keep, type)
646 enum machine_mode mode;
647 HOST_WIDE_INT size;
648 int keep;
649 tree type;
650 {
651 int align;
652 int alias_set;
653 struct temp_slot *p, *best_p = 0;
654
655 /* If SIZE is -1 it means that somebody tried to allocate a temporary
656 of a variable size. */
657 if (size == -1)
658 abort ();
659
660 /* If we know the alias set for the memory that will be used, use
661 it. If there's no TYPE, then we don't know anything about the
662 alias set for the memory. */
663 if (type)
664 alias_set = get_alias_set (type);
665 else
666 alias_set = 0;
667
668 align = GET_MODE_ALIGNMENT (mode);
669 if (mode == BLKmode)
670 align = BIGGEST_ALIGNMENT;
671
672 if (! type)
673 type = type_for_mode (mode, 0);
674 if (type)
675 align = LOCAL_ALIGNMENT (type, align);
676
677 /* Try to find an available, already-allocated temporary of the proper
678 mode which meets the size and alignment requirements. Choose the
679 smallest one with the closest alignment. */
680 for (p = temp_slots; p; p = p->next)
681 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
682 && ! p->in_use
683 && (!flag_strict_aliasing
684 || (alias_set && p->alias_set == alias_set))
685 && (best_p == 0 || best_p->size > p->size
686 || (best_p->size == p->size && best_p->align > p->align)))
687 {
688 if (p->align == align && p->size == size)
689 {
690 best_p = 0;
691 break;
692 }
693 best_p = p;
694 }
695
696 /* Make our best, if any, the one to use. */
697 if (best_p)
698 {
699 /* If there are enough aligned bytes left over, make them into a new
700 temp_slot so that the extra bytes don't get wasted. Do this only
701 for BLKmode slots, so that we can be sure of the alignment. */
702 if (GET_MODE (best_p->slot) == BLKmode
703 /* We can't split slots if -fstrict-aliasing because the
704 information about the alias set for the new slot will be
705 lost. */
706 && !flag_strict_aliasing)
707 {
708 int alignment = best_p->align / BITS_PER_UNIT;
709 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
710
711 if (best_p->size - rounded_size >= alignment)
712 {
713 p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
714 p->in_use = p->addr_taken = 0;
715 p->size = best_p->size - rounded_size;
716 p->base_offset = best_p->base_offset + rounded_size;
717 p->full_size = best_p->full_size - rounded_size;
718 p->slot = gen_rtx_MEM (BLKmode,
719 plus_constant (XEXP (best_p->slot, 0),
720 rounded_size));
721 p->align = best_p->align;
722 p->address = 0;
723 p->rtl_expr = 0;
724 p->next = temp_slots;
725 temp_slots = p;
726
727 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
728 stack_slot_list);
729
730 best_p->size = rounded_size;
731 best_p->full_size = rounded_size;
732 }
733 }
734
735 p = best_p;
736 }
737
738 /* If we still didn't find one, make a new temporary. */
739 if (p == 0)
740 {
741 HOST_WIDE_INT frame_offset_old = frame_offset;
742
743 p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
744
745 /* We are passing an explicit alignment request to assign_stack_local.
746 One side effect of that is assign_stack_local will not round SIZE
747 to ensure the frame offset remains suitably aligned.
748
749 So for requests which depended on the rounding of SIZE, we go ahead
750 and round it now. We also make sure ALIGNMENT is at least
751 BIGGEST_ALIGNMENT. */
752 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
753 abort();
754 p->slot = assign_stack_local (mode,
755 (mode == BLKmode
756 ? CEIL_ROUND (size, align / BITS_PER_UNIT)
757 : size),
758 align);
759
760 p->align = align;
761 p->alias_set = alias_set;
762
763 /* The following slot size computation is necessary because we don't
764 know the actual size of the temporary slot until assign_stack_local
765 has performed all the frame alignment and size rounding for the
766 requested temporary. Note that extra space added for alignment
767 can be either above or below this stack slot depending on which
768 way the frame grows. We include the extra space if and only if it
769 is above this slot. */
770 #ifdef FRAME_GROWS_DOWNWARD
771 p->size = frame_offset_old - frame_offset;
772 #else
773 p->size = size;
774 #endif
775
776 /* Now define the fields used by combine_temp_slots. */
777 #ifdef FRAME_GROWS_DOWNWARD
778 p->base_offset = frame_offset;
779 p->full_size = frame_offset_old - frame_offset;
780 #else
781 p->base_offset = frame_offset_old;
782 p->full_size = frame_offset - frame_offset_old;
783 #endif
784 p->address = 0;
785 p->next = temp_slots;
786 temp_slots = p;
787 }
788
789 p->in_use = 1;
790 p->addr_taken = 0;
791 p->rtl_expr = seq_rtl_expr;
792
793 if (keep == 2)
794 {
795 p->level = target_temp_slot_level;
796 p->keep = 0;
797 }
798 else if (keep == 3)
799 {
800 p->level = var_temp_slot_level;
801 p->keep = 0;
802 }
803 else
804 {
805 p->level = temp_slot_level;
806 p->keep = keep;
807 }
808
809 /* We may be reusing an old slot, so clear any MEM flags that may have been
810 set from before. */
811 RTX_UNCHANGING_P (p->slot) = 0;
812 MEM_IN_STRUCT_P (p->slot) = 0;
813 MEM_SCALAR_P (p->slot) = 0;
814 MEM_ALIAS_SET (p->slot) = 0;
815 return p->slot;
816 }
817
818 /* Allocate a temporary stack slot and record it for possible later
819 reuse. First three arguments are same as in preceding function. */
820
821 rtx
822 assign_stack_temp (mode, size, keep)
823 enum machine_mode mode;
824 HOST_WIDE_INT size;
825 int keep;
826 {
827 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
828 }
829 \f
830 /* Assign a temporary of given TYPE.
831 KEEP is as for assign_stack_temp.
832 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
833 it is 0 if a register is OK.
834 DONT_PROMOTE is 1 if we should not promote values in register
835 to wider modes. */
836
837 rtx
838 assign_temp (type, keep, memory_required, dont_promote)
839 tree type;
840 int keep;
841 int memory_required;
842 int dont_promote ATTRIBUTE_UNUSED;
843 {
844 enum machine_mode mode = TYPE_MODE (type);
845 #ifndef PROMOTE_FOR_CALL_ONLY
846 int unsignedp = TREE_UNSIGNED (type);
847 #endif
848
849 if (mode == BLKmode || memory_required)
850 {
851 HOST_WIDE_INT size = int_size_in_bytes (type);
852 rtx tmp;
853
854 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
855 problems with allocating the stack space. */
856 if (size == 0)
857 size = 1;
858
859 /* Unfortunately, we don't yet know how to allocate variable-sized
860 temporaries. However, sometimes we have a fixed upper limit on
861 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
862 instead. This is the case for Chill variable-sized strings. */
863 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
864 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
865 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (type)) == INTEGER_CST)
866 size = TREE_INT_CST_LOW (TYPE_ARRAY_MAX_SIZE (type));
867
868 tmp = assign_stack_temp_for_type (mode, size, keep, type);
869 MEM_SET_IN_STRUCT_P (tmp, AGGREGATE_TYPE_P (type));
870 return tmp;
871 }
872
873 #ifndef PROMOTE_FOR_CALL_ONLY
874 if (! dont_promote)
875 mode = promote_mode (type, mode, &unsignedp, 0);
876 #endif
877
878 return gen_reg_rtx (mode);
879 }
880 \f
881 /* Combine temporary stack slots which are adjacent on the stack.
882
883 This allows for better use of already allocated stack space. This is only
884 done for BLKmode slots because we can be sure that we won't have alignment
885 problems in this case. */
886
887 void
888 combine_temp_slots ()
889 {
890 struct temp_slot *p, *q;
891 struct temp_slot *prev_p, *prev_q;
892 int num_slots;
893
894 /* We can't combine slots, because the information about which slot
895 is in which alias set will be lost. */
896 if (flag_strict_aliasing)
897 return;
898
899 /* If there are a lot of temp slots, don't do anything unless
900 high levels of optimizaton. */
901 if (! flag_expensive_optimizations)
902 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
903 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
904 return;
905
906 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
907 {
908 int delete_p = 0;
909
910 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
911 for (q = p->next, prev_q = p; q; q = prev_q->next)
912 {
913 int delete_q = 0;
914 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
915 {
916 if (p->base_offset + p->full_size == q->base_offset)
917 {
918 /* Q comes after P; combine Q into P. */
919 p->size += q->size;
920 p->full_size += q->full_size;
921 delete_q = 1;
922 }
923 else if (q->base_offset + q->full_size == p->base_offset)
924 {
925 /* P comes after Q; combine P into Q. */
926 q->size += p->size;
927 q->full_size += p->full_size;
928 delete_p = 1;
929 break;
930 }
931 }
932 /* Either delete Q or advance past it. */
933 if (delete_q)
934 prev_q->next = q->next;
935 else
936 prev_q = q;
937 }
938 /* Either delete P or advance past it. */
939 if (delete_p)
940 {
941 if (prev_p)
942 prev_p->next = p->next;
943 else
944 temp_slots = p->next;
945 }
946 else
947 prev_p = p;
948 }
949 }
950 \f
951 /* Find the temp slot corresponding to the object at address X. */
952
953 static struct temp_slot *
954 find_temp_slot_from_address (x)
955 rtx x;
956 {
957 struct temp_slot *p;
958 rtx next;
959
960 for (p = temp_slots; p; p = p->next)
961 {
962 if (! p->in_use)
963 continue;
964
965 else if (XEXP (p->slot, 0) == x
966 || p->address == x
967 || (GET_CODE (x) == PLUS
968 && XEXP (x, 0) == virtual_stack_vars_rtx
969 && GET_CODE (XEXP (x, 1)) == CONST_INT
970 && INTVAL (XEXP (x, 1)) >= p->base_offset
971 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
972 return p;
973
974 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
975 for (next = p->address; next; next = XEXP (next, 1))
976 if (XEXP (next, 0) == x)
977 return p;
978 }
979
980 /* If we have a sum involving a register, see if it points to a temp
981 slot. */
982 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
983 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
984 return p;
985 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
986 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
987 return p;
988
989 return 0;
990 }
991
992 /* Indicate that NEW is an alternate way of referring to the temp slot
993 that previously was known by OLD. */
994
995 void
996 update_temp_slot_address (old, new)
997 rtx old, new;
998 {
999 struct temp_slot *p;
1000
1001 if (rtx_equal_p (old, new))
1002 return;
1003
1004 p = find_temp_slot_from_address (old);
1005
1006 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1007 is a register, see if one operand of the PLUS is a temporary
1008 location. If so, NEW points into it. Otherwise, if both OLD and
1009 NEW are a PLUS and if there is a register in common between them.
1010 If so, try a recursive call on those values. */
1011 if (p == 0)
1012 {
1013 if (GET_CODE (old) != PLUS)
1014 return;
1015
1016 if (GET_CODE (new) == REG)
1017 {
1018 update_temp_slot_address (XEXP (old, 0), new);
1019 update_temp_slot_address (XEXP (old, 1), new);
1020 return;
1021 }
1022 else if (GET_CODE (new) != PLUS)
1023 return;
1024
1025 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1026 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1027 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1028 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1029 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1030 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1031 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1032 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1033
1034 return;
1035 }
1036
1037 /* Otherwise add an alias for the temp's address. */
1038 else if (p->address == 0)
1039 p->address = new;
1040 else
1041 {
1042 if (GET_CODE (p->address) != EXPR_LIST)
1043 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1044
1045 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1046 }
1047 }
1048
1049 /* If X could be a reference to a temporary slot, mark the fact that its
1050 address was taken. */
1051
1052 void
1053 mark_temp_addr_taken (x)
1054 rtx x;
1055 {
1056 struct temp_slot *p;
1057
1058 if (x == 0)
1059 return;
1060
1061 /* If X is not in memory or is at a constant address, it cannot be in
1062 a temporary slot. */
1063 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1064 return;
1065
1066 p = find_temp_slot_from_address (XEXP (x, 0));
1067 if (p != 0)
1068 p->addr_taken = 1;
1069 }
1070
1071 /* If X could be a reference to a temporary slot, mark that slot as
1072 belonging to the to one level higher than the current level. If X
1073 matched one of our slots, just mark that one. Otherwise, we can't
1074 easily predict which it is, so upgrade all of them. Kept slots
1075 need not be touched.
1076
1077 This is called when an ({...}) construct occurs and a statement
1078 returns a value in memory. */
1079
1080 void
1081 preserve_temp_slots (x)
1082 rtx x;
1083 {
1084 struct temp_slot *p = 0;
1085
1086 /* If there is no result, we still might have some objects whose address
1087 were taken, so we need to make sure they stay around. */
1088 if (x == 0)
1089 {
1090 for (p = temp_slots; p; p = p->next)
1091 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1092 p->level--;
1093
1094 return;
1095 }
1096
1097 /* If X is a register that is being used as a pointer, see if we have
1098 a temporary slot we know it points to. To be consistent with
1099 the code below, we really should preserve all non-kept slots
1100 if we can't find a match, but that seems to be much too costly. */
1101 if (GET_CODE (x) == REG && REGNO_POINTER_FLAG (REGNO (x)))
1102 p = find_temp_slot_from_address (x);
1103
1104 /* If X is not in memory or is at a constant address, it cannot be in
1105 a temporary slot, but it can contain something whose address was
1106 taken. */
1107 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1108 {
1109 for (p = temp_slots; p; p = p->next)
1110 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1111 p->level--;
1112
1113 return;
1114 }
1115
1116 /* First see if we can find a match. */
1117 if (p == 0)
1118 p = find_temp_slot_from_address (XEXP (x, 0));
1119
1120 if (p != 0)
1121 {
1122 /* Move everything at our level whose address was taken to our new
1123 level in case we used its address. */
1124 struct temp_slot *q;
1125
1126 if (p->level == temp_slot_level)
1127 {
1128 for (q = temp_slots; q; q = q->next)
1129 if (q != p && q->addr_taken && q->level == p->level)
1130 q->level--;
1131
1132 p->level--;
1133 p->addr_taken = 0;
1134 }
1135 return;
1136 }
1137
1138 /* Otherwise, preserve all non-kept slots at this level. */
1139 for (p = temp_slots; p; p = p->next)
1140 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1141 p->level--;
1142 }
1143
1144 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1145 with that RTL_EXPR, promote it into a temporary slot at the present
1146 level so it will not be freed when we free slots made in the
1147 RTL_EXPR. */
1148
1149 void
1150 preserve_rtl_expr_result (x)
1151 rtx x;
1152 {
1153 struct temp_slot *p;
1154
1155 /* If X is not in memory or is at a constant address, it cannot be in
1156 a temporary slot. */
1157 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1158 return;
1159
1160 /* If we can find a match, move it to our level unless it is already at
1161 an upper level. */
1162 p = find_temp_slot_from_address (XEXP (x, 0));
1163 if (p != 0)
1164 {
1165 p->level = MIN (p->level, temp_slot_level);
1166 p->rtl_expr = 0;
1167 }
1168
1169 return;
1170 }
1171
1172 /* Free all temporaries used so far. This is normally called at the end
1173 of generating code for a statement. Don't free any temporaries
1174 currently in use for an RTL_EXPR that hasn't yet been emitted.
1175 We could eventually do better than this since it can be reused while
1176 generating the same RTL_EXPR, but this is complex and probably not
1177 worthwhile. */
1178
1179 void
1180 free_temp_slots ()
1181 {
1182 struct temp_slot *p;
1183
1184 for (p = temp_slots; p; p = p->next)
1185 if (p->in_use && p->level == temp_slot_level && ! p->keep
1186 && p->rtl_expr == 0)
1187 p->in_use = 0;
1188
1189 combine_temp_slots ();
1190 }
1191
1192 /* Free all temporary slots used in T, an RTL_EXPR node. */
1193
1194 void
1195 free_temps_for_rtl_expr (t)
1196 tree t;
1197 {
1198 struct temp_slot *p;
1199
1200 for (p = temp_slots; p; p = p->next)
1201 if (p->rtl_expr == t)
1202 {
1203 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1204 needs to be preserved. This can happen if a temporary in
1205 the RTL_EXPR was addressed; preserve_temp_slots will move
1206 the temporary into a higher level. */
1207 if (temp_slot_level <= p->level)
1208 p->in_use = 0;
1209 else
1210 p->rtl_expr = NULL_TREE;
1211 }
1212
1213 combine_temp_slots ();
1214 }
1215
1216 /* Mark all temporaries ever allocated in this function as not suitable
1217 for reuse until the current level is exited. */
1218
1219 void
1220 mark_all_temps_used ()
1221 {
1222 struct temp_slot *p;
1223
1224 for (p = temp_slots; p; p = p->next)
1225 {
1226 p->in_use = p->keep = 1;
1227 p->level = MIN (p->level, temp_slot_level);
1228 }
1229 }
1230
1231 /* Push deeper into the nesting level for stack temporaries. */
1232
1233 void
1234 push_temp_slots ()
1235 {
1236 temp_slot_level++;
1237 }
1238
1239 /* Likewise, but save the new level as the place to allocate variables
1240 for blocks. */
1241
1242 #if 0
1243 void
1244 push_temp_slots_for_block ()
1245 {
1246 push_temp_slots ();
1247
1248 var_temp_slot_level = temp_slot_level;
1249 }
1250
1251 /* Likewise, but save the new level as the place to allocate temporaries
1252 for TARGET_EXPRs. */
1253
1254 void
1255 push_temp_slots_for_target ()
1256 {
1257 push_temp_slots ();
1258
1259 target_temp_slot_level = temp_slot_level;
1260 }
1261
1262 /* Set and get the value of target_temp_slot_level. The only
1263 permitted use of these functions is to save and restore this value. */
1264
1265 int
1266 get_target_temp_slot_level ()
1267 {
1268 return target_temp_slot_level;
1269 }
1270
1271 void
1272 set_target_temp_slot_level (level)
1273 int level;
1274 {
1275 target_temp_slot_level = level;
1276 }
1277 #endif
1278
1279 /* Pop a temporary nesting level. All slots in use in the current level
1280 are freed. */
1281
1282 void
1283 pop_temp_slots ()
1284 {
1285 struct temp_slot *p;
1286
1287 for (p = temp_slots; p; p = p->next)
1288 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1289 p->in_use = 0;
1290
1291 combine_temp_slots ();
1292
1293 temp_slot_level--;
1294 }
1295
1296 /* Initialize temporary slots. */
1297
1298 void
1299 init_temp_slots ()
1300 {
1301 /* We have not allocated any temporaries yet. */
1302 temp_slots = 0;
1303 temp_slot_level = 0;
1304 var_temp_slot_level = 0;
1305 target_temp_slot_level = 0;
1306 }
1307 \f
1308 /* Retroactively move an auto variable from a register to a stack slot.
1309 This is done when an address-reference to the variable is seen. */
1310
1311 void
1312 put_var_into_stack (decl)
1313 tree decl;
1314 {
1315 register rtx reg;
1316 enum machine_mode promoted_mode, decl_mode;
1317 struct function *function = 0;
1318 tree context;
1319 int can_use_addressof;
1320
1321 context = decl_function_context (decl);
1322
1323 /* Get the current rtl used for this object and its original mode. */
1324 reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl);
1325
1326 /* No need to do anything if decl has no rtx yet
1327 since in that case caller is setting TREE_ADDRESSABLE
1328 and a stack slot will be assigned when the rtl is made. */
1329 if (reg == 0)
1330 return;
1331
1332 /* Get the declared mode for this object. */
1333 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1334 : DECL_MODE (decl));
1335 /* Get the mode it's actually stored in. */
1336 promoted_mode = GET_MODE (reg);
1337
1338 /* If this variable comes from an outer function,
1339 find that function's saved context. */
1340 if (context != current_function_decl && context != inline_function_decl)
1341 for (function = outer_function_chain; function; function = function->next)
1342 if (function->decl == context)
1343 break;
1344
1345 /* If this is a variable-size object with a pseudo to address it,
1346 put that pseudo into the stack, if the var is nonlocal. */
1347 if (DECL_NONLOCAL (decl)
1348 && GET_CODE (reg) == MEM
1349 && GET_CODE (XEXP (reg, 0)) == REG
1350 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1351 {
1352 reg = XEXP (reg, 0);
1353 decl_mode = promoted_mode = GET_MODE (reg);
1354 }
1355
1356 can_use_addressof
1357 = (function == 0
1358 && optimize > 0
1359 /* FIXME make it work for promoted modes too */
1360 && decl_mode == promoted_mode
1361 #ifdef NON_SAVING_SETJMP
1362 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1363 #endif
1364 );
1365
1366 /* If we can't use ADDRESSOF, make sure we see through one we already
1367 generated. */
1368 if (! can_use_addressof && GET_CODE (reg) == MEM
1369 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1370 reg = XEXP (XEXP (reg, 0), 0);
1371
1372 /* Now we should have a value that resides in one or more pseudo regs. */
1373
1374 if (GET_CODE (reg) == REG)
1375 {
1376 /* If this variable lives in the current function and we don't need
1377 to put things in the stack for the sake of setjmp, try to keep it
1378 in a register until we know we actually need the address. */
1379 if (can_use_addressof)
1380 gen_mem_addressof (reg, decl);
1381 else
1382 put_reg_into_stack (function, reg, TREE_TYPE (decl),
1383 promoted_mode, decl_mode,
1384 TREE_SIDE_EFFECTS (decl), 0,
1385 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1386 0);
1387 }
1388 else if (GET_CODE (reg) == CONCAT)
1389 {
1390 /* A CONCAT contains two pseudos; put them both in the stack.
1391 We do it so they end up consecutive. */
1392 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1393 tree part_type = type_for_mode (part_mode, 0);
1394 #ifdef FRAME_GROWS_DOWNWARD
1395 /* Since part 0 should have a lower address, do it second. */
1396 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1397 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1398 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1399 0);
1400 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1401 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1402 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1403 0);
1404 #else
1405 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1406 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1407 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1408 0);
1409 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1410 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1411 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1412 0);
1413 #endif
1414
1415 /* Change the CONCAT into a combined MEM for both parts. */
1416 PUT_CODE (reg, MEM);
1417 MEM_VOLATILE_P (reg) = MEM_VOLATILE_P (XEXP (reg, 0));
1418 MEM_ALIAS_SET (reg) = get_alias_set (decl);
1419 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (TREE_TYPE (decl)));
1420
1421 /* The two parts are in memory order already.
1422 Use the lower parts address as ours. */
1423 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1424 /* Prevent sharing of rtl that might lose. */
1425 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1426 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1427 }
1428 else
1429 return;
1430
1431 if (current_function_check_memory_usage)
1432 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
1433 XEXP (reg, 0), Pmode,
1434 GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
1435 TYPE_MODE (sizetype),
1436 GEN_INT (MEMORY_USE_RW),
1437 TYPE_MODE (integer_type_node));
1438 }
1439
1440 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1441 into the stack frame of FUNCTION (0 means the current function).
1442 DECL_MODE is the machine mode of the user-level data type.
1443 PROMOTED_MODE is the machine mode of the register.
1444 VOLATILE_P is nonzero if this is for a "volatile" decl.
1445 USED_P is nonzero if this reg might have already been used in an insn. */
1446
1447 static void
1448 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1449 original_regno, used_p, ht)
1450 struct function *function;
1451 rtx reg;
1452 tree type;
1453 enum machine_mode promoted_mode, decl_mode;
1454 int volatile_p;
1455 unsigned int original_regno;
1456 int used_p;
1457 struct hash_table *ht;
1458 {
1459 struct function *func = function ? function : cfun;
1460 rtx new = 0;
1461 unsigned int regno = original_regno;
1462
1463 if (regno == 0)
1464 regno = REGNO (reg);
1465
1466 if (regno < func->x_max_parm_reg)
1467 new = func->x_parm_reg_stack_loc[regno];
1468
1469 if (new == 0)
1470 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1471
1472 PUT_CODE (reg, MEM);
1473 PUT_MODE (reg, decl_mode);
1474 XEXP (reg, 0) = XEXP (new, 0);
1475 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1476 MEM_VOLATILE_P (reg) = volatile_p;
1477
1478 /* If this is a memory ref that contains aggregate components,
1479 mark it as such for cse and loop optimize. If we are reusing a
1480 previously generated stack slot, then we need to copy the bit in
1481 case it was set for other reasons. For instance, it is set for
1482 __builtin_va_alist. */
1483 MEM_SET_IN_STRUCT_P (reg,
1484 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1485 MEM_ALIAS_SET (reg) = get_alias_set (type);
1486
1487 /* Now make sure that all refs to the variable, previously made
1488 when it was a register, are fixed up to be valid again. */
1489
1490 if (used_p && function != 0)
1491 {
1492 struct var_refs_queue *temp;
1493
1494 temp
1495 = (struct var_refs_queue *) xmalloc (sizeof (struct var_refs_queue));
1496 temp->modified = reg;
1497 temp->promoted_mode = promoted_mode;
1498 temp->unsignedp = TREE_UNSIGNED (type);
1499 temp->next = function->fixup_var_refs_queue;
1500 function->fixup_var_refs_queue = temp;
1501 }
1502 else if (used_p)
1503 /* Variable is local; fix it up now. */
1504 fixup_var_refs (reg, promoted_mode, TREE_UNSIGNED (type), ht);
1505 }
1506 \f
1507 static void
1508 fixup_var_refs (var, promoted_mode, unsignedp, ht)
1509 rtx var;
1510 enum machine_mode promoted_mode;
1511 int unsignedp;
1512 struct hash_table *ht;
1513 {
1514 tree pending;
1515 rtx first_insn = get_insns ();
1516 struct sequence_stack *stack = seq_stack;
1517 tree rtl_exps = rtl_expr_chain;
1518 rtx insn;
1519
1520 /* Must scan all insns for stack-refs that exceed the limit. */
1521 fixup_var_refs_insns (var, promoted_mode, unsignedp, first_insn,
1522 stack == 0, ht);
1523 /* If there's a hash table, it must record all uses of VAR. */
1524 if (ht)
1525 return;
1526
1527 /* Scan all pending sequences too. */
1528 for (; stack; stack = stack->next)
1529 {
1530 push_to_sequence (stack->first);
1531 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1532 stack->first, stack->next != 0, 0);
1533 /* Update remembered end of sequence
1534 in case we added an insn at the end. */
1535 stack->last = get_last_insn ();
1536 end_sequence ();
1537 }
1538
1539 /* Scan all waiting RTL_EXPRs too. */
1540 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1541 {
1542 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1543 if (seq != const0_rtx && seq != 0)
1544 {
1545 push_to_sequence (seq);
1546 fixup_var_refs_insns (var, promoted_mode, unsignedp, seq, 0,
1547 0);
1548 end_sequence ();
1549 }
1550 }
1551
1552 /* Scan the catch clauses for exception handling too. */
1553 push_to_full_sequence (catch_clauses, catch_clauses_last);
1554 fixup_var_refs_insns (var, promoted_mode, unsignedp, catch_clauses,
1555 0, 0);
1556 end_full_sequence (&catch_clauses, &catch_clauses_last);
1557
1558 /* Scan sequences saved in CALL_PLACEHOLDERS too. */
1559 for (insn = first_insn; insn; insn = NEXT_INSN (insn))
1560 {
1561 if (GET_CODE (insn) == CALL_INSN
1562 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1563 {
1564 int i;
1565
1566 /* Look at the Normal call, sibling call and tail recursion
1567 sequences attached to the CALL_PLACEHOLDER. */
1568 for (i = 0; i < 3; i++)
1569 {
1570 rtx seq = XEXP (PATTERN (insn), i);
1571 if (seq)
1572 {
1573 push_to_sequence (seq);
1574 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1575 seq, 0, 0);
1576 XEXP (PATTERN (insn), i) = get_insns ();
1577 end_sequence ();
1578 }
1579 }
1580 }
1581 }
1582 }
1583 \f
1584 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1585 some part of an insn. Return a struct fixup_replacement whose OLD
1586 value is equal to X. Allocate a new structure if no such entry exists. */
1587
1588 static struct fixup_replacement *
1589 find_fixup_replacement (replacements, x)
1590 struct fixup_replacement **replacements;
1591 rtx x;
1592 {
1593 struct fixup_replacement *p;
1594
1595 /* See if we have already replaced this. */
1596 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1597 ;
1598
1599 if (p == 0)
1600 {
1601 p = (struct fixup_replacement *) oballoc (sizeof (struct fixup_replacement));
1602 p->old = x;
1603 p->new = 0;
1604 p->next = *replacements;
1605 *replacements = p;
1606 }
1607
1608 return p;
1609 }
1610
1611 /* Scan the insn-chain starting with INSN for refs to VAR
1612 and fix them up. TOPLEVEL is nonzero if this chain is the
1613 main chain of insns for the current function. */
1614
1615 static void
1616 fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel, ht)
1617 rtx var;
1618 enum machine_mode promoted_mode;
1619 int unsignedp;
1620 rtx insn;
1621 int toplevel;
1622 struct hash_table *ht;
1623 {
1624 rtx call_dest = 0;
1625 rtx insn_list = NULL_RTX;
1626
1627 /* If we already know which INSNs reference VAR there's no need
1628 to walk the entire instruction chain. */
1629 if (ht)
1630 {
1631 insn_list = ((struct insns_for_mem_entry *)
1632 hash_lookup (ht, var, /*create=*/0, /*copy=*/0))->insns;
1633 insn = insn_list ? XEXP (insn_list, 0) : NULL_RTX;
1634 insn_list = XEXP (insn_list, 1);
1635 }
1636
1637 while (insn)
1638 {
1639 rtx next = NEXT_INSN (insn);
1640 rtx set, prev, prev_set;
1641 rtx note;
1642
1643 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1644 {
1645 /* Remember the notes in case we delete the insn. */
1646 note = REG_NOTES (insn);
1647
1648 /* If this is a CLOBBER of VAR, delete it.
1649
1650 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1651 and REG_RETVAL notes too. */
1652 if (GET_CODE (PATTERN (insn)) == CLOBBER
1653 && (XEXP (PATTERN (insn), 0) == var
1654 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1655 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1656 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1657 {
1658 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1659 /* The REG_LIBCALL note will go away since we are going to
1660 turn INSN into a NOTE, so just delete the
1661 corresponding REG_RETVAL note. */
1662 remove_note (XEXP (note, 0),
1663 find_reg_note (XEXP (note, 0), REG_RETVAL,
1664 NULL_RTX));
1665
1666 /* In unoptimized compilation, we shouldn't call delete_insn
1667 except in jump.c doing warnings. */
1668 PUT_CODE (insn, NOTE);
1669 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1670 NOTE_SOURCE_FILE (insn) = 0;
1671 }
1672
1673 /* The insn to load VAR from a home in the arglist
1674 is now a no-op. When we see it, just delete it.
1675 Similarly if this is storing VAR from a register from which
1676 it was loaded in the previous insn. This will occur
1677 when an ADDRESSOF was made for an arglist slot. */
1678 else if (toplevel
1679 && (set = single_set (insn)) != 0
1680 && SET_DEST (set) == var
1681 /* If this represents the result of an insn group,
1682 don't delete the insn. */
1683 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1684 && (rtx_equal_p (SET_SRC (set), var)
1685 || (GET_CODE (SET_SRC (set)) == REG
1686 && (prev = prev_nonnote_insn (insn)) != 0
1687 && (prev_set = single_set (prev)) != 0
1688 && SET_DEST (prev_set) == SET_SRC (set)
1689 && rtx_equal_p (SET_SRC (prev_set), var))))
1690 {
1691 /* In unoptimized compilation, we shouldn't call delete_insn
1692 except in jump.c doing warnings. */
1693 PUT_CODE (insn, NOTE);
1694 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1695 NOTE_SOURCE_FILE (insn) = 0;
1696 if (insn == last_parm_insn)
1697 last_parm_insn = PREV_INSN (next);
1698 }
1699 else
1700 {
1701 struct fixup_replacement *replacements = 0;
1702 rtx next_insn = NEXT_INSN (insn);
1703
1704 if (SMALL_REGISTER_CLASSES)
1705 {
1706 /* If the insn that copies the results of a CALL_INSN
1707 into a pseudo now references VAR, we have to use an
1708 intermediate pseudo since we want the life of the
1709 return value register to be only a single insn.
1710
1711 If we don't use an intermediate pseudo, such things as
1712 address computations to make the address of VAR valid
1713 if it is not can be placed between the CALL_INSN and INSN.
1714
1715 To make sure this doesn't happen, we record the destination
1716 of the CALL_INSN and see if the next insn uses both that
1717 and VAR. */
1718
1719 if (call_dest != 0 && GET_CODE (insn) == INSN
1720 && reg_mentioned_p (var, PATTERN (insn))
1721 && reg_mentioned_p (call_dest, PATTERN (insn)))
1722 {
1723 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1724
1725 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1726
1727 PATTERN (insn) = replace_rtx (PATTERN (insn),
1728 call_dest, temp);
1729 }
1730
1731 if (GET_CODE (insn) == CALL_INSN
1732 && GET_CODE (PATTERN (insn)) == SET)
1733 call_dest = SET_DEST (PATTERN (insn));
1734 else if (GET_CODE (insn) == CALL_INSN
1735 && GET_CODE (PATTERN (insn)) == PARALLEL
1736 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1737 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1738 else
1739 call_dest = 0;
1740 }
1741
1742 /* See if we have to do anything to INSN now that VAR is in
1743 memory. If it needs to be loaded into a pseudo, use a single
1744 pseudo for the entire insn in case there is a MATCH_DUP
1745 between two operands. We pass a pointer to the head of
1746 a list of struct fixup_replacements. If fixup_var_refs_1
1747 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1748 it will record them in this list.
1749
1750 If it allocated a pseudo for any replacement, we copy into
1751 it here. */
1752
1753 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1754 &replacements);
1755
1756 /* If this is last_parm_insn, and any instructions were output
1757 after it to fix it up, then we must set last_parm_insn to
1758 the last such instruction emitted. */
1759 if (insn == last_parm_insn)
1760 last_parm_insn = PREV_INSN (next_insn);
1761
1762 while (replacements)
1763 {
1764 if (GET_CODE (replacements->new) == REG)
1765 {
1766 rtx insert_before;
1767 rtx seq;
1768
1769 /* OLD might be a (subreg (mem)). */
1770 if (GET_CODE (replacements->old) == SUBREG)
1771 replacements->old
1772 = fixup_memory_subreg (replacements->old, insn, 0);
1773 else
1774 replacements->old
1775 = fixup_stack_1 (replacements->old, insn);
1776
1777 insert_before = insn;
1778
1779 /* If we are changing the mode, do a conversion.
1780 This might be wasteful, but combine.c will
1781 eliminate much of the waste. */
1782
1783 if (GET_MODE (replacements->new)
1784 != GET_MODE (replacements->old))
1785 {
1786 start_sequence ();
1787 convert_move (replacements->new,
1788 replacements->old, unsignedp);
1789 seq = gen_sequence ();
1790 end_sequence ();
1791 }
1792 else
1793 seq = gen_move_insn (replacements->new,
1794 replacements->old);
1795
1796 emit_insn_before (seq, insert_before);
1797 }
1798
1799 replacements = replacements->next;
1800 }
1801 }
1802
1803 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1804 But don't touch other insns referred to by reg-notes;
1805 we will get them elsewhere. */
1806 while (note)
1807 {
1808 if (GET_CODE (note) != INSN_LIST)
1809 XEXP (note, 0)
1810 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1811 note = XEXP (note, 1);
1812 }
1813 }
1814
1815 if (!ht)
1816 insn = next;
1817 else if (insn_list)
1818 {
1819 insn = XEXP (insn_list, 0);
1820 insn_list = XEXP (insn_list, 1);
1821 }
1822 else
1823 insn = NULL_RTX;
1824 }
1825 }
1826 \f
1827 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1828 See if the rtx expression at *LOC in INSN needs to be changed.
1829
1830 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1831 contain a list of original rtx's and replacements. If we find that we need
1832 to modify this insn by replacing a memory reference with a pseudo or by
1833 making a new MEM to implement a SUBREG, we consult that list to see if
1834 we have already chosen a replacement. If none has already been allocated,
1835 we allocate it and update the list. fixup_var_refs_insns will copy VAR
1836 or the SUBREG, as appropriate, to the pseudo. */
1837
1838 static void
1839 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1840 register rtx var;
1841 enum machine_mode promoted_mode;
1842 register rtx *loc;
1843 rtx insn;
1844 struct fixup_replacement **replacements;
1845 {
1846 register int i;
1847 register rtx x = *loc;
1848 RTX_CODE code = GET_CODE (x);
1849 register const char *fmt;
1850 register rtx tem, tem1;
1851 struct fixup_replacement *replacement;
1852
1853 switch (code)
1854 {
1855 case ADDRESSOF:
1856 if (XEXP (x, 0) == var)
1857 {
1858 /* Prevent sharing of rtl that might lose. */
1859 rtx sub = copy_rtx (XEXP (var, 0));
1860
1861 if (! validate_change (insn, loc, sub, 0))
1862 {
1863 rtx y = gen_reg_rtx (GET_MODE (sub));
1864 rtx seq, new_insn;
1865
1866 /* We should be able to replace with a register or all is lost.
1867 Note that we can't use validate_change to verify this, since
1868 we're not caring for replacing all dups simultaneously. */
1869 if (! validate_replace_rtx (*loc, y, insn))
1870 abort ();
1871
1872 /* Careful! First try to recognize a direct move of the
1873 value, mimicking how things are done in gen_reload wrt
1874 PLUS. Consider what happens when insn is a conditional
1875 move instruction and addsi3 clobbers flags. */
1876
1877 start_sequence ();
1878 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1879 seq = gen_sequence ();
1880 end_sequence ();
1881
1882 if (recog_memoized (new_insn) < 0)
1883 {
1884 /* That failed. Fall back on force_operand and hope. */
1885
1886 start_sequence ();
1887 force_operand (sub, y);
1888 seq = gen_sequence ();
1889 end_sequence ();
1890 }
1891
1892 #ifdef HAVE_cc0
1893 /* Don't separate setter from user. */
1894 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1895 insn = PREV_INSN (insn);
1896 #endif
1897
1898 emit_insn_before (seq, insn);
1899 }
1900 }
1901 return;
1902
1903 case MEM:
1904 if (var == x)
1905 {
1906 /* If we already have a replacement, use it. Otherwise,
1907 try to fix up this address in case it is invalid. */
1908
1909 replacement = find_fixup_replacement (replacements, var);
1910 if (replacement->new)
1911 {
1912 *loc = replacement->new;
1913 return;
1914 }
1915
1916 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1917
1918 /* Unless we are forcing memory to register or we changed the mode,
1919 we can leave things the way they are if the insn is valid. */
1920
1921 INSN_CODE (insn) = -1;
1922 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1923 && recog_memoized (insn) >= 0)
1924 return;
1925
1926 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1927 return;
1928 }
1929
1930 /* If X contains VAR, we need to unshare it here so that we update
1931 each occurrence separately. But all identical MEMs in one insn
1932 must be replaced with the same rtx because of the possibility of
1933 MATCH_DUPs. */
1934
1935 if (reg_mentioned_p (var, x))
1936 {
1937 replacement = find_fixup_replacement (replacements, x);
1938 if (replacement->new == 0)
1939 replacement->new = copy_most_rtx (x, var);
1940
1941 *loc = x = replacement->new;
1942 }
1943 break;
1944
1945 case REG:
1946 case CC0:
1947 case PC:
1948 case CONST_INT:
1949 case CONST:
1950 case SYMBOL_REF:
1951 case LABEL_REF:
1952 case CONST_DOUBLE:
1953 return;
1954
1955 case SIGN_EXTRACT:
1956 case ZERO_EXTRACT:
1957 /* Note that in some cases those types of expressions are altered
1958 by optimize_bit_field, and do not survive to get here. */
1959 if (XEXP (x, 0) == var
1960 || (GET_CODE (XEXP (x, 0)) == SUBREG
1961 && SUBREG_REG (XEXP (x, 0)) == var))
1962 {
1963 /* Get TEM as a valid MEM in the mode presently in the insn.
1964
1965 We don't worry about the possibility of MATCH_DUP here; it
1966 is highly unlikely and would be tricky to handle. */
1967
1968 tem = XEXP (x, 0);
1969 if (GET_CODE (tem) == SUBREG)
1970 {
1971 if (GET_MODE_BITSIZE (GET_MODE (tem))
1972 > GET_MODE_BITSIZE (GET_MODE (var)))
1973 {
1974 replacement = find_fixup_replacement (replacements, var);
1975 if (replacement->new == 0)
1976 replacement->new = gen_reg_rtx (GET_MODE (var));
1977 SUBREG_REG (tem) = replacement->new;
1978 }
1979 else
1980 tem = fixup_memory_subreg (tem, insn, 0);
1981 }
1982 else
1983 tem = fixup_stack_1 (tem, insn);
1984
1985 /* Unless we want to load from memory, get TEM into the proper mode
1986 for an extract from memory. This can only be done if the
1987 extract is at a constant position and length. */
1988
1989 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
1990 && GET_CODE (XEXP (x, 2)) == CONST_INT
1991 && ! mode_dependent_address_p (XEXP (tem, 0))
1992 && ! MEM_VOLATILE_P (tem))
1993 {
1994 enum machine_mode wanted_mode = VOIDmode;
1995 enum machine_mode is_mode = GET_MODE (tem);
1996 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
1997
1998 #ifdef HAVE_extzv
1999 if (GET_CODE (x) == ZERO_EXTRACT)
2000 {
2001 wanted_mode
2002 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
2003 if (wanted_mode == VOIDmode)
2004 wanted_mode = word_mode;
2005 }
2006 #endif
2007 #ifdef HAVE_extv
2008 if (GET_CODE (x) == SIGN_EXTRACT)
2009 {
2010 wanted_mode = insn_data[(int) CODE_FOR_extv].operand[1].mode;
2011 if (wanted_mode == VOIDmode)
2012 wanted_mode = word_mode;
2013 }
2014 #endif
2015 /* If we have a narrower mode, we can do something. */
2016 if (wanted_mode != VOIDmode
2017 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2018 {
2019 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2020 rtx old_pos = XEXP (x, 2);
2021 rtx newmem;
2022
2023 /* If the bytes and bits are counted differently, we
2024 must adjust the offset. */
2025 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2026 offset = (GET_MODE_SIZE (is_mode)
2027 - GET_MODE_SIZE (wanted_mode) - offset);
2028
2029 pos %= GET_MODE_BITSIZE (wanted_mode);
2030
2031 newmem = gen_rtx_MEM (wanted_mode,
2032 plus_constant (XEXP (tem, 0), offset));
2033 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
2034 MEM_COPY_ATTRIBUTES (newmem, tem);
2035
2036 /* Make the change and see if the insn remains valid. */
2037 INSN_CODE (insn) = -1;
2038 XEXP (x, 0) = newmem;
2039 XEXP (x, 2) = GEN_INT (pos);
2040
2041 if (recog_memoized (insn) >= 0)
2042 return;
2043
2044 /* Otherwise, restore old position. XEXP (x, 0) will be
2045 restored later. */
2046 XEXP (x, 2) = old_pos;
2047 }
2048 }
2049
2050 /* If we get here, the bitfield extract insn can't accept a memory
2051 reference. Copy the input into a register. */
2052
2053 tem1 = gen_reg_rtx (GET_MODE (tem));
2054 emit_insn_before (gen_move_insn (tem1, tem), insn);
2055 XEXP (x, 0) = tem1;
2056 return;
2057 }
2058 break;
2059
2060 case SUBREG:
2061 if (SUBREG_REG (x) == var)
2062 {
2063 /* If this is a special SUBREG made because VAR was promoted
2064 from a wider mode, replace it with VAR and call ourself
2065 recursively, this time saying that the object previously
2066 had its current mode (by virtue of the SUBREG). */
2067
2068 if (SUBREG_PROMOTED_VAR_P (x))
2069 {
2070 *loc = var;
2071 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
2072 return;
2073 }
2074
2075 /* If this SUBREG makes VAR wider, it has become a paradoxical
2076 SUBREG with VAR in memory, but these aren't allowed at this
2077 stage of the compilation. So load VAR into a pseudo and take
2078 a SUBREG of that pseudo. */
2079 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2080 {
2081 replacement = find_fixup_replacement (replacements, var);
2082 if (replacement->new == 0)
2083 replacement->new = gen_reg_rtx (GET_MODE (var));
2084 SUBREG_REG (x) = replacement->new;
2085 return;
2086 }
2087
2088 /* See if we have already found a replacement for this SUBREG.
2089 If so, use it. Otherwise, make a MEM and see if the insn
2090 is recognized. If not, or if we should force MEM into a register,
2091 make a pseudo for this SUBREG. */
2092 replacement = find_fixup_replacement (replacements, x);
2093 if (replacement->new)
2094 {
2095 *loc = replacement->new;
2096 return;
2097 }
2098
2099 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
2100
2101 INSN_CODE (insn) = -1;
2102 if (! flag_force_mem && recog_memoized (insn) >= 0)
2103 return;
2104
2105 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2106 return;
2107 }
2108 break;
2109
2110 case SET:
2111 /* First do special simplification of bit-field references. */
2112 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2113 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2114 optimize_bit_field (x, insn, 0);
2115 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2116 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2117 optimize_bit_field (x, insn, NULL_PTR);
2118
2119 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2120 into a register and then store it back out. */
2121 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2122 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2123 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2124 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2125 > GET_MODE_SIZE (GET_MODE (var))))
2126 {
2127 replacement = find_fixup_replacement (replacements, var);
2128 if (replacement->new == 0)
2129 replacement->new = gen_reg_rtx (GET_MODE (var));
2130
2131 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2132 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2133 }
2134
2135 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2136 insn into a pseudo and store the low part of the pseudo into VAR. */
2137 if (GET_CODE (SET_DEST (x)) == SUBREG
2138 && SUBREG_REG (SET_DEST (x)) == var
2139 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2140 > GET_MODE_SIZE (GET_MODE (var))))
2141 {
2142 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2143 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2144 tem)),
2145 insn);
2146 break;
2147 }
2148
2149 {
2150 rtx dest = SET_DEST (x);
2151 rtx src = SET_SRC (x);
2152 #ifdef HAVE_insv
2153 rtx outerdest = dest;
2154 #endif
2155
2156 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2157 || GET_CODE (dest) == SIGN_EXTRACT
2158 || GET_CODE (dest) == ZERO_EXTRACT)
2159 dest = XEXP (dest, 0);
2160
2161 if (GET_CODE (src) == SUBREG)
2162 src = XEXP (src, 0);
2163
2164 /* If VAR does not appear at the top level of the SET
2165 just scan the lower levels of the tree. */
2166
2167 if (src != var && dest != var)
2168 break;
2169
2170 /* We will need to rerecognize this insn. */
2171 INSN_CODE (insn) = -1;
2172
2173 #ifdef HAVE_insv
2174 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
2175 {
2176 /* Since this case will return, ensure we fixup all the
2177 operands here. */
2178 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2179 insn, replacements);
2180 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2181 insn, replacements);
2182 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2183 insn, replacements);
2184
2185 tem = XEXP (outerdest, 0);
2186
2187 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2188 that may appear inside a ZERO_EXTRACT.
2189 This was legitimate when the MEM was a REG. */
2190 if (GET_CODE (tem) == SUBREG
2191 && SUBREG_REG (tem) == var)
2192 tem = fixup_memory_subreg (tem, insn, 0);
2193 else
2194 tem = fixup_stack_1 (tem, insn);
2195
2196 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2197 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2198 && ! mode_dependent_address_p (XEXP (tem, 0))
2199 && ! MEM_VOLATILE_P (tem))
2200 {
2201 enum machine_mode wanted_mode;
2202 enum machine_mode is_mode = GET_MODE (tem);
2203 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2204
2205 wanted_mode = insn_data[(int) CODE_FOR_insv].operand[0].mode;
2206 if (wanted_mode == VOIDmode)
2207 wanted_mode = word_mode;
2208
2209 /* If we have a narrower mode, we can do something. */
2210 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2211 {
2212 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2213 rtx old_pos = XEXP (outerdest, 2);
2214 rtx newmem;
2215
2216 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2217 offset = (GET_MODE_SIZE (is_mode)
2218 - GET_MODE_SIZE (wanted_mode) - offset);
2219
2220 pos %= GET_MODE_BITSIZE (wanted_mode);
2221
2222 newmem = gen_rtx_MEM (wanted_mode,
2223 plus_constant (XEXP (tem, 0),
2224 offset));
2225 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
2226 MEM_COPY_ATTRIBUTES (newmem, tem);
2227
2228 /* Make the change and see if the insn remains valid. */
2229 INSN_CODE (insn) = -1;
2230 XEXP (outerdest, 0) = newmem;
2231 XEXP (outerdest, 2) = GEN_INT (pos);
2232
2233 if (recog_memoized (insn) >= 0)
2234 return;
2235
2236 /* Otherwise, restore old position. XEXP (x, 0) will be
2237 restored later. */
2238 XEXP (outerdest, 2) = old_pos;
2239 }
2240 }
2241
2242 /* If we get here, the bit-field store doesn't allow memory
2243 or isn't located at a constant position. Load the value into
2244 a register, do the store, and put it back into memory. */
2245
2246 tem1 = gen_reg_rtx (GET_MODE (tem));
2247 emit_insn_before (gen_move_insn (tem1, tem), insn);
2248 emit_insn_after (gen_move_insn (tem, tem1), insn);
2249 XEXP (outerdest, 0) = tem1;
2250 return;
2251 }
2252 #endif
2253
2254 /* STRICT_LOW_PART is a no-op on memory references
2255 and it can cause combinations to be unrecognizable,
2256 so eliminate it. */
2257
2258 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2259 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2260
2261 /* A valid insn to copy VAR into or out of a register
2262 must be left alone, to avoid an infinite loop here.
2263 If the reference to VAR is by a subreg, fix that up,
2264 since SUBREG is not valid for a memref.
2265 Also fix up the address of the stack slot.
2266
2267 Note that we must not try to recognize the insn until
2268 after we know that we have valid addresses and no
2269 (subreg (mem ...) ...) constructs, since these interfere
2270 with determining the validity of the insn. */
2271
2272 if ((SET_SRC (x) == var
2273 || (GET_CODE (SET_SRC (x)) == SUBREG
2274 && SUBREG_REG (SET_SRC (x)) == var))
2275 && (GET_CODE (SET_DEST (x)) == REG
2276 || (GET_CODE (SET_DEST (x)) == SUBREG
2277 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2278 && GET_MODE (var) == promoted_mode
2279 && x == single_set (insn))
2280 {
2281 rtx pat;
2282
2283 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2284 if (replacement->new)
2285 SET_SRC (x) = replacement->new;
2286 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2287 SET_SRC (x) = replacement->new
2288 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2289 else
2290 SET_SRC (x) = replacement->new
2291 = fixup_stack_1 (SET_SRC (x), insn);
2292
2293 if (recog_memoized (insn) >= 0)
2294 return;
2295
2296 /* INSN is not valid, but we know that we want to
2297 copy SET_SRC (x) to SET_DEST (x) in some way. So
2298 we generate the move and see whether it requires more
2299 than one insn. If it does, we emit those insns and
2300 delete INSN. Otherwise, we an just replace the pattern
2301 of INSN; we have already verified above that INSN has
2302 no other function that to do X. */
2303
2304 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2305 if (GET_CODE (pat) == SEQUENCE)
2306 {
2307 emit_insn_after (pat, insn);
2308 PUT_CODE (insn, NOTE);
2309 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2310 NOTE_SOURCE_FILE (insn) = 0;
2311 }
2312 else
2313 PATTERN (insn) = pat;
2314
2315 return;
2316 }
2317
2318 if ((SET_DEST (x) == var
2319 || (GET_CODE (SET_DEST (x)) == SUBREG
2320 && SUBREG_REG (SET_DEST (x)) == var))
2321 && (GET_CODE (SET_SRC (x)) == REG
2322 || (GET_CODE (SET_SRC (x)) == SUBREG
2323 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2324 && GET_MODE (var) == promoted_mode
2325 && x == single_set (insn))
2326 {
2327 rtx pat;
2328
2329 if (GET_CODE (SET_DEST (x)) == SUBREG)
2330 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2331 else
2332 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2333
2334 if (recog_memoized (insn) >= 0)
2335 return;
2336
2337 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2338 if (GET_CODE (pat) == SEQUENCE)
2339 {
2340 emit_insn_after (pat, insn);
2341 PUT_CODE (insn, NOTE);
2342 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2343 NOTE_SOURCE_FILE (insn) = 0;
2344 }
2345 else
2346 PATTERN (insn) = pat;
2347
2348 return;
2349 }
2350
2351 /* Otherwise, storing into VAR must be handled specially
2352 by storing into a temporary and copying that into VAR
2353 with a new insn after this one. Note that this case
2354 will be used when storing into a promoted scalar since
2355 the insn will now have different modes on the input
2356 and output and hence will be invalid (except for the case
2357 of setting it to a constant, which does not need any
2358 change if it is valid). We generate extra code in that case,
2359 but combine.c will eliminate it. */
2360
2361 if (dest == var)
2362 {
2363 rtx temp;
2364 rtx fixeddest = SET_DEST (x);
2365
2366 /* STRICT_LOW_PART can be discarded, around a MEM. */
2367 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2368 fixeddest = XEXP (fixeddest, 0);
2369 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2370 if (GET_CODE (fixeddest) == SUBREG)
2371 {
2372 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2373 promoted_mode = GET_MODE (fixeddest);
2374 }
2375 else
2376 fixeddest = fixup_stack_1 (fixeddest, insn);
2377
2378 temp = gen_reg_rtx (promoted_mode);
2379
2380 emit_insn_after (gen_move_insn (fixeddest,
2381 gen_lowpart (GET_MODE (fixeddest),
2382 temp)),
2383 insn);
2384
2385 SET_DEST (x) = temp;
2386 }
2387 }
2388
2389 default:
2390 break;
2391 }
2392
2393 /* Nothing special about this RTX; fix its operands. */
2394
2395 fmt = GET_RTX_FORMAT (code);
2396 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2397 {
2398 if (fmt[i] == 'e')
2399 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2400 else if (fmt[i] == 'E')
2401 {
2402 register int j;
2403 for (j = 0; j < XVECLEN (x, i); j++)
2404 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2405 insn, replacements);
2406 }
2407 }
2408 }
2409 \f
2410 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2411 return an rtx (MEM:m1 newaddr) which is equivalent.
2412 If any insns must be emitted to compute NEWADDR, put them before INSN.
2413
2414 UNCRITICAL nonzero means accept paradoxical subregs.
2415 This is used for subregs found inside REG_NOTES. */
2416
2417 static rtx
2418 fixup_memory_subreg (x, insn, uncritical)
2419 rtx x;
2420 rtx insn;
2421 int uncritical;
2422 {
2423 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2424 rtx addr = XEXP (SUBREG_REG (x), 0);
2425 enum machine_mode mode = GET_MODE (x);
2426 rtx result;
2427
2428 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2429 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2430 && ! uncritical)
2431 abort ();
2432
2433 if (BYTES_BIG_ENDIAN)
2434 offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2435 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2436 addr = plus_constant (addr, offset);
2437 if (!flag_force_addr && memory_address_p (mode, addr))
2438 /* Shortcut if no insns need be emitted. */
2439 return change_address (SUBREG_REG (x), mode, addr);
2440 start_sequence ();
2441 result = change_address (SUBREG_REG (x), mode, addr);
2442 emit_insn_before (gen_sequence (), insn);
2443 end_sequence ();
2444 return result;
2445 }
2446
2447 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2448 Replace subexpressions of X in place.
2449 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2450 Otherwise return X, with its contents possibly altered.
2451
2452 If any insns must be emitted to compute NEWADDR, put them before INSN.
2453
2454 UNCRITICAL is as in fixup_memory_subreg. */
2455
2456 static rtx
2457 walk_fixup_memory_subreg (x, insn, uncritical)
2458 register rtx x;
2459 rtx insn;
2460 int uncritical;
2461 {
2462 register enum rtx_code code;
2463 register const char *fmt;
2464 register int i;
2465
2466 if (x == 0)
2467 return 0;
2468
2469 code = GET_CODE (x);
2470
2471 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2472 return fixup_memory_subreg (x, insn, uncritical);
2473
2474 /* Nothing special about this RTX; fix its operands. */
2475
2476 fmt = GET_RTX_FORMAT (code);
2477 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2478 {
2479 if (fmt[i] == 'e')
2480 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2481 else if (fmt[i] == 'E')
2482 {
2483 register int j;
2484 for (j = 0; j < XVECLEN (x, i); j++)
2485 XVECEXP (x, i, j)
2486 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2487 }
2488 }
2489 return x;
2490 }
2491 \f
2492 /* For each memory ref within X, if it refers to a stack slot
2493 with an out of range displacement, put the address in a temp register
2494 (emitting new insns before INSN to load these registers)
2495 and alter the memory ref to use that register.
2496 Replace each such MEM rtx with a copy, to avoid clobberage. */
2497
2498 static rtx
2499 fixup_stack_1 (x, insn)
2500 rtx x;
2501 rtx insn;
2502 {
2503 register int i;
2504 register RTX_CODE code = GET_CODE (x);
2505 register const char *fmt;
2506
2507 if (code == MEM)
2508 {
2509 register rtx ad = XEXP (x, 0);
2510 /* If we have address of a stack slot but it's not valid
2511 (displacement is too large), compute the sum in a register. */
2512 if (GET_CODE (ad) == PLUS
2513 && GET_CODE (XEXP (ad, 0)) == REG
2514 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2515 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2516 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2517 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2518 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2519 #endif
2520 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2521 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2522 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2523 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2524 {
2525 rtx temp, seq;
2526 if (memory_address_p (GET_MODE (x), ad))
2527 return x;
2528
2529 start_sequence ();
2530 temp = copy_to_reg (ad);
2531 seq = gen_sequence ();
2532 end_sequence ();
2533 emit_insn_before (seq, insn);
2534 return change_address (x, VOIDmode, temp);
2535 }
2536 return x;
2537 }
2538
2539 fmt = GET_RTX_FORMAT (code);
2540 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2541 {
2542 if (fmt[i] == 'e')
2543 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2544 else if (fmt[i] == 'E')
2545 {
2546 register int j;
2547 for (j = 0; j < XVECLEN (x, i); j++)
2548 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2549 }
2550 }
2551 return x;
2552 }
2553 \f
2554 /* Optimization: a bit-field instruction whose field
2555 happens to be a byte or halfword in memory
2556 can be changed to a move instruction.
2557
2558 We call here when INSN is an insn to examine or store into a bit-field.
2559 BODY is the SET-rtx to be altered.
2560
2561 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2562 (Currently this is called only from function.c, and EQUIV_MEM
2563 is always 0.) */
2564
2565 static void
2566 optimize_bit_field (body, insn, equiv_mem)
2567 rtx body;
2568 rtx insn;
2569 rtx *equiv_mem;
2570 {
2571 register rtx bitfield;
2572 int destflag;
2573 rtx seq = 0;
2574 enum machine_mode mode;
2575
2576 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2577 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2578 bitfield = SET_DEST (body), destflag = 1;
2579 else
2580 bitfield = SET_SRC (body), destflag = 0;
2581
2582 /* First check that the field being stored has constant size and position
2583 and is in fact a byte or halfword suitably aligned. */
2584
2585 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2586 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2587 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2588 != BLKmode)
2589 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2590 {
2591 register rtx memref = 0;
2592
2593 /* Now check that the containing word is memory, not a register,
2594 and that it is safe to change the machine mode. */
2595
2596 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2597 memref = XEXP (bitfield, 0);
2598 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2599 && equiv_mem != 0)
2600 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2601 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2602 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2603 memref = SUBREG_REG (XEXP (bitfield, 0));
2604 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2605 && equiv_mem != 0
2606 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2607 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2608
2609 if (memref
2610 && ! mode_dependent_address_p (XEXP (memref, 0))
2611 && ! MEM_VOLATILE_P (memref))
2612 {
2613 /* Now adjust the address, first for any subreg'ing
2614 that we are now getting rid of,
2615 and then for which byte of the word is wanted. */
2616
2617 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2618 rtx insns;
2619
2620 /* Adjust OFFSET to count bits from low-address byte. */
2621 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2622 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2623 - offset - INTVAL (XEXP (bitfield, 1)));
2624
2625 /* Adjust OFFSET to count bytes from low-address byte. */
2626 offset /= BITS_PER_UNIT;
2627 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2628 {
2629 offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
2630 if (BYTES_BIG_ENDIAN)
2631 offset -= (MIN (UNITS_PER_WORD,
2632 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2633 - MIN (UNITS_PER_WORD,
2634 GET_MODE_SIZE (GET_MODE (memref))));
2635 }
2636
2637 start_sequence ();
2638 memref = change_address (memref, mode,
2639 plus_constant (XEXP (memref, 0), offset));
2640 insns = get_insns ();
2641 end_sequence ();
2642 emit_insns_before (insns, insn);
2643
2644 /* Store this memory reference where
2645 we found the bit field reference. */
2646
2647 if (destflag)
2648 {
2649 validate_change (insn, &SET_DEST (body), memref, 1);
2650 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2651 {
2652 rtx src = SET_SRC (body);
2653 while (GET_CODE (src) == SUBREG
2654 && SUBREG_WORD (src) == 0)
2655 src = SUBREG_REG (src);
2656 if (GET_MODE (src) != GET_MODE (memref))
2657 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2658 validate_change (insn, &SET_SRC (body), src, 1);
2659 }
2660 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2661 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2662 /* This shouldn't happen because anything that didn't have
2663 one of these modes should have got converted explicitly
2664 and then referenced through a subreg.
2665 This is so because the original bit-field was
2666 handled by agg_mode and so its tree structure had
2667 the same mode that memref now has. */
2668 abort ();
2669 }
2670 else
2671 {
2672 rtx dest = SET_DEST (body);
2673
2674 while (GET_CODE (dest) == SUBREG
2675 && SUBREG_WORD (dest) == 0
2676 && (GET_MODE_CLASS (GET_MODE (dest))
2677 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2678 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2679 <= UNITS_PER_WORD))
2680 dest = SUBREG_REG (dest);
2681
2682 validate_change (insn, &SET_DEST (body), dest, 1);
2683
2684 if (GET_MODE (dest) == GET_MODE (memref))
2685 validate_change (insn, &SET_SRC (body), memref, 1);
2686 else
2687 {
2688 /* Convert the mem ref to the destination mode. */
2689 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2690
2691 start_sequence ();
2692 convert_move (newreg, memref,
2693 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2694 seq = get_insns ();
2695 end_sequence ();
2696
2697 validate_change (insn, &SET_SRC (body), newreg, 1);
2698 }
2699 }
2700
2701 /* See if we can convert this extraction or insertion into
2702 a simple move insn. We might not be able to do so if this
2703 was, for example, part of a PARALLEL.
2704
2705 If we succeed, write out any needed conversions. If we fail,
2706 it is hard to guess why we failed, so don't do anything
2707 special; just let the optimization be suppressed. */
2708
2709 if (apply_change_group () && seq)
2710 emit_insns_before (seq, insn);
2711 }
2712 }
2713 }
2714 \f
2715 /* These routines are responsible for converting virtual register references
2716 to the actual hard register references once RTL generation is complete.
2717
2718 The following four variables are used for communication between the
2719 routines. They contain the offsets of the virtual registers from their
2720 respective hard registers. */
2721
2722 static int in_arg_offset;
2723 static int var_offset;
2724 static int dynamic_offset;
2725 static int out_arg_offset;
2726 static int cfa_offset;
2727
2728 /* In most machines, the stack pointer register is equivalent to the bottom
2729 of the stack. */
2730
2731 #ifndef STACK_POINTER_OFFSET
2732 #define STACK_POINTER_OFFSET 0
2733 #endif
2734
2735 /* If not defined, pick an appropriate default for the offset of dynamically
2736 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2737 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2738
2739 #ifndef STACK_DYNAMIC_OFFSET
2740
2741 #ifdef ACCUMULATE_OUTGOING_ARGS
2742 /* The bottom of the stack points to the actual arguments. If
2743 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2744 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2745 stack space for register parameters is not pushed by the caller, but
2746 rather part of the fixed stack areas and hence not included in
2747 `current_function_outgoing_args_size'. Nevertheless, we must allow
2748 for it when allocating stack dynamic objects. */
2749
2750 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2751 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2752 (current_function_outgoing_args_size \
2753 + REG_PARM_STACK_SPACE (FNDECL) + (STACK_POINTER_OFFSET))
2754
2755 #else
2756 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2757 (current_function_outgoing_args_size + (STACK_POINTER_OFFSET))
2758 #endif
2759
2760 #else
2761 #define STACK_DYNAMIC_OFFSET(FNDECL) STACK_POINTER_OFFSET
2762 #endif
2763 #endif
2764
2765 /* On most machines, the CFA coincides with the first incoming parm. */
2766
2767 #ifndef ARG_POINTER_CFA_OFFSET
2768 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2769 #endif
2770
2771
2772 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2773 its address taken. DECL is the decl for the object stored in the
2774 register, for later use if we do need to force REG into the stack.
2775 REG is overwritten by the MEM like in put_reg_into_stack. */
2776
2777 rtx
2778 gen_mem_addressof (reg, decl)
2779 rtx reg;
2780 tree decl;
2781 {
2782 tree type = TREE_TYPE (decl);
2783 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2784 REGNO (reg), decl);
2785
2786 /* If the original REG was a user-variable, then so is the REG whose
2787 address is being taken. Likewise for unchanging. */
2788 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2789 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2790
2791 PUT_CODE (reg, MEM);
2792 PUT_MODE (reg, DECL_MODE (decl));
2793 XEXP (reg, 0) = r;
2794 MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
2795 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type));
2796 MEM_ALIAS_SET (reg) = get_alias_set (decl);
2797
2798 if (TREE_USED (decl) || DECL_INITIAL (decl) != 0)
2799 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), 0);
2800
2801 return reg;
2802 }
2803
2804 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2805
2806 void
2807 flush_addressof (decl)
2808 tree decl;
2809 {
2810 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2811 && DECL_RTL (decl) != 0
2812 && GET_CODE (DECL_RTL (decl)) == MEM
2813 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2814 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2815 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2816 }
2817
2818 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2819
2820 static void
2821 put_addressof_into_stack (r, ht)
2822 rtx r;
2823 struct hash_table *ht;
2824 {
2825 tree decl = ADDRESSOF_DECL (r);
2826 rtx reg = XEXP (r, 0);
2827
2828 if (GET_CODE (reg) != REG)
2829 abort ();
2830
2831 put_reg_into_stack (0, reg, TREE_TYPE (decl), GET_MODE (reg),
2832 DECL_MODE (decl), TREE_SIDE_EFFECTS (decl),
2833 ADDRESSOF_REGNO (r),
2834 TREE_USED (decl) || DECL_INITIAL (decl) != 0, ht);
2835 }
2836
2837 /* List of replacements made below in purge_addressof_1 when creating
2838 bitfield insertions. */
2839 static rtx purge_bitfield_addressof_replacements;
2840
2841 /* List of replacements made below in purge_addressof_1 for patterns
2842 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2843 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2844 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2845 enough in complex cases, e.g. when some field values can be
2846 extracted by usage MEM with narrower mode. */
2847 static rtx purge_addressof_replacements;
2848
2849 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2850 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2851 the stack. If the function returns FALSE then the replacement could not
2852 be made. */
2853
2854 static boolean
2855 purge_addressof_1 (loc, insn, force, store, ht)
2856 rtx *loc;
2857 rtx insn;
2858 int force, store;
2859 struct hash_table *ht;
2860 {
2861 rtx x;
2862 RTX_CODE code;
2863 int i, j;
2864 const char *fmt;
2865 boolean result = true;
2866
2867 /* Re-start here to avoid recursion in common cases. */
2868 restart:
2869
2870 x = *loc;
2871 if (x == 0)
2872 return true;
2873
2874 code = GET_CODE (x);
2875
2876 /* If we don't return in any of the cases below, we will recurse inside
2877 the RTX, which will normally result in any ADDRESSOF being forced into
2878 memory. */
2879 if (code == SET)
2880 {
2881 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
2882 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
2883 return result;
2884 }
2885
2886 else if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM)
2887 {
2888 /* We must create a copy of the rtx because it was created by
2889 overwriting a REG rtx which is always shared. */
2890 rtx sub = copy_rtx (XEXP (XEXP (x, 0), 0));
2891 rtx insns;
2892
2893 if (validate_change (insn, loc, sub, 0)
2894 || validate_replace_rtx (x, sub, insn))
2895 return true;
2896
2897 start_sequence ();
2898 sub = force_operand (sub, NULL_RTX);
2899 if (! validate_change (insn, loc, sub, 0)
2900 && ! validate_replace_rtx (x, sub, insn))
2901 abort ();
2902
2903 insns = gen_sequence ();
2904 end_sequence ();
2905 emit_insn_before (insns, insn);
2906 return true;
2907 }
2908
2909 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
2910 {
2911 rtx sub = XEXP (XEXP (x, 0), 0);
2912 rtx sub2;
2913
2914 if (GET_CODE (sub) == MEM)
2915 {
2916 sub2 = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0)));
2917 MEM_COPY_ATTRIBUTES (sub2, sub);
2918 RTX_UNCHANGING_P (sub2) = RTX_UNCHANGING_P (sub);
2919 sub = sub2;
2920 }
2921 else if (GET_CODE (sub) == REG
2922 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2923 ;
2924 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
2925 {
2926 int size_x, size_sub;
2927
2928 if (!insn)
2929 {
2930 /* When processing REG_NOTES look at the list of
2931 replacements done on the insn to find the register that X
2932 was replaced by. */
2933 rtx tem;
2934
2935 for (tem = purge_bitfield_addressof_replacements;
2936 tem != NULL_RTX;
2937 tem = XEXP (XEXP (tem, 1), 1))
2938 if (rtx_equal_p (x, XEXP (tem, 0)))
2939 {
2940 *loc = XEXP (XEXP (tem, 1), 0);
2941 return true;
2942 }
2943
2944 /* See comment for purge_addressof_replacements. */
2945 for (tem = purge_addressof_replacements;
2946 tem != NULL_RTX;
2947 tem = XEXP (XEXP (tem, 1), 1))
2948 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
2949 {
2950 rtx z = XEXP (XEXP (tem, 1), 0);
2951
2952 if (GET_MODE (x) == GET_MODE (z)
2953 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
2954 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
2955 abort ();
2956
2957 /* It can happen that the note may speak of things
2958 in a wider (or just different) mode than the
2959 code did. This is especially true of
2960 REG_RETVAL. */
2961
2962 if (GET_CODE (z) == SUBREG && SUBREG_WORD (z) == 0)
2963 z = SUBREG_REG (z);
2964
2965 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2966 && (GET_MODE_SIZE (GET_MODE (x))
2967 > GET_MODE_SIZE (GET_MODE (z))))
2968 {
2969 /* This can occur as a result in invalid
2970 pointer casts, e.g. float f; ...
2971 *(long long int *)&f.
2972 ??? We could emit a warning here, but
2973 without a line number that wouldn't be
2974 very helpful. */
2975 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
2976 }
2977 else
2978 z = gen_lowpart (GET_MODE (x), z);
2979
2980 *loc = z;
2981 return true;
2982 }
2983
2984 /* Sometimes we may not be able to find the replacement. For
2985 example when the original insn was a MEM in a wider mode,
2986 and the note is part of a sign extension of a narrowed
2987 version of that MEM. Gcc testcase compile/990829-1.c can
2988 generate an example of this siutation. Rather than complain
2989 we return false, which will prompt our caller to remove the
2990 offending note. */
2991 return false;
2992 }
2993
2994 size_x = GET_MODE_BITSIZE (GET_MODE (x));
2995 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
2996
2997 /* Don't even consider working with paradoxical subregs,
2998 or the moral equivalent seen here. */
2999 if (size_x <= size_sub
3000 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3001 {
3002 /* Do a bitfield insertion to mirror what would happen
3003 in memory. */
3004
3005 rtx val, seq;
3006
3007 if (store)
3008 {
3009 rtx p = PREV_INSN (insn);
3010
3011 start_sequence ();
3012 val = gen_reg_rtx (GET_MODE (x));
3013 if (! validate_change (insn, loc, val, 0))
3014 {
3015 /* Discard the current sequence and put the
3016 ADDRESSOF on stack. */
3017 end_sequence ();
3018 goto give_up;
3019 }
3020 seq = gen_sequence ();
3021 end_sequence ();
3022 emit_insn_before (seq, insn);
3023 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3024 insn, ht);
3025
3026 start_sequence ();
3027 store_bit_field (sub, size_x, 0, GET_MODE (x),
3028 val, GET_MODE_SIZE (GET_MODE (sub)),
3029 GET_MODE_SIZE (GET_MODE (sub)));
3030
3031 /* Make sure to unshare any shared rtl that store_bit_field
3032 might have created. */
3033 unshare_all_rtl_again (get_insns ());
3034
3035 seq = gen_sequence ();
3036 end_sequence ();
3037 p = emit_insn_after (seq, insn);
3038 if (NEXT_INSN (insn))
3039 compute_insns_for_mem (NEXT_INSN (insn),
3040 p ? NEXT_INSN (p) : NULL_RTX,
3041 ht);
3042 }
3043 else
3044 {
3045 rtx p = PREV_INSN (insn);
3046
3047 start_sequence ();
3048 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3049 GET_MODE (x), GET_MODE (x),
3050 GET_MODE_SIZE (GET_MODE (sub)),
3051 GET_MODE_SIZE (GET_MODE (sub)));
3052
3053 if (! validate_change (insn, loc, val, 0))
3054 {
3055 /* Discard the current sequence and put the
3056 ADDRESSOF on stack. */
3057 end_sequence ();
3058 goto give_up;
3059 }
3060
3061 seq = gen_sequence ();
3062 end_sequence ();
3063 emit_insn_before (seq, insn);
3064 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3065 insn, ht);
3066 }
3067
3068 /* Remember the replacement so that the same one can be done
3069 on the REG_NOTES. */
3070 purge_bitfield_addressof_replacements
3071 = gen_rtx_EXPR_LIST (VOIDmode, x,
3072 gen_rtx_EXPR_LIST
3073 (VOIDmode, val,
3074 purge_bitfield_addressof_replacements));
3075
3076 /* We replaced with a reg -- all done. */
3077 return true;
3078 }
3079 }
3080
3081 else if (validate_change (insn, loc, sub, 0))
3082 {
3083 /* Remember the replacement so that the same one can be done
3084 on the REG_NOTES. */
3085 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3086 {
3087 rtx tem;
3088
3089 for (tem = purge_addressof_replacements;
3090 tem != NULL_RTX;
3091 tem = XEXP (XEXP (tem, 1), 1))
3092 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3093 {
3094 XEXP (XEXP (tem, 1), 0) = sub;
3095 return true;
3096 }
3097 purge_addressof_replacements
3098 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3099 gen_rtx_EXPR_LIST (VOIDmode, sub,
3100 purge_addressof_replacements));
3101 return true;
3102 }
3103 goto restart;
3104 }
3105 give_up:;
3106 /* else give up and put it into the stack */
3107 }
3108
3109 else if (code == ADDRESSOF)
3110 {
3111 put_addressof_into_stack (x, ht);
3112 return true;
3113 }
3114 else if (code == SET)
3115 {
3116 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
3117 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
3118 return result;
3119 }
3120
3121 /* Scan all subexpressions. */
3122 fmt = GET_RTX_FORMAT (code);
3123 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3124 {
3125 if (*fmt == 'e')
3126 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3127 else if (*fmt == 'E')
3128 for (j = 0; j < XVECLEN (x, i); j++)
3129 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3130 }
3131
3132 return result;
3133 }
3134
3135 /* Return a new hash table entry in HT. */
3136
3137 static struct hash_entry *
3138 insns_for_mem_newfunc (he, ht, k)
3139 struct hash_entry *he;
3140 struct hash_table *ht;
3141 hash_table_key k ATTRIBUTE_UNUSED;
3142 {
3143 struct insns_for_mem_entry *ifmhe;
3144 if (he)
3145 return he;
3146
3147 ifmhe = ((struct insns_for_mem_entry *)
3148 hash_allocate (ht, sizeof (struct insns_for_mem_entry)));
3149 ifmhe->insns = NULL_RTX;
3150
3151 return &ifmhe->he;
3152 }
3153
3154 /* Return a hash value for K, a REG. */
3155
3156 static unsigned long
3157 insns_for_mem_hash (k)
3158 hash_table_key k;
3159 {
3160 /* K is really a RTX. Just use the address as the hash value. */
3161 return (unsigned long) k;
3162 }
3163
3164 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3165
3166 static boolean
3167 insns_for_mem_comp (k1, k2)
3168 hash_table_key k1;
3169 hash_table_key k2;
3170 {
3171 return k1 == k2;
3172 }
3173
3174 struct insns_for_mem_walk_info {
3175 /* The hash table that we are using to record which INSNs use which
3176 MEMs. */
3177 struct hash_table *ht;
3178
3179 /* The INSN we are currently proessing. */
3180 rtx insn;
3181
3182 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3183 to find the insns that use the REGs in the ADDRESSOFs. */
3184 int pass;
3185 };
3186
3187 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3188 that might be used in an ADDRESSOF expression, record this INSN in
3189 the hash table given by DATA (which is really a pointer to an
3190 insns_for_mem_walk_info structure). */
3191
3192 static int
3193 insns_for_mem_walk (r, data)
3194 rtx *r;
3195 void *data;
3196 {
3197 struct insns_for_mem_walk_info *ifmwi
3198 = (struct insns_for_mem_walk_info *) data;
3199
3200 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3201 && GET_CODE (XEXP (*r, 0)) == REG)
3202 hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0);
3203 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3204 {
3205 /* Lookup this MEM in the hashtable, creating it if necessary. */
3206 struct insns_for_mem_entry *ifme
3207 = (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht,
3208 *r,
3209 /*create=*/0,
3210 /*copy=*/0);
3211
3212 /* If we have not already recorded this INSN, do so now. Since
3213 we process the INSNs in order, we know that if we have
3214 recorded it it must be at the front of the list. */
3215 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3216 {
3217 /* We do the allocation on the same obstack as is used for
3218 the hash table since this memory will not be used once
3219 the hash table is deallocated. */
3220 push_obstacks (&ifmwi->ht->memory, &ifmwi->ht->memory);
3221 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3222 ifme->insns);
3223 pop_obstacks ();
3224 }
3225 }
3226
3227 return 0;
3228 }
3229
3230 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3231 which REGs in HT. */
3232
3233 static void
3234 compute_insns_for_mem (insns, last_insn, ht)
3235 rtx insns;
3236 rtx last_insn;
3237 struct hash_table *ht;
3238 {
3239 rtx insn;
3240 struct insns_for_mem_walk_info ifmwi;
3241 ifmwi.ht = ht;
3242
3243 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3244 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3245 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3246 {
3247 ifmwi.insn = insn;
3248 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3249 }
3250 }
3251
3252 /* Helper function for purge_addressof called through for_each_rtx.
3253 Returns true iff the rtl is an ADDRESSOF. */
3254 static int
3255 is_addressof (rtl, data)
3256 rtx * rtl;
3257 void * data ATTRIBUTE_UNUSED;
3258 {
3259 return GET_CODE (* rtl) == ADDRESSOF;
3260 }
3261
3262 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3263 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3264 stack. */
3265
3266 void
3267 purge_addressof (insns)
3268 rtx insns;
3269 {
3270 rtx insn;
3271 struct hash_table ht;
3272
3273 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3274 requires a fixup pass over the instruction stream to correct
3275 INSNs that depended on the REG being a REG, and not a MEM. But,
3276 these fixup passes are slow. Furthermore, more MEMs are not
3277 mentioned in very many instructions. So, we speed up the process
3278 by pre-calculating which REGs occur in which INSNs; that allows
3279 us to perform the fixup passes much more quickly. */
3280 hash_table_init (&ht,
3281 insns_for_mem_newfunc,
3282 insns_for_mem_hash,
3283 insns_for_mem_comp);
3284 compute_insns_for_mem (insns, NULL_RTX, &ht);
3285
3286 for (insn = insns; insn; insn = NEXT_INSN (insn))
3287 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3288 || GET_CODE (insn) == CALL_INSN)
3289 {
3290 if (! purge_addressof_1 (&PATTERN (insn), insn,
3291 asm_noperands (PATTERN (insn)) > 0, 0, &ht))
3292 /* If we could not replace the ADDRESSOFs in the insn,
3293 something is wrong. */
3294 abort ();
3295
3296 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, &ht))
3297 {
3298 /* If we could not replace the ADDRESSOFs in the insn's notes,
3299 we can just remove the offending notes instead. */
3300 rtx note;
3301
3302 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3303 {
3304 /* If we find a REG_RETVAL note then the insn is a libcall.
3305 Such insns must have REG_EQUAL notes as well, in order
3306 for later passes of the compiler to work. So it is not
3307 safe to delete the notes here, and instead we abort. */
3308 if (REG_NOTE_KIND (note) == REG_RETVAL)
3309 abort ();
3310 if (for_each_rtx (& note, is_addressof, NULL))
3311 remove_note (insn, note);
3312 }
3313 }
3314 }
3315
3316 /* Clean up. */
3317 hash_table_free (&ht);
3318 purge_bitfield_addressof_replacements = 0;
3319 purge_addressof_replacements = 0;
3320 }
3321 \f
3322 /* Pass through the INSNS of function FNDECL and convert virtual register
3323 references to hard register references. */
3324
3325 void
3326 instantiate_virtual_regs (fndecl, insns)
3327 tree fndecl;
3328 rtx insns;
3329 {
3330 rtx insn;
3331 unsigned int i;
3332
3333 /* Compute the offsets to use for this function. */
3334 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3335 var_offset = STARTING_FRAME_OFFSET;
3336 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3337 out_arg_offset = STACK_POINTER_OFFSET;
3338 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3339
3340 /* Scan all variables and parameters of this function. For each that is
3341 in memory, instantiate all virtual registers if the result is a valid
3342 address. If not, we do it later. That will handle most uses of virtual
3343 regs on many machines. */
3344 instantiate_decls (fndecl, 1);
3345
3346 /* Initialize recognition, indicating that volatile is OK. */
3347 init_recog ();
3348
3349 /* Scan through all the insns, instantiating every virtual register still
3350 present. */
3351 for (insn = insns; insn; insn = NEXT_INSN (insn))
3352 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3353 || GET_CODE (insn) == CALL_INSN)
3354 {
3355 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3356 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3357 }
3358
3359 /* Instantiate the stack slots for the parm registers, for later use in
3360 addressof elimination. */
3361 for (i = 0; i < max_parm_reg; ++i)
3362 if (parm_reg_stack_loc[i])
3363 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3364
3365 /* Now instantiate the remaining register equivalences for debugging info.
3366 These will not be valid addresses. */
3367 instantiate_decls (fndecl, 0);
3368
3369 /* Indicate that, from now on, assign_stack_local should use
3370 frame_pointer_rtx. */
3371 virtuals_instantiated = 1;
3372 }
3373
3374 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3375 all virtual registers in their DECL_RTL's.
3376
3377 If VALID_ONLY, do this only if the resulting address is still valid.
3378 Otherwise, always do it. */
3379
3380 static void
3381 instantiate_decls (fndecl, valid_only)
3382 tree fndecl;
3383 int valid_only;
3384 {
3385 tree decl;
3386
3387 if (DECL_SAVED_INSNS (fndecl))
3388 /* When compiling an inline function, the obstack used for
3389 rtl allocation is the maybepermanent_obstack. Calling
3390 `resume_temporary_allocation' switches us back to that
3391 obstack while we process this function's parameters. */
3392 resume_temporary_allocation ();
3393
3394 /* Process all parameters of the function. */
3395 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3396 {
3397 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3398
3399 instantiate_decl (DECL_RTL (decl), size, valid_only);
3400
3401 /* If the parameter was promoted, then the incoming RTL mode may be
3402 larger than the declared type size. We must use the larger of
3403 the two sizes. */
3404 size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size);
3405 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3406 }
3407
3408 /* Now process all variables defined in the function or its subblocks. */
3409 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3410
3411 if (DECL_INLINE (fndecl) || DECL_DEFER_OUTPUT (fndecl))
3412 {
3413 /* Save all rtl allocated for this function by raising the
3414 high-water mark on the maybepermanent_obstack. */
3415 preserve_data ();
3416 /* All further rtl allocation is now done in the current_obstack. */
3417 rtl_in_current_obstack ();
3418 }
3419 }
3420
3421 /* Subroutine of instantiate_decls: Process all decls in the given
3422 BLOCK node and all its subblocks. */
3423
3424 static void
3425 instantiate_decls_1 (let, valid_only)
3426 tree let;
3427 int valid_only;
3428 {
3429 tree t;
3430
3431 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3432 instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)),
3433 valid_only);
3434
3435 /* Process all subblocks. */
3436 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3437 instantiate_decls_1 (t, valid_only);
3438 }
3439
3440 /* Subroutine of the preceding procedures: Given RTL representing a
3441 decl and the size of the object, do any instantiation required.
3442
3443 If VALID_ONLY is non-zero, it means that the RTL should only be
3444 changed if the new address is valid. */
3445
3446 static void
3447 instantiate_decl (x, size, valid_only)
3448 rtx x;
3449 HOST_WIDE_INT size;
3450 int valid_only;
3451 {
3452 enum machine_mode mode;
3453 rtx addr;
3454
3455 /* If this is not a MEM, no need to do anything. Similarly if the
3456 address is a constant or a register that is not a virtual register. */
3457
3458 if (x == 0 || GET_CODE (x) != MEM)
3459 return;
3460
3461 addr = XEXP (x, 0);
3462 if (CONSTANT_P (addr)
3463 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3464 || (GET_CODE (addr) == REG
3465 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3466 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3467 return;
3468
3469 /* If we should only do this if the address is valid, copy the address.
3470 We need to do this so we can undo any changes that might make the
3471 address invalid. This copy is unfortunate, but probably can't be
3472 avoided. */
3473
3474 if (valid_only)
3475 addr = copy_rtx (addr);
3476
3477 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3478
3479 if (valid_only && size >= 0)
3480 {
3481 unsigned HOST_WIDE_INT decl_size = size;
3482
3483 /* Now verify that the resulting address is valid for every integer or
3484 floating-point mode up to and including SIZE bytes long. We do this
3485 since the object might be accessed in any mode and frame addresses
3486 are shared. */
3487
3488 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3489 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3490 mode = GET_MODE_WIDER_MODE (mode))
3491 if (! memory_address_p (mode, addr))
3492 return;
3493
3494 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3495 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3496 mode = GET_MODE_WIDER_MODE (mode))
3497 if (! memory_address_p (mode, addr))
3498 return;
3499 }
3500
3501 /* Put back the address now that we have updated it and we either know
3502 it is valid or we don't care whether it is valid. */
3503
3504 XEXP (x, 0) = addr;
3505 }
3506 \f
3507 /* Given a pointer to a piece of rtx and an optional pointer to the
3508 containing object, instantiate any virtual registers present in it.
3509
3510 If EXTRA_INSNS, we always do the replacement and generate
3511 any extra insns before OBJECT. If it zero, we do nothing if replacement
3512 is not valid.
3513
3514 Return 1 if we either had nothing to do or if we were able to do the
3515 needed replacement. Return 0 otherwise; we only return zero if
3516 EXTRA_INSNS is zero.
3517
3518 We first try some simple transformations to avoid the creation of extra
3519 pseudos. */
3520
3521 static int
3522 instantiate_virtual_regs_1 (loc, object, extra_insns)
3523 rtx *loc;
3524 rtx object;
3525 int extra_insns;
3526 {
3527 rtx x;
3528 RTX_CODE code;
3529 rtx new = 0;
3530 HOST_WIDE_INT offset = 0;
3531 rtx temp;
3532 rtx seq;
3533 int i, j;
3534 const char *fmt;
3535
3536 /* Re-start here to avoid recursion in common cases. */
3537 restart:
3538
3539 x = *loc;
3540 if (x == 0)
3541 return 1;
3542
3543 code = GET_CODE (x);
3544
3545 /* Check for some special cases. */
3546 switch (code)
3547 {
3548 case CONST_INT:
3549 case CONST_DOUBLE:
3550 case CONST:
3551 case SYMBOL_REF:
3552 case CODE_LABEL:
3553 case PC:
3554 case CC0:
3555 case ASM_INPUT:
3556 case ADDR_VEC:
3557 case ADDR_DIFF_VEC:
3558 case RETURN:
3559 return 1;
3560
3561 case SET:
3562 /* We are allowed to set the virtual registers. This means that
3563 the actual register should receive the source minus the
3564 appropriate offset. This is used, for example, in the handling
3565 of non-local gotos. */
3566 if (SET_DEST (x) == virtual_incoming_args_rtx)
3567 new = arg_pointer_rtx, offset = - in_arg_offset;
3568 else if (SET_DEST (x) == virtual_stack_vars_rtx)
3569 new = frame_pointer_rtx, offset = - var_offset;
3570 else if (SET_DEST (x) == virtual_stack_dynamic_rtx)
3571 new = stack_pointer_rtx, offset = - dynamic_offset;
3572 else if (SET_DEST (x) == virtual_outgoing_args_rtx)
3573 new = stack_pointer_rtx, offset = - out_arg_offset;
3574 else if (SET_DEST (x) == virtual_cfa_rtx)
3575 new = arg_pointer_rtx, offset = - cfa_offset;
3576
3577 if (new)
3578 {
3579 rtx src = SET_SRC (x);
3580
3581 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3582
3583 /* The only valid sources here are PLUS or REG. Just do
3584 the simplest possible thing to handle them. */
3585 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3586 abort ();
3587
3588 start_sequence ();
3589 if (GET_CODE (src) != REG)
3590 temp = force_operand (src, NULL_RTX);
3591 else
3592 temp = src;
3593 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3594 seq = get_insns ();
3595 end_sequence ();
3596
3597 emit_insns_before (seq, object);
3598 SET_DEST (x) = new;
3599
3600 if (! validate_change (object, &SET_SRC (x), temp, 0)
3601 || ! extra_insns)
3602 abort ();
3603
3604 return 1;
3605 }
3606
3607 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3608 loc = &SET_SRC (x);
3609 goto restart;
3610
3611 case PLUS:
3612 /* Handle special case of virtual register plus constant. */
3613 if (CONSTANT_P (XEXP (x, 1)))
3614 {
3615 rtx old, new_offset;
3616
3617 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3618 if (GET_CODE (XEXP (x, 0)) == PLUS)
3619 {
3620 rtx inner = XEXP (XEXP (x, 0), 0);
3621
3622 if (inner == virtual_incoming_args_rtx)
3623 new = arg_pointer_rtx, offset = in_arg_offset;
3624 else if (inner == virtual_stack_vars_rtx)
3625 new = frame_pointer_rtx, offset = var_offset;
3626 else if (inner == virtual_stack_dynamic_rtx)
3627 new = stack_pointer_rtx, offset = dynamic_offset;
3628 else if (inner == virtual_outgoing_args_rtx)
3629 new = stack_pointer_rtx, offset = out_arg_offset;
3630 else if (inner == virtual_cfa_rtx)
3631 new = arg_pointer_rtx, offset = cfa_offset;
3632 else
3633 {
3634 loc = &XEXP (x, 0);
3635 goto restart;
3636 }
3637
3638 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3639 extra_insns);
3640 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3641 }
3642
3643 else if (XEXP (x, 0) == virtual_incoming_args_rtx)
3644 new = arg_pointer_rtx, offset = in_arg_offset;
3645 else if (XEXP (x, 0) == virtual_stack_vars_rtx)
3646 new = frame_pointer_rtx, offset = var_offset;
3647 else if (XEXP (x, 0) == virtual_stack_dynamic_rtx)
3648 new = stack_pointer_rtx, offset = dynamic_offset;
3649 else if (XEXP (x, 0) == virtual_outgoing_args_rtx)
3650 new = stack_pointer_rtx, offset = out_arg_offset;
3651 else if (XEXP (x, 0) == virtual_cfa_rtx)
3652 new = arg_pointer_rtx, offset = cfa_offset;
3653 else
3654 {
3655 /* We know the second operand is a constant. Unless the
3656 first operand is a REG (which has been already checked),
3657 it needs to be checked. */
3658 if (GET_CODE (XEXP (x, 0)) != REG)
3659 {
3660 loc = &XEXP (x, 0);
3661 goto restart;
3662 }
3663 return 1;
3664 }
3665
3666 new_offset = plus_constant (XEXP (x, 1), offset);
3667
3668 /* If the new constant is zero, try to replace the sum with just
3669 the register. */
3670 if (new_offset == const0_rtx
3671 && validate_change (object, loc, new, 0))
3672 return 1;
3673
3674 /* Next try to replace the register and new offset.
3675 There are two changes to validate here and we can't assume that
3676 in the case of old offset equals new just changing the register
3677 will yield a valid insn. In the interests of a little efficiency,
3678 however, we only call validate change once (we don't queue up the
3679 changes and then call apply_change_group). */
3680
3681 old = XEXP (x, 0);
3682 if (offset == 0
3683 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3684 : (XEXP (x, 0) = new,
3685 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3686 {
3687 if (! extra_insns)
3688 {
3689 XEXP (x, 0) = old;
3690 return 0;
3691 }
3692
3693 /* Otherwise copy the new constant into a register and replace
3694 constant with that register. */
3695 temp = gen_reg_rtx (Pmode);
3696 XEXP (x, 0) = new;
3697 if (validate_change (object, &XEXP (x, 1), temp, 0))
3698 emit_insn_before (gen_move_insn (temp, new_offset), object);
3699 else
3700 {
3701 /* If that didn't work, replace this expression with a
3702 register containing the sum. */
3703
3704 XEXP (x, 0) = old;
3705 new = gen_rtx_PLUS (Pmode, new, new_offset);
3706
3707 start_sequence ();
3708 temp = force_operand (new, NULL_RTX);
3709 seq = get_insns ();
3710 end_sequence ();
3711
3712 emit_insns_before (seq, object);
3713 if (! validate_change (object, loc, temp, 0)
3714 && ! validate_replace_rtx (x, temp, object))
3715 abort ();
3716 }
3717 }
3718
3719 return 1;
3720 }
3721
3722 /* Fall through to generic two-operand expression case. */
3723 case EXPR_LIST:
3724 case CALL:
3725 case COMPARE:
3726 case MINUS:
3727 case MULT:
3728 case DIV: case UDIV:
3729 case MOD: case UMOD:
3730 case AND: case IOR: case XOR:
3731 case ROTATERT: case ROTATE:
3732 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3733 case NE: case EQ:
3734 case GE: case GT: case GEU: case GTU:
3735 case LE: case LT: case LEU: case LTU:
3736 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3737 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3738 loc = &XEXP (x, 0);
3739 goto restart;
3740
3741 case MEM:
3742 /* Most cases of MEM that convert to valid addresses have already been
3743 handled by our scan of decls. The only special handling we
3744 need here is to make a copy of the rtx to ensure it isn't being
3745 shared if we have to change it to a pseudo.
3746
3747 If the rtx is a simple reference to an address via a virtual register,
3748 it can potentially be shared. In such cases, first try to make it
3749 a valid address, which can also be shared. Otherwise, copy it and
3750 proceed normally.
3751
3752 First check for common cases that need no processing. These are
3753 usually due to instantiation already being done on a previous instance
3754 of a shared rtx. */
3755
3756 temp = XEXP (x, 0);
3757 if (CONSTANT_ADDRESS_P (temp)
3758 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3759 || temp == arg_pointer_rtx
3760 #endif
3761 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3762 || temp == hard_frame_pointer_rtx
3763 #endif
3764 || temp == frame_pointer_rtx)
3765 return 1;
3766
3767 if (GET_CODE (temp) == PLUS
3768 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3769 && (XEXP (temp, 0) == frame_pointer_rtx
3770 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3771 || XEXP (temp, 0) == hard_frame_pointer_rtx
3772 #endif
3773 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3774 || XEXP (temp, 0) == arg_pointer_rtx
3775 #endif
3776 ))
3777 return 1;
3778
3779 if (temp == virtual_stack_vars_rtx
3780 || temp == virtual_incoming_args_rtx
3781 || (GET_CODE (temp) == PLUS
3782 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3783 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3784 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3785 {
3786 /* This MEM may be shared. If the substitution can be done without
3787 the need to generate new pseudos, we want to do it in place
3788 so all copies of the shared rtx benefit. The call below will
3789 only make substitutions if the resulting address is still
3790 valid.
3791
3792 Note that we cannot pass X as the object in the recursive call
3793 since the insn being processed may not allow all valid
3794 addresses. However, if we were not passed on object, we can
3795 only modify X without copying it if X will have a valid
3796 address.
3797
3798 ??? Also note that this can still lose if OBJECT is an insn that
3799 has less restrictions on an address that some other insn.
3800 In that case, we will modify the shared address. This case
3801 doesn't seem very likely, though. One case where this could
3802 happen is in the case of a USE or CLOBBER reference, but we
3803 take care of that below. */
3804
3805 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
3806 object ? object : x, 0))
3807 return 1;
3808
3809 /* Otherwise make a copy and process that copy. We copy the entire
3810 RTL expression since it might be a PLUS which could also be
3811 shared. */
3812 *loc = x = copy_rtx (x);
3813 }
3814
3815 /* Fall through to generic unary operation case. */
3816 case SUBREG:
3817 case STRICT_LOW_PART:
3818 case NEG: case NOT:
3819 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
3820 case SIGN_EXTEND: case ZERO_EXTEND:
3821 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3822 case FLOAT: case FIX:
3823 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3824 case ABS:
3825 case SQRT:
3826 case FFS:
3827 /* These case either have just one operand or we know that we need not
3828 check the rest of the operands. */
3829 loc = &XEXP (x, 0);
3830 goto restart;
3831
3832 case USE:
3833 case CLOBBER:
3834 /* If the operand is a MEM, see if the change is a valid MEM. If not,
3835 go ahead and make the invalid one, but do it to a copy. For a REG,
3836 just make the recursive call, since there's no chance of a problem. */
3837
3838 if ((GET_CODE (XEXP (x, 0)) == MEM
3839 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
3840 0))
3841 || (GET_CODE (XEXP (x, 0)) == REG
3842 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
3843 return 1;
3844
3845 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
3846 loc = &XEXP (x, 0);
3847 goto restart;
3848
3849 case REG:
3850 /* Try to replace with a PLUS. If that doesn't work, compute the sum
3851 in front of this insn and substitute the temporary. */
3852 if (x == virtual_incoming_args_rtx)
3853 new = arg_pointer_rtx, offset = in_arg_offset;
3854 else if (x == virtual_stack_vars_rtx)
3855 new = frame_pointer_rtx, offset = var_offset;
3856 else if (x == virtual_stack_dynamic_rtx)
3857 new = stack_pointer_rtx, offset = dynamic_offset;
3858 else if (x == virtual_outgoing_args_rtx)
3859 new = stack_pointer_rtx, offset = out_arg_offset;
3860 else if (x == virtual_cfa_rtx)
3861 new = arg_pointer_rtx, offset = cfa_offset;
3862
3863 if (new)
3864 {
3865 temp = plus_constant (new, offset);
3866 if (!validate_change (object, loc, temp, 0))
3867 {
3868 if (! extra_insns)
3869 return 0;
3870
3871 start_sequence ();
3872 temp = force_operand (temp, NULL_RTX);
3873 seq = get_insns ();
3874 end_sequence ();
3875
3876 emit_insns_before (seq, object);
3877 if (! validate_change (object, loc, temp, 0)
3878 && ! validate_replace_rtx (x, temp, object))
3879 abort ();
3880 }
3881 }
3882
3883 return 1;
3884
3885 case ADDRESSOF:
3886 if (GET_CODE (XEXP (x, 0)) == REG)
3887 return 1;
3888
3889 else if (GET_CODE (XEXP (x, 0)) == MEM)
3890 {
3891 /* If we have a (addressof (mem ..)), do any instantiation inside
3892 since we know we'll be making the inside valid when we finally
3893 remove the ADDRESSOF. */
3894 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
3895 return 1;
3896 }
3897 break;
3898
3899 default:
3900 break;
3901 }
3902
3903 /* Scan all subexpressions. */
3904 fmt = GET_RTX_FORMAT (code);
3905 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3906 if (*fmt == 'e')
3907 {
3908 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
3909 return 0;
3910 }
3911 else if (*fmt == 'E')
3912 for (j = 0; j < XVECLEN (x, i); j++)
3913 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
3914 extra_insns))
3915 return 0;
3916
3917 return 1;
3918 }
3919 \f
3920 /* Optimization: assuming this function does not receive nonlocal gotos,
3921 delete the handlers for such, as well as the insns to establish
3922 and disestablish them. */
3923
3924 static void
3925 delete_handlers ()
3926 {
3927 rtx insn;
3928 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3929 {
3930 /* Delete the handler by turning off the flag that would
3931 prevent jump_optimize from deleting it.
3932 Also permit deletion of the nonlocal labels themselves
3933 if nothing local refers to them. */
3934 if (GET_CODE (insn) == CODE_LABEL)
3935 {
3936 tree t, last_t;
3937
3938 LABEL_PRESERVE_P (insn) = 0;
3939
3940 /* Remove it from the nonlocal_label list, to avoid confusing
3941 flow. */
3942 for (t = nonlocal_labels, last_t = 0; t;
3943 last_t = t, t = TREE_CHAIN (t))
3944 if (DECL_RTL (TREE_VALUE (t)) == insn)
3945 break;
3946 if (t)
3947 {
3948 if (! last_t)
3949 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
3950 else
3951 TREE_CHAIN (last_t) = TREE_CHAIN (t);
3952 }
3953 }
3954 if (GET_CODE (insn) == INSN)
3955 {
3956 int can_delete = 0;
3957 rtx t;
3958 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
3959 if (reg_mentioned_p (t, PATTERN (insn)))
3960 {
3961 can_delete = 1;
3962 break;
3963 }
3964 if (can_delete
3965 || (nonlocal_goto_stack_level != 0
3966 && reg_mentioned_p (nonlocal_goto_stack_level,
3967 PATTERN (insn))))
3968 delete_insn (insn);
3969 }
3970 }
3971 }
3972 \f
3973 int
3974 max_parm_reg_num ()
3975 {
3976 return max_parm_reg;
3977 }
3978
3979 /* Return the first insn following those generated by `assign_parms'. */
3980
3981 rtx
3982 get_first_nonparm_insn ()
3983 {
3984 if (last_parm_insn)
3985 return NEXT_INSN (last_parm_insn);
3986 return get_insns ();
3987 }
3988
3989 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
3990 Crash if there is none. */
3991
3992 rtx
3993 get_first_block_beg ()
3994 {
3995 register rtx searcher;
3996 register rtx insn = get_first_nonparm_insn ();
3997
3998 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
3999 if (GET_CODE (searcher) == NOTE
4000 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
4001 return searcher;
4002
4003 abort (); /* Invalid call to this function. (See comments above.) */
4004 return NULL_RTX;
4005 }
4006
4007 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4008 This means a type for which function calls must pass an address to the
4009 function or get an address back from the function.
4010 EXP may be a type node or an expression (whose type is tested). */
4011
4012 int
4013 aggregate_value_p (exp)
4014 tree exp;
4015 {
4016 int i, regno, nregs;
4017 rtx reg;
4018
4019 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4020
4021 if (RETURN_IN_MEMORY (type))
4022 return 1;
4023 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4024 and thus can't be returned in registers. */
4025 if (TREE_ADDRESSABLE (type))
4026 return 1;
4027 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4028 return 1;
4029 /* Make sure we have suitable call-clobbered regs to return
4030 the value in; if not, we must return it in memory. */
4031 reg = hard_function_value (type, 0, 0);
4032
4033 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4034 it is OK. */
4035 if (GET_CODE (reg) != REG)
4036 return 0;
4037
4038 regno = REGNO (reg);
4039 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4040 for (i = 0; i < nregs; i++)
4041 if (! call_used_regs[regno + i])
4042 return 1;
4043 return 0;
4044 }
4045 \f
4046 /* Assign RTL expressions to the function's parameters.
4047 This may involve copying them into registers and using
4048 those registers as the RTL for them. */
4049
4050 void
4051 assign_parms (fndecl)
4052 tree fndecl;
4053 {
4054 register tree parm;
4055 register rtx entry_parm = 0;
4056 register rtx stack_parm = 0;
4057 CUMULATIVE_ARGS args_so_far;
4058 enum machine_mode promoted_mode, passed_mode;
4059 enum machine_mode nominal_mode, promoted_nominal_mode;
4060 int unsignedp;
4061 /* Total space needed so far for args on the stack,
4062 given as a constant and a tree-expression. */
4063 struct args_size stack_args_size;
4064 tree fntype = TREE_TYPE (fndecl);
4065 tree fnargs = DECL_ARGUMENTS (fndecl);
4066 /* This is used for the arg pointer when referring to stack args. */
4067 rtx internal_arg_pointer;
4068 /* This is a dummy PARM_DECL that we used for the function result if
4069 the function returns a structure. */
4070 tree function_result_decl = 0;
4071 #ifdef SETUP_INCOMING_VARARGS
4072 int varargs_setup = 0;
4073 #endif
4074 rtx conversion_insns = 0;
4075 struct args_size alignment_pad;
4076
4077 /* Nonzero if the last arg is named `__builtin_va_alist',
4078 which is used on some machines for old-fashioned non-ANSI varargs.h;
4079 this should be stuck onto the stack as if it had arrived there. */
4080 int hide_last_arg
4081 = (current_function_varargs
4082 && fnargs
4083 && (parm = tree_last (fnargs)) != 0
4084 && DECL_NAME (parm)
4085 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
4086 "__builtin_va_alist")));
4087
4088 /* Nonzero if function takes extra anonymous args.
4089 This means the last named arg must be on the stack
4090 right before the anonymous ones. */
4091 int stdarg
4092 = (TYPE_ARG_TYPES (fntype) != 0
4093 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4094 != void_type_node));
4095
4096 current_function_stdarg = stdarg;
4097
4098 /* If the reg that the virtual arg pointer will be translated into is
4099 not a fixed reg or is the stack pointer, make a copy of the virtual
4100 arg pointer, and address parms via the copy. The frame pointer is
4101 considered fixed even though it is not marked as such.
4102
4103 The second time through, simply use ap to avoid generating rtx. */
4104
4105 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4106 || ! (fixed_regs[ARG_POINTER_REGNUM]
4107 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4108 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4109 else
4110 internal_arg_pointer = virtual_incoming_args_rtx;
4111 current_function_internal_arg_pointer = internal_arg_pointer;
4112
4113 stack_args_size.constant = 0;
4114 stack_args_size.var = 0;
4115
4116 /* If struct value address is treated as the first argument, make it so. */
4117 if (aggregate_value_p (DECL_RESULT (fndecl))
4118 && ! current_function_returns_pcc_struct
4119 && struct_value_incoming_rtx == 0)
4120 {
4121 tree type = build_pointer_type (TREE_TYPE (fntype));
4122
4123 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4124
4125 DECL_ARG_TYPE (function_result_decl) = type;
4126 TREE_CHAIN (function_result_decl) = fnargs;
4127 fnargs = function_result_decl;
4128 }
4129
4130 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4131 parm_reg_stack_loc = (rtx *) xcalloc (max_parm_reg, sizeof (rtx));
4132
4133 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4134 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4135 #else
4136 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4137 #endif
4138
4139 /* We haven't yet found an argument that we must push and pretend the
4140 caller did. */
4141 current_function_pretend_args_size = 0;
4142
4143 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4144 {
4145 int aggregate = AGGREGATE_TYPE_P (TREE_TYPE (parm));
4146 struct args_size stack_offset;
4147 struct args_size arg_size;
4148 int passed_pointer = 0;
4149 int did_conversion = 0;
4150 tree passed_type = DECL_ARG_TYPE (parm);
4151 tree nominal_type = TREE_TYPE (parm);
4152 int pretend_named;
4153
4154 /* Set LAST_NAMED if this is last named arg before some
4155 anonymous args. */
4156 int last_named = ((TREE_CHAIN (parm) == 0
4157 || DECL_NAME (TREE_CHAIN (parm)) == 0)
4158 && (stdarg || current_function_varargs));
4159 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4160 most machines, if this is a varargs/stdarg function, then we treat
4161 the last named arg as if it were anonymous too. */
4162 int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4163
4164 if (TREE_TYPE (parm) == error_mark_node
4165 /* This can happen after weird syntax errors
4166 or if an enum type is defined among the parms. */
4167 || TREE_CODE (parm) != PARM_DECL
4168 || passed_type == NULL)
4169 {
4170 DECL_INCOMING_RTL (parm) = DECL_RTL (parm)
4171 = gen_rtx_MEM (BLKmode, const0_rtx);
4172 TREE_USED (parm) = 1;
4173 continue;
4174 }
4175
4176 /* For varargs.h function, save info about regs and stack space
4177 used by the individual args, not including the va_alist arg. */
4178 if (hide_last_arg && last_named)
4179 current_function_args_info = args_so_far;
4180
4181 /* Find mode of arg as it is passed, and mode of arg
4182 as it should be during execution of this function. */
4183 passed_mode = TYPE_MODE (passed_type);
4184 nominal_mode = TYPE_MODE (nominal_type);
4185
4186 /* If the parm's mode is VOID, its value doesn't matter,
4187 and avoid the usual things like emit_move_insn that could crash. */
4188 if (nominal_mode == VOIDmode)
4189 {
4190 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx;
4191 continue;
4192 }
4193
4194 /* If the parm is to be passed as a transparent union, use the
4195 type of the first field for the tests below. We have already
4196 verified that the modes are the same. */
4197 if (DECL_TRANSPARENT_UNION (parm)
4198 || TYPE_TRANSPARENT_UNION (passed_type))
4199 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4200
4201 /* See if this arg was passed by invisible reference. It is if
4202 it is an object whose size depends on the contents of the
4203 object itself or if the machine requires these objects be passed
4204 that way. */
4205
4206 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4207 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4208 || TREE_ADDRESSABLE (passed_type)
4209 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4210 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4211 passed_type, named_arg)
4212 #endif
4213 )
4214 {
4215 passed_type = nominal_type = build_pointer_type (passed_type);
4216 passed_pointer = 1;
4217 passed_mode = nominal_mode = Pmode;
4218 }
4219
4220 promoted_mode = passed_mode;
4221
4222 #ifdef PROMOTE_FUNCTION_ARGS
4223 /* Compute the mode in which the arg is actually extended to. */
4224 unsignedp = TREE_UNSIGNED (passed_type);
4225 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4226 #endif
4227
4228 /* Let machine desc say which reg (if any) the parm arrives in.
4229 0 means it arrives on the stack. */
4230 #ifdef FUNCTION_INCOMING_ARG
4231 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4232 passed_type, named_arg);
4233 #else
4234 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4235 passed_type, named_arg);
4236 #endif
4237
4238 if (entry_parm == 0)
4239 promoted_mode = passed_mode;
4240
4241 #ifdef SETUP_INCOMING_VARARGS
4242 /* If this is the last named parameter, do any required setup for
4243 varargs or stdargs. We need to know about the case of this being an
4244 addressable type, in which case we skip the registers it
4245 would have arrived in.
4246
4247 For stdargs, LAST_NAMED will be set for two parameters, the one that
4248 is actually the last named, and the dummy parameter. We only
4249 want to do this action once.
4250
4251 Also, indicate when RTL generation is to be suppressed. */
4252 if (last_named && !varargs_setup)
4253 {
4254 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4255 current_function_pretend_args_size, 0);
4256 varargs_setup = 1;
4257 }
4258 #endif
4259
4260 /* Determine parm's home in the stack,
4261 in case it arrives in the stack or we should pretend it did.
4262
4263 Compute the stack position and rtx where the argument arrives
4264 and its size.
4265
4266 There is one complexity here: If this was a parameter that would
4267 have been passed in registers, but wasn't only because it is
4268 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4269 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4270 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4271 0 as it was the previous time. */
4272
4273 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4274 locate_and_pad_parm (promoted_mode, passed_type,
4275 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4276 1,
4277 #else
4278 #ifdef FUNCTION_INCOMING_ARG
4279 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4280 passed_type,
4281 pretend_named) != 0,
4282 #else
4283 FUNCTION_ARG (args_so_far, promoted_mode,
4284 passed_type,
4285 pretend_named) != 0,
4286 #endif
4287 #endif
4288 fndecl, &stack_args_size, &stack_offset, &arg_size,
4289 &alignment_pad);
4290
4291 {
4292 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4293
4294 if (offset_rtx == const0_rtx)
4295 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4296 else
4297 stack_parm = gen_rtx_MEM (promoted_mode,
4298 gen_rtx_PLUS (Pmode,
4299 internal_arg_pointer,
4300 offset_rtx));
4301
4302 /* If this is a memory ref that contains aggregate components,
4303 mark it as such for cse and loop optimize. Likewise if it
4304 is readonly. */
4305 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4306 RTX_UNCHANGING_P (stack_parm) = TREE_READONLY (parm);
4307 MEM_ALIAS_SET (stack_parm) = get_alias_set (parm);
4308 }
4309
4310 /* If this parameter was passed both in registers and in the stack,
4311 use the copy on the stack. */
4312 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4313 entry_parm = 0;
4314
4315 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4316 /* If this parm was passed part in regs and part in memory,
4317 pretend it arrived entirely in memory
4318 by pushing the register-part onto the stack.
4319
4320 In the special case of a DImode or DFmode that is split,
4321 we could put it together in a pseudoreg directly,
4322 but for now that's not worth bothering with. */
4323
4324 if (entry_parm)
4325 {
4326 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4327 passed_type, named_arg);
4328
4329 if (nregs > 0)
4330 {
4331 current_function_pretend_args_size
4332 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4333 / (PARM_BOUNDARY / BITS_PER_UNIT)
4334 * (PARM_BOUNDARY / BITS_PER_UNIT));
4335
4336 /* Handle calls that pass values in multiple non-contiguous
4337 locations. The Irix 6 ABI has examples of this. */
4338 if (GET_CODE (entry_parm) == PARALLEL)
4339 emit_group_store (validize_mem (stack_parm), entry_parm,
4340 int_size_in_bytes (TREE_TYPE (parm)),
4341 (TYPE_ALIGN (TREE_TYPE (parm))
4342 / BITS_PER_UNIT));
4343 else
4344 move_block_from_reg (REGNO (entry_parm),
4345 validize_mem (stack_parm), nregs,
4346 int_size_in_bytes (TREE_TYPE (parm)));
4347
4348 entry_parm = stack_parm;
4349 }
4350 }
4351 #endif
4352
4353 /* If we didn't decide this parm came in a register,
4354 by default it came on the stack. */
4355 if (entry_parm == 0)
4356 entry_parm = stack_parm;
4357
4358 /* Record permanently how this parm was passed. */
4359 DECL_INCOMING_RTL (parm) = entry_parm;
4360
4361 /* If there is actually space on the stack for this parm,
4362 count it in stack_args_size; otherwise set stack_parm to 0
4363 to indicate there is no preallocated stack slot for the parm. */
4364
4365 if (entry_parm == stack_parm
4366 || (GET_CODE (entry_parm) == PARALLEL
4367 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4368 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4369 /* On some machines, even if a parm value arrives in a register
4370 there is still an (uninitialized) stack slot allocated for it.
4371
4372 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4373 whether this parameter already has a stack slot allocated,
4374 because an arg block exists only if current_function_args_size
4375 is larger than some threshold, and we haven't calculated that
4376 yet. So, for now, we just assume that stack slots never exist
4377 in this case. */
4378 || REG_PARM_STACK_SPACE (fndecl) > 0
4379 #endif
4380 )
4381 {
4382 stack_args_size.constant += arg_size.constant;
4383 if (arg_size.var)
4384 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4385 }
4386 else
4387 /* No stack slot was pushed for this parm. */
4388 stack_parm = 0;
4389
4390 /* Update info on where next arg arrives in registers. */
4391
4392 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4393 passed_type, named_arg);
4394
4395 /* If we can't trust the parm stack slot to be aligned enough
4396 for its ultimate type, don't use that slot after entry.
4397 We'll make another stack slot, if we need one. */
4398 {
4399 unsigned int thisparm_boundary
4400 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4401
4402 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4403 stack_parm = 0;
4404 }
4405
4406 /* If parm was passed in memory, and we need to convert it on entry,
4407 don't store it back in that same slot. */
4408 if (entry_parm != 0
4409 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4410 stack_parm = 0;
4411
4412 #if 0
4413 /* Now adjust STACK_PARM to the mode and precise location
4414 where this parameter should live during execution,
4415 if we discover that it must live in the stack during execution.
4416 To make debuggers happier on big-endian machines, we store
4417 the value in the last bytes of the space available. */
4418
4419 if (nominal_mode != BLKmode && nominal_mode != passed_mode
4420 && stack_parm != 0)
4421 {
4422 rtx offset_rtx;
4423
4424 if (BYTES_BIG_ENDIAN
4425 && GET_MODE_SIZE (nominal_mode) < UNITS_PER_WORD)
4426 stack_offset.constant += (GET_MODE_SIZE (passed_mode)
4427 - GET_MODE_SIZE (nominal_mode));
4428
4429 offset_rtx = ARGS_SIZE_RTX (stack_offset);
4430 if (offset_rtx == const0_rtx)
4431 stack_parm = gen_rtx_MEM (nominal_mode, internal_arg_pointer);
4432 else
4433 stack_parm = gen_rtx_MEM (nominal_mode,
4434 gen_rtx_PLUS (Pmode,
4435 internal_arg_pointer,
4436 offset_rtx));
4437
4438 /* If this is a memory ref that contains aggregate components,
4439 mark it as such for cse and loop optimize. */
4440 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4441 }
4442 #endif /* 0 */
4443
4444 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4445 in the mode in which it arrives.
4446 STACK_PARM is an RTX for a stack slot where the parameter can live
4447 during the function (in case we want to put it there).
4448 STACK_PARM is 0 if no stack slot was pushed for it.
4449
4450 Now output code if necessary to convert ENTRY_PARM to
4451 the type in which this function declares it,
4452 and store that result in an appropriate place,
4453 which may be a pseudo reg, may be STACK_PARM,
4454 or may be a local stack slot if STACK_PARM is 0.
4455
4456 Set DECL_RTL to that place. */
4457
4458 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4459 {
4460 /* If a BLKmode arrives in registers, copy it to a stack slot.
4461 Handle calls that pass values in multiple non-contiguous
4462 locations. The Irix 6 ABI has examples of this. */
4463 if (GET_CODE (entry_parm) == REG
4464 || GET_CODE (entry_parm) == PARALLEL)
4465 {
4466 int size_stored
4467 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4468 UNITS_PER_WORD);
4469
4470 /* Note that we will be storing an integral number of words.
4471 So we have to be careful to ensure that we allocate an
4472 integral number of words. We do this below in the
4473 assign_stack_local if space was not allocated in the argument
4474 list. If it was, this will not work if PARM_BOUNDARY is not
4475 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4476 if it becomes a problem. */
4477
4478 if (stack_parm == 0)
4479 {
4480 stack_parm
4481 = assign_stack_local (GET_MODE (entry_parm),
4482 size_stored, 0);
4483
4484 /* If this is a memory ref that contains aggregate
4485 components, mark it as such for cse and loop optimize. */
4486 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4487 }
4488
4489 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4490 abort ();
4491
4492 if (TREE_READONLY (parm))
4493 RTX_UNCHANGING_P (stack_parm) = 1;
4494
4495 /* Handle calls that pass values in multiple non-contiguous
4496 locations. The Irix 6 ABI has examples of this. */
4497 if (GET_CODE (entry_parm) == PARALLEL)
4498 emit_group_store (validize_mem (stack_parm), entry_parm,
4499 int_size_in_bytes (TREE_TYPE (parm)),
4500 (TYPE_ALIGN (TREE_TYPE (parm))
4501 / BITS_PER_UNIT));
4502 else
4503 move_block_from_reg (REGNO (entry_parm),
4504 validize_mem (stack_parm),
4505 size_stored / UNITS_PER_WORD,
4506 int_size_in_bytes (TREE_TYPE (parm)));
4507 }
4508 DECL_RTL (parm) = stack_parm;
4509 }
4510 else if (! ((! optimize
4511 && ! DECL_REGISTER (parm)
4512 && ! DECL_INLINE (fndecl))
4513 /* layout_decl may set this. */
4514 || TREE_ADDRESSABLE (parm)
4515 || TREE_SIDE_EFFECTS (parm)
4516 /* If -ffloat-store specified, don't put explicit
4517 float variables into registers. */
4518 || (flag_float_store
4519 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4520 /* Always assign pseudo to structure return or item passed
4521 by invisible reference. */
4522 || passed_pointer || parm == function_result_decl)
4523 {
4524 /* Store the parm in a pseudoregister during the function, but we
4525 may need to do it in a wider mode. */
4526
4527 register rtx parmreg;
4528 unsigned int regno, regnoi = 0, regnor = 0;
4529
4530 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4531
4532 promoted_nominal_mode
4533 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4534
4535 parmreg = gen_reg_rtx (promoted_nominal_mode);
4536 mark_user_reg (parmreg);
4537
4538 /* If this was an item that we received a pointer to, set DECL_RTL
4539 appropriately. */
4540 if (passed_pointer)
4541 {
4542 DECL_RTL (parm)
4543 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)), parmreg);
4544 MEM_SET_IN_STRUCT_P (DECL_RTL (parm), aggregate);
4545 }
4546 else
4547 DECL_RTL (parm) = parmreg;
4548
4549 /* Copy the value into the register. */
4550 if (nominal_mode != passed_mode
4551 || promoted_nominal_mode != promoted_mode)
4552 {
4553 int save_tree_used;
4554 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4555 mode, by the caller. We now have to convert it to
4556 NOMINAL_MODE, if different. However, PARMREG may be in
4557 a different mode than NOMINAL_MODE if it is being stored
4558 promoted.
4559
4560 If ENTRY_PARM is a hard register, it might be in a register
4561 not valid for operating in its mode (e.g., an odd-numbered
4562 register for a DFmode). In that case, moves are the only
4563 thing valid, so we can't do a convert from there. This
4564 occurs when the calling sequence allow such misaligned
4565 usages.
4566
4567 In addition, the conversion may involve a call, which could
4568 clobber parameters which haven't been copied to pseudo
4569 registers yet. Therefore, we must first copy the parm to
4570 a pseudo reg here, and save the conversion until after all
4571 parameters have been moved. */
4572
4573 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4574
4575 emit_move_insn (tempreg, validize_mem (entry_parm));
4576
4577 push_to_sequence (conversion_insns);
4578 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4579
4580 /* TREE_USED gets set erroneously during expand_assignment. */
4581 save_tree_used = TREE_USED (parm);
4582 expand_assignment (parm,
4583 make_tree (nominal_type, tempreg), 0, 0);
4584 TREE_USED (parm) = save_tree_used;
4585 conversion_insns = get_insns ();
4586 did_conversion = 1;
4587 end_sequence ();
4588 }
4589 else
4590 emit_move_insn (parmreg, validize_mem (entry_parm));
4591
4592 /* If we were passed a pointer but the actual value
4593 can safely live in a register, put it in one. */
4594 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4595 && ! ((! optimize
4596 && ! DECL_REGISTER (parm)
4597 && ! DECL_INLINE (fndecl))
4598 /* layout_decl may set this. */
4599 || TREE_ADDRESSABLE (parm)
4600 || TREE_SIDE_EFFECTS (parm)
4601 /* If -ffloat-store specified, don't put explicit
4602 float variables into registers. */
4603 || (flag_float_store
4604 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
4605 {
4606 /* We can't use nominal_mode, because it will have been set to
4607 Pmode above. We must use the actual mode of the parm. */
4608 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4609 mark_user_reg (parmreg);
4610 emit_move_insn (parmreg, DECL_RTL (parm));
4611 DECL_RTL (parm) = parmreg;
4612 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4613 now the parm. */
4614 stack_parm = 0;
4615 }
4616 #ifdef FUNCTION_ARG_CALLEE_COPIES
4617 /* If we are passed an arg by reference and it is our responsibility
4618 to make a copy, do it now.
4619 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4620 original argument, so we must recreate them in the call to
4621 FUNCTION_ARG_CALLEE_COPIES. */
4622 /* ??? Later add code to handle the case that if the argument isn't
4623 modified, don't do the copy. */
4624
4625 else if (passed_pointer
4626 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4627 TYPE_MODE (DECL_ARG_TYPE (parm)),
4628 DECL_ARG_TYPE (parm),
4629 named_arg)
4630 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4631 {
4632 rtx copy;
4633 tree type = DECL_ARG_TYPE (parm);
4634
4635 /* This sequence may involve a library call perhaps clobbering
4636 registers that haven't been copied to pseudos yet. */
4637
4638 push_to_sequence (conversion_insns);
4639
4640 if (!COMPLETE_TYPE_P (type)
4641 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4642 /* This is a variable sized object. */
4643 copy = gen_rtx_MEM (BLKmode,
4644 allocate_dynamic_stack_space
4645 (expr_size (parm), NULL_RTX,
4646 TYPE_ALIGN (type)));
4647 else
4648 copy = assign_stack_temp (TYPE_MODE (type),
4649 int_size_in_bytes (type), 1);
4650 MEM_SET_IN_STRUCT_P (copy, AGGREGATE_TYPE_P (type));
4651 RTX_UNCHANGING_P (copy) = TREE_READONLY (parm);
4652
4653 store_expr (parm, copy, 0);
4654 emit_move_insn (parmreg, XEXP (copy, 0));
4655 if (current_function_check_memory_usage)
4656 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4657 XEXP (copy, 0), Pmode,
4658 GEN_INT (int_size_in_bytes (type)),
4659 TYPE_MODE (sizetype),
4660 GEN_INT (MEMORY_USE_RW),
4661 TYPE_MODE (integer_type_node));
4662 conversion_insns = get_insns ();
4663 did_conversion = 1;
4664 end_sequence ();
4665 }
4666 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4667
4668 /* In any case, record the parm's desired stack location
4669 in case we later discover it must live in the stack.
4670
4671 If it is a COMPLEX value, store the stack location for both
4672 halves. */
4673
4674 if (GET_CODE (parmreg) == CONCAT)
4675 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4676 else
4677 regno = REGNO (parmreg);
4678
4679 if (regno >= max_parm_reg)
4680 {
4681 rtx *new;
4682 int old_max_parm_reg = max_parm_reg;
4683
4684 /* It's slow to expand this one register at a time,
4685 but it's also rare and we need max_parm_reg to be
4686 precisely correct. */
4687 max_parm_reg = regno + 1;
4688 new = (rtx *) xrealloc (parm_reg_stack_loc,
4689 max_parm_reg * sizeof (rtx));
4690 bzero ((char *) (new + old_max_parm_reg),
4691 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4692 parm_reg_stack_loc = new;
4693 }
4694
4695 if (GET_CODE (parmreg) == CONCAT)
4696 {
4697 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4698
4699 regnor = REGNO (gen_realpart (submode, parmreg));
4700 regnoi = REGNO (gen_imagpart (submode, parmreg));
4701
4702 if (stack_parm != 0)
4703 {
4704 parm_reg_stack_loc[regnor]
4705 = gen_realpart (submode, stack_parm);
4706 parm_reg_stack_loc[regnoi]
4707 = gen_imagpart (submode, stack_parm);
4708 }
4709 else
4710 {
4711 parm_reg_stack_loc[regnor] = 0;
4712 parm_reg_stack_loc[regnoi] = 0;
4713 }
4714 }
4715 else
4716 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4717
4718 /* Mark the register as eliminable if we did no conversion
4719 and it was copied from memory at a fixed offset,
4720 and the arg pointer was not copied to a pseudo-reg.
4721 If the arg pointer is a pseudo reg or the offset formed
4722 an invalid address, such memory-equivalences
4723 as we make here would screw up life analysis for it. */
4724 if (nominal_mode == passed_mode
4725 && ! did_conversion
4726 && stack_parm != 0
4727 && GET_CODE (stack_parm) == MEM
4728 && stack_offset.var == 0
4729 && reg_mentioned_p (virtual_incoming_args_rtx,
4730 XEXP (stack_parm, 0)))
4731 {
4732 rtx linsn = get_last_insn ();
4733 rtx sinsn, set;
4734
4735 /* Mark complex types separately. */
4736 if (GET_CODE (parmreg) == CONCAT)
4737 /* Scan backwards for the set of the real and
4738 imaginary parts. */
4739 for (sinsn = linsn; sinsn != 0;
4740 sinsn = prev_nonnote_insn (sinsn))
4741 {
4742 set = single_set (sinsn);
4743 if (set != 0
4744 && SET_DEST (set) == regno_reg_rtx [regnoi])
4745 REG_NOTES (sinsn)
4746 = gen_rtx_EXPR_LIST (REG_EQUIV,
4747 parm_reg_stack_loc[regnoi],
4748 REG_NOTES (sinsn));
4749 else if (set != 0
4750 && SET_DEST (set) == regno_reg_rtx [regnor])
4751 REG_NOTES (sinsn)
4752 = gen_rtx_EXPR_LIST (REG_EQUIV,
4753 parm_reg_stack_loc[regnor],
4754 REG_NOTES (sinsn));
4755 }
4756 else if ((set = single_set (linsn)) != 0
4757 && SET_DEST (set) == parmreg)
4758 REG_NOTES (linsn)
4759 = gen_rtx_EXPR_LIST (REG_EQUIV,
4760 stack_parm, REG_NOTES (linsn));
4761 }
4762
4763 /* For pointer data type, suggest pointer register. */
4764 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4765 mark_reg_pointer (parmreg,
4766 (TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))
4767 / BITS_PER_UNIT));
4768 }
4769 else
4770 {
4771 /* Value must be stored in the stack slot STACK_PARM
4772 during function execution. */
4773
4774 if (promoted_mode != nominal_mode)
4775 {
4776 /* Conversion is required. */
4777 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4778
4779 emit_move_insn (tempreg, validize_mem (entry_parm));
4780
4781 push_to_sequence (conversion_insns);
4782 entry_parm = convert_to_mode (nominal_mode, tempreg,
4783 TREE_UNSIGNED (TREE_TYPE (parm)));
4784 if (stack_parm)
4785 {
4786 /* ??? This may need a big-endian conversion on sparc64. */
4787 stack_parm = change_address (stack_parm, nominal_mode,
4788 NULL_RTX);
4789 }
4790 conversion_insns = get_insns ();
4791 did_conversion = 1;
4792 end_sequence ();
4793 }
4794
4795 if (entry_parm != stack_parm)
4796 {
4797 if (stack_parm == 0)
4798 {
4799 stack_parm
4800 = assign_stack_local (GET_MODE (entry_parm),
4801 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
4802 /* If this is a memory ref that contains aggregate components,
4803 mark it as such for cse and loop optimize. */
4804 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4805 }
4806
4807 if (promoted_mode != nominal_mode)
4808 {
4809 push_to_sequence (conversion_insns);
4810 emit_move_insn (validize_mem (stack_parm),
4811 validize_mem (entry_parm));
4812 conversion_insns = get_insns ();
4813 end_sequence ();
4814 }
4815 else
4816 emit_move_insn (validize_mem (stack_parm),
4817 validize_mem (entry_parm));
4818 }
4819 if (current_function_check_memory_usage)
4820 {
4821 push_to_sequence (conversion_insns);
4822 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4823 XEXP (stack_parm, 0), Pmode,
4824 GEN_INT (GET_MODE_SIZE (GET_MODE
4825 (entry_parm))),
4826 TYPE_MODE (sizetype),
4827 GEN_INT (MEMORY_USE_RW),
4828 TYPE_MODE (integer_type_node));
4829
4830 conversion_insns = get_insns ();
4831 end_sequence ();
4832 }
4833 DECL_RTL (parm) = stack_parm;
4834 }
4835
4836 /* If this "parameter" was the place where we are receiving the
4837 function's incoming structure pointer, set up the result. */
4838 if (parm == function_result_decl)
4839 {
4840 tree result = DECL_RESULT (fndecl);
4841 tree restype = TREE_TYPE (result);
4842
4843 DECL_RTL (result)
4844 = gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm));
4845
4846 MEM_SET_IN_STRUCT_P (DECL_RTL (result),
4847 AGGREGATE_TYPE_P (restype));
4848 }
4849
4850 if (TREE_THIS_VOLATILE (parm))
4851 MEM_VOLATILE_P (DECL_RTL (parm)) = 1;
4852 if (TREE_READONLY (parm))
4853 RTX_UNCHANGING_P (DECL_RTL (parm)) = 1;
4854 }
4855
4856 /* Output all parameter conversion instructions (possibly including calls)
4857 now that all parameters have been copied out of hard registers. */
4858 emit_insns (conversion_insns);
4859
4860 last_parm_insn = get_last_insn ();
4861
4862 current_function_args_size = stack_args_size.constant;
4863
4864 /* Adjust function incoming argument size for alignment and
4865 minimum length. */
4866
4867 #ifdef REG_PARM_STACK_SPACE
4868 #ifndef MAYBE_REG_PARM_STACK_SPACE
4869 current_function_args_size = MAX (current_function_args_size,
4870 REG_PARM_STACK_SPACE (fndecl));
4871 #endif
4872 #endif
4873
4874 #ifdef STACK_BOUNDARY
4875 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
4876
4877 current_function_args_size
4878 = ((current_function_args_size + STACK_BYTES - 1)
4879 / STACK_BYTES) * STACK_BYTES;
4880 #endif
4881
4882 #ifdef ARGS_GROW_DOWNWARD
4883 current_function_arg_offset_rtx
4884 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
4885 : expand_expr (size_diffop (stack_args_size.var,
4886 size_int (-stack_args_size.constant)),
4887 NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD));
4888 #else
4889 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
4890 #endif
4891
4892 /* See how many bytes, if any, of its args a function should try to pop
4893 on return. */
4894
4895 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
4896 current_function_args_size);
4897
4898 /* For stdarg.h function, save info about
4899 regs and stack space used by the named args. */
4900
4901 if (!hide_last_arg)
4902 current_function_args_info = args_so_far;
4903
4904 /* Set the rtx used for the function return value. Put this in its
4905 own variable so any optimizers that need this information don't have
4906 to include tree.h. Do this here so it gets done when an inlined
4907 function gets output. */
4908
4909 current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl));
4910 }
4911 \f
4912 /* Indicate whether REGNO is an incoming argument to the current function
4913 that was promoted to a wider mode. If so, return the RTX for the
4914 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
4915 that REGNO is promoted from and whether the promotion was signed or
4916 unsigned. */
4917
4918 #ifdef PROMOTE_FUNCTION_ARGS
4919
4920 rtx
4921 promoted_input_arg (regno, pmode, punsignedp)
4922 unsigned int regno;
4923 enum machine_mode *pmode;
4924 int *punsignedp;
4925 {
4926 tree arg;
4927
4928 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
4929 arg = TREE_CHAIN (arg))
4930 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
4931 && REGNO (DECL_INCOMING_RTL (arg)) == regno
4932 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
4933 {
4934 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
4935 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
4936
4937 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
4938 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
4939 && mode != DECL_MODE (arg))
4940 {
4941 *pmode = DECL_MODE (arg);
4942 *punsignedp = unsignedp;
4943 return DECL_INCOMING_RTL (arg);
4944 }
4945 }
4946
4947 return 0;
4948 }
4949
4950 #endif
4951 \f
4952 /* Compute the size and offset from the start of the stacked arguments for a
4953 parm passed in mode PASSED_MODE and with type TYPE.
4954
4955 INITIAL_OFFSET_PTR points to the current offset into the stacked
4956 arguments.
4957
4958 The starting offset and size for this parm are returned in *OFFSET_PTR
4959 and *ARG_SIZE_PTR, respectively.
4960
4961 IN_REGS is non-zero if the argument will be passed in registers. It will
4962 never be set if REG_PARM_STACK_SPACE is not defined.
4963
4964 FNDECL is the function in which the argument was defined.
4965
4966 There are two types of rounding that are done. The first, controlled by
4967 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
4968 list to be aligned to the specific boundary (in bits). This rounding
4969 affects the initial and starting offsets, but not the argument size.
4970
4971 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4972 optionally rounds the size of the parm to PARM_BOUNDARY. The
4973 initial offset is not affected by this rounding, while the size always
4974 is and the starting offset may be. */
4975
4976 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
4977 initial_offset_ptr is positive because locate_and_pad_parm's
4978 callers pass in the total size of args so far as
4979 initial_offset_ptr. arg_size_ptr is always positive.*/
4980
4981 void
4982 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
4983 initial_offset_ptr, offset_ptr, arg_size_ptr,
4984 alignment_pad)
4985 enum machine_mode passed_mode;
4986 tree type;
4987 int in_regs ATTRIBUTE_UNUSED;
4988 tree fndecl ATTRIBUTE_UNUSED;
4989 struct args_size *initial_offset_ptr;
4990 struct args_size *offset_ptr;
4991 struct args_size *arg_size_ptr;
4992 struct args_size *alignment_pad;
4993
4994 {
4995 tree sizetree
4996 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4997 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
4998 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
4999
5000 #ifdef REG_PARM_STACK_SPACE
5001 /* If we have found a stack parm before we reach the end of the
5002 area reserved for registers, skip that area. */
5003 if (! in_regs)
5004 {
5005 int reg_parm_stack_space = 0;
5006
5007 #ifdef MAYBE_REG_PARM_STACK_SPACE
5008 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5009 #else
5010 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5011 #endif
5012 if (reg_parm_stack_space > 0)
5013 {
5014 if (initial_offset_ptr->var)
5015 {
5016 initial_offset_ptr->var
5017 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5018 ssize_int (reg_parm_stack_space));
5019 initial_offset_ptr->constant = 0;
5020 }
5021 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5022 initial_offset_ptr->constant = reg_parm_stack_space;
5023 }
5024 }
5025 #endif /* REG_PARM_STACK_SPACE */
5026
5027 arg_size_ptr->var = 0;
5028 arg_size_ptr->constant = 0;
5029
5030 #ifdef ARGS_GROW_DOWNWARD
5031 if (initial_offset_ptr->var)
5032 {
5033 offset_ptr->constant = 0;
5034 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5035 initial_offset_ptr->var);
5036 }
5037 else
5038 {
5039 offset_ptr->constant = - initial_offset_ptr->constant;
5040 offset_ptr->var = 0;
5041 }
5042 if (where_pad != none
5043 && (TREE_CODE (sizetree) != INTEGER_CST
5044 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
5045 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5046 SUB_PARM_SIZE (*offset_ptr, sizetree);
5047 if (where_pad != downward)
5048 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5049 if (initial_offset_ptr->var)
5050 arg_size_ptr->var = size_binop (MINUS_EXPR,
5051 size_binop (MINUS_EXPR,
5052 ssize_int (0),
5053 initial_offset_ptr->var),
5054 offset_ptr->var);
5055
5056 else
5057 arg_size_ptr->constant = (- initial_offset_ptr->constant
5058 - offset_ptr->constant);
5059
5060 #else /* !ARGS_GROW_DOWNWARD */
5061 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5062 *offset_ptr = *initial_offset_ptr;
5063
5064 #ifdef PUSH_ROUNDING
5065 if (passed_mode != BLKmode)
5066 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5067 #endif
5068
5069 /* Pad_below needs the pre-rounded size to know how much to pad below
5070 so this must be done before rounding up. */
5071 if (where_pad == downward
5072 /* However, BLKmode args passed in regs have their padding done elsewhere.
5073 The stack slot must be able to hold the entire register. */
5074 && !(in_regs && passed_mode == BLKmode))
5075 pad_below (offset_ptr, passed_mode, sizetree);
5076
5077 if (where_pad != none
5078 && (TREE_CODE (sizetree) != INTEGER_CST
5079 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
5080 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5081
5082 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5083 #endif /* ARGS_GROW_DOWNWARD */
5084 }
5085
5086 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5087 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5088
5089 static void
5090 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5091 struct args_size *offset_ptr;
5092 int boundary;
5093 struct args_size *alignment_pad;
5094 {
5095 tree save_var = NULL_TREE;
5096 HOST_WIDE_INT save_constant = 0;
5097
5098 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5099
5100 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5101 {
5102 save_var = offset_ptr->var;
5103 save_constant = offset_ptr->constant;
5104 }
5105
5106 alignment_pad->var = NULL_TREE;
5107 alignment_pad->constant = 0;
5108
5109 if (boundary > BITS_PER_UNIT)
5110 {
5111 if (offset_ptr->var)
5112 {
5113 offset_ptr->var =
5114 #ifdef ARGS_GROW_DOWNWARD
5115 round_down
5116 #else
5117 round_up
5118 #endif
5119 (ARGS_SIZE_TREE (*offset_ptr),
5120 boundary / BITS_PER_UNIT);
5121 offset_ptr->constant = 0; /*?*/
5122 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5123 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5124 save_var);
5125 }
5126 else
5127 {
5128 offset_ptr->constant =
5129 #ifdef ARGS_GROW_DOWNWARD
5130 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5131 #else
5132 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5133 #endif
5134 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5135 alignment_pad->constant = offset_ptr->constant - save_constant;
5136 }
5137 }
5138 }
5139
5140 #ifndef ARGS_GROW_DOWNWARD
5141 static void
5142 pad_below (offset_ptr, passed_mode, sizetree)
5143 struct args_size *offset_ptr;
5144 enum machine_mode passed_mode;
5145 tree sizetree;
5146 {
5147 if (passed_mode != BLKmode)
5148 {
5149 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5150 offset_ptr->constant
5151 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5152 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5153 - GET_MODE_SIZE (passed_mode));
5154 }
5155 else
5156 {
5157 if (TREE_CODE (sizetree) != INTEGER_CST
5158 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5159 {
5160 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5161 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5162 /* Add it in. */
5163 ADD_PARM_SIZE (*offset_ptr, s2);
5164 SUB_PARM_SIZE (*offset_ptr, sizetree);
5165 }
5166 }
5167 }
5168 #endif
5169 \f
5170 /* Walk the tree of blocks describing the binding levels within a function
5171 and warn about uninitialized variables.
5172 This is done after calling flow_analysis and before global_alloc
5173 clobbers the pseudo-regs to hard regs. */
5174
5175 void
5176 uninitialized_vars_warning (block)
5177 tree block;
5178 {
5179 register tree decl, sub;
5180 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5181 {
5182 if (warn_uninitialized
5183 && TREE_CODE (decl) == VAR_DECL
5184 /* These warnings are unreliable for and aggregates
5185 because assigning the fields one by one can fail to convince
5186 flow.c that the entire aggregate was initialized.
5187 Unions are troublesome because members may be shorter. */
5188 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5189 && DECL_RTL (decl) != 0
5190 && GET_CODE (DECL_RTL (decl)) == REG
5191 /* Global optimizations can make it difficult to determine if a
5192 particular variable has been initialized. However, a VAR_DECL
5193 with a nonzero DECL_INITIAL had an initializer, so do not
5194 claim it is potentially uninitialized.
5195
5196 We do not care about the actual value in DECL_INITIAL, so we do
5197 not worry that it may be a dangling pointer. */
5198 && DECL_INITIAL (decl) == NULL_TREE
5199 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5200 warning_with_decl (decl,
5201 "`%s' might be used uninitialized in this function");
5202 if (extra_warnings
5203 && TREE_CODE (decl) == VAR_DECL
5204 && DECL_RTL (decl) != 0
5205 && GET_CODE (DECL_RTL (decl)) == REG
5206 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5207 warning_with_decl (decl,
5208 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5209 }
5210 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5211 uninitialized_vars_warning (sub);
5212 }
5213
5214 /* Do the appropriate part of uninitialized_vars_warning
5215 but for arguments instead of local variables. */
5216
5217 void
5218 setjmp_args_warning ()
5219 {
5220 register tree decl;
5221 for (decl = DECL_ARGUMENTS (current_function_decl);
5222 decl; decl = TREE_CHAIN (decl))
5223 if (DECL_RTL (decl) != 0
5224 && GET_CODE (DECL_RTL (decl)) == REG
5225 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5226 warning_with_decl (decl, "argument `%s' might be clobbered by `longjmp' or `vfork'");
5227 }
5228
5229 /* If this function call setjmp, put all vars into the stack
5230 unless they were declared `register'. */
5231
5232 void
5233 setjmp_protect (block)
5234 tree block;
5235 {
5236 register tree decl, sub;
5237 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5238 if ((TREE_CODE (decl) == VAR_DECL
5239 || TREE_CODE (decl) == PARM_DECL)
5240 && DECL_RTL (decl) != 0
5241 && (GET_CODE (DECL_RTL (decl)) == REG
5242 || (GET_CODE (DECL_RTL (decl)) == MEM
5243 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5244 /* If this variable came from an inline function, it must be
5245 that its life doesn't overlap the setjmp. If there was a
5246 setjmp in the function, it would already be in memory. We
5247 must exclude such variable because their DECL_RTL might be
5248 set to strange things such as virtual_stack_vars_rtx. */
5249 && ! DECL_FROM_INLINE (decl)
5250 && (
5251 #ifdef NON_SAVING_SETJMP
5252 /* If longjmp doesn't restore the registers,
5253 don't put anything in them. */
5254 NON_SAVING_SETJMP
5255 ||
5256 #endif
5257 ! DECL_REGISTER (decl)))
5258 put_var_into_stack (decl);
5259 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5260 setjmp_protect (sub);
5261 }
5262 \f
5263 /* Like the previous function, but for args instead of local variables. */
5264
5265 void
5266 setjmp_protect_args ()
5267 {
5268 register tree decl;
5269 for (decl = DECL_ARGUMENTS (current_function_decl);
5270 decl; decl = TREE_CHAIN (decl))
5271 if ((TREE_CODE (decl) == VAR_DECL
5272 || TREE_CODE (decl) == PARM_DECL)
5273 && DECL_RTL (decl) != 0
5274 && (GET_CODE (DECL_RTL (decl)) == REG
5275 || (GET_CODE (DECL_RTL (decl)) == MEM
5276 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5277 && (
5278 /* If longjmp doesn't restore the registers,
5279 don't put anything in them. */
5280 #ifdef NON_SAVING_SETJMP
5281 NON_SAVING_SETJMP
5282 ||
5283 #endif
5284 ! DECL_REGISTER (decl)))
5285 put_var_into_stack (decl);
5286 }
5287 \f
5288 /* Return the context-pointer register corresponding to DECL,
5289 or 0 if it does not need one. */
5290
5291 rtx
5292 lookup_static_chain (decl)
5293 tree decl;
5294 {
5295 tree context = decl_function_context (decl);
5296 tree link;
5297
5298 if (context == 0
5299 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5300 return 0;
5301
5302 /* We treat inline_function_decl as an alias for the current function
5303 because that is the inline function whose vars, types, etc.
5304 are being merged into the current function.
5305 See expand_inline_function. */
5306 if (context == current_function_decl || context == inline_function_decl)
5307 return virtual_stack_vars_rtx;
5308
5309 for (link = context_display; link; link = TREE_CHAIN (link))
5310 if (TREE_PURPOSE (link) == context)
5311 return RTL_EXPR_RTL (TREE_VALUE (link));
5312
5313 abort ();
5314 }
5315 \f
5316 /* Convert a stack slot address ADDR for variable VAR
5317 (from a containing function)
5318 into an address valid in this function (using a static chain). */
5319
5320 rtx
5321 fix_lexical_addr (addr, var)
5322 rtx addr;
5323 tree var;
5324 {
5325 rtx basereg;
5326 HOST_WIDE_INT displacement;
5327 tree context = decl_function_context (var);
5328 struct function *fp;
5329 rtx base = 0;
5330
5331 /* If this is the present function, we need not do anything. */
5332 if (context == current_function_decl || context == inline_function_decl)
5333 return addr;
5334
5335 for (fp = outer_function_chain; fp; fp = fp->next)
5336 if (fp->decl == context)
5337 break;
5338
5339 if (fp == 0)
5340 abort ();
5341
5342 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5343 addr = XEXP (XEXP (addr, 0), 0);
5344
5345 /* Decode given address as base reg plus displacement. */
5346 if (GET_CODE (addr) == REG)
5347 basereg = addr, displacement = 0;
5348 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5349 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5350 else
5351 abort ();
5352
5353 /* We accept vars reached via the containing function's
5354 incoming arg pointer and via its stack variables pointer. */
5355 if (basereg == fp->internal_arg_pointer)
5356 {
5357 /* If reached via arg pointer, get the arg pointer value
5358 out of that function's stack frame.
5359
5360 There are two cases: If a separate ap is needed, allocate a
5361 slot in the outer function for it and dereference it that way.
5362 This is correct even if the real ap is actually a pseudo.
5363 Otherwise, just adjust the offset from the frame pointer to
5364 compensate. */
5365
5366 #ifdef NEED_SEPARATE_AP
5367 rtx addr;
5368
5369 if (fp->x_arg_pointer_save_area == 0)
5370 fp->x_arg_pointer_save_area
5371 = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
5372
5373 addr = fix_lexical_addr (XEXP (fp->x_arg_pointer_save_area, 0), var);
5374 addr = memory_address (Pmode, addr);
5375
5376 base = copy_to_reg (gen_rtx_MEM (Pmode, addr));
5377 #else
5378 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5379 base = lookup_static_chain (var);
5380 #endif
5381 }
5382
5383 else if (basereg == virtual_stack_vars_rtx)
5384 {
5385 /* This is the same code as lookup_static_chain, duplicated here to
5386 avoid an extra call to decl_function_context. */
5387 tree link;
5388
5389 for (link = context_display; link; link = TREE_CHAIN (link))
5390 if (TREE_PURPOSE (link) == context)
5391 {
5392 base = RTL_EXPR_RTL (TREE_VALUE (link));
5393 break;
5394 }
5395 }
5396
5397 if (base == 0)
5398 abort ();
5399
5400 /* Use same offset, relative to appropriate static chain or argument
5401 pointer. */
5402 return plus_constant (base, displacement);
5403 }
5404 \f
5405 /* Return the address of the trampoline for entering nested fn FUNCTION.
5406 If necessary, allocate a trampoline (in the stack frame)
5407 and emit rtl to initialize its contents (at entry to this function). */
5408
5409 rtx
5410 trampoline_address (function)
5411 tree function;
5412 {
5413 tree link;
5414 tree rtlexp;
5415 rtx tramp;
5416 struct function *fp;
5417 tree fn_context;
5418
5419 /* Find an existing trampoline and return it. */
5420 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5421 if (TREE_PURPOSE (link) == function)
5422 return
5423 round_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5424
5425 for (fp = outer_function_chain; fp; fp = fp->next)
5426 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5427 if (TREE_PURPOSE (link) == function)
5428 {
5429 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5430 function);
5431 return round_trampoline_addr (tramp);
5432 }
5433
5434 /* None exists; we must make one. */
5435
5436 /* Find the `struct function' for the function containing FUNCTION. */
5437 fp = 0;
5438 fn_context = decl_function_context (function);
5439 if (fn_context != current_function_decl
5440 && fn_context != inline_function_decl)
5441 for (fp = outer_function_chain; fp; fp = fp->next)
5442 if (fp->decl == fn_context)
5443 break;
5444
5445 /* Allocate run-time space for this trampoline
5446 (usually in the defining function's stack frame). */
5447 #ifdef ALLOCATE_TRAMPOLINE
5448 tramp = ALLOCATE_TRAMPOLINE (fp);
5449 #else
5450 /* If rounding needed, allocate extra space
5451 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5452 #ifdef TRAMPOLINE_ALIGNMENT
5453 #define TRAMPOLINE_REAL_SIZE \
5454 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5455 #else
5456 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5457 #endif
5458 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5459 fp ? fp : cfun);
5460 #endif
5461
5462 /* Record the trampoline for reuse and note it for later initialization
5463 by expand_function_end. */
5464 if (fp != 0)
5465 {
5466 push_obstacks (fp->function_maybepermanent_obstack,
5467 fp->function_maybepermanent_obstack);
5468 rtlexp = make_node (RTL_EXPR);
5469 RTL_EXPR_RTL (rtlexp) = tramp;
5470 fp->x_trampoline_list = tree_cons (function, rtlexp,
5471 fp->x_trampoline_list);
5472 pop_obstacks ();
5473 }
5474 else
5475 {
5476 /* Make the RTL_EXPR node temporary, not momentary, so that the
5477 trampoline_list doesn't become garbage. */
5478 int momentary = suspend_momentary ();
5479 rtlexp = make_node (RTL_EXPR);
5480 resume_momentary (momentary);
5481
5482 RTL_EXPR_RTL (rtlexp) = tramp;
5483 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5484 }
5485
5486 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5487 return round_trampoline_addr (tramp);
5488 }
5489
5490 /* Given a trampoline address,
5491 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5492
5493 static rtx
5494 round_trampoline_addr (tramp)
5495 rtx tramp;
5496 {
5497 #ifdef TRAMPOLINE_ALIGNMENT
5498 /* Round address up to desired boundary. */
5499 rtx temp = gen_reg_rtx (Pmode);
5500 temp = expand_binop (Pmode, add_optab, tramp,
5501 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
5502 temp, 0, OPTAB_LIB_WIDEN);
5503 tramp = expand_binop (Pmode, and_optab, temp,
5504 GEN_INT (- TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
5505 temp, 0, OPTAB_LIB_WIDEN);
5506 #endif
5507 return tramp;
5508 }
5509 \f
5510 /* Put all this function's BLOCK nodes including those that are chained
5511 onto the first block into a vector, and return it.
5512 Also store in each NOTE for the beginning or end of a block
5513 the index of that block in the vector.
5514 The arguments are BLOCK, the chain of top-level blocks of the function,
5515 and INSNS, the insn chain of the function. */
5516
5517 void
5518 identify_blocks ()
5519 {
5520 int n_blocks;
5521 tree *block_vector, *last_block_vector;
5522 tree *block_stack;
5523 tree block = DECL_INITIAL (current_function_decl);
5524
5525 if (block == 0)
5526 return;
5527
5528 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5529 depth-first order. */
5530 block_vector = get_block_vector (block, &n_blocks);
5531 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5532
5533 last_block_vector = identify_blocks_1 (get_insns (),
5534 block_vector + 1,
5535 block_vector + n_blocks,
5536 block_stack);
5537
5538 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5539 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5540 if (0 && last_block_vector != block_vector + n_blocks)
5541 abort ();
5542
5543 free (block_vector);
5544 free (block_stack);
5545 }
5546
5547 /* Subroutine of identify_blocks. Do the block substitution on the
5548 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5549
5550 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5551 BLOCK_VECTOR is incremented for each block seen. */
5552
5553 static tree *
5554 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5555 rtx insns;
5556 tree *block_vector;
5557 tree *end_block_vector;
5558 tree *orig_block_stack;
5559 {
5560 rtx insn;
5561 tree *block_stack = orig_block_stack;
5562
5563 for (insn = insns; insn; insn = NEXT_INSN (insn))
5564 {
5565 if (GET_CODE (insn) == NOTE)
5566 {
5567 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5568 {
5569 tree b;
5570
5571 /* If there are more block notes than BLOCKs, something
5572 is badly wrong. */
5573 if (block_vector == end_block_vector)
5574 abort ();
5575
5576 b = *block_vector++;
5577 NOTE_BLOCK (insn) = b;
5578 *block_stack++ = b;
5579 }
5580 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5581 {
5582 /* If there are more NOTE_INSN_BLOCK_ENDs than
5583 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5584 if (block_stack == orig_block_stack)
5585 abort ();
5586
5587 NOTE_BLOCK (insn) = *--block_stack;
5588 }
5589 }
5590 else if (GET_CODE (insn) == CALL_INSN
5591 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5592 {
5593 rtx cp = PATTERN (insn);
5594
5595 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5596 end_block_vector, block_stack);
5597 if (XEXP (cp, 1))
5598 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5599 end_block_vector, block_stack);
5600 if (XEXP (cp, 2))
5601 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5602 end_block_vector, block_stack);
5603 }
5604 }
5605
5606 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5607 something is badly wrong. */
5608 if (block_stack != orig_block_stack)
5609 abort ();
5610
5611 return block_vector;
5612 }
5613
5614 /* Identify BLOCKs referenced by more than one
5615 NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */
5616
5617 void
5618 reorder_blocks ()
5619 {
5620 tree block = DECL_INITIAL (current_function_decl);
5621 varray_type block_stack;
5622
5623 if (block == NULL_TREE)
5624 return;
5625
5626 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5627
5628 /* Prune the old trees away, so that they don't get in the way. */
5629 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5630 BLOCK_CHAIN (block) = NULL_TREE;
5631
5632 reorder_blocks_1 (get_insns (), block, &block_stack);
5633
5634 BLOCK_SUBBLOCKS (block)
5635 = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5636
5637 VARRAY_FREE (block_stack);
5638 }
5639
5640 /* Helper function for reorder_blocks. Process the insn chain beginning
5641 at INSNS. Recurse for CALL_PLACEHOLDER insns. */
5642
5643 static void
5644 reorder_blocks_1 (insns, current_block, p_block_stack)
5645 rtx insns;
5646 tree current_block;
5647 varray_type *p_block_stack;
5648 {
5649 rtx insn;
5650
5651 for (insn = insns; insn; insn = NEXT_INSN (insn))
5652 {
5653 if (GET_CODE (insn) == NOTE)
5654 {
5655 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5656 {
5657 tree block = NOTE_BLOCK (insn);
5658 /* If we have seen this block before, copy it. */
5659 if (TREE_ASM_WRITTEN (block))
5660 {
5661 block = copy_node (block);
5662 NOTE_BLOCK (insn) = block;
5663 }
5664 BLOCK_SUBBLOCKS (block) = 0;
5665 TREE_ASM_WRITTEN (block) = 1;
5666 BLOCK_SUPERCONTEXT (block) = current_block;
5667 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5668 BLOCK_SUBBLOCKS (current_block) = block;
5669 current_block = block;
5670 VARRAY_PUSH_TREE (*p_block_stack, block);
5671 }
5672 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5673 {
5674 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
5675 VARRAY_POP (*p_block_stack);
5676 BLOCK_SUBBLOCKS (current_block)
5677 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5678 current_block = BLOCK_SUPERCONTEXT (current_block);
5679 }
5680 }
5681 else if (GET_CODE (insn) == CALL_INSN
5682 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5683 {
5684 rtx cp = PATTERN (insn);
5685 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
5686 if (XEXP (cp, 1))
5687 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
5688 if (XEXP (cp, 2))
5689 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
5690 }
5691 }
5692 }
5693
5694 /* Reverse the order of elements in the chain T of blocks,
5695 and return the new head of the chain (old last element). */
5696
5697 static tree
5698 blocks_nreverse (t)
5699 tree t;
5700 {
5701 register tree prev = 0, decl, next;
5702 for (decl = t; decl; decl = next)
5703 {
5704 next = BLOCK_CHAIN (decl);
5705 BLOCK_CHAIN (decl) = prev;
5706 prev = decl;
5707 }
5708 return prev;
5709 }
5710
5711 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
5712 non-NULL, list them all into VECTOR, in a depth-first preorder
5713 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
5714 blocks. */
5715
5716 static int
5717 all_blocks (block, vector)
5718 tree block;
5719 tree *vector;
5720 {
5721 int n_blocks = 0;
5722
5723 while (block)
5724 {
5725 TREE_ASM_WRITTEN (block) = 0;
5726
5727 /* Record this block. */
5728 if (vector)
5729 vector[n_blocks] = block;
5730
5731 ++n_blocks;
5732
5733 /* Record the subblocks, and their subblocks... */
5734 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
5735 vector ? vector + n_blocks : 0);
5736 block = BLOCK_CHAIN (block);
5737 }
5738
5739 return n_blocks;
5740 }
5741
5742 /* Return a vector containing all the blocks rooted at BLOCK. The
5743 number of elements in the vector is stored in N_BLOCKS_P. The
5744 vector is dynamically allocated; it is the caller's responsibility
5745 to call `free' on the pointer returned. */
5746
5747 static tree *
5748 get_block_vector (block, n_blocks_p)
5749 tree block;
5750 int *n_blocks_p;
5751 {
5752 tree *block_vector;
5753
5754 *n_blocks_p = all_blocks (block, NULL);
5755 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
5756 all_blocks (block, block_vector);
5757
5758 return block_vector;
5759 }
5760
5761 static int next_block_index = 2;
5762
5763 /* Set BLOCK_NUMBER for all the blocks in FN. */
5764
5765 void
5766 number_blocks (fn)
5767 tree fn;
5768 {
5769 int i;
5770 int n_blocks;
5771 tree *block_vector;
5772
5773 /* For SDB and XCOFF debugging output, we start numbering the blocks
5774 from 1 within each function, rather than keeping a running
5775 count. */
5776 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
5777 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
5778 next_block_index = 1;
5779 #endif
5780
5781 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
5782
5783 /* The top-level BLOCK isn't numbered at all. */
5784 for (i = 1; i < n_blocks; ++i)
5785 /* We number the blocks from two. */
5786 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
5787
5788 free (block_vector);
5789
5790 return;
5791 }
5792
5793 \f
5794 /* Allocate a function structure and reset its contents to the defaults. */
5795 static void
5796 prepare_function_start ()
5797 {
5798 cfun = (struct function *) xcalloc (1, sizeof (struct function));
5799
5800 init_stmt_for_function ();
5801 init_eh_for_function ();
5802
5803 cse_not_expected = ! optimize;
5804
5805 /* Caller save not needed yet. */
5806 caller_save_needed = 0;
5807
5808 /* No stack slots have been made yet. */
5809 stack_slot_list = 0;
5810
5811 current_function_has_nonlocal_label = 0;
5812 current_function_has_nonlocal_goto = 0;
5813
5814 /* There is no stack slot for handling nonlocal gotos. */
5815 nonlocal_goto_handler_slots = 0;
5816 nonlocal_goto_stack_level = 0;
5817
5818 /* No labels have been declared for nonlocal use. */
5819 nonlocal_labels = 0;
5820 nonlocal_goto_handler_labels = 0;
5821
5822 /* No function calls so far in this function. */
5823 function_call_count = 0;
5824
5825 /* No parm regs have been allocated.
5826 (This is important for output_inline_function.) */
5827 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
5828
5829 /* Initialize the RTL mechanism. */
5830 init_emit ();
5831
5832 /* Initialize the queue of pending postincrement and postdecrements,
5833 and some other info in expr.c. */
5834 init_expr ();
5835
5836 /* We haven't done register allocation yet. */
5837 reg_renumber = 0;
5838
5839 init_varasm_status (cfun);
5840
5841 /* Clear out data used for inlining. */
5842 cfun->inlinable = 0;
5843 cfun->original_decl_initial = 0;
5844 cfun->original_arg_vector = 0;
5845
5846 #ifdef STACK_BOUNDARY
5847 cfun->stack_alignment_needed = STACK_BOUNDARY;
5848 cfun->preferred_stack_boundary = STACK_BOUNDARY;
5849 #else
5850 cfun->stack_alignment_needed = 0;
5851 cfun->preferred_stack_boundary = 0;
5852 #endif
5853
5854 /* Set if a call to setjmp is seen. */
5855 current_function_calls_setjmp = 0;
5856
5857 /* Set if a call to longjmp is seen. */
5858 current_function_calls_longjmp = 0;
5859
5860 current_function_calls_alloca = 0;
5861 current_function_contains_functions = 0;
5862 current_function_is_leaf = 0;
5863 current_function_nothrow = 0;
5864 current_function_sp_is_unchanging = 0;
5865 current_function_uses_only_leaf_regs = 0;
5866 current_function_has_computed_jump = 0;
5867 current_function_is_thunk = 0;
5868
5869 current_function_returns_pcc_struct = 0;
5870 current_function_returns_struct = 0;
5871 current_function_epilogue_delay_list = 0;
5872 current_function_uses_const_pool = 0;
5873 current_function_uses_pic_offset_table = 0;
5874 current_function_cannot_inline = 0;
5875
5876 /* We have not yet needed to make a label to jump to for tail-recursion. */
5877 tail_recursion_label = 0;
5878
5879 /* We haven't had a need to make a save area for ap yet. */
5880 arg_pointer_save_area = 0;
5881
5882 /* No stack slots allocated yet. */
5883 frame_offset = 0;
5884
5885 /* No SAVE_EXPRs in this function yet. */
5886 save_expr_regs = 0;
5887
5888 /* No RTL_EXPRs in this function yet. */
5889 rtl_expr_chain = 0;
5890
5891 /* Set up to allocate temporaries. */
5892 init_temp_slots ();
5893
5894 /* Indicate that we need to distinguish between the return value of the
5895 present function and the return value of a function being called. */
5896 rtx_equal_function_value_matters = 1;
5897
5898 /* Indicate that we have not instantiated virtual registers yet. */
5899 virtuals_instantiated = 0;
5900
5901 /* Indicate we have no need of a frame pointer yet. */
5902 frame_pointer_needed = 0;
5903
5904 /* By default assume not varargs or stdarg. */
5905 current_function_varargs = 0;
5906 current_function_stdarg = 0;
5907
5908 /* We haven't made any trampolines for this function yet. */
5909 trampoline_list = 0;
5910
5911 init_pending_stack_adjust ();
5912 inhibit_defer_pop = 0;
5913
5914 current_function_outgoing_args_size = 0;
5915
5916 if (init_lang_status)
5917 (*init_lang_status) (cfun);
5918 if (init_machine_status)
5919 (*init_machine_status) (cfun);
5920 }
5921
5922 /* Initialize the rtl expansion mechanism so that we can do simple things
5923 like generate sequences. This is used to provide a context during global
5924 initialization of some passes. */
5925 void
5926 init_dummy_function_start ()
5927 {
5928 prepare_function_start ();
5929 }
5930
5931 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5932 and initialize static variables for generating RTL for the statements
5933 of the function. */
5934
5935 void
5936 init_function_start (subr, filename, line)
5937 tree subr;
5938 char *filename;
5939 int line;
5940 {
5941 prepare_function_start ();
5942
5943 /* Remember this function for later. */
5944 cfun->next_global = all_functions;
5945 all_functions = cfun;
5946
5947 current_function_name = (*decl_printable_name) (subr, 2);
5948 cfun->decl = subr;
5949
5950 /* Nonzero if this is a nested function that uses a static chain. */
5951
5952 current_function_needs_context
5953 = (decl_function_context (current_function_decl) != 0
5954 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
5955
5956 /* Within function body, compute a type's size as soon it is laid out. */
5957 immediate_size_expand++;
5958
5959 /* Prevent ever trying to delete the first instruction of a function.
5960 Also tell final how to output a linenum before the function prologue.
5961 Note linenums could be missing, e.g. when compiling a Java .class file. */
5962 if (line > 0)
5963 emit_line_note (filename, line);
5964
5965 /* Make sure first insn is a note even if we don't want linenums.
5966 This makes sure the first insn will never be deleted.
5967 Also, final expects a note to appear there. */
5968 emit_note (NULL_PTR, NOTE_INSN_DELETED);
5969
5970 /* Set flags used by final.c. */
5971 if (aggregate_value_p (DECL_RESULT (subr)))
5972 {
5973 #ifdef PCC_STATIC_STRUCT_RETURN
5974 current_function_returns_pcc_struct = 1;
5975 #endif
5976 current_function_returns_struct = 1;
5977 }
5978
5979 /* Warn if this value is an aggregate type,
5980 regardless of which calling convention we are using for it. */
5981 if (warn_aggregate_return
5982 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
5983 warning ("function returns an aggregate");
5984
5985 current_function_returns_pointer
5986 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
5987 }
5988
5989 /* Make sure all values used by the optimization passes have sane
5990 defaults. */
5991 void
5992 init_function_for_compilation ()
5993 {
5994 reg_renumber = 0;
5995
5996 /* No prologue/epilogue insns yet. */
5997 VARRAY_GROW (prologue, 0);
5998 VARRAY_GROW (epilogue, 0);
5999 VARRAY_GROW (sibcall_epilogue, 0);
6000 }
6001
6002 /* Indicate that the current function uses extra args
6003 not explicitly mentioned in the argument list in any fashion. */
6004
6005 void
6006 mark_varargs ()
6007 {
6008 current_function_varargs = 1;
6009 }
6010
6011 /* Expand a call to __main at the beginning of a possible main function. */
6012
6013 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6014 #undef HAS_INIT_SECTION
6015 #define HAS_INIT_SECTION
6016 #endif
6017
6018 void
6019 expand_main_function ()
6020 {
6021 #if !defined (HAS_INIT_SECTION)
6022 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0,
6023 VOIDmode, 0);
6024 #endif /* not HAS_INIT_SECTION */
6025 }
6026 \f
6027 extern struct obstack permanent_obstack;
6028
6029 /* Start the RTL for a new function, and set variables used for
6030 emitting RTL.
6031 SUBR is the FUNCTION_DECL node.
6032 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6033 the function's parameters, which must be run at any return statement. */
6034
6035 void
6036 expand_function_start (subr, parms_have_cleanups)
6037 tree subr;
6038 int parms_have_cleanups;
6039 {
6040 tree tem;
6041 rtx last_ptr = NULL_RTX;
6042
6043 /* Make sure volatile mem refs aren't considered
6044 valid operands of arithmetic insns. */
6045 init_recog_no_volatile ();
6046
6047 /* Set this before generating any memory accesses. */
6048 current_function_check_memory_usage
6049 = (flag_check_memory_usage
6050 && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl));
6051
6052 current_function_instrument_entry_exit
6053 = (flag_instrument_function_entry_exit
6054 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6055
6056 current_function_limit_stack
6057 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6058
6059 /* If function gets a static chain arg, store it in the stack frame.
6060 Do this first, so it gets the first stack slot offset. */
6061 if (current_function_needs_context)
6062 {
6063 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6064
6065 /* Delay copying static chain if it is not a register to avoid
6066 conflicts with regs used for parameters. */
6067 if (! SMALL_REGISTER_CLASSES
6068 || GET_CODE (static_chain_incoming_rtx) == REG)
6069 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6070 }
6071
6072 /* If the parameters of this function need cleaning up, get a label
6073 for the beginning of the code which executes those cleanups. This must
6074 be done before doing anything with return_label. */
6075 if (parms_have_cleanups)
6076 cleanup_label = gen_label_rtx ();
6077 else
6078 cleanup_label = 0;
6079
6080 /* Make the label for return statements to jump to, if this machine
6081 does not have a one-instruction return and uses an epilogue,
6082 or if it returns a structure, or if it has parm cleanups. */
6083 #ifdef HAVE_return
6084 if (cleanup_label == 0 && HAVE_return
6085 && ! current_function_instrument_entry_exit
6086 && ! current_function_returns_pcc_struct
6087 && ! (current_function_returns_struct && ! optimize))
6088 return_label = 0;
6089 else
6090 return_label = gen_label_rtx ();
6091 #else
6092 return_label = gen_label_rtx ();
6093 #endif
6094
6095 /* Initialize rtx used to return the value. */
6096 /* Do this before assign_parms so that we copy the struct value address
6097 before any library calls that assign parms might generate. */
6098
6099 /* Decide whether to return the value in memory or in a register. */
6100 if (aggregate_value_p (DECL_RESULT (subr)))
6101 {
6102 /* Returning something that won't go in a register. */
6103 register rtx value_address = 0;
6104
6105 #ifdef PCC_STATIC_STRUCT_RETURN
6106 if (current_function_returns_pcc_struct)
6107 {
6108 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6109 value_address = assemble_static_space (size);
6110 }
6111 else
6112 #endif
6113 {
6114 /* Expect to be passed the address of a place to store the value.
6115 If it is passed as an argument, assign_parms will take care of
6116 it. */
6117 if (struct_value_incoming_rtx)
6118 {
6119 value_address = gen_reg_rtx (Pmode);
6120 emit_move_insn (value_address, struct_value_incoming_rtx);
6121 }
6122 }
6123 if (value_address)
6124 {
6125 DECL_RTL (DECL_RESULT (subr))
6126 = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6127 MEM_SET_IN_STRUCT_P (DECL_RTL (DECL_RESULT (subr)),
6128 AGGREGATE_TYPE_P (TREE_TYPE
6129 (DECL_RESULT
6130 (subr))));
6131 }
6132 }
6133 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6134 /* If return mode is void, this decl rtl should not be used. */
6135 DECL_RTL (DECL_RESULT (subr)) = 0;
6136 else if (parms_have_cleanups || current_function_instrument_entry_exit)
6137 {
6138 /* If function will end with cleanup code for parms,
6139 compute the return values into a pseudo reg,
6140 which we will copy into the true return register
6141 after the cleanups are done. */
6142
6143 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
6144
6145 #ifdef PROMOTE_FUNCTION_RETURN
6146 tree type = TREE_TYPE (DECL_RESULT (subr));
6147 int unsignedp = TREE_UNSIGNED (type);
6148
6149 mode = promote_mode (type, mode, &unsignedp, 1);
6150 #endif
6151
6152 DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode);
6153 }
6154 else
6155 /* Scalar, returned in a register. */
6156 {
6157 #ifdef FUNCTION_OUTGOING_VALUE
6158 DECL_RTL (DECL_RESULT (subr))
6159 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
6160 #else
6161 DECL_RTL (DECL_RESULT (subr))
6162 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
6163 #endif
6164
6165 /* Mark this reg as the function's return value. */
6166 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
6167 {
6168 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
6169 /* Needed because we may need to move this to memory
6170 in case it's a named return value whose address is taken. */
6171 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6172 }
6173 }
6174
6175 /* Initialize rtx for parameters and local variables.
6176 In some cases this requires emitting insns. */
6177
6178 assign_parms (subr);
6179
6180 /* Copy the static chain now if it wasn't a register. The delay is to
6181 avoid conflicts with the parameter passing registers. */
6182
6183 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6184 if (GET_CODE (static_chain_incoming_rtx) != REG)
6185 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6186
6187 /* The following was moved from init_function_start.
6188 The move is supposed to make sdb output more accurate. */
6189 /* Indicate the beginning of the function body,
6190 as opposed to parm setup. */
6191 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
6192
6193 if (GET_CODE (get_last_insn ()) != NOTE)
6194 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6195 parm_birth_insn = get_last_insn ();
6196
6197 context_display = 0;
6198 if (current_function_needs_context)
6199 {
6200 /* Fetch static chain values for containing functions. */
6201 tem = decl_function_context (current_function_decl);
6202 /* Copy the static chain pointer into a pseudo. If we have
6203 small register classes, copy the value from memory if
6204 static_chain_incoming_rtx is a REG. */
6205 if (tem)
6206 {
6207 /* If the static chain originally came in a register, put it back
6208 there, then move it out in the next insn. The reason for
6209 this peculiar code is to satisfy function integration. */
6210 if (SMALL_REGISTER_CLASSES
6211 && GET_CODE (static_chain_incoming_rtx) == REG)
6212 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6213 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6214 }
6215
6216 while (tem)
6217 {
6218 tree rtlexp = make_node (RTL_EXPR);
6219
6220 RTL_EXPR_RTL (rtlexp) = last_ptr;
6221 context_display = tree_cons (tem, rtlexp, context_display);
6222 tem = decl_function_context (tem);
6223 if (tem == 0)
6224 break;
6225 /* Chain thru stack frames, assuming pointer to next lexical frame
6226 is found at the place we always store it. */
6227 #ifdef FRAME_GROWS_DOWNWARD
6228 last_ptr = plus_constant (last_ptr, - GET_MODE_SIZE (Pmode));
6229 #endif
6230 last_ptr = copy_to_reg (gen_rtx_MEM (Pmode,
6231 memory_address (Pmode,
6232 last_ptr)));
6233
6234 /* If we are not optimizing, ensure that we know that this
6235 piece of context is live over the entire function. */
6236 if (! optimize)
6237 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6238 save_expr_regs);
6239 }
6240 }
6241
6242 if (current_function_instrument_entry_exit)
6243 {
6244 rtx fun = DECL_RTL (current_function_decl);
6245 if (GET_CODE (fun) == MEM)
6246 fun = XEXP (fun, 0);
6247 else
6248 abort ();
6249 emit_library_call (profile_function_entry_libfunc, 0, VOIDmode, 2,
6250 fun, Pmode,
6251 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6252 0,
6253 hard_frame_pointer_rtx),
6254 Pmode);
6255 }
6256
6257 /* After the display initializations is where the tail-recursion label
6258 should go, if we end up needing one. Ensure we have a NOTE here
6259 since some things (like trampolines) get placed before this. */
6260 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
6261
6262 /* Evaluate now the sizes of any types declared among the arguments. */
6263 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
6264 {
6265 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode,
6266 EXPAND_MEMORY_USE_BAD);
6267 /* Flush the queue in case this parameter declaration has
6268 side-effects. */
6269 emit_queue ();
6270 }
6271
6272 /* Make sure there is a line number after the function entry setup code. */
6273 force_next_line_note ();
6274 }
6275 \f
6276 /* Undo the effects of init_dummy_function_start. */
6277 void
6278 expand_dummy_function_end ()
6279 {
6280 /* End any sequences that failed to be closed due to syntax errors. */
6281 while (in_sequence_p ())
6282 end_sequence ();
6283
6284 /* Outside function body, can't compute type's actual size
6285 until next function's body starts. */
6286
6287 free_after_parsing (cfun);
6288 free_after_compilation (cfun);
6289 free (cfun);
6290 cfun = 0;
6291 }
6292
6293 /* Call DOIT for each hard register used as a return value from
6294 the current function. */
6295
6296 void
6297 diddle_return_value (doit, arg)
6298 void (*doit) PARAMS ((rtx, void *));
6299 void *arg;
6300 {
6301 rtx outgoing = current_function_return_rtx;
6302
6303 if (! outgoing)
6304 return;
6305
6306 if (GET_CODE (outgoing) == REG
6307 && REGNO (outgoing) >= FIRST_PSEUDO_REGISTER)
6308 {
6309 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6310 #ifdef FUNCTION_OUTGOING_VALUE
6311 outgoing = FUNCTION_OUTGOING_VALUE (type, current_function_decl);
6312 #else
6313 outgoing = FUNCTION_VALUE (type, current_function_decl);
6314 #endif
6315 /* If this is a BLKmode structure being returned in registers, then use
6316 the mode computed in expand_return. */
6317 if (GET_MODE (outgoing) == BLKmode)
6318 PUT_MODE (outgoing,
6319 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6320 }
6321
6322 if (GET_CODE (outgoing) == REG)
6323 (*doit) (outgoing, arg);
6324 else if (GET_CODE (outgoing) == PARALLEL)
6325 {
6326 int i;
6327
6328 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6329 {
6330 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6331
6332 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6333 (*doit) (x, arg);
6334 }
6335 }
6336 }
6337
6338 static void
6339 do_clobber_return_reg (reg, arg)
6340 rtx reg;
6341 void *arg ATTRIBUTE_UNUSED;
6342 {
6343 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6344 }
6345
6346 void
6347 clobber_return_register ()
6348 {
6349 diddle_return_value (do_clobber_return_reg, NULL);
6350 }
6351
6352 static void
6353 do_use_return_reg (reg, arg)
6354 rtx reg;
6355 void *arg ATTRIBUTE_UNUSED;
6356 {
6357 emit_insn (gen_rtx_USE (VOIDmode, reg));
6358 }
6359
6360 void
6361 use_return_register ()
6362 {
6363 diddle_return_value (do_use_return_reg, NULL);
6364 }
6365
6366 /* Generate RTL for the end of the current function.
6367 FILENAME and LINE are the current position in the source file.
6368
6369 It is up to language-specific callers to do cleanups for parameters--
6370 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6371
6372 void
6373 expand_function_end (filename, line, end_bindings)
6374 char *filename;
6375 int line;
6376 int end_bindings;
6377 {
6378 tree link;
6379
6380 #ifdef TRAMPOLINE_TEMPLATE
6381 static rtx initial_trampoline;
6382 #endif
6383
6384 finish_expr_for_function ();
6385
6386 #ifdef NON_SAVING_SETJMP
6387 /* Don't put any variables in registers if we call setjmp
6388 on a machine that fails to restore the registers. */
6389 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6390 {
6391 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6392 setjmp_protect (DECL_INITIAL (current_function_decl));
6393
6394 setjmp_protect_args ();
6395 }
6396 #endif
6397
6398 /* Save the argument pointer if a save area was made for it. */
6399 if (arg_pointer_save_area)
6400 {
6401 /* arg_pointer_save_area may not be a valid memory address, so we
6402 have to check it and fix it if necessary. */
6403 rtx seq;
6404 start_sequence ();
6405 emit_move_insn (validize_mem (arg_pointer_save_area),
6406 virtual_incoming_args_rtx);
6407 seq = gen_sequence ();
6408 end_sequence ();
6409 emit_insn_before (seq, tail_recursion_reentry);
6410 }
6411
6412 /* Initialize any trampolines required by this function. */
6413 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6414 {
6415 tree function = TREE_PURPOSE (link);
6416 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6417 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6418 #ifdef TRAMPOLINE_TEMPLATE
6419 rtx blktramp;
6420 #endif
6421 rtx seq;
6422
6423 #ifdef TRAMPOLINE_TEMPLATE
6424 /* First make sure this compilation has a template for
6425 initializing trampolines. */
6426 if (initial_trampoline == 0)
6427 {
6428 end_temporary_allocation ();
6429 initial_trampoline
6430 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6431 resume_temporary_allocation ();
6432
6433 ggc_add_rtx_root (&initial_trampoline, 1);
6434 }
6435 #endif
6436
6437 /* Generate insns to initialize the trampoline. */
6438 start_sequence ();
6439 tramp = round_trampoline_addr (XEXP (tramp, 0));
6440 #ifdef TRAMPOLINE_TEMPLATE
6441 blktramp = change_address (initial_trampoline, BLKmode, tramp);
6442 emit_block_move (blktramp, initial_trampoline,
6443 GEN_INT (TRAMPOLINE_SIZE),
6444 TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
6445 #endif
6446 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6447 seq = get_insns ();
6448 end_sequence ();
6449
6450 /* Put those insns at entry to the containing function (this one). */
6451 emit_insns_before (seq, tail_recursion_reentry);
6452 }
6453
6454 /* If we are doing stack checking and this function makes calls,
6455 do a stack probe at the start of the function to ensure we have enough
6456 space for another stack frame. */
6457 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6458 {
6459 rtx insn, seq;
6460
6461 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6462 if (GET_CODE (insn) == CALL_INSN)
6463 {
6464 start_sequence ();
6465 probe_stack_range (STACK_CHECK_PROTECT,
6466 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6467 seq = get_insns ();
6468 end_sequence ();
6469 emit_insns_before (seq, tail_recursion_reentry);
6470 break;
6471 }
6472 }
6473
6474 /* Warn about unused parms if extra warnings were specified. */
6475 if (warn_unused && extra_warnings)
6476 {
6477 tree decl;
6478
6479 for (decl = DECL_ARGUMENTS (current_function_decl);
6480 decl; decl = TREE_CHAIN (decl))
6481 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6482 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6483 warning_with_decl (decl, "unused parameter `%s'");
6484 }
6485
6486 /* Delete handlers for nonlocal gotos if nothing uses them. */
6487 if (nonlocal_goto_handler_slots != 0
6488 && ! current_function_has_nonlocal_label)
6489 delete_handlers ();
6490
6491 /* End any sequences that failed to be closed due to syntax errors. */
6492 while (in_sequence_p ())
6493 end_sequence ();
6494
6495 /* Outside function body, can't compute type's actual size
6496 until next function's body starts. */
6497 immediate_size_expand--;
6498
6499 clear_pending_stack_adjust ();
6500 do_pending_stack_adjust ();
6501
6502 /* Mark the end of the function body.
6503 If control reaches this insn, the function can drop through
6504 without returning a value. */
6505 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
6506
6507 /* Must mark the last line number note in the function, so that the test
6508 coverage code can avoid counting the last line twice. This just tells
6509 the code to ignore the immediately following line note, since there
6510 already exists a copy of this note somewhere above. This line number
6511 note is still needed for debugging though, so we can't delete it. */
6512 if (flag_test_coverage)
6513 emit_note (NULL_PTR, NOTE_REPEATED_LINE_NUMBER);
6514
6515 /* Output a linenumber for the end of the function.
6516 SDB depends on this. */
6517 emit_line_note_force (filename, line);
6518
6519 /* Output the label for the actual return from the function,
6520 if one is expected. This happens either because a function epilogue
6521 is used instead of a return instruction, or because a return was done
6522 with a goto in order to run local cleanups, or because of pcc-style
6523 structure returning. */
6524
6525 if (return_label)
6526 {
6527 /* Before the return label, clobber the return registers so that
6528 they are not propogated live to the rest of the function. This
6529 can only happen with functions that drop through; if there had
6530 been a return statement, there would have either been a return
6531 rtx, or a jump to the return label. */
6532 clobber_return_register ();
6533
6534 emit_label (return_label);
6535 }
6536
6537 /* C++ uses this. */
6538 if (end_bindings)
6539 expand_end_bindings (0, 0, 0);
6540
6541 /* Now handle any leftover exception regions that may have been
6542 created for the parameters. */
6543 {
6544 rtx last = get_last_insn ();
6545 rtx label;
6546
6547 expand_leftover_cleanups ();
6548
6549 /* If there are any catch_clauses remaining, output them now. */
6550 emit_insns (catch_clauses);
6551 catch_clauses = catch_clauses_last = NULL_RTX;
6552 /* If the above emitted any code, may sure we jump around it. */
6553 if (last != get_last_insn ())
6554 {
6555 label = gen_label_rtx ();
6556 last = emit_jump_insn_after (gen_jump (label), last);
6557 last = emit_barrier_after (last);
6558 emit_label (label);
6559 }
6560 }
6561
6562 if (current_function_instrument_entry_exit)
6563 {
6564 rtx fun = DECL_RTL (current_function_decl);
6565 if (GET_CODE (fun) == MEM)
6566 fun = XEXP (fun, 0);
6567 else
6568 abort ();
6569 emit_library_call (profile_function_exit_libfunc, 0, VOIDmode, 2,
6570 fun, Pmode,
6571 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6572 0,
6573 hard_frame_pointer_rtx),
6574 Pmode);
6575 }
6576
6577 /* If we had calls to alloca, and this machine needs
6578 an accurate stack pointer to exit the function,
6579 insert some code to save and restore the stack pointer. */
6580 #ifdef EXIT_IGNORE_STACK
6581 if (! EXIT_IGNORE_STACK)
6582 #endif
6583 if (current_function_calls_alloca)
6584 {
6585 rtx tem = 0;
6586
6587 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6588 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6589 }
6590
6591 /* If scalar return value was computed in a pseudo-reg,
6592 copy that to the hard return register. */
6593 if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0
6594 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG
6595 && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl)))
6596 >= FIRST_PSEUDO_REGISTER))
6597 {
6598 rtx real_decl_result;
6599
6600 #ifdef FUNCTION_OUTGOING_VALUE
6601 real_decl_result
6602 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6603 current_function_decl);
6604 #else
6605 real_decl_result
6606 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6607 current_function_decl);
6608 #endif
6609 REG_FUNCTION_VALUE_P (real_decl_result) = 1;
6610 /* If this is a BLKmode structure being returned in registers, then use
6611 the mode computed in expand_return. */
6612 if (GET_MODE (real_decl_result) == BLKmode)
6613 PUT_MODE (real_decl_result,
6614 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6615 emit_move_insn (real_decl_result,
6616 DECL_RTL (DECL_RESULT (current_function_decl)));
6617
6618 /* The delay slot scheduler assumes that current_function_return_rtx
6619 holds the hard register containing the return value, not a temporary
6620 pseudo. */
6621 current_function_return_rtx = real_decl_result;
6622 }
6623
6624 /* If returning a structure, arrange to return the address of the value
6625 in a place where debuggers expect to find it.
6626
6627 If returning a structure PCC style,
6628 the caller also depends on this value.
6629 And current_function_returns_pcc_struct is not necessarily set. */
6630 if (current_function_returns_struct
6631 || current_function_returns_pcc_struct)
6632 {
6633 rtx value_address = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
6634 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6635 #ifdef FUNCTION_OUTGOING_VALUE
6636 rtx outgoing
6637 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
6638 current_function_decl);
6639 #else
6640 rtx outgoing
6641 = FUNCTION_VALUE (build_pointer_type (type),
6642 current_function_decl);
6643 #endif
6644
6645 /* Mark this as a function return value so integrate will delete the
6646 assignment and USE below when inlining this function. */
6647 REG_FUNCTION_VALUE_P (outgoing) = 1;
6648
6649 emit_move_insn (outgoing, value_address);
6650 }
6651
6652 /* ??? This should no longer be necessary since stupid is no longer with
6653 us, but there are some parts of the compiler (eg reload_combine, and
6654 sh mach_dep_reorg) that still try and compute their own lifetime info
6655 instead of using the general framework. */
6656 use_return_register ();
6657
6658 /* If this is an implementation of __throw, do what's necessary to
6659 communicate between __builtin_eh_return and the epilogue. */
6660 expand_eh_return ();
6661
6662 /* Output a return insn if we are using one.
6663 Otherwise, let the rtl chain end here, to drop through
6664 into the epilogue. */
6665
6666 #ifdef HAVE_return
6667 if (HAVE_return)
6668 {
6669 emit_jump_insn (gen_return ());
6670 emit_barrier ();
6671 }
6672 #endif
6673
6674 /* Fix up any gotos that jumped out to the outermost
6675 binding level of the function.
6676 Must follow emitting RETURN_LABEL. */
6677
6678 /* If you have any cleanups to do at this point,
6679 and they need to create temporary variables,
6680 then you will lose. */
6681 expand_fixups (get_insns ());
6682 }
6683 \f
6684 /* Extend a vector that records the INSN_UIDs of INSNS (either a
6685 sequence or a single insn). */
6686
6687 static void
6688 record_insns (insns, vecp)
6689 rtx insns;
6690 varray_type *vecp;
6691 {
6692 if (GET_CODE (insns) == SEQUENCE)
6693 {
6694 int len = XVECLEN (insns, 0);
6695 int i = VARRAY_SIZE (*vecp);
6696
6697 VARRAY_GROW (*vecp, i + len);
6698 while (--len >= 0)
6699 {
6700 VARRAY_INT (*vecp, i) = INSN_UID (XVECEXP (insns, 0, len));
6701 ++i;
6702 }
6703 }
6704 else
6705 {
6706 int i = VARRAY_SIZE (*vecp);
6707 VARRAY_GROW (*vecp, i + 1);
6708 VARRAY_INT (*vecp, i) = INSN_UID (insns);
6709 }
6710 }
6711
6712 /* Determine how many INSN_UIDs in VEC are part of INSN. */
6713
6714 static int
6715 contains (insn, vec)
6716 rtx insn;
6717 varray_type vec;
6718 {
6719 register int i, j;
6720
6721 if (GET_CODE (insn) == INSN
6722 && GET_CODE (PATTERN (insn)) == SEQUENCE)
6723 {
6724 int count = 0;
6725 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6726 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6727 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
6728 count++;
6729 return count;
6730 }
6731 else
6732 {
6733 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6734 if (INSN_UID (insn) == VARRAY_INT (vec, j))
6735 return 1;
6736 }
6737 return 0;
6738 }
6739
6740 int
6741 prologue_epilogue_contains (insn)
6742 rtx insn;
6743 {
6744 if (contains (insn, prologue))
6745 return 1;
6746 if (contains (insn, epilogue))
6747 return 1;
6748 return 0;
6749 }
6750
6751 int
6752 sibcall_epilogue_contains (insn)
6753 rtx insn;
6754 {
6755 if (sibcall_epilogue)
6756 return contains (insn, sibcall_epilogue);
6757 return 0;
6758 }
6759
6760 #ifdef HAVE_return
6761 /* Insert gen_return at the end of block BB. This also means updating
6762 block_for_insn appropriately. */
6763
6764 static void
6765 emit_return_into_block (bb)
6766 basic_block bb;
6767 {
6768 rtx p, end;
6769
6770 end = emit_jump_insn_after (gen_return (), bb->end);
6771 p = NEXT_INSN (bb->end);
6772 while (1)
6773 {
6774 set_block_for_insn (p, bb);
6775 if (p == end)
6776 break;
6777 p = NEXT_INSN (p);
6778 }
6779 bb->end = end;
6780 }
6781 #endif /* HAVE_return */
6782
6783 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
6784 this into place with notes indicating where the prologue ends and where
6785 the epilogue begins. Update the basic block information when possible. */
6786
6787 void
6788 thread_prologue_and_epilogue_insns (f)
6789 rtx f ATTRIBUTE_UNUSED;
6790 {
6791 int insertted = 0;
6792 edge e;
6793 rtx seq;
6794
6795 #ifdef HAVE_prologue
6796 if (HAVE_prologue)
6797 {
6798 rtx insn;
6799
6800 start_sequence ();
6801 seq = gen_prologue();
6802 emit_insn (seq);
6803
6804 /* Retain a map of the prologue insns. */
6805 if (GET_CODE (seq) != SEQUENCE)
6806 seq = get_insns ();
6807 record_insns (seq, &prologue);
6808 emit_note (NULL, NOTE_INSN_PROLOGUE_END);
6809
6810 /* GDB handles `break f' by setting a breakpoint on the first
6811 line note *after* the prologue. That means that we should
6812 insert a line note here; otherwise, if the next line note
6813 comes part way into the next block, GDB will skip all the way
6814 to that point. */
6815 insn = next_nonnote_insn (f);
6816 while (insn)
6817 {
6818 if (GET_CODE (insn) == NOTE
6819 && NOTE_LINE_NUMBER (insn) >= 0)
6820 {
6821 emit_line_note_force (NOTE_SOURCE_FILE (insn),
6822 NOTE_LINE_NUMBER (insn));
6823 break;
6824 }
6825
6826 insn = PREV_INSN (insn);
6827 }
6828
6829 seq = gen_sequence ();
6830 end_sequence ();
6831
6832 /* If optimization is off, and perhaps in an empty function,
6833 the entry block will have no successors. */
6834 if (ENTRY_BLOCK_PTR->succ)
6835 {
6836 /* Can't deal with multiple successsors of the entry block. */
6837 if (ENTRY_BLOCK_PTR->succ->succ_next)
6838 abort ();
6839
6840 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
6841 insertted = 1;
6842 }
6843 else
6844 emit_insn_after (seq, f);
6845 }
6846 #endif
6847
6848 /* If the exit block has no non-fake predecessors, we don't need
6849 an epilogue. */
6850 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6851 if ((e->flags & EDGE_FAKE) == 0)
6852 break;
6853 if (e == NULL)
6854 goto epilogue_done;
6855
6856 #ifdef HAVE_return
6857 if (optimize && HAVE_return)
6858 {
6859 /* If we're allowed to generate a simple return instruction,
6860 then by definition we don't need a full epilogue. Examine
6861 the block that falls through to EXIT. If it does not
6862 contain any code, examine its predecessors and try to
6863 emit (conditional) return instructions. */
6864
6865 basic_block last;
6866 edge e_next;
6867 rtx label;
6868
6869 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6870 if (e->flags & EDGE_FALLTHRU)
6871 break;
6872 if (e == NULL)
6873 goto epilogue_done;
6874 last = e->src;
6875
6876 /* Verify that there are no active instructions in the last block. */
6877 label = last->end;
6878 while (label && GET_CODE (label) != CODE_LABEL)
6879 {
6880 if (active_insn_p (label))
6881 break;
6882 label = PREV_INSN (label);
6883 }
6884
6885 if (last->head == label && GET_CODE (label) == CODE_LABEL)
6886 {
6887 for (e = last->pred; e ; e = e_next)
6888 {
6889 basic_block bb = e->src;
6890 rtx jump;
6891
6892 e_next = e->pred_next;
6893 if (bb == ENTRY_BLOCK_PTR)
6894 continue;
6895
6896 jump = bb->end;
6897 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
6898 continue;
6899
6900 /* If we have an unconditional jump, we can replace that
6901 with a simple return instruction. */
6902 if (simplejump_p (jump))
6903 {
6904 emit_return_into_block (bb);
6905 flow_delete_insn (jump);
6906 }
6907
6908 /* If we have a conditional jump, we can try to replace
6909 that with a conditional return instruction. */
6910 else if (condjump_p (jump))
6911 {
6912 rtx ret, *loc;
6913
6914 ret = SET_SRC (PATTERN (jump));
6915 if (GET_CODE (XEXP (ret, 1)) == LABEL_REF)
6916 loc = &XEXP (ret, 1);
6917 else
6918 loc = &XEXP (ret, 2);
6919 ret = gen_rtx_RETURN (VOIDmode);
6920
6921 if (! validate_change (jump, loc, ret, 0))
6922 continue;
6923 if (JUMP_LABEL (jump))
6924 LABEL_NUSES (JUMP_LABEL (jump))--;
6925
6926 /* If this block has only one successor, it both jumps
6927 and falls through to the fallthru block, so we can't
6928 delete the edge. */
6929 if (bb->succ->succ_next == NULL)
6930 continue;
6931 }
6932 else
6933 continue;
6934
6935 /* Fix up the CFG for the successful change we just made. */
6936 remove_edge (e);
6937 make_edge (NULL, bb, EXIT_BLOCK_PTR, 0);
6938 }
6939
6940 /* Emit a return insn for the exit fallthru block. Whether
6941 this is still reachable will be determined later. */
6942
6943 emit_barrier_after (last->end);
6944 emit_return_into_block (last);
6945 }
6946 else
6947 {
6948 /* The exit block wasn't empty. We have to use insert_insn_on_edge,
6949 as it may be the exit block can go elsewhere as well
6950 as exiting. */
6951 start_sequence ();
6952 emit_jump_insn (gen_return ());
6953 seq = gen_sequence ();
6954 end_sequence ();
6955 insert_insn_on_edge (seq, e);
6956 insertted = 1;
6957 }
6958 goto epilogue_done;
6959 }
6960 #endif
6961 #ifdef HAVE_epilogue
6962 if (HAVE_epilogue)
6963 {
6964 /* Find the edge that falls through to EXIT. Other edges may exist
6965 due to RETURN instructions, but those don't need epilogues.
6966 There really shouldn't be a mixture -- either all should have
6967 been converted or none, however... */
6968
6969 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6970 if (e->flags & EDGE_FALLTHRU)
6971 break;
6972 if (e == NULL)
6973 goto epilogue_done;
6974
6975 start_sequence ();
6976 emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
6977
6978 seq = gen_epilogue ();
6979 emit_jump_insn (seq);
6980
6981 /* Retain a map of the epilogue insns. */
6982 if (GET_CODE (seq) != SEQUENCE)
6983 seq = get_insns ();
6984 record_insns (seq, &epilogue);
6985
6986 seq = gen_sequence ();
6987 end_sequence();
6988
6989 insert_insn_on_edge (seq, e);
6990 insertted = 1;
6991 }
6992 #endif
6993 epilogue_done:
6994
6995 if (insertted)
6996 commit_edge_insertions ();
6997
6998 #ifdef HAVE_sibcall_epilogue
6999 /* Emit sibling epilogues before any sibling call sites. */
7000 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
7001 {
7002 basic_block bb = e->src;
7003 rtx insn = bb->end;
7004 rtx i;
7005
7006 if (GET_CODE (insn) != CALL_INSN
7007 || ! SIBLING_CALL_P (insn))
7008 continue;
7009
7010 start_sequence ();
7011 seq = gen_sibcall_epilogue ();
7012 end_sequence ();
7013
7014 i = PREV_INSN (insn);
7015 emit_insn_before (seq, insn);
7016
7017 /* Update the UID to basic block map. */
7018 for (i = NEXT_INSN (i); i != insn; i = NEXT_INSN (i))
7019 set_block_for_insn (i, bb);
7020
7021 /* Retain a map of the epilogue insns. Used in life analysis to
7022 avoid getting rid of sibcall epilogue insns. */
7023 record_insns (seq, &sibcall_epilogue);
7024 }
7025 #endif
7026 }
7027
7028 /* Reposition the prologue-end and epilogue-begin notes after instruction
7029 scheduling and delayed branch scheduling. */
7030
7031 void
7032 reposition_prologue_and_epilogue_notes (f)
7033 rtx f ATTRIBUTE_UNUSED;
7034 {
7035 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7036 int len;
7037
7038 if ((len = VARRAY_SIZE (prologue)) > 0)
7039 {
7040 register rtx insn, note = 0;
7041
7042 /* Scan from the beginning until we reach the last prologue insn.
7043 We apparently can't depend on basic_block_{head,end} after
7044 reorg has run. */
7045 for (insn = f; len && insn; insn = NEXT_INSN (insn))
7046 {
7047 if (GET_CODE (insn) == NOTE)
7048 {
7049 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7050 note = insn;
7051 }
7052 else if ((len -= contains (insn, prologue)) == 0)
7053 {
7054 rtx next;
7055 /* Find the prologue-end note if we haven't already, and
7056 move it to just after the last prologue insn. */
7057 if (note == 0)
7058 {
7059 for (note = insn; (note = NEXT_INSN (note));)
7060 if (GET_CODE (note) == NOTE
7061 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7062 break;
7063 }
7064
7065 next = NEXT_INSN (note);
7066
7067 /* Whether or not we can depend on BLOCK_HEAD,
7068 attempt to keep it up-to-date. */
7069 if (BLOCK_HEAD (0) == note)
7070 BLOCK_HEAD (0) = next;
7071
7072 remove_insn (note);
7073 add_insn_after (note, insn);
7074 }
7075 }
7076 }
7077
7078 if ((len = VARRAY_SIZE (epilogue)) > 0)
7079 {
7080 register rtx insn, note = 0;
7081
7082 /* Scan from the end until we reach the first epilogue insn.
7083 We apparently can't depend on basic_block_{head,end} after
7084 reorg has run. */
7085 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
7086 {
7087 if (GET_CODE (insn) == NOTE)
7088 {
7089 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7090 note = insn;
7091 }
7092 else if ((len -= contains (insn, epilogue)) == 0)
7093 {
7094 /* Find the epilogue-begin note if we haven't already, and
7095 move it to just before the first epilogue insn. */
7096 if (note == 0)
7097 {
7098 for (note = insn; (note = PREV_INSN (note));)
7099 if (GET_CODE (note) == NOTE
7100 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7101 break;
7102 }
7103
7104 /* Whether or not we can depend on BLOCK_HEAD,
7105 attempt to keep it up-to-date. */
7106 if (n_basic_blocks
7107 && BLOCK_HEAD (n_basic_blocks-1) == insn)
7108 BLOCK_HEAD (n_basic_blocks-1) = note;
7109
7110 remove_insn (note);
7111 add_insn_before (note, insn);
7112 }
7113 }
7114 }
7115 #endif /* HAVE_prologue or HAVE_epilogue */
7116 }
7117
7118 /* Mark T for GC. */
7119
7120 static void
7121 mark_temp_slot (t)
7122 struct temp_slot *t;
7123 {
7124 while (t)
7125 {
7126 ggc_mark_rtx (t->slot);
7127 ggc_mark_rtx (t->address);
7128 ggc_mark_tree (t->rtl_expr);
7129
7130 t = t->next;
7131 }
7132 }
7133
7134 /* Mark P for GC. */
7135
7136 static void
7137 mark_function_status (p)
7138 struct function *p;
7139 {
7140 int i;
7141 rtx *r;
7142
7143 if (p == 0)
7144 return;
7145
7146 ggc_mark_rtx (p->arg_offset_rtx);
7147
7148 if (p->x_parm_reg_stack_loc)
7149 for (i = p->x_max_parm_reg, r = p->x_parm_reg_stack_loc;
7150 i > 0; --i, ++r)
7151 ggc_mark_rtx (*r);
7152
7153 ggc_mark_rtx (p->return_rtx);
7154 ggc_mark_rtx (p->x_cleanup_label);
7155 ggc_mark_rtx (p->x_return_label);
7156 ggc_mark_rtx (p->x_save_expr_regs);
7157 ggc_mark_rtx (p->x_stack_slot_list);
7158 ggc_mark_rtx (p->x_parm_birth_insn);
7159 ggc_mark_rtx (p->x_tail_recursion_label);
7160 ggc_mark_rtx (p->x_tail_recursion_reentry);
7161 ggc_mark_rtx (p->internal_arg_pointer);
7162 ggc_mark_rtx (p->x_arg_pointer_save_area);
7163 ggc_mark_tree (p->x_rtl_expr_chain);
7164 ggc_mark_rtx (p->x_last_parm_insn);
7165 ggc_mark_tree (p->x_context_display);
7166 ggc_mark_tree (p->x_trampoline_list);
7167 ggc_mark_rtx (p->epilogue_delay_list);
7168
7169 mark_temp_slot (p->x_temp_slots);
7170
7171 {
7172 struct var_refs_queue *q = p->fixup_var_refs_queue;
7173 while (q)
7174 {
7175 ggc_mark_rtx (q->modified);
7176 q = q->next;
7177 }
7178 }
7179
7180 ggc_mark_rtx (p->x_nonlocal_goto_handler_slots);
7181 ggc_mark_rtx (p->x_nonlocal_goto_handler_labels);
7182 ggc_mark_rtx (p->x_nonlocal_goto_stack_level);
7183 ggc_mark_tree (p->x_nonlocal_labels);
7184 }
7185
7186 /* Mark the function chain ARG (which is really a struct function **)
7187 for GC. */
7188
7189 static void
7190 mark_function_chain (arg)
7191 void *arg;
7192 {
7193 struct function *f = *(struct function **) arg;
7194
7195 for (; f; f = f->next_global)
7196 {
7197 ggc_mark_tree (f->decl);
7198
7199 mark_function_status (f);
7200 mark_eh_status (f->eh);
7201 mark_stmt_status (f->stmt);
7202 mark_expr_status (f->expr);
7203 mark_emit_status (f->emit);
7204 mark_varasm_status (f->varasm);
7205
7206 if (mark_machine_status)
7207 (*mark_machine_status) (f);
7208 if (mark_lang_status)
7209 (*mark_lang_status) (f);
7210
7211 if (f->original_arg_vector)
7212 ggc_mark_rtvec ((rtvec) f->original_arg_vector);
7213 if (f->original_decl_initial)
7214 ggc_mark_tree (f->original_decl_initial);
7215 }
7216 }
7217
7218 /* Called once, at initialization, to initialize function.c. */
7219
7220 void
7221 init_function_once ()
7222 {
7223 ggc_add_root (&all_functions, 1, sizeof all_functions,
7224 mark_function_chain);
7225
7226 VARRAY_INT_INIT (prologue, 0, "prologue");
7227 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7228 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
7229 }
This page took 0.362085 seconds and 6 git commands to generate.