]> gcc.gnu.org Git - gcc.git/blob - gcc/function.c
b502ab41f58ae0a5afaa56d0512924b0beceea1a
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
27
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
31
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register.
36
37 Call `put_var_into_stack' when you learn, belatedly, that a variable
38 previously given a pseudo-register must in fact go in the stack.
39 This function changes the DECL_RTL to be a stack slot instead of a reg
40 then scans all the RTL instructions so far generated to correct them. */
41
42 #include "config.h"
43 #include "system.h"
44 #include "rtl.h"
45 #include "tree.h"
46 #include "flags.h"
47 #include "except.h"
48 #include "function.h"
49 #include "insn-flags.h"
50 #include "expr.h"
51 #include "insn-codes.h"
52 #include "regs.h"
53 #include "hard-reg-set.h"
54 #include "insn-config.h"
55 #include "recog.h"
56 #include "output.h"
57 #include "basic-block.h"
58 #include "obstack.h"
59 #include "toplev.h"
60 #include "hash.h"
61 #include "ggc.h"
62 #include "tm_p.h"
63
64 #ifndef ACCUMULATE_OUTGOING_ARGS
65 #define ACCUMULATE_OUTGOING_ARGS 0
66 #endif
67
68 #ifndef TRAMPOLINE_ALIGNMENT
69 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
70 #endif
71
72 #ifndef LOCAL_ALIGNMENT
73 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
74 #endif
75
76 #if !defined (PREFERRED_STACK_BOUNDARY) && defined (STACK_BOUNDARY)
77 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
78 #endif
79
80 /* Some systems use __main in a way incompatible with its use in gcc, in these
81 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
82 give the same symbol without quotes for an alternative entry point. You
83 must define both, or neither. */
84 #ifndef NAME__MAIN
85 #define NAME__MAIN "__main"
86 #define SYMBOL__MAIN __main
87 #endif
88
89 /* Round a value to the lowest integer less than it that is a multiple of
90 the required alignment. Avoid using division in case the value is
91 negative. Assume the alignment is a power of two. */
92 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
93
94 /* Similar, but round to the next highest integer that meets the
95 alignment. */
96 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
97
98 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
99 during rtl generation. If they are different register numbers, this is
100 always true. It may also be true if
101 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
102 generation. See fix_lexical_addr for details. */
103
104 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
105 #define NEED_SEPARATE_AP
106 #endif
107
108 /* Nonzero if function being compiled doesn't contain any calls
109 (ignoring the prologue and epilogue). This is set prior to
110 local register allocation and is valid for the remaining
111 compiler passes. */
112 int current_function_is_leaf;
113
114 /* Nonzero if function being compiled doesn't contain any instructions
115 that can throw an exception. This is set prior to final. */
116
117 int current_function_nothrow;
118
119 /* Nonzero if function being compiled doesn't modify the stack pointer
120 (ignoring the prologue and epilogue). This is only valid after
121 life_analysis has run. */
122 int current_function_sp_is_unchanging;
123
124 /* Nonzero if the function being compiled is a leaf function which only
125 uses leaf registers. This is valid after reload (specifically after
126 sched2) and is useful only if the port defines LEAF_REGISTERS. */
127 int current_function_uses_only_leaf_regs;
128
129 /* Nonzero once virtual register instantiation has been done.
130 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
131 static int virtuals_instantiated;
132
133 /* These variables hold pointers to functions to
134 save and restore machine-specific data,
135 in push_function_context and pop_function_context. */
136 void (*init_machine_status) PARAMS ((struct function *));
137 void (*save_machine_status) PARAMS ((struct function *));
138 void (*restore_machine_status) PARAMS ((struct function *));
139 void (*mark_machine_status) PARAMS ((struct function *));
140 void (*free_machine_status) PARAMS ((struct function *));
141
142 /* Likewise, but for language-specific data. */
143 void (*init_lang_status) PARAMS ((struct function *));
144 void (*save_lang_status) PARAMS ((struct function *));
145 void (*restore_lang_status) PARAMS ((struct function *));
146 void (*mark_lang_status) PARAMS ((struct function *));
147 void (*free_lang_status) PARAMS ((struct function *));
148
149 /* The FUNCTION_DECL for an inline function currently being expanded. */
150 tree inline_function_decl;
151
152 /* The currently compiled function. */
153 struct function *cfun = 0;
154
155 /* Global list of all compiled functions. */
156 struct function *all_functions = 0;
157
158 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
159 static varray_type prologue;
160 static varray_type epilogue;
161
162 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
163 in this function. */
164 static varray_type sibcall_epilogue;
165 \f
166 /* In order to evaluate some expressions, such as function calls returning
167 structures in memory, we need to temporarily allocate stack locations.
168 We record each allocated temporary in the following structure.
169
170 Associated with each temporary slot is a nesting level. When we pop up
171 one level, all temporaries associated with the previous level are freed.
172 Normally, all temporaries are freed after the execution of the statement
173 in which they were created. However, if we are inside a ({...}) grouping,
174 the result may be in a temporary and hence must be preserved. If the
175 result could be in a temporary, we preserve it if we can determine which
176 one it is in. If we cannot determine which temporary may contain the
177 result, all temporaries are preserved. A temporary is preserved by
178 pretending it was allocated at the previous nesting level.
179
180 Automatic variables are also assigned temporary slots, at the nesting
181 level where they are defined. They are marked a "kept" so that
182 free_temp_slots will not free them. */
183
184 struct temp_slot
185 {
186 /* Points to next temporary slot. */
187 struct temp_slot *next;
188 /* The rtx to used to reference the slot. */
189 rtx slot;
190 /* The rtx used to represent the address if not the address of the
191 slot above. May be an EXPR_LIST if multiple addresses exist. */
192 rtx address;
193 /* The alignment (in bits) of the slot. */
194 int align;
195 /* The size, in units, of the slot. */
196 HOST_WIDE_INT size;
197 /* The alias set for the slot. If the alias set is zero, we don't
198 know anything about the alias set of the slot. We must only
199 reuse a slot if it is assigned an object of the same alias set.
200 Otherwise, the rest of the compiler may assume that the new use
201 of the slot cannot alias the old use of the slot, which is
202 false. If the slot has alias set zero, then we can't reuse the
203 slot at all, since we have no idea what alias set may have been
204 imposed on the memory. For example, if the stack slot is the
205 call frame for an inline functioned, we have no idea what alias
206 sets will be assigned to various pieces of the call frame. */
207 int alias_set;
208 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
209 tree rtl_expr;
210 /* Non-zero if this temporary is currently in use. */
211 char in_use;
212 /* Non-zero if this temporary has its address taken. */
213 char addr_taken;
214 /* Nesting level at which this slot is being used. */
215 int level;
216 /* Non-zero if this should survive a call to free_temp_slots. */
217 int keep;
218 /* The offset of the slot from the frame_pointer, including extra space
219 for alignment. This info is for combine_temp_slots. */
220 HOST_WIDE_INT base_offset;
221 /* The size of the slot, including extra space for alignment. This
222 info is for combine_temp_slots. */
223 HOST_WIDE_INT full_size;
224 };
225 \f
226 /* This structure is used to record MEMs or pseudos used to replace VAR, any
227 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
228 maintain this list in case two operands of an insn were required to match;
229 in that case we must ensure we use the same replacement. */
230
231 struct fixup_replacement
232 {
233 rtx old;
234 rtx new;
235 struct fixup_replacement *next;
236 };
237
238 struct insns_for_mem_entry {
239 /* The KEY in HE will be a MEM. */
240 struct hash_entry he;
241 /* These are the INSNS which reference the MEM. */
242 rtx insns;
243 };
244
245 /* Forward declarations. */
246
247 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
248 int, struct function *));
249 static rtx assign_stack_temp_for_type PARAMS ((enum machine_mode,
250 HOST_WIDE_INT, int, tree));
251 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
252 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
253 enum machine_mode, enum machine_mode,
254 int, unsigned int, int,
255 struct hash_table *));
256 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int,
257 struct hash_table *));
258 static struct fixup_replacement
259 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
260 static void fixup_var_refs_insns PARAMS ((rtx, enum machine_mode, int,
261 rtx, int, struct hash_table *));
262 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
263 struct fixup_replacement **));
264 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, int));
265 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, int));
266 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
267 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
268 static void instantiate_decls PARAMS ((tree, int));
269 static void instantiate_decls_1 PARAMS ((tree, int));
270 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
271 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
272 static void delete_handlers PARAMS ((void));
273 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
274 struct args_size *));
275 #ifndef ARGS_GROW_DOWNWARD
276 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
277 tree));
278 #endif
279 #ifdef ARGS_GROW_DOWNWARD
280 static tree round_down PARAMS ((tree, int));
281 #endif
282 static rtx round_trampoline_addr PARAMS ((rtx));
283 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
284 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
285 static tree blocks_nreverse PARAMS ((tree));
286 static int all_blocks PARAMS ((tree, tree *));
287 static tree *get_block_vector PARAMS ((tree, int *));
288 /* We always define `record_insns' even if its not used so that we
289 can always export `prologue_epilogue_contains'. */
290 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
291 static int contains PARAMS ((rtx, varray_type));
292 #ifdef HAVE_return
293 static void emit_return_into_block PARAMS ((basic_block));
294 #endif
295 static void put_addressof_into_stack PARAMS ((rtx, struct hash_table *));
296 static boolean purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
297 struct hash_table *));
298 static int is_addressof PARAMS ((rtx *, void *));
299 static struct hash_entry *insns_for_mem_newfunc PARAMS ((struct hash_entry *,
300 struct hash_table *,
301 hash_table_key));
302 static unsigned long insns_for_mem_hash PARAMS ((hash_table_key));
303 static boolean insns_for_mem_comp PARAMS ((hash_table_key, hash_table_key));
304 static int insns_for_mem_walk PARAMS ((rtx *, void *));
305 static void compute_insns_for_mem PARAMS ((rtx, rtx, struct hash_table *));
306 static void mark_temp_slot PARAMS ((struct temp_slot *));
307 static void mark_function_status PARAMS ((struct function *));
308 static void mark_function_chain PARAMS ((void *));
309 static void prepare_function_start PARAMS ((void));
310 static void do_clobber_return_reg PARAMS ((rtx, void *));
311 static void do_use_return_reg PARAMS ((rtx, void *));
312 \f
313 /* Pointer to chain of `struct function' for containing functions. */
314 struct function *outer_function_chain;
315
316 /* Given a function decl for a containing function,
317 return the `struct function' for it. */
318
319 struct function *
320 find_function_data (decl)
321 tree decl;
322 {
323 struct function *p;
324
325 for (p = outer_function_chain; p; p = p->next)
326 if (p->decl == decl)
327 return p;
328
329 abort ();
330 }
331
332 /* Save the current context for compilation of a nested function.
333 This is called from language-specific code. The caller should use
334 the save_lang_status callback to save any language-specific state,
335 since this function knows only about language-independent
336 variables. */
337
338 void
339 push_function_context_to (context)
340 tree context;
341 {
342 struct function *p, *context_data;
343
344 if (context)
345 {
346 context_data = (context == current_function_decl
347 ? cfun
348 : find_function_data (context));
349 context_data->contains_functions = 1;
350 }
351
352 if (cfun == 0)
353 init_dummy_function_start ();
354 p = cfun;
355
356 p->next = outer_function_chain;
357 outer_function_chain = p;
358 p->fixup_var_refs_queue = 0;
359
360 save_tree_status (p);
361 if (save_lang_status)
362 (*save_lang_status) (p);
363 if (save_machine_status)
364 (*save_machine_status) (p);
365
366 cfun = 0;
367 }
368
369 void
370 push_function_context ()
371 {
372 push_function_context_to (current_function_decl);
373 }
374
375 /* Restore the last saved context, at the end of a nested function.
376 This function is called from language-specific code. */
377
378 void
379 pop_function_context_from (context)
380 tree context ATTRIBUTE_UNUSED;
381 {
382 struct function *p = outer_function_chain;
383 struct var_refs_queue *queue;
384 struct var_refs_queue *next;
385
386 cfun = p;
387 outer_function_chain = p->next;
388
389 current_function_decl = p->decl;
390 reg_renumber = 0;
391
392 restore_tree_status (p);
393 restore_emit_status (p);
394
395 if (restore_machine_status)
396 (*restore_machine_status) (p);
397 if (restore_lang_status)
398 (*restore_lang_status) (p);
399
400 /* Finish doing put_var_into_stack for any of our variables
401 which became addressable during the nested function. */
402 for (queue = p->fixup_var_refs_queue; queue; queue = next)
403 {
404 next = queue->next;
405 fixup_var_refs (queue->modified, queue->promoted_mode,
406 queue->unsignedp, 0);
407 free (queue);
408 }
409 p->fixup_var_refs_queue = 0;
410
411 /* Reset variables that have known state during rtx generation. */
412 rtx_equal_function_value_matters = 1;
413 virtuals_instantiated = 0;
414 }
415
416 void
417 pop_function_context ()
418 {
419 pop_function_context_from (current_function_decl);
420 }
421
422 /* Clear out all parts of the state in F that can safely be discarded
423 after the function has been parsed, but not compiled, to let
424 garbage collection reclaim the memory. */
425
426 void
427 free_after_parsing (f)
428 struct function *f;
429 {
430 /* f->expr->forced_labels is used by code generation. */
431 /* f->emit->regno_reg_rtx is used by code generation. */
432 /* f->varasm is used by code generation. */
433 /* f->eh->eh_return_stub_label is used by code generation. */
434
435 if (free_lang_status)
436 (*free_lang_status) (f);
437 free_stmt_status (f);
438 }
439
440 /* Clear out all parts of the state in F that can safely be discarded
441 after the function has been compiled, to let garbage collection
442 reclaim the memory. */
443
444 void
445 free_after_compilation (f)
446 struct function *f;
447 {
448 struct temp_slot *ts;
449 struct temp_slot *next;
450
451 free_eh_status (f);
452 free_expr_status (f);
453 free_emit_status (f);
454 free_varasm_status (f);
455
456 if (free_machine_status)
457 (*free_machine_status) (f);
458
459 if (f->x_parm_reg_stack_loc)
460 free (f->x_parm_reg_stack_loc);
461
462 for (ts = f->x_temp_slots; ts; ts = next)
463 {
464 next = ts->next;
465 free (ts);
466 }
467 f->x_temp_slots = NULL;
468
469 f->arg_offset_rtx = NULL;
470 f->return_rtx = NULL;
471 f->internal_arg_pointer = NULL;
472 f->x_nonlocal_labels = NULL;
473 f->x_nonlocal_goto_handler_slots = NULL;
474 f->x_nonlocal_goto_handler_labels = NULL;
475 f->x_nonlocal_goto_stack_level = NULL;
476 f->x_cleanup_label = NULL;
477 f->x_return_label = NULL;
478 f->x_save_expr_regs = NULL;
479 f->x_stack_slot_list = NULL;
480 f->x_rtl_expr_chain = NULL;
481 f->x_tail_recursion_label = NULL;
482 f->x_tail_recursion_reentry = NULL;
483 f->x_arg_pointer_save_area = NULL;
484 f->x_context_display = NULL;
485 f->x_trampoline_list = NULL;
486 f->x_parm_birth_insn = NULL;
487 f->x_last_parm_insn = NULL;
488 f->x_parm_reg_stack_loc = NULL;
489 f->fixup_var_refs_queue = NULL;
490 f->original_arg_vector = NULL;
491 f->original_decl_initial = NULL;
492 f->inl_last_parm_insn = NULL;
493 f->epilogue_delay_list = NULL;
494 }
495
496 \f
497 /* Allocate fixed slots in the stack frame of the current function. */
498
499 /* Return size needed for stack frame based on slots so far allocated in
500 function F.
501 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
502 the caller may have to do that. */
503
504 HOST_WIDE_INT
505 get_func_frame_size (f)
506 struct function *f;
507 {
508 #ifdef FRAME_GROWS_DOWNWARD
509 return -f->x_frame_offset;
510 #else
511 return f->x_frame_offset;
512 #endif
513 }
514
515 /* Return size needed for stack frame based on slots so far allocated.
516 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
517 the caller may have to do that. */
518 HOST_WIDE_INT
519 get_frame_size ()
520 {
521 return get_func_frame_size (cfun);
522 }
523
524 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
525 with machine mode MODE.
526
527 ALIGN controls the amount of alignment for the address of the slot:
528 0 means according to MODE,
529 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
530 positive specifies alignment boundary in bits.
531
532 We do not round to stack_boundary here.
533
534 FUNCTION specifies the function to allocate in. */
535
536 static rtx
537 assign_stack_local_1 (mode, size, align, function)
538 enum machine_mode mode;
539 HOST_WIDE_INT size;
540 int align;
541 struct function *function;
542 {
543 register rtx x, addr;
544 int bigend_correction = 0;
545 int alignment;
546
547 /* Allocate in the memory associated with the function in whose frame
548 we are assigning. */
549 if (function != cfun)
550 push_obstacks (function->function_obstack,
551 function->function_maybepermanent_obstack);
552
553 if (align == 0)
554 {
555 tree type;
556
557 alignment = GET_MODE_ALIGNMENT (mode);
558 if (mode == BLKmode)
559 alignment = BIGGEST_ALIGNMENT;
560
561 /* Allow the target to (possibly) increase the alignment of this
562 stack slot. */
563 type = type_for_mode (mode, 0);
564 if (type)
565 alignment = LOCAL_ALIGNMENT (type, alignment);
566
567 alignment /= BITS_PER_UNIT;
568 }
569 else if (align == -1)
570 {
571 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
572 size = CEIL_ROUND (size, alignment);
573 }
574 else
575 alignment = align / BITS_PER_UNIT;
576
577 #ifdef FRAME_GROWS_DOWNWARD
578 function->x_frame_offset -= size;
579 #endif
580
581 /* Ignore alignment we can't do with expected alignment of the boundary. */
582 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
583 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
584
585 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
586 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
587
588 /* Round frame offset to that alignment.
589 We must be careful here, since FRAME_OFFSET might be negative and
590 division with a negative dividend isn't as well defined as we might
591 like. So we instead assume that ALIGNMENT is a power of two and
592 use logical operations which are unambiguous. */
593 #ifdef FRAME_GROWS_DOWNWARD
594 function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset, alignment);
595 #else
596 function->x_frame_offset = CEIL_ROUND (function->x_frame_offset, alignment);
597 #endif
598
599 /* On a big-endian machine, if we are allocating more space than we will use,
600 use the least significant bytes of those that are allocated. */
601 if (BYTES_BIG_ENDIAN && mode != BLKmode)
602 bigend_correction = size - GET_MODE_SIZE (mode);
603
604 /* If we have already instantiated virtual registers, return the actual
605 address relative to the frame pointer. */
606 if (function == cfun && virtuals_instantiated)
607 addr = plus_constant (frame_pointer_rtx,
608 (frame_offset + bigend_correction
609 + STARTING_FRAME_OFFSET));
610 else
611 addr = plus_constant (virtual_stack_vars_rtx,
612 function->x_frame_offset + bigend_correction);
613
614 #ifndef FRAME_GROWS_DOWNWARD
615 function->x_frame_offset += size;
616 #endif
617
618 x = gen_rtx_MEM (mode, addr);
619
620 function->x_stack_slot_list
621 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
622
623 if (function != cfun)
624 pop_obstacks ();
625
626 return x;
627 }
628
629 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
630 current function. */
631 rtx
632 assign_stack_local (mode, size, align)
633 enum machine_mode mode;
634 HOST_WIDE_INT size;
635 int align;
636 {
637 return assign_stack_local_1 (mode, size, align, cfun);
638 }
639 \f
640 /* Allocate a temporary stack slot and record it for possible later
641 reuse.
642
643 MODE is the machine mode to be given to the returned rtx.
644
645 SIZE is the size in units of the space required. We do no rounding here
646 since assign_stack_local will do any required rounding.
647
648 KEEP is 1 if this slot is to be retained after a call to
649 free_temp_slots. Automatic variables for a block are allocated
650 with this flag. KEEP is 2 if we allocate a longer term temporary,
651 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
652 if we are to allocate something at an inner level to be treated as
653 a variable in the block (e.g., a SAVE_EXPR).
654
655 TYPE is the type that will be used for the stack slot. */
656
657 static rtx
658 assign_stack_temp_for_type (mode, size, keep, type)
659 enum machine_mode mode;
660 HOST_WIDE_INT size;
661 int keep;
662 tree type;
663 {
664 int align;
665 int alias_set;
666 struct temp_slot *p, *best_p = 0;
667
668 /* If SIZE is -1 it means that somebody tried to allocate a temporary
669 of a variable size. */
670 if (size == -1)
671 abort ();
672
673 /* If we know the alias set for the memory that will be used, use
674 it. If there's no TYPE, then we don't know anything about the
675 alias set for the memory. */
676 if (type)
677 alias_set = get_alias_set (type);
678 else
679 alias_set = 0;
680
681 align = GET_MODE_ALIGNMENT (mode);
682 if (mode == BLKmode)
683 align = BIGGEST_ALIGNMENT;
684
685 if (! type)
686 type = type_for_mode (mode, 0);
687 if (type)
688 align = LOCAL_ALIGNMENT (type, align);
689
690 /* Try to find an available, already-allocated temporary of the proper
691 mode which meets the size and alignment requirements. Choose the
692 smallest one with the closest alignment. */
693 for (p = temp_slots; p; p = p->next)
694 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
695 && ! p->in_use
696 && (!flag_strict_aliasing
697 || (alias_set && p->alias_set == alias_set))
698 && (best_p == 0 || best_p->size > p->size
699 || (best_p->size == p->size && best_p->align > p->align)))
700 {
701 if (p->align == align && p->size == size)
702 {
703 best_p = 0;
704 break;
705 }
706 best_p = p;
707 }
708
709 /* Make our best, if any, the one to use. */
710 if (best_p)
711 {
712 /* If there are enough aligned bytes left over, make them into a new
713 temp_slot so that the extra bytes don't get wasted. Do this only
714 for BLKmode slots, so that we can be sure of the alignment. */
715 if (GET_MODE (best_p->slot) == BLKmode
716 /* We can't split slots if -fstrict-aliasing because the
717 information about the alias set for the new slot will be
718 lost. */
719 && !flag_strict_aliasing)
720 {
721 int alignment = best_p->align / BITS_PER_UNIT;
722 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
723
724 if (best_p->size - rounded_size >= alignment)
725 {
726 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
727 p->in_use = p->addr_taken = 0;
728 p->size = best_p->size - rounded_size;
729 p->base_offset = best_p->base_offset + rounded_size;
730 p->full_size = best_p->full_size - rounded_size;
731 p->slot = gen_rtx_MEM (BLKmode,
732 plus_constant (XEXP (best_p->slot, 0),
733 rounded_size));
734 p->align = best_p->align;
735 p->address = 0;
736 p->rtl_expr = 0;
737 p->next = temp_slots;
738 temp_slots = p;
739
740 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
741 stack_slot_list);
742
743 best_p->size = rounded_size;
744 best_p->full_size = rounded_size;
745 }
746 }
747
748 p = best_p;
749 }
750
751 /* If we still didn't find one, make a new temporary. */
752 if (p == 0)
753 {
754 HOST_WIDE_INT frame_offset_old = frame_offset;
755
756 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
757
758 /* We are passing an explicit alignment request to assign_stack_local.
759 One side effect of that is assign_stack_local will not round SIZE
760 to ensure the frame offset remains suitably aligned.
761
762 So for requests which depended on the rounding of SIZE, we go ahead
763 and round it now. We also make sure ALIGNMENT is at least
764 BIGGEST_ALIGNMENT. */
765 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
766 abort();
767 p->slot = assign_stack_local (mode,
768 (mode == BLKmode
769 ? CEIL_ROUND (size, align / BITS_PER_UNIT)
770 : size),
771 align);
772
773 p->align = align;
774 p->alias_set = alias_set;
775
776 /* The following slot size computation is necessary because we don't
777 know the actual size of the temporary slot until assign_stack_local
778 has performed all the frame alignment and size rounding for the
779 requested temporary. Note that extra space added for alignment
780 can be either above or below this stack slot depending on which
781 way the frame grows. We include the extra space if and only if it
782 is above this slot. */
783 #ifdef FRAME_GROWS_DOWNWARD
784 p->size = frame_offset_old - frame_offset;
785 #else
786 p->size = size;
787 #endif
788
789 /* Now define the fields used by combine_temp_slots. */
790 #ifdef FRAME_GROWS_DOWNWARD
791 p->base_offset = frame_offset;
792 p->full_size = frame_offset_old - frame_offset;
793 #else
794 p->base_offset = frame_offset_old;
795 p->full_size = frame_offset - frame_offset_old;
796 #endif
797 p->address = 0;
798 p->next = temp_slots;
799 temp_slots = p;
800 }
801
802 p->in_use = 1;
803 p->addr_taken = 0;
804 p->rtl_expr = seq_rtl_expr;
805
806 if (keep == 2)
807 {
808 p->level = target_temp_slot_level;
809 p->keep = 0;
810 }
811 else if (keep == 3)
812 {
813 p->level = var_temp_slot_level;
814 p->keep = 0;
815 }
816 else
817 {
818 p->level = temp_slot_level;
819 p->keep = keep;
820 }
821
822 /* We may be reusing an old slot, so clear any MEM flags that may have been
823 set from before. */
824 RTX_UNCHANGING_P (p->slot) = 0;
825 MEM_IN_STRUCT_P (p->slot) = 0;
826 MEM_SCALAR_P (p->slot) = 0;
827 MEM_ALIAS_SET (p->slot) = 0;
828 return p->slot;
829 }
830
831 /* Allocate a temporary stack slot and record it for possible later
832 reuse. First three arguments are same as in preceding function. */
833
834 rtx
835 assign_stack_temp (mode, size, keep)
836 enum machine_mode mode;
837 HOST_WIDE_INT size;
838 int keep;
839 {
840 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
841 }
842 \f
843 /* Assign a temporary of given TYPE.
844 KEEP is as for assign_stack_temp.
845 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
846 it is 0 if a register is OK.
847 DONT_PROMOTE is 1 if we should not promote values in register
848 to wider modes. */
849
850 rtx
851 assign_temp (type, keep, memory_required, dont_promote)
852 tree type;
853 int keep;
854 int memory_required;
855 int dont_promote ATTRIBUTE_UNUSED;
856 {
857 enum machine_mode mode = TYPE_MODE (type);
858 #ifndef PROMOTE_FOR_CALL_ONLY
859 int unsignedp = TREE_UNSIGNED (type);
860 #endif
861
862 if (mode == BLKmode || memory_required)
863 {
864 HOST_WIDE_INT size = int_size_in_bytes (type);
865 rtx tmp;
866
867 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
868 problems with allocating the stack space. */
869 if (size == 0)
870 size = 1;
871
872 /* Unfortunately, we don't yet know how to allocate variable-sized
873 temporaries. However, sometimes we have a fixed upper limit on
874 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
875 instead. This is the case for Chill variable-sized strings. */
876 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
877 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
878 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (type)) == INTEGER_CST)
879 size = TREE_INT_CST_LOW (TYPE_ARRAY_MAX_SIZE (type));
880
881 tmp = assign_stack_temp_for_type (mode, size, keep, type);
882 MEM_SET_IN_STRUCT_P (tmp, AGGREGATE_TYPE_P (type));
883 return tmp;
884 }
885
886 #ifndef PROMOTE_FOR_CALL_ONLY
887 if (! dont_promote)
888 mode = promote_mode (type, mode, &unsignedp, 0);
889 #endif
890
891 return gen_reg_rtx (mode);
892 }
893 \f
894 /* Combine temporary stack slots which are adjacent on the stack.
895
896 This allows for better use of already allocated stack space. This is only
897 done for BLKmode slots because we can be sure that we won't have alignment
898 problems in this case. */
899
900 void
901 combine_temp_slots ()
902 {
903 struct temp_slot *p, *q;
904 struct temp_slot *prev_p, *prev_q;
905 int num_slots;
906
907 /* We can't combine slots, because the information about which slot
908 is in which alias set will be lost. */
909 if (flag_strict_aliasing)
910 return;
911
912 /* If there are a lot of temp slots, don't do anything unless
913 high levels of optimizaton. */
914 if (! flag_expensive_optimizations)
915 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
916 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
917 return;
918
919 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
920 {
921 int delete_p = 0;
922
923 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
924 for (q = p->next, prev_q = p; q; q = prev_q->next)
925 {
926 int delete_q = 0;
927 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
928 {
929 if (p->base_offset + p->full_size == q->base_offset)
930 {
931 /* Q comes after P; combine Q into P. */
932 p->size += q->size;
933 p->full_size += q->full_size;
934 delete_q = 1;
935 }
936 else if (q->base_offset + q->full_size == p->base_offset)
937 {
938 /* P comes after Q; combine P into Q. */
939 q->size += p->size;
940 q->full_size += p->full_size;
941 delete_p = 1;
942 break;
943 }
944 }
945 /* Either delete Q or advance past it. */
946 if (delete_q)
947 {
948 prev_q->next = q->next;
949 free (q);
950 }
951 else
952 prev_q = q;
953 }
954 /* Either delete P or advance past it. */
955 if (delete_p)
956 {
957 if (prev_p)
958 prev_p->next = p->next;
959 else
960 temp_slots = p->next;
961 }
962 else
963 prev_p = p;
964 }
965 }
966 \f
967 /* Find the temp slot corresponding to the object at address X. */
968
969 static struct temp_slot *
970 find_temp_slot_from_address (x)
971 rtx x;
972 {
973 struct temp_slot *p;
974 rtx next;
975
976 for (p = temp_slots; p; p = p->next)
977 {
978 if (! p->in_use)
979 continue;
980
981 else if (XEXP (p->slot, 0) == x
982 || p->address == x
983 || (GET_CODE (x) == PLUS
984 && XEXP (x, 0) == virtual_stack_vars_rtx
985 && GET_CODE (XEXP (x, 1)) == CONST_INT
986 && INTVAL (XEXP (x, 1)) >= p->base_offset
987 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
988 return p;
989
990 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
991 for (next = p->address; next; next = XEXP (next, 1))
992 if (XEXP (next, 0) == x)
993 return p;
994 }
995
996 /* If we have a sum involving a register, see if it points to a temp
997 slot. */
998 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
999 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
1000 return p;
1001 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1002 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1003 return p;
1004
1005 return 0;
1006 }
1007
1008 /* Indicate that NEW is an alternate way of referring to the temp slot
1009 that previously was known by OLD. */
1010
1011 void
1012 update_temp_slot_address (old, new)
1013 rtx old, new;
1014 {
1015 struct temp_slot *p;
1016
1017 if (rtx_equal_p (old, new))
1018 return;
1019
1020 p = find_temp_slot_from_address (old);
1021
1022 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1023 is a register, see if one operand of the PLUS is a temporary
1024 location. If so, NEW points into it. Otherwise, if both OLD and
1025 NEW are a PLUS and if there is a register in common between them.
1026 If so, try a recursive call on those values. */
1027 if (p == 0)
1028 {
1029 if (GET_CODE (old) != PLUS)
1030 return;
1031
1032 if (GET_CODE (new) == REG)
1033 {
1034 update_temp_slot_address (XEXP (old, 0), new);
1035 update_temp_slot_address (XEXP (old, 1), new);
1036 return;
1037 }
1038 else if (GET_CODE (new) != PLUS)
1039 return;
1040
1041 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1042 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1043 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1044 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1045 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1046 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1047 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1048 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1049
1050 return;
1051 }
1052
1053 /* Otherwise add an alias for the temp's address. */
1054 else if (p->address == 0)
1055 p->address = new;
1056 else
1057 {
1058 if (GET_CODE (p->address) != EXPR_LIST)
1059 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1060
1061 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1062 }
1063 }
1064
1065 /* If X could be a reference to a temporary slot, mark the fact that its
1066 address was taken. */
1067
1068 void
1069 mark_temp_addr_taken (x)
1070 rtx x;
1071 {
1072 struct temp_slot *p;
1073
1074 if (x == 0)
1075 return;
1076
1077 /* If X is not in memory or is at a constant address, it cannot be in
1078 a temporary slot. */
1079 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1080 return;
1081
1082 p = find_temp_slot_from_address (XEXP (x, 0));
1083 if (p != 0)
1084 p->addr_taken = 1;
1085 }
1086
1087 /* If X could be a reference to a temporary slot, mark that slot as
1088 belonging to the to one level higher than the current level. If X
1089 matched one of our slots, just mark that one. Otherwise, we can't
1090 easily predict which it is, so upgrade all of them. Kept slots
1091 need not be touched.
1092
1093 This is called when an ({...}) construct occurs and a statement
1094 returns a value in memory. */
1095
1096 void
1097 preserve_temp_slots (x)
1098 rtx x;
1099 {
1100 struct temp_slot *p = 0;
1101
1102 /* If there is no result, we still might have some objects whose address
1103 were taken, so we need to make sure they stay around. */
1104 if (x == 0)
1105 {
1106 for (p = temp_slots; p; p = p->next)
1107 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1108 p->level--;
1109
1110 return;
1111 }
1112
1113 /* If X is a register that is being used as a pointer, see if we have
1114 a temporary slot we know it points to. To be consistent with
1115 the code below, we really should preserve all non-kept slots
1116 if we can't find a match, but that seems to be much too costly. */
1117 if (GET_CODE (x) == REG && REGNO_POINTER_FLAG (REGNO (x)))
1118 p = find_temp_slot_from_address (x);
1119
1120 /* If X is not in memory or is at a constant address, it cannot be in
1121 a temporary slot, but it can contain something whose address was
1122 taken. */
1123 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1124 {
1125 for (p = temp_slots; p; p = p->next)
1126 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1127 p->level--;
1128
1129 return;
1130 }
1131
1132 /* First see if we can find a match. */
1133 if (p == 0)
1134 p = find_temp_slot_from_address (XEXP (x, 0));
1135
1136 if (p != 0)
1137 {
1138 /* Move everything at our level whose address was taken to our new
1139 level in case we used its address. */
1140 struct temp_slot *q;
1141
1142 if (p->level == temp_slot_level)
1143 {
1144 for (q = temp_slots; q; q = q->next)
1145 if (q != p && q->addr_taken && q->level == p->level)
1146 q->level--;
1147
1148 p->level--;
1149 p->addr_taken = 0;
1150 }
1151 return;
1152 }
1153
1154 /* Otherwise, preserve all non-kept slots at this level. */
1155 for (p = temp_slots; p; p = p->next)
1156 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1157 p->level--;
1158 }
1159
1160 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1161 with that RTL_EXPR, promote it into a temporary slot at the present
1162 level so it will not be freed when we free slots made in the
1163 RTL_EXPR. */
1164
1165 void
1166 preserve_rtl_expr_result (x)
1167 rtx x;
1168 {
1169 struct temp_slot *p;
1170
1171 /* If X is not in memory or is at a constant address, it cannot be in
1172 a temporary slot. */
1173 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1174 return;
1175
1176 /* If we can find a match, move it to our level unless it is already at
1177 an upper level. */
1178 p = find_temp_slot_from_address (XEXP (x, 0));
1179 if (p != 0)
1180 {
1181 p->level = MIN (p->level, temp_slot_level);
1182 p->rtl_expr = 0;
1183 }
1184
1185 return;
1186 }
1187
1188 /* Free all temporaries used so far. This is normally called at the end
1189 of generating code for a statement. Don't free any temporaries
1190 currently in use for an RTL_EXPR that hasn't yet been emitted.
1191 We could eventually do better than this since it can be reused while
1192 generating the same RTL_EXPR, but this is complex and probably not
1193 worthwhile. */
1194
1195 void
1196 free_temp_slots ()
1197 {
1198 struct temp_slot *p;
1199
1200 for (p = temp_slots; p; p = p->next)
1201 if (p->in_use && p->level == temp_slot_level && ! p->keep
1202 && p->rtl_expr == 0)
1203 p->in_use = 0;
1204
1205 combine_temp_slots ();
1206 }
1207
1208 /* Free all temporary slots used in T, an RTL_EXPR node. */
1209
1210 void
1211 free_temps_for_rtl_expr (t)
1212 tree t;
1213 {
1214 struct temp_slot *p;
1215
1216 for (p = temp_slots; p; p = p->next)
1217 if (p->rtl_expr == t)
1218 {
1219 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1220 needs to be preserved. This can happen if a temporary in
1221 the RTL_EXPR was addressed; preserve_temp_slots will move
1222 the temporary into a higher level. */
1223 if (temp_slot_level <= p->level)
1224 p->in_use = 0;
1225 else
1226 p->rtl_expr = NULL_TREE;
1227 }
1228
1229 combine_temp_slots ();
1230 }
1231
1232 /* Mark all temporaries ever allocated in this function as not suitable
1233 for reuse until the current level is exited. */
1234
1235 void
1236 mark_all_temps_used ()
1237 {
1238 struct temp_slot *p;
1239
1240 for (p = temp_slots; p; p = p->next)
1241 {
1242 p->in_use = p->keep = 1;
1243 p->level = MIN (p->level, temp_slot_level);
1244 }
1245 }
1246
1247 /* Push deeper into the nesting level for stack temporaries. */
1248
1249 void
1250 push_temp_slots ()
1251 {
1252 temp_slot_level++;
1253 }
1254
1255 /* Likewise, but save the new level as the place to allocate variables
1256 for blocks. */
1257
1258 #if 0
1259 void
1260 push_temp_slots_for_block ()
1261 {
1262 push_temp_slots ();
1263
1264 var_temp_slot_level = temp_slot_level;
1265 }
1266
1267 /* Likewise, but save the new level as the place to allocate temporaries
1268 for TARGET_EXPRs. */
1269
1270 void
1271 push_temp_slots_for_target ()
1272 {
1273 push_temp_slots ();
1274
1275 target_temp_slot_level = temp_slot_level;
1276 }
1277
1278 /* Set and get the value of target_temp_slot_level. The only
1279 permitted use of these functions is to save and restore this value. */
1280
1281 int
1282 get_target_temp_slot_level ()
1283 {
1284 return target_temp_slot_level;
1285 }
1286
1287 void
1288 set_target_temp_slot_level (level)
1289 int level;
1290 {
1291 target_temp_slot_level = level;
1292 }
1293 #endif
1294
1295 /* Pop a temporary nesting level. All slots in use in the current level
1296 are freed. */
1297
1298 void
1299 pop_temp_slots ()
1300 {
1301 struct temp_slot *p;
1302
1303 for (p = temp_slots; p; p = p->next)
1304 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1305 p->in_use = 0;
1306
1307 combine_temp_slots ();
1308
1309 temp_slot_level--;
1310 }
1311
1312 /* Initialize temporary slots. */
1313
1314 void
1315 init_temp_slots ()
1316 {
1317 /* We have not allocated any temporaries yet. */
1318 temp_slots = 0;
1319 temp_slot_level = 0;
1320 var_temp_slot_level = 0;
1321 target_temp_slot_level = 0;
1322 }
1323 \f
1324 /* Retroactively move an auto variable from a register to a stack slot.
1325 This is done when an address-reference to the variable is seen. */
1326
1327 void
1328 put_var_into_stack (decl)
1329 tree decl;
1330 {
1331 register rtx reg;
1332 enum machine_mode promoted_mode, decl_mode;
1333 struct function *function = 0;
1334 tree context;
1335 int can_use_addressof;
1336
1337 context = decl_function_context (decl);
1338
1339 /* Get the current rtl used for this object and its original mode. */
1340 reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl);
1341
1342 /* No need to do anything if decl has no rtx yet
1343 since in that case caller is setting TREE_ADDRESSABLE
1344 and a stack slot will be assigned when the rtl is made. */
1345 if (reg == 0)
1346 return;
1347
1348 /* Get the declared mode for this object. */
1349 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1350 : DECL_MODE (decl));
1351 /* Get the mode it's actually stored in. */
1352 promoted_mode = GET_MODE (reg);
1353
1354 /* If this variable comes from an outer function,
1355 find that function's saved context. */
1356 if (context != current_function_decl && context != inline_function_decl)
1357 for (function = outer_function_chain; function; function = function->next)
1358 if (function->decl == context)
1359 break;
1360
1361 /* If this is a variable-size object with a pseudo to address it,
1362 put that pseudo into the stack, if the var is nonlocal. */
1363 if (DECL_NONLOCAL (decl)
1364 && GET_CODE (reg) == MEM
1365 && GET_CODE (XEXP (reg, 0)) == REG
1366 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1367 {
1368 reg = XEXP (reg, 0);
1369 decl_mode = promoted_mode = GET_MODE (reg);
1370 }
1371
1372 can_use_addressof
1373 = (function == 0
1374 && optimize > 0
1375 /* FIXME make it work for promoted modes too */
1376 && decl_mode == promoted_mode
1377 #ifdef NON_SAVING_SETJMP
1378 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1379 #endif
1380 );
1381
1382 /* If we can't use ADDRESSOF, make sure we see through one we already
1383 generated. */
1384 if (! can_use_addressof && GET_CODE (reg) == MEM
1385 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1386 reg = XEXP (XEXP (reg, 0), 0);
1387
1388 /* Now we should have a value that resides in one or more pseudo regs. */
1389
1390 if (GET_CODE (reg) == REG)
1391 {
1392 /* If this variable lives in the current function and we don't need
1393 to put things in the stack for the sake of setjmp, try to keep it
1394 in a register until we know we actually need the address. */
1395 if (can_use_addressof)
1396 gen_mem_addressof (reg, decl);
1397 else
1398 put_reg_into_stack (function, reg, TREE_TYPE (decl),
1399 promoted_mode, decl_mode,
1400 TREE_SIDE_EFFECTS (decl), 0,
1401 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1402 0);
1403 }
1404 else if (GET_CODE (reg) == CONCAT)
1405 {
1406 /* A CONCAT contains two pseudos; put them both in the stack.
1407 We do it so they end up consecutive. */
1408 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1409 tree part_type = type_for_mode (part_mode, 0);
1410 #ifdef FRAME_GROWS_DOWNWARD
1411 /* Since part 0 should have a lower address, do it second. */
1412 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1413 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1414 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1415 0);
1416 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1417 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1418 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1419 0);
1420 #else
1421 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1422 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1423 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1424 0);
1425 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1426 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1427 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1428 0);
1429 #endif
1430
1431 /* Change the CONCAT into a combined MEM for both parts. */
1432 PUT_CODE (reg, MEM);
1433 MEM_VOLATILE_P (reg) = MEM_VOLATILE_P (XEXP (reg, 0));
1434 MEM_ALIAS_SET (reg) = get_alias_set (decl);
1435 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (TREE_TYPE (decl)));
1436
1437 /* The two parts are in memory order already.
1438 Use the lower parts address as ours. */
1439 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1440 /* Prevent sharing of rtl that might lose. */
1441 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1442 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1443 }
1444 else
1445 return;
1446
1447 if (current_function_check_memory_usage)
1448 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
1449 XEXP (reg, 0), Pmode,
1450 GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
1451 TYPE_MODE (sizetype),
1452 GEN_INT (MEMORY_USE_RW),
1453 TYPE_MODE (integer_type_node));
1454 }
1455
1456 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1457 into the stack frame of FUNCTION (0 means the current function).
1458 DECL_MODE is the machine mode of the user-level data type.
1459 PROMOTED_MODE is the machine mode of the register.
1460 VOLATILE_P is nonzero if this is for a "volatile" decl.
1461 USED_P is nonzero if this reg might have already been used in an insn. */
1462
1463 static void
1464 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1465 original_regno, used_p, ht)
1466 struct function *function;
1467 rtx reg;
1468 tree type;
1469 enum machine_mode promoted_mode, decl_mode;
1470 int volatile_p;
1471 unsigned int original_regno;
1472 int used_p;
1473 struct hash_table *ht;
1474 {
1475 struct function *func = function ? function : cfun;
1476 rtx new = 0;
1477 unsigned int regno = original_regno;
1478
1479 if (regno == 0)
1480 regno = REGNO (reg);
1481
1482 if (regno < func->x_max_parm_reg)
1483 new = func->x_parm_reg_stack_loc[regno];
1484
1485 if (new == 0)
1486 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1487
1488 PUT_CODE (reg, MEM);
1489 PUT_MODE (reg, decl_mode);
1490 XEXP (reg, 0) = XEXP (new, 0);
1491 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1492 MEM_VOLATILE_P (reg) = volatile_p;
1493
1494 /* If this is a memory ref that contains aggregate components,
1495 mark it as such for cse and loop optimize. If we are reusing a
1496 previously generated stack slot, then we need to copy the bit in
1497 case it was set for other reasons. For instance, it is set for
1498 __builtin_va_alist. */
1499 MEM_SET_IN_STRUCT_P (reg,
1500 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1501 MEM_ALIAS_SET (reg) = get_alias_set (type);
1502
1503 /* Now make sure that all refs to the variable, previously made
1504 when it was a register, are fixed up to be valid again. */
1505
1506 if (used_p && function != 0)
1507 {
1508 struct var_refs_queue *temp;
1509
1510 temp
1511 = (struct var_refs_queue *) xmalloc (sizeof (struct var_refs_queue));
1512 temp->modified = reg;
1513 temp->promoted_mode = promoted_mode;
1514 temp->unsignedp = TREE_UNSIGNED (type);
1515 temp->next = function->fixup_var_refs_queue;
1516 function->fixup_var_refs_queue = temp;
1517 }
1518 else if (used_p)
1519 /* Variable is local; fix it up now. */
1520 fixup_var_refs (reg, promoted_mode, TREE_UNSIGNED (type), ht);
1521 }
1522 \f
1523 static void
1524 fixup_var_refs (var, promoted_mode, unsignedp, ht)
1525 rtx var;
1526 enum machine_mode promoted_mode;
1527 int unsignedp;
1528 struct hash_table *ht;
1529 {
1530 tree pending;
1531 rtx first_insn = get_insns ();
1532 struct sequence_stack *stack = seq_stack;
1533 tree rtl_exps = rtl_expr_chain;
1534 rtx insn;
1535
1536 /* Must scan all insns for stack-refs that exceed the limit. */
1537 fixup_var_refs_insns (var, promoted_mode, unsignedp, first_insn,
1538 stack == 0, ht);
1539 /* If there's a hash table, it must record all uses of VAR. */
1540 if (ht)
1541 return;
1542
1543 /* Scan all pending sequences too. */
1544 for (; stack; stack = stack->next)
1545 {
1546 push_to_sequence (stack->first);
1547 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1548 stack->first, stack->next != 0, 0);
1549 /* Update remembered end of sequence
1550 in case we added an insn at the end. */
1551 stack->last = get_last_insn ();
1552 end_sequence ();
1553 }
1554
1555 /* Scan all waiting RTL_EXPRs too. */
1556 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1557 {
1558 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1559 if (seq != const0_rtx && seq != 0)
1560 {
1561 push_to_sequence (seq);
1562 fixup_var_refs_insns (var, promoted_mode, unsignedp, seq, 0,
1563 0);
1564 end_sequence ();
1565 }
1566 }
1567
1568 /* Scan the catch clauses for exception handling too. */
1569 push_to_full_sequence (catch_clauses, catch_clauses_last);
1570 fixup_var_refs_insns (var, promoted_mode, unsignedp, catch_clauses,
1571 0, 0);
1572 end_full_sequence (&catch_clauses, &catch_clauses_last);
1573
1574 /* Scan sequences saved in CALL_PLACEHOLDERS too. */
1575 for (insn = first_insn; insn; insn = NEXT_INSN (insn))
1576 {
1577 if (GET_CODE (insn) == CALL_INSN
1578 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1579 {
1580 int i;
1581
1582 /* Look at the Normal call, sibling call and tail recursion
1583 sequences attached to the CALL_PLACEHOLDER. */
1584 for (i = 0; i < 3; i++)
1585 {
1586 rtx seq = XEXP (PATTERN (insn), i);
1587 if (seq)
1588 {
1589 push_to_sequence (seq);
1590 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1591 seq, 0, 0);
1592 XEXP (PATTERN (insn), i) = get_insns ();
1593 end_sequence ();
1594 }
1595 }
1596 }
1597 }
1598 }
1599 \f
1600 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1601 some part of an insn. Return a struct fixup_replacement whose OLD
1602 value is equal to X. Allocate a new structure if no such entry exists. */
1603
1604 static struct fixup_replacement *
1605 find_fixup_replacement (replacements, x)
1606 struct fixup_replacement **replacements;
1607 rtx x;
1608 {
1609 struct fixup_replacement *p;
1610
1611 /* See if we have already replaced this. */
1612 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1613 ;
1614
1615 if (p == 0)
1616 {
1617 p = (struct fixup_replacement *) oballoc (sizeof (struct fixup_replacement));
1618 p->old = x;
1619 p->new = 0;
1620 p->next = *replacements;
1621 *replacements = p;
1622 }
1623
1624 return p;
1625 }
1626
1627 /* Scan the insn-chain starting with INSN for refs to VAR
1628 and fix them up. TOPLEVEL is nonzero if this chain is the
1629 main chain of insns for the current function. */
1630
1631 static void
1632 fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel, ht)
1633 rtx var;
1634 enum machine_mode promoted_mode;
1635 int unsignedp;
1636 rtx insn;
1637 int toplevel;
1638 struct hash_table *ht;
1639 {
1640 rtx call_dest = 0;
1641 rtx insn_list = NULL_RTX;
1642
1643 /* If we already know which INSNs reference VAR there's no need
1644 to walk the entire instruction chain. */
1645 if (ht)
1646 {
1647 insn_list = ((struct insns_for_mem_entry *)
1648 hash_lookup (ht, var, /*create=*/0, /*copy=*/0))->insns;
1649 insn = insn_list ? XEXP (insn_list, 0) : NULL_RTX;
1650 insn_list = XEXP (insn_list, 1);
1651 }
1652
1653 while (insn)
1654 {
1655 rtx next = NEXT_INSN (insn);
1656 rtx set, prev, prev_set;
1657 rtx note;
1658
1659 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1660 {
1661 /* Remember the notes in case we delete the insn. */
1662 note = REG_NOTES (insn);
1663
1664 /* If this is a CLOBBER of VAR, delete it.
1665
1666 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1667 and REG_RETVAL notes too. */
1668 if (GET_CODE (PATTERN (insn)) == CLOBBER
1669 && (XEXP (PATTERN (insn), 0) == var
1670 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1671 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1672 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1673 {
1674 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1675 /* The REG_LIBCALL note will go away since we are going to
1676 turn INSN into a NOTE, so just delete the
1677 corresponding REG_RETVAL note. */
1678 remove_note (XEXP (note, 0),
1679 find_reg_note (XEXP (note, 0), REG_RETVAL,
1680 NULL_RTX));
1681
1682 /* In unoptimized compilation, we shouldn't call delete_insn
1683 except in jump.c doing warnings. */
1684 PUT_CODE (insn, NOTE);
1685 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1686 NOTE_SOURCE_FILE (insn) = 0;
1687 }
1688
1689 /* The insn to load VAR from a home in the arglist
1690 is now a no-op. When we see it, just delete it.
1691 Similarly if this is storing VAR from a register from which
1692 it was loaded in the previous insn. This will occur
1693 when an ADDRESSOF was made for an arglist slot. */
1694 else if (toplevel
1695 && (set = single_set (insn)) != 0
1696 && SET_DEST (set) == var
1697 /* If this represents the result of an insn group,
1698 don't delete the insn. */
1699 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1700 && (rtx_equal_p (SET_SRC (set), var)
1701 || (GET_CODE (SET_SRC (set)) == REG
1702 && (prev = prev_nonnote_insn (insn)) != 0
1703 && (prev_set = single_set (prev)) != 0
1704 && SET_DEST (prev_set) == SET_SRC (set)
1705 && rtx_equal_p (SET_SRC (prev_set), var))))
1706 {
1707 /* In unoptimized compilation, we shouldn't call delete_insn
1708 except in jump.c doing warnings. */
1709 PUT_CODE (insn, NOTE);
1710 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1711 NOTE_SOURCE_FILE (insn) = 0;
1712 if (insn == last_parm_insn)
1713 last_parm_insn = PREV_INSN (next);
1714 }
1715 else
1716 {
1717 struct fixup_replacement *replacements = 0;
1718 rtx next_insn = NEXT_INSN (insn);
1719
1720 if (SMALL_REGISTER_CLASSES)
1721 {
1722 /* If the insn that copies the results of a CALL_INSN
1723 into a pseudo now references VAR, we have to use an
1724 intermediate pseudo since we want the life of the
1725 return value register to be only a single insn.
1726
1727 If we don't use an intermediate pseudo, such things as
1728 address computations to make the address of VAR valid
1729 if it is not can be placed between the CALL_INSN and INSN.
1730
1731 To make sure this doesn't happen, we record the destination
1732 of the CALL_INSN and see if the next insn uses both that
1733 and VAR. */
1734
1735 if (call_dest != 0 && GET_CODE (insn) == INSN
1736 && reg_mentioned_p (var, PATTERN (insn))
1737 && reg_mentioned_p (call_dest, PATTERN (insn)))
1738 {
1739 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1740
1741 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1742
1743 PATTERN (insn) = replace_rtx (PATTERN (insn),
1744 call_dest, temp);
1745 }
1746
1747 if (GET_CODE (insn) == CALL_INSN
1748 && GET_CODE (PATTERN (insn)) == SET)
1749 call_dest = SET_DEST (PATTERN (insn));
1750 else if (GET_CODE (insn) == CALL_INSN
1751 && GET_CODE (PATTERN (insn)) == PARALLEL
1752 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1753 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1754 else
1755 call_dest = 0;
1756 }
1757
1758 /* See if we have to do anything to INSN now that VAR is in
1759 memory. If it needs to be loaded into a pseudo, use a single
1760 pseudo for the entire insn in case there is a MATCH_DUP
1761 between two operands. We pass a pointer to the head of
1762 a list of struct fixup_replacements. If fixup_var_refs_1
1763 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1764 it will record them in this list.
1765
1766 If it allocated a pseudo for any replacement, we copy into
1767 it here. */
1768
1769 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1770 &replacements);
1771
1772 /* If this is last_parm_insn, and any instructions were output
1773 after it to fix it up, then we must set last_parm_insn to
1774 the last such instruction emitted. */
1775 if (insn == last_parm_insn)
1776 last_parm_insn = PREV_INSN (next_insn);
1777
1778 while (replacements)
1779 {
1780 if (GET_CODE (replacements->new) == REG)
1781 {
1782 rtx insert_before;
1783 rtx seq;
1784
1785 /* OLD might be a (subreg (mem)). */
1786 if (GET_CODE (replacements->old) == SUBREG)
1787 replacements->old
1788 = fixup_memory_subreg (replacements->old, insn, 0);
1789 else
1790 replacements->old
1791 = fixup_stack_1 (replacements->old, insn);
1792
1793 insert_before = insn;
1794
1795 /* If we are changing the mode, do a conversion.
1796 This might be wasteful, but combine.c will
1797 eliminate much of the waste. */
1798
1799 if (GET_MODE (replacements->new)
1800 != GET_MODE (replacements->old))
1801 {
1802 start_sequence ();
1803 convert_move (replacements->new,
1804 replacements->old, unsignedp);
1805 seq = gen_sequence ();
1806 end_sequence ();
1807 }
1808 else
1809 seq = gen_move_insn (replacements->new,
1810 replacements->old);
1811
1812 emit_insn_before (seq, insert_before);
1813 }
1814
1815 replacements = replacements->next;
1816 }
1817 }
1818
1819 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1820 But don't touch other insns referred to by reg-notes;
1821 we will get them elsewhere. */
1822 while (note)
1823 {
1824 if (GET_CODE (note) != INSN_LIST)
1825 XEXP (note, 0)
1826 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1827 note = XEXP (note, 1);
1828 }
1829 }
1830
1831 if (!ht)
1832 insn = next;
1833 else if (insn_list)
1834 {
1835 insn = XEXP (insn_list, 0);
1836 insn_list = XEXP (insn_list, 1);
1837 }
1838 else
1839 insn = NULL_RTX;
1840 }
1841 }
1842 \f
1843 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1844 See if the rtx expression at *LOC in INSN needs to be changed.
1845
1846 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1847 contain a list of original rtx's and replacements. If we find that we need
1848 to modify this insn by replacing a memory reference with a pseudo or by
1849 making a new MEM to implement a SUBREG, we consult that list to see if
1850 we have already chosen a replacement. If none has already been allocated,
1851 we allocate it and update the list. fixup_var_refs_insns will copy VAR
1852 or the SUBREG, as appropriate, to the pseudo. */
1853
1854 static void
1855 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1856 register rtx var;
1857 enum machine_mode promoted_mode;
1858 register rtx *loc;
1859 rtx insn;
1860 struct fixup_replacement **replacements;
1861 {
1862 register int i;
1863 register rtx x = *loc;
1864 RTX_CODE code = GET_CODE (x);
1865 register const char *fmt;
1866 register rtx tem, tem1;
1867 struct fixup_replacement *replacement;
1868
1869 switch (code)
1870 {
1871 case ADDRESSOF:
1872 if (XEXP (x, 0) == var)
1873 {
1874 /* Prevent sharing of rtl that might lose. */
1875 rtx sub = copy_rtx (XEXP (var, 0));
1876
1877 if (! validate_change (insn, loc, sub, 0))
1878 {
1879 rtx y = gen_reg_rtx (GET_MODE (sub));
1880 rtx seq, new_insn;
1881
1882 /* We should be able to replace with a register or all is lost.
1883 Note that we can't use validate_change to verify this, since
1884 we're not caring for replacing all dups simultaneously. */
1885 if (! validate_replace_rtx (*loc, y, insn))
1886 abort ();
1887
1888 /* Careful! First try to recognize a direct move of the
1889 value, mimicking how things are done in gen_reload wrt
1890 PLUS. Consider what happens when insn is a conditional
1891 move instruction and addsi3 clobbers flags. */
1892
1893 start_sequence ();
1894 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1895 seq = gen_sequence ();
1896 end_sequence ();
1897
1898 if (recog_memoized (new_insn) < 0)
1899 {
1900 /* That failed. Fall back on force_operand and hope. */
1901
1902 start_sequence ();
1903 force_operand (sub, y);
1904 seq = gen_sequence ();
1905 end_sequence ();
1906 }
1907
1908 #ifdef HAVE_cc0
1909 /* Don't separate setter from user. */
1910 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1911 insn = PREV_INSN (insn);
1912 #endif
1913
1914 emit_insn_before (seq, insn);
1915 }
1916 }
1917 return;
1918
1919 case MEM:
1920 if (var == x)
1921 {
1922 /* If we already have a replacement, use it. Otherwise,
1923 try to fix up this address in case it is invalid. */
1924
1925 replacement = find_fixup_replacement (replacements, var);
1926 if (replacement->new)
1927 {
1928 *loc = replacement->new;
1929 return;
1930 }
1931
1932 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1933
1934 /* Unless we are forcing memory to register or we changed the mode,
1935 we can leave things the way they are if the insn is valid. */
1936
1937 INSN_CODE (insn) = -1;
1938 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1939 && recog_memoized (insn) >= 0)
1940 return;
1941
1942 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1943 return;
1944 }
1945
1946 /* If X contains VAR, we need to unshare it here so that we update
1947 each occurrence separately. But all identical MEMs in one insn
1948 must be replaced with the same rtx because of the possibility of
1949 MATCH_DUPs. */
1950
1951 if (reg_mentioned_p (var, x))
1952 {
1953 replacement = find_fixup_replacement (replacements, x);
1954 if (replacement->new == 0)
1955 replacement->new = copy_most_rtx (x, var);
1956
1957 *loc = x = replacement->new;
1958 }
1959 break;
1960
1961 case REG:
1962 case CC0:
1963 case PC:
1964 case CONST_INT:
1965 case CONST:
1966 case SYMBOL_REF:
1967 case LABEL_REF:
1968 case CONST_DOUBLE:
1969 return;
1970
1971 case SIGN_EXTRACT:
1972 case ZERO_EXTRACT:
1973 /* Note that in some cases those types of expressions are altered
1974 by optimize_bit_field, and do not survive to get here. */
1975 if (XEXP (x, 0) == var
1976 || (GET_CODE (XEXP (x, 0)) == SUBREG
1977 && SUBREG_REG (XEXP (x, 0)) == var))
1978 {
1979 /* Get TEM as a valid MEM in the mode presently in the insn.
1980
1981 We don't worry about the possibility of MATCH_DUP here; it
1982 is highly unlikely and would be tricky to handle. */
1983
1984 tem = XEXP (x, 0);
1985 if (GET_CODE (tem) == SUBREG)
1986 {
1987 if (GET_MODE_BITSIZE (GET_MODE (tem))
1988 > GET_MODE_BITSIZE (GET_MODE (var)))
1989 {
1990 replacement = find_fixup_replacement (replacements, var);
1991 if (replacement->new == 0)
1992 replacement->new = gen_reg_rtx (GET_MODE (var));
1993 SUBREG_REG (tem) = replacement->new;
1994 }
1995 else
1996 tem = fixup_memory_subreg (tem, insn, 0);
1997 }
1998 else
1999 tem = fixup_stack_1 (tem, insn);
2000
2001 /* Unless we want to load from memory, get TEM into the proper mode
2002 for an extract from memory. This can only be done if the
2003 extract is at a constant position and length. */
2004
2005 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
2006 && GET_CODE (XEXP (x, 2)) == CONST_INT
2007 && ! mode_dependent_address_p (XEXP (tem, 0))
2008 && ! MEM_VOLATILE_P (tem))
2009 {
2010 enum machine_mode wanted_mode = VOIDmode;
2011 enum machine_mode is_mode = GET_MODE (tem);
2012 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2013
2014 #ifdef HAVE_extzv
2015 if (GET_CODE (x) == ZERO_EXTRACT)
2016 {
2017 wanted_mode
2018 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
2019 if (wanted_mode == VOIDmode)
2020 wanted_mode = word_mode;
2021 }
2022 #endif
2023 #ifdef HAVE_extv
2024 if (GET_CODE (x) == SIGN_EXTRACT)
2025 {
2026 wanted_mode = insn_data[(int) CODE_FOR_extv].operand[1].mode;
2027 if (wanted_mode == VOIDmode)
2028 wanted_mode = word_mode;
2029 }
2030 #endif
2031 /* If we have a narrower mode, we can do something. */
2032 if (wanted_mode != VOIDmode
2033 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2034 {
2035 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2036 rtx old_pos = XEXP (x, 2);
2037 rtx newmem;
2038
2039 /* If the bytes and bits are counted differently, we
2040 must adjust the offset. */
2041 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2042 offset = (GET_MODE_SIZE (is_mode)
2043 - GET_MODE_SIZE (wanted_mode) - offset);
2044
2045 pos %= GET_MODE_BITSIZE (wanted_mode);
2046
2047 newmem = gen_rtx_MEM (wanted_mode,
2048 plus_constant (XEXP (tem, 0), offset));
2049 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
2050 MEM_COPY_ATTRIBUTES (newmem, tem);
2051
2052 /* Make the change and see if the insn remains valid. */
2053 INSN_CODE (insn) = -1;
2054 XEXP (x, 0) = newmem;
2055 XEXP (x, 2) = GEN_INT (pos);
2056
2057 if (recog_memoized (insn) >= 0)
2058 return;
2059
2060 /* Otherwise, restore old position. XEXP (x, 0) will be
2061 restored later. */
2062 XEXP (x, 2) = old_pos;
2063 }
2064 }
2065
2066 /* If we get here, the bitfield extract insn can't accept a memory
2067 reference. Copy the input into a register. */
2068
2069 tem1 = gen_reg_rtx (GET_MODE (tem));
2070 emit_insn_before (gen_move_insn (tem1, tem), insn);
2071 XEXP (x, 0) = tem1;
2072 return;
2073 }
2074 break;
2075
2076 case SUBREG:
2077 if (SUBREG_REG (x) == var)
2078 {
2079 /* If this is a special SUBREG made because VAR was promoted
2080 from a wider mode, replace it with VAR and call ourself
2081 recursively, this time saying that the object previously
2082 had its current mode (by virtue of the SUBREG). */
2083
2084 if (SUBREG_PROMOTED_VAR_P (x))
2085 {
2086 *loc = var;
2087 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
2088 return;
2089 }
2090
2091 /* If this SUBREG makes VAR wider, it has become a paradoxical
2092 SUBREG with VAR in memory, but these aren't allowed at this
2093 stage of the compilation. So load VAR into a pseudo and take
2094 a SUBREG of that pseudo. */
2095 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2096 {
2097 replacement = find_fixup_replacement (replacements, var);
2098 if (replacement->new == 0)
2099 replacement->new = gen_reg_rtx (GET_MODE (var));
2100 SUBREG_REG (x) = replacement->new;
2101 return;
2102 }
2103
2104 /* See if we have already found a replacement for this SUBREG.
2105 If so, use it. Otherwise, make a MEM and see if the insn
2106 is recognized. If not, or if we should force MEM into a register,
2107 make a pseudo for this SUBREG. */
2108 replacement = find_fixup_replacement (replacements, x);
2109 if (replacement->new)
2110 {
2111 *loc = replacement->new;
2112 return;
2113 }
2114
2115 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
2116
2117 INSN_CODE (insn) = -1;
2118 if (! flag_force_mem && recog_memoized (insn) >= 0)
2119 return;
2120
2121 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2122 return;
2123 }
2124 break;
2125
2126 case SET:
2127 /* First do special simplification of bit-field references. */
2128 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2129 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2130 optimize_bit_field (x, insn, 0);
2131 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2132 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2133 optimize_bit_field (x, insn, NULL_PTR);
2134
2135 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2136 into a register and then store it back out. */
2137 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2138 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2139 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2140 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2141 > GET_MODE_SIZE (GET_MODE (var))))
2142 {
2143 replacement = find_fixup_replacement (replacements, var);
2144 if (replacement->new == 0)
2145 replacement->new = gen_reg_rtx (GET_MODE (var));
2146
2147 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2148 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2149 }
2150
2151 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2152 insn into a pseudo and store the low part of the pseudo into VAR. */
2153 if (GET_CODE (SET_DEST (x)) == SUBREG
2154 && SUBREG_REG (SET_DEST (x)) == var
2155 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2156 > GET_MODE_SIZE (GET_MODE (var))))
2157 {
2158 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2159 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2160 tem)),
2161 insn);
2162 break;
2163 }
2164
2165 {
2166 rtx dest = SET_DEST (x);
2167 rtx src = SET_SRC (x);
2168 #ifdef HAVE_insv
2169 rtx outerdest = dest;
2170 #endif
2171
2172 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2173 || GET_CODE (dest) == SIGN_EXTRACT
2174 || GET_CODE (dest) == ZERO_EXTRACT)
2175 dest = XEXP (dest, 0);
2176
2177 if (GET_CODE (src) == SUBREG)
2178 src = XEXP (src, 0);
2179
2180 /* If VAR does not appear at the top level of the SET
2181 just scan the lower levels of the tree. */
2182
2183 if (src != var && dest != var)
2184 break;
2185
2186 /* We will need to rerecognize this insn. */
2187 INSN_CODE (insn) = -1;
2188
2189 #ifdef HAVE_insv
2190 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
2191 {
2192 /* Since this case will return, ensure we fixup all the
2193 operands here. */
2194 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2195 insn, replacements);
2196 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2197 insn, replacements);
2198 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2199 insn, replacements);
2200
2201 tem = XEXP (outerdest, 0);
2202
2203 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2204 that may appear inside a ZERO_EXTRACT.
2205 This was legitimate when the MEM was a REG. */
2206 if (GET_CODE (tem) == SUBREG
2207 && SUBREG_REG (tem) == var)
2208 tem = fixup_memory_subreg (tem, insn, 0);
2209 else
2210 tem = fixup_stack_1 (tem, insn);
2211
2212 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2213 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2214 && ! mode_dependent_address_p (XEXP (tem, 0))
2215 && ! MEM_VOLATILE_P (tem))
2216 {
2217 enum machine_mode wanted_mode;
2218 enum machine_mode is_mode = GET_MODE (tem);
2219 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2220
2221 wanted_mode = insn_data[(int) CODE_FOR_insv].operand[0].mode;
2222 if (wanted_mode == VOIDmode)
2223 wanted_mode = word_mode;
2224
2225 /* If we have a narrower mode, we can do something. */
2226 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2227 {
2228 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2229 rtx old_pos = XEXP (outerdest, 2);
2230 rtx newmem;
2231
2232 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2233 offset = (GET_MODE_SIZE (is_mode)
2234 - GET_MODE_SIZE (wanted_mode) - offset);
2235
2236 pos %= GET_MODE_BITSIZE (wanted_mode);
2237
2238 newmem = gen_rtx_MEM (wanted_mode,
2239 plus_constant (XEXP (tem, 0),
2240 offset));
2241 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
2242 MEM_COPY_ATTRIBUTES (newmem, tem);
2243
2244 /* Make the change and see if the insn remains valid. */
2245 INSN_CODE (insn) = -1;
2246 XEXP (outerdest, 0) = newmem;
2247 XEXP (outerdest, 2) = GEN_INT (pos);
2248
2249 if (recog_memoized (insn) >= 0)
2250 return;
2251
2252 /* Otherwise, restore old position. XEXP (x, 0) will be
2253 restored later. */
2254 XEXP (outerdest, 2) = old_pos;
2255 }
2256 }
2257
2258 /* If we get here, the bit-field store doesn't allow memory
2259 or isn't located at a constant position. Load the value into
2260 a register, do the store, and put it back into memory. */
2261
2262 tem1 = gen_reg_rtx (GET_MODE (tem));
2263 emit_insn_before (gen_move_insn (tem1, tem), insn);
2264 emit_insn_after (gen_move_insn (tem, tem1), insn);
2265 XEXP (outerdest, 0) = tem1;
2266 return;
2267 }
2268 #endif
2269
2270 /* STRICT_LOW_PART is a no-op on memory references
2271 and it can cause combinations to be unrecognizable,
2272 so eliminate it. */
2273
2274 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2275 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2276
2277 /* A valid insn to copy VAR into or out of a register
2278 must be left alone, to avoid an infinite loop here.
2279 If the reference to VAR is by a subreg, fix that up,
2280 since SUBREG is not valid for a memref.
2281 Also fix up the address of the stack slot.
2282
2283 Note that we must not try to recognize the insn until
2284 after we know that we have valid addresses and no
2285 (subreg (mem ...) ...) constructs, since these interfere
2286 with determining the validity of the insn. */
2287
2288 if ((SET_SRC (x) == var
2289 || (GET_CODE (SET_SRC (x)) == SUBREG
2290 && SUBREG_REG (SET_SRC (x)) == var))
2291 && (GET_CODE (SET_DEST (x)) == REG
2292 || (GET_CODE (SET_DEST (x)) == SUBREG
2293 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2294 && GET_MODE (var) == promoted_mode
2295 && x == single_set (insn))
2296 {
2297 rtx pat;
2298
2299 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2300 if (replacement->new)
2301 SET_SRC (x) = replacement->new;
2302 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2303 SET_SRC (x) = replacement->new
2304 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2305 else
2306 SET_SRC (x) = replacement->new
2307 = fixup_stack_1 (SET_SRC (x), insn);
2308
2309 if (recog_memoized (insn) >= 0)
2310 return;
2311
2312 /* INSN is not valid, but we know that we want to
2313 copy SET_SRC (x) to SET_DEST (x) in some way. So
2314 we generate the move and see whether it requires more
2315 than one insn. If it does, we emit those insns and
2316 delete INSN. Otherwise, we an just replace the pattern
2317 of INSN; we have already verified above that INSN has
2318 no other function that to do X. */
2319
2320 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2321 if (GET_CODE (pat) == SEQUENCE)
2322 {
2323 emit_insn_after (pat, insn);
2324 PUT_CODE (insn, NOTE);
2325 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2326 NOTE_SOURCE_FILE (insn) = 0;
2327 }
2328 else
2329 PATTERN (insn) = pat;
2330
2331 return;
2332 }
2333
2334 if ((SET_DEST (x) == var
2335 || (GET_CODE (SET_DEST (x)) == SUBREG
2336 && SUBREG_REG (SET_DEST (x)) == var))
2337 && (GET_CODE (SET_SRC (x)) == REG
2338 || (GET_CODE (SET_SRC (x)) == SUBREG
2339 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2340 && GET_MODE (var) == promoted_mode
2341 && x == single_set (insn))
2342 {
2343 rtx pat;
2344
2345 if (GET_CODE (SET_DEST (x)) == SUBREG)
2346 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2347 else
2348 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2349
2350 if (recog_memoized (insn) >= 0)
2351 return;
2352
2353 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2354 if (GET_CODE (pat) == SEQUENCE)
2355 {
2356 emit_insn_after (pat, insn);
2357 PUT_CODE (insn, NOTE);
2358 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2359 NOTE_SOURCE_FILE (insn) = 0;
2360 }
2361 else
2362 PATTERN (insn) = pat;
2363
2364 return;
2365 }
2366
2367 /* Otherwise, storing into VAR must be handled specially
2368 by storing into a temporary and copying that into VAR
2369 with a new insn after this one. Note that this case
2370 will be used when storing into a promoted scalar since
2371 the insn will now have different modes on the input
2372 and output and hence will be invalid (except for the case
2373 of setting it to a constant, which does not need any
2374 change if it is valid). We generate extra code in that case,
2375 but combine.c will eliminate it. */
2376
2377 if (dest == var)
2378 {
2379 rtx temp;
2380 rtx fixeddest = SET_DEST (x);
2381
2382 /* STRICT_LOW_PART can be discarded, around a MEM. */
2383 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2384 fixeddest = XEXP (fixeddest, 0);
2385 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2386 if (GET_CODE (fixeddest) == SUBREG)
2387 {
2388 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2389 promoted_mode = GET_MODE (fixeddest);
2390 }
2391 else
2392 fixeddest = fixup_stack_1 (fixeddest, insn);
2393
2394 temp = gen_reg_rtx (promoted_mode);
2395
2396 emit_insn_after (gen_move_insn (fixeddest,
2397 gen_lowpart (GET_MODE (fixeddest),
2398 temp)),
2399 insn);
2400
2401 SET_DEST (x) = temp;
2402 }
2403 }
2404
2405 default:
2406 break;
2407 }
2408
2409 /* Nothing special about this RTX; fix its operands. */
2410
2411 fmt = GET_RTX_FORMAT (code);
2412 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2413 {
2414 if (fmt[i] == 'e')
2415 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2416 else if (fmt[i] == 'E')
2417 {
2418 register int j;
2419 for (j = 0; j < XVECLEN (x, i); j++)
2420 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2421 insn, replacements);
2422 }
2423 }
2424 }
2425 \f
2426 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2427 return an rtx (MEM:m1 newaddr) which is equivalent.
2428 If any insns must be emitted to compute NEWADDR, put them before INSN.
2429
2430 UNCRITICAL nonzero means accept paradoxical subregs.
2431 This is used for subregs found inside REG_NOTES. */
2432
2433 static rtx
2434 fixup_memory_subreg (x, insn, uncritical)
2435 rtx x;
2436 rtx insn;
2437 int uncritical;
2438 {
2439 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2440 rtx addr = XEXP (SUBREG_REG (x), 0);
2441 enum machine_mode mode = GET_MODE (x);
2442 rtx result;
2443
2444 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2445 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2446 && ! uncritical)
2447 abort ();
2448
2449 if (BYTES_BIG_ENDIAN)
2450 offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2451 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2452 addr = plus_constant (addr, offset);
2453 if (!flag_force_addr && memory_address_p (mode, addr))
2454 /* Shortcut if no insns need be emitted. */
2455 return change_address (SUBREG_REG (x), mode, addr);
2456 start_sequence ();
2457 result = change_address (SUBREG_REG (x), mode, addr);
2458 emit_insn_before (gen_sequence (), insn);
2459 end_sequence ();
2460 return result;
2461 }
2462
2463 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2464 Replace subexpressions of X in place.
2465 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2466 Otherwise return X, with its contents possibly altered.
2467
2468 If any insns must be emitted to compute NEWADDR, put them before INSN.
2469
2470 UNCRITICAL is as in fixup_memory_subreg. */
2471
2472 static rtx
2473 walk_fixup_memory_subreg (x, insn, uncritical)
2474 register rtx x;
2475 rtx insn;
2476 int uncritical;
2477 {
2478 register enum rtx_code code;
2479 register const char *fmt;
2480 register int i;
2481
2482 if (x == 0)
2483 return 0;
2484
2485 code = GET_CODE (x);
2486
2487 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2488 return fixup_memory_subreg (x, insn, uncritical);
2489
2490 /* Nothing special about this RTX; fix its operands. */
2491
2492 fmt = GET_RTX_FORMAT (code);
2493 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2494 {
2495 if (fmt[i] == 'e')
2496 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2497 else if (fmt[i] == 'E')
2498 {
2499 register int j;
2500 for (j = 0; j < XVECLEN (x, i); j++)
2501 XVECEXP (x, i, j)
2502 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2503 }
2504 }
2505 return x;
2506 }
2507 \f
2508 /* For each memory ref within X, if it refers to a stack slot
2509 with an out of range displacement, put the address in a temp register
2510 (emitting new insns before INSN to load these registers)
2511 and alter the memory ref to use that register.
2512 Replace each such MEM rtx with a copy, to avoid clobberage. */
2513
2514 static rtx
2515 fixup_stack_1 (x, insn)
2516 rtx x;
2517 rtx insn;
2518 {
2519 register int i;
2520 register RTX_CODE code = GET_CODE (x);
2521 register const char *fmt;
2522
2523 if (code == MEM)
2524 {
2525 register rtx ad = XEXP (x, 0);
2526 /* If we have address of a stack slot but it's not valid
2527 (displacement is too large), compute the sum in a register. */
2528 if (GET_CODE (ad) == PLUS
2529 && GET_CODE (XEXP (ad, 0)) == REG
2530 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2531 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2532 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2533 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2534 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2535 #endif
2536 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2537 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2538 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2539 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2540 {
2541 rtx temp, seq;
2542 if (memory_address_p (GET_MODE (x), ad))
2543 return x;
2544
2545 start_sequence ();
2546 temp = copy_to_reg (ad);
2547 seq = gen_sequence ();
2548 end_sequence ();
2549 emit_insn_before (seq, insn);
2550 return change_address (x, VOIDmode, temp);
2551 }
2552 return x;
2553 }
2554
2555 fmt = GET_RTX_FORMAT (code);
2556 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2557 {
2558 if (fmt[i] == 'e')
2559 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2560 else if (fmt[i] == 'E')
2561 {
2562 register int j;
2563 for (j = 0; j < XVECLEN (x, i); j++)
2564 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2565 }
2566 }
2567 return x;
2568 }
2569 \f
2570 /* Optimization: a bit-field instruction whose field
2571 happens to be a byte or halfword in memory
2572 can be changed to a move instruction.
2573
2574 We call here when INSN is an insn to examine or store into a bit-field.
2575 BODY is the SET-rtx to be altered.
2576
2577 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2578 (Currently this is called only from function.c, and EQUIV_MEM
2579 is always 0.) */
2580
2581 static void
2582 optimize_bit_field (body, insn, equiv_mem)
2583 rtx body;
2584 rtx insn;
2585 rtx *equiv_mem;
2586 {
2587 register rtx bitfield;
2588 int destflag;
2589 rtx seq = 0;
2590 enum machine_mode mode;
2591
2592 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2593 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2594 bitfield = SET_DEST (body), destflag = 1;
2595 else
2596 bitfield = SET_SRC (body), destflag = 0;
2597
2598 /* First check that the field being stored has constant size and position
2599 and is in fact a byte or halfword suitably aligned. */
2600
2601 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2602 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2603 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2604 != BLKmode)
2605 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2606 {
2607 register rtx memref = 0;
2608
2609 /* Now check that the containing word is memory, not a register,
2610 and that it is safe to change the machine mode. */
2611
2612 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2613 memref = XEXP (bitfield, 0);
2614 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2615 && equiv_mem != 0)
2616 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2617 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2618 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2619 memref = SUBREG_REG (XEXP (bitfield, 0));
2620 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2621 && equiv_mem != 0
2622 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2623 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2624
2625 if (memref
2626 && ! mode_dependent_address_p (XEXP (memref, 0))
2627 && ! MEM_VOLATILE_P (memref))
2628 {
2629 /* Now adjust the address, first for any subreg'ing
2630 that we are now getting rid of,
2631 and then for which byte of the word is wanted. */
2632
2633 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2634 rtx insns;
2635
2636 /* Adjust OFFSET to count bits from low-address byte. */
2637 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2638 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2639 - offset - INTVAL (XEXP (bitfield, 1)));
2640
2641 /* Adjust OFFSET to count bytes from low-address byte. */
2642 offset /= BITS_PER_UNIT;
2643 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2644 {
2645 offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
2646 if (BYTES_BIG_ENDIAN)
2647 offset -= (MIN (UNITS_PER_WORD,
2648 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2649 - MIN (UNITS_PER_WORD,
2650 GET_MODE_SIZE (GET_MODE (memref))));
2651 }
2652
2653 start_sequence ();
2654 memref = change_address (memref, mode,
2655 plus_constant (XEXP (memref, 0), offset));
2656 insns = get_insns ();
2657 end_sequence ();
2658 emit_insns_before (insns, insn);
2659
2660 /* Store this memory reference where
2661 we found the bit field reference. */
2662
2663 if (destflag)
2664 {
2665 validate_change (insn, &SET_DEST (body), memref, 1);
2666 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2667 {
2668 rtx src = SET_SRC (body);
2669 while (GET_CODE (src) == SUBREG
2670 && SUBREG_WORD (src) == 0)
2671 src = SUBREG_REG (src);
2672 if (GET_MODE (src) != GET_MODE (memref))
2673 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2674 validate_change (insn, &SET_SRC (body), src, 1);
2675 }
2676 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2677 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2678 /* This shouldn't happen because anything that didn't have
2679 one of these modes should have got converted explicitly
2680 and then referenced through a subreg.
2681 This is so because the original bit-field was
2682 handled by agg_mode and so its tree structure had
2683 the same mode that memref now has. */
2684 abort ();
2685 }
2686 else
2687 {
2688 rtx dest = SET_DEST (body);
2689
2690 while (GET_CODE (dest) == SUBREG
2691 && SUBREG_WORD (dest) == 0
2692 && (GET_MODE_CLASS (GET_MODE (dest))
2693 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2694 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2695 <= UNITS_PER_WORD))
2696 dest = SUBREG_REG (dest);
2697
2698 validate_change (insn, &SET_DEST (body), dest, 1);
2699
2700 if (GET_MODE (dest) == GET_MODE (memref))
2701 validate_change (insn, &SET_SRC (body), memref, 1);
2702 else
2703 {
2704 /* Convert the mem ref to the destination mode. */
2705 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2706
2707 start_sequence ();
2708 convert_move (newreg, memref,
2709 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2710 seq = get_insns ();
2711 end_sequence ();
2712
2713 validate_change (insn, &SET_SRC (body), newreg, 1);
2714 }
2715 }
2716
2717 /* See if we can convert this extraction or insertion into
2718 a simple move insn. We might not be able to do so if this
2719 was, for example, part of a PARALLEL.
2720
2721 If we succeed, write out any needed conversions. If we fail,
2722 it is hard to guess why we failed, so don't do anything
2723 special; just let the optimization be suppressed. */
2724
2725 if (apply_change_group () && seq)
2726 emit_insns_before (seq, insn);
2727 }
2728 }
2729 }
2730 \f
2731 /* These routines are responsible for converting virtual register references
2732 to the actual hard register references once RTL generation is complete.
2733
2734 The following four variables are used for communication between the
2735 routines. They contain the offsets of the virtual registers from their
2736 respective hard registers. */
2737
2738 static int in_arg_offset;
2739 static int var_offset;
2740 static int dynamic_offset;
2741 static int out_arg_offset;
2742 static int cfa_offset;
2743
2744 /* In most machines, the stack pointer register is equivalent to the bottom
2745 of the stack. */
2746
2747 #ifndef STACK_POINTER_OFFSET
2748 #define STACK_POINTER_OFFSET 0
2749 #endif
2750
2751 /* If not defined, pick an appropriate default for the offset of dynamically
2752 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2753 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2754
2755 #ifndef STACK_DYNAMIC_OFFSET
2756
2757 /* The bottom of the stack points to the actual arguments. If
2758 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2759 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2760 stack space for register parameters is not pushed by the caller, but
2761 rather part of the fixed stack areas and hence not included in
2762 `current_function_outgoing_args_size'. Nevertheless, we must allow
2763 for it when allocating stack dynamic objects. */
2764
2765 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2766 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2767 ((ACCUMULATE_OUTGOING_ARGS \
2768 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2769 + (STACK_POINTER_OFFSET)) \
2770
2771 #else
2772 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2773 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2774 + (STACK_POINTER_OFFSET))
2775 #endif
2776 #endif
2777
2778 /* On most machines, the CFA coincides with the first incoming parm. */
2779
2780 #ifndef ARG_POINTER_CFA_OFFSET
2781 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2782 #endif
2783
2784
2785 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2786 its address taken. DECL is the decl for the object stored in the
2787 register, for later use if we do need to force REG into the stack.
2788 REG is overwritten by the MEM like in put_reg_into_stack. */
2789
2790 rtx
2791 gen_mem_addressof (reg, decl)
2792 rtx reg;
2793 tree decl;
2794 {
2795 tree type = TREE_TYPE (decl);
2796 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2797 REGNO (reg), decl);
2798
2799 /* If the original REG was a user-variable, then so is the REG whose
2800 address is being taken. Likewise for unchanging. */
2801 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2802 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2803
2804 PUT_CODE (reg, MEM);
2805 PUT_MODE (reg, DECL_MODE (decl));
2806 XEXP (reg, 0) = r;
2807 MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
2808 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type));
2809 MEM_ALIAS_SET (reg) = get_alias_set (decl);
2810
2811 if (TREE_USED (decl) || DECL_INITIAL (decl) != 0)
2812 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), 0);
2813
2814 return reg;
2815 }
2816
2817 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2818
2819 void
2820 flush_addressof (decl)
2821 tree decl;
2822 {
2823 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2824 && DECL_RTL (decl) != 0
2825 && GET_CODE (DECL_RTL (decl)) == MEM
2826 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2827 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2828 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2829 }
2830
2831 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2832
2833 static void
2834 put_addressof_into_stack (r, ht)
2835 rtx r;
2836 struct hash_table *ht;
2837 {
2838 tree decl = ADDRESSOF_DECL (r);
2839 rtx reg = XEXP (r, 0);
2840
2841 if (GET_CODE (reg) != REG)
2842 abort ();
2843
2844 put_reg_into_stack (0, reg, TREE_TYPE (decl), GET_MODE (reg),
2845 DECL_MODE (decl), TREE_SIDE_EFFECTS (decl),
2846 ADDRESSOF_REGNO (r),
2847 TREE_USED (decl) || DECL_INITIAL (decl) != 0, ht);
2848 }
2849
2850 /* List of replacements made below in purge_addressof_1 when creating
2851 bitfield insertions. */
2852 static rtx purge_bitfield_addressof_replacements;
2853
2854 /* List of replacements made below in purge_addressof_1 for patterns
2855 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2856 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2857 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2858 enough in complex cases, e.g. when some field values can be
2859 extracted by usage MEM with narrower mode. */
2860 static rtx purge_addressof_replacements;
2861
2862 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2863 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2864 the stack. If the function returns FALSE then the replacement could not
2865 be made. */
2866
2867 static boolean
2868 purge_addressof_1 (loc, insn, force, store, ht)
2869 rtx *loc;
2870 rtx insn;
2871 int force, store;
2872 struct hash_table *ht;
2873 {
2874 rtx x;
2875 RTX_CODE code;
2876 int i, j;
2877 const char *fmt;
2878 boolean result = true;
2879
2880 /* Re-start here to avoid recursion in common cases. */
2881 restart:
2882
2883 x = *loc;
2884 if (x == 0)
2885 return true;
2886
2887 code = GET_CODE (x);
2888
2889 /* If we don't return in any of the cases below, we will recurse inside
2890 the RTX, which will normally result in any ADDRESSOF being forced into
2891 memory. */
2892 if (code == SET)
2893 {
2894 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
2895 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
2896 return result;
2897 }
2898
2899 else if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM)
2900 {
2901 /* We must create a copy of the rtx because it was created by
2902 overwriting a REG rtx which is always shared. */
2903 rtx sub = copy_rtx (XEXP (XEXP (x, 0), 0));
2904 rtx insns;
2905
2906 if (validate_change (insn, loc, sub, 0)
2907 || validate_replace_rtx (x, sub, insn))
2908 return true;
2909
2910 start_sequence ();
2911 sub = force_operand (sub, NULL_RTX);
2912 if (! validate_change (insn, loc, sub, 0)
2913 && ! validate_replace_rtx (x, sub, insn))
2914 abort ();
2915
2916 insns = gen_sequence ();
2917 end_sequence ();
2918 emit_insn_before (insns, insn);
2919 return true;
2920 }
2921
2922 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
2923 {
2924 rtx sub = XEXP (XEXP (x, 0), 0);
2925 rtx sub2;
2926
2927 if (GET_CODE (sub) == MEM)
2928 {
2929 sub2 = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0)));
2930 MEM_COPY_ATTRIBUTES (sub2, sub);
2931 RTX_UNCHANGING_P (sub2) = RTX_UNCHANGING_P (sub);
2932 sub = sub2;
2933 }
2934 else if (GET_CODE (sub) == REG
2935 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2936 ;
2937 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
2938 {
2939 int size_x, size_sub;
2940
2941 if (!insn)
2942 {
2943 /* When processing REG_NOTES look at the list of
2944 replacements done on the insn to find the register that X
2945 was replaced by. */
2946 rtx tem;
2947
2948 for (tem = purge_bitfield_addressof_replacements;
2949 tem != NULL_RTX;
2950 tem = XEXP (XEXP (tem, 1), 1))
2951 if (rtx_equal_p (x, XEXP (tem, 0)))
2952 {
2953 *loc = XEXP (XEXP (tem, 1), 0);
2954 return true;
2955 }
2956
2957 /* See comment for purge_addressof_replacements. */
2958 for (tem = purge_addressof_replacements;
2959 tem != NULL_RTX;
2960 tem = XEXP (XEXP (tem, 1), 1))
2961 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
2962 {
2963 rtx z = XEXP (XEXP (tem, 1), 0);
2964
2965 if (GET_MODE (x) == GET_MODE (z)
2966 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
2967 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
2968 abort ();
2969
2970 /* It can happen that the note may speak of things
2971 in a wider (or just different) mode than the
2972 code did. This is especially true of
2973 REG_RETVAL. */
2974
2975 if (GET_CODE (z) == SUBREG && SUBREG_WORD (z) == 0)
2976 z = SUBREG_REG (z);
2977
2978 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2979 && (GET_MODE_SIZE (GET_MODE (x))
2980 > GET_MODE_SIZE (GET_MODE (z))))
2981 {
2982 /* This can occur as a result in invalid
2983 pointer casts, e.g. float f; ...
2984 *(long long int *)&f.
2985 ??? We could emit a warning here, but
2986 without a line number that wouldn't be
2987 very helpful. */
2988 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
2989 }
2990 else
2991 z = gen_lowpart (GET_MODE (x), z);
2992
2993 *loc = z;
2994 return true;
2995 }
2996
2997 /* Sometimes we may not be able to find the replacement. For
2998 example when the original insn was a MEM in a wider mode,
2999 and the note is part of a sign extension of a narrowed
3000 version of that MEM. Gcc testcase compile/990829-1.c can
3001 generate an example of this siutation. Rather than complain
3002 we return false, which will prompt our caller to remove the
3003 offending note. */
3004 return false;
3005 }
3006
3007 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3008 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3009
3010 /* Don't even consider working with paradoxical subregs,
3011 or the moral equivalent seen here. */
3012 if (size_x <= size_sub
3013 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3014 {
3015 /* Do a bitfield insertion to mirror what would happen
3016 in memory. */
3017
3018 rtx val, seq;
3019
3020 if (store)
3021 {
3022 rtx p = PREV_INSN (insn);
3023
3024 start_sequence ();
3025 val = gen_reg_rtx (GET_MODE (x));
3026 if (! validate_change (insn, loc, val, 0))
3027 {
3028 /* Discard the current sequence and put the
3029 ADDRESSOF on stack. */
3030 end_sequence ();
3031 goto give_up;
3032 }
3033 seq = gen_sequence ();
3034 end_sequence ();
3035 emit_insn_before (seq, insn);
3036 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3037 insn, ht);
3038
3039 start_sequence ();
3040 store_bit_field (sub, size_x, 0, GET_MODE (x),
3041 val, GET_MODE_SIZE (GET_MODE (sub)),
3042 GET_MODE_ALIGNMENT (GET_MODE (sub)));
3043
3044 /* Make sure to unshare any shared rtl that store_bit_field
3045 might have created. */
3046 unshare_all_rtl_again (get_insns ());
3047
3048 seq = gen_sequence ();
3049 end_sequence ();
3050 p = emit_insn_after (seq, insn);
3051 if (NEXT_INSN (insn))
3052 compute_insns_for_mem (NEXT_INSN (insn),
3053 p ? NEXT_INSN (p) : NULL_RTX,
3054 ht);
3055 }
3056 else
3057 {
3058 rtx p = PREV_INSN (insn);
3059
3060 start_sequence ();
3061 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3062 GET_MODE (x), GET_MODE (x),
3063 GET_MODE_SIZE (GET_MODE (sub)),
3064 GET_MODE_SIZE (GET_MODE (sub)));
3065
3066 if (! validate_change (insn, loc, val, 0))
3067 {
3068 /* Discard the current sequence and put the
3069 ADDRESSOF on stack. */
3070 end_sequence ();
3071 goto give_up;
3072 }
3073
3074 seq = gen_sequence ();
3075 end_sequence ();
3076 emit_insn_before (seq, insn);
3077 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3078 insn, ht);
3079 }
3080
3081 /* Remember the replacement so that the same one can be done
3082 on the REG_NOTES. */
3083 purge_bitfield_addressof_replacements
3084 = gen_rtx_EXPR_LIST (VOIDmode, x,
3085 gen_rtx_EXPR_LIST
3086 (VOIDmode, val,
3087 purge_bitfield_addressof_replacements));
3088
3089 /* We replaced with a reg -- all done. */
3090 return true;
3091 }
3092 }
3093
3094 else if (validate_change (insn, loc, sub, 0))
3095 {
3096 /* Remember the replacement so that the same one can be done
3097 on the REG_NOTES. */
3098 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3099 {
3100 rtx tem;
3101
3102 for (tem = purge_addressof_replacements;
3103 tem != NULL_RTX;
3104 tem = XEXP (XEXP (tem, 1), 1))
3105 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3106 {
3107 XEXP (XEXP (tem, 1), 0) = sub;
3108 return true;
3109 }
3110 purge_addressof_replacements
3111 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3112 gen_rtx_EXPR_LIST (VOIDmode, sub,
3113 purge_addressof_replacements));
3114 return true;
3115 }
3116 goto restart;
3117 }
3118 give_up:;
3119 /* else give up and put it into the stack */
3120 }
3121
3122 else if (code == ADDRESSOF)
3123 {
3124 put_addressof_into_stack (x, ht);
3125 return true;
3126 }
3127 else if (code == SET)
3128 {
3129 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
3130 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
3131 return result;
3132 }
3133
3134 /* Scan all subexpressions. */
3135 fmt = GET_RTX_FORMAT (code);
3136 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3137 {
3138 if (*fmt == 'e')
3139 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3140 else if (*fmt == 'E')
3141 for (j = 0; j < XVECLEN (x, i); j++)
3142 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3143 }
3144
3145 return result;
3146 }
3147
3148 /* Return a new hash table entry in HT. */
3149
3150 static struct hash_entry *
3151 insns_for_mem_newfunc (he, ht, k)
3152 struct hash_entry *he;
3153 struct hash_table *ht;
3154 hash_table_key k ATTRIBUTE_UNUSED;
3155 {
3156 struct insns_for_mem_entry *ifmhe;
3157 if (he)
3158 return he;
3159
3160 ifmhe = ((struct insns_for_mem_entry *)
3161 hash_allocate (ht, sizeof (struct insns_for_mem_entry)));
3162 ifmhe->insns = NULL_RTX;
3163
3164 return &ifmhe->he;
3165 }
3166
3167 /* Return a hash value for K, a REG. */
3168
3169 static unsigned long
3170 insns_for_mem_hash (k)
3171 hash_table_key k;
3172 {
3173 /* K is really a RTX. Just use the address as the hash value. */
3174 return (unsigned long) k;
3175 }
3176
3177 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3178
3179 static boolean
3180 insns_for_mem_comp (k1, k2)
3181 hash_table_key k1;
3182 hash_table_key k2;
3183 {
3184 return k1 == k2;
3185 }
3186
3187 struct insns_for_mem_walk_info {
3188 /* The hash table that we are using to record which INSNs use which
3189 MEMs. */
3190 struct hash_table *ht;
3191
3192 /* The INSN we are currently proessing. */
3193 rtx insn;
3194
3195 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3196 to find the insns that use the REGs in the ADDRESSOFs. */
3197 int pass;
3198 };
3199
3200 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3201 that might be used in an ADDRESSOF expression, record this INSN in
3202 the hash table given by DATA (which is really a pointer to an
3203 insns_for_mem_walk_info structure). */
3204
3205 static int
3206 insns_for_mem_walk (r, data)
3207 rtx *r;
3208 void *data;
3209 {
3210 struct insns_for_mem_walk_info *ifmwi
3211 = (struct insns_for_mem_walk_info *) data;
3212
3213 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3214 && GET_CODE (XEXP (*r, 0)) == REG)
3215 hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0);
3216 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3217 {
3218 /* Lookup this MEM in the hashtable, creating it if necessary. */
3219 struct insns_for_mem_entry *ifme
3220 = (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht,
3221 *r,
3222 /*create=*/0,
3223 /*copy=*/0);
3224
3225 /* If we have not already recorded this INSN, do so now. Since
3226 we process the INSNs in order, we know that if we have
3227 recorded it it must be at the front of the list. */
3228 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3229 {
3230 /* We do the allocation on the same obstack as is used for
3231 the hash table since this memory will not be used once
3232 the hash table is deallocated. */
3233 push_obstacks (&ifmwi->ht->memory, &ifmwi->ht->memory);
3234 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3235 ifme->insns);
3236 pop_obstacks ();
3237 }
3238 }
3239
3240 return 0;
3241 }
3242
3243 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3244 which REGs in HT. */
3245
3246 static void
3247 compute_insns_for_mem (insns, last_insn, ht)
3248 rtx insns;
3249 rtx last_insn;
3250 struct hash_table *ht;
3251 {
3252 rtx insn;
3253 struct insns_for_mem_walk_info ifmwi;
3254 ifmwi.ht = ht;
3255
3256 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3257 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3258 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3259 {
3260 ifmwi.insn = insn;
3261 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3262 }
3263 }
3264
3265 /* Helper function for purge_addressof called through for_each_rtx.
3266 Returns true iff the rtl is an ADDRESSOF. */
3267 static int
3268 is_addressof (rtl, data)
3269 rtx * rtl;
3270 void * data ATTRIBUTE_UNUSED;
3271 {
3272 return GET_CODE (* rtl) == ADDRESSOF;
3273 }
3274
3275 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3276 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3277 stack. */
3278
3279 void
3280 purge_addressof (insns)
3281 rtx insns;
3282 {
3283 rtx insn;
3284 struct hash_table ht;
3285
3286 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3287 requires a fixup pass over the instruction stream to correct
3288 INSNs that depended on the REG being a REG, and not a MEM. But,
3289 these fixup passes are slow. Furthermore, most MEMs are not
3290 mentioned in very many instructions. So, we speed up the process
3291 by pre-calculating which REGs occur in which INSNs; that allows
3292 us to perform the fixup passes much more quickly. */
3293 hash_table_init (&ht,
3294 insns_for_mem_newfunc,
3295 insns_for_mem_hash,
3296 insns_for_mem_comp);
3297 compute_insns_for_mem (insns, NULL_RTX, &ht);
3298
3299 for (insn = insns; insn; insn = NEXT_INSN (insn))
3300 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3301 || GET_CODE (insn) == CALL_INSN)
3302 {
3303 if (! purge_addressof_1 (&PATTERN (insn), insn,
3304 asm_noperands (PATTERN (insn)) > 0, 0, &ht))
3305 /* If we could not replace the ADDRESSOFs in the insn,
3306 something is wrong. */
3307 abort ();
3308
3309 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, &ht))
3310 {
3311 /* If we could not replace the ADDRESSOFs in the insn's notes,
3312 we can just remove the offending notes instead. */
3313 rtx note;
3314
3315 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3316 {
3317 /* If we find a REG_RETVAL note then the insn is a libcall.
3318 Such insns must have REG_EQUAL notes as well, in order
3319 for later passes of the compiler to work. So it is not
3320 safe to delete the notes here, and instead we abort. */
3321 if (REG_NOTE_KIND (note) == REG_RETVAL)
3322 abort ();
3323 if (for_each_rtx (& note, is_addressof, NULL))
3324 remove_note (insn, note);
3325 }
3326 }
3327 }
3328
3329 /* Clean up. */
3330 hash_table_free (&ht);
3331 purge_bitfield_addressof_replacements = 0;
3332 purge_addressof_replacements = 0;
3333
3334 /* REGs are shared. purge_addressof will destructively replace a REG
3335 with a MEM, which creates shared MEMs.
3336
3337 Unfortunately, the children of put_reg_into_stack assume that MEMs
3338 referring to the same stack slot are shared (fixup_var_refs and
3339 the associated hash table code).
3340
3341 So, we have to do another unsharing pass after we have flushed any
3342 REGs that had their address taken into the stack.
3343
3344 It may be worth tracking whether or not we converted any REGs into
3345 MEMs to avoid this overhead when it is not needed. */
3346 unshare_all_rtl_again (get_insns ());
3347 }
3348 \f
3349 /* Pass through the INSNS of function FNDECL and convert virtual register
3350 references to hard register references. */
3351
3352 void
3353 instantiate_virtual_regs (fndecl, insns)
3354 tree fndecl;
3355 rtx insns;
3356 {
3357 rtx insn;
3358 unsigned int i;
3359
3360 /* Compute the offsets to use for this function. */
3361 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3362 var_offset = STARTING_FRAME_OFFSET;
3363 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3364 out_arg_offset = STACK_POINTER_OFFSET;
3365 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3366
3367 /* Scan all variables and parameters of this function. For each that is
3368 in memory, instantiate all virtual registers if the result is a valid
3369 address. If not, we do it later. That will handle most uses of virtual
3370 regs on many machines. */
3371 instantiate_decls (fndecl, 1);
3372
3373 /* Initialize recognition, indicating that volatile is OK. */
3374 init_recog ();
3375
3376 /* Scan through all the insns, instantiating every virtual register still
3377 present. */
3378 for (insn = insns; insn; insn = NEXT_INSN (insn))
3379 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3380 || GET_CODE (insn) == CALL_INSN)
3381 {
3382 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3383 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3384 }
3385
3386 /* Instantiate the stack slots for the parm registers, for later use in
3387 addressof elimination. */
3388 for (i = 0; i < max_parm_reg; ++i)
3389 if (parm_reg_stack_loc[i])
3390 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3391
3392 /* Now instantiate the remaining register equivalences for debugging info.
3393 These will not be valid addresses. */
3394 instantiate_decls (fndecl, 0);
3395
3396 /* Indicate that, from now on, assign_stack_local should use
3397 frame_pointer_rtx. */
3398 virtuals_instantiated = 1;
3399 }
3400
3401 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3402 all virtual registers in their DECL_RTL's.
3403
3404 If VALID_ONLY, do this only if the resulting address is still valid.
3405 Otherwise, always do it. */
3406
3407 static void
3408 instantiate_decls (fndecl, valid_only)
3409 tree fndecl;
3410 int valid_only;
3411 {
3412 tree decl;
3413
3414 if (DECL_SAVED_INSNS (fndecl))
3415 /* When compiling an inline function, the obstack used for
3416 rtl allocation is the maybepermanent_obstack. Calling
3417 `resume_temporary_allocation' switches us back to that
3418 obstack while we process this function's parameters. */
3419 resume_temporary_allocation ();
3420
3421 /* Process all parameters of the function. */
3422 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3423 {
3424 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3425
3426 instantiate_decl (DECL_RTL (decl), size, valid_only);
3427
3428 /* If the parameter was promoted, then the incoming RTL mode may be
3429 larger than the declared type size. We must use the larger of
3430 the two sizes. */
3431 size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size);
3432 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3433 }
3434
3435 /* Now process all variables defined in the function or its subblocks. */
3436 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3437
3438 if (DECL_INLINE (fndecl) || DECL_DEFER_OUTPUT (fndecl))
3439 {
3440 /* Save all rtl allocated for this function by raising the
3441 high-water mark on the maybepermanent_obstack. */
3442 preserve_data ();
3443 /* All further rtl allocation is now done in the current_obstack. */
3444 rtl_in_current_obstack ();
3445 }
3446 }
3447
3448 /* Subroutine of instantiate_decls: Process all decls in the given
3449 BLOCK node and all its subblocks. */
3450
3451 static void
3452 instantiate_decls_1 (let, valid_only)
3453 tree let;
3454 int valid_only;
3455 {
3456 tree t;
3457
3458 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3459 instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)),
3460 valid_only);
3461
3462 /* Process all subblocks. */
3463 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3464 instantiate_decls_1 (t, valid_only);
3465 }
3466
3467 /* Subroutine of the preceding procedures: Given RTL representing a
3468 decl and the size of the object, do any instantiation required.
3469
3470 If VALID_ONLY is non-zero, it means that the RTL should only be
3471 changed if the new address is valid. */
3472
3473 static void
3474 instantiate_decl (x, size, valid_only)
3475 rtx x;
3476 HOST_WIDE_INT size;
3477 int valid_only;
3478 {
3479 enum machine_mode mode;
3480 rtx addr;
3481
3482 /* If this is not a MEM, no need to do anything. Similarly if the
3483 address is a constant or a register that is not a virtual register. */
3484
3485 if (x == 0 || GET_CODE (x) != MEM)
3486 return;
3487
3488 addr = XEXP (x, 0);
3489 if (CONSTANT_P (addr)
3490 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3491 || (GET_CODE (addr) == REG
3492 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3493 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3494 return;
3495
3496 /* If we should only do this if the address is valid, copy the address.
3497 We need to do this so we can undo any changes that might make the
3498 address invalid. This copy is unfortunate, but probably can't be
3499 avoided. */
3500
3501 if (valid_only)
3502 addr = copy_rtx (addr);
3503
3504 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3505
3506 if (valid_only && size >= 0)
3507 {
3508 unsigned HOST_WIDE_INT decl_size = size;
3509
3510 /* Now verify that the resulting address is valid for every integer or
3511 floating-point mode up to and including SIZE bytes long. We do this
3512 since the object might be accessed in any mode and frame addresses
3513 are shared. */
3514
3515 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3516 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3517 mode = GET_MODE_WIDER_MODE (mode))
3518 if (! memory_address_p (mode, addr))
3519 return;
3520
3521 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3522 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3523 mode = GET_MODE_WIDER_MODE (mode))
3524 if (! memory_address_p (mode, addr))
3525 return;
3526 }
3527
3528 /* Put back the address now that we have updated it and we either know
3529 it is valid or we don't care whether it is valid. */
3530
3531 XEXP (x, 0) = addr;
3532 }
3533 \f
3534 /* Given a pointer to a piece of rtx and an optional pointer to the
3535 containing object, instantiate any virtual registers present in it.
3536
3537 If EXTRA_INSNS, we always do the replacement and generate
3538 any extra insns before OBJECT. If it zero, we do nothing if replacement
3539 is not valid.
3540
3541 Return 1 if we either had nothing to do or if we were able to do the
3542 needed replacement. Return 0 otherwise; we only return zero if
3543 EXTRA_INSNS is zero.
3544
3545 We first try some simple transformations to avoid the creation of extra
3546 pseudos. */
3547
3548 static int
3549 instantiate_virtual_regs_1 (loc, object, extra_insns)
3550 rtx *loc;
3551 rtx object;
3552 int extra_insns;
3553 {
3554 rtx x;
3555 RTX_CODE code;
3556 rtx new = 0;
3557 HOST_WIDE_INT offset = 0;
3558 rtx temp;
3559 rtx seq;
3560 int i, j;
3561 const char *fmt;
3562
3563 /* Re-start here to avoid recursion in common cases. */
3564 restart:
3565
3566 x = *loc;
3567 if (x == 0)
3568 return 1;
3569
3570 code = GET_CODE (x);
3571
3572 /* Check for some special cases. */
3573 switch (code)
3574 {
3575 case CONST_INT:
3576 case CONST_DOUBLE:
3577 case CONST:
3578 case SYMBOL_REF:
3579 case CODE_LABEL:
3580 case PC:
3581 case CC0:
3582 case ASM_INPUT:
3583 case ADDR_VEC:
3584 case ADDR_DIFF_VEC:
3585 case RETURN:
3586 return 1;
3587
3588 case SET:
3589 /* We are allowed to set the virtual registers. This means that
3590 the actual register should receive the source minus the
3591 appropriate offset. This is used, for example, in the handling
3592 of non-local gotos. */
3593 if (SET_DEST (x) == virtual_incoming_args_rtx)
3594 new = arg_pointer_rtx, offset = - in_arg_offset;
3595 else if (SET_DEST (x) == virtual_stack_vars_rtx)
3596 new = frame_pointer_rtx, offset = - var_offset;
3597 else if (SET_DEST (x) == virtual_stack_dynamic_rtx)
3598 new = stack_pointer_rtx, offset = - dynamic_offset;
3599 else if (SET_DEST (x) == virtual_outgoing_args_rtx)
3600 new = stack_pointer_rtx, offset = - out_arg_offset;
3601 else if (SET_DEST (x) == virtual_cfa_rtx)
3602 new = arg_pointer_rtx, offset = - cfa_offset;
3603
3604 if (new)
3605 {
3606 rtx src = SET_SRC (x);
3607
3608 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3609
3610 /* The only valid sources here are PLUS or REG. Just do
3611 the simplest possible thing to handle them. */
3612 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3613 abort ();
3614
3615 start_sequence ();
3616 if (GET_CODE (src) != REG)
3617 temp = force_operand (src, NULL_RTX);
3618 else
3619 temp = src;
3620 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3621 seq = get_insns ();
3622 end_sequence ();
3623
3624 emit_insns_before (seq, object);
3625 SET_DEST (x) = new;
3626
3627 if (! validate_change (object, &SET_SRC (x), temp, 0)
3628 || ! extra_insns)
3629 abort ();
3630
3631 return 1;
3632 }
3633
3634 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3635 loc = &SET_SRC (x);
3636 goto restart;
3637
3638 case PLUS:
3639 /* Handle special case of virtual register plus constant. */
3640 if (CONSTANT_P (XEXP (x, 1)))
3641 {
3642 rtx old, new_offset;
3643
3644 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3645 if (GET_CODE (XEXP (x, 0)) == PLUS)
3646 {
3647 rtx inner = XEXP (XEXP (x, 0), 0);
3648
3649 if (inner == virtual_incoming_args_rtx)
3650 new = arg_pointer_rtx, offset = in_arg_offset;
3651 else if (inner == virtual_stack_vars_rtx)
3652 new = frame_pointer_rtx, offset = var_offset;
3653 else if (inner == virtual_stack_dynamic_rtx)
3654 new = stack_pointer_rtx, offset = dynamic_offset;
3655 else if (inner == virtual_outgoing_args_rtx)
3656 new = stack_pointer_rtx, offset = out_arg_offset;
3657 else if (inner == virtual_cfa_rtx)
3658 new = arg_pointer_rtx, offset = cfa_offset;
3659 else
3660 {
3661 loc = &XEXP (x, 0);
3662 goto restart;
3663 }
3664
3665 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3666 extra_insns);
3667 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3668 }
3669
3670 else if (XEXP (x, 0) == virtual_incoming_args_rtx)
3671 new = arg_pointer_rtx, offset = in_arg_offset;
3672 else if (XEXP (x, 0) == virtual_stack_vars_rtx)
3673 new = frame_pointer_rtx, offset = var_offset;
3674 else if (XEXP (x, 0) == virtual_stack_dynamic_rtx)
3675 new = stack_pointer_rtx, offset = dynamic_offset;
3676 else if (XEXP (x, 0) == virtual_outgoing_args_rtx)
3677 new = stack_pointer_rtx, offset = out_arg_offset;
3678 else if (XEXP (x, 0) == virtual_cfa_rtx)
3679 new = arg_pointer_rtx, offset = cfa_offset;
3680 else
3681 {
3682 /* We know the second operand is a constant. Unless the
3683 first operand is a REG (which has been already checked),
3684 it needs to be checked. */
3685 if (GET_CODE (XEXP (x, 0)) != REG)
3686 {
3687 loc = &XEXP (x, 0);
3688 goto restart;
3689 }
3690 return 1;
3691 }
3692
3693 new_offset = plus_constant (XEXP (x, 1), offset);
3694
3695 /* If the new constant is zero, try to replace the sum with just
3696 the register. */
3697 if (new_offset == const0_rtx
3698 && validate_change (object, loc, new, 0))
3699 return 1;
3700
3701 /* Next try to replace the register and new offset.
3702 There are two changes to validate here and we can't assume that
3703 in the case of old offset equals new just changing the register
3704 will yield a valid insn. In the interests of a little efficiency,
3705 however, we only call validate change once (we don't queue up the
3706 changes and then call apply_change_group). */
3707
3708 old = XEXP (x, 0);
3709 if (offset == 0
3710 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3711 : (XEXP (x, 0) = new,
3712 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3713 {
3714 if (! extra_insns)
3715 {
3716 XEXP (x, 0) = old;
3717 return 0;
3718 }
3719
3720 /* Otherwise copy the new constant into a register and replace
3721 constant with that register. */
3722 temp = gen_reg_rtx (Pmode);
3723 XEXP (x, 0) = new;
3724 if (validate_change (object, &XEXP (x, 1), temp, 0))
3725 emit_insn_before (gen_move_insn (temp, new_offset), object);
3726 else
3727 {
3728 /* If that didn't work, replace this expression with a
3729 register containing the sum. */
3730
3731 XEXP (x, 0) = old;
3732 new = gen_rtx_PLUS (Pmode, new, new_offset);
3733
3734 start_sequence ();
3735 temp = force_operand (new, NULL_RTX);
3736 seq = get_insns ();
3737 end_sequence ();
3738
3739 emit_insns_before (seq, object);
3740 if (! validate_change (object, loc, temp, 0)
3741 && ! validate_replace_rtx (x, temp, object))
3742 abort ();
3743 }
3744 }
3745
3746 return 1;
3747 }
3748
3749 /* Fall through to generic two-operand expression case. */
3750 case EXPR_LIST:
3751 case CALL:
3752 case COMPARE:
3753 case MINUS:
3754 case MULT:
3755 case DIV: case UDIV:
3756 case MOD: case UMOD:
3757 case AND: case IOR: case XOR:
3758 case ROTATERT: case ROTATE:
3759 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3760 case NE: case EQ:
3761 case GE: case GT: case GEU: case GTU:
3762 case LE: case LT: case LEU: case LTU:
3763 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3764 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3765 loc = &XEXP (x, 0);
3766 goto restart;
3767
3768 case MEM:
3769 /* Most cases of MEM that convert to valid addresses have already been
3770 handled by our scan of decls. The only special handling we
3771 need here is to make a copy of the rtx to ensure it isn't being
3772 shared if we have to change it to a pseudo.
3773
3774 If the rtx is a simple reference to an address via a virtual register,
3775 it can potentially be shared. In such cases, first try to make it
3776 a valid address, which can also be shared. Otherwise, copy it and
3777 proceed normally.
3778
3779 First check for common cases that need no processing. These are
3780 usually due to instantiation already being done on a previous instance
3781 of a shared rtx. */
3782
3783 temp = XEXP (x, 0);
3784 if (CONSTANT_ADDRESS_P (temp)
3785 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3786 || temp == arg_pointer_rtx
3787 #endif
3788 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3789 || temp == hard_frame_pointer_rtx
3790 #endif
3791 || temp == frame_pointer_rtx)
3792 return 1;
3793
3794 if (GET_CODE (temp) == PLUS
3795 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3796 && (XEXP (temp, 0) == frame_pointer_rtx
3797 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3798 || XEXP (temp, 0) == hard_frame_pointer_rtx
3799 #endif
3800 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3801 || XEXP (temp, 0) == arg_pointer_rtx
3802 #endif
3803 ))
3804 return 1;
3805
3806 if (temp == virtual_stack_vars_rtx
3807 || temp == virtual_incoming_args_rtx
3808 || (GET_CODE (temp) == PLUS
3809 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3810 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3811 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3812 {
3813 /* This MEM may be shared. If the substitution can be done without
3814 the need to generate new pseudos, we want to do it in place
3815 so all copies of the shared rtx benefit. The call below will
3816 only make substitutions if the resulting address is still
3817 valid.
3818
3819 Note that we cannot pass X as the object in the recursive call
3820 since the insn being processed may not allow all valid
3821 addresses. However, if we were not passed on object, we can
3822 only modify X without copying it if X will have a valid
3823 address.
3824
3825 ??? Also note that this can still lose if OBJECT is an insn that
3826 has less restrictions on an address that some other insn.
3827 In that case, we will modify the shared address. This case
3828 doesn't seem very likely, though. One case where this could
3829 happen is in the case of a USE or CLOBBER reference, but we
3830 take care of that below. */
3831
3832 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
3833 object ? object : x, 0))
3834 return 1;
3835
3836 /* Otherwise make a copy and process that copy. We copy the entire
3837 RTL expression since it might be a PLUS which could also be
3838 shared. */
3839 *loc = x = copy_rtx (x);
3840 }
3841
3842 /* Fall through to generic unary operation case. */
3843 case SUBREG:
3844 case STRICT_LOW_PART:
3845 case NEG: case NOT:
3846 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
3847 case SIGN_EXTEND: case ZERO_EXTEND:
3848 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3849 case FLOAT: case FIX:
3850 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3851 case ABS:
3852 case SQRT:
3853 case FFS:
3854 /* These case either have just one operand or we know that we need not
3855 check the rest of the operands. */
3856 loc = &XEXP (x, 0);
3857 goto restart;
3858
3859 case USE:
3860 case CLOBBER:
3861 /* If the operand is a MEM, see if the change is a valid MEM. If not,
3862 go ahead and make the invalid one, but do it to a copy. For a REG,
3863 just make the recursive call, since there's no chance of a problem. */
3864
3865 if ((GET_CODE (XEXP (x, 0)) == MEM
3866 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
3867 0))
3868 || (GET_CODE (XEXP (x, 0)) == REG
3869 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
3870 return 1;
3871
3872 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
3873 loc = &XEXP (x, 0);
3874 goto restart;
3875
3876 case REG:
3877 /* Try to replace with a PLUS. If that doesn't work, compute the sum
3878 in front of this insn and substitute the temporary. */
3879 if (x == virtual_incoming_args_rtx)
3880 new = arg_pointer_rtx, offset = in_arg_offset;
3881 else if (x == virtual_stack_vars_rtx)
3882 new = frame_pointer_rtx, offset = var_offset;
3883 else if (x == virtual_stack_dynamic_rtx)
3884 new = stack_pointer_rtx, offset = dynamic_offset;
3885 else if (x == virtual_outgoing_args_rtx)
3886 new = stack_pointer_rtx, offset = out_arg_offset;
3887 else if (x == virtual_cfa_rtx)
3888 new = arg_pointer_rtx, offset = cfa_offset;
3889
3890 if (new)
3891 {
3892 temp = plus_constant (new, offset);
3893 if (!validate_change (object, loc, temp, 0))
3894 {
3895 if (! extra_insns)
3896 return 0;
3897
3898 start_sequence ();
3899 temp = force_operand (temp, NULL_RTX);
3900 seq = get_insns ();
3901 end_sequence ();
3902
3903 emit_insns_before (seq, object);
3904 if (! validate_change (object, loc, temp, 0)
3905 && ! validate_replace_rtx (x, temp, object))
3906 abort ();
3907 }
3908 }
3909
3910 return 1;
3911
3912 case ADDRESSOF:
3913 if (GET_CODE (XEXP (x, 0)) == REG)
3914 return 1;
3915
3916 else if (GET_CODE (XEXP (x, 0)) == MEM)
3917 {
3918 /* If we have a (addressof (mem ..)), do any instantiation inside
3919 since we know we'll be making the inside valid when we finally
3920 remove the ADDRESSOF. */
3921 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
3922 return 1;
3923 }
3924 break;
3925
3926 default:
3927 break;
3928 }
3929
3930 /* Scan all subexpressions. */
3931 fmt = GET_RTX_FORMAT (code);
3932 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3933 if (*fmt == 'e')
3934 {
3935 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
3936 return 0;
3937 }
3938 else if (*fmt == 'E')
3939 for (j = 0; j < XVECLEN (x, i); j++)
3940 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
3941 extra_insns))
3942 return 0;
3943
3944 return 1;
3945 }
3946 \f
3947 /* Optimization: assuming this function does not receive nonlocal gotos,
3948 delete the handlers for such, as well as the insns to establish
3949 and disestablish them. */
3950
3951 static void
3952 delete_handlers ()
3953 {
3954 rtx insn;
3955 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3956 {
3957 /* Delete the handler by turning off the flag that would
3958 prevent jump_optimize from deleting it.
3959 Also permit deletion of the nonlocal labels themselves
3960 if nothing local refers to them. */
3961 if (GET_CODE (insn) == CODE_LABEL)
3962 {
3963 tree t, last_t;
3964
3965 LABEL_PRESERVE_P (insn) = 0;
3966
3967 /* Remove it from the nonlocal_label list, to avoid confusing
3968 flow. */
3969 for (t = nonlocal_labels, last_t = 0; t;
3970 last_t = t, t = TREE_CHAIN (t))
3971 if (DECL_RTL (TREE_VALUE (t)) == insn)
3972 break;
3973 if (t)
3974 {
3975 if (! last_t)
3976 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
3977 else
3978 TREE_CHAIN (last_t) = TREE_CHAIN (t);
3979 }
3980 }
3981 if (GET_CODE (insn) == INSN)
3982 {
3983 int can_delete = 0;
3984 rtx t;
3985 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
3986 if (reg_mentioned_p (t, PATTERN (insn)))
3987 {
3988 can_delete = 1;
3989 break;
3990 }
3991 if (can_delete
3992 || (nonlocal_goto_stack_level != 0
3993 && reg_mentioned_p (nonlocal_goto_stack_level,
3994 PATTERN (insn))))
3995 delete_insn (insn);
3996 }
3997 }
3998 }
3999 \f
4000 int
4001 max_parm_reg_num ()
4002 {
4003 return max_parm_reg;
4004 }
4005
4006 /* Return the first insn following those generated by `assign_parms'. */
4007
4008 rtx
4009 get_first_nonparm_insn ()
4010 {
4011 if (last_parm_insn)
4012 return NEXT_INSN (last_parm_insn);
4013 return get_insns ();
4014 }
4015
4016 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
4017 Crash if there is none. */
4018
4019 rtx
4020 get_first_block_beg ()
4021 {
4022 register rtx searcher;
4023 register rtx insn = get_first_nonparm_insn ();
4024
4025 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
4026 if (GET_CODE (searcher) == NOTE
4027 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
4028 return searcher;
4029
4030 abort (); /* Invalid call to this function. (See comments above.) */
4031 return NULL_RTX;
4032 }
4033
4034 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4035 This means a type for which function calls must pass an address to the
4036 function or get an address back from the function.
4037 EXP may be a type node or an expression (whose type is tested). */
4038
4039 int
4040 aggregate_value_p (exp)
4041 tree exp;
4042 {
4043 int i, regno, nregs;
4044 rtx reg;
4045
4046 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4047
4048 if (TREE_CODE (type) == VOID_TYPE)
4049 return 0;
4050 if (RETURN_IN_MEMORY (type))
4051 return 1;
4052 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4053 and thus can't be returned in registers. */
4054 if (TREE_ADDRESSABLE (type))
4055 return 1;
4056 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4057 return 1;
4058 /* Make sure we have suitable call-clobbered regs to return
4059 the value in; if not, we must return it in memory. */
4060 reg = hard_function_value (type, 0, 0);
4061
4062 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4063 it is OK. */
4064 if (GET_CODE (reg) != REG)
4065 return 0;
4066
4067 regno = REGNO (reg);
4068 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4069 for (i = 0; i < nregs; i++)
4070 if (! call_used_regs[regno + i])
4071 return 1;
4072 return 0;
4073 }
4074 \f
4075 /* Assign RTL expressions to the function's parameters.
4076 This may involve copying them into registers and using
4077 those registers as the RTL for them. */
4078
4079 void
4080 assign_parms (fndecl)
4081 tree fndecl;
4082 {
4083 register tree parm;
4084 register rtx entry_parm = 0;
4085 register rtx stack_parm = 0;
4086 CUMULATIVE_ARGS args_so_far;
4087 enum machine_mode promoted_mode, passed_mode;
4088 enum machine_mode nominal_mode, promoted_nominal_mode;
4089 int unsignedp;
4090 /* Total space needed so far for args on the stack,
4091 given as a constant and a tree-expression. */
4092 struct args_size stack_args_size;
4093 tree fntype = TREE_TYPE (fndecl);
4094 tree fnargs = DECL_ARGUMENTS (fndecl);
4095 /* This is used for the arg pointer when referring to stack args. */
4096 rtx internal_arg_pointer;
4097 /* This is a dummy PARM_DECL that we used for the function result if
4098 the function returns a structure. */
4099 tree function_result_decl = 0;
4100 #ifdef SETUP_INCOMING_VARARGS
4101 int varargs_setup = 0;
4102 #endif
4103 rtx conversion_insns = 0;
4104 struct args_size alignment_pad;
4105
4106 /* Nonzero if the last arg is named `__builtin_va_alist',
4107 which is used on some machines for old-fashioned non-ANSI varargs.h;
4108 this should be stuck onto the stack as if it had arrived there. */
4109 int hide_last_arg
4110 = (current_function_varargs
4111 && fnargs
4112 && (parm = tree_last (fnargs)) != 0
4113 && DECL_NAME (parm)
4114 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
4115 "__builtin_va_alist")));
4116
4117 /* Nonzero if function takes extra anonymous args.
4118 This means the last named arg must be on the stack
4119 right before the anonymous ones. */
4120 int stdarg
4121 = (TYPE_ARG_TYPES (fntype) != 0
4122 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4123 != void_type_node));
4124
4125 current_function_stdarg = stdarg;
4126
4127 /* If the reg that the virtual arg pointer will be translated into is
4128 not a fixed reg or is the stack pointer, make a copy of the virtual
4129 arg pointer, and address parms via the copy. The frame pointer is
4130 considered fixed even though it is not marked as such.
4131
4132 The second time through, simply use ap to avoid generating rtx. */
4133
4134 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4135 || ! (fixed_regs[ARG_POINTER_REGNUM]
4136 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4137 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4138 else
4139 internal_arg_pointer = virtual_incoming_args_rtx;
4140 current_function_internal_arg_pointer = internal_arg_pointer;
4141
4142 stack_args_size.constant = 0;
4143 stack_args_size.var = 0;
4144
4145 /* If struct value address is treated as the first argument, make it so. */
4146 if (aggregate_value_p (DECL_RESULT (fndecl))
4147 && ! current_function_returns_pcc_struct
4148 && struct_value_incoming_rtx == 0)
4149 {
4150 tree type = build_pointer_type (TREE_TYPE (fntype));
4151
4152 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4153
4154 DECL_ARG_TYPE (function_result_decl) = type;
4155 TREE_CHAIN (function_result_decl) = fnargs;
4156 fnargs = function_result_decl;
4157 }
4158
4159 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4160 parm_reg_stack_loc = (rtx *) xcalloc (max_parm_reg, sizeof (rtx));
4161
4162 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4163 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4164 #else
4165 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4166 #endif
4167
4168 /* We haven't yet found an argument that we must push and pretend the
4169 caller did. */
4170 current_function_pretend_args_size = 0;
4171
4172 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4173 {
4174 int aggregate = AGGREGATE_TYPE_P (TREE_TYPE (parm));
4175 struct args_size stack_offset;
4176 struct args_size arg_size;
4177 int passed_pointer = 0;
4178 int did_conversion = 0;
4179 tree passed_type = DECL_ARG_TYPE (parm);
4180 tree nominal_type = TREE_TYPE (parm);
4181 int pretend_named;
4182
4183 /* Set LAST_NAMED if this is last named arg before some
4184 anonymous args. */
4185 int last_named = ((TREE_CHAIN (parm) == 0
4186 || DECL_NAME (TREE_CHAIN (parm)) == 0)
4187 && (stdarg || current_function_varargs));
4188 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4189 most machines, if this is a varargs/stdarg function, then we treat
4190 the last named arg as if it were anonymous too. */
4191 int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4192
4193 if (TREE_TYPE (parm) == error_mark_node
4194 /* This can happen after weird syntax errors
4195 or if an enum type is defined among the parms. */
4196 || TREE_CODE (parm) != PARM_DECL
4197 || passed_type == NULL)
4198 {
4199 DECL_INCOMING_RTL (parm) = DECL_RTL (parm)
4200 = gen_rtx_MEM (BLKmode, const0_rtx);
4201 TREE_USED (parm) = 1;
4202 continue;
4203 }
4204
4205 /* For varargs.h function, save info about regs and stack space
4206 used by the individual args, not including the va_alist arg. */
4207 if (hide_last_arg && last_named)
4208 current_function_args_info = args_so_far;
4209
4210 /* Find mode of arg as it is passed, and mode of arg
4211 as it should be during execution of this function. */
4212 passed_mode = TYPE_MODE (passed_type);
4213 nominal_mode = TYPE_MODE (nominal_type);
4214
4215 /* If the parm's mode is VOID, its value doesn't matter,
4216 and avoid the usual things like emit_move_insn that could crash. */
4217 if (nominal_mode == VOIDmode)
4218 {
4219 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx;
4220 continue;
4221 }
4222
4223 /* If the parm is to be passed as a transparent union, use the
4224 type of the first field for the tests below. We have already
4225 verified that the modes are the same. */
4226 if (DECL_TRANSPARENT_UNION (parm)
4227 || TYPE_TRANSPARENT_UNION (passed_type))
4228 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4229
4230 /* See if this arg was passed by invisible reference. It is if
4231 it is an object whose size depends on the contents of the
4232 object itself or if the machine requires these objects be passed
4233 that way. */
4234
4235 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4236 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4237 || TREE_ADDRESSABLE (passed_type)
4238 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4239 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4240 passed_type, named_arg)
4241 #endif
4242 )
4243 {
4244 passed_type = nominal_type = build_pointer_type (passed_type);
4245 passed_pointer = 1;
4246 passed_mode = nominal_mode = Pmode;
4247 }
4248
4249 promoted_mode = passed_mode;
4250
4251 #ifdef PROMOTE_FUNCTION_ARGS
4252 /* Compute the mode in which the arg is actually extended to. */
4253 unsignedp = TREE_UNSIGNED (passed_type);
4254 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4255 #endif
4256
4257 /* Let machine desc say which reg (if any) the parm arrives in.
4258 0 means it arrives on the stack. */
4259 #ifdef FUNCTION_INCOMING_ARG
4260 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4261 passed_type, named_arg);
4262 #else
4263 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4264 passed_type, named_arg);
4265 #endif
4266
4267 if (entry_parm == 0)
4268 promoted_mode = passed_mode;
4269
4270 #ifdef SETUP_INCOMING_VARARGS
4271 /* If this is the last named parameter, do any required setup for
4272 varargs or stdargs. We need to know about the case of this being an
4273 addressable type, in which case we skip the registers it
4274 would have arrived in.
4275
4276 For stdargs, LAST_NAMED will be set for two parameters, the one that
4277 is actually the last named, and the dummy parameter. We only
4278 want to do this action once.
4279
4280 Also, indicate when RTL generation is to be suppressed. */
4281 if (last_named && !varargs_setup)
4282 {
4283 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4284 current_function_pretend_args_size, 0);
4285 varargs_setup = 1;
4286 }
4287 #endif
4288
4289 /* Determine parm's home in the stack,
4290 in case it arrives in the stack or we should pretend it did.
4291
4292 Compute the stack position and rtx where the argument arrives
4293 and its size.
4294
4295 There is one complexity here: If this was a parameter that would
4296 have been passed in registers, but wasn't only because it is
4297 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4298 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4299 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4300 0 as it was the previous time. */
4301
4302 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4303 locate_and_pad_parm (promoted_mode, passed_type,
4304 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4305 1,
4306 #else
4307 #ifdef FUNCTION_INCOMING_ARG
4308 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4309 passed_type,
4310 pretend_named) != 0,
4311 #else
4312 FUNCTION_ARG (args_so_far, promoted_mode,
4313 passed_type,
4314 pretend_named) != 0,
4315 #endif
4316 #endif
4317 fndecl, &stack_args_size, &stack_offset, &arg_size,
4318 &alignment_pad);
4319
4320 {
4321 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4322
4323 if (offset_rtx == const0_rtx)
4324 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4325 else
4326 stack_parm = gen_rtx_MEM (promoted_mode,
4327 gen_rtx_PLUS (Pmode,
4328 internal_arg_pointer,
4329 offset_rtx));
4330
4331 /* If this is a memory ref that contains aggregate components,
4332 mark it as such for cse and loop optimize. Likewise if it
4333 is readonly. */
4334 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4335 RTX_UNCHANGING_P (stack_parm) = TREE_READONLY (parm);
4336 MEM_ALIAS_SET (stack_parm) = get_alias_set (parm);
4337 }
4338
4339 /* If this parameter was passed both in registers and in the stack,
4340 use the copy on the stack. */
4341 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4342 entry_parm = 0;
4343
4344 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4345 /* If this parm was passed part in regs and part in memory,
4346 pretend it arrived entirely in memory
4347 by pushing the register-part onto the stack.
4348
4349 In the special case of a DImode or DFmode that is split,
4350 we could put it together in a pseudoreg directly,
4351 but for now that's not worth bothering with. */
4352
4353 if (entry_parm)
4354 {
4355 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4356 passed_type, named_arg);
4357
4358 if (nregs > 0)
4359 {
4360 current_function_pretend_args_size
4361 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4362 / (PARM_BOUNDARY / BITS_PER_UNIT)
4363 * (PARM_BOUNDARY / BITS_PER_UNIT));
4364
4365 /* Handle calls that pass values in multiple non-contiguous
4366 locations. The Irix 6 ABI has examples of this. */
4367 if (GET_CODE (entry_parm) == PARALLEL)
4368 emit_group_store (validize_mem (stack_parm), entry_parm,
4369 int_size_in_bytes (TREE_TYPE (parm)),
4370 TYPE_ALIGN (TREE_TYPE (parm)));
4371
4372 else
4373 move_block_from_reg (REGNO (entry_parm),
4374 validize_mem (stack_parm), nregs,
4375 int_size_in_bytes (TREE_TYPE (parm)));
4376
4377 entry_parm = stack_parm;
4378 }
4379 }
4380 #endif
4381
4382 /* If we didn't decide this parm came in a register,
4383 by default it came on the stack. */
4384 if (entry_parm == 0)
4385 entry_parm = stack_parm;
4386
4387 /* Record permanently how this parm was passed. */
4388 DECL_INCOMING_RTL (parm) = entry_parm;
4389
4390 /* If there is actually space on the stack for this parm,
4391 count it in stack_args_size; otherwise set stack_parm to 0
4392 to indicate there is no preallocated stack slot for the parm. */
4393
4394 if (entry_parm == stack_parm
4395 || (GET_CODE (entry_parm) == PARALLEL
4396 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4397 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4398 /* On some machines, even if a parm value arrives in a register
4399 there is still an (uninitialized) stack slot allocated for it.
4400
4401 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4402 whether this parameter already has a stack slot allocated,
4403 because an arg block exists only if current_function_args_size
4404 is larger than some threshold, and we haven't calculated that
4405 yet. So, for now, we just assume that stack slots never exist
4406 in this case. */
4407 || REG_PARM_STACK_SPACE (fndecl) > 0
4408 #endif
4409 )
4410 {
4411 stack_args_size.constant += arg_size.constant;
4412 if (arg_size.var)
4413 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4414 }
4415 else
4416 /* No stack slot was pushed for this parm. */
4417 stack_parm = 0;
4418
4419 /* Update info on where next arg arrives in registers. */
4420
4421 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4422 passed_type, named_arg);
4423
4424 /* If we can't trust the parm stack slot to be aligned enough
4425 for its ultimate type, don't use that slot after entry.
4426 We'll make another stack slot, if we need one. */
4427 {
4428 unsigned int thisparm_boundary
4429 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4430
4431 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4432 stack_parm = 0;
4433 }
4434
4435 /* If parm was passed in memory, and we need to convert it on entry,
4436 don't store it back in that same slot. */
4437 if (entry_parm != 0
4438 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4439 stack_parm = 0;
4440
4441 #if 0
4442 /* Now adjust STACK_PARM to the mode and precise location
4443 where this parameter should live during execution,
4444 if we discover that it must live in the stack during execution.
4445 To make debuggers happier on big-endian machines, we store
4446 the value in the last bytes of the space available. */
4447
4448 if (nominal_mode != BLKmode && nominal_mode != passed_mode
4449 && stack_parm != 0)
4450 {
4451 rtx offset_rtx;
4452
4453 if (BYTES_BIG_ENDIAN
4454 && GET_MODE_SIZE (nominal_mode) < UNITS_PER_WORD)
4455 stack_offset.constant += (GET_MODE_SIZE (passed_mode)
4456 - GET_MODE_SIZE (nominal_mode));
4457
4458 offset_rtx = ARGS_SIZE_RTX (stack_offset);
4459 if (offset_rtx == const0_rtx)
4460 stack_parm = gen_rtx_MEM (nominal_mode, internal_arg_pointer);
4461 else
4462 stack_parm = gen_rtx_MEM (nominal_mode,
4463 gen_rtx_PLUS (Pmode,
4464 internal_arg_pointer,
4465 offset_rtx));
4466
4467 /* If this is a memory ref that contains aggregate components,
4468 mark it as such for cse and loop optimize. */
4469 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4470 }
4471 #endif /* 0 */
4472
4473 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4474 in the mode in which it arrives.
4475 STACK_PARM is an RTX for a stack slot where the parameter can live
4476 during the function (in case we want to put it there).
4477 STACK_PARM is 0 if no stack slot was pushed for it.
4478
4479 Now output code if necessary to convert ENTRY_PARM to
4480 the type in which this function declares it,
4481 and store that result in an appropriate place,
4482 which may be a pseudo reg, may be STACK_PARM,
4483 or may be a local stack slot if STACK_PARM is 0.
4484
4485 Set DECL_RTL to that place. */
4486
4487 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4488 {
4489 /* If a BLKmode arrives in registers, copy it to a stack slot.
4490 Handle calls that pass values in multiple non-contiguous
4491 locations. The Irix 6 ABI has examples of this. */
4492 if (GET_CODE (entry_parm) == REG
4493 || GET_CODE (entry_parm) == PARALLEL)
4494 {
4495 int size_stored
4496 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4497 UNITS_PER_WORD);
4498
4499 /* Note that we will be storing an integral number of words.
4500 So we have to be careful to ensure that we allocate an
4501 integral number of words. We do this below in the
4502 assign_stack_local if space was not allocated in the argument
4503 list. If it was, this will not work if PARM_BOUNDARY is not
4504 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4505 if it becomes a problem. */
4506
4507 if (stack_parm == 0)
4508 {
4509 stack_parm
4510 = assign_stack_local (GET_MODE (entry_parm),
4511 size_stored, 0);
4512
4513 /* If this is a memory ref that contains aggregate
4514 components, mark it as such for cse and loop optimize. */
4515 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4516 }
4517
4518 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4519 abort ();
4520
4521 if (TREE_READONLY (parm))
4522 RTX_UNCHANGING_P (stack_parm) = 1;
4523
4524 /* Handle calls that pass values in multiple non-contiguous
4525 locations. The Irix 6 ABI has examples of this. */
4526 if (GET_CODE (entry_parm) == PARALLEL)
4527 emit_group_store (validize_mem (stack_parm), entry_parm,
4528 int_size_in_bytes (TREE_TYPE (parm)),
4529 TYPE_ALIGN (TREE_TYPE (parm)));
4530 else
4531 move_block_from_reg (REGNO (entry_parm),
4532 validize_mem (stack_parm),
4533 size_stored / UNITS_PER_WORD,
4534 int_size_in_bytes (TREE_TYPE (parm)));
4535 }
4536 DECL_RTL (parm) = stack_parm;
4537 }
4538 else if (! ((! optimize
4539 && ! DECL_REGISTER (parm)
4540 && ! DECL_INLINE (fndecl))
4541 /* layout_decl may set this. */
4542 || TREE_ADDRESSABLE (parm)
4543 || TREE_SIDE_EFFECTS (parm)
4544 /* If -ffloat-store specified, don't put explicit
4545 float variables into registers. */
4546 || (flag_float_store
4547 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4548 /* Always assign pseudo to structure return or item passed
4549 by invisible reference. */
4550 || passed_pointer || parm == function_result_decl)
4551 {
4552 /* Store the parm in a pseudoregister during the function, but we
4553 may need to do it in a wider mode. */
4554
4555 register rtx parmreg;
4556 unsigned int regno, regnoi = 0, regnor = 0;
4557
4558 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4559
4560 promoted_nominal_mode
4561 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4562
4563 parmreg = gen_reg_rtx (promoted_nominal_mode);
4564 mark_user_reg (parmreg);
4565
4566 /* If this was an item that we received a pointer to, set DECL_RTL
4567 appropriately. */
4568 if (passed_pointer)
4569 {
4570 DECL_RTL (parm)
4571 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)), parmreg);
4572 MEM_SET_IN_STRUCT_P (DECL_RTL (parm), aggregate);
4573 }
4574 else
4575 DECL_RTL (parm) = parmreg;
4576
4577 /* Copy the value into the register. */
4578 if (nominal_mode != passed_mode
4579 || promoted_nominal_mode != promoted_mode)
4580 {
4581 int save_tree_used;
4582 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4583 mode, by the caller. We now have to convert it to
4584 NOMINAL_MODE, if different. However, PARMREG may be in
4585 a different mode than NOMINAL_MODE if it is being stored
4586 promoted.
4587
4588 If ENTRY_PARM is a hard register, it might be in a register
4589 not valid for operating in its mode (e.g., an odd-numbered
4590 register for a DFmode). In that case, moves are the only
4591 thing valid, so we can't do a convert from there. This
4592 occurs when the calling sequence allow such misaligned
4593 usages.
4594
4595 In addition, the conversion may involve a call, which could
4596 clobber parameters which haven't been copied to pseudo
4597 registers yet. Therefore, we must first copy the parm to
4598 a pseudo reg here, and save the conversion until after all
4599 parameters have been moved. */
4600
4601 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4602
4603 emit_move_insn (tempreg, validize_mem (entry_parm));
4604
4605 push_to_sequence (conversion_insns);
4606 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4607
4608 /* TREE_USED gets set erroneously during expand_assignment. */
4609 save_tree_used = TREE_USED (parm);
4610 expand_assignment (parm,
4611 make_tree (nominal_type, tempreg), 0, 0);
4612 TREE_USED (parm) = save_tree_used;
4613 conversion_insns = get_insns ();
4614 did_conversion = 1;
4615 end_sequence ();
4616 }
4617 else
4618 emit_move_insn (parmreg, validize_mem (entry_parm));
4619
4620 /* If we were passed a pointer but the actual value
4621 can safely live in a register, put it in one. */
4622 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4623 && ! ((! optimize
4624 && ! DECL_REGISTER (parm)
4625 && ! DECL_INLINE (fndecl))
4626 /* layout_decl may set this. */
4627 || TREE_ADDRESSABLE (parm)
4628 || TREE_SIDE_EFFECTS (parm)
4629 /* If -ffloat-store specified, don't put explicit
4630 float variables into registers. */
4631 || (flag_float_store
4632 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
4633 {
4634 /* We can't use nominal_mode, because it will have been set to
4635 Pmode above. We must use the actual mode of the parm. */
4636 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4637 mark_user_reg (parmreg);
4638 emit_move_insn (parmreg, DECL_RTL (parm));
4639 DECL_RTL (parm) = parmreg;
4640 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4641 now the parm. */
4642 stack_parm = 0;
4643 }
4644 #ifdef FUNCTION_ARG_CALLEE_COPIES
4645 /* If we are passed an arg by reference and it is our responsibility
4646 to make a copy, do it now.
4647 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4648 original argument, so we must recreate them in the call to
4649 FUNCTION_ARG_CALLEE_COPIES. */
4650 /* ??? Later add code to handle the case that if the argument isn't
4651 modified, don't do the copy. */
4652
4653 else if (passed_pointer
4654 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4655 TYPE_MODE (DECL_ARG_TYPE (parm)),
4656 DECL_ARG_TYPE (parm),
4657 named_arg)
4658 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4659 {
4660 rtx copy;
4661 tree type = DECL_ARG_TYPE (parm);
4662
4663 /* This sequence may involve a library call perhaps clobbering
4664 registers that haven't been copied to pseudos yet. */
4665
4666 push_to_sequence (conversion_insns);
4667
4668 if (!COMPLETE_TYPE_P (type)
4669 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4670 /* This is a variable sized object. */
4671 copy = gen_rtx_MEM (BLKmode,
4672 allocate_dynamic_stack_space
4673 (expr_size (parm), NULL_RTX,
4674 TYPE_ALIGN (type)));
4675 else
4676 copy = assign_stack_temp (TYPE_MODE (type),
4677 int_size_in_bytes (type), 1);
4678 MEM_SET_IN_STRUCT_P (copy, AGGREGATE_TYPE_P (type));
4679 RTX_UNCHANGING_P (copy) = TREE_READONLY (parm);
4680
4681 store_expr (parm, copy, 0);
4682 emit_move_insn (parmreg, XEXP (copy, 0));
4683 if (current_function_check_memory_usage)
4684 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4685 XEXP (copy, 0), Pmode,
4686 GEN_INT (int_size_in_bytes (type)),
4687 TYPE_MODE (sizetype),
4688 GEN_INT (MEMORY_USE_RW),
4689 TYPE_MODE (integer_type_node));
4690 conversion_insns = get_insns ();
4691 did_conversion = 1;
4692 end_sequence ();
4693 }
4694 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4695
4696 /* In any case, record the parm's desired stack location
4697 in case we later discover it must live in the stack.
4698
4699 If it is a COMPLEX value, store the stack location for both
4700 halves. */
4701
4702 if (GET_CODE (parmreg) == CONCAT)
4703 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4704 else
4705 regno = REGNO (parmreg);
4706
4707 if (regno >= max_parm_reg)
4708 {
4709 rtx *new;
4710 int old_max_parm_reg = max_parm_reg;
4711
4712 /* It's slow to expand this one register at a time,
4713 but it's also rare and we need max_parm_reg to be
4714 precisely correct. */
4715 max_parm_reg = regno + 1;
4716 new = (rtx *) xrealloc (parm_reg_stack_loc,
4717 max_parm_reg * sizeof (rtx));
4718 bzero ((char *) (new + old_max_parm_reg),
4719 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4720 parm_reg_stack_loc = new;
4721 }
4722
4723 if (GET_CODE (parmreg) == CONCAT)
4724 {
4725 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4726
4727 regnor = REGNO (gen_realpart (submode, parmreg));
4728 regnoi = REGNO (gen_imagpart (submode, parmreg));
4729
4730 if (stack_parm != 0)
4731 {
4732 parm_reg_stack_loc[regnor]
4733 = gen_realpart (submode, stack_parm);
4734 parm_reg_stack_loc[regnoi]
4735 = gen_imagpart (submode, stack_parm);
4736 }
4737 else
4738 {
4739 parm_reg_stack_loc[regnor] = 0;
4740 parm_reg_stack_loc[regnoi] = 0;
4741 }
4742 }
4743 else
4744 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4745
4746 /* Mark the register as eliminable if we did no conversion
4747 and it was copied from memory at a fixed offset,
4748 and the arg pointer was not copied to a pseudo-reg.
4749 If the arg pointer is a pseudo reg or the offset formed
4750 an invalid address, such memory-equivalences
4751 as we make here would screw up life analysis for it. */
4752 if (nominal_mode == passed_mode
4753 && ! did_conversion
4754 && stack_parm != 0
4755 && GET_CODE (stack_parm) == MEM
4756 && stack_offset.var == 0
4757 && reg_mentioned_p (virtual_incoming_args_rtx,
4758 XEXP (stack_parm, 0)))
4759 {
4760 rtx linsn = get_last_insn ();
4761 rtx sinsn, set;
4762
4763 /* Mark complex types separately. */
4764 if (GET_CODE (parmreg) == CONCAT)
4765 /* Scan backwards for the set of the real and
4766 imaginary parts. */
4767 for (sinsn = linsn; sinsn != 0;
4768 sinsn = prev_nonnote_insn (sinsn))
4769 {
4770 set = single_set (sinsn);
4771 if (set != 0
4772 && SET_DEST (set) == regno_reg_rtx [regnoi])
4773 REG_NOTES (sinsn)
4774 = gen_rtx_EXPR_LIST (REG_EQUIV,
4775 parm_reg_stack_loc[regnoi],
4776 REG_NOTES (sinsn));
4777 else if (set != 0
4778 && SET_DEST (set) == regno_reg_rtx [regnor])
4779 REG_NOTES (sinsn)
4780 = gen_rtx_EXPR_LIST (REG_EQUIV,
4781 parm_reg_stack_loc[regnor],
4782 REG_NOTES (sinsn));
4783 }
4784 else if ((set = single_set (linsn)) != 0
4785 && SET_DEST (set) == parmreg)
4786 REG_NOTES (linsn)
4787 = gen_rtx_EXPR_LIST (REG_EQUIV,
4788 stack_parm, REG_NOTES (linsn));
4789 }
4790
4791 /* For pointer data type, suggest pointer register. */
4792 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4793 mark_reg_pointer (parmreg,
4794 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4795
4796 }
4797 else
4798 {
4799 /* Value must be stored in the stack slot STACK_PARM
4800 during function execution. */
4801
4802 if (promoted_mode != nominal_mode)
4803 {
4804 /* Conversion is required. */
4805 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4806
4807 emit_move_insn (tempreg, validize_mem (entry_parm));
4808
4809 push_to_sequence (conversion_insns);
4810 entry_parm = convert_to_mode (nominal_mode, tempreg,
4811 TREE_UNSIGNED (TREE_TYPE (parm)));
4812 if (stack_parm)
4813 {
4814 /* ??? This may need a big-endian conversion on sparc64. */
4815 stack_parm = change_address (stack_parm, nominal_mode,
4816 NULL_RTX);
4817 }
4818 conversion_insns = get_insns ();
4819 did_conversion = 1;
4820 end_sequence ();
4821 }
4822
4823 if (entry_parm != stack_parm)
4824 {
4825 if (stack_parm == 0)
4826 {
4827 stack_parm
4828 = assign_stack_local (GET_MODE (entry_parm),
4829 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
4830 /* If this is a memory ref that contains aggregate components,
4831 mark it as such for cse and loop optimize. */
4832 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4833 }
4834
4835 if (promoted_mode != nominal_mode)
4836 {
4837 push_to_sequence (conversion_insns);
4838 emit_move_insn (validize_mem (stack_parm),
4839 validize_mem (entry_parm));
4840 conversion_insns = get_insns ();
4841 end_sequence ();
4842 }
4843 else
4844 emit_move_insn (validize_mem (stack_parm),
4845 validize_mem (entry_parm));
4846 }
4847 if (current_function_check_memory_usage)
4848 {
4849 push_to_sequence (conversion_insns);
4850 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4851 XEXP (stack_parm, 0), Pmode,
4852 GEN_INT (GET_MODE_SIZE (GET_MODE
4853 (entry_parm))),
4854 TYPE_MODE (sizetype),
4855 GEN_INT (MEMORY_USE_RW),
4856 TYPE_MODE (integer_type_node));
4857
4858 conversion_insns = get_insns ();
4859 end_sequence ();
4860 }
4861 DECL_RTL (parm) = stack_parm;
4862 }
4863
4864 /* If this "parameter" was the place where we are receiving the
4865 function's incoming structure pointer, set up the result. */
4866 if (parm == function_result_decl)
4867 {
4868 tree result = DECL_RESULT (fndecl);
4869 tree restype = TREE_TYPE (result);
4870
4871 DECL_RTL (result)
4872 = gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm));
4873
4874 MEM_SET_IN_STRUCT_P (DECL_RTL (result),
4875 AGGREGATE_TYPE_P (restype));
4876 }
4877
4878 if (TREE_THIS_VOLATILE (parm))
4879 MEM_VOLATILE_P (DECL_RTL (parm)) = 1;
4880 if (TREE_READONLY (parm))
4881 RTX_UNCHANGING_P (DECL_RTL (parm)) = 1;
4882 }
4883
4884 /* Output all parameter conversion instructions (possibly including calls)
4885 now that all parameters have been copied out of hard registers. */
4886 emit_insns (conversion_insns);
4887
4888 last_parm_insn = get_last_insn ();
4889
4890 current_function_args_size = stack_args_size.constant;
4891
4892 /* Adjust function incoming argument size for alignment and
4893 minimum length. */
4894
4895 #ifdef REG_PARM_STACK_SPACE
4896 #ifndef MAYBE_REG_PARM_STACK_SPACE
4897 current_function_args_size = MAX (current_function_args_size,
4898 REG_PARM_STACK_SPACE (fndecl));
4899 #endif
4900 #endif
4901
4902 #ifdef STACK_BOUNDARY
4903 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
4904
4905 current_function_args_size
4906 = ((current_function_args_size + STACK_BYTES - 1)
4907 / STACK_BYTES) * STACK_BYTES;
4908 #endif
4909
4910 #ifdef ARGS_GROW_DOWNWARD
4911 current_function_arg_offset_rtx
4912 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
4913 : expand_expr (size_diffop (stack_args_size.var,
4914 size_int (-stack_args_size.constant)),
4915 NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD));
4916 #else
4917 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
4918 #endif
4919
4920 /* See how many bytes, if any, of its args a function should try to pop
4921 on return. */
4922
4923 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
4924 current_function_args_size);
4925
4926 /* For stdarg.h function, save info about
4927 regs and stack space used by the named args. */
4928
4929 if (!hide_last_arg)
4930 current_function_args_info = args_so_far;
4931
4932 /* Set the rtx used for the function return value. Put this in its
4933 own variable so any optimizers that need this information don't have
4934 to include tree.h. Do this here so it gets done when an inlined
4935 function gets output. */
4936
4937 current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl));
4938 }
4939 \f
4940 /* Indicate whether REGNO is an incoming argument to the current function
4941 that was promoted to a wider mode. If so, return the RTX for the
4942 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
4943 that REGNO is promoted from and whether the promotion was signed or
4944 unsigned. */
4945
4946 #ifdef PROMOTE_FUNCTION_ARGS
4947
4948 rtx
4949 promoted_input_arg (regno, pmode, punsignedp)
4950 unsigned int regno;
4951 enum machine_mode *pmode;
4952 int *punsignedp;
4953 {
4954 tree arg;
4955
4956 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
4957 arg = TREE_CHAIN (arg))
4958 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
4959 && REGNO (DECL_INCOMING_RTL (arg)) == regno
4960 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
4961 {
4962 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
4963 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
4964
4965 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
4966 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
4967 && mode != DECL_MODE (arg))
4968 {
4969 *pmode = DECL_MODE (arg);
4970 *punsignedp = unsignedp;
4971 return DECL_INCOMING_RTL (arg);
4972 }
4973 }
4974
4975 return 0;
4976 }
4977
4978 #endif
4979 \f
4980 /* Compute the size and offset from the start of the stacked arguments for a
4981 parm passed in mode PASSED_MODE and with type TYPE.
4982
4983 INITIAL_OFFSET_PTR points to the current offset into the stacked
4984 arguments.
4985
4986 The starting offset and size for this parm are returned in *OFFSET_PTR
4987 and *ARG_SIZE_PTR, respectively.
4988
4989 IN_REGS is non-zero if the argument will be passed in registers. It will
4990 never be set if REG_PARM_STACK_SPACE is not defined.
4991
4992 FNDECL is the function in which the argument was defined.
4993
4994 There are two types of rounding that are done. The first, controlled by
4995 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
4996 list to be aligned to the specific boundary (in bits). This rounding
4997 affects the initial and starting offsets, but not the argument size.
4998
4999 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5000 optionally rounds the size of the parm to PARM_BOUNDARY. The
5001 initial offset is not affected by this rounding, while the size always
5002 is and the starting offset may be. */
5003
5004 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
5005 initial_offset_ptr is positive because locate_and_pad_parm's
5006 callers pass in the total size of args so far as
5007 initial_offset_ptr. arg_size_ptr is always positive.*/
5008
5009 void
5010 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
5011 initial_offset_ptr, offset_ptr, arg_size_ptr,
5012 alignment_pad)
5013 enum machine_mode passed_mode;
5014 tree type;
5015 int in_regs ATTRIBUTE_UNUSED;
5016 tree fndecl ATTRIBUTE_UNUSED;
5017 struct args_size *initial_offset_ptr;
5018 struct args_size *offset_ptr;
5019 struct args_size *arg_size_ptr;
5020 struct args_size *alignment_pad;
5021
5022 {
5023 tree sizetree
5024 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5025 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5026 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5027
5028 #ifdef REG_PARM_STACK_SPACE
5029 /* If we have found a stack parm before we reach the end of the
5030 area reserved for registers, skip that area. */
5031 if (! in_regs)
5032 {
5033 int reg_parm_stack_space = 0;
5034
5035 #ifdef MAYBE_REG_PARM_STACK_SPACE
5036 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5037 #else
5038 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5039 #endif
5040 if (reg_parm_stack_space > 0)
5041 {
5042 if (initial_offset_ptr->var)
5043 {
5044 initial_offset_ptr->var
5045 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5046 ssize_int (reg_parm_stack_space));
5047 initial_offset_ptr->constant = 0;
5048 }
5049 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5050 initial_offset_ptr->constant = reg_parm_stack_space;
5051 }
5052 }
5053 #endif /* REG_PARM_STACK_SPACE */
5054
5055 arg_size_ptr->var = 0;
5056 arg_size_ptr->constant = 0;
5057
5058 #ifdef ARGS_GROW_DOWNWARD
5059 if (initial_offset_ptr->var)
5060 {
5061 offset_ptr->constant = 0;
5062 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5063 initial_offset_ptr->var);
5064 }
5065 else
5066 {
5067 offset_ptr->constant = - initial_offset_ptr->constant;
5068 offset_ptr->var = 0;
5069 }
5070 if (where_pad != none
5071 && (TREE_CODE (sizetree) != INTEGER_CST
5072 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
5073 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5074 SUB_PARM_SIZE (*offset_ptr, sizetree);
5075 if (where_pad != downward)
5076 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5077 if (initial_offset_ptr->var)
5078 arg_size_ptr->var = size_binop (MINUS_EXPR,
5079 size_binop (MINUS_EXPR,
5080 ssize_int (0),
5081 initial_offset_ptr->var),
5082 offset_ptr->var);
5083
5084 else
5085 arg_size_ptr->constant = (- initial_offset_ptr->constant
5086 - offset_ptr->constant);
5087
5088 #else /* !ARGS_GROW_DOWNWARD */
5089 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5090 *offset_ptr = *initial_offset_ptr;
5091
5092 #ifdef PUSH_ROUNDING
5093 if (passed_mode != BLKmode)
5094 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5095 #endif
5096
5097 /* Pad_below needs the pre-rounded size to know how much to pad below
5098 so this must be done before rounding up. */
5099 if (where_pad == downward
5100 /* However, BLKmode args passed in regs have their padding done elsewhere.
5101 The stack slot must be able to hold the entire register. */
5102 && !(in_regs && passed_mode == BLKmode))
5103 pad_below (offset_ptr, passed_mode, sizetree);
5104
5105 if (where_pad != none
5106 && (TREE_CODE (sizetree) != INTEGER_CST
5107 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
5108 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5109
5110 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5111 #endif /* ARGS_GROW_DOWNWARD */
5112 }
5113
5114 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5115 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5116
5117 static void
5118 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5119 struct args_size *offset_ptr;
5120 int boundary;
5121 struct args_size *alignment_pad;
5122 {
5123 tree save_var = NULL_TREE;
5124 HOST_WIDE_INT save_constant = 0;
5125
5126 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5127
5128 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5129 {
5130 save_var = offset_ptr->var;
5131 save_constant = offset_ptr->constant;
5132 }
5133
5134 alignment_pad->var = NULL_TREE;
5135 alignment_pad->constant = 0;
5136
5137 if (boundary > BITS_PER_UNIT)
5138 {
5139 if (offset_ptr->var)
5140 {
5141 offset_ptr->var =
5142 #ifdef ARGS_GROW_DOWNWARD
5143 round_down
5144 #else
5145 round_up
5146 #endif
5147 (ARGS_SIZE_TREE (*offset_ptr),
5148 boundary / BITS_PER_UNIT);
5149 offset_ptr->constant = 0; /*?*/
5150 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5151 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5152 save_var);
5153 }
5154 else
5155 {
5156 offset_ptr->constant =
5157 #ifdef ARGS_GROW_DOWNWARD
5158 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5159 #else
5160 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5161 #endif
5162 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5163 alignment_pad->constant = offset_ptr->constant - save_constant;
5164 }
5165 }
5166 }
5167
5168 #ifndef ARGS_GROW_DOWNWARD
5169 static void
5170 pad_below (offset_ptr, passed_mode, sizetree)
5171 struct args_size *offset_ptr;
5172 enum machine_mode passed_mode;
5173 tree sizetree;
5174 {
5175 if (passed_mode != BLKmode)
5176 {
5177 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5178 offset_ptr->constant
5179 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5180 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5181 - GET_MODE_SIZE (passed_mode));
5182 }
5183 else
5184 {
5185 if (TREE_CODE (sizetree) != INTEGER_CST
5186 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5187 {
5188 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5189 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5190 /* Add it in. */
5191 ADD_PARM_SIZE (*offset_ptr, s2);
5192 SUB_PARM_SIZE (*offset_ptr, sizetree);
5193 }
5194 }
5195 }
5196 #endif
5197 \f
5198 /* Walk the tree of blocks describing the binding levels within a function
5199 and warn about uninitialized variables.
5200 This is done after calling flow_analysis and before global_alloc
5201 clobbers the pseudo-regs to hard regs. */
5202
5203 void
5204 uninitialized_vars_warning (block)
5205 tree block;
5206 {
5207 register tree decl, sub;
5208 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5209 {
5210 if (warn_uninitialized
5211 && TREE_CODE (decl) == VAR_DECL
5212 /* These warnings are unreliable for and aggregates
5213 because assigning the fields one by one can fail to convince
5214 flow.c that the entire aggregate was initialized.
5215 Unions are troublesome because members may be shorter. */
5216 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5217 && DECL_RTL (decl) != 0
5218 && GET_CODE (DECL_RTL (decl)) == REG
5219 /* Global optimizations can make it difficult to determine if a
5220 particular variable has been initialized. However, a VAR_DECL
5221 with a nonzero DECL_INITIAL had an initializer, so do not
5222 claim it is potentially uninitialized.
5223
5224 We do not care about the actual value in DECL_INITIAL, so we do
5225 not worry that it may be a dangling pointer. */
5226 && DECL_INITIAL (decl) == NULL_TREE
5227 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5228 warning_with_decl (decl,
5229 "`%s' might be used uninitialized in this function");
5230 if (extra_warnings
5231 && TREE_CODE (decl) == VAR_DECL
5232 && DECL_RTL (decl) != 0
5233 && GET_CODE (DECL_RTL (decl)) == REG
5234 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5235 warning_with_decl (decl,
5236 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5237 }
5238 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5239 uninitialized_vars_warning (sub);
5240 }
5241
5242 /* Do the appropriate part of uninitialized_vars_warning
5243 but for arguments instead of local variables. */
5244
5245 void
5246 setjmp_args_warning ()
5247 {
5248 register tree decl;
5249 for (decl = DECL_ARGUMENTS (current_function_decl);
5250 decl; decl = TREE_CHAIN (decl))
5251 if (DECL_RTL (decl) != 0
5252 && GET_CODE (DECL_RTL (decl)) == REG
5253 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5254 warning_with_decl (decl, "argument `%s' might be clobbered by `longjmp' or `vfork'");
5255 }
5256
5257 /* If this function call setjmp, put all vars into the stack
5258 unless they were declared `register'. */
5259
5260 void
5261 setjmp_protect (block)
5262 tree block;
5263 {
5264 register tree decl, sub;
5265 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5266 if ((TREE_CODE (decl) == VAR_DECL
5267 || TREE_CODE (decl) == PARM_DECL)
5268 && DECL_RTL (decl) != 0
5269 && (GET_CODE (DECL_RTL (decl)) == REG
5270 || (GET_CODE (DECL_RTL (decl)) == MEM
5271 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5272 /* If this variable came from an inline function, it must be
5273 that its life doesn't overlap the setjmp. If there was a
5274 setjmp in the function, it would already be in memory. We
5275 must exclude such variable because their DECL_RTL might be
5276 set to strange things such as virtual_stack_vars_rtx. */
5277 && ! DECL_FROM_INLINE (decl)
5278 && (
5279 #ifdef NON_SAVING_SETJMP
5280 /* If longjmp doesn't restore the registers,
5281 don't put anything in them. */
5282 NON_SAVING_SETJMP
5283 ||
5284 #endif
5285 ! DECL_REGISTER (decl)))
5286 put_var_into_stack (decl);
5287 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5288 setjmp_protect (sub);
5289 }
5290 \f
5291 /* Like the previous function, but for args instead of local variables. */
5292
5293 void
5294 setjmp_protect_args ()
5295 {
5296 register tree decl;
5297 for (decl = DECL_ARGUMENTS (current_function_decl);
5298 decl; decl = TREE_CHAIN (decl))
5299 if ((TREE_CODE (decl) == VAR_DECL
5300 || TREE_CODE (decl) == PARM_DECL)
5301 && DECL_RTL (decl) != 0
5302 && (GET_CODE (DECL_RTL (decl)) == REG
5303 || (GET_CODE (DECL_RTL (decl)) == MEM
5304 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5305 && (
5306 /* If longjmp doesn't restore the registers,
5307 don't put anything in them. */
5308 #ifdef NON_SAVING_SETJMP
5309 NON_SAVING_SETJMP
5310 ||
5311 #endif
5312 ! DECL_REGISTER (decl)))
5313 put_var_into_stack (decl);
5314 }
5315 \f
5316 /* Return the context-pointer register corresponding to DECL,
5317 or 0 if it does not need one. */
5318
5319 rtx
5320 lookup_static_chain (decl)
5321 tree decl;
5322 {
5323 tree context = decl_function_context (decl);
5324 tree link;
5325
5326 if (context == 0
5327 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5328 return 0;
5329
5330 /* We treat inline_function_decl as an alias for the current function
5331 because that is the inline function whose vars, types, etc.
5332 are being merged into the current function.
5333 See expand_inline_function. */
5334 if (context == current_function_decl || context == inline_function_decl)
5335 return virtual_stack_vars_rtx;
5336
5337 for (link = context_display; link; link = TREE_CHAIN (link))
5338 if (TREE_PURPOSE (link) == context)
5339 return RTL_EXPR_RTL (TREE_VALUE (link));
5340
5341 abort ();
5342 }
5343 \f
5344 /* Convert a stack slot address ADDR for variable VAR
5345 (from a containing function)
5346 into an address valid in this function (using a static chain). */
5347
5348 rtx
5349 fix_lexical_addr (addr, var)
5350 rtx addr;
5351 tree var;
5352 {
5353 rtx basereg;
5354 HOST_WIDE_INT displacement;
5355 tree context = decl_function_context (var);
5356 struct function *fp;
5357 rtx base = 0;
5358
5359 /* If this is the present function, we need not do anything. */
5360 if (context == current_function_decl || context == inline_function_decl)
5361 return addr;
5362
5363 for (fp = outer_function_chain; fp; fp = fp->next)
5364 if (fp->decl == context)
5365 break;
5366
5367 if (fp == 0)
5368 abort ();
5369
5370 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5371 addr = XEXP (XEXP (addr, 0), 0);
5372
5373 /* Decode given address as base reg plus displacement. */
5374 if (GET_CODE (addr) == REG)
5375 basereg = addr, displacement = 0;
5376 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5377 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5378 else
5379 abort ();
5380
5381 /* We accept vars reached via the containing function's
5382 incoming arg pointer and via its stack variables pointer. */
5383 if (basereg == fp->internal_arg_pointer)
5384 {
5385 /* If reached via arg pointer, get the arg pointer value
5386 out of that function's stack frame.
5387
5388 There are two cases: If a separate ap is needed, allocate a
5389 slot in the outer function for it and dereference it that way.
5390 This is correct even if the real ap is actually a pseudo.
5391 Otherwise, just adjust the offset from the frame pointer to
5392 compensate. */
5393
5394 #ifdef NEED_SEPARATE_AP
5395 rtx addr;
5396
5397 if (fp->x_arg_pointer_save_area == 0)
5398 fp->x_arg_pointer_save_area
5399 = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
5400
5401 addr = fix_lexical_addr (XEXP (fp->x_arg_pointer_save_area, 0), var);
5402 addr = memory_address (Pmode, addr);
5403
5404 base = copy_to_reg (gen_rtx_MEM (Pmode, addr));
5405 #else
5406 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5407 base = lookup_static_chain (var);
5408 #endif
5409 }
5410
5411 else if (basereg == virtual_stack_vars_rtx)
5412 {
5413 /* This is the same code as lookup_static_chain, duplicated here to
5414 avoid an extra call to decl_function_context. */
5415 tree link;
5416
5417 for (link = context_display; link; link = TREE_CHAIN (link))
5418 if (TREE_PURPOSE (link) == context)
5419 {
5420 base = RTL_EXPR_RTL (TREE_VALUE (link));
5421 break;
5422 }
5423 }
5424
5425 if (base == 0)
5426 abort ();
5427
5428 /* Use same offset, relative to appropriate static chain or argument
5429 pointer. */
5430 return plus_constant (base, displacement);
5431 }
5432 \f
5433 /* Return the address of the trampoline for entering nested fn FUNCTION.
5434 If necessary, allocate a trampoline (in the stack frame)
5435 and emit rtl to initialize its contents (at entry to this function). */
5436
5437 rtx
5438 trampoline_address (function)
5439 tree function;
5440 {
5441 tree link;
5442 tree rtlexp;
5443 rtx tramp;
5444 struct function *fp;
5445 tree fn_context;
5446
5447 /* Find an existing trampoline and return it. */
5448 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5449 if (TREE_PURPOSE (link) == function)
5450 return
5451 round_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5452
5453 for (fp = outer_function_chain; fp; fp = fp->next)
5454 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5455 if (TREE_PURPOSE (link) == function)
5456 {
5457 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5458 function);
5459 return round_trampoline_addr (tramp);
5460 }
5461
5462 /* None exists; we must make one. */
5463
5464 /* Find the `struct function' for the function containing FUNCTION. */
5465 fp = 0;
5466 fn_context = decl_function_context (function);
5467 if (fn_context != current_function_decl
5468 && fn_context != inline_function_decl)
5469 for (fp = outer_function_chain; fp; fp = fp->next)
5470 if (fp->decl == fn_context)
5471 break;
5472
5473 /* Allocate run-time space for this trampoline
5474 (usually in the defining function's stack frame). */
5475 #ifdef ALLOCATE_TRAMPOLINE
5476 tramp = ALLOCATE_TRAMPOLINE (fp);
5477 #else
5478 /* If rounding needed, allocate extra space
5479 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5480 #ifdef TRAMPOLINE_ALIGNMENT
5481 #define TRAMPOLINE_REAL_SIZE \
5482 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5483 #else
5484 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5485 #endif
5486 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5487 fp ? fp : cfun);
5488 #endif
5489
5490 /* Record the trampoline for reuse and note it for later initialization
5491 by expand_function_end. */
5492 if (fp != 0)
5493 {
5494 push_obstacks (fp->function_maybepermanent_obstack,
5495 fp->function_maybepermanent_obstack);
5496 rtlexp = make_node (RTL_EXPR);
5497 RTL_EXPR_RTL (rtlexp) = tramp;
5498 fp->x_trampoline_list = tree_cons (function, rtlexp,
5499 fp->x_trampoline_list);
5500 pop_obstacks ();
5501 }
5502 else
5503 {
5504 /* Make the RTL_EXPR node temporary, not momentary, so that the
5505 trampoline_list doesn't become garbage. */
5506 int momentary = suspend_momentary ();
5507 rtlexp = make_node (RTL_EXPR);
5508 resume_momentary (momentary);
5509
5510 RTL_EXPR_RTL (rtlexp) = tramp;
5511 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5512 }
5513
5514 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5515 return round_trampoline_addr (tramp);
5516 }
5517
5518 /* Given a trampoline address,
5519 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5520
5521 static rtx
5522 round_trampoline_addr (tramp)
5523 rtx tramp;
5524 {
5525 #ifdef TRAMPOLINE_ALIGNMENT
5526 /* Round address up to desired boundary. */
5527 rtx temp = gen_reg_rtx (Pmode);
5528 temp = expand_binop (Pmode, add_optab, tramp,
5529 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
5530 temp, 0, OPTAB_LIB_WIDEN);
5531 tramp = expand_binop (Pmode, and_optab, temp,
5532 GEN_INT (- TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
5533 temp, 0, OPTAB_LIB_WIDEN);
5534 #endif
5535 return tramp;
5536 }
5537 \f
5538 /* Put all this function's BLOCK nodes including those that are chained
5539 onto the first block into a vector, and return it.
5540 Also store in each NOTE for the beginning or end of a block
5541 the index of that block in the vector.
5542 The arguments are BLOCK, the chain of top-level blocks of the function,
5543 and INSNS, the insn chain of the function. */
5544
5545 void
5546 identify_blocks ()
5547 {
5548 int n_blocks;
5549 tree *block_vector, *last_block_vector;
5550 tree *block_stack;
5551 tree block = DECL_INITIAL (current_function_decl);
5552
5553 if (block == 0)
5554 return;
5555
5556 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5557 depth-first order. */
5558 block_vector = get_block_vector (block, &n_blocks);
5559 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5560
5561 last_block_vector = identify_blocks_1 (get_insns (),
5562 block_vector + 1,
5563 block_vector + n_blocks,
5564 block_stack);
5565
5566 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5567 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5568 if (0 && last_block_vector != block_vector + n_blocks)
5569 abort ();
5570
5571 free (block_vector);
5572 free (block_stack);
5573 }
5574
5575 /* Subroutine of identify_blocks. Do the block substitution on the
5576 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5577
5578 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5579 BLOCK_VECTOR is incremented for each block seen. */
5580
5581 static tree *
5582 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5583 rtx insns;
5584 tree *block_vector;
5585 tree *end_block_vector;
5586 tree *orig_block_stack;
5587 {
5588 rtx insn;
5589 tree *block_stack = orig_block_stack;
5590
5591 for (insn = insns; insn; insn = NEXT_INSN (insn))
5592 {
5593 if (GET_CODE (insn) == NOTE)
5594 {
5595 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5596 {
5597 tree b;
5598
5599 /* If there are more block notes than BLOCKs, something
5600 is badly wrong. */
5601 if (block_vector == end_block_vector)
5602 abort ();
5603
5604 b = *block_vector++;
5605 NOTE_BLOCK (insn) = b;
5606 *block_stack++ = b;
5607 }
5608 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5609 {
5610 /* If there are more NOTE_INSN_BLOCK_ENDs than
5611 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5612 if (block_stack == orig_block_stack)
5613 abort ();
5614
5615 NOTE_BLOCK (insn) = *--block_stack;
5616 }
5617 }
5618 else if (GET_CODE (insn) == CALL_INSN
5619 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5620 {
5621 rtx cp = PATTERN (insn);
5622
5623 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5624 end_block_vector, block_stack);
5625 if (XEXP (cp, 1))
5626 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5627 end_block_vector, block_stack);
5628 if (XEXP (cp, 2))
5629 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5630 end_block_vector, block_stack);
5631 }
5632 }
5633
5634 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5635 something is badly wrong. */
5636 if (block_stack != orig_block_stack)
5637 abort ();
5638
5639 return block_vector;
5640 }
5641
5642 /* Identify BLOCKs referenced by more than one
5643 NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */
5644
5645 void
5646 reorder_blocks ()
5647 {
5648 tree block = DECL_INITIAL (current_function_decl);
5649 varray_type block_stack;
5650
5651 if (block == NULL_TREE)
5652 return;
5653
5654 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5655
5656 /* Prune the old trees away, so that they don't get in the way. */
5657 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5658 BLOCK_CHAIN (block) = NULL_TREE;
5659
5660 reorder_blocks_1 (get_insns (), block, &block_stack);
5661
5662 BLOCK_SUBBLOCKS (block)
5663 = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5664
5665 VARRAY_FREE (block_stack);
5666 }
5667
5668 /* Helper function for reorder_blocks. Process the insn chain beginning
5669 at INSNS. Recurse for CALL_PLACEHOLDER insns. */
5670
5671 static void
5672 reorder_blocks_1 (insns, current_block, p_block_stack)
5673 rtx insns;
5674 tree current_block;
5675 varray_type *p_block_stack;
5676 {
5677 rtx insn;
5678
5679 for (insn = insns; insn; insn = NEXT_INSN (insn))
5680 {
5681 if (GET_CODE (insn) == NOTE)
5682 {
5683 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5684 {
5685 tree block = NOTE_BLOCK (insn);
5686 /* If we have seen this block before, copy it. */
5687 if (TREE_ASM_WRITTEN (block))
5688 {
5689 block = copy_node (block);
5690 NOTE_BLOCK (insn) = block;
5691 }
5692 BLOCK_SUBBLOCKS (block) = 0;
5693 TREE_ASM_WRITTEN (block) = 1;
5694 BLOCK_SUPERCONTEXT (block) = current_block;
5695 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5696 BLOCK_SUBBLOCKS (current_block) = block;
5697 current_block = block;
5698 VARRAY_PUSH_TREE (*p_block_stack, block);
5699 }
5700 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5701 {
5702 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
5703 VARRAY_POP (*p_block_stack);
5704 BLOCK_SUBBLOCKS (current_block)
5705 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5706 current_block = BLOCK_SUPERCONTEXT (current_block);
5707 }
5708 }
5709 else if (GET_CODE (insn) == CALL_INSN
5710 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5711 {
5712 rtx cp = PATTERN (insn);
5713 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
5714 if (XEXP (cp, 1))
5715 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
5716 if (XEXP (cp, 2))
5717 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
5718 }
5719 }
5720 }
5721
5722 /* Reverse the order of elements in the chain T of blocks,
5723 and return the new head of the chain (old last element). */
5724
5725 static tree
5726 blocks_nreverse (t)
5727 tree t;
5728 {
5729 register tree prev = 0, decl, next;
5730 for (decl = t; decl; decl = next)
5731 {
5732 next = BLOCK_CHAIN (decl);
5733 BLOCK_CHAIN (decl) = prev;
5734 prev = decl;
5735 }
5736 return prev;
5737 }
5738
5739 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
5740 non-NULL, list them all into VECTOR, in a depth-first preorder
5741 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
5742 blocks. */
5743
5744 static int
5745 all_blocks (block, vector)
5746 tree block;
5747 tree *vector;
5748 {
5749 int n_blocks = 0;
5750
5751 while (block)
5752 {
5753 TREE_ASM_WRITTEN (block) = 0;
5754
5755 /* Record this block. */
5756 if (vector)
5757 vector[n_blocks] = block;
5758
5759 ++n_blocks;
5760
5761 /* Record the subblocks, and their subblocks... */
5762 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
5763 vector ? vector + n_blocks : 0);
5764 block = BLOCK_CHAIN (block);
5765 }
5766
5767 return n_blocks;
5768 }
5769
5770 /* Return a vector containing all the blocks rooted at BLOCK. The
5771 number of elements in the vector is stored in N_BLOCKS_P. The
5772 vector is dynamically allocated; it is the caller's responsibility
5773 to call `free' on the pointer returned. */
5774
5775 static tree *
5776 get_block_vector (block, n_blocks_p)
5777 tree block;
5778 int *n_blocks_p;
5779 {
5780 tree *block_vector;
5781
5782 *n_blocks_p = all_blocks (block, NULL);
5783 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
5784 all_blocks (block, block_vector);
5785
5786 return block_vector;
5787 }
5788
5789 static int next_block_index = 2;
5790
5791 /* Set BLOCK_NUMBER for all the blocks in FN. */
5792
5793 void
5794 number_blocks (fn)
5795 tree fn;
5796 {
5797 int i;
5798 int n_blocks;
5799 tree *block_vector;
5800
5801 /* For SDB and XCOFF debugging output, we start numbering the blocks
5802 from 1 within each function, rather than keeping a running
5803 count. */
5804 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
5805 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
5806 next_block_index = 1;
5807 #endif
5808
5809 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
5810
5811 /* The top-level BLOCK isn't numbered at all. */
5812 for (i = 1; i < n_blocks; ++i)
5813 /* We number the blocks from two. */
5814 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
5815
5816 free (block_vector);
5817
5818 return;
5819 }
5820
5821 \f
5822 /* Allocate a function structure and reset its contents to the defaults. */
5823 static void
5824 prepare_function_start ()
5825 {
5826 cfun = (struct function *) xcalloc (1, sizeof (struct function));
5827
5828 init_stmt_for_function ();
5829 init_eh_for_function ();
5830
5831 cse_not_expected = ! optimize;
5832
5833 /* Caller save not needed yet. */
5834 caller_save_needed = 0;
5835
5836 /* No stack slots have been made yet. */
5837 stack_slot_list = 0;
5838
5839 current_function_has_nonlocal_label = 0;
5840 current_function_has_nonlocal_goto = 0;
5841
5842 /* There is no stack slot for handling nonlocal gotos. */
5843 nonlocal_goto_handler_slots = 0;
5844 nonlocal_goto_stack_level = 0;
5845
5846 /* No labels have been declared for nonlocal use. */
5847 nonlocal_labels = 0;
5848 nonlocal_goto_handler_labels = 0;
5849
5850 /* No function calls so far in this function. */
5851 function_call_count = 0;
5852
5853 /* No parm regs have been allocated.
5854 (This is important for output_inline_function.) */
5855 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
5856
5857 /* Initialize the RTL mechanism. */
5858 init_emit ();
5859
5860 /* Initialize the queue of pending postincrement and postdecrements,
5861 and some other info in expr.c. */
5862 init_expr ();
5863
5864 /* We haven't done register allocation yet. */
5865 reg_renumber = 0;
5866
5867 init_varasm_status (cfun);
5868
5869 /* Clear out data used for inlining. */
5870 cfun->inlinable = 0;
5871 cfun->original_decl_initial = 0;
5872 cfun->original_arg_vector = 0;
5873
5874 #ifdef STACK_BOUNDARY
5875 cfun->stack_alignment_needed = STACK_BOUNDARY;
5876 cfun->preferred_stack_boundary = STACK_BOUNDARY;
5877 #else
5878 cfun->stack_alignment_needed = 0;
5879 cfun->preferred_stack_boundary = 0;
5880 #endif
5881
5882 /* Set if a call to setjmp is seen. */
5883 current_function_calls_setjmp = 0;
5884
5885 /* Set if a call to longjmp is seen. */
5886 current_function_calls_longjmp = 0;
5887
5888 current_function_calls_alloca = 0;
5889 current_function_contains_functions = 0;
5890 current_function_is_leaf = 0;
5891 current_function_nothrow = 0;
5892 current_function_sp_is_unchanging = 0;
5893 current_function_uses_only_leaf_regs = 0;
5894 current_function_has_computed_jump = 0;
5895 current_function_is_thunk = 0;
5896
5897 current_function_returns_pcc_struct = 0;
5898 current_function_returns_struct = 0;
5899 current_function_epilogue_delay_list = 0;
5900 current_function_uses_const_pool = 0;
5901 current_function_uses_pic_offset_table = 0;
5902 current_function_cannot_inline = 0;
5903
5904 /* We have not yet needed to make a label to jump to for tail-recursion. */
5905 tail_recursion_label = 0;
5906
5907 /* We haven't had a need to make a save area for ap yet. */
5908 arg_pointer_save_area = 0;
5909
5910 /* No stack slots allocated yet. */
5911 frame_offset = 0;
5912
5913 /* No SAVE_EXPRs in this function yet. */
5914 save_expr_regs = 0;
5915
5916 /* No RTL_EXPRs in this function yet. */
5917 rtl_expr_chain = 0;
5918
5919 /* Set up to allocate temporaries. */
5920 init_temp_slots ();
5921
5922 /* Indicate that we need to distinguish between the return value of the
5923 present function and the return value of a function being called. */
5924 rtx_equal_function_value_matters = 1;
5925
5926 /* Indicate that we have not instantiated virtual registers yet. */
5927 virtuals_instantiated = 0;
5928
5929 /* Indicate we have no need of a frame pointer yet. */
5930 frame_pointer_needed = 0;
5931
5932 /* By default assume not varargs or stdarg. */
5933 current_function_varargs = 0;
5934 current_function_stdarg = 0;
5935
5936 /* We haven't made any trampolines for this function yet. */
5937 trampoline_list = 0;
5938
5939 init_pending_stack_adjust ();
5940 inhibit_defer_pop = 0;
5941
5942 current_function_outgoing_args_size = 0;
5943
5944 if (init_lang_status)
5945 (*init_lang_status) (cfun);
5946 if (init_machine_status)
5947 (*init_machine_status) (cfun);
5948 }
5949
5950 /* Initialize the rtl expansion mechanism so that we can do simple things
5951 like generate sequences. This is used to provide a context during global
5952 initialization of some passes. */
5953 void
5954 init_dummy_function_start ()
5955 {
5956 prepare_function_start ();
5957 }
5958
5959 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5960 and initialize static variables for generating RTL for the statements
5961 of the function. */
5962
5963 void
5964 init_function_start (subr, filename, line)
5965 tree subr;
5966 char *filename;
5967 int line;
5968 {
5969 prepare_function_start ();
5970
5971 /* Remember this function for later. */
5972 cfun->next_global = all_functions;
5973 all_functions = cfun;
5974
5975 current_function_name = (*decl_printable_name) (subr, 2);
5976 cfun->decl = subr;
5977
5978 /* Nonzero if this is a nested function that uses a static chain. */
5979
5980 current_function_needs_context
5981 = (decl_function_context (current_function_decl) != 0
5982 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
5983
5984 /* Within function body, compute a type's size as soon it is laid out. */
5985 immediate_size_expand++;
5986
5987 /* Prevent ever trying to delete the first instruction of a function.
5988 Also tell final how to output a linenum before the function prologue.
5989 Note linenums could be missing, e.g. when compiling a Java .class file. */
5990 if (line > 0)
5991 emit_line_note (filename, line);
5992
5993 /* Make sure first insn is a note even if we don't want linenums.
5994 This makes sure the first insn will never be deleted.
5995 Also, final expects a note to appear there. */
5996 emit_note (NULL_PTR, NOTE_INSN_DELETED);
5997
5998 /* Set flags used by final.c. */
5999 if (aggregate_value_p (DECL_RESULT (subr)))
6000 {
6001 #ifdef PCC_STATIC_STRUCT_RETURN
6002 current_function_returns_pcc_struct = 1;
6003 #endif
6004 current_function_returns_struct = 1;
6005 }
6006
6007 /* Warn if this value is an aggregate type,
6008 regardless of which calling convention we are using for it. */
6009 if (warn_aggregate_return
6010 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6011 warning ("function returns an aggregate");
6012
6013 current_function_returns_pointer
6014 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
6015 }
6016
6017 /* Make sure all values used by the optimization passes have sane
6018 defaults. */
6019 void
6020 init_function_for_compilation ()
6021 {
6022 reg_renumber = 0;
6023
6024 /* No prologue/epilogue insns yet. */
6025 VARRAY_GROW (prologue, 0);
6026 VARRAY_GROW (epilogue, 0);
6027 VARRAY_GROW (sibcall_epilogue, 0);
6028 }
6029
6030 /* Indicate that the current function uses extra args
6031 not explicitly mentioned in the argument list in any fashion. */
6032
6033 void
6034 mark_varargs ()
6035 {
6036 current_function_varargs = 1;
6037 }
6038
6039 /* Expand a call to __main at the beginning of a possible main function. */
6040
6041 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6042 #undef HAS_INIT_SECTION
6043 #define HAS_INIT_SECTION
6044 #endif
6045
6046 void
6047 expand_main_function ()
6048 {
6049 #if !defined (HAS_INIT_SECTION)
6050 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0,
6051 VOIDmode, 0);
6052 #endif /* not HAS_INIT_SECTION */
6053 }
6054 \f
6055 extern struct obstack permanent_obstack;
6056
6057 /* Start the RTL for a new function, and set variables used for
6058 emitting RTL.
6059 SUBR is the FUNCTION_DECL node.
6060 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6061 the function's parameters, which must be run at any return statement. */
6062
6063 void
6064 expand_function_start (subr, parms_have_cleanups)
6065 tree subr;
6066 int parms_have_cleanups;
6067 {
6068 tree tem;
6069 rtx last_ptr = NULL_RTX;
6070
6071 /* Make sure volatile mem refs aren't considered
6072 valid operands of arithmetic insns. */
6073 init_recog_no_volatile ();
6074
6075 /* Set this before generating any memory accesses. */
6076 current_function_check_memory_usage
6077 = (flag_check_memory_usage
6078 && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl));
6079
6080 current_function_instrument_entry_exit
6081 = (flag_instrument_function_entry_exit
6082 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6083
6084 current_function_limit_stack
6085 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6086
6087 /* If function gets a static chain arg, store it in the stack frame.
6088 Do this first, so it gets the first stack slot offset. */
6089 if (current_function_needs_context)
6090 {
6091 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6092
6093 /* Delay copying static chain if it is not a register to avoid
6094 conflicts with regs used for parameters. */
6095 if (! SMALL_REGISTER_CLASSES
6096 || GET_CODE (static_chain_incoming_rtx) == REG)
6097 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6098 }
6099
6100 /* If the parameters of this function need cleaning up, get a label
6101 for the beginning of the code which executes those cleanups. This must
6102 be done before doing anything with return_label. */
6103 if (parms_have_cleanups)
6104 cleanup_label = gen_label_rtx ();
6105 else
6106 cleanup_label = 0;
6107
6108 /* Make the label for return statements to jump to, if this machine
6109 does not have a one-instruction return and uses an epilogue,
6110 or if it returns a structure, or if it has parm cleanups. */
6111 #ifdef HAVE_return
6112 if (cleanup_label == 0 && HAVE_return
6113 && ! current_function_instrument_entry_exit
6114 && ! current_function_returns_pcc_struct
6115 && ! (current_function_returns_struct && ! optimize))
6116 return_label = 0;
6117 else
6118 return_label = gen_label_rtx ();
6119 #else
6120 return_label = gen_label_rtx ();
6121 #endif
6122
6123 /* Initialize rtx used to return the value. */
6124 /* Do this before assign_parms so that we copy the struct value address
6125 before any library calls that assign parms might generate. */
6126
6127 /* Decide whether to return the value in memory or in a register. */
6128 if (aggregate_value_p (DECL_RESULT (subr)))
6129 {
6130 /* Returning something that won't go in a register. */
6131 register rtx value_address = 0;
6132
6133 #ifdef PCC_STATIC_STRUCT_RETURN
6134 if (current_function_returns_pcc_struct)
6135 {
6136 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6137 value_address = assemble_static_space (size);
6138 }
6139 else
6140 #endif
6141 {
6142 /* Expect to be passed the address of a place to store the value.
6143 If it is passed as an argument, assign_parms will take care of
6144 it. */
6145 if (struct_value_incoming_rtx)
6146 {
6147 value_address = gen_reg_rtx (Pmode);
6148 emit_move_insn (value_address, struct_value_incoming_rtx);
6149 }
6150 }
6151 if (value_address)
6152 {
6153 DECL_RTL (DECL_RESULT (subr))
6154 = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6155 MEM_SET_IN_STRUCT_P (DECL_RTL (DECL_RESULT (subr)),
6156 AGGREGATE_TYPE_P (TREE_TYPE
6157 (DECL_RESULT
6158 (subr))));
6159 }
6160 }
6161 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6162 /* If return mode is void, this decl rtl should not be used. */
6163 DECL_RTL (DECL_RESULT (subr)) = 0;
6164 else if (parms_have_cleanups || current_function_instrument_entry_exit)
6165 {
6166 /* If function will end with cleanup code for parms,
6167 compute the return values into a pseudo reg,
6168 which we will copy into the true return register
6169 after the cleanups are done. */
6170
6171 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
6172
6173 #ifdef PROMOTE_FUNCTION_RETURN
6174 tree type = TREE_TYPE (DECL_RESULT (subr));
6175 int unsignedp = TREE_UNSIGNED (type);
6176
6177 mode = promote_mode (type, mode, &unsignedp, 1);
6178 #endif
6179
6180 DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode);
6181 }
6182 else
6183 /* Scalar, returned in a register. */
6184 {
6185 DECL_RTL (DECL_RESULT (subr))
6186 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)), subr, 1);
6187
6188 /* Mark this reg as the function's return value. */
6189 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
6190 {
6191 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
6192 /* Needed because we may need to move this to memory
6193 in case it's a named return value whose address is taken. */
6194 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6195 }
6196 }
6197
6198 /* Initialize rtx for parameters and local variables.
6199 In some cases this requires emitting insns. */
6200
6201 assign_parms (subr);
6202
6203 /* Copy the static chain now if it wasn't a register. The delay is to
6204 avoid conflicts with the parameter passing registers. */
6205
6206 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6207 if (GET_CODE (static_chain_incoming_rtx) != REG)
6208 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6209
6210 /* The following was moved from init_function_start.
6211 The move is supposed to make sdb output more accurate. */
6212 /* Indicate the beginning of the function body,
6213 as opposed to parm setup. */
6214 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
6215
6216 if (GET_CODE (get_last_insn ()) != NOTE)
6217 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6218 parm_birth_insn = get_last_insn ();
6219
6220 context_display = 0;
6221 if (current_function_needs_context)
6222 {
6223 /* Fetch static chain values for containing functions. */
6224 tem = decl_function_context (current_function_decl);
6225 /* Copy the static chain pointer into a pseudo. If we have
6226 small register classes, copy the value from memory if
6227 static_chain_incoming_rtx is a REG. */
6228 if (tem)
6229 {
6230 /* If the static chain originally came in a register, put it back
6231 there, then move it out in the next insn. The reason for
6232 this peculiar code is to satisfy function integration. */
6233 if (SMALL_REGISTER_CLASSES
6234 && GET_CODE (static_chain_incoming_rtx) == REG)
6235 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6236 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6237 }
6238
6239 while (tem)
6240 {
6241 tree rtlexp = make_node (RTL_EXPR);
6242
6243 RTL_EXPR_RTL (rtlexp) = last_ptr;
6244 context_display = tree_cons (tem, rtlexp, context_display);
6245 tem = decl_function_context (tem);
6246 if (tem == 0)
6247 break;
6248 /* Chain thru stack frames, assuming pointer to next lexical frame
6249 is found at the place we always store it. */
6250 #ifdef FRAME_GROWS_DOWNWARD
6251 last_ptr = plus_constant (last_ptr, - GET_MODE_SIZE (Pmode));
6252 #endif
6253 last_ptr = copy_to_reg (gen_rtx_MEM (Pmode,
6254 memory_address (Pmode,
6255 last_ptr)));
6256
6257 /* If we are not optimizing, ensure that we know that this
6258 piece of context is live over the entire function. */
6259 if (! optimize)
6260 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6261 save_expr_regs);
6262 }
6263 }
6264
6265 if (current_function_instrument_entry_exit)
6266 {
6267 rtx fun = DECL_RTL (current_function_decl);
6268 if (GET_CODE (fun) == MEM)
6269 fun = XEXP (fun, 0);
6270 else
6271 abort ();
6272 emit_library_call (profile_function_entry_libfunc, 0, VOIDmode, 2,
6273 fun, Pmode,
6274 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6275 0,
6276 hard_frame_pointer_rtx),
6277 Pmode);
6278 }
6279
6280 /* After the display initializations is where the tail-recursion label
6281 should go, if we end up needing one. Ensure we have a NOTE here
6282 since some things (like trampolines) get placed before this. */
6283 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
6284
6285 /* Evaluate now the sizes of any types declared among the arguments. */
6286 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
6287 {
6288 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode,
6289 EXPAND_MEMORY_USE_BAD);
6290 /* Flush the queue in case this parameter declaration has
6291 side-effects. */
6292 emit_queue ();
6293 }
6294
6295 /* Make sure there is a line number after the function entry setup code. */
6296 force_next_line_note ();
6297 }
6298 \f
6299 /* Undo the effects of init_dummy_function_start. */
6300 void
6301 expand_dummy_function_end ()
6302 {
6303 /* End any sequences that failed to be closed due to syntax errors. */
6304 while (in_sequence_p ())
6305 end_sequence ();
6306
6307 /* Outside function body, can't compute type's actual size
6308 until next function's body starts. */
6309
6310 free_after_parsing (cfun);
6311 free_after_compilation (cfun);
6312 free (cfun);
6313 cfun = 0;
6314 }
6315
6316 /* Call DOIT for each hard register used as a return value from
6317 the current function. */
6318
6319 void
6320 diddle_return_value (doit, arg)
6321 void (*doit) PARAMS ((rtx, void *));
6322 void *arg;
6323 {
6324 rtx outgoing = current_function_return_rtx;
6325
6326 if (! outgoing)
6327 return;
6328
6329 if (GET_CODE (outgoing) == REG
6330 && REGNO (outgoing) >= FIRST_PSEUDO_REGISTER)
6331 {
6332 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6333 #ifdef FUNCTION_OUTGOING_VALUE
6334 outgoing = FUNCTION_OUTGOING_VALUE (type, current_function_decl);
6335 #else
6336 outgoing = FUNCTION_VALUE (type, current_function_decl);
6337 #endif
6338 /* If this is a BLKmode structure being returned in registers, then use
6339 the mode computed in expand_return. */
6340 if (GET_MODE (outgoing) == BLKmode)
6341 PUT_MODE (outgoing,
6342 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6343 }
6344
6345 if (GET_CODE (outgoing) == REG)
6346 (*doit) (outgoing, arg);
6347 else if (GET_CODE (outgoing) == PARALLEL)
6348 {
6349 int i;
6350
6351 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6352 {
6353 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6354
6355 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6356 (*doit) (x, arg);
6357 }
6358 }
6359 }
6360
6361 static void
6362 do_clobber_return_reg (reg, arg)
6363 rtx reg;
6364 void *arg ATTRIBUTE_UNUSED;
6365 {
6366 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6367 }
6368
6369 void
6370 clobber_return_register ()
6371 {
6372 diddle_return_value (do_clobber_return_reg, NULL);
6373 }
6374
6375 static void
6376 do_use_return_reg (reg, arg)
6377 rtx reg;
6378 void *arg ATTRIBUTE_UNUSED;
6379 {
6380 emit_insn (gen_rtx_USE (VOIDmode, reg));
6381 }
6382
6383 void
6384 use_return_register ()
6385 {
6386 diddle_return_value (do_use_return_reg, NULL);
6387 }
6388
6389 /* Generate RTL for the end of the current function.
6390 FILENAME and LINE are the current position in the source file.
6391
6392 It is up to language-specific callers to do cleanups for parameters--
6393 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6394
6395 void
6396 expand_function_end (filename, line, end_bindings)
6397 char *filename;
6398 int line;
6399 int end_bindings;
6400 {
6401 tree link;
6402
6403 #ifdef TRAMPOLINE_TEMPLATE
6404 static rtx initial_trampoline;
6405 #endif
6406
6407 finish_expr_for_function ();
6408
6409 #ifdef NON_SAVING_SETJMP
6410 /* Don't put any variables in registers if we call setjmp
6411 on a machine that fails to restore the registers. */
6412 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6413 {
6414 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6415 setjmp_protect (DECL_INITIAL (current_function_decl));
6416
6417 setjmp_protect_args ();
6418 }
6419 #endif
6420
6421 /* Save the argument pointer if a save area was made for it. */
6422 if (arg_pointer_save_area)
6423 {
6424 /* arg_pointer_save_area may not be a valid memory address, so we
6425 have to check it and fix it if necessary. */
6426 rtx seq;
6427 start_sequence ();
6428 emit_move_insn (validize_mem (arg_pointer_save_area),
6429 virtual_incoming_args_rtx);
6430 seq = gen_sequence ();
6431 end_sequence ();
6432 emit_insn_before (seq, tail_recursion_reentry);
6433 }
6434
6435 /* Initialize any trampolines required by this function. */
6436 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6437 {
6438 tree function = TREE_PURPOSE (link);
6439 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6440 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6441 #ifdef TRAMPOLINE_TEMPLATE
6442 rtx blktramp;
6443 #endif
6444 rtx seq;
6445
6446 #ifdef TRAMPOLINE_TEMPLATE
6447 /* First make sure this compilation has a template for
6448 initializing trampolines. */
6449 if (initial_trampoline == 0)
6450 {
6451 end_temporary_allocation ();
6452 initial_trampoline
6453 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6454 resume_temporary_allocation ();
6455
6456 ggc_add_rtx_root (&initial_trampoline, 1);
6457 }
6458 #endif
6459
6460 /* Generate insns to initialize the trampoline. */
6461 start_sequence ();
6462 tramp = round_trampoline_addr (XEXP (tramp, 0));
6463 #ifdef TRAMPOLINE_TEMPLATE
6464 blktramp = change_address (initial_trampoline, BLKmode, tramp);
6465 emit_block_move (blktramp, initial_trampoline,
6466 GEN_INT (TRAMPOLINE_SIZE),
6467 TRAMPOLINE_ALIGNMENT);
6468 #endif
6469 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6470 seq = get_insns ();
6471 end_sequence ();
6472
6473 /* Put those insns at entry to the containing function (this one). */
6474 emit_insns_before (seq, tail_recursion_reentry);
6475 }
6476
6477 /* If we are doing stack checking and this function makes calls,
6478 do a stack probe at the start of the function to ensure we have enough
6479 space for another stack frame. */
6480 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6481 {
6482 rtx insn, seq;
6483
6484 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6485 if (GET_CODE (insn) == CALL_INSN)
6486 {
6487 start_sequence ();
6488 probe_stack_range (STACK_CHECK_PROTECT,
6489 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6490 seq = get_insns ();
6491 end_sequence ();
6492 emit_insns_before (seq, tail_recursion_reentry);
6493 break;
6494 }
6495 }
6496
6497 /* Warn about unused parms if extra warnings were specified. */
6498 if (warn_unused && extra_warnings)
6499 {
6500 tree decl;
6501
6502 for (decl = DECL_ARGUMENTS (current_function_decl);
6503 decl; decl = TREE_CHAIN (decl))
6504 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6505 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6506 warning_with_decl (decl, "unused parameter `%s'");
6507 }
6508
6509 /* Delete handlers for nonlocal gotos if nothing uses them. */
6510 if (nonlocal_goto_handler_slots != 0
6511 && ! current_function_has_nonlocal_label)
6512 delete_handlers ();
6513
6514 /* End any sequences that failed to be closed due to syntax errors. */
6515 while (in_sequence_p ())
6516 end_sequence ();
6517
6518 /* Outside function body, can't compute type's actual size
6519 until next function's body starts. */
6520 immediate_size_expand--;
6521
6522 clear_pending_stack_adjust ();
6523 do_pending_stack_adjust ();
6524
6525 /* Mark the end of the function body.
6526 If control reaches this insn, the function can drop through
6527 without returning a value. */
6528 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
6529
6530 /* Must mark the last line number note in the function, so that the test
6531 coverage code can avoid counting the last line twice. This just tells
6532 the code to ignore the immediately following line note, since there
6533 already exists a copy of this note somewhere above. This line number
6534 note is still needed for debugging though, so we can't delete it. */
6535 if (flag_test_coverage)
6536 emit_note (NULL_PTR, NOTE_REPEATED_LINE_NUMBER);
6537
6538 /* Output a linenumber for the end of the function.
6539 SDB depends on this. */
6540 emit_line_note_force (filename, line);
6541
6542 /* Output the label for the actual return from the function,
6543 if one is expected. This happens either because a function epilogue
6544 is used instead of a return instruction, or because a return was done
6545 with a goto in order to run local cleanups, or because of pcc-style
6546 structure returning. */
6547
6548 if (return_label)
6549 {
6550 /* Before the return label, clobber the return registers so that
6551 they are not propogated live to the rest of the function. This
6552 can only happen with functions that drop through; if there had
6553 been a return statement, there would have either been a return
6554 rtx, or a jump to the return label. */
6555 clobber_return_register ();
6556
6557 emit_label (return_label);
6558 }
6559
6560 /* C++ uses this. */
6561 if (end_bindings)
6562 expand_end_bindings (0, 0, 0);
6563
6564 /* Now handle any leftover exception regions that may have been
6565 created for the parameters. */
6566 {
6567 rtx last = get_last_insn ();
6568 rtx label;
6569
6570 expand_leftover_cleanups ();
6571
6572 /* If there are any catch_clauses remaining, output them now. */
6573 emit_insns (catch_clauses);
6574 catch_clauses = catch_clauses_last = NULL_RTX;
6575 /* If the above emitted any code, may sure we jump around it. */
6576 if (last != get_last_insn ())
6577 {
6578 label = gen_label_rtx ();
6579 last = emit_jump_insn_after (gen_jump (label), last);
6580 last = emit_barrier_after (last);
6581 emit_label (label);
6582 }
6583 }
6584
6585 if (current_function_instrument_entry_exit)
6586 {
6587 rtx fun = DECL_RTL (current_function_decl);
6588 if (GET_CODE (fun) == MEM)
6589 fun = XEXP (fun, 0);
6590 else
6591 abort ();
6592 emit_library_call (profile_function_exit_libfunc, 0, VOIDmode, 2,
6593 fun, Pmode,
6594 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6595 0,
6596 hard_frame_pointer_rtx),
6597 Pmode);
6598 }
6599
6600 /* If we had calls to alloca, and this machine needs
6601 an accurate stack pointer to exit the function,
6602 insert some code to save and restore the stack pointer. */
6603 #ifdef EXIT_IGNORE_STACK
6604 if (! EXIT_IGNORE_STACK)
6605 #endif
6606 if (current_function_calls_alloca)
6607 {
6608 rtx tem = 0;
6609
6610 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6611 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6612 }
6613
6614 /* If scalar return value was computed in a pseudo-reg,
6615 copy that to the hard return register. */
6616 if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0
6617 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG
6618 && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl)))
6619 >= FIRST_PSEUDO_REGISTER))
6620 {
6621 rtx real_decl_result;
6622
6623 #ifdef FUNCTION_OUTGOING_VALUE
6624 real_decl_result
6625 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6626 current_function_decl);
6627 #else
6628 real_decl_result
6629 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6630 current_function_decl);
6631 #endif
6632 REG_FUNCTION_VALUE_P (real_decl_result) = 1;
6633 /* If this is a BLKmode structure being returned in registers, then use
6634 the mode computed in expand_return. */
6635 if (GET_MODE (real_decl_result) == BLKmode)
6636 PUT_MODE (real_decl_result,
6637 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6638 emit_move_insn (real_decl_result,
6639 DECL_RTL (DECL_RESULT (current_function_decl)));
6640
6641 /* The delay slot scheduler assumes that current_function_return_rtx
6642 holds the hard register containing the return value, not a temporary
6643 pseudo. */
6644 current_function_return_rtx = real_decl_result;
6645 }
6646
6647 /* If returning a structure, arrange to return the address of the value
6648 in a place where debuggers expect to find it.
6649
6650 If returning a structure PCC style,
6651 the caller also depends on this value.
6652 And current_function_returns_pcc_struct is not necessarily set. */
6653 if (current_function_returns_struct
6654 || current_function_returns_pcc_struct)
6655 {
6656 rtx value_address = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
6657 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6658 #ifdef FUNCTION_OUTGOING_VALUE
6659 rtx outgoing
6660 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
6661 current_function_decl);
6662 #else
6663 rtx outgoing
6664 = FUNCTION_VALUE (build_pointer_type (type),
6665 current_function_decl);
6666 #endif
6667
6668 /* Mark this as a function return value so integrate will delete the
6669 assignment and USE below when inlining this function. */
6670 REG_FUNCTION_VALUE_P (outgoing) = 1;
6671
6672 emit_move_insn (outgoing, value_address);
6673 }
6674
6675 /* ??? This should no longer be necessary since stupid is no longer with
6676 us, but there are some parts of the compiler (eg reload_combine, and
6677 sh mach_dep_reorg) that still try and compute their own lifetime info
6678 instead of using the general framework. */
6679 use_return_register ();
6680
6681 /* If this is an implementation of __throw, do what's necessary to
6682 communicate between __builtin_eh_return and the epilogue. */
6683 expand_eh_return ();
6684
6685 /* Output a return insn if we are using one.
6686 Otherwise, let the rtl chain end here, to drop through
6687 into the epilogue. */
6688
6689 #ifdef HAVE_return
6690 if (HAVE_return)
6691 {
6692 emit_jump_insn (gen_return ());
6693 emit_barrier ();
6694 }
6695 #endif
6696
6697 /* Fix up any gotos that jumped out to the outermost
6698 binding level of the function.
6699 Must follow emitting RETURN_LABEL. */
6700
6701 /* If you have any cleanups to do at this point,
6702 and they need to create temporary variables,
6703 then you will lose. */
6704 expand_fixups (get_insns ());
6705 }
6706 \f
6707 /* Extend a vector that records the INSN_UIDs of INSNS (either a
6708 sequence or a single insn). */
6709
6710 static void
6711 record_insns (insns, vecp)
6712 rtx insns;
6713 varray_type *vecp;
6714 {
6715 if (GET_CODE (insns) == SEQUENCE)
6716 {
6717 int len = XVECLEN (insns, 0);
6718 int i = VARRAY_SIZE (*vecp);
6719
6720 VARRAY_GROW (*vecp, i + len);
6721 while (--len >= 0)
6722 {
6723 VARRAY_INT (*vecp, i) = INSN_UID (XVECEXP (insns, 0, len));
6724 ++i;
6725 }
6726 }
6727 else
6728 {
6729 int i = VARRAY_SIZE (*vecp);
6730 VARRAY_GROW (*vecp, i + 1);
6731 VARRAY_INT (*vecp, i) = INSN_UID (insns);
6732 }
6733 }
6734
6735 /* Determine how many INSN_UIDs in VEC are part of INSN. */
6736
6737 static int
6738 contains (insn, vec)
6739 rtx insn;
6740 varray_type vec;
6741 {
6742 register int i, j;
6743
6744 if (GET_CODE (insn) == INSN
6745 && GET_CODE (PATTERN (insn)) == SEQUENCE)
6746 {
6747 int count = 0;
6748 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6749 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6750 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
6751 count++;
6752 return count;
6753 }
6754 else
6755 {
6756 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6757 if (INSN_UID (insn) == VARRAY_INT (vec, j))
6758 return 1;
6759 }
6760 return 0;
6761 }
6762
6763 int
6764 prologue_epilogue_contains (insn)
6765 rtx insn;
6766 {
6767 if (contains (insn, prologue))
6768 return 1;
6769 if (contains (insn, epilogue))
6770 return 1;
6771 return 0;
6772 }
6773
6774 int
6775 sibcall_epilogue_contains (insn)
6776 rtx insn;
6777 {
6778 if (sibcall_epilogue)
6779 return contains (insn, sibcall_epilogue);
6780 return 0;
6781 }
6782
6783 #ifdef HAVE_return
6784 /* Insert gen_return at the end of block BB. This also means updating
6785 block_for_insn appropriately. */
6786
6787 static void
6788 emit_return_into_block (bb)
6789 basic_block bb;
6790 {
6791 rtx p, end;
6792
6793 end = emit_jump_insn_after (gen_return (), bb->end);
6794 p = NEXT_INSN (bb->end);
6795 while (1)
6796 {
6797 set_block_for_insn (p, bb);
6798 if (p == end)
6799 break;
6800 p = NEXT_INSN (p);
6801 }
6802 bb->end = end;
6803 }
6804 #endif /* HAVE_return */
6805
6806 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
6807 this into place with notes indicating where the prologue ends and where
6808 the epilogue begins. Update the basic block information when possible. */
6809
6810 void
6811 thread_prologue_and_epilogue_insns (f)
6812 rtx f ATTRIBUTE_UNUSED;
6813 {
6814 int insertted = 0;
6815 edge e;
6816 rtx seq;
6817
6818 #ifdef HAVE_prologue
6819 if (HAVE_prologue)
6820 {
6821 rtx insn;
6822
6823 start_sequence ();
6824 seq = gen_prologue();
6825 emit_insn (seq);
6826
6827 /* Retain a map of the prologue insns. */
6828 if (GET_CODE (seq) != SEQUENCE)
6829 seq = get_insns ();
6830 record_insns (seq, &prologue);
6831 emit_note (NULL, NOTE_INSN_PROLOGUE_END);
6832
6833 /* GDB handles `break f' by setting a breakpoint on the first
6834 line note *after* the prologue. That means that we should
6835 insert a line note here; otherwise, if the next line note
6836 comes part way into the next block, GDB will skip all the way
6837 to that point. */
6838 insn = next_nonnote_insn (f);
6839 while (insn)
6840 {
6841 if (GET_CODE (insn) == NOTE
6842 && NOTE_LINE_NUMBER (insn) >= 0)
6843 {
6844 emit_line_note_force (NOTE_SOURCE_FILE (insn),
6845 NOTE_LINE_NUMBER (insn));
6846 break;
6847 }
6848
6849 insn = PREV_INSN (insn);
6850 }
6851
6852 seq = gen_sequence ();
6853 end_sequence ();
6854
6855 /* If optimization is off, and perhaps in an empty function,
6856 the entry block will have no successors. */
6857 if (ENTRY_BLOCK_PTR->succ)
6858 {
6859 /* Can't deal with multiple successsors of the entry block. */
6860 if (ENTRY_BLOCK_PTR->succ->succ_next)
6861 abort ();
6862
6863 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
6864 insertted = 1;
6865 }
6866 else
6867 emit_insn_after (seq, f);
6868 }
6869 #endif
6870
6871 /* If the exit block has no non-fake predecessors, we don't need
6872 an epilogue. */
6873 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6874 if ((e->flags & EDGE_FAKE) == 0)
6875 break;
6876 if (e == NULL)
6877 goto epilogue_done;
6878
6879 #ifdef HAVE_return
6880 if (optimize && HAVE_return)
6881 {
6882 /* If we're allowed to generate a simple return instruction,
6883 then by definition we don't need a full epilogue. Examine
6884 the block that falls through to EXIT. If it does not
6885 contain any code, examine its predecessors and try to
6886 emit (conditional) return instructions. */
6887
6888 basic_block last;
6889 edge e_next;
6890 rtx label;
6891
6892 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6893 if (e->flags & EDGE_FALLTHRU)
6894 break;
6895 if (e == NULL)
6896 goto epilogue_done;
6897 last = e->src;
6898
6899 /* Verify that there are no active instructions in the last block. */
6900 label = last->end;
6901 while (label && GET_CODE (label) != CODE_LABEL)
6902 {
6903 if (active_insn_p (label))
6904 break;
6905 label = PREV_INSN (label);
6906 }
6907
6908 if (last->head == label && GET_CODE (label) == CODE_LABEL)
6909 {
6910 for (e = last->pred; e ; e = e_next)
6911 {
6912 basic_block bb = e->src;
6913 rtx jump;
6914
6915 e_next = e->pred_next;
6916 if (bb == ENTRY_BLOCK_PTR)
6917 continue;
6918
6919 jump = bb->end;
6920 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
6921 continue;
6922
6923 /* If we have an unconditional jump, we can replace that
6924 with a simple return instruction. */
6925 if (simplejump_p (jump))
6926 {
6927 emit_return_into_block (bb);
6928 flow_delete_insn (jump);
6929 }
6930
6931 /* If we have a conditional jump, we can try to replace
6932 that with a conditional return instruction. */
6933 else if (condjump_p (jump))
6934 {
6935 rtx ret, *loc;
6936
6937 ret = SET_SRC (PATTERN (jump));
6938 if (GET_CODE (XEXP (ret, 1)) == LABEL_REF)
6939 loc = &XEXP (ret, 1);
6940 else
6941 loc = &XEXP (ret, 2);
6942 ret = gen_rtx_RETURN (VOIDmode);
6943
6944 if (! validate_change (jump, loc, ret, 0))
6945 continue;
6946 if (JUMP_LABEL (jump))
6947 LABEL_NUSES (JUMP_LABEL (jump))--;
6948
6949 /* If this block has only one successor, it both jumps
6950 and falls through to the fallthru block, so we can't
6951 delete the edge. */
6952 if (bb->succ->succ_next == NULL)
6953 continue;
6954 }
6955 else
6956 continue;
6957
6958 /* Fix up the CFG for the successful change we just made. */
6959 remove_edge (e);
6960 make_edge (NULL, bb, EXIT_BLOCK_PTR, 0);
6961 }
6962
6963 /* Emit a return insn for the exit fallthru block. Whether
6964 this is still reachable will be determined later. */
6965
6966 emit_barrier_after (last->end);
6967 emit_return_into_block (last);
6968 }
6969 else
6970 {
6971 /* The exit block wasn't empty. We have to use insert_insn_on_edge,
6972 as it may be the exit block can go elsewhere as well
6973 as exiting. */
6974 start_sequence ();
6975 emit_jump_insn (gen_return ());
6976 seq = gen_sequence ();
6977 end_sequence ();
6978 insert_insn_on_edge (seq, e);
6979 insertted = 1;
6980 }
6981 goto epilogue_done;
6982 }
6983 #endif
6984 #ifdef HAVE_epilogue
6985 if (HAVE_epilogue)
6986 {
6987 /* Find the edge that falls through to EXIT. Other edges may exist
6988 due to RETURN instructions, but those don't need epilogues.
6989 There really shouldn't be a mixture -- either all should have
6990 been converted or none, however... */
6991
6992 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6993 if (e->flags & EDGE_FALLTHRU)
6994 break;
6995 if (e == NULL)
6996 goto epilogue_done;
6997
6998 start_sequence ();
6999 emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
7000
7001 seq = gen_epilogue ();
7002 emit_jump_insn (seq);
7003
7004 /* Retain a map of the epilogue insns. */
7005 if (GET_CODE (seq) != SEQUENCE)
7006 seq = get_insns ();
7007 record_insns (seq, &epilogue);
7008
7009 seq = gen_sequence ();
7010 end_sequence();
7011
7012 insert_insn_on_edge (seq, e);
7013 insertted = 1;
7014 }
7015 #endif
7016 epilogue_done:
7017
7018 if (insertted)
7019 commit_edge_insertions ();
7020
7021 #ifdef HAVE_sibcall_epilogue
7022 /* Emit sibling epilogues before any sibling call sites. */
7023 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
7024 {
7025 basic_block bb = e->src;
7026 rtx insn = bb->end;
7027 rtx i;
7028
7029 if (GET_CODE (insn) != CALL_INSN
7030 || ! SIBLING_CALL_P (insn))
7031 continue;
7032
7033 start_sequence ();
7034 seq = gen_sibcall_epilogue ();
7035 end_sequence ();
7036
7037 i = PREV_INSN (insn);
7038 emit_insn_before (seq, insn);
7039
7040 /* Update the UID to basic block map. */
7041 for (i = NEXT_INSN (i); i != insn; i = NEXT_INSN (i))
7042 set_block_for_insn (i, bb);
7043
7044 /* Retain a map of the epilogue insns. Used in life analysis to
7045 avoid getting rid of sibcall epilogue insns. */
7046 record_insns (seq, &sibcall_epilogue);
7047 }
7048 #endif
7049 }
7050
7051 /* Reposition the prologue-end and epilogue-begin notes after instruction
7052 scheduling and delayed branch scheduling. */
7053
7054 void
7055 reposition_prologue_and_epilogue_notes (f)
7056 rtx f ATTRIBUTE_UNUSED;
7057 {
7058 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7059 int len;
7060
7061 if ((len = VARRAY_SIZE (prologue)) > 0)
7062 {
7063 register rtx insn, note = 0;
7064
7065 /* Scan from the beginning until we reach the last prologue insn.
7066 We apparently can't depend on basic_block_{head,end} after
7067 reorg has run. */
7068 for (insn = f; len && insn; insn = NEXT_INSN (insn))
7069 {
7070 if (GET_CODE (insn) == NOTE)
7071 {
7072 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7073 note = insn;
7074 }
7075 else if ((len -= contains (insn, prologue)) == 0)
7076 {
7077 rtx next;
7078 /* Find the prologue-end note if we haven't already, and
7079 move it to just after the last prologue insn. */
7080 if (note == 0)
7081 {
7082 for (note = insn; (note = NEXT_INSN (note));)
7083 if (GET_CODE (note) == NOTE
7084 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7085 break;
7086 }
7087
7088 next = NEXT_INSN (note);
7089
7090 /* Whether or not we can depend on BLOCK_HEAD,
7091 attempt to keep it up-to-date. */
7092 if (BLOCK_HEAD (0) == note)
7093 BLOCK_HEAD (0) = next;
7094
7095 remove_insn (note);
7096 add_insn_after (note, insn);
7097 }
7098 }
7099 }
7100
7101 if ((len = VARRAY_SIZE (epilogue)) > 0)
7102 {
7103 register rtx insn, note = 0;
7104
7105 /* Scan from the end until we reach the first epilogue insn.
7106 We apparently can't depend on basic_block_{head,end} after
7107 reorg has run. */
7108 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
7109 {
7110 if (GET_CODE (insn) == NOTE)
7111 {
7112 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7113 note = insn;
7114 }
7115 else if ((len -= contains (insn, epilogue)) == 0)
7116 {
7117 /* Find the epilogue-begin note if we haven't already, and
7118 move it to just before the first epilogue insn. */
7119 if (note == 0)
7120 {
7121 for (note = insn; (note = PREV_INSN (note));)
7122 if (GET_CODE (note) == NOTE
7123 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7124 break;
7125 }
7126
7127 /* Whether or not we can depend on BLOCK_HEAD,
7128 attempt to keep it up-to-date. */
7129 if (n_basic_blocks
7130 && BLOCK_HEAD (n_basic_blocks-1) == insn)
7131 BLOCK_HEAD (n_basic_blocks-1) = note;
7132
7133 remove_insn (note);
7134 add_insn_before (note, insn);
7135 }
7136 }
7137 }
7138 #endif /* HAVE_prologue or HAVE_epilogue */
7139 }
7140
7141 /* Mark T for GC. */
7142
7143 static void
7144 mark_temp_slot (t)
7145 struct temp_slot *t;
7146 {
7147 while (t)
7148 {
7149 ggc_mark_rtx (t->slot);
7150 ggc_mark_rtx (t->address);
7151 ggc_mark_tree (t->rtl_expr);
7152
7153 t = t->next;
7154 }
7155 }
7156
7157 /* Mark P for GC. */
7158
7159 static void
7160 mark_function_status (p)
7161 struct function *p;
7162 {
7163 int i;
7164 rtx *r;
7165
7166 if (p == 0)
7167 return;
7168
7169 ggc_mark_rtx (p->arg_offset_rtx);
7170
7171 if (p->x_parm_reg_stack_loc)
7172 for (i = p->x_max_parm_reg, r = p->x_parm_reg_stack_loc;
7173 i > 0; --i, ++r)
7174 ggc_mark_rtx (*r);
7175
7176 ggc_mark_rtx (p->return_rtx);
7177 ggc_mark_rtx (p->x_cleanup_label);
7178 ggc_mark_rtx (p->x_return_label);
7179 ggc_mark_rtx (p->x_save_expr_regs);
7180 ggc_mark_rtx (p->x_stack_slot_list);
7181 ggc_mark_rtx (p->x_parm_birth_insn);
7182 ggc_mark_rtx (p->x_tail_recursion_label);
7183 ggc_mark_rtx (p->x_tail_recursion_reentry);
7184 ggc_mark_rtx (p->internal_arg_pointer);
7185 ggc_mark_rtx (p->x_arg_pointer_save_area);
7186 ggc_mark_tree (p->x_rtl_expr_chain);
7187 ggc_mark_rtx (p->x_last_parm_insn);
7188 ggc_mark_tree (p->x_context_display);
7189 ggc_mark_tree (p->x_trampoline_list);
7190 ggc_mark_rtx (p->epilogue_delay_list);
7191
7192 mark_temp_slot (p->x_temp_slots);
7193
7194 {
7195 struct var_refs_queue *q = p->fixup_var_refs_queue;
7196 while (q)
7197 {
7198 ggc_mark_rtx (q->modified);
7199 q = q->next;
7200 }
7201 }
7202
7203 ggc_mark_rtx (p->x_nonlocal_goto_handler_slots);
7204 ggc_mark_rtx (p->x_nonlocal_goto_handler_labels);
7205 ggc_mark_rtx (p->x_nonlocal_goto_stack_level);
7206 ggc_mark_tree (p->x_nonlocal_labels);
7207 }
7208
7209 /* Mark the function chain ARG (which is really a struct function **)
7210 for GC. */
7211
7212 static void
7213 mark_function_chain (arg)
7214 void *arg;
7215 {
7216 struct function *f = *(struct function **) arg;
7217
7218 for (; f; f = f->next_global)
7219 {
7220 ggc_mark_tree (f->decl);
7221
7222 mark_function_status (f);
7223 mark_eh_status (f->eh);
7224 mark_stmt_status (f->stmt);
7225 mark_expr_status (f->expr);
7226 mark_emit_status (f->emit);
7227 mark_varasm_status (f->varasm);
7228
7229 if (mark_machine_status)
7230 (*mark_machine_status) (f);
7231 if (mark_lang_status)
7232 (*mark_lang_status) (f);
7233
7234 if (f->original_arg_vector)
7235 ggc_mark_rtvec ((rtvec) f->original_arg_vector);
7236 if (f->original_decl_initial)
7237 ggc_mark_tree (f->original_decl_initial);
7238 }
7239 }
7240
7241 /* Called once, at initialization, to initialize function.c. */
7242
7243 void
7244 init_function_once ()
7245 {
7246 ggc_add_root (&all_functions, 1, sizeof all_functions,
7247 mark_function_chain);
7248
7249 VARRAY_INT_INIT (prologue, 0, "prologue");
7250 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7251 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
7252 }
This page took 0.390027 seconds and 5 git commands to generate.