]> gcc.gnu.org Git - gcc.git/blob - gcc/function.c
integrate.c (expand_inline_function): Don't put a virtual register into the reg map.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
35
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
40
41 #include "config.h"
42 #include "system.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "flags.h"
46 #include "except.h"
47 #include "function.h"
48 #include "insn-flags.h"
49 #include "expr.h"
50 #include "insn-codes.h"
51 #include "regs.h"
52 #include "hard-reg-set.h"
53 #include "insn-config.h"
54 #include "recog.h"
55 #include "output.h"
56 #include "basic-block.h"
57 #include "obstack.h"
58 #include "toplev.h"
59 #include "hash.h"
60 #include "ggc.h"
61 #include "tm_p.h"
62
63 #ifndef ACCUMULATE_OUTGOING_ARGS
64 #define ACCUMULATE_OUTGOING_ARGS 0
65 #endif
66
67 #ifndef TRAMPOLINE_ALIGNMENT
68 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
69 #endif
70
71 #ifndef LOCAL_ALIGNMENT
72 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
73 #endif
74
75 #if !defined (PREFERRED_STACK_BOUNDARY) && defined (STACK_BOUNDARY)
76 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
77 #endif
78
79 /* Some systems use __main in a way incompatible with its use in gcc, in these
80 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
81 give the same symbol without quotes for an alternative entry point. You
82 must define both, or neither. */
83 #ifndef NAME__MAIN
84 #define NAME__MAIN "__main"
85 #define SYMBOL__MAIN __main
86 #endif
87
88 /* Round a value to the lowest integer less than it that is a multiple of
89 the required alignment. Avoid using division in case the value is
90 negative. Assume the alignment is a power of two. */
91 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
92
93 /* Similar, but round to the next highest integer that meets the
94 alignment. */
95 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
96
97 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
98 during rtl generation. If they are different register numbers, this is
99 always true. It may also be true if
100 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
101 generation. See fix_lexical_addr for details. */
102
103 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
104 #define NEED_SEPARATE_AP
105 #endif
106
107 /* Nonzero if function being compiled doesn't contain any calls
108 (ignoring the prologue and epilogue). This is set prior to
109 local register allocation and is valid for the remaining
110 compiler passes. */
111 int current_function_is_leaf;
112
113 /* Nonzero if function being compiled doesn't contain any instructions
114 that can throw an exception. This is set prior to final. */
115
116 int current_function_nothrow;
117
118 /* Nonzero if function being compiled doesn't modify the stack pointer
119 (ignoring the prologue and epilogue). This is only valid after
120 life_analysis has run. */
121 int current_function_sp_is_unchanging;
122
123 /* Nonzero if the function being compiled is a leaf function which only
124 uses leaf registers. This is valid after reload (specifically after
125 sched2) and is useful only if the port defines LEAF_REGISTERS. */
126 int current_function_uses_only_leaf_regs;
127
128 /* Nonzero once virtual register instantiation has been done.
129 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
130 static int virtuals_instantiated;
131
132 /* These variables hold pointers to functions to
133 save and restore machine-specific data,
134 in push_function_context and pop_function_context. */
135 void (*init_machine_status) PARAMS ((struct function *));
136 void (*save_machine_status) PARAMS ((struct function *));
137 void (*restore_machine_status) PARAMS ((struct function *));
138 void (*mark_machine_status) PARAMS ((struct function *));
139 void (*free_machine_status) PARAMS ((struct function *));
140
141 /* Likewise, but for language-specific data. */
142 void (*init_lang_status) PARAMS ((struct function *));
143 void (*save_lang_status) PARAMS ((struct function *));
144 void (*restore_lang_status) PARAMS ((struct function *));
145 void (*mark_lang_status) PARAMS ((struct function *));
146 void (*free_lang_status) PARAMS ((struct function *));
147
148 /* The FUNCTION_DECL for an inline function currently being expanded. */
149 tree inline_function_decl;
150
151 /* The currently compiled function. */
152 struct function *cfun = 0;
153
154 /* Global list of all compiled functions. */
155 struct function *all_functions = 0;
156
157 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
158 static varray_type prologue;
159 static varray_type epilogue;
160
161 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
162 in this function. */
163 static varray_type sibcall_epilogue;
164 \f
165 /* In order to evaluate some expressions, such as function calls returning
166 structures in memory, we need to temporarily allocate stack locations.
167 We record each allocated temporary in the following structure.
168
169 Associated with each temporary slot is a nesting level. When we pop up
170 one level, all temporaries associated with the previous level are freed.
171 Normally, all temporaries are freed after the execution of the statement
172 in which they were created. However, if we are inside a ({...}) grouping,
173 the result may be in a temporary and hence must be preserved. If the
174 result could be in a temporary, we preserve it if we can determine which
175 one it is in. If we cannot determine which temporary may contain the
176 result, all temporaries are preserved. A temporary is preserved by
177 pretending it was allocated at the previous nesting level.
178
179 Automatic variables are also assigned temporary slots, at the nesting
180 level where they are defined. They are marked a "kept" so that
181 free_temp_slots will not free them. */
182
183 struct temp_slot
184 {
185 /* Points to next temporary slot. */
186 struct temp_slot *next;
187 /* The rtx to used to reference the slot. */
188 rtx slot;
189 /* The rtx used to represent the address if not the address of the
190 slot above. May be an EXPR_LIST if multiple addresses exist. */
191 rtx address;
192 /* The alignment (in bits) of the slot. */
193 int align;
194 /* The size, in units, of the slot. */
195 HOST_WIDE_INT size;
196 /* The type of the object in the slot, or zero if it doesn't correspond
197 to a type. We use this to determine whether a slot can be reused.
198 It can be reused if objects of the type of the new slot will always
199 conflict with objects of the type of the old slot. */
200 tree type;
201 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
202 tree rtl_expr;
203 /* Non-zero if this temporary is currently in use. */
204 char in_use;
205 /* Non-zero if this temporary has its address taken. */
206 char addr_taken;
207 /* Nesting level at which this slot is being used. */
208 int level;
209 /* Non-zero if this should survive a call to free_temp_slots. */
210 int keep;
211 /* The offset of the slot from the frame_pointer, including extra space
212 for alignment. This info is for combine_temp_slots. */
213 HOST_WIDE_INT base_offset;
214 /* The size of the slot, including extra space for alignment. This
215 info is for combine_temp_slots. */
216 HOST_WIDE_INT full_size;
217 };
218 \f
219 /* This structure is used to record MEMs or pseudos used to replace VAR, any
220 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
221 maintain this list in case two operands of an insn were required to match;
222 in that case we must ensure we use the same replacement. */
223
224 struct fixup_replacement
225 {
226 rtx old;
227 rtx new;
228 struct fixup_replacement *next;
229 };
230
231 struct insns_for_mem_entry {
232 /* The KEY in HE will be a MEM. */
233 struct hash_entry he;
234 /* These are the INSNS which reference the MEM. */
235 rtx insns;
236 };
237
238 /* Forward declarations. */
239
240 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
241 int, struct function *));
242 static rtx assign_stack_temp_for_type PARAMS ((enum machine_mode,
243 HOST_WIDE_INT, int, tree));
244 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
245 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
246 enum machine_mode, enum machine_mode,
247 int, unsigned int, int,
248 struct hash_table *));
249 static void schedule_fixup_var_refs PARAMS ((struct function *, rtx, tree,
250 enum machine_mode,
251 struct hash_table *));
252 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int,
253 struct hash_table *));
254 static struct fixup_replacement
255 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
256 static void fixup_var_refs_insns PARAMS ((rtx, enum machine_mode, int,
257 rtx, int, struct hash_table *));
258 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
259 struct fixup_replacement **));
260 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, int));
261 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, int));
262 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
263 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
264 static void instantiate_decls PARAMS ((tree, int));
265 static void instantiate_decls_1 PARAMS ((tree, int));
266 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
267 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
268 static void delete_handlers PARAMS ((void));
269 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
270 struct args_size *));
271 #ifndef ARGS_GROW_DOWNWARD
272 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
273 tree));
274 #endif
275 static rtx round_trampoline_addr PARAMS ((rtx));
276 static rtx adjust_trampoline_addr PARAMS ((rtx));
277 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
278 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
279 static tree blocks_nreverse PARAMS ((tree));
280 static int all_blocks PARAMS ((tree, tree *));
281 static tree *get_block_vector PARAMS ((tree, int *));
282 /* We always define `record_insns' even if its not used so that we
283 can always export `prologue_epilogue_contains'. */
284 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
285 static int contains PARAMS ((rtx, varray_type));
286 #ifdef HAVE_return
287 static void emit_return_into_block PARAMS ((basic_block, rtx));
288 #endif
289 static void put_addressof_into_stack PARAMS ((rtx, struct hash_table *));
290 static boolean purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
291 struct hash_table *));
292 static void purge_single_hard_subreg_set PARAMS ((rtx));
293 #ifdef HAVE_epilogue
294 static void keep_stack_depressed PARAMS ((rtx));
295 #endif
296 static int is_addressof PARAMS ((rtx *, void *));
297 static struct hash_entry *insns_for_mem_newfunc PARAMS ((struct hash_entry *,
298 struct hash_table *,
299 hash_table_key));
300 static unsigned long insns_for_mem_hash PARAMS ((hash_table_key));
301 static boolean insns_for_mem_comp PARAMS ((hash_table_key, hash_table_key));
302 static int insns_for_mem_walk PARAMS ((rtx *, void *));
303 static void compute_insns_for_mem PARAMS ((rtx, rtx, struct hash_table *));
304 static void mark_temp_slot PARAMS ((struct temp_slot *));
305 static void mark_function_status PARAMS ((struct function *));
306 static void mark_function_chain PARAMS ((void *));
307 static void prepare_function_start PARAMS ((void));
308 static void do_clobber_return_reg PARAMS ((rtx, void *));
309 static void do_use_return_reg PARAMS ((rtx, void *));
310 \f
311 /* Pointer to chain of `struct function' for containing functions. */
312 struct function *outer_function_chain;
313
314 /* Given a function decl for a containing function,
315 return the `struct function' for it. */
316
317 struct function *
318 find_function_data (decl)
319 tree decl;
320 {
321 struct function *p;
322
323 for (p = outer_function_chain; p; p = p->next)
324 if (p->decl == decl)
325 return p;
326
327 abort ();
328 }
329
330 /* Save the current context for compilation of a nested function.
331 This is called from language-specific code. The caller should use
332 the save_lang_status callback to save any language-specific state,
333 since this function knows only about language-independent
334 variables. */
335
336 void
337 push_function_context_to (context)
338 tree context;
339 {
340 struct function *p, *context_data;
341
342 if (context)
343 {
344 context_data = (context == current_function_decl
345 ? cfun
346 : find_function_data (context));
347 context_data->contains_functions = 1;
348 }
349
350 if (cfun == 0)
351 init_dummy_function_start ();
352 p = cfun;
353
354 p->next = outer_function_chain;
355 outer_function_chain = p;
356 p->fixup_var_refs_queue = 0;
357
358 if (save_lang_status)
359 (*save_lang_status) (p);
360 if (save_machine_status)
361 (*save_machine_status) (p);
362
363 cfun = 0;
364 }
365
366 void
367 push_function_context ()
368 {
369 push_function_context_to (current_function_decl);
370 }
371
372 /* Restore the last saved context, at the end of a nested function.
373 This function is called from language-specific code. */
374
375 void
376 pop_function_context_from (context)
377 tree context ATTRIBUTE_UNUSED;
378 {
379 struct function *p = outer_function_chain;
380 struct var_refs_queue *queue;
381 struct var_refs_queue *next;
382
383 cfun = p;
384 outer_function_chain = p->next;
385
386 current_function_decl = p->decl;
387 reg_renumber = 0;
388
389 restore_emit_status (p);
390
391 if (restore_machine_status)
392 (*restore_machine_status) (p);
393 if (restore_lang_status)
394 (*restore_lang_status) (p);
395
396 /* Finish doing put_var_into_stack for any of our variables
397 which became addressable during the nested function. */
398 for (queue = p->fixup_var_refs_queue; queue; queue = next)
399 {
400 next = queue->next;
401 fixup_var_refs (queue->modified, queue->promoted_mode,
402 queue->unsignedp, 0);
403 free (queue);
404 }
405 p->fixup_var_refs_queue = 0;
406
407 /* Reset variables that have known state during rtx generation. */
408 rtx_equal_function_value_matters = 1;
409 virtuals_instantiated = 0;
410 generating_concat_p = 1;
411 }
412
413 void
414 pop_function_context ()
415 {
416 pop_function_context_from (current_function_decl);
417 }
418
419 /* Clear out all parts of the state in F that can safely be discarded
420 after the function has been parsed, but not compiled, to let
421 garbage collection reclaim the memory. */
422
423 void
424 free_after_parsing (f)
425 struct function *f;
426 {
427 /* f->expr->forced_labels is used by code generation. */
428 /* f->emit->regno_reg_rtx is used by code generation. */
429 /* f->varasm is used by code generation. */
430 /* f->eh->eh_return_stub_label is used by code generation. */
431
432 if (free_lang_status)
433 (*free_lang_status) (f);
434 free_stmt_status (f);
435 }
436
437 /* Clear out all parts of the state in F that can safely be discarded
438 after the function has been compiled, to let garbage collection
439 reclaim the memory. */
440
441 void
442 free_after_compilation (f)
443 struct function *f;
444 {
445 struct temp_slot *ts;
446 struct temp_slot *next;
447
448 free_eh_status (f);
449 free_expr_status (f);
450 free_emit_status (f);
451 free_varasm_status (f);
452
453 if (free_machine_status)
454 (*free_machine_status) (f);
455
456 if (f->x_parm_reg_stack_loc)
457 free (f->x_parm_reg_stack_loc);
458
459 for (ts = f->x_temp_slots; ts; ts = next)
460 {
461 next = ts->next;
462 free (ts);
463 }
464 f->x_temp_slots = NULL;
465
466 f->arg_offset_rtx = NULL;
467 f->return_rtx = NULL;
468 f->internal_arg_pointer = NULL;
469 f->x_nonlocal_labels = NULL;
470 f->x_nonlocal_goto_handler_slots = NULL;
471 f->x_nonlocal_goto_handler_labels = NULL;
472 f->x_nonlocal_goto_stack_level = NULL;
473 f->x_cleanup_label = NULL;
474 f->x_return_label = NULL;
475 f->x_save_expr_regs = NULL;
476 f->x_stack_slot_list = NULL;
477 f->x_rtl_expr_chain = NULL;
478 f->x_tail_recursion_label = NULL;
479 f->x_tail_recursion_reentry = NULL;
480 f->x_arg_pointer_save_area = NULL;
481 f->x_clobber_return_insn = NULL;
482 f->x_context_display = NULL;
483 f->x_trampoline_list = NULL;
484 f->x_parm_birth_insn = NULL;
485 f->x_last_parm_insn = NULL;
486 f->x_parm_reg_stack_loc = NULL;
487 f->fixup_var_refs_queue = NULL;
488 f->original_arg_vector = NULL;
489 f->original_decl_initial = NULL;
490 f->inl_last_parm_insn = NULL;
491 f->epilogue_delay_list = NULL;
492 }
493 \f
494 /* Allocate fixed slots in the stack frame of the current function. */
495
496 /* Return size needed for stack frame based on slots so far allocated in
497 function F.
498 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
499 the caller may have to do that. */
500
501 HOST_WIDE_INT
502 get_func_frame_size (f)
503 struct function *f;
504 {
505 #ifdef FRAME_GROWS_DOWNWARD
506 return -f->x_frame_offset;
507 #else
508 return f->x_frame_offset;
509 #endif
510 }
511
512 /* Return size needed for stack frame based on slots so far allocated.
513 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
514 the caller may have to do that. */
515 HOST_WIDE_INT
516 get_frame_size ()
517 {
518 return get_func_frame_size (cfun);
519 }
520
521 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
522 with machine mode MODE.
523
524 ALIGN controls the amount of alignment for the address of the slot:
525 0 means according to MODE,
526 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
527 positive specifies alignment boundary in bits.
528
529 We do not round to stack_boundary here.
530
531 FUNCTION specifies the function to allocate in. */
532
533 static rtx
534 assign_stack_local_1 (mode, size, align, function)
535 enum machine_mode mode;
536 HOST_WIDE_INT size;
537 int align;
538 struct function *function;
539 {
540 register rtx x, addr;
541 int bigend_correction = 0;
542 int alignment;
543
544 if (align == 0)
545 {
546 tree type;
547
548 if (mode == BLKmode)
549 alignment = BIGGEST_ALIGNMENT;
550 else
551 alignment = GET_MODE_ALIGNMENT (mode);
552
553 /* Allow the target to (possibly) increase the alignment of this
554 stack slot. */
555 type = type_for_mode (mode, 0);
556 if (type)
557 alignment = LOCAL_ALIGNMENT (type, alignment);
558
559 alignment /= BITS_PER_UNIT;
560 }
561 else if (align == -1)
562 {
563 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
564 size = CEIL_ROUND (size, alignment);
565 }
566 else
567 alignment = align / BITS_PER_UNIT;
568
569 #ifdef FRAME_GROWS_DOWNWARD
570 function->x_frame_offset -= size;
571 #endif
572
573 /* Ignore alignment we can't do with expected alignment of the boundary. */
574 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
575 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
576
577 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
578 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
579
580 /* Round frame offset to that alignment.
581 We must be careful here, since FRAME_OFFSET might be negative and
582 division with a negative dividend isn't as well defined as we might
583 like. So we instead assume that ALIGNMENT is a power of two and
584 use logical operations which are unambiguous. */
585 #ifdef FRAME_GROWS_DOWNWARD
586 function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset, alignment);
587 #else
588 function->x_frame_offset = CEIL_ROUND (function->x_frame_offset, alignment);
589 #endif
590
591 /* On a big-endian machine, if we are allocating more space than we will use,
592 use the least significant bytes of those that are allocated. */
593 if (BYTES_BIG_ENDIAN && mode != BLKmode)
594 bigend_correction = size - GET_MODE_SIZE (mode);
595
596 /* If we have already instantiated virtual registers, return the actual
597 address relative to the frame pointer. */
598 if (function == cfun && virtuals_instantiated)
599 addr = plus_constant (frame_pointer_rtx,
600 (frame_offset + bigend_correction
601 + STARTING_FRAME_OFFSET));
602 else
603 addr = plus_constant (virtual_stack_vars_rtx,
604 function->x_frame_offset + bigend_correction);
605
606 #ifndef FRAME_GROWS_DOWNWARD
607 function->x_frame_offset += size;
608 #endif
609
610 x = gen_rtx_MEM (mode, addr);
611
612 function->x_stack_slot_list
613 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
614
615 return x;
616 }
617
618 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
619 current function. */
620
621 rtx
622 assign_stack_local (mode, size, align)
623 enum machine_mode mode;
624 HOST_WIDE_INT size;
625 int align;
626 {
627 return assign_stack_local_1 (mode, size, align, cfun);
628 }
629 \f
630 /* Allocate a temporary stack slot and record it for possible later
631 reuse.
632
633 MODE is the machine mode to be given to the returned rtx.
634
635 SIZE is the size in units of the space required. We do no rounding here
636 since assign_stack_local will do any required rounding.
637
638 KEEP is 1 if this slot is to be retained after a call to
639 free_temp_slots. Automatic variables for a block are allocated
640 with this flag. KEEP is 2 if we allocate a longer term temporary,
641 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
642 if we are to allocate something at an inner level to be treated as
643 a variable in the block (e.g., a SAVE_EXPR).
644
645 TYPE is the type that will be used for the stack slot. */
646
647 static rtx
648 assign_stack_temp_for_type (mode, size, keep, type)
649 enum machine_mode mode;
650 HOST_WIDE_INT size;
651 int keep;
652 tree type;
653 {
654 int align;
655 struct temp_slot *p, *best_p = 0;
656
657 /* If SIZE is -1 it means that somebody tried to allocate a temporary
658 of a variable size. */
659 if (size == -1)
660 abort ();
661
662 if (mode == BLKmode)
663 align = BIGGEST_ALIGNMENT;
664 else
665 align = GET_MODE_ALIGNMENT (mode);
666
667 if (! type)
668 type = type_for_mode (mode, 0);
669
670 if (type)
671 align = LOCAL_ALIGNMENT (type, align);
672
673 /* Try to find an available, already-allocated temporary of the proper
674 mode which meets the size and alignment requirements. Choose the
675 smallest one with the closest alignment. */
676 for (p = temp_slots; p; p = p->next)
677 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
678 && ! p->in_use
679 && objects_must_conflict_p (p->type, type)
680 && (best_p == 0 || best_p->size > p->size
681 || (best_p->size == p->size && best_p->align > p->align)))
682 {
683 if (p->align == align && p->size == size)
684 {
685 best_p = 0;
686 break;
687 }
688 best_p = p;
689 }
690
691 /* Make our best, if any, the one to use. */
692 if (best_p)
693 {
694 /* If there are enough aligned bytes left over, make them into a new
695 temp_slot so that the extra bytes don't get wasted. Do this only
696 for BLKmode slots, so that we can be sure of the alignment. */
697 if (GET_MODE (best_p->slot) == BLKmode)
698 {
699 int alignment = best_p->align / BITS_PER_UNIT;
700 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
701
702 if (best_p->size - rounded_size >= alignment)
703 {
704 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
705 p->in_use = p->addr_taken = 0;
706 p->size = best_p->size - rounded_size;
707 p->base_offset = best_p->base_offset + rounded_size;
708 p->full_size = best_p->full_size - rounded_size;
709 p->slot = gen_rtx_MEM (BLKmode,
710 plus_constant (XEXP (best_p->slot, 0),
711 rounded_size));
712 p->align = best_p->align;
713 p->address = 0;
714 p->rtl_expr = 0;
715 p->type = best_p->type;
716 p->next = temp_slots;
717 temp_slots = p;
718
719 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
720 stack_slot_list);
721
722 best_p->size = rounded_size;
723 best_p->full_size = rounded_size;
724 }
725 }
726
727 p = best_p;
728 }
729
730 /* If we still didn't find one, make a new temporary. */
731 if (p == 0)
732 {
733 HOST_WIDE_INT frame_offset_old = frame_offset;
734
735 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
736
737 /* We are passing an explicit alignment request to assign_stack_local.
738 One side effect of that is assign_stack_local will not round SIZE
739 to ensure the frame offset remains suitably aligned.
740
741 So for requests which depended on the rounding of SIZE, we go ahead
742 and round it now. We also make sure ALIGNMENT is at least
743 BIGGEST_ALIGNMENT. */
744 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
745 abort();
746 p->slot = assign_stack_local (mode,
747 (mode == BLKmode
748 ? CEIL_ROUND (size, align / BITS_PER_UNIT)
749 : size),
750 align);
751
752 p->align = align;
753
754 /* The following slot size computation is necessary because we don't
755 know the actual size of the temporary slot until assign_stack_local
756 has performed all the frame alignment and size rounding for the
757 requested temporary. Note that extra space added for alignment
758 can be either above or below this stack slot depending on which
759 way the frame grows. We include the extra space if and only if it
760 is above this slot. */
761 #ifdef FRAME_GROWS_DOWNWARD
762 p->size = frame_offset_old - frame_offset;
763 #else
764 p->size = size;
765 #endif
766
767 /* Now define the fields used by combine_temp_slots. */
768 #ifdef FRAME_GROWS_DOWNWARD
769 p->base_offset = frame_offset;
770 p->full_size = frame_offset_old - frame_offset;
771 #else
772 p->base_offset = frame_offset_old;
773 p->full_size = frame_offset - frame_offset_old;
774 #endif
775 p->address = 0;
776 p->next = temp_slots;
777 temp_slots = p;
778 }
779
780 p->in_use = 1;
781 p->addr_taken = 0;
782 p->rtl_expr = seq_rtl_expr;
783 p->type = type;
784
785 if (keep == 2)
786 {
787 p->level = target_temp_slot_level;
788 p->keep = 0;
789 }
790 else if (keep == 3)
791 {
792 p->level = var_temp_slot_level;
793 p->keep = 0;
794 }
795 else
796 {
797 p->level = temp_slot_level;
798 p->keep = keep;
799 }
800
801 /* We may be reusing an old slot, so clear any MEM flags that may have been
802 set from before. */
803 RTX_UNCHANGING_P (p->slot) = 0;
804 MEM_IN_STRUCT_P (p->slot) = 0;
805 MEM_SCALAR_P (p->slot) = 0;
806 MEM_VOLATILE_P (p->slot) = 0;
807
808 /* If we know the alias set for the memory that will be used, use
809 it. If there's no TYPE, then we don't know anything about the
810 alias set for the memory. */
811 if (type)
812 MEM_ALIAS_SET (p->slot) = get_alias_set (type);
813 else
814 MEM_ALIAS_SET (p->slot) = 0;
815
816 /* If a type is specified, set the relevant flags. */
817 if (type != 0)
818 {
819 RTX_UNCHANGING_P (p->slot) = TYPE_READONLY (type);
820 MEM_VOLATILE_P (p->slot) = TYPE_VOLATILE (type);
821 MEM_SET_IN_STRUCT_P (p->slot, AGGREGATE_TYPE_P (type));
822 }
823
824 return p->slot;
825 }
826
827 /* Allocate a temporary stack slot and record it for possible later
828 reuse. First three arguments are same as in preceding function. */
829
830 rtx
831 assign_stack_temp (mode, size, keep)
832 enum machine_mode mode;
833 HOST_WIDE_INT size;
834 int keep;
835 {
836 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
837 }
838 \f
839 /* Assign a temporary of given TYPE.
840 KEEP is as for assign_stack_temp.
841 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
842 it is 0 if a register is OK.
843 DONT_PROMOTE is 1 if we should not promote values in register
844 to wider modes. */
845
846 rtx
847 assign_temp (type, keep, memory_required, dont_promote)
848 tree type;
849 int keep;
850 int memory_required;
851 int dont_promote ATTRIBUTE_UNUSED;
852 {
853 enum machine_mode mode = TYPE_MODE (type);
854 #ifndef PROMOTE_FOR_CALL_ONLY
855 int unsignedp = TREE_UNSIGNED (type);
856 #endif
857
858 if (mode == BLKmode || memory_required)
859 {
860 HOST_WIDE_INT size = int_size_in_bytes (type);
861 rtx tmp;
862
863 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
864 problems with allocating the stack space. */
865 if (size == 0)
866 size = 1;
867
868 /* Unfortunately, we don't yet know how to allocate variable-sized
869 temporaries. However, sometimes we have a fixed upper limit on
870 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
871 instead. This is the case for Chill variable-sized strings. */
872 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
873 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
874 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
875 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
876
877 tmp = assign_stack_temp_for_type (mode, size, keep, type);
878 return tmp;
879 }
880
881 #ifndef PROMOTE_FOR_CALL_ONLY
882 if (! dont_promote)
883 mode = promote_mode (type, mode, &unsignedp, 0);
884 #endif
885
886 return gen_reg_rtx (mode);
887 }
888 \f
889 /* Combine temporary stack slots which are adjacent on the stack.
890
891 This allows for better use of already allocated stack space. This is only
892 done for BLKmode slots because we can be sure that we won't have alignment
893 problems in this case. */
894
895 void
896 combine_temp_slots ()
897 {
898 struct temp_slot *p, *q;
899 struct temp_slot *prev_p, *prev_q;
900 int num_slots;
901
902 /* We can't combine slots, because the information about which slot
903 is in which alias set will be lost. */
904 if (flag_strict_aliasing)
905 return;
906
907 /* If there are a lot of temp slots, don't do anything unless
908 high levels of optimizaton. */
909 if (! flag_expensive_optimizations)
910 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
911 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
912 return;
913
914 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
915 {
916 int delete_p = 0;
917
918 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
919 for (q = p->next, prev_q = p; q; q = prev_q->next)
920 {
921 int delete_q = 0;
922 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
923 {
924 if (p->base_offset + p->full_size == q->base_offset)
925 {
926 /* Q comes after P; combine Q into P. */
927 p->size += q->size;
928 p->full_size += q->full_size;
929 delete_q = 1;
930 }
931 else if (q->base_offset + q->full_size == p->base_offset)
932 {
933 /* P comes after Q; combine P into Q. */
934 q->size += p->size;
935 q->full_size += p->full_size;
936 delete_p = 1;
937 break;
938 }
939 }
940 /* Either delete Q or advance past it. */
941 if (delete_q)
942 {
943 prev_q->next = q->next;
944 free (q);
945 }
946 else
947 prev_q = q;
948 }
949 /* Either delete P or advance past it. */
950 if (delete_p)
951 {
952 if (prev_p)
953 prev_p->next = p->next;
954 else
955 temp_slots = p->next;
956 }
957 else
958 prev_p = p;
959 }
960 }
961 \f
962 /* Find the temp slot corresponding to the object at address X. */
963
964 static struct temp_slot *
965 find_temp_slot_from_address (x)
966 rtx x;
967 {
968 struct temp_slot *p;
969 rtx next;
970
971 for (p = temp_slots; p; p = p->next)
972 {
973 if (! p->in_use)
974 continue;
975
976 else if (XEXP (p->slot, 0) == x
977 || p->address == x
978 || (GET_CODE (x) == PLUS
979 && XEXP (x, 0) == virtual_stack_vars_rtx
980 && GET_CODE (XEXP (x, 1)) == CONST_INT
981 && INTVAL (XEXP (x, 1)) >= p->base_offset
982 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
983 return p;
984
985 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
986 for (next = p->address; next; next = XEXP (next, 1))
987 if (XEXP (next, 0) == x)
988 return p;
989 }
990
991 /* If we have a sum involving a register, see if it points to a temp
992 slot. */
993 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
994 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
995 return p;
996 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
997 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
998 return p;
999
1000 return 0;
1001 }
1002
1003 /* Indicate that NEW is an alternate way of referring to the temp slot
1004 that previously was known by OLD. */
1005
1006 void
1007 update_temp_slot_address (old, new)
1008 rtx old, new;
1009 {
1010 struct temp_slot *p;
1011
1012 if (rtx_equal_p (old, new))
1013 return;
1014
1015 p = find_temp_slot_from_address (old);
1016
1017 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1018 is a register, see if one operand of the PLUS is a temporary
1019 location. If so, NEW points into it. Otherwise, if both OLD and
1020 NEW are a PLUS and if there is a register in common between them.
1021 If so, try a recursive call on those values. */
1022 if (p == 0)
1023 {
1024 if (GET_CODE (old) != PLUS)
1025 return;
1026
1027 if (GET_CODE (new) == REG)
1028 {
1029 update_temp_slot_address (XEXP (old, 0), new);
1030 update_temp_slot_address (XEXP (old, 1), new);
1031 return;
1032 }
1033 else if (GET_CODE (new) != PLUS)
1034 return;
1035
1036 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1037 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1038 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1039 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1040 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1041 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1042 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1043 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1044
1045 return;
1046 }
1047
1048 /* Otherwise add an alias for the temp's address. */
1049 else if (p->address == 0)
1050 p->address = new;
1051 else
1052 {
1053 if (GET_CODE (p->address) != EXPR_LIST)
1054 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1055
1056 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1057 }
1058 }
1059
1060 /* If X could be a reference to a temporary slot, mark the fact that its
1061 address was taken. */
1062
1063 void
1064 mark_temp_addr_taken (x)
1065 rtx x;
1066 {
1067 struct temp_slot *p;
1068
1069 if (x == 0)
1070 return;
1071
1072 /* If X is not in memory or is at a constant address, it cannot be in
1073 a temporary slot. */
1074 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1075 return;
1076
1077 p = find_temp_slot_from_address (XEXP (x, 0));
1078 if (p != 0)
1079 p->addr_taken = 1;
1080 }
1081
1082 /* If X could be a reference to a temporary slot, mark that slot as
1083 belonging to the to one level higher than the current level. If X
1084 matched one of our slots, just mark that one. Otherwise, we can't
1085 easily predict which it is, so upgrade all of them. Kept slots
1086 need not be touched.
1087
1088 This is called when an ({...}) construct occurs and a statement
1089 returns a value in memory. */
1090
1091 void
1092 preserve_temp_slots (x)
1093 rtx x;
1094 {
1095 struct temp_slot *p = 0;
1096
1097 /* If there is no result, we still might have some objects whose address
1098 were taken, so we need to make sure they stay around. */
1099 if (x == 0)
1100 {
1101 for (p = temp_slots; p; p = p->next)
1102 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1103 p->level--;
1104
1105 return;
1106 }
1107
1108 /* If X is a register that is being used as a pointer, see if we have
1109 a temporary slot we know it points to. To be consistent with
1110 the code below, we really should preserve all non-kept slots
1111 if we can't find a match, but that seems to be much too costly. */
1112 if (GET_CODE (x) == REG && REG_POINTER (x))
1113 p = find_temp_slot_from_address (x);
1114
1115 /* If X is not in memory or is at a constant address, it cannot be in
1116 a temporary slot, but it can contain something whose address was
1117 taken. */
1118 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1119 {
1120 for (p = temp_slots; p; p = p->next)
1121 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1122 p->level--;
1123
1124 return;
1125 }
1126
1127 /* First see if we can find a match. */
1128 if (p == 0)
1129 p = find_temp_slot_from_address (XEXP (x, 0));
1130
1131 if (p != 0)
1132 {
1133 /* Move everything at our level whose address was taken to our new
1134 level in case we used its address. */
1135 struct temp_slot *q;
1136
1137 if (p->level == temp_slot_level)
1138 {
1139 for (q = temp_slots; q; q = q->next)
1140 if (q != p && q->addr_taken && q->level == p->level)
1141 q->level--;
1142
1143 p->level--;
1144 p->addr_taken = 0;
1145 }
1146 return;
1147 }
1148
1149 /* Otherwise, preserve all non-kept slots at this level. */
1150 for (p = temp_slots; p; p = p->next)
1151 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1152 p->level--;
1153 }
1154
1155 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1156 with that RTL_EXPR, promote it into a temporary slot at the present
1157 level so it will not be freed when we free slots made in the
1158 RTL_EXPR. */
1159
1160 void
1161 preserve_rtl_expr_result (x)
1162 rtx x;
1163 {
1164 struct temp_slot *p;
1165
1166 /* If X is not in memory or is at a constant address, it cannot be in
1167 a temporary slot. */
1168 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1169 return;
1170
1171 /* If we can find a match, move it to our level unless it is already at
1172 an upper level. */
1173 p = find_temp_slot_from_address (XEXP (x, 0));
1174 if (p != 0)
1175 {
1176 p->level = MIN (p->level, temp_slot_level);
1177 p->rtl_expr = 0;
1178 }
1179
1180 return;
1181 }
1182
1183 /* Free all temporaries used so far. This is normally called at the end
1184 of generating code for a statement. Don't free any temporaries
1185 currently in use for an RTL_EXPR that hasn't yet been emitted.
1186 We could eventually do better than this since it can be reused while
1187 generating the same RTL_EXPR, but this is complex and probably not
1188 worthwhile. */
1189
1190 void
1191 free_temp_slots ()
1192 {
1193 struct temp_slot *p;
1194
1195 for (p = temp_slots; p; p = p->next)
1196 if (p->in_use && p->level == temp_slot_level && ! p->keep
1197 && p->rtl_expr == 0)
1198 p->in_use = 0;
1199
1200 combine_temp_slots ();
1201 }
1202
1203 /* Free all temporary slots used in T, an RTL_EXPR node. */
1204
1205 void
1206 free_temps_for_rtl_expr (t)
1207 tree t;
1208 {
1209 struct temp_slot *p;
1210
1211 for (p = temp_slots; p; p = p->next)
1212 if (p->rtl_expr == t)
1213 {
1214 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1215 needs to be preserved. This can happen if a temporary in
1216 the RTL_EXPR was addressed; preserve_temp_slots will move
1217 the temporary into a higher level. */
1218 if (temp_slot_level <= p->level)
1219 p->in_use = 0;
1220 else
1221 p->rtl_expr = NULL_TREE;
1222 }
1223
1224 combine_temp_slots ();
1225 }
1226
1227 /* Mark all temporaries ever allocated in this function as not suitable
1228 for reuse until the current level is exited. */
1229
1230 void
1231 mark_all_temps_used ()
1232 {
1233 struct temp_slot *p;
1234
1235 for (p = temp_slots; p; p = p->next)
1236 {
1237 p->in_use = p->keep = 1;
1238 p->level = MIN (p->level, temp_slot_level);
1239 }
1240 }
1241
1242 /* Push deeper into the nesting level for stack temporaries. */
1243
1244 void
1245 push_temp_slots ()
1246 {
1247 temp_slot_level++;
1248 }
1249
1250 /* Likewise, but save the new level as the place to allocate variables
1251 for blocks. */
1252
1253 #if 0
1254 void
1255 push_temp_slots_for_block ()
1256 {
1257 push_temp_slots ();
1258
1259 var_temp_slot_level = temp_slot_level;
1260 }
1261
1262 /* Likewise, but save the new level as the place to allocate temporaries
1263 for TARGET_EXPRs. */
1264
1265 void
1266 push_temp_slots_for_target ()
1267 {
1268 push_temp_slots ();
1269
1270 target_temp_slot_level = temp_slot_level;
1271 }
1272
1273 /* Set and get the value of target_temp_slot_level. The only
1274 permitted use of these functions is to save and restore this value. */
1275
1276 int
1277 get_target_temp_slot_level ()
1278 {
1279 return target_temp_slot_level;
1280 }
1281
1282 void
1283 set_target_temp_slot_level (level)
1284 int level;
1285 {
1286 target_temp_slot_level = level;
1287 }
1288 #endif
1289
1290 /* Pop a temporary nesting level. All slots in use in the current level
1291 are freed. */
1292
1293 void
1294 pop_temp_slots ()
1295 {
1296 struct temp_slot *p;
1297
1298 for (p = temp_slots; p; p = p->next)
1299 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1300 p->in_use = 0;
1301
1302 combine_temp_slots ();
1303
1304 temp_slot_level--;
1305 }
1306
1307 /* Initialize temporary slots. */
1308
1309 void
1310 init_temp_slots ()
1311 {
1312 /* We have not allocated any temporaries yet. */
1313 temp_slots = 0;
1314 temp_slot_level = 0;
1315 var_temp_slot_level = 0;
1316 target_temp_slot_level = 0;
1317 }
1318 \f
1319 /* Retroactively move an auto variable from a register to a stack slot.
1320 This is done when an address-reference to the variable is seen. */
1321
1322 void
1323 put_var_into_stack (decl)
1324 tree decl;
1325 {
1326 register rtx reg;
1327 enum machine_mode promoted_mode, decl_mode;
1328 struct function *function = 0;
1329 tree context;
1330 int can_use_addressof;
1331 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1332 int usedp = (TREE_USED (decl)
1333 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1334
1335 context = decl_function_context (decl);
1336
1337 /* Get the current rtl used for this object and its original mode. */
1338 reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl);
1339
1340 /* No need to do anything if decl has no rtx yet
1341 since in that case caller is setting TREE_ADDRESSABLE
1342 and a stack slot will be assigned when the rtl is made. */
1343 if (reg == 0)
1344 return;
1345
1346 /* Get the declared mode for this object. */
1347 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1348 : DECL_MODE (decl));
1349 /* Get the mode it's actually stored in. */
1350 promoted_mode = GET_MODE (reg);
1351
1352 /* If this variable comes from an outer function,
1353 find that function's saved context. */
1354 if (context != current_function_decl && context != inline_function_decl)
1355 for (function = outer_function_chain; function; function = function->next)
1356 if (function->decl == context)
1357 break;
1358
1359 /* If this is a variable-size object with a pseudo to address it,
1360 put that pseudo into the stack, if the var is nonlocal. */
1361 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1362 && GET_CODE (reg) == MEM
1363 && GET_CODE (XEXP (reg, 0)) == REG
1364 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1365 {
1366 reg = XEXP (reg, 0);
1367 decl_mode = promoted_mode = GET_MODE (reg);
1368 }
1369
1370 can_use_addressof
1371 = (function == 0
1372 && optimize > 0
1373 /* FIXME make it work for promoted modes too */
1374 && decl_mode == promoted_mode
1375 #ifdef NON_SAVING_SETJMP
1376 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1377 #endif
1378 );
1379
1380 /* If we can't use ADDRESSOF, make sure we see through one we already
1381 generated. */
1382 if (! can_use_addressof && GET_CODE (reg) == MEM
1383 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1384 reg = XEXP (XEXP (reg, 0), 0);
1385
1386 /* Now we should have a value that resides in one or more pseudo regs. */
1387
1388 if (GET_CODE (reg) == REG)
1389 {
1390 /* If this variable lives in the current function and we don't need
1391 to put things in the stack for the sake of setjmp, try to keep it
1392 in a register until we know we actually need the address. */
1393 if (can_use_addressof)
1394 gen_mem_addressof (reg, decl);
1395 else
1396 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1397 decl_mode, volatilep, 0, usedp, 0);
1398 }
1399 else if (GET_CODE (reg) == CONCAT)
1400 {
1401 /* A CONCAT contains two pseudos; put them both in the stack.
1402 We do it so they end up consecutive.
1403 We fixup references to the parts only after we fixup references
1404 to the whole CONCAT, lest we do double fixups for the latter
1405 references. */
1406 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1407 tree part_type = type_for_mode (part_mode, 0);
1408 rtx lopart = XEXP (reg, 0);
1409 rtx hipart = XEXP (reg, 1);
1410 #ifdef FRAME_GROWS_DOWNWARD
1411 /* Since part 0 should have a lower address, do it second. */
1412 put_reg_into_stack (function, hipart, part_type, part_mode,
1413 part_mode, volatilep, 0, 0, 0);
1414 put_reg_into_stack (function, lopart, part_type, part_mode,
1415 part_mode, volatilep, 0, 0, 0);
1416 #else
1417 put_reg_into_stack (function, lopart, part_type, part_mode,
1418 part_mode, volatilep, 0, 0, 0);
1419 put_reg_into_stack (function, hipart, part_type, part_mode,
1420 part_mode, volatilep, 0, 0, 0);
1421 #endif
1422
1423 /* Change the CONCAT into a combined MEM for both parts. */
1424 PUT_CODE (reg, MEM);
1425 set_mem_attributes (reg, decl, 1);
1426
1427 /* The two parts are in memory order already.
1428 Use the lower parts address as ours. */
1429 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1430 /* Prevent sharing of rtl that might lose. */
1431 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1432 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1433 if (usedp)
1434 {
1435 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1436 promoted_mode, 0);
1437 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1438 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1439 }
1440 }
1441 else
1442 return;
1443
1444 if (current_function_check_memory_usage)
1445 emit_library_call (chkr_set_right_libfunc, LCT_CONST_MAKE_BLOCK, VOIDmode,
1446 3, XEXP (reg, 0), Pmode,
1447 GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
1448 TYPE_MODE (sizetype),
1449 GEN_INT (MEMORY_USE_RW),
1450 TYPE_MODE (integer_type_node));
1451 }
1452
1453 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1454 into the stack frame of FUNCTION (0 means the current function).
1455 DECL_MODE is the machine mode of the user-level data type.
1456 PROMOTED_MODE is the machine mode of the register.
1457 VOLATILE_P is nonzero if this is for a "volatile" decl.
1458 USED_P is nonzero if this reg might have already been used in an insn. */
1459
1460 static void
1461 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1462 original_regno, used_p, ht)
1463 struct function *function;
1464 rtx reg;
1465 tree type;
1466 enum machine_mode promoted_mode, decl_mode;
1467 int volatile_p;
1468 unsigned int original_regno;
1469 int used_p;
1470 struct hash_table *ht;
1471 {
1472 struct function *func = function ? function : cfun;
1473 rtx new = 0;
1474 unsigned int regno = original_regno;
1475
1476 if (regno == 0)
1477 regno = REGNO (reg);
1478
1479 if (regno < func->x_max_parm_reg)
1480 new = func->x_parm_reg_stack_loc[regno];
1481
1482 if (new == 0)
1483 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1484
1485 PUT_CODE (reg, MEM);
1486 PUT_MODE (reg, decl_mode);
1487 XEXP (reg, 0) = XEXP (new, 0);
1488 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1489 MEM_VOLATILE_P (reg) = volatile_p;
1490
1491 /* If this is a memory ref that contains aggregate components,
1492 mark it as such for cse and loop optimize. If we are reusing a
1493 previously generated stack slot, then we need to copy the bit in
1494 case it was set for other reasons. For instance, it is set for
1495 __builtin_va_alist. */
1496 if (type)
1497 {
1498 MEM_SET_IN_STRUCT_P (reg,
1499 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1500 MEM_ALIAS_SET (reg) = get_alias_set (type);
1501 }
1502 if (used_p)
1503 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1504 }
1505
1506 /* Make sure that all refs to the variable, previously made
1507 when it was a register, are fixed up to be valid again.
1508 See function above for meaning of arguments. */
1509
1510 static void
1511 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht)
1512 struct function *function;
1513 rtx reg;
1514 tree type;
1515 enum machine_mode promoted_mode;
1516 struct hash_table *ht;
1517 {
1518 int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1519
1520 if (function != 0)
1521 {
1522 struct var_refs_queue *temp;
1523
1524 temp
1525 = (struct var_refs_queue *) xmalloc (sizeof (struct var_refs_queue));
1526 temp->modified = reg;
1527 temp->promoted_mode = promoted_mode;
1528 temp->unsignedp = unsigned_p;
1529 temp->next = function->fixup_var_refs_queue;
1530 function->fixup_var_refs_queue = temp;
1531 }
1532 else
1533 /* Variable is local; fix it up now. */
1534 fixup_var_refs (reg, promoted_mode, unsigned_p, ht);
1535 }
1536 \f
1537 static void
1538 fixup_var_refs (var, promoted_mode, unsignedp, ht)
1539 rtx var;
1540 enum machine_mode promoted_mode;
1541 int unsignedp;
1542 struct hash_table *ht;
1543 {
1544 tree pending;
1545 rtx first_insn = get_insns ();
1546 struct sequence_stack *stack = seq_stack;
1547 tree rtl_exps = rtl_expr_chain;
1548 rtx insn;
1549
1550 /* Must scan all insns for stack-refs that exceed the limit. */
1551 fixup_var_refs_insns (var, promoted_mode, unsignedp, first_insn,
1552 stack == 0, ht);
1553 /* If there's a hash table, it must record all uses of VAR. */
1554 if (ht)
1555 return;
1556
1557 /* Scan all pending sequences too. */
1558 for (; stack; stack = stack->next)
1559 {
1560 push_to_sequence (stack->first);
1561 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1562 stack->first, stack->next != 0, 0);
1563 /* Update remembered end of sequence
1564 in case we added an insn at the end. */
1565 stack->last = get_last_insn ();
1566 end_sequence ();
1567 }
1568
1569 /* Scan all waiting RTL_EXPRs too. */
1570 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1571 {
1572 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1573 if (seq != const0_rtx && seq != 0)
1574 {
1575 push_to_sequence (seq);
1576 fixup_var_refs_insns (var, promoted_mode, unsignedp, seq, 0, 0);
1577 end_sequence ();
1578 }
1579 }
1580
1581 /* Scan the catch clauses for exception handling too. */
1582 push_to_full_sequence (catch_clauses, catch_clauses_last);
1583 fixup_var_refs_insns (var, promoted_mode, unsignedp, catch_clauses, 0, 0);
1584 end_full_sequence (&catch_clauses, &catch_clauses_last);
1585
1586 /* Scan sequences saved in CALL_PLACEHOLDERS too. */
1587 for (insn = first_insn; insn; insn = NEXT_INSN (insn))
1588 {
1589 if (GET_CODE (insn) == CALL_INSN
1590 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1591 {
1592 int i;
1593
1594 /* Look at the Normal call, sibling call and tail recursion
1595 sequences attached to the CALL_PLACEHOLDER. */
1596 for (i = 0; i < 3; i++)
1597 {
1598 rtx seq = XEXP (PATTERN (insn), i);
1599 if (seq)
1600 {
1601 push_to_sequence (seq);
1602 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1603 seq, 0, 0);
1604 XEXP (PATTERN (insn), i) = get_insns ();
1605 end_sequence ();
1606 }
1607 }
1608 }
1609 }
1610 }
1611 \f
1612 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1613 some part of an insn. Return a struct fixup_replacement whose OLD
1614 value is equal to X. Allocate a new structure if no such entry exists. */
1615
1616 static struct fixup_replacement *
1617 find_fixup_replacement (replacements, x)
1618 struct fixup_replacement **replacements;
1619 rtx x;
1620 {
1621 struct fixup_replacement *p;
1622
1623 /* See if we have already replaced this. */
1624 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1625 ;
1626
1627 if (p == 0)
1628 {
1629 p = (struct fixup_replacement *) xmalloc (sizeof (struct fixup_replacement));
1630 p->old = x;
1631 p->new = 0;
1632 p->next = *replacements;
1633 *replacements = p;
1634 }
1635
1636 return p;
1637 }
1638
1639 /* Scan the insn-chain starting with INSN for refs to VAR
1640 and fix them up. TOPLEVEL is nonzero if this chain is the
1641 main chain of insns for the current function. */
1642
1643 static void
1644 fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel, ht)
1645 rtx var;
1646 enum machine_mode promoted_mode;
1647 int unsignedp;
1648 rtx insn;
1649 int toplevel;
1650 struct hash_table *ht;
1651 {
1652 rtx call_dest = 0;
1653 rtx insn_list = NULL_RTX;
1654
1655 /* If we already know which INSNs reference VAR there's no need
1656 to walk the entire instruction chain. */
1657 if (ht)
1658 {
1659 insn_list = ((struct insns_for_mem_entry *)
1660 hash_lookup (ht, var, /*create=*/0, /*copy=*/0))->insns;
1661 insn = insn_list ? XEXP (insn_list, 0) : NULL_RTX;
1662 insn_list = XEXP (insn_list, 1);
1663 }
1664
1665 while (insn)
1666 {
1667 rtx next = NEXT_INSN (insn);
1668 rtx set, prev, prev_set;
1669 rtx note;
1670
1671 if (INSN_P (insn))
1672 {
1673 /* Remember the notes in case we delete the insn. */
1674 note = REG_NOTES (insn);
1675
1676 /* If this is a CLOBBER of VAR, delete it.
1677
1678 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1679 and REG_RETVAL notes too. */
1680 if (GET_CODE (PATTERN (insn)) == CLOBBER
1681 && (XEXP (PATTERN (insn), 0) == var
1682 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1683 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1684 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1685 {
1686 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1687 /* The REG_LIBCALL note will go away since we are going to
1688 turn INSN into a NOTE, so just delete the
1689 corresponding REG_RETVAL note. */
1690 remove_note (XEXP (note, 0),
1691 find_reg_note (XEXP (note, 0), REG_RETVAL,
1692 NULL_RTX));
1693
1694 /* In unoptimized compilation, we shouldn't call delete_insn
1695 except in jump.c doing warnings. */
1696 PUT_CODE (insn, NOTE);
1697 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1698 NOTE_SOURCE_FILE (insn) = 0;
1699 }
1700
1701 /* The insn to load VAR from a home in the arglist
1702 is now a no-op. When we see it, just delete it.
1703 Similarly if this is storing VAR from a register from which
1704 it was loaded in the previous insn. This will occur
1705 when an ADDRESSOF was made for an arglist slot. */
1706 else if (toplevel
1707 && (set = single_set (insn)) != 0
1708 && SET_DEST (set) == var
1709 /* If this represents the result of an insn group,
1710 don't delete the insn. */
1711 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1712 && (rtx_equal_p (SET_SRC (set), var)
1713 || (GET_CODE (SET_SRC (set)) == REG
1714 && (prev = prev_nonnote_insn (insn)) != 0
1715 && (prev_set = single_set (prev)) != 0
1716 && SET_DEST (prev_set) == SET_SRC (set)
1717 && rtx_equal_p (SET_SRC (prev_set), var))))
1718 {
1719 /* In unoptimized compilation, we shouldn't call delete_insn
1720 except in jump.c doing warnings. */
1721 PUT_CODE (insn, NOTE);
1722 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1723 NOTE_SOURCE_FILE (insn) = 0;
1724 if (insn == last_parm_insn)
1725 last_parm_insn = PREV_INSN (next);
1726 }
1727 else
1728 {
1729 struct fixup_replacement *replacements = 0;
1730 rtx next_insn = NEXT_INSN (insn);
1731
1732 if (SMALL_REGISTER_CLASSES)
1733 {
1734 /* If the insn that copies the results of a CALL_INSN
1735 into a pseudo now references VAR, we have to use an
1736 intermediate pseudo since we want the life of the
1737 return value register to be only a single insn.
1738
1739 If we don't use an intermediate pseudo, such things as
1740 address computations to make the address of VAR valid
1741 if it is not can be placed between the CALL_INSN and INSN.
1742
1743 To make sure this doesn't happen, we record the destination
1744 of the CALL_INSN and see if the next insn uses both that
1745 and VAR. */
1746
1747 if (call_dest != 0 && GET_CODE (insn) == INSN
1748 && reg_mentioned_p (var, PATTERN (insn))
1749 && reg_mentioned_p (call_dest, PATTERN (insn)))
1750 {
1751 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1752
1753 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1754
1755 PATTERN (insn) = replace_rtx (PATTERN (insn),
1756 call_dest, temp);
1757 }
1758
1759 if (GET_CODE (insn) == CALL_INSN
1760 && GET_CODE (PATTERN (insn)) == SET)
1761 call_dest = SET_DEST (PATTERN (insn));
1762 else if (GET_CODE (insn) == CALL_INSN
1763 && GET_CODE (PATTERN (insn)) == PARALLEL
1764 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1765 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1766 else
1767 call_dest = 0;
1768 }
1769
1770 /* See if we have to do anything to INSN now that VAR is in
1771 memory. If it needs to be loaded into a pseudo, use a single
1772 pseudo for the entire insn in case there is a MATCH_DUP
1773 between two operands. We pass a pointer to the head of
1774 a list of struct fixup_replacements. If fixup_var_refs_1
1775 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1776 it will record them in this list.
1777
1778 If it allocated a pseudo for any replacement, we copy into
1779 it here. */
1780
1781 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1782 &replacements);
1783
1784 /* If this is last_parm_insn, and any instructions were output
1785 after it to fix it up, then we must set last_parm_insn to
1786 the last such instruction emitted. */
1787 if (insn == last_parm_insn)
1788 last_parm_insn = PREV_INSN (next_insn);
1789
1790 while (replacements)
1791 {
1792 struct fixup_replacement *next;
1793
1794 if (GET_CODE (replacements->new) == REG)
1795 {
1796 rtx insert_before;
1797 rtx seq;
1798
1799 /* OLD might be a (subreg (mem)). */
1800 if (GET_CODE (replacements->old) == SUBREG)
1801 replacements->old
1802 = fixup_memory_subreg (replacements->old, insn, 0);
1803 else
1804 replacements->old
1805 = fixup_stack_1 (replacements->old, insn);
1806
1807 insert_before = insn;
1808
1809 /* If we are changing the mode, do a conversion.
1810 This might be wasteful, but combine.c will
1811 eliminate much of the waste. */
1812
1813 if (GET_MODE (replacements->new)
1814 != GET_MODE (replacements->old))
1815 {
1816 start_sequence ();
1817 convert_move (replacements->new,
1818 replacements->old, unsignedp);
1819 seq = gen_sequence ();
1820 end_sequence ();
1821 }
1822 else
1823 seq = gen_move_insn (replacements->new,
1824 replacements->old);
1825
1826 emit_insn_before (seq, insert_before);
1827 }
1828
1829 next = replacements->next;
1830 free (replacements);
1831 replacements = next;
1832 }
1833 }
1834
1835 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1836 But don't touch other insns referred to by reg-notes;
1837 we will get them elsewhere. */
1838 while (note)
1839 {
1840 if (GET_CODE (note) != INSN_LIST)
1841 XEXP (note, 0)
1842 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1843 note = XEXP (note, 1);
1844 }
1845 }
1846
1847 if (!ht)
1848 insn = next;
1849 else if (insn_list)
1850 {
1851 insn = XEXP (insn_list, 0);
1852 insn_list = XEXP (insn_list, 1);
1853 }
1854 else
1855 insn = NULL_RTX;
1856 }
1857 }
1858 \f
1859 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1860 See if the rtx expression at *LOC in INSN needs to be changed.
1861
1862 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1863 contain a list of original rtx's and replacements. If we find that we need
1864 to modify this insn by replacing a memory reference with a pseudo or by
1865 making a new MEM to implement a SUBREG, we consult that list to see if
1866 we have already chosen a replacement. If none has already been allocated,
1867 we allocate it and update the list. fixup_var_refs_insns will copy VAR
1868 or the SUBREG, as appropriate, to the pseudo. */
1869
1870 static void
1871 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1872 register rtx var;
1873 enum machine_mode promoted_mode;
1874 register rtx *loc;
1875 rtx insn;
1876 struct fixup_replacement **replacements;
1877 {
1878 register int i;
1879 register rtx x = *loc;
1880 RTX_CODE code = GET_CODE (x);
1881 register const char *fmt;
1882 register rtx tem, tem1;
1883 struct fixup_replacement *replacement;
1884
1885 switch (code)
1886 {
1887 case ADDRESSOF:
1888 if (XEXP (x, 0) == var)
1889 {
1890 /* Prevent sharing of rtl that might lose. */
1891 rtx sub = copy_rtx (XEXP (var, 0));
1892
1893 if (! validate_change (insn, loc, sub, 0))
1894 {
1895 rtx y = gen_reg_rtx (GET_MODE (sub));
1896 rtx seq, new_insn;
1897
1898 /* We should be able to replace with a register or all is lost.
1899 Note that we can't use validate_change to verify this, since
1900 we're not caring for replacing all dups simultaneously. */
1901 if (! validate_replace_rtx (*loc, y, insn))
1902 abort ();
1903
1904 /* Careful! First try to recognize a direct move of the
1905 value, mimicking how things are done in gen_reload wrt
1906 PLUS. Consider what happens when insn is a conditional
1907 move instruction and addsi3 clobbers flags. */
1908
1909 start_sequence ();
1910 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1911 seq = gen_sequence ();
1912 end_sequence ();
1913
1914 if (recog_memoized (new_insn) < 0)
1915 {
1916 /* That failed. Fall back on force_operand and hope. */
1917
1918 start_sequence ();
1919 sub = force_operand (sub, y);
1920 if (sub != y)
1921 emit_insn (gen_move_insn (y, sub));
1922 seq = gen_sequence ();
1923 end_sequence ();
1924 }
1925
1926 #ifdef HAVE_cc0
1927 /* Don't separate setter from user. */
1928 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1929 insn = PREV_INSN (insn);
1930 #endif
1931
1932 emit_insn_before (seq, insn);
1933 }
1934 }
1935 return;
1936
1937 case MEM:
1938 if (var == x)
1939 {
1940 /* If we already have a replacement, use it. Otherwise,
1941 try to fix up this address in case it is invalid. */
1942
1943 replacement = find_fixup_replacement (replacements, var);
1944 if (replacement->new)
1945 {
1946 *loc = replacement->new;
1947 return;
1948 }
1949
1950 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1951
1952 /* Unless we are forcing memory to register or we changed the mode,
1953 we can leave things the way they are if the insn is valid. */
1954
1955 INSN_CODE (insn) = -1;
1956 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1957 && recog_memoized (insn) >= 0)
1958 return;
1959
1960 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1961 return;
1962 }
1963
1964 /* If X contains VAR, we need to unshare it here so that we update
1965 each occurrence separately. But all identical MEMs in one insn
1966 must be replaced with the same rtx because of the possibility of
1967 MATCH_DUPs. */
1968
1969 if (reg_mentioned_p (var, x))
1970 {
1971 replacement = find_fixup_replacement (replacements, x);
1972 if (replacement->new == 0)
1973 replacement->new = copy_most_rtx (x, var);
1974
1975 *loc = x = replacement->new;
1976 code = GET_CODE (x);
1977 }
1978 break;
1979
1980 case REG:
1981 case CC0:
1982 case PC:
1983 case CONST_INT:
1984 case CONST:
1985 case SYMBOL_REF:
1986 case LABEL_REF:
1987 case CONST_DOUBLE:
1988 return;
1989
1990 case SIGN_EXTRACT:
1991 case ZERO_EXTRACT:
1992 /* Note that in some cases those types of expressions are altered
1993 by optimize_bit_field, and do not survive to get here. */
1994 if (XEXP (x, 0) == var
1995 || (GET_CODE (XEXP (x, 0)) == SUBREG
1996 && SUBREG_REG (XEXP (x, 0)) == var))
1997 {
1998 /* Get TEM as a valid MEM in the mode presently in the insn.
1999
2000 We don't worry about the possibility of MATCH_DUP here; it
2001 is highly unlikely and would be tricky to handle. */
2002
2003 tem = XEXP (x, 0);
2004 if (GET_CODE (tem) == SUBREG)
2005 {
2006 if (GET_MODE_BITSIZE (GET_MODE (tem))
2007 > GET_MODE_BITSIZE (GET_MODE (var)))
2008 {
2009 replacement = find_fixup_replacement (replacements, var);
2010 if (replacement->new == 0)
2011 replacement->new = gen_reg_rtx (GET_MODE (var));
2012 SUBREG_REG (tem) = replacement->new;
2013
2014 /* The following code works only if we have a MEM, so we
2015 need to handle the subreg here. We directly substitute
2016 it assuming that a subreg must be OK here. We already
2017 scheduled a replacement to copy the mem into the
2018 subreg. */
2019 XEXP (x, 0) = tem;
2020 return;
2021 }
2022 else
2023 tem = fixup_memory_subreg (tem, insn, 0);
2024 }
2025 else
2026 tem = fixup_stack_1 (tem, insn);
2027
2028 /* Unless we want to load from memory, get TEM into the proper mode
2029 for an extract from memory. This can only be done if the
2030 extract is at a constant position and length. */
2031
2032 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
2033 && GET_CODE (XEXP (x, 2)) == CONST_INT
2034 && ! mode_dependent_address_p (XEXP (tem, 0))
2035 && ! MEM_VOLATILE_P (tem))
2036 {
2037 enum machine_mode wanted_mode = VOIDmode;
2038 enum machine_mode is_mode = GET_MODE (tem);
2039 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2040
2041 #ifdef HAVE_extzv
2042 if (GET_CODE (x) == ZERO_EXTRACT)
2043 {
2044 wanted_mode
2045 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
2046 if (wanted_mode == VOIDmode)
2047 wanted_mode = word_mode;
2048 }
2049 #endif
2050 #ifdef HAVE_extv
2051 if (GET_CODE (x) == SIGN_EXTRACT)
2052 {
2053 wanted_mode = insn_data[(int) CODE_FOR_extv].operand[1].mode;
2054 if (wanted_mode == VOIDmode)
2055 wanted_mode = word_mode;
2056 }
2057 #endif
2058 /* If we have a narrower mode, we can do something. */
2059 if (wanted_mode != VOIDmode
2060 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2061 {
2062 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2063 rtx old_pos = XEXP (x, 2);
2064 rtx newmem;
2065
2066 /* If the bytes and bits are counted differently, we
2067 must adjust the offset. */
2068 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2069 offset = (GET_MODE_SIZE (is_mode)
2070 - GET_MODE_SIZE (wanted_mode) - offset);
2071
2072 pos %= GET_MODE_BITSIZE (wanted_mode);
2073
2074 newmem = gen_rtx_MEM (wanted_mode,
2075 plus_constant (XEXP (tem, 0), offset));
2076 MEM_COPY_ATTRIBUTES (newmem, tem);
2077
2078 /* Make the change and see if the insn remains valid. */
2079 INSN_CODE (insn) = -1;
2080 XEXP (x, 0) = newmem;
2081 XEXP (x, 2) = GEN_INT (pos);
2082
2083 if (recog_memoized (insn) >= 0)
2084 return;
2085
2086 /* Otherwise, restore old position. XEXP (x, 0) will be
2087 restored later. */
2088 XEXP (x, 2) = old_pos;
2089 }
2090 }
2091
2092 /* If we get here, the bitfield extract insn can't accept a memory
2093 reference. Copy the input into a register. */
2094
2095 tem1 = gen_reg_rtx (GET_MODE (tem));
2096 emit_insn_before (gen_move_insn (tem1, tem), insn);
2097 XEXP (x, 0) = tem1;
2098 return;
2099 }
2100 break;
2101
2102 case SUBREG:
2103 if (SUBREG_REG (x) == var)
2104 {
2105 /* If this is a special SUBREG made because VAR was promoted
2106 from a wider mode, replace it with VAR and call ourself
2107 recursively, this time saying that the object previously
2108 had its current mode (by virtue of the SUBREG). */
2109
2110 if (SUBREG_PROMOTED_VAR_P (x))
2111 {
2112 *loc = var;
2113 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
2114 return;
2115 }
2116
2117 /* If this SUBREG makes VAR wider, it has become a paradoxical
2118 SUBREG with VAR in memory, but these aren't allowed at this
2119 stage of the compilation. So load VAR into a pseudo and take
2120 a SUBREG of that pseudo. */
2121 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2122 {
2123 replacement = find_fixup_replacement (replacements, var);
2124 if (replacement->new == 0)
2125 replacement->new = gen_reg_rtx (GET_MODE (var));
2126 SUBREG_REG (x) = replacement->new;
2127 return;
2128 }
2129
2130 /* See if we have already found a replacement for this SUBREG.
2131 If so, use it. Otherwise, make a MEM and see if the insn
2132 is recognized. If not, or if we should force MEM into a register,
2133 make a pseudo for this SUBREG. */
2134 replacement = find_fixup_replacement (replacements, x);
2135 if (replacement->new)
2136 {
2137 *loc = replacement->new;
2138 return;
2139 }
2140
2141 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
2142
2143 INSN_CODE (insn) = -1;
2144 if (! flag_force_mem && recog_memoized (insn) >= 0)
2145 return;
2146
2147 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2148 return;
2149 }
2150 break;
2151
2152 case SET:
2153 /* First do special simplification of bit-field references. */
2154 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2155 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2156 optimize_bit_field (x, insn, 0);
2157 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2158 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2159 optimize_bit_field (x, insn, NULL_PTR);
2160
2161 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2162 into a register and then store it back out. */
2163 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2164 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2165 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2166 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2167 > GET_MODE_SIZE (GET_MODE (var))))
2168 {
2169 replacement = find_fixup_replacement (replacements, var);
2170 if (replacement->new == 0)
2171 replacement->new = gen_reg_rtx (GET_MODE (var));
2172
2173 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2174 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2175 }
2176
2177 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2178 insn into a pseudo and store the low part of the pseudo into VAR. */
2179 if (GET_CODE (SET_DEST (x)) == SUBREG
2180 && SUBREG_REG (SET_DEST (x)) == var
2181 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2182 > GET_MODE_SIZE (GET_MODE (var))))
2183 {
2184 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2185 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2186 tem)),
2187 insn);
2188 break;
2189 }
2190
2191 {
2192 rtx dest = SET_DEST (x);
2193 rtx src = SET_SRC (x);
2194 #ifdef HAVE_insv
2195 rtx outerdest = dest;
2196 #endif
2197
2198 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2199 || GET_CODE (dest) == SIGN_EXTRACT
2200 || GET_CODE (dest) == ZERO_EXTRACT)
2201 dest = XEXP (dest, 0);
2202
2203 if (GET_CODE (src) == SUBREG)
2204 src = XEXP (src, 0);
2205
2206 /* If VAR does not appear at the top level of the SET
2207 just scan the lower levels of the tree. */
2208
2209 if (src != var && dest != var)
2210 break;
2211
2212 /* We will need to rerecognize this insn. */
2213 INSN_CODE (insn) = -1;
2214
2215 #ifdef HAVE_insv
2216 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
2217 {
2218 /* Since this case will return, ensure we fixup all the
2219 operands here. */
2220 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2221 insn, replacements);
2222 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2223 insn, replacements);
2224 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2225 insn, replacements);
2226
2227 tem = XEXP (outerdest, 0);
2228
2229 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2230 that may appear inside a ZERO_EXTRACT.
2231 This was legitimate when the MEM was a REG. */
2232 if (GET_CODE (tem) == SUBREG
2233 && SUBREG_REG (tem) == var)
2234 tem = fixup_memory_subreg (tem, insn, 0);
2235 else
2236 tem = fixup_stack_1 (tem, insn);
2237
2238 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2239 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2240 && ! mode_dependent_address_p (XEXP (tem, 0))
2241 && ! MEM_VOLATILE_P (tem))
2242 {
2243 enum machine_mode wanted_mode;
2244 enum machine_mode is_mode = GET_MODE (tem);
2245 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2246
2247 wanted_mode = insn_data[(int) CODE_FOR_insv].operand[0].mode;
2248 if (wanted_mode == VOIDmode)
2249 wanted_mode = word_mode;
2250
2251 /* If we have a narrower mode, we can do something. */
2252 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2253 {
2254 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2255 rtx old_pos = XEXP (outerdest, 2);
2256 rtx newmem;
2257
2258 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2259 offset = (GET_MODE_SIZE (is_mode)
2260 - GET_MODE_SIZE (wanted_mode) - offset);
2261
2262 pos %= GET_MODE_BITSIZE (wanted_mode);
2263
2264 newmem = gen_rtx_MEM (wanted_mode,
2265 plus_constant (XEXP (tem, 0),
2266 offset));
2267 MEM_COPY_ATTRIBUTES (newmem, tem);
2268
2269 /* Make the change and see if the insn remains valid. */
2270 INSN_CODE (insn) = -1;
2271 XEXP (outerdest, 0) = newmem;
2272 XEXP (outerdest, 2) = GEN_INT (pos);
2273
2274 if (recog_memoized (insn) >= 0)
2275 return;
2276
2277 /* Otherwise, restore old position. XEXP (x, 0) will be
2278 restored later. */
2279 XEXP (outerdest, 2) = old_pos;
2280 }
2281 }
2282
2283 /* If we get here, the bit-field store doesn't allow memory
2284 or isn't located at a constant position. Load the value into
2285 a register, do the store, and put it back into memory. */
2286
2287 tem1 = gen_reg_rtx (GET_MODE (tem));
2288 emit_insn_before (gen_move_insn (tem1, tem), insn);
2289 emit_insn_after (gen_move_insn (tem, tem1), insn);
2290 XEXP (outerdest, 0) = tem1;
2291 return;
2292 }
2293 #endif
2294
2295 /* STRICT_LOW_PART is a no-op on memory references
2296 and it can cause combinations to be unrecognizable,
2297 so eliminate it. */
2298
2299 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2300 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2301
2302 /* A valid insn to copy VAR into or out of a register
2303 must be left alone, to avoid an infinite loop here.
2304 If the reference to VAR is by a subreg, fix that up,
2305 since SUBREG is not valid for a memref.
2306 Also fix up the address of the stack slot.
2307
2308 Note that we must not try to recognize the insn until
2309 after we know that we have valid addresses and no
2310 (subreg (mem ...) ...) constructs, since these interfere
2311 with determining the validity of the insn. */
2312
2313 if ((SET_SRC (x) == var
2314 || (GET_CODE (SET_SRC (x)) == SUBREG
2315 && SUBREG_REG (SET_SRC (x)) == var))
2316 && (GET_CODE (SET_DEST (x)) == REG
2317 || (GET_CODE (SET_DEST (x)) == SUBREG
2318 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2319 && GET_MODE (var) == promoted_mode
2320 && x == single_set (insn))
2321 {
2322 rtx pat, last;
2323
2324 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2325 if (replacement->new)
2326 SET_SRC (x) = replacement->new;
2327 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2328 SET_SRC (x) = replacement->new
2329 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2330 else
2331 SET_SRC (x) = replacement->new
2332 = fixup_stack_1 (SET_SRC (x), insn);
2333
2334 if (recog_memoized (insn) >= 0)
2335 return;
2336
2337 /* INSN is not valid, but we know that we want to
2338 copy SET_SRC (x) to SET_DEST (x) in some way. So
2339 we generate the move and see whether it requires more
2340 than one insn. If it does, we emit those insns and
2341 delete INSN. Otherwise, we an just replace the pattern
2342 of INSN; we have already verified above that INSN has
2343 no other function that to do X. */
2344
2345 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2346 if (GET_CODE (pat) == SEQUENCE)
2347 {
2348 last = emit_insn_before (pat, insn);
2349
2350 /* INSN might have REG_RETVAL or other important notes, so
2351 we need to store the pattern of the last insn in the
2352 sequence into INSN similarly to the normal case. LAST
2353 should not have REG_NOTES, but we allow them if INSN has
2354 no REG_NOTES. */
2355 if (REG_NOTES (last) && REG_NOTES (insn))
2356 abort ();
2357 if (REG_NOTES (last))
2358 REG_NOTES (insn) = REG_NOTES (last);
2359 PATTERN (insn) = PATTERN (last);
2360
2361 PUT_CODE (last, NOTE);
2362 NOTE_LINE_NUMBER (last) = NOTE_INSN_DELETED;
2363 NOTE_SOURCE_FILE (last) = 0;
2364 }
2365 else
2366 PATTERN (insn) = pat;
2367
2368 return;
2369 }
2370
2371 if ((SET_DEST (x) == var
2372 || (GET_CODE (SET_DEST (x)) == SUBREG
2373 && SUBREG_REG (SET_DEST (x)) == var))
2374 && (GET_CODE (SET_SRC (x)) == REG
2375 || (GET_CODE (SET_SRC (x)) == SUBREG
2376 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2377 && GET_MODE (var) == promoted_mode
2378 && x == single_set (insn))
2379 {
2380 rtx pat, last;
2381
2382 if (GET_CODE (SET_DEST (x)) == SUBREG)
2383 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2384 else
2385 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2386
2387 if (recog_memoized (insn) >= 0)
2388 return;
2389
2390 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2391 if (GET_CODE (pat) == SEQUENCE)
2392 {
2393 last = emit_insn_before (pat, insn);
2394
2395 /* INSN might have REG_RETVAL or other important notes, so
2396 we need to store the pattern of the last insn in the
2397 sequence into INSN similarly to the normal case. LAST
2398 should not have REG_NOTES, but we allow them if INSN has
2399 no REG_NOTES. */
2400 if (REG_NOTES (last) && REG_NOTES (insn))
2401 abort ();
2402 if (REG_NOTES (last))
2403 REG_NOTES (insn) = REG_NOTES (last);
2404 PATTERN (insn) = PATTERN (last);
2405
2406 PUT_CODE (last, NOTE);
2407 NOTE_LINE_NUMBER (last) = NOTE_INSN_DELETED;
2408 NOTE_SOURCE_FILE (last) = 0;
2409 }
2410 else
2411 PATTERN (insn) = pat;
2412
2413 return;
2414 }
2415
2416 /* Otherwise, storing into VAR must be handled specially
2417 by storing into a temporary and copying that into VAR
2418 with a new insn after this one. Note that this case
2419 will be used when storing into a promoted scalar since
2420 the insn will now have different modes on the input
2421 and output and hence will be invalid (except for the case
2422 of setting it to a constant, which does not need any
2423 change if it is valid). We generate extra code in that case,
2424 but combine.c will eliminate it. */
2425
2426 if (dest == var)
2427 {
2428 rtx temp;
2429 rtx fixeddest = SET_DEST (x);
2430
2431 /* STRICT_LOW_PART can be discarded, around a MEM. */
2432 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2433 fixeddest = XEXP (fixeddest, 0);
2434 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2435 if (GET_CODE (fixeddest) == SUBREG)
2436 {
2437 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2438 promoted_mode = GET_MODE (fixeddest);
2439 }
2440 else
2441 fixeddest = fixup_stack_1 (fixeddest, insn);
2442
2443 temp = gen_reg_rtx (promoted_mode);
2444
2445 emit_insn_after (gen_move_insn (fixeddest,
2446 gen_lowpart (GET_MODE (fixeddest),
2447 temp)),
2448 insn);
2449
2450 SET_DEST (x) = temp;
2451 }
2452 }
2453
2454 default:
2455 break;
2456 }
2457
2458 /* Nothing special about this RTX; fix its operands. */
2459
2460 fmt = GET_RTX_FORMAT (code);
2461 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2462 {
2463 if (fmt[i] == 'e')
2464 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2465 else if (fmt[i] == 'E')
2466 {
2467 register int j;
2468 for (j = 0; j < XVECLEN (x, i); j++)
2469 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2470 insn, replacements);
2471 }
2472 }
2473 }
2474 \f
2475 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2476 return an rtx (MEM:m1 newaddr) which is equivalent.
2477 If any insns must be emitted to compute NEWADDR, put them before INSN.
2478
2479 UNCRITICAL nonzero means accept paradoxical subregs.
2480 This is used for subregs found inside REG_NOTES. */
2481
2482 static rtx
2483 fixup_memory_subreg (x, insn, uncritical)
2484 rtx x;
2485 rtx insn;
2486 int uncritical;
2487 {
2488 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2489 rtx addr = XEXP (SUBREG_REG (x), 0);
2490 enum machine_mode mode = GET_MODE (x);
2491 rtx result;
2492
2493 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2494 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2495 && ! uncritical)
2496 abort ();
2497
2498 if (BYTES_BIG_ENDIAN)
2499 offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2500 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2501 addr = plus_constant (addr, offset);
2502 if (!flag_force_addr && memory_address_p (mode, addr))
2503 /* Shortcut if no insns need be emitted. */
2504 return change_address (SUBREG_REG (x), mode, addr);
2505 start_sequence ();
2506 result = change_address (SUBREG_REG (x), mode, addr);
2507 emit_insn_before (gen_sequence (), insn);
2508 end_sequence ();
2509 return result;
2510 }
2511
2512 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2513 Replace subexpressions of X in place.
2514 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2515 Otherwise return X, with its contents possibly altered.
2516
2517 If any insns must be emitted to compute NEWADDR, put them before INSN.
2518
2519 UNCRITICAL is as in fixup_memory_subreg. */
2520
2521 static rtx
2522 walk_fixup_memory_subreg (x, insn, uncritical)
2523 register rtx x;
2524 rtx insn;
2525 int uncritical;
2526 {
2527 register enum rtx_code code;
2528 register const char *fmt;
2529 register int i;
2530
2531 if (x == 0)
2532 return 0;
2533
2534 code = GET_CODE (x);
2535
2536 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2537 return fixup_memory_subreg (x, insn, uncritical);
2538
2539 /* Nothing special about this RTX; fix its operands. */
2540
2541 fmt = GET_RTX_FORMAT (code);
2542 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2543 {
2544 if (fmt[i] == 'e')
2545 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2546 else if (fmt[i] == 'E')
2547 {
2548 register int j;
2549 for (j = 0; j < XVECLEN (x, i); j++)
2550 XVECEXP (x, i, j)
2551 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2552 }
2553 }
2554 return x;
2555 }
2556 \f
2557 /* For each memory ref within X, if it refers to a stack slot
2558 with an out of range displacement, put the address in a temp register
2559 (emitting new insns before INSN to load these registers)
2560 and alter the memory ref to use that register.
2561 Replace each such MEM rtx with a copy, to avoid clobberage. */
2562
2563 static rtx
2564 fixup_stack_1 (x, insn)
2565 rtx x;
2566 rtx insn;
2567 {
2568 register int i;
2569 register RTX_CODE code = GET_CODE (x);
2570 register const char *fmt;
2571
2572 if (code == MEM)
2573 {
2574 register rtx ad = XEXP (x, 0);
2575 /* If we have address of a stack slot but it's not valid
2576 (displacement is too large), compute the sum in a register. */
2577 if (GET_CODE (ad) == PLUS
2578 && GET_CODE (XEXP (ad, 0)) == REG
2579 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2580 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2581 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2582 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2583 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2584 #endif
2585 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2586 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2587 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2588 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2589 {
2590 rtx temp, seq;
2591 if (memory_address_p (GET_MODE (x), ad))
2592 return x;
2593
2594 start_sequence ();
2595 temp = copy_to_reg (ad);
2596 seq = gen_sequence ();
2597 end_sequence ();
2598 emit_insn_before (seq, insn);
2599 return change_address (x, VOIDmode, temp);
2600 }
2601 return x;
2602 }
2603
2604 fmt = GET_RTX_FORMAT (code);
2605 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2606 {
2607 if (fmt[i] == 'e')
2608 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2609 else if (fmt[i] == 'E')
2610 {
2611 register int j;
2612 for (j = 0; j < XVECLEN (x, i); j++)
2613 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2614 }
2615 }
2616 return x;
2617 }
2618 \f
2619 /* Optimization: a bit-field instruction whose field
2620 happens to be a byte or halfword in memory
2621 can be changed to a move instruction.
2622
2623 We call here when INSN is an insn to examine or store into a bit-field.
2624 BODY is the SET-rtx to be altered.
2625
2626 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2627 (Currently this is called only from function.c, and EQUIV_MEM
2628 is always 0.) */
2629
2630 static void
2631 optimize_bit_field (body, insn, equiv_mem)
2632 rtx body;
2633 rtx insn;
2634 rtx *equiv_mem;
2635 {
2636 register rtx bitfield;
2637 int destflag;
2638 rtx seq = 0;
2639 enum machine_mode mode;
2640
2641 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2642 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2643 bitfield = SET_DEST (body), destflag = 1;
2644 else
2645 bitfield = SET_SRC (body), destflag = 0;
2646
2647 /* First check that the field being stored has constant size and position
2648 and is in fact a byte or halfword suitably aligned. */
2649
2650 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2651 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2652 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2653 != BLKmode)
2654 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2655 {
2656 register rtx memref = 0;
2657
2658 /* Now check that the containing word is memory, not a register,
2659 and that it is safe to change the machine mode. */
2660
2661 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2662 memref = XEXP (bitfield, 0);
2663 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2664 && equiv_mem != 0)
2665 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2666 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2667 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2668 memref = SUBREG_REG (XEXP (bitfield, 0));
2669 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2670 && equiv_mem != 0
2671 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2672 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2673
2674 if (memref
2675 && ! mode_dependent_address_p (XEXP (memref, 0))
2676 && ! MEM_VOLATILE_P (memref))
2677 {
2678 /* Now adjust the address, first for any subreg'ing
2679 that we are now getting rid of,
2680 and then for which byte of the word is wanted. */
2681
2682 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2683 rtx insns;
2684
2685 /* Adjust OFFSET to count bits from low-address byte. */
2686 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2687 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2688 - offset - INTVAL (XEXP (bitfield, 1)));
2689
2690 /* Adjust OFFSET to count bytes from low-address byte. */
2691 offset /= BITS_PER_UNIT;
2692 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2693 {
2694 offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
2695 if (BYTES_BIG_ENDIAN)
2696 offset -= (MIN (UNITS_PER_WORD,
2697 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2698 - MIN (UNITS_PER_WORD,
2699 GET_MODE_SIZE (GET_MODE (memref))));
2700 }
2701
2702 start_sequence ();
2703 memref = change_address (memref, mode,
2704 plus_constant (XEXP (memref, 0), offset));
2705 insns = get_insns ();
2706 end_sequence ();
2707 emit_insns_before (insns, insn);
2708
2709 /* Store this memory reference where
2710 we found the bit field reference. */
2711
2712 if (destflag)
2713 {
2714 validate_change (insn, &SET_DEST (body), memref, 1);
2715 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2716 {
2717 rtx src = SET_SRC (body);
2718 while (GET_CODE (src) == SUBREG
2719 && SUBREG_WORD (src) == 0)
2720 src = SUBREG_REG (src);
2721 if (GET_MODE (src) != GET_MODE (memref))
2722 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2723 validate_change (insn, &SET_SRC (body), src, 1);
2724 }
2725 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2726 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2727 /* This shouldn't happen because anything that didn't have
2728 one of these modes should have got converted explicitly
2729 and then referenced through a subreg.
2730 This is so because the original bit-field was
2731 handled by agg_mode and so its tree structure had
2732 the same mode that memref now has. */
2733 abort ();
2734 }
2735 else
2736 {
2737 rtx dest = SET_DEST (body);
2738
2739 while (GET_CODE (dest) == SUBREG
2740 && SUBREG_WORD (dest) == 0
2741 && (GET_MODE_CLASS (GET_MODE (dest))
2742 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2743 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2744 <= UNITS_PER_WORD))
2745 dest = SUBREG_REG (dest);
2746
2747 validate_change (insn, &SET_DEST (body), dest, 1);
2748
2749 if (GET_MODE (dest) == GET_MODE (memref))
2750 validate_change (insn, &SET_SRC (body), memref, 1);
2751 else
2752 {
2753 /* Convert the mem ref to the destination mode. */
2754 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2755
2756 start_sequence ();
2757 convert_move (newreg, memref,
2758 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2759 seq = get_insns ();
2760 end_sequence ();
2761
2762 validate_change (insn, &SET_SRC (body), newreg, 1);
2763 }
2764 }
2765
2766 /* See if we can convert this extraction or insertion into
2767 a simple move insn. We might not be able to do so if this
2768 was, for example, part of a PARALLEL.
2769
2770 If we succeed, write out any needed conversions. If we fail,
2771 it is hard to guess why we failed, so don't do anything
2772 special; just let the optimization be suppressed. */
2773
2774 if (apply_change_group () && seq)
2775 emit_insns_before (seq, insn);
2776 }
2777 }
2778 }
2779 \f
2780 /* These routines are responsible for converting virtual register references
2781 to the actual hard register references once RTL generation is complete.
2782
2783 The following four variables are used for communication between the
2784 routines. They contain the offsets of the virtual registers from their
2785 respective hard registers. */
2786
2787 static int in_arg_offset;
2788 static int var_offset;
2789 static int dynamic_offset;
2790 static int out_arg_offset;
2791 static int cfa_offset;
2792
2793 /* In most machines, the stack pointer register is equivalent to the bottom
2794 of the stack. */
2795
2796 #ifndef STACK_POINTER_OFFSET
2797 #define STACK_POINTER_OFFSET 0
2798 #endif
2799
2800 /* If not defined, pick an appropriate default for the offset of dynamically
2801 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2802 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2803
2804 #ifndef STACK_DYNAMIC_OFFSET
2805
2806 /* The bottom of the stack points to the actual arguments. If
2807 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2808 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2809 stack space for register parameters is not pushed by the caller, but
2810 rather part of the fixed stack areas and hence not included in
2811 `current_function_outgoing_args_size'. Nevertheless, we must allow
2812 for it when allocating stack dynamic objects. */
2813
2814 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2815 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2816 ((ACCUMULATE_OUTGOING_ARGS \
2817 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2818 + (STACK_POINTER_OFFSET)) \
2819
2820 #else
2821 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2822 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2823 + (STACK_POINTER_OFFSET))
2824 #endif
2825 #endif
2826
2827 /* On most machines, the CFA coincides with the first incoming parm. */
2828
2829 #ifndef ARG_POINTER_CFA_OFFSET
2830 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2831 #endif
2832
2833 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2834 its address taken. DECL is the decl for the object stored in the
2835 register, for later use if we do need to force REG into the stack.
2836 REG is overwritten by the MEM like in put_reg_into_stack. */
2837
2838 rtx
2839 gen_mem_addressof (reg, decl)
2840 rtx reg;
2841 tree decl;
2842 {
2843 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2844 REGNO (reg), decl);
2845
2846 /* If the original REG was a user-variable, then so is the REG whose
2847 address is being taken. Likewise for unchanging. */
2848 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2849 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2850
2851 PUT_CODE (reg, MEM);
2852 XEXP (reg, 0) = r;
2853 if (decl)
2854 {
2855 tree type = TREE_TYPE (decl);
2856
2857 PUT_MODE (reg, DECL_MODE (decl));
2858 MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
2859 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type));
2860 MEM_ALIAS_SET (reg) = get_alias_set (decl);
2861
2862 if (TREE_USED (decl) || DECL_INITIAL (decl) != 0)
2863 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), 0);
2864 }
2865 else
2866 {
2867 /* We have no alias information about this newly created MEM. */
2868 MEM_ALIAS_SET (reg) = 0;
2869
2870 fixup_var_refs (reg, GET_MODE (reg), 0, 0);
2871 }
2872
2873 return reg;
2874 }
2875
2876 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2877
2878 void
2879 flush_addressof (decl)
2880 tree decl;
2881 {
2882 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2883 && DECL_RTL (decl) != 0
2884 && GET_CODE (DECL_RTL (decl)) == MEM
2885 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2886 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2887 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2888 }
2889
2890 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2891
2892 static void
2893 put_addressof_into_stack (r, ht)
2894 rtx r;
2895 struct hash_table *ht;
2896 {
2897 tree decl, type;
2898 int volatile_p, used_p;
2899
2900 rtx reg = XEXP (r, 0);
2901
2902 if (GET_CODE (reg) != REG)
2903 abort ();
2904
2905 decl = ADDRESSOF_DECL (r);
2906 if (decl)
2907 {
2908 type = TREE_TYPE (decl);
2909 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2910 && TREE_THIS_VOLATILE (decl));
2911 used_p = (TREE_USED (decl)
2912 || (TREE_CODE (decl) != SAVE_EXPR
2913 && DECL_INITIAL (decl) != 0));
2914 }
2915 else
2916 {
2917 type = NULL_TREE;
2918 volatile_p = 0;
2919 used_p = 1;
2920 }
2921
2922 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2923 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2924 }
2925
2926 /* List of replacements made below in purge_addressof_1 when creating
2927 bitfield insertions. */
2928 static rtx purge_bitfield_addressof_replacements;
2929
2930 /* List of replacements made below in purge_addressof_1 for patterns
2931 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2932 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2933 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2934 enough in complex cases, e.g. when some field values can be
2935 extracted by usage MEM with narrower mode. */
2936 static rtx purge_addressof_replacements;
2937
2938 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2939 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2940 the stack. If the function returns FALSE then the replacement could not
2941 be made. */
2942
2943 static boolean
2944 purge_addressof_1 (loc, insn, force, store, ht)
2945 rtx *loc;
2946 rtx insn;
2947 int force, store;
2948 struct hash_table *ht;
2949 {
2950 rtx x;
2951 RTX_CODE code;
2952 int i, j;
2953 const char *fmt;
2954 boolean result = true;
2955
2956 /* Re-start here to avoid recursion in common cases. */
2957 restart:
2958
2959 x = *loc;
2960 if (x == 0)
2961 return true;
2962
2963 code = GET_CODE (x);
2964
2965 /* If we don't return in any of the cases below, we will recurse inside
2966 the RTX, which will normally result in any ADDRESSOF being forced into
2967 memory. */
2968 if (code == SET)
2969 {
2970 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
2971 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
2972 return result;
2973 }
2974
2975 else if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM)
2976 {
2977 /* We must create a copy of the rtx because it was created by
2978 overwriting a REG rtx which is always shared. */
2979 rtx sub = copy_rtx (XEXP (XEXP (x, 0), 0));
2980 rtx insns;
2981
2982 if (validate_change (insn, loc, sub, 0)
2983 || validate_replace_rtx (x, sub, insn))
2984 return true;
2985
2986 start_sequence ();
2987 sub = force_operand (sub, NULL_RTX);
2988 if (! validate_change (insn, loc, sub, 0)
2989 && ! validate_replace_rtx (x, sub, insn))
2990 abort ();
2991
2992 insns = gen_sequence ();
2993 end_sequence ();
2994 emit_insn_before (insns, insn);
2995 return true;
2996 }
2997
2998 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
2999 {
3000 rtx sub = XEXP (XEXP (x, 0), 0);
3001 rtx sub2;
3002
3003 if (GET_CODE (sub) == MEM)
3004 {
3005 sub2 = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0)));
3006 MEM_COPY_ATTRIBUTES (sub2, sub);
3007 sub = sub2;
3008 }
3009 else if (GET_CODE (sub) == REG
3010 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
3011 ;
3012 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
3013 {
3014 int size_x, size_sub;
3015
3016 if (!insn)
3017 {
3018 /* When processing REG_NOTES look at the list of
3019 replacements done on the insn to find the register that X
3020 was replaced by. */
3021 rtx tem;
3022
3023 for (tem = purge_bitfield_addressof_replacements;
3024 tem != NULL_RTX;
3025 tem = XEXP (XEXP (tem, 1), 1))
3026 if (rtx_equal_p (x, XEXP (tem, 0)))
3027 {
3028 *loc = XEXP (XEXP (tem, 1), 0);
3029 return true;
3030 }
3031
3032 /* See comment for purge_addressof_replacements. */
3033 for (tem = purge_addressof_replacements;
3034 tem != NULL_RTX;
3035 tem = XEXP (XEXP (tem, 1), 1))
3036 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3037 {
3038 rtx z = XEXP (XEXP (tem, 1), 0);
3039
3040 if (GET_MODE (x) == GET_MODE (z)
3041 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3042 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3043 abort ();
3044
3045 /* It can happen that the note may speak of things
3046 in a wider (or just different) mode than the
3047 code did. This is especially true of
3048 REG_RETVAL. */
3049
3050 if (GET_CODE (z) == SUBREG && SUBREG_WORD (z) == 0)
3051 z = SUBREG_REG (z);
3052
3053 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3054 && (GET_MODE_SIZE (GET_MODE (x))
3055 > GET_MODE_SIZE (GET_MODE (z))))
3056 {
3057 /* This can occur as a result in invalid
3058 pointer casts, e.g. float f; ...
3059 *(long long int *)&f.
3060 ??? We could emit a warning here, but
3061 without a line number that wouldn't be
3062 very helpful. */
3063 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3064 }
3065 else
3066 z = gen_lowpart (GET_MODE (x), z);
3067
3068 *loc = z;
3069 return true;
3070 }
3071
3072 /* Sometimes we may not be able to find the replacement. For
3073 example when the original insn was a MEM in a wider mode,
3074 and the note is part of a sign extension of a narrowed
3075 version of that MEM. Gcc testcase compile/990829-1.c can
3076 generate an example of this siutation. Rather than complain
3077 we return false, which will prompt our caller to remove the
3078 offending note. */
3079 return false;
3080 }
3081
3082 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3083 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3084
3085 /* Don't even consider working with paradoxical subregs,
3086 or the moral equivalent seen here. */
3087 if (size_x <= size_sub
3088 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3089 {
3090 /* Do a bitfield insertion to mirror what would happen
3091 in memory. */
3092
3093 rtx val, seq;
3094
3095 if (store)
3096 {
3097 rtx p = PREV_INSN (insn);
3098
3099 start_sequence ();
3100 val = gen_reg_rtx (GET_MODE (x));
3101 if (! validate_change (insn, loc, val, 0))
3102 {
3103 /* Discard the current sequence and put the
3104 ADDRESSOF on stack. */
3105 end_sequence ();
3106 goto give_up;
3107 }
3108 seq = gen_sequence ();
3109 end_sequence ();
3110 emit_insn_before (seq, insn);
3111 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3112 insn, ht);
3113
3114 start_sequence ();
3115 store_bit_field (sub, size_x, 0, GET_MODE (x),
3116 val, GET_MODE_SIZE (GET_MODE (sub)),
3117 GET_MODE_ALIGNMENT (GET_MODE (sub)));
3118
3119 /* Make sure to unshare any shared rtl that store_bit_field
3120 might have created. */
3121 unshare_all_rtl_again (get_insns ());
3122
3123 seq = gen_sequence ();
3124 end_sequence ();
3125 p = emit_insn_after (seq, insn);
3126 if (NEXT_INSN (insn))
3127 compute_insns_for_mem (NEXT_INSN (insn),
3128 p ? NEXT_INSN (p) : NULL_RTX,
3129 ht);
3130 }
3131 else
3132 {
3133 rtx p = PREV_INSN (insn);
3134
3135 start_sequence ();
3136 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3137 GET_MODE (x), GET_MODE (x),
3138 GET_MODE_SIZE (GET_MODE (sub)),
3139 GET_MODE_SIZE (GET_MODE (sub)));
3140
3141 if (! validate_change (insn, loc, val, 0))
3142 {
3143 /* Discard the current sequence and put the
3144 ADDRESSOF on stack. */
3145 end_sequence ();
3146 goto give_up;
3147 }
3148
3149 seq = gen_sequence ();
3150 end_sequence ();
3151 emit_insn_before (seq, insn);
3152 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3153 insn, ht);
3154 }
3155
3156 /* Remember the replacement so that the same one can be done
3157 on the REG_NOTES. */
3158 purge_bitfield_addressof_replacements
3159 = gen_rtx_EXPR_LIST (VOIDmode, x,
3160 gen_rtx_EXPR_LIST
3161 (VOIDmode, val,
3162 purge_bitfield_addressof_replacements));
3163
3164 /* We replaced with a reg -- all done. */
3165 return true;
3166 }
3167 }
3168
3169 else if (validate_change (insn, loc, sub, 0))
3170 {
3171 /* Remember the replacement so that the same one can be done
3172 on the REG_NOTES. */
3173 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3174 {
3175 rtx tem;
3176
3177 for (tem = purge_addressof_replacements;
3178 tem != NULL_RTX;
3179 tem = XEXP (XEXP (tem, 1), 1))
3180 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3181 {
3182 XEXP (XEXP (tem, 1), 0) = sub;
3183 return true;
3184 }
3185 purge_addressof_replacements
3186 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3187 gen_rtx_EXPR_LIST (VOIDmode, sub,
3188 purge_addressof_replacements));
3189 return true;
3190 }
3191 goto restart;
3192 }
3193 give_up:;
3194 /* else give up and put it into the stack */
3195 }
3196
3197 else if (code == ADDRESSOF)
3198 {
3199 put_addressof_into_stack (x, ht);
3200 return true;
3201 }
3202 else if (code == SET)
3203 {
3204 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
3205 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
3206 return result;
3207 }
3208
3209 /* Scan all subexpressions. */
3210 fmt = GET_RTX_FORMAT (code);
3211 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3212 {
3213 if (*fmt == 'e')
3214 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3215 else if (*fmt == 'E')
3216 for (j = 0; j < XVECLEN (x, i); j++)
3217 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3218 }
3219
3220 return result;
3221 }
3222
3223 /* Return a new hash table entry in HT. */
3224
3225 static struct hash_entry *
3226 insns_for_mem_newfunc (he, ht, k)
3227 struct hash_entry *he;
3228 struct hash_table *ht;
3229 hash_table_key k ATTRIBUTE_UNUSED;
3230 {
3231 struct insns_for_mem_entry *ifmhe;
3232 if (he)
3233 return he;
3234
3235 ifmhe = ((struct insns_for_mem_entry *)
3236 hash_allocate (ht, sizeof (struct insns_for_mem_entry)));
3237 ifmhe->insns = NULL_RTX;
3238
3239 return &ifmhe->he;
3240 }
3241
3242 /* Return a hash value for K, a REG. */
3243
3244 static unsigned long
3245 insns_for_mem_hash (k)
3246 hash_table_key k;
3247 {
3248 /* K is really a RTX. Just use the address as the hash value. */
3249 return (unsigned long) k;
3250 }
3251
3252 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3253
3254 static boolean
3255 insns_for_mem_comp (k1, k2)
3256 hash_table_key k1;
3257 hash_table_key k2;
3258 {
3259 return k1 == k2;
3260 }
3261
3262 struct insns_for_mem_walk_info {
3263 /* The hash table that we are using to record which INSNs use which
3264 MEMs. */
3265 struct hash_table *ht;
3266
3267 /* The INSN we are currently proessing. */
3268 rtx insn;
3269
3270 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3271 to find the insns that use the REGs in the ADDRESSOFs. */
3272 int pass;
3273 };
3274
3275 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3276 that might be used in an ADDRESSOF expression, record this INSN in
3277 the hash table given by DATA (which is really a pointer to an
3278 insns_for_mem_walk_info structure). */
3279
3280 static int
3281 insns_for_mem_walk (r, data)
3282 rtx *r;
3283 void *data;
3284 {
3285 struct insns_for_mem_walk_info *ifmwi
3286 = (struct insns_for_mem_walk_info *) data;
3287
3288 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3289 && GET_CODE (XEXP (*r, 0)) == REG)
3290 hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0);
3291 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3292 {
3293 /* Lookup this MEM in the hashtable, creating it if necessary. */
3294 struct insns_for_mem_entry *ifme
3295 = (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht,
3296 *r,
3297 /*create=*/0,
3298 /*copy=*/0);
3299
3300 /* If we have not already recorded this INSN, do so now. Since
3301 we process the INSNs in order, we know that if we have
3302 recorded it it must be at the front of the list. */
3303 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3304 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3305 ifme->insns);
3306 }
3307
3308 return 0;
3309 }
3310
3311 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3312 which REGs in HT. */
3313
3314 static void
3315 compute_insns_for_mem (insns, last_insn, ht)
3316 rtx insns;
3317 rtx last_insn;
3318 struct hash_table *ht;
3319 {
3320 rtx insn;
3321 struct insns_for_mem_walk_info ifmwi;
3322 ifmwi.ht = ht;
3323
3324 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3325 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3326 if (INSN_P (insn))
3327 {
3328 ifmwi.insn = insn;
3329 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3330 }
3331 }
3332
3333 /* Helper function for purge_addressof called through for_each_rtx.
3334 Returns true iff the rtl is an ADDRESSOF. */
3335 static int
3336 is_addressof (rtl, data)
3337 rtx *rtl;
3338 void *data ATTRIBUTE_UNUSED;
3339 {
3340 return GET_CODE (*rtl) == ADDRESSOF;
3341 }
3342
3343 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3344 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3345 stack. */
3346
3347 void
3348 purge_addressof (insns)
3349 rtx insns;
3350 {
3351 rtx insn;
3352 struct hash_table ht;
3353
3354 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3355 requires a fixup pass over the instruction stream to correct
3356 INSNs that depended on the REG being a REG, and not a MEM. But,
3357 these fixup passes are slow. Furthermore, most MEMs are not
3358 mentioned in very many instructions. So, we speed up the process
3359 by pre-calculating which REGs occur in which INSNs; that allows
3360 us to perform the fixup passes much more quickly. */
3361 hash_table_init (&ht,
3362 insns_for_mem_newfunc,
3363 insns_for_mem_hash,
3364 insns_for_mem_comp);
3365 compute_insns_for_mem (insns, NULL_RTX, &ht);
3366
3367 for (insn = insns; insn; insn = NEXT_INSN (insn))
3368 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3369 || GET_CODE (insn) == CALL_INSN)
3370 {
3371 if (! purge_addressof_1 (&PATTERN (insn), insn,
3372 asm_noperands (PATTERN (insn)) > 0, 0, &ht))
3373 /* If we could not replace the ADDRESSOFs in the insn,
3374 something is wrong. */
3375 abort ();
3376
3377 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, &ht))
3378 {
3379 /* If we could not replace the ADDRESSOFs in the insn's notes,
3380 we can just remove the offending notes instead. */
3381 rtx note;
3382
3383 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3384 {
3385 /* If we find a REG_RETVAL note then the insn is a libcall.
3386 Such insns must have REG_EQUAL notes as well, in order
3387 for later passes of the compiler to work. So it is not
3388 safe to delete the notes here, and instead we abort. */
3389 if (REG_NOTE_KIND (note) == REG_RETVAL)
3390 abort ();
3391 if (for_each_rtx (&note, is_addressof, NULL))
3392 remove_note (insn, note);
3393 }
3394 }
3395 }
3396
3397 /* Clean up. */
3398 hash_table_free (&ht);
3399 purge_bitfield_addressof_replacements = 0;
3400 purge_addressof_replacements = 0;
3401
3402 /* REGs are shared. purge_addressof will destructively replace a REG
3403 with a MEM, which creates shared MEMs.
3404
3405 Unfortunately, the children of put_reg_into_stack assume that MEMs
3406 referring to the same stack slot are shared (fixup_var_refs and
3407 the associated hash table code).
3408
3409 So, we have to do another unsharing pass after we have flushed any
3410 REGs that had their address taken into the stack.
3411
3412 It may be worth tracking whether or not we converted any REGs into
3413 MEMs to avoid this overhead when it is not needed. */
3414 unshare_all_rtl_again (get_insns ());
3415 }
3416 \f
3417 /* Convert a SET of a hard subreg to a set of the appropriet hard
3418 register. A subroutine of purge_hard_subreg_sets. */
3419
3420 static void
3421 purge_single_hard_subreg_set (pattern)
3422 rtx pattern;
3423 {
3424 rtx reg = SET_DEST (pattern);
3425 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3426 int word = 0;
3427
3428 while (GET_CODE (reg) == SUBREG)
3429 {
3430 word += SUBREG_WORD (reg);
3431 reg = SUBREG_REG (reg);
3432 }
3433
3434 if (REGNO (reg) < FIRST_PSEUDO_REGISTER)
3435 {
3436 reg = gen_rtx_REG (mode, REGNO (reg) + word);
3437 SET_DEST (pattern) = reg;
3438 }
3439 }
3440
3441 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3442 only such SETs that we expect to see are those left in because
3443 integrate can't handle sets of parts of a return value register.
3444
3445 We don't use alter_subreg because we only want to eliminate subregs
3446 of hard registers. */
3447
3448 void
3449 purge_hard_subreg_sets (insn)
3450 rtx insn;
3451 {
3452 for (; insn; insn = NEXT_INSN (insn))
3453 {
3454 if (INSN_P (insn))
3455 {
3456 rtx pattern = PATTERN (insn);
3457 switch (GET_CODE (pattern))
3458 {
3459 case SET:
3460 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3461 purge_single_hard_subreg_set (pattern);
3462 break;
3463 case PARALLEL:
3464 {
3465 int j;
3466 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3467 {
3468 rtx inner_pattern = XVECEXP (pattern, 0, j);
3469 if (GET_CODE (inner_pattern) == SET
3470 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3471 purge_single_hard_subreg_set (inner_pattern);
3472 }
3473 }
3474 break;
3475 default:
3476 break;
3477 }
3478 }
3479 }
3480 }
3481 \f
3482 /* Pass through the INSNS of function FNDECL and convert virtual register
3483 references to hard register references. */
3484
3485 void
3486 instantiate_virtual_regs (fndecl, insns)
3487 tree fndecl;
3488 rtx insns;
3489 {
3490 rtx insn;
3491 unsigned int i;
3492
3493 /* Compute the offsets to use for this function. */
3494 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3495 var_offset = STARTING_FRAME_OFFSET;
3496 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3497 out_arg_offset = STACK_POINTER_OFFSET;
3498 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3499
3500 /* Scan all variables and parameters of this function. For each that is
3501 in memory, instantiate all virtual registers if the result is a valid
3502 address. If not, we do it later. That will handle most uses of virtual
3503 regs on many machines. */
3504 instantiate_decls (fndecl, 1);
3505
3506 /* Initialize recognition, indicating that volatile is OK. */
3507 init_recog ();
3508
3509 /* Scan through all the insns, instantiating every virtual register still
3510 present. */
3511 for (insn = insns; insn; insn = NEXT_INSN (insn))
3512 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3513 || GET_CODE (insn) == CALL_INSN)
3514 {
3515 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3516 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3517 }
3518
3519 /* Instantiate the stack slots for the parm registers, for later use in
3520 addressof elimination. */
3521 for (i = 0; i < max_parm_reg; ++i)
3522 if (parm_reg_stack_loc[i])
3523 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3524
3525 /* Now instantiate the remaining register equivalences for debugging info.
3526 These will not be valid addresses. */
3527 instantiate_decls (fndecl, 0);
3528
3529 /* Indicate that, from now on, assign_stack_local should use
3530 frame_pointer_rtx. */
3531 virtuals_instantiated = 1;
3532 }
3533
3534 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3535 all virtual registers in their DECL_RTL's.
3536
3537 If VALID_ONLY, do this only if the resulting address is still valid.
3538 Otherwise, always do it. */
3539
3540 static void
3541 instantiate_decls (fndecl, valid_only)
3542 tree fndecl;
3543 int valid_only;
3544 {
3545 tree decl;
3546
3547 /* Process all parameters of the function. */
3548 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3549 {
3550 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3551
3552 instantiate_decl (DECL_RTL (decl), size, valid_only);
3553
3554 /* If the parameter was promoted, then the incoming RTL mode may be
3555 larger than the declared type size. We must use the larger of
3556 the two sizes. */
3557 size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size);
3558 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3559 }
3560
3561 /* Now process all variables defined in the function or its subblocks. */
3562 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3563 }
3564
3565 /* Subroutine of instantiate_decls: Process all decls in the given
3566 BLOCK node and all its subblocks. */
3567
3568 static void
3569 instantiate_decls_1 (let, valid_only)
3570 tree let;
3571 int valid_only;
3572 {
3573 tree t;
3574
3575 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3576 instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)),
3577 valid_only);
3578
3579 /* Process all subblocks. */
3580 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3581 instantiate_decls_1 (t, valid_only);
3582 }
3583
3584 /* Subroutine of the preceding procedures: Given RTL representing a
3585 decl and the size of the object, do any instantiation required.
3586
3587 If VALID_ONLY is non-zero, it means that the RTL should only be
3588 changed if the new address is valid. */
3589
3590 static void
3591 instantiate_decl (x, size, valid_only)
3592 rtx x;
3593 HOST_WIDE_INT size;
3594 int valid_only;
3595 {
3596 enum machine_mode mode;
3597 rtx addr;
3598
3599 /* If this is not a MEM, no need to do anything. Similarly if the
3600 address is a constant or a register that is not a virtual register. */
3601
3602 if (x == 0 || GET_CODE (x) != MEM)
3603 return;
3604
3605 addr = XEXP (x, 0);
3606 if (CONSTANT_P (addr)
3607 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3608 || (GET_CODE (addr) == REG
3609 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3610 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3611 return;
3612
3613 /* If we should only do this if the address is valid, copy the address.
3614 We need to do this so we can undo any changes that might make the
3615 address invalid. This copy is unfortunate, but probably can't be
3616 avoided. */
3617
3618 if (valid_only)
3619 addr = copy_rtx (addr);
3620
3621 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3622
3623 if (valid_only && size >= 0)
3624 {
3625 unsigned HOST_WIDE_INT decl_size = size;
3626
3627 /* Now verify that the resulting address is valid for every integer or
3628 floating-point mode up to and including SIZE bytes long. We do this
3629 since the object might be accessed in any mode and frame addresses
3630 are shared. */
3631
3632 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3633 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3634 mode = GET_MODE_WIDER_MODE (mode))
3635 if (! memory_address_p (mode, addr))
3636 return;
3637
3638 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3639 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3640 mode = GET_MODE_WIDER_MODE (mode))
3641 if (! memory_address_p (mode, addr))
3642 return;
3643 }
3644
3645 /* Put back the address now that we have updated it and we either know
3646 it is valid or we don't care whether it is valid. */
3647
3648 XEXP (x, 0) = addr;
3649 }
3650 \f
3651 /* Given a pointer to a piece of rtx and an optional pointer to the
3652 containing object, instantiate any virtual registers present in it.
3653
3654 If EXTRA_INSNS, we always do the replacement and generate
3655 any extra insns before OBJECT. If it zero, we do nothing if replacement
3656 is not valid.
3657
3658 Return 1 if we either had nothing to do or if we were able to do the
3659 needed replacement. Return 0 otherwise; we only return zero if
3660 EXTRA_INSNS is zero.
3661
3662 We first try some simple transformations to avoid the creation of extra
3663 pseudos. */
3664
3665 static int
3666 instantiate_virtual_regs_1 (loc, object, extra_insns)
3667 rtx *loc;
3668 rtx object;
3669 int extra_insns;
3670 {
3671 rtx x;
3672 RTX_CODE code;
3673 rtx new = 0;
3674 HOST_WIDE_INT offset = 0;
3675 rtx temp;
3676 rtx seq;
3677 int i, j;
3678 const char *fmt;
3679
3680 /* Re-start here to avoid recursion in common cases. */
3681 restart:
3682
3683 x = *loc;
3684 if (x == 0)
3685 return 1;
3686
3687 code = GET_CODE (x);
3688
3689 /* Check for some special cases. */
3690 switch (code)
3691 {
3692 case CONST_INT:
3693 case CONST_DOUBLE:
3694 case CONST:
3695 case SYMBOL_REF:
3696 case CODE_LABEL:
3697 case PC:
3698 case CC0:
3699 case ASM_INPUT:
3700 case ADDR_VEC:
3701 case ADDR_DIFF_VEC:
3702 case RETURN:
3703 return 1;
3704
3705 case SET:
3706 /* We are allowed to set the virtual registers. This means that
3707 the actual register should receive the source minus the
3708 appropriate offset. This is used, for example, in the handling
3709 of non-local gotos. */
3710 if (SET_DEST (x) == virtual_incoming_args_rtx)
3711 new = arg_pointer_rtx, offset = -in_arg_offset;
3712 else if (SET_DEST (x) == virtual_stack_vars_rtx)
3713 new = frame_pointer_rtx, offset = -var_offset;
3714 else if (SET_DEST (x) == virtual_stack_dynamic_rtx)
3715 new = stack_pointer_rtx, offset = -dynamic_offset;
3716 else if (SET_DEST (x) == virtual_outgoing_args_rtx)
3717 new = stack_pointer_rtx, offset = -out_arg_offset;
3718 else if (SET_DEST (x) == virtual_cfa_rtx)
3719 new = arg_pointer_rtx, offset = -cfa_offset;
3720
3721 if (new)
3722 {
3723 rtx src = SET_SRC (x);
3724
3725 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3726
3727 /* The only valid sources here are PLUS or REG. Just do
3728 the simplest possible thing to handle them. */
3729 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3730 abort ();
3731
3732 start_sequence ();
3733 if (GET_CODE (src) != REG)
3734 temp = force_operand (src, NULL_RTX);
3735 else
3736 temp = src;
3737 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3738 seq = get_insns ();
3739 end_sequence ();
3740
3741 emit_insns_before (seq, object);
3742 SET_DEST (x) = new;
3743
3744 if (! validate_change (object, &SET_SRC (x), temp, 0)
3745 || ! extra_insns)
3746 abort ();
3747
3748 return 1;
3749 }
3750
3751 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3752 loc = &SET_SRC (x);
3753 goto restart;
3754
3755 case PLUS:
3756 /* Handle special case of virtual register plus constant. */
3757 if (CONSTANT_P (XEXP (x, 1)))
3758 {
3759 rtx old, new_offset;
3760
3761 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3762 if (GET_CODE (XEXP (x, 0)) == PLUS)
3763 {
3764 rtx inner = XEXP (XEXP (x, 0), 0);
3765
3766 if (inner == virtual_incoming_args_rtx)
3767 new = arg_pointer_rtx, offset = in_arg_offset;
3768 else if (inner == virtual_stack_vars_rtx)
3769 new = frame_pointer_rtx, offset = var_offset;
3770 else if (inner == virtual_stack_dynamic_rtx)
3771 new = stack_pointer_rtx, offset = dynamic_offset;
3772 else if (inner == virtual_outgoing_args_rtx)
3773 new = stack_pointer_rtx, offset = out_arg_offset;
3774 else if (inner == virtual_cfa_rtx)
3775 new = arg_pointer_rtx, offset = cfa_offset;
3776 else
3777 {
3778 loc = &XEXP (x, 0);
3779 goto restart;
3780 }
3781
3782 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3783 extra_insns);
3784 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3785 }
3786
3787 else if (XEXP (x, 0) == virtual_incoming_args_rtx)
3788 new = arg_pointer_rtx, offset = in_arg_offset;
3789 else if (XEXP (x, 0) == virtual_stack_vars_rtx)
3790 new = frame_pointer_rtx, offset = var_offset;
3791 else if (XEXP (x, 0) == virtual_stack_dynamic_rtx)
3792 new = stack_pointer_rtx, offset = dynamic_offset;
3793 else if (XEXP (x, 0) == virtual_outgoing_args_rtx)
3794 new = stack_pointer_rtx, offset = out_arg_offset;
3795 else if (XEXP (x, 0) == virtual_cfa_rtx)
3796 new = arg_pointer_rtx, offset = cfa_offset;
3797 else
3798 {
3799 /* We know the second operand is a constant. Unless the
3800 first operand is a REG (which has been already checked),
3801 it needs to be checked. */
3802 if (GET_CODE (XEXP (x, 0)) != REG)
3803 {
3804 loc = &XEXP (x, 0);
3805 goto restart;
3806 }
3807 return 1;
3808 }
3809
3810 new_offset = plus_constant (XEXP (x, 1), offset);
3811
3812 /* If the new constant is zero, try to replace the sum with just
3813 the register. */
3814 if (new_offset == const0_rtx
3815 && validate_change (object, loc, new, 0))
3816 return 1;
3817
3818 /* Next try to replace the register and new offset.
3819 There are two changes to validate here and we can't assume that
3820 in the case of old offset equals new just changing the register
3821 will yield a valid insn. In the interests of a little efficiency,
3822 however, we only call validate change once (we don't queue up the
3823 changes and then call apply_change_group). */
3824
3825 old = XEXP (x, 0);
3826 if (offset == 0
3827 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3828 : (XEXP (x, 0) = new,
3829 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3830 {
3831 if (! extra_insns)
3832 {
3833 XEXP (x, 0) = old;
3834 return 0;
3835 }
3836
3837 /* Otherwise copy the new constant into a register and replace
3838 constant with that register. */
3839 temp = gen_reg_rtx (Pmode);
3840 XEXP (x, 0) = new;
3841 if (validate_change (object, &XEXP (x, 1), temp, 0))
3842 emit_insn_before (gen_move_insn (temp, new_offset), object);
3843 else
3844 {
3845 /* If that didn't work, replace this expression with a
3846 register containing the sum. */
3847
3848 XEXP (x, 0) = old;
3849 new = gen_rtx_PLUS (Pmode, new, new_offset);
3850
3851 start_sequence ();
3852 temp = force_operand (new, NULL_RTX);
3853 seq = get_insns ();
3854 end_sequence ();
3855
3856 emit_insns_before (seq, object);
3857 if (! validate_change (object, loc, temp, 0)
3858 && ! validate_replace_rtx (x, temp, object))
3859 abort ();
3860 }
3861 }
3862
3863 return 1;
3864 }
3865
3866 /* Fall through to generic two-operand expression case. */
3867 case EXPR_LIST:
3868 case CALL:
3869 case COMPARE:
3870 case MINUS:
3871 case MULT:
3872 case DIV: case UDIV:
3873 case MOD: case UMOD:
3874 case AND: case IOR: case XOR:
3875 case ROTATERT: case ROTATE:
3876 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3877 case NE: case EQ:
3878 case GE: case GT: case GEU: case GTU:
3879 case LE: case LT: case LEU: case LTU:
3880 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3881 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3882 loc = &XEXP (x, 0);
3883 goto restart;
3884
3885 case MEM:
3886 /* Most cases of MEM that convert to valid addresses have already been
3887 handled by our scan of decls. The only special handling we
3888 need here is to make a copy of the rtx to ensure it isn't being
3889 shared if we have to change it to a pseudo.
3890
3891 If the rtx is a simple reference to an address via a virtual register,
3892 it can potentially be shared. In such cases, first try to make it
3893 a valid address, which can also be shared. Otherwise, copy it and
3894 proceed normally.
3895
3896 First check for common cases that need no processing. These are
3897 usually due to instantiation already being done on a previous instance
3898 of a shared rtx. */
3899
3900 temp = XEXP (x, 0);
3901 if (CONSTANT_ADDRESS_P (temp)
3902 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3903 || temp == arg_pointer_rtx
3904 #endif
3905 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3906 || temp == hard_frame_pointer_rtx
3907 #endif
3908 || temp == frame_pointer_rtx)
3909 return 1;
3910
3911 if (GET_CODE (temp) == PLUS
3912 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3913 && (XEXP (temp, 0) == frame_pointer_rtx
3914 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3915 || XEXP (temp, 0) == hard_frame_pointer_rtx
3916 #endif
3917 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3918 || XEXP (temp, 0) == arg_pointer_rtx
3919 #endif
3920 ))
3921 return 1;
3922
3923 if (temp == virtual_stack_vars_rtx
3924 || temp == virtual_incoming_args_rtx
3925 || (GET_CODE (temp) == PLUS
3926 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3927 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3928 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3929 {
3930 /* This MEM may be shared. If the substitution can be done without
3931 the need to generate new pseudos, we want to do it in place
3932 so all copies of the shared rtx benefit. The call below will
3933 only make substitutions if the resulting address is still
3934 valid.
3935
3936 Note that we cannot pass X as the object in the recursive call
3937 since the insn being processed may not allow all valid
3938 addresses. However, if we were not passed on object, we can
3939 only modify X without copying it if X will have a valid
3940 address.
3941
3942 ??? Also note that this can still lose if OBJECT is an insn that
3943 has less restrictions on an address that some other insn.
3944 In that case, we will modify the shared address. This case
3945 doesn't seem very likely, though. One case where this could
3946 happen is in the case of a USE or CLOBBER reference, but we
3947 take care of that below. */
3948
3949 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
3950 object ? object : x, 0))
3951 return 1;
3952
3953 /* Otherwise make a copy and process that copy. We copy the entire
3954 RTL expression since it might be a PLUS which could also be
3955 shared. */
3956 *loc = x = copy_rtx (x);
3957 }
3958
3959 /* Fall through to generic unary operation case. */
3960 case SUBREG:
3961 case STRICT_LOW_PART:
3962 case NEG: case NOT:
3963 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
3964 case SIGN_EXTEND: case ZERO_EXTEND:
3965 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3966 case FLOAT: case FIX:
3967 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3968 case ABS:
3969 case SQRT:
3970 case FFS:
3971 /* These case either have just one operand or we know that we need not
3972 check the rest of the operands. */
3973 loc = &XEXP (x, 0);
3974 goto restart;
3975
3976 case USE:
3977 case CLOBBER:
3978 /* If the operand is a MEM, see if the change is a valid MEM. If not,
3979 go ahead and make the invalid one, but do it to a copy. For a REG,
3980 just make the recursive call, since there's no chance of a problem. */
3981
3982 if ((GET_CODE (XEXP (x, 0)) == MEM
3983 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
3984 0))
3985 || (GET_CODE (XEXP (x, 0)) == REG
3986 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
3987 return 1;
3988
3989 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
3990 loc = &XEXP (x, 0);
3991 goto restart;
3992
3993 case REG:
3994 /* Try to replace with a PLUS. If that doesn't work, compute the sum
3995 in front of this insn and substitute the temporary. */
3996 if (x == virtual_incoming_args_rtx)
3997 new = arg_pointer_rtx, offset = in_arg_offset;
3998 else if (x == virtual_stack_vars_rtx)
3999 new = frame_pointer_rtx, offset = var_offset;
4000 else if (x == virtual_stack_dynamic_rtx)
4001 new = stack_pointer_rtx, offset = dynamic_offset;
4002 else if (x == virtual_outgoing_args_rtx)
4003 new = stack_pointer_rtx, offset = out_arg_offset;
4004 else if (x == virtual_cfa_rtx)
4005 new = arg_pointer_rtx, offset = cfa_offset;
4006
4007 if (new)
4008 {
4009 temp = plus_constant (new, offset);
4010 if (!validate_change (object, loc, temp, 0))
4011 {
4012 if (! extra_insns)
4013 return 0;
4014
4015 start_sequence ();
4016 temp = force_operand (temp, NULL_RTX);
4017 seq = get_insns ();
4018 end_sequence ();
4019
4020 emit_insns_before (seq, object);
4021 if (! validate_change (object, loc, temp, 0)
4022 && ! validate_replace_rtx (x, temp, object))
4023 abort ();
4024 }
4025 }
4026
4027 return 1;
4028
4029 case ADDRESSOF:
4030 if (GET_CODE (XEXP (x, 0)) == REG)
4031 return 1;
4032
4033 else if (GET_CODE (XEXP (x, 0)) == MEM)
4034 {
4035 /* If we have a (addressof (mem ..)), do any instantiation inside
4036 since we know we'll be making the inside valid when we finally
4037 remove the ADDRESSOF. */
4038 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4039 return 1;
4040 }
4041 break;
4042
4043 default:
4044 break;
4045 }
4046
4047 /* Scan all subexpressions. */
4048 fmt = GET_RTX_FORMAT (code);
4049 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4050 if (*fmt == 'e')
4051 {
4052 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4053 return 0;
4054 }
4055 else if (*fmt == 'E')
4056 for (j = 0; j < XVECLEN (x, i); j++)
4057 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4058 extra_insns))
4059 return 0;
4060
4061 return 1;
4062 }
4063 \f
4064 /* Optimization: assuming this function does not receive nonlocal gotos,
4065 delete the handlers for such, as well as the insns to establish
4066 and disestablish them. */
4067
4068 static void
4069 delete_handlers ()
4070 {
4071 rtx insn;
4072 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4073 {
4074 /* Delete the handler by turning off the flag that would
4075 prevent jump_optimize from deleting it.
4076 Also permit deletion of the nonlocal labels themselves
4077 if nothing local refers to them. */
4078 if (GET_CODE (insn) == CODE_LABEL)
4079 {
4080 tree t, last_t;
4081
4082 LABEL_PRESERVE_P (insn) = 0;
4083
4084 /* Remove it from the nonlocal_label list, to avoid confusing
4085 flow. */
4086 for (t = nonlocal_labels, last_t = 0; t;
4087 last_t = t, t = TREE_CHAIN (t))
4088 if (DECL_RTL (TREE_VALUE (t)) == insn)
4089 break;
4090 if (t)
4091 {
4092 if (! last_t)
4093 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4094 else
4095 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4096 }
4097 }
4098 if (GET_CODE (insn) == INSN)
4099 {
4100 int can_delete = 0;
4101 rtx t;
4102 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4103 if (reg_mentioned_p (t, PATTERN (insn)))
4104 {
4105 can_delete = 1;
4106 break;
4107 }
4108 if (can_delete
4109 || (nonlocal_goto_stack_level != 0
4110 && reg_mentioned_p (nonlocal_goto_stack_level,
4111 PATTERN (insn))))
4112 delete_insn (insn);
4113 }
4114 }
4115 }
4116 \f
4117 int
4118 max_parm_reg_num ()
4119 {
4120 return max_parm_reg;
4121 }
4122
4123 /* Return the first insn following those generated by `assign_parms'. */
4124
4125 rtx
4126 get_first_nonparm_insn ()
4127 {
4128 if (last_parm_insn)
4129 return NEXT_INSN (last_parm_insn);
4130 return get_insns ();
4131 }
4132
4133 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
4134 Crash if there is none. */
4135
4136 rtx
4137 get_first_block_beg ()
4138 {
4139 register rtx searcher;
4140 register rtx insn = get_first_nonparm_insn ();
4141
4142 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
4143 if (GET_CODE (searcher) == NOTE
4144 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
4145 return searcher;
4146
4147 abort (); /* Invalid call to this function. (See comments above.) */
4148 return NULL_RTX;
4149 }
4150
4151 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4152 This means a type for which function calls must pass an address to the
4153 function or get an address back from the function.
4154 EXP may be a type node or an expression (whose type is tested). */
4155
4156 int
4157 aggregate_value_p (exp)
4158 tree exp;
4159 {
4160 int i, regno, nregs;
4161 rtx reg;
4162
4163 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4164
4165 if (TREE_CODE (type) == VOID_TYPE)
4166 return 0;
4167 if (RETURN_IN_MEMORY (type))
4168 return 1;
4169 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4170 and thus can't be returned in registers. */
4171 if (TREE_ADDRESSABLE (type))
4172 return 1;
4173 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4174 return 1;
4175 /* Make sure we have suitable call-clobbered regs to return
4176 the value in; if not, we must return it in memory. */
4177 reg = hard_function_value (type, 0, 0);
4178
4179 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4180 it is OK. */
4181 if (GET_CODE (reg) != REG)
4182 return 0;
4183
4184 regno = REGNO (reg);
4185 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4186 for (i = 0; i < nregs; i++)
4187 if (! call_used_regs[regno + i])
4188 return 1;
4189 return 0;
4190 }
4191 \f
4192 /* Assign RTL expressions to the function's parameters.
4193 This may involve copying them into registers and using
4194 those registers as the RTL for them. */
4195
4196 void
4197 assign_parms (fndecl)
4198 tree fndecl;
4199 {
4200 register tree parm;
4201 register rtx entry_parm = 0;
4202 register rtx stack_parm = 0;
4203 CUMULATIVE_ARGS args_so_far;
4204 enum machine_mode promoted_mode, passed_mode;
4205 enum machine_mode nominal_mode, promoted_nominal_mode;
4206 int unsignedp;
4207 /* Total space needed so far for args on the stack,
4208 given as a constant and a tree-expression. */
4209 struct args_size stack_args_size;
4210 tree fntype = TREE_TYPE (fndecl);
4211 tree fnargs = DECL_ARGUMENTS (fndecl);
4212 /* This is used for the arg pointer when referring to stack args. */
4213 rtx internal_arg_pointer;
4214 /* This is a dummy PARM_DECL that we used for the function result if
4215 the function returns a structure. */
4216 tree function_result_decl = 0;
4217 #ifdef SETUP_INCOMING_VARARGS
4218 int varargs_setup = 0;
4219 #endif
4220 rtx conversion_insns = 0;
4221 struct args_size alignment_pad;
4222
4223 /* Nonzero if the last arg is named `__builtin_va_alist',
4224 which is used on some machines for old-fashioned non-ANSI varargs.h;
4225 this should be stuck onto the stack as if it had arrived there. */
4226 int hide_last_arg
4227 = (current_function_varargs
4228 && fnargs
4229 && (parm = tree_last (fnargs)) != 0
4230 && DECL_NAME (parm)
4231 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
4232 "__builtin_va_alist")));
4233
4234 /* Nonzero if function takes extra anonymous args.
4235 This means the last named arg must be on the stack
4236 right before the anonymous ones. */
4237 int stdarg
4238 = (TYPE_ARG_TYPES (fntype) != 0
4239 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4240 != void_type_node));
4241
4242 current_function_stdarg = stdarg;
4243
4244 /* If the reg that the virtual arg pointer will be translated into is
4245 not a fixed reg or is the stack pointer, make a copy of the virtual
4246 arg pointer, and address parms via the copy. The frame pointer is
4247 considered fixed even though it is not marked as such.
4248
4249 The second time through, simply use ap to avoid generating rtx. */
4250
4251 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4252 || ! (fixed_regs[ARG_POINTER_REGNUM]
4253 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4254 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4255 else
4256 internal_arg_pointer = virtual_incoming_args_rtx;
4257 current_function_internal_arg_pointer = internal_arg_pointer;
4258
4259 stack_args_size.constant = 0;
4260 stack_args_size.var = 0;
4261
4262 /* If struct value address is treated as the first argument, make it so. */
4263 if (aggregate_value_p (DECL_RESULT (fndecl))
4264 && ! current_function_returns_pcc_struct
4265 && struct_value_incoming_rtx == 0)
4266 {
4267 tree type = build_pointer_type (TREE_TYPE (fntype));
4268
4269 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4270
4271 DECL_ARG_TYPE (function_result_decl) = type;
4272 TREE_CHAIN (function_result_decl) = fnargs;
4273 fnargs = function_result_decl;
4274 }
4275
4276 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4277 parm_reg_stack_loc = (rtx *) xcalloc (max_parm_reg, sizeof (rtx));
4278
4279 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4280 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4281 #else
4282 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4283 #endif
4284
4285 /* We haven't yet found an argument that we must push and pretend the
4286 caller did. */
4287 current_function_pretend_args_size = 0;
4288
4289 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4290 {
4291 struct args_size stack_offset;
4292 struct args_size arg_size;
4293 int passed_pointer = 0;
4294 int did_conversion = 0;
4295 tree passed_type = DECL_ARG_TYPE (parm);
4296 tree nominal_type = TREE_TYPE (parm);
4297 int pretend_named;
4298
4299 /* Set LAST_NAMED if this is last named arg before some
4300 anonymous args. */
4301 int last_named = ((TREE_CHAIN (parm) == 0
4302 || DECL_NAME (TREE_CHAIN (parm)) == 0)
4303 && (stdarg || current_function_varargs));
4304 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4305 most machines, if this is a varargs/stdarg function, then we treat
4306 the last named arg as if it were anonymous too. */
4307 int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4308
4309 if (TREE_TYPE (parm) == error_mark_node
4310 /* This can happen after weird syntax errors
4311 or if an enum type is defined among the parms. */
4312 || TREE_CODE (parm) != PARM_DECL
4313 || passed_type == NULL)
4314 {
4315 DECL_INCOMING_RTL (parm) = DECL_RTL (parm)
4316 = gen_rtx_MEM (BLKmode, const0_rtx);
4317 TREE_USED (parm) = 1;
4318 continue;
4319 }
4320
4321 /* For varargs.h function, save info about regs and stack space
4322 used by the individual args, not including the va_alist arg. */
4323 if (hide_last_arg && last_named)
4324 current_function_args_info = args_so_far;
4325
4326 /* Find mode of arg as it is passed, and mode of arg
4327 as it should be during execution of this function. */
4328 passed_mode = TYPE_MODE (passed_type);
4329 nominal_mode = TYPE_MODE (nominal_type);
4330
4331 /* If the parm's mode is VOID, its value doesn't matter,
4332 and avoid the usual things like emit_move_insn that could crash. */
4333 if (nominal_mode == VOIDmode)
4334 {
4335 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx;
4336 continue;
4337 }
4338
4339 /* If the parm is to be passed as a transparent union, use the
4340 type of the first field for the tests below. We have already
4341 verified that the modes are the same. */
4342 if (DECL_TRANSPARENT_UNION (parm)
4343 || (TREE_CODE (passed_type) == UNION_TYPE
4344 && TYPE_TRANSPARENT_UNION (passed_type)))
4345 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4346
4347 /* See if this arg was passed by invisible reference. It is if
4348 it is an object whose size depends on the contents of the
4349 object itself or if the machine requires these objects be passed
4350 that way. */
4351
4352 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4353 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4354 || TREE_ADDRESSABLE (passed_type)
4355 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4356 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4357 passed_type, named_arg)
4358 #endif
4359 )
4360 {
4361 passed_type = nominal_type = build_pointer_type (passed_type);
4362 passed_pointer = 1;
4363 passed_mode = nominal_mode = Pmode;
4364 }
4365
4366 promoted_mode = passed_mode;
4367
4368 #ifdef PROMOTE_FUNCTION_ARGS
4369 /* Compute the mode in which the arg is actually extended to. */
4370 unsignedp = TREE_UNSIGNED (passed_type);
4371 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4372 #endif
4373
4374 /* Let machine desc say which reg (if any) the parm arrives in.
4375 0 means it arrives on the stack. */
4376 #ifdef FUNCTION_INCOMING_ARG
4377 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4378 passed_type, named_arg);
4379 #else
4380 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4381 passed_type, named_arg);
4382 #endif
4383
4384 if (entry_parm == 0)
4385 promoted_mode = passed_mode;
4386
4387 #ifdef SETUP_INCOMING_VARARGS
4388 /* If this is the last named parameter, do any required setup for
4389 varargs or stdargs. We need to know about the case of this being an
4390 addressable type, in which case we skip the registers it
4391 would have arrived in.
4392
4393 For stdargs, LAST_NAMED will be set for two parameters, the one that
4394 is actually the last named, and the dummy parameter. We only
4395 want to do this action once.
4396
4397 Also, indicate when RTL generation is to be suppressed. */
4398 if (last_named && !varargs_setup)
4399 {
4400 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4401 current_function_pretend_args_size, 0);
4402 varargs_setup = 1;
4403 }
4404 #endif
4405
4406 /* Determine parm's home in the stack,
4407 in case it arrives in the stack or we should pretend it did.
4408
4409 Compute the stack position and rtx where the argument arrives
4410 and its size.
4411
4412 There is one complexity here: If this was a parameter that would
4413 have been passed in registers, but wasn't only because it is
4414 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4415 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4416 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4417 0 as it was the previous time. */
4418
4419 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4420 locate_and_pad_parm (promoted_mode, passed_type,
4421 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4422 1,
4423 #else
4424 #ifdef FUNCTION_INCOMING_ARG
4425 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4426 passed_type,
4427 pretend_named) != 0,
4428 #else
4429 FUNCTION_ARG (args_so_far, promoted_mode,
4430 passed_type,
4431 pretend_named) != 0,
4432 #endif
4433 #endif
4434 fndecl, &stack_args_size, &stack_offset, &arg_size,
4435 &alignment_pad);
4436
4437 {
4438 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4439
4440 if (offset_rtx == const0_rtx)
4441 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4442 else
4443 stack_parm = gen_rtx_MEM (promoted_mode,
4444 gen_rtx_PLUS (Pmode,
4445 internal_arg_pointer,
4446 offset_rtx));
4447
4448 set_mem_attributes (stack_parm, parm, 1);
4449 }
4450
4451 /* If this parameter was passed both in registers and in the stack,
4452 use the copy on the stack. */
4453 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4454 entry_parm = 0;
4455
4456 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4457 /* If this parm was passed part in regs and part in memory,
4458 pretend it arrived entirely in memory
4459 by pushing the register-part onto the stack.
4460
4461 In the special case of a DImode or DFmode that is split,
4462 we could put it together in a pseudoreg directly,
4463 but for now that's not worth bothering with. */
4464
4465 if (entry_parm)
4466 {
4467 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4468 passed_type, named_arg);
4469
4470 if (nregs > 0)
4471 {
4472 current_function_pretend_args_size
4473 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4474 / (PARM_BOUNDARY / BITS_PER_UNIT)
4475 * (PARM_BOUNDARY / BITS_PER_UNIT));
4476
4477 /* Handle calls that pass values in multiple non-contiguous
4478 locations. The Irix 6 ABI has examples of this. */
4479 if (GET_CODE (entry_parm) == PARALLEL)
4480 emit_group_store (validize_mem (stack_parm), entry_parm,
4481 int_size_in_bytes (TREE_TYPE (parm)),
4482 TYPE_ALIGN (TREE_TYPE (parm)));
4483
4484 else
4485 move_block_from_reg (REGNO (entry_parm),
4486 validize_mem (stack_parm), nregs,
4487 int_size_in_bytes (TREE_TYPE (parm)));
4488
4489 entry_parm = stack_parm;
4490 }
4491 }
4492 #endif
4493
4494 /* If we didn't decide this parm came in a register,
4495 by default it came on the stack. */
4496 if (entry_parm == 0)
4497 entry_parm = stack_parm;
4498
4499 /* Record permanently how this parm was passed. */
4500 DECL_INCOMING_RTL (parm) = entry_parm;
4501
4502 /* If there is actually space on the stack for this parm,
4503 count it in stack_args_size; otherwise set stack_parm to 0
4504 to indicate there is no preallocated stack slot for the parm. */
4505
4506 if (entry_parm == stack_parm
4507 || (GET_CODE (entry_parm) == PARALLEL
4508 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4509 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4510 /* On some machines, even if a parm value arrives in a register
4511 there is still an (uninitialized) stack slot allocated for it.
4512
4513 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4514 whether this parameter already has a stack slot allocated,
4515 because an arg block exists only if current_function_args_size
4516 is larger than some threshold, and we haven't calculated that
4517 yet. So, for now, we just assume that stack slots never exist
4518 in this case. */
4519 || REG_PARM_STACK_SPACE (fndecl) > 0
4520 #endif
4521 )
4522 {
4523 stack_args_size.constant += arg_size.constant;
4524 if (arg_size.var)
4525 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4526 }
4527 else
4528 /* No stack slot was pushed for this parm. */
4529 stack_parm = 0;
4530
4531 /* Update info on where next arg arrives in registers. */
4532
4533 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4534 passed_type, named_arg);
4535
4536 /* If we can't trust the parm stack slot to be aligned enough
4537 for its ultimate type, don't use that slot after entry.
4538 We'll make another stack slot, if we need one. */
4539 {
4540 unsigned int thisparm_boundary
4541 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4542
4543 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4544 stack_parm = 0;
4545 }
4546
4547 /* If parm was passed in memory, and we need to convert it on entry,
4548 don't store it back in that same slot. */
4549 if (entry_parm != 0
4550 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4551 stack_parm = 0;
4552
4553 /* When an argument is passed in multiple locations, we can't
4554 make use of this information, but we can save some copying if
4555 the whole argument is passed in a single register. */
4556 if (GET_CODE (entry_parm) == PARALLEL
4557 && nominal_mode != BLKmode && passed_mode != BLKmode)
4558 {
4559 int i, len = XVECLEN (entry_parm, 0);
4560
4561 for (i = 0; i < len; i++)
4562 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4563 && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4564 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4565 == passed_mode)
4566 && XINT (XEXP (XVECEXP (entry_parm, 0, i), 1), 0) == 0)
4567 {
4568 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4569 DECL_INCOMING_RTL (parm) = entry_parm;
4570 break;
4571 }
4572 }
4573
4574 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4575 in the mode in which it arrives.
4576 STACK_PARM is an RTX for a stack slot where the parameter can live
4577 during the function (in case we want to put it there).
4578 STACK_PARM is 0 if no stack slot was pushed for it.
4579
4580 Now output code if necessary to convert ENTRY_PARM to
4581 the type in which this function declares it,
4582 and store that result in an appropriate place,
4583 which may be a pseudo reg, may be STACK_PARM,
4584 or may be a local stack slot if STACK_PARM is 0.
4585
4586 Set DECL_RTL to that place. */
4587
4588 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4589 {
4590 /* If a BLKmode arrives in registers, copy it to a stack slot.
4591 Handle calls that pass values in multiple non-contiguous
4592 locations. The Irix 6 ABI has examples of this. */
4593 if (GET_CODE (entry_parm) == REG
4594 || GET_CODE (entry_parm) == PARALLEL)
4595 {
4596 int size_stored
4597 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4598 UNITS_PER_WORD);
4599
4600 /* Note that we will be storing an integral number of words.
4601 So we have to be careful to ensure that we allocate an
4602 integral number of words. We do this below in the
4603 assign_stack_local if space was not allocated in the argument
4604 list. If it was, this will not work if PARM_BOUNDARY is not
4605 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4606 if it becomes a problem. */
4607
4608 if (stack_parm == 0)
4609 {
4610 stack_parm
4611 = assign_stack_local (GET_MODE (entry_parm),
4612 size_stored, 0);
4613 set_mem_attributes (stack_parm, parm, 1);
4614 }
4615
4616 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4617 abort ();
4618
4619 /* Handle calls that pass values in multiple non-contiguous
4620 locations. The Irix 6 ABI has examples of this. */
4621 if (GET_CODE (entry_parm) == PARALLEL)
4622 emit_group_store (validize_mem (stack_parm), entry_parm,
4623 int_size_in_bytes (TREE_TYPE (parm)),
4624 TYPE_ALIGN (TREE_TYPE (parm)));
4625 else
4626 move_block_from_reg (REGNO (entry_parm),
4627 validize_mem (stack_parm),
4628 size_stored / UNITS_PER_WORD,
4629 int_size_in_bytes (TREE_TYPE (parm)));
4630 }
4631 DECL_RTL (parm) = stack_parm;
4632 }
4633 else if (! ((! optimize
4634 && ! DECL_REGISTER (parm)
4635 && ! DECL_INLINE (fndecl))
4636 || TREE_SIDE_EFFECTS (parm)
4637 /* If -ffloat-store specified, don't put explicit
4638 float variables into registers. */
4639 || (flag_float_store
4640 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4641 /* Always assign pseudo to structure return or item passed
4642 by invisible reference. */
4643 || passed_pointer || parm == function_result_decl)
4644 {
4645 /* Store the parm in a pseudoregister during the function, but we
4646 may need to do it in a wider mode. */
4647
4648 register rtx parmreg;
4649 unsigned int regno, regnoi = 0, regnor = 0;
4650
4651 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4652
4653 promoted_nominal_mode
4654 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4655
4656 parmreg = gen_reg_rtx (promoted_nominal_mode);
4657 mark_user_reg (parmreg);
4658
4659 /* If this was an item that we received a pointer to, set DECL_RTL
4660 appropriately. */
4661 if (passed_pointer)
4662 {
4663 DECL_RTL (parm)
4664 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)), parmreg);
4665 set_mem_attributes (DECL_RTL (parm), parm, 1);
4666 }
4667 else
4668 DECL_RTL (parm) = parmreg;
4669
4670 /* Copy the value into the register. */
4671 if (nominal_mode != passed_mode
4672 || promoted_nominal_mode != promoted_mode)
4673 {
4674 int save_tree_used;
4675 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4676 mode, by the caller. We now have to convert it to
4677 NOMINAL_MODE, if different. However, PARMREG may be in
4678 a different mode than NOMINAL_MODE if it is being stored
4679 promoted.
4680
4681 If ENTRY_PARM is a hard register, it might be in a register
4682 not valid for operating in its mode (e.g., an odd-numbered
4683 register for a DFmode). In that case, moves are the only
4684 thing valid, so we can't do a convert from there. This
4685 occurs when the calling sequence allow such misaligned
4686 usages.
4687
4688 In addition, the conversion may involve a call, which could
4689 clobber parameters which haven't been copied to pseudo
4690 registers yet. Therefore, we must first copy the parm to
4691 a pseudo reg here, and save the conversion until after all
4692 parameters have been moved. */
4693
4694 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4695
4696 emit_move_insn (tempreg, validize_mem (entry_parm));
4697
4698 push_to_sequence (conversion_insns);
4699 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4700
4701 /* TREE_USED gets set erroneously during expand_assignment. */
4702 save_tree_used = TREE_USED (parm);
4703 expand_assignment (parm,
4704 make_tree (nominal_type, tempreg), 0, 0);
4705 TREE_USED (parm) = save_tree_used;
4706 conversion_insns = get_insns ();
4707 did_conversion = 1;
4708 end_sequence ();
4709 }
4710 else
4711 emit_move_insn (parmreg, validize_mem (entry_parm));
4712
4713 /* If we were passed a pointer but the actual value
4714 can safely live in a register, put it in one. */
4715 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4716 && ! ((! optimize
4717 && ! DECL_REGISTER (parm)
4718 && ! DECL_INLINE (fndecl))
4719 || TREE_SIDE_EFFECTS (parm)
4720 /* If -ffloat-store specified, don't put explicit
4721 float variables into registers. */
4722 || (flag_float_store
4723 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
4724 {
4725 /* We can't use nominal_mode, because it will have been set to
4726 Pmode above. We must use the actual mode of the parm. */
4727 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4728 mark_user_reg (parmreg);
4729 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
4730 {
4731 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4732
4733 push_to_sequence (conversion_insns);
4734 emit_move_insn (tempreg, DECL_RTL (parm));
4735 DECL_RTL (parm)
4736 = convert_to_mode (GET_MODE (parmreg), tempreg,
4737 TREE_UNSIGNED (TREE_TYPE (parm)));
4738 emit_move_insn (parmreg, DECL_RTL (parm));
4739 conversion_insns = get_insns();
4740 did_conversion = 1;
4741 end_sequence ();
4742 }
4743 else
4744 emit_move_insn (parmreg, DECL_RTL (parm));
4745 DECL_RTL (parm) = parmreg;
4746 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4747 now the parm. */
4748 stack_parm = 0;
4749 }
4750 #ifdef FUNCTION_ARG_CALLEE_COPIES
4751 /* If we are passed an arg by reference and it is our responsibility
4752 to make a copy, do it now.
4753 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4754 original argument, so we must recreate them in the call to
4755 FUNCTION_ARG_CALLEE_COPIES. */
4756 /* ??? Later add code to handle the case that if the argument isn't
4757 modified, don't do the copy. */
4758
4759 else if (passed_pointer
4760 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4761 TYPE_MODE (DECL_ARG_TYPE (parm)),
4762 DECL_ARG_TYPE (parm),
4763 named_arg)
4764 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4765 {
4766 rtx copy;
4767 tree type = DECL_ARG_TYPE (parm);
4768
4769 /* This sequence may involve a library call perhaps clobbering
4770 registers that haven't been copied to pseudos yet. */
4771
4772 push_to_sequence (conversion_insns);
4773
4774 if (!COMPLETE_TYPE_P (type)
4775 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4776 /* This is a variable sized object. */
4777 copy = gen_rtx_MEM (BLKmode,
4778 allocate_dynamic_stack_space
4779 (expr_size (parm), NULL_RTX,
4780 TYPE_ALIGN (type)));
4781 else
4782 copy = assign_stack_temp (TYPE_MODE (type),
4783 int_size_in_bytes (type), 1);
4784 set_mem_attributes (copy, parm, 1);
4785
4786 store_expr (parm, copy, 0);
4787 emit_move_insn (parmreg, XEXP (copy, 0));
4788 if (current_function_check_memory_usage)
4789 emit_library_call (chkr_set_right_libfunc,
4790 LCT_CONST_MAKE_BLOCK, VOIDmode, 3,
4791 XEXP (copy, 0), Pmode,
4792 GEN_INT (int_size_in_bytes (type)),
4793 TYPE_MODE (sizetype),
4794 GEN_INT (MEMORY_USE_RW),
4795 TYPE_MODE (integer_type_node));
4796 conversion_insns = get_insns ();
4797 did_conversion = 1;
4798 end_sequence ();
4799 }
4800 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4801
4802 /* In any case, record the parm's desired stack location
4803 in case we later discover it must live in the stack.
4804
4805 If it is a COMPLEX value, store the stack location for both
4806 halves. */
4807
4808 if (GET_CODE (parmreg) == CONCAT)
4809 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4810 else
4811 regno = REGNO (parmreg);
4812
4813 if (regno >= max_parm_reg)
4814 {
4815 rtx *new;
4816 int old_max_parm_reg = max_parm_reg;
4817
4818 /* It's slow to expand this one register at a time,
4819 but it's also rare and we need max_parm_reg to be
4820 precisely correct. */
4821 max_parm_reg = regno + 1;
4822 new = (rtx *) xrealloc (parm_reg_stack_loc,
4823 max_parm_reg * sizeof (rtx));
4824 memset ((char *) (new + old_max_parm_reg), 0,
4825 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4826 parm_reg_stack_loc = new;
4827 }
4828
4829 if (GET_CODE (parmreg) == CONCAT)
4830 {
4831 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4832
4833 regnor = REGNO (gen_realpart (submode, parmreg));
4834 regnoi = REGNO (gen_imagpart (submode, parmreg));
4835
4836 if (stack_parm != 0)
4837 {
4838 parm_reg_stack_loc[regnor]
4839 = gen_realpart (submode, stack_parm);
4840 parm_reg_stack_loc[regnoi]
4841 = gen_imagpart (submode, stack_parm);
4842 }
4843 else
4844 {
4845 parm_reg_stack_loc[regnor] = 0;
4846 parm_reg_stack_loc[regnoi] = 0;
4847 }
4848 }
4849 else
4850 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4851
4852 /* Mark the register as eliminable if we did no conversion
4853 and it was copied from memory at a fixed offset,
4854 and the arg pointer was not copied to a pseudo-reg.
4855 If the arg pointer is a pseudo reg or the offset formed
4856 an invalid address, such memory-equivalences
4857 as we make here would screw up life analysis for it. */
4858 if (nominal_mode == passed_mode
4859 && ! did_conversion
4860 && stack_parm != 0
4861 && GET_CODE (stack_parm) == MEM
4862 && stack_offset.var == 0
4863 && reg_mentioned_p (virtual_incoming_args_rtx,
4864 XEXP (stack_parm, 0)))
4865 {
4866 rtx linsn = get_last_insn ();
4867 rtx sinsn, set;
4868
4869 /* Mark complex types separately. */
4870 if (GET_CODE (parmreg) == CONCAT)
4871 /* Scan backwards for the set of the real and
4872 imaginary parts. */
4873 for (sinsn = linsn; sinsn != 0;
4874 sinsn = prev_nonnote_insn (sinsn))
4875 {
4876 set = single_set (sinsn);
4877 if (set != 0
4878 && SET_DEST (set) == regno_reg_rtx [regnoi])
4879 REG_NOTES (sinsn)
4880 = gen_rtx_EXPR_LIST (REG_EQUIV,
4881 parm_reg_stack_loc[regnoi],
4882 REG_NOTES (sinsn));
4883 else if (set != 0
4884 && SET_DEST (set) == regno_reg_rtx [regnor])
4885 REG_NOTES (sinsn)
4886 = gen_rtx_EXPR_LIST (REG_EQUIV,
4887 parm_reg_stack_loc[regnor],
4888 REG_NOTES (sinsn));
4889 }
4890 else if ((set = single_set (linsn)) != 0
4891 && SET_DEST (set) == parmreg)
4892 REG_NOTES (linsn)
4893 = gen_rtx_EXPR_LIST (REG_EQUIV,
4894 stack_parm, REG_NOTES (linsn));
4895 }
4896
4897 /* For pointer data type, suggest pointer register. */
4898 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4899 mark_reg_pointer (parmreg,
4900 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4901
4902 /* If something wants our address, try to use ADDRESSOF. */
4903 if (TREE_ADDRESSABLE (parm))
4904 {
4905 /* If we end up putting something into the stack,
4906 fixup_var_refs_insns will need to make a pass over
4907 all the instructions. It looks throughs the pending
4908 sequences -- but it can't see the ones in the
4909 CONVERSION_INSNS, if they're not on the sequence
4910 stack. So, we go back to that sequence, just so that
4911 the fixups will happen. */
4912 push_to_sequence (conversion_insns);
4913 put_var_into_stack (parm);
4914 conversion_insns = get_insns ();
4915 end_sequence ();
4916 }
4917 }
4918 else
4919 {
4920 /* Value must be stored in the stack slot STACK_PARM
4921 during function execution. */
4922
4923 if (promoted_mode != nominal_mode)
4924 {
4925 /* Conversion is required. */
4926 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4927
4928 emit_move_insn (tempreg, validize_mem (entry_parm));
4929
4930 push_to_sequence (conversion_insns);
4931 entry_parm = convert_to_mode (nominal_mode, tempreg,
4932 TREE_UNSIGNED (TREE_TYPE (parm)));
4933 if (stack_parm)
4934 {
4935 /* ??? This may need a big-endian conversion on sparc64. */
4936 stack_parm = change_address (stack_parm, nominal_mode,
4937 NULL_RTX);
4938 }
4939 conversion_insns = get_insns ();
4940 did_conversion = 1;
4941 end_sequence ();
4942 }
4943
4944 if (entry_parm != stack_parm)
4945 {
4946 if (stack_parm == 0)
4947 {
4948 stack_parm
4949 = assign_stack_local (GET_MODE (entry_parm),
4950 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
4951 set_mem_attributes (stack_parm, parm, 1);
4952 }
4953
4954 if (promoted_mode != nominal_mode)
4955 {
4956 push_to_sequence (conversion_insns);
4957 emit_move_insn (validize_mem (stack_parm),
4958 validize_mem (entry_parm));
4959 conversion_insns = get_insns ();
4960 end_sequence ();
4961 }
4962 else
4963 emit_move_insn (validize_mem (stack_parm),
4964 validize_mem (entry_parm));
4965 }
4966 if (current_function_check_memory_usage)
4967 {
4968 push_to_sequence (conversion_insns);
4969 emit_library_call (chkr_set_right_libfunc, LCT_CONST_MAKE_BLOCK,
4970 VOIDmode, 3, XEXP (stack_parm, 0), Pmode,
4971 GEN_INT (GET_MODE_SIZE (GET_MODE
4972 (entry_parm))),
4973 TYPE_MODE (sizetype),
4974 GEN_INT (MEMORY_USE_RW),
4975 TYPE_MODE (integer_type_node));
4976
4977 conversion_insns = get_insns ();
4978 end_sequence ();
4979 }
4980 DECL_RTL (parm) = stack_parm;
4981 }
4982
4983 /* If this "parameter" was the place where we are receiving the
4984 function's incoming structure pointer, set up the result. */
4985 if (parm == function_result_decl)
4986 {
4987 tree result = DECL_RESULT (fndecl);
4988
4989 DECL_RTL (result)
4990 = gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm));
4991
4992 set_mem_attributes (DECL_RTL (result), result, 1);
4993 }
4994 }
4995
4996 /* Output all parameter conversion instructions (possibly including calls)
4997 now that all parameters have been copied out of hard registers. */
4998 emit_insns (conversion_insns);
4999
5000 last_parm_insn = get_last_insn ();
5001
5002 current_function_args_size = stack_args_size.constant;
5003
5004 /* Adjust function incoming argument size for alignment and
5005 minimum length. */
5006
5007 #ifdef REG_PARM_STACK_SPACE
5008 #ifndef MAYBE_REG_PARM_STACK_SPACE
5009 current_function_args_size = MAX (current_function_args_size,
5010 REG_PARM_STACK_SPACE (fndecl));
5011 #endif
5012 #endif
5013
5014 #ifdef STACK_BOUNDARY
5015 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
5016
5017 current_function_args_size
5018 = ((current_function_args_size + STACK_BYTES - 1)
5019 / STACK_BYTES) * STACK_BYTES;
5020 #endif
5021
5022 #ifdef ARGS_GROW_DOWNWARD
5023 current_function_arg_offset_rtx
5024 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5025 : expand_expr (size_diffop (stack_args_size.var,
5026 size_int (-stack_args_size.constant)),
5027 NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD));
5028 #else
5029 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5030 #endif
5031
5032 /* See how many bytes, if any, of its args a function should try to pop
5033 on return. */
5034
5035 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5036 current_function_args_size);
5037
5038 /* For stdarg.h function, save info about
5039 regs and stack space used by the named args. */
5040
5041 if (!hide_last_arg)
5042 current_function_args_info = args_so_far;
5043
5044 /* Set the rtx used for the function return value. Put this in its
5045 own variable so any optimizers that need this information don't have
5046 to include tree.h. Do this here so it gets done when an inlined
5047 function gets output. */
5048
5049 current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl));
5050 }
5051 \f
5052 /* Indicate whether REGNO is an incoming argument to the current function
5053 that was promoted to a wider mode. If so, return the RTX for the
5054 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5055 that REGNO is promoted from and whether the promotion was signed or
5056 unsigned. */
5057
5058 #ifdef PROMOTE_FUNCTION_ARGS
5059
5060 rtx
5061 promoted_input_arg (regno, pmode, punsignedp)
5062 unsigned int regno;
5063 enum machine_mode *pmode;
5064 int *punsignedp;
5065 {
5066 tree arg;
5067
5068 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5069 arg = TREE_CHAIN (arg))
5070 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5071 && REGNO (DECL_INCOMING_RTL (arg)) == regno
5072 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5073 {
5074 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5075 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
5076
5077 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5078 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5079 && mode != DECL_MODE (arg))
5080 {
5081 *pmode = DECL_MODE (arg);
5082 *punsignedp = unsignedp;
5083 return DECL_INCOMING_RTL (arg);
5084 }
5085 }
5086
5087 return 0;
5088 }
5089
5090 #endif
5091 \f
5092 /* Compute the size and offset from the start of the stacked arguments for a
5093 parm passed in mode PASSED_MODE and with type TYPE.
5094
5095 INITIAL_OFFSET_PTR points to the current offset into the stacked
5096 arguments.
5097
5098 The starting offset and size for this parm are returned in *OFFSET_PTR
5099 and *ARG_SIZE_PTR, respectively.
5100
5101 IN_REGS is non-zero if the argument will be passed in registers. It will
5102 never be set if REG_PARM_STACK_SPACE is not defined.
5103
5104 FNDECL is the function in which the argument was defined.
5105
5106 There are two types of rounding that are done. The first, controlled by
5107 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5108 list to be aligned to the specific boundary (in bits). This rounding
5109 affects the initial and starting offsets, but not the argument size.
5110
5111 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5112 optionally rounds the size of the parm to PARM_BOUNDARY. The
5113 initial offset is not affected by this rounding, while the size always
5114 is and the starting offset may be. */
5115
5116 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
5117 initial_offset_ptr is positive because locate_and_pad_parm's
5118 callers pass in the total size of args so far as
5119 initial_offset_ptr. arg_size_ptr is always positive.*/
5120
5121 void
5122 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
5123 initial_offset_ptr, offset_ptr, arg_size_ptr,
5124 alignment_pad)
5125 enum machine_mode passed_mode;
5126 tree type;
5127 int in_regs ATTRIBUTE_UNUSED;
5128 tree fndecl ATTRIBUTE_UNUSED;
5129 struct args_size *initial_offset_ptr;
5130 struct args_size *offset_ptr;
5131 struct args_size *arg_size_ptr;
5132 struct args_size *alignment_pad;
5133
5134 {
5135 tree sizetree
5136 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5137 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5138 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5139
5140 #ifdef REG_PARM_STACK_SPACE
5141 /* If we have found a stack parm before we reach the end of the
5142 area reserved for registers, skip that area. */
5143 if (! in_regs)
5144 {
5145 int reg_parm_stack_space = 0;
5146
5147 #ifdef MAYBE_REG_PARM_STACK_SPACE
5148 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5149 #else
5150 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5151 #endif
5152 if (reg_parm_stack_space > 0)
5153 {
5154 if (initial_offset_ptr->var)
5155 {
5156 initial_offset_ptr->var
5157 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5158 ssize_int (reg_parm_stack_space));
5159 initial_offset_ptr->constant = 0;
5160 }
5161 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5162 initial_offset_ptr->constant = reg_parm_stack_space;
5163 }
5164 }
5165 #endif /* REG_PARM_STACK_SPACE */
5166
5167 arg_size_ptr->var = 0;
5168 arg_size_ptr->constant = 0;
5169 alignment_pad->var = 0;
5170 alignment_pad->constant = 0;
5171
5172 #ifdef ARGS_GROW_DOWNWARD
5173 if (initial_offset_ptr->var)
5174 {
5175 offset_ptr->constant = 0;
5176 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5177 initial_offset_ptr->var);
5178 }
5179 else
5180 {
5181 offset_ptr->constant = -initial_offset_ptr->constant;
5182 offset_ptr->var = 0;
5183 }
5184 if (where_pad != none
5185 && (!host_integerp (sizetree, 1)
5186 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5187 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5188 SUB_PARM_SIZE (*offset_ptr, sizetree);
5189 if (where_pad != downward)
5190 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5191 if (initial_offset_ptr->var)
5192 arg_size_ptr->var = size_binop (MINUS_EXPR,
5193 size_binop (MINUS_EXPR,
5194 ssize_int (0),
5195 initial_offset_ptr->var),
5196 offset_ptr->var);
5197
5198 else
5199 arg_size_ptr->constant = (-initial_offset_ptr->constant
5200 - offset_ptr->constant);
5201
5202 #else /* !ARGS_GROW_DOWNWARD */
5203 if (!in_regs
5204 #ifdef REG_PARM_STACK_SPACE
5205 || REG_PARM_STACK_SPACE (fndecl) > 0
5206 #endif
5207 )
5208 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5209 *offset_ptr = *initial_offset_ptr;
5210
5211 #ifdef PUSH_ROUNDING
5212 if (passed_mode != BLKmode)
5213 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5214 #endif
5215
5216 /* Pad_below needs the pre-rounded size to know how much to pad below
5217 so this must be done before rounding up. */
5218 if (where_pad == downward
5219 /* However, BLKmode args passed in regs have their padding done elsewhere.
5220 The stack slot must be able to hold the entire register. */
5221 && !(in_regs && passed_mode == BLKmode))
5222 pad_below (offset_ptr, passed_mode, sizetree);
5223
5224 if (where_pad != none
5225 && (!host_integerp (sizetree, 1)
5226 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5227 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5228
5229 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5230 #endif /* ARGS_GROW_DOWNWARD */
5231 }
5232
5233 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5234 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5235
5236 static void
5237 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5238 struct args_size *offset_ptr;
5239 int boundary;
5240 struct args_size *alignment_pad;
5241 {
5242 tree save_var = NULL_TREE;
5243 HOST_WIDE_INT save_constant = 0;
5244
5245 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5246
5247 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5248 {
5249 save_var = offset_ptr->var;
5250 save_constant = offset_ptr->constant;
5251 }
5252
5253 alignment_pad->var = NULL_TREE;
5254 alignment_pad->constant = 0;
5255
5256 if (boundary > BITS_PER_UNIT)
5257 {
5258 if (offset_ptr->var)
5259 {
5260 offset_ptr->var =
5261 #ifdef ARGS_GROW_DOWNWARD
5262 round_down
5263 #else
5264 round_up
5265 #endif
5266 (ARGS_SIZE_TREE (*offset_ptr),
5267 boundary / BITS_PER_UNIT);
5268 offset_ptr->constant = 0; /*?*/
5269 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5270 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5271 save_var);
5272 }
5273 else
5274 {
5275 offset_ptr->constant =
5276 #ifdef ARGS_GROW_DOWNWARD
5277 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5278 #else
5279 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5280 #endif
5281 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5282 alignment_pad->constant = offset_ptr->constant - save_constant;
5283 }
5284 }
5285 }
5286
5287 #ifndef ARGS_GROW_DOWNWARD
5288 static void
5289 pad_below (offset_ptr, passed_mode, sizetree)
5290 struct args_size *offset_ptr;
5291 enum machine_mode passed_mode;
5292 tree sizetree;
5293 {
5294 if (passed_mode != BLKmode)
5295 {
5296 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5297 offset_ptr->constant
5298 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5299 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5300 - GET_MODE_SIZE (passed_mode));
5301 }
5302 else
5303 {
5304 if (TREE_CODE (sizetree) != INTEGER_CST
5305 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5306 {
5307 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5308 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5309 /* Add it in. */
5310 ADD_PARM_SIZE (*offset_ptr, s2);
5311 SUB_PARM_SIZE (*offset_ptr, sizetree);
5312 }
5313 }
5314 }
5315 #endif
5316 \f
5317 /* Walk the tree of blocks describing the binding levels within a function
5318 and warn about uninitialized variables.
5319 This is done after calling flow_analysis and before global_alloc
5320 clobbers the pseudo-regs to hard regs. */
5321
5322 void
5323 uninitialized_vars_warning (block)
5324 tree block;
5325 {
5326 register tree decl, sub;
5327 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5328 {
5329 if (warn_uninitialized
5330 && TREE_CODE (decl) == VAR_DECL
5331 /* These warnings are unreliable for and aggregates
5332 because assigning the fields one by one can fail to convince
5333 flow.c that the entire aggregate was initialized.
5334 Unions are troublesome because members may be shorter. */
5335 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5336 && DECL_RTL (decl) != 0
5337 && GET_CODE (DECL_RTL (decl)) == REG
5338 /* Global optimizations can make it difficult to determine if a
5339 particular variable has been initialized. However, a VAR_DECL
5340 with a nonzero DECL_INITIAL had an initializer, so do not
5341 claim it is potentially uninitialized.
5342
5343 We do not care about the actual value in DECL_INITIAL, so we do
5344 not worry that it may be a dangling pointer. */
5345 && DECL_INITIAL (decl) == NULL_TREE
5346 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5347 warning_with_decl (decl,
5348 "`%s' might be used uninitialized in this function");
5349 if (extra_warnings
5350 && TREE_CODE (decl) == VAR_DECL
5351 && DECL_RTL (decl) != 0
5352 && GET_CODE (DECL_RTL (decl)) == REG
5353 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5354 warning_with_decl (decl,
5355 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5356 }
5357 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5358 uninitialized_vars_warning (sub);
5359 }
5360
5361 /* Do the appropriate part of uninitialized_vars_warning
5362 but for arguments instead of local variables. */
5363
5364 void
5365 setjmp_args_warning ()
5366 {
5367 register tree decl;
5368 for (decl = DECL_ARGUMENTS (current_function_decl);
5369 decl; decl = TREE_CHAIN (decl))
5370 if (DECL_RTL (decl) != 0
5371 && GET_CODE (DECL_RTL (decl)) == REG
5372 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5373 warning_with_decl (decl,
5374 "argument `%s' might be clobbered by `longjmp' or `vfork'");
5375 }
5376
5377 /* If this function call setjmp, put all vars into the stack
5378 unless they were declared `register'. */
5379
5380 void
5381 setjmp_protect (block)
5382 tree block;
5383 {
5384 register tree decl, sub;
5385 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5386 if ((TREE_CODE (decl) == VAR_DECL
5387 || TREE_CODE (decl) == PARM_DECL)
5388 && DECL_RTL (decl) != 0
5389 && (GET_CODE (DECL_RTL (decl)) == REG
5390 || (GET_CODE (DECL_RTL (decl)) == MEM
5391 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5392 /* If this variable came from an inline function, it must be
5393 that its life doesn't overlap the setjmp. If there was a
5394 setjmp in the function, it would already be in memory. We
5395 must exclude such variable because their DECL_RTL might be
5396 set to strange things such as virtual_stack_vars_rtx. */
5397 && ! DECL_FROM_INLINE (decl)
5398 && (
5399 #ifdef NON_SAVING_SETJMP
5400 /* If longjmp doesn't restore the registers,
5401 don't put anything in them. */
5402 NON_SAVING_SETJMP
5403 ||
5404 #endif
5405 ! DECL_REGISTER (decl)))
5406 put_var_into_stack (decl);
5407 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5408 setjmp_protect (sub);
5409 }
5410 \f
5411 /* Like the previous function, but for args instead of local variables. */
5412
5413 void
5414 setjmp_protect_args ()
5415 {
5416 register tree decl;
5417 for (decl = DECL_ARGUMENTS (current_function_decl);
5418 decl; decl = TREE_CHAIN (decl))
5419 if ((TREE_CODE (decl) == VAR_DECL
5420 || TREE_CODE (decl) == PARM_DECL)
5421 && DECL_RTL (decl) != 0
5422 && (GET_CODE (DECL_RTL (decl)) == REG
5423 || (GET_CODE (DECL_RTL (decl)) == MEM
5424 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5425 && (
5426 /* If longjmp doesn't restore the registers,
5427 don't put anything in them. */
5428 #ifdef NON_SAVING_SETJMP
5429 NON_SAVING_SETJMP
5430 ||
5431 #endif
5432 ! DECL_REGISTER (decl)))
5433 put_var_into_stack (decl);
5434 }
5435 \f
5436 /* Return the context-pointer register corresponding to DECL,
5437 or 0 if it does not need one. */
5438
5439 rtx
5440 lookup_static_chain (decl)
5441 tree decl;
5442 {
5443 tree context = decl_function_context (decl);
5444 tree link;
5445
5446 if (context == 0
5447 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5448 return 0;
5449
5450 /* We treat inline_function_decl as an alias for the current function
5451 because that is the inline function whose vars, types, etc.
5452 are being merged into the current function.
5453 See expand_inline_function. */
5454 if (context == current_function_decl || context == inline_function_decl)
5455 return virtual_stack_vars_rtx;
5456
5457 for (link = context_display; link; link = TREE_CHAIN (link))
5458 if (TREE_PURPOSE (link) == context)
5459 return RTL_EXPR_RTL (TREE_VALUE (link));
5460
5461 abort ();
5462 }
5463 \f
5464 /* Convert a stack slot address ADDR for variable VAR
5465 (from a containing function)
5466 into an address valid in this function (using a static chain). */
5467
5468 rtx
5469 fix_lexical_addr (addr, var)
5470 rtx addr;
5471 tree var;
5472 {
5473 rtx basereg;
5474 HOST_WIDE_INT displacement;
5475 tree context = decl_function_context (var);
5476 struct function *fp;
5477 rtx base = 0;
5478
5479 /* If this is the present function, we need not do anything. */
5480 if (context == current_function_decl || context == inline_function_decl)
5481 return addr;
5482
5483 for (fp = outer_function_chain; fp; fp = fp->next)
5484 if (fp->decl == context)
5485 break;
5486
5487 if (fp == 0)
5488 abort ();
5489
5490 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5491 addr = XEXP (XEXP (addr, 0), 0);
5492
5493 /* Decode given address as base reg plus displacement. */
5494 if (GET_CODE (addr) == REG)
5495 basereg = addr, displacement = 0;
5496 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5497 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5498 else
5499 abort ();
5500
5501 /* We accept vars reached via the containing function's
5502 incoming arg pointer and via its stack variables pointer. */
5503 if (basereg == fp->internal_arg_pointer)
5504 {
5505 /* If reached via arg pointer, get the arg pointer value
5506 out of that function's stack frame.
5507
5508 There are two cases: If a separate ap is needed, allocate a
5509 slot in the outer function for it and dereference it that way.
5510 This is correct even if the real ap is actually a pseudo.
5511 Otherwise, just adjust the offset from the frame pointer to
5512 compensate. */
5513
5514 #ifdef NEED_SEPARATE_AP
5515 rtx addr;
5516
5517 if (fp->x_arg_pointer_save_area == 0)
5518 fp->x_arg_pointer_save_area
5519 = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
5520
5521 addr = fix_lexical_addr (XEXP (fp->x_arg_pointer_save_area, 0), var);
5522 addr = memory_address (Pmode, addr);
5523
5524 base = gen_rtx_MEM (Pmode, addr);
5525 MEM_ALIAS_SET (base) = get_frame_alias_set ();
5526 base = copy_to_reg (base);
5527 #else
5528 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5529 base = lookup_static_chain (var);
5530 #endif
5531 }
5532
5533 else if (basereg == virtual_stack_vars_rtx)
5534 {
5535 /* This is the same code as lookup_static_chain, duplicated here to
5536 avoid an extra call to decl_function_context. */
5537 tree link;
5538
5539 for (link = context_display; link; link = TREE_CHAIN (link))
5540 if (TREE_PURPOSE (link) == context)
5541 {
5542 base = RTL_EXPR_RTL (TREE_VALUE (link));
5543 break;
5544 }
5545 }
5546
5547 if (base == 0)
5548 abort ();
5549
5550 /* Use same offset, relative to appropriate static chain or argument
5551 pointer. */
5552 return plus_constant (base, displacement);
5553 }
5554 \f
5555 /* Return the address of the trampoline for entering nested fn FUNCTION.
5556 If necessary, allocate a trampoline (in the stack frame)
5557 and emit rtl to initialize its contents (at entry to this function). */
5558
5559 rtx
5560 trampoline_address (function)
5561 tree function;
5562 {
5563 tree link;
5564 tree rtlexp;
5565 rtx tramp;
5566 struct function *fp;
5567 tree fn_context;
5568
5569 /* Find an existing trampoline and return it. */
5570 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5571 if (TREE_PURPOSE (link) == function)
5572 return
5573 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5574
5575 for (fp = outer_function_chain; fp; fp = fp->next)
5576 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5577 if (TREE_PURPOSE (link) == function)
5578 {
5579 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5580 function);
5581 return adjust_trampoline_addr (tramp);
5582 }
5583
5584 /* None exists; we must make one. */
5585
5586 /* Find the `struct function' for the function containing FUNCTION. */
5587 fp = 0;
5588 fn_context = decl_function_context (function);
5589 if (fn_context != current_function_decl
5590 && fn_context != inline_function_decl)
5591 for (fp = outer_function_chain; fp; fp = fp->next)
5592 if (fp->decl == fn_context)
5593 break;
5594
5595 /* Allocate run-time space for this trampoline
5596 (usually in the defining function's stack frame). */
5597 #ifdef ALLOCATE_TRAMPOLINE
5598 tramp = ALLOCATE_TRAMPOLINE (fp);
5599 #else
5600 /* If rounding needed, allocate extra space
5601 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5602 #ifdef TRAMPOLINE_ALIGNMENT
5603 #define TRAMPOLINE_REAL_SIZE \
5604 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5605 #else
5606 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5607 #endif
5608 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5609 fp ? fp : cfun);
5610 #endif
5611
5612 /* Record the trampoline for reuse and note it for later initialization
5613 by expand_function_end. */
5614 if (fp != 0)
5615 {
5616 rtlexp = make_node (RTL_EXPR);
5617 RTL_EXPR_RTL (rtlexp) = tramp;
5618 fp->x_trampoline_list = tree_cons (function, rtlexp,
5619 fp->x_trampoline_list);
5620 }
5621 else
5622 {
5623 /* Make the RTL_EXPR node temporary, not momentary, so that the
5624 trampoline_list doesn't become garbage. */
5625 rtlexp = make_node (RTL_EXPR);
5626
5627 RTL_EXPR_RTL (rtlexp) = tramp;
5628 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5629 }
5630
5631 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5632 return adjust_trampoline_addr (tramp);
5633 }
5634
5635 /* Given a trampoline address,
5636 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5637
5638 static rtx
5639 round_trampoline_addr (tramp)
5640 rtx tramp;
5641 {
5642 #ifdef TRAMPOLINE_ALIGNMENT
5643 /* Round address up to desired boundary. */
5644 rtx temp = gen_reg_rtx (Pmode);
5645 temp = expand_binop (Pmode, add_optab, tramp,
5646 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
5647 temp, 0, OPTAB_LIB_WIDEN);
5648 tramp = expand_binop (Pmode, and_optab, temp,
5649 GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
5650 temp, 0, OPTAB_LIB_WIDEN);
5651 #endif
5652 return tramp;
5653 }
5654
5655 /* Given a trampoline address, round it then apply any
5656 platform-specific adjustments so that the result can be used for a
5657 function call . */
5658
5659 static rtx
5660 adjust_trampoline_addr (tramp)
5661 rtx tramp;
5662 {
5663 tramp = round_trampoline_addr (tramp);
5664 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5665 TRAMPOLINE_ADJUST_ADDRESS (tramp);
5666 #endif
5667 return tramp;
5668 }
5669 \f
5670 /* Put all this function's BLOCK nodes including those that are chained
5671 onto the first block into a vector, and return it.
5672 Also store in each NOTE for the beginning or end of a block
5673 the index of that block in the vector.
5674 The arguments are BLOCK, the chain of top-level blocks of the function,
5675 and INSNS, the insn chain of the function. */
5676
5677 void
5678 identify_blocks ()
5679 {
5680 int n_blocks;
5681 tree *block_vector, *last_block_vector;
5682 tree *block_stack;
5683 tree block = DECL_INITIAL (current_function_decl);
5684
5685 if (block == 0)
5686 return;
5687
5688 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5689 depth-first order. */
5690 block_vector = get_block_vector (block, &n_blocks);
5691 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5692
5693 last_block_vector = identify_blocks_1 (get_insns (),
5694 block_vector + 1,
5695 block_vector + n_blocks,
5696 block_stack);
5697
5698 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5699 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5700 if (0 && last_block_vector != block_vector + n_blocks)
5701 abort ();
5702
5703 free (block_vector);
5704 free (block_stack);
5705 }
5706
5707 /* Subroutine of identify_blocks. Do the block substitution on the
5708 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5709
5710 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5711 BLOCK_VECTOR is incremented for each block seen. */
5712
5713 static tree *
5714 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5715 rtx insns;
5716 tree *block_vector;
5717 tree *end_block_vector;
5718 tree *orig_block_stack;
5719 {
5720 rtx insn;
5721 tree *block_stack = orig_block_stack;
5722
5723 for (insn = insns; insn; insn = NEXT_INSN (insn))
5724 {
5725 if (GET_CODE (insn) == NOTE)
5726 {
5727 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5728 {
5729 tree b;
5730
5731 /* If there are more block notes than BLOCKs, something
5732 is badly wrong. */
5733 if (block_vector == end_block_vector)
5734 abort ();
5735
5736 b = *block_vector++;
5737 NOTE_BLOCK (insn) = b;
5738 *block_stack++ = b;
5739 }
5740 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5741 {
5742 /* If there are more NOTE_INSN_BLOCK_ENDs than
5743 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5744 if (block_stack == orig_block_stack)
5745 abort ();
5746
5747 NOTE_BLOCK (insn) = *--block_stack;
5748 }
5749 }
5750 else if (GET_CODE (insn) == CALL_INSN
5751 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5752 {
5753 rtx cp = PATTERN (insn);
5754
5755 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5756 end_block_vector, block_stack);
5757 if (XEXP (cp, 1))
5758 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5759 end_block_vector, block_stack);
5760 if (XEXP (cp, 2))
5761 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5762 end_block_vector, block_stack);
5763 }
5764 }
5765
5766 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5767 something is badly wrong. */
5768 if (block_stack != orig_block_stack)
5769 abort ();
5770
5771 return block_vector;
5772 }
5773
5774 /* Identify BLOCKs referenced by more than one
5775 NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */
5776
5777 void
5778 reorder_blocks ()
5779 {
5780 tree block = DECL_INITIAL (current_function_decl);
5781 varray_type block_stack;
5782
5783 if (block == NULL_TREE)
5784 return;
5785
5786 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5787
5788 /* Prune the old trees away, so that they don't get in the way. */
5789 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5790 BLOCK_CHAIN (block) = NULL_TREE;
5791
5792 reorder_blocks_1 (get_insns (), block, &block_stack);
5793
5794 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5795
5796 VARRAY_FREE (block_stack);
5797 }
5798
5799 /* Helper function for reorder_blocks. Process the insn chain beginning
5800 at INSNS. Recurse for CALL_PLACEHOLDER insns. */
5801
5802 static void
5803 reorder_blocks_1 (insns, current_block, p_block_stack)
5804 rtx insns;
5805 tree current_block;
5806 varray_type *p_block_stack;
5807 {
5808 rtx insn;
5809
5810 for (insn = insns; insn; insn = NEXT_INSN (insn))
5811 {
5812 if (GET_CODE (insn) == NOTE)
5813 {
5814 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5815 {
5816 tree block = NOTE_BLOCK (insn);
5817 /* If we have seen this block before, copy it. */
5818 if (TREE_ASM_WRITTEN (block))
5819 {
5820 block = copy_node (block);
5821 NOTE_BLOCK (insn) = block;
5822 }
5823 BLOCK_SUBBLOCKS (block) = 0;
5824 TREE_ASM_WRITTEN (block) = 1;
5825 BLOCK_SUPERCONTEXT (block) = current_block;
5826 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5827 BLOCK_SUBBLOCKS (current_block) = block;
5828 current_block = block;
5829 VARRAY_PUSH_TREE (*p_block_stack, block);
5830 }
5831 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5832 {
5833 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
5834 VARRAY_POP (*p_block_stack);
5835 BLOCK_SUBBLOCKS (current_block)
5836 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5837 current_block = BLOCK_SUPERCONTEXT (current_block);
5838 }
5839 }
5840 else if (GET_CODE (insn) == CALL_INSN
5841 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5842 {
5843 rtx cp = PATTERN (insn);
5844 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
5845 if (XEXP (cp, 1))
5846 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
5847 if (XEXP (cp, 2))
5848 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
5849 }
5850 }
5851 }
5852
5853 /* Reverse the order of elements in the chain T of blocks,
5854 and return the new head of the chain (old last element). */
5855
5856 static tree
5857 blocks_nreverse (t)
5858 tree t;
5859 {
5860 register tree prev = 0, decl, next;
5861 for (decl = t; decl; decl = next)
5862 {
5863 next = BLOCK_CHAIN (decl);
5864 BLOCK_CHAIN (decl) = prev;
5865 prev = decl;
5866 }
5867 return prev;
5868 }
5869
5870 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
5871 non-NULL, list them all into VECTOR, in a depth-first preorder
5872 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
5873 blocks. */
5874
5875 static int
5876 all_blocks (block, vector)
5877 tree block;
5878 tree *vector;
5879 {
5880 int n_blocks = 0;
5881
5882 while (block)
5883 {
5884 TREE_ASM_WRITTEN (block) = 0;
5885
5886 /* Record this block. */
5887 if (vector)
5888 vector[n_blocks] = block;
5889
5890 ++n_blocks;
5891
5892 /* Record the subblocks, and their subblocks... */
5893 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
5894 vector ? vector + n_blocks : 0);
5895 block = BLOCK_CHAIN (block);
5896 }
5897
5898 return n_blocks;
5899 }
5900
5901 /* Return a vector containing all the blocks rooted at BLOCK. The
5902 number of elements in the vector is stored in N_BLOCKS_P. The
5903 vector is dynamically allocated; it is the caller's responsibility
5904 to call `free' on the pointer returned. */
5905
5906 static tree *
5907 get_block_vector (block, n_blocks_p)
5908 tree block;
5909 int *n_blocks_p;
5910 {
5911 tree *block_vector;
5912
5913 *n_blocks_p = all_blocks (block, NULL);
5914 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
5915 all_blocks (block, block_vector);
5916
5917 return block_vector;
5918 }
5919
5920 static int next_block_index = 2;
5921
5922 /* Set BLOCK_NUMBER for all the blocks in FN. */
5923
5924 void
5925 number_blocks (fn)
5926 tree fn;
5927 {
5928 int i;
5929 int n_blocks;
5930 tree *block_vector;
5931
5932 /* For SDB and XCOFF debugging output, we start numbering the blocks
5933 from 1 within each function, rather than keeping a running
5934 count. */
5935 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
5936 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
5937 next_block_index = 1;
5938 #endif
5939
5940 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
5941
5942 /* The top-level BLOCK isn't numbered at all. */
5943 for (i = 1; i < n_blocks; ++i)
5944 /* We number the blocks from two. */
5945 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
5946
5947 free (block_vector);
5948
5949 return;
5950 }
5951 \f
5952 /* Allocate a function structure and reset its contents to the defaults. */
5953 static void
5954 prepare_function_start ()
5955 {
5956 cfun = (struct function *) xcalloc (1, sizeof (struct function));
5957
5958 init_stmt_for_function ();
5959 init_eh_for_function ();
5960
5961 cse_not_expected = ! optimize;
5962
5963 /* Caller save not needed yet. */
5964 caller_save_needed = 0;
5965
5966 /* No stack slots have been made yet. */
5967 stack_slot_list = 0;
5968
5969 current_function_has_nonlocal_label = 0;
5970 current_function_has_nonlocal_goto = 0;
5971
5972 /* There is no stack slot for handling nonlocal gotos. */
5973 nonlocal_goto_handler_slots = 0;
5974 nonlocal_goto_stack_level = 0;
5975
5976 /* No labels have been declared for nonlocal use. */
5977 nonlocal_labels = 0;
5978 nonlocal_goto_handler_labels = 0;
5979
5980 /* No function calls so far in this function. */
5981 function_call_count = 0;
5982
5983 /* No parm regs have been allocated.
5984 (This is important for output_inline_function.) */
5985 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
5986
5987 /* Initialize the RTL mechanism. */
5988 init_emit ();
5989
5990 /* Initialize the queue of pending postincrement and postdecrements,
5991 and some other info in expr.c. */
5992 init_expr ();
5993
5994 /* We haven't done register allocation yet. */
5995 reg_renumber = 0;
5996
5997 init_varasm_status (cfun);
5998
5999 /* Clear out data used for inlining. */
6000 cfun->inlinable = 0;
6001 cfun->original_decl_initial = 0;
6002 cfun->original_arg_vector = 0;
6003
6004 #ifdef STACK_BOUNDARY
6005 cfun->stack_alignment_needed = STACK_BOUNDARY;
6006 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6007 #else
6008 cfun->stack_alignment_needed = 0;
6009 cfun->preferred_stack_boundary = 0;
6010 #endif
6011
6012 /* Set if a call to setjmp is seen. */
6013 current_function_calls_setjmp = 0;
6014
6015 /* Set if a call to longjmp is seen. */
6016 current_function_calls_longjmp = 0;
6017
6018 current_function_calls_alloca = 0;
6019 current_function_contains_functions = 0;
6020 current_function_is_leaf = 0;
6021 current_function_nothrow = 0;
6022 current_function_sp_is_unchanging = 0;
6023 current_function_uses_only_leaf_regs = 0;
6024 current_function_has_computed_jump = 0;
6025 current_function_is_thunk = 0;
6026
6027 current_function_returns_pcc_struct = 0;
6028 current_function_returns_struct = 0;
6029 current_function_epilogue_delay_list = 0;
6030 current_function_uses_const_pool = 0;
6031 current_function_uses_pic_offset_table = 0;
6032 current_function_cannot_inline = 0;
6033
6034 /* We have not yet needed to make a label to jump to for tail-recursion. */
6035 tail_recursion_label = 0;
6036
6037 /* We haven't had a need to make a save area for ap yet. */
6038 arg_pointer_save_area = 0;
6039
6040 /* No stack slots allocated yet. */
6041 frame_offset = 0;
6042
6043 /* No SAVE_EXPRs in this function yet. */
6044 save_expr_regs = 0;
6045
6046 /* No RTL_EXPRs in this function yet. */
6047 rtl_expr_chain = 0;
6048
6049 /* Set up to allocate temporaries. */
6050 init_temp_slots ();
6051
6052 /* Indicate that we need to distinguish between the return value of the
6053 present function and the return value of a function being called. */
6054 rtx_equal_function_value_matters = 1;
6055
6056 /* Indicate that we have not instantiated virtual registers yet. */
6057 virtuals_instantiated = 0;
6058
6059 /* Indicate that we want CONCATs now. */
6060 generating_concat_p = 1;
6061
6062 /* Indicate we have no need of a frame pointer yet. */
6063 frame_pointer_needed = 0;
6064
6065 /* By default assume not varargs or stdarg. */
6066 current_function_varargs = 0;
6067 current_function_stdarg = 0;
6068
6069 /* We haven't made any trampolines for this function yet. */
6070 trampoline_list = 0;
6071
6072 init_pending_stack_adjust ();
6073 inhibit_defer_pop = 0;
6074
6075 current_function_outgoing_args_size = 0;
6076
6077 if (init_lang_status)
6078 (*init_lang_status) (cfun);
6079 if (init_machine_status)
6080 (*init_machine_status) (cfun);
6081 }
6082
6083 /* Initialize the rtl expansion mechanism so that we can do simple things
6084 like generate sequences. This is used to provide a context during global
6085 initialization of some passes. */
6086 void
6087 init_dummy_function_start ()
6088 {
6089 prepare_function_start ();
6090 }
6091
6092 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6093 and initialize static variables for generating RTL for the statements
6094 of the function. */
6095
6096 void
6097 init_function_start (subr, filename, line)
6098 tree subr;
6099 const char *filename;
6100 int line;
6101 {
6102 prepare_function_start ();
6103
6104 /* Remember this function for later. */
6105 cfun->next_global = all_functions;
6106 all_functions = cfun;
6107
6108 current_function_name = (*decl_printable_name) (subr, 2);
6109 cfun->decl = subr;
6110
6111 /* Nonzero if this is a nested function that uses a static chain. */
6112
6113 current_function_needs_context
6114 = (decl_function_context (current_function_decl) != 0
6115 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6116
6117 /* Within function body, compute a type's size as soon it is laid out. */
6118 immediate_size_expand++;
6119
6120 /* Prevent ever trying to delete the first instruction of a function.
6121 Also tell final how to output a linenum before the function prologue.
6122 Note linenums could be missing, e.g. when compiling a Java .class file. */
6123 if (line > 0)
6124 emit_line_note (filename, line);
6125
6126 /* Make sure first insn is a note even if we don't want linenums.
6127 This makes sure the first insn will never be deleted.
6128 Also, final expects a note to appear there. */
6129 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6130
6131 /* Set flags used by final.c. */
6132 if (aggregate_value_p (DECL_RESULT (subr)))
6133 {
6134 #ifdef PCC_STATIC_STRUCT_RETURN
6135 current_function_returns_pcc_struct = 1;
6136 #endif
6137 current_function_returns_struct = 1;
6138 }
6139
6140 /* Warn if this value is an aggregate type,
6141 regardless of which calling convention we are using for it. */
6142 if (warn_aggregate_return
6143 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6144 warning ("function returns an aggregate");
6145
6146 current_function_returns_pointer
6147 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
6148 }
6149
6150 /* Make sure all values used by the optimization passes have sane
6151 defaults. */
6152 void
6153 init_function_for_compilation ()
6154 {
6155 reg_renumber = 0;
6156
6157 /* No prologue/epilogue insns yet. */
6158 VARRAY_GROW (prologue, 0);
6159 VARRAY_GROW (epilogue, 0);
6160 VARRAY_GROW (sibcall_epilogue, 0);
6161 }
6162
6163 /* Indicate that the current function uses extra args
6164 not explicitly mentioned in the argument list in any fashion. */
6165
6166 void
6167 mark_varargs ()
6168 {
6169 current_function_varargs = 1;
6170 }
6171
6172 /* Expand a call to __main at the beginning of a possible main function. */
6173
6174 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6175 #undef HAS_INIT_SECTION
6176 #define HAS_INIT_SECTION
6177 #endif
6178
6179 void
6180 expand_main_function ()
6181 {
6182 #if !defined (HAS_INIT_SECTION)
6183 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0,
6184 VOIDmode, 0);
6185 #endif /* not HAS_INIT_SECTION */
6186 }
6187 \f
6188 extern struct obstack permanent_obstack;
6189
6190 /* Start the RTL for a new function, and set variables used for
6191 emitting RTL.
6192 SUBR is the FUNCTION_DECL node.
6193 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6194 the function's parameters, which must be run at any return statement. */
6195
6196 void
6197 expand_function_start (subr, parms_have_cleanups)
6198 tree subr;
6199 int parms_have_cleanups;
6200 {
6201 tree tem;
6202 rtx last_ptr = NULL_RTX;
6203
6204 /* Make sure volatile mem refs aren't considered
6205 valid operands of arithmetic insns. */
6206 init_recog_no_volatile ();
6207
6208 /* Set this before generating any memory accesses. */
6209 current_function_check_memory_usage
6210 = (flag_check_memory_usage
6211 && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl));
6212
6213 current_function_instrument_entry_exit
6214 = (flag_instrument_function_entry_exit
6215 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6216
6217 current_function_limit_stack
6218 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6219
6220 /* If function gets a static chain arg, store it in the stack frame.
6221 Do this first, so it gets the first stack slot offset. */
6222 if (current_function_needs_context)
6223 {
6224 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6225
6226 /* Delay copying static chain if it is not a register to avoid
6227 conflicts with regs used for parameters. */
6228 if (! SMALL_REGISTER_CLASSES
6229 || GET_CODE (static_chain_incoming_rtx) == REG)
6230 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6231 }
6232
6233 /* If the parameters of this function need cleaning up, get a label
6234 for the beginning of the code which executes those cleanups. This must
6235 be done before doing anything with return_label. */
6236 if (parms_have_cleanups)
6237 cleanup_label = gen_label_rtx ();
6238 else
6239 cleanup_label = 0;
6240
6241 /* Make the label for return statements to jump to, if this machine
6242 does not have a one-instruction return and uses an epilogue,
6243 or if it returns a structure, or if it has parm cleanups. */
6244 #ifdef HAVE_return
6245 if (cleanup_label == 0 && HAVE_return
6246 && ! current_function_instrument_entry_exit
6247 && ! current_function_returns_pcc_struct
6248 && ! (current_function_returns_struct && ! optimize))
6249 return_label = 0;
6250 else
6251 return_label = gen_label_rtx ();
6252 #else
6253 return_label = gen_label_rtx ();
6254 #endif
6255
6256 /* Initialize rtx used to return the value. */
6257 /* Do this before assign_parms so that we copy the struct value address
6258 before any library calls that assign parms might generate. */
6259
6260 /* Decide whether to return the value in memory or in a register. */
6261 if (aggregate_value_p (DECL_RESULT (subr)))
6262 {
6263 /* Returning something that won't go in a register. */
6264 register rtx value_address = 0;
6265
6266 #ifdef PCC_STATIC_STRUCT_RETURN
6267 if (current_function_returns_pcc_struct)
6268 {
6269 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6270 value_address = assemble_static_space (size);
6271 }
6272 else
6273 #endif
6274 {
6275 /* Expect to be passed the address of a place to store the value.
6276 If it is passed as an argument, assign_parms will take care of
6277 it. */
6278 if (struct_value_incoming_rtx)
6279 {
6280 value_address = gen_reg_rtx (Pmode);
6281 emit_move_insn (value_address, struct_value_incoming_rtx);
6282 }
6283 }
6284 if (value_address)
6285 {
6286 DECL_RTL (DECL_RESULT (subr))
6287 = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6288 set_mem_attributes (DECL_RTL (DECL_RESULT (subr)),
6289 DECL_RESULT (subr), 1);
6290 }
6291 }
6292 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6293 /* If return mode is void, this decl rtl should not be used. */
6294 DECL_RTL (DECL_RESULT (subr)) = 0;
6295 else if (parms_have_cleanups || current_function_instrument_entry_exit)
6296 {
6297 /* If function will end with cleanup code for parms,
6298 compute the return values into a pseudo reg,
6299 which we will copy into the true return register
6300 after the cleanups are done. */
6301
6302 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
6303
6304 #ifdef PROMOTE_FUNCTION_RETURN
6305 tree type = TREE_TYPE (DECL_RESULT (subr));
6306 int unsignedp = TREE_UNSIGNED (type);
6307
6308 mode = promote_mode (type, mode, &unsignedp, 1);
6309 #endif
6310
6311 DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode);
6312 }
6313 else
6314 /* Scalar, returned in a register. */
6315 {
6316 DECL_RTL (DECL_RESULT (subr))
6317 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)), subr, 1);
6318
6319 /* Mark this reg as the function's return value. */
6320 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
6321 {
6322 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
6323 /* Needed because we may need to move this to memory
6324 in case it's a named return value whose address is taken. */
6325 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6326 }
6327 }
6328
6329 /* Initialize rtx for parameters and local variables.
6330 In some cases this requires emitting insns. */
6331
6332 assign_parms (subr);
6333
6334 /* Copy the static chain now if it wasn't a register. The delay is to
6335 avoid conflicts with the parameter passing registers. */
6336
6337 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6338 if (GET_CODE (static_chain_incoming_rtx) != REG)
6339 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6340
6341 /* The following was moved from init_function_start.
6342 The move is supposed to make sdb output more accurate. */
6343 /* Indicate the beginning of the function body,
6344 as opposed to parm setup. */
6345 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
6346
6347 if (GET_CODE (get_last_insn ()) != NOTE)
6348 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6349 parm_birth_insn = get_last_insn ();
6350
6351 context_display = 0;
6352 if (current_function_needs_context)
6353 {
6354 /* Fetch static chain values for containing functions. */
6355 tem = decl_function_context (current_function_decl);
6356 /* Copy the static chain pointer into a pseudo. If we have
6357 small register classes, copy the value from memory if
6358 static_chain_incoming_rtx is a REG. */
6359 if (tem)
6360 {
6361 /* If the static chain originally came in a register, put it back
6362 there, then move it out in the next insn. The reason for
6363 this peculiar code is to satisfy function integration. */
6364 if (SMALL_REGISTER_CLASSES
6365 && GET_CODE (static_chain_incoming_rtx) == REG)
6366 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6367 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6368 }
6369
6370 while (tem)
6371 {
6372 tree rtlexp = make_node (RTL_EXPR);
6373
6374 RTL_EXPR_RTL (rtlexp) = last_ptr;
6375 context_display = tree_cons (tem, rtlexp, context_display);
6376 tem = decl_function_context (tem);
6377 if (tem == 0)
6378 break;
6379 /* Chain thru stack frames, assuming pointer to next lexical frame
6380 is found at the place we always store it. */
6381 #ifdef FRAME_GROWS_DOWNWARD
6382 last_ptr = plus_constant (last_ptr,
6383 -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
6384 #endif
6385 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6386 MEM_ALIAS_SET (last_ptr) = get_frame_alias_set ();
6387 last_ptr = copy_to_reg (last_ptr);
6388
6389 /* If we are not optimizing, ensure that we know that this
6390 piece of context is live over the entire function. */
6391 if (! optimize)
6392 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6393 save_expr_regs);
6394 }
6395 }
6396
6397 if (current_function_instrument_entry_exit)
6398 {
6399 rtx fun = DECL_RTL (current_function_decl);
6400 if (GET_CODE (fun) == MEM)
6401 fun = XEXP (fun, 0);
6402 else
6403 abort ();
6404 emit_library_call (profile_function_entry_libfunc, 0, VOIDmode, 2,
6405 fun, Pmode,
6406 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6407 0,
6408 hard_frame_pointer_rtx),
6409 Pmode);
6410 }
6411
6412 /* After the display initializations is where the tail-recursion label
6413 should go, if we end up needing one. Ensure we have a NOTE here
6414 since some things (like trampolines) get placed before this. */
6415 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
6416
6417 /* Evaluate now the sizes of any types declared among the arguments. */
6418 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
6419 {
6420 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode,
6421 EXPAND_MEMORY_USE_BAD);
6422 /* Flush the queue in case this parameter declaration has
6423 side-effects. */
6424 emit_queue ();
6425 }
6426
6427 /* Make sure there is a line number after the function entry setup code. */
6428 force_next_line_note ();
6429 }
6430 \f
6431 /* Undo the effects of init_dummy_function_start. */
6432 void
6433 expand_dummy_function_end ()
6434 {
6435 /* End any sequences that failed to be closed due to syntax errors. */
6436 while (in_sequence_p ())
6437 end_sequence ();
6438
6439 /* Outside function body, can't compute type's actual size
6440 until next function's body starts. */
6441
6442 free_after_parsing (cfun);
6443 free_after_compilation (cfun);
6444 free (cfun);
6445 cfun = 0;
6446 }
6447
6448 /* Call DOIT for each hard register used as a return value from
6449 the current function. */
6450
6451 void
6452 diddle_return_value (doit, arg)
6453 void (*doit) PARAMS ((rtx, void *));
6454 void *arg;
6455 {
6456 rtx outgoing = current_function_return_rtx;
6457 int pcc;
6458
6459 if (! outgoing)
6460 return;
6461
6462 pcc = (current_function_returns_struct
6463 || current_function_returns_pcc_struct);
6464
6465 if ((GET_CODE (outgoing) == REG
6466 && REGNO (outgoing) >= FIRST_PSEUDO_REGISTER)
6467 || pcc)
6468 {
6469 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6470
6471 /* A PCC-style return returns a pointer to the memory in which
6472 the structure is stored. */
6473 if (pcc)
6474 type = build_pointer_type (type);
6475
6476 #ifdef FUNCTION_OUTGOING_VALUE
6477 outgoing = FUNCTION_OUTGOING_VALUE (type, current_function_decl);
6478 #else
6479 outgoing = FUNCTION_VALUE (type, current_function_decl);
6480 #endif
6481 /* If this is a BLKmode structure being returned in registers, then use
6482 the mode computed in expand_return. */
6483 if (GET_MODE (outgoing) == BLKmode)
6484 PUT_MODE (outgoing, GET_MODE (current_function_return_rtx));
6485 REG_FUNCTION_VALUE_P (outgoing) = 1;
6486 }
6487
6488 if (GET_CODE (outgoing) == REG)
6489 (*doit) (outgoing, arg);
6490 else if (GET_CODE (outgoing) == PARALLEL)
6491 {
6492 int i;
6493
6494 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6495 {
6496 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6497
6498 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6499 (*doit) (x, arg);
6500 }
6501 }
6502 }
6503
6504 static void
6505 do_clobber_return_reg (reg, arg)
6506 rtx reg;
6507 void *arg ATTRIBUTE_UNUSED;
6508 {
6509 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6510 }
6511
6512 void
6513 clobber_return_register ()
6514 {
6515 diddle_return_value (do_clobber_return_reg, NULL);
6516 }
6517
6518 static void
6519 do_use_return_reg (reg, arg)
6520 rtx reg;
6521 void *arg ATTRIBUTE_UNUSED;
6522 {
6523 emit_insn (gen_rtx_USE (VOIDmode, reg));
6524 }
6525
6526 void
6527 use_return_register ()
6528 {
6529 diddle_return_value (do_use_return_reg, NULL);
6530 }
6531
6532 /* Generate RTL for the end of the current function.
6533 FILENAME and LINE are the current position in the source file.
6534
6535 It is up to language-specific callers to do cleanups for parameters--
6536 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6537
6538 void
6539 expand_function_end (filename, line, end_bindings)
6540 const char *filename;
6541 int line;
6542 int end_bindings;
6543 {
6544 tree link;
6545
6546 #ifdef TRAMPOLINE_TEMPLATE
6547 static rtx initial_trampoline;
6548 #endif
6549
6550 finish_expr_for_function ();
6551
6552 #ifdef NON_SAVING_SETJMP
6553 /* Don't put any variables in registers if we call setjmp
6554 on a machine that fails to restore the registers. */
6555 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6556 {
6557 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6558 setjmp_protect (DECL_INITIAL (current_function_decl));
6559
6560 setjmp_protect_args ();
6561 }
6562 #endif
6563
6564 /* Save the argument pointer if a save area was made for it. */
6565 if (arg_pointer_save_area)
6566 {
6567 /* arg_pointer_save_area may not be a valid memory address, so we
6568 have to check it and fix it if necessary. */
6569 rtx seq;
6570 start_sequence ();
6571 emit_move_insn (validize_mem (arg_pointer_save_area),
6572 virtual_incoming_args_rtx);
6573 seq = gen_sequence ();
6574 end_sequence ();
6575 emit_insn_before (seq, tail_recursion_reentry);
6576 }
6577
6578 /* Initialize any trampolines required by this function. */
6579 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6580 {
6581 tree function = TREE_PURPOSE (link);
6582 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6583 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6584 #ifdef TRAMPOLINE_TEMPLATE
6585 rtx blktramp;
6586 #endif
6587 rtx seq;
6588
6589 #ifdef TRAMPOLINE_TEMPLATE
6590 /* First make sure this compilation has a template for
6591 initializing trampolines. */
6592 if (initial_trampoline == 0)
6593 {
6594 initial_trampoline
6595 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6596
6597 ggc_add_rtx_root (&initial_trampoline, 1);
6598 }
6599 #endif
6600
6601 /* Generate insns to initialize the trampoline. */
6602 start_sequence ();
6603 tramp = round_trampoline_addr (XEXP (tramp, 0));
6604 #ifdef TRAMPOLINE_TEMPLATE
6605 blktramp = change_address (initial_trampoline, BLKmode, tramp);
6606 emit_block_move (blktramp, initial_trampoline,
6607 GEN_INT (TRAMPOLINE_SIZE),
6608 TRAMPOLINE_ALIGNMENT);
6609 #endif
6610 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6611 seq = get_insns ();
6612 end_sequence ();
6613
6614 /* Put those insns at entry to the containing function (this one). */
6615 emit_insns_before (seq, tail_recursion_reentry);
6616 }
6617
6618 /* If we are doing stack checking and this function makes calls,
6619 do a stack probe at the start of the function to ensure we have enough
6620 space for another stack frame. */
6621 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6622 {
6623 rtx insn, seq;
6624
6625 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6626 if (GET_CODE (insn) == CALL_INSN)
6627 {
6628 start_sequence ();
6629 probe_stack_range (STACK_CHECK_PROTECT,
6630 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6631 seq = get_insns ();
6632 end_sequence ();
6633 emit_insns_before (seq, tail_recursion_reentry);
6634 break;
6635 }
6636 }
6637
6638 /* Warn about unused parms if extra warnings were specified. */
6639 /* Either ``-W -Wunused'' or ``-Wunused-parameter'' enables this
6640 warning. WARN_UNUSED_PARAMETER is negative when set by
6641 -Wunused. */
6642 if (warn_unused_parameter > 0
6643 || (warn_unused_parameter < 0 && extra_warnings))
6644 {
6645 tree decl;
6646
6647 for (decl = DECL_ARGUMENTS (current_function_decl);
6648 decl; decl = TREE_CHAIN (decl))
6649 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6650 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6651 warning_with_decl (decl, "unused parameter `%s'");
6652 }
6653
6654 /* Delete handlers for nonlocal gotos if nothing uses them. */
6655 if (nonlocal_goto_handler_slots != 0
6656 && ! current_function_has_nonlocal_label)
6657 delete_handlers ();
6658
6659 /* End any sequences that failed to be closed due to syntax errors. */
6660 while (in_sequence_p ())
6661 end_sequence ();
6662
6663 /* Outside function body, can't compute type's actual size
6664 until next function's body starts. */
6665 immediate_size_expand--;
6666
6667 clear_pending_stack_adjust ();
6668 do_pending_stack_adjust ();
6669
6670 /* Mark the end of the function body.
6671 If control reaches this insn, the function can drop through
6672 without returning a value. */
6673 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
6674
6675 /* Must mark the last line number note in the function, so that the test
6676 coverage code can avoid counting the last line twice. This just tells
6677 the code to ignore the immediately following line note, since there
6678 already exists a copy of this note somewhere above. This line number
6679 note is still needed for debugging though, so we can't delete it. */
6680 if (flag_test_coverage)
6681 emit_note (NULL_PTR, NOTE_INSN_REPEATED_LINE_NUMBER);
6682
6683 /* Output a linenumber for the end of the function.
6684 SDB depends on this. */
6685 emit_line_note_force (filename, line);
6686
6687 /* Output the label for the actual return from the function,
6688 if one is expected. This happens either because a function epilogue
6689 is used instead of a return instruction, or because a return was done
6690 with a goto in order to run local cleanups, or because of pcc-style
6691 structure returning. */
6692
6693 if (return_label)
6694 {
6695 rtx before, after;
6696
6697 /* Before the return label, clobber the return registers so that
6698 they are not propogated live to the rest of the function. This
6699 can only happen with functions that drop through; if there had
6700 been a return statement, there would have either been a return
6701 rtx, or a jump to the return label. */
6702
6703 before = get_last_insn ();
6704 clobber_return_register ();
6705 after = get_last_insn ();
6706
6707 if (before != after)
6708 cfun->x_clobber_return_insn = after;
6709
6710 emit_label (return_label);
6711 }
6712
6713 /* C++ uses this. */
6714 if (end_bindings)
6715 expand_end_bindings (0, 0, 0);
6716
6717 /* Now handle any leftover exception regions that may have been
6718 created for the parameters. */
6719 {
6720 rtx last = get_last_insn ();
6721 rtx label;
6722
6723 expand_leftover_cleanups ();
6724
6725 /* If there are any catch_clauses remaining, output them now. */
6726 emit_insns (catch_clauses);
6727 catch_clauses = catch_clauses_last = NULL_RTX;
6728 /* If the above emitted any code, may sure we jump around it. */
6729 if (last != get_last_insn ())
6730 {
6731 label = gen_label_rtx ();
6732 last = emit_jump_insn_after (gen_jump (label), last);
6733 last = emit_barrier_after (last);
6734 emit_label (label);
6735 }
6736 }
6737
6738 if (current_function_instrument_entry_exit)
6739 {
6740 rtx fun = DECL_RTL (current_function_decl);
6741 if (GET_CODE (fun) == MEM)
6742 fun = XEXP (fun, 0);
6743 else
6744 abort ();
6745 emit_library_call (profile_function_exit_libfunc, 0, VOIDmode, 2,
6746 fun, Pmode,
6747 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6748 0,
6749 hard_frame_pointer_rtx),
6750 Pmode);
6751 }
6752
6753 /* If we had calls to alloca, and this machine needs
6754 an accurate stack pointer to exit the function,
6755 insert some code to save and restore the stack pointer. */
6756 #ifdef EXIT_IGNORE_STACK
6757 if (! EXIT_IGNORE_STACK)
6758 #endif
6759 if (current_function_calls_alloca)
6760 {
6761 rtx tem = 0;
6762
6763 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6764 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6765 }
6766
6767 /* If scalar return value was computed in a pseudo-reg, or was a named
6768 return value that got dumped to the stack, copy that to the hard
6769 return register. */
6770 if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0)
6771 {
6772 tree decl_result = DECL_RESULT (current_function_decl);
6773 rtx decl_rtl = DECL_RTL (decl_result);
6774
6775 if (REG_P (decl_rtl)
6776 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
6777 : DECL_REGISTER (decl_result))
6778 {
6779 rtx real_decl_rtl;
6780
6781 #ifdef FUNCTION_OUTGOING_VALUE
6782 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
6783 current_function_decl);
6784 #else
6785 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
6786 current_function_decl);
6787 #endif
6788 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
6789
6790 /* If this is a BLKmode structure being returned in registers,
6791 then use the mode computed in expand_return. Note that if
6792 decl_rtl is memory, then its mode may have been changed,
6793 but that current_function_return_rtx has not. */
6794 if (GET_MODE (real_decl_rtl) == BLKmode)
6795 PUT_MODE (real_decl_rtl, GET_MODE (current_function_return_rtx));
6796
6797 /* If a named return value dumped decl_return to memory, then
6798 we may need to re-do the PROMOTE_MODE signed/unsigned
6799 extension. */
6800 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
6801 {
6802 int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));
6803
6804 #ifdef PROMOTE_FUNCTION_RETURN
6805 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
6806 &unsignedp, 1);
6807 #endif
6808
6809 convert_move (real_decl_rtl, decl_rtl, unsignedp);
6810 }
6811 else
6812 emit_move_insn (real_decl_rtl, decl_rtl);
6813
6814 /* The delay slot scheduler assumes that current_function_return_rtx
6815 holds the hard register containing the return value, not a
6816 temporary pseudo. */
6817 current_function_return_rtx = real_decl_rtl;
6818 }
6819 }
6820
6821 /* If returning a structure, arrange to return the address of the value
6822 in a place where debuggers expect to find it.
6823
6824 If returning a structure PCC style,
6825 the caller also depends on this value.
6826 And current_function_returns_pcc_struct is not necessarily set. */
6827 if (current_function_returns_struct
6828 || current_function_returns_pcc_struct)
6829 {
6830 rtx value_address
6831 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
6832 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6833 #ifdef FUNCTION_OUTGOING_VALUE
6834 rtx outgoing
6835 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
6836 current_function_decl);
6837 #else
6838 rtx outgoing
6839 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
6840 #endif
6841
6842 /* Mark this as a function return value so integrate will delete the
6843 assignment and USE below when inlining this function. */
6844 REG_FUNCTION_VALUE_P (outgoing) = 1;
6845
6846 #ifdef POINTERS_EXTEND_UNSIGNED
6847 /* The address may be ptr_mode and OUTGOING may be Pmode. */
6848 if (GET_MODE (outgoing) != GET_MODE (value_address))
6849 value_address = convert_memory_address (GET_MODE (outgoing),
6850 value_address);
6851 #endif
6852
6853 emit_move_insn (outgoing, value_address);
6854
6855 /* Show return register used to hold result (in this case the address
6856 of the result. */
6857 current_function_return_rtx = outgoing;
6858 }
6859
6860 /* ??? This should no longer be necessary since stupid is no longer with
6861 us, but there are some parts of the compiler (eg reload_combine, and
6862 sh mach_dep_reorg) that still try and compute their own lifetime info
6863 instead of using the general framework. */
6864 use_return_register ();
6865
6866 /* If this is an implementation of __throw, do what's necessary to
6867 communicate between __builtin_eh_return and the epilogue. */
6868 expand_eh_return ();
6869
6870 /* Output a return insn if we are using one.
6871 Otherwise, let the rtl chain end here, to drop through
6872 into the epilogue. */
6873
6874 #ifdef HAVE_return
6875 if (HAVE_return)
6876 {
6877 emit_jump_insn (gen_return ());
6878 emit_barrier ();
6879 }
6880 #endif
6881
6882 /* Fix up any gotos that jumped out to the outermost
6883 binding level of the function.
6884 Must follow emitting RETURN_LABEL. */
6885
6886 /* If you have any cleanups to do at this point,
6887 and they need to create temporary variables,
6888 then you will lose. */
6889 expand_fixups (get_insns ());
6890 }
6891 \f
6892 /* Extend a vector that records the INSN_UIDs of INSNS (either a
6893 sequence or a single insn). */
6894
6895 static void
6896 record_insns (insns, vecp)
6897 rtx insns;
6898 varray_type *vecp;
6899 {
6900 if (GET_CODE (insns) == SEQUENCE)
6901 {
6902 int len = XVECLEN (insns, 0);
6903 int i = VARRAY_SIZE (*vecp);
6904
6905 VARRAY_GROW (*vecp, i + len);
6906 while (--len >= 0)
6907 {
6908 VARRAY_INT (*vecp, i) = INSN_UID (XVECEXP (insns, 0, len));
6909 ++i;
6910 }
6911 }
6912 else
6913 {
6914 int i = VARRAY_SIZE (*vecp);
6915 VARRAY_GROW (*vecp, i + 1);
6916 VARRAY_INT (*vecp, i) = INSN_UID (insns);
6917 }
6918 }
6919
6920 /* Determine how many INSN_UIDs in VEC are part of INSN. */
6921
6922 static int
6923 contains (insn, vec)
6924 rtx insn;
6925 varray_type vec;
6926 {
6927 register int i, j;
6928
6929 if (GET_CODE (insn) == INSN
6930 && GET_CODE (PATTERN (insn)) == SEQUENCE)
6931 {
6932 int count = 0;
6933 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6934 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6935 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
6936 count++;
6937 return count;
6938 }
6939 else
6940 {
6941 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6942 if (INSN_UID (insn) == VARRAY_INT (vec, j))
6943 return 1;
6944 }
6945 return 0;
6946 }
6947
6948 int
6949 prologue_epilogue_contains (insn)
6950 rtx insn;
6951 {
6952 if (contains (insn, prologue))
6953 return 1;
6954 if (contains (insn, epilogue))
6955 return 1;
6956 return 0;
6957 }
6958
6959 int
6960 sibcall_epilogue_contains (insn)
6961 rtx insn;
6962 {
6963 if (sibcall_epilogue)
6964 return contains (insn, sibcall_epilogue);
6965 return 0;
6966 }
6967
6968 #ifdef HAVE_return
6969 /* Insert gen_return at the end of block BB. This also means updating
6970 block_for_insn appropriately. */
6971
6972 static void
6973 emit_return_into_block (bb, line_note)
6974 basic_block bb;
6975 rtx line_note;
6976 {
6977 rtx p, end;
6978
6979 p = NEXT_INSN (bb->end);
6980 end = emit_jump_insn_after (gen_return (), bb->end);
6981 if (line_note)
6982 emit_line_note_after (NOTE_SOURCE_FILE (line_note),
6983 NOTE_LINE_NUMBER (line_note), bb->end);
6984
6985 while (1)
6986 {
6987 set_block_for_insn (p, bb);
6988 if (p == bb->end)
6989 break;
6990 p = PREV_INSN (p);
6991 }
6992 bb->end = end;
6993 }
6994 #endif /* HAVE_return */
6995
6996 #ifdef HAVE_epilogue
6997
6998 /* Modify SEQ, a SEQUENCE that is part of the epilogue, to no modifications
6999 to the stack pointer. */
7000
7001 static void
7002 keep_stack_depressed (seq)
7003 rtx seq;
7004 {
7005 int i;
7006 rtx sp_from_reg = 0;
7007 int sp_modified_unknown = 0;
7008
7009 /* If the epilogue is just a single instruction, it's OK as is */
7010
7011 if (GET_CODE (seq) != SEQUENCE) return;
7012
7013 /* Scan all insns in SEQ looking for ones that modified the stack
7014 pointer. Record if it modified the stack pointer by copying it
7015 from the frame pointer or if it modified it in some other way.
7016 Then modify any subsequent stack pointer references to take that
7017 into account. We start by only allowing SP to be copied from a
7018 register (presumably FP) and then be subsequently referenced. */
7019
7020 for (i = 0; i < XVECLEN (seq, 0); i++)
7021 {
7022 rtx insn = XVECEXP (seq, 0, i);
7023
7024 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
7025 continue;
7026
7027 if (reg_set_p (stack_pointer_rtx, insn))
7028 {
7029 rtx set = single_set (insn);
7030
7031 /* If SP is set as a side-effect, we can't support this. */
7032 if (set == 0)
7033 abort ();
7034
7035 if (GET_CODE (SET_SRC (set)) == REG)
7036 sp_from_reg = SET_SRC (set);
7037 else
7038 sp_modified_unknown = 1;
7039
7040 /* Don't allow the SP modification to happen. */
7041 PUT_CODE (insn, NOTE);
7042 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
7043 NOTE_SOURCE_FILE (insn) = 0;
7044 }
7045 else if (reg_referenced_p (stack_pointer_rtx, PATTERN (insn)))
7046 {
7047 if (sp_modified_unknown)
7048 abort ();
7049
7050 else if (sp_from_reg != 0)
7051 PATTERN (insn)
7052 = replace_rtx (PATTERN (insn), stack_pointer_rtx, sp_from_reg);
7053 }
7054 }
7055 }
7056 #endif
7057
7058 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7059 this into place with notes indicating where the prologue ends and where
7060 the epilogue begins. Update the basic block information when possible. */
7061
7062 void
7063 thread_prologue_and_epilogue_insns (f)
7064 rtx f ATTRIBUTE_UNUSED;
7065 {
7066 int inserted = 0;
7067 edge e;
7068 rtx seq;
7069 #ifdef HAVE_prologue
7070 rtx prologue_end = NULL_RTX;
7071 #endif
7072 #if defined (HAVE_epilogue) || defined(HAVE_return)
7073 rtx epilogue_end = NULL_RTX;
7074 #endif
7075
7076 #ifdef HAVE_prologue
7077 if (HAVE_prologue)
7078 {
7079 start_sequence ();
7080 seq = gen_prologue ();
7081 emit_insn (seq);
7082
7083 /* Retain a map of the prologue insns. */
7084 if (GET_CODE (seq) != SEQUENCE)
7085 seq = get_insns ();
7086 record_insns (seq, &prologue);
7087 prologue_end = emit_note (NULL, NOTE_INSN_PROLOGUE_END);
7088
7089 seq = gen_sequence ();
7090 end_sequence ();
7091
7092 /* If optimization is off, and perhaps in an empty function,
7093 the entry block will have no successors. */
7094 if (ENTRY_BLOCK_PTR->succ)
7095 {
7096 /* Can't deal with multiple successsors of the entry block. */
7097 if (ENTRY_BLOCK_PTR->succ->succ_next)
7098 abort ();
7099
7100 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7101 inserted = 1;
7102 }
7103 else
7104 emit_insn_after (seq, f);
7105 }
7106 #endif
7107
7108 /* If the exit block has no non-fake predecessors, we don't need
7109 an epilogue. */
7110 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7111 if ((e->flags & EDGE_FAKE) == 0)
7112 break;
7113 if (e == NULL)
7114 goto epilogue_done;
7115
7116 #ifdef HAVE_return
7117 if (optimize && HAVE_return)
7118 {
7119 /* If we're allowed to generate a simple return instruction,
7120 then by definition we don't need a full epilogue. Examine
7121 the block that falls through to EXIT. If it does not
7122 contain any code, examine its predecessors and try to
7123 emit (conditional) return instructions. */
7124
7125 basic_block last;
7126 edge e_next;
7127 rtx label;
7128
7129 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7130 if (e->flags & EDGE_FALLTHRU)
7131 break;
7132 if (e == NULL)
7133 goto epilogue_done;
7134 last = e->src;
7135
7136 /* Verify that there are no active instructions in the last block. */
7137 label = last->end;
7138 while (label && GET_CODE (label) != CODE_LABEL)
7139 {
7140 if (active_insn_p (label))
7141 break;
7142 label = PREV_INSN (label);
7143 }
7144
7145 if (last->head == label && GET_CODE (label) == CODE_LABEL)
7146 {
7147 rtx epilogue_line_note = NULL_RTX;
7148
7149 /* Locate the line number associated with the closing brace,
7150 if we can find one. */
7151 for (seq = get_last_insn ();
7152 seq && ! active_insn_p (seq);
7153 seq = PREV_INSN (seq))
7154 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7155 {
7156 epilogue_line_note = seq;
7157 break;
7158 }
7159
7160 for (e = last->pred; e; e = e_next)
7161 {
7162 basic_block bb = e->src;
7163 rtx jump;
7164
7165 e_next = e->pred_next;
7166 if (bb == ENTRY_BLOCK_PTR)
7167 continue;
7168
7169 jump = bb->end;
7170 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7171 continue;
7172
7173 /* If we have an unconditional jump, we can replace that
7174 with a simple return instruction. */
7175 if (simplejump_p (jump))
7176 {
7177 emit_return_into_block (bb, epilogue_line_note);
7178 flow_delete_insn (jump);
7179 }
7180
7181 /* If we have a conditional jump, we can try to replace
7182 that with a conditional return instruction. */
7183 else if (condjump_p (jump))
7184 {
7185 rtx ret, *loc;
7186
7187 ret = SET_SRC (PATTERN (jump));
7188 if (GET_CODE (XEXP (ret, 1)) == LABEL_REF)
7189 loc = &XEXP (ret, 1);
7190 else
7191 loc = &XEXP (ret, 2);
7192 ret = gen_rtx_RETURN (VOIDmode);
7193
7194 if (! validate_change (jump, loc, ret, 0))
7195 continue;
7196 if (JUMP_LABEL (jump))
7197 LABEL_NUSES (JUMP_LABEL (jump))--;
7198
7199 /* If this block has only one successor, it both jumps
7200 and falls through to the fallthru block, so we can't
7201 delete the edge. */
7202 if (bb->succ->succ_next == NULL)
7203 continue;
7204 }
7205 else
7206 continue;
7207
7208 /* Fix up the CFG for the successful change we just made. */
7209 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7210 }
7211
7212 /* Emit a return insn for the exit fallthru block. Whether
7213 this is still reachable will be determined later. */
7214
7215 emit_barrier_after (last->end);
7216 emit_return_into_block (last, epilogue_line_note);
7217 epilogue_end = last->end;
7218 goto epilogue_done;
7219 }
7220 }
7221 #endif
7222 #ifdef HAVE_epilogue
7223 if (HAVE_epilogue)
7224 {
7225 /* Find the edge that falls through to EXIT. Other edges may exist
7226 due to RETURN instructions, but those don't need epilogues.
7227 There really shouldn't be a mixture -- either all should have
7228 been converted or none, however... */
7229
7230 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7231 if (e->flags & EDGE_FALLTHRU)
7232 break;
7233 if (e == NULL)
7234 goto epilogue_done;
7235
7236 start_sequence ();
7237 epilogue_end = emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
7238
7239 seq = gen_epilogue ();
7240
7241 /* If this function returns with the stack depressed, massage
7242 the epilogue to actually do that. */
7243 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7244 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7245 keep_stack_depressed (seq);
7246
7247 emit_jump_insn (seq);
7248
7249 /* Retain a map of the epilogue insns. */
7250 if (GET_CODE (seq) != SEQUENCE)
7251 seq = get_insns ();
7252 record_insns (seq, &epilogue);
7253
7254 seq = gen_sequence ();
7255 end_sequence ();
7256
7257 insert_insn_on_edge (seq, e);
7258 inserted = 1;
7259 }
7260 #endif
7261 epilogue_done:
7262
7263 if (inserted)
7264 commit_edge_insertions ();
7265
7266 #ifdef HAVE_sibcall_epilogue
7267 /* Emit sibling epilogues before any sibling call sites. */
7268 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7269 {
7270 basic_block bb = e->src;
7271 rtx insn = bb->end;
7272 rtx i;
7273 rtx newinsn;
7274
7275 if (GET_CODE (insn) != CALL_INSN
7276 || ! SIBLING_CALL_P (insn))
7277 continue;
7278
7279 start_sequence ();
7280 seq = gen_sibcall_epilogue ();
7281 end_sequence ();
7282
7283 i = PREV_INSN (insn);
7284 newinsn = emit_insn_before (seq, insn);
7285
7286 /* Update the UID to basic block map. */
7287 for (i = NEXT_INSN (i); i != insn; i = NEXT_INSN (i))
7288 set_block_for_insn (i, bb);
7289
7290 /* Retain a map of the epilogue insns. Used in life analysis to
7291 avoid getting rid of sibcall epilogue insns. */
7292 record_insns (GET_CODE (seq) == SEQUENCE
7293 ? seq : newinsn, &sibcall_epilogue);
7294 }
7295 #endif
7296
7297 #ifdef HAVE_prologue
7298 if (prologue_end)
7299 {
7300 rtx insn, prev;
7301
7302 /* GDB handles `break f' by setting a breakpoint on the first
7303 line note after the prologue. Which means (1) that if
7304 there are line number notes before where we inserted the
7305 prologue we should move them, and (2) we should generate a
7306 note before the end of the first basic block, if there isn't
7307 one already there. */
7308
7309 for (insn = prologue_end; insn; insn = prev)
7310 {
7311 prev = PREV_INSN (insn);
7312 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7313 {
7314 /* Note that we cannot reorder the first insn in the
7315 chain, since rest_of_compilation relies on that
7316 remaining constant. */
7317 if (prev == NULL)
7318 break;
7319 reorder_insns (insn, insn, prologue_end);
7320 }
7321 }
7322
7323 /* Find the last line number note in the first block. */
7324 for (insn = BASIC_BLOCK (0)->end;
7325 insn != prologue_end;
7326 insn = PREV_INSN (insn))
7327 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7328 break;
7329
7330 /* If we didn't find one, make a copy of the first line number
7331 we run across. */
7332 if (! insn)
7333 {
7334 for (insn = next_active_insn (prologue_end);
7335 insn;
7336 insn = PREV_INSN (insn))
7337 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7338 {
7339 emit_line_note_after (NOTE_SOURCE_FILE (insn),
7340 NOTE_LINE_NUMBER (insn),
7341 prologue_end);
7342 break;
7343 }
7344 }
7345 }
7346 #endif
7347 #ifdef HAVE_epilogue
7348 if (epilogue_end)
7349 {
7350 rtx insn, next;
7351
7352 /* Similarly, move any line notes that appear after the epilogue.
7353 There is no need, however, to be quite so anal about the existance
7354 of such a note. */
7355 for (insn = epilogue_end; insn; insn = next)
7356 {
7357 next = NEXT_INSN (insn);
7358 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7359 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7360 }
7361 }
7362 #endif
7363 }
7364
7365 /* Reposition the prologue-end and epilogue-begin notes after instruction
7366 scheduling and delayed branch scheduling. */
7367
7368 void
7369 reposition_prologue_and_epilogue_notes (f)
7370 rtx f ATTRIBUTE_UNUSED;
7371 {
7372 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7373 int len;
7374
7375 if ((len = VARRAY_SIZE (prologue)) > 0)
7376 {
7377 register rtx insn, note = 0;
7378
7379 /* Scan from the beginning until we reach the last prologue insn.
7380 We apparently can't depend on basic_block_{head,end} after
7381 reorg has run. */
7382 for (insn = f; len && insn; insn = NEXT_INSN (insn))
7383 {
7384 if (GET_CODE (insn) == NOTE)
7385 {
7386 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7387 note = insn;
7388 }
7389 else if ((len -= contains (insn, prologue)) == 0)
7390 {
7391 rtx next;
7392 /* Find the prologue-end note if we haven't already, and
7393 move it to just after the last prologue insn. */
7394 if (note == 0)
7395 {
7396 for (note = insn; (note = NEXT_INSN (note));)
7397 if (GET_CODE (note) == NOTE
7398 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7399 break;
7400 }
7401
7402 next = NEXT_INSN (note);
7403
7404 /* Whether or not we can depend on BLOCK_HEAD,
7405 attempt to keep it up-to-date. */
7406 if (BLOCK_HEAD (0) == note)
7407 BLOCK_HEAD (0) = next;
7408
7409 remove_insn (note);
7410 add_insn_after (note, insn);
7411 }
7412 }
7413 }
7414
7415 if ((len = VARRAY_SIZE (epilogue)) > 0)
7416 {
7417 register rtx insn, note = 0;
7418
7419 /* Scan from the end until we reach the first epilogue insn.
7420 We apparently can't depend on basic_block_{head,end} after
7421 reorg has run. */
7422 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
7423 {
7424 if (GET_CODE (insn) == NOTE)
7425 {
7426 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7427 note = insn;
7428 }
7429 else if ((len -= contains (insn, epilogue)) == 0)
7430 {
7431 /* Find the epilogue-begin note if we haven't already, and
7432 move it to just before the first epilogue insn. */
7433 if (note == 0)
7434 {
7435 for (note = insn; (note = PREV_INSN (note));)
7436 if (GET_CODE (note) == NOTE
7437 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7438 break;
7439 }
7440
7441 /* Whether or not we can depend on BLOCK_HEAD,
7442 attempt to keep it up-to-date. */
7443 if (n_basic_blocks
7444 && BLOCK_HEAD (n_basic_blocks-1) == insn)
7445 BLOCK_HEAD (n_basic_blocks-1) = note;
7446
7447 remove_insn (note);
7448 add_insn_before (note, insn);
7449 }
7450 }
7451 }
7452 #endif /* HAVE_prologue or HAVE_epilogue */
7453 }
7454
7455 /* Mark T for GC. */
7456
7457 static void
7458 mark_temp_slot (t)
7459 struct temp_slot *t;
7460 {
7461 while (t)
7462 {
7463 ggc_mark_rtx (t->slot);
7464 ggc_mark_rtx (t->address);
7465 ggc_mark_tree (t->rtl_expr);
7466 ggc_mark_tree (t->type);
7467
7468 t = t->next;
7469 }
7470 }
7471
7472 /* Mark P for GC. */
7473
7474 static void
7475 mark_function_status (p)
7476 struct function *p;
7477 {
7478 int i;
7479 rtx *r;
7480
7481 if (p == 0)
7482 return;
7483
7484 ggc_mark_rtx (p->arg_offset_rtx);
7485
7486 if (p->x_parm_reg_stack_loc)
7487 for (i = p->x_max_parm_reg, r = p->x_parm_reg_stack_loc;
7488 i > 0; --i, ++r)
7489 ggc_mark_rtx (*r);
7490
7491 ggc_mark_rtx (p->return_rtx);
7492 ggc_mark_rtx (p->x_cleanup_label);
7493 ggc_mark_rtx (p->x_return_label);
7494 ggc_mark_rtx (p->x_save_expr_regs);
7495 ggc_mark_rtx (p->x_stack_slot_list);
7496 ggc_mark_rtx (p->x_parm_birth_insn);
7497 ggc_mark_rtx (p->x_tail_recursion_label);
7498 ggc_mark_rtx (p->x_tail_recursion_reentry);
7499 ggc_mark_rtx (p->internal_arg_pointer);
7500 ggc_mark_rtx (p->x_arg_pointer_save_area);
7501 ggc_mark_tree (p->x_rtl_expr_chain);
7502 ggc_mark_rtx (p->x_last_parm_insn);
7503 ggc_mark_tree (p->x_context_display);
7504 ggc_mark_tree (p->x_trampoline_list);
7505 ggc_mark_rtx (p->epilogue_delay_list);
7506 ggc_mark_rtx (p->x_clobber_return_insn);
7507
7508 mark_temp_slot (p->x_temp_slots);
7509
7510 {
7511 struct var_refs_queue *q = p->fixup_var_refs_queue;
7512 while (q)
7513 {
7514 ggc_mark_rtx (q->modified);
7515 q = q->next;
7516 }
7517 }
7518
7519 ggc_mark_rtx (p->x_nonlocal_goto_handler_slots);
7520 ggc_mark_rtx (p->x_nonlocal_goto_handler_labels);
7521 ggc_mark_rtx (p->x_nonlocal_goto_stack_level);
7522 ggc_mark_tree (p->x_nonlocal_labels);
7523 }
7524
7525 /* Mark the function chain ARG (which is really a struct function **)
7526 for GC. */
7527
7528 static void
7529 mark_function_chain (arg)
7530 void *arg;
7531 {
7532 struct function *f = *(struct function **) arg;
7533
7534 for (; f; f = f->next_global)
7535 {
7536 ggc_mark_tree (f->decl);
7537
7538 mark_function_status (f);
7539 mark_eh_status (f->eh);
7540 mark_stmt_status (f->stmt);
7541 mark_expr_status (f->expr);
7542 mark_emit_status (f->emit);
7543 mark_varasm_status (f->varasm);
7544
7545 if (mark_machine_status)
7546 (*mark_machine_status) (f);
7547 if (mark_lang_status)
7548 (*mark_lang_status) (f);
7549
7550 if (f->original_arg_vector)
7551 ggc_mark_rtvec ((rtvec) f->original_arg_vector);
7552 if (f->original_decl_initial)
7553 ggc_mark_tree (f->original_decl_initial);
7554 }
7555 }
7556
7557 /* Called once, at initialization, to initialize function.c. */
7558
7559 void
7560 init_function_once ()
7561 {
7562 ggc_add_root (&all_functions, 1, sizeof all_functions,
7563 mark_function_chain);
7564
7565 VARRAY_INT_INIT (prologue, 0, "prologue");
7566 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7567 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
7568 }
This page took 0.390606 seconds and 5 git commands to generate.