1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
48 #include "insn-flags.h"
50 #include "insn-codes.h"
52 #include "hard-reg-set.h"
53 #include "insn-config.h"
56 #include "basic-block.h"
63 #ifndef ACCUMULATE_OUTGOING_ARGS
64 #define ACCUMULATE_OUTGOING_ARGS 0
67 #ifndef TRAMPOLINE_ALIGNMENT
68 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
71 #ifndef LOCAL_ALIGNMENT
72 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
75 #if !defined (PREFERRED_STACK_BOUNDARY) && defined (STACK_BOUNDARY)
76 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
79 /* Some systems use __main in a way incompatible with its use in gcc, in these
80 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
81 give the same symbol without quotes for an alternative entry point. You
82 must define both, or neither. */
84 #define NAME__MAIN "__main"
85 #define SYMBOL__MAIN __main
88 /* Round a value to the lowest integer less than it that is a multiple of
89 the required alignment. Avoid using division in case the value is
90 negative. Assume the alignment is a power of two. */
91 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
93 /* Similar, but round to the next highest integer that meets the
95 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
97 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
98 during rtl generation. If they are different register numbers, this is
99 always true. It may also be true if
100 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
101 generation. See fix_lexical_addr for details. */
103 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
104 #define NEED_SEPARATE_AP
107 /* Nonzero if function being compiled doesn't contain any calls
108 (ignoring the prologue and epilogue). This is set prior to
109 local register allocation and is valid for the remaining
111 int current_function_is_leaf
;
113 /* Nonzero if function being compiled doesn't contain any instructions
114 that can throw an exception. This is set prior to final. */
116 int current_function_nothrow
;
118 /* Nonzero if function being compiled doesn't modify the stack pointer
119 (ignoring the prologue and epilogue). This is only valid after
120 life_analysis has run. */
121 int current_function_sp_is_unchanging
;
123 /* Nonzero if the function being compiled is a leaf function which only
124 uses leaf registers. This is valid after reload (specifically after
125 sched2) and is useful only if the port defines LEAF_REGISTERS. */
126 int current_function_uses_only_leaf_regs
;
128 /* Nonzero once virtual register instantiation has been done.
129 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
130 static int virtuals_instantiated
;
132 /* These variables hold pointers to functions to
133 save and restore machine-specific data,
134 in push_function_context and pop_function_context. */
135 void (*init_machine_status
) PARAMS ((struct function
*));
136 void (*save_machine_status
) PARAMS ((struct function
*));
137 void (*restore_machine_status
) PARAMS ((struct function
*));
138 void (*mark_machine_status
) PARAMS ((struct function
*));
139 void (*free_machine_status
) PARAMS ((struct function
*));
141 /* Likewise, but for language-specific data. */
142 void (*init_lang_status
) PARAMS ((struct function
*));
143 void (*save_lang_status
) PARAMS ((struct function
*));
144 void (*restore_lang_status
) PARAMS ((struct function
*));
145 void (*mark_lang_status
) PARAMS ((struct function
*));
146 void (*free_lang_status
) PARAMS ((struct function
*));
148 /* The FUNCTION_DECL for an inline function currently being expanded. */
149 tree inline_function_decl
;
151 /* The currently compiled function. */
152 struct function
*cfun
= 0;
154 /* Global list of all compiled functions. */
155 struct function
*all_functions
= 0;
157 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
158 static varray_type prologue
;
159 static varray_type epilogue
;
161 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
163 static varray_type sibcall_epilogue
;
165 /* In order to evaluate some expressions, such as function calls returning
166 structures in memory, we need to temporarily allocate stack locations.
167 We record each allocated temporary in the following structure.
169 Associated with each temporary slot is a nesting level. When we pop up
170 one level, all temporaries associated with the previous level are freed.
171 Normally, all temporaries are freed after the execution of the statement
172 in which they were created. However, if we are inside a ({...}) grouping,
173 the result may be in a temporary and hence must be preserved. If the
174 result could be in a temporary, we preserve it if we can determine which
175 one it is in. If we cannot determine which temporary may contain the
176 result, all temporaries are preserved. A temporary is preserved by
177 pretending it was allocated at the previous nesting level.
179 Automatic variables are also assigned temporary slots, at the nesting
180 level where they are defined. They are marked a "kept" so that
181 free_temp_slots will not free them. */
185 /* Points to next temporary slot. */
186 struct temp_slot
*next
;
187 /* The rtx to used to reference the slot. */
189 /* The rtx used to represent the address if not the address of the
190 slot above. May be an EXPR_LIST if multiple addresses exist. */
192 /* The alignment (in bits) of the slot. */
194 /* The size, in units, of the slot. */
196 /* The alias set for the slot. If the alias set is zero, we don't
197 know anything about the alias set of the slot. We must only
198 reuse a slot if it is assigned an object of the same alias set.
199 Otherwise, the rest of the compiler may assume that the new use
200 of the slot cannot alias the old use of the slot, which is
201 false. If the slot has alias set zero, then we can't reuse the
202 slot at all, since we have no idea what alias set may have been
203 imposed on the memory. For example, if the stack slot is the
204 call frame for an inline functioned, we have no idea what alias
205 sets will be assigned to various pieces of the call frame. */
206 HOST_WIDE_INT alias_set
;
207 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
209 /* Non-zero if this temporary is currently in use. */
211 /* Non-zero if this temporary has its address taken. */
213 /* Nesting level at which this slot is being used. */
215 /* Non-zero if this should survive a call to free_temp_slots. */
217 /* The offset of the slot from the frame_pointer, including extra space
218 for alignment. This info is for combine_temp_slots. */
219 HOST_WIDE_INT base_offset
;
220 /* The size of the slot, including extra space for alignment. This
221 info is for combine_temp_slots. */
222 HOST_WIDE_INT full_size
;
225 /* This structure is used to record MEMs or pseudos used to replace VAR, any
226 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
227 maintain this list in case two operands of an insn were required to match;
228 in that case we must ensure we use the same replacement. */
230 struct fixup_replacement
234 struct fixup_replacement
*next
;
237 struct insns_for_mem_entry
{
238 /* The KEY in HE will be a MEM. */
239 struct hash_entry he
;
240 /* These are the INSNS which reference the MEM. */
244 /* Forward declarations. */
246 static rtx assign_stack_local_1
PARAMS ((enum machine_mode
, HOST_WIDE_INT
,
247 int, struct function
*));
248 static rtx assign_stack_temp_for_type
PARAMS ((enum machine_mode
,
249 HOST_WIDE_INT
, int, tree
));
250 static struct temp_slot
*find_temp_slot_from_address
PARAMS ((rtx
));
251 static void put_reg_into_stack
PARAMS ((struct function
*, rtx
, tree
,
252 enum machine_mode
, enum machine_mode
,
253 int, unsigned int, int,
254 struct hash_table
*));
255 static void schedule_fixup_var_refs
PARAMS ((struct function
*, rtx
, tree
,
257 struct hash_table
*));
258 static void fixup_var_refs
PARAMS ((rtx
, enum machine_mode
, int,
259 struct hash_table
*));
260 static struct fixup_replacement
261 *find_fixup_replacement
PARAMS ((struct fixup_replacement
**, rtx
));
262 static void fixup_var_refs_insns
PARAMS ((rtx
, enum machine_mode
, int,
263 rtx
, int, struct hash_table
*));
264 static void fixup_var_refs_1
PARAMS ((rtx
, enum machine_mode
, rtx
*, rtx
,
265 struct fixup_replacement
**));
266 static rtx fixup_memory_subreg
PARAMS ((rtx
, rtx
, int));
267 static rtx walk_fixup_memory_subreg
PARAMS ((rtx
, rtx
, int));
268 static rtx fixup_stack_1
PARAMS ((rtx
, rtx
));
269 static void optimize_bit_field
PARAMS ((rtx
, rtx
, rtx
*));
270 static void instantiate_decls
PARAMS ((tree
, int));
271 static void instantiate_decls_1
PARAMS ((tree
, int));
272 static void instantiate_decl
PARAMS ((rtx
, HOST_WIDE_INT
, int));
273 static int instantiate_virtual_regs_1
PARAMS ((rtx
*, rtx
, int));
274 static void delete_handlers
PARAMS ((void));
275 static void pad_to_arg_alignment
PARAMS ((struct args_size
*, int,
276 struct args_size
*));
277 #ifndef ARGS_GROW_DOWNWARD
278 static void pad_below
PARAMS ((struct args_size
*, enum machine_mode
,
281 static rtx round_trampoline_addr
PARAMS ((rtx
));
282 static tree
*identify_blocks_1
PARAMS ((rtx
, tree
*, tree
*, tree
*));
283 static void reorder_blocks_1
PARAMS ((rtx
, tree
, varray_type
*));
284 static tree blocks_nreverse
PARAMS ((tree
));
285 static int all_blocks
PARAMS ((tree
, tree
*));
286 static tree
*get_block_vector
PARAMS ((tree
, int *));
287 /* We always define `record_insns' even if its not used so that we
288 can always export `prologue_epilogue_contains'. */
289 static void record_insns
PARAMS ((rtx
, varray_type
*)) ATTRIBUTE_UNUSED
;
290 static int contains
PARAMS ((rtx
, varray_type
));
292 static void emit_return_into_block
PARAMS ((basic_block
, rtx
));
294 static void put_addressof_into_stack
PARAMS ((rtx
, struct hash_table
*));
295 static boolean purge_addressof_1
PARAMS ((rtx
*, rtx
, int, int,
296 struct hash_table
*));
298 static void keep_stack_depressed
PARAMS ((rtx
));
300 static int is_addressof
PARAMS ((rtx
*, void *));
301 static struct hash_entry
*insns_for_mem_newfunc
PARAMS ((struct hash_entry
*,
304 static unsigned long insns_for_mem_hash
PARAMS ((hash_table_key
));
305 static boolean insns_for_mem_comp
PARAMS ((hash_table_key
, hash_table_key
));
306 static int insns_for_mem_walk
PARAMS ((rtx
*, void *));
307 static void compute_insns_for_mem
PARAMS ((rtx
, rtx
, struct hash_table
*));
308 static void mark_temp_slot
PARAMS ((struct temp_slot
*));
309 static void mark_function_status
PARAMS ((struct function
*));
310 static void mark_function_chain
PARAMS ((void *));
311 static void prepare_function_start
PARAMS ((void));
312 static void do_clobber_return_reg
PARAMS ((rtx
, void *));
313 static void do_use_return_reg
PARAMS ((rtx
, void *));
315 /* Pointer to chain of `struct function' for containing functions. */
316 struct function
*outer_function_chain
;
318 /* Given a function decl for a containing function,
319 return the `struct function' for it. */
322 find_function_data (decl
)
327 for (p
= outer_function_chain
; p
; p
= p
->next
)
334 /* Save the current context for compilation of a nested function.
335 This is called from language-specific code. The caller should use
336 the save_lang_status callback to save any language-specific state,
337 since this function knows only about language-independent
341 push_function_context_to (context
)
344 struct function
*p
, *context_data
;
348 context_data
= (context
== current_function_decl
350 : find_function_data (context
));
351 context_data
->contains_functions
= 1;
355 init_dummy_function_start ();
358 p
->next
= outer_function_chain
;
359 outer_function_chain
= p
;
360 p
->fixup_var_refs_queue
= 0;
362 save_tree_status (p
);
363 if (save_lang_status
)
364 (*save_lang_status
) (p
);
365 if (save_machine_status
)
366 (*save_machine_status
) (p
);
372 push_function_context ()
374 push_function_context_to (current_function_decl
);
377 /* Restore the last saved context, at the end of a nested function.
378 This function is called from language-specific code. */
381 pop_function_context_from (context
)
382 tree context ATTRIBUTE_UNUSED
;
384 struct function
*p
= outer_function_chain
;
385 struct var_refs_queue
*queue
;
386 struct var_refs_queue
*next
;
389 outer_function_chain
= p
->next
;
391 current_function_decl
= p
->decl
;
394 restore_tree_status (p
);
395 restore_emit_status (p
);
397 if (restore_machine_status
)
398 (*restore_machine_status
) (p
);
399 if (restore_lang_status
)
400 (*restore_lang_status
) (p
);
402 /* Finish doing put_var_into_stack for any of our variables
403 which became addressable during the nested function. */
404 for (queue
= p
->fixup_var_refs_queue
; queue
; queue
= next
)
407 fixup_var_refs (queue
->modified
, queue
->promoted_mode
,
408 queue
->unsignedp
, 0);
411 p
->fixup_var_refs_queue
= 0;
413 /* Reset variables that have known state during rtx generation. */
414 rtx_equal_function_value_matters
= 1;
415 virtuals_instantiated
= 0;
419 pop_function_context ()
421 pop_function_context_from (current_function_decl
);
424 /* Clear out all parts of the state in F that can safely be discarded
425 after the function has been parsed, but not compiled, to let
426 garbage collection reclaim the memory. */
429 free_after_parsing (f
)
432 /* f->expr->forced_labels is used by code generation. */
433 /* f->emit->regno_reg_rtx is used by code generation. */
434 /* f->varasm is used by code generation. */
435 /* f->eh->eh_return_stub_label is used by code generation. */
437 if (free_lang_status
)
438 (*free_lang_status
) (f
);
439 free_stmt_status (f
);
442 /* Clear out all parts of the state in F that can safely be discarded
443 after the function has been compiled, to let garbage collection
444 reclaim the memory. */
447 free_after_compilation (f
)
450 struct temp_slot
*ts
;
451 struct temp_slot
*next
;
454 free_expr_status (f
);
455 free_emit_status (f
);
456 free_varasm_status (f
);
458 if (free_machine_status
)
459 (*free_machine_status
) (f
);
461 if (f
->x_parm_reg_stack_loc
)
462 free (f
->x_parm_reg_stack_loc
);
464 for (ts
= f
->x_temp_slots
; ts
; ts
= next
)
469 f
->x_temp_slots
= NULL
;
471 f
->arg_offset_rtx
= NULL
;
472 f
->return_rtx
= NULL
;
473 f
->internal_arg_pointer
= NULL
;
474 f
->x_nonlocal_labels
= NULL
;
475 f
->x_nonlocal_goto_handler_slots
= NULL
;
476 f
->x_nonlocal_goto_handler_labels
= NULL
;
477 f
->x_nonlocal_goto_stack_level
= NULL
;
478 f
->x_cleanup_label
= NULL
;
479 f
->x_return_label
= NULL
;
480 f
->x_save_expr_regs
= NULL
;
481 f
->x_stack_slot_list
= NULL
;
482 f
->x_rtl_expr_chain
= NULL
;
483 f
->x_tail_recursion_label
= NULL
;
484 f
->x_tail_recursion_reentry
= NULL
;
485 f
->x_arg_pointer_save_area
= NULL
;
486 f
->x_context_display
= NULL
;
487 f
->x_trampoline_list
= NULL
;
488 f
->x_parm_birth_insn
= NULL
;
489 f
->x_last_parm_insn
= NULL
;
490 f
->x_parm_reg_stack_loc
= NULL
;
491 f
->fixup_var_refs_queue
= NULL
;
492 f
->original_arg_vector
= NULL
;
493 f
->original_decl_initial
= NULL
;
494 f
->inl_last_parm_insn
= NULL
;
495 f
->epilogue_delay_list
= NULL
;
498 /* Allocate fixed slots in the stack frame of the current function. */
500 /* Return size needed for stack frame based on slots so far allocated in
502 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
503 the caller may have to do that. */
506 get_func_frame_size (f
)
509 #ifdef FRAME_GROWS_DOWNWARD
510 return -f
->x_frame_offset
;
512 return f
->x_frame_offset
;
516 /* Return size needed for stack frame based on slots so far allocated.
517 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
518 the caller may have to do that. */
522 return get_func_frame_size (cfun
);
525 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
526 with machine mode MODE.
528 ALIGN controls the amount of alignment for the address of the slot:
529 0 means according to MODE,
530 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
531 positive specifies alignment boundary in bits.
533 We do not round to stack_boundary here.
535 FUNCTION specifies the function to allocate in. */
538 assign_stack_local_1 (mode
, size
, align
, function
)
539 enum machine_mode mode
;
542 struct function
*function
;
544 register rtx x
, addr
;
545 int bigend_correction
= 0;
548 /* Allocate in the memory associated with the function in whose frame
550 if (function
!= cfun
)
551 push_obstacks (function
->function_obstack
,
552 function
->function_maybepermanent_obstack
);
559 alignment
= BIGGEST_ALIGNMENT
;
561 alignment
= GET_MODE_ALIGNMENT (mode
);
563 /* Allow the target to (possibly) increase the alignment of this
565 type
= type_for_mode (mode
, 0);
567 alignment
= LOCAL_ALIGNMENT (type
, alignment
);
569 alignment
/= BITS_PER_UNIT
;
571 else if (align
== -1)
573 alignment
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
574 size
= CEIL_ROUND (size
, alignment
);
577 alignment
= align
/ BITS_PER_UNIT
;
579 #ifdef FRAME_GROWS_DOWNWARD
580 function
->x_frame_offset
-= size
;
583 /* Ignore alignment we can't do with expected alignment of the boundary. */
584 if (alignment
* BITS_PER_UNIT
> PREFERRED_STACK_BOUNDARY
)
585 alignment
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
587 if (function
->stack_alignment_needed
< alignment
* BITS_PER_UNIT
)
588 function
->stack_alignment_needed
= alignment
* BITS_PER_UNIT
;
590 /* Round frame offset to that alignment.
591 We must be careful here, since FRAME_OFFSET might be negative and
592 division with a negative dividend isn't as well defined as we might
593 like. So we instead assume that ALIGNMENT is a power of two and
594 use logical operations which are unambiguous. */
595 #ifdef FRAME_GROWS_DOWNWARD
596 function
->x_frame_offset
= FLOOR_ROUND (function
->x_frame_offset
, alignment
);
598 function
->x_frame_offset
= CEIL_ROUND (function
->x_frame_offset
, alignment
);
601 /* On a big-endian machine, if we are allocating more space than we will use,
602 use the least significant bytes of those that are allocated. */
603 if (BYTES_BIG_ENDIAN
&& mode
!= BLKmode
)
604 bigend_correction
= size
- GET_MODE_SIZE (mode
);
606 /* If we have already instantiated virtual registers, return the actual
607 address relative to the frame pointer. */
608 if (function
== cfun
&& virtuals_instantiated
)
609 addr
= plus_constant (frame_pointer_rtx
,
610 (frame_offset
+ bigend_correction
611 + STARTING_FRAME_OFFSET
));
613 addr
= plus_constant (virtual_stack_vars_rtx
,
614 function
->x_frame_offset
+ bigend_correction
);
616 #ifndef FRAME_GROWS_DOWNWARD
617 function
->x_frame_offset
+= size
;
620 x
= gen_rtx_MEM (mode
, addr
);
622 function
->x_stack_slot_list
623 = gen_rtx_EXPR_LIST (VOIDmode
, x
, function
->x_stack_slot_list
);
625 if (function
!= cfun
)
631 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
635 assign_stack_local (mode
, size
, align
)
636 enum machine_mode mode
;
640 return assign_stack_local_1 (mode
, size
, align
, cfun
);
643 /* Allocate a temporary stack slot and record it for possible later
646 MODE is the machine mode to be given to the returned rtx.
648 SIZE is the size in units of the space required. We do no rounding here
649 since assign_stack_local will do any required rounding.
651 KEEP is 1 if this slot is to be retained after a call to
652 free_temp_slots. Automatic variables for a block are allocated
653 with this flag. KEEP is 2 if we allocate a longer term temporary,
654 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
655 if we are to allocate something at an inner level to be treated as
656 a variable in the block (e.g., a SAVE_EXPR).
658 TYPE is the type that will be used for the stack slot. */
661 assign_stack_temp_for_type (mode
, size
, keep
, type
)
662 enum machine_mode mode
;
668 HOST_WIDE_INT alias_set
;
669 struct temp_slot
*p
, *best_p
= 0;
671 /* If SIZE is -1 it means that somebody tried to allocate a temporary
672 of a variable size. */
676 /* If we know the alias set for the memory that will be used, use
677 it. If there's no TYPE, then we don't know anything about the
678 alias set for the memory. */
680 alias_set
= get_alias_set (type
);
685 align
= BIGGEST_ALIGNMENT
;
687 align
= GET_MODE_ALIGNMENT (mode
);
690 type
= type_for_mode (mode
, 0);
693 align
= LOCAL_ALIGNMENT (type
, align
);
695 /* Try to find an available, already-allocated temporary of the proper
696 mode which meets the size and alignment requirements. Choose the
697 smallest one with the closest alignment. */
698 for (p
= temp_slots
; p
; p
= p
->next
)
699 if (p
->align
>= align
&& p
->size
>= size
&& GET_MODE (p
->slot
) == mode
701 && (! flag_strict_aliasing
702 || (alias_set
&& p
->alias_set
== alias_set
))
703 && (best_p
== 0 || best_p
->size
> p
->size
704 || (best_p
->size
== p
->size
&& best_p
->align
> p
->align
)))
706 if (p
->align
== align
&& p
->size
== size
)
714 /* Make our best, if any, the one to use. */
717 /* If there are enough aligned bytes left over, make them into a new
718 temp_slot so that the extra bytes don't get wasted. Do this only
719 for BLKmode slots, so that we can be sure of the alignment. */
720 if (GET_MODE (best_p
->slot
) == BLKmode
)
722 int alignment
= best_p
->align
/ BITS_PER_UNIT
;
723 HOST_WIDE_INT rounded_size
= CEIL_ROUND (size
, alignment
);
725 if (best_p
->size
- rounded_size
>= alignment
)
727 p
= (struct temp_slot
*) xmalloc (sizeof (struct temp_slot
));
728 p
->in_use
= p
->addr_taken
= 0;
729 p
->size
= best_p
->size
- rounded_size
;
730 p
->base_offset
= best_p
->base_offset
+ rounded_size
;
731 p
->full_size
= best_p
->full_size
- rounded_size
;
732 p
->slot
= gen_rtx_MEM (BLKmode
,
733 plus_constant (XEXP (best_p
->slot
, 0),
735 p
->align
= best_p
->align
;
738 p
->alias_set
= best_p
->alias_set
;
739 p
->next
= temp_slots
;
742 stack_slot_list
= gen_rtx_EXPR_LIST (VOIDmode
, p
->slot
,
745 best_p
->size
= rounded_size
;
746 best_p
->full_size
= rounded_size
;
753 /* If we still didn't find one, make a new temporary. */
756 HOST_WIDE_INT frame_offset_old
= frame_offset
;
758 p
= (struct temp_slot
*) xmalloc (sizeof (struct temp_slot
));
760 /* We are passing an explicit alignment request to assign_stack_local.
761 One side effect of that is assign_stack_local will not round SIZE
762 to ensure the frame offset remains suitably aligned.
764 So for requests which depended on the rounding of SIZE, we go ahead
765 and round it now. We also make sure ALIGNMENT is at least
766 BIGGEST_ALIGNMENT. */
767 if (mode
== BLKmode
&& align
< BIGGEST_ALIGNMENT
)
769 p
->slot
= assign_stack_local (mode
,
771 ? CEIL_ROUND (size
, align
/ BITS_PER_UNIT
)
776 p
->alias_set
= alias_set
;
778 /* The following slot size computation is necessary because we don't
779 know the actual size of the temporary slot until assign_stack_local
780 has performed all the frame alignment and size rounding for the
781 requested temporary. Note that extra space added for alignment
782 can be either above or below this stack slot depending on which
783 way the frame grows. We include the extra space if and only if it
784 is above this slot. */
785 #ifdef FRAME_GROWS_DOWNWARD
786 p
->size
= frame_offset_old
- frame_offset
;
791 /* Now define the fields used by combine_temp_slots. */
792 #ifdef FRAME_GROWS_DOWNWARD
793 p
->base_offset
= frame_offset
;
794 p
->full_size
= frame_offset_old
- frame_offset
;
796 p
->base_offset
= frame_offset_old
;
797 p
->full_size
= frame_offset
- frame_offset_old
;
800 p
->next
= temp_slots
;
806 p
->rtl_expr
= seq_rtl_expr
;
810 p
->level
= target_temp_slot_level
;
815 p
->level
= var_temp_slot_level
;
820 p
->level
= temp_slot_level
;
824 /* We may be reusing an old slot, so clear any MEM flags that may have been
826 RTX_UNCHANGING_P (p
->slot
) = 0;
827 MEM_IN_STRUCT_P (p
->slot
) = 0;
828 MEM_SCALAR_P (p
->slot
) = 0;
829 MEM_ALIAS_SET (p
->slot
) = alias_set
;
832 MEM_SET_IN_STRUCT_P (p
->slot
, AGGREGATE_TYPE_P (type
));
837 /* Allocate a temporary stack slot and record it for possible later
838 reuse. First three arguments are same as in preceding function. */
841 assign_stack_temp (mode
, size
, keep
)
842 enum machine_mode mode
;
846 return assign_stack_temp_for_type (mode
, size
, keep
, NULL_TREE
);
849 /* Assign a temporary of given TYPE.
850 KEEP is as for assign_stack_temp.
851 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
852 it is 0 if a register is OK.
853 DONT_PROMOTE is 1 if we should not promote values in register
857 assign_temp (type
, keep
, memory_required
, dont_promote
)
861 int dont_promote ATTRIBUTE_UNUSED
;
863 enum machine_mode mode
= TYPE_MODE (type
);
864 #ifndef PROMOTE_FOR_CALL_ONLY
865 int unsignedp
= TREE_UNSIGNED (type
);
868 if (mode
== BLKmode
|| memory_required
)
870 HOST_WIDE_INT size
= int_size_in_bytes (type
);
873 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
874 problems with allocating the stack space. */
878 /* Unfortunately, we don't yet know how to allocate variable-sized
879 temporaries. However, sometimes we have a fixed upper limit on
880 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
881 instead. This is the case for Chill variable-sized strings. */
882 if (size
== -1 && TREE_CODE (type
) == ARRAY_TYPE
883 && TYPE_ARRAY_MAX_SIZE (type
) != NULL_TREE
884 && host_integerp (TYPE_ARRAY_MAX_SIZE (type
), 1))
885 size
= tree_low_cst (TYPE_ARRAY_MAX_SIZE (type
), 1);
887 tmp
= assign_stack_temp_for_type (mode
, size
, keep
, type
);
891 #ifndef PROMOTE_FOR_CALL_ONLY
893 mode
= promote_mode (type
, mode
, &unsignedp
, 0);
896 return gen_reg_rtx (mode
);
899 /* Combine temporary stack slots which are adjacent on the stack.
901 This allows for better use of already allocated stack space. This is only
902 done for BLKmode slots because we can be sure that we won't have alignment
903 problems in this case. */
906 combine_temp_slots ()
908 struct temp_slot
*p
, *q
;
909 struct temp_slot
*prev_p
, *prev_q
;
912 /* We can't combine slots, because the information about which slot
913 is in which alias set will be lost. */
914 if (flag_strict_aliasing
)
917 /* If there are a lot of temp slots, don't do anything unless
918 high levels of optimizaton. */
919 if (! flag_expensive_optimizations
)
920 for (p
= temp_slots
, num_slots
= 0; p
; p
= p
->next
, num_slots
++)
921 if (num_slots
> 100 || (num_slots
> 10 && optimize
== 0))
924 for (p
= temp_slots
, prev_p
= 0; p
; p
= prev_p
? prev_p
->next
: temp_slots
)
928 if (! p
->in_use
&& GET_MODE (p
->slot
) == BLKmode
)
929 for (q
= p
->next
, prev_q
= p
; q
; q
= prev_q
->next
)
932 if (! q
->in_use
&& GET_MODE (q
->slot
) == BLKmode
)
934 if (p
->base_offset
+ p
->full_size
== q
->base_offset
)
936 /* Q comes after P; combine Q into P. */
938 p
->full_size
+= q
->full_size
;
941 else if (q
->base_offset
+ q
->full_size
== p
->base_offset
)
943 /* P comes after Q; combine P into Q. */
945 q
->full_size
+= p
->full_size
;
950 /* Either delete Q or advance past it. */
953 prev_q
->next
= q
->next
;
959 /* Either delete P or advance past it. */
963 prev_p
->next
= p
->next
;
965 temp_slots
= p
->next
;
972 /* Find the temp slot corresponding to the object at address X. */
974 static struct temp_slot
*
975 find_temp_slot_from_address (x
)
981 for (p
= temp_slots
; p
; p
= p
->next
)
986 else if (XEXP (p
->slot
, 0) == x
988 || (GET_CODE (x
) == PLUS
989 && XEXP (x
, 0) == virtual_stack_vars_rtx
990 && GET_CODE (XEXP (x
, 1)) == CONST_INT
991 && INTVAL (XEXP (x
, 1)) >= p
->base_offset
992 && INTVAL (XEXP (x
, 1)) < p
->base_offset
+ p
->full_size
))
995 else if (p
->address
!= 0 && GET_CODE (p
->address
) == EXPR_LIST
)
996 for (next
= p
->address
; next
; next
= XEXP (next
, 1))
997 if (XEXP (next
, 0) == x
)
1001 /* If we have a sum involving a register, see if it points to a temp
1003 if (GET_CODE (x
) == PLUS
&& GET_CODE (XEXP (x
, 0)) == REG
1004 && (p
= find_temp_slot_from_address (XEXP (x
, 0))) != 0)
1006 else if (GET_CODE (x
) == PLUS
&& GET_CODE (XEXP (x
, 1)) == REG
1007 && (p
= find_temp_slot_from_address (XEXP (x
, 1))) != 0)
1013 /* Indicate that NEW is an alternate way of referring to the temp slot
1014 that previously was known by OLD. */
1017 update_temp_slot_address (old
, new)
1020 struct temp_slot
*p
;
1022 if (rtx_equal_p (old
, new))
1025 p
= find_temp_slot_from_address (old
);
1027 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1028 is a register, see if one operand of the PLUS is a temporary
1029 location. If so, NEW points into it. Otherwise, if both OLD and
1030 NEW are a PLUS and if there is a register in common between them.
1031 If so, try a recursive call on those values. */
1034 if (GET_CODE (old
) != PLUS
)
1037 if (GET_CODE (new) == REG
)
1039 update_temp_slot_address (XEXP (old
, 0), new);
1040 update_temp_slot_address (XEXP (old
, 1), new);
1043 else if (GET_CODE (new) != PLUS
)
1046 if (rtx_equal_p (XEXP (old
, 0), XEXP (new, 0)))
1047 update_temp_slot_address (XEXP (old
, 1), XEXP (new, 1));
1048 else if (rtx_equal_p (XEXP (old
, 1), XEXP (new, 0)))
1049 update_temp_slot_address (XEXP (old
, 0), XEXP (new, 1));
1050 else if (rtx_equal_p (XEXP (old
, 0), XEXP (new, 1)))
1051 update_temp_slot_address (XEXP (old
, 1), XEXP (new, 0));
1052 else if (rtx_equal_p (XEXP (old
, 1), XEXP (new, 1)))
1053 update_temp_slot_address (XEXP (old
, 0), XEXP (new, 0));
1058 /* Otherwise add an alias for the temp's address. */
1059 else if (p
->address
== 0)
1063 if (GET_CODE (p
->address
) != EXPR_LIST
)
1064 p
->address
= gen_rtx_EXPR_LIST (VOIDmode
, p
->address
, NULL_RTX
);
1066 p
->address
= gen_rtx_EXPR_LIST (VOIDmode
, new, p
->address
);
1070 /* If X could be a reference to a temporary slot, mark the fact that its
1071 address was taken. */
1074 mark_temp_addr_taken (x
)
1077 struct temp_slot
*p
;
1082 /* If X is not in memory or is at a constant address, it cannot be in
1083 a temporary slot. */
1084 if (GET_CODE (x
) != MEM
|| CONSTANT_P (XEXP (x
, 0)))
1087 p
= find_temp_slot_from_address (XEXP (x
, 0));
1092 /* If X could be a reference to a temporary slot, mark that slot as
1093 belonging to the to one level higher than the current level. If X
1094 matched one of our slots, just mark that one. Otherwise, we can't
1095 easily predict which it is, so upgrade all of them. Kept slots
1096 need not be touched.
1098 This is called when an ({...}) construct occurs and a statement
1099 returns a value in memory. */
1102 preserve_temp_slots (x
)
1105 struct temp_slot
*p
= 0;
1107 /* If there is no result, we still might have some objects whose address
1108 were taken, so we need to make sure they stay around. */
1111 for (p
= temp_slots
; p
; p
= p
->next
)
1112 if (p
->in_use
&& p
->level
== temp_slot_level
&& p
->addr_taken
)
1118 /* If X is a register that is being used as a pointer, see if we have
1119 a temporary slot we know it points to. To be consistent with
1120 the code below, we really should preserve all non-kept slots
1121 if we can't find a match, but that seems to be much too costly. */
1122 if (GET_CODE (x
) == REG
&& REGNO_POINTER_FLAG (REGNO (x
)))
1123 p
= find_temp_slot_from_address (x
);
1125 /* If X is not in memory or is at a constant address, it cannot be in
1126 a temporary slot, but it can contain something whose address was
1128 if (p
== 0 && (GET_CODE (x
) != MEM
|| CONSTANT_P (XEXP (x
, 0))))
1130 for (p
= temp_slots
; p
; p
= p
->next
)
1131 if (p
->in_use
&& p
->level
== temp_slot_level
&& p
->addr_taken
)
1137 /* First see if we can find a match. */
1139 p
= find_temp_slot_from_address (XEXP (x
, 0));
1143 /* Move everything at our level whose address was taken to our new
1144 level in case we used its address. */
1145 struct temp_slot
*q
;
1147 if (p
->level
== temp_slot_level
)
1149 for (q
= temp_slots
; q
; q
= q
->next
)
1150 if (q
!= p
&& q
->addr_taken
&& q
->level
== p
->level
)
1159 /* Otherwise, preserve all non-kept slots at this level. */
1160 for (p
= temp_slots
; p
; p
= p
->next
)
1161 if (p
->in_use
&& p
->level
== temp_slot_level
&& ! p
->keep
)
1165 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1166 with that RTL_EXPR, promote it into a temporary slot at the present
1167 level so it will not be freed when we free slots made in the
1171 preserve_rtl_expr_result (x
)
1174 struct temp_slot
*p
;
1176 /* If X is not in memory or is at a constant address, it cannot be in
1177 a temporary slot. */
1178 if (x
== 0 || GET_CODE (x
) != MEM
|| CONSTANT_P (XEXP (x
, 0)))
1181 /* If we can find a match, move it to our level unless it is already at
1183 p
= find_temp_slot_from_address (XEXP (x
, 0));
1186 p
->level
= MIN (p
->level
, temp_slot_level
);
1193 /* Free all temporaries used so far. This is normally called at the end
1194 of generating code for a statement. Don't free any temporaries
1195 currently in use for an RTL_EXPR that hasn't yet been emitted.
1196 We could eventually do better than this since it can be reused while
1197 generating the same RTL_EXPR, but this is complex and probably not
1203 struct temp_slot
*p
;
1205 for (p
= temp_slots
; p
; p
= p
->next
)
1206 if (p
->in_use
&& p
->level
== temp_slot_level
&& ! p
->keep
1207 && p
->rtl_expr
== 0)
1210 combine_temp_slots ();
1213 /* Free all temporary slots used in T, an RTL_EXPR node. */
1216 free_temps_for_rtl_expr (t
)
1219 struct temp_slot
*p
;
1221 for (p
= temp_slots
; p
; p
= p
->next
)
1222 if (p
->rtl_expr
== t
)
1224 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1225 needs to be preserved. This can happen if a temporary in
1226 the RTL_EXPR was addressed; preserve_temp_slots will move
1227 the temporary into a higher level. */
1228 if (temp_slot_level
<= p
->level
)
1231 p
->rtl_expr
= NULL_TREE
;
1234 combine_temp_slots ();
1237 /* Mark all temporaries ever allocated in this function as not suitable
1238 for reuse until the current level is exited. */
1241 mark_all_temps_used ()
1243 struct temp_slot
*p
;
1245 for (p
= temp_slots
; p
; p
= p
->next
)
1247 p
->in_use
= p
->keep
= 1;
1248 p
->level
= MIN (p
->level
, temp_slot_level
);
1252 /* Push deeper into the nesting level for stack temporaries. */
1260 /* Likewise, but save the new level as the place to allocate variables
1265 push_temp_slots_for_block ()
1269 var_temp_slot_level
= temp_slot_level
;
1272 /* Likewise, but save the new level as the place to allocate temporaries
1273 for TARGET_EXPRs. */
1276 push_temp_slots_for_target ()
1280 target_temp_slot_level
= temp_slot_level
;
1283 /* Set and get the value of target_temp_slot_level. The only
1284 permitted use of these functions is to save and restore this value. */
1287 get_target_temp_slot_level ()
1289 return target_temp_slot_level
;
1293 set_target_temp_slot_level (level
)
1296 target_temp_slot_level
= level
;
1300 /* Pop a temporary nesting level. All slots in use in the current level
1306 struct temp_slot
*p
;
1308 for (p
= temp_slots
; p
; p
= p
->next
)
1309 if (p
->in_use
&& p
->level
== temp_slot_level
&& p
->rtl_expr
== 0)
1312 combine_temp_slots ();
1317 /* Initialize temporary slots. */
1322 /* We have not allocated any temporaries yet. */
1324 temp_slot_level
= 0;
1325 var_temp_slot_level
= 0;
1326 target_temp_slot_level
= 0;
1329 /* Retroactively move an auto variable from a register to a stack slot.
1330 This is done when an address-reference to the variable is seen. */
1333 put_var_into_stack (decl
)
1337 enum machine_mode promoted_mode
, decl_mode
;
1338 struct function
*function
= 0;
1340 int can_use_addressof
;
1341 int volatilep
= TREE_CODE (decl
) != SAVE_EXPR
&& TREE_THIS_VOLATILE (decl
);
1342 int usedp
= (TREE_USED (decl
)
1343 || (TREE_CODE (decl
) != SAVE_EXPR
&& DECL_INITIAL (decl
) != 0));
1345 context
= decl_function_context (decl
);
1347 /* Get the current rtl used for this object and its original mode. */
1348 reg
= TREE_CODE (decl
) == SAVE_EXPR
? SAVE_EXPR_RTL (decl
) : DECL_RTL (decl
);
1350 /* No need to do anything if decl has no rtx yet
1351 since in that case caller is setting TREE_ADDRESSABLE
1352 and a stack slot will be assigned when the rtl is made. */
1356 /* Get the declared mode for this object. */
1357 decl_mode
= (TREE_CODE (decl
) == SAVE_EXPR
? TYPE_MODE (TREE_TYPE (decl
))
1358 : DECL_MODE (decl
));
1359 /* Get the mode it's actually stored in. */
1360 promoted_mode
= GET_MODE (reg
);
1362 /* If this variable comes from an outer function,
1363 find that function's saved context. */
1364 if (context
!= current_function_decl
&& context
!= inline_function_decl
)
1365 for (function
= outer_function_chain
; function
; function
= function
->next
)
1366 if (function
->decl
== context
)
1369 /* If this is a variable-size object with a pseudo to address it,
1370 put that pseudo into the stack, if the var is nonlocal. */
1371 if (TREE_CODE (decl
) != SAVE_EXPR
&& DECL_NONLOCAL (decl
)
1372 && GET_CODE (reg
) == MEM
1373 && GET_CODE (XEXP (reg
, 0)) == REG
1374 && REGNO (XEXP (reg
, 0)) > LAST_VIRTUAL_REGISTER
)
1376 reg
= XEXP (reg
, 0);
1377 decl_mode
= promoted_mode
= GET_MODE (reg
);
1383 /* FIXME make it work for promoted modes too */
1384 && decl_mode
== promoted_mode
1385 #ifdef NON_SAVING_SETJMP
1386 && ! (NON_SAVING_SETJMP
&& current_function_calls_setjmp
)
1390 /* If we can't use ADDRESSOF, make sure we see through one we already
1392 if (! can_use_addressof
&& GET_CODE (reg
) == MEM
1393 && GET_CODE (XEXP (reg
, 0)) == ADDRESSOF
)
1394 reg
= XEXP (XEXP (reg
, 0), 0);
1396 /* Now we should have a value that resides in one or more pseudo regs. */
1398 if (GET_CODE (reg
) == REG
)
1400 /* If this variable lives in the current function and we don't need
1401 to put things in the stack for the sake of setjmp, try to keep it
1402 in a register until we know we actually need the address. */
1403 if (can_use_addressof
)
1404 gen_mem_addressof (reg
, decl
);
1406 put_reg_into_stack (function
, reg
, TREE_TYPE (decl
), promoted_mode
,
1407 decl_mode
, volatilep
, 0, usedp
, 0);
1409 else if (GET_CODE (reg
) == CONCAT
)
1411 /* A CONCAT contains two pseudos; put them both in the stack.
1412 We do it so they end up consecutive.
1413 We fixup references to the parts only after we fixup references
1414 to the whole CONCAT, lest we do double fixups for the latter
1416 enum machine_mode part_mode
= GET_MODE (XEXP (reg
, 0));
1417 tree part_type
= type_for_mode (part_mode
, 0);
1418 rtx lopart
= XEXP (reg
, 0);
1419 rtx hipart
= XEXP (reg
, 1);
1420 #ifdef FRAME_GROWS_DOWNWARD
1421 /* Since part 0 should have a lower address, do it second. */
1422 put_reg_into_stack (function
, hipart
, part_type
, part_mode
,
1423 part_mode
, volatilep
, 0, 0, 0);
1424 put_reg_into_stack (function
, lopart
, part_type
, part_mode
,
1425 part_mode
, volatilep
, 0, 0, 0);
1427 put_reg_into_stack (function
, lopart
, part_type
, part_mode
,
1428 part_mode
, volatilep
, 0, 0, 0);
1429 put_reg_into_stack (function
, hipart
, part_type
, part_mode
,
1430 part_mode
, volatilep
, 0, 0, 0);
1433 /* Change the CONCAT into a combined MEM for both parts. */
1434 PUT_CODE (reg
, MEM
);
1435 set_mem_attributes (reg
, decl
, 1);
1437 /* The two parts are in memory order already.
1438 Use the lower parts address as ours. */
1439 XEXP (reg
, 0) = XEXP (XEXP (reg
, 0), 0);
1440 /* Prevent sharing of rtl that might lose. */
1441 if (GET_CODE (XEXP (reg
, 0)) == PLUS
)
1442 XEXP (reg
, 0) = copy_rtx (XEXP (reg
, 0));
1445 schedule_fixup_var_refs (function
, reg
, TREE_TYPE (decl
),
1447 schedule_fixup_var_refs (function
, lopart
, part_type
, part_mode
, 0);
1448 schedule_fixup_var_refs (function
, hipart
, part_type
, part_mode
, 0);
1454 if (current_function_check_memory_usage
)
1455 emit_library_call (chkr_set_right_libfunc
, 1, VOIDmode
, 3,
1456 XEXP (reg
, 0), Pmode
,
1457 GEN_INT (GET_MODE_SIZE (GET_MODE (reg
))),
1458 TYPE_MODE (sizetype
),
1459 GEN_INT (MEMORY_USE_RW
),
1460 TYPE_MODE (integer_type_node
));
1463 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1464 into the stack frame of FUNCTION (0 means the current function).
1465 DECL_MODE is the machine mode of the user-level data type.
1466 PROMOTED_MODE is the machine mode of the register.
1467 VOLATILE_P is nonzero if this is for a "volatile" decl.
1468 USED_P is nonzero if this reg might have already been used in an insn. */
1471 put_reg_into_stack (function
, reg
, type
, promoted_mode
, decl_mode
, volatile_p
,
1472 original_regno
, used_p
, ht
)
1473 struct function
*function
;
1476 enum machine_mode promoted_mode
, decl_mode
;
1478 unsigned int original_regno
;
1480 struct hash_table
*ht
;
1482 struct function
*func
= function
? function
: cfun
;
1484 unsigned int regno
= original_regno
;
1487 regno
= REGNO (reg
);
1489 if (regno
< func
->x_max_parm_reg
)
1490 new = func
->x_parm_reg_stack_loc
[regno
];
1493 new = assign_stack_local_1 (decl_mode
, GET_MODE_SIZE (decl_mode
), 0, func
);
1495 PUT_CODE (reg
, MEM
);
1496 PUT_MODE (reg
, decl_mode
);
1497 XEXP (reg
, 0) = XEXP (new, 0);
1498 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1499 MEM_VOLATILE_P (reg
) = volatile_p
;
1501 /* If this is a memory ref that contains aggregate components,
1502 mark it as such for cse and loop optimize. If we are reusing a
1503 previously generated stack slot, then we need to copy the bit in
1504 case it was set for other reasons. For instance, it is set for
1505 __builtin_va_alist. */
1508 MEM_SET_IN_STRUCT_P (reg
,
1509 AGGREGATE_TYPE_P (type
) || MEM_IN_STRUCT_P (new));
1510 MEM_ALIAS_SET (reg
) = get_alias_set (type
);
1513 schedule_fixup_var_refs (function
, reg
, type
, promoted_mode
, ht
);
1516 /* Make sure that all refs to the variable, previously made
1517 when it was a register, are fixed up to be valid again.
1518 See function above for meaning of arguments. */
1520 schedule_fixup_var_refs (function
, reg
, type
, promoted_mode
, ht
)
1521 struct function
*function
;
1524 enum machine_mode promoted_mode
;
1525 struct hash_table
*ht
;
1527 int unsigned_p
= type
? TREE_UNSIGNED (type
) : 0;
1531 struct var_refs_queue
*temp
;
1534 = (struct var_refs_queue
*) xmalloc (sizeof (struct var_refs_queue
));
1535 temp
->modified
= reg
;
1536 temp
->promoted_mode
= promoted_mode
;
1537 temp
->unsignedp
= unsigned_p
;
1538 temp
->next
= function
->fixup_var_refs_queue
;
1539 function
->fixup_var_refs_queue
= temp
;
1542 /* Variable is local; fix it up now. */
1543 fixup_var_refs (reg
, promoted_mode
, unsigned_p
, ht
);
1547 fixup_var_refs (var
, promoted_mode
, unsignedp
, ht
)
1549 enum machine_mode promoted_mode
;
1551 struct hash_table
*ht
;
1554 rtx first_insn
= get_insns ();
1555 struct sequence_stack
*stack
= seq_stack
;
1556 tree rtl_exps
= rtl_expr_chain
;
1559 /* Must scan all insns for stack-refs that exceed the limit. */
1560 fixup_var_refs_insns (var
, promoted_mode
, unsignedp
, first_insn
,
1562 /* If there's a hash table, it must record all uses of VAR. */
1566 /* Scan all pending sequences too. */
1567 for (; stack
; stack
= stack
->next
)
1569 push_to_sequence (stack
->first
);
1570 fixup_var_refs_insns (var
, promoted_mode
, unsignedp
,
1571 stack
->first
, stack
->next
!= 0, 0);
1572 /* Update remembered end of sequence
1573 in case we added an insn at the end. */
1574 stack
->last
= get_last_insn ();
1578 /* Scan all waiting RTL_EXPRs too. */
1579 for (pending
= rtl_exps
; pending
; pending
= TREE_CHAIN (pending
))
1581 rtx seq
= RTL_EXPR_SEQUENCE (TREE_VALUE (pending
));
1582 if (seq
!= const0_rtx
&& seq
!= 0)
1584 push_to_sequence (seq
);
1585 fixup_var_refs_insns (var
, promoted_mode
, unsignedp
, seq
, 0, 0);
1590 /* Scan the catch clauses for exception handling too. */
1591 push_to_full_sequence (catch_clauses
, catch_clauses_last
);
1592 fixup_var_refs_insns (var
, promoted_mode
, unsignedp
, catch_clauses
, 0, 0);
1593 end_full_sequence (&catch_clauses
, &catch_clauses_last
);
1595 /* Scan sequences saved in CALL_PLACEHOLDERS too. */
1596 for (insn
= first_insn
; insn
; insn
= NEXT_INSN (insn
))
1598 if (GET_CODE (insn
) == CALL_INSN
1599 && GET_CODE (PATTERN (insn
)) == CALL_PLACEHOLDER
)
1603 /* Look at the Normal call, sibling call and tail recursion
1604 sequences attached to the CALL_PLACEHOLDER. */
1605 for (i
= 0; i
< 3; i
++)
1607 rtx seq
= XEXP (PATTERN (insn
), i
);
1610 push_to_sequence (seq
);
1611 fixup_var_refs_insns (var
, promoted_mode
, unsignedp
,
1613 XEXP (PATTERN (insn
), i
) = get_insns ();
1621 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1622 some part of an insn. Return a struct fixup_replacement whose OLD
1623 value is equal to X. Allocate a new structure if no such entry exists. */
1625 static struct fixup_replacement
*
1626 find_fixup_replacement (replacements
, x
)
1627 struct fixup_replacement
**replacements
;
1630 struct fixup_replacement
*p
;
1632 /* See if we have already replaced this. */
1633 for (p
= *replacements
; p
!= 0 && ! rtx_equal_p (p
->old
, x
); p
= p
->next
)
1638 p
= (struct fixup_replacement
*) oballoc (sizeof (struct fixup_replacement
));
1641 p
->next
= *replacements
;
1648 /* Scan the insn-chain starting with INSN for refs to VAR
1649 and fix them up. TOPLEVEL is nonzero if this chain is the
1650 main chain of insns for the current function. */
1653 fixup_var_refs_insns (var
, promoted_mode
, unsignedp
, insn
, toplevel
, ht
)
1655 enum machine_mode promoted_mode
;
1659 struct hash_table
*ht
;
1662 rtx insn_list
= NULL_RTX
;
1664 /* If we already know which INSNs reference VAR there's no need
1665 to walk the entire instruction chain. */
1668 insn_list
= ((struct insns_for_mem_entry
*)
1669 hash_lookup (ht
, var
, /*create=*/0, /*copy=*/0))->insns
;
1670 insn
= insn_list
? XEXP (insn_list
, 0) : NULL_RTX
;
1671 insn_list
= XEXP (insn_list
, 1);
1676 rtx next
= NEXT_INSN (insn
);
1677 rtx set
, prev
, prev_set
;
1682 /* Remember the notes in case we delete the insn. */
1683 note
= REG_NOTES (insn
);
1685 /* If this is a CLOBBER of VAR, delete it.
1687 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1688 and REG_RETVAL notes too. */
1689 if (GET_CODE (PATTERN (insn
)) == CLOBBER
1690 && (XEXP (PATTERN (insn
), 0) == var
1691 || (GET_CODE (XEXP (PATTERN (insn
), 0)) == CONCAT
1692 && (XEXP (XEXP (PATTERN (insn
), 0), 0) == var
1693 || XEXP (XEXP (PATTERN (insn
), 0), 1) == var
))))
1695 if ((note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
)) != 0)
1696 /* The REG_LIBCALL note will go away since we are going to
1697 turn INSN into a NOTE, so just delete the
1698 corresponding REG_RETVAL note. */
1699 remove_note (XEXP (note
, 0),
1700 find_reg_note (XEXP (note
, 0), REG_RETVAL
,
1703 /* In unoptimized compilation, we shouldn't call delete_insn
1704 except in jump.c doing warnings. */
1705 PUT_CODE (insn
, NOTE
);
1706 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
1707 NOTE_SOURCE_FILE (insn
) = 0;
1710 /* The insn to load VAR from a home in the arglist
1711 is now a no-op. When we see it, just delete it.
1712 Similarly if this is storing VAR from a register from which
1713 it was loaded in the previous insn. This will occur
1714 when an ADDRESSOF was made for an arglist slot. */
1716 && (set
= single_set (insn
)) != 0
1717 && SET_DEST (set
) == var
1718 /* If this represents the result of an insn group,
1719 don't delete the insn. */
1720 && find_reg_note (insn
, REG_RETVAL
, NULL_RTX
) == 0
1721 && (rtx_equal_p (SET_SRC (set
), var
)
1722 || (GET_CODE (SET_SRC (set
)) == REG
1723 && (prev
= prev_nonnote_insn (insn
)) != 0
1724 && (prev_set
= single_set (prev
)) != 0
1725 && SET_DEST (prev_set
) == SET_SRC (set
)
1726 && rtx_equal_p (SET_SRC (prev_set
), var
))))
1728 /* In unoptimized compilation, we shouldn't call delete_insn
1729 except in jump.c doing warnings. */
1730 PUT_CODE (insn
, NOTE
);
1731 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
1732 NOTE_SOURCE_FILE (insn
) = 0;
1733 if (insn
== last_parm_insn
)
1734 last_parm_insn
= PREV_INSN (next
);
1738 struct fixup_replacement
*replacements
= 0;
1739 rtx next_insn
= NEXT_INSN (insn
);
1741 if (SMALL_REGISTER_CLASSES
)
1743 /* If the insn that copies the results of a CALL_INSN
1744 into a pseudo now references VAR, we have to use an
1745 intermediate pseudo since we want the life of the
1746 return value register to be only a single insn.
1748 If we don't use an intermediate pseudo, such things as
1749 address computations to make the address of VAR valid
1750 if it is not can be placed between the CALL_INSN and INSN.
1752 To make sure this doesn't happen, we record the destination
1753 of the CALL_INSN and see if the next insn uses both that
1756 if (call_dest
!= 0 && GET_CODE (insn
) == INSN
1757 && reg_mentioned_p (var
, PATTERN (insn
))
1758 && reg_mentioned_p (call_dest
, PATTERN (insn
)))
1760 rtx temp
= gen_reg_rtx (GET_MODE (call_dest
));
1762 emit_insn_before (gen_move_insn (temp
, call_dest
), insn
);
1764 PATTERN (insn
) = replace_rtx (PATTERN (insn
),
1768 if (GET_CODE (insn
) == CALL_INSN
1769 && GET_CODE (PATTERN (insn
)) == SET
)
1770 call_dest
= SET_DEST (PATTERN (insn
));
1771 else if (GET_CODE (insn
) == CALL_INSN
1772 && GET_CODE (PATTERN (insn
)) == PARALLEL
1773 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1774 call_dest
= SET_DEST (XVECEXP (PATTERN (insn
), 0, 0));
1779 /* See if we have to do anything to INSN now that VAR is in
1780 memory. If it needs to be loaded into a pseudo, use a single
1781 pseudo for the entire insn in case there is a MATCH_DUP
1782 between two operands. We pass a pointer to the head of
1783 a list of struct fixup_replacements. If fixup_var_refs_1
1784 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1785 it will record them in this list.
1787 If it allocated a pseudo for any replacement, we copy into
1790 fixup_var_refs_1 (var
, promoted_mode
, &PATTERN (insn
), insn
,
1793 /* If this is last_parm_insn, and any instructions were output
1794 after it to fix it up, then we must set last_parm_insn to
1795 the last such instruction emitted. */
1796 if (insn
== last_parm_insn
)
1797 last_parm_insn
= PREV_INSN (next_insn
);
1799 while (replacements
)
1801 if (GET_CODE (replacements
->new) == REG
)
1806 /* OLD might be a (subreg (mem)). */
1807 if (GET_CODE (replacements
->old
) == SUBREG
)
1809 = fixup_memory_subreg (replacements
->old
, insn
, 0);
1812 = fixup_stack_1 (replacements
->old
, insn
);
1814 insert_before
= insn
;
1816 /* If we are changing the mode, do a conversion.
1817 This might be wasteful, but combine.c will
1818 eliminate much of the waste. */
1820 if (GET_MODE (replacements
->new)
1821 != GET_MODE (replacements
->old
))
1824 convert_move (replacements
->new,
1825 replacements
->old
, unsignedp
);
1826 seq
= gen_sequence ();
1830 seq
= gen_move_insn (replacements
->new,
1833 emit_insn_before (seq
, insert_before
);
1836 replacements
= replacements
->next
;
1840 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1841 But don't touch other insns referred to by reg-notes;
1842 we will get them elsewhere. */
1845 if (GET_CODE (note
) != INSN_LIST
)
1847 = walk_fixup_memory_subreg (XEXP (note
, 0), insn
, 1);
1848 note
= XEXP (note
, 1);
1856 insn
= XEXP (insn_list
, 0);
1857 insn_list
= XEXP (insn_list
, 1);
1864 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1865 See if the rtx expression at *LOC in INSN needs to be changed.
1867 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1868 contain a list of original rtx's and replacements. If we find that we need
1869 to modify this insn by replacing a memory reference with a pseudo or by
1870 making a new MEM to implement a SUBREG, we consult that list to see if
1871 we have already chosen a replacement. If none has already been allocated,
1872 we allocate it and update the list. fixup_var_refs_insns will copy VAR
1873 or the SUBREG, as appropriate, to the pseudo. */
1876 fixup_var_refs_1 (var
, promoted_mode
, loc
, insn
, replacements
)
1878 enum machine_mode promoted_mode
;
1881 struct fixup_replacement
**replacements
;
1884 register rtx x
= *loc
;
1885 RTX_CODE code
= GET_CODE (x
);
1886 register const char *fmt
;
1887 register rtx tem
, tem1
;
1888 struct fixup_replacement
*replacement
;
1893 if (XEXP (x
, 0) == var
)
1895 /* Prevent sharing of rtl that might lose. */
1896 rtx sub
= copy_rtx (XEXP (var
, 0));
1898 if (! validate_change (insn
, loc
, sub
, 0))
1900 rtx y
= gen_reg_rtx (GET_MODE (sub
));
1903 /* We should be able to replace with a register or all is lost.
1904 Note that we can't use validate_change to verify this, since
1905 we're not caring for replacing all dups simultaneously. */
1906 if (! validate_replace_rtx (*loc
, y
, insn
))
1909 /* Careful! First try to recognize a direct move of the
1910 value, mimicking how things are done in gen_reload wrt
1911 PLUS. Consider what happens when insn is a conditional
1912 move instruction and addsi3 clobbers flags. */
1915 new_insn
= emit_insn (gen_rtx_SET (VOIDmode
, y
, sub
));
1916 seq
= gen_sequence ();
1919 if (recog_memoized (new_insn
) < 0)
1921 /* That failed. Fall back on force_operand and hope. */
1924 force_operand (sub
, y
);
1925 seq
= gen_sequence ();
1930 /* Don't separate setter from user. */
1931 if (PREV_INSN (insn
) && sets_cc0_p (PREV_INSN (insn
)))
1932 insn
= PREV_INSN (insn
);
1935 emit_insn_before (seq
, insn
);
1943 /* If we already have a replacement, use it. Otherwise,
1944 try to fix up this address in case it is invalid. */
1946 replacement
= find_fixup_replacement (replacements
, var
);
1947 if (replacement
->new)
1949 *loc
= replacement
->new;
1953 *loc
= replacement
->new = x
= fixup_stack_1 (x
, insn
);
1955 /* Unless we are forcing memory to register or we changed the mode,
1956 we can leave things the way they are if the insn is valid. */
1958 INSN_CODE (insn
) = -1;
1959 if (! flag_force_mem
&& GET_MODE (x
) == promoted_mode
1960 && recog_memoized (insn
) >= 0)
1963 *loc
= replacement
->new = gen_reg_rtx (promoted_mode
);
1967 /* If X contains VAR, we need to unshare it here so that we update
1968 each occurrence separately. But all identical MEMs in one insn
1969 must be replaced with the same rtx because of the possibility of
1972 if (reg_mentioned_p (var
, x
))
1974 replacement
= find_fixup_replacement (replacements
, x
);
1975 if (replacement
->new == 0)
1976 replacement
->new = copy_most_rtx (x
, var
);
1978 *loc
= x
= replacement
->new;
1979 code
= GET_CODE (x
);
1995 /* Note that in some cases those types of expressions are altered
1996 by optimize_bit_field, and do not survive to get here. */
1997 if (XEXP (x
, 0) == var
1998 || (GET_CODE (XEXP (x
, 0)) == SUBREG
1999 && SUBREG_REG (XEXP (x
, 0)) == var
))
2001 /* Get TEM as a valid MEM in the mode presently in the insn.
2003 We don't worry about the possibility of MATCH_DUP here; it
2004 is highly unlikely and would be tricky to handle. */
2007 if (GET_CODE (tem
) == SUBREG
)
2009 if (GET_MODE_BITSIZE (GET_MODE (tem
))
2010 > GET_MODE_BITSIZE (GET_MODE (var
)))
2012 replacement
= find_fixup_replacement (replacements
, var
);
2013 if (replacement
->new == 0)
2014 replacement
->new = gen_reg_rtx (GET_MODE (var
));
2015 SUBREG_REG (tem
) = replacement
->new;
2018 tem
= fixup_memory_subreg (tem
, insn
, 0);
2021 tem
= fixup_stack_1 (tem
, insn
);
2023 /* Unless we want to load from memory, get TEM into the proper mode
2024 for an extract from memory. This can only be done if the
2025 extract is at a constant position and length. */
2027 if (! flag_force_mem
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
2028 && GET_CODE (XEXP (x
, 2)) == CONST_INT
2029 && ! mode_dependent_address_p (XEXP (tem
, 0))
2030 && ! MEM_VOLATILE_P (tem
))
2032 enum machine_mode wanted_mode
= VOIDmode
;
2033 enum machine_mode is_mode
= GET_MODE (tem
);
2034 HOST_WIDE_INT pos
= INTVAL (XEXP (x
, 2));
2037 if (GET_CODE (x
) == ZERO_EXTRACT
)
2040 = insn_data
[(int) CODE_FOR_extzv
].operand
[1].mode
;
2041 if (wanted_mode
== VOIDmode
)
2042 wanted_mode
= word_mode
;
2046 if (GET_CODE (x
) == SIGN_EXTRACT
)
2048 wanted_mode
= insn_data
[(int) CODE_FOR_extv
].operand
[1].mode
;
2049 if (wanted_mode
== VOIDmode
)
2050 wanted_mode
= word_mode
;
2053 /* If we have a narrower mode, we can do something. */
2054 if (wanted_mode
!= VOIDmode
2055 && GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
2057 HOST_WIDE_INT offset
= pos
/ BITS_PER_UNIT
;
2058 rtx old_pos
= XEXP (x
, 2);
2061 /* If the bytes and bits are counted differently, we
2062 must adjust the offset. */
2063 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
2064 offset
= (GET_MODE_SIZE (is_mode
)
2065 - GET_MODE_SIZE (wanted_mode
) - offset
);
2067 pos
%= GET_MODE_BITSIZE (wanted_mode
);
2069 newmem
= gen_rtx_MEM (wanted_mode
,
2070 plus_constant (XEXP (tem
, 0), offset
));
2071 MEM_COPY_ATTRIBUTES (newmem
, tem
);
2073 /* Make the change and see if the insn remains valid. */
2074 INSN_CODE (insn
) = -1;
2075 XEXP (x
, 0) = newmem
;
2076 XEXP (x
, 2) = GEN_INT (pos
);
2078 if (recog_memoized (insn
) >= 0)
2081 /* Otherwise, restore old position. XEXP (x, 0) will be
2083 XEXP (x
, 2) = old_pos
;
2087 /* If we get here, the bitfield extract insn can't accept a memory
2088 reference. Copy the input into a register. */
2090 tem1
= gen_reg_rtx (GET_MODE (tem
));
2091 emit_insn_before (gen_move_insn (tem1
, tem
), insn
);
2098 if (SUBREG_REG (x
) == var
)
2100 /* If this is a special SUBREG made because VAR was promoted
2101 from a wider mode, replace it with VAR and call ourself
2102 recursively, this time saying that the object previously
2103 had its current mode (by virtue of the SUBREG). */
2105 if (SUBREG_PROMOTED_VAR_P (x
))
2108 fixup_var_refs_1 (var
, GET_MODE (var
), loc
, insn
, replacements
);
2112 /* If this SUBREG makes VAR wider, it has become a paradoxical
2113 SUBREG with VAR in memory, but these aren't allowed at this
2114 stage of the compilation. So load VAR into a pseudo and take
2115 a SUBREG of that pseudo. */
2116 if (GET_MODE_SIZE (GET_MODE (x
)) > GET_MODE_SIZE (GET_MODE (var
)))
2118 replacement
= find_fixup_replacement (replacements
, var
);
2119 if (replacement
->new == 0)
2120 replacement
->new = gen_reg_rtx (GET_MODE (var
));
2121 SUBREG_REG (x
) = replacement
->new;
2125 /* See if we have already found a replacement for this SUBREG.
2126 If so, use it. Otherwise, make a MEM and see if the insn
2127 is recognized. If not, or if we should force MEM into a register,
2128 make a pseudo for this SUBREG. */
2129 replacement
= find_fixup_replacement (replacements
, x
);
2130 if (replacement
->new)
2132 *loc
= replacement
->new;
2136 replacement
->new = *loc
= fixup_memory_subreg (x
, insn
, 0);
2138 INSN_CODE (insn
) = -1;
2139 if (! flag_force_mem
&& recog_memoized (insn
) >= 0)
2142 *loc
= replacement
->new = gen_reg_rtx (GET_MODE (x
));
2148 /* First do special simplification of bit-field references. */
2149 if (GET_CODE (SET_DEST (x
)) == SIGN_EXTRACT
2150 || GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
)
2151 optimize_bit_field (x
, insn
, 0);
2152 if (GET_CODE (SET_SRC (x
)) == SIGN_EXTRACT
2153 || GET_CODE (SET_SRC (x
)) == ZERO_EXTRACT
)
2154 optimize_bit_field (x
, insn
, NULL_PTR
);
2156 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2157 into a register and then store it back out. */
2158 if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
2159 && GET_CODE (XEXP (SET_DEST (x
), 0)) == SUBREG
2160 && SUBREG_REG (XEXP (SET_DEST (x
), 0)) == var
2161 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x
), 0)))
2162 > GET_MODE_SIZE (GET_MODE (var
))))
2164 replacement
= find_fixup_replacement (replacements
, var
);
2165 if (replacement
->new == 0)
2166 replacement
->new = gen_reg_rtx (GET_MODE (var
));
2168 SUBREG_REG (XEXP (SET_DEST (x
), 0)) = replacement
->new;
2169 emit_insn_after (gen_move_insn (var
, replacement
->new), insn
);
2172 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2173 insn into a pseudo and store the low part of the pseudo into VAR. */
2174 if (GET_CODE (SET_DEST (x
)) == SUBREG
2175 && SUBREG_REG (SET_DEST (x
)) == var
2176 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
2177 > GET_MODE_SIZE (GET_MODE (var
))))
2179 SET_DEST (x
) = tem
= gen_reg_rtx (GET_MODE (SET_DEST (x
)));
2180 emit_insn_after (gen_move_insn (var
, gen_lowpart (GET_MODE (var
),
2187 rtx dest
= SET_DEST (x
);
2188 rtx src
= SET_SRC (x
);
2190 rtx outerdest
= dest
;
2193 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
2194 || GET_CODE (dest
) == SIGN_EXTRACT
2195 || GET_CODE (dest
) == ZERO_EXTRACT
)
2196 dest
= XEXP (dest
, 0);
2198 if (GET_CODE (src
) == SUBREG
)
2199 src
= XEXP (src
, 0);
2201 /* If VAR does not appear at the top level of the SET
2202 just scan the lower levels of the tree. */
2204 if (src
!= var
&& dest
!= var
)
2207 /* We will need to rerecognize this insn. */
2208 INSN_CODE (insn
) = -1;
2211 if (GET_CODE (outerdest
) == ZERO_EXTRACT
&& dest
== var
)
2213 /* Since this case will return, ensure we fixup all the
2215 fixup_var_refs_1 (var
, promoted_mode
, &XEXP (outerdest
, 1),
2216 insn
, replacements
);
2217 fixup_var_refs_1 (var
, promoted_mode
, &XEXP (outerdest
, 2),
2218 insn
, replacements
);
2219 fixup_var_refs_1 (var
, promoted_mode
, &SET_SRC (x
),
2220 insn
, replacements
);
2222 tem
= XEXP (outerdest
, 0);
2224 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2225 that may appear inside a ZERO_EXTRACT.
2226 This was legitimate when the MEM was a REG. */
2227 if (GET_CODE (tem
) == SUBREG
2228 && SUBREG_REG (tem
) == var
)
2229 tem
= fixup_memory_subreg (tem
, insn
, 0);
2231 tem
= fixup_stack_1 (tem
, insn
);
2233 if (GET_CODE (XEXP (outerdest
, 1)) == CONST_INT
2234 && GET_CODE (XEXP (outerdest
, 2)) == CONST_INT
2235 && ! mode_dependent_address_p (XEXP (tem
, 0))
2236 && ! MEM_VOLATILE_P (tem
))
2238 enum machine_mode wanted_mode
;
2239 enum machine_mode is_mode
= GET_MODE (tem
);
2240 HOST_WIDE_INT pos
= INTVAL (XEXP (outerdest
, 2));
2242 wanted_mode
= insn_data
[(int) CODE_FOR_insv
].operand
[0].mode
;
2243 if (wanted_mode
== VOIDmode
)
2244 wanted_mode
= word_mode
;
2246 /* If we have a narrower mode, we can do something. */
2247 if (GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
2249 HOST_WIDE_INT offset
= pos
/ BITS_PER_UNIT
;
2250 rtx old_pos
= XEXP (outerdest
, 2);
2253 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
2254 offset
= (GET_MODE_SIZE (is_mode
)
2255 - GET_MODE_SIZE (wanted_mode
) - offset
);
2257 pos
%= GET_MODE_BITSIZE (wanted_mode
);
2259 newmem
= gen_rtx_MEM (wanted_mode
,
2260 plus_constant (XEXP (tem
, 0),
2262 MEM_COPY_ATTRIBUTES (newmem
, tem
);
2264 /* Make the change and see if the insn remains valid. */
2265 INSN_CODE (insn
) = -1;
2266 XEXP (outerdest
, 0) = newmem
;
2267 XEXP (outerdest
, 2) = GEN_INT (pos
);
2269 if (recog_memoized (insn
) >= 0)
2272 /* Otherwise, restore old position. XEXP (x, 0) will be
2274 XEXP (outerdest
, 2) = old_pos
;
2278 /* If we get here, the bit-field store doesn't allow memory
2279 or isn't located at a constant position. Load the value into
2280 a register, do the store, and put it back into memory. */
2282 tem1
= gen_reg_rtx (GET_MODE (tem
));
2283 emit_insn_before (gen_move_insn (tem1
, tem
), insn
);
2284 emit_insn_after (gen_move_insn (tem
, tem1
), insn
);
2285 XEXP (outerdest
, 0) = tem1
;
2290 /* STRICT_LOW_PART is a no-op on memory references
2291 and it can cause combinations to be unrecognizable,
2294 if (dest
== var
&& GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
)
2295 SET_DEST (x
) = XEXP (SET_DEST (x
), 0);
2297 /* A valid insn to copy VAR into or out of a register
2298 must be left alone, to avoid an infinite loop here.
2299 If the reference to VAR is by a subreg, fix that up,
2300 since SUBREG is not valid for a memref.
2301 Also fix up the address of the stack slot.
2303 Note that we must not try to recognize the insn until
2304 after we know that we have valid addresses and no
2305 (subreg (mem ...) ...) constructs, since these interfere
2306 with determining the validity of the insn. */
2308 if ((SET_SRC (x
) == var
2309 || (GET_CODE (SET_SRC (x
)) == SUBREG
2310 && SUBREG_REG (SET_SRC (x
)) == var
))
2311 && (GET_CODE (SET_DEST (x
)) == REG
2312 || (GET_CODE (SET_DEST (x
)) == SUBREG
2313 && GET_CODE (SUBREG_REG (SET_DEST (x
))) == REG
))
2314 && GET_MODE (var
) == promoted_mode
2315 && x
== single_set (insn
))
2319 replacement
= find_fixup_replacement (replacements
, SET_SRC (x
));
2320 if (replacement
->new)
2321 SET_SRC (x
) = replacement
->new;
2322 else if (GET_CODE (SET_SRC (x
)) == SUBREG
)
2323 SET_SRC (x
) = replacement
->new
2324 = fixup_memory_subreg (SET_SRC (x
), insn
, 0);
2326 SET_SRC (x
) = replacement
->new
2327 = fixup_stack_1 (SET_SRC (x
), insn
);
2329 if (recog_memoized (insn
) >= 0)
2332 /* INSN is not valid, but we know that we want to
2333 copy SET_SRC (x) to SET_DEST (x) in some way. So
2334 we generate the move and see whether it requires more
2335 than one insn. If it does, we emit those insns and
2336 delete INSN. Otherwise, we an just replace the pattern
2337 of INSN; we have already verified above that INSN has
2338 no other function that to do X. */
2340 pat
= gen_move_insn (SET_DEST (x
), SET_SRC (x
));
2341 if (GET_CODE (pat
) == SEQUENCE
)
2343 emit_insn_after (pat
, insn
);
2344 PUT_CODE (insn
, NOTE
);
2345 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
2346 NOTE_SOURCE_FILE (insn
) = 0;
2349 PATTERN (insn
) = pat
;
2354 if ((SET_DEST (x
) == var
2355 || (GET_CODE (SET_DEST (x
)) == SUBREG
2356 && SUBREG_REG (SET_DEST (x
)) == var
))
2357 && (GET_CODE (SET_SRC (x
)) == REG
2358 || (GET_CODE (SET_SRC (x
)) == SUBREG
2359 && GET_CODE (SUBREG_REG (SET_SRC (x
))) == REG
))
2360 && GET_MODE (var
) == promoted_mode
2361 && x
== single_set (insn
))
2365 if (GET_CODE (SET_DEST (x
)) == SUBREG
)
2366 SET_DEST (x
) = fixup_memory_subreg (SET_DEST (x
), insn
, 0);
2368 SET_DEST (x
) = fixup_stack_1 (SET_DEST (x
), insn
);
2370 if (recog_memoized (insn
) >= 0)
2373 pat
= gen_move_insn (SET_DEST (x
), SET_SRC (x
));
2374 if (GET_CODE (pat
) == SEQUENCE
)
2376 emit_insn_after (pat
, insn
);
2377 PUT_CODE (insn
, NOTE
);
2378 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
2379 NOTE_SOURCE_FILE (insn
) = 0;
2382 PATTERN (insn
) = pat
;
2387 /* Otherwise, storing into VAR must be handled specially
2388 by storing into a temporary and copying that into VAR
2389 with a new insn after this one. Note that this case
2390 will be used when storing into a promoted scalar since
2391 the insn will now have different modes on the input
2392 and output and hence will be invalid (except for the case
2393 of setting it to a constant, which does not need any
2394 change if it is valid). We generate extra code in that case,
2395 but combine.c will eliminate it. */
2400 rtx fixeddest
= SET_DEST (x
);
2402 /* STRICT_LOW_PART can be discarded, around a MEM. */
2403 if (GET_CODE (fixeddest
) == STRICT_LOW_PART
)
2404 fixeddest
= XEXP (fixeddest
, 0);
2405 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2406 if (GET_CODE (fixeddest
) == SUBREG
)
2408 fixeddest
= fixup_memory_subreg (fixeddest
, insn
, 0);
2409 promoted_mode
= GET_MODE (fixeddest
);
2412 fixeddest
= fixup_stack_1 (fixeddest
, insn
);
2414 temp
= gen_reg_rtx (promoted_mode
);
2416 emit_insn_after (gen_move_insn (fixeddest
,
2417 gen_lowpart (GET_MODE (fixeddest
),
2421 SET_DEST (x
) = temp
;
2429 /* Nothing special about this RTX; fix its operands. */
2431 fmt
= GET_RTX_FORMAT (code
);
2432 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2435 fixup_var_refs_1 (var
, promoted_mode
, &XEXP (x
, i
), insn
, replacements
);
2436 else if (fmt
[i
] == 'E')
2439 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2440 fixup_var_refs_1 (var
, promoted_mode
, &XVECEXP (x
, i
, j
),
2441 insn
, replacements
);
2446 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2447 return an rtx (MEM:m1 newaddr) which is equivalent.
2448 If any insns must be emitted to compute NEWADDR, put them before INSN.
2450 UNCRITICAL nonzero means accept paradoxical subregs.
2451 This is used for subregs found inside REG_NOTES. */
2454 fixup_memory_subreg (x
, insn
, uncritical
)
2459 int offset
= SUBREG_WORD (x
) * UNITS_PER_WORD
;
2460 rtx addr
= XEXP (SUBREG_REG (x
), 0);
2461 enum machine_mode mode
= GET_MODE (x
);
2464 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2465 if (GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)))
2469 if (BYTES_BIG_ENDIAN
)
2470 offset
+= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
2471 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
)));
2472 addr
= plus_constant (addr
, offset
);
2473 if (!flag_force_addr
&& memory_address_p (mode
, addr
))
2474 /* Shortcut if no insns need be emitted. */
2475 return change_address (SUBREG_REG (x
), mode
, addr
);
2477 result
= change_address (SUBREG_REG (x
), mode
, addr
);
2478 emit_insn_before (gen_sequence (), insn
);
2483 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2484 Replace subexpressions of X in place.
2485 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2486 Otherwise return X, with its contents possibly altered.
2488 If any insns must be emitted to compute NEWADDR, put them before INSN.
2490 UNCRITICAL is as in fixup_memory_subreg. */
2493 walk_fixup_memory_subreg (x
, insn
, uncritical
)
2498 register enum rtx_code code
;
2499 register const char *fmt
;
2505 code
= GET_CODE (x
);
2507 if (code
== SUBREG
&& GET_CODE (SUBREG_REG (x
)) == MEM
)
2508 return fixup_memory_subreg (x
, insn
, uncritical
);
2510 /* Nothing special about this RTX; fix its operands. */
2512 fmt
= GET_RTX_FORMAT (code
);
2513 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2516 XEXP (x
, i
) = walk_fixup_memory_subreg (XEXP (x
, i
), insn
, uncritical
);
2517 else if (fmt
[i
] == 'E')
2520 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2522 = walk_fixup_memory_subreg (XVECEXP (x
, i
, j
), insn
, uncritical
);
2528 /* For each memory ref within X, if it refers to a stack slot
2529 with an out of range displacement, put the address in a temp register
2530 (emitting new insns before INSN to load these registers)
2531 and alter the memory ref to use that register.
2532 Replace each such MEM rtx with a copy, to avoid clobberage. */
2535 fixup_stack_1 (x
, insn
)
2540 register RTX_CODE code
= GET_CODE (x
);
2541 register const char *fmt
;
2545 register rtx ad
= XEXP (x
, 0);
2546 /* If we have address of a stack slot but it's not valid
2547 (displacement is too large), compute the sum in a register. */
2548 if (GET_CODE (ad
) == PLUS
2549 && GET_CODE (XEXP (ad
, 0)) == REG
2550 && ((REGNO (XEXP (ad
, 0)) >= FIRST_VIRTUAL_REGISTER
2551 && REGNO (XEXP (ad
, 0)) <= LAST_VIRTUAL_REGISTER
)
2552 || REGNO (XEXP (ad
, 0)) == FRAME_POINTER_REGNUM
2553 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2554 || REGNO (XEXP (ad
, 0)) == HARD_FRAME_POINTER_REGNUM
2556 || REGNO (XEXP (ad
, 0)) == STACK_POINTER_REGNUM
2557 || REGNO (XEXP (ad
, 0)) == ARG_POINTER_REGNUM
2558 || XEXP (ad
, 0) == current_function_internal_arg_pointer
)
2559 && GET_CODE (XEXP (ad
, 1)) == CONST_INT
)
2562 if (memory_address_p (GET_MODE (x
), ad
))
2566 temp
= copy_to_reg (ad
);
2567 seq
= gen_sequence ();
2569 emit_insn_before (seq
, insn
);
2570 return change_address (x
, VOIDmode
, temp
);
2575 fmt
= GET_RTX_FORMAT (code
);
2576 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2579 XEXP (x
, i
) = fixup_stack_1 (XEXP (x
, i
), insn
);
2580 else if (fmt
[i
] == 'E')
2583 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2584 XVECEXP (x
, i
, j
) = fixup_stack_1 (XVECEXP (x
, i
, j
), insn
);
2590 /* Optimization: a bit-field instruction whose field
2591 happens to be a byte or halfword in memory
2592 can be changed to a move instruction.
2594 We call here when INSN is an insn to examine or store into a bit-field.
2595 BODY is the SET-rtx to be altered.
2597 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2598 (Currently this is called only from function.c, and EQUIV_MEM
2602 optimize_bit_field (body
, insn
, equiv_mem
)
2607 register rtx bitfield
;
2610 enum machine_mode mode
;
2612 if (GET_CODE (SET_DEST (body
)) == SIGN_EXTRACT
2613 || GET_CODE (SET_DEST (body
)) == ZERO_EXTRACT
)
2614 bitfield
= SET_DEST (body
), destflag
= 1;
2616 bitfield
= SET_SRC (body
), destflag
= 0;
2618 /* First check that the field being stored has constant size and position
2619 and is in fact a byte or halfword suitably aligned. */
2621 if (GET_CODE (XEXP (bitfield
, 1)) == CONST_INT
2622 && GET_CODE (XEXP (bitfield
, 2)) == CONST_INT
2623 && ((mode
= mode_for_size (INTVAL (XEXP (bitfield
, 1)), MODE_INT
, 1))
2625 && INTVAL (XEXP (bitfield
, 2)) % INTVAL (XEXP (bitfield
, 1)) == 0)
2627 register rtx memref
= 0;
2629 /* Now check that the containing word is memory, not a register,
2630 and that it is safe to change the machine mode. */
2632 if (GET_CODE (XEXP (bitfield
, 0)) == MEM
)
2633 memref
= XEXP (bitfield
, 0);
2634 else if (GET_CODE (XEXP (bitfield
, 0)) == REG
2636 memref
= equiv_mem
[REGNO (XEXP (bitfield
, 0))];
2637 else if (GET_CODE (XEXP (bitfield
, 0)) == SUBREG
2638 && GET_CODE (SUBREG_REG (XEXP (bitfield
, 0))) == MEM
)
2639 memref
= SUBREG_REG (XEXP (bitfield
, 0));
2640 else if (GET_CODE (XEXP (bitfield
, 0)) == SUBREG
2642 && GET_CODE (SUBREG_REG (XEXP (bitfield
, 0))) == REG
)
2643 memref
= equiv_mem
[REGNO (SUBREG_REG (XEXP (bitfield
, 0)))];
2646 && ! mode_dependent_address_p (XEXP (memref
, 0))
2647 && ! MEM_VOLATILE_P (memref
))
2649 /* Now adjust the address, first for any subreg'ing
2650 that we are now getting rid of,
2651 and then for which byte of the word is wanted. */
2653 HOST_WIDE_INT offset
= INTVAL (XEXP (bitfield
, 2));
2656 /* Adjust OFFSET to count bits from low-address byte. */
2657 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
2658 offset
= (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield
, 0)))
2659 - offset
- INTVAL (XEXP (bitfield
, 1)));
2661 /* Adjust OFFSET to count bytes from low-address byte. */
2662 offset
/= BITS_PER_UNIT
;
2663 if (GET_CODE (XEXP (bitfield
, 0)) == SUBREG
)
2665 offset
+= SUBREG_WORD (XEXP (bitfield
, 0)) * UNITS_PER_WORD
;
2666 if (BYTES_BIG_ENDIAN
)
2667 offset
-= (MIN (UNITS_PER_WORD
,
2668 GET_MODE_SIZE (GET_MODE (XEXP (bitfield
, 0))))
2669 - MIN (UNITS_PER_WORD
,
2670 GET_MODE_SIZE (GET_MODE (memref
))));
2674 memref
= change_address (memref
, mode
,
2675 plus_constant (XEXP (memref
, 0), offset
));
2676 insns
= get_insns ();
2678 emit_insns_before (insns
, insn
);
2680 /* Store this memory reference where
2681 we found the bit field reference. */
2685 validate_change (insn
, &SET_DEST (body
), memref
, 1);
2686 if (! CONSTANT_ADDRESS_P (SET_SRC (body
)))
2688 rtx src
= SET_SRC (body
);
2689 while (GET_CODE (src
) == SUBREG
2690 && SUBREG_WORD (src
) == 0)
2691 src
= SUBREG_REG (src
);
2692 if (GET_MODE (src
) != GET_MODE (memref
))
2693 src
= gen_lowpart (GET_MODE (memref
), SET_SRC (body
));
2694 validate_change (insn
, &SET_SRC (body
), src
, 1);
2696 else if (GET_MODE (SET_SRC (body
)) != VOIDmode
2697 && GET_MODE (SET_SRC (body
)) != GET_MODE (memref
))
2698 /* This shouldn't happen because anything that didn't have
2699 one of these modes should have got converted explicitly
2700 and then referenced through a subreg.
2701 This is so because the original bit-field was
2702 handled by agg_mode and so its tree structure had
2703 the same mode that memref now has. */
2708 rtx dest
= SET_DEST (body
);
2710 while (GET_CODE (dest
) == SUBREG
2711 && SUBREG_WORD (dest
) == 0
2712 && (GET_MODE_CLASS (GET_MODE (dest
))
2713 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest
))))
2714 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
2716 dest
= SUBREG_REG (dest
);
2718 validate_change (insn
, &SET_DEST (body
), dest
, 1);
2720 if (GET_MODE (dest
) == GET_MODE (memref
))
2721 validate_change (insn
, &SET_SRC (body
), memref
, 1);
2724 /* Convert the mem ref to the destination mode. */
2725 rtx newreg
= gen_reg_rtx (GET_MODE (dest
));
2728 convert_move (newreg
, memref
,
2729 GET_CODE (SET_SRC (body
)) == ZERO_EXTRACT
);
2733 validate_change (insn
, &SET_SRC (body
), newreg
, 1);
2737 /* See if we can convert this extraction or insertion into
2738 a simple move insn. We might not be able to do so if this
2739 was, for example, part of a PARALLEL.
2741 If we succeed, write out any needed conversions. If we fail,
2742 it is hard to guess why we failed, so don't do anything
2743 special; just let the optimization be suppressed. */
2745 if (apply_change_group () && seq
)
2746 emit_insns_before (seq
, insn
);
2751 /* These routines are responsible for converting virtual register references
2752 to the actual hard register references once RTL generation is complete.
2754 The following four variables are used for communication between the
2755 routines. They contain the offsets of the virtual registers from their
2756 respective hard registers. */
2758 static int in_arg_offset
;
2759 static int var_offset
;
2760 static int dynamic_offset
;
2761 static int out_arg_offset
;
2762 static int cfa_offset
;
2764 /* In most machines, the stack pointer register is equivalent to the bottom
2767 #ifndef STACK_POINTER_OFFSET
2768 #define STACK_POINTER_OFFSET 0
2771 /* If not defined, pick an appropriate default for the offset of dynamically
2772 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2773 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2775 #ifndef STACK_DYNAMIC_OFFSET
2777 /* The bottom of the stack points to the actual arguments. If
2778 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2779 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2780 stack space for register parameters is not pushed by the caller, but
2781 rather part of the fixed stack areas and hence not included in
2782 `current_function_outgoing_args_size'. Nevertheless, we must allow
2783 for it when allocating stack dynamic objects. */
2785 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2786 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2787 ((ACCUMULATE_OUTGOING_ARGS \
2788 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2789 + (STACK_POINTER_OFFSET)) \
2792 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2793 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2794 + (STACK_POINTER_OFFSET))
2798 /* On most machines, the CFA coincides with the first incoming parm. */
2800 #ifndef ARG_POINTER_CFA_OFFSET
2801 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2804 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2805 its address taken. DECL is the decl for the object stored in the
2806 register, for later use if we do need to force REG into the stack.
2807 REG is overwritten by the MEM like in put_reg_into_stack. */
2810 gen_mem_addressof (reg
, decl
)
2814 rtx r
= gen_rtx_ADDRESSOF (Pmode
, gen_reg_rtx (GET_MODE (reg
)),
2817 /* If the original REG was a user-variable, then so is the REG whose
2818 address is being taken. Likewise for unchanging. */
2819 REG_USERVAR_P (XEXP (r
, 0)) = REG_USERVAR_P (reg
);
2820 RTX_UNCHANGING_P (XEXP (r
, 0)) = RTX_UNCHANGING_P (reg
);
2822 PUT_CODE (reg
, MEM
);
2826 tree type
= TREE_TYPE (decl
);
2828 PUT_MODE (reg
, DECL_MODE (decl
));
2829 MEM_VOLATILE_P (reg
) = TREE_SIDE_EFFECTS (decl
);
2830 MEM_SET_IN_STRUCT_P (reg
, AGGREGATE_TYPE_P (type
));
2831 MEM_ALIAS_SET (reg
) = get_alias_set (decl
);
2833 if (TREE_USED (decl
) || DECL_INITIAL (decl
) != 0)
2834 fixup_var_refs (reg
, GET_MODE (reg
), TREE_UNSIGNED (type
), 0);
2837 fixup_var_refs (reg
, GET_MODE (reg
), 0, 0);
2842 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2845 flush_addressof (decl
)
2848 if ((TREE_CODE (decl
) == PARM_DECL
|| TREE_CODE (decl
) == VAR_DECL
)
2849 && DECL_RTL (decl
) != 0
2850 && GET_CODE (DECL_RTL (decl
)) == MEM
2851 && GET_CODE (XEXP (DECL_RTL (decl
), 0)) == ADDRESSOF
2852 && GET_CODE (XEXP (XEXP (DECL_RTL (decl
), 0), 0)) == REG
)
2853 put_addressof_into_stack (XEXP (DECL_RTL (decl
), 0), 0);
2856 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2859 put_addressof_into_stack (r
, ht
)
2861 struct hash_table
*ht
;
2864 int volatile_p
, used_p
;
2866 rtx reg
= XEXP (r
, 0);
2868 if (GET_CODE (reg
) != REG
)
2871 decl
= ADDRESSOF_DECL (r
);
2874 type
= TREE_TYPE (decl
);
2875 volatile_p
= (TREE_CODE (decl
) != SAVE_EXPR
2876 && TREE_THIS_VOLATILE (decl
));
2877 used_p
= (TREE_USED (decl
)
2878 || (TREE_CODE (decl
) != SAVE_EXPR
2879 && DECL_INITIAL (decl
) != 0));
2888 put_reg_into_stack (0, reg
, type
, GET_MODE (reg
), GET_MODE (reg
),
2889 volatile_p
, ADDRESSOF_REGNO (r
), used_p
, ht
);
2892 /* List of replacements made below in purge_addressof_1 when creating
2893 bitfield insertions. */
2894 static rtx purge_bitfield_addressof_replacements
;
2896 /* List of replacements made below in purge_addressof_1 for patterns
2897 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2898 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2899 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2900 enough in complex cases, e.g. when some field values can be
2901 extracted by usage MEM with narrower mode. */
2902 static rtx purge_addressof_replacements
;
2904 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2905 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2906 the stack. If the function returns FALSE then the replacement could not
2910 purge_addressof_1 (loc
, insn
, force
, store
, ht
)
2914 struct hash_table
*ht
;
2920 boolean result
= true;
2922 /* Re-start here to avoid recursion in common cases. */
2929 code
= GET_CODE (x
);
2931 /* If we don't return in any of the cases below, we will recurse inside
2932 the RTX, which will normally result in any ADDRESSOF being forced into
2936 result
= purge_addressof_1 (&SET_DEST (x
), insn
, force
, 1, ht
);
2937 result
&= purge_addressof_1 (&SET_SRC (x
), insn
, force
, 0, ht
);
2941 else if (code
== ADDRESSOF
&& GET_CODE (XEXP (x
, 0)) == MEM
)
2943 /* We must create a copy of the rtx because it was created by
2944 overwriting a REG rtx which is always shared. */
2945 rtx sub
= copy_rtx (XEXP (XEXP (x
, 0), 0));
2948 if (validate_change (insn
, loc
, sub
, 0)
2949 || validate_replace_rtx (x
, sub
, insn
))
2953 sub
= force_operand (sub
, NULL_RTX
);
2954 if (! validate_change (insn
, loc
, sub
, 0)
2955 && ! validate_replace_rtx (x
, sub
, insn
))
2958 insns
= gen_sequence ();
2960 emit_insn_before (insns
, insn
);
2964 else if (code
== MEM
&& GET_CODE (XEXP (x
, 0)) == ADDRESSOF
&& ! force
)
2966 rtx sub
= XEXP (XEXP (x
, 0), 0);
2969 if (GET_CODE (sub
) == MEM
)
2971 sub2
= gen_rtx_MEM (GET_MODE (x
), copy_rtx (XEXP (sub
, 0)));
2972 MEM_COPY_ATTRIBUTES (sub2
, sub
);
2975 else if (GET_CODE (sub
) == REG
2976 && (MEM_VOLATILE_P (x
) || GET_MODE (x
) == BLKmode
))
2978 else if (GET_CODE (sub
) == REG
&& GET_MODE (x
) != GET_MODE (sub
))
2980 int size_x
, size_sub
;
2984 /* When processing REG_NOTES look at the list of
2985 replacements done on the insn to find the register that X
2989 for (tem
= purge_bitfield_addressof_replacements
;
2991 tem
= XEXP (XEXP (tem
, 1), 1))
2992 if (rtx_equal_p (x
, XEXP (tem
, 0)))
2994 *loc
= XEXP (XEXP (tem
, 1), 0);
2998 /* See comment for purge_addressof_replacements. */
2999 for (tem
= purge_addressof_replacements
;
3001 tem
= XEXP (XEXP (tem
, 1), 1))
3002 if (rtx_equal_p (XEXP (x
, 0), XEXP (tem
, 0)))
3004 rtx z
= XEXP (XEXP (tem
, 1), 0);
3006 if (GET_MODE (x
) == GET_MODE (z
)
3007 || (GET_CODE (XEXP (XEXP (tem
, 1), 0)) != REG
3008 && GET_CODE (XEXP (XEXP (tem
, 1), 0)) != SUBREG
))
3011 /* It can happen that the note may speak of things
3012 in a wider (or just different) mode than the
3013 code did. This is especially true of
3016 if (GET_CODE (z
) == SUBREG
&& SUBREG_WORD (z
) == 0)
3019 if (GET_MODE_SIZE (GET_MODE (x
)) > UNITS_PER_WORD
3020 && (GET_MODE_SIZE (GET_MODE (x
))
3021 > GET_MODE_SIZE (GET_MODE (z
))))
3023 /* This can occur as a result in invalid
3024 pointer casts, e.g. float f; ...
3025 *(long long int *)&f.
3026 ??? We could emit a warning here, but
3027 without a line number that wouldn't be
3029 z
= gen_rtx_SUBREG (GET_MODE (x
), z
, 0);
3032 z
= gen_lowpart (GET_MODE (x
), z
);
3038 /* Sometimes we may not be able to find the replacement. For
3039 example when the original insn was a MEM in a wider mode,
3040 and the note is part of a sign extension of a narrowed
3041 version of that MEM. Gcc testcase compile/990829-1.c can
3042 generate an example of this siutation. Rather than complain
3043 we return false, which will prompt our caller to remove the
3048 size_x
= GET_MODE_BITSIZE (GET_MODE (x
));
3049 size_sub
= GET_MODE_BITSIZE (GET_MODE (sub
));
3051 /* Don't even consider working with paradoxical subregs,
3052 or the moral equivalent seen here. */
3053 if (size_x
<= size_sub
3054 && int_mode_for_mode (GET_MODE (sub
)) != BLKmode
)
3056 /* Do a bitfield insertion to mirror what would happen
3063 rtx p
= PREV_INSN (insn
);
3066 val
= gen_reg_rtx (GET_MODE (x
));
3067 if (! validate_change (insn
, loc
, val
, 0))
3069 /* Discard the current sequence and put the
3070 ADDRESSOF on stack. */
3074 seq
= gen_sequence ();
3076 emit_insn_before (seq
, insn
);
3077 compute_insns_for_mem (p
? NEXT_INSN (p
) : get_insns (),
3081 store_bit_field (sub
, size_x
, 0, GET_MODE (x
),
3082 val
, GET_MODE_SIZE (GET_MODE (sub
)),
3083 GET_MODE_ALIGNMENT (GET_MODE (sub
)));
3085 /* Make sure to unshare any shared rtl that store_bit_field
3086 might have created. */
3087 unshare_all_rtl_again (get_insns ());
3089 seq
= gen_sequence ();
3091 p
= emit_insn_after (seq
, insn
);
3092 if (NEXT_INSN (insn
))
3093 compute_insns_for_mem (NEXT_INSN (insn
),
3094 p
? NEXT_INSN (p
) : NULL_RTX
,
3099 rtx p
= PREV_INSN (insn
);
3102 val
= extract_bit_field (sub
, size_x
, 0, 1, NULL_RTX
,
3103 GET_MODE (x
), GET_MODE (x
),
3104 GET_MODE_SIZE (GET_MODE (sub
)),
3105 GET_MODE_SIZE (GET_MODE (sub
)));
3107 if (! validate_change (insn
, loc
, val
, 0))
3109 /* Discard the current sequence and put the
3110 ADDRESSOF on stack. */
3115 seq
= gen_sequence ();
3117 emit_insn_before (seq
, insn
);
3118 compute_insns_for_mem (p
? NEXT_INSN (p
) : get_insns (),
3122 /* Remember the replacement so that the same one can be done
3123 on the REG_NOTES. */
3124 purge_bitfield_addressof_replacements
3125 = gen_rtx_EXPR_LIST (VOIDmode
, x
,
3128 purge_bitfield_addressof_replacements
));
3130 /* We replaced with a reg -- all done. */
3135 else if (validate_change (insn
, loc
, sub
, 0))
3137 /* Remember the replacement so that the same one can be done
3138 on the REG_NOTES. */
3139 if (GET_CODE (sub
) == REG
|| GET_CODE (sub
) == SUBREG
)
3143 for (tem
= purge_addressof_replacements
;
3145 tem
= XEXP (XEXP (tem
, 1), 1))
3146 if (rtx_equal_p (XEXP (x
, 0), XEXP (tem
, 0)))
3148 XEXP (XEXP (tem
, 1), 0) = sub
;
3151 purge_addressof_replacements
3152 = gen_rtx (EXPR_LIST
, VOIDmode
, XEXP (x
, 0),
3153 gen_rtx_EXPR_LIST (VOIDmode
, sub
,
3154 purge_addressof_replacements
));
3160 /* else give up and put it into the stack */
3163 else if (code
== ADDRESSOF
)
3165 put_addressof_into_stack (x
, ht
);
3168 else if (code
== SET
)
3170 result
= purge_addressof_1 (&SET_DEST (x
), insn
, force
, 1, ht
);
3171 result
&= purge_addressof_1 (&SET_SRC (x
), insn
, force
, 0, ht
);
3175 /* Scan all subexpressions. */
3176 fmt
= GET_RTX_FORMAT (code
);
3177 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++, fmt
++)
3180 result
&= purge_addressof_1 (&XEXP (x
, i
), insn
, force
, 0, ht
);
3181 else if (*fmt
== 'E')
3182 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3183 result
&= purge_addressof_1 (&XVECEXP (x
, i
, j
), insn
, force
, 0, ht
);
3189 /* Return a new hash table entry in HT. */
3191 static struct hash_entry
*
3192 insns_for_mem_newfunc (he
, ht
, k
)
3193 struct hash_entry
*he
;
3194 struct hash_table
*ht
;
3195 hash_table_key k ATTRIBUTE_UNUSED
;
3197 struct insns_for_mem_entry
*ifmhe
;
3201 ifmhe
= ((struct insns_for_mem_entry
*)
3202 hash_allocate (ht
, sizeof (struct insns_for_mem_entry
)));
3203 ifmhe
->insns
= NULL_RTX
;
3208 /* Return a hash value for K, a REG. */
3210 static unsigned long
3211 insns_for_mem_hash (k
)
3214 /* K is really a RTX. Just use the address as the hash value. */
3215 return (unsigned long) k
;
3218 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3221 insns_for_mem_comp (k1
, k2
)
3228 struct insns_for_mem_walk_info
{
3229 /* The hash table that we are using to record which INSNs use which
3231 struct hash_table
*ht
;
3233 /* The INSN we are currently proessing. */
3236 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3237 to find the insns that use the REGs in the ADDRESSOFs. */
3241 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3242 that might be used in an ADDRESSOF expression, record this INSN in
3243 the hash table given by DATA (which is really a pointer to an
3244 insns_for_mem_walk_info structure). */
3247 insns_for_mem_walk (r
, data
)
3251 struct insns_for_mem_walk_info
*ifmwi
3252 = (struct insns_for_mem_walk_info
*) data
;
3254 if (ifmwi
->pass
== 0 && *r
&& GET_CODE (*r
) == ADDRESSOF
3255 && GET_CODE (XEXP (*r
, 0)) == REG
)
3256 hash_lookup (ifmwi
->ht
, XEXP (*r
, 0), /*create=*/1, /*copy=*/0);
3257 else if (ifmwi
->pass
== 1 && *r
&& GET_CODE (*r
) == REG
)
3259 /* Lookup this MEM in the hashtable, creating it if necessary. */
3260 struct insns_for_mem_entry
*ifme
3261 = (struct insns_for_mem_entry
*) hash_lookup (ifmwi
->ht
,
3266 /* If we have not already recorded this INSN, do so now. Since
3267 we process the INSNs in order, we know that if we have
3268 recorded it it must be at the front of the list. */
3269 if (ifme
&& (!ifme
->insns
|| XEXP (ifme
->insns
, 0) != ifmwi
->insn
))
3271 /* We do the allocation on the same obstack as is used for
3272 the hash table since this memory will not be used once
3273 the hash table is deallocated. */
3274 push_obstacks (&ifmwi
->ht
->memory
, &ifmwi
->ht
->memory
);
3275 ifme
->insns
= gen_rtx_EXPR_LIST (VOIDmode
, ifmwi
->insn
,
3284 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3285 which REGs in HT. */
3288 compute_insns_for_mem (insns
, last_insn
, ht
)
3291 struct hash_table
*ht
;
3294 struct insns_for_mem_walk_info ifmwi
;
3297 for (ifmwi
.pass
= 0; ifmwi
.pass
< 2; ++ifmwi
.pass
)
3298 for (insn
= insns
; insn
!= last_insn
; insn
= NEXT_INSN (insn
))
3302 for_each_rtx (&insn
, insns_for_mem_walk
, &ifmwi
);
3306 /* Helper function for purge_addressof called through for_each_rtx.
3307 Returns true iff the rtl is an ADDRESSOF. */
3309 is_addressof (rtl
, data
)
3311 void *data ATTRIBUTE_UNUSED
;
3313 return GET_CODE (*rtl
) == ADDRESSOF
;
3316 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3317 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3321 purge_addressof (insns
)
3325 struct hash_table ht
;
3327 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3328 requires a fixup pass over the instruction stream to correct
3329 INSNs that depended on the REG being a REG, and not a MEM. But,
3330 these fixup passes are slow. Furthermore, most MEMs are not
3331 mentioned in very many instructions. So, we speed up the process
3332 by pre-calculating which REGs occur in which INSNs; that allows
3333 us to perform the fixup passes much more quickly. */
3334 hash_table_init (&ht
,
3335 insns_for_mem_newfunc
,
3337 insns_for_mem_comp
);
3338 compute_insns_for_mem (insns
, NULL_RTX
, &ht
);
3340 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
3341 if (GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == JUMP_INSN
3342 || GET_CODE (insn
) == CALL_INSN
)
3344 if (! purge_addressof_1 (&PATTERN (insn
), insn
,
3345 asm_noperands (PATTERN (insn
)) > 0, 0, &ht
))
3346 /* If we could not replace the ADDRESSOFs in the insn,
3347 something is wrong. */
3350 if (! purge_addressof_1 (®_NOTES (insn
), NULL_RTX
, 0, 0, &ht
))
3352 /* If we could not replace the ADDRESSOFs in the insn's notes,
3353 we can just remove the offending notes instead. */
3356 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
3358 /* If we find a REG_RETVAL note then the insn is a libcall.
3359 Such insns must have REG_EQUAL notes as well, in order
3360 for later passes of the compiler to work. So it is not
3361 safe to delete the notes here, and instead we abort. */
3362 if (REG_NOTE_KIND (note
) == REG_RETVAL
)
3364 if (for_each_rtx (¬e
, is_addressof
, NULL
))
3365 remove_note (insn
, note
);
3371 hash_table_free (&ht
);
3372 purge_bitfield_addressof_replacements
= 0;
3373 purge_addressof_replacements
= 0;
3375 /* REGs are shared. purge_addressof will destructively replace a REG
3376 with a MEM, which creates shared MEMs.
3378 Unfortunately, the children of put_reg_into_stack assume that MEMs
3379 referring to the same stack slot are shared (fixup_var_refs and
3380 the associated hash table code).
3382 So, we have to do another unsharing pass after we have flushed any
3383 REGs that had their address taken into the stack.
3385 It may be worth tracking whether or not we converted any REGs into
3386 MEMs to avoid this overhead when it is not needed. */
3387 unshare_all_rtl_again (get_insns ());
3390 /* Pass through the INSNS of function FNDECL and convert virtual register
3391 references to hard register references. */
3394 instantiate_virtual_regs (fndecl
, insns
)
3401 /* Compute the offsets to use for this function. */
3402 in_arg_offset
= FIRST_PARM_OFFSET (fndecl
);
3403 var_offset
= STARTING_FRAME_OFFSET
;
3404 dynamic_offset
= STACK_DYNAMIC_OFFSET (fndecl
);
3405 out_arg_offset
= STACK_POINTER_OFFSET
;
3406 cfa_offset
= ARG_POINTER_CFA_OFFSET (fndecl
);
3408 /* Scan all variables and parameters of this function. For each that is
3409 in memory, instantiate all virtual registers if the result is a valid
3410 address. If not, we do it later. That will handle most uses of virtual
3411 regs on many machines. */
3412 instantiate_decls (fndecl
, 1);
3414 /* Initialize recognition, indicating that volatile is OK. */
3417 /* Scan through all the insns, instantiating every virtual register still
3419 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
3420 if (GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == JUMP_INSN
3421 || GET_CODE (insn
) == CALL_INSN
)
3423 instantiate_virtual_regs_1 (&PATTERN (insn
), insn
, 1);
3424 instantiate_virtual_regs_1 (®_NOTES (insn
), NULL_RTX
, 0);
3427 /* Instantiate the stack slots for the parm registers, for later use in
3428 addressof elimination. */
3429 for (i
= 0; i
< max_parm_reg
; ++i
)
3430 if (parm_reg_stack_loc
[i
])
3431 instantiate_virtual_regs_1 (&parm_reg_stack_loc
[i
], NULL_RTX
, 0);
3433 /* Now instantiate the remaining register equivalences for debugging info.
3434 These will not be valid addresses. */
3435 instantiate_decls (fndecl
, 0);
3437 /* Indicate that, from now on, assign_stack_local should use
3438 frame_pointer_rtx. */
3439 virtuals_instantiated
= 1;
3442 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3443 all virtual registers in their DECL_RTL's.
3445 If VALID_ONLY, do this only if the resulting address is still valid.
3446 Otherwise, always do it. */
3449 instantiate_decls (fndecl
, valid_only
)
3455 if (DECL_SAVED_INSNS (fndecl
))
3456 /* When compiling an inline function, the obstack used for
3457 rtl allocation is the maybepermanent_obstack. Calling
3458 `resume_temporary_allocation' switches us back to that
3459 obstack while we process this function's parameters. */
3460 resume_temporary_allocation ();
3462 /* Process all parameters of the function. */
3463 for (decl
= DECL_ARGUMENTS (fndecl
); decl
; decl
= TREE_CHAIN (decl
))
3465 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (decl
));
3467 instantiate_decl (DECL_RTL (decl
), size
, valid_only
);
3469 /* If the parameter was promoted, then the incoming RTL mode may be
3470 larger than the declared type size. We must use the larger of
3472 size
= MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl
))), size
);
3473 instantiate_decl (DECL_INCOMING_RTL (decl
), size
, valid_only
);
3476 /* Now process all variables defined in the function or its subblocks. */
3477 instantiate_decls_1 (DECL_INITIAL (fndecl
), valid_only
);
3479 if (DECL_INLINE (fndecl
) || DECL_DEFER_OUTPUT (fndecl
))
3481 /* Save all rtl allocated for this function by raising the
3482 high-water mark on the maybepermanent_obstack. */
3484 /* All further rtl allocation is now done in the current_obstack. */
3485 rtl_in_current_obstack ();
3489 /* Subroutine of instantiate_decls: Process all decls in the given
3490 BLOCK node and all its subblocks. */
3493 instantiate_decls_1 (let
, valid_only
)
3499 for (t
= BLOCK_VARS (let
); t
; t
= TREE_CHAIN (t
))
3500 instantiate_decl (DECL_RTL (t
), int_size_in_bytes (TREE_TYPE (t
)),
3503 /* Process all subblocks. */
3504 for (t
= BLOCK_SUBBLOCKS (let
); t
; t
= TREE_CHAIN (t
))
3505 instantiate_decls_1 (t
, valid_only
);
3508 /* Subroutine of the preceding procedures: Given RTL representing a
3509 decl and the size of the object, do any instantiation required.
3511 If VALID_ONLY is non-zero, it means that the RTL should only be
3512 changed if the new address is valid. */
3515 instantiate_decl (x
, size
, valid_only
)
3520 enum machine_mode mode
;
3523 /* If this is not a MEM, no need to do anything. Similarly if the
3524 address is a constant or a register that is not a virtual register. */
3526 if (x
== 0 || GET_CODE (x
) != MEM
)
3530 if (CONSTANT_P (addr
)
3531 || (GET_CODE (addr
) == ADDRESSOF
&& GET_CODE (XEXP (addr
, 0)) == REG
)
3532 || (GET_CODE (addr
) == REG
3533 && (REGNO (addr
) < FIRST_VIRTUAL_REGISTER
3534 || REGNO (addr
) > LAST_VIRTUAL_REGISTER
)))
3537 /* If we should only do this if the address is valid, copy the address.
3538 We need to do this so we can undo any changes that might make the
3539 address invalid. This copy is unfortunate, but probably can't be
3543 addr
= copy_rtx (addr
);
3545 instantiate_virtual_regs_1 (&addr
, NULL_RTX
, 0);
3547 if (valid_only
&& size
>= 0)
3549 unsigned HOST_WIDE_INT decl_size
= size
;
3551 /* Now verify that the resulting address is valid for every integer or
3552 floating-point mode up to and including SIZE bytes long. We do this
3553 since the object might be accessed in any mode and frame addresses
3556 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
3557 mode
!= VOIDmode
&& GET_MODE_SIZE (mode
) <= decl_size
;
3558 mode
= GET_MODE_WIDER_MODE (mode
))
3559 if (! memory_address_p (mode
, addr
))
3562 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
3563 mode
!= VOIDmode
&& GET_MODE_SIZE (mode
) <= decl_size
;
3564 mode
= GET_MODE_WIDER_MODE (mode
))
3565 if (! memory_address_p (mode
, addr
))
3569 /* Put back the address now that we have updated it and we either know
3570 it is valid or we don't care whether it is valid. */
3575 /* Given a pointer to a piece of rtx and an optional pointer to the
3576 containing object, instantiate any virtual registers present in it.
3578 If EXTRA_INSNS, we always do the replacement and generate
3579 any extra insns before OBJECT. If it zero, we do nothing if replacement
3582 Return 1 if we either had nothing to do or if we were able to do the
3583 needed replacement. Return 0 otherwise; we only return zero if
3584 EXTRA_INSNS is zero.
3586 We first try some simple transformations to avoid the creation of extra
3590 instantiate_virtual_regs_1 (loc
, object
, extra_insns
)
3598 HOST_WIDE_INT offset
= 0;
3604 /* Re-start here to avoid recursion in common cases. */
3611 code
= GET_CODE (x
);
3613 /* Check for some special cases. */
3630 /* We are allowed to set the virtual registers. This means that
3631 the actual register should receive the source minus the
3632 appropriate offset. This is used, for example, in the handling
3633 of non-local gotos. */
3634 if (SET_DEST (x
) == virtual_incoming_args_rtx
)
3635 new = arg_pointer_rtx
, offset
= -in_arg_offset
;
3636 else if (SET_DEST (x
) == virtual_stack_vars_rtx
)
3637 new = frame_pointer_rtx
, offset
= -var_offset
;
3638 else if (SET_DEST (x
) == virtual_stack_dynamic_rtx
)
3639 new = stack_pointer_rtx
, offset
= -dynamic_offset
;
3640 else if (SET_DEST (x
) == virtual_outgoing_args_rtx
)
3641 new = stack_pointer_rtx
, offset
= -out_arg_offset
;
3642 else if (SET_DEST (x
) == virtual_cfa_rtx
)
3643 new = arg_pointer_rtx
, offset
= -cfa_offset
;
3647 rtx src
= SET_SRC (x
);
3649 instantiate_virtual_regs_1 (&src
, NULL_RTX
, 0);
3651 /* The only valid sources here are PLUS or REG. Just do
3652 the simplest possible thing to handle them. */
3653 if (GET_CODE (src
) != REG
&& GET_CODE (src
) != PLUS
)
3657 if (GET_CODE (src
) != REG
)
3658 temp
= force_operand (src
, NULL_RTX
);
3661 temp
= force_operand (plus_constant (temp
, offset
), NULL_RTX
);
3665 emit_insns_before (seq
, object
);
3668 if (! validate_change (object
, &SET_SRC (x
), temp
, 0)
3675 instantiate_virtual_regs_1 (&SET_DEST (x
), object
, extra_insns
);
3680 /* Handle special case of virtual register plus constant. */
3681 if (CONSTANT_P (XEXP (x
, 1)))
3683 rtx old
, new_offset
;
3685 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3686 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
3688 rtx inner
= XEXP (XEXP (x
, 0), 0);
3690 if (inner
== virtual_incoming_args_rtx
)
3691 new = arg_pointer_rtx
, offset
= in_arg_offset
;
3692 else if (inner
== virtual_stack_vars_rtx
)
3693 new = frame_pointer_rtx
, offset
= var_offset
;
3694 else if (inner
== virtual_stack_dynamic_rtx
)
3695 new = stack_pointer_rtx
, offset
= dynamic_offset
;
3696 else if (inner
== virtual_outgoing_args_rtx
)
3697 new = stack_pointer_rtx
, offset
= out_arg_offset
;
3698 else if (inner
== virtual_cfa_rtx
)
3699 new = arg_pointer_rtx
, offset
= cfa_offset
;
3706 instantiate_virtual_regs_1 (&XEXP (XEXP (x
, 0), 1), object
,
3708 new = gen_rtx_PLUS (Pmode
, new, XEXP (XEXP (x
, 0), 1));
3711 else if (XEXP (x
, 0) == virtual_incoming_args_rtx
)
3712 new = arg_pointer_rtx
, offset
= in_arg_offset
;
3713 else if (XEXP (x
, 0) == virtual_stack_vars_rtx
)
3714 new = frame_pointer_rtx
, offset
= var_offset
;
3715 else if (XEXP (x
, 0) == virtual_stack_dynamic_rtx
)
3716 new = stack_pointer_rtx
, offset
= dynamic_offset
;
3717 else if (XEXP (x
, 0) == virtual_outgoing_args_rtx
)
3718 new = stack_pointer_rtx
, offset
= out_arg_offset
;
3719 else if (XEXP (x
, 0) == virtual_cfa_rtx
)
3720 new = arg_pointer_rtx
, offset
= cfa_offset
;
3723 /* We know the second operand is a constant. Unless the
3724 first operand is a REG (which has been already checked),
3725 it needs to be checked. */
3726 if (GET_CODE (XEXP (x
, 0)) != REG
)
3734 new_offset
= plus_constant (XEXP (x
, 1), offset
);
3736 /* If the new constant is zero, try to replace the sum with just
3738 if (new_offset
== const0_rtx
3739 && validate_change (object
, loc
, new, 0))
3742 /* Next try to replace the register and new offset.
3743 There are two changes to validate here and we can't assume that
3744 in the case of old offset equals new just changing the register
3745 will yield a valid insn. In the interests of a little efficiency,
3746 however, we only call validate change once (we don't queue up the
3747 changes and then call apply_change_group). */
3751 ? ! validate_change (object
, &XEXP (x
, 0), new, 0)
3752 : (XEXP (x
, 0) = new,
3753 ! validate_change (object
, &XEXP (x
, 1), new_offset
, 0)))
3761 /* Otherwise copy the new constant into a register and replace
3762 constant with that register. */
3763 temp
= gen_reg_rtx (Pmode
);
3765 if (validate_change (object
, &XEXP (x
, 1), temp
, 0))
3766 emit_insn_before (gen_move_insn (temp
, new_offset
), object
);
3769 /* If that didn't work, replace this expression with a
3770 register containing the sum. */
3773 new = gen_rtx_PLUS (Pmode
, new, new_offset
);
3776 temp
= force_operand (new, NULL_RTX
);
3780 emit_insns_before (seq
, object
);
3781 if (! validate_change (object
, loc
, temp
, 0)
3782 && ! validate_replace_rtx (x
, temp
, object
))
3790 /* Fall through to generic two-operand expression case. */
3796 case DIV
: case UDIV
:
3797 case MOD
: case UMOD
:
3798 case AND
: case IOR
: case XOR
:
3799 case ROTATERT
: case ROTATE
:
3800 case ASHIFTRT
: case LSHIFTRT
: case ASHIFT
:
3802 case GE
: case GT
: case GEU
: case GTU
:
3803 case LE
: case LT
: case LEU
: case LTU
:
3804 if (XEXP (x
, 1) && ! CONSTANT_P (XEXP (x
, 1)))
3805 instantiate_virtual_regs_1 (&XEXP (x
, 1), object
, extra_insns
);
3810 /* Most cases of MEM that convert to valid addresses have already been
3811 handled by our scan of decls. The only special handling we
3812 need here is to make a copy of the rtx to ensure it isn't being
3813 shared if we have to change it to a pseudo.
3815 If the rtx is a simple reference to an address via a virtual register,
3816 it can potentially be shared. In such cases, first try to make it
3817 a valid address, which can also be shared. Otherwise, copy it and
3820 First check for common cases that need no processing. These are
3821 usually due to instantiation already being done on a previous instance
3825 if (CONSTANT_ADDRESS_P (temp
)
3826 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3827 || temp
== arg_pointer_rtx
3829 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3830 || temp
== hard_frame_pointer_rtx
3832 || temp
== frame_pointer_rtx
)
3835 if (GET_CODE (temp
) == PLUS
3836 && CONSTANT_ADDRESS_P (XEXP (temp
, 1))
3837 && (XEXP (temp
, 0) == frame_pointer_rtx
3838 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3839 || XEXP (temp
, 0) == hard_frame_pointer_rtx
3841 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3842 || XEXP (temp
, 0) == arg_pointer_rtx
3847 if (temp
== virtual_stack_vars_rtx
3848 || temp
== virtual_incoming_args_rtx
3849 || (GET_CODE (temp
) == PLUS
3850 && CONSTANT_ADDRESS_P (XEXP (temp
, 1))
3851 && (XEXP (temp
, 0) == virtual_stack_vars_rtx
3852 || XEXP (temp
, 0) == virtual_incoming_args_rtx
)))
3854 /* This MEM may be shared. If the substitution can be done without
3855 the need to generate new pseudos, we want to do it in place
3856 so all copies of the shared rtx benefit. The call below will
3857 only make substitutions if the resulting address is still
3860 Note that we cannot pass X as the object in the recursive call
3861 since the insn being processed may not allow all valid
3862 addresses. However, if we were not passed on object, we can
3863 only modify X without copying it if X will have a valid
3866 ??? Also note that this can still lose if OBJECT is an insn that
3867 has less restrictions on an address that some other insn.
3868 In that case, we will modify the shared address. This case
3869 doesn't seem very likely, though. One case where this could
3870 happen is in the case of a USE or CLOBBER reference, but we
3871 take care of that below. */
3873 if (instantiate_virtual_regs_1 (&XEXP (x
, 0),
3874 object
? object
: x
, 0))
3877 /* Otherwise make a copy and process that copy. We copy the entire
3878 RTL expression since it might be a PLUS which could also be
3880 *loc
= x
= copy_rtx (x
);
3883 /* Fall through to generic unary operation case. */
3885 case STRICT_LOW_PART
:
3887 case PRE_DEC
: case PRE_INC
: case POST_DEC
: case POST_INC
:
3888 case SIGN_EXTEND
: case ZERO_EXTEND
:
3889 case TRUNCATE
: case FLOAT_EXTEND
: case FLOAT_TRUNCATE
:
3890 case FLOAT
: case FIX
:
3891 case UNSIGNED_FIX
: case UNSIGNED_FLOAT
:
3895 /* These case either have just one operand or we know that we need not
3896 check the rest of the operands. */
3902 /* If the operand is a MEM, see if the change is a valid MEM. If not,
3903 go ahead and make the invalid one, but do it to a copy. For a REG,
3904 just make the recursive call, since there's no chance of a problem. */
3906 if ((GET_CODE (XEXP (x
, 0)) == MEM
3907 && instantiate_virtual_regs_1 (&XEXP (XEXP (x
, 0), 0), XEXP (x
, 0),
3909 || (GET_CODE (XEXP (x
, 0)) == REG
3910 && instantiate_virtual_regs_1 (&XEXP (x
, 0), object
, 0)))
3913 XEXP (x
, 0) = copy_rtx (XEXP (x
, 0));
3918 /* Try to replace with a PLUS. If that doesn't work, compute the sum
3919 in front of this insn and substitute the temporary. */
3920 if (x
== virtual_incoming_args_rtx
)
3921 new = arg_pointer_rtx
, offset
= in_arg_offset
;
3922 else if (x
== virtual_stack_vars_rtx
)
3923 new = frame_pointer_rtx
, offset
= var_offset
;
3924 else if (x
== virtual_stack_dynamic_rtx
)
3925 new = stack_pointer_rtx
, offset
= dynamic_offset
;
3926 else if (x
== virtual_outgoing_args_rtx
)
3927 new = stack_pointer_rtx
, offset
= out_arg_offset
;
3928 else if (x
== virtual_cfa_rtx
)
3929 new = arg_pointer_rtx
, offset
= cfa_offset
;
3933 temp
= plus_constant (new, offset
);
3934 if (!validate_change (object
, loc
, temp
, 0))
3940 temp
= force_operand (temp
, NULL_RTX
);
3944 emit_insns_before (seq
, object
);
3945 if (! validate_change (object
, loc
, temp
, 0)
3946 && ! validate_replace_rtx (x
, temp
, object
))
3954 if (GET_CODE (XEXP (x
, 0)) == REG
)
3957 else if (GET_CODE (XEXP (x
, 0)) == MEM
)
3959 /* If we have a (addressof (mem ..)), do any instantiation inside
3960 since we know we'll be making the inside valid when we finally
3961 remove the ADDRESSOF. */
3962 instantiate_virtual_regs_1 (&XEXP (XEXP (x
, 0), 0), NULL_RTX
, 0);
3971 /* Scan all subexpressions. */
3972 fmt
= GET_RTX_FORMAT (code
);
3973 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++, fmt
++)
3976 if (!instantiate_virtual_regs_1 (&XEXP (x
, i
), object
, extra_insns
))
3979 else if (*fmt
== 'E')
3980 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3981 if (! instantiate_virtual_regs_1 (&XVECEXP (x
, i
, j
), object
,
3988 /* Optimization: assuming this function does not receive nonlocal gotos,
3989 delete the handlers for such, as well as the insns to establish
3990 and disestablish them. */
3996 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
3998 /* Delete the handler by turning off the flag that would
3999 prevent jump_optimize from deleting it.
4000 Also permit deletion of the nonlocal labels themselves
4001 if nothing local refers to them. */
4002 if (GET_CODE (insn
) == CODE_LABEL
)
4006 LABEL_PRESERVE_P (insn
) = 0;
4008 /* Remove it from the nonlocal_label list, to avoid confusing
4010 for (t
= nonlocal_labels
, last_t
= 0; t
;
4011 last_t
= t
, t
= TREE_CHAIN (t
))
4012 if (DECL_RTL (TREE_VALUE (t
)) == insn
)
4017 nonlocal_labels
= TREE_CHAIN (nonlocal_labels
);
4019 TREE_CHAIN (last_t
) = TREE_CHAIN (t
);
4022 if (GET_CODE (insn
) == INSN
)
4026 for (t
= nonlocal_goto_handler_slots
; t
!= 0; t
= XEXP (t
, 1))
4027 if (reg_mentioned_p (t
, PATTERN (insn
)))
4033 || (nonlocal_goto_stack_level
!= 0
4034 && reg_mentioned_p (nonlocal_goto_stack_level
,
4044 return max_parm_reg
;
4047 /* Return the first insn following those generated by `assign_parms'. */
4050 get_first_nonparm_insn ()
4053 return NEXT_INSN (last_parm_insn
);
4054 return get_insns ();
4057 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
4058 Crash if there is none. */
4061 get_first_block_beg ()
4063 register rtx searcher
;
4064 register rtx insn
= get_first_nonparm_insn ();
4066 for (searcher
= insn
; searcher
; searcher
= NEXT_INSN (searcher
))
4067 if (GET_CODE (searcher
) == NOTE
4068 && NOTE_LINE_NUMBER (searcher
) == NOTE_INSN_BLOCK_BEG
)
4071 abort (); /* Invalid call to this function. (See comments above.) */
4075 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4076 This means a type for which function calls must pass an address to the
4077 function or get an address back from the function.
4078 EXP may be a type node or an expression (whose type is tested). */
4081 aggregate_value_p (exp
)
4084 int i
, regno
, nregs
;
4087 tree type
= (TYPE_P (exp
)) ? exp
: TREE_TYPE (exp
);
4089 if (TREE_CODE (type
) == VOID_TYPE
)
4091 if (RETURN_IN_MEMORY (type
))
4093 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4094 and thus can't be returned in registers. */
4095 if (TREE_ADDRESSABLE (type
))
4097 if (flag_pcc_struct_return
&& AGGREGATE_TYPE_P (type
))
4099 /* Make sure we have suitable call-clobbered regs to return
4100 the value in; if not, we must return it in memory. */
4101 reg
= hard_function_value (type
, 0, 0);
4103 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4105 if (GET_CODE (reg
) != REG
)
4108 regno
= REGNO (reg
);
4109 nregs
= HARD_REGNO_NREGS (regno
, TYPE_MODE (type
));
4110 for (i
= 0; i
< nregs
; i
++)
4111 if (! call_used_regs
[regno
+ i
])
4116 /* Assign RTL expressions to the function's parameters.
4117 This may involve copying them into registers and using
4118 those registers as the RTL for them. */
4121 assign_parms (fndecl
)
4125 register rtx entry_parm
= 0;
4126 register rtx stack_parm
= 0;
4127 CUMULATIVE_ARGS args_so_far
;
4128 enum machine_mode promoted_mode
, passed_mode
;
4129 enum machine_mode nominal_mode
, promoted_nominal_mode
;
4131 /* Total space needed so far for args on the stack,
4132 given as a constant and a tree-expression. */
4133 struct args_size stack_args_size
;
4134 tree fntype
= TREE_TYPE (fndecl
);
4135 tree fnargs
= DECL_ARGUMENTS (fndecl
);
4136 /* This is used for the arg pointer when referring to stack args. */
4137 rtx internal_arg_pointer
;
4138 /* This is a dummy PARM_DECL that we used for the function result if
4139 the function returns a structure. */
4140 tree function_result_decl
= 0;
4141 #ifdef SETUP_INCOMING_VARARGS
4142 int varargs_setup
= 0;
4144 rtx conversion_insns
= 0;
4145 struct args_size alignment_pad
;
4147 /* Nonzero if the last arg is named `__builtin_va_alist',
4148 which is used on some machines for old-fashioned non-ANSI varargs.h;
4149 this should be stuck onto the stack as if it had arrived there. */
4151 = (current_function_varargs
4153 && (parm
= tree_last (fnargs
)) != 0
4155 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm
)),
4156 "__builtin_va_alist")));
4158 /* Nonzero if function takes extra anonymous args.
4159 This means the last named arg must be on the stack
4160 right before the anonymous ones. */
4162 = (TYPE_ARG_TYPES (fntype
) != 0
4163 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype
)))
4164 != void_type_node
));
4166 current_function_stdarg
= stdarg
;
4168 /* If the reg that the virtual arg pointer will be translated into is
4169 not a fixed reg or is the stack pointer, make a copy of the virtual
4170 arg pointer, and address parms via the copy. The frame pointer is
4171 considered fixed even though it is not marked as such.
4173 The second time through, simply use ap to avoid generating rtx. */
4175 if ((ARG_POINTER_REGNUM
== STACK_POINTER_REGNUM
4176 || ! (fixed_regs
[ARG_POINTER_REGNUM
]
4177 || ARG_POINTER_REGNUM
== FRAME_POINTER_REGNUM
)))
4178 internal_arg_pointer
= copy_to_reg (virtual_incoming_args_rtx
);
4180 internal_arg_pointer
= virtual_incoming_args_rtx
;
4181 current_function_internal_arg_pointer
= internal_arg_pointer
;
4183 stack_args_size
.constant
= 0;
4184 stack_args_size
.var
= 0;
4186 /* If struct value address is treated as the first argument, make it so. */
4187 if (aggregate_value_p (DECL_RESULT (fndecl
))
4188 && ! current_function_returns_pcc_struct
4189 && struct_value_incoming_rtx
== 0)
4191 tree type
= build_pointer_type (TREE_TYPE (fntype
));
4193 function_result_decl
= build_decl (PARM_DECL
, NULL_TREE
, type
);
4195 DECL_ARG_TYPE (function_result_decl
) = type
;
4196 TREE_CHAIN (function_result_decl
) = fnargs
;
4197 fnargs
= function_result_decl
;
4200 max_parm_reg
= LAST_VIRTUAL_REGISTER
+ 1;
4201 parm_reg_stack_loc
= (rtx
*) xcalloc (max_parm_reg
, sizeof (rtx
));
4203 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4204 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far
, fntype
, NULL_RTX
);
4206 INIT_CUMULATIVE_ARGS (args_so_far
, fntype
, NULL_RTX
, 0);
4209 /* We haven't yet found an argument that we must push and pretend the
4211 current_function_pretend_args_size
= 0;
4213 for (parm
= fnargs
; parm
; parm
= TREE_CHAIN (parm
))
4215 struct args_size stack_offset
;
4216 struct args_size arg_size
;
4217 int passed_pointer
= 0;
4218 int did_conversion
= 0;
4219 tree passed_type
= DECL_ARG_TYPE (parm
);
4220 tree nominal_type
= TREE_TYPE (parm
);
4223 /* Set LAST_NAMED if this is last named arg before some
4225 int last_named
= ((TREE_CHAIN (parm
) == 0
4226 || DECL_NAME (TREE_CHAIN (parm
)) == 0)
4227 && (stdarg
|| current_function_varargs
));
4228 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4229 most machines, if this is a varargs/stdarg function, then we treat
4230 the last named arg as if it were anonymous too. */
4231 int named_arg
= STRICT_ARGUMENT_NAMING
? 1 : ! last_named
;
4233 if (TREE_TYPE (parm
) == error_mark_node
4234 /* This can happen after weird syntax errors
4235 or if an enum type is defined among the parms. */
4236 || TREE_CODE (parm
) != PARM_DECL
4237 || passed_type
== NULL
)
4239 DECL_INCOMING_RTL (parm
) = DECL_RTL (parm
)
4240 = gen_rtx_MEM (BLKmode
, const0_rtx
);
4241 TREE_USED (parm
) = 1;
4245 /* For varargs.h function, save info about regs and stack space
4246 used by the individual args, not including the va_alist arg. */
4247 if (hide_last_arg
&& last_named
)
4248 current_function_args_info
= args_so_far
;
4250 /* Find mode of arg as it is passed, and mode of arg
4251 as it should be during execution of this function. */
4252 passed_mode
= TYPE_MODE (passed_type
);
4253 nominal_mode
= TYPE_MODE (nominal_type
);
4255 /* If the parm's mode is VOID, its value doesn't matter,
4256 and avoid the usual things like emit_move_insn that could crash. */
4257 if (nominal_mode
== VOIDmode
)
4259 DECL_INCOMING_RTL (parm
) = DECL_RTL (parm
) = const0_rtx
;
4263 /* If the parm is to be passed as a transparent union, use the
4264 type of the first field for the tests below. We have already
4265 verified that the modes are the same. */
4266 if (DECL_TRANSPARENT_UNION (parm
)
4267 || (TREE_CODE (passed_type
) == UNION_TYPE
4268 && TYPE_TRANSPARENT_UNION (passed_type
)))
4269 passed_type
= TREE_TYPE (TYPE_FIELDS (passed_type
));
4271 /* See if this arg was passed by invisible reference. It is if
4272 it is an object whose size depends on the contents of the
4273 object itself or if the machine requires these objects be passed
4276 if ((TREE_CODE (TYPE_SIZE (passed_type
)) != INTEGER_CST
4277 && contains_placeholder_p (TYPE_SIZE (passed_type
)))
4278 || TREE_ADDRESSABLE (passed_type
)
4279 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4280 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far
, passed_mode
,
4281 passed_type
, named_arg
)
4285 passed_type
= nominal_type
= build_pointer_type (passed_type
);
4287 passed_mode
= nominal_mode
= Pmode
;
4290 promoted_mode
= passed_mode
;
4292 #ifdef PROMOTE_FUNCTION_ARGS
4293 /* Compute the mode in which the arg is actually extended to. */
4294 unsignedp
= TREE_UNSIGNED (passed_type
);
4295 promoted_mode
= promote_mode (passed_type
, promoted_mode
, &unsignedp
, 1);
4298 /* Let machine desc say which reg (if any) the parm arrives in.
4299 0 means it arrives on the stack. */
4300 #ifdef FUNCTION_INCOMING_ARG
4301 entry_parm
= FUNCTION_INCOMING_ARG (args_so_far
, promoted_mode
,
4302 passed_type
, named_arg
);
4304 entry_parm
= FUNCTION_ARG (args_so_far
, promoted_mode
,
4305 passed_type
, named_arg
);
4308 if (entry_parm
== 0)
4309 promoted_mode
= passed_mode
;
4311 #ifdef SETUP_INCOMING_VARARGS
4312 /* If this is the last named parameter, do any required setup for
4313 varargs or stdargs. We need to know about the case of this being an
4314 addressable type, in which case we skip the registers it
4315 would have arrived in.
4317 For stdargs, LAST_NAMED will be set for two parameters, the one that
4318 is actually the last named, and the dummy parameter. We only
4319 want to do this action once.
4321 Also, indicate when RTL generation is to be suppressed. */
4322 if (last_named
&& !varargs_setup
)
4324 SETUP_INCOMING_VARARGS (args_so_far
, promoted_mode
, passed_type
,
4325 current_function_pretend_args_size
, 0);
4330 /* Determine parm's home in the stack,
4331 in case it arrives in the stack or we should pretend it did.
4333 Compute the stack position and rtx where the argument arrives
4336 There is one complexity here: If this was a parameter that would
4337 have been passed in registers, but wasn't only because it is
4338 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4339 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4340 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4341 0 as it was the previous time. */
4343 pretend_named
= named_arg
|| PRETEND_OUTGOING_VARARGS_NAMED
;
4344 locate_and_pad_parm (promoted_mode
, passed_type
,
4345 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4348 #ifdef FUNCTION_INCOMING_ARG
4349 FUNCTION_INCOMING_ARG (args_so_far
, promoted_mode
,
4351 pretend_named
) != 0,
4353 FUNCTION_ARG (args_so_far
, promoted_mode
,
4355 pretend_named
) != 0,
4358 fndecl
, &stack_args_size
, &stack_offset
, &arg_size
,
4362 rtx offset_rtx
= ARGS_SIZE_RTX (stack_offset
);
4364 if (offset_rtx
== const0_rtx
)
4365 stack_parm
= gen_rtx_MEM (promoted_mode
, internal_arg_pointer
);
4367 stack_parm
= gen_rtx_MEM (promoted_mode
,
4368 gen_rtx_PLUS (Pmode
,
4369 internal_arg_pointer
,
4372 set_mem_attributes (stack_parm
, parm
, 1);
4375 /* If this parameter was passed both in registers and in the stack,
4376 use the copy on the stack. */
4377 if (MUST_PASS_IN_STACK (promoted_mode
, passed_type
))
4380 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4381 /* If this parm was passed part in regs and part in memory,
4382 pretend it arrived entirely in memory
4383 by pushing the register-part onto the stack.
4385 In the special case of a DImode or DFmode that is split,
4386 we could put it together in a pseudoreg directly,
4387 but for now that's not worth bothering with. */
4391 int nregs
= FUNCTION_ARG_PARTIAL_NREGS (args_so_far
, promoted_mode
,
4392 passed_type
, named_arg
);
4396 current_function_pretend_args_size
4397 = (((nregs
* UNITS_PER_WORD
) + (PARM_BOUNDARY
/ BITS_PER_UNIT
) - 1)
4398 / (PARM_BOUNDARY
/ BITS_PER_UNIT
)
4399 * (PARM_BOUNDARY
/ BITS_PER_UNIT
));
4401 /* Handle calls that pass values in multiple non-contiguous
4402 locations. The Irix 6 ABI has examples of this. */
4403 if (GET_CODE (entry_parm
) == PARALLEL
)
4404 emit_group_store (validize_mem (stack_parm
), entry_parm
,
4405 int_size_in_bytes (TREE_TYPE (parm
)),
4406 TYPE_ALIGN (TREE_TYPE (parm
)));
4409 move_block_from_reg (REGNO (entry_parm
),
4410 validize_mem (stack_parm
), nregs
,
4411 int_size_in_bytes (TREE_TYPE (parm
)));
4413 entry_parm
= stack_parm
;
4418 /* If we didn't decide this parm came in a register,
4419 by default it came on the stack. */
4420 if (entry_parm
== 0)
4421 entry_parm
= stack_parm
;
4423 /* Record permanently how this parm was passed. */
4424 DECL_INCOMING_RTL (parm
) = entry_parm
;
4426 /* If there is actually space on the stack for this parm,
4427 count it in stack_args_size; otherwise set stack_parm to 0
4428 to indicate there is no preallocated stack slot for the parm. */
4430 if (entry_parm
== stack_parm
4431 || (GET_CODE (entry_parm
) == PARALLEL
4432 && XEXP (XVECEXP (entry_parm
, 0, 0), 0) == NULL_RTX
)
4433 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4434 /* On some machines, even if a parm value arrives in a register
4435 there is still an (uninitialized) stack slot allocated for it.
4437 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4438 whether this parameter already has a stack slot allocated,
4439 because an arg block exists only if current_function_args_size
4440 is larger than some threshold, and we haven't calculated that
4441 yet. So, for now, we just assume that stack slots never exist
4443 || REG_PARM_STACK_SPACE (fndecl
) > 0
4447 stack_args_size
.constant
+= arg_size
.constant
;
4449 ADD_PARM_SIZE (stack_args_size
, arg_size
.var
);
4452 /* No stack slot was pushed for this parm. */
4455 /* Update info on where next arg arrives in registers. */
4457 FUNCTION_ARG_ADVANCE (args_so_far
, promoted_mode
,
4458 passed_type
, named_arg
);
4460 /* If we can't trust the parm stack slot to be aligned enough
4461 for its ultimate type, don't use that slot after entry.
4462 We'll make another stack slot, if we need one. */
4464 unsigned int thisparm_boundary
4465 = FUNCTION_ARG_BOUNDARY (promoted_mode
, passed_type
);
4467 if (GET_MODE_ALIGNMENT (nominal_mode
) > thisparm_boundary
)
4471 /* If parm was passed in memory, and we need to convert it on entry,
4472 don't store it back in that same slot. */
4474 && nominal_mode
!= BLKmode
&& nominal_mode
!= passed_mode
)
4477 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4478 in the mode in which it arrives.
4479 STACK_PARM is an RTX for a stack slot where the parameter can live
4480 during the function (in case we want to put it there).
4481 STACK_PARM is 0 if no stack slot was pushed for it.
4483 Now output code if necessary to convert ENTRY_PARM to
4484 the type in which this function declares it,
4485 and store that result in an appropriate place,
4486 which may be a pseudo reg, may be STACK_PARM,
4487 or may be a local stack slot if STACK_PARM is 0.
4489 Set DECL_RTL to that place. */
4491 if (nominal_mode
== BLKmode
|| GET_CODE (entry_parm
) == PARALLEL
)
4493 /* If a BLKmode arrives in registers, copy it to a stack slot.
4494 Handle calls that pass values in multiple non-contiguous
4495 locations. The Irix 6 ABI has examples of this. */
4496 if (GET_CODE (entry_parm
) == REG
4497 || GET_CODE (entry_parm
) == PARALLEL
)
4500 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm
)),
4503 /* Note that we will be storing an integral number of words.
4504 So we have to be careful to ensure that we allocate an
4505 integral number of words. We do this below in the
4506 assign_stack_local if space was not allocated in the argument
4507 list. If it was, this will not work if PARM_BOUNDARY is not
4508 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4509 if it becomes a problem. */
4511 if (stack_parm
== 0)
4514 = assign_stack_local (GET_MODE (entry_parm
),
4516 set_mem_attributes (stack_parm
, parm
, 1);
4519 else if (PARM_BOUNDARY
% BITS_PER_WORD
!= 0)
4522 /* Handle calls that pass values in multiple non-contiguous
4523 locations. The Irix 6 ABI has examples of this. */
4524 if (GET_CODE (entry_parm
) == PARALLEL
)
4525 emit_group_store (validize_mem (stack_parm
), entry_parm
,
4526 int_size_in_bytes (TREE_TYPE (parm
)),
4527 TYPE_ALIGN (TREE_TYPE (parm
)));
4529 move_block_from_reg (REGNO (entry_parm
),
4530 validize_mem (stack_parm
),
4531 size_stored
/ UNITS_PER_WORD
,
4532 int_size_in_bytes (TREE_TYPE (parm
)));
4534 DECL_RTL (parm
) = stack_parm
;
4536 else if (! ((! optimize
4537 && ! DECL_REGISTER (parm
)
4538 && ! DECL_INLINE (fndecl
))
4539 /* layout_decl may set this. */
4540 || TREE_ADDRESSABLE (parm
)
4541 || TREE_SIDE_EFFECTS (parm
)
4542 /* If -ffloat-store specified, don't put explicit
4543 float variables into registers. */
4544 || (flag_float_store
4545 && TREE_CODE (TREE_TYPE (parm
)) == REAL_TYPE
))
4546 /* Always assign pseudo to structure return or item passed
4547 by invisible reference. */
4548 || passed_pointer
|| parm
== function_result_decl
)
4550 /* Store the parm in a pseudoregister during the function, but we
4551 may need to do it in a wider mode. */
4553 register rtx parmreg
;
4554 unsigned int regno
, regnoi
= 0, regnor
= 0;
4556 unsignedp
= TREE_UNSIGNED (TREE_TYPE (parm
));
4558 promoted_nominal_mode
4559 = promote_mode (TREE_TYPE (parm
), nominal_mode
, &unsignedp
, 0);
4561 parmreg
= gen_reg_rtx (promoted_nominal_mode
);
4562 mark_user_reg (parmreg
);
4564 /* If this was an item that we received a pointer to, set DECL_RTL
4569 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type
)), parmreg
);
4570 set_mem_attributes (DECL_RTL (parm
), parm
, 1);
4573 DECL_RTL (parm
) = parmreg
;
4575 /* Copy the value into the register. */
4576 if (nominal_mode
!= passed_mode
4577 || promoted_nominal_mode
!= promoted_mode
)
4580 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4581 mode, by the caller. We now have to convert it to
4582 NOMINAL_MODE, if different. However, PARMREG may be in
4583 a different mode than NOMINAL_MODE if it is being stored
4586 If ENTRY_PARM is a hard register, it might be in a register
4587 not valid for operating in its mode (e.g., an odd-numbered
4588 register for a DFmode). In that case, moves are the only
4589 thing valid, so we can't do a convert from there. This
4590 occurs when the calling sequence allow such misaligned
4593 In addition, the conversion may involve a call, which could
4594 clobber parameters which haven't been copied to pseudo
4595 registers yet. Therefore, we must first copy the parm to
4596 a pseudo reg here, and save the conversion until after all
4597 parameters have been moved. */
4599 rtx tempreg
= gen_reg_rtx (GET_MODE (entry_parm
));
4601 emit_move_insn (tempreg
, validize_mem (entry_parm
));
4603 push_to_sequence (conversion_insns
);
4604 tempreg
= convert_to_mode (nominal_mode
, tempreg
, unsignedp
);
4606 /* TREE_USED gets set erroneously during expand_assignment. */
4607 save_tree_used
= TREE_USED (parm
);
4608 expand_assignment (parm
,
4609 make_tree (nominal_type
, tempreg
), 0, 0);
4610 TREE_USED (parm
) = save_tree_used
;
4611 conversion_insns
= get_insns ();
4616 emit_move_insn (parmreg
, validize_mem (entry_parm
));
4618 /* If we were passed a pointer but the actual value
4619 can safely live in a register, put it in one. */
4620 if (passed_pointer
&& TYPE_MODE (TREE_TYPE (parm
)) != BLKmode
4622 && ! DECL_REGISTER (parm
)
4623 && ! DECL_INLINE (fndecl
))
4624 /* layout_decl may set this. */
4625 || TREE_ADDRESSABLE (parm
)
4626 || TREE_SIDE_EFFECTS (parm
)
4627 /* If -ffloat-store specified, don't put explicit
4628 float variables into registers. */
4629 || (flag_float_store
4630 && TREE_CODE (TREE_TYPE (parm
)) == REAL_TYPE
)))
4632 /* We can't use nominal_mode, because it will have been set to
4633 Pmode above. We must use the actual mode of the parm. */
4634 parmreg
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm
)));
4635 mark_user_reg (parmreg
);
4636 emit_move_insn (parmreg
, DECL_RTL (parm
));
4637 DECL_RTL (parm
) = parmreg
;
4638 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4642 #ifdef FUNCTION_ARG_CALLEE_COPIES
4643 /* If we are passed an arg by reference and it is our responsibility
4644 to make a copy, do it now.
4645 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4646 original argument, so we must recreate them in the call to
4647 FUNCTION_ARG_CALLEE_COPIES. */
4648 /* ??? Later add code to handle the case that if the argument isn't
4649 modified, don't do the copy. */
4651 else if (passed_pointer
4652 && FUNCTION_ARG_CALLEE_COPIES (args_so_far
,
4653 TYPE_MODE (DECL_ARG_TYPE (parm
)),
4654 DECL_ARG_TYPE (parm
),
4656 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm
)))
4659 tree type
= DECL_ARG_TYPE (parm
);
4661 /* This sequence may involve a library call perhaps clobbering
4662 registers that haven't been copied to pseudos yet. */
4664 push_to_sequence (conversion_insns
);
4666 if (!COMPLETE_TYPE_P (type
)
4667 || TREE_CODE (TYPE_SIZE (type
)) != INTEGER_CST
)
4668 /* This is a variable sized object. */
4669 copy
= gen_rtx_MEM (BLKmode
,
4670 allocate_dynamic_stack_space
4671 (expr_size (parm
), NULL_RTX
,
4672 TYPE_ALIGN (type
)));
4674 copy
= assign_stack_temp (TYPE_MODE (type
),
4675 int_size_in_bytes (type
), 1);
4676 set_mem_attributes (copy
, parm
, 1);
4678 store_expr (parm
, copy
, 0);
4679 emit_move_insn (parmreg
, XEXP (copy
, 0));
4680 if (current_function_check_memory_usage
)
4681 emit_library_call (chkr_set_right_libfunc
, 1, VOIDmode
, 3,
4682 XEXP (copy
, 0), Pmode
,
4683 GEN_INT (int_size_in_bytes (type
)),
4684 TYPE_MODE (sizetype
),
4685 GEN_INT (MEMORY_USE_RW
),
4686 TYPE_MODE (integer_type_node
));
4687 conversion_insns
= get_insns ();
4691 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4693 /* In any case, record the parm's desired stack location
4694 in case we later discover it must live in the stack.
4696 If it is a COMPLEX value, store the stack location for both
4699 if (GET_CODE (parmreg
) == CONCAT
)
4700 regno
= MAX (REGNO (XEXP (parmreg
, 0)), REGNO (XEXP (parmreg
, 1)));
4702 regno
= REGNO (parmreg
);
4704 if (regno
>= max_parm_reg
)
4707 int old_max_parm_reg
= max_parm_reg
;
4709 /* It's slow to expand this one register at a time,
4710 but it's also rare and we need max_parm_reg to be
4711 precisely correct. */
4712 max_parm_reg
= regno
+ 1;
4713 new = (rtx
*) xrealloc (parm_reg_stack_loc
,
4714 max_parm_reg
* sizeof (rtx
));
4715 bzero ((char *) (new + old_max_parm_reg
),
4716 (max_parm_reg
- old_max_parm_reg
) * sizeof (rtx
));
4717 parm_reg_stack_loc
= new;
4720 if (GET_CODE (parmreg
) == CONCAT
)
4722 enum machine_mode submode
= GET_MODE (XEXP (parmreg
, 0));
4724 regnor
= REGNO (gen_realpart (submode
, parmreg
));
4725 regnoi
= REGNO (gen_imagpart (submode
, parmreg
));
4727 if (stack_parm
!= 0)
4729 parm_reg_stack_loc
[regnor
]
4730 = gen_realpart (submode
, stack_parm
);
4731 parm_reg_stack_loc
[regnoi
]
4732 = gen_imagpart (submode
, stack_parm
);
4736 parm_reg_stack_loc
[regnor
] = 0;
4737 parm_reg_stack_loc
[regnoi
] = 0;
4741 parm_reg_stack_loc
[REGNO (parmreg
)] = stack_parm
;
4743 /* Mark the register as eliminable if we did no conversion
4744 and it was copied from memory at a fixed offset,
4745 and the arg pointer was not copied to a pseudo-reg.
4746 If the arg pointer is a pseudo reg or the offset formed
4747 an invalid address, such memory-equivalences
4748 as we make here would screw up life analysis for it. */
4749 if (nominal_mode
== passed_mode
4752 && GET_CODE (stack_parm
) == MEM
4753 && stack_offset
.var
== 0
4754 && reg_mentioned_p (virtual_incoming_args_rtx
,
4755 XEXP (stack_parm
, 0)))
4757 rtx linsn
= get_last_insn ();
4760 /* Mark complex types separately. */
4761 if (GET_CODE (parmreg
) == CONCAT
)
4762 /* Scan backwards for the set of the real and
4764 for (sinsn
= linsn
; sinsn
!= 0;
4765 sinsn
= prev_nonnote_insn (sinsn
))
4767 set
= single_set (sinsn
);
4769 && SET_DEST (set
) == regno_reg_rtx
[regnoi
])
4771 = gen_rtx_EXPR_LIST (REG_EQUIV
,
4772 parm_reg_stack_loc
[regnoi
],
4775 && SET_DEST (set
) == regno_reg_rtx
[regnor
])
4777 = gen_rtx_EXPR_LIST (REG_EQUIV
,
4778 parm_reg_stack_loc
[regnor
],
4781 else if ((set
= single_set (linsn
)) != 0
4782 && SET_DEST (set
) == parmreg
)
4784 = gen_rtx_EXPR_LIST (REG_EQUIV
,
4785 stack_parm
, REG_NOTES (linsn
));
4788 /* For pointer data type, suggest pointer register. */
4789 if (POINTER_TYPE_P (TREE_TYPE (parm
)))
4790 mark_reg_pointer (parmreg
,
4791 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm
))));
4796 /* Value must be stored in the stack slot STACK_PARM
4797 during function execution. */
4799 if (promoted_mode
!= nominal_mode
)
4801 /* Conversion is required. */
4802 rtx tempreg
= gen_reg_rtx (GET_MODE (entry_parm
));
4804 emit_move_insn (tempreg
, validize_mem (entry_parm
));
4806 push_to_sequence (conversion_insns
);
4807 entry_parm
= convert_to_mode (nominal_mode
, tempreg
,
4808 TREE_UNSIGNED (TREE_TYPE (parm
)));
4811 /* ??? This may need a big-endian conversion on sparc64. */
4812 stack_parm
= change_address (stack_parm
, nominal_mode
,
4815 conversion_insns
= get_insns ();
4820 if (entry_parm
!= stack_parm
)
4822 if (stack_parm
== 0)
4825 = assign_stack_local (GET_MODE (entry_parm
),
4826 GET_MODE_SIZE (GET_MODE (entry_parm
)), 0);
4827 set_mem_attributes (stack_parm
, parm
, 1);
4830 if (promoted_mode
!= nominal_mode
)
4832 push_to_sequence (conversion_insns
);
4833 emit_move_insn (validize_mem (stack_parm
),
4834 validize_mem (entry_parm
));
4835 conversion_insns
= get_insns ();
4839 emit_move_insn (validize_mem (stack_parm
),
4840 validize_mem (entry_parm
));
4842 if (current_function_check_memory_usage
)
4844 push_to_sequence (conversion_insns
);
4845 emit_library_call (chkr_set_right_libfunc
, 1, VOIDmode
, 3,
4846 XEXP (stack_parm
, 0), Pmode
,
4847 GEN_INT (GET_MODE_SIZE (GET_MODE
4849 TYPE_MODE (sizetype
),
4850 GEN_INT (MEMORY_USE_RW
),
4851 TYPE_MODE (integer_type_node
));
4853 conversion_insns
= get_insns ();
4856 DECL_RTL (parm
) = stack_parm
;
4859 /* If this "parameter" was the place where we are receiving the
4860 function's incoming structure pointer, set up the result. */
4861 if (parm
== function_result_decl
)
4863 tree result
= DECL_RESULT (fndecl
);
4866 = gen_rtx_MEM (DECL_MODE (result
), DECL_RTL (parm
));
4868 set_mem_attributes (DECL_RTL (result
), result
, 1);
4872 /* Output all parameter conversion instructions (possibly including calls)
4873 now that all parameters have been copied out of hard registers. */
4874 emit_insns (conversion_insns
);
4876 last_parm_insn
= get_last_insn ();
4878 current_function_args_size
= stack_args_size
.constant
;
4880 /* Adjust function incoming argument size for alignment and
4883 #ifdef REG_PARM_STACK_SPACE
4884 #ifndef MAYBE_REG_PARM_STACK_SPACE
4885 current_function_args_size
= MAX (current_function_args_size
,
4886 REG_PARM_STACK_SPACE (fndecl
));
4890 #ifdef STACK_BOUNDARY
4891 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
4893 current_function_args_size
4894 = ((current_function_args_size
+ STACK_BYTES
- 1)
4895 / STACK_BYTES
) * STACK_BYTES
;
4898 #ifdef ARGS_GROW_DOWNWARD
4899 current_function_arg_offset_rtx
4900 = (stack_args_size
.var
== 0 ? GEN_INT (-stack_args_size
.constant
)
4901 : expand_expr (size_diffop (stack_args_size
.var
,
4902 size_int (-stack_args_size
.constant
)),
4903 NULL_RTX
, VOIDmode
, EXPAND_MEMORY_USE_BAD
));
4905 current_function_arg_offset_rtx
= ARGS_SIZE_RTX (stack_args_size
);
4908 /* See how many bytes, if any, of its args a function should try to pop
4911 current_function_pops_args
= RETURN_POPS_ARGS (fndecl
, TREE_TYPE (fndecl
),
4912 current_function_args_size
);
4914 /* For stdarg.h function, save info about
4915 regs and stack space used by the named args. */
4918 current_function_args_info
= args_so_far
;
4920 /* Set the rtx used for the function return value. Put this in its
4921 own variable so any optimizers that need this information don't have
4922 to include tree.h. Do this here so it gets done when an inlined
4923 function gets output. */
4925 current_function_return_rtx
= DECL_RTL (DECL_RESULT (fndecl
));
4928 /* Indicate whether REGNO is an incoming argument to the current function
4929 that was promoted to a wider mode. If so, return the RTX for the
4930 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
4931 that REGNO is promoted from and whether the promotion was signed or
4934 #ifdef PROMOTE_FUNCTION_ARGS
4937 promoted_input_arg (regno
, pmode
, punsignedp
)
4939 enum machine_mode
*pmode
;
4944 for (arg
= DECL_ARGUMENTS (current_function_decl
); arg
;
4945 arg
= TREE_CHAIN (arg
))
4946 if (GET_CODE (DECL_INCOMING_RTL (arg
)) == REG
4947 && REGNO (DECL_INCOMING_RTL (arg
)) == regno
4948 && TYPE_MODE (DECL_ARG_TYPE (arg
)) == TYPE_MODE (TREE_TYPE (arg
)))
4950 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (arg
));
4951 int unsignedp
= TREE_UNSIGNED (TREE_TYPE (arg
));
4953 mode
= promote_mode (TREE_TYPE (arg
), mode
, &unsignedp
, 1);
4954 if (mode
== GET_MODE (DECL_INCOMING_RTL (arg
))
4955 && mode
!= DECL_MODE (arg
))
4957 *pmode
= DECL_MODE (arg
);
4958 *punsignedp
= unsignedp
;
4959 return DECL_INCOMING_RTL (arg
);
4968 /* Compute the size and offset from the start of the stacked arguments for a
4969 parm passed in mode PASSED_MODE and with type TYPE.
4971 INITIAL_OFFSET_PTR points to the current offset into the stacked
4974 The starting offset and size for this parm are returned in *OFFSET_PTR
4975 and *ARG_SIZE_PTR, respectively.
4977 IN_REGS is non-zero if the argument will be passed in registers. It will
4978 never be set if REG_PARM_STACK_SPACE is not defined.
4980 FNDECL is the function in which the argument was defined.
4982 There are two types of rounding that are done. The first, controlled by
4983 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
4984 list to be aligned to the specific boundary (in bits). This rounding
4985 affects the initial and starting offsets, but not the argument size.
4987 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4988 optionally rounds the size of the parm to PARM_BOUNDARY. The
4989 initial offset is not affected by this rounding, while the size always
4990 is and the starting offset may be. */
4992 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
4993 initial_offset_ptr is positive because locate_and_pad_parm's
4994 callers pass in the total size of args so far as
4995 initial_offset_ptr. arg_size_ptr is always positive.*/
4998 locate_and_pad_parm (passed_mode
, type
, in_regs
, fndecl
,
4999 initial_offset_ptr
, offset_ptr
, arg_size_ptr
,
5001 enum machine_mode passed_mode
;
5003 int in_regs ATTRIBUTE_UNUSED
;
5004 tree fndecl ATTRIBUTE_UNUSED
;
5005 struct args_size
*initial_offset_ptr
;
5006 struct args_size
*offset_ptr
;
5007 struct args_size
*arg_size_ptr
;
5008 struct args_size
*alignment_pad
;
5012 = type
? size_in_bytes (type
) : size_int (GET_MODE_SIZE (passed_mode
));
5013 enum direction where_pad
= FUNCTION_ARG_PADDING (passed_mode
, type
);
5014 int boundary
= FUNCTION_ARG_BOUNDARY (passed_mode
, type
);
5016 #ifdef REG_PARM_STACK_SPACE
5017 /* If we have found a stack parm before we reach the end of the
5018 area reserved for registers, skip that area. */
5021 int reg_parm_stack_space
= 0;
5023 #ifdef MAYBE_REG_PARM_STACK_SPACE
5024 reg_parm_stack_space
= MAYBE_REG_PARM_STACK_SPACE
;
5026 reg_parm_stack_space
= REG_PARM_STACK_SPACE (fndecl
);
5028 if (reg_parm_stack_space
> 0)
5030 if (initial_offset_ptr
->var
)
5032 initial_offset_ptr
->var
5033 = size_binop (MAX_EXPR
, ARGS_SIZE_TREE (*initial_offset_ptr
),
5034 ssize_int (reg_parm_stack_space
));
5035 initial_offset_ptr
->constant
= 0;
5037 else if (initial_offset_ptr
->constant
< reg_parm_stack_space
)
5038 initial_offset_ptr
->constant
= reg_parm_stack_space
;
5041 #endif /* REG_PARM_STACK_SPACE */
5043 arg_size_ptr
->var
= 0;
5044 arg_size_ptr
->constant
= 0;
5046 #ifdef ARGS_GROW_DOWNWARD
5047 if (initial_offset_ptr
->var
)
5049 offset_ptr
->constant
= 0;
5050 offset_ptr
->var
= size_binop (MINUS_EXPR
, ssize_int (0),
5051 initial_offset_ptr
->var
);
5055 offset_ptr
->constant
= -initial_offset_ptr
->constant
;
5056 offset_ptr
->var
= 0;
5058 if (where_pad
!= none
5059 && (TREE_CODE (sizetree
) != INTEGER_CST
5060 || ((TREE_INT_CST_LOW (sizetree
) * BITS_PER_UNIT
) % PARM_BOUNDARY
)))
5061 sizetree
= round_up (sizetree
, PARM_BOUNDARY
/ BITS_PER_UNIT
);
5062 SUB_PARM_SIZE (*offset_ptr
, sizetree
);
5063 if (where_pad
!= downward
)
5064 pad_to_arg_alignment (offset_ptr
, boundary
, alignment_pad
);
5065 if (initial_offset_ptr
->var
)
5066 arg_size_ptr
->var
= size_binop (MINUS_EXPR
,
5067 size_binop (MINUS_EXPR
,
5069 initial_offset_ptr
->var
),
5073 arg_size_ptr
->constant
= (-initial_offset_ptr
->constant
5074 - offset_ptr
->constant
);
5076 #else /* !ARGS_GROW_DOWNWARD */
5077 pad_to_arg_alignment (initial_offset_ptr
, boundary
, alignment_pad
);
5078 *offset_ptr
= *initial_offset_ptr
;
5080 #ifdef PUSH_ROUNDING
5081 if (passed_mode
!= BLKmode
)
5082 sizetree
= size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree
)));
5085 /* Pad_below needs the pre-rounded size to know how much to pad below
5086 so this must be done before rounding up. */
5087 if (where_pad
== downward
5088 /* However, BLKmode args passed in regs have their padding done elsewhere.
5089 The stack slot must be able to hold the entire register. */
5090 && !(in_regs
&& passed_mode
== BLKmode
))
5091 pad_below (offset_ptr
, passed_mode
, sizetree
);
5093 if (where_pad
!= none
5094 && (TREE_CODE (sizetree
) != INTEGER_CST
5095 || ((TREE_INT_CST_LOW (sizetree
) * BITS_PER_UNIT
) % PARM_BOUNDARY
)))
5096 sizetree
= round_up (sizetree
, PARM_BOUNDARY
/ BITS_PER_UNIT
);
5098 ADD_PARM_SIZE (*arg_size_ptr
, sizetree
);
5099 #endif /* ARGS_GROW_DOWNWARD */
5102 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5103 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5106 pad_to_arg_alignment (offset_ptr
, boundary
, alignment_pad
)
5107 struct args_size
*offset_ptr
;
5109 struct args_size
*alignment_pad
;
5111 tree save_var
= NULL_TREE
;
5112 HOST_WIDE_INT save_constant
= 0;
5114 int boundary_in_bytes
= boundary
/ BITS_PER_UNIT
;
5116 if (boundary
> PARM_BOUNDARY
&& boundary
> STACK_BOUNDARY
)
5118 save_var
= offset_ptr
->var
;
5119 save_constant
= offset_ptr
->constant
;
5122 alignment_pad
->var
= NULL_TREE
;
5123 alignment_pad
->constant
= 0;
5125 if (boundary
> BITS_PER_UNIT
)
5127 if (offset_ptr
->var
)
5130 #ifdef ARGS_GROW_DOWNWARD
5135 (ARGS_SIZE_TREE (*offset_ptr
),
5136 boundary
/ BITS_PER_UNIT
);
5137 offset_ptr
->constant
= 0; /*?*/
5138 if (boundary
> PARM_BOUNDARY
&& boundary
> STACK_BOUNDARY
)
5139 alignment_pad
->var
= size_binop (MINUS_EXPR
, offset_ptr
->var
,
5144 offset_ptr
->constant
=
5145 #ifdef ARGS_GROW_DOWNWARD
5146 FLOOR_ROUND (offset_ptr
->constant
, boundary_in_bytes
);
5148 CEIL_ROUND (offset_ptr
->constant
, boundary_in_bytes
);
5150 if (boundary
> PARM_BOUNDARY
&& boundary
> STACK_BOUNDARY
)
5151 alignment_pad
->constant
= offset_ptr
->constant
- save_constant
;
5156 #ifndef ARGS_GROW_DOWNWARD
5158 pad_below (offset_ptr
, passed_mode
, sizetree
)
5159 struct args_size
*offset_ptr
;
5160 enum machine_mode passed_mode
;
5163 if (passed_mode
!= BLKmode
)
5165 if (GET_MODE_BITSIZE (passed_mode
) % PARM_BOUNDARY
)
5166 offset_ptr
->constant
5167 += (((GET_MODE_BITSIZE (passed_mode
) + PARM_BOUNDARY
- 1)
5168 / PARM_BOUNDARY
* PARM_BOUNDARY
/ BITS_PER_UNIT
)
5169 - GET_MODE_SIZE (passed_mode
));
5173 if (TREE_CODE (sizetree
) != INTEGER_CST
5174 || (TREE_INT_CST_LOW (sizetree
) * BITS_PER_UNIT
) % PARM_BOUNDARY
)
5176 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5177 tree s2
= round_up (sizetree
, PARM_BOUNDARY
/ BITS_PER_UNIT
);
5179 ADD_PARM_SIZE (*offset_ptr
, s2
);
5180 SUB_PARM_SIZE (*offset_ptr
, sizetree
);
5186 /* Walk the tree of blocks describing the binding levels within a function
5187 and warn about uninitialized variables.
5188 This is done after calling flow_analysis and before global_alloc
5189 clobbers the pseudo-regs to hard regs. */
5192 uninitialized_vars_warning (block
)
5195 register tree decl
, sub
;
5196 for (decl
= BLOCK_VARS (block
); decl
; decl
= TREE_CHAIN (decl
))
5198 if (warn_uninitialized
5199 && TREE_CODE (decl
) == VAR_DECL
5200 /* These warnings are unreliable for and aggregates
5201 because assigning the fields one by one can fail to convince
5202 flow.c that the entire aggregate was initialized.
5203 Unions are troublesome because members may be shorter. */
5204 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl
))
5205 && DECL_RTL (decl
) != 0
5206 && GET_CODE (DECL_RTL (decl
)) == REG
5207 /* Global optimizations can make it difficult to determine if a
5208 particular variable has been initialized. However, a VAR_DECL
5209 with a nonzero DECL_INITIAL had an initializer, so do not
5210 claim it is potentially uninitialized.
5212 We do not care about the actual value in DECL_INITIAL, so we do
5213 not worry that it may be a dangling pointer. */
5214 && DECL_INITIAL (decl
) == NULL_TREE
5215 && regno_uninitialized (REGNO (DECL_RTL (decl
))))
5216 warning_with_decl (decl
,
5217 "`%s' might be used uninitialized in this function");
5219 && TREE_CODE (decl
) == VAR_DECL
5220 && DECL_RTL (decl
) != 0
5221 && GET_CODE (DECL_RTL (decl
)) == REG
5222 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl
))))
5223 warning_with_decl (decl
,
5224 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5226 for (sub
= BLOCK_SUBBLOCKS (block
); sub
; sub
= TREE_CHAIN (sub
))
5227 uninitialized_vars_warning (sub
);
5230 /* Do the appropriate part of uninitialized_vars_warning
5231 but for arguments instead of local variables. */
5234 setjmp_args_warning ()
5237 for (decl
= DECL_ARGUMENTS (current_function_decl
);
5238 decl
; decl
= TREE_CHAIN (decl
))
5239 if (DECL_RTL (decl
) != 0
5240 && GET_CODE (DECL_RTL (decl
)) == REG
5241 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl
))))
5242 warning_with_decl (decl
,
5243 "argument `%s' might be clobbered by `longjmp' or `vfork'");
5246 /* If this function call setjmp, put all vars into the stack
5247 unless they were declared `register'. */
5250 setjmp_protect (block
)
5253 register tree decl
, sub
;
5254 for (decl
= BLOCK_VARS (block
); decl
; decl
= TREE_CHAIN (decl
))
5255 if ((TREE_CODE (decl
) == VAR_DECL
5256 || TREE_CODE (decl
) == PARM_DECL
)
5257 && DECL_RTL (decl
) != 0
5258 && (GET_CODE (DECL_RTL (decl
)) == REG
5259 || (GET_CODE (DECL_RTL (decl
)) == MEM
5260 && GET_CODE (XEXP (DECL_RTL (decl
), 0)) == ADDRESSOF
))
5261 /* If this variable came from an inline function, it must be
5262 that its life doesn't overlap the setjmp. If there was a
5263 setjmp in the function, it would already be in memory. We
5264 must exclude such variable because their DECL_RTL might be
5265 set to strange things such as virtual_stack_vars_rtx. */
5266 && ! DECL_FROM_INLINE (decl
)
5268 #ifdef NON_SAVING_SETJMP
5269 /* If longjmp doesn't restore the registers,
5270 don't put anything in them. */
5274 ! DECL_REGISTER (decl
)))
5275 put_var_into_stack (decl
);
5276 for (sub
= BLOCK_SUBBLOCKS (block
); sub
; sub
= TREE_CHAIN (sub
))
5277 setjmp_protect (sub
);
5280 /* Like the previous function, but for args instead of local variables. */
5283 setjmp_protect_args ()
5286 for (decl
= DECL_ARGUMENTS (current_function_decl
);
5287 decl
; decl
= TREE_CHAIN (decl
))
5288 if ((TREE_CODE (decl
) == VAR_DECL
5289 || TREE_CODE (decl
) == PARM_DECL
)
5290 && DECL_RTL (decl
) != 0
5291 && (GET_CODE (DECL_RTL (decl
)) == REG
5292 || (GET_CODE (DECL_RTL (decl
)) == MEM
5293 && GET_CODE (XEXP (DECL_RTL (decl
), 0)) == ADDRESSOF
))
5295 /* If longjmp doesn't restore the registers,
5296 don't put anything in them. */
5297 #ifdef NON_SAVING_SETJMP
5301 ! DECL_REGISTER (decl
)))
5302 put_var_into_stack (decl
);
5305 /* Return the context-pointer register corresponding to DECL,
5306 or 0 if it does not need one. */
5309 lookup_static_chain (decl
)
5312 tree context
= decl_function_context (decl
);
5316 || (TREE_CODE (decl
) == FUNCTION_DECL
&& DECL_NO_STATIC_CHAIN (decl
)))
5319 /* We treat inline_function_decl as an alias for the current function
5320 because that is the inline function whose vars, types, etc.
5321 are being merged into the current function.
5322 See expand_inline_function. */
5323 if (context
== current_function_decl
|| context
== inline_function_decl
)
5324 return virtual_stack_vars_rtx
;
5326 for (link
= context_display
; link
; link
= TREE_CHAIN (link
))
5327 if (TREE_PURPOSE (link
) == context
)
5328 return RTL_EXPR_RTL (TREE_VALUE (link
));
5333 /* Convert a stack slot address ADDR for variable VAR
5334 (from a containing function)
5335 into an address valid in this function (using a static chain). */
5338 fix_lexical_addr (addr
, var
)
5343 HOST_WIDE_INT displacement
;
5344 tree context
= decl_function_context (var
);
5345 struct function
*fp
;
5348 /* If this is the present function, we need not do anything. */
5349 if (context
== current_function_decl
|| context
== inline_function_decl
)
5352 for (fp
= outer_function_chain
; fp
; fp
= fp
->next
)
5353 if (fp
->decl
== context
)
5359 if (GET_CODE (addr
) == ADDRESSOF
&& GET_CODE (XEXP (addr
, 0)) == MEM
)
5360 addr
= XEXP (XEXP (addr
, 0), 0);
5362 /* Decode given address as base reg plus displacement. */
5363 if (GET_CODE (addr
) == REG
)
5364 basereg
= addr
, displacement
= 0;
5365 else if (GET_CODE (addr
) == PLUS
&& GET_CODE (XEXP (addr
, 1)) == CONST_INT
)
5366 basereg
= XEXP (addr
, 0), displacement
= INTVAL (XEXP (addr
, 1));
5370 /* We accept vars reached via the containing function's
5371 incoming arg pointer and via its stack variables pointer. */
5372 if (basereg
== fp
->internal_arg_pointer
)
5374 /* If reached via arg pointer, get the arg pointer value
5375 out of that function's stack frame.
5377 There are two cases: If a separate ap is needed, allocate a
5378 slot in the outer function for it and dereference it that way.
5379 This is correct even if the real ap is actually a pseudo.
5380 Otherwise, just adjust the offset from the frame pointer to
5383 #ifdef NEED_SEPARATE_AP
5386 if (fp
->x_arg_pointer_save_area
== 0)
5387 fp
->x_arg_pointer_save_area
5388 = assign_stack_local_1 (Pmode
, GET_MODE_SIZE (Pmode
), 0, fp
);
5390 addr
= fix_lexical_addr (XEXP (fp
->x_arg_pointer_save_area
, 0), var
);
5391 addr
= memory_address (Pmode
, addr
);
5393 base
= gen_rtx_MEM (Pmode
, addr
);
5394 MEM_ALIAS_SET (base
) = get_frame_alias_set ();
5395 base
= copy_to_reg (base
);
5397 displacement
+= (FIRST_PARM_OFFSET (context
) - STARTING_FRAME_OFFSET
);
5398 base
= lookup_static_chain (var
);
5402 else if (basereg
== virtual_stack_vars_rtx
)
5404 /* This is the same code as lookup_static_chain, duplicated here to
5405 avoid an extra call to decl_function_context. */
5408 for (link
= context_display
; link
; link
= TREE_CHAIN (link
))
5409 if (TREE_PURPOSE (link
) == context
)
5411 base
= RTL_EXPR_RTL (TREE_VALUE (link
));
5419 /* Use same offset, relative to appropriate static chain or argument
5421 return plus_constant (base
, displacement
);
5424 /* Return the address of the trampoline for entering nested fn FUNCTION.
5425 If necessary, allocate a trampoline (in the stack frame)
5426 and emit rtl to initialize its contents (at entry to this function). */
5429 trampoline_address (function
)
5435 struct function
*fp
;
5438 /* Find an existing trampoline and return it. */
5439 for (link
= trampoline_list
; link
; link
= TREE_CHAIN (link
))
5440 if (TREE_PURPOSE (link
) == function
)
5442 round_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link
)), 0));
5444 for (fp
= outer_function_chain
; fp
; fp
= fp
->next
)
5445 for (link
= fp
->x_trampoline_list
; link
; link
= TREE_CHAIN (link
))
5446 if (TREE_PURPOSE (link
) == function
)
5448 tramp
= fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link
)), 0),
5450 return round_trampoline_addr (tramp
);
5453 /* None exists; we must make one. */
5455 /* Find the `struct function' for the function containing FUNCTION. */
5457 fn_context
= decl_function_context (function
);
5458 if (fn_context
!= current_function_decl
5459 && fn_context
!= inline_function_decl
)
5460 for (fp
= outer_function_chain
; fp
; fp
= fp
->next
)
5461 if (fp
->decl
== fn_context
)
5464 /* Allocate run-time space for this trampoline
5465 (usually in the defining function's stack frame). */
5466 #ifdef ALLOCATE_TRAMPOLINE
5467 tramp
= ALLOCATE_TRAMPOLINE (fp
);
5469 /* If rounding needed, allocate extra space
5470 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5471 #ifdef TRAMPOLINE_ALIGNMENT
5472 #define TRAMPOLINE_REAL_SIZE \
5473 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5475 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5477 tramp
= assign_stack_local_1 (BLKmode
, TRAMPOLINE_REAL_SIZE
, 0,
5481 /* Record the trampoline for reuse and note it for later initialization
5482 by expand_function_end. */
5485 push_obstacks (fp
->function_maybepermanent_obstack
,
5486 fp
->function_maybepermanent_obstack
);
5487 rtlexp
= make_node (RTL_EXPR
);
5488 RTL_EXPR_RTL (rtlexp
) = tramp
;
5489 fp
->x_trampoline_list
= tree_cons (function
, rtlexp
,
5490 fp
->x_trampoline_list
);
5495 /* Make the RTL_EXPR node temporary, not momentary, so that the
5496 trampoline_list doesn't become garbage. */
5497 int momentary
= suspend_momentary ();
5498 rtlexp
= make_node (RTL_EXPR
);
5499 resume_momentary (momentary
);
5501 RTL_EXPR_RTL (rtlexp
) = tramp
;
5502 trampoline_list
= tree_cons (function
, rtlexp
, trampoline_list
);
5505 tramp
= fix_lexical_addr (XEXP (tramp
, 0), function
);
5506 return round_trampoline_addr (tramp
);
5509 /* Given a trampoline address,
5510 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5513 round_trampoline_addr (tramp
)
5516 #ifdef TRAMPOLINE_ALIGNMENT
5517 /* Round address up to desired boundary. */
5518 rtx temp
= gen_reg_rtx (Pmode
);
5519 temp
= expand_binop (Pmode
, add_optab
, tramp
,
5520 GEN_INT (TRAMPOLINE_ALIGNMENT
/ BITS_PER_UNIT
- 1),
5521 temp
, 0, OPTAB_LIB_WIDEN
);
5522 tramp
= expand_binop (Pmode
, and_optab
, temp
,
5523 GEN_INT (-TRAMPOLINE_ALIGNMENT
/ BITS_PER_UNIT
),
5524 temp
, 0, OPTAB_LIB_WIDEN
);
5529 /* Put all this function's BLOCK nodes including those that are chained
5530 onto the first block into a vector, and return it.
5531 Also store in each NOTE for the beginning or end of a block
5532 the index of that block in the vector.
5533 The arguments are BLOCK, the chain of top-level blocks of the function,
5534 and INSNS, the insn chain of the function. */
5540 tree
*block_vector
, *last_block_vector
;
5542 tree block
= DECL_INITIAL (current_function_decl
);
5547 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5548 depth-first order. */
5549 block_vector
= get_block_vector (block
, &n_blocks
);
5550 block_stack
= (tree
*) xmalloc (n_blocks
* sizeof (tree
));
5552 last_block_vector
= identify_blocks_1 (get_insns (),
5554 block_vector
+ n_blocks
,
5557 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5558 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5559 if (0 && last_block_vector
!= block_vector
+ n_blocks
)
5562 free (block_vector
);
5566 /* Subroutine of identify_blocks. Do the block substitution on the
5567 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5569 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5570 BLOCK_VECTOR is incremented for each block seen. */
5573 identify_blocks_1 (insns
, block_vector
, end_block_vector
, orig_block_stack
)
5576 tree
*end_block_vector
;
5577 tree
*orig_block_stack
;
5580 tree
*block_stack
= orig_block_stack
;
5582 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
5584 if (GET_CODE (insn
) == NOTE
)
5586 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_BEG
)
5590 /* If there are more block notes than BLOCKs, something
5592 if (block_vector
== end_block_vector
)
5595 b
= *block_vector
++;
5596 NOTE_BLOCK (insn
) = b
;
5599 else if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_END
)
5601 /* If there are more NOTE_INSN_BLOCK_ENDs than
5602 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5603 if (block_stack
== orig_block_stack
)
5606 NOTE_BLOCK (insn
) = *--block_stack
;
5609 else if (GET_CODE (insn
) == CALL_INSN
5610 && GET_CODE (PATTERN (insn
)) == CALL_PLACEHOLDER
)
5612 rtx cp
= PATTERN (insn
);
5614 block_vector
= identify_blocks_1 (XEXP (cp
, 0), block_vector
,
5615 end_block_vector
, block_stack
);
5617 block_vector
= identify_blocks_1 (XEXP (cp
, 1), block_vector
,
5618 end_block_vector
, block_stack
);
5620 block_vector
= identify_blocks_1 (XEXP (cp
, 2), block_vector
,
5621 end_block_vector
, block_stack
);
5625 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5626 something is badly wrong. */
5627 if (block_stack
!= orig_block_stack
)
5630 return block_vector
;
5633 /* Identify BLOCKs referenced by more than one
5634 NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */
5639 tree block
= DECL_INITIAL (current_function_decl
);
5640 varray_type block_stack
;
5642 if (block
== NULL_TREE
)
5645 VARRAY_TREE_INIT (block_stack
, 10, "block_stack");
5647 /* Prune the old trees away, so that they don't get in the way. */
5648 BLOCK_SUBBLOCKS (block
) = NULL_TREE
;
5649 BLOCK_CHAIN (block
) = NULL_TREE
;
5651 reorder_blocks_1 (get_insns (), block
, &block_stack
);
5653 BLOCK_SUBBLOCKS (block
) = blocks_nreverse (BLOCK_SUBBLOCKS (block
));
5655 VARRAY_FREE (block_stack
);
5658 /* Helper function for reorder_blocks. Process the insn chain beginning
5659 at INSNS. Recurse for CALL_PLACEHOLDER insns. */
5662 reorder_blocks_1 (insns
, current_block
, p_block_stack
)
5665 varray_type
*p_block_stack
;
5669 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
5671 if (GET_CODE (insn
) == NOTE
)
5673 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_BEG
)
5675 tree block
= NOTE_BLOCK (insn
);
5676 /* If we have seen this block before, copy it. */
5677 if (TREE_ASM_WRITTEN (block
))
5679 block
= copy_node (block
);
5680 NOTE_BLOCK (insn
) = block
;
5682 BLOCK_SUBBLOCKS (block
) = 0;
5683 TREE_ASM_WRITTEN (block
) = 1;
5684 BLOCK_SUPERCONTEXT (block
) = current_block
;
5685 BLOCK_CHAIN (block
) = BLOCK_SUBBLOCKS (current_block
);
5686 BLOCK_SUBBLOCKS (current_block
) = block
;
5687 current_block
= block
;
5688 VARRAY_PUSH_TREE (*p_block_stack
, block
);
5690 else if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_END
)
5692 NOTE_BLOCK (insn
) = VARRAY_TOP_TREE (*p_block_stack
);
5693 VARRAY_POP (*p_block_stack
);
5694 BLOCK_SUBBLOCKS (current_block
)
5695 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block
));
5696 current_block
= BLOCK_SUPERCONTEXT (current_block
);
5699 else if (GET_CODE (insn
) == CALL_INSN
5700 && GET_CODE (PATTERN (insn
)) == CALL_PLACEHOLDER
)
5702 rtx cp
= PATTERN (insn
);
5703 reorder_blocks_1 (XEXP (cp
, 0), current_block
, p_block_stack
);
5705 reorder_blocks_1 (XEXP (cp
, 1), current_block
, p_block_stack
);
5707 reorder_blocks_1 (XEXP (cp
, 2), current_block
, p_block_stack
);
5712 /* Reverse the order of elements in the chain T of blocks,
5713 and return the new head of the chain (old last element). */
5719 register tree prev
= 0, decl
, next
;
5720 for (decl
= t
; decl
; decl
= next
)
5722 next
= BLOCK_CHAIN (decl
);
5723 BLOCK_CHAIN (decl
) = prev
;
5729 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
5730 non-NULL, list them all into VECTOR, in a depth-first preorder
5731 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
5735 all_blocks (block
, vector
)
5743 TREE_ASM_WRITTEN (block
) = 0;
5745 /* Record this block. */
5747 vector
[n_blocks
] = block
;
5751 /* Record the subblocks, and their subblocks... */
5752 n_blocks
+= all_blocks (BLOCK_SUBBLOCKS (block
),
5753 vector
? vector
+ n_blocks
: 0);
5754 block
= BLOCK_CHAIN (block
);
5760 /* Return a vector containing all the blocks rooted at BLOCK. The
5761 number of elements in the vector is stored in N_BLOCKS_P. The
5762 vector is dynamically allocated; it is the caller's responsibility
5763 to call `free' on the pointer returned. */
5766 get_block_vector (block
, n_blocks_p
)
5772 *n_blocks_p
= all_blocks (block
, NULL
);
5773 block_vector
= (tree
*) xmalloc (*n_blocks_p
* sizeof (tree
));
5774 all_blocks (block
, block_vector
);
5776 return block_vector
;
5779 static int next_block_index
= 2;
5781 /* Set BLOCK_NUMBER for all the blocks in FN. */
5791 /* For SDB and XCOFF debugging output, we start numbering the blocks
5792 from 1 within each function, rather than keeping a running
5794 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
5795 if (write_symbols
== SDB_DEBUG
|| write_symbols
== XCOFF_DEBUG
)
5796 next_block_index
= 1;
5799 block_vector
= get_block_vector (DECL_INITIAL (fn
), &n_blocks
);
5801 /* The top-level BLOCK isn't numbered at all. */
5802 for (i
= 1; i
< n_blocks
; ++i
)
5803 /* We number the blocks from two. */
5804 BLOCK_NUMBER (block_vector
[i
]) = next_block_index
++;
5806 free (block_vector
);
5811 /* Allocate a function structure and reset its contents to the defaults. */
5813 prepare_function_start ()
5815 cfun
= (struct function
*) xcalloc (1, sizeof (struct function
));
5817 init_stmt_for_function ();
5818 init_eh_for_function ();
5820 cse_not_expected
= ! optimize
;
5822 /* Caller save not needed yet. */
5823 caller_save_needed
= 0;
5825 /* No stack slots have been made yet. */
5826 stack_slot_list
= 0;
5828 current_function_has_nonlocal_label
= 0;
5829 current_function_has_nonlocal_goto
= 0;
5831 /* There is no stack slot for handling nonlocal gotos. */
5832 nonlocal_goto_handler_slots
= 0;
5833 nonlocal_goto_stack_level
= 0;
5835 /* No labels have been declared for nonlocal use. */
5836 nonlocal_labels
= 0;
5837 nonlocal_goto_handler_labels
= 0;
5839 /* No function calls so far in this function. */
5840 function_call_count
= 0;
5842 /* No parm regs have been allocated.
5843 (This is important for output_inline_function.) */
5844 max_parm_reg
= LAST_VIRTUAL_REGISTER
+ 1;
5846 /* Initialize the RTL mechanism. */
5849 /* Initialize the queue of pending postincrement and postdecrements,
5850 and some other info in expr.c. */
5853 /* We haven't done register allocation yet. */
5856 init_varasm_status (cfun
);
5858 /* Clear out data used for inlining. */
5859 cfun
->inlinable
= 0;
5860 cfun
->original_decl_initial
= 0;
5861 cfun
->original_arg_vector
= 0;
5863 #ifdef STACK_BOUNDARY
5864 cfun
->stack_alignment_needed
= STACK_BOUNDARY
;
5865 cfun
->preferred_stack_boundary
= STACK_BOUNDARY
;
5867 cfun
->stack_alignment_needed
= 0;
5868 cfun
->preferred_stack_boundary
= 0;
5871 /* Set if a call to setjmp is seen. */
5872 current_function_calls_setjmp
= 0;
5874 /* Set if a call to longjmp is seen. */
5875 current_function_calls_longjmp
= 0;
5877 current_function_calls_alloca
= 0;
5878 current_function_contains_functions
= 0;
5879 current_function_is_leaf
= 0;
5880 current_function_nothrow
= 0;
5881 current_function_sp_is_unchanging
= 0;
5882 current_function_uses_only_leaf_regs
= 0;
5883 current_function_has_computed_jump
= 0;
5884 current_function_is_thunk
= 0;
5886 current_function_returns_pcc_struct
= 0;
5887 current_function_returns_struct
= 0;
5888 current_function_epilogue_delay_list
= 0;
5889 current_function_uses_const_pool
= 0;
5890 current_function_uses_pic_offset_table
= 0;
5891 current_function_cannot_inline
= 0;
5893 /* We have not yet needed to make a label to jump to for tail-recursion. */
5894 tail_recursion_label
= 0;
5896 /* We haven't had a need to make a save area for ap yet. */
5897 arg_pointer_save_area
= 0;
5899 /* No stack slots allocated yet. */
5902 /* No SAVE_EXPRs in this function yet. */
5905 /* No RTL_EXPRs in this function yet. */
5908 /* Set up to allocate temporaries. */
5911 /* Indicate that we need to distinguish between the return value of the
5912 present function and the return value of a function being called. */
5913 rtx_equal_function_value_matters
= 1;
5915 /* Indicate that we have not instantiated virtual registers yet. */
5916 virtuals_instantiated
= 0;
5918 /* Indicate we have no need of a frame pointer yet. */
5919 frame_pointer_needed
= 0;
5921 /* By default assume not varargs or stdarg. */
5922 current_function_varargs
= 0;
5923 current_function_stdarg
= 0;
5925 /* We haven't made any trampolines for this function yet. */
5926 trampoline_list
= 0;
5928 init_pending_stack_adjust ();
5929 inhibit_defer_pop
= 0;
5931 current_function_outgoing_args_size
= 0;
5933 if (init_lang_status
)
5934 (*init_lang_status
) (cfun
);
5935 if (init_machine_status
)
5936 (*init_machine_status
) (cfun
);
5939 /* Initialize the rtl expansion mechanism so that we can do simple things
5940 like generate sequences. This is used to provide a context during global
5941 initialization of some passes. */
5943 init_dummy_function_start ()
5945 prepare_function_start ();
5948 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5949 and initialize static variables for generating RTL for the statements
5953 init_function_start (subr
, filename
, line
)
5955 const char *filename
;
5958 prepare_function_start ();
5960 /* Remember this function for later. */
5961 cfun
->next_global
= all_functions
;
5962 all_functions
= cfun
;
5964 current_function_name
= (*decl_printable_name
) (subr
, 2);
5967 /* Nonzero if this is a nested function that uses a static chain. */
5969 current_function_needs_context
5970 = (decl_function_context (current_function_decl
) != 0
5971 && ! DECL_NO_STATIC_CHAIN (current_function_decl
));
5973 /* Within function body, compute a type's size as soon it is laid out. */
5974 immediate_size_expand
++;
5976 /* Prevent ever trying to delete the first instruction of a function.
5977 Also tell final how to output a linenum before the function prologue.
5978 Note linenums could be missing, e.g. when compiling a Java .class file. */
5980 emit_line_note (filename
, line
);
5982 /* Make sure first insn is a note even if we don't want linenums.
5983 This makes sure the first insn will never be deleted.
5984 Also, final expects a note to appear there. */
5985 emit_note (NULL_PTR
, NOTE_INSN_DELETED
);
5987 /* Set flags used by final.c. */
5988 if (aggregate_value_p (DECL_RESULT (subr
)))
5990 #ifdef PCC_STATIC_STRUCT_RETURN
5991 current_function_returns_pcc_struct
= 1;
5993 current_function_returns_struct
= 1;
5996 /* Warn if this value is an aggregate type,
5997 regardless of which calling convention we are using for it. */
5998 if (warn_aggregate_return
5999 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr
))))
6000 warning ("function returns an aggregate");
6002 current_function_returns_pointer
6003 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr
)));
6006 /* Make sure all values used by the optimization passes have sane
6009 init_function_for_compilation ()
6013 /* No prologue/epilogue insns yet. */
6014 VARRAY_GROW (prologue
, 0);
6015 VARRAY_GROW (epilogue
, 0);
6016 VARRAY_GROW (sibcall_epilogue
, 0);
6019 /* Indicate that the current function uses extra args
6020 not explicitly mentioned in the argument list in any fashion. */
6025 current_function_varargs
= 1;
6028 /* Expand a call to __main at the beginning of a possible main function. */
6030 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6031 #undef HAS_INIT_SECTION
6032 #define HAS_INIT_SECTION
6036 expand_main_function ()
6038 #if !defined (HAS_INIT_SECTION)
6039 emit_library_call (gen_rtx_SYMBOL_REF (Pmode
, NAME__MAIN
), 0,
6041 #endif /* not HAS_INIT_SECTION */
6044 extern struct obstack permanent_obstack
;
6046 /* Start the RTL for a new function, and set variables used for
6048 SUBR is the FUNCTION_DECL node.
6049 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6050 the function's parameters, which must be run at any return statement. */
6053 expand_function_start (subr
, parms_have_cleanups
)
6055 int parms_have_cleanups
;
6058 rtx last_ptr
= NULL_RTX
;
6060 /* Make sure volatile mem refs aren't considered
6061 valid operands of arithmetic insns. */
6062 init_recog_no_volatile ();
6064 /* Set this before generating any memory accesses. */
6065 current_function_check_memory_usage
6066 = (flag_check_memory_usage
6067 && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl
));
6069 current_function_instrument_entry_exit
6070 = (flag_instrument_function_entry_exit
6071 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr
));
6073 current_function_limit_stack
6074 = (stack_limit_rtx
!= NULL_RTX
&& ! DECL_NO_LIMIT_STACK (subr
));
6076 /* If function gets a static chain arg, store it in the stack frame.
6077 Do this first, so it gets the first stack slot offset. */
6078 if (current_function_needs_context
)
6080 last_ptr
= assign_stack_local (Pmode
, GET_MODE_SIZE (Pmode
), 0);
6082 /* Delay copying static chain if it is not a register to avoid
6083 conflicts with regs used for parameters. */
6084 if (! SMALL_REGISTER_CLASSES
6085 || GET_CODE (static_chain_incoming_rtx
) == REG
)
6086 emit_move_insn (last_ptr
, static_chain_incoming_rtx
);
6089 /* If the parameters of this function need cleaning up, get a label
6090 for the beginning of the code which executes those cleanups. This must
6091 be done before doing anything with return_label. */
6092 if (parms_have_cleanups
)
6093 cleanup_label
= gen_label_rtx ();
6097 /* Make the label for return statements to jump to, if this machine
6098 does not have a one-instruction return and uses an epilogue,
6099 or if it returns a structure, or if it has parm cleanups. */
6101 if (cleanup_label
== 0 && HAVE_return
6102 && ! current_function_instrument_entry_exit
6103 && ! current_function_returns_pcc_struct
6104 && ! (current_function_returns_struct
&& ! optimize
))
6107 return_label
= gen_label_rtx ();
6109 return_label
= gen_label_rtx ();
6112 /* Initialize rtx used to return the value. */
6113 /* Do this before assign_parms so that we copy the struct value address
6114 before any library calls that assign parms might generate. */
6116 /* Decide whether to return the value in memory or in a register. */
6117 if (aggregate_value_p (DECL_RESULT (subr
)))
6119 /* Returning something that won't go in a register. */
6120 register rtx value_address
= 0;
6122 #ifdef PCC_STATIC_STRUCT_RETURN
6123 if (current_function_returns_pcc_struct
)
6125 int size
= int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr
)));
6126 value_address
= assemble_static_space (size
);
6131 /* Expect to be passed the address of a place to store the value.
6132 If it is passed as an argument, assign_parms will take care of
6134 if (struct_value_incoming_rtx
)
6136 value_address
= gen_reg_rtx (Pmode
);
6137 emit_move_insn (value_address
, struct_value_incoming_rtx
);
6142 DECL_RTL (DECL_RESULT (subr
))
6143 = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr
)), value_address
);
6144 set_mem_attributes (DECL_RTL (DECL_RESULT (subr
)),
6145 DECL_RESULT (subr
), 1);
6148 else if (DECL_MODE (DECL_RESULT (subr
)) == VOIDmode
)
6149 /* If return mode is void, this decl rtl should not be used. */
6150 DECL_RTL (DECL_RESULT (subr
)) = 0;
6151 else if (parms_have_cleanups
|| current_function_instrument_entry_exit
)
6153 /* If function will end with cleanup code for parms,
6154 compute the return values into a pseudo reg,
6155 which we will copy into the true return register
6156 after the cleanups are done. */
6158 enum machine_mode mode
= DECL_MODE (DECL_RESULT (subr
));
6160 #ifdef PROMOTE_FUNCTION_RETURN
6161 tree type
= TREE_TYPE (DECL_RESULT (subr
));
6162 int unsignedp
= TREE_UNSIGNED (type
);
6164 mode
= promote_mode (type
, mode
, &unsignedp
, 1);
6167 DECL_RTL (DECL_RESULT (subr
)) = gen_reg_rtx (mode
);
6170 /* Scalar, returned in a register. */
6172 DECL_RTL (DECL_RESULT (subr
))
6173 = hard_function_value (TREE_TYPE (DECL_RESULT (subr
)), subr
, 1);
6175 /* Mark this reg as the function's return value. */
6176 if (GET_CODE (DECL_RTL (DECL_RESULT (subr
))) == REG
)
6178 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr
))) = 1;
6179 /* Needed because we may need to move this to memory
6180 in case it's a named return value whose address is taken. */
6181 DECL_REGISTER (DECL_RESULT (subr
)) = 1;
6185 /* Initialize rtx for parameters and local variables.
6186 In some cases this requires emitting insns. */
6188 assign_parms (subr
);
6190 /* Copy the static chain now if it wasn't a register. The delay is to
6191 avoid conflicts with the parameter passing registers. */
6193 if (SMALL_REGISTER_CLASSES
&& current_function_needs_context
)
6194 if (GET_CODE (static_chain_incoming_rtx
) != REG
)
6195 emit_move_insn (last_ptr
, static_chain_incoming_rtx
);
6197 /* The following was moved from init_function_start.
6198 The move is supposed to make sdb output more accurate. */
6199 /* Indicate the beginning of the function body,
6200 as opposed to parm setup. */
6201 emit_note (NULL_PTR
, NOTE_INSN_FUNCTION_BEG
);
6203 if (GET_CODE (get_last_insn ()) != NOTE
)
6204 emit_note (NULL_PTR
, NOTE_INSN_DELETED
);
6205 parm_birth_insn
= get_last_insn ();
6207 context_display
= 0;
6208 if (current_function_needs_context
)
6210 /* Fetch static chain values for containing functions. */
6211 tem
= decl_function_context (current_function_decl
);
6212 /* Copy the static chain pointer into a pseudo. If we have
6213 small register classes, copy the value from memory if
6214 static_chain_incoming_rtx is a REG. */
6217 /* If the static chain originally came in a register, put it back
6218 there, then move it out in the next insn. The reason for
6219 this peculiar code is to satisfy function integration. */
6220 if (SMALL_REGISTER_CLASSES
6221 && GET_CODE (static_chain_incoming_rtx
) == REG
)
6222 emit_move_insn (static_chain_incoming_rtx
, last_ptr
);
6223 last_ptr
= copy_to_reg (static_chain_incoming_rtx
);
6228 tree rtlexp
= make_node (RTL_EXPR
);
6230 RTL_EXPR_RTL (rtlexp
) = last_ptr
;
6231 context_display
= tree_cons (tem
, rtlexp
, context_display
);
6232 tem
= decl_function_context (tem
);
6235 /* Chain thru stack frames, assuming pointer to next lexical frame
6236 is found at the place we always store it. */
6237 #ifdef FRAME_GROWS_DOWNWARD
6238 last_ptr
= plus_constant (last_ptr
, -GET_MODE_SIZE (Pmode
));
6240 last_ptr
= gen_rtx_MEM (Pmode
, memory_address (Pmode
, last_ptr
));
6241 MEM_ALIAS_SET (last_ptr
) = get_frame_alias_set ();
6242 last_ptr
= copy_to_reg (last_ptr
);
6244 /* If we are not optimizing, ensure that we know that this
6245 piece of context is live over the entire function. */
6247 save_expr_regs
= gen_rtx_EXPR_LIST (VOIDmode
, last_ptr
,
6252 if (current_function_instrument_entry_exit
)
6254 rtx fun
= DECL_RTL (current_function_decl
);
6255 if (GET_CODE (fun
) == MEM
)
6256 fun
= XEXP (fun
, 0);
6259 emit_library_call (profile_function_entry_libfunc
, 0, VOIDmode
, 2,
6261 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS
,
6263 hard_frame_pointer_rtx
),
6267 /* After the display initializations is where the tail-recursion label
6268 should go, if we end up needing one. Ensure we have a NOTE here
6269 since some things (like trampolines) get placed before this. */
6270 tail_recursion_reentry
= emit_note (NULL_PTR
, NOTE_INSN_DELETED
);
6272 /* Evaluate now the sizes of any types declared among the arguments. */
6273 for (tem
= nreverse (get_pending_sizes ()); tem
; tem
= TREE_CHAIN (tem
))
6275 expand_expr (TREE_VALUE (tem
), const0_rtx
, VOIDmode
,
6276 EXPAND_MEMORY_USE_BAD
);
6277 /* Flush the queue in case this parameter declaration has
6282 /* Make sure there is a line number after the function entry setup code. */
6283 force_next_line_note ();
6286 /* Undo the effects of init_dummy_function_start. */
6288 expand_dummy_function_end ()
6290 /* End any sequences that failed to be closed due to syntax errors. */
6291 while (in_sequence_p ())
6294 /* Outside function body, can't compute type's actual size
6295 until next function's body starts. */
6297 free_after_parsing (cfun
);
6298 free_after_compilation (cfun
);
6303 /* Call DOIT for each hard register used as a return value from
6304 the current function. */
6307 diddle_return_value (doit
, arg
)
6308 void (*doit
) PARAMS ((rtx
, void *));
6311 rtx outgoing
= current_function_return_rtx
;
6317 pcc
= (current_function_returns_struct
6318 || current_function_returns_pcc_struct
);
6320 if ((GET_CODE (outgoing
) == REG
6321 && REGNO (outgoing
) >= FIRST_PSEUDO_REGISTER
)
6324 tree type
= TREE_TYPE (DECL_RESULT (current_function_decl
));
6326 /* A PCC-style return returns a pointer to the memory in which
6327 the structure is stored. */
6329 type
= build_pointer_type (type
);
6331 #ifdef FUNCTION_OUTGOING_VALUE
6332 outgoing
= FUNCTION_OUTGOING_VALUE (type
, current_function_decl
);
6334 outgoing
= FUNCTION_VALUE (type
, current_function_decl
);
6336 /* If this is a BLKmode structure being returned in registers, then use
6337 the mode computed in expand_return. */
6338 if (GET_MODE (outgoing
) == BLKmode
)
6340 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl
))));
6341 REG_FUNCTION_VALUE_P (outgoing
) = 1;
6344 if (GET_CODE (outgoing
) == REG
)
6345 (*doit
) (outgoing
, arg
);
6346 else if (GET_CODE (outgoing
) == PARALLEL
)
6350 for (i
= 0; i
< XVECLEN (outgoing
, 0); i
++)
6352 rtx x
= XEXP (XVECEXP (outgoing
, 0, i
), 0);
6354 if (GET_CODE (x
) == REG
&& REGNO (x
) < FIRST_PSEUDO_REGISTER
)
6361 do_clobber_return_reg (reg
, arg
)
6363 void *arg ATTRIBUTE_UNUSED
;
6365 emit_insn (gen_rtx_CLOBBER (VOIDmode
, reg
));
6369 clobber_return_register ()
6371 diddle_return_value (do_clobber_return_reg
, NULL
);
6375 do_use_return_reg (reg
, arg
)
6377 void *arg ATTRIBUTE_UNUSED
;
6379 emit_insn (gen_rtx_USE (VOIDmode
, reg
));
6383 use_return_register ()
6385 diddle_return_value (do_use_return_reg
, NULL
);
6388 /* Generate RTL for the end of the current function.
6389 FILENAME and LINE are the current position in the source file.
6391 It is up to language-specific callers to do cleanups for parameters--
6392 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6395 expand_function_end (filename
, line
, end_bindings
)
6396 const char *filename
;
6402 #ifdef TRAMPOLINE_TEMPLATE
6403 static rtx initial_trampoline
;
6406 finish_expr_for_function ();
6408 #ifdef NON_SAVING_SETJMP
6409 /* Don't put any variables in registers if we call setjmp
6410 on a machine that fails to restore the registers. */
6411 if (NON_SAVING_SETJMP
&& current_function_calls_setjmp
)
6413 if (DECL_INITIAL (current_function_decl
) != error_mark_node
)
6414 setjmp_protect (DECL_INITIAL (current_function_decl
));
6416 setjmp_protect_args ();
6420 /* Save the argument pointer if a save area was made for it. */
6421 if (arg_pointer_save_area
)
6423 /* arg_pointer_save_area may not be a valid memory address, so we
6424 have to check it and fix it if necessary. */
6427 emit_move_insn (validize_mem (arg_pointer_save_area
),
6428 virtual_incoming_args_rtx
);
6429 seq
= gen_sequence ();
6431 emit_insn_before (seq
, tail_recursion_reentry
);
6434 /* Initialize any trampolines required by this function. */
6435 for (link
= trampoline_list
; link
; link
= TREE_CHAIN (link
))
6437 tree function
= TREE_PURPOSE (link
);
6438 rtx context ATTRIBUTE_UNUSED
= lookup_static_chain (function
);
6439 rtx tramp
= RTL_EXPR_RTL (TREE_VALUE (link
));
6440 #ifdef TRAMPOLINE_TEMPLATE
6445 #ifdef TRAMPOLINE_TEMPLATE
6446 /* First make sure this compilation has a template for
6447 initializing trampolines. */
6448 if (initial_trampoline
== 0)
6450 end_temporary_allocation ();
6452 = gen_rtx_MEM (BLKmode
, assemble_trampoline_template ());
6453 resume_temporary_allocation ();
6455 ggc_add_rtx_root (&initial_trampoline
, 1);
6459 /* Generate insns to initialize the trampoline. */
6461 tramp
= round_trampoline_addr (XEXP (tramp
, 0));
6462 #ifdef TRAMPOLINE_TEMPLATE
6463 blktramp
= change_address (initial_trampoline
, BLKmode
, tramp
);
6464 emit_block_move (blktramp
, initial_trampoline
,
6465 GEN_INT (TRAMPOLINE_SIZE
),
6466 TRAMPOLINE_ALIGNMENT
);
6468 INITIALIZE_TRAMPOLINE (tramp
, XEXP (DECL_RTL (function
), 0), context
);
6472 /* Put those insns at entry to the containing function (this one). */
6473 emit_insns_before (seq
, tail_recursion_reentry
);
6476 /* If we are doing stack checking and this function makes calls,
6477 do a stack probe at the start of the function to ensure we have enough
6478 space for another stack frame. */
6479 if (flag_stack_check
&& ! STACK_CHECK_BUILTIN
)
6483 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
6484 if (GET_CODE (insn
) == CALL_INSN
)
6487 probe_stack_range (STACK_CHECK_PROTECT
,
6488 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE
));
6491 emit_insns_before (seq
, tail_recursion_reentry
);
6496 /* Warn about unused parms if extra warnings were specified. */
6497 /* Either ``-W -Wunused'' or ``-Wunused-parameter'' enables this
6498 warning. WARN_UNUSED_PARAMETER is negative when set by
6500 if (warn_unused_parameter
> 0
6501 || (warn_unused_parameter
< 0 && extra_warnings
))
6505 for (decl
= DECL_ARGUMENTS (current_function_decl
);
6506 decl
; decl
= TREE_CHAIN (decl
))
6507 if (! TREE_USED (decl
) && TREE_CODE (decl
) == PARM_DECL
6508 && DECL_NAME (decl
) && ! DECL_ARTIFICIAL (decl
))
6509 warning_with_decl (decl
, "unused parameter `%s'");
6512 /* Delete handlers for nonlocal gotos if nothing uses them. */
6513 if (nonlocal_goto_handler_slots
!= 0
6514 && ! current_function_has_nonlocal_label
)
6517 /* End any sequences that failed to be closed due to syntax errors. */
6518 while (in_sequence_p ())
6521 /* Outside function body, can't compute type's actual size
6522 until next function's body starts. */
6523 immediate_size_expand
--;
6525 clear_pending_stack_adjust ();
6526 do_pending_stack_adjust ();
6528 /* Mark the end of the function body.
6529 If control reaches this insn, the function can drop through
6530 without returning a value. */
6531 emit_note (NULL_PTR
, NOTE_INSN_FUNCTION_END
);
6533 /* Must mark the last line number note in the function, so that the test
6534 coverage code can avoid counting the last line twice. This just tells
6535 the code to ignore the immediately following line note, since there
6536 already exists a copy of this note somewhere above. This line number
6537 note is still needed for debugging though, so we can't delete it. */
6538 if (flag_test_coverage
)
6539 emit_note (NULL_PTR
, NOTE_INSN_REPEATED_LINE_NUMBER
);
6541 /* Output a linenumber for the end of the function.
6542 SDB depends on this. */
6543 emit_line_note_force (filename
, line
);
6545 /* Output the label for the actual return from the function,
6546 if one is expected. This happens either because a function epilogue
6547 is used instead of a return instruction, or because a return was done
6548 with a goto in order to run local cleanups, or because of pcc-style
6549 structure returning. */
6553 /* Before the return label, clobber the return registers so that
6554 they are not propogated live to the rest of the function. This
6555 can only happen with functions that drop through; if there had
6556 been a return statement, there would have either been a return
6557 rtx, or a jump to the return label. */
6558 clobber_return_register ();
6560 emit_label (return_label
);
6563 /* C++ uses this. */
6565 expand_end_bindings (0, 0, 0);
6567 /* Now handle any leftover exception regions that may have been
6568 created for the parameters. */
6570 rtx last
= get_last_insn ();
6573 expand_leftover_cleanups ();
6575 /* If there are any catch_clauses remaining, output them now. */
6576 emit_insns (catch_clauses
);
6577 catch_clauses
= catch_clauses_last
= NULL_RTX
;
6578 /* If the above emitted any code, may sure we jump around it. */
6579 if (last
!= get_last_insn ())
6581 label
= gen_label_rtx ();
6582 last
= emit_jump_insn_after (gen_jump (label
), last
);
6583 last
= emit_barrier_after (last
);
6588 if (current_function_instrument_entry_exit
)
6590 rtx fun
= DECL_RTL (current_function_decl
);
6591 if (GET_CODE (fun
) == MEM
)
6592 fun
= XEXP (fun
, 0);
6595 emit_library_call (profile_function_exit_libfunc
, 0, VOIDmode
, 2,
6597 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS
,
6599 hard_frame_pointer_rtx
),
6603 /* If we had calls to alloca, and this machine needs
6604 an accurate stack pointer to exit the function,
6605 insert some code to save and restore the stack pointer. */
6606 #ifdef EXIT_IGNORE_STACK
6607 if (! EXIT_IGNORE_STACK
)
6609 if (current_function_calls_alloca
)
6613 emit_stack_save (SAVE_FUNCTION
, &tem
, parm_birth_insn
);
6614 emit_stack_restore (SAVE_FUNCTION
, tem
, NULL_RTX
);
6617 /* If scalar return value was computed in a pseudo-reg,
6618 copy that to the hard return register. */
6619 if (DECL_RTL (DECL_RESULT (current_function_decl
)) != 0
6620 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl
))) == REG
6621 && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl
)))
6622 >= FIRST_PSEUDO_REGISTER
))
6624 rtx real_decl_result
;
6626 #ifdef FUNCTION_OUTGOING_VALUE
6628 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl
)),
6629 current_function_decl
);
6632 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl
)),
6633 current_function_decl
);
6635 REG_FUNCTION_VALUE_P (real_decl_result
) = 1;
6636 /* If this is a BLKmode structure being returned in registers, then use
6637 the mode computed in expand_return. */
6638 if (GET_MODE (real_decl_result
) == BLKmode
)
6639 PUT_MODE (real_decl_result
,
6640 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl
))));
6641 emit_move_insn (real_decl_result
,
6642 DECL_RTL (DECL_RESULT (current_function_decl
)));
6644 /* The delay slot scheduler assumes that current_function_return_rtx
6645 holds the hard register containing the return value, not a temporary
6647 current_function_return_rtx
= real_decl_result
;
6650 /* If returning a structure, arrange to return the address of the value
6651 in a place where debuggers expect to find it.
6653 If returning a structure PCC style,
6654 the caller also depends on this value.
6655 And current_function_returns_pcc_struct is not necessarily set. */
6656 if (current_function_returns_struct
6657 || current_function_returns_pcc_struct
)
6660 XEXP (DECL_RTL (DECL_RESULT (current_function_decl
)), 0);
6661 tree type
= TREE_TYPE (DECL_RESULT (current_function_decl
));
6662 #ifdef FUNCTION_OUTGOING_VALUE
6664 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type
),
6665 current_function_decl
);
6668 = FUNCTION_VALUE (build_pointer_type (type
),
6669 current_function_decl
);
6672 /* Mark this as a function return value so integrate will delete the
6673 assignment and USE below when inlining this function. */
6674 REG_FUNCTION_VALUE_P (outgoing
) = 1;
6676 emit_move_insn (outgoing
, value_address
);
6679 /* ??? This should no longer be necessary since stupid is no longer with
6680 us, but there are some parts of the compiler (eg reload_combine, and
6681 sh mach_dep_reorg) that still try and compute their own lifetime info
6682 instead of using the general framework. */
6683 use_return_register ();
6685 /* If this is an implementation of __throw, do what's necessary to
6686 communicate between __builtin_eh_return and the epilogue. */
6687 expand_eh_return ();
6689 /* Output a return insn if we are using one.
6690 Otherwise, let the rtl chain end here, to drop through
6691 into the epilogue. */
6696 emit_jump_insn (gen_return ());
6701 /* Fix up any gotos that jumped out to the outermost
6702 binding level of the function.
6703 Must follow emitting RETURN_LABEL. */
6705 /* If you have any cleanups to do at this point,
6706 and they need to create temporary variables,
6707 then you will lose. */
6708 expand_fixups (get_insns ());
6711 /* Extend a vector that records the INSN_UIDs of INSNS (either a
6712 sequence or a single insn). */
6715 record_insns (insns
, vecp
)
6719 if (GET_CODE (insns
) == SEQUENCE
)
6721 int len
= XVECLEN (insns
, 0);
6722 int i
= VARRAY_SIZE (*vecp
);
6724 VARRAY_GROW (*vecp
, i
+ len
);
6727 VARRAY_INT (*vecp
, i
) = INSN_UID (XVECEXP (insns
, 0, len
));
6733 int i
= VARRAY_SIZE (*vecp
);
6734 VARRAY_GROW (*vecp
, i
+ 1);
6735 VARRAY_INT (*vecp
, i
) = INSN_UID (insns
);
6739 /* Determine how many INSN_UIDs in VEC are part of INSN. */
6742 contains (insn
, vec
)
6748 if (GET_CODE (insn
) == INSN
6749 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
6752 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
6753 for (j
= VARRAY_SIZE (vec
) - 1; j
>= 0; --j
)
6754 if (INSN_UID (XVECEXP (PATTERN (insn
), 0, i
)) == VARRAY_INT (vec
, j
))
6760 for (j
= VARRAY_SIZE (vec
) - 1; j
>= 0; --j
)
6761 if (INSN_UID (insn
) == VARRAY_INT (vec
, j
))
6768 prologue_epilogue_contains (insn
)
6771 if (contains (insn
, prologue
))
6773 if (contains (insn
, epilogue
))
6779 sibcall_epilogue_contains (insn
)
6782 if (sibcall_epilogue
)
6783 return contains (insn
, sibcall_epilogue
);
6788 /* Insert gen_return at the end of block BB. This also means updating
6789 block_for_insn appropriately. */
6792 emit_return_into_block (bb
, line_note
)
6798 p
= NEXT_INSN (bb
->end
);
6799 end
= emit_jump_insn_after (gen_return (), bb
->end
);
6801 emit_line_note_after (NOTE_SOURCE_FILE (line_note
),
6802 NOTE_LINE_NUMBER (line_note
), bb
->end
);
6806 set_block_for_insn (p
, bb
);
6813 #endif /* HAVE_return */
6815 #ifdef HAVE_epilogue
6817 /* Modify SEQ, a SEQUENCE that is part of the epilogue, to no modifications
6818 to the stack pointer. */
6821 keep_stack_depressed (seq
)
6825 rtx sp_from_reg
= 0;
6826 int sp_modified_unknown
= 0;
6828 /* If the epilogue is just a single instruction, it's OK as is */
6830 if (GET_CODE (seq
) != SEQUENCE
) return;
6832 /* Scan all insns in SEQ looking for ones that modified the stack
6833 pointer. Record if it modified the stack pointer by copying it
6834 from the frame pointer or if it modified it in some other way.
6835 Then modify any subsequent stack pointer references to take that
6836 into account. We start by only allowing SP to be copied from a
6837 register (presumably FP) and then be subsequently referenced. */
6839 for (i
= 0; i
< XVECLEN (seq
, 0); i
++)
6841 rtx insn
= XVECEXP (seq
, 0, i
);
6843 if (GET_RTX_CLASS (GET_CODE (insn
)) != 'i')
6846 if (reg_set_p (stack_pointer_rtx
, insn
))
6848 rtx set
= single_set (insn
);
6850 /* If SP is set as a side-effect, we can't support this. */
6854 if (GET_CODE (SET_SRC (set
)) == REG
)
6855 sp_from_reg
= SET_SRC (set
);
6857 sp_modified_unknown
= 1;
6859 /* Don't allow the SP modification to happen. */
6860 PUT_CODE (insn
, NOTE
);
6861 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
6862 NOTE_SOURCE_FILE (insn
) = 0;
6864 else if (reg_referenced_p (stack_pointer_rtx
, PATTERN (insn
)))
6866 if (sp_modified_unknown
)
6869 else if (sp_from_reg
!= 0)
6871 = replace_rtx (PATTERN (insn
), stack_pointer_rtx
, sp_from_reg
);
6877 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
6878 this into place with notes indicating where the prologue ends and where
6879 the epilogue begins. Update the basic block information when possible. */
6882 thread_prologue_and_epilogue_insns (f
)
6883 rtx f ATTRIBUTE_UNUSED
;
6888 #ifdef HAVE_prologue
6889 rtx prologue_end
= NULL_RTX
;
6891 #if defined (HAVE_epilogue) || defined(HAVE_return)
6892 rtx epilogue_end
= NULL_RTX
;
6895 #ifdef HAVE_prologue
6899 seq
= gen_prologue ();
6902 /* Retain a map of the prologue insns. */
6903 if (GET_CODE (seq
) != SEQUENCE
)
6905 record_insns (seq
, &prologue
);
6906 prologue_end
= emit_note (NULL
, NOTE_INSN_PROLOGUE_END
);
6908 seq
= gen_sequence ();
6911 /* If optimization is off, and perhaps in an empty function,
6912 the entry block will have no successors. */
6913 if (ENTRY_BLOCK_PTR
->succ
)
6915 /* Can't deal with multiple successsors of the entry block. */
6916 if (ENTRY_BLOCK_PTR
->succ
->succ_next
)
6919 insert_insn_on_edge (seq
, ENTRY_BLOCK_PTR
->succ
);
6923 emit_insn_after (seq
, f
);
6927 /* If the exit block has no non-fake predecessors, we don't need
6929 for (e
= EXIT_BLOCK_PTR
->pred
; e
; e
= e
->pred_next
)
6930 if ((e
->flags
& EDGE_FAKE
) == 0)
6936 if (optimize
&& HAVE_return
)
6938 /* If we're allowed to generate a simple return instruction,
6939 then by definition we don't need a full epilogue. Examine
6940 the block that falls through to EXIT. If it does not
6941 contain any code, examine its predecessors and try to
6942 emit (conditional) return instructions. */
6948 for (e
= EXIT_BLOCK_PTR
->pred
; e
; e
= e
->pred_next
)
6949 if (e
->flags
& EDGE_FALLTHRU
)
6955 /* Verify that there are no active instructions in the last block. */
6957 while (label
&& GET_CODE (label
) != CODE_LABEL
)
6959 if (active_insn_p (label
))
6961 label
= PREV_INSN (label
);
6964 if (last
->head
== label
&& GET_CODE (label
) == CODE_LABEL
)
6966 rtx epilogue_line_note
= NULL_RTX
;
6968 /* Locate the line number associated with the closing brace,
6969 if we can find one. */
6970 for (seq
= get_last_insn ();
6971 seq
&& ! active_insn_p (seq
);
6972 seq
= PREV_INSN (seq
))
6973 if (GET_CODE (seq
) == NOTE
&& NOTE_LINE_NUMBER (seq
) > 0)
6975 epilogue_line_note
= seq
;
6979 for (e
= last
->pred
; e
; e
= e_next
)
6981 basic_block bb
= e
->src
;
6984 e_next
= e
->pred_next
;
6985 if (bb
== ENTRY_BLOCK_PTR
)
6989 if ((GET_CODE (jump
) != JUMP_INSN
) || JUMP_LABEL (jump
) != label
)
6992 /* If we have an unconditional jump, we can replace that
6993 with a simple return instruction. */
6994 if (simplejump_p (jump
))
6996 emit_return_into_block (bb
, epilogue_line_note
);
6997 flow_delete_insn (jump
);
7000 /* If we have a conditional jump, we can try to replace
7001 that with a conditional return instruction. */
7002 else if (condjump_p (jump
))
7006 ret
= SET_SRC (PATTERN (jump
));
7007 if (GET_CODE (XEXP (ret
, 1)) == LABEL_REF
)
7008 loc
= &XEXP (ret
, 1);
7010 loc
= &XEXP (ret
, 2);
7011 ret
= gen_rtx_RETURN (VOIDmode
);
7013 if (! validate_change (jump
, loc
, ret
, 0))
7015 if (JUMP_LABEL (jump
))
7016 LABEL_NUSES (JUMP_LABEL (jump
))--;
7018 /* If this block has only one successor, it both jumps
7019 and falls through to the fallthru block, so we can't
7021 if (bb
->succ
->succ_next
== NULL
)
7027 /* Fix up the CFG for the successful change we just made. */
7028 redirect_edge_succ (e
, EXIT_BLOCK_PTR
);
7031 /* Emit a return insn for the exit fallthru block. Whether
7032 this is still reachable will be determined later. */
7034 emit_barrier_after (last
->end
);
7035 emit_return_into_block (last
, epilogue_line_note
);
7036 epilogue_end
= last
->end
;
7041 #ifdef HAVE_epilogue
7044 /* Find the edge that falls through to EXIT. Other edges may exist
7045 due to RETURN instructions, but those don't need epilogues.
7046 There really shouldn't be a mixture -- either all should have
7047 been converted or none, however... */
7049 for (e
= EXIT_BLOCK_PTR
->pred
; e
; e
= e
->pred_next
)
7050 if (e
->flags
& EDGE_FALLTHRU
)
7056 epilogue_end
= emit_note (NULL
, NOTE_INSN_EPILOGUE_BEG
);
7058 seq
= gen_epilogue ();
7060 /* If this function returns with the stack depressed, massage
7061 the epilogue to actually do that. */
7062 if (TREE_CODE (TREE_TYPE (current_function_decl
)) == FUNCTION_TYPE
7063 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl
)))
7064 keep_stack_depressed (seq
);
7066 emit_jump_insn (seq
);
7068 /* Retain a map of the epilogue insns. */
7069 if (GET_CODE (seq
) != SEQUENCE
)
7071 record_insns (seq
, &epilogue
);
7073 seq
= gen_sequence ();
7076 insert_insn_on_edge (seq
, e
);
7083 commit_edge_insertions ();
7085 #ifdef HAVE_sibcall_epilogue
7086 /* Emit sibling epilogues before any sibling call sites. */
7087 for (e
= EXIT_BLOCK_PTR
->pred
; e
; e
= e
->pred_next
)
7089 basic_block bb
= e
->src
;
7094 if (GET_CODE (insn
) != CALL_INSN
7095 || ! SIBLING_CALL_P (insn
))
7099 seq
= gen_sibcall_epilogue ();
7102 i
= PREV_INSN (insn
);
7103 newinsn
= emit_insn_before (seq
, insn
);
7105 /* Update the UID to basic block map. */
7106 for (i
= NEXT_INSN (i
); i
!= insn
; i
= NEXT_INSN (i
))
7107 set_block_for_insn (i
, bb
);
7109 /* Retain a map of the epilogue insns. Used in life analysis to
7110 avoid getting rid of sibcall epilogue insns. */
7111 record_insns (GET_CODE (seq
) == SEQUENCE
7112 ? seq
: newinsn
, &sibcall_epilogue
);
7116 #ifdef HAVE_prologue
7121 /* GDB handles `break f' by setting a breakpoint on the first
7122 line note after the prologue. Which means (1) that if
7123 there are line number notes before where we inserted the
7124 prologue we should move them, and (2) we should generate a
7125 note before the end of the first basic block, if there isn't
7126 one already there. */
7128 for (insn
= prologue_end
; insn
; insn
= prev
)
7130 prev
= PREV_INSN (insn
);
7131 if (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) > 0)
7133 /* Note that we cannot reorder the first insn in the
7134 chain, since rest_of_compilation relies on that
7135 remaining constant. */
7138 reorder_insns (insn
, insn
, prologue_end
);
7142 /* Find the last line number note in the first block. */
7143 for (insn
= BASIC_BLOCK (0)->end
;
7144 insn
!= prologue_end
;
7145 insn
= PREV_INSN (insn
))
7146 if (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) > 0)
7149 /* If we didn't find one, make a copy of the first line number
7153 for (insn
= next_active_insn (prologue_end
);
7155 insn
= PREV_INSN (insn
))
7156 if (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) > 0)
7158 emit_line_note_after (NOTE_SOURCE_FILE (insn
),
7159 NOTE_LINE_NUMBER (insn
),
7166 #ifdef HAVE_epilogue
7171 /* Similarly, move any line notes that appear after the epilogue.
7172 There is no need, however, to be quite so anal about the existance
7174 for (insn
= epilogue_end
; insn
; insn
= next
)
7176 next
= NEXT_INSN (insn
);
7177 if (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) > 0)
7178 reorder_insns (insn
, insn
, PREV_INSN (epilogue_end
));
7184 /* Reposition the prologue-end and epilogue-begin notes after instruction
7185 scheduling and delayed branch scheduling. */
7188 reposition_prologue_and_epilogue_notes (f
)
7189 rtx f ATTRIBUTE_UNUSED
;
7191 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7194 if ((len
= VARRAY_SIZE (prologue
)) > 0)
7196 register rtx insn
, note
= 0;
7198 /* Scan from the beginning until we reach the last prologue insn.
7199 We apparently can't depend on basic_block_{head,end} after
7201 for (insn
= f
; len
&& insn
; insn
= NEXT_INSN (insn
))
7203 if (GET_CODE (insn
) == NOTE
)
7205 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_PROLOGUE_END
)
7208 else if ((len
-= contains (insn
, prologue
)) == 0)
7211 /* Find the prologue-end note if we haven't already, and
7212 move it to just after the last prologue insn. */
7215 for (note
= insn
; (note
= NEXT_INSN (note
));)
7216 if (GET_CODE (note
) == NOTE
7217 && NOTE_LINE_NUMBER (note
) == NOTE_INSN_PROLOGUE_END
)
7221 next
= NEXT_INSN (note
);
7223 /* Whether or not we can depend on BLOCK_HEAD,
7224 attempt to keep it up-to-date. */
7225 if (BLOCK_HEAD (0) == note
)
7226 BLOCK_HEAD (0) = next
;
7229 add_insn_after (note
, insn
);
7234 if ((len
= VARRAY_SIZE (epilogue
)) > 0)
7236 register rtx insn
, note
= 0;
7238 /* Scan from the end until we reach the first epilogue insn.
7239 We apparently can't depend on basic_block_{head,end} after
7241 for (insn
= get_last_insn (); len
&& insn
; insn
= PREV_INSN (insn
))
7243 if (GET_CODE (insn
) == NOTE
)
7245 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_EPILOGUE_BEG
)
7248 else if ((len
-= contains (insn
, epilogue
)) == 0)
7250 /* Find the epilogue-begin note if we haven't already, and
7251 move it to just before the first epilogue insn. */
7254 for (note
= insn
; (note
= PREV_INSN (note
));)
7255 if (GET_CODE (note
) == NOTE
7256 && NOTE_LINE_NUMBER (note
) == NOTE_INSN_EPILOGUE_BEG
)
7260 /* Whether or not we can depend on BLOCK_HEAD,
7261 attempt to keep it up-to-date. */
7263 && BLOCK_HEAD (n_basic_blocks
-1) == insn
)
7264 BLOCK_HEAD (n_basic_blocks
-1) = note
;
7267 add_insn_before (note
, insn
);
7271 #endif /* HAVE_prologue or HAVE_epilogue */
7274 /* Mark T for GC. */
7278 struct temp_slot
*t
;
7282 ggc_mark_rtx (t
->slot
);
7283 ggc_mark_rtx (t
->address
);
7284 ggc_mark_tree (t
->rtl_expr
);
7290 /* Mark P for GC. */
7293 mark_function_status (p
)
7302 ggc_mark_rtx (p
->arg_offset_rtx
);
7304 if (p
->x_parm_reg_stack_loc
)
7305 for (i
= p
->x_max_parm_reg
, r
= p
->x_parm_reg_stack_loc
;
7309 ggc_mark_rtx (p
->return_rtx
);
7310 ggc_mark_rtx (p
->x_cleanup_label
);
7311 ggc_mark_rtx (p
->x_return_label
);
7312 ggc_mark_rtx (p
->x_save_expr_regs
);
7313 ggc_mark_rtx (p
->x_stack_slot_list
);
7314 ggc_mark_rtx (p
->x_parm_birth_insn
);
7315 ggc_mark_rtx (p
->x_tail_recursion_label
);
7316 ggc_mark_rtx (p
->x_tail_recursion_reentry
);
7317 ggc_mark_rtx (p
->internal_arg_pointer
);
7318 ggc_mark_rtx (p
->x_arg_pointer_save_area
);
7319 ggc_mark_tree (p
->x_rtl_expr_chain
);
7320 ggc_mark_rtx (p
->x_last_parm_insn
);
7321 ggc_mark_tree (p
->x_context_display
);
7322 ggc_mark_tree (p
->x_trampoline_list
);
7323 ggc_mark_rtx (p
->epilogue_delay_list
);
7325 mark_temp_slot (p
->x_temp_slots
);
7328 struct var_refs_queue
*q
= p
->fixup_var_refs_queue
;
7331 ggc_mark_rtx (q
->modified
);
7336 ggc_mark_rtx (p
->x_nonlocal_goto_handler_slots
);
7337 ggc_mark_rtx (p
->x_nonlocal_goto_handler_labels
);
7338 ggc_mark_rtx (p
->x_nonlocal_goto_stack_level
);
7339 ggc_mark_tree (p
->x_nonlocal_labels
);
7342 /* Mark the function chain ARG (which is really a struct function **)
7346 mark_function_chain (arg
)
7349 struct function
*f
= *(struct function
**) arg
;
7351 for (; f
; f
= f
->next_global
)
7353 ggc_mark_tree (f
->decl
);
7355 mark_function_status (f
);
7356 mark_eh_status (f
->eh
);
7357 mark_stmt_status (f
->stmt
);
7358 mark_expr_status (f
->expr
);
7359 mark_emit_status (f
->emit
);
7360 mark_varasm_status (f
->varasm
);
7362 if (mark_machine_status
)
7363 (*mark_machine_status
) (f
);
7364 if (mark_lang_status
)
7365 (*mark_lang_status
) (f
);
7367 if (f
->original_arg_vector
)
7368 ggc_mark_rtvec ((rtvec
) f
->original_arg_vector
);
7369 if (f
->original_decl_initial
)
7370 ggc_mark_tree (f
->original_decl_initial
);
7374 /* Called once, at initialization, to initialize function.c. */
7377 init_function_once ()
7379 ggc_add_root (&all_functions
, 1, sizeof all_functions
,
7380 mark_function_chain
);
7382 VARRAY_INT_INIT (prologue
, 0, "prologue");
7383 VARRAY_INT_INIT (epilogue
, 0, "epilogue");
7384 VARRAY_INT_INIT (sibcall_epilogue
, 0, "sibcall_epilogue");