]> gcc.gnu.org Git - gcc.git/blob - gcc/fortran/trans-types.c
* trans-types.c (gfc_init_types): Use wider buffer.
[gcc.git] / gcc / fortran / trans-types.c
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007 Free Software
3 Foundation, Inc.
4 Contributed by Paul Brook <paul@nowt.org>
5 and Steven Bosscher <s.bosscher@student.tudelft.nl>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* trans-types.c -- gfortran backend types */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tree.h"
29 #include "langhooks.h"
30 #include "tm.h"
31 #include "target.h"
32 #include "ggc.h"
33 #include "toplev.h"
34 #include "gfortran.h"
35 #include "trans.h"
36 #include "trans-types.h"
37 #include "trans-const.h"
38 #include "real.h"
39 #include "flags.h"
40 \f
41
42 #if (GFC_MAX_DIMENSIONS < 10)
43 #define GFC_RANK_DIGITS 1
44 #define GFC_RANK_PRINTF_FORMAT "%01d"
45 #elif (GFC_MAX_DIMENSIONS < 100)
46 #define GFC_RANK_DIGITS 2
47 #define GFC_RANK_PRINTF_FORMAT "%02d"
48 #else
49 #error If you really need >99 dimensions, continue the sequence above...
50 #endif
51
52 /* array of structs so we don't have to worry about xmalloc or free */
53 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
54
55 static tree gfc_get_derived_type (gfc_symbol * derived);
56
57 tree gfc_array_index_type;
58 tree gfc_array_range_type;
59 tree gfc_character1_type_node;
60 tree pvoid_type_node;
61 tree ppvoid_type_node;
62 tree pchar_type_node;
63 tree pfunc_type_node;
64
65 tree gfc_charlen_type_node;
66
67 static GTY(()) tree gfc_desc_dim_type;
68 static GTY(()) tree gfc_max_array_element_size;
69 static GTY(()) tree gfc_array_descriptor_base[GFC_MAX_DIMENSIONS];
70
71 /* Arrays for all integral and real kinds. We'll fill this in at runtime
72 after the target has a chance to process command-line options. */
73
74 #define MAX_INT_KINDS 5
75 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
76 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
77 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
78 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
79
80 #define MAX_REAL_KINDS 5
81 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
82 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
83 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
84
85
86 /* The integer kind to use for array indices. This will be set to the
87 proper value based on target information from the backend. */
88
89 int gfc_index_integer_kind;
90
91 /* The default kinds of the various types. */
92
93 int gfc_default_integer_kind;
94 int gfc_max_integer_kind;
95 int gfc_default_real_kind;
96 int gfc_default_double_kind;
97 int gfc_default_character_kind;
98 int gfc_default_logical_kind;
99 int gfc_default_complex_kind;
100 int gfc_c_int_kind;
101
102 /* The kind size used for record offsets. If the target system supports
103 kind=8, this will be set to 8, otherwise it is set to 4. */
104 int gfc_intio_kind;
105
106 /* The integer kind used to store character lengths. */
107 int gfc_charlen_int_kind;
108
109 /* The size of the numeric storage unit and character storage unit. */
110 int gfc_numeric_storage_size;
111 int gfc_character_storage_size;
112
113
114 /* Validate that the f90_type of the given gfc_typespec is valid for
115 the type it represents. The f90_type represents the Fortran types
116 this C kind can be used with. For example, c_int has a f90_type of
117 BT_INTEGER and c_float has a f90_type of BT_REAL. Returns FAILURE
118 if a mismatch occurs between ts->f90_type and ts->type; SUCCESS if
119 they match. */
120
121 try
122 gfc_validate_c_kind (gfc_typespec *ts)
123 {
124 return ((ts->type == ts->f90_type) ? SUCCESS : FAILURE);
125 }
126
127
128 try
129 gfc_check_any_c_kind (gfc_typespec *ts)
130 {
131 int i;
132
133 for (i = 0; i < ISOCBINDING_NUMBER; i++)
134 {
135 /* Check for any C interoperable kind for the given type/kind in ts.
136 This can be used after verify_c_interop to make sure that the
137 Fortran kind being used exists in at least some form for C. */
138 if (c_interop_kinds_table[i].f90_type == ts->type &&
139 c_interop_kinds_table[i].value == ts->kind)
140 return SUCCESS;
141 }
142
143 return FAILURE;
144 }
145
146
147 static int
148 get_real_kind_from_node (tree type)
149 {
150 int i;
151
152 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
153 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
154 return gfc_real_kinds[i].kind;
155
156 return -4;
157 }
158
159 static int
160 get_int_kind_from_node (tree type)
161 {
162 int i;
163
164 if (!type)
165 return -2;
166
167 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
168 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
169 return gfc_integer_kinds[i].kind;
170
171 return -1;
172 }
173
174 static int
175 get_int_kind_from_width (int size)
176 {
177 int i;
178
179 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
180 if (gfc_integer_kinds[i].bit_size == size)
181 return gfc_integer_kinds[i].kind;
182
183 return -2;
184 }
185
186 static int
187 get_int_kind_from_minimal_width (int size)
188 {
189 int i;
190
191 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
192 if (gfc_integer_kinds[i].bit_size >= size)
193 return gfc_integer_kinds[i].kind;
194
195 return -2;
196 }
197
198
199 /* Generate the CInteropKind_t objects for the C interoperable
200 kinds. */
201
202 static
203 void init_c_interop_kinds (void)
204 {
205 int i;
206 tree intmax_type_node = INT_TYPE_SIZE == LONG_LONG_TYPE_SIZE ?
207 integer_type_node :
208 (LONG_TYPE_SIZE == LONG_LONG_TYPE_SIZE ?
209 long_integer_type_node :
210 long_long_integer_type_node);
211
212 /* init all pointers in the list to NULL */
213 for (i = 0; i < ISOCBINDING_NUMBER; i++)
214 {
215 /* Initialize the name and value fields. */
216 c_interop_kinds_table[i].name[0] = '\0';
217 c_interop_kinds_table[i].value = -100;
218 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
219 }
220
221 #define NAMED_INTCST(a,b,c) \
222 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
223 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
224 c_interop_kinds_table[a].value = c;
225 #define NAMED_REALCST(a,b,c) \
226 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
227 c_interop_kinds_table[a].f90_type = BT_REAL; \
228 c_interop_kinds_table[a].value = c;
229 #define NAMED_CMPXCST(a,b,c) \
230 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
231 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
232 c_interop_kinds_table[a].value = c;
233 #define NAMED_LOGCST(a,b,c) \
234 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
235 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
236 c_interop_kinds_table[a].value = c;
237 #define NAMED_CHARKNDCST(a,b,c) \
238 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
239 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
240 c_interop_kinds_table[a].value = c;
241 #define NAMED_CHARCST(a,b,c) \
242 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
243 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
244 c_interop_kinds_table[a].value = c;
245 #define DERIVED_TYPE(a,b,c) \
246 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
247 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
248 c_interop_kinds_table[a].value = c;
249 #define PROCEDURE(a,b) \
250 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
251 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
252 c_interop_kinds_table[a].value = 0;
253 #include "iso-c-binding.def"
254 }
255
256
257 /* Query the target to determine which machine modes are available for
258 computation. Choose KIND numbers for them. */
259
260 void
261 gfc_init_kinds (void)
262 {
263 enum machine_mode mode;
264 int i_index, r_index;
265 bool saw_i4 = false, saw_i8 = false;
266 bool saw_r4 = false, saw_r8 = false, saw_r16 = false;
267
268 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
269 {
270 int kind, bitsize;
271
272 if (!targetm.scalar_mode_supported_p (mode))
273 continue;
274
275 /* The middle end doesn't support constants larger than 2*HWI.
276 Perhaps the target hook shouldn't have accepted these either,
277 but just to be safe... */
278 bitsize = GET_MODE_BITSIZE (mode);
279 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
280 continue;
281
282 gcc_assert (i_index != MAX_INT_KINDS);
283
284 /* Let the kind equal the bit size divided by 8. This insulates the
285 programmer from the underlying byte size. */
286 kind = bitsize / 8;
287
288 if (kind == 4)
289 saw_i4 = true;
290 if (kind == 8)
291 saw_i8 = true;
292
293 gfc_integer_kinds[i_index].kind = kind;
294 gfc_integer_kinds[i_index].radix = 2;
295 gfc_integer_kinds[i_index].digits = bitsize - 1;
296 gfc_integer_kinds[i_index].bit_size = bitsize;
297
298 gfc_logical_kinds[i_index].kind = kind;
299 gfc_logical_kinds[i_index].bit_size = bitsize;
300
301 i_index += 1;
302 }
303
304 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
305 used for large file access. */
306
307 if (saw_i8)
308 gfc_intio_kind = 8;
309 else
310 gfc_intio_kind = 4;
311
312 /* If we do not at least have kind = 4, everything is pointless. */
313 gcc_assert(saw_i4);
314
315 /* Set the maximum integer kind. Used with at least BOZ constants. */
316 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
317
318 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
319 {
320 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
321 int kind;
322
323 if (fmt == NULL)
324 continue;
325 if (!targetm.scalar_mode_supported_p (mode))
326 continue;
327
328 /* Only let float/double/long double go through because the fortran
329 library assumes these are the only floating point types. */
330
331 if (mode != TYPE_MODE (float_type_node)
332 && (mode != TYPE_MODE (double_type_node))
333 && (mode != TYPE_MODE (long_double_type_node)))
334 continue;
335
336 /* Let the kind equal the precision divided by 8, rounding up. Again,
337 this insulates the programmer from the underlying byte size.
338
339 Also, it effectively deals with IEEE extended formats. There, the
340 total size of the type may equal 16, but it's got 6 bytes of padding
341 and the increased size can get in the way of a real IEEE quad format
342 which may also be supported by the target.
343
344 We round up so as to handle IA-64 __floatreg (RFmode), which is an
345 82 bit type. Not to be confused with __float80 (XFmode), which is
346 an 80 bit type also supported by IA-64. So XFmode should come out
347 to be kind=10, and RFmode should come out to be kind=11. Egads. */
348
349 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
350
351 if (kind == 4)
352 saw_r4 = true;
353 if (kind == 8)
354 saw_r8 = true;
355 if (kind == 16)
356 saw_r16 = true;
357
358 /* Careful we don't stumble a wierd internal mode. */
359 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
360 /* Or have too many modes for the allocated space. */
361 gcc_assert (r_index != MAX_REAL_KINDS);
362
363 gfc_real_kinds[r_index].kind = kind;
364 gfc_real_kinds[r_index].radix = fmt->b;
365 gfc_real_kinds[r_index].digits = fmt->p;
366 gfc_real_kinds[r_index].min_exponent = fmt->emin;
367 gfc_real_kinds[r_index].max_exponent = fmt->emax;
368 if (fmt->pnan < fmt->p)
369 /* This is an IBM extended double format (or the MIPS variant)
370 made up of two IEEE doubles. The value of the long double is
371 the sum of the values of the two parts. The most significant
372 part is required to be the value of the long double rounded
373 to the nearest double. If we use emax of 1024 then we can't
374 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
375 rounding will make the most significant part overflow. */
376 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
377 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
378 r_index += 1;
379 }
380
381 /* Choose the default integer kind. We choose 4 unless the user
382 directs us otherwise. */
383 if (gfc_option.flag_default_integer)
384 {
385 if (!saw_i8)
386 fatal_error ("integer kind=8 not available for -fdefault-integer-8 option");
387 gfc_default_integer_kind = 8;
388
389 /* Even if the user specified that the default integer kind be 8,
390 the numerica storage size isn't 64. In this case, a warning will
391 be issued when NUMERIC_STORAGE_SIZE is used. */
392 gfc_numeric_storage_size = 4 * 8;
393 }
394 else if (saw_i4)
395 {
396 gfc_default_integer_kind = 4;
397 gfc_numeric_storage_size = 4 * 8;
398 }
399 else
400 {
401 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
402 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
403 }
404
405 /* Choose the default real kind. Again, we choose 4 when possible. */
406 if (gfc_option.flag_default_real)
407 {
408 if (!saw_r8)
409 fatal_error ("real kind=8 not available for -fdefault-real-8 option");
410 gfc_default_real_kind = 8;
411 }
412 else if (saw_r4)
413 gfc_default_real_kind = 4;
414 else
415 gfc_default_real_kind = gfc_real_kinds[0].kind;
416
417 /* Choose the default double kind. If -fdefault-real and -fdefault-double
418 are specified, we use kind=8, if it's available. If -fdefault-real is
419 specified without -fdefault-double, we use kind=16, if it's available.
420 Otherwise we do not change anything. */
421 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
422 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
423
424 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
425 gfc_default_double_kind = 8;
426 else if (gfc_option.flag_default_real && saw_r16)
427 gfc_default_double_kind = 16;
428 else if (saw_r4 && saw_r8)
429 gfc_default_double_kind = 8;
430 else
431 {
432 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
433 real ... occupies two contiguous numeric storage units.
434
435 Therefore we must be supplied a kind twice as large as we chose
436 for single precision. There are loopholes, in that double
437 precision must *occupy* two storage units, though it doesn't have
438 to *use* two storage units. Which means that you can make this
439 kind artificially wide by padding it. But at present there are
440 no GCC targets for which a two-word type does not exist, so we
441 just let gfc_validate_kind abort and tell us if something breaks. */
442
443 gfc_default_double_kind
444 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
445 }
446
447 /* The default logical kind is constrained to be the same as the
448 default integer kind. Similarly with complex and real. */
449 gfc_default_logical_kind = gfc_default_integer_kind;
450 gfc_default_complex_kind = gfc_default_real_kind;
451
452 /* Choose the smallest integer kind for our default character. */
453 gfc_default_character_kind = gfc_integer_kinds[0].kind;
454 gfc_character_storage_size = gfc_default_character_kind * 8;
455
456 /* Choose the integer kind the same size as "void*" for our index kind. */
457 gfc_index_integer_kind = POINTER_SIZE / 8;
458 /* Pick a kind the same size as the C "int" type. */
459 gfc_c_int_kind = INT_TYPE_SIZE / 8;
460
461 /* initialize the C interoperable kinds */
462 init_c_interop_kinds();
463 }
464
465 /* Make sure that a valid kind is present. Returns an index into the
466 associated kinds array, -1 if the kind is not present. */
467
468 static int
469 validate_integer (int kind)
470 {
471 int i;
472
473 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
474 if (gfc_integer_kinds[i].kind == kind)
475 return i;
476
477 return -1;
478 }
479
480 static int
481 validate_real (int kind)
482 {
483 int i;
484
485 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
486 if (gfc_real_kinds[i].kind == kind)
487 return i;
488
489 return -1;
490 }
491
492 static int
493 validate_logical (int kind)
494 {
495 int i;
496
497 for (i = 0; gfc_logical_kinds[i].kind; i++)
498 if (gfc_logical_kinds[i].kind == kind)
499 return i;
500
501 return -1;
502 }
503
504 static int
505 validate_character (int kind)
506 {
507 return kind == gfc_default_character_kind ? 0 : -1;
508 }
509
510 /* Validate a kind given a basic type. The return value is the same
511 for the child functions, with -1 indicating nonexistence of the
512 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
513
514 int
515 gfc_validate_kind (bt type, int kind, bool may_fail)
516 {
517 int rc;
518
519 switch (type)
520 {
521 case BT_REAL: /* Fall through */
522 case BT_COMPLEX:
523 rc = validate_real (kind);
524 break;
525 case BT_INTEGER:
526 rc = validate_integer (kind);
527 break;
528 case BT_LOGICAL:
529 rc = validate_logical (kind);
530 break;
531 case BT_CHARACTER:
532 rc = validate_character (kind);
533 break;
534
535 default:
536 gfc_internal_error ("gfc_validate_kind(): Got bad type");
537 }
538
539 if (rc < 0 && !may_fail)
540 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
541
542 return rc;
543 }
544
545
546 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
547 Reuse common type nodes where possible. Recognize if the kind matches up
548 with a C type. This will be used later in determining which routines may
549 be scarfed from libm. */
550
551 static tree
552 gfc_build_int_type (gfc_integer_info *info)
553 {
554 int mode_precision = info->bit_size;
555
556 if (mode_precision == CHAR_TYPE_SIZE)
557 info->c_char = 1;
558 if (mode_precision == SHORT_TYPE_SIZE)
559 info->c_short = 1;
560 if (mode_precision == INT_TYPE_SIZE)
561 info->c_int = 1;
562 if (mode_precision == LONG_TYPE_SIZE)
563 info->c_long = 1;
564 if (mode_precision == LONG_LONG_TYPE_SIZE)
565 info->c_long_long = 1;
566
567 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
568 return intQI_type_node;
569 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
570 return intHI_type_node;
571 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
572 return intSI_type_node;
573 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
574 return intDI_type_node;
575 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
576 return intTI_type_node;
577
578 return make_signed_type (mode_precision);
579 }
580
581 static tree
582 gfc_build_real_type (gfc_real_info *info)
583 {
584 int mode_precision = info->mode_precision;
585 tree new_type;
586
587 if (mode_precision == FLOAT_TYPE_SIZE)
588 info->c_float = 1;
589 if (mode_precision == DOUBLE_TYPE_SIZE)
590 info->c_double = 1;
591 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
592 info->c_long_double = 1;
593
594 if (TYPE_PRECISION (float_type_node) == mode_precision)
595 return float_type_node;
596 if (TYPE_PRECISION (double_type_node) == mode_precision)
597 return double_type_node;
598 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
599 return long_double_type_node;
600
601 new_type = make_node (REAL_TYPE);
602 TYPE_PRECISION (new_type) = mode_precision;
603 layout_type (new_type);
604 return new_type;
605 }
606
607 static tree
608 gfc_build_complex_type (tree scalar_type)
609 {
610 tree new_type;
611
612 if (scalar_type == NULL)
613 return NULL;
614 if (scalar_type == float_type_node)
615 return complex_float_type_node;
616 if (scalar_type == double_type_node)
617 return complex_double_type_node;
618 if (scalar_type == long_double_type_node)
619 return complex_long_double_type_node;
620
621 new_type = make_node (COMPLEX_TYPE);
622 TREE_TYPE (new_type) = scalar_type;
623 layout_type (new_type);
624 return new_type;
625 }
626
627 static tree
628 gfc_build_logical_type (gfc_logical_info *info)
629 {
630 int bit_size = info->bit_size;
631 tree new_type;
632
633 if (bit_size == BOOL_TYPE_SIZE)
634 {
635 info->c_bool = 1;
636 return boolean_type_node;
637 }
638
639 new_type = make_unsigned_type (bit_size);
640 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
641 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
642 TYPE_PRECISION (new_type) = 1;
643
644 return new_type;
645 }
646
647 #if 0
648 /* Return the bit size of the C "size_t". */
649
650 static unsigned int
651 c_size_t_size (void)
652 {
653 #ifdef SIZE_TYPE
654 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
655 return INT_TYPE_SIZE;
656 if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
657 return LONG_TYPE_SIZE;
658 if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
659 return SHORT_TYPE_SIZE;
660 gcc_unreachable ();
661 #else
662 return LONG_TYPE_SIZE;
663 #endif
664 }
665 #endif
666
667 /* Create the backend type nodes. We map them to their
668 equivalent C type, at least for now. We also give
669 names to the types here, and we push them in the
670 global binding level context.*/
671
672 void
673 gfc_init_types (void)
674 {
675 char name_buf[18];
676 int index;
677 tree type;
678 unsigned n;
679 unsigned HOST_WIDE_INT hi;
680 unsigned HOST_WIDE_INT lo;
681
682 /* Create and name the types. */
683 #define PUSH_TYPE(name, node) \
684 pushdecl (build_decl (TYPE_DECL, get_identifier (name), node))
685
686 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
687 {
688 type = gfc_build_int_type (&gfc_integer_kinds[index]);
689 gfc_integer_types[index] = type;
690 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
691 gfc_integer_kinds[index].kind);
692 PUSH_TYPE (name_buf, type);
693 }
694
695 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
696 {
697 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
698 gfc_logical_types[index] = type;
699 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
700 gfc_logical_kinds[index].kind);
701 PUSH_TYPE (name_buf, type);
702 }
703
704 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
705 {
706 type = gfc_build_real_type (&gfc_real_kinds[index]);
707 gfc_real_types[index] = type;
708 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
709 gfc_real_kinds[index].kind);
710 PUSH_TYPE (name_buf, type);
711
712 type = gfc_build_complex_type (type);
713 gfc_complex_types[index] = type;
714 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
715 gfc_real_kinds[index].kind);
716 PUSH_TYPE (name_buf, type);
717 }
718
719 gfc_character1_type_node = build_type_variant (unsigned_char_type_node,
720 0, 0);
721 PUSH_TYPE ("character(kind=1)", gfc_character1_type_node);
722
723 PUSH_TYPE ("byte", unsigned_char_type_node);
724 PUSH_TYPE ("void", void_type_node);
725
726 /* DBX debugging output gets upset if these aren't set. */
727 if (!TYPE_NAME (integer_type_node))
728 PUSH_TYPE ("c_integer", integer_type_node);
729 if (!TYPE_NAME (char_type_node))
730 PUSH_TYPE ("c_char", char_type_node);
731
732 #undef PUSH_TYPE
733
734 pvoid_type_node = build_pointer_type (void_type_node);
735 ppvoid_type_node = build_pointer_type (pvoid_type_node);
736 pchar_type_node = build_pointer_type (gfc_character1_type_node);
737 pfunc_type_node
738 = build_pointer_type (build_function_type (void_type_node, NULL_TREE));
739
740 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
741 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
742 since this function is called before gfc_init_constants. */
743 gfc_array_range_type
744 = build_range_type (gfc_array_index_type,
745 build_int_cst (gfc_array_index_type, 0),
746 NULL_TREE);
747
748 /* The maximum array element size that can be handled is determined
749 by the number of bits available to store this field in the array
750 descriptor. */
751
752 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
753 lo = ~ (unsigned HOST_WIDE_INT) 0;
754 if (n > HOST_BITS_PER_WIDE_INT)
755 hi = lo >> (2*HOST_BITS_PER_WIDE_INT - n);
756 else
757 hi = 0, lo >>= HOST_BITS_PER_WIDE_INT - n;
758 gfc_max_array_element_size
759 = build_int_cst_wide (long_unsigned_type_node, lo, hi);
760
761 size_type_node = gfc_array_index_type;
762
763 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
764 boolean_true_node = build_int_cst (boolean_type_node, 1);
765 boolean_false_node = build_int_cst (boolean_type_node, 0);
766
767 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
768 gfc_charlen_int_kind = 4;
769 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
770 }
771
772 /* Get the type node for the given type and kind. */
773
774 tree
775 gfc_get_int_type (int kind)
776 {
777 int index = gfc_validate_kind (BT_INTEGER, kind, true);
778 return index < 0 ? 0 : gfc_integer_types[index];
779 }
780
781 tree
782 gfc_get_real_type (int kind)
783 {
784 int index = gfc_validate_kind (BT_REAL, kind, true);
785 return index < 0 ? 0 : gfc_real_types[index];
786 }
787
788 tree
789 gfc_get_complex_type (int kind)
790 {
791 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
792 return index < 0 ? 0 : gfc_complex_types[index];
793 }
794
795 tree
796 gfc_get_logical_type (int kind)
797 {
798 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
799 return index < 0 ? 0 : gfc_logical_types[index];
800 }
801 \f
802 /* Create a character type with the given kind and length. */
803
804 tree
805 gfc_get_character_type_len (int kind, tree len)
806 {
807 tree bounds, type;
808
809 gfc_validate_kind (BT_CHARACTER, kind, false);
810
811 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
812 type = build_array_type (gfc_character1_type_node, bounds);
813 TYPE_STRING_FLAG (type) = 1;
814
815 return type;
816 }
817
818
819 /* Get a type node for a character kind. */
820
821 tree
822 gfc_get_character_type (int kind, gfc_charlen * cl)
823 {
824 tree len;
825
826 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
827
828 return gfc_get_character_type_len (kind, len);
829 }
830 \f
831 /* Covert a basic type. This will be an array for character types. */
832
833 tree
834 gfc_typenode_for_spec (gfc_typespec * spec)
835 {
836 tree basetype;
837
838 switch (spec->type)
839 {
840 case BT_UNKNOWN:
841 gcc_unreachable ();
842
843 case BT_INTEGER:
844 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
845 has been resolved. This is done so we can convert C_PTR and
846 C_FUNPTR to simple variables that get translated to (void *). */
847 if (spec->f90_type == BT_VOID)
848 {
849 if (spec->derived
850 && spec->derived->intmod_sym_id == ISOCBINDING_PTR)
851 basetype = ptr_type_node;
852 else
853 basetype = pfunc_type_node;
854 }
855 else
856 basetype = gfc_get_int_type (spec->kind);
857 break;
858
859 case BT_REAL:
860 basetype = gfc_get_real_type (spec->kind);
861 break;
862
863 case BT_COMPLEX:
864 basetype = gfc_get_complex_type (spec->kind);
865 break;
866
867 case BT_LOGICAL:
868 basetype = gfc_get_logical_type (spec->kind);
869 break;
870
871 case BT_CHARACTER:
872 basetype = gfc_get_character_type (spec->kind, spec->cl);
873 break;
874
875 case BT_DERIVED:
876 basetype = gfc_get_derived_type (spec->derived);
877
878 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
879 type and kind to fit a (void *) and the basetype returned was a
880 ptr_type_node. We need to pass up this new information to the
881 symbol that was declared of type C_PTR or C_FUNPTR. */
882 if (spec->derived->attr.is_iso_c)
883 {
884 spec->type = spec->derived->ts.type;
885 spec->kind = spec->derived->ts.kind;
886 spec->f90_type = spec->derived->ts.f90_type;
887 }
888 break;
889 case BT_VOID:
890 /* This is for the second arg to c_f_pointer and c_f_procpointer
891 of the iso_c_binding module, to accept any ptr type. */
892 basetype = ptr_type_node;
893 if (spec->f90_type == BT_VOID)
894 {
895 if (spec->derived
896 && spec->derived->intmod_sym_id == ISOCBINDING_PTR)
897 basetype = ptr_type_node;
898 else
899 basetype = pfunc_type_node;
900 }
901 break;
902 default:
903 gcc_unreachable ();
904 }
905 return basetype;
906 }
907 \f
908 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
909
910 static tree
911 gfc_conv_array_bound (gfc_expr * expr)
912 {
913 /* If expr is an integer constant, return that. */
914 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
915 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
916
917 /* Otherwise return NULL. */
918 return NULL_TREE;
919 }
920 \f
921 tree
922 gfc_get_element_type (tree type)
923 {
924 tree element;
925
926 if (GFC_ARRAY_TYPE_P (type))
927 {
928 if (TREE_CODE (type) == POINTER_TYPE)
929 type = TREE_TYPE (type);
930 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
931 element = TREE_TYPE (type);
932 }
933 else
934 {
935 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
936 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
937
938 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
939 element = TREE_TYPE (element);
940
941 gcc_assert (TREE_CODE (element) == ARRAY_TYPE);
942 element = TREE_TYPE (element);
943 }
944
945 return element;
946 }
947 \f
948 /* Build an array. This function is called from gfc_sym_type().
949 Actually returns array descriptor type.
950
951 Format of array descriptors is as follows:
952
953 struct gfc_array_descriptor
954 {
955 array *data
956 index offset;
957 index dtype;
958 struct descriptor_dimension dimension[N_DIM];
959 }
960
961 struct descriptor_dimension
962 {
963 index stride;
964 index lbound;
965 index ubound;
966 }
967
968 Translation code should use gfc_conv_descriptor_* rather than
969 accessing the descriptor directly. Any changes to the array
970 descriptor type will require changes in gfc_conv_descriptor_* and
971 gfc_build_array_initializer.
972
973 This is represented internally as a RECORD_TYPE. The index nodes
974 are gfc_array_index_type and the data node is a pointer to the
975 data. See below for the handling of character types.
976
977 The dtype member is formatted as follows:
978 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
979 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
980 size = dtype >> GFC_DTYPE_SIZE_SHIFT
981
982 I originally used nested ARRAY_TYPE nodes to represent arrays, but
983 this generated poor code for assumed/deferred size arrays. These
984 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
985 of the GENERIC grammar. Also, there is no way to explicitly set
986 the array stride, so all data must be packed(1). I've tried to
987 mark all the functions which would require modification with a GCC
988 ARRAYS comment.
989
990 The data component points to the first element in the array. The
991 offset field is the position of the origin of the array (ie element
992 (0, 0 ...)). This may be outsite the bounds of the array.
993
994 An element is accessed by
995 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
996 This gives good performance as the computation does not involve the
997 bounds of the array. For packed arrays, this is optimized further
998 by substituting the known strides.
999
1000 This system has one problem: all array bounds must be within 2^31
1001 elements of the origin (2^63 on 64-bit machines). For example
1002 integer, dimension (80000:90000, 80000:90000, 2) :: array
1003 may not work properly on 32-bit machines because 80000*80000 >
1004 2^31, so the calculation for stride02 would overflow. This may
1005 still work, but I haven't checked, and it relies on the overflow
1006 doing the right thing.
1007
1008 The way to fix this problem is to access elements as follows:
1009 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1010 Obviously this is much slower. I will make this a compile time
1011 option, something like -fsmall-array-offsets. Mixing code compiled
1012 with and without this switch will work.
1013
1014 (1) This can be worked around by modifying the upper bound of the
1015 previous dimension. This requires extra fields in the descriptor
1016 (both real_ubound and fake_ubound). */
1017
1018
1019 /* Returns true if the array sym does not require a descriptor. */
1020
1021 int
1022 gfc_is_nodesc_array (gfc_symbol * sym)
1023 {
1024 gcc_assert (sym->attr.dimension);
1025
1026 /* We only want local arrays. */
1027 if (sym->attr.pointer || sym->attr.allocatable)
1028 return 0;
1029
1030 if (sym->attr.dummy)
1031 {
1032 if (sym->as->type != AS_ASSUMED_SHAPE)
1033 return 1;
1034 else
1035 return 0;
1036 }
1037
1038 if (sym->attr.result || sym->attr.function)
1039 return 0;
1040
1041 gcc_assert (sym->as->type == AS_EXPLICIT);
1042
1043 return 1;
1044 }
1045
1046
1047 /* Create an array descriptor type. */
1048
1049 static tree
1050 gfc_build_array_type (tree type, gfc_array_spec * as)
1051 {
1052 tree lbound[GFC_MAX_DIMENSIONS];
1053 tree ubound[GFC_MAX_DIMENSIONS];
1054 int n;
1055
1056 for (n = 0; n < as->rank; n++)
1057 {
1058 /* Create expressions for the known bounds of the array. */
1059 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1060 lbound[n] = gfc_index_one_node;
1061 else
1062 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1063 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1064 }
1065
1066 return gfc_get_array_type_bounds (type, as->rank, lbound, ubound, 0);
1067 }
1068 \f
1069 /* Returns the struct descriptor_dimension type. */
1070
1071 static tree
1072 gfc_get_desc_dim_type (void)
1073 {
1074 tree type;
1075 tree decl;
1076 tree fieldlist;
1077
1078 if (gfc_desc_dim_type)
1079 return gfc_desc_dim_type;
1080
1081 /* Build the type node. */
1082 type = make_node (RECORD_TYPE);
1083
1084 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1085 TYPE_PACKED (type) = 1;
1086
1087 /* Consists of the stride, lbound and ubound members. */
1088 decl = build_decl (FIELD_DECL,
1089 get_identifier ("stride"), gfc_array_index_type);
1090 DECL_CONTEXT (decl) = type;
1091 TREE_NO_WARNING (decl) = 1;
1092 fieldlist = decl;
1093
1094 decl = build_decl (FIELD_DECL,
1095 get_identifier ("lbound"), gfc_array_index_type);
1096 DECL_CONTEXT (decl) = type;
1097 TREE_NO_WARNING (decl) = 1;
1098 fieldlist = chainon (fieldlist, decl);
1099
1100 decl = build_decl (FIELD_DECL,
1101 get_identifier ("ubound"), gfc_array_index_type);
1102 DECL_CONTEXT (decl) = type;
1103 TREE_NO_WARNING (decl) = 1;
1104 fieldlist = chainon (fieldlist, decl);
1105
1106 /* Finish off the type. */
1107 TYPE_FIELDS (type) = fieldlist;
1108
1109 gfc_finish_type (type);
1110 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1111
1112 gfc_desc_dim_type = type;
1113 return type;
1114 }
1115
1116
1117 /* Return the DTYPE for an array. This describes the type and type parameters
1118 of the array. */
1119 /* TODO: Only call this when the value is actually used, and make all the
1120 unknown cases abort. */
1121
1122 tree
1123 gfc_get_dtype (tree type)
1124 {
1125 tree size;
1126 int n;
1127 HOST_WIDE_INT i;
1128 tree tmp;
1129 tree dtype;
1130 tree etype;
1131 int rank;
1132
1133 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1134
1135 if (GFC_TYPE_ARRAY_DTYPE (type))
1136 return GFC_TYPE_ARRAY_DTYPE (type);
1137
1138 rank = GFC_TYPE_ARRAY_RANK (type);
1139 etype = gfc_get_element_type (type);
1140
1141 switch (TREE_CODE (etype))
1142 {
1143 case INTEGER_TYPE:
1144 n = GFC_DTYPE_INTEGER;
1145 break;
1146
1147 case BOOLEAN_TYPE:
1148 n = GFC_DTYPE_LOGICAL;
1149 break;
1150
1151 case REAL_TYPE:
1152 n = GFC_DTYPE_REAL;
1153 break;
1154
1155 case COMPLEX_TYPE:
1156 n = GFC_DTYPE_COMPLEX;
1157 break;
1158
1159 /* We will never have arrays of arrays. */
1160 case RECORD_TYPE:
1161 n = GFC_DTYPE_DERIVED;
1162 break;
1163
1164 case ARRAY_TYPE:
1165 n = GFC_DTYPE_CHARACTER;
1166 break;
1167
1168 default:
1169 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1170 /* We can strange array types for temporary arrays. */
1171 return gfc_index_zero_node;
1172 }
1173
1174 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1175 size = TYPE_SIZE_UNIT (etype);
1176
1177 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1178 if (size && INTEGER_CST_P (size))
1179 {
1180 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1181 internal_error ("Array element size too big");
1182
1183 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1184 }
1185 dtype = build_int_cst (gfc_array_index_type, i);
1186
1187 if (size && !INTEGER_CST_P (size))
1188 {
1189 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1190 tmp = fold_build2 (LSHIFT_EXPR, gfc_array_index_type,
1191 fold_convert (gfc_array_index_type, size), tmp);
1192 dtype = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp, dtype);
1193 }
1194 /* If we don't know the size we leave it as zero. This should never happen
1195 for anything that is actually used. */
1196 /* TODO: Check this is actually true, particularly when repacking
1197 assumed size parameters. */
1198
1199 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1200 return dtype;
1201 }
1202
1203
1204 /* Build an array type for use without a descriptor, packed according
1205 to the value of PACKED. */
1206
1207 tree
1208 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed)
1209 {
1210 tree range;
1211 tree type;
1212 tree tmp;
1213 int n;
1214 int known_stride;
1215 int known_offset;
1216 mpz_t offset;
1217 mpz_t stride;
1218 mpz_t delta;
1219 gfc_expr *expr;
1220
1221 mpz_init_set_ui (offset, 0);
1222 mpz_init_set_ui (stride, 1);
1223 mpz_init (delta);
1224
1225 /* We don't use build_array_type because this does not include include
1226 lang-specific information (i.e. the bounds of the array) when checking
1227 for duplicates. */
1228 type = make_node (ARRAY_TYPE);
1229
1230 GFC_ARRAY_TYPE_P (type) = 1;
1231 TYPE_LANG_SPECIFIC (type) = (struct lang_type *)
1232 ggc_alloc_cleared (sizeof (struct lang_type));
1233
1234 known_stride = (packed != PACKED_NO);
1235 known_offset = 1;
1236 for (n = 0; n < as->rank; n++)
1237 {
1238 /* Fill in the stride and bound components of the type. */
1239 if (known_stride)
1240 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1241 else
1242 tmp = NULL_TREE;
1243 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1244
1245 expr = as->lower[n];
1246 if (expr->expr_type == EXPR_CONSTANT)
1247 {
1248 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1249 gfc_index_integer_kind);
1250 }
1251 else
1252 {
1253 known_stride = 0;
1254 tmp = NULL_TREE;
1255 }
1256 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1257
1258 if (known_stride)
1259 {
1260 /* Calculate the offset. */
1261 mpz_mul (delta, stride, as->lower[n]->value.integer);
1262 mpz_sub (offset, offset, delta);
1263 }
1264 else
1265 known_offset = 0;
1266
1267 expr = as->upper[n];
1268 if (expr && expr->expr_type == EXPR_CONSTANT)
1269 {
1270 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1271 gfc_index_integer_kind);
1272 }
1273 else
1274 {
1275 tmp = NULL_TREE;
1276 known_stride = 0;
1277 }
1278 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1279
1280 if (known_stride)
1281 {
1282 /* Calculate the stride. */
1283 mpz_sub (delta, as->upper[n]->value.integer,
1284 as->lower[n]->value.integer);
1285 mpz_add_ui (delta, delta, 1);
1286 mpz_mul (stride, stride, delta);
1287 }
1288
1289 /* Only the first stride is known for partial packed arrays. */
1290 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1291 known_stride = 0;
1292 }
1293
1294 if (known_offset)
1295 {
1296 GFC_TYPE_ARRAY_OFFSET (type) =
1297 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1298 }
1299 else
1300 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1301
1302 if (known_stride)
1303 {
1304 GFC_TYPE_ARRAY_SIZE (type) =
1305 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1306 }
1307 else
1308 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1309
1310 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1311 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1312 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1313 NULL_TREE);
1314 /* TODO: use main type if it is unbounded. */
1315 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1316 build_pointer_type (build_array_type (etype, range));
1317
1318 if (known_stride)
1319 {
1320 mpz_sub_ui (stride, stride, 1);
1321 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1322 }
1323 else
1324 range = NULL_TREE;
1325
1326 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1327 TYPE_DOMAIN (type) = range;
1328
1329 build_pointer_type (etype);
1330 TREE_TYPE (type) = etype;
1331
1332 layout_type (type);
1333
1334 mpz_clear (offset);
1335 mpz_clear (stride);
1336 mpz_clear (delta);
1337
1338 /* In debug info represent packed arrays as multi-dimensional
1339 if they have rank > 1 and with proper bounds, instead of flat
1340 arrays. */
1341 if (known_stride && write_symbols != NO_DEBUG)
1342 {
1343 tree gtype = etype, rtype, type_decl;
1344
1345 for (n = as->rank - 1; n >= 0; n--)
1346 {
1347 rtype = build_range_type (gfc_array_index_type,
1348 GFC_TYPE_ARRAY_LBOUND (type, n),
1349 GFC_TYPE_ARRAY_UBOUND (type, n));
1350 gtype = build_array_type (gtype, rtype);
1351 }
1352 TYPE_NAME (type) = type_decl = build_decl (TYPE_DECL, NULL, gtype);
1353 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1354 }
1355
1356 if (packed != PACKED_STATIC || !known_stride)
1357 {
1358 /* For dummy arrays and automatic (heap allocated) arrays we
1359 want a pointer to the array. */
1360 type = build_pointer_type (type);
1361 GFC_ARRAY_TYPE_P (type) = 1;
1362 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1363 }
1364 return type;
1365 }
1366
1367 /* Return or create the base type for an array descriptor. */
1368
1369 static tree
1370 gfc_get_array_descriptor_base (int dimen)
1371 {
1372 tree fat_type, fieldlist, decl, arraytype;
1373 char name[16 + GFC_RANK_DIGITS + 1];
1374
1375 gcc_assert (dimen >= 1 && dimen <= GFC_MAX_DIMENSIONS);
1376 if (gfc_array_descriptor_base[dimen - 1])
1377 return gfc_array_descriptor_base[dimen - 1];
1378
1379 /* Build the type node. */
1380 fat_type = make_node (RECORD_TYPE);
1381
1382 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen);
1383 TYPE_NAME (fat_type) = get_identifier (name);
1384
1385 /* Add the data member as the first element of the descriptor. */
1386 decl = build_decl (FIELD_DECL, get_identifier ("data"), ptr_type_node);
1387
1388 DECL_CONTEXT (decl) = fat_type;
1389 fieldlist = decl;
1390
1391 /* Add the base component. */
1392 decl = build_decl (FIELD_DECL, get_identifier ("offset"),
1393 gfc_array_index_type);
1394 DECL_CONTEXT (decl) = fat_type;
1395 TREE_NO_WARNING (decl) = 1;
1396 fieldlist = chainon (fieldlist, decl);
1397
1398 /* Add the dtype component. */
1399 decl = build_decl (FIELD_DECL, get_identifier ("dtype"),
1400 gfc_array_index_type);
1401 DECL_CONTEXT (decl) = fat_type;
1402 TREE_NO_WARNING (decl) = 1;
1403 fieldlist = chainon (fieldlist, decl);
1404
1405 /* Build the array type for the stride and bound components. */
1406 arraytype =
1407 build_array_type (gfc_get_desc_dim_type (),
1408 build_range_type (gfc_array_index_type,
1409 gfc_index_zero_node,
1410 gfc_rank_cst[dimen - 1]));
1411
1412 decl = build_decl (FIELD_DECL, get_identifier ("dim"), arraytype);
1413 DECL_CONTEXT (decl) = fat_type;
1414 TREE_NO_WARNING (decl) = 1;
1415 fieldlist = chainon (fieldlist, decl);
1416
1417 /* Finish off the type. */
1418 TYPE_FIELDS (fat_type) = fieldlist;
1419
1420 gfc_finish_type (fat_type);
1421 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1422
1423 gfc_array_descriptor_base[dimen - 1] = fat_type;
1424 return fat_type;
1425 }
1426
1427 /* Build an array (descriptor) type with given bounds. */
1428
1429 tree
1430 gfc_get_array_type_bounds (tree etype, int dimen, tree * lbound,
1431 tree * ubound, int packed)
1432 {
1433 char name[8 + GFC_RANK_DIGITS + GFC_MAX_SYMBOL_LEN];
1434 tree fat_type, base_type, arraytype, lower, upper, stride, tmp;
1435 const char *typename;
1436 int n;
1437
1438 base_type = gfc_get_array_descriptor_base (dimen);
1439 fat_type = build_variant_type_copy (base_type);
1440
1441 tmp = TYPE_NAME (etype);
1442 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1443 tmp = DECL_NAME (tmp);
1444 if (tmp)
1445 typename = IDENTIFIER_POINTER (tmp);
1446 else
1447 typename = "unknown";
1448 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen,
1449 GFC_MAX_SYMBOL_LEN, typename);
1450 TYPE_NAME (fat_type) = get_identifier (name);
1451
1452 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1453 TYPE_LANG_SPECIFIC (fat_type) = (struct lang_type *)
1454 ggc_alloc_cleared (sizeof (struct lang_type));
1455
1456 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1457 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1458
1459 /* Build an array descriptor record type. */
1460 if (packed != 0)
1461 stride = gfc_index_one_node;
1462 else
1463 stride = NULL_TREE;
1464 for (n = 0; n < dimen; n++)
1465 {
1466 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1467
1468 if (lbound)
1469 lower = lbound[n];
1470 else
1471 lower = NULL_TREE;
1472
1473 if (lower != NULL_TREE)
1474 {
1475 if (INTEGER_CST_P (lower))
1476 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1477 else
1478 lower = NULL_TREE;
1479 }
1480
1481 upper = ubound[n];
1482 if (upper != NULL_TREE)
1483 {
1484 if (INTEGER_CST_P (upper))
1485 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1486 else
1487 upper = NULL_TREE;
1488 }
1489
1490 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1491 {
1492 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, upper, lower);
1493 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp,
1494 gfc_index_one_node);
1495 stride =
1496 fold_build2 (MULT_EXPR, gfc_array_index_type, tmp, stride);
1497 /* Check the folding worked. */
1498 gcc_assert (INTEGER_CST_P (stride));
1499 }
1500 else
1501 stride = NULL_TREE;
1502 }
1503 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1504
1505 /* TODO: known offsets for descriptors. */
1506 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1507
1508 /* We define data as an unknown size array. Much better than doing
1509 pointer arithmetic. */
1510 arraytype =
1511 build_array_type (etype, gfc_array_range_type);
1512 arraytype = build_pointer_type (arraytype);
1513 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1514
1515 return fat_type;
1516 }
1517 \f
1518 /* Build a pointer type. This function is called from gfc_sym_type(). */
1519
1520 static tree
1521 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1522 {
1523 /* Array pointer types aren't actually pointers. */
1524 if (sym->attr.dimension)
1525 return type;
1526 else
1527 return build_pointer_type (type);
1528 }
1529 \f
1530 /* Return the type for a symbol. Special handling is required for character
1531 types to get the correct level of indirection.
1532 For functions return the return type.
1533 For subroutines return void_type_node.
1534 Calling this multiple times for the same symbol should be avoided,
1535 especially for character and array types. */
1536
1537 tree
1538 gfc_sym_type (gfc_symbol * sym)
1539 {
1540 tree type;
1541 int byref;
1542
1543 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
1544 return void_type_node;
1545
1546 /* In the case of a function the fake result variable may have a
1547 type different from the function type, so don't return early in
1548 that case. */
1549 if (sym->backend_decl && !sym->attr.function)
1550 return TREE_TYPE (sym->backend_decl);
1551
1552 type = gfc_typenode_for_spec (&sym->ts);
1553
1554 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
1555 byref = 1;
1556 else
1557 byref = 0;
1558
1559 if (sym->attr.dimension)
1560 {
1561 if (gfc_is_nodesc_array (sym))
1562 {
1563 /* If this is a character argument of unknown length, just use the
1564 base type. */
1565 if (sym->ts.type != BT_CHARACTER
1566 || !(sym->attr.dummy || sym->attr.function)
1567 || sym->ts.cl->backend_decl)
1568 {
1569 type = gfc_get_nodesc_array_type (type, sym->as,
1570 byref ? PACKED_FULL
1571 : PACKED_STATIC);
1572 byref = 0;
1573 }
1574 }
1575 else
1576 {
1577 type = gfc_build_array_type (type, sym->as);
1578 }
1579 }
1580 else
1581 {
1582 if (sym->attr.allocatable || sym->attr.pointer)
1583 type = gfc_build_pointer_type (sym, type);
1584 if (sym->attr.pointer)
1585 GFC_POINTER_TYPE_P (type) = 1;
1586 }
1587
1588 /* We currently pass all parameters by reference.
1589 See f95_get_function_decl. For dummy function parameters return the
1590 function type. */
1591 if (byref)
1592 {
1593 /* We must use pointer types for potentially absent variables. The
1594 optimizers assume a reference type argument is never NULL. */
1595 if (sym->attr.optional || sym->ns->proc_name->attr.entry_master)
1596 type = build_pointer_type (type);
1597 else
1598 type = build_reference_type (type);
1599 }
1600
1601 return (type);
1602 }
1603 \f
1604 /* Layout and output debug info for a record type. */
1605
1606 void
1607 gfc_finish_type (tree type)
1608 {
1609 tree decl;
1610
1611 decl = build_decl (TYPE_DECL, NULL_TREE, type);
1612 TYPE_STUB_DECL (type) = decl;
1613 layout_type (type);
1614 rest_of_type_compilation (type, 1);
1615 rest_of_decl_compilation (decl, 1, 0);
1616 }
1617 \f
1618 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
1619 or RECORD_TYPE pointed to by STYPE. The new field is chained
1620 to the fieldlist pointed to by FIELDLIST.
1621
1622 Returns a pointer to the new field. */
1623
1624 tree
1625 gfc_add_field_to_struct (tree *fieldlist, tree context,
1626 tree name, tree type)
1627 {
1628 tree decl;
1629
1630 decl = build_decl (FIELD_DECL, name, type);
1631
1632 DECL_CONTEXT (decl) = context;
1633 DECL_INITIAL (decl) = 0;
1634 DECL_ALIGN (decl) = 0;
1635 DECL_USER_ALIGN (decl) = 0;
1636 TREE_CHAIN (decl) = NULL_TREE;
1637 *fieldlist = chainon (*fieldlist, decl);
1638
1639 return decl;
1640 }
1641
1642
1643 /* Copy the backend_decl and component backend_decls if
1644 the two derived type symbols are "equal", as described
1645 in 4.4.2 and resolved by gfc_compare_derived_types. */
1646
1647 static int
1648 copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to)
1649 {
1650 gfc_component *to_cm;
1651 gfc_component *from_cm;
1652
1653 if (from->backend_decl == NULL
1654 || !gfc_compare_derived_types (from, to))
1655 return 0;
1656
1657 to->backend_decl = from->backend_decl;
1658
1659 to_cm = to->components;
1660 from_cm = from->components;
1661
1662 /* Copy the component declarations. If a component is itself
1663 a derived type, we need a copy of its component declarations.
1664 This is done by recursing into gfc_get_derived_type and
1665 ensures that the component's component declarations have
1666 been built. If it is a character, we need the character
1667 length, as well. */
1668 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
1669 {
1670 to_cm->backend_decl = from_cm->backend_decl;
1671 if (!from_cm->pointer && from_cm->ts.type == BT_DERIVED)
1672 gfc_get_derived_type (to_cm->ts.derived);
1673
1674 else if (from_cm->ts.type == BT_CHARACTER)
1675 to_cm->ts.cl->backend_decl = from_cm->ts.cl->backend_decl;
1676 }
1677
1678 return 1;
1679 }
1680
1681
1682 /* Build a tree node for a derived type. If there are equal
1683 derived types, with different local names, these are built
1684 at the same time. If an equal derived type has been built
1685 in a parent namespace, this is used. */
1686
1687 static tree
1688 gfc_get_derived_type (gfc_symbol * derived)
1689 {
1690 tree typenode = NULL, field = NULL, field_type = NULL, fieldlist = NULL;
1691 gfc_component *c;
1692 gfc_dt_list *dt;
1693
1694 gcc_assert (derived && derived->attr.flavor == FL_DERIVED);
1695
1696 /* See if it's one of the iso_c_binding derived types. */
1697 if (derived->attr.is_iso_c == 1)
1698 {
1699 if (derived->backend_decl)
1700 return derived->backend_decl;
1701
1702 if (derived->intmod_sym_id == ISOCBINDING_PTR)
1703 derived->backend_decl = ptr_type_node;
1704 else
1705 derived->backend_decl = pfunc_type_node;
1706
1707 /* Create a backend_decl for the __c_ptr_c_address field. */
1708 derived->components->backend_decl =
1709 gfc_add_field_to_struct (&(derived->backend_decl->type.values),
1710 derived->backend_decl,
1711 get_identifier (derived->components->name),
1712 gfc_typenode_for_spec (
1713 &(derived->components->ts)));
1714
1715 derived->ts.kind = gfc_index_integer_kind;
1716 derived->ts.type = BT_INTEGER;
1717 /* Set the f90_type to BT_VOID as a way to recognize something of type
1718 BT_INTEGER that needs to fit a void * for the purpose of the
1719 iso_c_binding derived types. */
1720 derived->ts.f90_type = BT_VOID;
1721
1722 return derived->backend_decl;
1723 }
1724
1725 /* derived->backend_decl != 0 means we saw it before, but its
1726 components' backend_decl may have not been built. */
1727 if (derived->backend_decl)
1728 {
1729 /* Its components' backend_decl have been built. */
1730 if (TYPE_FIELDS (derived->backend_decl))
1731 return derived->backend_decl;
1732 else
1733 typenode = derived->backend_decl;
1734 }
1735 else
1736 {
1737
1738 /* We see this derived type first time, so build the type node. */
1739 typenode = make_node (RECORD_TYPE);
1740 TYPE_NAME (typenode) = get_identifier (derived->name);
1741 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
1742 derived->backend_decl = typenode;
1743 }
1744
1745 /* Go through the derived type components, building them as
1746 necessary. The reason for doing this now is that it is
1747 possible to recurse back to this derived type through a
1748 pointer component (PR24092). If this happens, the fields
1749 will be built and so we can return the type. */
1750 for (c = derived->components; c; c = c->next)
1751 {
1752 if (c->ts.type != BT_DERIVED)
1753 continue;
1754
1755 if (!c->pointer || c->ts.derived->backend_decl == NULL)
1756 c->ts.derived->backend_decl = gfc_get_derived_type (c->ts.derived);
1757
1758 if (c->ts.derived && c->ts.derived->attr.is_iso_c)
1759 {
1760 /* Need to copy the modified ts from the derived type. The
1761 typespec was modified because C_PTR/C_FUNPTR are translated
1762 into (void *) from derived types. */
1763 c->ts.type = c->ts.derived->ts.type;
1764 c->ts.kind = c->ts.derived->ts.kind;
1765 c->ts.f90_type = c->ts.derived->ts.f90_type;
1766 if (c->initializer)
1767 {
1768 c->initializer->ts.type = c->ts.type;
1769 c->initializer->ts.kind = c->ts.kind;
1770 c->initializer->ts.f90_type = c->ts.f90_type;
1771 c->initializer->expr_type = EXPR_NULL;
1772 }
1773 }
1774 }
1775
1776 if (TYPE_FIELDS (derived->backend_decl))
1777 return derived->backend_decl;
1778
1779 /* Build the type member list. Install the newly created RECORD_TYPE
1780 node as DECL_CONTEXT of each FIELD_DECL. */
1781 fieldlist = NULL_TREE;
1782 for (c = derived->components; c; c = c->next)
1783 {
1784 if (c->ts.type == BT_DERIVED)
1785 field_type = c->ts.derived->backend_decl;
1786 else
1787 {
1788 if (c->ts.type == BT_CHARACTER)
1789 {
1790 /* Evaluate the string length. */
1791 gfc_conv_const_charlen (c->ts.cl);
1792 gcc_assert (c->ts.cl->backend_decl);
1793 }
1794
1795 field_type = gfc_typenode_for_spec (&c->ts);
1796 }
1797
1798 /* This returns an array descriptor type. Initialization may be
1799 required. */
1800 if (c->dimension)
1801 {
1802 if (c->pointer || c->allocatable)
1803 {
1804 /* Pointers to arrays aren't actually pointer types. The
1805 descriptors are separate, but the data is common. */
1806 field_type = gfc_build_array_type (field_type, c->as);
1807 }
1808 else
1809 field_type = gfc_get_nodesc_array_type (field_type, c->as,
1810 PACKED_STATIC);
1811 }
1812 else if (c->pointer)
1813 field_type = build_pointer_type (field_type);
1814
1815 field = gfc_add_field_to_struct (&fieldlist, typenode,
1816 get_identifier (c->name),
1817 field_type);
1818 if (c->loc.lb)
1819 gfc_set_decl_location (field, &c->loc);
1820 else if (derived->declared_at.lb)
1821 gfc_set_decl_location (field, &derived->declared_at);
1822
1823 DECL_PACKED (field) |= TYPE_PACKED (typenode);
1824
1825 gcc_assert (field);
1826 if (!c->backend_decl)
1827 c->backend_decl = field;
1828 }
1829
1830 /* Now we have the final fieldlist. Record it, then lay out the
1831 derived type, including the fields. */
1832 TYPE_FIELDS (typenode) = fieldlist;
1833
1834 gfc_finish_type (typenode);
1835 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
1836
1837 derived->backend_decl = typenode;
1838
1839 /* Add this backend_decl to all the other, equal derived types. */
1840 for (dt = gfc_derived_types; dt; dt = dt->next)
1841 copy_dt_decls_ifequal (derived, dt->derived);
1842
1843 return derived->backend_decl;
1844 }
1845
1846
1847 int
1848 gfc_return_by_reference (gfc_symbol * sym)
1849 {
1850 if (!sym->attr.function)
1851 return 0;
1852
1853 if (sym->attr.dimension)
1854 return 1;
1855
1856 if (sym->ts.type == BT_CHARACTER)
1857 return 1;
1858
1859 /* Possibly return complex numbers by reference for g77 compatibility.
1860 We don't do this for calls to intrinsics (as the library uses the
1861 -fno-f2c calling convention), nor for calls to functions which always
1862 require an explicit interface, as no compatibility problems can
1863 arise there. */
1864 if (gfc_option.flag_f2c
1865 && sym->ts.type == BT_COMPLEX
1866 && !sym->attr.intrinsic && !sym->attr.always_explicit)
1867 return 1;
1868
1869 return 0;
1870 }
1871 \f
1872 static tree
1873 gfc_get_mixed_entry_union (gfc_namespace *ns)
1874 {
1875 tree type;
1876 tree decl;
1877 tree fieldlist;
1878 char name[GFC_MAX_SYMBOL_LEN + 1];
1879 gfc_entry_list *el, *el2;
1880
1881 gcc_assert (ns->proc_name->attr.mixed_entry_master);
1882 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
1883
1884 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
1885
1886 /* Build the type node. */
1887 type = make_node (UNION_TYPE);
1888
1889 TYPE_NAME (type) = get_identifier (name);
1890 fieldlist = NULL;
1891
1892 for (el = ns->entries; el; el = el->next)
1893 {
1894 /* Search for duplicates. */
1895 for (el2 = ns->entries; el2 != el; el2 = el2->next)
1896 if (el2->sym->result == el->sym->result)
1897 break;
1898
1899 if (el == el2)
1900 {
1901 decl = build_decl (FIELD_DECL,
1902 get_identifier (el->sym->result->name),
1903 gfc_sym_type (el->sym->result));
1904 DECL_CONTEXT (decl) = type;
1905 fieldlist = chainon (fieldlist, decl);
1906 }
1907 }
1908
1909 /* Finish off the type. */
1910 TYPE_FIELDS (type) = fieldlist;
1911
1912 gfc_finish_type (type);
1913 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1914 return type;
1915 }
1916 \f
1917 tree
1918 gfc_get_function_type (gfc_symbol * sym)
1919 {
1920 tree type;
1921 tree typelist;
1922 gfc_formal_arglist *f;
1923 gfc_symbol *arg;
1924 int nstr;
1925 int alternate_return;
1926
1927 /* Make sure this symbol is a function, a subroutine or the main
1928 program. */
1929 gcc_assert (sym->attr.flavor == FL_PROCEDURE
1930 || sym->attr.flavor == FL_PROGRAM);
1931
1932 if (sym->backend_decl)
1933 return TREE_TYPE (sym->backend_decl);
1934
1935 nstr = 0;
1936 alternate_return = 0;
1937 typelist = NULL_TREE;
1938
1939 if (sym->attr.entry_master)
1940 {
1941 /* Additional parameter for selecting an entry point. */
1942 typelist = gfc_chainon_list (typelist, gfc_array_index_type);
1943 }
1944
1945 /* Some functions we use an extra parameter for the return value. */
1946 if (gfc_return_by_reference (sym))
1947 {
1948 if (sym->result)
1949 arg = sym->result;
1950 else
1951 arg = sym;
1952
1953 if (arg->ts.type == BT_CHARACTER)
1954 gfc_conv_const_charlen (arg->ts.cl);
1955
1956 type = gfc_sym_type (arg);
1957 if (arg->ts.type == BT_COMPLEX
1958 || arg->attr.dimension
1959 || arg->ts.type == BT_CHARACTER)
1960 type = build_reference_type (type);
1961
1962 typelist = gfc_chainon_list (typelist, type);
1963 if (arg->ts.type == BT_CHARACTER)
1964 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
1965 }
1966
1967 /* Build the argument types for the function. */
1968 for (f = sym->formal; f; f = f->next)
1969 {
1970 arg = f->sym;
1971 if (arg)
1972 {
1973 /* Evaluate constant character lengths here so that they can be
1974 included in the type. */
1975 if (arg->ts.type == BT_CHARACTER)
1976 gfc_conv_const_charlen (arg->ts.cl);
1977
1978 if (arg->attr.flavor == FL_PROCEDURE)
1979 {
1980 type = gfc_get_function_type (arg);
1981 type = build_pointer_type (type);
1982 }
1983 else
1984 type = gfc_sym_type (arg);
1985
1986 /* Parameter Passing Convention
1987
1988 We currently pass all parameters by reference.
1989 Parameters with INTENT(IN) could be passed by value.
1990 The problem arises if a function is called via an implicit
1991 prototype. In this situation the INTENT is not known.
1992 For this reason all parameters to global functions must be
1993 passed by reference. Passing by value would potentially
1994 generate bad code. Worse there would be no way of telling that
1995 this code was bad, except that it would give incorrect results.
1996
1997 Contained procedures could pass by value as these are never
1998 used without an explicit interface, and cannot be passed as
1999 actual parameters for a dummy procedure. */
2000 if (arg->ts.type == BT_CHARACTER)
2001 nstr++;
2002 typelist = gfc_chainon_list (typelist, type);
2003 }
2004 else
2005 {
2006 if (sym->attr.subroutine)
2007 alternate_return = 1;
2008 }
2009 }
2010
2011 /* Add hidden string length parameters. */
2012 while (nstr--)
2013 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
2014
2015 if (typelist)
2016 typelist = gfc_chainon_list (typelist, void_type_node);
2017
2018 if (alternate_return)
2019 type = integer_type_node;
2020 else if (!sym->attr.function || gfc_return_by_reference (sym))
2021 type = void_type_node;
2022 else if (sym->attr.mixed_entry_master)
2023 type = gfc_get_mixed_entry_union (sym->ns);
2024 else if (gfc_option.flag_f2c
2025 && sym->ts.type == BT_REAL
2026 && sym->ts.kind == gfc_default_real_kind
2027 && !sym->attr.always_explicit)
2028 {
2029 /* Special case: f2c calling conventions require that (scalar)
2030 default REAL functions return the C type double instead. f2c
2031 compatibility is only an issue with functions that don't
2032 require an explicit interface, as only these could be
2033 implemented in Fortran 77. */
2034 sym->ts.kind = gfc_default_double_kind;
2035 type = gfc_typenode_for_spec (&sym->ts);
2036 sym->ts.kind = gfc_default_real_kind;
2037 }
2038 else
2039 type = gfc_sym_type (sym);
2040
2041 type = build_function_type (type, typelist);
2042
2043 return type;
2044 }
2045 \f
2046 /* Language hooks for middle-end access to type nodes. */
2047
2048 /* Return an integer type with BITS bits of precision,
2049 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2050
2051 tree
2052 gfc_type_for_size (unsigned bits, int unsignedp)
2053 {
2054 if (!unsignedp)
2055 {
2056 int i;
2057 for (i = 0; i <= MAX_INT_KINDS; ++i)
2058 {
2059 tree type = gfc_integer_types[i];
2060 if (type && bits == TYPE_PRECISION (type))
2061 return type;
2062 }
2063
2064 /* Handle TImode as a special case because it is used by some backends
2065 (eg. ARM) even though it is not available for normal use. */
2066 #if HOST_BITS_PER_WIDE_INT >= 64
2067 if (bits == TYPE_PRECISION (intTI_type_node))
2068 return intTI_type_node;
2069 #endif
2070 }
2071 else
2072 {
2073 if (bits == TYPE_PRECISION (unsigned_intQI_type_node))
2074 return unsigned_intQI_type_node;
2075 if (bits == TYPE_PRECISION (unsigned_intHI_type_node))
2076 return unsigned_intHI_type_node;
2077 if (bits == TYPE_PRECISION (unsigned_intSI_type_node))
2078 return unsigned_intSI_type_node;
2079 if (bits == TYPE_PRECISION (unsigned_intDI_type_node))
2080 return unsigned_intDI_type_node;
2081 if (bits == TYPE_PRECISION (unsigned_intTI_type_node))
2082 return unsigned_intTI_type_node;
2083 }
2084
2085 return NULL_TREE;
2086 }
2087
2088 /* Return a data type that has machine mode MODE. If the mode is an
2089 integer, then UNSIGNEDP selects between signed and unsigned types. */
2090
2091 tree
2092 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2093 {
2094 int i;
2095 tree *base;
2096
2097 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2098 base = gfc_real_types;
2099 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2100 base = gfc_complex_types;
2101 else if (SCALAR_INT_MODE_P (mode))
2102 return gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2103 else if (VECTOR_MODE_P (mode))
2104 {
2105 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2106 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2107 if (inner_type != NULL_TREE)
2108 return build_vector_type_for_mode (inner_type, mode);
2109 return NULL_TREE;
2110 }
2111 else
2112 return NULL_TREE;
2113
2114 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2115 {
2116 tree type = base[i];
2117 if (type && mode == TYPE_MODE (type))
2118 return type;
2119 }
2120
2121 return NULL_TREE;
2122 }
2123
2124 #include "gt-fortran-trans-types.h"
This page took 0.126857 seconds and 6 git commands to generate.