]> gcc.gnu.org Git - gcc.git/blob - gcc/fortran/expr.c
re PR fortran/34402 (Diagnose illegal initialization of derived type containing alloc...
[gcc.git] / gcc / fortran / expr.c
1 /* Routines for manipulation of expression nodes.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Andy Vaught
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "gfortran.h"
25 #include "arith.h"
26 #include "match.h"
27 #include "target-memory.h" /* for gfc_convert_boz */
28
29 /* Get a new expr node. */
30
31 gfc_expr *
32 gfc_get_expr (void)
33 {
34 gfc_expr *e;
35
36 e = XCNEW (gfc_expr);
37 gfc_clear_ts (&e->ts);
38 e->shape = NULL;
39 e->ref = NULL;
40 e->symtree = NULL;
41 e->con_by_offset = NULL;
42 return e;
43 }
44
45
46 /* Free an argument list and everything below it. */
47
48 void
49 gfc_free_actual_arglist (gfc_actual_arglist *a1)
50 {
51 gfc_actual_arglist *a2;
52
53 while (a1)
54 {
55 a2 = a1->next;
56 gfc_free_expr (a1->expr);
57 gfc_free (a1);
58 a1 = a2;
59 }
60 }
61
62
63 /* Copy an arglist structure and all of the arguments. */
64
65 gfc_actual_arglist *
66 gfc_copy_actual_arglist (gfc_actual_arglist *p)
67 {
68 gfc_actual_arglist *head, *tail, *new_arg;
69
70 head = tail = NULL;
71
72 for (; p; p = p->next)
73 {
74 new_arg = gfc_get_actual_arglist ();
75 *new_arg = *p;
76
77 new_arg->expr = gfc_copy_expr (p->expr);
78 new_arg->next = NULL;
79
80 if (head == NULL)
81 head = new_arg;
82 else
83 tail->next = new_arg;
84
85 tail = new_arg;
86 }
87
88 return head;
89 }
90
91
92 /* Free a list of reference structures. */
93
94 void
95 gfc_free_ref_list (gfc_ref *p)
96 {
97 gfc_ref *q;
98 int i;
99
100 for (; p; p = q)
101 {
102 q = p->next;
103
104 switch (p->type)
105 {
106 case REF_ARRAY:
107 for (i = 0; i < GFC_MAX_DIMENSIONS; i++)
108 {
109 gfc_free_expr (p->u.ar.start[i]);
110 gfc_free_expr (p->u.ar.end[i]);
111 gfc_free_expr (p->u.ar.stride[i]);
112 }
113
114 break;
115
116 case REF_SUBSTRING:
117 gfc_free_expr (p->u.ss.start);
118 gfc_free_expr (p->u.ss.end);
119 break;
120
121 case REF_COMPONENT:
122 break;
123 }
124
125 gfc_free (p);
126 }
127 }
128
129
130 /* Workhorse function for gfc_free_expr() that frees everything
131 beneath an expression node, but not the node itself. This is
132 useful when we want to simplify a node and replace it with
133 something else or the expression node belongs to another structure. */
134
135 static void
136 free_expr0 (gfc_expr *e)
137 {
138 int n;
139
140 switch (e->expr_type)
141 {
142 case EXPR_CONSTANT:
143 /* Free any parts of the value that need freeing. */
144 switch (e->ts.type)
145 {
146 case BT_INTEGER:
147 mpz_clear (e->value.integer);
148 break;
149
150 case BT_REAL:
151 mpfr_clear (e->value.real);
152 break;
153
154 case BT_CHARACTER:
155 gfc_free (e->value.character.string);
156 break;
157
158 case BT_COMPLEX:
159 mpc_clear (e->value.complex);
160 break;
161
162 default:
163 break;
164 }
165
166 /* Free the representation. */
167 if (e->representation.string)
168 gfc_free (e->representation.string);
169
170 break;
171
172 case EXPR_OP:
173 if (e->value.op.op1 != NULL)
174 gfc_free_expr (e->value.op.op1);
175 if (e->value.op.op2 != NULL)
176 gfc_free_expr (e->value.op.op2);
177 break;
178
179 case EXPR_FUNCTION:
180 gfc_free_actual_arglist (e->value.function.actual);
181 break;
182
183 case EXPR_COMPCALL:
184 case EXPR_PPC:
185 gfc_free_actual_arglist (e->value.compcall.actual);
186 break;
187
188 case EXPR_VARIABLE:
189 break;
190
191 case EXPR_ARRAY:
192 case EXPR_STRUCTURE:
193 gfc_free_constructor (e->value.constructor);
194 break;
195
196 case EXPR_SUBSTRING:
197 gfc_free (e->value.character.string);
198 break;
199
200 case EXPR_NULL:
201 break;
202
203 default:
204 gfc_internal_error ("free_expr0(): Bad expr type");
205 }
206
207 /* Free a shape array. */
208 if (e->shape != NULL)
209 {
210 for (n = 0; n < e->rank; n++)
211 mpz_clear (e->shape[n]);
212
213 gfc_free (e->shape);
214 }
215
216 gfc_free_ref_list (e->ref);
217
218 memset (e, '\0', sizeof (gfc_expr));
219 }
220
221
222 /* Free an expression node and everything beneath it. */
223
224 void
225 gfc_free_expr (gfc_expr *e)
226 {
227 if (e == NULL)
228 return;
229 if (e->con_by_offset)
230 splay_tree_delete (e->con_by_offset);
231 free_expr0 (e);
232 gfc_free (e);
233 }
234
235
236 /* Graft the *src expression onto the *dest subexpression. */
237
238 void
239 gfc_replace_expr (gfc_expr *dest, gfc_expr *src)
240 {
241 free_expr0 (dest);
242 *dest = *src;
243 gfc_free (src);
244 }
245
246
247 /* Try to extract an integer constant from the passed expression node.
248 Returns an error message or NULL if the result is set. It is
249 tempting to generate an error and return SUCCESS or FAILURE, but
250 failure is OK for some callers. */
251
252 const char *
253 gfc_extract_int (gfc_expr *expr, int *result)
254 {
255 if (expr->expr_type != EXPR_CONSTANT)
256 return _("Constant expression required at %C");
257
258 if (expr->ts.type != BT_INTEGER)
259 return _("Integer expression required at %C");
260
261 if ((mpz_cmp_si (expr->value.integer, INT_MAX) > 0)
262 || (mpz_cmp_si (expr->value.integer, INT_MIN) < 0))
263 {
264 return _("Integer value too large in expression at %C");
265 }
266
267 *result = (int) mpz_get_si (expr->value.integer);
268
269 return NULL;
270 }
271
272
273 /* Recursively copy a list of reference structures. */
274
275 gfc_ref *
276 gfc_copy_ref (gfc_ref *src)
277 {
278 gfc_array_ref *ar;
279 gfc_ref *dest;
280
281 if (src == NULL)
282 return NULL;
283
284 dest = gfc_get_ref ();
285 dest->type = src->type;
286
287 switch (src->type)
288 {
289 case REF_ARRAY:
290 ar = gfc_copy_array_ref (&src->u.ar);
291 dest->u.ar = *ar;
292 gfc_free (ar);
293 break;
294
295 case REF_COMPONENT:
296 dest->u.c = src->u.c;
297 break;
298
299 case REF_SUBSTRING:
300 dest->u.ss = src->u.ss;
301 dest->u.ss.start = gfc_copy_expr (src->u.ss.start);
302 dest->u.ss.end = gfc_copy_expr (src->u.ss.end);
303 break;
304 }
305
306 dest->next = gfc_copy_ref (src->next);
307
308 return dest;
309 }
310
311
312 /* Detect whether an expression has any vector index array references. */
313
314 int
315 gfc_has_vector_index (gfc_expr *e)
316 {
317 gfc_ref *ref;
318 int i;
319 for (ref = e->ref; ref; ref = ref->next)
320 if (ref->type == REF_ARRAY)
321 for (i = 0; i < ref->u.ar.dimen; i++)
322 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
323 return 1;
324 return 0;
325 }
326
327
328 /* Insert a reference to the component of the given name.
329 Only to be used with CLASS containers. */
330
331 void
332 gfc_add_component_ref (gfc_expr *e, const char *name)
333 {
334 gfc_ref **tail = &(e->ref);
335 gfc_ref *next = NULL;
336 gfc_symbol *derived = e->symtree->n.sym->ts.u.derived;
337 while (*tail != NULL)
338 {
339 if ((*tail)->type == REF_COMPONENT)
340 derived = (*tail)->u.c.component->ts.u.derived;
341 if ((*tail)->type == REF_ARRAY && (*tail)->next == NULL)
342 break;
343 tail = &((*tail)->next);
344 }
345 if (*tail != NULL && strcmp (name, "$data") == 0)
346 next = *tail;
347 (*tail) = gfc_get_ref();
348 (*tail)->next = next;
349 (*tail)->type = REF_COMPONENT;
350 (*tail)->u.c.sym = derived;
351 (*tail)->u.c.component = gfc_find_component (derived, name, true, true);
352 gcc_assert((*tail)->u.c.component);
353 if (!next)
354 e->ts = (*tail)->u.c.component->ts;
355 }
356
357
358 /* Copy a shape array. */
359
360 mpz_t *
361 gfc_copy_shape (mpz_t *shape, int rank)
362 {
363 mpz_t *new_shape;
364 int n;
365
366 if (shape == NULL)
367 return NULL;
368
369 new_shape = gfc_get_shape (rank);
370
371 for (n = 0; n < rank; n++)
372 mpz_init_set (new_shape[n], shape[n]);
373
374 return new_shape;
375 }
376
377
378 /* Copy a shape array excluding dimension N, where N is an integer
379 constant expression. Dimensions are numbered in fortran style --
380 starting with ONE.
381
382 So, if the original shape array contains R elements
383 { s1 ... sN-1 sN sN+1 ... sR-1 sR}
384 the result contains R-1 elements:
385 { s1 ... sN-1 sN+1 ... sR-1}
386
387 If anything goes wrong -- N is not a constant, its value is out
388 of range -- or anything else, just returns NULL. */
389
390 mpz_t *
391 gfc_copy_shape_excluding (mpz_t *shape, int rank, gfc_expr *dim)
392 {
393 mpz_t *new_shape, *s;
394 int i, n;
395
396 if (shape == NULL
397 || rank <= 1
398 || dim == NULL
399 || dim->expr_type != EXPR_CONSTANT
400 || dim->ts.type != BT_INTEGER)
401 return NULL;
402
403 n = mpz_get_si (dim->value.integer);
404 n--; /* Convert to zero based index. */
405 if (n < 0 || n >= rank)
406 return NULL;
407
408 s = new_shape = gfc_get_shape (rank - 1);
409
410 for (i = 0; i < rank; i++)
411 {
412 if (i == n)
413 continue;
414 mpz_init_set (*s, shape[i]);
415 s++;
416 }
417
418 return new_shape;
419 }
420
421
422 /* Given an expression pointer, return a copy of the expression. This
423 subroutine is recursive. */
424
425 gfc_expr *
426 gfc_copy_expr (gfc_expr *p)
427 {
428 gfc_expr *q;
429 gfc_char_t *s;
430 char *c;
431
432 if (p == NULL)
433 return NULL;
434
435 q = gfc_get_expr ();
436 *q = *p;
437
438 switch (q->expr_type)
439 {
440 case EXPR_SUBSTRING:
441 s = gfc_get_wide_string (p->value.character.length + 1);
442 q->value.character.string = s;
443 memcpy (s, p->value.character.string,
444 (p->value.character.length + 1) * sizeof (gfc_char_t));
445 break;
446
447 case EXPR_CONSTANT:
448 /* Copy target representation, if it exists. */
449 if (p->representation.string)
450 {
451 c = XCNEWVEC (char, p->representation.length + 1);
452 q->representation.string = c;
453 memcpy (c, p->representation.string, (p->representation.length + 1));
454 }
455
456 /* Copy the values of any pointer components of p->value. */
457 switch (q->ts.type)
458 {
459 case BT_INTEGER:
460 mpz_init_set (q->value.integer, p->value.integer);
461 break;
462
463 case BT_REAL:
464 gfc_set_model_kind (q->ts.kind);
465 mpfr_init (q->value.real);
466 mpfr_set (q->value.real, p->value.real, GFC_RND_MODE);
467 break;
468
469 case BT_COMPLEX:
470 gfc_set_model_kind (q->ts.kind);
471 mpc_init2 (q->value.complex, mpfr_get_default_prec());
472 mpc_set (q->value.complex, p->value.complex, GFC_MPC_RND_MODE);
473 break;
474
475 case BT_CHARACTER:
476 if (p->representation.string)
477 q->value.character.string
478 = gfc_char_to_widechar (q->representation.string);
479 else
480 {
481 s = gfc_get_wide_string (p->value.character.length + 1);
482 q->value.character.string = s;
483
484 /* This is the case for the C_NULL_CHAR named constant. */
485 if (p->value.character.length == 0
486 && (p->ts.is_c_interop || p->ts.is_iso_c))
487 {
488 *s = '\0';
489 /* Need to set the length to 1 to make sure the NUL
490 terminator is copied. */
491 q->value.character.length = 1;
492 }
493 else
494 memcpy (s, p->value.character.string,
495 (p->value.character.length + 1) * sizeof (gfc_char_t));
496 }
497 break;
498
499 case BT_HOLLERITH:
500 case BT_LOGICAL:
501 case BT_DERIVED:
502 case BT_CLASS:
503 break; /* Already done. */
504
505 case BT_PROCEDURE:
506 case BT_VOID:
507 /* Should never be reached. */
508 case BT_UNKNOWN:
509 gfc_internal_error ("gfc_copy_expr(): Bad expr node");
510 /* Not reached. */
511 }
512
513 break;
514
515 case EXPR_OP:
516 switch (q->value.op.op)
517 {
518 case INTRINSIC_NOT:
519 case INTRINSIC_PARENTHESES:
520 case INTRINSIC_UPLUS:
521 case INTRINSIC_UMINUS:
522 q->value.op.op1 = gfc_copy_expr (p->value.op.op1);
523 break;
524
525 default: /* Binary operators. */
526 q->value.op.op1 = gfc_copy_expr (p->value.op.op1);
527 q->value.op.op2 = gfc_copy_expr (p->value.op.op2);
528 break;
529 }
530
531 break;
532
533 case EXPR_FUNCTION:
534 q->value.function.actual =
535 gfc_copy_actual_arglist (p->value.function.actual);
536 break;
537
538 case EXPR_COMPCALL:
539 case EXPR_PPC:
540 q->value.compcall.actual =
541 gfc_copy_actual_arglist (p->value.compcall.actual);
542 q->value.compcall.tbp = p->value.compcall.tbp;
543 break;
544
545 case EXPR_STRUCTURE:
546 case EXPR_ARRAY:
547 q->value.constructor = gfc_copy_constructor (p->value.constructor);
548 break;
549
550 case EXPR_VARIABLE:
551 case EXPR_NULL:
552 break;
553 }
554
555 q->shape = gfc_copy_shape (p->shape, p->rank);
556
557 q->ref = gfc_copy_ref (p->ref);
558
559 return q;
560 }
561
562
563 /* Return the maximum kind of two expressions. In general, higher
564 kind numbers mean more precision for numeric types. */
565
566 int
567 gfc_kind_max (gfc_expr *e1, gfc_expr *e2)
568 {
569 return (e1->ts.kind > e2->ts.kind) ? e1->ts.kind : e2->ts.kind;
570 }
571
572
573 /* Returns nonzero if the type is numeric, zero otherwise. */
574
575 static int
576 numeric_type (bt type)
577 {
578 return type == BT_COMPLEX || type == BT_REAL || type == BT_INTEGER;
579 }
580
581
582 /* Returns nonzero if the typespec is a numeric type, zero otherwise. */
583
584 int
585 gfc_numeric_ts (gfc_typespec *ts)
586 {
587 return numeric_type (ts->type);
588 }
589
590
591 /* Returns an expression node that is an integer constant. */
592
593 gfc_expr *
594 gfc_int_expr (int i)
595 {
596 gfc_expr *p;
597
598 p = gfc_get_expr ();
599
600 p->expr_type = EXPR_CONSTANT;
601 p->ts.type = BT_INTEGER;
602 p->ts.kind = gfc_default_integer_kind;
603
604 p->where = gfc_current_locus;
605 mpz_init_set_si (p->value.integer, i);
606
607 return p;
608 }
609
610
611 /* Returns an expression node that is a logical constant. */
612
613 gfc_expr *
614 gfc_logical_expr (int i, locus *where)
615 {
616 gfc_expr *p;
617
618 p = gfc_get_expr ();
619
620 p->expr_type = EXPR_CONSTANT;
621 p->ts.type = BT_LOGICAL;
622 p->ts.kind = gfc_default_logical_kind;
623
624 if (where == NULL)
625 where = &gfc_current_locus;
626 p->where = *where;
627 p->value.logical = i;
628
629 return p;
630 }
631
632
633 /* Return an expression node with an optional argument list attached.
634 A variable number of gfc_expr pointers are strung together in an
635 argument list with a NULL pointer terminating the list. */
636
637 gfc_expr *
638 gfc_build_conversion (gfc_expr *e)
639 {
640 gfc_expr *p;
641
642 p = gfc_get_expr ();
643 p->expr_type = EXPR_FUNCTION;
644 p->symtree = NULL;
645 p->value.function.actual = NULL;
646
647 p->value.function.actual = gfc_get_actual_arglist ();
648 p->value.function.actual->expr = e;
649
650 return p;
651 }
652
653
654 /* Given an expression node with some sort of numeric binary
655 expression, insert type conversions required to make the operands
656 have the same type.
657
658 The exception is that the operands of an exponential don't have to
659 have the same type. If possible, the base is promoted to the type
660 of the exponent. For example, 1**2.3 becomes 1.0**2.3, but
661 1.0**2 stays as it is. */
662
663 void
664 gfc_type_convert_binary (gfc_expr *e)
665 {
666 gfc_expr *op1, *op2;
667
668 op1 = e->value.op.op1;
669 op2 = e->value.op.op2;
670
671 if (op1->ts.type == BT_UNKNOWN || op2->ts.type == BT_UNKNOWN)
672 {
673 gfc_clear_ts (&e->ts);
674 return;
675 }
676
677 /* Kind conversions of same type. */
678 if (op1->ts.type == op2->ts.type)
679 {
680 if (op1->ts.kind == op2->ts.kind)
681 {
682 /* No type conversions. */
683 e->ts = op1->ts;
684 goto done;
685 }
686
687 if (op1->ts.kind > op2->ts.kind)
688 gfc_convert_type (op2, &op1->ts, 2);
689 else
690 gfc_convert_type (op1, &op2->ts, 2);
691
692 e->ts = op1->ts;
693 goto done;
694 }
695
696 /* Integer combined with real or complex. */
697 if (op2->ts.type == BT_INTEGER)
698 {
699 e->ts = op1->ts;
700
701 /* Special case for ** operator. */
702 if (e->value.op.op == INTRINSIC_POWER)
703 goto done;
704
705 gfc_convert_type (e->value.op.op2, &e->ts, 2);
706 goto done;
707 }
708
709 if (op1->ts.type == BT_INTEGER)
710 {
711 e->ts = op2->ts;
712 gfc_convert_type (e->value.op.op1, &e->ts, 2);
713 goto done;
714 }
715
716 /* Real combined with complex. */
717 e->ts.type = BT_COMPLEX;
718 if (op1->ts.kind > op2->ts.kind)
719 e->ts.kind = op1->ts.kind;
720 else
721 e->ts.kind = op2->ts.kind;
722 if (op1->ts.type != BT_COMPLEX || op1->ts.kind != e->ts.kind)
723 gfc_convert_type (e->value.op.op1, &e->ts, 2);
724 if (op2->ts.type != BT_COMPLEX || op2->ts.kind != e->ts.kind)
725 gfc_convert_type (e->value.op.op2, &e->ts, 2);
726
727 done:
728 return;
729 }
730
731
732 static match
733 check_specification_function (gfc_expr *e)
734 {
735 gfc_symbol *sym;
736
737 if (!e->symtree)
738 return MATCH_NO;
739
740 sym = e->symtree->n.sym;
741
742 /* F95, 7.1.6.2; F2003, 7.1.7 */
743 if (sym
744 && sym->attr.function
745 && sym->attr.pure
746 && !sym->attr.intrinsic
747 && !sym->attr.recursive
748 && sym->attr.proc != PROC_INTERNAL
749 && sym->attr.proc != PROC_ST_FUNCTION
750 && sym->attr.proc != PROC_UNKNOWN
751 && sym->formal == NULL)
752 return MATCH_YES;
753
754 return MATCH_NO;
755 }
756
757 /* Function to determine if an expression is constant or not. This
758 function expects that the expression has already been simplified. */
759
760 int
761 gfc_is_constant_expr (gfc_expr *e)
762 {
763 gfc_constructor *c;
764 gfc_actual_arglist *arg;
765 int rv;
766
767 if (e == NULL)
768 return 1;
769
770 switch (e->expr_type)
771 {
772 case EXPR_OP:
773 rv = (gfc_is_constant_expr (e->value.op.op1)
774 && (e->value.op.op2 == NULL
775 || gfc_is_constant_expr (e->value.op.op2)));
776 break;
777
778 case EXPR_VARIABLE:
779 rv = 0;
780 break;
781
782 case EXPR_FUNCTION:
783 /* Specification functions are constant. */
784 if (check_specification_function (e) == MATCH_YES)
785 {
786 rv = 1;
787 break;
788 }
789
790 /* Call to intrinsic with at least one argument. */
791 rv = 0;
792 if (e->value.function.isym && e->value.function.actual)
793 {
794 for (arg = e->value.function.actual; arg; arg = arg->next)
795 {
796 if (!gfc_is_constant_expr (arg->expr))
797 break;
798 }
799 if (arg == NULL)
800 rv = 1;
801 }
802 break;
803
804 case EXPR_CONSTANT:
805 case EXPR_NULL:
806 rv = 1;
807 break;
808
809 case EXPR_SUBSTRING:
810 rv = e->ref == NULL || (gfc_is_constant_expr (e->ref->u.ss.start)
811 && gfc_is_constant_expr (e->ref->u.ss.end));
812 break;
813
814 case EXPR_STRUCTURE:
815 rv = 0;
816 for (c = e->value.constructor; c; c = c->next)
817 if (!gfc_is_constant_expr (c->expr))
818 break;
819
820 if (c == NULL)
821 rv = 1;
822 break;
823
824 case EXPR_ARRAY:
825 rv = gfc_constant_ac (e);
826 break;
827
828 default:
829 gfc_internal_error ("gfc_is_constant_expr(): Unknown expression type");
830 }
831
832 return rv;
833 }
834
835
836 /* Is true if an array reference is followed by a component or substring
837 reference. */
838 bool
839 is_subref_array (gfc_expr * e)
840 {
841 gfc_ref * ref;
842 bool seen_array;
843
844 if (e->expr_type != EXPR_VARIABLE)
845 return false;
846
847 if (e->symtree->n.sym->attr.subref_array_pointer)
848 return true;
849
850 seen_array = false;
851 for (ref = e->ref; ref; ref = ref->next)
852 {
853 if (ref->type == REF_ARRAY
854 && ref->u.ar.type != AR_ELEMENT)
855 seen_array = true;
856
857 if (seen_array
858 && ref->type != REF_ARRAY)
859 return seen_array;
860 }
861 return false;
862 }
863
864
865 /* Try to collapse intrinsic expressions. */
866
867 static gfc_try
868 simplify_intrinsic_op (gfc_expr *p, int type)
869 {
870 gfc_intrinsic_op op;
871 gfc_expr *op1, *op2, *result;
872
873 if (p->value.op.op == INTRINSIC_USER)
874 return SUCCESS;
875
876 op1 = p->value.op.op1;
877 op2 = p->value.op.op2;
878 op = p->value.op.op;
879
880 if (gfc_simplify_expr (op1, type) == FAILURE)
881 return FAILURE;
882 if (gfc_simplify_expr (op2, type) == FAILURE)
883 return FAILURE;
884
885 if (!gfc_is_constant_expr (op1)
886 || (op2 != NULL && !gfc_is_constant_expr (op2)))
887 return SUCCESS;
888
889 /* Rip p apart. */
890 p->value.op.op1 = NULL;
891 p->value.op.op2 = NULL;
892
893 switch (op)
894 {
895 case INTRINSIC_PARENTHESES:
896 result = gfc_parentheses (op1);
897 break;
898
899 case INTRINSIC_UPLUS:
900 result = gfc_uplus (op1);
901 break;
902
903 case INTRINSIC_UMINUS:
904 result = gfc_uminus (op1);
905 break;
906
907 case INTRINSIC_PLUS:
908 result = gfc_add (op1, op2);
909 break;
910
911 case INTRINSIC_MINUS:
912 result = gfc_subtract (op1, op2);
913 break;
914
915 case INTRINSIC_TIMES:
916 result = gfc_multiply (op1, op2);
917 break;
918
919 case INTRINSIC_DIVIDE:
920 result = gfc_divide (op1, op2);
921 break;
922
923 case INTRINSIC_POWER:
924 result = gfc_power (op1, op2);
925 break;
926
927 case INTRINSIC_CONCAT:
928 result = gfc_concat (op1, op2);
929 break;
930
931 case INTRINSIC_EQ:
932 case INTRINSIC_EQ_OS:
933 result = gfc_eq (op1, op2, op);
934 break;
935
936 case INTRINSIC_NE:
937 case INTRINSIC_NE_OS:
938 result = gfc_ne (op1, op2, op);
939 break;
940
941 case INTRINSIC_GT:
942 case INTRINSIC_GT_OS:
943 result = gfc_gt (op1, op2, op);
944 break;
945
946 case INTRINSIC_GE:
947 case INTRINSIC_GE_OS:
948 result = gfc_ge (op1, op2, op);
949 break;
950
951 case INTRINSIC_LT:
952 case INTRINSIC_LT_OS:
953 result = gfc_lt (op1, op2, op);
954 break;
955
956 case INTRINSIC_LE:
957 case INTRINSIC_LE_OS:
958 result = gfc_le (op1, op2, op);
959 break;
960
961 case INTRINSIC_NOT:
962 result = gfc_not (op1);
963 break;
964
965 case INTRINSIC_AND:
966 result = gfc_and (op1, op2);
967 break;
968
969 case INTRINSIC_OR:
970 result = gfc_or (op1, op2);
971 break;
972
973 case INTRINSIC_EQV:
974 result = gfc_eqv (op1, op2);
975 break;
976
977 case INTRINSIC_NEQV:
978 result = gfc_neqv (op1, op2);
979 break;
980
981 default:
982 gfc_internal_error ("simplify_intrinsic_op(): Bad operator");
983 }
984
985 if (result == NULL)
986 {
987 gfc_free_expr (op1);
988 gfc_free_expr (op2);
989 return FAILURE;
990 }
991
992 result->rank = p->rank;
993 result->where = p->where;
994 gfc_replace_expr (p, result);
995
996 return SUCCESS;
997 }
998
999
1000 /* Subroutine to simplify constructor expressions. Mutually recursive
1001 with gfc_simplify_expr(). */
1002
1003 static gfc_try
1004 simplify_constructor (gfc_constructor *c, int type)
1005 {
1006 gfc_expr *p;
1007
1008 for (; c; c = c->next)
1009 {
1010 if (c->iterator
1011 && (gfc_simplify_expr (c->iterator->start, type) == FAILURE
1012 || gfc_simplify_expr (c->iterator->end, type) == FAILURE
1013 || gfc_simplify_expr (c->iterator->step, type) == FAILURE))
1014 return FAILURE;
1015
1016 if (c->expr)
1017 {
1018 /* Try and simplify a copy. Replace the original if successful
1019 but keep going through the constructor at all costs. Not
1020 doing so can make a dog's dinner of complicated things. */
1021 p = gfc_copy_expr (c->expr);
1022
1023 if (gfc_simplify_expr (p, type) == FAILURE)
1024 {
1025 gfc_free_expr (p);
1026 continue;
1027 }
1028
1029 gfc_replace_expr (c->expr, p);
1030 }
1031 }
1032
1033 return SUCCESS;
1034 }
1035
1036
1037 /* Pull a single array element out of an array constructor. */
1038
1039 static gfc_try
1040 find_array_element (gfc_constructor *cons, gfc_array_ref *ar,
1041 gfc_constructor **rval)
1042 {
1043 unsigned long nelemen;
1044 int i;
1045 mpz_t delta;
1046 mpz_t offset;
1047 mpz_t span;
1048 mpz_t tmp;
1049 gfc_expr *e;
1050 gfc_try t;
1051
1052 t = SUCCESS;
1053 e = NULL;
1054
1055 mpz_init_set_ui (offset, 0);
1056 mpz_init (delta);
1057 mpz_init (tmp);
1058 mpz_init_set_ui (span, 1);
1059 for (i = 0; i < ar->dimen; i++)
1060 {
1061 if (gfc_reduce_init_expr (ar->as->lower[i]) == FAILURE
1062 || gfc_reduce_init_expr (ar->as->upper[i]) == FAILURE)
1063 {
1064 t = FAILURE;
1065 cons = NULL;
1066 goto depart;
1067 }
1068
1069 e = gfc_copy_expr (ar->start[i]);
1070 if (e->expr_type != EXPR_CONSTANT)
1071 {
1072 cons = NULL;
1073 goto depart;
1074 }
1075
1076 gcc_assert (ar->as->upper[i]->expr_type == EXPR_CONSTANT
1077 && ar->as->lower[i]->expr_type == EXPR_CONSTANT);
1078
1079 /* Check the bounds. */
1080 if ((ar->as->upper[i]
1081 && mpz_cmp (e->value.integer,
1082 ar->as->upper[i]->value.integer) > 0)
1083 || (mpz_cmp (e->value.integer,
1084 ar->as->lower[i]->value.integer) < 0))
1085 {
1086 gfc_error ("Index in dimension %d is out of bounds "
1087 "at %L", i + 1, &ar->c_where[i]);
1088 cons = NULL;
1089 t = FAILURE;
1090 goto depart;
1091 }
1092
1093 mpz_sub (delta, e->value.integer, ar->as->lower[i]->value.integer);
1094 mpz_mul (delta, delta, span);
1095 mpz_add (offset, offset, delta);
1096
1097 mpz_set_ui (tmp, 1);
1098 mpz_add (tmp, tmp, ar->as->upper[i]->value.integer);
1099 mpz_sub (tmp, tmp, ar->as->lower[i]->value.integer);
1100 mpz_mul (span, span, tmp);
1101 }
1102
1103 for (nelemen = mpz_get_ui (offset); nelemen > 0; nelemen--)
1104 {
1105 if (cons)
1106 {
1107 if (cons->iterator)
1108 {
1109 cons = NULL;
1110 goto depart;
1111 }
1112 cons = cons->next;
1113 }
1114 }
1115
1116 depart:
1117 mpz_clear (delta);
1118 mpz_clear (offset);
1119 mpz_clear (span);
1120 mpz_clear (tmp);
1121 if (e)
1122 gfc_free_expr (e);
1123 *rval = cons;
1124 return t;
1125 }
1126
1127
1128 /* Find a component of a structure constructor. */
1129
1130 static gfc_constructor *
1131 find_component_ref (gfc_constructor *cons, gfc_ref *ref)
1132 {
1133 gfc_component *comp;
1134 gfc_component *pick;
1135
1136 comp = ref->u.c.sym->components;
1137 pick = ref->u.c.component;
1138 while (comp != pick)
1139 {
1140 comp = comp->next;
1141 cons = cons->next;
1142 }
1143
1144 return cons;
1145 }
1146
1147
1148 /* Replace an expression with the contents of a constructor, removing
1149 the subobject reference in the process. */
1150
1151 static void
1152 remove_subobject_ref (gfc_expr *p, gfc_constructor *cons)
1153 {
1154 gfc_expr *e;
1155
1156 e = cons->expr;
1157 cons->expr = NULL;
1158 e->ref = p->ref->next;
1159 p->ref->next = NULL;
1160 gfc_replace_expr (p, e);
1161 }
1162
1163
1164 /* Pull an array section out of an array constructor. */
1165
1166 static gfc_try
1167 find_array_section (gfc_expr *expr, gfc_ref *ref)
1168 {
1169 int idx;
1170 int rank;
1171 int d;
1172 int shape_i;
1173 long unsigned one = 1;
1174 bool incr_ctr;
1175 mpz_t start[GFC_MAX_DIMENSIONS];
1176 mpz_t end[GFC_MAX_DIMENSIONS];
1177 mpz_t stride[GFC_MAX_DIMENSIONS];
1178 mpz_t delta[GFC_MAX_DIMENSIONS];
1179 mpz_t ctr[GFC_MAX_DIMENSIONS];
1180 mpz_t delta_mpz;
1181 mpz_t tmp_mpz;
1182 mpz_t nelts;
1183 mpz_t ptr;
1184 mpz_t index;
1185 gfc_constructor *cons;
1186 gfc_constructor *base;
1187 gfc_expr *begin;
1188 gfc_expr *finish;
1189 gfc_expr *step;
1190 gfc_expr *upper;
1191 gfc_expr *lower;
1192 gfc_constructor *vecsub[GFC_MAX_DIMENSIONS], *c;
1193 gfc_try t;
1194
1195 t = SUCCESS;
1196
1197 base = expr->value.constructor;
1198 expr->value.constructor = NULL;
1199
1200 rank = ref->u.ar.as->rank;
1201
1202 if (expr->shape == NULL)
1203 expr->shape = gfc_get_shape (rank);
1204
1205 mpz_init_set_ui (delta_mpz, one);
1206 mpz_init_set_ui (nelts, one);
1207 mpz_init (tmp_mpz);
1208
1209 /* Do the initialization now, so that we can cleanup without
1210 keeping track of where we were. */
1211 for (d = 0; d < rank; d++)
1212 {
1213 mpz_init (delta[d]);
1214 mpz_init (start[d]);
1215 mpz_init (end[d]);
1216 mpz_init (ctr[d]);
1217 mpz_init (stride[d]);
1218 vecsub[d] = NULL;
1219 }
1220
1221 /* Build the counters to clock through the array reference. */
1222 shape_i = 0;
1223 for (d = 0; d < rank; d++)
1224 {
1225 /* Make this stretch of code easier on the eye! */
1226 begin = ref->u.ar.start[d];
1227 finish = ref->u.ar.end[d];
1228 step = ref->u.ar.stride[d];
1229 lower = ref->u.ar.as->lower[d];
1230 upper = ref->u.ar.as->upper[d];
1231
1232 if (ref->u.ar.dimen_type[d] == DIMEN_VECTOR) /* Vector subscript. */
1233 {
1234 gcc_assert (begin);
1235
1236 if (begin->expr_type != EXPR_ARRAY || !gfc_is_constant_expr (begin))
1237 {
1238 t = FAILURE;
1239 goto cleanup;
1240 }
1241
1242 gcc_assert (begin->rank == 1);
1243 /* Zero-sized arrays have no shape and no elements, stop early. */
1244 if (!begin->shape)
1245 {
1246 mpz_init_set_ui (nelts, 0);
1247 break;
1248 }
1249
1250 vecsub[d] = begin->value.constructor;
1251 mpz_set (ctr[d], vecsub[d]->expr->value.integer);
1252 mpz_mul (nelts, nelts, begin->shape[0]);
1253 mpz_set (expr->shape[shape_i++], begin->shape[0]);
1254
1255 /* Check bounds. */
1256 for (c = vecsub[d]; c; c = c->next)
1257 {
1258 if (mpz_cmp (c->expr->value.integer, upper->value.integer) > 0
1259 || mpz_cmp (c->expr->value.integer,
1260 lower->value.integer) < 0)
1261 {
1262 gfc_error ("index in dimension %d is out of bounds "
1263 "at %L", d + 1, &ref->u.ar.c_where[d]);
1264 t = FAILURE;
1265 goto cleanup;
1266 }
1267 }
1268 }
1269 else
1270 {
1271 if ((begin && begin->expr_type != EXPR_CONSTANT)
1272 || (finish && finish->expr_type != EXPR_CONSTANT)
1273 || (step && step->expr_type != EXPR_CONSTANT))
1274 {
1275 t = FAILURE;
1276 goto cleanup;
1277 }
1278
1279 /* Obtain the stride. */
1280 if (step)
1281 mpz_set (stride[d], step->value.integer);
1282 else
1283 mpz_set_ui (stride[d], one);
1284
1285 if (mpz_cmp_ui (stride[d], 0) == 0)
1286 mpz_set_ui (stride[d], one);
1287
1288 /* Obtain the start value for the index. */
1289 if (begin)
1290 mpz_set (start[d], begin->value.integer);
1291 else
1292 mpz_set (start[d], lower->value.integer);
1293
1294 mpz_set (ctr[d], start[d]);
1295
1296 /* Obtain the end value for the index. */
1297 if (finish)
1298 mpz_set (end[d], finish->value.integer);
1299 else
1300 mpz_set (end[d], upper->value.integer);
1301
1302 /* Separate 'if' because elements sometimes arrive with
1303 non-null end. */
1304 if (ref->u.ar.dimen_type[d] == DIMEN_ELEMENT)
1305 mpz_set (end [d], begin->value.integer);
1306
1307 /* Check the bounds. */
1308 if (mpz_cmp (ctr[d], upper->value.integer) > 0
1309 || mpz_cmp (end[d], upper->value.integer) > 0
1310 || mpz_cmp (ctr[d], lower->value.integer) < 0
1311 || mpz_cmp (end[d], lower->value.integer) < 0)
1312 {
1313 gfc_error ("index in dimension %d is out of bounds "
1314 "at %L", d + 1, &ref->u.ar.c_where[d]);
1315 t = FAILURE;
1316 goto cleanup;
1317 }
1318
1319 /* Calculate the number of elements and the shape. */
1320 mpz_set (tmp_mpz, stride[d]);
1321 mpz_add (tmp_mpz, end[d], tmp_mpz);
1322 mpz_sub (tmp_mpz, tmp_mpz, ctr[d]);
1323 mpz_div (tmp_mpz, tmp_mpz, stride[d]);
1324 mpz_mul (nelts, nelts, tmp_mpz);
1325
1326 /* An element reference reduces the rank of the expression; don't
1327 add anything to the shape array. */
1328 if (ref->u.ar.dimen_type[d] != DIMEN_ELEMENT)
1329 mpz_set (expr->shape[shape_i++], tmp_mpz);
1330 }
1331
1332 /* Calculate the 'stride' (=delta) for conversion of the
1333 counter values into the index along the constructor. */
1334 mpz_set (delta[d], delta_mpz);
1335 mpz_sub (tmp_mpz, upper->value.integer, lower->value.integer);
1336 mpz_add_ui (tmp_mpz, tmp_mpz, one);
1337 mpz_mul (delta_mpz, delta_mpz, tmp_mpz);
1338 }
1339
1340 mpz_init (index);
1341 mpz_init (ptr);
1342 cons = base;
1343
1344 /* Now clock through the array reference, calculating the index in
1345 the source constructor and transferring the elements to the new
1346 constructor. */
1347 for (idx = 0; idx < (int) mpz_get_si (nelts); idx++)
1348 {
1349 if (ref->u.ar.offset)
1350 mpz_set (ptr, ref->u.ar.offset->value.integer);
1351 else
1352 mpz_init_set_ui (ptr, 0);
1353
1354 incr_ctr = true;
1355 for (d = 0; d < rank; d++)
1356 {
1357 mpz_set (tmp_mpz, ctr[d]);
1358 mpz_sub (tmp_mpz, tmp_mpz, ref->u.ar.as->lower[d]->value.integer);
1359 mpz_mul (tmp_mpz, tmp_mpz, delta[d]);
1360 mpz_add (ptr, ptr, tmp_mpz);
1361
1362 if (!incr_ctr) continue;
1363
1364 if (ref->u.ar.dimen_type[d] == DIMEN_VECTOR) /* Vector subscript. */
1365 {
1366 gcc_assert(vecsub[d]);
1367
1368 if (!vecsub[d]->next)
1369 vecsub[d] = ref->u.ar.start[d]->value.constructor;
1370 else
1371 {
1372 vecsub[d] = vecsub[d]->next;
1373 incr_ctr = false;
1374 }
1375 mpz_set (ctr[d], vecsub[d]->expr->value.integer);
1376 }
1377 else
1378 {
1379 mpz_add (ctr[d], ctr[d], stride[d]);
1380
1381 if (mpz_cmp_ui (stride[d], 0) > 0
1382 ? mpz_cmp (ctr[d], end[d]) > 0
1383 : mpz_cmp (ctr[d], end[d]) < 0)
1384 mpz_set (ctr[d], start[d]);
1385 else
1386 incr_ctr = false;
1387 }
1388 }
1389
1390 /* There must be a better way of dealing with negative strides
1391 than resetting the index and the constructor pointer! */
1392 if (mpz_cmp (ptr, index) < 0)
1393 {
1394 mpz_set_ui (index, 0);
1395 cons = base;
1396 }
1397
1398 while (cons && cons->next && mpz_cmp (ptr, index) > 0)
1399 {
1400 mpz_add_ui (index, index, one);
1401 cons = cons->next;
1402 }
1403
1404 gfc_append_constructor (expr, gfc_copy_expr (cons->expr));
1405 }
1406
1407 mpz_clear (ptr);
1408 mpz_clear (index);
1409
1410 cleanup:
1411
1412 mpz_clear (delta_mpz);
1413 mpz_clear (tmp_mpz);
1414 mpz_clear (nelts);
1415 for (d = 0; d < rank; d++)
1416 {
1417 mpz_clear (delta[d]);
1418 mpz_clear (start[d]);
1419 mpz_clear (end[d]);
1420 mpz_clear (ctr[d]);
1421 mpz_clear (stride[d]);
1422 }
1423 gfc_free_constructor (base);
1424 return t;
1425 }
1426
1427 /* Pull a substring out of an expression. */
1428
1429 static gfc_try
1430 find_substring_ref (gfc_expr *p, gfc_expr **newp)
1431 {
1432 int end;
1433 int start;
1434 int length;
1435 gfc_char_t *chr;
1436
1437 if (p->ref->u.ss.start->expr_type != EXPR_CONSTANT
1438 || p->ref->u.ss.end->expr_type != EXPR_CONSTANT)
1439 return FAILURE;
1440
1441 *newp = gfc_copy_expr (p);
1442 gfc_free ((*newp)->value.character.string);
1443
1444 end = (int) mpz_get_ui (p->ref->u.ss.end->value.integer);
1445 start = (int) mpz_get_ui (p->ref->u.ss.start->value.integer);
1446 length = end - start + 1;
1447
1448 chr = (*newp)->value.character.string = gfc_get_wide_string (length + 1);
1449 (*newp)->value.character.length = length;
1450 memcpy (chr, &p->value.character.string[start - 1],
1451 length * sizeof (gfc_char_t));
1452 chr[length] = '\0';
1453 return SUCCESS;
1454 }
1455
1456
1457
1458 /* Simplify a subobject reference of a constructor. This occurs when
1459 parameter variable values are substituted. */
1460
1461 static gfc_try
1462 simplify_const_ref (gfc_expr *p)
1463 {
1464 gfc_constructor *cons;
1465 gfc_expr *newp;
1466
1467 while (p->ref)
1468 {
1469 switch (p->ref->type)
1470 {
1471 case REF_ARRAY:
1472 switch (p->ref->u.ar.type)
1473 {
1474 case AR_ELEMENT:
1475 if (find_array_element (p->value.constructor, &p->ref->u.ar,
1476 &cons) == FAILURE)
1477 return FAILURE;
1478
1479 if (!cons)
1480 return SUCCESS;
1481
1482 remove_subobject_ref (p, cons);
1483 break;
1484
1485 case AR_SECTION:
1486 if (find_array_section (p, p->ref) == FAILURE)
1487 return FAILURE;
1488 p->ref->u.ar.type = AR_FULL;
1489
1490 /* Fall through. */
1491
1492 case AR_FULL:
1493 if (p->ref->next != NULL
1494 && (p->ts.type == BT_CHARACTER || p->ts.type == BT_DERIVED))
1495 {
1496 cons = p->value.constructor;
1497 for (; cons; cons = cons->next)
1498 {
1499 cons->expr->ref = gfc_copy_ref (p->ref->next);
1500 if (simplify_const_ref (cons->expr) == FAILURE)
1501 return FAILURE;
1502 }
1503
1504 /* If this is a CHARACTER array and we possibly took a
1505 substring out of it, update the type-spec's character
1506 length according to the first element (as all should have
1507 the same length). */
1508 if (p->ts.type == BT_CHARACTER)
1509 {
1510 int string_len;
1511
1512 gcc_assert (p->ref->next);
1513 gcc_assert (!p->ref->next->next);
1514 gcc_assert (p->ref->next->type == REF_SUBSTRING);
1515
1516 if (p->value.constructor)
1517 {
1518 const gfc_expr* first = p->value.constructor->expr;
1519 gcc_assert (first->expr_type == EXPR_CONSTANT);
1520 gcc_assert (first->ts.type == BT_CHARACTER);
1521 string_len = first->value.character.length;
1522 }
1523 else
1524 string_len = 0;
1525
1526 if (!p->ts.u.cl)
1527 p->ts.u.cl = gfc_new_charlen (p->symtree->n.sym->ns,
1528 NULL);
1529 else
1530 gfc_free_expr (p->ts.u.cl->length);
1531
1532 p->ts.u.cl->length = gfc_int_expr (string_len);
1533 }
1534 }
1535 gfc_free_ref_list (p->ref);
1536 p->ref = NULL;
1537 break;
1538
1539 default:
1540 return SUCCESS;
1541 }
1542
1543 break;
1544
1545 case REF_COMPONENT:
1546 cons = find_component_ref (p->value.constructor, p->ref);
1547 remove_subobject_ref (p, cons);
1548 break;
1549
1550 case REF_SUBSTRING:
1551 if (find_substring_ref (p, &newp) == FAILURE)
1552 return FAILURE;
1553
1554 gfc_replace_expr (p, newp);
1555 gfc_free_ref_list (p->ref);
1556 p->ref = NULL;
1557 break;
1558 }
1559 }
1560
1561 return SUCCESS;
1562 }
1563
1564
1565 /* Simplify a chain of references. */
1566
1567 static gfc_try
1568 simplify_ref_chain (gfc_ref *ref, int type)
1569 {
1570 int n;
1571
1572 for (; ref; ref = ref->next)
1573 {
1574 switch (ref->type)
1575 {
1576 case REF_ARRAY:
1577 for (n = 0; n < ref->u.ar.dimen; n++)
1578 {
1579 if (gfc_simplify_expr (ref->u.ar.start[n], type) == FAILURE)
1580 return FAILURE;
1581 if (gfc_simplify_expr (ref->u.ar.end[n], type) == FAILURE)
1582 return FAILURE;
1583 if (gfc_simplify_expr (ref->u.ar.stride[n], type) == FAILURE)
1584 return FAILURE;
1585 }
1586 break;
1587
1588 case REF_SUBSTRING:
1589 if (gfc_simplify_expr (ref->u.ss.start, type) == FAILURE)
1590 return FAILURE;
1591 if (gfc_simplify_expr (ref->u.ss.end, type) == FAILURE)
1592 return FAILURE;
1593 break;
1594
1595 default:
1596 break;
1597 }
1598 }
1599 return SUCCESS;
1600 }
1601
1602
1603 /* Try to substitute the value of a parameter variable. */
1604
1605 static gfc_try
1606 simplify_parameter_variable (gfc_expr *p, int type)
1607 {
1608 gfc_expr *e;
1609 gfc_try t;
1610
1611 e = gfc_copy_expr (p->symtree->n.sym->value);
1612 if (e == NULL)
1613 return FAILURE;
1614
1615 e->rank = p->rank;
1616
1617 /* Do not copy subobject refs for constant. */
1618 if (e->expr_type != EXPR_CONSTANT && p->ref != NULL)
1619 e->ref = gfc_copy_ref (p->ref);
1620 t = gfc_simplify_expr (e, type);
1621
1622 /* Only use the simplification if it eliminated all subobject references. */
1623 if (t == SUCCESS && !e->ref)
1624 gfc_replace_expr (p, e);
1625 else
1626 gfc_free_expr (e);
1627
1628 return t;
1629 }
1630
1631 /* Given an expression, simplify it by collapsing constant
1632 expressions. Most simplification takes place when the expression
1633 tree is being constructed. If an intrinsic function is simplified
1634 at some point, we get called again to collapse the result against
1635 other constants.
1636
1637 We work by recursively simplifying expression nodes, simplifying
1638 intrinsic functions where possible, which can lead to further
1639 constant collapsing. If an operator has constant operand(s), we
1640 rip the expression apart, and rebuild it, hoping that it becomes
1641 something simpler.
1642
1643 The expression type is defined for:
1644 0 Basic expression parsing
1645 1 Simplifying array constructors -- will substitute
1646 iterator values.
1647 Returns FAILURE on error, SUCCESS otherwise.
1648 NOTE: Will return SUCCESS even if the expression can not be simplified. */
1649
1650 gfc_try
1651 gfc_simplify_expr (gfc_expr *p, int type)
1652 {
1653 gfc_actual_arglist *ap;
1654
1655 if (p == NULL)
1656 return SUCCESS;
1657
1658 switch (p->expr_type)
1659 {
1660 case EXPR_CONSTANT:
1661 case EXPR_NULL:
1662 break;
1663
1664 case EXPR_FUNCTION:
1665 for (ap = p->value.function.actual; ap; ap = ap->next)
1666 if (gfc_simplify_expr (ap->expr, type) == FAILURE)
1667 return FAILURE;
1668
1669 if (p->value.function.isym != NULL
1670 && gfc_intrinsic_func_interface (p, 1) == MATCH_ERROR)
1671 return FAILURE;
1672
1673 break;
1674
1675 case EXPR_SUBSTRING:
1676 if (simplify_ref_chain (p->ref, type) == FAILURE)
1677 return FAILURE;
1678
1679 if (gfc_is_constant_expr (p))
1680 {
1681 gfc_char_t *s;
1682 int start, end;
1683
1684 start = 0;
1685 if (p->ref && p->ref->u.ss.start)
1686 {
1687 gfc_extract_int (p->ref->u.ss.start, &start);
1688 start--; /* Convert from one-based to zero-based. */
1689 }
1690
1691 end = p->value.character.length;
1692 if (p->ref && p->ref->u.ss.end)
1693 gfc_extract_int (p->ref->u.ss.end, &end);
1694
1695 s = gfc_get_wide_string (end - start + 2);
1696 memcpy (s, p->value.character.string + start,
1697 (end - start) * sizeof (gfc_char_t));
1698 s[end - start + 1] = '\0'; /* TODO: C-style string. */
1699 gfc_free (p->value.character.string);
1700 p->value.character.string = s;
1701 p->value.character.length = end - start;
1702 p->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
1703 p->ts.u.cl->length = gfc_int_expr (p->value.character.length);
1704 gfc_free_ref_list (p->ref);
1705 p->ref = NULL;
1706 p->expr_type = EXPR_CONSTANT;
1707 }
1708 break;
1709
1710 case EXPR_OP:
1711 if (simplify_intrinsic_op (p, type) == FAILURE)
1712 return FAILURE;
1713 break;
1714
1715 case EXPR_VARIABLE:
1716 /* Only substitute array parameter variables if we are in an
1717 initialization expression, or we want a subsection. */
1718 if (p->symtree->n.sym->attr.flavor == FL_PARAMETER
1719 && (gfc_init_expr || p->ref
1720 || p->symtree->n.sym->value->expr_type != EXPR_ARRAY))
1721 {
1722 if (simplify_parameter_variable (p, type) == FAILURE)
1723 return FAILURE;
1724 break;
1725 }
1726
1727 if (type == 1)
1728 {
1729 gfc_simplify_iterator_var (p);
1730 }
1731
1732 /* Simplify subcomponent references. */
1733 if (simplify_ref_chain (p->ref, type) == FAILURE)
1734 return FAILURE;
1735
1736 break;
1737
1738 case EXPR_STRUCTURE:
1739 case EXPR_ARRAY:
1740 if (simplify_ref_chain (p->ref, type) == FAILURE)
1741 return FAILURE;
1742
1743 if (simplify_constructor (p->value.constructor, type) == FAILURE)
1744 return FAILURE;
1745
1746 if (p->expr_type == EXPR_ARRAY && p->ref && p->ref->type == REF_ARRAY
1747 && p->ref->u.ar.type == AR_FULL)
1748 gfc_expand_constructor (p);
1749
1750 if (simplify_const_ref (p) == FAILURE)
1751 return FAILURE;
1752
1753 break;
1754
1755 case EXPR_COMPCALL:
1756 case EXPR_PPC:
1757 gcc_unreachable ();
1758 break;
1759 }
1760
1761 return SUCCESS;
1762 }
1763
1764
1765 /* Returns the type of an expression with the exception that iterator
1766 variables are automatically integers no matter what else they may
1767 be declared as. */
1768
1769 static bt
1770 et0 (gfc_expr *e)
1771 {
1772 if (e->expr_type == EXPR_VARIABLE && gfc_check_iter_variable (e) == SUCCESS)
1773 return BT_INTEGER;
1774
1775 return e->ts.type;
1776 }
1777
1778
1779 /* Check an intrinsic arithmetic operation to see if it is consistent
1780 with some type of expression. */
1781
1782 static gfc_try check_init_expr (gfc_expr *);
1783
1784
1785 /* Scalarize an expression for an elemental intrinsic call. */
1786
1787 static gfc_try
1788 scalarize_intrinsic_call (gfc_expr *e)
1789 {
1790 gfc_actual_arglist *a, *b;
1791 gfc_constructor *args[5], *ctor, *new_ctor;
1792 gfc_expr *expr, *old;
1793 int n, i, rank[5], array_arg;
1794
1795 /* Find which, if any, arguments are arrays. Assume that the old
1796 expression carries the type information and that the first arg
1797 that is an array expression carries all the shape information.*/
1798 n = array_arg = 0;
1799 a = e->value.function.actual;
1800 for (; a; a = a->next)
1801 {
1802 n++;
1803 if (a->expr->expr_type != EXPR_ARRAY)
1804 continue;
1805 array_arg = n;
1806 expr = gfc_copy_expr (a->expr);
1807 break;
1808 }
1809
1810 if (!array_arg)
1811 return FAILURE;
1812
1813 old = gfc_copy_expr (e);
1814
1815 gfc_free_constructor (expr->value.constructor);
1816 expr->value.constructor = NULL;
1817
1818 expr->ts = old->ts;
1819 expr->where = old->where;
1820 expr->expr_type = EXPR_ARRAY;
1821
1822 /* Copy the array argument constructors into an array, with nulls
1823 for the scalars. */
1824 n = 0;
1825 a = old->value.function.actual;
1826 for (; a; a = a->next)
1827 {
1828 /* Check that this is OK for an initialization expression. */
1829 if (a->expr && check_init_expr (a->expr) == FAILURE)
1830 goto cleanup;
1831
1832 rank[n] = 0;
1833 if (a->expr && a->expr->rank && a->expr->expr_type == EXPR_VARIABLE)
1834 {
1835 rank[n] = a->expr->rank;
1836 ctor = a->expr->symtree->n.sym->value->value.constructor;
1837 args[n] = gfc_copy_constructor (ctor);
1838 }
1839 else if (a->expr && a->expr->expr_type == EXPR_ARRAY)
1840 {
1841 if (a->expr->rank)
1842 rank[n] = a->expr->rank;
1843 else
1844 rank[n] = 1;
1845 args[n] = gfc_copy_constructor (a->expr->value.constructor);
1846 }
1847 else
1848 args[n] = NULL;
1849 n++;
1850 }
1851
1852
1853 /* Using the array argument as the master, step through the array
1854 calling the function for each element and advancing the array
1855 constructors together. */
1856 ctor = args[array_arg - 1];
1857 new_ctor = NULL;
1858 for (; ctor; ctor = ctor->next)
1859 {
1860 if (expr->value.constructor == NULL)
1861 expr->value.constructor
1862 = new_ctor = gfc_get_constructor ();
1863 else
1864 {
1865 new_ctor->next = gfc_get_constructor ();
1866 new_ctor = new_ctor->next;
1867 }
1868 new_ctor->expr = gfc_copy_expr (old);
1869 gfc_free_actual_arglist (new_ctor->expr->value.function.actual);
1870 a = NULL;
1871 b = old->value.function.actual;
1872 for (i = 0; i < n; i++)
1873 {
1874 if (a == NULL)
1875 new_ctor->expr->value.function.actual
1876 = a = gfc_get_actual_arglist ();
1877 else
1878 {
1879 a->next = gfc_get_actual_arglist ();
1880 a = a->next;
1881 }
1882 if (args[i])
1883 a->expr = gfc_copy_expr (args[i]->expr);
1884 else
1885 a->expr = gfc_copy_expr (b->expr);
1886
1887 b = b->next;
1888 }
1889
1890 /* Simplify the function calls. If the simplification fails, the
1891 error will be flagged up down-stream or the library will deal
1892 with it. */
1893 gfc_simplify_expr (new_ctor->expr, 0);
1894
1895 for (i = 0; i < n; i++)
1896 if (args[i])
1897 args[i] = args[i]->next;
1898
1899 for (i = 1; i < n; i++)
1900 if (rank[i] && ((args[i] != NULL && args[array_arg - 1] == NULL)
1901 || (args[i] == NULL && args[array_arg - 1] != NULL)))
1902 goto compliance;
1903 }
1904
1905 free_expr0 (e);
1906 *e = *expr;
1907 gfc_free_expr (old);
1908 return SUCCESS;
1909
1910 compliance:
1911 gfc_error_now ("elemental function arguments at %C are not compliant");
1912
1913 cleanup:
1914 gfc_free_expr (expr);
1915 gfc_free_expr (old);
1916 return FAILURE;
1917 }
1918
1919
1920 static gfc_try
1921 check_intrinsic_op (gfc_expr *e, gfc_try (*check_function) (gfc_expr *))
1922 {
1923 gfc_expr *op1 = e->value.op.op1;
1924 gfc_expr *op2 = e->value.op.op2;
1925
1926 if ((*check_function) (op1) == FAILURE)
1927 return FAILURE;
1928
1929 switch (e->value.op.op)
1930 {
1931 case INTRINSIC_UPLUS:
1932 case INTRINSIC_UMINUS:
1933 if (!numeric_type (et0 (op1)))
1934 goto not_numeric;
1935 break;
1936
1937 case INTRINSIC_EQ:
1938 case INTRINSIC_EQ_OS:
1939 case INTRINSIC_NE:
1940 case INTRINSIC_NE_OS:
1941 case INTRINSIC_GT:
1942 case INTRINSIC_GT_OS:
1943 case INTRINSIC_GE:
1944 case INTRINSIC_GE_OS:
1945 case INTRINSIC_LT:
1946 case INTRINSIC_LT_OS:
1947 case INTRINSIC_LE:
1948 case INTRINSIC_LE_OS:
1949 if ((*check_function) (op2) == FAILURE)
1950 return FAILURE;
1951
1952 if (!(et0 (op1) == BT_CHARACTER && et0 (op2) == BT_CHARACTER)
1953 && !(numeric_type (et0 (op1)) && numeric_type (et0 (op2))))
1954 {
1955 gfc_error ("Numeric or CHARACTER operands are required in "
1956 "expression at %L", &e->where);
1957 return FAILURE;
1958 }
1959 break;
1960
1961 case INTRINSIC_PLUS:
1962 case INTRINSIC_MINUS:
1963 case INTRINSIC_TIMES:
1964 case INTRINSIC_DIVIDE:
1965 case INTRINSIC_POWER:
1966 if ((*check_function) (op2) == FAILURE)
1967 return FAILURE;
1968
1969 if (!numeric_type (et0 (op1)) || !numeric_type (et0 (op2)))
1970 goto not_numeric;
1971
1972 break;
1973
1974 case INTRINSIC_CONCAT:
1975 if ((*check_function) (op2) == FAILURE)
1976 return FAILURE;
1977
1978 if (et0 (op1) != BT_CHARACTER || et0 (op2) != BT_CHARACTER)
1979 {
1980 gfc_error ("Concatenation operator in expression at %L "
1981 "must have two CHARACTER operands", &op1->where);
1982 return FAILURE;
1983 }
1984
1985 if (op1->ts.kind != op2->ts.kind)
1986 {
1987 gfc_error ("Concat operator at %L must concatenate strings of the "
1988 "same kind", &e->where);
1989 return FAILURE;
1990 }
1991
1992 break;
1993
1994 case INTRINSIC_NOT:
1995 if (et0 (op1) != BT_LOGICAL)
1996 {
1997 gfc_error (".NOT. operator in expression at %L must have a LOGICAL "
1998 "operand", &op1->where);
1999 return FAILURE;
2000 }
2001
2002 break;
2003
2004 case INTRINSIC_AND:
2005 case INTRINSIC_OR:
2006 case INTRINSIC_EQV:
2007 case INTRINSIC_NEQV:
2008 if ((*check_function) (op2) == FAILURE)
2009 return FAILURE;
2010
2011 if (et0 (op1) != BT_LOGICAL || et0 (op2) != BT_LOGICAL)
2012 {
2013 gfc_error ("LOGICAL operands are required in expression at %L",
2014 &e->where);
2015 return FAILURE;
2016 }
2017
2018 break;
2019
2020 case INTRINSIC_PARENTHESES:
2021 break;
2022
2023 default:
2024 gfc_error ("Only intrinsic operators can be used in expression at %L",
2025 &e->where);
2026 return FAILURE;
2027 }
2028
2029 return SUCCESS;
2030
2031 not_numeric:
2032 gfc_error ("Numeric operands are required in expression at %L", &e->where);
2033
2034 return FAILURE;
2035 }
2036
2037 /* F2003, 7.1.7 (3): In init expression, allocatable components
2038 must not be data-initialized. */
2039 static gfc_try
2040 check_alloc_comp_init (gfc_expr *e)
2041 {
2042 gfc_component *c;
2043 gfc_constructor *ctor;
2044
2045 gcc_assert (e->expr_type == EXPR_STRUCTURE);
2046 gcc_assert (e->ts.type == BT_DERIVED);
2047
2048 for (c = e->ts.u.derived->components, ctor = e->value.constructor;
2049 c; c = c->next, ctor = ctor->next)
2050 {
2051 if (c->attr.allocatable
2052 && ctor->expr->expr_type != EXPR_NULL)
2053 {
2054 gfc_error("Invalid initialization expression for ALLOCATABLE "
2055 "component '%s' in structure constructor at %L",
2056 c->name, &ctor->expr->where);
2057 return FAILURE;
2058 }
2059 }
2060
2061 return SUCCESS;
2062 }
2063
2064 static match
2065 check_init_expr_arguments (gfc_expr *e)
2066 {
2067 gfc_actual_arglist *ap;
2068
2069 for (ap = e->value.function.actual; ap; ap = ap->next)
2070 if (check_init_expr (ap->expr) == FAILURE)
2071 return MATCH_ERROR;
2072
2073 return MATCH_YES;
2074 }
2075
2076 static gfc_try check_restricted (gfc_expr *);
2077
2078 /* F95, 7.1.6.1, Initialization expressions, (7)
2079 F2003, 7.1.7 Initialization expression, (8) */
2080
2081 static match
2082 check_inquiry (gfc_expr *e, int not_restricted)
2083 {
2084 const char *name;
2085 const char *const *functions;
2086
2087 static const char *const inquiry_func_f95[] = {
2088 "lbound", "shape", "size", "ubound",
2089 "bit_size", "len", "kind",
2090 "digits", "epsilon", "huge", "maxexponent", "minexponent",
2091 "precision", "radix", "range", "tiny",
2092 NULL
2093 };
2094
2095 static const char *const inquiry_func_f2003[] = {
2096 "lbound", "shape", "size", "ubound",
2097 "bit_size", "len", "kind",
2098 "digits", "epsilon", "huge", "maxexponent", "minexponent",
2099 "precision", "radix", "range", "tiny",
2100 "new_line", NULL
2101 };
2102
2103 int i;
2104 gfc_actual_arglist *ap;
2105
2106 if (!e->value.function.isym
2107 || !e->value.function.isym->inquiry)
2108 return MATCH_NO;
2109
2110 /* An undeclared parameter will get us here (PR25018). */
2111 if (e->symtree == NULL)
2112 return MATCH_NO;
2113
2114 name = e->symtree->n.sym->name;
2115
2116 functions = (gfc_option.warn_std & GFC_STD_F2003)
2117 ? inquiry_func_f2003 : inquiry_func_f95;
2118
2119 for (i = 0; functions[i]; i++)
2120 if (strcmp (functions[i], name) == 0)
2121 break;
2122
2123 if (functions[i] == NULL)
2124 return MATCH_ERROR;
2125
2126 /* At this point we have an inquiry function with a variable argument. The
2127 type of the variable might be undefined, but we need it now, because the
2128 arguments of these functions are not allowed to be undefined. */
2129
2130 for (ap = e->value.function.actual; ap; ap = ap->next)
2131 {
2132 if (!ap->expr)
2133 continue;
2134
2135 if (ap->expr->ts.type == BT_UNKNOWN)
2136 {
2137 if (ap->expr->symtree->n.sym->ts.type == BT_UNKNOWN
2138 && gfc_set_default_type (ap->expr->symtree->n.sym, 0, gfc_current_ns)
2139 == FAILURE)
2140 return MATCH_NO;
2141
2142 ap->expr->ts = ap->expr->symtree->n.sym->ts;
2143 }
2144
2145 /* Assumed character length will not reduce to a constant expression
2146 with LEN, as required by the standard. */
2147 if (i == 5 && not_restricted
2148 && ap->expr->symtree->n.sym->ts.type == BT_CHARACTER
2149 && ap->expr->symtree->n.sym->ts.u.cl->length == NULL)
2150 {
2151 gfc_error ("Assumed character length variable '%s' in constant "
2152 "expression at %L", e->symtree->n.sym->name, &e->where);
2153 return MATCH_ERROR;
2154 }
2155 else if (not_restricted && check_init_expr (ap->expr) == FAILURE)
2156 return MATCH_ERROR;
2157
2158 if (not_restricted == 0
2159 && ap->expr->expr_type != EXPR_VARIABLE
2160 && check_restricted (ap->expr) == FAILURE)
2161 return MATCH_ERROR;
2162 }
2163
2164 return MATCH_YES;
2165 }
2166
2167
2168 /* F95, 7.1.6.1, Initialization expressions, (5)
2169 F2003, 7.1.7 Initialization expression, (5) */
2170
2171 static match
2172 check_transformational (gfc_expr *e)
2173 {
2174 static const char * const trans_func_f95[] = {
2175 "repeat", "reshape", "selected_int_kind",
2176 "selected_real_kind", "transfer", "trim", NULL
2177 };
2178
2179 static const char * const trans_func_f2003[] = {
2180 "all", "any", "count", "dot_product", "matmul", "null", "pack",
2181 "product", "repeat", "reshape", "selected_char_kind", "selected_int_kind",
2182 "selected_real_kind", "spread", "sum", "transfer", "transpose",
2183 "trim", "unpack", NULL
2184 };
2185
2186 int i;
2187 const char *name;
2188 const char *const *functions;
2189
2190 if (!e->value.function.isym
2191 || !e->value.function.isym->transformational)
2192 return MATCH_NO;
2193
2194 name = e->symtree->n.sym->name;
2195
2196 functions = (gfc_option.allow_std & GFC_STD_F2003)
2197 ? trans_func_f2003 : trans_func_f95;
2198
2199 /* NULL() is dealt with below. */
2200 if (strcmp ("null", name) == 0)
2201 return MATCH_NO;
2202
2203 for (i = 0; functions[i]; i++)
2204 if (strcmp (functions[i], name) == 0)
2205 break;
2206
2207 if (functions[i] == NULL)
2208 {
2209 gfc_error("transformational intrinsic '%s' at %L is not permitted "
2210 "in an initialization expression", name, &e->where);
2211 return MATCH_ERROR;
2212 }
2213
2214 return check_init_expr_arguments (e);
2215 }
2216
2217
2218 /* F95, 7.1.6.1, Initialization expressions, (6)
2219 F2003, 7.1.7 Initialization expression, (6) */
2220
2221 static match
2222 check_null (gfc_expr *e)
2223 {
2224 if (strcmp ("null", e->symtree->n.sym->name) != 0)
2225 return MATCH_NO;
2226
2227 return check_init_expr_arguments (e);
2228 }
2229
2230
2231 static match
2232 check_elemental (gfc_expr *e)
2233 {
2234 if (!e->value.function.isym
2235 || !e->value.function.isym->elemental)
2236 return MATCH_NO;
2237
2238 if (e->ts.type != BT_INTEGER
2239 && e->ts.type != BT_CHARACTER
2240 && gfc_notify_std (GFC_STD_F2003, "Extension: Evaluation of "
2241 "nonstandard initialization expression at %L",
2242 &e->where) == FAILURE)
2243 return MATCH_ERROR;
2244
2245 return check_init_expr_arguments (e);
2246 }
2247
2248
2249 static match
2250 check_conversion (gfc_expr *e)
2251 {
2252 if (!e->value.function.isym
2253 || !e->value.function.isym->conversion)
2254 return MATCH_NO;
2255
2256 return check_init_expr_arguments (e);
2257 }
2258
2259
2260 /* Verify that an expression is an initialization expression. A side
2261 effect is that the expression tree is reduced to a single constant
2262 node if all goes well. This would normally happen when the
2263 expression is constructed but function references are assumed to be
2264 intrinsics in the context of initialization expressions. If
2265 FAILURE is returned an error message has been generated. */
2266
2267 static gfc_try
2268 check_init_expr (gfc_expr *e)
2269 {
2270 match m;
2271 gfc_try t;
2272
2273 if (e == NULL)
2274 return SUCCESS;
2275
2276 switch (e->expr_type)
2277 {
2278 case EXPR_OP:
2279 t = check_intrinsic_op (e, check_init_expr);
2280 if (t == SUCCESS)
2281 t = gfc_simplify_expr (e, 0);
2282
2283 break;
2284
2285 case EXPR_FUNCTION:
2286 t = FAILURE;
2287
2288 if ((m = check_specification_function (e)) != MATCH_YES)
2289 {
2290 gfc_intrinsic_sym* isym;
2291 gfc_symbol* sym;
2292
2293 sym = e->symtree->n.sym;
2294 if (!gfc_is_intrinsic (sym, 0, e->where)
2295 || (m = gfc_intrinsic_func_interface (e, 0)) != MATCH_YES)
2296 {
2297 gfc_error ("Function '%s' in initialization expression at %L "
2298 "must be an intrinsic or a specification function",
2299 e->symtree->n.sym->name, &e->where);
2300 break;
2301 }
2302
2303 if ((m = check_conversion (e)) == MATCH_NO
2304 && (m = check_inquiry (e, 1)) == MATCH_NO
2305 && (m = check_null (e)) == MATCH_NO
2306 && (m = check_transformational (e)) == MATCH_NO
2307 && (m = check_elemental (e)) == MATCH_NO)
2308 {
2309 gfc_error ("Intrinsic function '%s' at %L is not permitted "
2310 "in an initialization expression",
2311 e->symtree->n.sym->name, &e->where);
2312 m = MATCH_ERROR;
2313 }
2314
2315 /* Try to scalarize an elemental intrinsic function that has an
2316 array argument. */
2317 isym = gfc_find_function (e->symtree->n.sym->name);
2318 if (isym && isym->elemental
2319 && (t = scalarize_intrinsic_call (e)) == SUCCESS)
2320 break;
2321 }
2322
2323 if (m == MATCH_YES)
2324 t = gfc_simplify_expr (e, 0);
2325
2326 break;
2327
2328 case EXPR_VARIABLE:
2329 t = SUCCESS;
2330
2331 if (gfc_check_iter_variable (e) == SUCCESS)
2332 break;
2333
2334 if (e->symtree->n.sym->attr.flavor == FL_PARAMETER)
2335 {
2336 /* A PARAMETER shall not be used to define itself, i.e.
2337 REAL, PARAMETER :: x = transfer(0, x)
2338 is invalid. */
2339 if (!e->symtree->n.sym->value)
2340 {
2341 gfc_error("PARAMETER '%s' is used at %L before its definition "
2342 "is complete", e->symtree->n.sym->name, &e->where);
2343 t = FAILURE;
2344 }
2345 else
2346 t = simplify_parameter_variable (e, 0);
2347
2348 break;
2349 }
2350
2351 if (gfc_in_match_data ())
2352 break;
2353
2354 t = FAILURE;
2355
2356 if (e->symtree->n.sym->as)
2357 {
2358 switch (e->symtree->n.sym->as->type)
2359 {
2360 case AS_ASSUMED_SIZE:
2361 gfc_error ("Assumed size array '%s' at %L is not permitted "
2362 "in an initialization expression",
2363 e->symtree->n.sym->name, &e->where);
2364 break;
2365
2366 case AS_ASSUMED_SHAPE:
2367 gfc_error ("Assumed shape array '%s' at %L is not permitted "
2368 "in an initialization expression",
2369 e->symtree->n.sym->name, &e->where);
2370 break;
2371
2372 case AS_DEFERRED:
2373 gfc_error ("Deferred array '%s' at %L is not permitted "
2374 "in an initialization expression",
2375 e->symtree->n.sym->name, &e->where);
2376 break;
2377
2378 case AS_EXPLICIT:
2379 gfc_error ("Array '%s' at %L is a variable, which does "
2380 "not reduce to a constant expression",
2381 e->symtree->n.sym->name, &e->where);
2382 break;
2383
2384 default:
2385 gcc_unreachable();
2386 }
2387 }
2388 else
2389 gfc_error ("Parameter '%s' at %L has not been declared or is "
2390 "a variable, which does not reduce to a constant "
2391 "expression", e->symtree->n.sym->name, &e->where);
2392
2393 break;
2394
2395 case EXPR_CONSTANT:
2396 case EXPR_NULL:
2397 t = SUCCESS;
2398 break;
2399
2400 case EXPR_SUBSTRING:
2401 t = check_init_expr (e->ref->u.ss.start);
2402 if (t == FAILURE)
2403 break;
2404
2405 t = check_init_expr (e->ref->u.ss.end);
2406 if (t == SUCCESS)
2407 t = gfc_simplify_expr (e, 0);
2408
2409 break;
2410
2411 case EXPR_STRUCTURE:
2412 t = e->ts.is_iso_c ? SUCCESS : FAILURE;
2413 if (t == SUCCESS)
2414 break;
2415
2416 t = check_alloc_comp_init (e);
2417 if (t == FAILURE)
2418 break;
2419
2420 t = gfc_check_constructor (e, check_init_expr);
2421 if (t == FAILURE)
2422 break;
2423
2424 break;
2425
2426 case EXPR_ARRAY:
2427 t = gfc_check_constructor (e, check_init_expr);
2428 if (t == FAILURE)
2429 break;
2430
2431 t = gfc_expand_constructor (e);
2432 if (t == FAILURE)
2433 break;
2434
2435 t = gfc_check_constructor_type (e);
2436 break;
2437
2438 default:
2439 gfc_internal_error ("check_init_expr(): Unknown expression type");
2440 }
2441
2442 return t;
2443 }
2444
2445 /* Reduces a general expression to an initialization expression (a constant).
2446 This used to be part of gfc_match_init_expr.
2447 Note that this function doesn't free the given expression on FAILURE. */
2448
2449 gfc_try
2450 gfc_reduce_init_expr (gfc_expr *expr)
2451 {
2452 gfc_try t;
2453
2454 gfc_init_expr = 1;
2455 t = gfc_resolve_expr (expr);
2456 if (t == SUCCESS)
2457 t = check_init_expr (expr);
2458 gfc_init_expr = 0;
2459
2460 if (t == FAILURE)
2461 return FAILURE;
2462
2463 if (expr->expr_type == EXPR_ARRAY
2464 && (gfc_check_constructor_type (expr) == FAILURE
2465 || gfc_expand_constructor (expr) == FAILURE))
2466 return FAILURE;
2467
2468 /* Not all inquiry functions are simplified to constant expressions
2469 so it is necessary to call check_inquiry again. */
2470 if (!gfc_is_constant_expr (expr) && check_inquiry (expr, 1) != MATCH_YES
2471 && !gfc_in_match_data ())
2472 {
2473 gfc_error ("Initialization expression didn't reduce %C");
2474 return FAILURE;
2475 }
2476
2477 return SUCCESS;
2478 }
2479
2480
2481 /* Match an initialization expression. We work by first matching an
2482 expression, then reducing it to a constant. The reducing it to
2483 constant part requires a global variable to flag the prohibition
2484 of a non-integer exponent in -std=f95 mode. */
2485
2486 bool init_flag = false;
2487
2488 match
2489 gfc_match_init_expr (gfc_expr **result)
2490 {
2491 gfc_expr *expr;
2492 match m;
2493 gfc_try t;
2494
2495 expr = NULL;
2496
2497 init_flag = true;
2498
2499 m = gfc_match_expr (&expr);
2500 if (m != MATCH_YES)
2501 {
2502 init_flag = false;
2503 return m;
2504 }
2505
2506 t = gfc_reduce_init_expr (expr);
2507 if (t != SUCCESS)
2508 {
2509 gfc_free_expr (expr);
2510 init_flag = false;
2511 return MATCH_ERROR;
2512 }
2513
2514 *result = expr;
2515 init_flag = false;
2516
2517 return MATCH_YES;
2518 }
2519
2520
2521 /* Given an actual argument list, test to see that each argument is a
2522 restricted expression and optionally if the expression type is
2523 integer or character. */
2524
2525 static gfc_try
2526 restricted_args (gfc_actual_arglist *a)
2527 {
2528 for (; a; a = a->next)
2529 {
2530 if (check_restricted (a->expr) == FAILURE)
2531 return FAILURE;
2532 }
2533
2534 return SUCCESS;
2535 }
2536
2537
2538 /************* Restricted/specification expressions *************/
2539
2540
2541 /* Make sure a non-intrinsic function is a specification function. */
2542
2543 static gfc_try
2544 external_spec_function (gfc_expr *e)
2545 {
2546 gfc_symbol *f;
2547
2548 f = e->value.function.esym;
2549
2550 if (f->attr.proc == PROC_ST_FUNCTION)
2551 {
2552 gfc_error ("Specification function '%s' at %L cannot be a statement "
2553 "function", f->name, &e->where);
2554 return FAILURE;
2555 }
2556
2557 if (f->attr.proc == PROC_INTERNAL)
2558 {
2559 gfc_error ("Specification function '%s' at %L cannot be an internal "
2560 "function", f->name, &e->where);
2561 return FAILURE;
2562 }
2563
2564 if (!f->attr.pure && !f->attr.elemental)
2565 {
2566 gfc_error ("Specification function '%s' at %L must be PURE", f->name,
2567 &e->where);
2568 return FAILURE;
2569 }
2570
2571 if (f->attr.recursive)
2572 {
2573 gfc_error ("Specification function '%s' at %L cannot be RECURSIVE",
2574 f->name, &e->where);
2575 return FAILURE;
2576 }
2577
2578 return restricted_args (e->value.function.actual);
2579 }
2580
2581
2582 /* Check to see that a function reference to an intrinsic is a
2583 restricted expression. */
2584
2585 static gfc_try
2586 restricted_intrinsic (gfc_expr *e)
2587 {
2588 /* TODO: Check constraints on inquiry functions. 7.1.6.2 (7). */
2589 if (check_inquiry (e, 0) == MATCH_YES)
2590 return SUCCESS;
2591
2592 return restricted_args (e->value.function.actual);
2593 }
2594
2595
2596 /* Check the expressions of an actual arglist. Used by check_restricted. */
2597
2598 static gfc_try
2599 check_arglist (gfc_actual_arglist* arg, gfc_try (*checker) (gfc_expr*))
2600 {
2601 for (; arg; arg = arg->next)
2602 if (checker (arg->expr) == FAILURE)
2603 return FAILURE;
2604
2605 return SUCCESS;
2606 }
2607
2608
2609 /* Check the subscription expressions of a reference chain with a checking
2610 function; used by check_restricted. */
2611
2612 static gfc_try
2613 check_references (gfc_ref* ref, gfc_try (*checker) (gfc_expr*))
2614 {
2615 int dim;
2616
2617 if (!ref)
2618 return SUCCESS;
2619
2620 switch (ref->type)
2621 {
2622 case REF_ARRAY:
2623 for (dim = 0; dim != ref->u.ar.dimen; ++dim)
2624 {
2625 if (checker (ref->u.ar.start[dim]) == FAILURE)
2626 return FAILURE;
2627 if (checker (ref->u.ar.end[dim]) == FAILURE)
2628 return FAILURE;
2629 if (checker (ref->u.ar.stride[dim]) == FAILURE)
2630 return FAILURE;
2631 }
2632 break;
2633
2634 case REF_COMPONENT:
2635 /* Nothing needed, just proceed to next reference. */
2636 break;
2637
2638 case REF_SUBSTRING:
2639 if (checker (ref->u.ss.start) == FAILURE)
2640 return FAILURE;
2641 if (checker (ref->u.ss.end) == FAILURE)
2642 return FAILURE;
2643 break;
2644
2645 default:
2646 gcc_unreachable ();
2647 break;
2648 }
2649
2650 return check_references (ref->next, checker);
2651 }
2652
2653
2654 /* Verify that an expression is a restricted expression. Like its
2655 cousin check_init_expr(), an error message is generated if we
2656 return FAILURE. */
2657
2658 static gfc_try
2659 check_restricted (gfc_expr *e)
2660 {
2661 gfc_symbol* sym;
2662 gfc_try t;
2663
2664 if (e == NULL)
2665 return SUCCESS;
2666
2667 switch (e->expr_type)
2668 {
2669 case EXPR_OP:
2670 t = check_intrinsic_op (e, check_restricted);
2671 if (t == SUCCESS)
2672 t = gfc_simplify_expr (e, 0);
2673
2674 break;
2675
2676 case EXPR_FUNCTION:
2677 if (e->value.function.esym)
2678 {
2679 t = check_arglist (e->value.function.actual, &check_restricted);
2680 if (t == SUCCESS)
2681 t = external_spec_function (e);
2682 }
2683 else
2684 {
2685 if (e->value.function.isym && e->value.function.isym->inquiry)
2686 t = SUCCESS;
2687 else
2688 t = check_arglist (e->value.function.actual, &check_restricted);
2689
2690 if (t == SUCCESS)
2691 t = restricted_intrinsic (e);
2692 }
2693 break;
2694
2695 case EXPR_VARIABLE:
2696 sym = e->symtree->n.sym;
2697 t = FAILURE;
2698
2699 /* If a dummy argument appears in a context that is valid for a
2700 restricted expression in an elemental procedure, it will have
2701 already been simplified away once we get here. Therefore we
2702 don't need to jump through hoops to distinguish valid from
2703 invalid cases. */
2704 if (sym->attr.dummy && sym->ns == gfc_current_ns
2705 && sym->ns->proc_name && sym->ns->proc_name->attr.elemental)
2706 {
2707 gfc_error ("Dummy argument '%s' not allowed in expression at %L",
2708 sym->name, &e->where);
2709 break;
2710 }
2711
2712 if (sym->attr.optional)
2713 {
2714 gfc_error ("Dummy argument '%s' at %L cannot be OPTIONAL",
2715 sym->name, &e->where);
2716 break;
2717 }
2718
2719 if (sym->attr.intent == INTENT_OUT)
2720 {
2721 gfc_error ("Dummy argument '%s' at %L cannot be INTENT(OUT)",
2722 sym->name, &e->where);
2723 break;
2724 }
2725
2726 /* Check reference chain if any. */
2727 if (check_references (e->ref, &check_restricted) == FAILURE)
2728 break;
2729
2730 /* gfc_is_formal_arg broadcasts that a formal argument list is being
2731 processed in resolve.c(resolve_formal_arglist). This is done so
2732 that host associated dummy array indices are accepted (PR23446).
2733 This mechanism also does the same for the specification expressions
2734 of array-valued functions. */
2735 if (e->error
2736 || sym->attr.in_common
2737 || sym->attr.use_assoc
2738 || sym->attr.dummy
2739 || sym->attr.implied_index
2740 || sym->attr.flavor == FL_PARAMETER
2741 || (sym->ns && sym->ns == gfc_current_ns->parent)
2742 || (sym->ns && gfc_current_ns->parent
2743 && sym->ns == gfc_current_ns->parent->parent)
2744 || (sym->ns->proc_name != NULL
2745 && sym->ns->proc_name->attr.flavor == FL_MODULE)
2746 || (gfc_is_formal_arg () && (sym->ns == gfc_current_ns)))
2747 {
2748 t = SUCCESS;
2749 break;
2750 }
2751
2752 gfc_error ("Variable '%s' cannot appear in the expression at %L",
2753 sym->name, &e->where);
2754 /* Prevent a repetition of the error. */
2755 e->error = 1;
2756 break;
2757
2758 case EXPR_NULL:
2759 case EXPR_CONSTANT:
2760 t = SUCCESS;
2761 break;
2762
2763 case EXPR_SUBSTRING:
2764 t = gfc_specification_expr (e->ref->u.ss.start);
2765 if (t == FAILURE)
2766 break;
2767
2768 t = gfc_specification_expr (e->ref->u.ss.end);
2769 if (t == SUCCESS)
2770 t = gfc_simplify_expr (e, 0);
2771
2772 break;
2773
2774 case EXPR_STRUCTURE:
2775 t = gfc_check_constructor (e, check_restricted);
2776 break;
2777
2778 case EXPR_ARRAY:
2779 t = gfc_check_constructor (e, check_restricted);
2780 break;
2781
2782 default:
2783 gfc_internal_error ("check_restricted(): Unknown expression type");
2784 }
2785
2786 return t;
2787 }
2788
2789
2790 /* Check to see that an expression is a specification expression. If
2791 we return FAILURE, an error has been generated. */
2792
2793 gfc_try
2794 gfc_specification_expr (gfc_expr *e)
2795 {
2796
2797 if (e == NULL)
2798 return SUCCESS;
2799
2800 if (e->ts.type != BT_INTEGER)
2801 {
2802 gfc_error ("Expression at %L must be of INTEGER type, found %s",
2803 &e->where, gfc_basic_typename (e->ts.type));
2804 return FAILURE;
2805 }
2806
2807 if (e->expr_type == EXPR_FUNCTION
2808 && !e->value.function.isym
2809 && !e->value.function.esym
2810 && !gfc_pure (e->symtree->n.sym))
2811 {
2812 gfc_error ("Function '%s' at %L must be PURE",
2813 e->symtree->n.sym->name, &e->where);
2814 /* Prevent repeat error messages. */
2815 e->symtree->n.sym->attr.pure = 1;
2816 return FAILURE;
2817 }
2818
2819 if (e->rank != 0)
2820 {
2821 gfc_error ("Expression at %L must be scalar", &e->where);
2822 return FAILURE;
2823 }
2824
2825 if (gfc_simplify_expr (e, 0) == FAILURE)
2826 return FAILURE;
2827
2828 return check_restricted (e);
2829 }
2830
2831
2832 /************** Expression conformance checks. *************/
2833
2834 /* Given two expressions, make sure that the arrays are conformable. */
2835
2836 gfc_try
2837 gfc_check_conformance (gfc_expr *op1, gfc_expr *op2, const char *optype_msgid, ...)
2838 {
2839 int op1_flag, op2_flag, d;
2840 mpz_t op1_size, op2_size;
2841 gfc_try t;
2842
2843 va_list argp;
2844 char buffer[240];
2845
2846 if (op1->rank == 0 || op2->rank == 0)
2847 return SUCCESS;
2848
2849 va_start (argp, optype_msgid);
2850 vsnprintf (buffer, 240, optype_msgid, argp);
2851 va_end (argp);
2852
2853 if (op1->rank != op2->rank)
2854 {
2855 gfc_error ("Incompatible ranks in %s (%d and %d) at %L", _(buffer),
2856 op1->rank, op2->rank, &op1->where);
2857 return FAILURE;
2858 }
2859
2860 t = SUCCESS;
2861
2862 for (d = 0; d < op1->rank; d++)
2863 {
2864 op1_flag = gfc_array_dimen_size (op1, d, &op1_size) == SUCCESS;
2865 op2_flag = gfc_array_dimen_size (op2, d, &op2_size) == SUCCESS;
2866
2867 if (op1_flag && op2_flag && mpz_cmp (op1_size, op2_size) != 0)
2868 {
2869 gfc_error ("Different shape for %s at %L on dimension %d "
2870 "(%d and %d)", _(buffer), &op1->where, d + 1,
2871 (int) mpz_get_si (op1_size),
2872 (int) mpz_get_si (op2_size));
2873
2874 t = FAILURE;
2875 }
2876
2877 if (op1_flag)
2878 mpz_clear (op1_size);
2879 if (op2_flag)
2880 mpz_clear (op2_size);
2881
2882 if (t == FAILURE)
2883 return FAILURE;
2884 }
2885
2886 return SUCCESS;
2887 }
2888
2889
2890 /* Given an assignable expression and an arbitrary expression, make
2891 sure that the assignment can take place. */
2892
2893 gfc_try
2894 gfc_check_assign (gfc_expr *lvalue, gfc_expr *rvalue, int conform)
2895 {
2896 gfc_symbol *sym;
2897 gfc_ref *ref;
2898 int has_pointer;
2899
2900 sym = lvalue->symtree->n.sym;
2901
2902 /* Check INTENT(IN), unless the object itself is the component or
2903 sub-component of a pointer. */
2904 has_pointer = sym->attr.pointer;
2905
2906 for (ref = lvalue->ref; ref; ref = ref->next)
2907 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
2908 {
2909 has_pointer = 1;
2910 break;
2911 }
2912
2913 if (!has_pointer && sym->attr.intent == INTENT_IN)
2914 {
2915 gfc_error ("Cannot assign to INTENT(IN) variable '%s' at %L",
2916 sym->name, &lvalue->where);
2917 return FAILURE;
2918 }
2919
2920 /* 12.5.2.2, Note 12.26: The result variable is very similar to any other
2921 variable local to a function subprogram. Its existence begins when
2922 execution of the function is initiated and ends when execution of the
2923 function is terminated...
2924 Therefore, the left hand side is no longer a variable, when it is: */
2925 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_ST_FUNCTION
2926 && !sym->attr.external)
2927 {
2928 bool bad_proc;
2929 bad_proc = false;
2930
2931 /* (i) Use associated; */
2932 if (sym->attr.use_assoc)
2933 bad_proc = true;
2934
2935 /* (ii) The assignment is in the main program; or */
2936 if (gfc_current_ns->proc_name->attr.is_main_program)
2937 bad_proc = true;
2938
2939 /* (iii) A module or internal procedure... */
2940 if ((gfc_current_ns->proc_name->attr.proc == PROC_INTERNAL
2941 || gfc_current_ns->proc_name->attr.proc == PROC_MODULE)
2942 && gfc_current_ns->parent
2943 && (!(gfc_current_ns->parent->proc_name->attr.function
2944 || gfc_current_ns->parent->proc_name->attr.subroutine)
2945 || gfc_current_ns->parent->proc_name->attr.is_main_program))
2946 {
2947 /* ... that is not a function... */
2948 if (!gfc_current_ns->proc_name->attr.function)
2949 bad_proc = true;
2950
2951 /* ... or is not an entry and has a different name. */
2952 if (!sym->attr.entry && sym->name != gfc_current_ns->proc_name->name)
2953 bad_proc = true;
2954 }
2955
2956 /* (iv) Host associated and not the function symbol or the
2957 parent result. This picks up sibling references, which
2958 cannot be entries. */
2959 if (!sym->attr.entry
2960 && sym->ns == gfc_current_ns->parent
2961 && sym != gfc_current_ns->proc_name
2962 && sym != gfc_current_ns->parent->proc_name->result)
2963 bad_proc = true;
2964
2965 if (bad_proc)
2966 {
2967 gfc_error ("'%s' at %L is not a VALUE", sym->name, &lvalue->where);
2968 return FAILURE;
2969 }
2970 }
2971
2972 if (rvalue->rank != 0 && lvalue->rank != rvalue->rank)
2973 {
2974 gfc_error ("Incompatible ranks %d and %d in assignment at %L",
2975 lvalue->rank, rvalue->rank, &lvalue->where);
2976 return FAILURE;
2977 }
2978
2979 if (lvalue->ts.type == BT_UNKNOWN)
2980 {
2981 gfc_error ("Variable type is UNKNOWN in assignment at %L",
2982 &lvalue->where);
2983 return FAILURE;
2984 }
2985
2986 if (rvalue->expr_type == EXPR_NULL)
2987 {
2988 if (has_pointer && (ref == NULL || ref->next == NULL)
2989 && lvalue->symtree->n.sym->attr.data)
2990 return SUCCESS;
2991 else
2992 {
2993 gfc_error ("NULL appears on right-hand side in assignment at %L",
2994 &rvalue->where);
2995 return FAILURE;
2996 }
2997 }
2998
2999 if (sym->attr.cray_pointee
3000 && lvalue->ref != NULL
3001 && lvalue->ref->u.ar.type == AR_FULL
3002 && lvalue->ref->u.ar.as->cp_was_assumed)
3003 {
3004 gfc_error ("Vector assignment to assumed-size Cray Pointee at %L "
3005 "is illegal", &lvalue->where);
3006 return FAILURE;
3007 }
3008
3009 /* This is possibly a typo: x = f() instead of x => f(). */
3010 if (gfc_option.warn_surprising
3011 && rvalue->expr_type == EXPR_FUNCTION
3012 && rvalue->symtree->n.sym->attr.pointer)
3013 gfc_warning ("POINTER valued function appears on right-hand side of "
3014 "assignment at %L", &rvalue->where);
3015
3016 /* Check size of array assignments. */
3017 if (lvalue->rank != 0 && rvalue->rank != 0
3018 && gfc_check_conformance (lvalue, rvalue, "array assignment") != SUCCESS)
3019 return FAILURE;
3020
3021 if (rvalue->is_boz && lvalue->ts.type != BT_INTEGER
3022 && lvalue->symtree->n.sym->attr.data
3023 && gfc_notify_std (GFC_STD_GNU, "Extension: BOZ literal at %L used to "
3024 "initialize non-integer variable '%s'",
3025 &rvalue->where, lvalue->symtree->n.sym->name)
3026 == FAILURE)
3027 return FAILURE;
3028 else if (rvalue->is_boz && !lvalue->symtree->n.sym->attr.data
3029 && gfc_notify_std (GFC_STD_GNU, "Extension: BOZ literal at %L outside "
3030 "a DATA statement and outside INT/REAL/DBLE/CMPLX",
3031 &rvalue->where) == FAILURE)
3032 return FAILURE;
3033
3034 /* Handle the case of a BOZ literal on the RHS. */
3035 if (rvalue->is_boz && lvalue->ts.type != BT_INTEGER)
3036 {
3037 int rc;
3038 if (gfc_option.warn_surprising)
3039 gfc_warning ("BOZ literal at %L is bitwise transferred "
3040 "non-integer symbol '%s'", &rvalue->where,
3041 lvalue->symtree->n.sym->name);
3042 if (!gfc_convert_boz (rvalue, &lvalue->ts))
3043 return FAILURE;
3044 if ((rc = gfc_range_check (rvalue)) != ARITH_OK)
3045 {
3046 if (rc == ARITH_UNDERFLOW)
3047 gfc_error ("Arithmetic underflow of bit-wise transferred BOZ at %L"
3048 ". This check can be disabled with the option "
3049 "-fno-range-check", &rvalue->where);
3050 else if (rc == ARITH_OVERFLOW)
3051 gfc_error ("Arithmetic overflow of bit-wise transferred BOZ at %L"
3052 ". This check can be disabled with the option "
3053 "-fno-range-check", &rvalue->where);
3054 else if (rc == ARITH_NAN)
3055 gfc_error ("Arithmetic NaN of bit-wise transferred BOZ at %L"
3056 ". This check can be disabled with the option "
3057 "-fno-range-check", &rvalue->where);
3058 return FAILURE;
3059 }
3060 }
3061
3062 if (gfc_compare_types (&lvalue->ts, &rvalue->ts))
3063 return SUCCESS;
3064
3065 /* Only DATA Statements come here. */
3066 if (!conform)
3067 {
3068 /* Numeric can be converted to any other numeric. And Hollerith can be
3069 converted to any other type. */
3070 if ((gfc_numeric_ts (&lvalue->ts) && gfc_numeric_ts (&rvalue->ts))
3071 || rvalue->ts.type == BT_HOLLERITH)
3072 return SUCCESS;
3073
3074 if (lvalue->ts.type == BT_LOGICAL && rvalue->ts.type == BT_LOGICAL)
3075 return SUCCESS;
3076
3077 gfc_error ("Incompatible types in DATA statement at %L; attempted "
3078 "conversion of %s to %s", &lvalue->where,
3079 gfc_typename (&rvalue->ts), gfc_typename (&lvalue->ts));
3080
3081 return FAILURE;
3082 }
3083
3084 /* Assignment is the only case where character variables of different
3085 kind values can be converted into one another. */
3086 if (lvalue->ts.type == BT_CHARACTER && rvalue->ts.type == BT_CHARACTER)
3087 {
3088 if (lvalue->ts.kind != rvalue->ts.kind)
3089 gfc_convert_chartype (rvalue, &lvalue->ts);
3090
3091 return SUCCESS;
3092 }
3093
3094 return gfc_convert_type (rvalue, &lvalue->ts, 1);
3095 }
3096
3097
3098 /* Check that a pointer assignment is OK. We first check lvalue, and
3099 we only check rvalue if it's not an assignment to NULL() or a
3100 NULLIFY statement. */
3101
3102 gfc_try
3103 gfc_check_pointer_assign (gfc_expr *lvalue, gfc_expr *rvalue)
3104 {
3105 symbol_attribute attr;
3106 gfc_ref *ref;
3107 int is_pure;
3108 int pointer, check_intent_in, proc_pointer;
3109
3110 if (lvalue->symtree->n.sym->ts.type == BT_UNKNOWN
3111 && !lvalue->symtree->n.sym->attr.proc_pointer)
3112 {
3113 gfc_error ("Pointer assignment target is not a POINTER at %L",
3114 &lvalue->where);
3115 return FAILURE;
3116 }
3117
3118 if (lvalue->symtree->n.sym->attr.flavor == FL_PROCEDURE
3119 && lvalue->symtree->n.sym->attr.use_assoc
3120 && !lvalue->symtree->n.sym->attr.proc_pointer)
3121 {
3122 gfc_error ("'%s' in the pointer assignment at %L cannot be an "
3123 "l-value since it is a procedure",
3124 lvalue->symtree->n.sym->name, &lvalue->where);
3125 return FAILURE;
3126 }
3127
3128
3129 /* Check INTENT(IN), unless the object itself is the component or
3130 sub-component of a pointer. */
3131 check_intent_in = 1;
3132 pointer = lvalue->symtree->n.sym->attr.pointer;
3133 proc_pointer = lvalue->symtree->n.sym->attr.proc_pointer;
3134
3135 for (ref = lvalue->ref; ref; ref = ref->next)
3136 {
3137 if (pointer)
3138 check_intent_in = 0;
3139
3140 if (ref->type == REF_COMPONENT)
3141 {
3142 pointer = ref->u.c.component->attr.pointer;
3143 proc_pointer = ref->u.c.component->attr.proc_pointer;
3144 }
3145
3146 if (ref->type == REF_ARRAY && ref->next == NULL)
3147 {
3148 if (ref->u.ar.type == AR_FULL)
3149 break;
3150
3151 if (ref->u.ar.type != AR_SECTION)
3152 {
3153 gfc_error ("Expected bounds specification for '%s' at %L",
3154 lvalue->symtree->n.sym->name, &lvalue->where);
3155 return FAILURE;
3156 }
3157
3158 if (gfc_notify_std (GFC_STD_F2003,"Fortran 2003: Bounds "
3159 "specification for '%s' in pointer assignment "
3160 "at %L", lvalue->symtree->n.sym->name,
3161 &lvalue->where) == FAILURE)
3162 return FAILURE;
3163
3164 gfc_error ("Pointer bounds remapping at %L is not yet implemented "
3165 "in gfortran", &lvalue->where);
3166 /* TODO: See PR 29785. Add checks that all lbounds are specified and
3167 either never or always the upper-bound; strides shall not be
3168 present. */
3169 return FAILURE;
3170 }
3171 }
3172
3173 if (check_intent_in && lvalue->symtree->n.sym->attr.intent == INTENT_IN)
3174 {
3175 gfc_error ("Cannot assign to INTENT(IN) variable '%s' at %L",
3176 lvalue->symtree->n.sym->name, &lvalue->where);
3177 return FAILURE;
3178 }
3179
3180 if (!pointer && !proc_pointer
3181 && !(lvalue->ts.type == BT_CLASS
3182 && lvalue->ts.u.derived->components->attr.pointer))
3183 {
3184 gfc_error ("Pointer assignment to non-POINTER at %L", &lvalue->where);
3185 return FAILURE;
3186 }
3187
3188 is_pure = gfc_pure (NULL);
3189
3190 if (is_pure && gfc_impure_variable (lvalue->symtree->n.sym)
3191 && lvalue->symtree->n.sym->value != rvalue)
3192 {
3193 gfc_error ("Bad pointer object in PURE procedure at %L", &lvalue->where);
3194 return FAILURE;
3195 }
3196
3197 /* If rvalue is a NULL() or NULLIFY, we're done. Otherwise the type,
3198 kind, etc for lvalue and rvalue must match, and rvalue must be a
3199 pure variable if we're in a pure function. */
3200 if (rvalue->expr_type == EXPR_NULL && rvalue->ts.type == BT_UNKNOWN)
3201 return SUCCESS;
3202
3203 /* Checks on rvalue for procedure pointer assignments. */
3204 if (proc_pointer)
3205 {
3206 char err[200];
3207 gfc_symbol *s1,*s2;
3208 gfc_component *comp;
3209 const char *name;
3210
3211 attr = gfc_expr_attr (rvalue);
3212 if (!((rvalue->expr_type == EXPR_NULL)
3213 || (rvalue->expr_type == EXPR_FUNCTION && attr.proc_pointer)
3214 || (rvalue->expr_type == EXPR_VARIABLE && attr.proc_pointer)
3215 || (rvalue->expr_type == EXPR_VARIABLE
3216 && attr.flavor == FL_PROCEDURE)))
3217 {
3218 gfc_error ("Invalid procedure pointer assignment at %L",
3219 &rvalue->where);
3220 return FAILURE;
3221 }
3222 if (attr.abstract)
3223 {
3224 gfc_error ("Abstract interface '%s' is invalid "
3225 "in procedure pointer assignment at %L",
3226 rvalue->symtree->name, &rvalue->where);
3227 return FAILURE;
3228 }
3229 /* Check for C727. */
3230 if (attr.flavor == FL_PROCEDURE)
3231 {
3232 if (attr.proc == PROC_ST_FUNCTION)
3233 {
3234 gfc_error ("Statement function '%s' is invalid "
3235 "in procedure pointer assignment at %L",
3236 rvalue->symtree->name, &rvalue->where);
3237 return FAILURE;
3238 }
3239 if (attr.proc == PROC_INTERNAL &&
3240 gfc_notify_std (GFC_STD_F2008, "Internal procedure '%s' is "
3241 "invalid in procedure pointer assignment at %L",
3242 rvalue->symtree->name, &rvalue->where) == FAILURE)
3243 return FAILURE;
3244 }
3245
3246 /* Ensure that the calling convention is the same. As other attributes
3247 such as DLLEXPORT may differ, one explicitly only tests for the
3248 calling conventions. */
3249 if (rvalue->expr_type == EXPR_VARIABLE
3250 && lvalue->symtree->n.sym->attr.ext_attr
3251 != rvalue->symtree->n.sym->attr.ext_attr)
3252 {
3253 symbol_attribute calls;
3254
3255 calls.ext_attr = 0;
3256 gfc_add_ext_attribute (&calls, EXT_ATTR_CDECL, NULL);
3257 gfc_add_ext_attribute (&calls, EXT_ATTR_STDCALL, NULL);
3258 gfc_add_ext_attribute (&calls, EXT_ATTR_FASTCALL, NULL);
3259
3260 if ((calls.ext_attr & lvalue->symtree->n.sym->attr.ext_attr)
3261 != (calls.ext_attr & rvalue->symtree->n.sym->attr.ext_attr))
3262 {
3263 gfc_error ("Mismatch in the procedure pointer assignment "
3264 "at %L: mismatch in the calling convention",
3265 &rvalue->where);
3266 return FAILURE;
3267 }
3268 }
3269
3270 if (gfc_is_proc_ptr_comp (lvalue, &comp))
3271 s1 = comp->ts.interface;
3272 else
3273 s1 = lvalue->symtree->n.sym;
3274
3275 if (gfc_is_proc_ptr_comp (rvalue, &comp))
3276 {
3277 s2 = comp->ts.interface;
3278 name = comp->name;
3279 }
3280 else if (rvalue->expr_type == EXPR_FUNCTION)
3281 {
3282 s2 = rvalue->symtree->n.sym->result;
3283 name = rvalue->symtree->n.sym->result->name;
3284 }
3285 else
3286 {
3287 s2 = rvalue->symtree->n.sym;
3288 name = rvalue->symtree->n.sym->name;
3289 }
3290
3291 if (s1 && s2 && !gfc_compare_interfaces (s1, s2, name, 0, 1,
3292 err, sizeof(err)))
3293 {
3294 gfc_error ("Interface mismatch in procedure pointer assignment "
3295 "at %L: %s", &rvalue->where, err);
3296 return FAILURE;
3297 }
3298
3299 return SUCCESS;
3300 }
3301
3302 if (!gfc_compare_types (&lvalue->ts, &rvalue->ts))
3303 {
3304 gfc_error ("Different types in pointer assignment at %L; attempted "
3305 "assignment of %s to %s", &lvalue->where,
3306 gfc_typename (&rvalue->ts), gfc_typename (&lvalue->ts));
3307 return FAILURE;
3308 }
3309
3310 if (lvalue->ts.type != BT_CLASS && lvalue->ts.kind != rvalue->ts.kind)
3311 {
3312 gfc_error ("Different kind type parameters in pointer "
3313 "assignment at %L", &lvalue->where);
3314 return FAILURE;
3315 }
3316
3317 if (lvalue->rank != rvalue->rank)
3318 {
3319 gfc_error ("Different ranks in pointer assignment at %L",
3320 &lvalue->where);
3321 return FAILURE;
3322 }
3323
3324 /* Now punt if we are dealing with a NULLIFY(X) or X = NULL(X). */
3325 if (rvalue->expr_type == EXPR_NULL)
3326 return SUCCESS;
3327
3328 if (lvalue->ts.type == BT_CHARACTER)
3329 {
3330 gfc_try t = gfc_check_same_strlen (lvalue, rvalue, "pointer assignment");
3331 if (t == FAILURE)
3332 return FAILURE;
3333 }
3334
3335 if (rvalue->expr_type == EXPR_VARIABLE && is_subref_array (rvalue))
3336 lvalue->symtree->n.sym->attr.subref_array_pointer = 1;
3337
3338 attr = gfc_expr_attr (rvalue);
3339 if (!attr.target && !attr.pointer)
3340 {
3341 gfc_error ("Pointer assignment target is neither TARGET "
3342 "nor POINTER at %L", &rvalue->where);
3343 return FAILURE;
3344 }
3345
3346 if (is_pure && gfc_impure_variable (rvalue->symtree->n.sym))
3347 {
3348 gfc_error ("Bad target in pointer assignment in PURE "
3349 "procedure at %L", &rvalue->where);
3350 }
3351
3352 if (gfc_has_vector_index (rvalue))
3353 {
3354 gfc_error ("Pointer assignment with vector subscript "
3355 "on rhs at %L", &rvalue->where);
3356 return FAILURE;
3357 }
3358
3359 if (attr.is_protected && attr.use_assoc
3360 && !(attr.pointer || attr.proc_pointer))
3361 {
3362 gfc_error ("Pointer assignment target has PROTECTED "
3363 "attribute at %L", &rvalue->where);
3364 return FAILURE;
3365 }
3366
3367 return SUCCESS;
3368 }
3369
3370
3371 /* Relative of gfc_check_assign() except that the lvalue is a single
3372 symbol. Used for initialization assignments. */
3373
3374 gfc_try
3375 gfc_check_assign_symbol (gfc_symbol *sym, gfc_expr *rvalue)
3376 {
3377 gfc_expr lvalue;
3378 gfc_try r;
3379
3380 memset (&lvalue, '\0', sizeof (gfc_expr));
3381
3382 lvalue.expr_type = EXPR_VARIABLE;
3383 lvalue.ts = sym->ts;
3384 if (sym->as)
3385 lvalue.rank = sym->as->rank;
3386 lvalue.symtree = (gfc_symtree *) gfc_getmem (sizeof (gfc_symtree));
3387 lvalue.symtree->n.sym = sym;
3388 lvalue.where = sym->declared_at;
3389
3390 if (sym->attr.pointer || sym->attr.proc_pointer
3391 || (sym->ts.type == BT_CLASS
3392 && sym->ts.u.derived->components->attr.pointer
3393 && rvalue->expr_type == EXPR_NULL))
3394 r = gfc_check_pointer_assign (&lvalue, rvalue);
3395 else
3396 r = gfc_check_assign (&lvalue, rvalue, 1);
3397
3398 gfc_free (lvalue.symtree);
3399
3400 return r;
3401 }
3402
3403
3404 /* Get an expression for a default initializer. */
3405
3406 gfc_expr *
3407 gfc_default_initializer (gfc_typespec *ts)
3408 {
3409 gfc_constructor *tail;
3410 gfc_expr *init;
3411 gfc_component *c;
3412
3413 /* See if we have a default initializer. */
3414 for (c = ts->u.derived->components; c; c = c->next)
3415 if (c->initializer || c->attr.allocatable)
3416 break;
3417
3418 if (!c)
3419 return NULL;
3420
3421 /* Build the constructor. */
3422 init = gfc_get_expr ();
3423 init->expr_type = EXPR_STRUCTURE;
3424 init->ts = *ts;
3425 init->where = ts->u.derived->declared_at;
3426
3427 tail = NULL;
3428 for (c = ts->u.derived->components; c; c = c->next)
3429 {
3430 if (tail == NULL)
3431 init->value.constructor = tail = gfc_get_constructor ();
3432 else
3433 {
3434 tail->next = gfc_get_constructor ();
3435 tail = tail->next;
3436 }
3437
3438 if (c->initializer)
3439 tail->expr = gfc_copy_expr (c->initializer);
3440
3441 if (c->attr.allocatable)
3442 {
3443 tail->expr = gfc_get_expr ();
3444 tail->expr->expr_type = EXPR_NULL;
3445 tail->expr->ts = c->ts;
3446 }
3447 }
3448 return init;
3449 }
3450
3451
3452 /* Given a symbol, create an expression node with that symbol as a
3453 variable. If the symbol is array valued, setup a reference of the
3454 whole array. */
3455
3456 gfc_expr *
3457 gfc_get_variable_expr (gfc_symtree *var)
3458 {
3459 gfc_expr *e;
3460
3461 e = gfc_get_expr ();
3462 e->expr_type = EXPR_VARIABLE;
3463 e->symtree = var;
3464 e->ts = var->n.sym->ts;
3465
3466 if (var->n.sym->as != NULL)
3467 {
3468 e->rank = var->n.sym->as->rank;
3469 e->ref = gfc_get_ref ();
3470 e->ref->type = REF_ARRAY;
3471 e->ref->u.ar.type = AR_FULL;
3472 }
3473
3474 return e;
3475 }
3476
3477
3478 /* General expression traversal function. */
3479
3480 bool
3481 gfc_traverse_expr (gfc_expr *expr, gfc_symbol *sym,
3482 bool (*func)(gfc_expr *, gfc_symbol *, int*),
3483 int f)
3484 {
3485 gfc_array_ref ar;
3486 gfc_ref *ref;
3487 gfc_actual_arglist *args;
3488 gfc_constructor *c;
3489 int i;
3490
3491 if (!expr)
3492 return false;
3493
3494 if ((*func) (expr, sym, &f))
3495 return true;
3496
3497 if (expr->ts.type == BT_CHARACTER
3498 && expr->ts.u.cl
3499 && expr->ts.u.cl->length
3500 && expr->ts.u.cl->length->expr_type != EXPR_CONSTANT
3501 && gfc_traverse_expr (expr->ts.u.cl->length, sym, func, f))
3502 return true;
3503
3504 switch (expr->expr_type)
3505 {
3506 case EXPR_FUNCTION:
3507 for (args = expr->value.function.actual; args; args = args->next)
3508 {
3509 if (gfc_traverse_expr (args->expr, sym, func, f))
3510 return true;
3511 }
3512 break;
3513
3514 case EXPR_VARIABLE:
3515 case EXPR_CONSTANT:
3516 case EXPR_NULL:
3517 case EXPR_SUBSTRING:
3518 break;
3519
3520 case EXPR_STRUCTURE:
3521 case EXPR_ARRAY:
3522 for (c = expr->value.constructor; c; c = c->next)
3523 {
3524 if (gfc_traverse_expr (c->expr, sym, func, f))
3525 return true;
3526 if (c->iterator)
3527 {
3528 if (gfc_traverse_expr (c->iterator->var, sym, func, f))
3529 return true;
3530 if (gfc_traverse_expr (c->iterator->start, sym, func, f))
3531 return true;
3532 if (gfc_traverse_expr (c->iterator->end, sym, func, f))
3533 return true;
3534 if (gfc_traverse_expr (c->iterator->step, sym, func, f))
3535 return true;
3536 }
3537 }
3538 break;
3539
3540 case EXPR_OP:
3541 if (gfc_traverse_expr (expr->value.op.op1, sym, func, f))
3542 return true;
3543 if (gfc_traverse_expr (expr->value.op.op2, sym, func, f))
3544 return true;
3545 break;
3546
3547 default:
3548 gcc_unreachable ();
3549 break;
3550 }
3551
3552 ref = expr->ref;
3553 while (ref != NULL)
3554 {
3555 switch (ref->type)
3556 {
3557 case REF_ARRAY:
3558 ar = ref->u.ar;
3559 for (i = 0; i < GFC_MAX_DIMENSIONS; i++)
3560 {
3561 if (gfc_traverse_expr (ar.start[i], sym, func, f))
3562 return true;
3563 if (gfc_traverse_expr (ar.end[i], sym, func, f))
3564 return true;
3565 if (gfc_traverse_expr (ar.stride[i], sym, func, f))
3566 return true;
3567 }
3568 break;
3569
3570 case REF_SUBSTRING:
3571 if (gfc_traverse_expr (ref->u.ss.start, sym, func, f))
3572 return true;
3573 if (gfc_traverse_expr (ref->u.ss.end, sym, func, f))
3574 return true;
3575 break;
3576
3577 case REF_COMPONENT:
3578 if (ref->u.c.component->ts.type == BT_CHARACTER
3579 && ref->u.c.component->ts.u.cl
3580 && ref->u.c.component->ts.u.cl->length
3581 && ref->u.c.component->ts.u.cl->length->expr_type
3582 != EXPR_CONSTANT
3583 && gfc_traverse_expr (ref->u.c.component->ts.u.cl->length,
3584 sym, func, f))
3585 return true;
3586
3587 if (ref->u.c.component->as)
3588 for (i = 0; i < ref->u.c.component->as->rank; i++)
3589 {
3590 if (gfc_traverse_expr (ref->u.c.component->as->lower[i],
3591 sym, func, f))
3592 return true;
3593 if (gfc_traverse_expr (ref->u.c.component->as->upper[i],
3594 sym, func, f))
3595 return true;
3596 }
3597 break;
3598
3599 default:
3600 gcc_unreachable ();
3601 }
3602 ref = ref->next;
3603 }
3604 return false;
3605 }
3606
3607 /* Traverse expr, marking all EXPR_VARIABLE symbols referenced. */
3608
3609 static bool
3610 expr_set_symbols_referenced (gfc_expr *expr,
3611 gfc_symbol *sym ATTRIBUTE_UNUSED,
3612 int *f ATTRIBUTE_UNUSED)
3613 {
3614 if (expr->expr_type != EXPR_VARIABLE)
3615 return false;
3616 gfc_set_sym_referenced (expr->symtree->n.sym);
3617 return false;
3618 }
3619
3620 void
3621 gfc_expr_set_symbols_referenced (gfc_expr *expr)
3622 {
3623 gfc_traverse_expr (expr, NULL, expr_set_symbols_referenced, 0);
3624 }
3625
3626
3627 /* Determine if an expression is a procedure pointer component. If yes, the
3628 argument 'comp' will point to the component (provided that 'comp' was
3629 provided). */
3630
3631 bool
3632 gfc_is_proc_ptr_comp (gfc_expr *expr, gfc_component **comp)
3633 {
3634 gfc_ref *ref;
3635 bool ppc = false;
3636
3637 if (!expr || !expr->ref)
3638 return false;
3639
3640 ref = expr->ref;
3641 while (ref->next)
3642 ref = ref->next;
3643
3644 if (ref->type == REF_COMPONENT)
3645 {
3646 ppc = ref->u.c.component->attr.proc_pointer;
3647 if (ppc && comp)
3648 *comp = ref->u.c.component;
3649 }
3650
3651 return ppc;
3652 }
3653
3654
3655 /* Walk an expression tree and check each variable encountered for being typed.
3656 If strict is not set, a top-level variable is tolerated untyped in -std=gnu
3657 mode as is a basic arithmetic expression using those; this is for things in
3658 legacy-code like:
3659
3660 INTEGER :: arr(n), n
3661 INTEGER :: arr(n + 1), n
3662
3663 The namespace is needed for IMPLICIT typing. */
3664
3665 static gfc_namespace* check_typed_ns;
3666
3667 static bool
3668 expr_check_typed_help (gfc_expr* e, gfc_symbol* sym ATTRIBUTE_UNUSED,
3669 int* f ATTRIBUTE_UNUSED)
3670 {
3671 gfc_try t;
3672
3673 if (e->expr_type != EXPR_VARIABLE)
3674 return false;
3675
3676 gcc_assert (e->symtree);
3677 t = gfc_check_symbol_typed (e->symtree->n.sym, check_typed_ns,
3678 true, e->where);
3679
3680 return (t == FAILURE);
3681 }
3682
3683 gfc_try
3684 gfc_expr_check_typed (gfc_expr* e, gfc_namespace* ns, bool strict)
3685 {
3686 bool error_found;
3687
3688 /* If this is a top-level variable or EXPR_OP, do the check with strict given
3689 to us. */
3690 if (!strict)
3691 {
3692 if (e->expr_type == EXPR_VARIABLE && !e->ref)
3693 return gfc_check_symbol_typed (e->symtree->n.sym, ns, strict, e->where);
3694
3695 if (e->expr_type == EXPR_OP)
3696 {
3697 gfc_try t = SUCCESS;
3698
3699 gcc_assert (e->value.op.op1);
3700 t = gfc_expr_check_typed (e->value.op.op1, ns, strict);
3701
3702 if (t == SUCCESS && e->value.op.op2)
3703 t = gfc_expr_check_typed (e->value.op.op2, ns, strict);
3704
3705 return t;
3706 }
3707 }
3708
3709 /* Otherwise, walk the expression and do it strictly. */
3710 check_typed_ns = ns;
3711 error_found = gfc_traverse_expr (e, NULL, &expr_check_typed_help, 0);
3712
3713 return error_found ? FAILURE : SUCCESS;
3714 }
3715
3716 /* Walk an expression tree and replace all symbols with a corresponding symbol
3717 in the formal_ns of "sym". Needed for copying interfaces in PROCEDURE
3718 statements. The boolean return value is required by gfc_traverse_expr. */
3719
3720 static bool
3721 replace_symbol (gfc_expr *expr, gfc_symbol *sym, int *i ATTRIBUTE_UNUSED)
3722 {
3723 if ((expr->expr_type == EXPR_VARIABLE
3724 || (expr->expr_type == EXPR_FUNCTION
3725 && !gfc_is_intrinsic (expr->symtree->n.sym, 0, expr->where)))
3726 && expr->symtree->n.sym->ns == sym->ts.interface->formal_ns)
3727 {
3728 gfc_symtree *stree;
3729 gfc_namespace *ns = sym->formal_ns;
3730 /* Don't use gfc_get_symtree as we prefer to fail badly if we don't find
3731 the symtree rather than create a new one (and probably fail later). */
3732 stree = gfc_find_symtree (ns ? ns->sym_root : gfc_current_ns->sym_root,
3733 expr->symtree->n.sym->name);
3734 gcc_assert (stree);
3735 stree->n.sym->attr = expr->symtree->n.sym->attr;
3736 expr->symtree = stree;
3737 }
3738 return false;
3739 }
3740
3741 void
3742 gfc_expr_replace_symbols (gfc_expr *expr, gfc_symbol *dest)
3743 {
3744 gfc_traverse_expr (expr, dest, &replace_symbol, 0);
3745 }
3746
3747 /* The following is analogous to 'replace_symbol', and needed for copying
3748 interfaces for procedure pointer components. The argument 'sym' must formally
3749 be a gfc_symbol, so that the function can be passed to gfc_traverse_expr.
3750 However, it gets actually passed a gfc_component (i.e. the procedure pointer
3751 component in whose formal_ns the arguments have to be). */
3752
3753 static bool
3754 replace_comp (gfc_expr *expr, gfc_symbol *sym, int *i ATTRIBUTE_UNUSED)
3755 {
3756 gfc_component *comp;
3757 comp = (gfc_component *)sym;
3758 if ((expr->expr_type == EXPR_VARIABLE
3759 || (expr->expr_type == EXPR_FUNCTION
3760 && !gfc_is_intrinsic (expr->symtree->n.sym, 0, expr->where)))
3761 && expr->symtree->n.sym->ns == comp->ts.interface->formal_ns)
3762 {
3763 gfc_symtree *stree;
3764 gfc_namespace *ns = comp->formal_ns;
3765 /* Don't use gfc_get_symtree as we prefer to fail badly if we don't find
3766 the symtree rather than create a new one (and probably fail later). */
3767 stree = gfc_find_symtree (ns ? ns->sym_root : gfc_current_ns->sym_root,
3768 expr->symtree->n.sym->name);
3769 gcc_assert (stree);
3770 stree->n.sym->attr = expr->symtree->n.sym->attr;
3771 expr->symtree = stree;
3772 }
3773 return false;
3774 }
3775
3776 void
3777 gfc_expr_replace_comp (gfc_expr *expr, gfc_component *dest)
3778 {
3779 gfc_traverse_expr (expr, (gfc_symbol *)dest, &replace_comp, 0);
3780 }
3781
This page took 0.198712 seconds and 6 git commands to generate.