]> gcc.gnu.org Git - gcc.git/blob - gcc/fold-const.c
fold-const.c (fold_inf_compare): New function to simplify FP comparisons against...
[gcc.git] / gcc / fold-const.c
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /*@@ This file should be rewritten to use an arbitrary precision
23 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
24 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
25 @@ The routines that translate from the ap rep should
26 @@ warn if precision et. al. is lost.
27 @@ This would also make life easier when this technology is used
28 @@ for cross-compilers. */
29
30 /* The entry points in this file are fold, size_int_wide, size_binop
31 and force_fit_type.
32
33 fold takes a tree as argument and returns a simplified tree.
34
35 size_binop takes a tree code for an arithmetic operation
36 and two operands that are trees, and produces a tree for the
37 result, assuming the type comes from `sizetype'.
38
39 size_int takes an integer value, and creates a tree constant
40 with type from `sizetype'.
41
42 force_fit_type takes a constant and prior overflow indicator, and
43 forces the value to fit the type. It returns an overflow indicator. */
44
45 #include "config.h"
46 #include "system.h"
47 #include "coretypes.h"
48 #include "tm.h"
49 #include "flags.h"
50 #include "tree.h"
51 #include "real.h"
52 #include "rtl.h"
53 #include "expr.h"
54 #include "tm_p.h"
55 #include "toplev.h"
56 #include "ggc.h"
57 #include "hashtab.h"
58 #include "langhooks.h"
59
60 static void encode PARAMS ((HOST_WIDE_INT *,
61 unsigned HOST_WIDE_INT,
62 HOST_WIDE_INT));
63 static void decode PARAMS ((HOST_WIDE_INT *,
64 unsigned HOST_WIDE_INT *,
65 HOST_WIDE_INT *));
66 static bool negate_expr_p PARAMS ((tree));
67 static tree negate_expr PARAMS ((tree));
68 static tree split_tree PARAMS ((tree, enum tree_code, tree *, tree *,
69 tree *, int));
70 static tree associate_trees PARAMS ((tree, tree, enum tree_code, tree));
71 static tree int_const_binop PARAMS ((enum tree_code, tree, tree, int));
72 static tree const_binop PARAMS ((enum tree_code, tree, tree, int));
73 static hashval_t size_htab_hash PARAMS ((const void *));
74 static int size_htab_eq PARAMS ((const void *, const void *));
75 static tree fold_convert PARAMS ((tree, tree));
76 static enum tree_code invert_tree_comparison PARAMS ((enum tree_code));
77 static enum tree_code swap_tree_comparison PARAMS ((enum tree_code));
78 static int comparison_to_compcode PARAMS ((enum tree_code));
79 static enum tree_code compcode_to_comparison PARAMS ((int));
80 static int truth_value_p PARAMS ((enum tree_code));
81 static int operand_equal_for_comparison_p PARAMS ((tree, tree, tree));
82 static int twoval_comparison_p PARAMS ((tree, tree *, tree *, int *));
83 static tree eval_subst PARAMS ((tree, tree, tree, tree, tree));
84 static tree pedantic_omit_one_operand PARAMS ((tree, tree, tree));
85 static tree distribute_bit_expr PARAMS ((enum tree_code, tree, tree, tree));
86 static tree make_bit_field_ref PARAMS ((tree, tree, int, int, int));
87 static tree optimize_bit_field_compare PARAMS ((enum tree_code, tree,
88 tree, tree));
89 static tree decode_field_reference PARAMS ((tree, HOST_WIDE_INT *,
90 HOST_WIDE_INT *,
91 enum machine_mode *, int *,
92 int *, tree *, tree *));
93 static int all_ones_mask_p PARAMS ((tree, int));
94 static tree sign_bit_p PARAMS ((tree, tree));
95 static int simple_operand_p PARAMS ((tree));
96 static tree range_binop PARAMS ((enum tree_code, tree, tree, int,
97 tree, int));
98 static tree make_range PARAMS ((tree, int *, tree *, tree *));
99 static tree build_range_check PARAMS ((tree, tree, int, tree, tree));
100 static int merge_ranges PARAMS ((int *, tree *, tree *, int, tree, tree,
101 int, tree, tree));
102 static tree fold_range_test PARAMS ((tree));
103 static tree unextend PARAMS ((tree, int, int, tree));
104 static tree fold_truthop PARAMS ((enum tree_code, tree, tree, tree));
105 static tree optimize_minmax_comparison PARAMS ((tree));
106 static tree extract_muldiv PARAMS ((tree, tree, enum tree_code, tree));
107 static tree extract_muldiv_1 PARAMS ((tree, tree, enum tree_code, tree));
108 static tree strip_compound_expr PARAMS ((tree, tree));
109 static int multiple_of_p PARAMS ((tree, tree, tree));
110 static tree constant_boolean_node PARAMS ((int, tree));
111 static int count_cond PARAMS ((tree, int));
112 static tree fold_binary_op_with_conditional_arg
113 PARAMS ((enum tree_code, tree, tree, tree, int));
114 static bool fold_real_zero_addition_p PARAMS ((tree, tree, int));
115 static tree fold_mathfn_compare PARAMS ((enum built_in_function,
116 enum tree_code, tree, tree, tree));
117 static tree fold_inf_compare PARAMS ((enum tree_code, tree, tree, tree));
118
119 /* The following constants represent a bit based encoding of GCC's
120 comparison operators. This encoding simplifies transformations
121 on relational comparison operators, such as AND and OR. */
122 #define COMPCODE_FALSE 0
123 #define COMPCODE_LT 1
124 #define COMPCODE_EQ 2
125 #define COMPCODE_LE 3
126 #define COMPCODE_GT 4
127 #define COMPCODE_NE 5
128 #define COMPCODE_GE 6
129 #define COMPCODE_TRUE 7
130
131 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
132 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
133 and SUM1. Then this yields nonzero if overflow occurred during the
134 addition.
135
136 Overflow occurs if A and B have the same sign, but A and SUM differ in
137 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
138 sign. */
139 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
140 \f
141 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
142 We do that by representing the two-word integer in 4 words, with only
143 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
144 number. The value of the word is LOWPART + HIGHPART * BASE. */
145
146 #define LOWPART(x) \
147 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
148 #define HIGHPART(x) \
149 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
150 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
151
152 /* Unpack a two-word integer into 4 words.
153 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
154 WORDS points to the array of HOST_WIDE_INTs. */
155
156 static void
157 encode (words, low, hi)
158 HOST_WIDE_INT *words;
159 unsigned HOST_WIDE_INT low;
160 HOST_WIDE_INT hi;
161 {
162 words[0] = LOWPART (low);
163 words[1] = HIGHPART (low);
164 words[2] = LOWPART (hi);
165 words[3] = HIGHPART (hi);
166 }
167
168 /* Pack an array of 4 words into a two-word integer.
169 WORDS points to the array of words.
170 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
171
172 static void
173 decode (words, low, hi)
174 HOST_WIDE_INT *words;
175 unsigned HOST_WIDE_INT *low;
176 HOST_WIDE_INT *hi;
177 {
178 *low = words[0] + words[1] * BASE;
179 *hi = words[2] + words[3] * BASE;
180 }
181 \f
182 /* Make the integer constant T valid for its type by setting to 0 or 1 all
183 the bits in the constant that don't belong in the type.
184
185 Return 1 if a signed overflow occurs, 0 otherwise. If OVERFLOW is
186 nonzero, a signed overflow has already occurred in calculating T, so
187 propagate it. */
188
189 int
190 force_fit_type (t, overflow)
191 tree t;
192 int overflow;
193 {
194 unsigned HOST_WIDE_INT low;
195 HOST_WIDE_INT high;
196 unsigned int prec;
197
198 if (TREE_CODE (t) == REAL_CST)
199 {
200 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
201 Consider doing it via real_convert now. */
202 return overflow;
203 }
204
205 else if (TREE_CODE (t) != INTEGER_CST)
206 return overflow;
207
208 low = TREE_INT_CST_LOW (t);
209 high = TREE_INT_CST_HIGH (t);
210
211 if (POINTER_TYPE_P (TREE_TYPE (t)))
212 prec = POINTER_SIZE;
213 else
214 prec = TYPE_PRECISION (TREE_TYPE (t));
215
216 /* First clear all bits that are beyond the type's precision. */
217
218 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
219 ;
220 else if (prec > HOST_BITS_PER_WIDE_INT)
221 TREE_INT_CST_HIGH (t)
222 &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
223 else
224 {
225 TREE_INT_CST_HIGH (t) = 0;
226 if (prec < HOST_BITS_PER_WIDE_INT)
227 TREE_INT_CST_LOW (t) &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
228 }
229
230 /* Unsigned types do not suffer sign extension or overflow unless they
231 are a sizetype. */
232 if (TREE_UNSIGNED (TREE_TYPE (t))
233 && ! (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
234 && TYPE_IS_SIZETYPE (TREE_TYPE (t))))
235 return overflow;
236
237 /* If the value's sign bit is set, extend the sign. */
238 if (prec != 2 * HOST_BITS_PER_WIDE_INT
239 && (prec > HOST_BITS_PER_WIDE_INT
240 ? 0 != (TREE_INT_CST_HIGH (t)
241 & ((HOST_WIDE_INT) 1
242 << (prec - HOST_BITS_PER_WIDE_INT - 1)))
243 : 0 != (TREE_INT_CST_LOW (t)
244 & ((unsigned HOST_WIDE_INT) 1 << (prec - 1)))))
245 {
246 /* Value is negative:
247 set to 1 all the bits that are outside this type's precision. */
248 if (prec > HOST_BITS_PER_WIDE_INT)
249 TREE_INT_CST_HIGH (t)
250 |= ((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
251 else
252 {
253 TREE_INT_CST_HIGH (t) = -1;
254 if (prec < HOST_BITS_PER_WIDE_INT)
255 TREE_INT_CST_LOW (t) |= ((unsigned HOST_WIDE_INT) (-1) << prec);
256 }
257 }
258
259 /* Return nonzero if signed overflow occurred. */
260 return
261 ((overflow | (low ^ TREE_INT_CST_LOW (t)) | (high ^ TREE_INT_CST_HIGH (t)))
262 != 0);
263 }
264 \f
265 /* Add two doubleword integers with doubleword result.
266 Each argument is given as two `HOST_WIDE_INT' pieces.
267 One argument is L1 and H1; the other, L2 and H2.
268 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
269
270 int
271 add_double (l1, h1, l2, h2, lv, hv)
272 unsigned HOST_WIDE_INT l1, l2;
273 HOST_WIDE_INT h1, h2;
274 unsigned HOST_WIDE_INT *lv;
275 HOST_WIDE_INT *hv;
276 {
277 unsigned HOST_WIDE_INT l;
278 HOST_WIDE_INT h;
279
280 l = l1 + l2;
281 h = h1 + h2 + (l < l1);
282
283 *lv = l;
284 *hv = h;
285 return OVERFLOW_SUM_SIGN (h1, h2, h);
286 }
287
288 /* Negate a doubleword integer with doubleword result.
289 Return nonzero if the operation overflows, assuming it's signed.
290 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
291 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
292
293 int
294 neg_double (l1, h1, lv, hv)
295 unsigned HOST_WIDE_INT l1;
296 HOST_WIDE_INT h1;
297 unsigned HOST_WIDE_INT *lv;
298 HOST_WIDE_INT *hv;
299 {
300 if (l1 == 0)
301 {
302 *lv = 0;
303 *hv = - h1;
304 return (*hv & h1) < 0;
305 }
306 else
307 {
308 *lv = -l1;
309 *hv = ~h1;
310 return 0;
311 }
312 }
313 \f
314 /* Multiply two doubleword integers with doubleword result.
315 Return nonzero if the operation overflows, assuming it's signed.
316 Each argument is given as two `HOST_WIDE_INT' pieces.
317 One argument is L1 and H1; the other, L2 and H2.
318 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
319
320 int
321 mul_double (l1, h1, l2, h2, lv, hv)
322 unsigned HOST_WIDE_INT l1, l2;
323 HOST_WIDE_INT h1, h2;
324 unsigned HOST_WIDE_INT *lv;
325 HOST_WIDE_INT *hv;
326 {
327 HOST_WIDE_INT arg1[4];
328 HOST_WIDE_INT arg2[4];
329 HOST_WIDE_INT prod[4 * 2];
330 unsigned HOST_WIDE_INT carry;
331 int i, j, k;
332 unsigned HOST_WIDE_INT toplow, neglow;
333 HOST_WIDE_INT tophigh, neghigh;
334
335 encode (arg1, l1, h1);
336 encode (arg2, l2, h2);
337
338 memset ((char *) prod, 0, sizeof prod);
339
340 for (i = 0; i < 4; i++)
341 {
342 carry = 0;
343 for (j = 0; j < 4; j++)
344 {
345 k = i + j;
346 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
347 carry += arg1[i] * arg2[j];
348 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
349 carry += prod[k];
350 prod[k] = LOWPART (carry);
351 carry = HIGHPART (carry);
352 }
353 prod[i + 4] = carry;
354 }
355
356 decode (prod, lv, hv); /* This ignores prod[4] through prod[4*2-1] */
357
358 /* Check for overflow by calculating the top half of the answer in full;
359 it should agree with the low half's sign bit. */
360 decode (prod + 4, &toplow, &tophigh);
361 if (h1 < 0)
362 {
363 neg_double (l2, h2, &neglow, &neghigh);
364 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
365 }
366 if (h2 < 0)
367 {
368 neg_double (l1, h1, &neglow, &neghigh);
369 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
370 }
371 return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
372 }
373 \f
374 /* Shift the doubleword integer in L1, H1 left by COUNT places
375 keeping only PREC bits of result.
376 Shift right if COUNT is negative.
377 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
378 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
379
380 void
381 lshift_double (l1, h1, count, prec, lv, hv, arith)
382 unsigned HOST_WIDE_INT l1;
383 HOST_WIDE_INT h1, count;
384 unsigned int prec;
385 unsigned HOST_WIDE_INT *lv;
386 HOST_WIDE_INT *hv;
387 int arith;
388 {
389 unsigned HOST_WIDE_INT signmask;
390
391 if (count < 0)
392 {
393 rshift_double (l1, h1, -count, prec, lv, hv, arith);
394 return;
395 }
396
397 #ifdef SHIFT_COUNT_TRUNCATED
398 if (SHIFT_COUNT_TRUNCATED)
399 count %= prec;
400 #endif
401
402 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
403 {
404 /* Shifting by the host word size is undefined according to the
405 ANSI standard, so we must handle this as a special case. */
406 *hv = 0;
407 *lv = 0;
408 }
409 else if (count >= HOST_BITS_PER_WIDE_INT)
410 {
411 *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
412 *lv = 0;
413 }
414 else
415 {
416 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
417 | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
418 *lv = l1 << count;
419 }
420
421 /* Sign extend all bits that are beyond the precision. */
422
423 signmask = -((prec > HOST_BITS_PER_WIDE_INT
424 ? ((unsigned HOST_WIDE_INT) *hv
425 >> (prec - HOST_BITS_PER_WIDE_INT - 1))
426 : (*lv >> (prec - 1))) & 1);
427
428 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
429 ;
430 else if (prec >= HOST_BITS_PER_WIDE_INT)
431 {
432 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
433 *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
434 }
435 else
436 {
437 *hv = signmask;
438 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
439 *lv |= signmask << prec;
440 }
441 }
442
443 /* Shift the doubleword integer in L1, H1 right by COUNT places
444 keeping only PREC bits of result. COUNT must be positive.
445 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
446 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
447
448 void
449 rshift_double (l1, h1, count, prec, lv, hv, arith)
450 unsigned HOST_WIDE_INT l1;
451 HOST_WIDE_INT h1, count;
452 unsigned int prec;
453 unsigned HOST_WIDE_INT *lv;
454 HOST_WIDE_INT *hv;
455 int arith;
456 {
457 unsigned HOST_WIDE_INT signmask;
458
459 signmask = (arith
460 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
461 : 0);
462
463 #ifdef SHIFT_COUNT_TRUNCATED
464 if (SHIFT_COUNT_TRUNCATED)
465 count %= prec;
466 #endif
467
468 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
469 {
470 /* Shifting by the host word size is undefined according to the
471 ANSI standard, so we must handle this as a special case. */
472 *hv = 0;
473 *lv = 0;
474 }
475 else if (count >= HOST_BITS_PER_WIDE_INT)
476 {
477 *hv = 0;
478 *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
479 }
480 else
481 {
482 *hv = (unsigned HOST_WIDE_INT) h1 >> count;
483 *lv = ((l1 >> count)
484 | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
485 }
486
487 /* Zero / sign extend all bits that are beyond the precision. */
488
489 if (count >= (HOST_WIDE_INT)prec)
490 {
491 *hv = signmask;
492 *lv = signmask;
493 }
494 else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
495 ;
496 else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
497 {
498 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
499 *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
500 }
501 else
502 {
503 *hv = signmask;
504 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
505 *lv |= signmask << (prec - count);
506 }
507 }
508 \f
509 /* Rotate the doubleword integer in L1, H1 left by COUNT places
510 keeping only PREC bits of result.
511 Rotate right if COUNT is negative.
512 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
513
514 void
515 lrotate_double (l1, h1, count, prec, lv, hv)
516 unsigned HOST_WIDE_INT l1;
517 HOST_WIDE_INT h1, count;
518 unsigned int prec;
519 unsigned HOST_WIDE_INT *lv;
520 HOST_WIDE_INT *hv;
521 {
522 unsigned HOST_WIDE_INT s1l, s2l;
523 HOST_WIDE_INT s1h, s2h;
524
525 count %= prec;
526 if (count < 0)
527 count += prec;
528
529 lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
530 rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
531 *lv = s1l | s2l;
532 *hv = s1h | s2h;
533 }
534
535 /* Rotate the doubleword integer in L1, H1 left by COUNT places
536 keeping only PREC bits of result. COUNT must be positive.
537 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
538
539 void
540 rrotate_double (l1, h1, count, prec, lv, hv)
541 unsigned HOST_WIDE_INT l1;
542 HOST_WIDE_INT h1, count;
543 unsigned int prec;
544 unsigned HOST_WIDE_INT *lv;
545 HOST_WIDE_INT *hv;
546 {
547 unsigned HOST_WIDE_INT s1l, s2l;
548 HOST_WIDE_INT s1h, s2h;
549
550 count %= prec;
551 if (count < 0)
552 count += prec;
553
554 rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
555 lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
556 *lv = s1l | s2l;
557 *hv = s1h | s2h;
558 }
559 \f
560 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
561 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
562 CODE is a tree code for a kind of division, one of
563 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
564 or EXACT_DIV_EXPR
565 It controls how the quotient is rounded to an integer.
566 Return nonzero if the operation overflows.
567 UNS nonzero says do unsigned division. */
568
569 int
570 div_and_round_double (code, uns,
571 lnum_orig, hnum_orig, lden_orig, hden_orig,
572 lquo, hquo, lrem, hrem)
573 enum tree_code code;
574 int uns;
575 unsigned HOST_WIDE_INT lnum_orig; /* num == numerator == dividend */
576 HOST_WIDE_INT hnum_orig;
577 unsigned HOST_WIDE_INT lden_orig; /* den == denominator == divisor */
578 HOST_WIDE_INT hden_orig;
579 unsigned HOST_WIDE_INT *lquo, *lrem;
580 HOST_WIDE_INT *hquo, *hrem;
581 {
582 int quo_neg = 0;
583 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
584 HOST_WIDE_INT den[4], quo[4];
585 int i, j;
586 unsigned HOST_WIDE_INT work;
587 unsigned HOST_WIDE_INT carry = 0;
588 unsigned HOST_WIDE_INT lnum = lnum_orig;
589 HOST_WIDE_INT hnum = hnum_orig;
590 unsigned HOST_WIDE_INT lden = lden_orig;
591 HOST_WIDE_INT hden = hden_orig;
592 int overflow = 0;
593
594 if (hden == 0 && lden == 0)
595 overflow = 1, lden = 1;
596
597 /* calculate quotient sign and convert operands to unsigned. */
598 if (!uns)
599 {
600 if (hnum < 0)
601 {
602 quo_neg = ~ quo_neg;
603 /* (minimum integer) / (-1) is the only overflow case. */
604 if (neg_double (lnum, hnum, &lnum, &hnum)
605 && ((HOST_WIDE_INT) lden & hden) == -1)
606 overflow = 1;
607 }
608 if (hden < 0)
609 {
610 quo_neg = ~ quo_neg;
611 neg_double (lden, hden, &lden, &hden);
612 }
613 }
614
615 if (hnum == 0 && hden == 0)
616 { /* single precision */
617 *hquo = *hrem = 0;
618 /* This unsigned division rounds toward zero. */
619 *lquo = lnum / lden;
620 goto finish_up;
621 }
622
623 if (hnum == 0)
624 { /* trivial case: dividend < divisor */
625 /* hden != 0 already checked. */
626 *hquo = *lquo = 0;
627 *hrem = hnum;
628 *lrem = lnum;
629 goto finish_up;
630 }
631
632 memset ((char *) quo, 0, sizeof quo);
633
634 memset ((char *) num, 0, sizeof num); /* to zero 9th element */
635 memset ((char *) den, 0, sizeof den);
636
637 encode (num, lnum, hnum);
638 encode (den, lden, hden);
639
640 /* Special code for when the divisor < BASE. */
641 if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
642 {
643 /* hnum != 0 already checked. */
644 for (i = 4 - 1; i >= 0; i--)
645 {
646 work = num[i] + carry * BASE;
647 quo[i] = work / lden;
648 carry = work % lden;
649 }
650 }
651 else
652 {
653 /* Full double precision division,
654 with thanks to Don Knuth's "Seminumerical Algorithms". */
655 int num_hi_sig, den_hi_sig;
656 unsigned HOST_WIDE_INT quo_est, scale;
657
658 /* Find the highest nonzero divisor digit. */
659 for (i = 4 - 1;; i--)
660 if (den[i] != 0)
661 {
662 den_hi_sig = i;
663 break;
664 }
665
666 /* Insure that the first digit of the divisor is at least BASE/2.
667 This is required by the quotient digit estimation algorithm. */
668
669 scale = BASE / (den[den_hi_sig] + 1);
670 if (scale > 1)
671 { /* scale divisor and dividend */
672 carry = 0;
673 for (i = 0; i <= 4 - 1; i++)
674 {
675 work = (num[i] * scale) + carry;
676 num[i] = LOWPART (work);
677 carry = HIGHPART (work);
678 }
679
680 num[4] = carry;
681 carry = 0;
682 for (i = 0; i <= 4 - 1; i++)
683 {
684 work = (den[i] * scale) + carry;
685 den[i] = LOWPART (work);
686 carry = HIGHPART (work);
687 if (den[i] != 0) den_hi_sig = i;
688 }
689 }
690
691 num_hi_sig = 4;
692
693 /* Main loop */
694 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
695 {
696 /* Guess the next quotient digit, quo_est, by dividing the first
697 two remaining dividend digits by the high order quotient digit.
698 quo_est is never low and is at most 2 high. */
699 unsigned HOST_WIDE_INT tmp;
700
701 num_hi_sig = i + den_hi_sig + 1;
702 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
703 if (num[num_hi_sig] != den[den_hi_sig])
704 quo_est = work / den[den_hi_sig];
705 else
706 quo_est = BASE - 1;
707
708 /* Refine quo_est so it's usually correct, and at most one high. */
709 tmp = work - quo_est * den[den_hi_sig];
710 if (tmp < BASE
711 && (den[den_hi_sig - 1] * quo_est
712 > (tmp * BASE + num[num_hi_sig - 2])))
713 quo_est--;
714
715 /* Try QUO_EST as the quotient digit, by multiplying the
716 divisor by QUO_EST and subtracting from the remaining dividend.
717 Keep in mind that QUO_EST is the I - 1st digit. */
718
719 carry = 0;
720 for (j = 0; j <= den_hi_sig; j++)
721 {
722 work = quo_est * den[j] + carry;
723 carry = HIGHPART (work);
724 work = num[i + j] - LOWPART (work);
725 num[i + j] = LOWPART (work);
726 carry += HIGHPART (work) != 0;
727 }
728
729 /* If quo_est was high by one, then num[i] went negative and
730 we need to correct things. */
731 if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
732 {
733 quo_est--;
734 carry = 0; /* add divisor back in */
735 for (j = 0; j <= den_hi_sig; j++)
736 {
737 work = num[i + j] + den[j] + carry;
738 carry = HIGHPART (work);
739 num[i + j] = LOWPART (work);
740 }
741
742 num [num_hi_sig] += carry;
743 }
744
745 /* Store the quotient digit. */
746 quo[i] = quo_est;
747 }
748 }
749
750 decode (quo, lquo, hquo);
751
752 finish_up:
753 /* if result is negative, make it so. */
754 if (quo_neg)
755 neg_double (*lquo, *hquo, lquo, hquo);
756
757 /* compute trial remainder: rem = num - (quo * den) */
758 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
759 neg_double (*lrem, *hrem, lrem, hrem);
760 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
761
762 switch (code)
763 {
764 case TRUNC_DIV_EXPR:
765 case TRUNC_MOD_EXPR: /* round toward zero */
766 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
767 return overflow;
768
769 case FLOOR_DIV_EXPR:
770 case FLOOR_MOD_EXPR: /* round toward negative infinity */
771 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
772 {
773 /* quo = quo - 1; */
774 add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
775 lquo, hquo);
776 }
777 else
778 return overflow;
779 break;
780
781 case CEIL_DIV_EXPR:
782 case CEIL_MOD_EXPR: /* round toward positive infinity */
783 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
784 {
785 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
786 lquo, hquo);
787 }
788 else
789 return overflow;
790 break;
791
792 case ROUND_DIV_EXPR:
793 case ROUND_MOD_EXPR: /* round to closest integer */
794 {
795 unsigned HOST_WIDE_INT labs_rem = *lrem;
796 HOST_WIDE_INT habs_rem = *hrem;
797 unsigned HOST_WIDE_INT labs_den = lden, ltwice;
798 HOST_WIDE_INT habs_den = hden, htwice;
799
800 /* Get absolute values */
801 if (*hrem < 0)
802 neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
803 if (hden < 0)
804 neg_double (lden, hden, &labs_den, &habs_den);
805
806 /* If (2 * abs (lrem) >= abs (lden)) */
807 mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
808 labs_rem, habs_rem, &ltwice, &htwice);
809
810 if (((unsigned HOST_WIDE_INT) habs_den
811 < (unsigned HOST_WIDE_INT) htwice)
812 || (((unsigned HOST_WIDE_INT) habs_den
813 == (unsigned HOST_WIDE_INT) htwice)
814 && (labs_den < ltwice)))
815 {
816 if (*hquo < 0)
817 /* quo = quo - 1; */
818 add_double (*lquo, *hquo,
819 (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
820 else
821 /* quo = quo + 1; */
822 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
823 lquo, hquo);
824 }
825 else
826 return overflow;
827 }
828 break;
829
830 default:
831 abort ();
832 }
833
834 /* compute true remainder: rem = num - (quo * den) */
835 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
836 neg_double (*lrem, *hrem, lrem, hrem);
837 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
838 return overflow;
839 }
840 \f
841 /* Determine whether an expression T can be cheaply negated using
842 the function negate_expr. */
843
844 static bool
845 negate_expr_p (t)
846 tree t;
847 {
848 unsigned HOST_WIDE_INT val;
849 unsigned int prec;
850 tree type;
851
852 if (t == 0)
853 return false;
854
855 type = TREE_TYPE (t);
856
857 STRIP_SIGN_NOPS (t);
858 switch (TREE_CODE (t))
859 {
860 case INTEGER_CST:
861 if (TREE_UNSIGNED (type))
862 return false;
863
864 /* Check that -CST will not overflow type. */
865 prec = TYPE_PRECISION (type);
866 if (prec > HOST_BITS_PER_WIDE_INT)
867 {
868 if (TREE_INT_CST_LOW (t) != 0)
869 return true;
870 prec -= HOST_BITS_PER_WIDE_INT;
871 val = TREE_INT_CST_HIGH (t);
872 }
873 else
874 val = TREE_INT_CST_LOW (t);
875 if (prec < HOST_BITS_PER_WIDE_INT)
876 val &= ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
877 return val != ((unsigned HOST_WIDE_INT) 1 << (prec - 1));
878
879 case REAL_CST:
880 case NEGATE_EXPR:
881 case MINUS_EXPR:
882 return true;
883
884 default:
885 break;
886 }
887 return false;
888 }
889
890 /* Given T, an expression, return the negation of T. Allow for T to be
891 null, in which case return null. */
892
893 static tree
894 negate_expr (t)
895 tree t;
896 {
897 tree type;
898 tree tem;
899
900 if (t == 0)
901 return 0;
902
903 type = TREE_TYPE (t);
904 STRIP_SIGN_NOPS (t);
905
906 switch (TREE_CODE (t))
907 {
908 case INTEGER_CST:
909 case REAL_CST:
910 if (! TREE_UNSIGNED (type)
911 && 0 != (tem = fold (build1 (NEGATE_EXPR, type, t)))
912 && ! TREE_OVERFLOW (tem))
913 return tem;
914 break;
915
916 case NEGATE_EXPR:
917 return convert (type, TREE_OPERAND (t, 0));
918
919 case MINUS_EXPR:
920 /* - (A - B) -> B - A */
921 if (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
922 return convert (type,
923 fold (build (MINUS_EXPR, TREE_TYPE (t),
924 TREE_OPERAND (t, 1),
925 TREE_OPERAND (t, 0))));
926 break;
927
928 default:
929 break;
930 }
931
932 return convert (type, fold (build1 (NEGATE_EXPR, TREE_TYPE (t), t)));
933 }
934 \f
935 /* Split a tree IN into a constant, literal and variable parts that could be
936 combined with CODE to make IN. "constant" means an expression with
937 TREE_CONSTANT but that isn't an actual constant. CODE must be a
938 commutative arithmetic operation. Store the constant part into *CONP,
939 the literal in *LITP and return the variable part. If a part isn't
940 present, set it to null. If the tree does not decompose in this way,
941 return the entire tree as the variable part and the other parts as null.
942
943 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
944 case, we negate an operand that was subtracted. Except if it is a
945 literal for which we use *MINUS_LITP instead.
946
947 If NEGATE_P is true, we are negating all of IN, again except a literal
948 for which we use *MINUS_LITP instead.
949
950 If IN is itself a literal or constant, return it as appropriate.
951
952 Note that we do not guarantee that any of the three values will be the
953 same type as IN, but they will have the same signedness and mode. */
954
955 static tree
956 split_tree (in, code, conp, litp, minus_litp, negate_p)
957 tree in;
958 enum tree_code code;
959 tree *conp, *litp, *minus_litp;
960 int negate_p;
961 {
962 tree var = 0;
963
964 *conp = 0;
965 *litp = 0;
966 *minus_litp = 0;
967
968 /* Strip any conversions that don't change the machine mode or signedness. */
969 STRIP_SIGN_NOPS (in);
970
971 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST)
972 *litp = in;
973 else if (TREE_CODE (in) == code
974 || (! FLOAT_TYPE_P (TREE_TYPE (in))
975 /* We can associate addition and subtraction together (even
976 though the C standard doesn't say so) for integers because
977 the value is not affected. For reals, the value might be
978 affected, so we can't. */
979 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
980 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
981 {
982 tree op0 = TREE_OPERAND (in, 0);
983 tree op1 = TREE_OPERAND (in, 1);
984 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
985 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
986
987 /* First see if either of the operands is a literal, then a constant. */
988 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST)
989 *litp = op0, op0 = 0;
990 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST)
991 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
992
993 if (op0 != 0 && TREE_CONSTANT (op0))
994 *conp = op0, op0 = 0;
995 else if (op1 != 0 && TREE_CONSTANT (op1))
996 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
997
998 /* If we haven't dealt with either operand, this is not a case we can
999 decompose. Otherwise, VAR is either of the ones remaining, if any. */
1000 if (op0 != 0 && op1 != 0)
1001 var = in;
1002 else if (op0 != 0)
1003 var = op0;
1004 else
1005 var = op1, neg_var_p = neg1_p;
1006
1007 /* Now do any needed negations. */
1008 if (neg_litp_p)
1009 *minus_litp = *litp, *litp = 0;
1010 if (neg_conp_p)
1011 *conp = negate_expr (*conp);
1012 if (neg_var_p)
1013 var = negate_expr (var);
1014 }
1015 else if (TREE_CONSTANT (in))
1016 *conp = in;
1017 else
1018 var = in;
1019
1020 if (negate_p)
1021 {
1022 if (*litp)
1023 *minus_litp = *litp, *litp = 0;
1024 else if (*minus_litp)
1025 *litp = *minus_litp, *minus_litp = 0;
1026 *conp = negate_expr (*conp);
1027 var = negate_expr (var);
1028 }
1029
1030 return var;
1031 }
1032
1033 /* Re-associate trees split by the above function. T1 and T2 are either
1034 expressions to associate or null. Return the new expression, if any. If
1035 we build an operation, do it in TYPE and with CODE. */
1036
1037 static tree
1038 associate_trees (t1, t2, code, type)
1039 tree t1, t2;
1040 enum tree_code code;
1041 tree type;
1042 {
1043 if (t1 == 0)
1044 return t2;
1045 else if (t2 == 0)
1046 return t1;
1047
1048 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
1049 try to fold this since we will have infinite recursion. But do
1050 deal with any NEGATE_EXPRs. */
1051 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
1052 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
1053 {
1054 if (code == PLUS_EXPR)
1055 {
1056 if (TREE_CODE (t1) == NEGATE_EXPR)
1057 return build (MINUS_EXPR, type, convert (type, t2),
1058 convert (type, TREE_OPERAND (t1, 0)));
1059 else if (TREE_CODE (t2) == NEGATE_EXPR)
1060 return build (MINUS_EXPR, type, convert (type, t1),
1061 convert (type, TREE_OPERAND (t2, 0)));
1062 }
1063 return build (code, type, convert (type, t1), convert (type, t2));
1064 }
1065
1066 return fold (build (code, type, convert (type, t1), convert (type, t2)));
1067 }
1068 \f
1069 /* Combine two integer constants ARG1 and ARG2 under operation CODE
1070 to produce a new constant.
1071
1072 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1073
1074 static tree
1075 int_const_binop (code, arg1, arg2, notrunc)
1076 enum tree_code code;
1077 tree arg1, arg2;
1078 int notrunc;
1079 {
1080 unsigned HOST_WIDE_INT int1l, int2l;
1081 HOST_WIDE_INT int1h, int2h;
1082 unsigned HOST_WIDE_INT low;
1083 HOST_WIDE_INT hi;
1084 unsigned HOST_WIDE_INT garbagel;
1085 HOST_WIDE_INT garbageh;
1086 tree t;
1087 tree type = TREE_TYPE (arg1);
1088 int uns = TREE_UNSIGNED (type);
1089 int is_sizetype
1090 = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
1091 int overflow = 0;
1092 int no_overflow = 0;
1093
1094 int1l = TREE_INT_CST_LOW (arg1);
1095 int1h = TREE_INT_CST_HIGH (arg1);
1096 int2l = TREE_INT_CST_LOW (arg2);
1097 int2h = TREE_INT_CST_HIGH (arg2);
1098
1099 switch (code)
1100 {
1101 case BIT_IOR_EXPR:
1102 low = int1l | int2l, hi = int1h | int2h;
1103 break;
1104
1105 case BIT_XOR_EXPR:
1106 low = int1l ^ int2l, hi = int1h ^ int2h;
1107 break;
1108
1109 case BIT_AND_EXPR:
1110 low = int1l & int2l, hi = int1h & int2h;
1111 break;
1112
1113 case BIT_ANDTC_EXPR:
1114 low = int1l & ~int2l, hi = int1h & ~int2h;
1115 break;
1116
1117 case RSHIFT_EXPR:
1118 int2l = -int2l;
1119 case LSHIFT_EXPR:
1120 /* It's unclear from the C standard whether shifts can overflow.
1121 The following code ignores overflow; perhaps a C standard
1122 interpretation ruling is needed. */
1123 lshift_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1124 &low, &hi, !uns);
1125 no_overflow = 1;
1126 break;
1127
1128 case RROTATE_EXPR:
1129 int2l = - int2l;
1130 case LROTATE_EXPR:
1131 lrotate_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1132 &low, &hi);
1133 break;
1134
1135 case PLUS_EXPR:
1136 overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
1137 break;
1138
1139 case MINUS_EXPR:
1140 neg_double (int2l, int2h, &low, &hi);
1141 add_double (int1l, int1h, low, hi, &low, &hi);
1142 overflow = OVERFLOW_SUM_SIGN (hi, int2h, int1h);
1143 break;
1144
1145 case MULT_EXPR:
1146 overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
1147 break;
1148
1149 case TRUNC_DIV_EXPR:
1150 case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
1151 case EXACT_DIV_EXPR:
1152 /* This is a shortcut for a common special case. */
1153 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1154 && ! TREE_CONSTANT_OVERFLOW (arg1)
1155 && ! TREE_CONSTANT_OVERFLOW (arg2)
1156 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1157 {
1158 if (code == CEIL_DIV_EXPR)
1159 int1l += int2l - 1;
1160
1161 low = int1l / int2l, hi = 0;
1162 break;
1163 }
1164
1165 /* ... fall through ... */
1166
1167 case ROUND_DIV_EXPR:
1168 if (int2h == 0 && int2l == 1)
1169 {
1170 low = int1l, hi = int1h;
1171 break;
1172 }
1173 if (int1l == int2l && int1h == int2h
1174 && ! (int1l == 0 && int1h == 0))
1175 {
1176 low = 1, hi = 0;
1177 break;
1178 }
1179 overflow = div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
1180 &low, &hi, &garbagel, &garbageh);
1181 break;
1182
1183 case TRUNC_MOD_EXPR:
1184 case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
1185 /* This is a shortcut for a common special case. */
1186 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1187 && ! TREE_CONSTANT_OVERFLOW (arg1)
1188 && ! TREE_CONSTANT_OVERFLOW (arg2)
1189 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1190 {
1191 if (code == CEIL_MOD_EXPR)
1192 int1l += int2l - 1;
1193 low = int1l % int2l, hi = 0;
1194 break;
1195 }
1196
1197 /* ... fall through ... */
1198
1199 case ROUND_MOD_EXPR:
1200 overflow = div_and_round_double (code, uns,
1201 int1l, int1h, int2l, int2h,
1202 &garbagel, &garbageh, &low, &hi);
1203 break;
1204
1205 case MIN_EXPR:
1206 case MAX_EXPR:
1207 if (uns)
1208 low = (((unsigned HOST_WIDE_INT) int1h
1209 < (unsigned HOST_WIDE_INT) int2h)
1210 || (((unsigned HOST_WIDE_INT) int1h
1211 == (unsigned HOST_WIDE_INT) int2h)
1212 && int1l < int2l));
1213 else
1214 low = (int1h < int2h
1215 || (int1h == int2h && int1l < int2l));
1216
1217 if (low == (code == MIN_EXPR))
1218 low = int1l, hi = int1h;
1219 else
1220 low = int2l, hi = int2h;
1221 break;
1222
1223 default:
1224 abort ();
1225 }
1226
1227 /* If this is for a sizetype, can be represented as one (signed)
1228 HOST_WIDE_INT word, and doesn't overflow, use size_int since it caches
1229 constants. */
1230 if (is_sizetype
1231 && ((hi == 0 && (HOST_WIDE_INT) low >= 0)
1232 || (hi == -1 && (HOST_WIDE_INT) low < 0))
1233 && overflow == 0 && ! TREE_OVERFLOW (arg1) && ! TREE_OVERFLOW (arg2))
1234 return size_int_type_wide (low, type);
1235 else
1236 {
1237 t = build_int_2 (low, hi);
1238 TREE_TYPE (t) = TREE_TYPE (arg1);
1239 }
1240
1241 TREE_OVERFLOW (t)
1242 = ((notrunc
1243 ? (!uns || is_sizetype) && overflow
1244 : (force_fit_type (t, (!uns || is_sizetype) && overflow)
1245 && ! no_overflow))
1246 | TREE_OVERFLOW (arg1)
1247 | TREE_OVERFLOW (arg2));
1248
1249 /* If we're doing a size calculation, unsigned arithmetic does overflow.
1250 So check if force_fit_type truncated the value. */
1251 if (is_sizetype
1252 && ! TREE_OVERFLOW (t)
1253 && (TREE_INT_CST_HIGH (t) != hi
1254 || TREE_INT_CST_LOW (t) != low))
1255 TREE_OVERFLOW (t) = 1;
1256
1257 TREE_CONSTANT_OVERFLOW (t) = (TREE_OVERFLOW (t)
1258 | TREE_CONSTANT_OVERFLOW (arg1)
1259 | TREE_CONSTANT_OVERFLOW (arg2));
1260 return t;
1261 }
1262
1263 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1264 constant. We assume ARG1 and ARG2 have the same data type, or at least
1265 are the same kind of constant and the same machine mode.
1266
1267 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1268
1269 static tree
1270 const_binop (code, arg1, arg2, notrunc)
1271 enum tree_code code;
1272 tree arg1, arg2;
1273 int notrunc;
1274 {
1275 STRIP_NOPS (arg1);
1276 STRIP_NOPS (arg2);
1277
1278 if (TREE_CODE (arg1) == INTEGER_CST)
1279 return int_const_binop (code, arg1, arg2, notrunc);
1280
1281 if (TREE_CODE (arg1) == REAL_CST)
1282 {
1283 REAL_VALUE_TYPE d1;
1284 REAL_VALUE_TYPE d2;
1285 REAL_VALUE_TYPE value;
1286 tree t;
1287
1288 d1 = TREE_REAL_CST (arg1);
1289 d2 = TREE_REAL_CST (arg2);
1290
1291 /* If either operand is a NaN, just return it. Otherwise, set up
1292 for floating-point trap; we return an overflow. */
1293 if (REAL_VALUE_ISNAN (d1))
1294 return arg1;
1295 else if (REAL_VALUE_ISNAN (d2))
1296 return arg2;
1297
1298 REAL_ARITHMETIC (value, code, d1, d2);
1299
1300 t = build_real (TREE_TYPE (arg1),
1301 real_value_truncate (TYPE_MODE (TREE_TYPE (arg1)),
1302 value));
1303
1304 TREE_OVERFLOW (t)
1305 = (force_fit_type (t, 0)
1306 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1307 TREE_CONSTANT_OVERFLOW (t)
1308 = TREE_OVERFLOW (t)
1309 | TREE_CONSTANT_OVERFLOW (arg1)
1310 | TREE_CONSTANT_OVERFLOW (arg2);
1311 return t;
1312 }
1313 if (TREE_CODE (arg1) == COMPLEX_CST)
1314 {
1315 tree type = TREE_TYPE (arg1);
1316 tree r1 = TREE_REALPART (arg1);
1317 tree i1 = TREE_IMAGPART (arg1);
1318 tree r2 = TREE_REALPART (arg2);
1319 tree i2 = TREE_IMAGPART (arg2);
1320 tree t;
1321
1322 switch (code)
1323 {
1324 case PLUS_EXPR:
1325 t = build_complex (type,
1326 const_binop (PLUS_EXPR, r1, r2, notrunc),
1327 const_binop (PLUS_EXPR, i1, i2, notrunc));
1328 break;
1329
1330 case MINUS_EXPR:
1331 t = build_complex (type,
1332 const_binop (MINUS_EXPR, r1, r2, notrunc),
1333 const_binop (MINUS_EXPR, i1, i2, notrunc));
1334 break;
1335
1336 case MULT_EXPR:
1337 t = build_complex (type,
1338 const_binop (MINUS_EXPR,
1339 const_binop (MULT_EXPR,
1340 r1, r2, notrunc),
1341 const_binop (MULT_EXPR,
1342 i1, i2, notrunc),
1343 notrunc),
1344 const_binop (PLUS_EXPR,
1345 const_binop (MULT_EXPR,
1346 r1, i2, notrunc),
1347 const_binop (MULT_EXPR,
1348 i1, r2, notrunc),
1349 notrunc));
1350 break;
1351
1352 case RDIV_EXPR:
1353 {
1354 tree magsquared
1355 = const_binop (PLUS_EXPR,
1356 const_binop (MULT_EXPR, r2, r2, notrunc),
1357 const_binop (MULT_EXPR, i2, i2, notrunc),
1358 notrunc);
1359
1360 t = build_complex (type,
1361 const_binop
1362 (INTEGRAL_TYPE_P (TREE_TYPE (r1))
1363 ? TRUNC_DIV_EXPR : RDIV_EXPR,
1364 const_binop (PLUS_EXPR,
1365 const_binop (MULT_EXPR, r1, r2,
1366 notrunc),
1367 const_binop (MULT_EXPR, i1, i2,
1368 notrunc),
1369 notrunc),
1370 magsquared, notrunc),
1371 const_binop
1372 (INTEGRAL_TYPE_P (TREE_TYPE (r1))
1373 ? TRUNC_DIV_EXPR : RDIV_EXPR,
1374 const_binop (MINUS_EXPR,
1375 const_binop (MULT_EXPR, i1, r2,
1376 notrunc),
1377 const_binop (MULT_EXPR, r1, i2,
1378 notrunc),
1379 notrunc),
1380 magsquared, notrunc));
1381 }
1382 break;
1383
1384 default:
1385 abort ();
1386 }
1387 return t;
1388 }
1389 return 0;
1390 }
1391
1392 /* These are the hash table functions for the hash table of INTEGER_CST
1393 nodes of a sizetype. */
1394
1395 /* Return the hash code code X, an INTEGER_CST. */
1396
1397 static hashval_t
1398 size_htab_hash (x)
1399 const void *x;
1400 {
1401 tree t = (tree) x;
1402
1403 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1404 ^ htab_hash_pointer (TREE_TYPE (t))
1405 ^ (TREE_OVERFLOW (t) << 20));
1406 }
1407
1408 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1409 is the same as that given by *Y, which is the same. */
1410
1411 static int
1412 size_htab_eq (x, y)
1413 const void *x;
1414 const void *y;
1415 {
1416 tree xt = (tree) x;
1417 tree yt = (tree) y;
1418
1419 return (TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1420 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt)
1421 && TREE_TYPE (xt) == TREE_TYPE (yt)
1422 && TREE_OVERFLOW (xt) == TREE_OVERFLOW (yt));
1423 }
1424 \f
1425 /* Return an INTEGER_CST with value whose low-order HOST_BITS_PER_WIDE_INT
1426 bits are given by NUMBER and of the sizetype represented by KIND. */
1427
1428 tree
1429 size_int_wide (number, kind)
1430 HOST_WIDE_INT number;
1431 enum size_type_kind kind;
1432 {
1433 return size_int_type_wide (number, sizetype_tab[(int) kind]);
1434 }
1435
1436 /* Likewise, but the desired type is specified explicitly. */
1437
1438 static GTY (()) tree new_const;
1439 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
1440 htab_t size_htab;
1441
1442 tree
1443 size_int_type_wide (number, type)
1444 HOST_WIDE_INT number;
1445 tree type;
1446 {
1447 PTR *slot;
1448
1449 if (size_htab == 0)
1450 {
1451 size_htab = htab_create_ggc (1024, size_htab_hash, size_htab_eq, NULL);
1452 new_const = make_node (INTEGER_CST);
1453 }
1454
1455 /* Adjust NEW_CONST to be the constant we want. If it's already in the
1456 hash table, we return the value from the hash table. Otherwise, we
1457 place that in the hash table and make a new node for the next time. */
1458 TREE_INT_CST_LOW (new_const) = number;
1459 TREE_INT_CST_HIGH (new_const) = number < 0 ? -1 : 0;
1460 TREE_TYPE (new_const) = type;
1461 TREE_OVERFLOW (new_const) = TREE_CONSTANT_OVERFLOW (new_const)
1462 = force_fit_type (new_const, 0);
1463
1464 slot = htab_find_slot (size_htab, new_const, INSERT);
1465 if (*slot == 0)
1466 {
1467 tree t = new_const;
1468
1469 *slot = (PTR) new_const;
1470 new_const = make_node (INTEGER_CST);
1471 return t;
1472 }
1473 else
1474 return (tree) *slot;
1475 }
1476
1477 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1478 is a tree code. The type of the result is taken from the operands.
1479 Both must be the same type integer type and it must be a size type.
1480 If the operands are constant, so is the result. */
1481
1482 tree
1483 size_binop (code, arg0, arg1)
1484 enum tree_code code;
1485 tree arg0, arg1;
1486 {
1487 tree type = TREE_TYPE (arg0);
1488
1489 if (TREE_CODE (type) != INTEGER_TYPE || ! TYPE_IS_SIZETYPE (type)
1490 || type != TREE_TYPE (arg1))
1491 abort ();
1492
1493 /* Handle the special case of two integer constants faster. */
1494 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1495 {
1496 /* And some specific cases even faster than that. */
1497 if (code == PLUS_EXPR && integer_zerop (arg0))
1498 return arg1;
1499 else if ((code == MINUS_EXPR || code == PLUS_EXPR)
1500 && integer_zerop (arg1))
1501 return arg0;
1502 else if (code == MULT_EXPR && integer_onep (arg0))
1503 return arg1;
1504
1505 /* Handle general case of two integer constants. */
1506 return int_const_binop (code, arg0, arg1, 0);
1507 }
1508
1509 if (arg0 == error_mark_node || arg1 == error_mark_node)
1510 return error_mark_node;
1511
1512 return fold (build (code, type, arg0, arg1));
1513 }
1514
1515 /* Given two values, either both of sizetype or both of bitsizetype,
1516 compute the difference between the two values. Return the value
1517 in signed type corresponding to the type of the operands. */
1518
1519 tree
1520 size_diffop (arg0, arg1)
1521 tree arg0, arg1;
1522 {
1523 tree type = TREE_TYPE (arg0);
1524 tree ctype;
1525
1526 if (TREE_CODE (type) != INTEGER_TYPE || ! TYPE_IS_SIZETYPE (type)
1527 || type != TREE_TYPE (arg1))
1528 abort ();
1529
1530 /* If the type is already signed, just do the simple thing. */
1531 if (! TREE_UNSIGNED (type))
1532 return size_binop (MINUS_EXPR, arg0, arg1);
1533
1534 ctype = (type == bitsizetype || type == ubitsizetype
1535 ? sbitsizetype : ssizetype);
1536
1537 /* If either operand is not a constant, do the conversions to the signed
1538 type and subtract. The hardware will do the right thing with any
1539 overflow in the subtraction. */
1540 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1541 return size_binop (MINUS_EXPR, convert (ctype, arg0),
1542 convert (ctype, arg1));
1543
1544 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1545 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1546 overflow) and negate (which can't either). Special-case a result
1547 of zero while we're here. */
1548 if (tree_int_cst_equal (arg0, arg1))
1549 return convert (ctype, integer_zero_node);
1550 else if (tree_int_cst_lt (arg1, arg0))
1551 return convert (ctype, size_binop (MINUS_EXPR, arg0, arg1));
1552 else
1553 return size_binop (MINUS_EXPR, convert (ctype, integer_zero_node),
1554 convert (ctype, size_binop (MINUS_EXPR, arg1, arg0)));
1555 }
1556 \f
1557
1558 /* Given T, a tree representing type conversion of ARG1, a constant,
1559 return a constant tree representing the result of conversion. */
1560
1561 static tree
1562 fold_convert (t, arg1)
1563 tree t;
1564 tree arg1;
1565 {
1566 tree type = TREE_TYPE (t);
1567 int overflow = 0;
1568
1569 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
1570 {
1571 if (TREE_CODE (arg1) == INTEGER_CST)
1572 {
1573 /* If we would build a constant wider than GCC supports,
1574 leave the conversion unfolded. */
1575 if (TYPE_PRECISION (type) > 2 * HOST_BITS_PER_WIDE_INT)
1576 return t;
1577
1578 /* If we are trying to make a sizetype for a small integer, use
1579 size_int to pick up cached types to reduce duplicate nodes. */
1580 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
1581 && !TREE_CONSTANT_OVERFLOW (arg1)
1582 && compare_tree_int (arg1, 10000) < 0)
1583 return size_int_type_wide (TREE_INT_CST_LOW (arg1), type);
1584
1585 /* Given an integer constant, make new constant with new type,
1586 appropriately sign-extended or truncated. */
1587 t = build_int_2 (TREE_INT_CST_LOW (arg1),
1588 TREE_INT_CST_HIGH (arg1));
1589 TREE_TYPE (t) = type;
1590 /* Indicate an overflow if (1) ARG1 already overflowed,
1591 or (2) force_fit_type indicates an overflow.
1592 Tell force_fit_type that an overflow has already occurred
1593 if ARG1 is a too-large unsigned value and T is signed.
1594 But don't indicate an overflow if converting a pointer. */
1595 TREE_OVERFLOW (t)
1596 = ((force_fit_type (t,
1597 (TREE_INT_CST_HIGH (arg1) < 0
1598 && (TREE_UNSIGNED (type)
1599 < TREE_UNSIGNED (TREE_TYPE (arg1)))))
1600 && ! POINTER_TYPE_P (TREE_TYPE (arg1)))
1601 || TREE_OVERFLOW (arg1));
1602 TREE_CONSTANT_OVERFLOW (t)
1603 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1604 }
1605 else if (TREE_CODE (arg1) == REAL_CST)
1606 {
1607 /* Don't initialize these, use assignments.
1608 Initialized local aggregates don't work on old compilers. */
1609 REAL_VALUE_TYPE x;
1610 REAL_VALUE_TYPE l;
1611 REAL_VALUE_TYPE u;
1612 tree type1 = TREE_TYPE (arg1);
1613 int no_upper_bound;
1614
1615 x = TREE_REAL_CST (arg1);
1616 l = real_value_from_int_cst (type1, TYPE_MIN_VALUE (type));
1617
1618 no_upper_bound = (TYPE_MAX_VALUE (type) == NULL);
1619 if (!no_upper_bound)
1620 u = real_value_from_int_cst (type1, TYPE_MAX_VALUE (type));
1621
1622 /* See if X will be in range after truncation towards 0.
1623 To compensate for truncation, move the bounds away from 0,
1624 but reject if X exactly equals the adjusted bounds. */
1625 REAL_ARITHMETIC (l, MINUS_EXPR, l, dconst1);
1626 if (!no_upper_bound)
1627 REAL_ARITHMETIC (u, PLUS_EXPR, u, dconst1);
1628 /* If X is a NaN, use zero instead and show we have an overflow.
1629 Otherwise, range check. */
1630 if (REAL_VALUE_ISNAN (x))
1631 overflow = 1, x = dconst0;
1632 else if (! (REAL_VALUES_LESS (l, x)
1633 && !no_upper_bound
1634 && REAL_VALUES_LESS (x, u)))
1635 overflow = 1;
1636
1637 {
1638 HOST_WIDE_INT low, high;
1639 REAL_VALUE_TO_INT (&low, &high, x);
1640 t = build_int_2 (low, high);
1641 }
1642 TREE_TYPE (t) = type;
1643 TREE_OVERFLOW (t)
1644 = TREE_OVERFLOW (arg1) | force_fit_type (t, overflow);
1645 TREE_CONSTANT_OVERFLOW (t)
1646 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1647 }
1648 TREE_TYPE (t) = type;
1649 }
1650 else if (TREE_CODE (type) == REAL_TYPE)
1651 {
1652 if (TREE_CODE (arg1) == INTEGER_CST)
1653 return build_real_from_int_cst (type, arg1);
1654 if (TREE_CODE (arg1) == REAL_CST)
1655 {
1656 if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)))
1657 {
1658 /* We make a copy of ARG1 so that we don't modify an
1659 existing constant tree. */
1660 t = copy_node (arg1);
1661 TREE_TYPE (t) = type;
1662 return t;
1663 }
1664
1665 t = build_real (type,
1666 real_value_truncate (TYPE_MODE (type),
1667 TREE_REAL_CST (arg1)));
1668
1669 TREE_OVERFLOW (t)
1670 = TREE_OVERFLOW (arg1) | force_fit_type (t, 0);
1671 TREE_CONSTANT_OVERFLOW (t)
1672 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1673 return t;
1674 }
1675 }
1676 TREE_CONSTANT (t) = 1;
1677 return t;
1678 }
1679 \f
1680 /* Return an expr equal to X but certainly not valid as an lvalue. */
1681
1682 tree
1683 non_lvalue (x)
1684 tree x;
1685 {
1686 tree result;
1687
1688 /* These things are certainly not lvalues. */
1689 if (TREE_CODE (x) == NON_LVALUE_EXPR
1690 || TREE_CODE (x) == INTEGER_CST
1691 || TREE_CODE (x) == REAL_CST
1692 || TREE_CODE (x) == STRING_CST
1693 || TREE_CODE (x) == ADDR_EXPR)
1694 return x;
1695
1696 result = build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
1697 TREE_CONSTANT (result) = TREE_CONSTANT (x);
1698 return result;
1699 }
1700
1701 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
1702 Zero means allow extended lvalues. */
1703
1704 int pedantic_lvalues;
1705
1706 /* When pedantic, return an expr equal to X but certainly not valid as a
1707 pedantic lvalue. Otherwise, return X. */
1708
1709 tree
1710 pedantic_non_lvalue (x)
1711 tree x;
1712 {
1713 if (pedantic_lvalues)
1714 return non_lvalue (x);
1715 else
1716 return x;
1717 }
1718 \f
1719 /* Given a tree comparison code, return the code that is the logical inverse
1720 of the given code. It is not safe to do this for floating-point
1721 comparisons, except for NE_EXPR and EQ_EXPR. */
1722
1723 static enum tree_code
1724 invert_tree_comparison (code)
1725 enum tree_code code;
1726 {
1727 switch (code)
1728 {
1729 case EQ_EXPR:
1730 return NE_EXPR;
1731 case NE_EXPR:
1732 return EQ_EXPR;
1733 case GT_EXPR:
1734 return LE_EXPR;
1735 case GE_EXPR:
1736 return LT_EXPR;
1737 case LT_EXPR:
1738 return GE_EXPR;
1739 case LE_EXPR:
1740 return GT_EXPR;
1741 default:
1742 abort ();
1743 }
1744 }
1745
1746 /* Similar, but return the comparison that results if the operands are
1747 swapped. This is safe for floating-point. */
1748
1749 static enum tree_code
1750 swap_tree_comparison (code)
1751 enum tree_code code;
1752 {
1753 switch (code)
1754 {
1755 case EQ_EXPR:
1756 case NE_EXPR:
1757 return code;
1758 case GT_EXPR:
1759 return LT_EXPR;
1760 case GE_EXPR:
1761 return LE_EXPR;
1762 case LT_EXPR:
1763 return GT_EXPR;
1764 case LE_EXPR:
1765 return GE_EXPR;
1766 default:
1767 abort ();
1768 }
1769 }
1770
1771
1772 /* Convert a comparison tree code from an enum tree_code representation
1773 into a compcode bit-based encoding. This function is the inverse of
1774 compcode_to_comparison. */
1775
1776 static int
1777 comparison_to_compcode (code)
1778 enum tree_code code;
1779 {
1780 switch (code)
1781 {
1782 case LT_EXPR:
1783 return COMPCODE_LT;
1784 case EQ_EXPR:
1785 return COMPCODE_EQ;
1786 case LE_EXPR:
1787 return COMPCODE_LE;
1788 case GT_EXPR:
1789 return COMPCODE_GT;
1790 case NE_EXPR:
1791 return COMPCODE_NE;
1792 case GE_EXPR:
1793 return COMPCODE_GE;
1794 default:
1795 abort ();
1796 }
1797 }
1798
1799 /* Convert a compcode bit-based encoding of a comparison operator back
1800 to GCC's enum tree_code representation. This function is the
1801 inverse of comparison_to_compcode. */
1802
1803 static enum tree_code
1804 compcode_to_comparison (code)
1805 int code;
1806 {
1807 switch (code)
1808 {
1809 case COMPCODE_LT:
1810 return LT_EXPR;
1811 case COMPCODE_EQ:
1812 return EQ_EXPR;
1813 case COMPCODE_LE:
1814 return LE_EXPR;
1815 case COMPCODE_GT:
1816 return GT_EXPR;
1817 case COMPCODE_NE:
1818 return NE_EXPR;
1819 case COMPCODE_GE:
1820 return GE_EXPR;
1821 default:
1822 abort ();
1823 }
1824 }
1825
1826 /* Return nonzero if CODE is a tree code that represents a truth value. */
1827
1828 static int
1829 truth_value_p (code)
1830 enum tree_code code;
1831 {
1832 return (TREE_CODE_CLASS (code) == '<'
1833 || code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR
1834 || code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR
1835 || code == TRUTH_XOR_EXPR || code == TRUTH_NOT_EXPR);
1836 }
1837 \f
1838 /* Return nonzero if two operands are necessarily equal.
1839 If ONLY_CONST is nonzero, only return nonzero for constants.
1840 This function tests whether the operands are indistinguishable;
1841 it does not test whether they are equal using C's == operation.
1842 The distinction is important for IEEE floating point, because
1843 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
1844 (2) two NaNs may be indistinguishable, but NaN!=NaN. */
1845
1846 int
1847 operand_equal_p (arg0, arg1, only_const)
1848 tree arg0, arg1;
1849 int only_const;
1850 {
1851 /* If both types don't have the same signedness, then we can't consider
1852 them equal. We must check this before the STRIP_NOPS calls
1853 because they may change the signedness of the arguments. */
1854 if (TREE_UNSIGNED (TREE_TYPE (arg0)) != TREE_UNSIGNED (TREE_TYPE (arg1)))
1855 return 0;
1856
1857 STRIP_NOPS (arg0);
1858 STRIP_NOPS (arg1);
1859
1860 if (TREE_CODE (arg0) != TREE_CODE (arg1)
1861 /* This is needed for conversions and for COMPONENT_REF.
1862 Might as well play it safe and always test this. */
1863 || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
1864 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
1865 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
1866 return 0;
1867
1868 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
1869 We don't care about side effects in that case because the SAVE_EXPR
1870 takes care of that for us. In all other cases, two expressions are
1871 equal if they have no side effects. If we have two identical
1872 expressions with side effects that should be treated the same due
1873 to the only side effects being identical SAVE_EXPR's, that will
1874 be detected in the recursive calls below. */
1875 if (arg0 == arg1 && ! only_const
1876 && (TREE_CODE (arg0) == SAVE_EXPR
1877 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
1878 return 1;
1879
1880 /* Next handle constant cases, those for which we can return 1 even
1881 if ONLY_CONST is set. */
1882 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
1883 switch (TREE_CODE (arg0))
1884 {
1885 case INTEGER_CST:
1886 return (! TREE_CONSTANT_OVERFLOW (arg0)
1887 && ! TREE_CONSTANT_OVERFLOW (arg1)
1888 && tree_int_cst_equal (arg0, arg1));
1889
1890 case REAL_CST:
1891 return (! TREE_CONSTANT_OVERFLOW (arg0)
1892 && ! TREE_CONSTANT_OVERFLOW (arg1)
1893 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
1894 TREE_REAL_CST (arg1)));
1895
1896 case VECTOR_CST:
1897 {
1898 tree v1, v2;
1899
1900 if (TREE_CONSTANT_OVERFLOW (arg0)
1901 || TREE_CONSTANT_OVERFLOW (arg1))
1902 return 0;
1903
1904 v1 = TREE_VECTOR_CST_ELTS (arg0);
1905 v2 = TREE_VECTOR_CST_ELTS (arg1);
1906 while (v1 && v2)
1907 {
1908 if (!operand_equal_p (v1, v2, only_const))
1909 return 0;
1910 v1 = TREE_CHAIN (v1);
1911 v2 = TREE_CHAIN (v2);
1912 }
1913
1914 return 1;
1915 }
1916
1917 case COMPLEX_CST:
1918 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
1919 only_const)
1920 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
1921 only_const));
1922
1923 case STRING_CST:
1924 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
1925 && ! memcmp (TREE_STRING_POINTER (arg0),
1926 TREE_STRING_POINTER (arg1),
1927 TREE_STRING_LENGTH (arg0)));
1928
1929 case ADDR_EXPR:
1930 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
1931 0);
1932 default:
1933 break;
1934 }
1935
1936 if (only_const)
1937 return 0;
1938
1939 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
1940 {
1941 case '1':
1942 /* Two conversions are equal only if signedness and modes match. */
1943 if ((TREE_CODE (arg0) == NOP_EXPR || TREE_CODE (arg0) == CONVERT_EXPR)
1944 && (TREE_UNSIGNED (TREE_TYPE (arg0))
1945 != TREE_UNSIGNED (TREE_TYPE (arg1))))
1946 return 0;
1947
1948 return operand_equal_p (TREE_OPERAND (arg0, 0),
1949 TREE_OPERAND (arg1, 0), 0);
1950
1951 case '<':
1952 case '2':
1953 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0)
1954 && operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1),
1955 0))
1956 return 1;
1957
1958 /* For commutative ops, allow the other order. */
1959 return ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MULT_EXPR
1960 || TREE_CODE (arg0) == MIN_EXPR || TREE_CODE (arg0) == MAX_EXPR
1961 || TREE_CODE (arg0) == BIT_IOR_EXPR
1962 || TREE_CODE (arg0) == BIT_XOR_EXPR
1963 || TREE_CODE (arg0) == BIT_AND_EXPR
1964 || TREE_CODE (arg0) == NE_EXPR || TREE_CODE (arg0) == EQ_EXPR)
1965 && operand_equal_p (TREE_OPERAND (arg0, 0),
1966 TREE_OPERAND (arg1, 1), 0)
1967 && operand_equal_p (TREE_OPERAND (arg0, 1),
1968 TREE_OPERAND (arg1, 0), 0));
1969
1970 case 'r':
1971 /* If either of the pointer (or reference) expressions we are dereferencing
1972 contain a side effect, these cannot be equal. */
1973 if (TREE_SIDE_EFFECTS (arg0)
1974 || TREE_SIDE_EFFECTS (arg1))
1975 return 0;
1976
1977 switch (TREE_CODE (arg0))
1978 {
1979 case INDIRECT_REF:
1980 return operand_equal_p (TREE_OPERAND (arg0, 0),
1981 TREE_OPERAND (arg1, 0), 0);
1982
1983 case COMPONENT_REF:
1984 case ARRAY_REF:
1985 case ARRAY_RANGE_REF:
1986 return (operand_equal_p (TREE_OPERAND (arg0, 0),
1987 TREE_OPERAND (arg1, 0), 0)
1988 && operand_equal_p (TREE_OPERAND (arg0, 1),
1989 TREE_OPERAND (arg1, 1), 0));
1990
1991 case BIT_FIELD_REF:
1992 return (operand_equal_p (TREE_OPERAND (arg0, 0),
1993 TREE_OPERAND (arg1, 0), 0)
1994 && operand_equal_p (TREE_OPERAND (arg0, 1),
1995 TREE_OPERAND (arg1, 1), 0)
1996 && operand_equal_p (TREE_OPERAND (arg0, 2),
1997 TREE_OPERAND (arg1, 2), 0));
1998 default:
1999 return 0;
2000 }
2001
2002 case 'e':
2003 if (TREE_CODE (arg0) == RTL_EXPR)
2004 return rtx_equal_p (RTL_EXPR_RTL (arg0), RTL_EXPR_RTL (arg1));
2005 return 0;
2006
2007 default:
2008 return 0;
2009 }
2010 }
2011 \f
2012 /* Similar to operand_equal_p, but see if ARG0 might have been made by
2013 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
2014
2015 When in doubt, return 0. */
2016
2017 static int
2018 operand_equal_for_comparison_p (arg0, arg1, other)
2019 tree arg0, arg1;
2020 tree other;
2021 {
2022 int unsignedp1, unsignedpo;
2023 tree primarg0, primarg1, primother;
2024 unsigned int correct_width;
2025
2026 if (operand_equal_p (arg0, arg1, 0))
2027 return 1;
2028
2029 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
2030 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
2031 return 0;
2032
2033 /* Discard any conversions that don't change the modes of ARG0 and ARG1
2034 and see if the inner values are the same. This removes any
2035 signedness comparison, which doesn't matter here. */
2036 primarg0 = arg0, primarg1 = arg1;
2037 STRIP_NOPS (primarg0);
2038 STRIP_NOPS (primarg1);
2039 if (operand_equal_p (primarg0, primarg1, 0))
2040 return 1;
2041
2042 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
2043 actual comparison operand, ARG0.
2044
2045 First throw away any conversions to wider types
2046 already present in the operands. */
2047
2048 primarg1 = get_narrower (arg1, &unsignedp1);
2049 primother = get_narrower (other, &unsignedpo);
2050
2051 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
2052 if (unsignedp1 == unsignedpo
2053 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
2054 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
2055 {
2056 tree type = TREE_TYPE (arg0);
2057
2058 /* Make sure shorter operand is extended the right way
2059 to match the longer operand. */
2060 primarg1 = convert ((*lang_hooks.types.signed_or_unsigned_type)
2061 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
2062
2063 if (operand_equal_p (arg0, convert (type, primarg1), 0))
2064 return 1;
2065 }
2066
2067 return 0;
2068 }
2069 \f
2070 /* See if ARG is an expression that is either a comparison or is performing
2071 arithmetic on comparisons. The comparisons must only be comparing
2072 two different values, which will be stored in *CVAL1 and *CVAL2; if
2073 they are nonzero it means that some operands have already been found.
2074 No variables may be used anywhere else in the expression except in the
2075 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
2076 the expression and save_expr needs to be called with CVAL1 and CVAL2.
2077
2078 If this is true, return 1. Otherwise, return zero. */
2079
2080 static int
2081 twoval_comparison_p (arg, cval1, cval2, save_p)
2082 tree arg;
2083 tree *cval1, *cval2;
2084 int *save_p;
2085 {
2086 enum tree_code code = TREE_CODE (arg);
2087 char class = TREE_CODE_CLASS (code);
2088
2089 /* We can handle some of the 'e' cases here. */
2090 if (class == 'e' && code == TRUTH_NOT_EXPR)
2091 class = '1';
2092 else if (class == 'e'
2093 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
2094 || code == COMPOUND_EXPR))
2095 class = '2';
2096
2097 else if (class == 'e' && code == SAVE_EXPR && SAVE_EXPR_RTL (arg) == 0
2098 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
2099 {
2100 /* If we've already found a CVAL1 or CVAL2, this expression is
2101 two complex to handle. */
2102 if (*cval1 || *cval2)
2103 return 0;
2104
2105 class = '1';
2106 *save_p = 1;
2107 }
2108
2109 switch (class)
2110 {
2111 case '1':
2112 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
2113
2114 case '2':
2115 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
2116 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2117 cval1, cval2, save_p));
2118
2119 case 'c':
2120 return 1;
2121
2122 case 'e':
2123 if (code == COND_EXPR)
2124 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
2125 cval1, cval2, save_p)
2126 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2127 cval1, cval2, save_p)
2128 && twoval_comparison_p (TREE_OPERAND (arg, 2),
2129 cval1, cval2, save_p));
2130 return 0;
2131
2132 case '<':
2133 /* First see if we can handle the first operand, then the second. For
2134 the second operand, we know *CVAL1 can't be zero. It must be that
2135 one side of the comparison is each of the values; test for the
2136 case where this isn't true by failing if the two operands
2137 are the same. */
2138
2139 if (operand_equal_p (TREE_OPERAND (arg, 0),
2140 TREE_OPERAND (arg, 1), 0))
2141 return 0;
2142
2143 if (*cval1 == 0)
2144 *cval1 = TREE_OPERAND (arg, 0);
2145 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
2146 ;
2147 else if (*cval2 == 0)
2148 *cval2 = TREE_OPERAND (arg, 0);
2149 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
2150 ;
2151 else
2152 return 0;
2153
2154 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
2155 ;
2156 else if (*cval2 == 0)
2157 *cval2 = TREE_OPERAND (arg, 1);
2158 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
2159 ;
2160 else
2161 return 0;
2162
2163 return 1;
2164
2165 default:
2166 return 0;
2167 }
2168 }
2169 \f
2170 /* ARG is a tree that is known to contain just arithmetic operations and
2171 comparisons. Evaluate the operations in the tree substituting NEW0 for
2172 any occurrence of OLD0 as an operand of a comparison and likewise for
2173 NEW1 and OLD1. */
2174
2175 static tree
2176 eval_subst (arg, old0, new0, old1, new1)
2177 tree arg;
2178 tree old0, new0, old1, new1;
2179 {
2180 tree type = TREE_TYPE (arg);
2181 enum tree_code code = TREE_CODE (arg);
2182 char class = TREE_CODE_CLASS (code);
2183
2184 /* We can handle some of the 'e' cases here. */
2185 if (class == 'e' && code == TRUTH_NOT_EXPR)
2186 class = '1';
2187 else if (class == 'e'
2188 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2189 class = '2';
2190
2191 switch (class)
2192 {
2193 case '1':
2194 return fold (build1 (code, type,
2195 eval_subst (TREE_OPERAND (arg, 0),
2196 old0, new0, old1, new1)));
2197
2198 case '2':
2199 return fold (build (code, type,
2200 eval_subst (TREE_OPERAND (arg, 0),
2201 old0, new0, old1, new1),
2202 eval_subst (TREE_OPERAND (arg, 1),
2203 old0, new0, old1, new1)));
2204
2205 case 'e':
2206 switch (code)
2207 {
2208 case SAVE_EXPR:
2209 return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);
2210
2211 case COMPOUND_EXPR:
2212 return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);
2213
2214 case COND_EXPR:
2215 return fold (build (code, type,
2216 eval_subst (TREE_OPERAND (arg, 0),
2217 old0, new0, old1, new1),
2218 eval_subst (TREE_OPERAND (arg, 1),
2219 old0, new0, old1, new1),
2220 eval_subst (TREE_OPERAND (arg, 2),
2221 old0, new0, old1, new1)));
2222 default:
2223 break;
2224 }
2225 /* fall through - ??? */
2226
2227 case '<':
2228 {
2229 tree arg0 = TREE_OPERAND (arg, 0);
2230 tree arg1 = TREE_OPERAND (arg, 1);
2231
2232 /* We need to check both for exact equality and tree equality. The
2233 former will be true if the operand has a side-effect. In that
2234 case, we know the operand occurred exactly once. */
2235
2236 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
2237 arg0 = new0;
2238 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
2239 arg0 = new1;
2240
2241 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
2242 arg1 = new0;
2243 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
2244 arg1 = new1;
2245
2246 return fold (build (code, type, arg0, arg1));
2247 }
2248
2249 default:
2250 return arg;
2251 }
2252 }
2253 \f
2254 /* Return a tree for the case when the result of an expression is RESULT
2255 converted to TYPE and OMITTED was previously an operand of the expression
2256 but is now not needed (e.g., we folded OMITTED * 0).
2257
2258 If OMITTED has side effects, we must evaluate it. Otherwise, just do
2259 the conversion of RESULT to TYPE. */
2260
2261 tree
2262 omit_one_operand (type, result, omitted)
2263 tree type, result, omitted;
2264 {
2265 tree t = convert (type, result);
2266
2267 if (TREE_SIDE_EFFECTS (omitted))
2268 return build (COMPOUND_EXPR, type, omitted, t);
2269
2270 return non_lvalue (t);
2271 }
2272
2273 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
2274
2275 static tree
2276 pedantic_omit_one_operand (type, result, omitted)
2277 tree type, result, omitted;
2278 {
2279 tree t = convert (type, result);
2280
2281 if (TREE_SIDE_EFFECTS (omitted))
2282 return build (COMPOUND_EXPR, type, omitted, t);
2283
2284 return pedantic_non_lvalue (t);
2285 }
2286 \f
2287 /* Return a simplified tree node for the truth-negation of ARG. This
2288 never alters ARG itself. We assume that ARG is an operation that
2289 returns a truth value (0 or 1). */
2290
2291 tree
2292 invert_truthvalue (arg)
2293 tree arg;
2294 {
2295 tree type = TREE_TYPE (arg);
2296 enum tree_code code = TREE_CODE (arg);
2297
2298 if (code == ERROR_MARK)
2299 return arg;
2300
2301 /* If this is a comparison, we can simply invert it, except for
2302 floating-point non-equality comparisons, in which case we just
2303 enclose a TRUTH_NOT_EXPR around what we have. */
2304
2305 if (TREE_CODE_CLASS (code) == '<')
2306 {
2307 if (FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
2308 && !flag_unsafe_math_optimizations
2309 && code != NE_EXPR
2310 && code != EQ_EXPR)
2311 return build1 (TRUTH_NOT_EXPR, type, arg);
2312 else
2313 return build (invert_tree_comparison (code), type,
2314 TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
2315 }
2316
2317 switch (code)
2318 {
2319 case INTEGER_CST:
2320 return convert (type, build_int_2 (integer_zerop (arg), 0));
2321
2322 case TRUTH_AND_EXPR:
2323 return build (TRUTH_OR_EXPR, type,
2324 invert_truthvalue (TREE_OPERAND (arg, 0)),
2325 invert_truthvalue (TREE_OPERAND (arg, 1)));
2326
2327 case TRUTH_OR_EXPR:
2328 return build (TRUTH_AND_EXPR, type,
2329 invert_truthvalue (TREE_OPERAND (arg, 0)),
2330 invert_truthvalue (TREE_OPERAND (arg, 1)));
2331
2332 case TRUTH_XOR_EXPR:
2333 /* Here we can invert either operand. We invert the first operand
2334 unless the second operand is a TRUTH_NOT_EXPR in which case our
2335 result is the XOR of the first operand with the inside of the
2336 negation of the second operand. */
2337
2338 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
2339 return build (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
2340 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
2341 else
2342 return build (TRUTH_XOR_EXPR, type,
2343 invert_truthvalue (TREE_OPERAND (arg, 0)),
2344 TREE_OPERAND (arg, 1));
2345
2346 case TRUTH_ANDIF_EXPR:
2347 return build (TRUTH_ORIF_EXPR, type,
2348 invert_truthvalue (TREE_OPERAND (arg, 0)),
2349 invert_truthvalue (TREE_OPERAND (arg, 1)));
2350
2351 case TRUTH_ORIF_EXPR:
2352 return build (TRUTH_ANDIF_EXPR, type,
2353 invert_truthvalue (TREE_OPERAND (arg, 0)),
2354 invert_truthvalue (TREE_OPERAND (arg, 1)));
2355
2356 case TRUTH_NOT_EXPR:
2357 return TREE_OPERAND (arg, 0);
2358
2359 case COND_EXPR:
2360 return build (COND_EXPR, type, TREE_OPERAND (arg, 0),
2361 invert_truthvalue (TREE_OPERAND (arg, 1)),
2362 invert_truthvalue (TREE_OPERAND (arg, 2)));
2363
2364 case COMPOUND_EXPR:
2365 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
2366 invert_truthvalue (TREE_OPERAND (arg, 1)));
2367
2368 case WITH_RECORD_EXPR:
2369 return build (WITH_RECORD_EXPR, type,
2370 invert_truthvalue (TREE_OPERAND (arg, 0)),
2371 TREE_OPERAND (arg, 1));
2372
2373 case NON_LVALUE_EXPR:
2374 return invert_truthvalue (TREE_OPERAND (arg, 0));
2375
2376 case NOP_EXPR:
2377 case CONVERT_EXPR:
2378 case FLOAT_EXPR:
2379 return build1 (TREE_CODE (arg), type,
2380 invert_truthvalue (TREE_OPERAND (arg, 0)));
2381
2382 case BIT_AND_EXPR:
2383 if (!integer_onep (TREE_OPERAND (arg, 1)))
2384 break;
2385 return build (EQ_EXPR, type, arg, convert (type, integer_zero_node));
2386
2387 case SAVE_EXPR:
2388 return build1 (TRUTH_NOT_EXPR, type, arg);
2389
2390 case CLEANUP_POINT_EXPR:
2391 return build1 (CLEANUP_POINT_EXPR, type,
2392 invert_truthvalue (TREE_OPERAND (arg, 0)));
2393
2394 default:
2395 break;
2396 }
2397 if (TREE_CODE (TREE_TYPE (arg)) != BOOLEAN_TYPE)
2398 abort ();
2399 return build1 (TRUTH_NOT_EXPR, type, arg);
2400 }
2401
2402 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
2403 operands are another bit-wise operation with a common input. If so,
2404 distribute the bit operations to save an operation and possibly two if
2405 constants are involved. For example, convert
2406 (A | B) & (A | C) into A | (B & C)
2407 Further simplification will occur if B and C are constants.
2408
2409 If this optimization cannot be done, 0 will be returned. */
2410
2411 static tree
2412 distribute_bit_expr (code, type, arg0, arg1)
2413 enum tree_code code;
2414 tree type;
2415 tree arg0, arg1;
2416 {
2417 tree common;
2418 tree left, right;
2419
2420 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2421 || TREE_CODE (arg0) == code
2422 || (TREE_CODE (arg0) != BIT_AND_EXPR
2423 && TREE_CODE (arg0) != BIT_IOR_EXPR))
2424 return 0;
2425
2426 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
2427 {
2428 common = TREE_OPERAND (arg0, 0);
2429 left = TREE_OPERAND (arg0, 1);
2430 right = TREE_OPERAND (arg1, 1);
2431 }
2432 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
2433 {
2434 common = TREE_OPERAND (arg0, 0);
2435 left = TREE_OPERAND (arg0, 1);
2436 right = TREE_OPERAND (arg1, 0);
2437 }
2438 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
2439 {
2440 common = TREE_OPERAND (arg0, 1);
2441 left = TREE_OPERAND (arg0, 0);
2442 right = TREE_OPERAND (arg1, 1);
2443 }
2444 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
2445 {
2446 common = TREE_OPERAND (arg0, 1);
2447 left = TREE_OPERAND (arg0, 0);
2448 right = TREE_OPERAND (arg1, 0);
2449 }
2450 else
2451 return 0;
2452
2453 return fold (build (TREE_CODE (arg0), type, common,
2454 fold (build (code, type, left, right))));
2455 }
2456 \f
2457 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
2458 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
2459
2460 static tree
2461 make_bit_field_ref (inner, type, bitsize, bitpos, unsignedp)
2462 tree inner;
2463 tree type;
2464 int bitsize, bitpos;
2465 int unsignedp;
2466 {
2467 tree result = build (BIT_FIELD_REF, type, inner,
2468 size_int (bitsize), bitsize_int (bitpos));
2469
2470 TREE_UNSIGNED (result) = unsignedp;
2471
2472 return result;
2473 }
2474
2475 /* Optimize a bit-field compare.
2476
2477 There are two cases: First is a compare against a constant and the
2478 second is a comparison of two items where the fields are at the same
2479 bit position relative to the start of a chunk (byte, halfword, word)
2480 large enough to contain it. In these cases we can avoid the shift
2481 implicit in bitfield extractions.
2482
2483 For constants, we emit a compare of the shifted constant with the
2484 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
2485 compared. For two fields at the same position, we do the ANDs with the
2486 similar mask and compare the result of the ANDs.
2487
2488 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
2489 COMPARE_TYPE is the type of the comparison, and LHS and RHS
2490 are the left and right operands of the comparison, respectively.
2491
2492 If the optimization described above can be done, we return the resulting
2493 tree. Otherwise we return zero. */
2494
2495 static tree
2496 optimize_bit_field_compare (code, compare_type, lhs, rhs)
2497 enum tree_code code;
2498 tree compare_type;
2499 tree lhs, rhs;
2500 {
2501 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
2502 tree type = TREE_TYPE (lhs);
2503 tree signed_type, unsigned_type;
2504 int const_p = TREE_CODE (rhs) == INTEGER_CST;
2505 enum machine_mode lmode, rmode, nmode;
2506 int lunsignedp, runsignedp;
2507 int lvolatilep = 0, rvolatilep = 0;
2508 tree linner, rinner = NULL_TREE;
2509 tree mask;
2510 tree offset;
2511
2512 /* Get all the information about the extractions being done. If the bit size
2513 if the same as the size of the underlying object, we aren't doing an
2514 extraction at all and so can do nothing. We also don't want to
2515 do anything if the inner expression is a PLACEHOLDER_EXPR since we
2516 then will no longer be able to replace it. */
2517 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
2518 &lunsignedp, &lvolatilep);
2519 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
2520 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
2521 return 0;
2522
2523 if (!const_p)
2524 {
2525 /* If this is not a constant, we can only do something if bit positions,
2526 sizes, and signedness are the same. */
2527 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
2528 &runsignedp, &rvolatilep);
2529
2530 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
2531 || lunsignedp != runsignedp || offset != 0
2532 || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
2533 return 0;
2534 }
2535
2536 /* See if we can find a mode to refer to this field. We should be able to,
2537 but fail if we can't. */
2538 nmode = get_best_mode (lbitsize, lbitpos,
2539 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
2540 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
2541 TYPE_ALIGN (TREE_TYPE (rinner))),
2542 word_mode, lvolatilep || rvolatilep);
2543 if (nmode == VOIDmode)
2544 return 0;
2545
2546 /* Set signed and unsigned types of the precision of this mode for the
2547 shifts below. */
2548 signed_type = (*lang_hooks.types.type_for_mode) (nmode, 0);
2549 unsigned_type = (*lang_hooks.types.type_for_mode) (nmode, 1);
2550
2551 /* Compute the bit position and size for the new reference and our offset
2552 within it. If the new reference is the same size as the original, we
2553 won't optimize anything, so return zero. */
2554 nbitsize = GET_MODE_BITSIZE (nmode);
2555 nbitpos = lbitpos & ~ (nbitsize - 1);
2556 lbitpos -= nbitpos;
2557 if (nbitsize == lbitsize)
2558 return 0;
2559
2560 if (BYTES_BIG_ENDIAN)
2561 lbitpos = nbitsize - lbitsize - lbitpos;
2562
2563 /* Make the mask to be used against the extracted field. */
2564 mask = build_int_2 (~0, ~0);
2565 TREE_TYPE (mask) = unsigned_type;
2566 force_fit_type (mask, 0);
2567 mask = convert (unsigned_type, mask);
2568 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize), 0);
2569 mask = const_binop (RSHIFT_EXPR, mask,
2570 size_int (nbitsize - lbitsize - lbitpos), 0);
2571
2572 if (! const_p)
2573 /* If not comparing with constant, just rework the comparison
2574 and return. */
2575 return build (code, compare_type,
2576 build (BIT_AND_EXPR, unsigned_type,
2577 make_bit_field_ref (linner, unsigned_type,
2578 nbitsize, nbitpos, 1),
2579 mask),
2580 build (BIT_AND_EXPR, unsigned_type,
2581 make_bit_field_ref (rinner, unsigned_type,
2582 nbitsize, nbitpos, 1),
2583 mask));
2584
2585 /* Otherwise, we are handling the constant case. See if the constant is too
2586 big for the field. Warn and return a tree of for 0 (false) if so. We do
2587 this not only for its own sake, but to avoid having to test for this
2588 error case below. If we didn't, we might generate wrong code.
2589
2590 For unsigned fields, the constant shifted right by the field length should
2591 be all zero. For signed fields, the high-order bits should agree with
2592 the sign bit. */
2593
2594 if (lunsignedp)
2595 {
2596 if (! integer_zerop (const_binop (RSHIFT_EXPR,
2597 convert (unsigned_type, rhs),
2598 size_int (lbitsize), 0)))
2599 {
2600 warning ("comparison is always %d due to width of bit-field",
2601 code == NE_EXPR);
2602 return convert (compare_type,
2603 (code == NE_EXPR
2604 ? integer_one_node : integer_zero_node));
2605 }
2606 }
2607 else
2608 {
2609 tree tem = const_binop (RSHIFT_EXPR, convert (signed_type, rhs),
2610 size_int (lbitsize - 1), 0);
2611 if (! integer_zerop (tem) && ! integer_all_onesp (tem))
2612 {
2613 warning ("comparison is always %d due to width of bit-field",
2614 code == NE_EXPR);
2615 return convert (compare_type,
2616 (code == NE_EXPR
2617 ? integer_one_node : integer_zero_node));
2618 }
2619 }
2620
2621 /* Single-bit compares should always be against zero. */
2622 if (lbitsize == 1 && ! integer_zerop (rhs))
2623 {
2624 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
2625 rhs = convert (type, integer_zero_node);
2626 }
2627
2628 /* Make a new bitfield reference, shift the constant over the
2629 appropriate number of bits and mask it with the computed mask
2630 (in case this was a signed field). If we changed it, make a new one. */
2631 lhs = make_bit_field_ref (linner, unsigned_type, nbitsize, nbitpos, 1);
2632 if (lvolatilep)
2633 {
2634 TREE_SIDE_EFFECTS (lhs) = 1;
2635 TREE_THIS_VOLATILE (lhs) = 1;
2636 }
2637
2638 rhs = fold (const_binop (BIT_AND_EXPR,
2639 const_binop (LSHIFT_EXPR,
2640 convert (unsigned_type, rhs),
2641 size_int (lbitpos), 0),
2642 mask, 0));
2643
2644 return build (code, compare_type,
2645 build (BIT_AND_EXPR, unsigned_type, lhs, mask),
2646 rhs);
2647 }
2648 \f
2649 /* Subroutine for fold_truthop: decode a field reference.
2650
2651 If EXP is a comparison reference, we return the innermost reference.
2652
2653 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
2654 set to the starting bit number.
2655
2656 If the innermost field can be completely contained in a mode-sized
2657 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
2658
2659 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
2660 otherwise it is not changed.
2661
2662 *PUNSIGNEDP is set to the signedness of the field.
2663
2664 *PMASK is set to the mask used. This is either contained in a
2665 BIT_AND_EXPR or derived from the width of the field.
2666
2667 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
2668
2669 Return 0 if this is not a component reference or is one that we can't
2670 do anything with. */
2671
2672 static tree
2673 decode_field_reference (exp, pbitsize, pbitpos, pmode, punsignedp,
2674 pvolatilep, pmask, pand_mask)
2675 tree exp;
2676 HOST_WIDE_INT *pbitsize, *pbitpos;
2677 enum machine_mode *pmode;
2678 int *punsignedp, *pvolatilep;
2679 tree *pmask;
2680 tree *pand_mask;
2681 {
2682 tree and_mask = 0;
2683 tree mask, inner, offset;
2684 tree unsigned_type;
2685 unsigned int precision;
2686
2687 /* All the optimizations using this function assume integer fields.
2688 There are problems with FP fields since the type_for_size call
2689 below can fail for, e.g., XFmode. */
2690 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
2691 return 0;
2692
2693 STRIP_NOPS (exp);
2694
2695 if (TREE_CODE (exp) == BIT_AND_EXPR)
2696 {
2697 and_mask = TREE_OPERAND (exp, 1);
2698 exp = TREE_OPERAND (exp, 0);
2699 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
2700 if (TREE_CODE (and_mask) != INTEGER_CST)
2701 return 0;
2702 }
2703
2704 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
2705 punsignedp, pvolatilep);
2706 if ((inner == exp && and_mask == 0)
2707 || *pbitsize < 0 || offset != 0
2708 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
2709 return 0;
2710
2711 /* Compute the mask to access the bitfield. */
2712 unsigned_type = (*lang_hooks.types.type_for_size) (*pbitsize, 1);
2713 precision = TYPE_PRECISION (unsigned_type);
2714
2715 mask = build_int_2 (~0, ~0);
2716 TREE_TYPE (mask) = unsigned_type;
2717 force_fit_type (mask, 0);
2718 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
2719 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
2720
2721 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
2722 if (and_mask != 0)
2723 mask = fold (build (BIT_AND_EXPR, unsigned_type,
2724 convert (unsigned_type, and_mask), mask));
2725
2726 *pmask = mask;
2727 *pand_mask = and_mask;
2728 return inner;
2729 }
2730
2731 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
2732 bit positions. */
2733
2734 static int
2735 all_ones_mask_p (mask, size)
2736 tree mask;
2737 int size;
2738 {
2739 tree type = TREE_TYPE (mask);
2740 unsigned int precision = TYPE_PRECISION (type);
2741 tree tmask;
2742
2743 tmask = build_int_2 (~0, ~0);
2744 TREE_TYPE (tmask) = (*lang_hooks.types.signed_type) (type);
2745 force_fit_type (tmask, 0);
2746 return
2747 tree_int_cst_equal (mask,
2748 const_binop (RSHIFT_EXPR,
2749 const_binop (LSHIFT_EXPR, tmask,
2750 size_int (precision - size),
2751 0),
2752 size_int (precision - size), 0));
2753 }
2754
2755 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
2756 represents the sign bit of EXP's type. If EXP represents a sign
2757 or zero extension, also test VAL against the unextended type.
2758 The return value is the (sub)expression whose sign bit is VAL,
2759 or NULL_TREE otherwise. */
2760
2761 static tree
2762 sign_bit_p (exp, val)
2763 tree exp;
2764 tree val;
2765 {
2766 unsigned HOST_WIDE_INT lo;
2767 HOST_WIDE_INT hi;
2768 int width;
2769 tree t;
2770
2771 /* Tree EXP must have an integral type. */
2772 t = TREE_TYPE (exp);
2773 if (! INTEGRAL_TYPE_P (t))
2774 return NULL_TREE;
2775
2776 /* Tree VAL must be an integer constant. */
2777 if (TREE_CODE (val) != INTEGER_CST
2778 || TREE_CONSTANT_OVERFLOW (val))
2779 return NULL_TREE;
2780
2781 width = TYPE_PRECISION (t);
2782 if (width > HOST_BITS_PER_WIDE_INT)
2783 {
2784 hi = (unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1);
2785 lo = 0;
2786 }
2787 else
2788 {
2789 hi = 0;
2790 lo = (unsigned HOST_WIDE_INT) 1 << (width - 1);
2791 }
2792
2793 if (TREE_INT_CST_HIGH (val) == hi && TREE_INT_CST_LOW (val) == lo)
2794 return exp;
2795
2796 /* Handle extension from a narrower type. */
2797 if (TREE_CODE (exp) == NOP_EXPR
2798 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
2799 return sign_bit_p (TREE_OPERAND (exp, 0), val);
2800
2801 return NULL_TREE;
2802 }
2803
2804 /* Subroutine for fold_truthop: determine if an operand is simple enough
2805 to be evaluated unconditionally. */
2806
2807 static int
2808 simple_operand_p (exp)
2809 tree exp;
2810 {
2811 /* Strip any conversions that don't change the machine mode. */
2812 while ((TREE_CODE (exp) == NOP_EXPR
2813 || TREE_CODE (exp) == CONVERT_EXPR)
2814 && (TYPE_MODE (TREE_TYPE (exp))
2815 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
2816 exp = TREE_OPERAND (exp, 0);
2817
2818 return (TREE_CODE_CLASS (TREE_CODE (exp)) == 'c'
2819 || (DECL_P (exp)
2820 && ! TREE_ADDRESSABLE (exp)
2821 && ! TREE_THIS_VOLATILE (exp)
2822 && ! DECL_NONLOCAL (exp)
2823 /* Don't regard global variables as simple. They may be
2824 allocated in ways unknown to the compiler (shared memory,
2825 #pragma weak, etc). */
2826 && ! TREE_PUBLIC (exp)
2827 && ! DECL_EXTERNAL (exp)
2828 /* Loading a static variable is unduly expensive, but global
2829 registers aren't expensive. */
2830 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
2831 }
2832 \f
2833 /* The following functions are subroutines to fold_range_test and allow it to
2834 try to change a logical combination of comparisons into a range test.
2835
2836 For example, both
2837 X == 2 || X == 3 || X == 4 || X == 5
2838 and
2839 X >= 2 && X <= 5
2840 are converted to
2841 (unsigned) (X - 2) <= 3
2842
2843 We describe each set of comparisons as being either inside or outside
2844 a range, using a variable named like IN_P, and then describe the
2845 range with a lower and upper bound. If one of the bounds is omitted,
2846 it represents either the highest or lowest value of the type.
2847
2848 In the comments below, we represent a range by two numbers in brackets
2849 preceded by a "+" to designate being inside that range, or a "-" to
2850 designate being outside that range, so the condition can be inverted by
2851 flipping the prefix. An omitted bound is represented by a "-". For
2852 example, "- [-, 10]" means being outside the range starting at the lowest
2853 possible value and ending at 10, in other words, being greater than 10.
2854 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
2855 always false.
2856
2857 We set up things so that the missing bounds are handled in a consistent
2858 manner so neither a missing bound nor "true" and "false" need to be
2859 handled using a special case. */
2860
2861 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
2862 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
2863 and UPPER1_P are nonzero if the respective argument is an upper bound
2864 and zero for a lower. TYPE, if nonzero, is the type of the result; it
2865 must be specified for a comparison. ARG1 will be converted to ARG0's
2866 type if both are specified. */
2867
2868 static tree
2869 range_binop (code, type, arg0, upper0_p, arg1, upper1_p)
2870 enum tree_code code;
2871 tree type;
2872 tree arg0, arg1;
2873 int upper0_p, upper1_p;
2874 {
2875 tree tem;
2876 int result;
2877 int sgn0, sgn1;
2878
2879 /* If neither arg represents infinity, do the normal operation.
2880 Else, if not a comparison, return infinity. Else handle the special
2881 comparison rules. Note that most of the cases below won't occur, but
2882 are handled for consistency. */
2883
2884 if (arg0 != 0 && arg1 != 0)
2885 {
2886 tem = fold (build (code, type != 0 ? type : TREE_TYPE (arg0),
2887 arg0, convert (TREE_TYPE (arg0), arg1)));
2888 STRIP_NOPS (tem);
2889 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
2890 }
2891
2892 if (TREE_CODE_CLASS (code) != '<')
2893 return 0;
2894
2895 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
2896 for neither. In real maths, we cannot assume open ended ranges are
2897 the same. But, this is computer arithmetic, where numbers are finite.
2898 We can therefore make the transformation of any unbounded range with
2899 the value Z, Z being greater than any representable number. This permits
2900 us to treat unbounded ranges as equal. */
2901 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
2902 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
2903 switch (code)
2904 {
2905 case EQ_EXPR:
2906 result = sgn0 == sgn1;
2907 break;
2908 case NE_EXPR:
2909 result = sgn0 != sgn1;
2910 break;
2911 case LT_EXPR:
2912 result = sgn0 < sgn1;
2913 break;
2914 case LE_EXPR:
2915 result = sgn0 <= sgn1;
2916 break;
2917 case GT_EXPR:
2918 result = sgn0 > sgn1;
2919 break;
2920 case GE_EXPR:
2921 result = sgn0 >= sgn1;
2922 break;
2923 default:
2924 abort ();
2925 }
2926
2927 return convert (type, result ? integer_one_node : integer_zero_node);
2928 }
2929 \f
2930 /* Given EXP, a logical expression, set the range it is testing into
2931 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
2932 actually being tested. *PLOW and *PHIGH will be made of the same type
2933 as the returned expression. If EXP is not a comparison, we will most
2934 likely not be returning a useful value and range. */
2935
2936 static tree
2937 make_range (exp, pin_p, plow, phigh)
2938 tree exp;
2939 int *pin_p;
2940 tree *plow, *phigh;
2941 {
2942 enum tree_code code;
2943 tree arg0 = NULL_TREE, arg1 = NULL_TREE, type = NULL_TREE;
2944 tree orig_type = NULL_TREE;
2945 int in_p, n_in_p;
2946 tree low, high, n_low, n_high;
2947
2948 /* Start with simply saying "EXP != 0" and then look at the code of EXP
2949 and see if we can refine the range. Some of the cases below may not
2950 happen, but it doesn't seem worth worrying about this. We "continue"
2951 the outer loop when we've changed something; otherwise we "break"
2952 the switch, which will "break" the while. */
2953
2954 in_p = 0, low = high = convert (TREE_TYPE (exp), integer_zero_node);
2955
2956 while (1)
2957 {
2958 code = TREE_CODE (exp);
2959
2960 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
2961 {
2962 arg0 = TREE_OPERAND (exp, 0);
2963 if (TREE_CODE_CLASS (code) == '<'
2964 || TREE_CODE_CLASS (code) == '1'
2965 || TREE_CODE_CLASS (code) == '2')
2966 type = TREE_TYPE (arg0);
2967 if (TREE_CODE_CLASS (code) == '2'
2968 || TREE_CODE_CLASS (code) == '<'
2969 || (TREE_CODE_CLASS (code) == 'e'
2970 && TREE_CODE_LENGTH (code) > 1))
2971 arg1 = TREE_OPERAND (exp, 1);
2972 }
2973
2974 /* Set ORIG_TYPE as soon as TYPE is non-null so that we do not
2975 lose a cast by accident. */
2976 if (type != NULL_TREE && orig_type == NULL_TREE)
2977 orig_type = type;
2978
2979 switch (code)
2980 {
2981 case TRUTH_NOT_EXPR:
2982 in_p = ! in_p, exp = arg0;
2983 continue;
2984
2985 case EQ_EXPR: case NE_EXPR:
2986 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
2987 /* We can only do something if the range is testing for zero
2988 and if the second operand is an integer constant. Note that
2989 saying something is "in" the range we make is done by
2990 complementing IN_P since it will set in the initial case of
2991 being not equal to zero; "out" is leaving it alone. */
2992 if (low == 0 || high == 0
2993 || ! integer_zerop (low) || ! integer_zerop (high)
2994 || TREE_CODE (arg1) != INTEGER_CST)
2995 break;
2996
2997 switch (code)
2998 {
2999 case NE_EXPR: /* - [c, c] */
3000 low = high = arg1;
3001 break;
3002 case EQ_EXPR: /* + [c, c] */
3003 in_p = ! in_p, low = high = arg1;
3004 break;
3005 case GT_EXPR: /* - [-, c] */
3006 low = 0, high = arg1;
3007 break;
3008 case GE_EXPR: /* + [c, -] */
3009 in_p = ! in_p, low = arg1, high = 0;
3010 break;
3011 case LT_EXPR: /* - [c, -] */
3012 low = arg1, high = 0;
3013 break;
3014 case LE_EXPR: /* + [-, c] */
3015 in_p = ! in_p, low = 0, high = arg1;
3016 break;
3017 default:
3018 abort ();
3019 }
3020
3021 exp = arg0;
3022
3023 /* If this is an unsigned comparison, we also know that EXP is
3024 greater than or equal to zero. We base the range tests we make
3025 on that fact, so we record it here so we can parse existing
3026 range tests. */
3027 if (TREE_UNSIGNED (type) && (low == 0 || high == 0))
3028 {
3029 if (! merge_ranges (&n_in_p, &n_low, &n_high, in_p, low, high,
3030 1, convert (type, integer_zero_node),
3031 NULL_TREE))
3032 break;
3033
3034 in_p = n_in_p, low = n_low, high = n_high;
3035
3036 /* If the high bound is missing, but we
3037 have a low bound, reverse the range so
3038 it goes from zero to the low bound minus 1. */
3039 if (high == 0 && low)
3040 {
3041 in_p = ! in_p;
3042 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
3043 integer_one_node, 0);
3044 low = convert (type, integer_zero_node);
3045 }
3046 }
3047 continue;
3048
3049 case NEGATE_EXPR:
3050 /* (-x) IN [a,b] -> x in [-b, -a] */
3051 n_low = range_binop (MINUS_EXPR, type,
3052 convert (type, integer_zero_node), 0, high, 1);
3053 n_high = range_binop (MINUS_EXPR, type,
3054 convert (type, integer_zero_node), 0, low, 0);
3055 low = n_low, high = n_high;
3056 exp = arg0;
3057 continue;
3058
3059 case BIT_NOT_EXPR:
3060 /* ~ X -> -X - 1 */
3061 exp = build (MINUS_EXPR, type, negate_expr (arg0),
3062 convert (type, integer_one_node));
3063 continue;
3064
3065 case PLUS_EXPR: case MINUS_EXPR:
3066 if (TREE_CODE (arg1) != INTEGER_CST)
3067 break;
3068
3069 /* If EXP is signed, any overflow in the computation is undefined,
3070 so we don't worry about it so long as our computations on
3071 the bounds don't overflow. For unsigned, overflow is defined
3072 and this is exactly the right thing. */
3073 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3074 type, low, 0, arg1, 0);
3075 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3076 type, high, 1, arg1, 0);
3077 if ((n_low != 0 && TREE_OVERFLOW (n_low))
3078 || (n_high != 0 && TREE_OVERFLOW (n_high)))
3079 break;
3080
3081 /* Check for an unsigned range which has wrapped around the maximum
3082 value thus making n_high < n_low, and normalize it. */
3083 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
3084 {
3085 low = range_binop (PLUS_EXPR, type, n_high, 0,
3086 integer_one_node, 0);
3087 high = range_binop (MINUS_EXPR, type, n_low, 0,
3088 integer_one_node, 0);
3089
3090 /* If the range is of the form +/- [ x+1, x ], we won't
3091 be able to normalize it. But then, it represents the
3092 whole range or the empty set, so make it
3093 +/- [ -, - ]. */
3094 if (tree_int_cst_equal (n_low, low)
3095 && tree_int_cst_equal (n_high, high))
3096 low = high = 0;
3097 else
3098 in_p = ! in_p;
3099 }
3100 else
3101 low = n_low, high = n_high;
3102
3103 exp = arg0;
3104 continue;
3105
3106 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
3107 if (TYPE_PRECISION (type) > TYPE_PRECISION (orig_type))
3108 break;
3109
3110 if (! INTEGRAL_TYPE_P (type)
3111 || (low != 0 && ! int_fits_type_p (low, type))
3112 || (high != 0 && ! int_fits_type_p (high, type)))
3113 break;
3114
3115 n_low = low, n_high = high;
3116
3117 if (n_low != 0)
3118 n_low = convert (type, n_low);
3119
3120 if (n_high != 0)
3121 n_high = convert (type, n_high);
3122
3123 /* If we're converting from an unsigned to a signed type,
3124 we will be doing the comparison as unsigned. The tests above
3125 have already verified that LOW and HIGH are both positive.
3126
3127 So we have to make sure that the original unsigned value will
3128 be interpreted as positive. */
3129 if (TREE_UNSIGNED (type) && ! TREE_UNSIGNED (TREE_TYPE (exp)))
3130 {
3131 tree equiv_type = (*lang_hooks.types.type_for_mode)
3132 (TYPE_MODE (type), 1);
3133 tree high_positive;
3134
3135 /* A range without an upper bound is, naturally, unbounded.
3136 Since convert would have cropped a very large value, use
3137 the max value for the destination type. */
3138 high_positive
3139 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
3140 : TYPE_MAX_VALUE (type);
3141
3142 if (TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (exp)))
3143 high_positive = fold (build (RSHIFT_EXPR, type,
3144 convert (type, high_positive),
3145 convert (type, integer_one_node)));
3146
3147 /* If the low bound is specified, "and" the range with the
3148 range for which the original unsigned value will be
3149 positive. */
3150 if (low != 0)
3151 {
3152 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3153 1, n_low, n_high,
3154 1, convert (type, integer_zero_node),
3155 high_positive))
3156 break;
3157
3158 in_p = (n_in_p == in_p);
3159 }
3160 else
3161 {
3162 /* Otherwise, "or" the range with the range of the input
3163 that will be interpreted as negative. */
3164 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3165 0, n_low, n_high,
3166 1, convert (type, integer_zero_node),
3167 high_positive))
3168 break;
3169
3170 in_p = (in_p != n_in_p);
3171 }
3172 }
3173
3174 exp = arg0;
3175 low = n_low, high = n_high;
3176 continue;
3177
3178 default:
3179 break;
3180 }
3181
3182 break;
3183 }
3184
3185 /* If EXP is a constant, we can evaluate whether this is true or false. */
3186 if (TREE_CODE (exp) == INTEGER_CST)
3187 {
3188 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
3189 exp, 0, low, 0))
3190 && integer_onep (range_binop (LE_EXPR, integer_type_node,
3191 exp, 1, high, 1)));
3192 low = high = 0;
3193 exp = 0;
3194 }
3195
3196 *pin_p = in_p, *plow = low, *phigh = high;
3197 return exp;
3198 }
3199 \f
3200 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
3201 type, TYPE, return an expression to test if EXP is in (or out of, depending
3202 on IN_P) the range. */
3203
3204 static tree
3205 build_range_check (type, exp, in_p, low, high)
3206 tree type;
3207 tree exp;
3208 int in_p;
3209 tree low, high;
3210 {
3211 tree etype = TREE_TYPE (exp);
3212 tree value;
3213
3214 if (! in_p
3215 && (0 != (value = build_range_check (type, exp, 1, low, high))))
3216 return invert_truthvalue (value);
3217
3218 if (low == 0 && high == 0)
3219 return convert (type, integer_one_node);
3220
3221 if (low == 0)
3222 return fold (build (LE_EXPR, type, exp, high));
3223
3224 if (high == 0)
3225 return fold (build (GE_EXPR, type, exp, low));
3226
3227 if (operand_equal_p (low, high, 0))
3228 return fold (build (EQ_EXPR, type, exp, low));
3229
3230 if (integer_zerop (low))
3231 {
3232 if (! TREE_UNSIGNED (etype))
3233 {
3234 etype = (*lang_hooks.types.unsigned_type) (etype);
3235 high = convert (etype, high);
3236 exp = convert (etype, exp);
3237 }
3238 return build_range_check (type, exp, 1, 0, high);
3239 }
3240
3241 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
3242 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
3243 {
3244 unsigned HOST_WIDE_INT lo;
3245 HOST_WIDE_INT hi;
3246 int prec;
3247
3248 prec = TYPE_PRECISION (etype);
3249 if (prec <= HOST_BITS_PER_WIDE_INT)
3250 {
3251 hi = 0;
3252 lo = ((unsigned HOST_WIDE_INT) 1 << (prec - 1)) - 1;
3253 }
3254 else
3255 {
3256 hi = ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)) - 1;
3257 lo = (unsigned HOST_WIDE_INT) -1;
3258 }
3259
3260 if (TREE_INT_CST_HIGH (high) == hi && TREE_INT_CST_LOW (high) == lo)
3261 {
3262 if (TREE_UNSIGNED (etype))
3263 {
3264 etype = (*lang_hooks.types.signed_type) (etype);
3265 exp = convert (etype, exp);
3266 }
3267 return fold (build (GT_EXPR, type, exp,
3268 convert (etype, integer_zero_node)));
3269 }
3270 }
3271
3272 if (0 != (value = const_binop (MINUS_EXPR, high, low, 0))
3273 && ! TREE_OVERFLOW (value))
3274 return build_range_check (type,
3275 fold (build (MINUS_EXPR, etype, exp, low)),
3276 1, convert (etype, integer_zero_node), value);
3277
3278 return 0;
3279 }
3280 \f
3281 /* Given two ranges, see if we can merge them into one. Return 1 if we
3282 can, 0 if we can't. Set the output range into the specified parameters. */
3283
3284 static int
3285 merge_ranges (pin_p, plow, phigh, in0_p, low0, high0, in1_p, low1, high1)
3286 int *pin_p;
3287 tree *plow, *phigh;
3288 int in0_p, in1_p;
3289 tree low0, high0, low1, high1;
3290 {
3291 int no_overlap;
3292 int subset;
3293 int temp;
3294 tree tem;
3295 int in_p;
3296 tree low, high;
3297 int lowequal = ((low0 == 0 && low1 == 0)
3298 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
3299 low0, 0, low1, 0)));
3300 int highequal = ((high0 == 0 && high1 == 0)
3301 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
3302 high0, 1, high1, 1)));
3303
3304 /* Make range 0 be the range that starts first, or ends last if they
3305 start at the same value. Swap them if it isn't. */
3306 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
3307 low0, 0, low1, 0))
3308 || (lowequal
3309 && integer_onep (range_binop (GT_EXPR, integer_type_node,
3310 high1, 1, high0, 1))))
3311 {
3312 temp = in0_p, in0_p = in1_p, in1_p = temp;
3313 tem = low0, low0 = low1, low1 = tem;
3314 tem = high0, high0 = high1, high1 = tem;
3315 }
3316
3317 /* Now flag two cases, whether the ranges are disjoint or whether the
3318 second range is totally subsumed in the first. Note that the tests
3319 below are simplified by the ones above. */
3320 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
3321 high0, 1, low1, 0));
3322 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
3323 high1, 1, high0, 1));
3324
3325 /* We now have four cases, depending on whether we are including or
3326 excluding the two ranges. */
3327 if (in0_p && in1_p)
3328 {
3329 /* If they don't overlap, the result is false. If the second range
3330 is a subset it is the result. Otherwise, the range is from the start
3331 of the second to the end of the first. */
3332 if (no_overlap)
3333 in_p = 0, low = high = 0;
3334 else if (subset)
3335 in_p = 1, low = low1, high = high1;
3336 else
3337 in_p = 1, low = low1, high = high0;
3338 }
3339
3340 else if (in0_p && ! in1_p)
3341 {
3342 /* If they don't overlap, the result is the first range. If they are
3343 equal, the result is false. If the second range is a subset of the
3344 first, and the ranges begin at the same place, we go from just after
3345 the end of the first range to the end of the second. If the second
3346 range is not a subset of the first, or if it is a subset and both
3347 ranges end at the same place, the range starts at the start of the
3348 first range and ends just before the second range.
3349 Otherwise, we can't describe this as a single range. */
3350 if (no_overlap)
3351 in_p = 1, low = low0, high = high0;
3352 else if (lowequal && highequal)
3353 in_p = 0, low = high = 0;
3354 else if (subset && lowequal)
3355 {
3356 in_p = 1, high = high0;
3357 low = range_binop (PLUS_EXPR, NULL_TREE, high1, 0,
3358 integer_one_node, 0);
3359 }
3360 else if (! subset || highequal)
3361 {
3362 in_p = 1, low = low0;
3363 high = range_binop (MINUS_EXPR, NULL_TREE, low1, 0,
3364 integer_one_node, 0);
3365 }
3366 else
3367 return 0;
3368 }
3369
3370 else if (! in0_p && in1_p)
3371 {
3372 /* If they don't overlap, the result is the second range. If the second
3373 is a subset of the first, the result is false. Otherwise,
3374 the range starts just after the first range and ends at the
3375 end of the second. */
3376 if (no_overlap)
3377 in_p = 1, low = low1, high = high1;
3378 else if (subset || highequal)
3379 in_p = 0, low = high = 0;
3380 else
3381 {
3382 in_p = 1, high = high1;
3383 low = range_binop (PLUS_EXPR, NULL_TREE, high0, 1,
3384 integer_one_node, 0);
3385 }
3386 }
3387
3388 else
3389 {
3390 /* The case where we are excluding both ranges. Here the complex case
3391 is if they don't overlap. In that case, the only time we have a
3392 range is if they are adjacent. If the second is a subset of the
3393 first, the result is the first. Otherwise, the range to exclude
3394 starts at the beginning of the first range and ends at the end of the
3395 second. */
3396 if (no_overlap)
3397 {
3398 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
3399 range_binop (PLUS_EXPR, NULL_TREE,
3400 high0, 1,
3401 integer_one_node, 1),
3402 1, low1, 0)))
3403 in_p = 0, low = low0, high = high1;
3404 else
3405 return 0;
3406 }
3407 else if (subset)
3408 in_p = 0, low = low0, high = high0;
3409 else
3410 in_p = 0, low = low0, high = high1;
3411 }
3412
3413 *pin_p = in_p, *plow = low, *phigh = high;
3414 return 1;
3415 }
3416 \f
3417 /* EXP is some logical combination of boolean tests. See if we can
3418 merge it into some range test. Return the new tree if so. */
3419
3420 static tree
3421 fold_range_test (exp)
3422 tree exp;
3423 {
3424 int or_op = (TREE_CODE (exp) == TRUTH_ORIF_EXPR
3425 || TREE_CODE (exp) == TRUTH_OR_EXPR);
3426 int in0_p, in1_p, in_p;
3427 tree low0, low1, low, high0, high1, high;
3428 tree lhs = make_range (TREE_OPERAND (exp, 0), &in0_p, &low0, &high0);
3429 tree rhs = make_range (TREE_OPERAND (exp, 1), &in1_p, &low1, &high1);
3430 tree tem;
3431
3432 /* If this is an OR operation, invert both sides; we will invert
3433 again at the end. */
3434 if (or_op)
3435 in0_p = ! in0_p, in1_p = ! in1_p;
3436
3437 /* If both expressions are the same, if we can merge the ranges, and we
3438 can build the range test, return it or it inverted. If one of the
3439 ranges is always true or always false, consider it to be the same
3440 expression as the other. */
3441 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
3442 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
3443 in1_p, low1, high1)
3444 && 0 != (tem = (build_range_check (TREE_TYPE (exp),
3445 lhs != 0 ? lhs
3446 : rhs != 0 ? rhs : integer_zero_node,
3447 in_p, low, high))))
3448 return or_op ? invert_truthvalue (tem) : tem;
3449
3450 /* On machines where the branch cost is expensive, if this is a
3451 short-circuited branch and the underlying object on both sides
3452 is the same, make a non-short-circuit operation. */
3453 else if (BRANCH_COST >= 2
3454 && lhs != 0 && rhs != 0
3455 && (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3456 || TREE_CODE (exp) == TRUTH_ORIF_EXPR)
3457 && operand_equal_p (lhs, rhs, 0))
3458 {
3459 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
3460 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
3461 which cases we can't do this. */
3462 if (simple_operand_p (lhs))
3463 return build (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3464 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
3465 TREE_TYPE (exp), TREE_OPERAND (exp, 0),
3466 TREE_OPERAND (exp, 1));
3467
3468 else if ((*lang_hooks.decls.global_bindings_p) () == 0
3469 && ! contains_placeholder_p (lhs))
3470 {
3471 tree common = save_expr (lhs);
3472
3473 if (0 != (lhs = build_range_check (TREE_TYPE (exp), common,
3474 or_op ? ! in0_p : in0_p,
3475 low0, high0))
3476 && (0 != (rhs = build_range_check (TREE_TYPE (exp), common,
3477 or_op ? ! in1_p : in1_p,
3478 low1, high1))))
3479 return build (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3480 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
3481 TREE_TYPE (exp), lhs, rhs);
3482 }
3483 }
3484
3485 return 0;
3486 }
3487 \f
3488 /* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
3489 bit value. Arrange things so the extra bits will be set to zero if and
3490 only if C is signed-extended to its full width. If MASK is nonzero,
3491 it is an INTEGER_CST that should be AND'ed with the extra bits. */
3492
3493 static tree
3494 unextend (c, p, unsignedp, mask)
3495 tree c;
3496 int p;
3497 int unsignedp;
3498 tree mask;
3499 {
3500 tree type = TREE_TYPE (c);
3501 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
3502 tree temp;
3503
3504 if (p == modesize || unsignedp)
3505 return c;
3506
3507 /* We work by getting just the sign bit into the low-order bit, then
3508 into the high-order bit, then sign-extend. We then XOR that value
3509 with C. */
3510 temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
3511 temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);
3512
3513 /* We must use a signed type in order to get an arithmetic right shift.
3514 However, we must also avoid introducing accidental overflows, so that
3515 a subsequent call to integer_zerop will work. Hence we must
3516 do the type conversion here. At this point, the constant is either
3517 zero or one, and the conversion to a signed type can never overflow.
3518 We could get an overflow if this conversion is done anywhere else. */
3519 if (TREE_UNSIGNED (type))
3520 temp = convert ((*lang_hooks.types.signed_type) (type), temp);
3521
3522 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
3523 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
3524 if (mask != 0)
3525 temp = const_binop (BIT_AND_EXPR, temp, convert (TREE_TYPE (c), mask), 0);
3526 /* If necessary, convert the type back to match the type of C. */
3527 if (TREE_UNSIGNED (type))
3528 temp = convert (type, temp);
3529
3530 return convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
3531 }
3532 \f
3533 /* Find ways of folding logical expressions of LHS and RHS:
3534 Try to merge two comparisons to the same innermost item.
3535 Look for range tests like "ch >= '0' && ch <= '9'".
3536 Look for combinations of simple terms on machines with expensive branches
3537 and evaluate the RHS unconditionally.
3538
3539 For example, if we have p->a == 2 && p->b == 4 and we can make an
3540 object large enough to span both A and B, we can do this with a comparison
3541 against the object ANDed with the a mask.
3542
3543 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
3544 operations to do this with one comparison.
3545
3546 We check for both normal comparisons and the BIT_AND_EXPRs made this by
3547 function and the one above.
3548
3549 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
3550 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
3551
3552 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
3553 two operands.
3554
3555 We return the simplified tree or 0 if no optimization is possible. */
3556
3557 static tree
3558 fold_truthop (code, truth_type, lhs, rhs)
3559 enum tree_code code;
3560 tree truth_type, lhs, rhs;
3561 {
3562 /* If this is the "or" of two comparisons, we can do something if
3563 the comparisons are NE_EXPR. If this is the "and", we can do something
3564 if the comparisons are EQ_EXPR. I.e.,
3565 (a->b == 2 && a->c == 4) can become (a->new == NEW).
3566
3567 WANTED_CODE is this operation code. For single bit fields, we can
3568 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
3569 comparison for one-bit fields. */
3570
3571 enum tree_code wanted_code;
3572 enum tree_code lcode, rcode;
3573 tree ll_arg, lr_arg, rl_arg, rr_arg;
3574 tree ll_inner, lr_inner, rl_inner, rr_inner;
3575 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
3576 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
3577 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
3578 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
3579 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
3580 enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
3581 enum machine_mode lnmode, rnmode;
3582 tree ll_mask, lr_mask, rl_mask, rr_mask;
3583 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
3584 tree l_const, r_const;
3585 tree lntype, rntype, result;
3586 int first_bit, end_bit;
3587 int volatilep;
3588
3589 /* Start by getting the comparison codes. Fail if anything is volatile.
3590 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
3591 it were surrounded with a NE_EXPR. */
3592
3593 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
3594 return 0;
3595
3596 lcode = TREE_CODE (lhs);
3597 rcode = TREE_CODE (rhs);
3598
3599 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
3600 lcode = NE_EXPR, lhs = build (NE_EXPR, truth_type, lhs, integer_zero_node);
3601
3602 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
3603 rcode = NE_EXPR, rhs = build (NE_EXPR, truth_type, rhs, integer_zero_node);
3604
3605 if (TREE_CODE_CLASS (lcode) != '<' || TREE_CODE_CLASS (rcode) != '<')
3606 return 0;
3607
3608 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
3609 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
3610
3611 ll_arg = TREE_OPERAND (lhs, 0);
3612 lr_arg = TREE_OPERAND (lhs, 1);
3613 rl_arg = TREE_OPERAND (rhs, 0);
3614 rr_arg = TREE_OPERAND (rhs, 1);
3615
3616 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
3617 if (simple_operand_p (ll_arg)
3618 && simple_operand_p (lr_arg)
3619 && !FLOAT_TYPE_P (TREE_TYPE (ll_arg)))
3620 {
3621 int compcode;
3622
3623 if (operand_equal_p (ll_arg, rl_arg, 0)
3624 && operand_equal_p (lr_arg, rr_arg, 0))
3625 {
3626 int lcompcode, rcompcode;
3627
3628 lcompcode = comparison_to_compcode (lcode);
3629 rcompcode = comparison_to_compcode (rcode);
3630 compcode = (code == TRUTH_AND_EXPR)
3631 ? lcompcode & rcompcode
3632 : lcompcode | rcompcode;
3633 }
3634 else if (operand_equal_p (ll_arg, rr_arg, 0)
3635 && operand_equal_p (lr_arg, rl_arg, 0))
3636 {
3637 int lcompcode, rcompcode;
3638
3639 rcode = swap_tree_comparison (rcode);
3640 lcompcode = comparison_to_compcode (lcode);
3641 rcompcode = comparison_to_compcode (rcode);
3642 compcode = (code == TRUTH_AND_EXPR)
3643 ? lcompcode & rcompcode
3644 : lcompcode | rcompcode;
3645 }
3646 else
3647 compcode = -1;
3648
3649 if (compcode == COMPCODE_TRUE)
3650 return convert (truth_type, integer_one_node);
3651 else if (compcode == COMPCODE_FALSE)
3652 return convert (truth_type, integer_zero_node);
3653 else if (compcode != -1)
3654 return build (compcode_to_comparison (compcode),
3655 truth_type, ll_arg, lr_arg);
3656 }
3657
3658 /* If the RHS can be evaluated unconditionally and its operands are
3659 simple, it wins to evaluate the RHS unconditionally on machines
3660 with expensive branches. In this case, this isn't a comparison
3661 that can be merged. Avoid doing this if the RHS is a floating-point
3662 comparison since those can trap. */
3663
3664 if (BRANCH_COST >= 2
3665 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
3666 && simple_operand_p (rl_arg)
3667 && simple_operand_p (rr_arg))
3668 {
3669 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
3670 if (code == TRUTH_OR_EXPR
3671 && lcode == NE_EXPR && integer_zerop (lr_arg)
3672 && rcode == NE_EXPR && integer_zerop (rr_arg)
3673 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
3674 return build (NE_EXPR, truth_type,
3675 build (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
3676 ll_arg, rl_arg),
3677 integer_zero_node);
3678
3679 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
3680 if (code == TRUTH_AND_EXPR
3681 && lcode == EQ_EXPR && integer_zerop (lr_arg)
3682 && rcode == EQ_EXPR && integer_zerop (rr_arg)
3683 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
3684 return build (EQ_EXPR, truth_type,
3685 build (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
3686 ll_arg, rl_arg),
3687 integer_zero_node);
3688
3689 return build (code, truth_type, lhs, rhs);
3690 }
3691
3692 /* See if the comparisons can be merged. Then get all the parameters for
3693 each side. */
3694
3695 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
3696 || (rcode != EQ_EXPR && rcode != NE_EXPR))
3697 return 0;
3698
3699 volatilep = 0;
3700 ll_inner = decode_field_reference (ll_arg,
3701 &ll_bitsize, &ll_bitpos, &ll_mode,
3702 &ll_unsignedp, &volatilep, &ll_mask,
3703 &ll_and_mask);
3704 lr_inner = decode_field_reference (lr_arg,
3705 &lr_bitsize, &lr_bitpos, &lr_mode,
3706 &lr_unsignedp, &volatilep, &lr_mask,
3707 &lr_and_mask);
3708 rl_inner = decode_field_reference (rl_arg,
3709 &rl_bitsize, &rl_bitpos, &rl_mode,
3710 &rl_unsignedp, &volatilep, &rl_mask,
3711 &rl_and_mask);
3712 rr_inner = decode_field_reference (rr_arg,
3713 &rr_bitsize, &rr_bitpos, &rr_mode,
3714 &rr_unsignedp, &volatilep, &rr_mask,
3715 &rr_and_mask);
3716
3717 /* It must be true that the inner operation on the lhs of each
3718 comparison must be the same if we are to be able to do anything.
3719 Then see if we have constants. If not, the same must be true for
3720 the rhs's. */
3721 if (volatilep || ll_inner == 0 || rl_inner == 0
3722 || ! operand_equal_p (ll_inner, rl_inner, 0))
3723 return 0;
3724
3725 if (TREE_CODE (lr_arg) == INTEGER_CST
3726 && TREE_CODE (rr_arg) == INTEGER_CST)
3727 l_const = lr_arg, r_const = rr_arg;
3728 else if (lr_inner == 0 || rr_inner == 0
3729 || ! operand_equal_p (lr_inner, rr_inner, 0))
3730 return 0;
3731 else
3732 l_const = r_const = 0;
3733
3734 /* If either comparison code is not correct for our logical operation,
3735 fail. However, we can convert a one-bit comparison against zero into
3736 the opposite comparison against that bit being set in the field. */
3737
3738 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
3739 if (lcode != wanted_code)
3740 {
3741 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
3742 {
3743 /* Make the left operand unsigned, since we are only interested
3744 in the value of one bit. Otherwise we are doing the wrong
3745 thing below. */
3746 ll_unsignedp = 1;
3747 l_const = ll_mask;
3748 }
3749 else
3750 return 0;
3751 }
3752
3753 /* This is analogous to the code for l_const above. */
3754 if (rcode != wanted_code)
3755 {
3756 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
3757 {
3758 rl_unsignedp = 1;
3759 r_const = rl_mask;
3760 }
3761 else
3762 return 0;
3763 }
3764
3765 /* After this point all optimizations will generate bit-field
3766 references, which we might not want. */
3767 if (! (*lang_hooks.can_use_bit_fields_p) ())
3768 return 0;
3769
3770 /* See if we can find a mode that contains both fields being compared on
3771 the left. If we can't, fail. Otherwise, update all constants and masks
3772 to be relative to a field of that size. */
3773 first_bit = MIN (ll_bitpos, rl_bitpos);
3774 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
3775 lnmode = get_best_mode (end_bit - first_bit, first_bit,
3776 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
3777 volatilep);
3778 if (lnmode == VOIDmode)
3779 return 0;
3780
3781 lnbitsize = GET_MODE_BITSIZE (lnmode);
3782 lnbitpos = first_bit & ~ (lnbitsize - 1);
3783 lntype = (*lang_hooks.types.type_for_size) (lnbitsize, 1);
3784 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
3785
3786 if (BYTES_BIG_ENDIAN)
3787 {
3788 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
3789 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
3790 }
3791
3792 ll_mask = const_binop (LSHIFT_EXPR, convert (lntype, ll_mask),
3793 size_int (xll_bitpos), 0);
3794 rl_mask = const_binop (LSHIFT_EXPR, convert (lntype, rl_mask),
3795 size_int (xrl_bitpos), 0);
3796
3797 if (l_const)
3798 {
3799 l_const = convert (lntype, l_const);
3800 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
3801 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
3802 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
3803 fold (build1 (BIT_NOT_EXPR,
3804 lntype, ll_mask)),
3805 0)))
3806 {
3807 warning ("comparison is always %d", wanted_code == NE_EXPR);
3808
3809 return convert (truth_type,
3810 wanted_code == NE_EXPR
3811 ? integer_one_node : integer_zero_node);
3812 }
3813 }
3814 if (r_const)
3815 {
3816 r_const = convert (lntype, r_const);
3817 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
3818 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
3819 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
3820 fold (build1 (BIT_NOT_EXPR,
3821 lntype, rl_mask)),
3822 0)))
3823 {
3824 warning ("comparison is always %d", wanted_code == NE_EXPR);
3825
3826 return convert (truth_type,
3827 wanted_code == NE_EXPR
3828 ? integer_one_node : integer_zero_node);
3829 }
3830 }
3831
3832 /* If the right sides are not constant, do the same for it. Also,
3833 disallow this optimization if a size or signedness mismatch occurs
3834 between the left and right sides. */
3835 if (l_const == 0)
3836 {
3837 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
3838 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
3839 /* Make sure the two fields on the right
3840 correspond to the left without being swapped. */
3841 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
3842 return 0;
3843
3844 first_bit = MIN (lr_bitpos, rr_bitpos);
3845 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
3846 rnmode = get_best_mode (end_bit - first_bit, first_bit,
3847 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
3848 volatilep);
3849 if (rnmode == VOIDmode)
3850 return 0;
3851
3852 rnbitsize = GET_MODE_BITSIZE (rnmode);
3853 rnbitpos = first_bit & ~ (rnbitsize - 1);
3854 rntype = (*lang_hooks.types.type_for_size) (rnbitsize, 1);
3855 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
3856
3857 if (BYTES_BIG_ENDIAN)
3858 {
3859 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
3860 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
3861 }
3862
3863 lr_mask = const_binop (LSHIFT_EXPR, convert (rntype, lr_mask),
3864 size_int (xlr_bitpos), 0);
3865 rr_mask = const_binop (LSHIFT_EXPR, convert (rntype, rr_mask),
3866 size_int (xrr_bitpos), 0);
3867
3868 /* Make a mask that corresponds to both fields being compared.
3869 Do this for both items being compared. If the operands are the
3870 same size and the bits being compared are in the same position
3871 then we can do this by masking both and comparing the masked
3872 results. */
3873 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
3874 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
3875 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
3876 {
3877 lhs = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
3878 ll_unsignedp || rl_unsignedp);
3879 if (! all_ones_mask_p (ll_mask, lnbitsize))
3880 lhs = build (BIT_AND_EXPR, lntype, lhs, ll_mask);
3881
3882 rhs = make_bit_field_ref (lr_inner, rntype, rnbitsize, rnbitpos,
3883 lr_unsignedp || rr_unsignedp);
3884 if (! all_ones_mask_p (lr_mask, rnbitsize))
3885 rhs = build (BIT_AND_EXPR, rntype, rhs, lr_mask);
3886
3887 return build (wanted_code, truth_type, lhs, rhs);
3888 }
3889
3890 /* There is still another way we can do something: If both pairs of
3891 fields being compared are adjacent, we may be able to make a wider
3892 field containing them both.
3893
3894 Note that we still must mask the lhs/rhs expressions. Furthermore,
3895 the mask must be shifted to account for the shift done by
3896 make_bit_field_ref. */
3897 if ((ll_bitsize + ll_bitpos == rl_bitpos
3898 && lr_bitsize + lr_bitpos == rr_bitpos)
3899 || (ll_bitpos == rl_bitpos + rl_bitsize
3900 && lr_bitpos == rr_bitpos + rr_bitsize))
3901 {
3902 tree type;
3903
3904 lhs = make_bit_field_ref (ll_inner, lntype, ll_bitsize + rl_bitsize,
3905 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
3906 rhs = make_bit_field_ref (lr_inner, rntype, lr_bitsize + rr_bitsize,
3907 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
3908
3909 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
3910 size_int (MIN (xll_bitpos, xrl_bitpos)), 0);
3911 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
3912 size_int (MIN (xlr_bitpos, xrr_bitpos)), 0);
3913
3914 /* Convert to the smaller type before masking out unwanted bits. */
3915 type = lntype;
3916 if (lntype != rntype)
3917 {
3918 if (lnbitsize > rnbitsize)
3919 {
3920 lhs = convert (rntype, lhs);
3921 ll_mask = convert (rntype, ll_mask);
3922 type = rntype;
3923 }
3924 else if (lnbitsize < rnbitsize)
3925 {
3926 rhs = convert (lntype, rhs);
3927 lr_mask = convert (lntype, lr_mask);
3928 type = lntype;
3929 }
3930 }
3931
3932 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
3933 lhs = build (BIT_AND_EXPR, type, lhs, ll_mask);
3934
3935 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
3936 rhs = build (BIT_AND_EXPR, type, rhs, lr_mask);
3937
3938 return build (wanted_code, truth_type, lhs, rhs);
3939 }
3940
3941 return 0;
3942 }
3943
3944 /* Handle the case of comparisons with constants. If there is something in
3945 common between the masks, those bits of the constants must be the same.
3946 If not, the condition is always false. Test for this to avoid generating
3947 incorrect code below. */
3948 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
3949 if (! integer_zerop (result)
3950 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
3951 const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
3952 {
3953 if (wanted_code == NE_EXPR)
3954 {
3955 warning ("`or' of unmatched not-equal tests is always 1");
3956 return convert (truth_type, integer_one_node);
3957 }
3958 else
3959 {
3960 warning ("`and' of mutually exclusive equal-tests is always 0");
3961 return convert (truth_type, integer_zero_node);
3962 }
3963 }
3964
3965 /* Construct the expression we will return. First get the component
3966 reference we will make. Unless the mask is all ones the width of
3967 that field, perform the mask operation. Then compare with the
3968 merged constant. */
3969 result = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
3970 ll_unsignedp || rl_unsignedp);
3971
3972 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
3973 if (! all_ones_mask_p (ll_mask, lnbitsize))
3974 result = build (BIT_AND_EXPR, lntype, result, ll_mask);
3975
3976 return build (wanted_code, truth_type, result,
3977 const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
3978 }
3979 \f
3980 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
3981 constant. */
3982
3983 static tree
3984 optimize_minmax_comparison (t)
3985 tree t;
3986 {
3987 tree type = TREE_TYPE (t);
3988 tree arg0 = TREE_OPERAND (t, 0);
3989 enum tree_code op_code;
3990 tree comp_const = TREE_OPERAND (t, 1);
3991 tree minmax_const;
3992 int consts_equal, consts_lt;
3993 tree inner;
3994
3995 STRIP_SIGN_NOPS (arg0);
3996
3997 op_code = TREE_CODE (arg0);
3998 minmax_const = TREE_OPERAND (arg0, 1);
3999 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
4000 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
4001 inner = TREE_OPERAND (arg0, 0);
4002
4003 /* If something does not permit us to optimize, return the original tree. */
4004 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
4005 || TREE_CODE (comp_const) != INTEGER_CST
4006 || TREE_CONSTANT_OVERFLOW (comp_const)
4007 || TREE_CODE (minmax_const) != INTEGER_CST
4008 || TREE_CONSTANT_OVERFLOW (minmax_const))
4009 return t;
4010
4011 /* Now handle all the various comparison codes. We only handle EQ_EXPR
4012 and GT_EXPR, doing the rest with recursive calls using logical
4013 simplifications. */
4014 switch (TREE_CODE (t))
4015 {
4016 case NE_EXPR: case LT_EXPR: case LE_EXPR:
4017 return
4018 invert_truthvalue (optimize_minmax_comparison (invert_truthvalue (t)));
4019
4020 case GE_EXPR:
4021 return
4022 fold (build (TRUTH_ORIF_EXPR, type,
4023 optimize_minmax_comparison
4024 (build (EQ_EXPR, type, arg0, comp_const)),
4025 optimize_minmax_comparison
4026 (build (GT_EXPR, type, arg0, comp_const))));
4027
4028 case EQ_EXPR:
4029 if (op_code == MAX_EXPR && consts_equal)
4030 /* MAX (X, 0) == 0 -> X <= 0 */
4031 return fold (build (LE_EXPR, type, inner, comp_const));
4032
4033 else if (op_code == MAX_EXPR && consts_lt)
4034 /* MAX (X, 0) == 5 -> X == 5 */
4035 return fold (build (EQ_EXPR, type, inner, comp_const));
4036
4037 else if (op_code == MAX_EXPR)
4038 /* MAX (X, 0) == -1 -> false */
4039 return omit_one_operand (type, integer_zero_node, inner);
4040
4041 else if (consts_equal)
4042 /* MIN (X, 0) == 0 -> X >= 0 */
4043 return fold (build (GE_EXPR, type, inner, comp_const));
4044
4045 else if (consts_lt)
4046 /* MIN (X, 0) == 5 -> false */
4047 return omit_one_operand (type, integer_zero_node, inner);
4048
4049 else
4050 /* MIN (X, 0) == -1 -> X == -1 */
4051 return fold (build (EQ_EXPR, type, inner, comp_const));
4052
4053 case GT_EXPR:
4054 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
4055 /* MAX (X, 0) > 0 -> X > 0
4056 MAX (X, 0) > 5 -> X > 5 */
4057 return fold (build (GT_EXPR, type, inner, comp_const));
4058
4059 else if (op_code == MAX_EXPR)
4060 /* MAX (X, 0) > -1 -> true */
4061 return omit_one_operand (type, integer_one_node, inner);
4062
4063 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
4064 /* MIN (X, 0) > 0 -> false
4065 MIN (X, 0) > 5 -> false */
4066 return omit_one_operand (type, integer_zero_node, inner);
4067
4068 else
4069 /* MIN (X, 0) > -1 -> X > -1 */
4070 return fold (build (GT_EXPR, type, inner, comp_const));
4071
4072 default:
4073 return t;
4074 }
4075 }
4076 \f
4077 /* T is an integer expression that is being multiplied, divided, or taken a
4078 modulus (CODE says which and what kind of divide or modulus) by a
4079 constant C. See if we can eliminate that operation by folding it with
4080 other operations already in T. WIDE_TYPE, if non-null, is a type that
4081 should be used for the computation if wider than our type.
4082
4083 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
4084 (X * 2) + (Y * 4). We must, however, be assured that either the original
4085 expression would not overflow or that overflow is undefined for the type
4086 in the language in question.
4087
4088 We also canonicalize (X + 7) * 4 into X * 4 + 28 in the hope that either
4089 the machine has a multiply-accumulate insn or that this is part of an
4090 addressing calculation.
4091
4092 If we return a non-null expression, it is an equivalent form of the
4093 original computation, but need not be in the original type. */
4094
4095 static tree
4096 extract_muldiv (t, c, code, wide_type)
4097 tree t;
4098 tree c;
4099 enum tree_code code;
4100 tree wide_type;
4101 {
4102 /* To avoid exponential search depth, refuse to allow recursion past
4103 three levels. Beyond that (1) it's highly unlikely that we'll find
4104 something interesting and (2) we've probably processed it before
4105 when we built the inner expression. */
4106
4107 static int depth;
4108 tree ret;
4109
4110 if (depth > 3)
4111 return NULL;
4112
4113 depth++;
4114 ret = extract_muldiv_1 (t, c, code, wide_type);
4115 depth--;
4116
4117 return ret;
4118 }
4119
4120 static tree
4121 extract_muldiv_1 (t, c, code, wide_type)
4122 tree t;
4123 tree c;
4124 enum tree_code code;
4125 tree wide_type;
4126 {
4127 tree type = TREE_TYPE (t);
4128 enum tree_code tcode = TREE_CODE (t);
4129 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
4130 > GET_MODE_SIZE (TYPE_MODE (type)))
4131 ? wide_type : type);
4132 tree t1, t2;
4133 int same_p = tcode == code;
4134 tree op0 = NULL_TREE, op1 = NULL_TREE;
4135
4136 /* Don't deal with constants of zero here; they confuse the code below. */
4137 if (integer_zerop (c))
4138 return NULL_TREE;
4139
4140 if (TREE_CODE_CLASS (tcode) == '1')
4141 op0 = TREE_OPERAND (t, 0);
4142
4143 if (TREE_CODE_CLASS (tcode) == '2')
4144 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
4145
4146 /* Note that we need not handle conditional operations here since fold
4147 already handles those cases. So just do arithmetic here. */
4148 switch (tcode)
4149 {
4150 case INTEGER_CST:
4151 /* For a constant, we can always simplify if we are a multiply
4152 or (for divide and modulus) if it is a multiple of our constant. */
4153 if (code == MULT_EXPR
4154 || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c, 0)))
4155 return const_binop (code, convert (ctype, t), convert (ctype, c), 0);
4156 break;
4157
4158 case CONVERT_EXPR: case NON_LVALUE_EXPR: case NOP_EXPR:
4159 /* If op0 is an expression ... */
4160 if ((TREE_CODE_CLASS (TREE_CODE (op0)) == '<'
4161 || TREE_CODE_CLASS (TREE_CODE (op0)) == '1'
4162 || TREE_CODE_CLASS (TREE_CODE (op0)) == '2'
4163 || TREE_CODE_CLASS (TREE_CODE (op0)) == 'e')
4164 /* ... and is unsigned, and its type is smaller than ctype,
4165 then we cannot pass through as widening. */
4166 && ((TREE_UNSIGNED (TREE_TYPE (op0))
4167 && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
4168 && TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
4169 && (GET_MODE_SIZE (TYPE_MODE (ctype))
4170 > GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0)))))
4171 /* ... or its type is larger than ctype,
4172 then we cannot pass through this truncation. */
4173 || (GET_MODE_SIZE (TYPE_MODE (ctype))
4174 < GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0))))
4175 /* ... or signedness changes for division or modulus,
4176 then we cannot pass through this conversion. */
4177 || (code != MULT_EXPR
4178 && (TREE_UNSIGNED (ctype)
4179 != TREE_UNSIGNED (TREE_TYPE (op0))))))
4180 break;
4181
4182 /* Pass the constant down and see if we can make a simplification. If
4183 we can, replace this expression with the inner simplification for
4184 possible later conversion to our or some other type. */
4185 if (0 != (t1 = extract_muldiv (op0, convert (TREE_TYPE (op0), c), code,
4186 code == MULT_EXPR ? ctype : NULL_TREE)))
4187 return t1;
4188 break;
4189
4190 case NEGATE_EXPR: case ABS_EXPR:
4191 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
4192 return fold (build1 (tcode, ctype, convert (ctype, t1)));
4193 break;
4194
4195 case MIN_EXPR: case MAX_EXPR:
4196 /* If widening the type changes the signedness, then we can't perform
4197 this optimization as that changes the result. */
4198 if (TREE_UNSIGNED (ctype) != TREE_UNSIGNED (type))
4199 break;
4200
4201 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
4202 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0
4203 && (t2 = extract_muldiv (op1, c, code, wide_type)) != 0)
4204 {
4205 if (tree_int_cst_sgn (c) < 0)
4206 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
4207
4208 return fold (build (tcode, ctype, convert (ctype, t1),
4209 convert (ctype, t2)));
4210 }
4211 break;
4212
4213 case WITH_RECORD_EXPR:
4214 if ((t1 = extract_muldiv (TREE_OPERAND (t, 0), c, code, wide_type)) != 0)
4215 return build (WITH_RECORD_EXPR, TREE_TYPE (t1), t1,
4216 TREE_OPERAND (t, 1));
4217 break;
4218
4219 case SAVE_EXPR:
4220 /* If this has not been evaluated and the operand has no side effects,
4221 we can see if we can do something inside it and make a new one.
4222 Note that this test is overly conservative since we can do this
4223 if the only reason it had side effects is that it was another
4224 similar SAVE_EXPR, but that isn't worth bothering with. */
4225 if (SAVE_EXPR_RTL (t) == 0 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0))
4226 && 0 != (t1 = extract_muldiv (TREE_OPERAND (t, 0), c, code,
4227 wide_type)))
4228 {
4229 t1 = save_expr (t1);
4230 if (SAVE_EXPR_PERSISTENT_P (t) && TREE_CODE (t1) == SAVE_EXPR)
4231 SAVE_EXPR_PERSISTENT_P (t1) = 1;
4232 if (is_pending_size (t))
4233 put_pending_size (t1);
4234 return t1;
4235 }
4236 break;
4237
4238 case LSHIFT_EXPR: case RSHIFT_EXPR:
4239 /* If the second operand is constant, this is a multiplication
4240 or floor division, by a power of two, so we can treat it that
4241 way unless the multiplier or divisor overflows. */
4242 if (TREE_CODE (op1) == INTEGER_CST
4243 /* const_binop may not detect overflow correctly,
4244 so check for it explicitly here. */
4245 && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
4246 && TREE_INT_CST_HIGH (op1) == 0
4247 && 0 != (t1 = convert (ctype,
4248 const_binop (LSHIFT_EXPR, size_one_node,
4249 op1, 0)))
4250 && ! TREE_OVERFLOW (t1))
4251 return extract_muldiv (build (tcode == LSHIFT_EXPR
4252 ? MULT_EXPR : FLOOR_DIV_EXPR,
4253 ctype, convert (ctype, op0), t1),
4254 c, code, wide_type);
4255 break;
4256
4257 case PLUS_EXPR: case MINUS_EXPR:
4258 /* See if we can eliminate the operation on both sides. If we can, we
4259 can return a new PLUS or MINUS. If we can't, the only remaining
4260 cases where we can do anything are if the second operand is a
4261 constant. */
4262 t1 = extract_muldiv (op0, c, code, wide_type);
4263 t2 = extract_muldiv (op1, c, code, wide_type);
4264 if (t1 != 0 && t2 != 0
4265 && (code == MULT_EXPR
4266 /* If not multiplication, we can only do this if both operands
4267 are divisible by c. */
4268 || (multiple_of_p (ctype, op0, c)
4269 && multiple_of_p (ctype, op1, c))))
4270 return fold (build (tcode, ctype, convert (ctype, t1),
4271 convert (ctype, t2)));
4272
4273 /* If this was a subtraction, negate OP1 and set it to be an addition.
4274 This simplifies the logic below. */
4275 if (tcode == MINUS_EXPR)
4276 tcode = PLUS_EXPR, op1 = negate_expr (op1);
4277
4278 if (TREE_CODE (op1) != INTEGER_CST)
4279 break;
4280
4281 /* If either OP1 or C are negative, this optimization is not safe for
4282 some of the division and remainder types while for others we need
4283 to change the code. */
4284 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
4285 {
4286 if (code == CEIL_DIV_EXPR)
4287 code = FLOOR_DIV_EXPR;
4288 else if (code == FLOOR_DIV_EXPR)
4289 code = CEIL_DIV_EXPR;
4290 else if (code != MULT_EXPR
4291 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
4292 break;
4293 }
4294
4295 /* If it's a multiply or a division/modulus operation of a multiple
4296 of our constant, do the operation and verify it doesn't overflow. */
4297 if (code == MULT_EXPR
4298 || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
4299 {
4300 op1 = const_binop (code, convert (ctype, op1), convert (ctype, c), 0);
4301 if (op1 == 0 || TREE_OVERFLOW (op1))
4302 break;
4303 }
4304 else
4305 break;
4306
4307 /* If we have an unsigned type is not a sizetype, we cannot widen
4308 the operation since it will change the result if the original
4309 computation overflowed. */
4310 if (TREE_UNSIGNED (ctype)
4311 && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
4312 && ctype != type)
4313 break;
4314
4315 /* If we were able to eliminate our operation from the first side,
4316 apply our operation to the second side and reform the PLUS. */
4317 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
4318 return fold (build (tcode, ctype, convert (ctype, t1), op1));
4319
4320 /* The last case is if we are a multiply. In that case, we can
4321 apply the distributive law to commute the multiply and addition
4322 if the multiplication of the constants doesn't overflow. */
4323 if (code == MULT_EXPR)
4324 return fold (build (tcode, ctype, fold (build (code, ctype,
4325 convert (ctype, op0),
4326 convert (ctype, c))),
4327 op1));
4328
4329 break;
4330
4331 case MULT_EXPR:
4332 /* We have a special case here if we are doing something like
4333 (C * 8) % 4 since we know that's zero. */
4334 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
4335 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
4336 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
4337 && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
4338 return omit_one_operand (type, integer_zero_node, op0);
4339
4340 /* ... fall through ... */
4341
4342 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
4343 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
4344 /* If we can extract our operation from the LHS, do so and return a
4345 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
4346 do something only if the second operand is a constant. */
4347 if (same_p
4348 && (t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
4349 return fold (build (tcode, ctype, convert (ctype, t1),
4350 convert (ctype, op1)));
4351 else if (tcode == MULT_EXPR && code == MULT_EXPR
4352 && (t1 = extract_muldiv (op1, c, code, wide_type)) != 0)
4353 return fold (build (tcode, ctype, convert (ctype, op0),
4354 convert (ctype, t1)));
4355 else if (TREE_CODE (op1) != INTEGER_CST)
4356 return 0;
4357
4358 /* If these are the same operation types, we can associate them
4359 assuming no overflow. */
4360 if (tcode == code
4361 && 0 != (t1 = const_binop (MULT_EXPR, convert (ctype, op1),
4362 convert (ctype, c), 0))
4363 && ! TREE_OVERFLOW (t1))
4364 return fold (build (tcode, ctype, convert (ctype, op0), t1));
4365
4366 /* If these operations "cancel" each other, we have the main
4367 optimizations of this pass, which occur when either constant is a
4368 multiple of the other, in which case we replace this with either an
4369 operation or CODE or TCODE.
4370
4371 If we have an unsigned type that is not a sizetype, we cannot do
4372 this since it will change the result if the original computation
4373 overflowed. */
4374 if ((! TREE_UNSIGNED (ctype)
4375 || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
4376 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
4377 || (tcode == MULT_EXPR
4378 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
4379 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR)))
4380 {
4381 if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
4382 return fold (build (tcode, ctype, convert (ctype, op0),
4383 convert (ctype,
4384 const_binop (TRUNC_DIV_EXPR,
4385 op1, c, 0))));
4386 else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1, 0)))
4387 return fold (build (code, ctype, convert (ctype, op0),
4388 convert (ctype,
4389 const_binop (TRUNC_DIV_EXPR,
4390 c, op1, 0))));
4391 }
4392 break;
4393
4394 default:
4395 break;
4396 }
4397
4398 return 0;
4399 }
4400 \f
4401 /* If T contains a COMPOUND_EXPR which was inserted merely to evaluate
4402 S, a SAVE_EXPR, return the expression actually being evaluated. Note
4403 that we may sometimes modify the tree. */
4404
4405 static tree
4406 strip_compound_expr (t, s)
4407 tree t;
4408 tree s;
4409 {
4410 enum tree_code code = TREE_CODE (t);
4411
4412 /* See if this is the COMPOUND_EXPR we want to eliminate. */
4413 if (code == COMPOUND_EXPR && TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR
4414 && TREE_OPERAND (TREE_OPERAND (t, 0), 0) == s)
4415 return TREE_OPERAND (t, 1);
4416
4417 /* See if this is a COND_EXPR or a simple arithmetic operator. We
4418 don't bother handling any other types. */
4419 else if (code == COND_EXPR)
4420 {
4421 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4422 TREE_OPERAND (t, 1) = strip_compound_expr (TREE_OPERAND (t, 1), s);
4423 TREE_OPERAND (t, 2) = strip_compound_expr (TREE_OPERAND (t, 2), s);
4424 }
4425 else if (TREE_CODE_CLASS (code) == '1')
4426 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4427 else if (TREE_CODE_CLASS (code) == '<'
4428 || TREE_CODE_CLASS (code) == '2')
4429 {
4430 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4431 TREE_OPERAND (t, 1) = strip_compound_expr (TREE_OPERAND (t, 1), s);
4432 }
4433
4434 return t;
4435 }
4436 \f
4437 /* Return a node which has the indicated constant VALUE (either 0 or
4438 1), and is of the indicated TYPE. */
4439
4440 static tree
4441 constant_boolean_node (value, type)
4442 int value;
4443 tree type;
4444 {
4445 if (type == integer_type_node)
4446 return value ? integer_one_node : integer_zero_node;
4447 else if (TREE_CODE (type) == BOOLEAN_TYPE)
4448 return (*lang_hooks.truthvalue_conversion) (value ? integer_one_node :
4449 integer_zero_node);
4450 else
4451 {
4452 tree t = build_int_2 (value, 0);
4453
4454 TREE_TYPE (t) = type;
4455 return t;
4456 }
4457 }
4458
4459 /* Utility function for the following routine, to see how complex a nesting of
4460 COND_EXPRs can be. EXPR is the expression and LIMIT is a count beyond which
4461 we don't care (to avoid spending too much time on complex expressions.). */
4462
4463 static int
4464 count_cond (expr, lim)
4465 tree expr;
4466 int lim;
4467 {
4468 int ctrue, cfalse;
4469
4470 if (TREE_CODE (expr) != COND_EXPR)
4471 return 0;
4472 else if (lim <= 0)
4473 return 0;
4474
4475 ctrue = count_cond (TREE_OPERAND (expr, 1), lim - 1);
4476 cfalse = count_cond (TREE_OPERAND (expr, 2), lim - 1 - ctrue);
4477 return MIN (lim, 1 + ctrue + cfalse);
4478 }
4479
4480 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
4481 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
4482 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
4483 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
4484 COND is the first argument to CODE; otherwise (as in the example
4485 given here), it is the second argument. TYPE is the type of the
4486 original expression. */
4487
4488 static tree
4489 fold_binary_op_with_conditional_arg (code, type, cond, arg, cond_first_p)
4490 enum tree_code code;
4491 tree type;
4492 tree cond;
4493 tree arg;
4494 int cond_first_p;
4495 {
4496 tree test, true_value, false_value;
4497 tree lhs = NULL_TREE;
4498 tree rhs = NULL_TREE;
4499 /* In the end, we'll produce a COND_EXPR. Both arms of the
4500 conditional expression will be binary operations. The left-hand
4501 side of the expression to be executed if the condition is true
4502 will be pointed to by TRUE_LHS. Similarly, the right-hand side
4503 of the expression to be executed if the condition is true will be
4504 pointed to by TRUE_RHS. FALSE_LHS and FALSE_RHS are analogous --
4505 but apply to the expression to be executed if the conditional is
4506 false. */
4507 tree *true_lhs;
4508 tree *true_rhs;
4509 tree *false_lhs;
4510 tree *false_rhs;
4511 /* These are the codes to use for the left-hand side and right-hand
4512 side of the COND_EXPR. Normally, they are the same as CODE. */
4513 enum tree_code lhs_code = code;
4514 enum tree_code rhs_code = code;
4515 /* And these are the types of the expressions. */
4516 tree lhs_type = type;
4517 tree rhs_type = type;
4518 int save = 0;
4519
4520 if (cond_first_p)
4521 {
4522 true_rhs = false_rhs = &arg;
4523 true_lhs = &true_value;
4524 false_lhs = &false_value;
4525 }
4526 else
4527 {
4528 true_lhs = false_lhs = &arg;
4529 true_rhs = &true_value;
4530 false_rhs = &false_value;
4531 }
4532
4533 if (TREE_CODE (cond) == COND_EXPR)
4534 {
4535 test = TREE_OPERAND (cond, 0);
4536 true_value = TREE_OPERAND (cond, 1);
4537 false_value = TREE_OPERAND (cond, 2);
4538 /* If this operand throws an expression, then it does not make
4539 sense to try to perform a logical or arithmetic operation
4540 involving it. Instead of building `a + throw 3' for example,
4541 we simply build `a, throw 3'. */
4542 if (VOID_TYPE_P (TREE_TYPE (true_value)))
4543 {
4544 if (! cond_first_p)
4545 {
4546 lhs_code = COMPOUND_EXPR;
4547 lhs_type = void_type_node;
4548 }
4549 else
4550 lhs = true_value;
4551 }
4552 if (VOID_TYPE_P (TREE_TYPE (false_value)))
4553 {
4554 if (! cond_first_p)
4555 {
4556 rhs_code = COMPOUND_EXPR;
4557 rhs_type = void_type_node;
4558 }
4559 else
4560 rhs = false_value;
4561 }
4562 }
4563 else
4564 {
4565 tree testtype = TREE_TYPE (cond);
4566 test = cond;
4567 true_value = convert (testtype, integer_one_node);
4568 false_value = convert (testtype, integer_zero_node);
4569 }
4570
4571 /* If ARG is complex we want to make sure we only evaluate
4572 it once. Though this is only required if it is volatile, it
4573 might be more efficient even if it is not. However, if we
4574 succeed in folding one part to a constant, we do not need
4575 to make this SAVE_EXPR. Since we do this optimization
4576 primarily to see if we do end up with constant and this
4577 SAVE_EXPR interferes with later optimizations, suppressing
4578 it when we can is important.
4579
4580 If we are not in a function, we can't make a SAVE_EXPR, so don't
4581 try to do so. Don't try to see if the result is a constant
4582 if an arm is a COND_EXPR since we get exponential behavior
4583 in that case. */
4584
4585 if (TREE_CODE (arg) == SAVE_EXPR)
4586 save = 1;
4587 else if (lhs == 0 && rhs == 0
4588 && !TREE_CONSTANT (arg)
4589 && (*lang_hooks.decls.global_bindings_p) () == 0
4590 && ((TREE_CODE (arg) != VAR_DECL && TREE_CODE (arg) != PARM_DECL)
4591 || TREE_SIDE_EFFECTS (arg)))
4592 {
4593 if (TREE_CODE (true_value) != COND_EXPR)
4594 lhs = fold (build (lhs_code, lhs_type, *true_lhs, *true_rhs));
4595
4596 if (TREE_CODE (false_value) != COND_EXPR)
4597 rhs = fold (build (rhs_code, rhs_type, *false_lhs, *false_rhs));
4598
4599 if ((lhs == 0 || ! TREE_CONSTANT (lhs))
4600 && (rhs == 0 || !TREE_CONSTANT (rhs)))
4601 {
4602 arg = save_expr (arg);
4603 lhs = rhs = 0;
4604 save = 1;
4605 }
4606 }
4607
4608 if (lhs == 0)
4609 lhs = fold (build (lhs_code, lhs_type, *true_lhs, *true_rhs));
4610 if (rhs == 0)
4611 rhs = fold (build (rhs_code, rhs_type, *false_lhs, *false_rhs));
4612
4613 test = fold (build (COND_EXPR, type, test, lhs, rhs));
4614
4615 if (save)
4616 return build (COMPOUND_EXPR, type,
4617 convert (void_type_node, arg),
4618 strip_compound_expr (test, arg));
4619 else
4620 return convert (type, test);
4621 }
4622
4623 \f
4624 /* Subroutine of fold() that checks for the addition of +/- 0.0.
4625
4626 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
4627 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
4628 ADDEND is the same as X.
4629
4630 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
4631 and finite. The problematic cases are when X is zero, and its mode
4632 has signed zeros. In the case of rounding towards -infinity,
4633 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
4634 modes, X + 0 is not the same as X because -0 + 0 is 0. */
4635
4636 static bool
4637 fold_real_zero_addition_p (type, addend, negate)
4638 tree type, addend;
4639 int negate;
4640 {
4641 if (!real_zerop (addend))
4642 return false;
4643
4644 /* Don't allow the fold with -fsignaling-nans. */
4645 if (HONOR_SNANS (TYPE_MODE (type)))
4646 return false;
4647
4648 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
4649 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
4650 return true;
4651
4652 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
4653 if (TREE_CODE (addend) == REAL_CST
4654 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
4655 negate = !negate;
4656
4657 /* The mode has signed zeros, and we have to honor their sign.
4658 In this situation, there is only one case we can return true for.
4659 X - 0 is the same as X unless rounding towards -infinity is
4660 supported. */
4661 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
4662 }
4663
4664 /* Subroutine of fold() that checks comparisons of built-in math
4665 functions against real constants.
4666
4667 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
4668 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
4669 is the type of the result and ARG0 and ARG1 are the operands of the
4670 comparison. ARG1 must be a TREE_REAL_CST.
4671
4672 The function returns the constant folded tree if a simplification
4673 can be made, and NULL_TREE otherwise. */
4674
4675 static tree
4676 fold_mathfn_compare (fcode, code, type, arg0, arg1)
4677 enum built_in_function fcode;
4678 enum tree_code code;
4679 tree type, arg0, arg1;
4680 {
4681 REAL_VALUE_TYPE c;
4682
4683 if (fcode == BUILT_IN_SQRT
4684 || fcode == BUILT_IN_SQRTF
4685 || fcode == BUILT_IN_SQRTL)
4686 {
4687 tree arg = TREE_VALUE (TREE_OPERAND (arg0, 1));
4688 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
4689
4690 c = TREE_REAL_CST (arg1);
4691 if (REAL_VALUE_NEGATIVE (c))
4692 {
4693 /* sqrt(x) < y is always false, if y is negative. */
4694 if (code == EQ_EXPR || code == LT_EXPR || code == LE_EXPR)
4695 return omit_one_operand (type,
4696 convert (type, integer_zero_node),
4697 arg);
4698
4699 /* sqrt(x) > y is always true, if y is negative and we
4700 don't care about NaNs, i.e. negative values of x. */
4701 if (code == NE_EXPR || !HONOR_NANS (mode))
4702 return omit_one_operand (type,
4703 convert (type, integer_one_node),
4704 arg);
4705
4706 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
4707 return fold (build (GE_EXPR, type, arg,
4708 build_real (TREE_TYPE (arg), dconst0)));
4709 }
4710 else if (code == GT_EXPR || code == GE_EXPR)
4711 {
4712 REAL_VALUE_TYPE c2;
4713
4714 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
4715 real_convert (&c2, mode, &c2);
4716
4717 if (REAL_VALUE_ISINF (c2))
4718 {
4719 /* sqrt(x) > y is x == +Inf, when y is very large. */
4720 if (HONOR_INFINITIES (mode))
4721 return fold (build (EQ_EXPR, type, arg,
4722 build_real (TREE_TYPE (arg), c2)));
4723
4724 /* sqrt(x) > y is always false, when y is very large
4725 and we don't care about infinities. */
4726 return omit_one_operand (type,
4727 convert (type, integer_zero_node),
4728 arg);
4729 }
4730
4731 /* sqrt(x) > c is the same as x > c*c. */
4732 return fold (build (code, type, arg,
4733 build_real (TREE_TYPE (arg), c2)));
4734 }
4735 else if (code == LT_EXPR || code == LE_EXPR)
4736 {
4737 REAL_VALUE_TYPE c2;
4738
4739 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
4740 real_convert (&c2, mode, &c2);
4741
4742 if (REAL_VALUE_ISINF (c2))
4743 {
4744 /* sqrt(x) < y is always true, when y is a very large
4745 value and we don't care about NaNs or Infinities. */
4746 if (! HONOR_NANS (mode) && ! HONOR_INFINITIES (mode))
4747 return omit_one_operand (type,
4748 convert (type, integer_one_node),
4749 arg);
4750
4751 /* sqrt(x) < y is x != +Inf when y is very large and we
4752 don't care about NaNs. */
4753 if (! HONOR_NANS (mode))
4754 return fold (build (NE_EXPR, type, arg,
4755 build_real (TREE_TYPE (arg), c2)));
4756
4757 /* sqrt(x) < y is x >= 0 when y is very large and we
4758 don't care about Infinities. */
4759 if (! HONOR_INFINITIES (mode))
4760 return fold (build (GE_EXPR, type, arg,
4761 build_real (TREE_TYPE (arg), dconst0)));
4762
4763 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
4764 if ((*lang_hooks.decls.global_bindings_p) () != 0
4765 || contains_placeholder_p (arg))
4766 return NULL_TREE;
4767
4768 arg = save_expr (arg);
4769 return fold (build (TRUTH_ANDIF_EXPR, type,
4770 fold (build (GE_EXPR, type, arg,
4771 build_real (TREE_TYPE (arg),
4772 dconst0))),
4773 fold (build (NE_EXPR, type, arg,
4774 build_real (TREE_TYPE (arg),
4775 c2)))));
4776 }
4777
4778 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
4779 if (! HONOR_NANS (mode))
4780 return fold (build (code, type, arg,
4781 build_real (TREE_TYPE (arg), c2)));
4782
4783 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
4784 if ((*lang_hooks.decls.global_bindings_p) () == 0
4785 && ! contains_placeholder_p (arg))
4786 {
4787 arg = save_expr (arg);
4788 return fold (build (TRUTH_ANDIF_EXPR, type,
4789 fold (build (GE_EXPR, type, arg,
4790 build_real (TREE_TYPE (arg),
4791 dconst0))),
4792 fold (build (code, type, arg,
4793 build_real (TREE_TYPE (arg),
4794 c2)))));
4795 }
4796 }
4797 }
4798
4799 return NULL_TREE;
4800 }
4801
4802 /* Subroutine of fold() that optimizes comparisons against Infinities,
4803 either +Inf or -Inf.
4804
4805 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
4806 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
4807 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
4808
4809 The function returns the constant folded tree if a simplification
4810 can be made, and NULL_TREE otherwise. */
4811
4812 static tree
4813 fold_inf_compare (code, type, arg0, arg1)
4814 enum tree_code code;
4815 tree type, arg0, arg1;
4816 {
4817 /* For negative infinity swap the sense of the comparison. */
4818 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1)))
4819 code = swap_tree_comparison (code);
4820
4821 switch (code)
4822 {
4823 case GT_EXPR:
4824 /* x > +Inf is always false, if with ignore sNANs. */
4825 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0))))
4826 return NULL_TREE;
4827 return omit_one_operand (type,
4828 convert (type, integer_zero_node),
4829 arg0);
4830
4831 case LE_EXPR:
4832 /* x <= +Inf is always true, if we don't case about NaNs. */
4833 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
4834 return omit_one_operand (type,
4835 convert (type, integer_one_node),
4836 arg0);
4837
4838 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
4839 if ((*lang_hooks.decls.global_bindings_p) () == 0
4840 && ! contains_placeholder_p (arg0))
4841 {
4842 arg0 = save_expr (arg0);
4843 return fold (build (EQ_EXPR, type, arg0, arg0));
4844 }
4845 break;
4846
4847 case EQ_EXPR: /* ??? x == +Inf is x > DBL_MAX */
4848 case GE_EXPR: /* ??? x >= +Inf is x > DBL_MAX */
4849 case LT_EXPR: /* ??? x < +Inf is x <= DBL_MAX */
4850 case NE_EXPR: /* ??? x != +Inf is !(x > DBL_MAX) */
4851
4852 default:
4853 break;
4854 }
4855
4856 return NULL_TREE;
4857 }
4858
4859 /* Perform constant folding and related simplification of EXPR.
4860 The related simplifications include x*1 => x, x*0 => 0, etc.,
4861 and application of the associative law.
4862 NOP_EXPR conversions may be removed freely (as long as we
4863 are careful not to change the C type of the overall expression)
4864 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
4865 but we can constant-fold them if they have constant operands. */
4866
4867 tree
4868 fold (expr)
4869 tree expr;
4870 {
4871 tree t = expr;
4872 tree t1 = NULL_TREE;
4873 tree tem;
4874 tree type = TREE_TYPE (expr);
4875 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
4876 enum tree_code code = TREE_CODE (t);
4877 int kind = TREE_CODE_CLASS (code);
4878 int invert;
4879 /* WINS will be nonzero when the switch is done
4880 if all operands are constant. */
4881 int wins = 1;
4882
4883 /* Don't try to process an RTL_EXPR since its operands aren't trees.
4884 Likewise for a SAVE_EXPR that's already been evaluated. */
4885 if (code == RTL_EXPR || (code == SAVE_EXPR && SAVE_EXPR_RTL (t) != 0))
4886 return t;
4887
4888 /* Return right away if a constant. */
4889 if (kind == 'c')
4890 return t;
4891
4892 #ifdef MAX_INTEGER_COMPUTATION_MODE
4893 check_max_integer_computation_mode (expr);
4894 #endif
4895
4896 if (code == NOP_EXPR || code == FLOAT_EXPR || code == CONVERT_EXPR)
4897 {
4898 tree subop;
4899
4900 /* Special case for conversion ops that can have fixed point args. */
4901 arg0 = TREE_OPERAND (t, 0);
4902
4903 /* Don't use STRIP_NOPS, because signedness of argument type matters. */
4904 if (arg0 != 0)
4905 STRIP_SIGN_NOPS (arg0);
4906
4907 if (arg0 != 0 && TREE_CODE (arg0) == COMPLEX_CST)
4908 subop = TREE_REALPART (arg0);
4909 else
4910 subop = arg0;
4911
4912 if (subop != 0 && TREE_CODE (subop) != INTEGER_CST
4913 && TREE_CODE (subop) != REAL_CST
4914 )
4915 /* Note that TREE_CONSTANT isn't enough:
4916 static var addresses are constant but we can't
4917 do arithmetic on them. */
4918 wins = 0;
4919 }
4920 else if (IS_EXPR_CODE_CLASS (kind) || kind == 'r')
4921 {
4922 int len = first_rtl_op (code);
4923 int i;
4924 for (i = 0; i < len; i++)
4925 {
4926 tree op = TREE_OPERAND (t, i);
4927 tree subop;
4928
4929 if (op == 0)
4930 continue; /* Valid for CALL_EXPR, at least. */
4931
4932 if (kind == '<' || code == RSHIFT_EXPR)
4933 {
4934 /* Signedness matters here. Perhaps we can refine this
4935 later. */
4936 STRIP_SIGN_NOPS (op);
4937 }
4938 else
4939 /* Strip any conversions that don't change the mode. */
4940 STRIP_NOPS (op);
4941
4942 if (TREE_CODE (op) == COMPLEX_CST)
4943 subop = TREE_REALPART (op);
4944 else
4945 subop = op;
4946
4947 if (TREE_CODE (subop) != INTEGER_CST
4948 && TREE_CODE (subop) != REAL_CST)
4949 /* Note that TREE_CONSTANT isn't enough:
4950 static var addresses are constant but we can't
4951 do arithmetic on them. */
4952 wins = 0;
4953
4954 if (i == 0)
4955 arg0 = op;
4956 else if (i == 1)
4957 arg1 = op;
4958 }
4959 }
4960
4961 /* If this is a commutative operation, and ARG0 is a constant, move it
4962 to ARG1 to reduce the number of tests below. */
4963 if ((code == PLUS_EXPR || code == MULT_EXPR || code == MIN_EXPR
4964 || code == MAX_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR
4965 || code == BIT_AND_EXPR)
4966 && (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST))
4967 {
4968 tem = arg0; arg0 = arg1; arg1 = tem;
4969
4970 tem = TREE_OPERAND (t, 0); TREE_OPERAND (t, 0) = TREE_OPERAND (t, 1);
4971 TREE_OPERAND (t, 1) = tem;
4972 }
4973
4974 /* Now WINS is set as described above,
4975 ARG0 is the first operand of EXPR,
4976 and ARG1 is the second operand (if it has more than one operand).
4977
4978 First check for cases where an arithmetic operation is applied to a
4979 compound, conditional, or comparison operation. Push the arithmetic
4980 operation inside the compound or conditional to see if any folding
4981 can then be done. Convert comparison to conditional for this purpose.
4982 The also optimizes non-constant cases that used to be done in
4983 expand_expr.
4984
4985 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
4986 one of the operands is a comparison and the other is a comparison, a
4987 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
4988 code below would make the expression more complex. Change it to a
4989 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
4990 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
4991
4992 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
4993 || code == EQ_EXPR || code == NE_EXPR)
4994 && ((truth_value_p (TREE_CODE (arg0))
4995 && (truth_value_p (TREE_CODE (arg1))
4996 || (TREE_CODE (arg1) == BIT_AND_EXPR
4997 && integer_onep (TREE_OPERAND (arg1, 1)))))
4998 || (truth_value_p (TREE_CODE (arg1))
4999 && (truth_value_p (TREE_CODE (arg0))
5000 || (TREE_CODE (arg0) == BIT_AND_EXPR
5001 && integer_onep (TREE_OPERAND (arg0, 1)))))))
5002 {
5003 t = fold (build (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
5004 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
5005 : TRUTH_XOR_EXPR,
5006 type, arg0, arg1));
5007
5008 if (code == EQ_EXPR)
5009 t = invert_truthvalue (t);
5010
5011 return t;
5012 }
5013
5014 if (TREE_CODE_CLASS (code) == '1')
5015 {
5016 if (TREE_CODE (arg0) == COMPOUND_EXPR)
5017 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
5018 fold (build1 (code, type, TREE_OPERAND (arg0, 1))));
5019 else if (TREE_CODE (arg0) == COND_EXPR)
5020 {
5021 tree arg01 = TREE_OPERAND (arg0, 1);
5022 tree arg02 = TREE_OPERAND (arg0, 2);
5023 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
5024 arg01 = fold (build1 (code, type, arg01));
5025 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
5026 arg02 = fold (build1 (code, type, arg02));
5027 t = fold (build (COND_EXPR, type, TREE_OPERAND (arg0, 0),
5028 arg01, arg02));
5029
5030 /* If this was a conversion, and all we did was to move into
5031 inside the COND_EXPR, bring it back out. But leave it if
5032 it is a conversion from integer to integer and the
5033 result precision is no wider than a word since such a
5034 conversion is cheap and may be optimized away by combine,
5035 while it couldn't if it were outside the COND_EXPR. Then return
5036 so we don't get into an infinite recursion loop taking the
5037 conversion out and then back in. */
5038
5039 if ((code == NOP_EXPR || code == CONVERT_EXPR
5040 || code == NON_LVALUE_EXPR)
5041 && TREE_CODE (t) == COND_EXPR
5042 && TREE_CODE (TREE_OPERAND (t, 1)) == code
5043 && TREE_CODE (TREE_OPERAND (t, 2)) == code
5044 && ! VOID_TYPE_P (TREE_OPERAND (t, 1))
5045 && ! VOID_TYPE_P (TREE_OPERAND (t, 2))
5046 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0))
5047 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 2), 0)))
5048 && ! (INTEGRAL_TYPE_P (TREE_TYPE (t))
5049 && (INTEGRAL_TYPE_P
5050 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0))))
5051 && TYPE_PRECISION (TREE_TYPE (t)) <= BITS_PER_WORD))
5052 t = build1 (code, type,
5053 build (COND_EXPR,
5054 TREE_TYPE (TREE_OPERAND
5055 (TREE_OPERAND (t, 1), 0)),
5056 TREE_OPERAND (t, 0),
5057 TREE_OPERAND (TREE_OPERAND (t, 1), 0),
5058 TREE_OPERAND (TREE_OPERAND (t, 2), 0)));
5059 return t;
5060 }
5061 else if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<')
5062 return fold (build (COND_EXPR, type, arg0,
5063 fold (build1 (code, type, integer_one_node)),
5064 fold (build1 (code, type, integer_zero_node))));
5065 }
5066 else if (TREE_CODE_CLASS (code) == '2'
5067 || TREE_CODE_CLASS (code) == '<')
5068 {
5069 if (TREE_CODE (arg1) == COMPOUND_EXPR
5070 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg1, 0))
5071 && ! TREE_SIDE_EFFECTS (arg0))
5072 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
5073 fold (build (code, type,
5074 arg0, TREE_OPERAND (arg1, 1))));
5075 else if ((TREE_CODE (arg1) == COND_EXPR
5076 || (TREE_CODE_CLASS (TREE_CODE (arg1)) == '<'
5077 && TREE_CODE_CLASS (code) != '<'))
5078 && (TREE_CODE (arg0) != COND_EXPR
5079 || count_cond (arg0, 25) + count_cond (arg1, 25) <= 25)
5080 && (! TREE_SIDE_EFFECTS (arg0)
5081 || ((*lang_hooks.decls.global_bindings_p) () == 0
5082 && ! contains_placeholder_p (arg0))))
5083 return
5084 fold_binary_op_with_conditional_arg (code, type, arg1, arg0,
5085 /*cond_first_p=*/0);
5086 else if (TREE_CODE (arg0) == COMPOUND_EXPR)
5087 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
5088 fold (build (code, type, TREE_OPERAND (arg0, 1), arg1)));
5089 else if ((TREE_CODE (arg0) == COND_EXPR
5090 || (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
5091 && TREE_CODE_CLASS (code) != '<'))
5092 && (TREE_CODE (arg1) != COND_EXPR
5093 || count_cond (arg0, 25) + count_cond (arg1, 25) <= 25)
5094 && (! TREE_SIDE_EFFECTS (arg1)
5095 || ((*lang_hooks.decls.global_bindings_p) () == 0
5096 && ! contains_placeholder_p (arg1))))
5097 return
5098 fold_binary_op_with_conditional_arg (code, type, arg0, arg1,
5099 /*cond_first_p=*/1);
5100 }
5101 else if (TREE_CODE_CLASS (code) == '<'
5102 && TREE_CODE (arg0) == COMPOUND_EXPR)
5103 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
5104 fold (build (code, type, TREE_OPERAND (arg0, 1), arg1)));
5105 else if (TREE_CODE_CLASS (code) == '<'
5106 && TREE_CODE (arg1) == COMPOUND_EXPR)
5107 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
5108 fold (build (code, type, arg0, TREE_OPERAND (arg1, 1))));
5109
5110 switch (code)
5111 {
5112 case INTEGER_CST:
5113 case REAL_CST:
5114 case VECTOR_CST:
5115 case STRING_CST:
5116 case COMPLEX_CST:
5117 case CONSTRUCTOR:
5118 return t;
5119
5120 case CONST_DECL:
5121 return fold (DECL_INITIAL (t));
5122
5123 case NOP_EXPR:
5124 case FLOAT_EXPR:
5125 case CONVERT_EXPR:
5126 case FIX_TRUNC_EXPR:
5127 /* Other kinds of FIX are not handled properly by fold_convert. */
5128
5129 if (TREE_TYPE (TREE_OPERAND (t, 0)) == TREE_TYPE (t))
5130 return TREE_OPERAND (t, 0);
5131
5132 /* Handle cases of two conversions in a row. */
5133 if (TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
5134 || TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR)
5135 {
5136 tree inside_type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5137 tree inter_type = TREE_TYPE (TREE_OPERAND (t, 0));
5138 tree final_type = TREE_TYPE (t);
5139 int inside_int = INTEGRAL_TYPE_P (inside_type);
5140 int inside_ptr = POINTER_TYPE_P (inside_type);
5141 int inside_float = FLOAT_TYPE_P (inside_type);
5142 unsigned int inside_prec = TYPE_PRECISION (inside_type);
5143 int inside_unsignedp = TREE_UNSIGNED (inside_type);
5144 int inter_int = INTEGRAL_TYPE_P (inter_type);
5145 int inter_ptr = POINTER_TYPE_P (inter_type);
5146 int inter_float = FLOAT_TYPE_P (inter_type);
5147 unsigned int inter_prec = TYPE_PRECISION (inter_type);
5148 int inter_unsignedp = TREE_UNSIGNED (inter_type);
5149 int final_int = INTEGRAL_TYPE_P (final_type);
5150 int final_ptr = POINTER_TYPE_P (final_type);
5151 int final_float = FLOAT_TYPE_P (final_type);
5152 unsigned int final_prec = TYPE_PRECISION (final_type);
5153 int final_unsignedp = TREE_UNSIGNED (final_type);
5154
5155 /* In addition to the cases of two conversions in a row
5156 handled below, if we are converting something to its own
5157 type via an object of identical or wider precision, neither
5158 conversion is needed. */
5159 if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (final_type)
5160 && ((inter_int && final_int) || (inter_float && final_float))
5161 && inter_prec >= final_prec)
5162 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5163
5164 /* Likewise, if the intermediate and final types are either both
5165 float or both integer, we don't need the middle conversion if
5166 it is wider than the final type and doesn't change the signedness
5167 (for integers). Avoid this if the final type is a pointer
5168 since then we sometimes need the inner conversion. Likewise if
5169 the outer has a precision not equal to the size of its mode. */
5170 if ((((inter_int || inter_ptr) && (inside_int || inside_ptr))
5171 || (inter_float && inside_float))
5172 && inter_prec >= inside_prec
5173 && (inter_float || inter_unsignedp == inside_unsignedp)
5174 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (final_type))
5175 && TYPE_MODE (final_type) == TYPE_MODE (inter_type))
5176 && ! final_ptr)
5177 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5178
5179 /* If we have a sign-extension of a zero-extended value, we can
5180 replace that by a single zero-extension. */
5181 if (inside_int && inter_int && final_int
5182 && inside_prec < inter_prec && inter_prec < final_prec
5183 && inside_unsignedp && !inter_unsignedp)
5184 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5185
5186 /* Two conversions in a row are not needed unless:
5187 - some conversion is floating-point (overstrict for now), or
5188 - the intermediate type is narrower than both initial and
5189 final, or
5190 - the intermediate type and innermost type differ in signedness,
5191 and the outermost type is wider than the intermediate, or
5192 - the initial type is a pointer type and the precisions of the
5193 intermediate and final types differ, or
5194 - the final type is a pointer type and the precisions of the
5195 initial and intermediate types differ. */
5196 if (! inside_float && ! inter_float && ! final_float
5197 && (inter_prec > inside_prec || inter_prec > final_prec)
5198 && ! (inside_int && inter_int
5199 && inter_unsignedp != inside_unsignedp
5200 && inter_prec < final_prec)
5201 && ((inter_unsignedp && inter_prec > inside_prec)
5202 == (final_unsignedp && final_prec > inter_prec))
5203 && ! (inside_ptr && inter_prec != final_prec)
5204 && ! (final_ptr && inside_prec != inter_prec)
5205 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (final_type))
5206 && TYPE_MODE (final_type) == TYPE_MODE (inter_type))
5207 && ! final_ptr)
5208 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5209 }
5210
5211 if (TREE_CODE (TREE_OPERAND (t, 0)) == MODIFY_EXPR
5212 && TREE_CONSTANT (TREE_OPERAND (TREE_OPERAND (t, 0), 1))
5213 /* Detect assigning a bitfield. */
5214 && !(TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 0)) == COMPONENT_REF
5215 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (t, 0), 0), 1))))
5216 {
5217 /* Don't leave an assignment inside a conversion
5218 unless assigning a bitfield. */
5219 tree prev = TREE_OPERAND (t, 0);
5220 TREE_OPERAND (t, 0) = TREE_OPERAND (prev, 1);
5221 /* First do the assignment, then return converted constant. */
5222 t = build (COMPOUND_EXPR, TREE_TYPE (t), prev, fold (t));
5223 TREE_USED (t) = 1;
5224 return t;
5225 }
5226
5227 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
5228 constants (if x has signed type, the sign bit cannot be set
5229 in c). This folds extension into the BIT_AND_EXPR. */
5230 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
5231 && TREE_CODE (TREE_TYPE (t)) != BOOLEAN_TYPE
5232 && TREE_CODE (TREE_OPERAND (t, 0)) == BIT_AND_EXPR
5233 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 1)) == INTEGER_CST)
5234 {
5235 tree and = TREE_OPERAND (t, 0);
5236 tree and0 = TREE_OPERAND (and, 0), and1 = TREE_OPERAND (and, 1);
5237 int change = 0;
5238
5239 if (TREE_UNSIGNED (TREE_TYPE (and))
5240 || (TYPE_PRECISION (TREE_TYPE (t))
5241 <= TYPE_PRECISION (TREE_TYPE (and))))
5242 change = 1;
5243 else if (TYPE_PRECISION (TREE_TYPE (and1))
5244 <= HOST_BITS_PER_WIDE_INT
5245 && host_integerp (and1, 1))
5246 {
5247 unsigned HOST_WIDE_INT cst;
5248
5249 cst = tree_low_cst (and1, 1);
5250 cst &= (HOST_WIDE_INT) -1
5251 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
5252 change = (cst == 0);
5253 #ifdef LOAD_EXTEND_OP
5254 if (change
5255 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
5256 == ZERO_EXTEND))
5257 {
5258 tree uns = (*lang_hooks.types.unsigned_type) (TREE_TYPE (and0));
5259 and0 = convert (uns, and0);
5260 and1 = convert (uns, and1);
5261 }
5262 #endif
5263 }
5264 if (change)
5265 return fold (build (BIT_AND_EXPR, TREE_TYPE (t),
5266 convert (TREE_TYPE (t), and0),
5267 convert (TREE_TYPE (t), and1)));
5268 }
5269
5270 if (!wins)
5271 {
5272 TREE_CONSTANT (t) = TREE_CONSTANT (arg0);
5273 return t;
5274 }
5275 return fold_convert (t, arg0);
5276
5277 case VIEW_CONVERT_EXPR:
5278 if (TREE_CODE (TREE_OPERAND (t, 0)) == VIEW_CONVERT_EXPR)
5279 return build1 (VIEW_CONVERT_EXPR, type,
5280 TREE_OPERAND (TREE_OPERAND (t, 0), 0));
5281 return t;
5282
5283 case COMPONENT_REF:
5284 if (TREE_CODE (arg0) == CONSTRUCTOR)
5285 {
5286 tree m = purpose_member (arg1, CONSTRUCTOR_ELTS (arg0));
5287 if (m)
5288 t = TREE_VALUE (m);
5289 }
5290 return t;
5291
5292 case RANGE_EXPR:
5293 TREE_CONSTANT (t) = wins;
5294 return t;
5295
5296 case NEGATE_EXPR:
5297 if (wins)
5298 {
5299 if (TREE_CODE (arg0) == INTEGER_CST)
5300 {
5301 unsigned HOST_WIDE_INT low;
5302 HOST_WIDE_INT high;
5303 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
5304 TREE_INT_CST_HIGH (arg0),
5305 &low, &high);
5306 t = build_int_2 (low, high);
5307 TREE_TYPE (t) = type;
5308 TREE_OVERFLOW (t)
5309 = (TREE_OVERFLOW (arg0)
5310 | force_fit_type (t, overflow && !TREE_UNSIGNED (type)));
5311 TREE_CONSTANT_OVERFLOW (t)
5312 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg0);
5313 }
5314 else if (TREE_CODE (arg0) == REAL_CST)
5315 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
5316 }
5317 else if (TREE_CODE (arg0) == NEGATE_EXPR)
5318 return TREE_OPERAND (arg0, 0);
5319 /* Convert -((double)float) into (double)(-float). */
5320 else if (TREE_CODE (arg0) == NOP_EXPR
5321 && TREE_CODE (type) == REAL_TYPE)
5322 {
5323 tree targ0 = strip_float_extensions (arg0);
5324 if (targ0 != arg0)
5325 return convert (type, build1 (NEGATE_EXPR, TREE_TYPE (targ0), targ0));
5326
5327 }
5328
5329 /* Convert - (a - b) to (b - a) for non-floating-point. */
5330 else if (TREE_CODE (arg0) == MINUS_EXPR
5331 && (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
5332 return build (MINUS_EXPR, type, TREE_OPERAND (arg0, 1),
5333 TREE_OPERAND (arg0, 0));
5334
5335 return t;
5336
5337 case ABS_EXPR:
5338 if (wins)
5339 {
5340 if (TREE_CODE (arg0) == INTEGER_CST)
5341 {
5342 /* If the value is unsigned, then the absolute value is
5343 the same as the ordinary value. */
5344 if (TREE_UNSIGNED (type))
5345 return arg0;
5346 /* Similarly, if the value is non-negative. */
5347 else if (INT_CST_LT (integer_minus_one_node, arg0))
5348 return arg0;
5349 /* If the value is negative, then the absolute value is
5350 its negation. */
5351 else
5352 {
5353 unsigned HOST_WIDE_INT low;
5354 HOST_WIDE_INT high;
5355 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
5356 TREE_INT_CST_HIGH (arg0),
5357 &low, &high);
5358 t = build_int_2 (low, high);
5359 TREE_TYPE (t) = type;
5360 TREE_OVERFLOW (t)
5361 = (TREE_OVERFLOW (arg0)
5362 | force_fit_type (t, overflow));
5363 TREE_CONSTANT_OVERFLOW (t)
5364 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg0);
5365 }
5366 }
5367 else if (TREE_CODE (arg0) == REAL_CST)
5368 {
5369 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
5370 t = build_real (type,
5371 REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
5372 }
5373 }
5374 else if (TREE_CODE (arg0) == ABS_EXPR || TREE_CODE (arg0) == NEGATE_EXPR)
5375 return build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0));
5376 /* Convert fabs((double)float) into (double)fabsf(float). */
5377 else if (TREE_CODE (arg0) == NOP_EXPR
5378 && TREE_CODE (type) == REAL_TYPE)
5379 {
5380 tree targ0 = strip_float_extensions (arg0);
5381 if (targ0 != arg0)
5382 return convert (type, build1 (ABS_EXPR, TREE_TYPE (targ0), targ0));
5383
5384 }
5385 else
5386 {
5387 /* fabs(sqrt(x)) = sqrt(x) and fabs(exp(x)) = exp(x). */
5388 enum built_in_function fcode = builtin_mathfn_code (arg0);
5389 if (fcode == BUILT_IN_SQRT
5390 || fcode == BUILT_IN_SQRTF
5391 || fcode == BUILT_IN_SQRTL
5392 || fcode == BUILT_IN_EXP
5393 || fcode == BUILT_IN_EXPF
5394 || fcode == BUILT_IN_EXPL)
5395 t = arg0;
5396 }
5397 return t;
5398
5399 case CONJ_EXPR:
5400 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
5401 return convert (type, arg0);
5402 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
5403 return build (COMPLEX_EXPR, type,
5404 TREE_OPERAND (arg0, 0),
5405 negate_expr (TREE_OPERAND (arg0, 1)));
5406 else if (TREE_CODE (arg0) == COMPLEX_CST)
5407 return build_complex (type, TREE_REALPART (arg0),
5408 negate_expr (TREE_IMAGPART (arg0)));
5409 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
5410 return fold (build (TREE_CODE (arg0), type,
5411 fold (build1 (CONJ_EXPR, type,
5412 TREE_OPERAND (arg0, 0))),
5413 fold (build1 (CONJ_EXPR,
5414 type, TREE_OPERAND (arg0, 1)))));
5415 else if (TREE_CODE (arg0) == CONJ_EXPR)
5416 return TREE_OPERAND (arg0, 0);
5417 return t;
5418
5419 case BIT_NOT_EXPR:
5420 if (wins)
5421 {
5422 t = build_int_2 (~ TREE_INT_CST_LOW (arg0),
5423 ~ TREE_INT_CST_HIGH (arg0));
5424 TREE_TYPE (t) = type;
5425 force_fit_type (t, 0);
5426 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg0);
5427 TREE_CONSTANT_OVERFLOW (t) = TREE_CONSTANT_OVERFLOW (arg0);
5428 }
5429 else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
5430 return TREE_OPERAND (arg0, 0);
5431 return t;
5432
5433 case PLUS_EXPR:
5434 /* A + (-B) -> A - B */
5435 if (TREE_CODE (arg1) == NEGATE_EXPR)
5436 return fold (build (MINUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
5437 /* (-A) + B -> B - A */
5438 if (TREE_CODE (arg0) == NEGATE_EXPR)
5439 return fold (build (MINUS_EXPR, type, arg1, TREE_OPERAND (arg0, 0)));
5440 else if (! FLOAT_TYPE_P (type))
5441 {
5442 if (integer_zerop (arg1))
5443 return non_lvalue (convert (type, arg0));
5444
5445 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
5446 with a constant, and the two constants have no bits in common,
5447 we should treat this as a BIT_IOR_EXPR since this may produce more
5448 simplifications. */
5449 if (TREE_CODE (arg0) == BIT_AND_EXPR
5450 && TREE_CODE (arg1) == BIT_AND_EXPR
5451 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
5452 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
5453 && integer_zerop (const_binop (BIT_AND_EXPR,
5454 TREE_OPERAND (arg0, 1),
5455 TREE_OPERAND (arg1, 1), 0)))
5456 {
5457 code = BIT_IOR_EXPR;
5458 goto bit_ior;
5459 }
5460
5461 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
5462 (plus (plus (mult) (mult)) (foo)) so that we can
5463 take advantage of the factoring cases below. */
5464 if ((TREE_CODE (arg0) == PLUS_EXPR
5465 && TREE_CODE (arg1) == MULT_EXPR)
5466 || (TREE_CODE (arg1) == PLUS_EXPR
5467 && TREE_CODE (arg0) == MULT_EXPR))
5468 {
5469 tree parg0, parg1, parg, marg;
5470
5471 if (TREE_CODE (arg0) == PLUS_EXPR)
5472 parg = arg0, marg = arg1;
5473 else
5474 parg = arg1, marg = arg0;
5475 parg0 = TREE_OPERAND (parg, 0);
5476 parg1 = TREE_OPERAND (parg, 1);
5477 STRIP_NOPS (parg0);
5478 STRIP_NOPS (parg1);
5479
5480 if (TREE_CODE (parg0) == MULT_EXPR
5481 && TREE_CODE (parg1) != MULT_EXPR)
5482 return fold (build (PLUS_EXPR, type,
5483 fold (build (PLUS_EXPR, type, parg0, marg)),
5484 parg1));
5485 if (TREE_CODE (parg0) != MULT_EXPR
5486 && TREE_CODE (parg1) == MULT_EXPR)
5487 return fold (build (PLUS_EXPR, type,
5488 fold (build (PLUS_EXPR, type, parg1, marg)),
5489 parg0));
5490 }
5491
5492 if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR)
5493 {
5494 tree arg00, arg01, arg10, arg11;
5495 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
5496
5497 /* (A * C) + (B * C) -> (A+B) * C.
5498 We are most concerned about the case where C is a constant,
5499 but other combinations show up during loop reduction. Since
5500 it is not difficult, try all four possibilities. */
5501
5502 arg00 = TREE_OPERAND (arg0, 0);
5503 arg01 = TREE_OPERAND (arg0, 1);
5504 arg10 = TREE_OPERAND (arg1, 0);
5505 arg11 = TREE_OPERAND (arg1, 1);
5506 same = NULL_TREE;
5507
5508 if (operand_equal_p (arg01, arg11, 0))
5509 same = arg01, alt0 = arg00, alt1 = arg10;
5510 else if (operand_equal_p (arg00, arg10, 0))
5511 same = arg00, alt0 = arg01, alt1 = arg11;
5512 else if (operand_equal_p (arg00, arg11, 0))
5513 same = arg00, alt0 = arg01, alt1 = arg10;
5514 else if (operand_equal_p (arg01, arg10, 0))
5515 same = arg01, alt0 = arg00, alt1 = arg11;
5516
5517 /* No identical multiplicands; see if we can find a common
5518 power-of-two factor in non-power-of-two multiplies. This
5519 can help in multi-dimensional array access. */
5520 else if (TREE_CODE (arg01) == INTEGER_CST
5521 && TREE_CODE (arg11) == INTEGER_CST
5522 && TREE_INT_CST_HIGH (arg01) == 0
5523 && TREE_INT_CST_HIGH (arg11) == 0)
5524 {
5525 HOST_WIDE_INT int01, int11, tmp;
5526 int01 = TREE_INT_CST_LOW (arg01);
5527 int11 = TREE_INT_CST_LOW (arg11);
5528
5529 /* Move min of absolute values to int11. */
5530 if ((int01 >= 0 ? int01 : -int01)
5531 < (int11 >= 0 ? int11 : -int11))
5532 {
5533 tmp = int01, int01 = int11, int11 = tmp;
5534 alt0 = arg00, arg00 = arg10, arg10 = alt0;
5535 alt0 = arg01, arg01 = arg11, arg11 = alt0;
5536 }
5537
5538 if (exact_log2 (int11) > 0 && int01 % int11 == 0)
5539 {
5540 alt0 = fold (build (MULT_EXPR, type, arg00,
5541 build_int_2 (int01 / int11, 0)));
5542 alt1 = arg10;
5543 same = arg11;
5544 }
5545 }
5546
5547 if (same)
5548 return fold (build (MULT_EXPR, type,
5549 fold (build (PLUS_EXPR, type, alt0, alt1)),
5550 same));
5551 }
5552 }
5553
5554 /* See if ARG1 is zero and X + ARG1 reduces to X. */
5555 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
5556 return non_lvalue (convert (type, arg0));
5557
5558 /* Likewise if the operands are reversed. */
5559 else if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
5560 return non_lvalue (convert (type, arg1));
5561
5562 bit_rotate:
5563 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
5564 is a rotate of A by C1 bits. */
5565 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
5566 is a rotate of A by B bits. */
5567 {
5568 enum tree_code code0, code1;
5569 code0 = TREE_CODE (arg0);
5570 code1 = TREE_CODE (arg1);
5571 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
5572 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
5573 && operand_equal_p (TREE_OPERAND (arg0, 0),
5574 TREE_OPERAND (arg1, 0), 0)
5575 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
5576 {
5577 tree tree01, tree11;
5578 enum tree_code code01, code11;
5579
5580 tree01 = TREE_OPERAND (arg0, 1);
5581 tree11 = TREE_OPERAND (arg1, 1);
5582 STRIP_NOPS (tree01);
5583 STRIP_NOPS (tree11);
5584 code01 = TREE_CODE (tree01);
5585 code11 = TREE_CODE (tree11);
5586 if (code01 == INTEGER_CST
5587 && code11 == INTEGER_CST
5588 && TREE_INT_CST_HIGH (tree01) == 0
5589 && TREE_INT_CST_HIGH (tree11) == 0
5590 && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
5591 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
5592 return build (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
5593 code0 == LSHIFT_EXPR ? tree01 : tree11);
5594 else if (code11 == MINUS_EXPR)
5595 {
5596 tree tree110, tree111;
5597 tree110 = TREE_OPERAND (tree11, 0);
5598 tree111 = TREE_OPERAND (tree11, 1);
5599 STRIP_NOPS (tree110);
5600 STRIP_NOPS (tree111);
5601 if (TREE_CODE (tree110) == INTEGER_CST
5602 && 0 == compare_tree_int (tree110,
5603 TYPE_PRECISION
5604 (TREE_TYPE (TREE_OPERAND
5605 (arg0, 0))))
5606 && operand_equal_p (tree01, tree111, 0))
5607 return build ((code0 == LSHIFT_EXPR
5608 ? LROTATE_EXPR
5609 : RROTATE_EXPR),
5610 type, TREE_OPERAND (arg0, 0), tree01);
5611 }
5612 else if (code01 == MINUS_EXPR)
5613 {
5614 tree tree010, tree011;
5615 tree010 = TREE_OPERAND (tree01, 0);
5616 tree011 = TREE_OPERAND (tree01, 1);
5617 STRIP_NOPS (tree010);
5618 STRIP_NOPS (tree011);
5619 if (TREE_CODE (tree010) == INTEGER_CST
5620 && 0 == compare_tree_int (tree010,
5621 TYPE_PRECISION
5622 (TREE_TYPE (TREE_OPERAND
5623 (arg0, 0))))
5624 && operand_equal_p (tree11, tree011, 0))
5625 return build ((code0 != LSHIFT_EXPR
5626 ? LROTATE_EXPR
5627 : RROTATE_EXPR),
5628 type, TREE_OPERAND (arg0, 0), tree11);
5629 }
5630 }
5631 }
5632
5633 associate:
5634 /* In most languages, can't associate operations on floats through
5635 parentheses. Rather than remember where the parentheses were, we
5636 don't associate floats at all. It shouldn't matter much. However,
5637 associating multiplications is only very slightly inaccurate, so do
5638 that if -funsafe-math-optimizations is specified. */
5639
5640 if (! wins
5641 && (! FLOAT_TYPE_P (type)
5642 || (flag_unsafe_math_optimizations && code == MULT_EXPR)))
5643 {
5644 tree var0, con0, lit0, minus_lit0;
5645 tree var1, con1, lit1, minus_lit1;
5646
5647 /* Split both trees into variables, constants, and literals. Then
5648 associate each group together, the constants with literals,
5649 then the result with variables. This increases the chances of
5650 literals being recombined later and of generating relocatable
5651 expressions for the sum of a constant and literal. */
5652 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
5653 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
5654 code == MINUS_EXPR);
5655
5656 /* Only do something if we found more than two objects. Otherwise,
5657 nothing has changed and we risk infinite recursion. */
5658 if (2 < ((var0 != 0) + (var1 != 0)
5659 + (con0 != 0) + (con1 != 0)
5660 + (lit0 != 0) + (lit1 != 0)
5661 + (minus_lit0 != 0) + (minus_lit1 != 0)))
5662 {
5663 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
5664 if (code == MINUS_EXPR)
5665 code = PLUS_EXPR;
5666
5667 var0 = associate_trees (var0, var1, code, type);
5668 con0 = associate_trees (con0, con1, code, type);
5669 lit0 = associate_trees (lit0, lit1, code, type);
5670 minus_lit0 = associate_trees (minus_lit0, minus_lit1, code, type);
5671
5672 /* Preserve the MINUS_EXPR if the negative part of the literal is
5673 greater than the positive part. Otherwise, the multiplicative
5674 folding code (i.e extract_muldiv) may be fooled in case
5675 unsigned constants are substracted, like in the following
5676 example: ((X*2 + 4) - 8U)/2. */
5677 if (minus_lit0 && lit0)
5678 {
5679 if (tree_int_cst_lt (lit0, minus_lit0))
5680 {
5681 minus_lit0 = associate_trees (minus_lit0, lit0,
5682 MINUS_EXPR, type);
5683 lit0 = 0;
5684 }
5685 else
5686 {
5687 lit0 = associate_trees (lit0, minus_lit0,
5688 MINUS_EXPR, type);
5689 minus_lit0 = 0;
5690 }
5691 }
5692 if (minus_lit0)
5693 {
5694 if (con0 == 0)
5695 return convert (type, associate_trees (var0, minus_lit0,
5696 MINUS_EXPR, type));
5697 else
5698 {
5699 con0 = associate_trees (con0, minus_lit0,
5700 MINUS_EXPR, type);
5701 return convert (type, associate_trees (var0, con0,
5702 PLUS_EXPR, type));
5703 }
5704 }
5705
5706 con0 = associate_trees (con0, lit0, code, type);
5707 return convert (type, associate_trees (var0, con0, code, type));
5708 }
5709 }
5710
5711 binary:
5712 if (wins)
5713 t1 = const_binop (code, arg0, arg1, 0);
5714 if (t1 != NULL_TREE)
5715 {
5716 /* The return value should always have
5717 the same type as the original expression. */
5718 if (TREE_TYPE (t1) != TREE_TYPE (t))
5719 t1 = convert (TREE_TYPE (t), t1);
5720
5721 return t1;
5722 }
5723 return t;
5724
5725 case MINUS_EXPR:
5726 /* A - (-B) -> A + B */
5727 if (TREE_CODE (arg1) == NEGATE_EXPR)
5728 return fold (build (PLUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
5729 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
5730 if (TREE_CODE (arg0) == NEGATE_EXPR
5731 && FLOAT_TYPE_P (type)
5732 && negate_expr_p (arg1)
5733 && (! TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
5734 && (! TREE_SIDE_EFFECTS (arg1) || TREE_CONSTANT (arg0)))
5735 return fold (build (MINUS_EXPR, type, negate_expr (arg1),
5736 TREE_OPERAND (arg0, 0)));
5737
5738 if (! FLOAT_TYPE_P (type))
5739 {
5740 if (! wins && integer_zerop (arg0))
5741 return negate_expr (convert (type, arg1));
5742 if (integer_zerop (arg1))
5743 return non_lvalue (convert (type, arg0));
5744
5745 /* (A * C) - (B * C) -> (A-B) * C. Since we are most concerned
5746 about the case where C is a constant, just try one of the
5747 four possibilities. */
5748
5749 if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR
5750 && operand_equal_p (TREE_OPERAND (arg0, 1),
5751 TREE_OPERAND (arg1, 1), 0))
5752 return fold (build (MULT_EXPR, type,
5753 fold (build (MINUS_EXPR, type,
5754 TREE_OPERAND (arg0, 0),
5755 TREE_OPERAND (arg1, 0))),
5756 TREE_OPERAND (arg0, 1)));
5757
5758 /* Fold A - (A & B) into ~B & A. */
5759 if (!TREE_SIDE_EFFECTS (arg0)
5760 && TREE_CODE (arg1) == BIT_AND_EXPR)
5761 {
5762 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
5763 return fold (build (BIT_AND_EXPR, type,
5764 fold (build1 (BIT_NOT_EXPR, type,
5765 TREE_OPERAND (arg1, 0))),
5766 arg0));
5767 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
5768 return fold (build (BIT_AND_EXPR, type,
5769 fold (build1 (BIT_NOT_EXPR, type,
5770 TREE_OPERAND (arg1, 1))),
5771 arg0));
5772 }
5773 }
5774
5775 /* See if ARG1 is zero and X - ARG1 reduces to X. */
5776 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
5777 return non_lvalue (convert (type, arg0));
5778
5779 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
5780 ARG0 is zero and X + ARG0 reduces to X, since that would mean
5781 (-ARG1 + ARG0) reduces to -ARG1. */
5782 else if (!wins && fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
5783 return negate_expr (convert (type, arg1));
5784
5785 /* Fold &x - &x. This can happen from &x.foo - &x.
5786 This is unsafe for certain floats even in non-IEEE formats.
5787 In IEEE, it is unsafe because it does wrong for NaNs.
5788 Also note that operand_equal_p is always false if an operand
5789 is volatile. */
5790
5791 if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
5792 && operand_equal_p (arg0, arg1, 0))
5793 return convert (type, integer_zero_node);
5794
5795 goto associate;
5796
5797 case MULT_EXPR:
5798 /* (-A) * (-B) -> A * B */
5799 if (TREE_CODE (arg0) == NEGATE_EXPR && TREE_CODE (arg1) == NEGATE_EXPR)
5800 return fold (build (MULT_EXPR, type, TREE_OPERAND (arg0, 0),
5801 TREE_OPERAND (arg1, 0)));
5802
5803 if (! FLOAT_TYPE_P (type))
5804 {
5805 if (integer_zerop (arg1))
5806 return omit_one_operand (type, arg1, arg0);
5807 if (integer_onep (arg1))
5808 return non_lvalue (convert (type, arg0));
5809
5810 /* (a * (1 << b)) is (a << b) */
5811 if (TREE_CODE (arg1) == LSHIFT_EXPR
5812 && integer_onep (TREE_OPERAND (arg1, 0)))
5813 return fold (build (LSHIFT_EXPR, type, arg0,
5814 TREE_OPERAND (arg1, 1)));
5815 if (TREE_CODE (arg0) == LSHIFT_EXPR
5816 && integer_onep (TREE_OPERAND (arg0, 0)))
5817 return fold (build (LSHIFT_EXPR, type, arg1,
5818 TREE_OPERAND (arg0, 1)));
5819
5820 if (TREE_CODE (arg1) == INTEGER_CST
5821 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
5822 code, NULL_TREE)))
5823 return convert (type, tem);
5824
5825 }
5826 else
5827 {
5828 /* Maybe fold x * 0 to 0. The expressions aren't the same
5829 when x is NaN, since x * 0 is also NaN. Nor are they the
5830 same in modes with signed zeros, since multiplying a
5831 negative value by 0 gives -0, not +0. */
5832 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
5833 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
5834 && real_zerop (arg1))
5835 return omit_one_operand (type, arg1, arg0);
5836 /* In IEEE floating point, x*1 is not equivalent to x for snans. */
5837 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
5838 && real_onep (arg1))
5839 return non_lvalue (convert (type, arg0));
5840
5841 /* Transform x * -1.0 into -x. */
5842 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
5843 && real_minus_onep (arg1))
5844 return fold (build1 (NEGATE_EXPR, type, arg0));
5845
5846 /* x*2 is x+x */
5847 if (! wins && real_twop (arg1)
5848 && (*lang_hooks.decls.global_bindings_p) () == 0
5849 && ! contains_placeholder_p (arg0))
5850 {
5851 tree arg = save_expr (arg0);
5852 return build (PLUS_EXPR, type, arg, arg);
5853 }
5854
5855 if (flag_unsafe_math_optimizations)
5856 {
5857 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
5858 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
5859
5860 /* Optimize sqrt(x)*sqrt(y) as sqrt(x*y). */
5861 if ((fcode0 == BUILT_IN_SQRT && fcode1 == BUILT_IN_SQRT)
5862 || (fcode0 == BUILT_IN_SQRTF && fcode1 == BUILT_IN_SQRTF)
5863 || (fcode0 == BUILT_IN_SQRTL && fcode1 == BUILT_IN_SQRTL))
5864 {
5865 tree sqrtfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
5866 tree arg = build (MULT_EXPR, type,
5867 TREE_VALUE (TREE_OPERAND (arg0, 1)),
5868 TREE_VALUE (TREE_OPERAND (arg1, 1)));
5869 tree arglist = build_tree_list (NULL_TREE, arg);
5870 return fold (build_function_call_expr (sqrtfn, arglist));
5871 }
5872
5873 /* Optimize exp(x)*exp(y) as exp(x+y). */
5874 if ((fcode0 == BUILT_IN_EXP && fcode1 == BUILT_IN_EXP)
5875 || (fcode0 == BUILT_IN_EXPF && fcode1 == BUILT_IN_EXPF)
5876 || (fcode0 == BUILT_IN_EXPL && fcode1 == BUILT_IN_EXPL))
5877 {
5878 tree expfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
5879 tree arg = build (PLUS_EXPR, type,
5880 TREE_VALUE (TREE_OPERAND (arg0, 1)),
5881 TREE_VALUE (TREE_OPERAND (arg1, 1)));
5882 tree arglist = build_tree_list (NULL_TREE, arg);
5883 return fold (build_function_call_expr (expfn, arglist));
5884 }
5885 }
5886 }
5887 goto associate;
5888
5889 case BIT_IOR_EXPR:
5890 bit_ior:
5891 if (integer_all_onesp (arg1))
5892 return omit_one_operand (type, arg1, arg0);
5893 if (integer_zerop (arg1))
5894 return non_lvalue (convert (type, arg0));
5895 t1 = distribute_bit_expr (code, type, arg0, arg1);
5896 if (t1 != NULL_TREE)
5897 return t1;
5898
5899 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
5900
5901 This results in more efficient code for machines without a NAND
5902 instruction. Combine will canonicalize to the first form
5903 which will allow use of NAND instructions provided by the
5904 backend if they exist. */
5905 if (TREE_CODE (arg0) == BIT_NOT_EXPR
5906 && TREE_CODE (arg1) == BIT_NOT_EXPR)
5907 {
5908 return fold (build1 (BIT_NOT_EXPR, type,
5909 build (BIT_AND_EXPR, type,
5910 TREE_OPERAND (arg0, 0),
5911 TREE_OPERAND (arg1, 0))));
5912 }
5913
5914 /* See if this can be simplified into a rotate first. If that
5915 is unsuccessful continue in the association code. */
5916 goto bit_rotate;
5917
5918 case BIT_XOR_EXPR:
5919 if (integer_zerop (arg1))
5920 return non_lvalue (convert (type, arg0));
5921 if (integer_all_onesp (arg1))
5922 return fold (build1 (BIT_NOT_EXPR, type, arg0));
5923
5924 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
5925 with a constant, and the two constants have no bits in common,
5926 we should treat this as a BIT_IOR_EXPR since this may produce more
5927 simplifications. */
5928 if (TREE_CODE (arg0) == BIT_AND_EXPR
5929 && TREE_CODE (arg1) == BIT_AND_EXPR
5930 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
5931 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
5932 && integer_zerop (const_binop (BIT_AND_EXPR,
5933 TREE_OPERAND (arg0, 1),
5934 TREE_OPERAND (arg1, 1), 0)))
5935 {
5936 code = BIT_IOR_EXPR;
5937 goto bit_ior;
5938 }
5939
5940 /* See if this can be simplified into a rotate first. If that
5941 is unsuccessful continue in the association code. */
5942 goto bit_rotate;
5943
5944 case BIT_AND_EXPR:
5945 bit_and:
5946 if (integer_all_onesp (arg1))
5947 return non_lvalue (convert (type, arg0));
5948 if (integer_zerop (arg1))
5949 return omit_one_operand (type, arg1, arg0);
5950 t1 = distribute_bit_expr (code, type, arg0, arg1);
5951 if (t1 != NULL_TREE)
5952 return t1;
5953 /* Simplify ((int)c & 0x377) into (int)c, if c is unsigned char. */
5954 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
5955 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
5956 {
5957 unsigned int prec
5958 = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
5959
5960 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
5961 && (~TREE_INT_CST_LOW (arg1)
5962 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
5963 return build1 (NOP_EXPR, type, TREE_OPERAND (arg0, 0));
5964 }
5965
5966 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
5967
5968 This results in more efficient code for machines without a NOR
5969 instruction. Combine will canonicalize to the first form
5970 which will allow use of NOR instructions provided by the
5971 backend if they exist. */
5972 if (TREE_CODE (arg0) == BIT_NOT_EXPR
5973 && TREE_CODE (arg1) == BIT_NOT_EXPR)
5974 {
5975 return fold (build1 (BIT_NOT_EXPR, type,
5976 build (BIT_IOR_EXPR, type,
5977 TREE_OPERAND (arg0, 0),
5978 TREE_OPERAND (arg1, 0))));
5979 }
5980
5981 goto associate;
5982
5983 case BIT_ANDTC_EXPR:
5984 if (integer_all_onesp (arg0))
5985 return non_lvalue (convert (type, arg1));
5986 if (integer_zerop (arg0))
5987 return omit_one_operand (type, arg0, arg1);
5988 if (TREE_CODE (arg1) == INTEGER_CST)
5989 {
5990 arg1 = fold (build1 (BIT_NOT_EXPR, type, arg1));
5991 code = BIT_AND_EXPR;
5992 goto bit_and;
5993 }
5994 goto binary;
5995
5996 case RDIV_EXPR:
5997 /* Don't touch a floating-point divide by zero unless the mode
5998 of the constant can represent infinity. */
5999 if (TREE_CODE (arg1) == REAL_CST
6000 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
6001 && real_zerop (arg1))
6002 return t;
6003
6004 /* (-A) / (-B) -> A / B */
6005 if (TREE_CODE (arg0) == NEGATE_EXPR && TREE_CODE (arg1) == NEGATE_EXPR)
6006 return fold (build (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
6007 TREE_OPERAND (arg1, 0)));
6008
6009 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
6010 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
6011 && real_onep (arg1))
6012 return non_lvalue (convert (type, arg0));
6013
6014 /* If ARG1 is a constant, we can convert this to a multiply by the
6015 reciprocal. This does not have the same rounding properties,
6016 so only do this if -funsafe-math-optimizations. We can actually
6017 always safely do it if ARG1 is a power of two, but it's hard to
6018 tell if it is or not in a portable manner. */
6019 if (TREE_CODE (arg1) == REAL_CST)
6020 {
6021 if (flag_unsafe_math_optimizations
6022 && 0 != (tem = const_binop (code, build_real (type, dconst1),
6023 arg1, 0)))
6024 return fold (build (MULT_EXPR, type, arg0, tem));
6025 /* Find the reciprocal if optimizing and the result is exact. */
6026 else if (optimize)
6027 {
6028 REAL_VALUE_TYPE r;
6029 r = TREE_REAL_CST (arg1);
6030 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
6031 {
6032 tem = build_real (type, r);
6033 return fold (build (MULT_EXPR, type, arg0, tem));
6034 }
6035 }
6036 }
6037 /* Convert A/B/C to A/(B*C). */
6038 if (flag_unsafe_math_optimizations
6039 && TREE_CODE (arg0) == RDIV_EXPR)
6040 {
6041 return fold (build (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
6042 build (MULT_EXPR, type, TREE_OPERAND (arg0, 1),
6043 arg1)));
6044 }
6045 /* Convert A/(B/C) to (A/B)*C. */
6046 if (flag_unsafe_math_optimizations
6047 && TREE_CODE (arg1) == RDIV_EXPR)
6048 {
6049 return fold (build (MULT_EXPR, type,
6050 build (RDIV_EXPR, type, arg0,
6051 TREE_OPERAND (arg1, 0)),
6052 TREE_OPERAND (arg1, 1)));
6053 }
6054
6055 /* Optimize x/exp(y) into x*exp(-y). */
6056 if (flag_unsafe_math_optimizations)
6057 {
6058 enum built_in_function fcode = builtin_mathfn_code (arg1);
6059 if (fcode == BUILT_IN_EXP
6060 || fcode == BUILT_IN_EXPF
6061 || fcode == BUILT_IN_EXPL)
6062 {
6063 tree expfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
6064 tree arg = build1 (NEGATE_EXPR, type,
6065 TREE_VALUE (TREE_OPERAND (arg1, 1)));
6066 tree arglist = build_tree_list (NULL_TREE, arg);
6067 arg1 = build_function_call_expr (expfn, arglist);
6068 return fold (build (MULT_EXPR, type, arg0, arg1));
6069 }
6070 }
6071 goto binary;
6072
6073 case TRUNC_DIV_EXPR:
6074 case ROUND_DIV_EXPR:
6075 case FLOOR_DIV_EXPR:
6076 case CEIL_DIV_EXPR:
6077 case EXACT_DIV_EXPR:
6078 if (integer_onep (arg1))
6079 return non_lvalue (convert (type, arg0));
6080 if (integer_zerop (arg1))
6081 return t;
6082
6083 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
6084 operation, EXACT_DIV_EXPR.
6085
6086 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
6087 At one time others generated faster code, it's not clear if they do
6088 after the last round to changes to the DIV code in expmed.c. */
6089 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
6090 && multiple_of_p (type, arg0, arg1))
6091 return fold (build (EXACT_DIV_EXPR, type, arg0, arg1));
6092
6093 if (TREE_CODE (arg1) == INTEGER_CST
6094 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
6095 code, NULL_TREE)))
6096 return convert (type, tem);
6097
6098 goto binary;
6099
6100 case CEIL_MOD_EXPR:
6101 case FLOOR_MOD_EXPR:
6102 case ROUND_MOD_EXPR:
6103 case TRUNC_MOD_EXPR:
6104 if (integer_onep (arg1))
6105 return omit_one_operand (type, integer_zero_node, arg0);
6106 if (integer_zerop (arg1))
6107 return t;
6108
6109 if (TREE_CODE (arg1) == INTEGER_CST
6110 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
6111 code, NULL_TREE)))
6112 return convert (type, tem);
6113
6114 goto binary;
6115
6116 case LROTATE_EXPR:
6117 case RROTATE_EXPR:
6118 if (integer_all_onesp (arg0))
6119 return omit_one_operand (type, arg0, arg1);
6120 goto shift;
6121
6122 case RSHIFT_EXPR:
6123 /* Optimize -1 >> x for arithmetic right shifts. */
6124 if (integer_all_onesp (arg0) && ! TREE_UNSIGNED (type))
6125 return omit_one_operand (type, arg0, arg1);
6126 /* ... fall through ... */
6127
6128 case LSHIFT_EXPR:
6129 shift:
6130 if (integer_zerop (arg1))
6131 return non_lvalue (convert (type, arg0));
6132 if (integer_zerop (arg0))
6133 return omit_one_operand (type, arg0, arg1);
6134
6135 /* Since negative shift count is not well-defined,
6136 don't try to compute it in the compiler. */
6137 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
6138 return t;
6139 /* Rewrite an LROTATE_EXPR by a constant into an
6140 RROTATE_EXPR by a new constant. */
6141 if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
6142 {
6143 TREE_SET_CODE (t, RROTATE_EXPR);
6144 code = RROTATE_EXPR;
6145 TREE_OPERAND (t, 1) = arg1
6146 = const_binop
6147 (MINUS_EXPR,
6148 convert (TREE_TYPE (arg1),
6149 build_int_2 (GET_MODE_BITSIZE (TYPE_MODE (type)), 0)),
6150 arg1, 0);
6151 if (tree_int_cst_sgn (arg1) < 0)
6152 return t;
6153 }
6154
6155 /* If we have a rotate of a bit operation with the rotate count and
6156 the second operand of the bit operation both constant,
6157 permute the two operations. */
6158 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
6159 && (TREE_CODE (arg0) == BIT_AND_EXPR
6160 || TREE_CODE (arg0) == BIT_ANDTC_EXPR
6161 || TREE_CODE (arg0) == BIT_IOR_EXPR
6162 || TREE_CODE (arg0) == BIT_XOR_EXPR)
6163 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
6164 return fold (build (TREE_CODE (arg0), type,
6165 fold (build (code, type,
6166 TREE_OPERAND (arg0, 0), arg1)),
6167 fold (build (code, type,
6168 TREE_OPERAND (arg0, 1), arg1))));
6169
6170 /* Two consecutive rotates adding up to the width of the mode can
6171 be ignored. */
6172 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
6173 && TREE_CODE (arg0) == RROTATE_EXPR
6174 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
6175 && TREE_INT_CST_HIGH (arg1) == 0
6176 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
6177 && ((TREE_INT_CST_LOW (arg1)
6178 + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
6179 == (unsigned int) GET_MODE_BITSIZE (TYPE_MODE (type))))
6180 return TREE_OPERAND (arg0, 0);
6181
6182 goto binary;
6183
6184 case MIN_EXPR:
6185 if (operand_equal_p (arg0, arg1, 0))
6186 return omit_one_operand (type, arg0, arg1);
6187 if (INTEGRAL_TYPE_P (type)
6188 && operand_equal_p (arg1, TYPE_MIN_VALUE (type), 1))
6189 return omit_one_operand (type, arg1, arg0);
6190 goto associate;
6191
6192 case MAX_EXPR:
6193 if (operand_equal_p (arg0, arg1, 0))
6194 return omit_one_operand (type, arg0, arg1);
6195 if (INTEGRAL_TYPE_P (type)
6196 && TYPE_MAX_VALUE (type)
6197 && operand_equal_p (arg1, TYPE_MAX_VALUE (type), 1))
6198 return omit_one_operand (type, arg1, arg0);
6199 goto associate;
6200
6201 case TRUTH_NOT_EXPR:
6202 /* Note that the operand of this must be an int
6203 and its values must be 0 or 1.
6204 ("true" is a fixed value perhaps depending on the language,
6205 but we don't handle values other than 1 correctly yet.) */
6206 tem = invert_truthvalue (arg0);
6207 /* Avoid infinite recursion. */
6208 if (TREE_CODE (tem) == TRUTH_NOT_EXPR)
6209 return t;
6210 return convert (type, tem);
6211
6212 case TRUTH_ANDIF_EXPR:
6213 /* Note that the operands of this must be ints
6214 and their values must be 0 or 1.
6215 ("true" is a fixed value perhaps depending on the language.) */
6216 /* If first arg is constant zero, return it. */
6217 if (integer_zerop (arg0))
6218 return convert (type, arg0);
6219 case TRUTH_AND_EXPR:
6220 /* If either arg is constant true, drop it. */
6221 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
6222 return non_lvalue (convert (type, arg1));
6223 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
6224 /* Preserve sequence points. */
6225 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
6226 return non_lvalue (convert (type, arg0));
6227 /* If second arg is constant zero, result is zero, but first arg
6228 must be evaluated. */
6229 if (integer_zerop (arg1))
6230 return omit_one_operand (type, arg1, arg0);
6231 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
6232 case will be handled here. */
6233 if (integer_zerop (arg0))
6234 return omit_one_operand (type, arg0, arg1);
6235
6236 truth_andor:
6237 /* We only do these simplifications if we are optimizing. */
6238 if (!optimize)
6239 return t;
6240
6241 /* Check for things like (A || B) && (A || C). We can convert this
6242 to A || (B && C). Note that either operator can be any of the four
6243 truth and/or operations and the transformation will still be
6244 valid. Also note that we only care about order for the
6245 ANDIF and ORIF operators. If B contains side effects, this
6246 might change the truth-value of A. */
6247 if (TREE_CODE (arg0) == TREE_CODE (arg1)
6248 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
6249 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
6250 || TREE_CODE (arg0) == TRUTH_AND_EXPR
6251 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
6252 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
6253 {
6254 tree a00 = TREE_OPERAND (arg0, 0);
6255 tree a01 = TREE_OPERAND (arg0, 1);
6256 tree a10 = TREE_OPERAND (arg1, 0);
6257 tree a11 = TREE_OPERAND (arg1, 1);
6258 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
6259 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
6260 && (code == TRUTH_AND_EXPR
6261 || code == TRUTH_OR_EXPR));
6262
6263 if (operand_equal_p (a00, a10, 0))
6264 return fold (build (TREE_CODE (arg0), type, a00,
6265 fold (build (code, type, a01, a11))));
6266 else if (commutative && operand_equal_p (a00, a11, 0))
6267 return fold (build (TREE_CODE (arg0), type, a00,
6268 fold (build (code, type, a01, a10))));
6269 else if (commutative && operand_equal_p (a01, a10, 0))
6270 return fold (build (TREE_CODE (arg0), type, a01,
6271 fold (build (code, type, a00, a11))));
6272
6273 /* This case if tricky because we must either have commutative
6274 operators or else A10 must not have side-effects. */
6275
6276 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
6277 && operand_equal_p (a01, a11, 0))
6278 return fold (build (TREE_CODE (arg0), type,
6279 fold (build (code, type, a00, a10)),
6280 a01));
6281 }
6282
6283 /* See if we can build a range comparison. */
6284 if (0 != (tem = fold_range_test (t)))
6285 return tem;
6286
6287 /* Check for the possibility of merging component references. If our
6288 lhs is another similar operation, try to merge its rhs with our
6289 rhs. Then try to merge our lhs and rhs. */
6290 if (TREE_CODE (arg0) == code
6291 && 0 != (tem = fold_truthop (code, type,
6292 TREE_OPERAND (arg0, 1), arg1)))
6293 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
6294
6295 if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
6296 return tem;
6297
6298 return t;
6299
6300 case TRUTH_ORIF_EXPR:
6301 /* Note that the operands of this must be ints
6302 and their values must be 0 or true.
6303 ("true" is a fixed value perhaps depending on the language.) */
6304 /* If first arg is constant true, return it. */
6305 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
6306 return convert (type, arg0);
6307 case TRUTH_OR_EXPR:
6308 /* If either arg is constant zero, drop it. */
6309 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
6310 return non_lvalue (convert (type, arg1));
6311 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
6312 /* Preserve sequence points. */
6313 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
6314 return non_lvalue (convert (type, arg0));
6315 /* If second arg is constant true, result is true, but we must
6316 evaluate first arg. */
6317 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
6318 return omit_one_operand (type, arg1, arg0);
6319 /* Likewise for first arg, but note this only occurs here for
6320 TRUTH_OR_EXPR. */
6321 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
6322 return omit_one_operand (type, arg0, arg1);
6323 goto truth_andor;
6324
6325 case TRUTH_XOR_EXPR:
6326 /* If either arg is constant zero, drop it. */
6327 if (integer_zerop (arg0))
6328 return non_lvalue (convert (type, arg1));
6329 if (integer_zerop (arg1))
6330 return non_lvalue (convert (type, arg0));
6331 /* If either arg is constant true, this is a logical inversion. */
6332 if (integer_onep (arg0))
6333 return non_lvalue (convert (type, invert_truthvalue (arg1)));
6334 if (integer_onep (arg1))
6335 return non_lvalue (convert (type, invert_truthvalue (arg0)));
6336 return t;
6337
6338 case EQ_EXPR:
6339 case NE_EXPR:
6340 case LT_EXPR:
6341 case GT_EXPR:
6342 case LE_EXPR:
6343 case GE_EXPR:
6344 /* If one arg is a real or integer constant, put it last. */
6345 if ((TREE_CODE (arg0) == INTEGER_CST
6346 && TREE_CODE (arg1) != INTEGER_CST)
6347 || (TREE_CODE (arg0) == REAL_CST
6348 && TREE_CODE (arg0) != REAL_CST))
6349 {
6350 TREE_OPERAND (t, 0) = arg1;
6351 TREE_OPERAND (t, 1) = arg0;
6352 arg0 = TREE_OPERAND (t, 0);
6353 arg1 = TREE_OPERAND (t, 1);
6354 code = swap_tree_comparison (code);
6355 TREE_SET_CODE (t, code);
6356 }
6357
6358 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
6359 {
6360 tree targ0 = strip_float_extensions (arg0);
6361 tree targ1 = strip_float_extensions (arg1);
6362 tree newtype = TREE_TYPE (targ0);
6363
6364 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
6365 newtype = TREE_TYPE (targ1);
6366
6367 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
6368 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
6369 return fold (build (code, type, convert (newtype, targ0),
6370 convert (newtype, targ1)));
6371
6372 /* (-a) CMP (-b) -> b CMP a */
6373 if (TREE_CODE (arg0) == NEGATE_EXPR
6374 && TREE_CODE (arg1) == NEGATE_EXPR)
6375 return fold (build (code, type, TREE_OPERAND (arg1, 0),
6376 TREE_OPERAND (arg0, 0)));
6377
6378 if (TREE_CODE (arg1) == REAL_CST)
6379 {
6380 REAL_VALUE_TYPE cst;
6381 cst = TREE_REAL_CST (arg1);
6382
6383 /* (-a) CMP CST -> a swap(CMP) (-CST) */
6384 if (TREE_CODE (arg0) == NEGATE_EXPR)
6385 return
6386 fold (build (swap_tree_comparison (code), type,
6387 TREE_OPERAND (arg0, 0),
6388 build_real (TREE_TYPE (arg1),
6389 REAL_VALUE_NEGATE (cst))));
6390
6391 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
6392 /* a CMP (-0) -> a CMP 0 */
6393 if (REAL_VALUE_MINUS_ZERO (cst))
6394 return fold (build (code, type, arg0,
6395 build_real (TREE_TYPE (arg1), dconst0)));
6396
6397 /* x != NaN is always true, other ops are always false. */
6398 if (REAL_VALUE_ISNAN (cst)
6399 && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))))
6400 {
6401 t = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
6402 return omit_one_operand (type, convert (type, t), arg0);
6403 }
6404
6405 /* Fold comparisons against infinity. */
6406 if (REAL_VALUE_ISINF (cst))
6407 {
6408 tem = fold_inf_compare (code, type, arg0, arg1);
6409 if (tem != NULL_TREE)
6410 return tem;
6411 }
6412 }
6413
6414 /* If this is a comparison of a real constant with a PLUS_EXPR
6415 or a MINUS_EXPR of a real constant, we can convert it into a
6416 comparison with a revised real constant as long as no overflow
6417 occurs when unsafe_math_optimizations are enabled. */
6418 if (flag_unsafe_math_optimizations
6419 && TREE_CODE (arg1) == REAL_CST
6420 && (TREE_CODE (arg0) == PLUS_EXPR
6421 || TREE_CODE (arg0) == MINUS_EXPR)
6422 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
6423 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
6424 ? MINUS_EXPR : PLUS_EXPR,
6425 arg1, TREE_OPERAND (arg0, 1), 0))
6426 && ! TREE_CONSTANT_OVERFLOW (tem))
6427 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
6428
6429 /* Fold comparisons against built-in math functions. */
6430 if (TREE_CODE (arg1) == REAL_CST
6431 && flag_unsafe_math_optimizations
6432 && ! flag_errno_math)
6433 {
6434 enum built_in_function fcode = builtin_mathfn_code (arg0);
6435
6436 if (fcode != END_BUILTINS)
6437 {
6438 tem = fold_mathfn_compare (fcode, code, type, arg0, arg1);
6439 if (tem != NULL_TREE)
6440 return tem;
6441 }
6442 }
6443 }
6444
6445 /* Convert foo++ == CONST into ++foo == CONST + INCR.
6446 First, see if one arg is constant; find the constant arg
6447 and the other one. */
6448 {
6449 tree constop = 0, varop = NULL_TREE;
6450 int constopnum = -1;
6451
6452 if (TREE_CONSTANT (arg1))
6453 constopnum = 1, constop = arg1, varop = arg0;
6454 if (TREE_CONSTANT (arg0))
6455 constopnum = 0, constop = arg0, varop = arg1;
6456
6457 if (constop && TREE_CODE (varop) == POSTINCREMENT_EXPR)
6458 {
6459 /* This optimization is invalid for ordered comparisons
6460 if CONST+INCR overflows or if foo+incr might overflow.
6461 This optimization is invalid for floating point due to rounding.
6462 For pointer types we assume overflow doesn't happen. */
6463 if (POINTER_TYPE_P (TREE_TYPE (varop))
6464 || (! FLOAT_TYPE_P (TREE_TYPE (varop))
6465 && (code == EQ_EXPR || code == NE_EXPR)))
6466 {
6467 tree newconst
6468 = fold (build (PLUS_EXPR, TREE_TYPE (varop),
6469 constop, TREE_OPERAND (varop, 1)));
6470
6471 /* Do not overwrite the current varop to be a preincrement,
6472 create a new node so that we won't confuse our caller who
6473 might create trees and throw them away, reusing the
6474 arguments that they passed to build. This shows up in
6475 the THEN or ELSE parts of ?: being postincrements. */
6476 varop = build (PREINCREMENT_EXPR, TREE_TYPE (varop),
6477 TREE_OPERAND (varop, 0),
6478 TREE_OPERAND (varop, 1));
6479
6480 /* If VAROP is a reference to a bitfield, we must mask
6481 the constant by the width of the field. */
6482 if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
6483 && DECL_BIT_FIELD(TREE_OPERAND
6484 (TREE_OPERAND (varop, 0), 1)))
6485 {
6486 int size
6487 = TREE_INT_CST_LOW (DECL_SIZE
6488 (TREE_OPERAND
6489 (TREE_OPERAND (varop, 0), 1)));
6490 tree mask, unsigned_type;
6491 unsigned int precision;
6492 tree folded_compare;
6493
6494 /* First check whether the comparison would come out
6495 always the same. If we don't do that we would
6496 change the meaning with the masking. */
6497 if (constopnum == 0)
6498 folded_compare = fold (build (code, type, constop,
6499 TREE_OPERAND (varop, 0)));
6500 else
6501 folded_compare = fold (build (code, type,
6502 TREE_OPERAND (varop, 0),
6503 constop));
6504 if (integer_zerop (folded_compare)
6505 || integer_onep (folded_compare))
6506 return omit_one_operand (type, folded_compare, varop);
6507
6508 unsigned_type = (*lang_hooks.types.type_for_size)(size, 1);
6509 precision = TYPE_PRECISION (unsigned_type);
6510 mask = build_int_2 (~0, ~0);
6511 TREE_TYPE (mask) = unsigned_type;
6512 force_fit_type (mask, 0);
6513 mask = const_binop (RSHIFT_EXPR, mask,
6514 size_int (precision - size), 0);
6515 newconst = fold (build (BIT_AND_EXPR,
6516 TREE_TYPE (varop), newconst,
6517 convert (TREE_TYPE (varop),
6518 mask)));
6519 }
6520
6521 t = build (code, type,
6522 (constopnum == 0) ? newconst : varop,
6523 (constopnum == 1) ? newconst : varop);
6524 return t;
6525 }
6526 }
6527 else if (constop && TREE_CODE (varop) == POSTDECREMENT_EXPR)
6528 {
6529 if (POINTER_TYPE_P (TREE_TYPE (varop))
6530 || (! FLOAT_TYPE_P (TREE_TYPE (varop))
6531 && (code == EQ_EXPR || code == NE_EXPR)))
6532 {
6533 tree newconst
6534 = fold (build (MINUS_EXPR, TREE_TYPE (varop),
6535 constop, TREE_OPERAND (varop, 1)));
6536
6537 /* Do not overwrite the current varop to be a predecrement,
6538 create a new node so that we won't confuse our caller who
6539 might create trees and throw them away, reusing the
6540 arguments that they passed to build. This shows up in
6541 the THEN or ELSE parts of ?: being postdecrements. */
6542 varop = build (PREDECREMENT_EXPR, TREE_TYPE (varop),
6543 TREE_OPERAND (varop, 0),
6544 TREE_OPERAND (varop, 1));
6545
6546 if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
6547 && DECL_BIT_FIELD(TREE_OPERAND
6548 (TREE_OPERAND (varop, 0), 1)))
6549 {
6550 int size
6551 = TREE_INT_CST_LOW (DECL_SIZE
6552 (TREE_OPERAND
6553 (TREE_OPERAND (varop, 0), 1)));
6554 tree mask, unsigned_type;
6555 unsigned int precision;
6556 tree folded_compare;
6557
6558 if (constopnum == 0)
6559 folded_compare = fold (build (code, type, constop,
6560 TREE_OPERAND (varop, 0)));
6561 else
6562 folded_compare = fold (build (code, type,
6563 TREE_OPERAND (varop, 0),
6564 constop));
6565 if (integer_zerop (folded_compare)
6566 || integer_onep (folded_compare))
6567 return omit_one_operand (type, folded_compare, varop);
6568
6569 unsigned_type = (*lang_hooks.types.type_for_size)(size, 1);
6570 precision = TYPE_PRECISION (unsigned_type);
6571 mask = build_int_2 (~0, ~0);
6572 TREE_TYPE (mask) = TREE_TYPE (varop);
6573 force_fit_type (mask, 0);
6574 mask = const_binop (RSHIFT_EXPR, mask,
6575 size_int (precision - size), 0);
6576 newconst = fold (build (BIT_AND_EXPR,
6577 TREE_TYPE (varop), newconst,
6578 convert (TREE_TYPE (varop),
6579 mask)));
6580 }
6581
6582 t = build (code, type,
6583 (constopnum == 0) ? newconst : varop,
6584 (constopnum == 1) ? newconst : varop);
6585 return t;
6586 }
6587 }
6588 }
6589
6590 /* Change X >= C to X > (C - 1) and X < C to X <= (C - 1) if C > 0.
6591 This transformation affects the cases which are handled in later
6592 optimizations involving comparisons with non-negative constants. */
6593 if (TREE_CODE (arg1) == INTEGER_CST
6594 && TREE_CODE (arg0) != INTEGER_CST
6595 && tree_int_cst_sgn (arg1) > 0)
6596 {
6597 switch (code)
6598 {
6599 case GE_EXPR:
6600 code = GT_EXPR;
6601 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
6602 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6603 break;
6604
6605 case LT_EXPR:
6606 code = LE_EXPR;
6607 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
6608 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6609 break;
6610
6611 default:
6612 break;
6613 }
6614 }
6615
6616 /* Comparisons with the highest or lowest possible integer of
6617 the specified size will have known values. */
6618 {
6619 int width = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg1)));
6620
6621 if (TREE_CODE (arg1) == INTEGER_CST
6622 && ! TREE_CONSTANT_OVERFLOW (arg1)
6623 && width <= HOST_BITS_PER_WIDE_INT
6624 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
6625 || POINTER_TYPE_P (TREE_TYPE (arg1))))
6626 {
6627 unsigned HOST_WIDE_INT signed_max;
6628 unsigned HOST_WIDE_INT max, min;
6629
6630 signed_max = ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1;
6631
6632 if (TREE_UNSIGNED (TREE_TYPE (arg1)))
6633 {
6634 max = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
6635 min = 0;
6636 }
6637 else
6638 {
6639 max = signed_max;
6640 min = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
6641 }
6642
6643 if (TREE_INT_CST_HIGH (arg1) == 0
6644 && TREE_INT_CST_LOW (arg1) == max)
6645 switch (code)
6646 {
6647 case GT_EXPR:
6648 return omit_one_operand (type,
6649 convert (type, integer_zero_node),
6650 arg0);
6651 case GE_EXPR:
6652 code = EQ_EXPR;
6653 TREE_SET_CODE (t, EQ_EXPR);
6654 break;
6655 case LE_EXPR:
6656 return omit_one_operand (type,
6657 convert (type, integer_one_node),
6658 arg0);
6659 case LT_EXPR:
6660 code = NE_EXPR;
6661 TREE_SET_CODE (t, NE_EXPR);
6662 break;
6663
6664 /* The GE_EXPR and LT_EXPR cases above are not normally
6665 reached because of previous transformations. */
6666
6667 default:
6668 break;
6669 }
6670 else if (TREE_INT_CST_HIGH (arg1) == 0
6671 && TREE_INT_CST_LOW (arg1) == max - 1)
6672 switch (code)
6673 {
6674 case GT_EXPR:
6675 code = EQ_EXPR;
6676 arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
6677 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6678 break;
6679 case LE_EXPR:
6680 code = NE_EXPR;
6681 arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
6682 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6683 break;
6684 default:
6685 break;
6686 }
6687 else if (TREE_INT_CST_HIGH (arg1) == (min ? -1 : 0)
6688 && TREE_INT_CST_LOW (arg1) == min)
6689 switch (code)
6690 {
6691 case LT_EXPR:
6692 return omit_one_operand (type,
6693 convert (type, integer_zero_node),
6694 arg0);
6695 case LE_EXPR:
6696 code = EQ_EXPR;
6697 TREE_SET_CODE (t, EQ_EXPR);
6698 break;
6699
6700 case GE_EXPR:
6701 return omit_one_operand (type,
6702 convert (type, integer_one_node),
6703 arg0);
6704 case GT_EXPR:
6705 code = NE_EXPR;
6706 TREE_SET_CODE (t, NE_EXPR);
6707 break;
6708
6709 default:
6710 break;
6711 }
6712 else if (TREE_INT_CST_HIGH (arg1) == (min ? -1 : 0)
6713 && TREE_INT_CST_LOW (arg1) == min + 1)
6714 switch (code)
6715 {
6716 case GE_EXPR:
6717 code = NE_EXPR;
6718 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
6719 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6720 break;
6721 case LT_EXPR:
6722 code = EQ_EXPR;
6723 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
6724 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6725 break;
6726 default:
6727 break;
6728 }
6729
6730 else if (TREE_INT_CST_HIGH (arg1) == 0
6731 && TREE_INT_CST_LOW (arg1) == signed_max
6732 && TREE_UNSIGNED (TREE_TYPE (arg1))
6733 /* signed_type does not work on pointer types. */
6734 && INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
6735 {
6736 /* The following case also applies to X < signed_max+1
6737 and X >= signed_max+1 because previous transformations. */
6738 if (code == LE_EXPR || code == GT_EXPR)
6739 {
6740 tree st0, st1;
6741 st0 = (*lang_hooks.types.signed_type) (TREE_TYPE (arg0));
6742 st1 = (*lang_hooks.types.signed_type) (TREE_TYPE (arg1));
6743 return fold
6744 (build (code == LE_EXPR ? GE_EXPR: LT_EXPR,
6745 type, convert (st0, arg0),
6746 convert (st1, integer_zero_node)));
6747 }
6748 }
6749 }
6750 }
6751
6752 /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
6753 a MINUS_EXPR of a constant, we can convert it into a comparison with
6754 a revised constant as long as no overflow occurs. */
6755 if ((code == EQ_EXPR || code == NE_EXPR)
6756 && TREE_CODE (arg1) == INTEGER_CST
6757 && (TREE_CODE (arg0) == PLUS_EXPR
6758 || TREE_CODE (arg0) == MINUS_EXPR)
6759 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
6760 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
6761 ? MINUS_EXPR : PLUS_EXPR,
6762 arg1, TREE_OPERAND (arg0, 1), 0))
6763 && ! TREE_CONSTANT_OVERFLOW (tem))
6764 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
6765
6766 /* Similarly for a NEGATE_EXPR. */
6767 else if ((code == EQ_EXPR || code == NE_EXPR)
6768 && TREE_CODE (arg0) == NEGATE_EXPR
6769 && TREE_CODE (arg1) == INTEGER_CST
6770 && 0 != (tem = negate_expr (arg1))
6771 && TREE_CODE (tem) == INTEGER_CST
6772 && ! TREE_CONSTANT_OVERFLOW (tem))
6773 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
6774
6775 /* If we have X - Y == 0, we can convert that to X == Y and similarly
6776 for !=. Don't do this for ordered comparisons due to overflow. */
6777 else if ((code == NE_EXPR || code == EQ_EXPR)
6778 && integer_zerop (arg1) && TREE_CODE (arg0) == MINUS_EXPR)
6779 return fold (build (code, type,
6780 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1)));
6781
6782 /* If we are widening one operand of an integer comparison,
6783 see if the other operand is similarly being widened. Perhaps we
6784 can do the comparison in the narrower type. */
6785 else if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
6786 && TREE_CODE (arg0) == NOP_EXPR
6787 && (tem = get_unwidened (arg0, NULL_TREE)) != arg0
6788 && (t1 = get_unwidened (arg1, TREE_TYPE (tem))) != 0
6789 && (TREE_TYPE (t1) == TREE_TYPE (tem)
6790 || (TREE_CODE (t1) == INTEGER_CST
6791 && int_fits_type_p (t1, TREE_TYPE (tem)))))
6792 return fold (build (code, type, tem, convert (TREE_TYPE (tem), t1)));
6793
6794 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
6795 constant, we can simplify it. */
6796 else if (TREE_CODE (arg1) == INTEGER_CST
6797 && (TREE_CODE (arg0) == MIN_EXPR
6798 || TREE_CODE (arg0) == MAX_EXPR)
6799 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
6800 return optimize_minmax_comparison (t);
6801
6802 /* If we are comparing an ABS_EXPR with a constant, we can
6803 convert all the cases into explicit comparisons, but they may
6804 well not be faster than doing the ABS and one comparison.
6805 But ABS (X) <= C is a range comparison, which becomes a subtraction
6806 and a comparison, and is probably faster. */
6807 else if (code == LE_EXPR && TREE_CODE (arg1) == INTEGER_CST
6808 && TREE_CODE (arg0) == ABS_EXPR
6809 && ! TREE_SIDE_EFFECTS (arg0)
6810 && (0 != (tem = negate_expr (arg1)))
6811 && TREE_CODE (tem) == INTEGER_CST
6812 && ! TREE_CONSTANT_OVERFLOW (tem))
6813 return fold (build (TRUTH_ANDIF_EXPR, type,
6814 build (GE_EXPR, type, TREE_OPERAND (arg0, 0), tem),
6815 build (LE_EXPR, type,
6816 TREE_OPERAND (arg0, 0), arg1)));
6817
6818 /* If this is an EQ or NE comparison with zero and ARG0 is
6819 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
6820 two operations, but the latter can be done in one less insn
6821 on machines that have only two-operand insns or on which a
6822 constant cannot be the first operand. */
6823 if (integer_zerop (arg1) && (code == EQ_EXPR || code == NE_EXPR)
6824 && TREE_CODE (arg0) == BIT_AND_EXPR)
6825 {
6826 if (TREE_CODE (TREE_OPERAND (arg0, 0)) == LSHIFT_EXPR
6827 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 0), 0)))
6828 return
6829 fold (build (code, type,
6830 build (BIT_AND_EXPR, TREE_TYPE (arg0),
6831 build (RSHIFT_EXPR,
6832 TREE_TYPE (TREE_OPERAND (arg0, 0)),
6833 TREE_OPERAND (arg0, 1),
6834 TREE_OPERAND (TREE_OPERAND (arg0, 0), 1)),
6835 convert (TREE_TYPE (arg0),
6836 integer_one_node)),
6837 arg1));
6838 else if (TREE_CODE (TREE_OPERAND (arg0, 1)) == LSHIFT_EXPR
6839 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 1), 0)))
6840 return
6841 fold (build (code, type,
6842 build (BIT_AND_EXPR, TREE_TYPE (arg0),
6843 build (RSHIFT_EXPR,
6844 TREE_TYPE (TREE_OPERAND (arg0, 1)),
6845 TREE_OPERAND (arg0, 0),
6846 TREE_OPERAND (TREE_OPERAND (arg0, 1), 1)),
6847 convert (TREE_TYPE (arg0),
6848 integer_one_node)),
6849 arg1));
6850 }
6851
6852 /* If this is an NE or EQ comparison of zero against the result of a
6853 signed MOD operation whose second operand is a power of 2, make
6854 the MOD operation unsigned since it is simpler and equivalent. */
6855 if ((code == NE_EXPR || code == EQ_EXPR)
6856 && integer_zerop (arg1)
6857 && ! TREE_UNSIGNED (TREE_TYPE (arg0))
6858 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
6859 || TREE_CODE (arg0) == CEIL_MOD_EXPR
6860 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
6861 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
6862 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6863 {
6864 tree newtype = (*lang_hooks.types.unsigned_type) (TREE_TYPE (arg0));
6865 tree newmod = build (TREE_CODE (arg0), newtype,
6866 convert (newtype, TREE_OPERAND (arg0, 0)),
6867 convert (newtype, TREE_OPERAND (arg0, 1)));
6868
6869 return build (code, type, newmod, convert (newtype, arg1));
6870 }
6871
6872 /* If this is an NE comparison of zero with an AND of one, remove the
6873 comparison since the AND will give the correct value. */
6874 if (code == NE_EXPR && integer_zerop (arg1)
6875 && TREE_CODE (arg0) == BIT_AND_EXPR
6876 && integer_onep (TREE_OPERAND (arg0, 1)))
6877 return convert (type, arg0);
6878
6879 /* If we have (A & C) == C where C is a power of 2, convert this into
6880 (A & C) != 0. Similarly for NE_EXPR. */
6881 if ((code == EQ_EXPR || code == NE_EXPR)
6882 && TREE_CODE (arg0) == BIT_AND_EXPR
6883 && integer_pow2p (TREE_OPERAND (arg0, 1))
6884 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
6885 return fold (build (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
6886 arg0, integer_zero_node));
6887
6888 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6889 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6890 if ((code == EQ_EXPR || code == NE_EXPR)
6891 && TREE_CODE (arg0) == BIT_AND_EXPR
6892 && integer_zerop (arg1))
6893 {
6894 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0),
6895 TREE_OPERAND (arg0, 1));
6896 if (arg00 != NULL_TREE)
6897 {
6898 tree stype = (*lang_hooks.types.signed_type) (TREE_TYPE (arg00));
6899 return fold (build (code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
6900 convert (stype, arg00),
6901 convert (stype, integer_zero_node)));
6902 }
6903 }
6904
6905 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
6906 and similarly for >= into !=. */
6907 if ((code == LT_EXPR || code == GE_EXPR)
6908 && TREE_UNSIGNED (TREE_TYPE (arg0))
6909 && TREE_CODE (arg1) == LSHIFT_EXPR
6910 && integer_onep (TREE_OPERAND (arg1, 0)))
6911 return build (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
6912 build (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
6913 TREE_OPERAND (arg1, 1)),
6914 convert (TREE_TYPE (arg0), integer_zero_node));
6915
6916 else if ((code == LT_EXPR || code == GE_EXPR)
6917 && TREE_UNSIGNED (TREE_TYPE (arg0))
6918 && (TREE_CODE (arg1) == NOP_EXPR
6919 || TREE_CODE (arg1) == CONVERT_EXPR)
6920 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
6921 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
6922 return
6923 build (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
6924 convert (TREE_TYPE (arg0),
6925 build (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
6926 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1))),
6927 convert (TREE_TYPE (arg0), integer_zero_node));
6928
6929 /* Simplify comparison of something with itself. (For IEEE
6930 floating-point, we can only do some of these simplifications.) */
6931 if (operand_equal_p (arg0, arg1, 0))
6932 {
6933 switch (code)
6934 {
6935 case EQ_EXPR:
6936 case GE_EXPR:
6937 case LE_EXPR:
6938 if (! FLOAT_TYPE_P (TREE_TYPE (arg0)))
6939 return constant_boolean_node (1, type);
6940 code = EQ_EXPR;
6941 TREE_SET_CODE (t, code);
6942 break;
6943
6944 case NE_EXPR:
6945 /* For NE, we can only do this simplification if integer. */
6946 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
6947 break;
6948 /* ... fall through ... */
6949 case GT_EXPR:
6950 case LT_EXPR:
6951 return constant_boolean_node (0, type);
6952 default:
6953 abort ();
6954 }
6955 }
6956
6957 /* If we are comparing an expression that just has comparisons
6958 of two integer values, arithmetic expressions of those comparisons,
6959 and constants, we can simplify it. There are only three cases
6960 to check: the two values can either be equal, the first can be
6961 greater, or the second can be greater. Fold the expression for
6962 those three values. Since each value must be 0 or 1, we have
6963 eight possibilities, each of which corresponds to the constant 0
6964 or 1 or one of the six possible comparisons.
6965
6966 This handles common cases like (a > b) == 0 but also handles
6967 expressions like ((x > y) - (y > x)) > 0, which supposedly
6968 occur in macroized code. */
6969
6970 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
6971 {
6972 tree cval1 = 0, cval2 = 0;
6973 int save_p = 0;
6974
6975 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
6976 /* Don't handle degenerate cases here; they should already
6977 have been handled anyway. */
6978 && cval1 != 0 && cval2 != 0
6979 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
6980 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
6981 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
6982 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
6983 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
6984 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
6985 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
6986 {
6987 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
6988 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
6989
6990 /* We can't just pass T to eval_subst in case cval1 or cval2
6991 was the same as ARG1. */
6992
6993 tree high_result
6994 = fold (build (code, type,
6995 eval_subst (arg0, cval1, maxval, cval2, minval),
6996 arg1));
6997 tree equal_result
6998 = fold (build (code, type,
6999 eval_subst (arg0, cval1, maxval, cval2, maxval),
7000 arg1));
7001 tree low_result
7002 = fold (build (code, type,
7003 eval_subst (arg0, cval1, minval, cval2, maxval),
7004 arg1));
7005
7006 /* All three of these results should be 0 or 1. Confirm they
7007 are. Then use those values to select the proper code
7008 to use. */
7009
7010 if ((integer_zerop (high_result)
7011 || integer_onep (high_result))
7012 && (integer_zerop (equal_result)
7013 || integer_onep (equal_result))
7014 && (integer_zerop (low_result)
7015 || integer_onep (low_result)))
7016 {
7017 /* Make a 3-bit mask with the high-order bit being the
7018 value for `>', the next for '=', and the low for '<'. */
7019 switch ((integer_onep (high_result) * 4)
7020 + (integer_onep (equal_result) * 2)
7021 + integer_onep (low_result))
7022 {
7023 case 0:
7024 /* Always false. */
7025 return omit_one_operand (type, integer_zero_node, arg0);
7026 case 1:
7027 code = LT_EXPR;
7028 break;
7029 case 2:
7030 code = EQ_EXPR;
7031 break;
7032 case 3:
7033 code = LE_EXPR;
7034 break;
7035 case 4:
7036 code = GT_EXPR;
7037 break;
7038 case 5:
7039 code = NE_EXPR;
7040 break;
7041 case 6:
7042 code = GE_EXPR;
7043 break;
7044 case 7:
7045 /* Always true. */
7046 return omit_one_operand (type, integer_one_node, arg0);
7047 }
7048
7049 t = build (code, type, cval1, cval2);
7050 if (save_p)
7051 return save_expr (t);
7052 else
7053 return fold (t);
7054 }
7055 }
7056 }
7057
7058 /* If this is a comparison of a field, we may be able to simplify it. */
7059 if (((TREE_CODE (arg0) == COMPONENT_REF
7060 && (*lang_hooks.can_use_bit_fields_p) ())
7061 || TREE_CODE (arg0) == BIT_FIELD_REF)
7062 && (code == EQ_EXPR || code == NE_EXPR)
7063 /* Handle the constant case even without -O
7064 to make sure the warnings are given. */
7065 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
7066 {
7067 t1 = optimize_bit_field_compare (code, type, arg0, arg1);
7068 return t1 ? t1 : t;
7069 }
7070
7071 /* If this is a comparison of complex values and either or both sides
7072 are a COMPLEX_EXPR or COMPLEX_CST, it is best to split up the
7073 comparisons and join them with a TRUTH_ANDIF_EXPR or TRUTH_ORIF_EXPR.
7074 This may prevent needless evaluations. */
7075 if ((code == EQ_EXPR || code == NE_EXPR)
7076 && TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
7077 && (TREE_CODE (arg0) == COMPLEX_EXPR
7078 || TREE_CODE (arg1) == COMPLEX_EXPR
7079 || TREE_CODE (arg0) == COMPLEX_CST
7080 || TREE_CODE (arg1) == COMPLEX_CST))
7081 {
7082 tree subtype = TREE_TYPE (TREE_TYPE (arg0));
7083 tree real0, imag0, real1, imag1;
7084
7085 arg0 = save_expr (arg0);
7086 arg1 = save_expr (arg1);
7087 real0 = fold (build1 (REALPART_EXPR, subtype, arg0));
7088 imag0 = fold (build1 (IMAGPART_EXPR, subtype, arg0));
7089 real1 = fold (build1 (REALPART_EXPR, subtype, arg1));
7090 imag1 = fold (build1 (IMAGPART_EXPR, subtype, arg1));
7091
7092 return fold (build ((code == EQ_EXPR ? TRUTH_ANDIF_EXPR
7093 : TRUTH_ORIF_EXPR),
7094 type,
7095 fold (build (code, type, real0, real1)),
7096 fold (build (code, type, imag0, imag1))));
7097 }
7098
7099 /* Optimize comparisons of strlen vs zero to a compare of the
7100 first character of the string vs zero. To wit,
7101 strlen(ptr) == 0 => *ptr == 0
7102 strlen(ptr) != 0 => *ptr != 0
7103 Other cases should reduce to one of these two (or a constant)
7104 due to the return value of strlen being unsigned. */
7105 if ((code == EQ_EXPR || code == NE_EXPR)
7106 && integer_zerop (arg1)
7107 && TREE_CODE (arg0) == CALL_EXPR
7108 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR)
7109 {
7110 tree fndecl = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
7111 tree arglist;
7112
7113 if (TREE_CODE (fndecl) == FUNCTION_DECL
7114 && DECL_BUILT_IN (fndecl)
7115 && DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_MD
7116 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
7117 && (arglist = TREE_OPERAND (arg0, 1))
7118 && TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) == POINTER_TYPE
7119 && ! TREE_CHAIN (arglist))
7120 return fold (build (code, type,
7121 build1 (INDIRECT_REF, char_type_node,
7122 TREE_VALUE(arglist)),
7123 integer_zero_node));
7124 }
7125
7126 /* From here on, the only cases we handle are when the result is
7127 known to be a constant.
7128
7129 To compute GT, swap the arguments and do LT.
7130 To compute GE, do LT and invert the result.
7131 To compute LE, swap the arguments, do LT and invert the result.
7132 To compute NE, do EQ and invert the result.
7133
7134 Therefore, the code below must handle only EQ and LT. */
7135
7136 if (code == LE_EXPR || code == GT_EXPR)
7137 {
7138 tem = arg0, arg0 = arg1, arg1 = tem;
7139 code = swap_tree_comparison (code);
7140 }
7141
7142 /* Note that it is safe to invert for real values here because we
7143 will check below in the one case that it matters. */
7144
7145 t1 = NULL_TREE;
7146 invert = 0;
7147 if (code == NE_EXPR || code == GE_EXPR)
7148 {
7149 invert = 1;
7150 code = invert_tree_comparison (code);
7151 }
7152
7153 /* Compute a result for LT or EQ if args permit;
7154 otherwise return T. */
7155 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
7156 {
7157 if (code == EQ_EXPR)
7158 t1 = build_int_2 (tree_int_cst_equal (arg0, arg1), 0);
7159 else
7160 t1 = build_int_2 ((TREE_UNSIGNED (TREE_TYPE (arg0))
7161 ? INT_CST_LT_UNSIGNED (arg0, arg1)
7162 : INT_CST_LT (arg0, arg1)),
7163 0);
7164 }
7165
7166 #if 0 /* This is no longer useful, but breaks some real code. */
7167 /* Assume a nonexplicit constant cannot equal an explicit one,
7168 since such code would be undefined anyway.
7169 Exception: on sysvr4, using #pragma weak,
7170 a label can come out as 0. */
7171 else if (TREE_CODE (arg1) == INTEGER_CST
7172 && !integer_zerop (arg1)
7173 && TREE_CONSTANT (arg0)
7174 && TREE_CODE (arg0) == ADDR_EXPR
7175 && code == EQ_EXPR)
7176 t1 = build_int_2 (0, 0);
7177 #endif
7178 /* Two real constants can be compared explicitly. */
7179 else if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
7180 {
7181 /* If either operand is a NaN, the result is false with two
7182 exceptions: First, an NE_EXPR is true on NaNs, but that case
7183 is already handled correctly since we will be inverting the
7184 result for NE_EXPR. Second, if we had inverted a LE_EXPR
7185 or a GE_EXPR into a LT_EXPR, we must return true so that it
7186 will be inverted into false. */
7187
7188 if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
7189 || REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)))
7190 t1 = build_int_2 (invert && code == LT_EXPR, 0);
7191
7192 else if (code == EQ_EXPR)
7193 t1 = build_int_2 (REAL_VALUES_EQUAL (TREE_REAL_CST (arg0),
7194 TREE_REAL_CST (arg1)),
7195 0);
7196 else
7197 t1 = build_int_2 (REAL_VALUES_LESS (TREE_REAL_CST (arg0),
7198 TREE_REAL_CST (arg1)),
7199 0);
7200 }
7201
7202 if (t1 == NULL_TREE)
7203 return t;
7204
7205 if (invert)
7206 TREE_INT_CST_LOW (t1) ^= 1;
7207
7208 TREE_TYPE (t1) = type;
7209 if (TREE_CODE (type) == BOOLEAN_TYPE)
7210 return (*lang_hooks.truthvalue_conversion) (t1);
7211 return t1;
7212
7213 case COND_EXPR:
7214 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
7215 so all simple results must be passed through pedantic_non_lvalue. */
7216 if (TREE_CODE (arg0) == INTEGER_CST)
7217 return pedantic_non_lvalue
7218 (TREE_OPERAND (t, (integer_zerop (arg0) ? 2 : 1)));
7219 else if (operand_equal_p (arg1, TREE_OPERAND (expr, 2), 0))
7220 return pedantic_omit_one_operand (type, arg1, arg0);
7221
7222 /* If the second operand is zero, invert the comparison and swap
7223 the second and third operands. Likewise if the second operand
7224 is constant and the third is not or if the third operand is
7225 equivalent to the first operand of the comparison. */
7226
7227 if (integer_zerop (arg1)
7228 || (TREE_CONSTANT (arg1) && ! TREE_CONSTANT (TREE_OPERAND (t, 2)))
7229 || (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
7230 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
7231 TREE_OPERAND (t, 2),
7232 TREE_OPERAND (arg0, 1))))
7233 {
7234 /* See if this can be inverted. If it can't, possibly because
7235 it was a floating-point inequality comparison, don't do
7236 anything. */
7237 tem = invert_truthvalue (arg0);
7238
7239 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
7240 {
7241 t = build (code, type, tem,
7242 TREE_OPERAND (t, 2), TREE_OPERAND (t, 1));
7243 arg0 = tem;
7244 /* arg1 should be the first argument of the new T. */
7245 arg1 = TREE_OPERAND (t, 1);
7246 STRIP_NOPS (arg1);
7247 }
7248 }
7249
7250 /* If we have A op B ? A : C, we may be able to convert this to a
7251 simpler expression, depending on the operation and the values
7252 of B and C. Signed zeros prevent all of these transformations,
7253 for reasons given above each one. */
7254
7255 if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
7256 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
7257 arg1, TREE_OPERAND (arg0, 1))
7258 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
7259 {
7260 tree arg2 = TREE_OPERAND (t, 2);
7261 enum tree_code comp_code = TREE_CODE (arg0);
7262
7263 STRIP_NOPS (arg2);
7264
7265 /* If we have A op 0 ? A : -A, consider applying the following
7266 transformations:
7267
7268 A == 0? A : -A same as -A
7269 A != 0? A : -A same as A
7270 A >= 0? A : -A same as abs (A)
7271 A > 0? A : -A same as abs (A)
7272 A <= 0? A : -A same as -abs (A)
7273 A < 0? A : -A same as -abs (A)
7274
7275 None of these transformations work for modes with signed
7276 zeros. If A is +/-0, the first two transformations will
7277 change the sign of the result (from +0 to -0, or vice
7278 versa). The last four will fix the sign of the result,
7279 even though the original expressions could be positive or
7280 negative, depending on the sign of A.
7281
7282 Note that all these transformations are correct if A is
7283 NaN, since the two alternatives (A and -A) are also NaNs. */
7284 if ((FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 1)))
7285 ? real_zerop (TREE_OPERAND (arg0, 1))
7286 : integer_zerop (TREE_OPERAND (arg0, 1)))
7287 && TREE_CODE (arg2) == NEGATE_EXPR
7288 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
7289 switch (comp_code)
7290 {
7291 case EQ_EXPR:
7292 return
7293 pedantic_non_lvalue
7294 (convert (type,
7295 negate_expr
7296 (convert (TREE_TYPE (TREE_OPERAND (t, 1)),
7297 arg1))));
7298 case NE_EXPR:
7299 return pedantic_non_lvalue (convert (type, arg1));
7300 case GE_EXPR:
7301 case GT_EXPR:
7302 if (TREE_UNSIGNED (TREE_TYPE (arg1)))
7303 arg1 = convert ((*lang_hooks.types.signed_type)
7304 (TREE_TYPE (arg1)), arg1);
7305 return pedantic_non_lvalue
7306 (convert (type, fold (build1 (ABS_EXPR,
7307 TREE_TYPE (arg1), arg1))));
7308 case LE_EXPR:
7309 case LT_EXPR:
7310 if (TREE_UNSIGNED (TREE_TYPE (arg1)))
7311 arg1 = convert ((lang_hooks.types.signed_type)
7312 (TREE_TYPE (arg1)), arg1);
7313 return pedantic_non_lvalue
7314 (negate_expr (convert (type,
7315 fold (build1 (ABS_EXPR,
7316 TREE_TYPE (arg1),
7317 arg1)))));
7318 default:
7319 abort ();
7320 }
7321
7322 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
7323 A == 0 ? A : 0 is always 0 unless A is -0. Note that
7324 both transformations are correct when A is NaN: A != 0
7325 is then true, and A == 0 is false. */
7326
7327 if (integer_zerop (TREE_OPERAND (arg0, 1)) && integer_zerop (arg2))
7328 {
7329 if (comp_code == NE_EXPR)
7330 return pedantic_non_lvalue (convert (type, arg1));
7331 else if (comp_code == EQ_EXPR)
7332 return pedantic_non_lvalue (convert (type, integer_zero_node));
7333 }
7334
7335 /* Try some transformations of A op B ? A : B.
7336
7337 A == B? A : B same as B
7338 A != B? A : B same as A
7339 A >= B? A : B same as max (A, B)
7340 A > B? A : B same as max (B, A)
7341 A <= B? A : B same as min (A, B)
7342 A < B? A : B same as min (B, A)
7343
7344 As above, these transformations don't work in the presence
7345 of signed zeros. For example, if A and B are zeros of
7346 opposite sign, the first two transformations will change
7347 the sign of the result. In the last four, the original
7348 expressions give different results for (A=+0, B=-0) and
7349 (A=-0, B=+0), but the transformed expressions do not.
7350
7351 The first two transformations are correct if either A or B
7352 is a NaN. In the first transformation, the condition will
7353 be false, and B will indeed be chosen. In the case of the
7354 second transformation, the condition A != B will be true,
7355 and A will be chosen.
7356
7357 The conversions to max() and min() are not correct if B is
7358 a number and A is not. The conditions in the original
7359 expressions will be false, so all four give B. The min()
7360 and max() versions would give a NaN instead. */
7361 if (operand_equal_for_comparison_p (TREE_OPERAND (arg0, 1),
7362 arg2, TREE_OPERAND (arg0, 0)))
7363 {
7364 tree comp_op0 = TREE_OPERAND (arg0, 0);
7365 tree comp_op1 = TREE_OPERAND (arg0, 1);
7366 tree comp_type = TREE_TYPE (comp_op0);
7367
7368 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
7369 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
7370 {
7371 comp_type = type;
7372 comp_op0 = arg1;
7373 comp_op1 = arg2;
7374 }
7375
7376 switch (comp_code)
7377 {
7378 case EQ_EXPR:
7379 return pedantic_non_lvalue (convert (type, arg2));
7380 case NE_EXPR:
7381 return pedantic_non_lvalue (convert (type, arg1));
7382 case LE_EXPR:
7383 case LT_EXPR:
7384 /* In C++ a ?: expression can be an lvalue, so put the
7385 operand which will be used if they are equal first
7386 so that we can convert this back to the
7387 corresponding COND_EXPR. */
7388 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
7389 return pedantic_non_lvalue
7390 (convert (type, fold (build (MIN_EXPR, comp_type,
7391 (comp_code == LE_EXPR
7392 ? comp_op0 : comp_op1),
7393 (comp_code == LE_EXPR
7394 ? comp_op1 : comp_op0)))));
7395 break;
7396 case GE_EXPR:
7397 case GT_EXPR:
7398 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
7399 return pedantic_non_lvalue
7400 (convert (type, fold (build (MAX_EXPR, comp_type,
7401 (comp_code == GE_EXPR
7402 ? comp_op0 : comp_op1),
7403 (comp_code == GE_EXPR
7404 ? comp_op1 : comp_op0)))));
7405 break;
7406 default:
7407 abort ();
7408 }
7409 }
7410
7411 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
7412 we might still be able to simplify this. For example,
7413 if C1 is one less or one more than C2, this might have started
7414 out as a MIN or MAX and been transformed by this function.
7415 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
7416
7417 if (INTEGRAL_TYPE_P (type)
7418 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7419 && TREE_CODE (arg2) == INTEGER_CST)
7420 switch (comp_code)
7421 {
7422 case EQ_EXPR:
7423 /* We can replace A with C1 in this case. */
7424 arg1 = convert (type, TREE_OPERAND (arg0, 1));
7425 t = build (code, type, TREE_OPERAND (t, 0), arg1,
7426 TREE_OPERAND (t, 2));
7427 break;
7428
7429 case LT_EXPR:
7430 /* If C1 is C2 + 1, this is min(A, C2). */
7431 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type), 1)
7432 && operand_equal_p (TREE_OPERAND (arg0, 1),
7433 const_binop (PLUS_EXPR, arg2,
7434 integer_one_node, 0), 1))
7435 return pedantic_non_lvalue
7436 (fold (build (MIN_EXPR, type, arg1, arg2)));
7437 break;
7438
7439 case LE_EXPR:
7440 /* If C1 is C2 - 1, this is min(A, C2). */
7441 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type), 1)
7442 && operand_equal_p (TREE_OPERAND (arg0, 1),
7443 const_binop (MINUS_EXPR, arg2,
7444 integer_one_node, 0), 1))
7445 return pedantic_non_lvalue
7446 (fold (build (MIN_EXPR, type, arg1, arg2)));
7447 break;
7448
7449 case GT_EXPR:
7450 /* If C1 is C2 - 1, this is max(A, C2). */
7451 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type), 1)
7452 && operand_equal_p (TREE_OPERAND (arg0, 1),
7453 const_binop (MINUS_EXPR, arg2,
7454 integer_one_node, 0), 1))
7455 return pedantic_non_lvalue
7456 (fold (build (MAX_EXPR, type, arg1, arg2)));
7457 break;
7458
7459 case GE_EXPR:
7460 /* If C1 is C2 + 1, this is max(A, C2). */
7461 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type), 1)
7462 && operand_equal_p (TREE_OPERAND (arg0, 1),
7463 const_binop (PLUS_EXPR, arg2,
7464 integer_one_node, 0), 1))
7465 return pedantic_non_lvalue
7466 (fold (build (MAX_EXPR, type, arg1, arg2)));
7467 break;
7468 case NE_EXPR:
7469 break;
7470 default:
7471 abort ();
7472 }
7473 }
7474
7475 /* If the second operand is simpler than the third, swap them
7476 since that produces better jump optimization results. */
7477 if ((TREE_CONSTANT (arg1) || DECL_P (arg1)
7478 || TREE_CODE (arg1) == SAVE_EXPR)
7479 && ! (TREE_CONSTANT (TREE_OPERAND (t, 2))
7480 || DECL_P (TREE_OPERAND (t, 2))
7481 || TREE_CODE (TREE_OPERAND (t, 2)) == SAVE_EXPR))
7482 {
7483 /* See if this can be inverted. If it can't, possibly because
7484 it was a floating-point inequality comparison, don't do
7485 anything. */
7486 tem = invert_truthvalue (arg0);
7487
7488 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
7489 {
7490 t = build (code, type, tem,
7491 TREE_OPERAND (t, 2), TREE_OPERAND (t, 1));
7492 arg0 = tem;
7493 /* arg1 should be the first argument of the new T. */
7494 arg1 = TREE_OPERAND (t, 1);
7495 STRIP_NOPS (arg1);
7496 }
7497 }
7498
7499 /* Convert A ? 1 : 0 to simply A. */
7500 if (integer_onep (TREE_OPERAND (t, 1))
7501 && integer_zerop (TREE_OPERAND (t, 2))
7502 /* If we try to convert TREE_OPERAND (t, 0) to our type, the
7503 call to fold will try to move the conversion inside
7504 a COND, which will recurse. In that case, the COND_EXPR
7505 is probably the best choice, so leave it alone. */
7506 && type == TREE_TYPE (arg0))
7507 return pedantic_non_lvalue (arg0);
7508
7509 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
7510 over COND_EXPR in cases such as floating point comparisons. */
7511 if (integer_zerop (TREE_OPERAND (t, 1))
7512 && integer_onep (TREE_OPERAND (t, 2))
7513 && truth_value_p (TREE_CODE (arg0)))
7514 return pedantic_non_lvalue (convert (type,
7515 invert_truthvalue (arg0)));
7516
7517 /* Look for expressions of the form A & 2 ? 2 : 0. The result of this
7518 operation is simply A & 2. */
7519
7520 if (integer_zerop (TREE_OPERAND (t, 2))
7521 && TREE_CODE (arg0) == NE_EXPR
7522 && integer_zerop (TREE_OPERAND (arg0, 1))
7523 && integer_pow2p (arg1)
7524 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
7525 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
7526 arg1, 1))
7527 return pedantic_non_lvalue (convert (type, TREE_OPERAND (arg0, 0)));
7528
7529 /* Convert A ? B : 0 into A && B if A and B are truth values. */
7530 if (integer_zerop (TREE_OPERAND (t, 2))
7531 && truth_value_p (TREE_CODE (arg0))
7532 && truth_value_p (TREE_CODE (arg1)))
7533 return pedantic_non_lvalue (fold (build (TRUTH_ANDIF_EXPR, type,
7534 arg0, arg1)));
7535
7536 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
7537 if (integer_onep (TREE_OPERAND (t, 2))
7538 && truth_value_p (TREE_CODE (arg0))
7539 && truth_value_p (TREE_CODE (arg1)))
7540 {
7541 /* Only perform transformation if ARG0 is easily inverted. */
7542 tem = invert_truthvalue (arg0);
7543 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
7544 return pedantic_non_lvalue (fold (build (TRUTH_ORIF_EXPR, type,
7545 tem, arg1)));
7546 }
7547
7548 return t;
7549
7550 case COMPOUND_EXPR:
7551 /* When pedantic, a compound expression can be neither an lvalue
7552 nor an integer constant expression. */
7553 if (TREE_SIDE_EFFECTS (arg0) || pedantic)
7554 return t;
7555 /* Don't let (0, 0) be null pointer constant. */
7556 if (integer_zerop (arg1))
7557 return build1 (NOP_EXPR, type, arg1);
7558 return convert (type, arg1);
7559
7560 case COMPLEX_EXPR:
7561 if (wins)
7562 return build_complex (type, arg0, arg1);
7563 return t;
7564
7565 case REALPART_EXPR:
7566 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7567 return t;
7568 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
7569 return omit_one_operand (type, TREE_OPERAND (arg0, 0),
7570 TREE_OPERAND (arg0, 1));
7571 else if (TREE_CODE (arg0) == COMPLEX_CST)
7572 return TREE_REALPART (arg0);
7573 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7574 return fold (build (TREE_CODE (arg0), type,
7575 fold (build1 (REALPART_EXPR, type,
7576 TREE_OPERAND (arg0, 0))),
7577 fold (build1 (REALPART_EXPR,
7578 type, TREE_OPERAND (arg0, 1)))));
7579 return t;
7580
7581 case IMAGPART_EXPR:
7582 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7583 return convert (type, integer_zero_node);
7584 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
7585 return omit_one_operand (type, TREE_OPERAND (arg0, 1),
7586 TREE_OPERAND (arg0, 0));
7587 else if (TREE_CODE (arg0) == COMPLEX_CST)
7588 return TREE_IMAGPART (arg0);
7589 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7590 return fold (build (TREE_CODE (arg0), type,
7591 fold (build1 (IMAGPART_EXPR, type,
7592 TREE_OPERAND (arg0, 0))),
7593 fold (build1 (IMAGPART_EXPR, type,
7594 TREE_OPERAND (arg0, 1)))));
7595 return t;
7596
7597 /* Pull arithmetic ops out of the CLEANUP_POINT_EXPR where
7598 appropriate. */
7599 case CLEANUP_POINT_EXPR:
7600 if (! has_cleanups (arg0))
7601 return TREE_OPERAND (t, 0);
7602
7603 {
7604 enum tree_code code0 = TREE_CODE (arg0);
7605 int kind0 = TREE_CODE_CLASS (code0);
7606 tree arg00 = TREE_OPERAND (arg0, 0);
7607 tree arg01;
7608
7609 if (kind0 == '1' || code0 == TRUTH_NOT_EXPR)
7610 return fold (build1 (code0, type,
7611 fold (build1 (CLEANUP_POINT_EXPR,
7612 TREE_TYPE (arg00), arg00))));
7613
7614 if (kind0 == '<' || kind0 == '2'
7615 || code0 == TRUTH_ANDIF_EXPR || code0 == TRUTH_ORIF_EXPR
7616 || code0 == TRUTH_AND_EXPR || code0 == TRUTH_OR_EXPR
7617 || code0 == TRUTH_XOR_EXPR)
7618 {
7619 arg01 = TREE_OPERAND (arg0, 1);
7620
7621 if (TREE_CONSTANT (arg00)
7622 || ((code0 == TRUTH_ANDIF_EXPR || code0 == TRUTH_ORIF_EXPR)
7623 && ! has_cleanups (arg00)))
7624 return fold (build (code0, type, arg00,
7625 fold (build1 (CLEANUP_POINT_EXPR,
7626 TREE_TYPE (arg01), arg01))));
7627
7628 if (TREE_CONSTANT (arg01))
7629 return fold (build (code0, type,
7630 fold (build1 (CLEANUP_POINT_EXPR,
7631 TREE_TYPE (arg00), arg00)),
7632 arg01));
7633 }
7634
7635 return t;
7636 }
7637
7638 case CALL_EXPR:
7639 /* Check for a built-in function. */
7640 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
7641 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (expr, 0), 0))
7642 == FUNCTION_DECL)
7643 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (expr, 0), 0)))
7644 {
7645 tree tmp = fold_builtin (expr);
7646 if (tmp)
7647 return tmp;
7648 }
7649 return t;
7650
7651 default:
7652 return t;
7653 } /* switch (code) */
7654 }
7655
7656 /* Determine if first argument is a multiple of second argument. Return 0 if
7657 it is not, or we cannot easily determined it to be.
7658
7659 An example of the sort of thing we care about (at this point; this routine
7660 could surely be made more general, and expanded to do what the *_DIV_EXPR's
7661 fold cases do now) is discovering that
7662
7663 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
7664
7665 is a multiple of
7666
7667 SAVE_EXPR (J * 8)
7668
7669 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
7670
7671 This code also handles discovering that
7672
7673 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
7674
7675 is a multiple of 8 so we don't have to worry about dealing with a
7676 possible remainder.
7677
7678 Note that we *look* inside a SAVE_EXPR only to determine how it was
7679 calculated; it is not safe for fold to do much of anything else with the
7680 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
7681 at run time. For example, the latter example above *cannot* be implemented
7682 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
7683 evaluation time of the original SAVE_EXPR is not necessarily the same at
7684 the time the new expression is evaluated. The only optimization of this
7685 sort that would be valid is changing
7686
7687 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
7688
7689 divided by 8 to
7690
7691 SAVE_EXPR (I) * SAVE_EXPR (J)
7692
7693 (where the same SAVE_EXPR (J) is used in the original and the
7694 transformed version). */
7695
7696 static int
7697 multiple_of_p (type, top, bottom)
7698 tree type;
7699 tree top;
7700 tree bottom;
7701 {
7702 if (operand_equal_p (top, bottom, 0))
7703 return 1;
7704
7705 if (TREE_CODE (type) != INTEGER_TYPE)
7706 return 0;
7707
7708 switch (TREE_CODE (top))
7709 {
7710 case MULT_EXPR:
7711 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
7712 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
7713
7714 case PLUS_EXPR:
7715 case MINUS_EXPR:
7716 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
7717 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
7718
7719 case LSHIFT_EXPR:
7720 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
7721 {
7722 tree op1, t1;
7723
7724 op1 = TREE_OPERAND (top, 1);
7725 /* const_binop may not detect overflow correctly,
7726 so check for it explicitly here. */
7727 if (TYPE_PRECISION (TREE_TYPE (size_one_node))
7728 > TREE_INT_CST_LOW (op1)
7729 && TREE_INT_CST_HIGH (op1) == 0
7730 && 0 != (t1 = convert (type,
7731 const_binop (LSHIFT_EXPR, size_one_node,
7732 op1, 0)))
7733 && ! TREE_OVERFLOW (t1))
7734 return multiple_of_p (type, t1, bottom);
7735 }
7736 return 0;
7737
7738 case NOP_EXPR:
7739 /* Can't handle conversions from non-integral or wider integral type. */
7740 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
7741 || (TYPE_PRECISION (type)
7742 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
7743 return 0;
7744
7745 /* .. fall through ... */
7746
7747 case SAVE_EXPR:
7748 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
7749
7750 case INTEGER_CST:
7751 if (TREE_CODE (bottom) != INTEGER_CST
7752 || (TREE_UNSIGNED (type)
7753 && (tree_int_cst_sgn (top) < 0
7754 || tree_int_cst_sgn (bottom) < 0)))
7755 return 0;
7756 return integer_zerop (const_binop (TRUNC_MOD_EXPR,
7757 top, bottom, 0));
7758
7759 default:
7760 return 0;
7761 }
7762 }
7763
7764 /* Return true if `t' is known to be non-negative. */
7765
7766 int
7767 tree_expr_nonnegative_p (t)
7768 tree t;
7769 {
7770 switch (TREE_CODE (t))
7771 {
7772 case ABS_EXPR:
7773 case FFS_EXPR:
7774 case POPCOUNT_EXPR:
7775 case PARITY_EXPR:
7776 return 1;
7777
7778 case CLZ_EXPR:
7779 case CTZ_EXPR:
7780 /* These are undefined at zero. This is true even if
7781 C[LT]Z_DEFINED_VALUE_AT_ZERO is set, since what we're
7782 computing here is a user-visible property. */
7783 return 0;
7784
7785 case INTEGER_CST:
7786 return tree_int_cst_sgn (t) >= 0;
7787 case TRUNC_DIV_EXPR:
7788 case CEIL_DIV_EXPR:
7789 case FLOOR_DIV_EXPR:
7790 case ROUND_DIV_EXPR:
7791 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
7792 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7793 case TRUNC_MOD_EXPR:
7794 case CEIL_MOD_EXPR:
7795 case FLOOR_MOD_EXPR:
7796 case ROUND_MOD_EXPR:
7797 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
7798 case COND_EXPR:
7799 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1))
7800 && tree_expr_nonnegative_p (TREE_OPERAND (t, 2));
7801 case COMPOUND_EXPR:
7802 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7803 case MIN_EXPR:
7804 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
7805 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7806 case MAX_EXPR:
7807 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
7808 || tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7809 case MODIFY_EXPR:
7810 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7811 case BIND_EXPR:
7812 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7813 case SAVE_EXPR:
7814 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
7815 case NON_LVALUE_EXPR:
7816 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
7817 case RTL_EXPR:
7818 return rtl_expr_nonnegative_p (RTL_EXPR_RTL (t));
7819
7820 default:
7821 if (truth_value_p (TREE_CODE (t)))
7822 /* Truth values evaluate to 0 or 1, which is nonnegative. */
7823 return 1;
7824 else
7825 /* We don't know sign of `t', so be conservative and return false. */
7826 return 0;
7827 }
7828 }
7829
7830 /* Return true if `r' is known to be non-negative.
7831 Only handles constants at the moment. */
7832
7833 int
7834 rtl_expr_nonnegative_p (r)
7835 rtx r;
7836 {
7837 switch (GET_CODE (r))
7838 {
7839 case CONST_INT:
7840 return INTVAL (r) >= 0;
7841
7842 case CONST_DOUBLE:
7843 if (GET_MODE (r) == VOIDmode)
7844 return CONST_DOUBLE_HIGH (r) >= 0;
7845 return 0;
7846
7847 case CONST_VECTOR:
7848 {
7849 int units, i;
7850 rtx elt;
7851
7852 units = CONST_VECTOR_NUNITS (r);
7853
7854 for (i = 0; i < units; ++i)
7855 {
7856 elt = CONST_VECTOR_ELT (r, i);
7857 if (!rtl_expr_nonnegative_p (elt))
7858 return 0;
7859 }
7860
7861 return 1;
7862 }
7863
7864 case SYMBOL_REF:
7865 case LABEL_REF:
7866 /* These are always nonnegative. */
7867 return 1;
7868
7869 default:
7870 return 0;
7871 }
7872 }
7873
7874 #include "gt-fold-const.h"
This page took 2.501906 seconds and 5 git commands to generate.