]> gcc.gnu.org Git - gcc.git/blob - gcc/flow.c
*** empty log message ***
[gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* This file contains the data flow analysis pass of the compiler.
22 It computes data flow information
23 which tells combine_instructions which insns to consider combining
24 and controls register allocation.
25
26 Additional data flow information that is too bulky to record
27 is generated during the analysis, and is used at that time to
28 create autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl
37 into basic blocks. It records the beginnings and ends of the
38 basic blocks in the vectors basic_block_head and basic_block_end,
39 and the number of blocks in n_basic_blocks.
40
41 find_basic_blocks also finds any unreachable loops
42 and deletes them.
43
44 ** life_analysis **
45
46 life_analysis is called immediately after find_basic_blocks.
47 It uses the basic block information to determine where each
48 hard or pseudo register is live.
49
50 ** live-register info **
51
52 The information about where each register is live is in two parts:
53 the REG_NOTES of insns, and the vector basic_block_live_at_start.
54
55 basic_block_live_at_start has an element for each basic block,
56 and the element is a bit-vector with a bit for each hard or pseudo
57 register. The bit is 1 if the register is live at the beginning
58 of the basic block.
59
60 Two types of elements can be added to an insn's REG_NOTES.
61 A REG_DEAD note is added to an insn's REG_NOTES for any register
62 that meets both of two conditions: The value in the register is not
63 needed in subsequent insns and the insn does not replace the value in
64 the register (in the case of multi-word hard registers, the value in
65 each register must be replaced by the insn to avoid a REG_DEAD note).
66
67 In the vast majority of cases, an object in a REG_DEAD note will be
68 used somewhere in the insn. The (rare) exception to this is if an
69 insn uses a multi-word hard register and only some of the registers are
70 needed in subsequent insns. In that case, REG_DEAD notes will be
71 provided for those hard registers that are not subsequently needed.
72 Partial REG_DEAD notes of this type do not occur when an insn sets
73 only some of the hard registers used in such a multi-word operand;
74 omitting REG_DEAD notes for objects stored in an insn is optional and
75 the desire to do so does not justify the complexity of the partial
76 REG_DEAD notes.
77
78 REG_UNUSED notes are added for each register that is set by the insn
79 but is unused subsequently (if every register set by the insn is unused
80 and the insn does not reference memory or have some other side-effect,
81 the insn is deleted instead). If only part of a multi-word hard
82 register is used in a subsequent insn, REG_UNUSED notes are made for
83 the parts that will not be used.
84
85 To determine which registers are live after any insn, one can
86 start from the beginning of the basic block and scan insns, noting
87 which registers are set by each insn and which die there.
88
89 ** Other actions of life_analysis **
90
91 life_analysis sets up the LOG_LINKS fields of insns because the
92 information needed to do so is readily available.
93
94 life_analysis deletes insns whose only effect is to store a value
95 that is never used.
96
97 life_analysis notices cases where a reference to a register as
98 a memory address can be combined with a preceding or following
99 incrementation or decrementation of the register. The separate
100 instruction to increment or decrement is deleted and the address
101 is changed to a POST_INC or similar rtx.
102
103 Each time an incrementing or decrementing address is created,
104 a REG_INC element is added to the insn's REG_NOTES list.
105
106 life_analysis fills in certain vectors containing information about
107 register usage: reg_n_refs, reg_n_deaths, reg_n_sets, reg_live_length,
108 reg_n_calls_crosses and reg_basic_block. */
109 \f
110 #include <stdio.h>
111 #include "config.h"
112 #include "rtl.h"
113 #include "basic-block.h"
114 #include "insn-config.h"
115 #include "regs.h"
116 #include "hard-reg-set.h"
117 #include "flags.h"
118 #include "output.h"
119
120 #include "obstack.h"
121 #define obstack_chunk_alloc xmalloc
122 #define obstack_chunk_free free
123
124 extern int xmalloc ();
125 extern void free ();
126
127 /* List of labels that must never be deleted. */
128 extern rtx forced_labels;
129
130 /* Get the basic block number of an insn.
131 This info should not be expected to remain available
132 after the end of life_analysis. */
133
134 /* This is the limit of the allocated space in the following two arrays. */
135
136 static int max_uid_for_flow;
137
138 #define BLOCK_NUM(INSN) uid_block_number[INSN_UID (INSN)]
139
140 /* This is where the BLOCK_NUM values are really stored.
141 This is set up by find_basic_blocks and used there and in life_analysis,
142 and then freed. */
143
144 static short *uid_block_number;
145
146 /* INSN_VOLATILE (insn) is 1 if the insn refers to anything volatile. */
147
148 #define INSN_VOLATILE(INSN) uid_volatile[INSN_UID (INSN)]
149 static char *uid_volatile;
150
151 /* Number of basic blocks in the current function. */
152
153 int n_basic_blocks;
154
155 /* Maximum register number used in this function, plus one. */
156
157 int max_regno;
158
159 /* Maximum number of SCRATCH rtx's used in any basic block of this function. */
160
161 int max_scratch;
162
163 /* Number of SCRATCH rtx's in the current block. */
164
165 static int num_scratch;
166
167 /* Indexed by n, gives number of basic block that (REG n) is used in.
168 If the value is REG_BLOCK_GLOBAL (-2),
169 it means (REG n) is used in more than one basic block.
170 REG_BLOCK_UNKNOWN (-1) means it hasn't been seen yet so we don't know.
171 This information remains valid for the rest of the compilation
172 of the current function; it is used to control register allocation. */
173
174 short *reg_basic_block;
175
176 /* Indexed by n, gives number of times (REG n) is used or set, each
177 weighted by its loop-depth.
178 This information remains valid for the rest of the compilation
179 of the current function; it is used to control register allocation. */
180
181 int *reg_n_refs;
182
183 /* Indexed by N, gives number of places register N dies.
184 This information remains valid for the rest of the compilation
185 of the current function; it is used to control register allocation. */
186
187 short *reg_n_deaths;
188
189 /* Indexed by N, gives 1 if that reg is live across any CALL_INSNs.
190 This information remains valid for the rest of the compilation
191 of the current function; it is used to control register allocation. */
192
193 int *reg_n_calls_crossed;
194
195 /* Total number of instructions at which (REG n) is live.
196 The larger this is, the less priority (REG n) gets for
197 allocation in a real register.
198 This information remains valid for the rest of the compilation
199 of the current function; it is used to control register allocation.
200
201 local-alloc.c may alter this number to change the priority.
202
203 Negative values are special.
204 -1 is used to mark a pseudo reg which has a constant or memory equivalent
205 and is used infrequently enough that it should not get a hard register.
206 -2 is used to mark a pseudo reg for a parameter, when a frame pointer
207 is not required. global-alloc.c makes an allocno for this but does
208 not try to assign a hard register to it. */
209
210 int *reg_live_length;
211
212 /* Element N is the next insn that uses (hard or pseudo) register number N
213 within the current basic block; or zero, if there is no such insn.
214 This is valid only during the final backward scan in propagate_block. */
215
216 static rtx *reg_next_use;
217
218 /* Size of a regset for the current function,
219 in (1) bytes and (2) elements. */
220
221 int regset_bytes;
222 int regset_size;
223
224 /* Element N is first insn in basic block N.
225 This info lasts until we finish compiling the function. */
226
227 rtx *basic_block_head;
228
229 /* Element N is last insn in basic block N.
230 This info lasts until we finish compiling the function. */
231
232 rtx *basic_block_end;
233
234 /* Element N is a regset describing the registers live
235 at the start of basic block N.
236 This info lasts until we finish compiling the function. */
237
238 regset *basic_block_live_at_start;
239
240 /* Regset of regs live when calls to `setjmp'-like functions happen. */
241
242 regset regs_live_at_setjmp;
243
244 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
245 that have to go in the same hard reg.
246 The first two regs in the list are a pair, and the next two
247 are another pair, etc. */
248 rtx regs_may_share;
249
250 /* Element N is nonzero if control can drop into basic block N
251 from the preceding basic block. Freed after life_analysis. */
252
253 static char *basic_block_drops_in;
254
255 /* Element N is depth within loops of the last insn in basic block number N.
256 Freed after life_analysis. */
257
258 static short *basic_block_loop_depth;
259
260 /* Element N nonzero if basic block N can actually be reached.
261 Vector exists only during find_basic_blocks. */
262
263 static char *block_live_static;
264
265 /* Depth within loops of basic block being scanned for lifetime analysis,
266 plus one. This is the weight attached to references to registers. */
267
268 static int loop_depth;
269
270 /* During propagate_block, this is non-zero if the value of CC0 is live. */
271
272 static int cc0_live;
273
274 /* During propagate_block, this contains the last MEM stored into. It
275 is used to eliminate consecutive stores to the same location. */
276
277 static rtx last_mem_set;
278
279 /* Set of registers that may be eliminable. These are handled specially
280 in updating regs_ever_live. */
281
282 static HARD_REG_SET elim_reg_set;
283
284 /* Forward declarations */
285 static void find_basic_blocks ();
286 static void life_analysis ();
287 static void mark_label_ref ();
288 void allocate_for_life_analysis (); /* Used also in stupid_life_analysis */
289 static void init_regset_vector ();
290 static void propagate_block ();
291 static void mark_set_regs ();
292 static void mark_used_regs ();
293 static int insn_dead_p ();
294 static int libcall_dead_p ();
295 static int try_pre_increment ();
296 static int try_pre_increment_1 ();
297 static rtx find_use_as_address ();
298 void dump_flow_info ();
299 \f
300 /* Find basic blocks of the current function and perform data flow analysis.
301 F is the first insn of the function and NREGS the number of register numbers
302 in use. */
303
304 void
305 flow_analysis (f, nregs, file)
306 rtx f;
307 int nregs;
308 FILE *file;
309 {
310 register rtx insn;
311 register int i;
312 rtx nonlocal_label_list = nonlocal_label_rtx_list ();
313
314 #ifdef ELIMINABLE_REGS
315 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
316 #endif
317
318 /* Record which registers will be eliminated. We use this in
319 mark_used_regs. */
320
321 CLEAR_HARD_REG_SET (elim_reg_set);
322
323 #ifdef ELIMINABLE_REGS
324 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
325 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
326 #else
327 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
328 #endif
329
330 /* Count the basic blocks. Also find maximum insn uid value used. */
331
332 {
333 register RTX_CODE prev_code = JUMP_INSN;
334 register RTX_CODE code;
335
336 max_uid_for_flow = 0;
337
338 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
339 {
340 code = GET_CODE (insn);
341 if (INSN_UID (insn) > max_uid_for_flow)
342 max_uid_for_flow = INSN_UID (insn);
343 if (code == CODE_LABEL
344 || (GET_RTX_CLASS (code) == 'i'
345 && (prev_code == JUMP_INSN
346 || (prev_code == CALL_INSN
347 && nonlocal_label_list != 0)
348 || prev_code == BARRIER)))
349 i++;
350 if (code != NOTE)
351 prev_code = code;
352 }
353 }
354
355 #ifdef AUTO_INC_DEC
356 /* Leave space for insns we make in some cases for auto-inc. These cases
357 are rare, so we don't need too much space. */
358 max_uid_for_flow += max_uid_for_flow / 10;
359 #endif
360
361 /* Allocate some tables that last till end of compiling this function
362 and some needed only in find_basic_blocks and life_analysis. */
363
364 n_basic_blocks = i;
365 basic_block_head = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
366 basic_block_end = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
367 basic_block_drops_in = (char *) alloca (n_basic_blocks);
368 basic_block_loop_depth = (short *) alloca (n_basic_blocks * sizeof (short));
369 uid_block_number
370 = (short *) alloca ((max_uid_for_flow + 1) * sizeof (short));
371 uid_volatile = (char *) alloca (max_uid_for_flow + 1);
372 bzero (uid_volatile, max_uid_for_flow + 1);
373
374 find_basic_blocks (f, nonlocal_label_list);
375 life_analysis (f, nregs);
376 if (file)
377 dump_flow_info (file);
378
379 basic_block_drops_in = 0;
380 uid_block_number = 0;
381 basic_block_loop_depth = 0;
382 }
383 \f
384 /* Find all basic blocks of the function whose first insn is F.
385 Store the correct data in the tables that describe the basic blocks,
386 set up the chains of references for each CODE_LABEL, and
387 delete any entire basic blocks that cannot be reached.
388
389 NONLOCAL_LABEL_LIST is the same local variable from flow_analysis. */
390
391 static void
392 find_basic_blocks (f, nonlocal_label_list)
393 rtx f, nonlocal_label_list;
394 {
395 register rtx insn;
396 register int i;
397 register char *block_live = (char *) alloca (n_basic_blocks);
398 register char *block_marked = (char *) alloca (n_basic_blocks);
399 /* List of label_refs to all labels whose addresses are taken
400 and used as data. */
401 rtx label_value_list = 0;
402
403 block_live_static = block_live;
404 bzero (block_live, n_basic_blocks);
405 bzero (block_marked, n_basic_blocks);
406
407 /* Initialize with just block 0 reachable and no blocks marked. */
408 if (n_basic_blocks > 0)
409 block_live[0] = 1;
410
411 /* Initialize the ref chain of each label to 0. */
412 /* Record where all the blocks start and end and their depth in loops. */
413 /* For each insn, record the block it is in. */
414 /* Also mark as reachable any blocks headed by labels that
415 must not be deleted. */
416
417 {
418 register RTX_CODE prev_code = JUMP_INSN;
419 register RTX_CODE code;
420 int depth = 1;
421
422 for (insn = f, i = -1; insn; insn = NEXT_INSN (insn))
423 {
424 code = GET_CODE (insn);
425 if (code == NOTE)
426 {
427 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
428 depth++;
429 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
430 depth--;
431 }
432 /* A basic block starts at label, or after something that can jump. */
433 else if (code == CODE_LABEL
434 || (GET_RTX_CLASS (code) == 'i'
435 && (prev_code == JUMP_INSN
436 || (prev_code == CALL_INSN
437 && nonlocal_label_list != 0)
438 || prev_code == BARRIER)))
439 {
440 basic_block_head[++i] = insn;
441 basic_block_end[i] = insn;
442 basic_block_loop_depth[i] = depth;
443 if (code == CODE_LABEL)
444 {
445 LABEL_REFS (insn) = insn;
446 /* Any label that cannot be deleted
447 is considered to start a reachable block. */
448 if (LABEL_PRESERVE_P (insn))
449 block_live[i] = 1;
450 }
451 }
452 else if (GET_RTX_CLASS (code) == 'i')
453 {
454 basic_block_end[i] = insn;
455 basic_block_loop_depth[i] = depth;
456 }
457
458 /* Make a list of all labels referred to other than by jumps. */
459 if (code == INSN || code == CALL_INSN)
460 {
461 rtx note = find_reg_note (insn, REG_LABEL, 0);
462 if (note != 0)
463 label_value_list = gen_rtx (EXPR_LIST, VOIDmode, XEXP (note, 0),
464 label_value_list);
465 }
466
467 BLOCK_NUM (insn) = i;
468
469 /* Don't separare a CALL_INSN from following CLOBBER insns. This is
470 a kludge that will go away when each CALL_INSN records its
471 USE and CLOBBERs. */
472
473 if (code != NOTE
474 && ! (prev_code == CALL_INSN && code == INSN
475 && GET_CODE (PATTERN (insn)) == CLOBBER))
476 prev_code = code;
477 }
478 if (i + 1 != n_basic_blocks)
479 abort ();
480 }
481
482 /* Don't delete the labels that are referenced by non-jump instructions. */
483 {
484 register rtx x;
485 for (x = label_value_list; x; x = XEXP (x, 1))
486 block_live[BLOCK_NUM (XEXP (x, 0))] = 1;
487 }
488
489 /* Record which basic blocks control can drop in to. */
490
491 {
492 register int i;
493 for (i = 0; i < n_basic_blocks; i++)
494 {
495 register rtx insn = PREV_INSN (basic_block_head[i]);
496 /* TEMP1 is used to avoid a bug in Sequent's compiler. */
497 register int temp1;
498 while (insn && GET_CODE (insn) == NOTE)
499 insn = PREV_INSN (insn);
500 temp1 = insn && GET_CODE (insn) != BARRIER;
501 basic_block_drops_in[i] = temp1;
502 }
503 }
504
505 /* Now find which basic blocks can actually be reached
506 and put all jump insns' LABEL_REFS onto the ref-chains
507 of their target labels. */
508
509 if (n_basic_blocks > 0)
510 {
511 int something_marked = 1;
512
513 /* Find all indirect jump insns and mark them as possibly jumping
514 to all the labels whose addresses are explicitly used.
515 This is because, when there are computed gotos,
516 we can't tell which labels they jump to, of all the possibilities. */
517
518 for (insn = f; insn; insn = NEXT_INSN (insn))
519 if (GET_CODE (insn) == JUMP_INSN
520 && GET_CODE (PATTERN (insn)) == SET
521 && SET_DEST (PATTERN (insn)) == pc_rtx
522 && GET_CODE (SET_SRC (PATTERN (insn))) == REG)
523 {
524 rtx x;
525 for (x = label_value_list; x; x = XEXP (x, 1))
526 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
527 insn, 0);
528 for (x = forced_labels; x; x = XEXP (x, 1))
529 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
530 insn, 0);
531 }
532
533 /* Find all call insns and mark them as possibly jumping
534 to all the nonlocal goto handler labels. */
535
536 for (insn = f; insn; insn = NEXT_INSN (insn))
537 if (GET_CODE (insn) == CALL_INSN)
538 {
539 rtx x;
540 for (x = nonlocal_label_list; x; x = XEXP (x, 1))
541 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
542 insn, 0);
543 /* ??? This could be made smarter:
544 in some cases it's possible to tell that certain
545 calls will not do a nonlocal goto.
546
547 For example, if the nested functions that do the
548 nonlocal gotos do not have their addresses taken, then
549 only calls to those functions or to other nested
550 functions that use them could possibly do nonlocal
551 gotos. */
552 }
553
554 /* Pass over all blocks, marking each block that is reachable
555 and has not yet been marked.
556 Keep doing this until, in one pass, no blocks have been marked.
557 Then blocks_live and blocks_marked are identical and correct.
558 In addition, all jumps actually reachable have been marked. */
559
560 while (something_marked)
561 {
562 something_marked = 0;
563 for (i = 0; i < n_basic_blocks; i++)
564 if (block_live[i] && !block_marked[i])
565 {
566 block_marked[i] = 1;
567 something_marked = 1;
568 if (i + 1 < n_basic_blocks && basic_block_drops_in[i + 1])
569 block_live[i + 1] = 1;
570 insn = basic_block_end[i];
571 if (GET_CODE (insn) == JUMP_INSN)
572 mark_label_ref (PATTERN (insn), insn, 0);
573 }
574 }
575
576 /* Now delete the code for any basic blocks that can't be reached.
577 They can occur because jump_optimize does not recognize
578 unreachable loops as unreachable. */
579
580 for (i = 0; i < n_basic_blocks; i++)
581 if (!block_live[i])
582 {
583 insn = basic_block_head[i];
584 while (1)
585 {
586 if (GET_CODE (insn) == BARRIER)
587 abort ();
588 if (GET_CODE (insn) != NOTE)
589 {
590 PUT_CODE (insn, NOTE);
591 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
592 NOTE_SOURCE_FILE (insn) = 0;
593 }
594 if (insn == basic_block_end[i])
595 {
596 /* BARRIERs are between basic blocks, not part of one.
597 Delete a BARRIER if the preceding jump is deleted.
598 We cannot alter a BARRIER into a NOTE
599 because it is too short; but we can really delete
600 it because it is not part of a basic block. */
601 if (NEXT_INSN (insn) != 0
602 && GET_CODE (NEXT_INSN (insn)) == BARRIER)
603 delete_insn (NEXT_INSN (insn));
604 break;
605 }
606 insn = NEXT_INSN (insn);
607 }
608 /* Each time we delete some basic blocks,
609 see if there is a jump around them that is
610 being turned into a no-op. If so, delete it. */
611
612 if (block_live[i - 1])
613 {
614 register int j;
615 for (j = i; j < n_basic_blocks; j++)
616 if (block_live[j])
617 {
618 rtx label;
619 insn = basic_block_end[i - 1];
620 if (GET_CODE (insn) == JUMP_INSN
621 /* An unconditional jump is the only possibility
622 we must check for, since a conditional one
623 would make these blocks live. */
624 && simplejump_p (insn)
625 && (label = XEXP (SET_SRC (PATTERN (insn)), 0), 1)
626 && INSN_UID (label) != 0
627 && BLOCK_NUM (label) == j)
628 {
629 PUT_CODE (insn, NOTE);
630 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
631 NOTE_SOURCE_FILE (insn) = 0;
632 if (GET_CODE (NEXT_INSN (insn)) != BARRIER)
633 abort ();
634 delete_insn (NEXT_INSN (insn));
635 }
636 break;
637 }
638 }
639 }
640 }
641 }
642 \f
643 /* Check expression X for label references;
644 if one is found, add INSN to the label's chain of references.
645
646 CHECKDUP means check for and avoid creating duplicate references
647 from the same insn. Such duplicates do no serious harm but
648 can slow life analysis. CHECKDUP is set only when duplicates
649 are likely. */
650
651 static void
652 mark_label_ref (x, insn, checkdup)
653 rtx x, insn;
654 int checkdup;
655 {
656 register RTX_CODE code;
657 register int i;
658 register char *fmt;
659
660 /* We can be called with NULL when scanning label_value_list. */
661 if (x == 0)
662 return;
663
664 code = GET_CODE (x);
665 if (code == LABEL_REF)
666 {
667 register rtx label = XEXP (x, 0);
668 register rtx y;
669 if (GET_CODE (label) != CODE_LABEL)
670 abort ();
671 /* If the label was never emitted, this insn is junk,
672 but avoid a crash trying to refer to BLOCK_NUM (label).
673 This can happen as a result of a syntax error
674 and a diagnostic has already been printed. */
675 if (INSN_UID (label) == 0)
676 return;
677 CONTAINING_INSN (x) = insn;
678 /* if CHECKDUP is set, check for duplicate ref from same insn
679 and don't insert. */
680 if (checkdup)
681 for (y = LABEL_REFS (label); y != label; y = LABEL_NEXTREF (y))
682 if (CONTAINING_INSN (y) == insn)
683 return;
684 LABEL_NEXTREF (x) = LABEL_REFS (label);
685 LABEL_REFS (label) = x;
686 block_live_static[BLOCK_NUM (label)] = 1;
687 return;
688 }
689
690 fmt = GET_RTX_FORMAT (code);
691 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
692 {
693 if (fmt[i] == 'e')
694 mark_label_ref (XEXP (x, i), insn, 0);
695 if (fmt[i] == 'E')
696 {
697 register int j;
698 for (j = 0; j < XVECLEN (x, i); j++)
699 mark_label_ref (XVECEXP (x, i, j), insn, 1);
700 }
701 }
702 }
703 \f
704 /* Determine which registers are live at the start of each
705 basic block of the function whose first insn is F.
706 NREGS is the number of registers used in F.
707 We allocate the vector basic_block_live_at_start
708 and the regsets that it points to, and fill them with the data.
709 regset_size and regset_bytes are also set here. */
710
711 static void
712 life_analysis (f, nregs)
713 rtx f;
714 int nregs;
715 {
716 register regset tem;
717 int first_pass;
718 int changed;
719 /* For each basic block, a bitmask of regs
720 live on exit from the block. */
721 regset *basic_block_live_at_end;
722 /* For each basic block, a bitmask of regs
723 live on entry to a successor-block of this block.
724 If this does not match basic_block_live_at_end,
725 that must be updated, and the block must be rescanned. */
726 regset *basic_block_new_live_at_end;
727 /* For each basic block, a bitmask of regs
728 whose liveness at the end of the basic block
729 can make a difference in which regs are live on entry to the block.
730 These are the regs that are set within the basic block,
731 possibly excluding those that are used after they are set. */
732 regset *basic_block_significant;
733 register int i;
734 rtx insn;
735
736 struct obstack flow_obstack;
737
738 gcc_obstack_init (&flow_obstack);
739
740 max_regno = nregs;
741
742 bzero (regs_ever_live, sizeof regs_ever_live);
743
744 /* Allocate and zero out many data structures
745 that will record the data from lifetime analysis. */
746
747 allocate_for_life_analysis ();
748
749 reg_next_use = (rtx *) alloca (nregs * sizeof (rtx));
750 bzero (reg_next_use, nregs * sizeof (rtx));
751
752 /* Set up several regset-vectors used internally within this function.
753 Their meanings are documented above, with their declarations. */
754
755 basic_block_live_at_end = (regset *) alloca (n_basic_blocks * sizeof (regset));
756 /* Don't use alloca since that leads to a crash rather than an error message
757 if there isn't enough space.
758 Don't use oballoc since we may need to allocate other things during
759 this function on the temporary obstack. */
760 tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
761 bzero (tem, n_basic_blocks * regset_bytes);
762 init_regset_vector (basic_block_live_at_end, tem, n_basic_blocks, regset_bytes);
763
764 basic_block_new_live_at_end = (regset *) alloca (n_basic_blocks * sizeof (regset));
765 tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
766 bzero (tem, n_basic_blocks * regset_bytes);
767 init_regset_vector (basic_block_new_live_at_end, tem, n_basic_blocks, regset_bytes);
768
769 basic_block_significant = (regset *) alloca (n_basic_blocks * sizeof (regset));
770 tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
771 bzero (tem, n_basic_blocks * regset_bytes);
772 init_regset_vector (basic_block_significant, tem, n_basic_blocks, regset_bytes);
773
774 /* Record which insns refer to any volatile memory
775 or for any reason can't be deleted just because they are dead stores.
776 Also, delete any insns that copy a register to itself. */
777
778 for (insn = f; insn; insn = NEXT_INSN (insn))
779 {
780 enum rtx_code code1 = GET_CODE (insn);
781 if (code1 == CALL_INSN)
782 INSN_VOLATILE (insn) = 1;
783 else if (code1 == INSN || code1 == JUMP_INSN)
784 {
785 /* Delete (in effect) any obvious no-op moves. */
786 if (GET_CODE (PATTERN (insn)) == SET
787 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
788 && GET_CODE (SET_SRC (PATTERN (insn))) == REG
789 && REGNO (SET_DEST (PATTERN (insn))) ==
790 REGNO (SET_SRC (PATTERN (insn)))
791 /* Insns carrying these notes are useful later on. */
792 && ! find_reg_note (insn, REG_EQUAL, 0))
793 {
794 PUT_CODE (insn, NOTE);
795 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
796 NOTE_SOURCE_FILE (insn) = 0;
797 }
798 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
799 {
800 /* If nothing but SETs of registers to themselves,
801 this insn can also be deleted. */
802 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
803 {
804 rtx tem = XVECEXP (PATTERN (insn), 0, i);
805
806 if (GET_CODE (tem) == USE
807 || GET_CODE (tem) == CLOBBER)
808 continue;
809
810 if (GET_CODE (tem) != SET
811 || GET_CODE (SET_DEST (tem)) != REG
812 || GET_CODE (SET_SRC (tem)) != REG
813 || REGNO (SET_DEST (tem)) != REGNO (SET_SRC (tem)))
814 break;
815 }
816
817 if (i == XVECLEN (PATTERN (insn), 0)
818 /* Insns carrying these notes are useful later on. */
819 && ! find_reg_note (insn, REG_EQUAL, 0))
820 {
821 PUT_CODE (insn, NOTE);
822 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
823 NOTE_SOURCE_FILE (insn) = 0;
824 }
825 else
826 INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
827 }
828 else if (GET_CODE (PATTERN (insn)) != USE)
829 INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
830 /* A SET that makes space on the stack cannot be dead.
831 (Such SETs occur only for allocating variable-size data,
832 so they will always have a PLUS or MINUS according to the
833 direction of stack growth.)
834 Even if this function never uses this stack pointer value,
835 signal handlers do! */
836 else if (code1 == INSN && GET_CODE (PATTERN (insn)) == SET
837 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
838 #ifdef STACK_GROWS_DOWNWARD
839 && GET_CODE (SET_SRC (PATTERN (insn))) == MINUS
840 #else
841 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
842 #endif
843 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx)
844 INSN_VOLATILE (insn) = 1;
845 }
846 }
847
848 if (n_basic_blocks > 0)
849 #ifdef EXIT_IGNORE_STACK
850 if (! EXIT_IGNORE_STACK
851 || (! FRAME_POINTER_REQUIRED && flag_omit_frame_pointer))
852 #endif
853 {
854 /* If exiting needs the right stack value,
855 consider the stack pointer live at the end of the function. */
856 basic_block_live_at_end[n_basic_blocks - 1]
857 [STACK_POINTER_REGNUM / REGSET_ELT_BITS]
858 |= 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
859 basic_block_new_live_at_end[n_basic_blocks - 1]
860 [STACK_POINTER_REGNUM / REGSET_ELT_BITS]
861 |= 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
862 }
863
864 /* Mark all global registers as being live at the end of the function
865 since they may be referenced by our caller. */
866
867 if (n_basic_blocks > 0)
868 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
869 if (global_regs[i])
870 {
871 basic_block_live_at_end[n_basic_blocks - 1]
872 [i / REGSET_ELT_BITS] |= 1 << (i % REGSET_ELT_BITS);
873 basic_block_new_live_at_end[n_basic_blocks - 1]
874 [i / REGSET_ELT_BITS] |= 1 << (i % REGSET_ELT_BITS);
875 }
876
877 /* Propagate life info through the basic blocks
878 around the graph of basic blocks.
879
880 This is a relaxation process: each time a new register
881 is live at the end of the basic block, we must scan the block
882 to determine which registers are, as a consequence, live at the beginning
883 of that block. These registers must then be marked live at the ends
884 of all the blocks that can transfer control to that block.
885 The process continues until it reaches a fixed point. */
886
887 first_pass = 1;
888 changed = 1;
889 while (changed)
890 {
891 changed = 0;
892 for (i = n_basic_blocks - 1; i >= 0; i--)
893 {
894 int consider = first_pass;
895 int must_rescan = first_pass;
896 register int j;
897
898 if (!first_pass)
899 {
900 /* Set CONSIDER if this block needs thinking about at all
901 (that is, if the regs live now at the end of it
902 are not the same as were live at the end of it when
903 we last thought about it).
904 Set must_rescan if it needs to be thought about
905 instruction by instruction (that is, if any additional
906 reg that is live at the end now but was not live there before
907 is one of the significant regs of this basic block). */
908
909 for (j = 0; j < regset_size; j++)
910 {
911 register int x = (basic_block_new_live_at_end[i][j]
912 & ~basic_block_live_at_end[i][j]);
913 if (x)
914 consider = 1;
915 if (x & basic_block_significant[i][j])
916 {
917 must_rescan = 1;
918 consider = 1;
919 break;
920 }
921 }
922
923 if (! consider)
924 continue;
925 }
926
927 /* The live_at_start of this block may be changing,
928 so another pass will be required after this one. */
929 changed = 1;
930
931 if (! must_rescan)
932 {
933 /* No complete rescan needed;
934 just record those variables newly known live at end
935 as live at start as well. */
936 for (j = 0; j < regset_size; j++)
937 {
938 register int x = basic_block_new_live_at_end[i][j]
939 & ~basic_block_live_at_end[i][j];
940 basic_block_live_at_start[i][j] |= x;
941 basic_block_live_at_end[i][j] |= x;
942 }
943 }
944 else
945 {
946 /* Update the basic_block_live_at_start
947 by propagation backwards through the block. */
948 bcopy (basic_block_new_live_at_end[i],
949 basic_block_live_at_end[i], regset_bytes);
950 bcopy (basic_block_live_at_end[i],
951 basic_block_live_at_start[i], regset_bytes);
952 propagate_block (basic_block_live_at_start[i],
953 basic_block_head[i], basic_block_end[i], 0,
954 first_pass ? basic_block_significant[i] : 0,
955 i);
956 }
957
958 {
959 register rtx jump, head;
960 /* Update the basic_block_new_live_at_end's of the block
961 that falls through into this one (if any). */
962 head = basic_block_head[i];
963 jump = PREV_INSN (head);
964 if (basic_block_drops_in[i])
965 {
966 register int from_block = BLOCK_NUM (jump);
967 register int j;
968 for (j = 0; j < regset_size; j++)
969 basic_block_new_live_at_end[from_block][j]
970 |= basic_block_live_at_start[i][j];
971 }
972 /* Update the basic_block_new_live_at_end's of
973 all the blocks that jump to this one. */
974 if (GET_CODE (head) == CODE_LABEL)
975 for (jump = LABEL_REFS (head);
976 jump != head;
977 jump = LABEL_NEXTREF (jump))
978 {
979 register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
980 register int j;
981 for (j = 0; j < regset_size; j++)
982 basic_block_new_live_at_end[from_block][j]
983 |= basic_block_live_at_start[i][j];
984 }
985 }
986 #ifdef USE_C_ALLOCA
987 alloca (0);
988 #endif
989 }
990 first_pass = 0;
991 }
992
993 /* The only pseudos that are live at the beginning of the function are
994 those that were not set anywhere in the function. local-alloc doesn't
995 know how to handle these correctly, so mark them as not local to any
996 one basic block. */
997
998 if (n_basic_blocks > 0)
999 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1000 if (basic_block_live_at_start[0][i / REGSET_ELT_BITS]
1001 & (1 << (i % REGSET_ELT_BITS)))
1002 reg_basic_block[i] = REG_BLOCK_GLOBAL;
1003
1004 /* Now the life information is accurate.
1005 Make one more pass over each basic block
1006 to delete dead stores, create autoincrement addressing
1007 and record how many times each register is used, is set, or dies.
1008
1009 To save time, we operate directly in basic_block_live_at_end[i],
1010 thus destroying it (in fact, converting it into a copy of
1011 basic_block_live_at_start[i]). This is ok now because
1012 basic_block_live_at_end[i] is no longer used past this point. */
1013
1014 max_scratch = 0;
1015
1016 for (i = 0; i < n_basic_blocks; i++)
1017 {
1018 propagate_block (basic_block_live_at_end[i],
1019 basic_block_head[i], basic_block_end[i], 1, 0, i);
1020 #ifdef USE_C_ALLOCA
1021 alloca (0);
1022 #endif
1023 }
1024
1025 #if 0
1026 /* Something live during a setjmp should not be put in a register
1027 on certain machines which restore regs from stack frames
1028 rather than from the jmpbuf.
1029 But we don't need to do this for the user's variables, since
1030 ANSI says only volatile variables need this. */
1031 #ifdef LONGJMP_RESTORE_FROM_STACK
1032 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1033 if (regs_live_at_setjmp[i / REGSET_ELT_BITS] & (1 << (i % REGSET_ELT_BITS))
1034 && regno_reg_rtx[i] != 0 && ! REG_USERVAR_P (regno_reg_rtx[i]))
1035 {
1036 reg_live_length[i] = -1;
1037 reg_basic_block[i] = -1;
1038 }
1039 #endif
1040 #endif
1041
1042 /* We have a problem with any pseudoreg that
1043 lives across the setjmp. ANSI says that if a
1044 user variable does not change in value
1045 between the setjmp and the longjmp, then the longjmp preserves it.
1046 This includes longjmp from a place where the pseudo appears dead.
1047 (In principle, the value still exists if it is in scope.)
1048 If the pseudo goes in a hard reg, some other value may occupy
1049 that hard reg where this pseudo is dead, thus clobbering the pseudo.
1050 Conclusion: such a pseudo must not go in a hard reg. */
1051 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1052 if (regs_live_at_setjmp[i / REGSET_ELT_BITS] & (1 << (i % REGSET_ELT_BITS))
1053 && regno_reg_rtx[i] != 0)
1054 {
1055 reg_live_length[i] = -1;
1056 reg_basic_block[i] = -1;
1057 }
1058
1059 obstack_free (&flow_obstack, 0);
1060 }
1061 \f
1062 /* Subroutines of life analysis. */
1063
1064 /* Allocate the permanent data structures that represent the results
1065 of life analysis. Not static since used also for stupid life analysis. */
1066
1067 void
1068 allocate_for_life_analysis ()
1069 {
1070 register int i;
1071 register regset tem;
1072
1073 regset_size = ((max_regno + REGSET_ELT_BITS - 1) / REGSET_ELT_BITS);
1074 regset_bytes = regset_size * sizeof (*(regset)0);
1075
1076 reg_n_refs = (int *) oballoc (max_regno * sizeof (int));
1077 bzero (reg_n_refs, max_regno * sizeof (int));
1078
1079 reg_n_sets = (short *) oballoc (max_regno * sizeof (short));
1080 bzero (reg_n_sets, max_regno * sizeof (short));
1081
1082 reg_n_deaths = (short *) oballoc (max_regno * sizeof (short));
1083 bzero (reg_n_deaths, max_regno * sizeof (short));
1084
1085 reg_live_length = (int *) oballoc (max_regno * sizeof (int));
1086 bzero (reg_live_length, max_regno * sizeof (int));
1087
1088 reg_n_calls_crossed = (int *) oballoc (max_regno * sizeof (int));
1089 bzero (reg_n_calls_crossed, max_regno * sizeof (int));
1090
1091 reg_basic_block = (short *) oballoc (max_regno * sizeof (short));
1092 for (i = 0; i < max_regno; i++)
1093 reg_basic_block[i] = REG_BLOCK_UNKNOWN;
1094
1095 basic_block_live_at_start = (regset *) oballoc (n_basic_blocks * sizeof (regset));
1096 tem = (regset) oballoc (n_basic_blocks * regset_bytes);
1097 bzero (tem, n_basic_blocks * regset_bytes);
1098 init_regset_vector (basic_block_live_at_start, tem, n_basic_blocks, regset_bytes);
1099
1100 regs_live_at_setjmp = (regset) oballoc (regset_bytes);
1101 bzero (regs_live_at_setjmp, regset_bytes);
1102 }
1103
1104 /* Make each element of VECTOR point at a regset,
1105 taking the space for all those regsets from SPACE.
1106 SPACE is of type regset, but it is really as long as NELTS regsets.
1107 BYTES_PER_ELT is the number of bytes in one regset. */
1108
1109 static void
1110 init_regset_vector (vector, space, nelts, bytes_per_elt)
1111 regset *vector;
1112 regset space;
1113 int nelts;
1114 int bytes_per_elt;
1115 {
1116 register int i;
1117 register regset p = space;
1118
1119 for (i = 0; i < nelts; i++)
1120 {
1121 vector[i] = p;
1122 p += bytes_per_elt / sizeof (*p);
1123 }
1124 }
1125 \f
1126 /* Compute the registers live at the beginning of a basic block
1127 from those live at the end.
1128
1129 When called, OLD contains those live at the end.
1130 On return, it contains those live at the beginning.
1131 FIRST and LAST are the first and last insns of the basic block.
1132
1133 FINAL is nonzero if we are doing the final pass which is not
1134 for computing the life info (since that has already been done)
1135 but for acting on it. On this pass, we delete dead stores,
1136 set up the logical links and dead-variables lists of instructions,
1137 and merge instructions for autoincrement and autodecrement addresses.
1138
1139 SIGNIFICANT is nonzero only the first time for each basic block.
1140 If it is nonzero, it points to a regset in which we store
1141 a 1 for each register that is set within the block.
1142
1143 BNUM is the number of the basic block. */
1144
1145 static void
1146 propagate_block (old, first, last, final, significant, bnum)
1147 register regset old;
1148 rtx first;
1149 rtx last;
1150 int final;
1151 regset significant;
1152 int bnum;
1153 {
1154 register rtx insn;
1155 rtx prev;
1156 regset live;
1157 regset dead;
1158
1159 /* The following variables are used only if FINAL is nonzero. */
1160 /* This vector gets one element for each reg that has been live
1161 at any point in the basic block that has been scanned so far.
1162 SOMETIMES_MAX says how many elements are in use so far.
1163 In each element, OFFSET is the byte-number within a regset
1164 for the register described by the element, and BIT is a mask
1165 for that register's bit within the byte. */
1166 register struct foo { short offset; short bit; } *regs_sometimes_live;
1167 int sometimes_max = 0;
1168 /* This regset has 1 for each reg that we have seen live so far.
1169 It and REGS_SOMETIMES_LIVE are updated together. */
1170 regset maxlive;
1171
1172 /* The loop depth may change in the middle of a basic block. Since we
1173 scan from end to beginning, we start with the depth at the end of the
1174 current basic block, and adjust as we pass ends and starts of loops. */
1175 loop_depth = basic_block_loop_depth[bnum];
1176
1177 dead = (regset) alloca (regset_bytes);
1178 live = (regset) alloca (regset_bytes);
1179
1180 cc0_live = 0;
1181 last_mem_set = 0;
1182
1183 /* Include any notes at the end of the block in the scan.
1184 This is in case the block ends with a call to setjmp. */
1185
1186 while (NEXT_INSN (last) != 0 && GET_CODE (NEXT_INSN (last)) == NOTE)
1187 {
1188 /* Look for loop boundaries, we are going forward here. */
1189 last = NEXT_INSN (last);
1190 if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_BEG)
1191 loop_depth++;
1192 else if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_END)
1193 loop_depth--;
1194 }
1195
1196 if (final)
1197 {
1198 register int i, offset, bit;
1199
1200 num_scratch = 0;
1201 maxlive = (regset) alloca (regset_bytes);
1202 bcopy (old, maxlive, regset_bytes);
1203 regs_sometimes_live
1204 = (struct foo *) alloca (max_regno * sizeof (struct foo));
1205
1206 /* Process the regs live at the end of the block.
1207 Enter them in MAXLIVE and REGS_SOMETIMES_LIVE.
1208 Also mark them as not local to any one basic block. */
1209
1210 for (offset = 0, i = 0; offset < regset_size; offset++)
1211 for (bit = 1; bit; bit <<= 1, i++)
1212 {
1213 if (i == max_regno)
1214 break;
1215 if (old[offset] & bit)
1216 {
1217 reg_basic_block[i] = REG_BLOCK_GLOBAL;
1218 regs_sometimes_live[sometimes_max].offset = offset;
1219 regs_sometimes_live[sometimes_max].bit = i % REGSET_ELT_BITS;
1220 sometimes_max++;
1221 }
1222 }
1223 }
1224
1225 /* Scan the block an insn at a time from end to beginning. */
1226
1227 for (insn = last; ; insn = prev)
1228 {
1229 prev = PREV_INSN (insn);
1230
1231 /* Look for loop boundaries, remembering that we are going backwards. */
1232 if (GET_CODE (insn) == NOTE
1233 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1234 loop_depth++;
1235 else if (GET_CODE (insn) == NOTE
1236 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1237 loop_depth--;
1238
1239 /* If we have LOOP_DEPTH == 0, there has been a bookkeeping error.
1240 Abort now rather than setting register status incorrectly. */
1241 if (loop_depth == 0)
1242 abort ();
1243
1244 /* If this is a call to `setjmp' et al,
1245 warn if any non-volatile datum is live. */
1246
1247 if (final && GET_CODE (insn) == NOTE
1248 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
1249 {
1250 int i;
1251 for (i = 0; i < regset_size; i++)
1252 regs_live_at_setjmp[i] |= old[i];
1253 }
1254
1255 /* Update the life-status of regs for this insn.
1256 First DEAD gets which regs are set in this insn
1257 then LIVE gets which regs are used in this insn.
1258 Then the regs live before the insn
1259 are those live after, with DEAD regs turned off,
1260 and then LIVE regs turned on. */
1261
1262 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1263 {
1264 register int i;
1265 rtx note = find_reg_note (insn, REG_RETVAL, 0);
1266 int insn_is_dead
1267 = (insn_dead_p (PATTERN (insn), old, 0)
1268 /* Don't delete something that refers to volatile storage! */
1269 && ! INSN_VOLATILE (insn));
1270 int libcall_is_dead
1271 = (insn_is_dead && note != 0
1272 && libcall_dead_p (PATTERN (insn), old, note, insn));
1273
1274 /* If an instruction consists of just dead store(s) on final pass,
1275 "delete" it by turning it into a NOTE of type NOTE_INSN_DELETED.
1276 We could really delete it with delete_insn, but that
1277 can cause trouble for first or last insn in a basic block. */
1278 if (final && insn_is_dead)
1279 {
1280 PUT_CODE (insn, NOTE);
1281 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1282 NOTE_SOURCE_FILE (insn) = 0;
1283
1284 /* If this insn is copying the return value from a library call,
1285 delete the entire library call. */
1286 if (libcall_is_dead)
1287 {
1288 rtx first = XEXP (note, 0);
1289 rtx p = insn;
1290 while (INSN_DELETED_P (first))
1291 first = NEXT_INSN (first);
1292 while (p != first)
1293 {
1294 p = PREV_INSN (p);
1295 PUT_CODE (p, NOTE);
1296 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
1297 NOTE_SOURCE_FILE (p) = 0;
1298 }
1299 }
1300 goto flushed;
1301 }
1302
1303 for (i = 0; i < regset_size; i++)
1304 {
1305 dead[i] = 0; /* Faster than bzero here */
1306 live[i] = 0; /* since regset_size is usually small */
1307 }
1308
1309 /* See if this is an increment or decrement that can be
1310 merged into a following memory address. */
1311 #ifdef AUTO_INC_DEC
1312 {
1313 register rtx x = PATTERN (insn);
1314 /* Does this instruction increment or decrement a register? */
1315 if (final && GET_CODE (x) == SET
1316 && GET_CODE (SET_DEST (x)) == REG
1317 && (GET_CODE (SET_SRC (x)) == PLUS
1318 || GET_CODE (SET_SRC (x)) == MINUS)
1319 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1320 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1321 /* Ok, look for a following memory ref we can combine with.
1322 If one is found, change the memory ref to a PRE_INC
1323 or PRE_DEC, cancel this insn, and return 1.
1324 Return 0 if nothing has been done. */
1325 && try_pre_increment_1 (insn))
1326 goto flushed;
1327 }
1328 #endif /* AUTO_INC_DEC */
1329
1330 /* If this is not the final pass, and this insn is copying the
1331 value of a library call and it's dead, don't scan the
1332 insns that perform the library call, so that the call's
1333 arguments are not marked live. */
1334 if (libcall_is_dead)
1335 {
1336 /* Mark the dest reg as `significant'. */
1337 mark_set_regs (old, dead, PATTERN (insn), 0, significant);
1338
1339 insn = XEXP (note, 0);
1340 prev = PREV_INSN (insn);
1341 }
1342 else if (GET_CODE (PATTERN (insn)) == SET
1343 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1344 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1345 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1346 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1347 /* We have an insn to pop a constant amount off the stack.
1348 (Such insns use PLUS regardless of the direction of the stack,
1349 and any insn to adjust the stack by a constant is always a pop.)
1350 These insns, if not dead stores, have no effect on life. */
1351 ;
1352 else
1353 {
1354 /* LIVE gets the regs used in INSN;
1355 DEAD gets those set by it. Dead insns don't make anything
1356 live. */
1357
1358 mark_set_regs (old, dead, PATTERN (insn), final ? insn : 0,
1359 significant);
1360
1361 /* If an insn doesn't use CC0, it becomes dead since we
1362 assume that every insn clobbers it. So show it dead here;
1363 mark_used_regs will set it live if it is referenced. */
1364 cc0_live = 0;
1365
1366 if (! insn_is_dead)
1367 mark_used_regs (old, live, PATTERN (insn), final, insn);
1368
1369 /* Sometimes we may have inserted something before INSN (such as
1370 a move) when we make an auto-inc. So ensure we will scan
1371 those insns. */
1372 #ifdef AUTO_INC_DEC
1373 prev = PREV_INSN (insn);
1374 #endif
1375
1376 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1377 {
1378 register int i;
1379
1380 /* Each call clobbers all call-clobbered regs that are not
1381 global. Note that the function-value reg is a
1382 call-clobbered reg, and mark_set_regs has already had
1383 a chance to handle it. */
1384
1385 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1386 if (call_used_regs[i] && ! global_regs[i])
1387 dead[i / REGSET_ELT_BITS]
1388 |= (1 << (i % REGSET_ELT_BITS));
1389
1390 /* The stack ptr is used (honorarily) by a CALL insn. */
1391 live[STACK_POINTER_REGNUM / REGSET_ELT_BITS]
1392 |= (1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS));
1393
1394 /* Calls may also reference any of the global registers,
1395 so they are made live. */
1396
1397 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1398 if (global_regs[i])
1399 live[i / REGSET_ELT_BITS]
1400 |= (1 << (i % REGSET_ELT_BITS));
1401
1402 /* Calls also clobber memory. */
1403 last_mem_set = 0;
1404 }
1405
1406 /* Update OLD for the registers used or set. */
1407 for (i = 0; i < regset_size; i++)
1408 {
1409 old[i] &= ~dead[i];
1410 old[i] |= live[i];
1411 }
1412
1413 if (GET_CODE (insn) == CALL_INSN && final)
1414 {
1415 /* Any regs live at the time of a call instruction
1416 must not go in a register clobbered by calls.
1417 Find all regs now live and record this for them. */
1418
1419 register struct foo *p = regs_sometimes_live;
1420
1421 for (i = 0; i < sometimes_max; i++, p++)
1422 if (old[p->offset] & (1 << p->bit))
1423 reg_n_calls_crossed[p->offset * REGSET_ELT_BITS + p->bit]+= 1;
1424 }
1425 }
1426
1427 /* On final pass, add any additional sometimes-live regs
1428 into MAXLIVE and REGS_SOMETIMES_LIVE.
1429 Also update counts of how many insns each reg is live at. */
1430
1431 if (final)
1432 {
1433 for (i = 0; i < regset_size; i++)
1434 {
1435 register int diff = live[i] & ~maxlive[i];
1436
1437 if (diff)
1438 {
1439 register int regno;
1440 maxlive[i] |= diff;
1441 for (regno = 0; diff && regno < REGSET_ELT_BITS; regno++)
1442 if (diff & (1 << regno))
1443 {
1444 regs_sometimes_live[sometimes_max].offset = i;
1445 regs_sometimes_live[sometimes_max].bit = regno;
1446 diff &= ~ (1 << regno);
1447 sometimes_max++;
1448 }
1449 }
1450 }
1451
1452 {
1453 register struct foo *p = regs_sometimes_live;
1454 for (i = 0; i < sometimes_max; i++, p++)
1455 {
1456 if (old[p->offset] & (1 << p->bit))
1457 reg_live_length[p->offset * REGSET_ELT_BITS + p->bit]++;
1458 }
1459 }
1460 }
1461 }
1462 flushed: ;
1463 if (insn == first)
1464 break;
1465 }
1466
1467 if (num_scratch > max_scratch)
1468 max_scratch = num_scratch;
1469 }
1470 \f
1471 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
1472 (SET expressions whose destinations are registers dead after the insn).
1473 NEEDED is the regset that says which regs are alive after the insn.
1474
1475 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL. */
1476
1477 static int
1478 insn_dead_p (x, needed, call_ok)
1479 rtx x;
1480 regset needed;
1481 int call_ok;
1482 {
1483 register RTX_CODE code = GET_CODE (x);
1484 /* If setting something that's a reg or part of one,
1485 see if that register's altered value will be live. */
1486
1487 if (code == SET)
1488 {
1489 register rtx r = SET_DEST (x);
1490 /* A SET that is a subroutine call cannot be dead. */
1491 if (! call_ok && GET_CODE (SET_SRC (x)) == CALL)
1492 return 0;
1493
1494 #ifdef HAVE_cc0
1495 if (GET_CODE (r) == CC0)
1496 return ! cc0_live;
1497 #endif
1498
1499 if (GET_CODE (r) == MEM && last_mem_set && ! MEM_VOLATILE_P (r)
1500 && rtx_equal_p (r, last_mem_set))
1501 return 1;
1502
1503 while (GET_CODE (r) == SUBREG
1504 || GET_CODE (r) == STRICT_LOW_PART
1505 || GET_CODE (r) == ZERO_EXTRACT
1506 || GET_CODE (r) == SIGN_EXTRACT)
1507 r = SUBREG_REG (r);
1508
1509 if (GET_CODE (r) == REG)
1510 {
1511 register int regno = REGNO (r);
1512 register int offset = regno / REGSET_ELT_BITS;
1513 register int bit = 1 << (regno % REGSET_ELT_BITS);
1514
1515 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1516 /* Make sure insns to set frame pointer aren't deleted. */
1517 || regno == FRAME_POINTER_REGNUM
1518 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1519 /* Make sure insns to set arg pointer are never deleted
1520 (if the arg pointer isn't fixed, there will be a USE for
1521 it, so we can treat it normally). */
1522 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1523 #endif
1524 || (needed[offset] & bit) != 0)
1525 return 0;
1526
1527 /* If this is a hard register, verify that subsequent words are
1528 not needed. */
1529 if (regno < FIRST_PSEUDO_REGISTER)
1530 {
1531 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
1532
1533 while (--n > 0)
1534 if ((needed[(regno + n) / REGSET_ELT_BITS]
1535 & 1 << ((regno + n) % REGSET_ELT_BITS)) != 0)
1536 return 0;
1537 }
1538
1539 return 1;
1540 }
1541 }
1542 /* If performing several activities,
1543 insn is dead if each activity is individually dead.
1544 Also, CLOBBERs and USEs can be ignored; a CLOBBER or USE
1545 that's inside a PARALLEL doesn't make the insn worth keeping. */
1546 else if (code == PARALLEL)
1547 {
1548 register int i = XVECLEN (x, 0);
1549 for (i--; i >= 0; i--)
1550 {
1551 rtx elt = XVECEXP (x, 0, i);
1552 if (!insn_dead_p (elt, needed, call_ok)
1553 && GET_CODE (elt) != CLOBBER
1554 && GET_CODE (elt) != USE)
1555 return 0;
1556 }
1557 return 1;
1558 }
1559 /* We do not check CLOBBER or USE here.
1560 An insn consisting of just a CLOBBER or just a USE
1561 should not be deleted. */
1562 return 0;
1563 }
1564
1565 /* If X is the pattern of the last insn in a libcall, and assuming X is dead,
1566 return 1 if the entire library call is dead.
1567 This is true if X copies a register (hard or pseudo)
1568 and if the hard return reg of the call insn is dead.
1569 (The caller should have tested the destination of X already for death.)
1570
1571 If this insn doesn't just copy a register, then we don't
1572 have an ordinary libcall. In that case, cse could not have
1573 managed to substitute the source for the dest later on,
1574 so we can assume the libcall is dead.
1575
1576 NEEDED is the bit vector of pseudoregs live before this insn.
1577 NOTE is the REG_RETVAL note of the insn. INSN is the insn itself. */
1578
1579 static int
1580 libcall_dead_p (x, needed, note, insn)
1581 rtx x;
1582 regset needed;
1583 rtx note;
1584 rtx insn;
1585 {
1586 register RTX_CODE code = GET_CODE (x);
1587
1588 if (code == SET)
1589 {
1590 register rtx r = SET_SRC (x);
1591 if (GET_CODE (r) == REG)
1592 {
1593 rtx call = XEXP (note, 0);
1594 register int i;
1595
1596 /* Find the call insn. */
1597 while (call != insn && GET_CODE (call) != CALL_INSN)
1598 call = NEXT_INSN (call);
1599
1600 /* If there is none, do nothing special,
1601 since ordinary death handling can understand these insns. */
1602 if (call == insn)
1603 return 0;
1604
1605 /* See if the hard reg holding the value is dead.
1606 If this is a PARALLEL, find the call within it. */
1607 call = PATTERN (call);
1608 if (GET_CODE (call) == PARALLEL)
1609 {
1610 for (i = XVECLEN (call, 0) - 1; i >= 0; i--)
1611 if (GET_CODE (XVECEXP (call, 0, i)) == SET
1612 && GET_CODE (SET_SRC (XVECEXP (call, 0, i))) == CALL)
1613 break;
1614
1615 if (i < 0)
1616 abort ();
1617
1618 call = XVECEXP (call, 0, i);
1619 }
1620
1621 return insn_dead_p (call, needed, 1);
1622 }
1623 }
1624 return 1;
1625 }
1626
1627 /* Return 1 if register REGNO was used before it was set.
1628 In other words, if it is live at function entry. */
1629
1630 int
1631 regno_uninitialized (regno)
1632 int regno;
1633 {
1634 if (n_basic_blocks == 0)
1635 return 0;
1636
1637 return (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
1638 & (1 << (regno % REGSET_ELT_BITS)));
1639 }
1640
1641 /* 1 if register REGNO was alive at a place where `setjmp' was called
1642 and was set more than once or is an argument.
1643 Such regs may be clobbered by `longjmp'. */
1644
1645 int
1646 regno_clobbered_at_setjmp (regno)
1647 int regno;
1648 {
1649 if (n_basic_blocks == 0)
1650 return 0;
1651
1652 return ((reg_n_sets[regno] > 1
1653 || (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
1654 & (1 << (regno % REGSET_ELT_BITS))))
1655 && (regs_live_at_setjmp[regno / REGSET_ELT_BITS]
1656 & (1 << (regno % REGSET_ELT_BITS))));
1657 }
1658 \f
1659 /* Process the registers that are set within X.
1660 Their bits are set to 1 in the regset DEAD,
1661 because they are dead prior to this insn.
1662
1663 If INSN is nonzero, it is the insn being processed
1664 and the fact that it is nonzero implies this is the FINAL pass
1665 in propagate_block. In this case, various info about register
1666 usage is stored, LOG_LINKS fields of insns are set up. */
1667
1668 static void mark_set_1 ();
1669
1670 static void
1671 mark_set_regs (needed, dead, x, insn, significant)
1672 regset needed;
1673 regset dead;
1674 rtx x;
1675 rtx insn;
1676 regset significant;
1677 {
1678 register RTX_CODE code = GET_CODE (x);
1679
1680 if (code == SET || code == CLOBBER)
1681 mark_set_1 (needed, dead, x, insn, significant);
1682 else if (code == PARALLEL)
1683 {
1684 register int i;
1685 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1686 {
1687 code = GET_CODE (XVECEXP (x, 0, i));
1688 if (code == SET || code == CLOBBER)
1689 mark_set_1 (needed, dead, XVECEXP (x, 0, i), insn, significant);
1690 }
1691 }
1692 }
1693
1694 /* Process a single SET rtx, X. */
1695
1696 static void
1697 mark_set_1 (needed, dead, x, insn, significant)
1698 regset needed;
1699 regset dead;
1700 rtx x;
1701 rtx insn;
1702 regset significant;
1703 {
1704 register int regno;
1705 register rtx reg = SET_DEST (x);
1706
1707 /* Modifying just one hardware register of a multi-reg value
1708 or just a byte field of a register
1709 does not mean the value from before this insn is now dead.
1710 But it does mean liveness of that register at the end of the block
1711 is significant.
1712
1713 Within mark_set_1, however, we treat it as if the register is
1714 indeed modified. mark_used_regs will, however, also treat this
1715 register as being used. Thus, we treat these insns as setting a
1716 new value for the register as a function of its old value. This
1717 cases LOG_LINKS to be made appropriately and this will help combine. */
1718
1719 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
1720 || GET_CODE (reg) == SIGN_EXTRACT
1721 || GET_CODE (reg) == STRICT_LOW_PART)
1722 reg = XEXP (reg, 0);
1723
1724 /* If we are writing into memory or into a register mentioned in the
1725 address of the last thing stored into memory, show we don't know
1726 what the last store was. If we are writing memory, save the address
1727 unless it is volatile. */
1728 if (GET_CODE (reg) == MEM
1729 || (GET_CODE (reg) == REG
1730 && last_mem_set != 0 && reg_overlap_mentioned_p (reg, last_mem_set)))
1731 last_mem_set = 0;
1732
1733 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
1734 /* There are no REG_INC notes for SP, so we can't assume we'll see
1735 everything that invalidates it. To be safe, don't eliminate any
1736 stores though SP; none of them should be redundant anyway. */
1737 && ! reg_mentioned_p (stack_pointer_rtx, reg))
1738 last_mem_set = reg;
1739
1740 if (GET_CODE (reg) == REG
1741 && (regno = REGNO (reg), regno != FRAME_POINTER_REGNUM)
1742 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1743 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1744 #endif
1745 && ! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
1746 /* && regno != STACK_POINTER_REGNUM) -- let's try without this. */
1747 {
1748 register int offset = regno / REGSET_ELT_BITS;
1749 register int bit = 1 << (regno % REGSET_ELT_BITS);
1750 int all_needed = (needed[offset] & bit) != 0;
1751 int some_needed = (needed[offset] & bit) != 0;
1752
1753 /* Mark it as a significant register for this basic block. */
1754 if (significant)
1755 significant[offset] |= bit;
1756
1757 /* Mark it as as dead before this insn. */
1758 dead[offset] |= bit;
1759
1760 /* A hard reg in a wide mode may really be multiple registers.
1761 If so, mark all of them just like the first. */
1762 if (regno < FIRST_PSEUDO_REGISTER)
1763 {
1764 int n;
1765
1766 /* Nothing below is needed for the stack pointer; get out asap.
1767 Eg, log links aren't needed, since combine won't use them. */
1768 if (regno == STACK_POINTER_REGNUM)
1769 return;
1770
1771 n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
1772 while (--n > 0)
1773 {
1774 if (significant)
1775 significant[(regno + n) / REGSET_ELT_BITS]
1776 |= 1 << ((regno + n) % REGSET_ELT_BITS);
1777 dead[(regno + n) / REGSET_ELT_BITS]
1778 |= 1 << ((regno + n) % REGSET_ELT_BITS);
1779 some_needed |= (needed[(regno + n) / REGSET_ELT_BITS]
1780 & 1 << ((regno + n) % REGSET_ELT_BITS));
1781 all_needed &= (needed[(regno + n) / REGSET_ELT_BITS]
1782 & 1 << ((regno + n) % REGSET_ELT_BITS));
1783 }
1784 }
1785 /* Additional data to record if this is the final pass. */
1786 if (insn)
1787 {
1788 register rtx y = reg_next_use[regno];
1789 register int blocknum = BLOCK_NUM (insn);
1790
1791 /* If this is a hard reg, record this function uses the reg. */
1792
1793 if (regno < FIRST_PSEUDO_REGISTER)
1794 {
1795 register int i;
1796 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1797
1798 for (i = regno; i < endregno; i++)
1799 {
1800 regs_ever_live[i] = 1;
1801 reg_n_sets[i]++;
1802 }
1803 }
1804 else
1805 {
1806 /* Keep track of which basic blocks each reg appears in. */
1807
1808 if (reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
1809 reg_basic_block[regno] = blocknum;
1810 else if (reg_basic_block[regno] != blocknum)
1811 reg_basic_block[regno] = REG_BLOCK_GLOBAL;
1812
1813 /* Count (weighted) references, stores, etc. This counts a
1814 register twice if it is modified, but that is correct. */
1815 reg_n_sets[regno]++;
1816
1817 reg_n_refs[regno] += loop_depth;
1818
1819 /* The insns where a reg is live are normally counted
1820 elsewhere, but we want the count to include the insn
1821 where the reg is set, and the normal counting mechanism
1822 would not count it. */
1823 reg_live_length[regno]++;
1824 }
1825
1826 /* The next use is no longer "next", since a store intervenes. */
1827 reg_next_use[regno] = 0;
1828
1829 if (all_needed)
1830 {
1831 /* Make a logical link from the next following insn
1832 that uses this register, back to this insn.
1833 The following insns have already been processed.
1834
1835 We don't build a LOG_LINK for hard registers containing
1836 in ASM_OPERANDs. If these registers get replaced,
1837 we might wind up changing the semantics of the insn,
1838 even if reload can make what appear to be valid assignments
1839 later. */
1840 if (y && (BLOCK_NUM (y) == blocknum)
1841 && (regno >= FIRST_PSEUDO_REGISTER
1842 || asm_noperands (PATTERN (y)) < 0))
1843 LOG_LINKS (y)
1844 = gen_rtx (INSN_LIST, VOIDmode, insn, LOG_LINKS (y));
1845 }
1846 else if (! some_needed)
1847 {
1848 /* Note that dead stores have already been deleted when possible
1849 If we get here, we have found a dead store that cannot
1850 be eliminated (because the same insn does something useful).
1851 Indicate this by marking the reg being set as dying here. */
1852 REG_NOTES (insn)
1853 = gen_rtx (EXPR_LIST, REG_UNUSED, reg, REG_NOTES (insn));
1854 reg_n_deaths[REGNO (reg)]++;
1855 }
1856 else
1857 {
1858 /* This is a case where we have a multi-word hard register
1859 and some, but not all, of the words of the register are
1860 needed in subsequent insns. Write REG_UNUSED notes
1861 for those parts that were not needed. This case should
1862 be rare. */
1863
1864 int i;
1865
1866 for (i = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1;
1867 i >= 0; i--)
1868 if ((needed[(regno + i) / REGSET_ELT_BITS]
1869 & 1 << ((regno + i) % REGSET_ELT_BITS)) == 0)
1870 REG_NOTES (insn)
1871 = gen_rtx (EXPR_LIST, REG_UNUSED,
1872 gen_rtx (REG, word_mode, regno + i),
1873 REG_NOTES (insn));
1874 }
1875 }
1876 }
1877
1878 /* If this is the last pass and this is a SCRATCH, show it will be dying
1879 here and count it. */
1880 else if (GET_CODE (reg) == SCRATCH && insn != 0)
1881 {
1882 REG_NOTES (insn)
1883 = gen_rtx (EXPR_LIST, REG_UNUSED, reg, REG_NOTES (insn));
1884 num_scratch++;
1885 }
1886 }
1887 \f
1888 #ifdef AUTO_INC_DEC
1889
1890 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
1891 reference. */
1892
1893 static void
1894 find_auto_inc (needed, x, insn)
1895 regset needed;
1896 rtx x;
1897 rtx insn;
1898 {
1899 rtx addr = XEXP (x, 0);
1900 int offset = 0;
1901
1902 /* Here we detect use of an index register which might be good for
1903 postincrement, postdecrement, preincrement, or predecrement. */
1904
1905 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
1906 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
1907
1908 if (GET_CODE (addr) == REG)
1909 {
1910 register rtx y;
1911 register int size = GET_MODE_SIZE (GET_MODE (x));
1912 rtx use;
1913 rtx incr;
1914 int regno = REGNO (addr);
1915
1916 /* Is the next use an increment that might make auto-increment? */
1917 incr = reg_next_use[regno];
1918 if (incr && GET_CODE (PATTERN (incr)) == SET
1919 && BLOCK_NUM (incr) == BLOCK_NUM (insn)
1920 /* Can't add side effects to jumps; if reg is spilled and
1921 reloaded, there's no way to store back the altered value. */
1922 && GET_CODE (insn) != JUMP_INSN
1923 && (y = SET_SRC (PATTERN (incr)), GET_CODE (y) == PLUS)
1924 && XEXP (y, 0) == addr
1925 && GET_CODE (XEXP (y, 1)) == CONST_INT
1926 && (0
1927 #ifdef HAVE_POST_INCREMENT
1928 || (INTVAL (XEXP (y, 1)) == size && offset == 0)
1929 #endif
1930 #ifdef HAVE_POST_DECREMENT
1931 || (INTVAL (XEXP (y, 1)) == - size && offset == 0)
1932 #endif
1933 #ifdef HAVE_PRE_INCREMENT
1934 || (INTVAL (XEXP (y, 1)) == size && offset == size)
1935 #endif
1936 #ifdef HAVE_PRE_DECREMENT
1937 || (INTVAL (XEXP (y, 1)) == - size && offset == - size)
1938 #endif
1939 )
1940 /* Make sure this reg appears only once in this insn. */
1941 && (use = find_use_as_address (PATTERN (insn), addr, offset),
1942 use != 0 && use != (rtx) 1))
1943 {
1944 int win = 0;
1945 rtx q = SET_DEST (PATTERN (incr));
1946
1947 if (dead_or_set_p (incr, addr))
1948 win = 1;
1949 else if (GET_CODE (q) == REG && ! reg_used_between_p (q, insn, incr))
1950 {
1951 /* We have *p followed by q = p+size.
1952 Both p and q must be live afterward,
1953 and q must be dead before.
1954 Change it to q = p, ...*q..., q = q+size.
1955 Then fall into the usual case. */
1956 rtx insns, temp;
1957
1958 start_sequence ();
1959 emit_move_insn (q, addr);
1960 insns = get_insns ();
1961 end_sequence ();
1962
1963 /* If anything in INSNS have UID's that don't fit within the
1964 extra space we allocate earlier, we can't make this auto-inc.
1965 This should never happen. */
1966 for (temp = insns; temp; temp = NEXT_INSN (temp))
1967 {
1968 if (INSN_UID (temp) > max_uid_for_flow)
1969 return;
1970 BLOCK_NUM (temp) = BLOCK_NUM (insn);
1971 }
1972
1973 emit_insns_before (insns, insn);
1974
1975 if (basic_block_head[BLOCK_NUM (insn)] == insn)
1976 basic_block_head[BLOCK_NUM (insn)] = insns;
1977
1978 XEXP (x, 0) = q;
1979 XEXP (y, 0) = q;
1980
1981 /* INCR will become a NOTE and INSN won't contain a
1982 use of ADDR. If a use of ADDR was just placed in
1983 the insn before INSN, make that the next use.
1984 Otherwise, invalidate it. */
1985 if (GET_CODE (PREV_INSN (insn)) == INSN
1986 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
1987 && SET_SRC (PATTERN (PREV_INSN (insn))) == addr)
1988 reg_next_use[regno] = PREV_INSN (insn);
1989 else
1990 reg_next_use[regno] = 0;
1991
1992 addr = q;
1993 regno = REGNO (q);
1994 win = 1;
1995
1996 /* REGNO is now used in INCR which is below INSN, but
1997 it previously wasn't live here. If we don't mark
1998 it as needed, we'll put a REG_DEAD note for it
1999 on this insn, which is incorrect. */
2000 needed[regno / REGSET_ELT_BITS]
2001 |= 1 << (regno % REGSET_ELT_BITS);
2002
2003 /* If there are any calls between INSN and INCR, show
2004 that REGNO now crosses them. */
2005 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
2006 if (GET_CODE (temp) == CALL_INSN)
2007 reg_n_calls_crossed[regno]++;
2008 }
2009
2010 if (win)
2011 {
2012 /* We have found a suitable auto-increment: do POST_INC around
2013 the register here, and patch out the increment instruction
2014 that follows. */
2015 XEXP (x, 0) = gen_rtx ((INTVAL (XEXP (y, 1)) == size
2016 ? (offset ? PRE_INC : POST_INC)
2017 : (offset ? PRE_DEC : POST_DEC)),
2018 Pmode, addr);
2019
2020 /* Record that this insn has an implicit side effect. */
2021 REG_NOTES (insn)
2022 = gen_rtx (EXPR_LIST, REG_INC, addr, REG_NOTES (insn));
2023
2024 /* Modify the old increment-insn to simply copy
2025 the already-incremented value of our register. */
2026 SET_SRC (PATTERN (incr)) = addr;
2027 /* Indicate insn must be re-recognized. */
2028 INSN_CODE (incr) = -1;
2029
2030 /* If that makes it a no-op (copying the register into itself)
2031 then delete it so it won't appear to be a "use" and a "set"
2032 of this register. */
2033 if (SET_DEST (PATTERN (incr)) == addr)
2034 {
2035 PUT_CODE (incr, NOTE);
2036 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
2037 NOTE_SOURCE_FILE (incr) = 0;
2038 }
2039
2040 if (regno >= FIRST_PSEUDO_REGISTER)
2041 {
2042 /* Count an extra reference to the reg. When a reg is
2043 incremented, spilling it is worse, so we want to make
2044 that less likely. */
2045 reg_n_refs[regno] += loop_depth;
2046 /* Count the increment as a setting of the register,
2047 even though it isn't a SET in rtl. */
2048 reg_n_sets[regno]++;
2049 }
2050 }
2051 }
2052 }
2053 }
2054 #endif /* AUTO_INC_DEC */
2055 \f
2056 /* Scan expression X and store a 1-bit in LIVE for each reg it uses.
2057 This is done assuming the registers needed from X
2058 are those that have 1-bits in NEEDED.
2059
2060 On the final pass, FINAL is 1. This means try for autoincrement
2061 and count the uses and deaths of each pseudo-reg.
2062
2063 INSN is the containing instruction. If INSN is dead, this function is not
2064 called. */
2065
2066 static void
2067 mark_used_regs (needed, live, x, final, insn)
2068 regset needed;
2069 regset live;
2070 rtx x;
2071 rtx insn;
2072 int final;
2073 {
2074 register RTX_CODE code;
2075 register int regno;
2076 int i;
2077
2078 retry:
2079 code = GET_CODE (x);
2080 switch (code)
2081 {
2082 case LABEL_REF:
2083 case SYMBOL_REF:
2084 case CONST_INT:
2085 case CONST:
2086 case CONST_DOUBLE:
2087 case PC:
2088 case CLOBBER:
2089 case ADDR_VEC:
2090 case ADDR_DIFF_VEC:
2091 case ASM_INPUT:
2092 return;
2093
2094 #ifdef HAVE_cc0
2095 case CC0:
2096 cc0_live = 1;
2097 return;
2098 #endif
2099
2100 case MEM:
2101 /* Invalidate the data for the last MEM stored. We could do this only
2102 if the addresses conflict, but this doesn't seem worthwhile. */
2103 last_mem_set = 0;
2104
2105 #ifdef AUTO_INC_DEC
2106 if (final)
2107 find_auto_inc (needed, x, insn);
2108 #endif
2109 break;
2110
2111 case REG:
2112 /* See a register other than being set
2113 => mark it as needed. */
2114
2115 regno = REGNO (x);
2116 {
2117 register int offset = regno / REGSET_ELT_BITS;
2118 register int bit = 1 << (regno % REGSET_ELT_BITS);
2119 int all_needed = (needed[offset] & bit) != 0;
2120 int some_needed = (needed[offset] & bit) != 0;
2121
2122 live[offset] |= bit;
2123 /* A hard reg in a wide mode may really be multiple registers.
2124 If so, mark all of them just like the first. */
2125 if (regno < FIRST_PSEUDO_REGISTER)
2126 {
2127 int n;
2128
2129 /* For stack ptr or fixed arg pointer,
2130 nothing below can be necessary, so waste no more time. */
2131 if (regno == STACK_POINTER_REGNUM
2132 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2133 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2134 #endif
2135 || regno == FRAME_POINTER_REGNUM)
2136 {
2137 /* If this is a register we are going to try to eliminate,
2138 don't mark it live here. If we are successful in
2139 eliminating it, it need not be live unless it is used for
2140 pseudos, in which case it will have been set live when
2141 it was allocated to the pseudos. If the register will not
2142 be eliminated, reload will set it live at that point. */
2143
2144 if (! TEST_HARD_REG_BIT (elim_reg_set, regno))
2145 regs_ever_live[regno] = 1;
2146 return;
2147 }
2148 /* No death notes for global register variables;
2149 their values are live after this function exits. */
2150 if (global_regs[regno])
2151 return;
2152
2153 n = HARD_REGNO_NREGS (regno, GET_MODE (x));
2154 while (--n > 0)
2155 {
2156 live[(regno + n) / REGSET_ELT_BITS]
2157 |= 1 << ((regno + n) % REGSET_ELT_BITS);
2158 some_needed |= (needed[(regno + n) / REGSET_ELT_BITS]
2159 & 1 << ((regno + n) % REGSET_ELT_BITS));
2160 all_needed &= (needed[(regno + n) / REGSET_ELT_BITS]
2161 & 1 << ((regno + n) % REGSET_ELT_BITS));
2162 }
2163 }
2164 if (final)
2165 {
2166 /* Record where each reg is used, so when the reg
2167 is set we know the next insn that uses it. */
2168
2169 reg_next_use[regno] = insn;
2170
2171 if (regno < FIRST_PSEUDO_REGISTER)
2172 {
2173 /* If a hard reg is being used,
2174 record that this function does use it. */
2175
2176 i = HARD_REGNO_NREGS (regno, GET_MODE (x));
2177 if (i == 0)
2178 i = 1;
2179 do
2180 regs_ever_live[regno + --i] = 1;
2181 while (i > 0);
2182 }
2183 else
2184 {
2185 /* Keep track of which basic block each reg appears in. */
2186
2187 register int blocknum = BLOCK_NUM (insn);
2188
2189 if (reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
2190 reg_basic_block[regno] = blocknum;
2191 else if (reg_basic_block[regno] != blocknum)
2192 reg_basic_block[regno] = REG_BLOCK_GLOBAL;
2193
2194 /* Count (weighted) number of uses of each reg. */
2195
2196 reg_n_refs[regno] += loop_depth;
2197 }
2198
2199 /* Record and count the insns in which a reg dies.
2200 If it is used in this insn and was dead below the insn
2201 then it dies in this insn. If it was set in this insn,
2202 we do not make a REG_DEAD note; likewise if we already
2203 made such a note. */
2204
2205 if (! all_needed
2206 && ! dead_or_set_p (insn, x)
2207 #if 0
2208 && (regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
2209 #endif
2210 )
2211 {
2212 /* If none of the words in X is needed, make a REG_DEAD
2213 note. Otherwise, we must make partial REG_DEAD notes. */
2214 if (! some_needed)
2215 {
2216 REG_NOTES (insn)
2217 = gen_rtx (EXPR_LIST, REG_DEAD, x, REG_NOTES (insn));
2218 reg_n_deaths[regno]++;
2219 }
2220 else
2221 {
2222 int i;
2223
2224 /* Don't make a REG_DEAD note for a part of a register
2225 that is set in the insn. */
2226
2227 for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
2228 i >= 0; i--)
2229 if ((needed[(regno + i) / REGSET_ELT_BITS]
2230 & 1 << ((regno + i) % REGSET_ELT_BITS)) == 0
2231 && ! dead_or_set_regno_p (insn, regno + i))
2232 REG_NOTES (insn)
2233 = gen_rtx (EXPR_LIST, REG_DEAD,
2234 gen_rtx (REG, word_mode, regno + i),
2235 REG_NOTES (insn));
2236 }
2237 }
2238 }
2239 }
2240 return;
2241
2242 case SET:
2243 {
2244 register rtx testreg = SET_DEST (x);
2245 int mark_dest = 0;
2246
2247 /* If storing into MEM, don't show it as being used. But do
2248 show the address as being used. */
2249 if (GET_CODE (testreg) == MEM)
2250 {
2251 #ifdef AUTO_INC_DEC
2252 if (final)
2253 find_auto_inc (needed, testreg, insn);
2254 #endif
2255 mark_used_regs (needed, live, XEXP (testreg, 0), final, insn);
2256 mark_used_regs (needed, live, SET_SRC (x), final, insn);
2257 return;
2258 }
2259
2260 /* Storing in STRICT_LOW_PART is like storing in a reg
2261 in that this SET might be dead, so ignore it in TESTREG.
2262 but in some other ways it is like using the reg.
2263
2264 Storing in a SUBREG or a bit field is like storing the entire
2265 register in that if the register's value is not used
2266 then this SET is not needed. */
2267 while (GET_CODE (testreg) == STRICT_LOW_PART
2268 || GET_CODE (testreg) == ZERO_EXTRACT
2269 || GET_CODE (testreg) == SIGN_EXTRACT
2270 || GET_CODE (testreg) == SUBREG)
2271 {
2272 /* Modifying a single register in an alternate mode
2273 does not use any of the old value. But these other
2274 ways of storing in a register do use the old value. */
2275 if (GET_CODE (testreg) == SUBREG
2276 && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
2277 ;
2278 else
2279 mark_dest = 1;
2280
2281 testreg = XEXP (testreg, 0);
2282 }
2283
2284 /* If this is a store into a register,
2285 recursively scan the value being stored. */
2286
2287 if (GET_CODE (testreg) == REG
2288 && (regno = REGNO (testreg), regno != FRAME_POINTER_REGNUM)
2289 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2290 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2291 #endif
2292 && ! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
2293 {
2294 mark_used_regs (needed, live, SET_SRC (x), final, insn);
2295 if (mark_dest)
2296 mark_used_regs (needed, live, SET_DEST (x), final, insn);
2297 return;
2298 }
2299 }
2300 break;
2301
2302 case RETURN:
2303 /* If exiting needs the right stack value, consider this insn as
2304 using the stack pointer. In any event, consider it as using
2305 all global registers. */
2306
2307 #ifdef EXIT_IGNORE_STACK
2308 if (! EXIT_IGNORE_STACK
2309 || (! FRAME_POINTER_REQUIRED && flag_omit_frame_pointer))
2310 #endif
2311 live[STACK_POINTER_REGNUM / REGSET_ELT_BITS]
2312 |= 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
2313
2314 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2315 if (global_regs[i])
2316 live[i / REGSET_ELT_BITS] |= 1 << (i % REGSET_ELT_BITS);
2317 break;
2318 }
2319
2320 /* Recursively scan the operands of this expression. */
2321
2322 {
2323 register char *fmt = GET_RTX_FORMAT (code);
2324 register int i;
2325
2326 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2327 {
2328 if (fmt[i] == 'e')
2329 {
2330 /* Tail recursive case: save a function call level. */
2331 if (i == 0)
2332 {
2333 x = XEXP (x, 0);
2334 goto retry;
2335 }
2336 mark_used_regs (needed, live, XEXP (x, i), final, insn);
2337 }
2338 else if (fmt[i] == 'E')
2339 {
2340 register int j;
2341 for (j = 0; j < XVECLEN (x, i); j++)
2342 mark_used_regs (needed, live, XVECEXP (x, i, j), final, insn);
2343 }
2344 }
2345 }
2346 }
2347 \f
2348 #ifdef AUTO_INC_DEC
2349
2350 static int
2351 try_pre_increment_1 (insn)
2352 rtx insn;
2353 {
2354 /* Find the next use of this reg. If in same basic block,
2355 make it do pre-increment or pre-decrement if appropriate. */
2356 rtx x = PATTERN (insn);
2357 int amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
2358 * INTVAL (XEXP (SET_SRC (x), 1)));
2359 int regno = REGNO (SET_DEST (x));
2360 rtx y = reg_next_use[regno];
2361 if (y != 0
2362 && BLOCK_NUM (y) == BLOCK_NUM (insn)
2363 && try_pre_increment (y, SET_DEST (PATTERN (insn)),
2364 amount))
2365 {
2366 /* We have found a suitable auto-increment
2367 and already changed insn Y to do it.
2368 So flush this increment-instruction. */
2369 PUT_CODE (insn, NOTE);
2370 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2371 NOTE_SOURCE_FILE (insn) = 0;
2372 /* Count a reference to this reg for the increment
2373 insn we are deleting. When a reg is incremented.
2374 spilling it is worse, so we want to make that
2375 less likely. */
2376 if (regno >= FIRST_PSEUDO_REGISTER)
2377 {
2378 reg_n_refs[regno] += loop_depth;
2379 reg_n_sets[regno]++;
2380 }
2381 return 1;
2382 }
2383 return 0;
2384 }
2385
2386 /* Try to change INSN so that it does pre-increment or pre-decrement
2387 addressing on register REG in order to add AMOUNT to REG.
2388 AMOUNT is negative for pre-decrement.
2389 Returns 1 if the change could be made.
2390 This checks all about the validity of the result of modifying INSN. */
2391
2392 static int
2393 try_pre_increment (insn, reg, amount)
2394 rtx insn, reg;
2395 int amount;
2396 {
2397 register rtx use;
2398
2399 /* Nonzero if we can try to make a pre-increment or pre-decrement.
2400 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
2401 int pre_ok = 0;
2402 /* Nonzero if we can try to make a post-increment or post-decrement.
2403 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
2404 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
2405 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
2406 int post_ok = 0;
2407
2408 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
2409 int do_post = 0;
2410
2411 /* From the sign of increment, see which possibilities are conceivable
2412 on this target machine. */
2413 #ifdef HAVE_PRE_INCREMENT
2414 if (amount > 0)
2415 pre_ok = 1;
2416 #endif
2417 #ifdef HAVE_POST_INCREMENT
2418 if (amount > 0)
2419 post_ok = 1;
2420 #endif
2421
2422 #ifdef HAVE_PRE_DECREMENT
2423 if (amount < 0)
2424 pre_ok = 1;
2425 #endif
2426 #ifdef HAVE_POST_DECREMENT
2427 if (amount < 0)
2428 post_ok = 1;
2429 #endif
2430
2431 if (! (pre_ok || post_ok))
2432 return 0;
2433
2434 /* It is not safe to add a side effect to a jump insn
2435 because if the incremented register is spilled and must be reloaded
2436 there would be no way to store the incremented value back in memory. */
2437
2438 if (GET_CODE (insn) == JUMP_INSN)
2439 return 0;
2440
2441 use = 0;
2442 if (pre_ok)
2443 use = find_use_as_address (PATTERN (insn), reg, 0);
2444 if (post_ok && (use == 0 || use == (rtx) 1))
2445 {
2446 use = find_use_as_address (PATTERN (insn), reg, -amount);
2447 do_post = 1;
2448 }
2449
2450 if (use == 0 || use == (rtx) 1)
2451 return 0;
2452
2453 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
2454 return 0;
2455
2456 XEXP (use, 0) = gen_rtx (amount > 0
2457 ? (do_post ? POST_INC : PRE_INC)
2458 : (do_post ? POST_DEC : PRE_DEC),
2459 Pmode, reg);
2460
2461 /* Record that this insn now has an implicit side effect on X. */
2462 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_INC, reg, REG_NOTES (insn));
2463 return 1;
2464 }
2465
2466 #endif /* AUTO_INC_DEC */
2467 \f
2468 /* Find the place in the rtx X where REG is used as a memory address.
2469 Return the MEM rtx that so uses it.
2470 If PLUSCONST is nonzero, search instead for a memory address equivalent to
2471 (plus REG (const_int PLUSCONST)).
2472
2473 If such an address does not appear, return 0.
2474 If REG appears more than once, or is used other than in such an address,
2475 return (rtx)1. */
2476
2477 static rtx
2478 find_use_as_address (x, reg, plusconst)
2479 register rtx x;
2480 rtx reg;
2481 int plusconst;
2482 {
2483 enum rtx_code code = GET_CODE (x);
2484 char *fmt = GET_RTX_FORMAT (code);
2485 register int i;
2486 register rtx value = 0;
2487 register rtx tem;
2488
2489 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
2490 return x;
2491
2492 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
2493 && XEXP (XEXP (x, 0), 0) == reg
2494 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2495 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
2496 return x;
2497
2498 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
2499 {
2500 /* If REG occurs inside a MEM used in a bit-field reference,
2501 that is unacceptable. */
2502 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
2503 return (rtx) 1;
2504 }
2505
2506 if (x == reg)
2507 return (rtx) 1;
2508
2509 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2510 {
2511 if (fmt[i] == 'e')
2512 {
2513 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
2514 if (value == 0)
2515 value = tem;
2516 else if (tem != 0)
2517 return (rtx) 1;
2518 }
2519 if (fmt[i] == 'E')
2520 {
2521 register int j;
2522 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2523 {
2524 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
2525 if (value == 0)
2526 value = tem;
2527 else if (tem != 0)
2528 return (rtx) 1;
2529 }
2530 }
2531 }
2532
2533 return value;
2534 }
2535 \f
2536 /* Write information about registers and basic blocks into FILE.
2537 This is part of making a debugging dump. */
2538
2539 void
2540 dump_flow_info (file)
2541 FILE *file;
2542 {
2543 register int i;
2544 static char *reg_class_names[] = REG_CLASS_NAMES;
2545
2546 fprintf (file, "%d registers.\n", max_regno);
2547
2548 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2549 if (reg_n_refs[i])
2550 {
2551 enum reg_class class;
2552 fprintf (file, "\nRegister %d used %d times across %d insns",
2553 i, reg_n_refs[i], reg_live_length[i]);
2554 if (reg_basic_block[i] >= 0)
2555 fprintf (file, " in block %d", reg_basic_block[i]);
2556 if (reg_n_deaths[i] != 1)
2557 fprintf (file, "; dies in %d places", reg_n_deaths[i]);
2558 if (reg_n_calls_crossed[i] == 1)
2559 fprintf (file, "; crosses 1 call");
2560 else if (reg_n_calls_crossed[i])
2561 fprintf (file, "; crosses %d calls", reg_n_calls_crossed[i]);
2562 if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
2563 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
2564 class = reg_preferred_class (i);
2565 if (class != GENERAL_REGS)
2566 {
2567 if (reg_preferred_or_nothing (i))
2568 fprintf (file, "; %s or none", reg_class_names[(int) class]);
2569 else
2570 fprintf (file, "; pref %s", reg_class_names[(int) class]);
2571 }
2572 if (REGNO_POINTER_FLAG (i))
2573 fprintf (file, "; pointer");
2574 fprintf (file, ".\n");
2575 }
2576 fprintf (file, "\n%d basic blocks.\n", n_basic_blocks);
2577 for (i = 0; i < n_basic_blocks; i++)
2578 {
2579 register rtx head, jump;
2580 register int regno;
2581 fprintf (file, "\nBasic block %d: first insn %d, last %d.\n",
2582 i,
2583 INSN_UID (basic_block_head[i]),
2584 INSN_UID (basic_block_end[i]));
2585 /* The control flow graph's storage is freed
2586 now when flow_analysis returns.
2587 Don't try to print it if it is gone. */
2588 if (basic_block_drops_in)
2589 {
2590 fprintf (file, "Reached from blocks: ");
2591 head = basic_block_head[i];
2592 if (GET_CODE (head) == CODE_LABEL)
2593 for (jump = LABEL_REFS (head);
2594 jump != head;
2595 jump = LABEL_NEXTREF (jump))
2596 {
2597 register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
2598 fprintf (file, " %d", from_block);
2599 }
2600 if (basic_block_drops_in[i])
2601 fprintf (file, " previous");
2602 }
2603 fprintf (file, "\nRegisters live at start:");
2604 for (regno = 0; regno < max_regno; regno++)
2605 {
2606 register int offset = regno / REGSET_ELT_BITS;
2607 register int bit = 1 << (regno % REGSET_ELT_BITS);
2608 if (basic_block_live_at_start[i][offset] & bit)
2609 fprintf (file, " %d", regno);
2610 }
2611 fprintf (file, "\n");
2612 }
2613 fprintf (file, "\n");
2614 }
This page took 0.165791 seconds and 6 git commands to generate.