]> gcc.gnu.org Git - gcc.git/blob - gcc/flow.c
loop.c (emit_prefetch_instructions): Properly place the address computation.
[gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
25
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
40
41 find_basic_blocks also finds any unreachable loops and deletes them.
42
43 ** life_analysis **
44
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
48
49 ** live-register info **
50
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
53
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
58
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
65
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
76
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
83
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
87
88 ** Other actions of life_analysis **
89
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
92
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
95
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
101
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
104
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
108
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
111
112 /* TODO:
113
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
119 */
120 \f
121 #include "config.h"
122 #include "system.h"
123 #include "tree.h"
124 #include "rtl.h"
125 #include "tm_p.h"
126 #include "hard-reg-set.h"
127 #include "basic-block.h"
128 #include "insn-config.h"
129 #include "regs.h"
130 #include "flags.h"
131 #include "output.h"
132 #include "function.h"
133 #include "except.h"
134 #include "toplev.h"
135 #include "recog.h"
136 #include "expr.h"
137 #include "ssa.h"
138 #include "timevar.h"
139
140 #include "obstack.h"
141 #include "splay-tree.h"
142
143 #define obstack_chunk_alloc xmalloc
144 #define obstack_chunk_free free
145
146 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
147 the stack pointer does not matter. The value is tested only in
148 functions that have frame pointers.
149 No definition is equivalent to always zero. */
150 #ifndef EXIT_IGNORE_STACK
151 #define EXIT_IGNORE_STACK 0
152 #endif
153
154 #ifndef HAVE_epilogue
155 #define HAVE_epilogue 0
156 #endif
157 #ifndef HAVE_prologue
158 #define HAVE_prologue 0
159 #endif
160 #ifndef HAVE_sibcall_epilogue
161 #define HAVE_sibcall_epilogue 0
162 #endif
163
164 #ifndef LOCAL_REGNO
165 #define LOCAL_REGNO(REGNO) 0
166 #endif
167 #ifndef EPILOGUE_USES
168 #define EPILOGUE_USES(REGNO) 0
169 #endif
170 #ifndef EH_USES
171 #define EH_USES(REGNO) 0
172 #endif
173
174 #ifdef HAVE_conditional_execution
175 #ifndef REVERSE_CONDEXEC_PREDICATES_P
176 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
177 #endif
178 #endif
179
180 /* Nonzero if the second flow pass has completed. */
181 int flow2_completed;
182
183 /* Maximum register number used in this function, plus one. */
184
185 int max_regno;
186
187 /* Indexed by n, giving various register information */
188
189 varray_type reg_n_info;
190
191 /* Size of a regset for the current function,
192 in (1) bytes and (2) elements. */
193
194 int regset_bytes;
195 int regset_size;
196
197 /* Regset of regs live when calls to `setjmp'-like functions happen. */
198 /* ??? Does this exist only for the setjmp-clobbered warning message? */
199
200 regset regs_live_at_setjmp;
201
202 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
203 that have to go in the same hard reg.
204 The first two regs in the list are a pair, and the next two
205 are another pair, etc. */
206 rtx regs_may_share;
207
208 /* Callback that determines if it's ok for a function to have no
209 noreturn attribute. */
210 int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
211
212 /* Set of registers that may be eliminable. These are handled specially
213 in updating regs_ever_live. */
214
215 static HARD_REG_SET elim_reg_set;
216
217 /* Holds information for tracking conditional register life information. */
218 struct reg_cond_life_info
219 {
220 /* A boolean expression of conditions under which a register is dead. */
221 rtx condition;
222 /* Conditions under which a register is dead at the basic block end. */
223 rtx orig_condition;
224
225 /* A boolean expression of conditions under which a register has been
226 stored into. */
227 rtx stores;
228
229 /* ??? Could store mask of bytes that are dead, so that we could finally
230 track lifetimes of multi-word registers accessed via subregs. */
231 };
232
233 /* For use in communicating between propagate_block and its subroutines.
234 Holds all information needed to compute life and def-use information. */
235
236 struct propagate_block_info
237 {
238 /* The basic block we're considering. */
239 basic_block bb;
240
241 /* Bit N is set if register N is conditionally or unconditionally live. */
242 regset reg_live;
243
244 /* Bit N is set if register N is set this insn. */
245 regset new_set;
246
247 /* Element N is the next insn that uses (hard or pseudo) register N
248 within the current basic block; or zero, if there is no such insn. */
249 rtx *reg_next_use;
250
251 /* Contains a list of all the MEMs we are tracking for dead store
252 elimination. */
253 rtx mem_set_list;
254
255 /* If non-null, record the set of registers set unconditionally in the
256 basic block. */
257 regset local_set;
258
259 /* If non-null, record the set of registers set conditionally in the
260 basic block. */
261 regset cond_local_set;
262
263 #ifdef HAVE_conditional_execution
264 /* Indexed by register number, holds a reg_cond_life_info for each
265 register that is not unconditionally live or dead. */
266 splay_tree reg_cond_dead;
267
268 /* Bit N is set if register N is in an expression in reg_cond_dead. */
269 regset reg_cond_reg;
270 #endif
271
272 /* The length of mem_set_list. */
273 int mem_set_list_len;
274
275 /* Non-zero if the value of CC0 is live. */
276 int cc0_live;
277
278 /* Flags controling the set of information propagate_block collects. */
279 int flags;
280 };
281
282 /* Number of dead insns removed. */
283 static int ndead;
284
285 /* Maximum length of pbi->mem_set_list before we start dropping
286 new elements on the floor. */
287 #define MAX_MEM_SET_LIST_LEN 100
288
289 /* Forward declarations */
290 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
291 static void verify_wide_reg PARAMS ((int, basic_block));
292 static void verify_local_live_at_start PARAMS ((regset, basic_block));
293 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
294 static void notice_stack_pointer_modification PARAMS ((rtx));
295 static void mark_reg PARAMS ((rtx, void *));
296 static void mark_regs_live_at_end PARAMS ((regset));
297 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
298 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
299 static void propagate_block_delete_insn PARAMS ((rtx));
300 static rtx propagate_block_delete_libcall PARAMS ((rtx, rtx));
301 static int insn_dead_p PARAMS ((struct propagate_block_info *,
302 rtx, int, rtx));
303 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
304 rtx, rtx));
305 static void mark_set_regs PARAMS ((struct propagate_block_info *,
306 rtx, rtx));
307 static void mark_set_1 PARAMS ((struct propagate_block_info *,
308 enum rtx_code, rtx, rtx,
309 rtx, int));
310 static int find_regno_partial PARAMS ((rtx *, void *));
311
312 #ifdef HAVE_conditional_execution
313 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
314 int, rtx));
315 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
316 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
317 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
318 int));
319 static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
320 static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
321 static rtx not_reg_cond PARAMS ((rtx));
322 static rtx and_reg_cond PARAMS ((rtx, rtx, int));
323 #endif
324 #ifdef AUTO_INC_DEC
325 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
326 rtx, rtx, rtx, rtx, rtx));
327 static void find_auto_inc PARAMS ((struct propagate_block_info *,
328 rtx, rtx));
329 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
330 rtx));
331 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
332 #endif
333 static void mark_used_reg PARAMS ((struct propagate_block_info *,
334 rtx, rtx, rtx));
335 static void mark_used_regs PARAMS ((struct propagate_block_info *,
336 rtx, rtx, rtx));
337 void dump_flow_info PARAMS ((FILE *));
338 void debug_flow_info PARAMS ((void));
339 static void add_to_mem_set_list PARAMS ((struct propagate_block_info *,
340 rtx));
341 static int invalidate_mems_from_autoinc PARAMS ((rtx *, void *));
342 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
343 rtx));
344 static void clear_log_links PARAMS ((sbitmap));
345 \f
346
347 void
348 check_function_return_warnings ()
349 {
350 if (warn_missing_noreturn
351 && !TREE_THIS_VOLATILE (cfun->decl)
352 && EXIT_BLOCK_PTR->pred == NULL
353 && (lang_missing_noreturn_ok_p
354 && !lang_missing_noreturn_ok_p (cfun->decl)))
355 warning ("function might be possible candidate for attribute `noreturn'");
356
357 /* If we have a path to EXIT, then we do return. */
358 if (TREE_THIS_VOLATILE (cfun->decl)
359 && EXIT_BLOCK_PTR->pred != NULL)
360 warning ("`noreturn' function does return");
361
362 /* If the clobber_return_insn appears in some basic block, then we
363 do reach the end without returning a value. */
364 else if (warn_return_type
365 && cfun->x_clobber_return_insn != NULL
366 && EXIT_BLOCK_PTR->pred != NULL)
367 {
368 int max_uid = get_max_uid ();
369
370 /* If clobber_return_insn was excised by jump1, then renumber_insns
371 can make max_uid smaller than the number still recorded in our rtx.
372 That's fine, since this is a quick way of verifying that the insn
373 is no longer in the chain. */
374 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
375 {
376 rtx insn;
377
378 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
379 if (insn == cfun->x_clobber_return_insn)
380 {
381 warning ("control reaches end of non-void function");
382 break;
383 }
384 }
385 }
386 }
387 \f
388 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
389 note associated with the BLOCK. */
390
391 rtx
392 first_insn_after_basic_block_note (block)
393 basic_block block;
394 {
395 rtx insn;
396
397 /* Get the first instruction in the block. */
398 insn = block->head;
399
400 if (insn == NULL_RTX)
401 return NULL_RTX;
402 if (GET_CODE (insn) == CODE_LABEL)
403 insn = NEXT_INSN (insn);
404 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
405 abort ();
406
407 return NEXT_INSN (insn);
408 }
409 \f
410 /* Perform data flow analysis.
411 F is the first insn of the function; FLAGS is a set of PROP_* flags
412 to be used in accumulating flow info. */
413
414 void
415 life_analysis (f, file, flags)
416 rtx f;
417 FILE *file;
418 int flags;
419 {
420 #ifdef ELIMINABLE_REGS
421 int i;
422 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
423 #endif
424
425 /* Record which registers will be eliminated. We use this in
426 mark_used_regs. */
427
428 CLEAR_HARD_REG_SET (elim_reg_set);
429
430 #ifdef ELIMINABLE_REGS
431 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
432 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
433 #else
434 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
435 #endif
436
437 if (! optimize)
438 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
439
440 /* The post-reload life analysis have (on a global basis) the same
441 registers live as was computed by reload itself. elimination
442 Otherwise offsets and such may be incorrect.
443
444 Reload will make some registers as live even though they do not
445 appear in the rtl.
446
447 We don't want to create new auto-incs after reload, since they
448 are unlikely to be useful and can cause problems with shared
449 stack slots. */
450 if (reload_completed)
451 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
452
453 /* We want alias analysis information for local dead store elimination. */
454 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
455 init_alias_analysis ();
456
457 /* Always remove no-op moves. Do this before other processing so
458 that we don't have to keep re-scanning them. */
459 delete_noop_moves (f);
460
461 /* Some targets can emit simpler epilogues if they know that sp was
462 not ever modified during the function. After reload, of course,
463 we've already emitted the epilogue so there's no sense searching. */
464 if (! reload_completed)
465 notice_stack_pointer_modification (f);
466
467 /* Allocate and zero out data structures that will record the
468 data from lifetime analysis. */
469 allocate_reg_life_data ();
470 allocate_bb_life_data ();
471
472 /* Find the set of registers live on function exit. */
473 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
474
475 /* "Update" life info from zero. It'd be nice to begin the
476 relaxation with just the exit and noreturn blocks, but that set
477 is not immediately handy. */
478
479 if (flags & PROP_REG_INFO)
480 memset (regs_ever_live, 0, sizeof (regs_ever_live));
481 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
482
483 /* Clean up. */
484 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
485 end_alias_analysis ();
486
487 if (file)
488 dump_flow_info (file);
489
490 free_basic_block_vars (1);
491
492 /* Removing dead insns should've made jumptables really dead. */
493 delete_dead_jumptables ();
494 }
495
496 /* A subroutine of verify_wide_reg, called through for_each_rtx.
497 Search for REGNO. If found, return 2 if it is not wider than
498 word_mode. */
499
500 static int
501 verify_wide_reg_1 (px, pregno)
502 rtx *px;
503 void *pregno;
504 {
505 rtx x = *px;
506 unsigned int regno = *(int *) pregno;
507
508 if (GET_CODE (x) == REG && REGNO (x) == regno)
509 {
510 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
511 return 2;
512 return 1;
513 }
514 return 0;
515 }
516
517 /* A subroutine of verify_local_live_at_start. Search through insns
518 of BB looking for register REGNO. */
519
520 static void
521 verify_wide_reg (regno, bb)
522 int regno;
523 basic_block bb;
524 {
525 rtx head = bb->head, end = bb->end;
526
527 while (1)
528 {
529 if (INSN_P (head))
530 {
531 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
532 if (r == 1)
533 return;
534 if (r == 2)
535 break;
536 }
537 if (head == end)
538 break;
539 head = NEXT_INSN (head);
540 }
541
542 if (rtl_dump_file)
543 {
544 fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
545 dump_bb (bb, rtl_dump_file);
546 }
547 abort ();
548 }
549
550 /* A subroutine of update_life_info. Verify that there are no untoward
551 changes in live_at_start during a local update. */
552
553 static void
554 verify_local_live_at_start (new_live_at_start, bb)
555 regset new_live_at_start;
556 basic_block bb;
557 {
558 if (reload_completed)
559 {
560 /* After reload, there are no pseudos, nor subregs of multi-word
561 registers. The regsets should exactly match. */
562 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
563 {
564 if (rtl_dump_file)
565 {
566 fprintf (rtl_dump_file,
567 "live_at_start mismatch in bb %d, aborting\nNew:\n",
568 bb->index);
569 debug_bitmap_file (rtl_dump_file, new_live_at_start);
570 fputs ("Old:\n", rtl_dump_file);
571 dump_bb (bb, rtl_dump_file);
572 }
573 abort ();
574 }
575 }
576 else
577 {
578 int i;
579
580 /* Find the set of changed registers. */
581 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
582
583 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
584 {
585 /* No registers should die. */
586 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
587 {
588 if (rtl_dump_file)
589 {
590 fprintf (rtl_dump_file,
591 "Register %d died unexpectedly.\n", i);
592 dump_bb (bb, rtl_dump_file);
593 }
594 abort ();
595 }
596
597 /* Verify that the now-live register is wider than word_mode. */
598 verify_wide_reg (i, bb);
599 });
600 }
601 }
602
603 /* Updates life information starting with the basic blocks set in BLOCKS.
604 If BLOCKS is null, consider it to be the universal set.
605
606 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
607 we are only expecting local modifications to basic blocks. If we find
608 extra registers live at the beginning of a block, then we either killed
609 useful data, or we have a broken split that wants data not provided.
610 If we find registers removed from live_at_start, that means we have
611 a broken peephole that is killing a register it shouldn't.
612
613 ??? This is not true in one situation -- when a pre-reload splitter
614 generates subregs of a multi-word pseudo, current life analysis will
615 lose the kill. So we _can_ have a pseudo go live. How irritating.
616
617 Including PROP_REG_INFO does not properly refresh regs_ever_live
618 unless the caller resets it to zero. */
619
620 int
621 update_life_info (blocks, extent, prop_flags)
622 sbitmap blocks;
623 enum update_life_extent extent;
624 int prop_flags;
625 {
626 regset tmp;
627 regset_head tmp_head;
628 int i;
629 int stabilized_prop_flags = prop_flags;
630 basic_block bb;
631
632 tmp = INITIALIZE_REG_SET (tmp_head);
633 ndead = 0;
634
635 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
636 ? TV_LIFE_UPDATE : TV_LIFE);
637
638 /* Changes to the CFG are only allowed when
639 doing a global update for the entire CFG. */
640 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
641 && (extent == UPDATE_LIFE_LOCAL || blocks))
642 abort ();
643
644 /* For a global update, we go through the relaxation process again. */
645 if (extent != UPDATE_LIFE_LOCAL)
646 {
647 for ( ; ; )
648 {
649 int changed = 0;
650
651 calculate_global_regs_live (blocks, blocks,
652 prop_flags & (PROP_SCAN_DEAD_CODE
653 | PROP_SCAN_DEAD_STORES
654 | PROP_ALLOW_CFG_CHANGES));
655
656 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
657 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
658 break;
659
660 /* Removing dead code may allow the CFG to be simplified which
661 in turn may allow for further dead code detection / removal. */
662 FOR_EACH_BB_REVERSE (bb)
663 {
664 COPY_REG_SET (tmp, bb->global_live_at_end);
665 changed |= propagate_block (bb, tmp, NULL, NULL,
666 prop_flags & (PROP_SCAN_DEAD_CODE
667 | PROP_SCAN_DEAD_STORES
668 | PROP_KILL_DEAD_CODE));
669 }
670
671 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
672 subsequent propagate_block calls, since removing or acting as
673 removing dead code can affect global register liveness, which
674 is supposed to be finalized for this call after this loop. */
675 stabilized_prop_flags
676 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
677 | PROP_KILL_DEAD_CODE);
678
679 if (! changed)
680 break;
681
682 /* We repeat regardless of what cleanup_cfg says. If there were
683 instructions deleted above, that might have been only a
684 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
685 Further improvement may be possible. */
686 cleanup_cfg (CLEANUP_EXPENSIVE);
687 }
688
689 /* If asked, remove notes from the blocks we'll update. */
690 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
691 count_or_remove_death_notes (blocks, 1);
692 }
693
694 /* Clear log links in case we are asked to (re)compute them. */
695 if (prop_flags & PROP_LOG_LINKS)
696 clear_log_links (blocks);
697
698 if (blocks)
699 {
700 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
701 {
702 bb = BASIC_BLOCK (i);
703
704 COPY_REG_SET (tmp, bb->global_live_at_end);
705 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
706
707 if (extent == UPDATE_LIFE_LOCAL)
708 verify_local_live_at_start (tmp, bb);
709 });
710 }
711 else
712 {
713 FOR_EACH_BB_REVERSE (bb)
714 {
715 COPY_REG_SET (tmp, bb->global_live_at_end);
716
717 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
718
719 if (extent == UPDATE_LIFE_LOCAL)
720 verify_local_live_at_start (tmp, bb);
721 }
722 }
723
724 FREE_REG_SET (tmp);
725
726 if (prop_flags & PROP_REG_INFO)
727 {
728 /* The only pseudos that are live at the beginning of the function
729 are those that were not set anywhere in the function. local-alloc
730 doesn't know how to handle these correctly, so mark them as not
731 local to any one basic block. */
732 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
733 FIRST_PSEUDO_REGISTER, i,
734 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
735
736 /* We have a problem with any pseudoreg that lives across the setjmp.
737 ANSI says that if a user variable does not change in value between
738 the setjmp and the longjmp, then the longjmp preserves it. This
739 includes longjmp from a place where the pseudo appears dead.
740 (In principle, the value still exists if it is in scope.)
741 If the pseudo goes in a hard reg, some other value may occupy
742 that hard reg where this pseudo is dead, thus clobbering the pseudo.
743 Conclusion: such a pseudo must not go in a hard reg. */
744 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
745 FIRST_PSEUDO_REGISTER, i,
746 {
747 if (regno_reg_rtx[i] != 0)
748 {
749 REG_LIVE_LENGTH (i) = -1;
750 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
751 }
752 });
753 }
754 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
755 ? TV_LIFE_UPDATE : TV_LIFE);
756 if (ndead && rtl_dump_file)
757 fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
758 return ndead;
759 }
760
761 /* Update life information in all blocks where BB_DIRTY is set. */
762
763 int
764 update_life_info_in_dirty_blocks (extent, prop_flags)
765 enum update_life_extent extent;
766 int prop_flags;
767 {
768 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
769 int n = 0;
770 basic_block bb;
771 int retval = 0;
772
773 sbitmap_zero (update_life_blocks);
774 FOR_EACH_BB (bb)
775 {
776 if (extent == UPDATE_LIFE_LOCAL)
777 {
778 if (bb->flags & BB_DIRTY)
779 {
780 SET_BIT (update_life_blocks, bb->index);
781 n++;
782 }
783 }
784 else
785 {
786 /* ??? Bootstrap with -march=pentium4 fails to terminate
787 with only a partial life update. */
788 SET_BIT (update_life_blocks, bb->index);
789 if (bb->flags & BB_DIRTY)
790 n++;
791 }
792 }
793
794 if (n)
795 retval = update_life_info (update_life_blocks, extent, prop_flags);
796
797 sbitmap_free (update_life_blocks);
798 return retval;
799 }
800
801 /* Free the variables allocated by find_basic_blocks.
802
803 KEEP_HEAD_END_P is non-zero if basic_block_info is not to be freed. */
804
805 void
806 free_basic_block_vars (keep_head_end_p)
807 int keep_head_end_p;
808 {
809 if (! keep_head_end_p)
810 {
811 if (basic_block_info)
812 {
813 clear_edges ();
814 VARRAY_FREE (basic_block_info);
815 }
816 n_basic_blocks = 0;
817 last_basic_block = 0;
818
819 ENTRY_BLOCK_PTR->aux = NULL;
820 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
821 EXIT_BLOCK_PTR->aux = NULL;
822 EXIT_BLOCK_PTR->global_live_at_start = NULL;
823 }
824 }
825
826 /* Delete any insns that copy a register to itself. */
827
828 int
829 delete_noop_moves (f)
830 rtx f ATTRIBUTE_UNUSED;
831 {
832 rtx insn, next;
833 basic_block bb;
834 int nnoops = 0;
835
836 FOR_EACH_BB (bb)
837 {
838 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
839 {
840 next = NEXT_INSN (insn);
841 if (INSN_P (insn) && noop_move_p (insn))
842 {
843 rtx note;
844
845 /* If we're about to remove the first insn of a libcall
846 then move the libcall note to the next real insn and
847 update the retval note. */
848 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
849 && XEXP (note, 0) != insn)
850 {
851 rtx new_libcall_insn = next_real_insn (insn);
852 rtx retval_note = find_reg_note (XEXP (note, 0),
853 REG_RETVAL, NULL_RTX);
854 REG_NOTES (new_libcall_insn)
855 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
856 REG_NOTES (new_libcall_insn));
857 XEXP (retval_note, 0) = new_libcall_insn;
858 }
859
860 delete_insn_and_edges (insn);
861 nnoops++;
862 }
863 }
864 }
865 if (nnoops && rtl_dump_file)
866 fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
867 return nnoops;
868 }
869
870 /* Delete any jump tables never referenced. We can't delete them at the
871 time of removing tablejump insn as they are referenced by the preceding
872 insns computing the destination, so we delay deleting and garbagecollect
873 them once life information is computed. */
874 void
875 delete_dead_jumptables ()
876 {
877 rtx insn, next;
878 for (insn = get_insns (); insn; insn = next)
879 {
880 next = NEXT_INSN (insn);
881 if (GET_CODE (insn) == CODE_LABEL
882 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
883 && GET_CODE (next) == JUMP_INSN
884 && (GET_CODE (PATTERN (next)) == ADDR_VEC
885 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
886 {
887 if (rtl_dump_file)
888 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
889 delete_insn (NEXT_INSN (insn));
890 delete_insn (insn);
891 next = NEXT_INSN (next);
892 }
893 }
894 }
895
896 /* Determine if the stack pointer is constant over the life of the function.
897 Only useful before prologues have been emitted. */
898
899 static void
900 notice_stack_pointer_modification_1 (x, pat, data)
901 rtx x;
902 rtx pat ATTRIBUTE_UNUSED;
903 void *data ATTRIBUTE_UNUSED;
904 {
905 if (x == stack_pointer_rtx
906 /* The stack pointer is only modified indirectly as the result
907 of a push until later in flow. See the comments in rtl.texi
908 regarding Embedded Side-Effects on Addresses. */
909 || (GET_CODE (x) == MEM
910 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
911 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
912 current_function_sp_is_unchanging = 0;
913 }
914
915 static void
916 notice_stack_pointer_modification (f)
917 rtx f;
918 {
919 rtx insn;
920
921 /* Assume that the stack pointer is unchanging if alloca hasn't
922 been used. */
923 current_function_sp_is_unchanging = !current_function_calls_alloca;
924 if (! current_function_sp_is_unchanging)
925 return;
926
927 for (insn = f; insn; insn = NEXT_INSN (insn))
928 {
929 if (INSN_P (insn))
930 {
931 /* Check if insn modifies the stack pointer. */
932 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
933 NULL);
934 if (! current_function_sp_is_unchanging)
935 return;
936 }
937 }
938 }
939
940 /* Mark a register in SET. Hard registers in large modes get all
941 of their component registers set as well. */
942
943 static void
944 mark_reg (reg, xset)
945 rtx reg;
946 void *xset;
947 {
948 regset set = (regset) xset;
949 int regno = REGNO (reg);
950
951 if (GET_MODE (reg) == BLKmode)
952 abort ();
953
954 SET_REGNO_REG_SET (set, regno);
955 if (regno < FIRST_PSEUDO_REGISTER)
956 {
957 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
958 while (--n > 0)
959 SET_REGNO_REG_SET (set, regno + n);
960 }
961 }
962
963 /* Mark those regs which are needed at the end of the function as live
964 at the end of the last basic block. */
965
966 static void
967 mark_regs_live_at_end (set)
968 regset set;
969 {
970 unsigned int i;
971
972 /* If exiting needs the right stack value, consider the stack pointer
973 live at the end of the function. */
974 if ((HAVE_epilogue && reload_completed)
975 || ! EXIT_IGNORE_STACK
976 || (! FRAME_POINTER_REQUIRED
977 && ! current_function_calls_alloca
978 && flag_omit_frame_pointer)
979 || current_function_sp_is_unchanging)
980 {
981 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
982 }
983
984 /* Mark the frame pointer if needed at the end of the function. If
985 we end up eliminating it, it will be removed from the live list
986 of each basic block by reload. */
987
988 if (! reload_completed || frame_pointer_needed)
989 {
990 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
991 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
992 /* If they are different, also mark the hard frame pointer as live. */
993 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
994 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
995 #endif
996 }
997
998 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
999 /* Many architectures have a GP register even without flag_pic.
1000 Assume the pic register is not in use, or will be handled by
1001 other means, if it is not fixed. */
1002 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1003 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1004 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
1005 #endif
1006
1007 /* Mark all global registers, and all registers used by the epilogue
1008 as being live at the end of the function since they may be
1009 referenced by our caller. */
1010 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1011 if (global_regs[i] || EPILOGUE_USES (i))
1012 SET_REGNO_REG_SET (set, i);
1013
1014 if (HAVE_epilogue && reload_completed)
1015 {
1016 /* Mark all call-saved registers that we actually used. */
1017 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1018 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
1019 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1020 SET_REGNO_REG_SET (set, i);
1021 }
1022
1023 #ifdef EH_RETURN_DATA_REGNO
1024 /* Mark the registers that will contain data for the handler. */
1025 if (reload_completed && current_function_calls_eh_return)
1026 for (i = 0; ; ++i)
1027 {
1028 unsigned regno = EH_RETURN_DATA_REGNO(i);
1029 if (regno == INVALID_REGNUM)
1030 break;
1031 SET_REGNO_REG_SET (set, regno);
1032 }
1033 #endif
1034 #ifdef EH_RETURN_STACKADJ_RTX
1035 if ((! HAVE_epilogue || ! reload_completed)
1036 && current_function_calls_eh_return)
1037 {
1038 rtx tmp = EH_RETURN_STACKADJ_RTX;
1039 if (tmp && REG_P (tmp))
1040 mark_reg (tmp, set);
1041 }
1042 #endif
1043 #ifdef EH_RETURN_HANDLER_RTX
1044 if ((! HAVE_epilogue || ! reload_completed)
1045 && current_function_calls_eh_return)
1046 {
1047 rtx tmp = EH_RETURN_HANDLER_RTX;
1048 if (tmp && REG_P (tmp))
1049 mark_reg (tmp, set);
1050 }
1051 #endif
1052
1053 /* Mark function return value. */
1054 diddle_return_value (mark_reg, set);
1055 }
1056
1057 /* Callback function for for_each_successor_phi. DATA is a regset.
1058 Sets the SRC_REGNO, the regno of the phi alternative for phi node
1059 INSN, in the regset. */
1060
1061 static int
1062 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
1063 rtx insn ATTRIBUTE_UNUSED;
1064 int dest_regno ATTRIBUTE_UNUSED;
1065 int src_regno;
1066 void *data;
1067 {
1068 regset live = (regset) data;
1069 SET_REGNO_REG_SET (live, src_regno);
1070 return 0;
1071 }
1072
1073 /* Propagate global life info around the graph of basic blocks. Begin
1074 considering blocks with their corresponding bit set in BLOCKS_IN.
1075 If BLOCKS_IN is null, consider it the universal set.
1076
1077 BLOCKS_OUT is set for every block that was changed. */
1078
1079 static void
1080 calculate_global_regs_live (blocks_in, blocks_out, flags)
1081 sbitmap blocks_in, blocks_out;
1082 int flags;
1083 {
1084 basic_block *queue, *qhead, *qtail, *qend, bb;
1085 regset tmp, new_live_at_end, invalidated_by_call;
1086 regset_head tmp_head, invalidated_by_call_head;
1087 regset_head new_live_at_end_head;
1088 int i;
1089
1090 /* Some passes used to forget clear aux field of basic block causing
1091 sick behaviour here. */
1092 #ifdef ENABLE_CHECKING
1093 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1094 if (bb->aux)
1095 abort ();
1096 #endif
1097
1098 tmp = INITIALIZE_REG_SET (tmp_head);
1099 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1100 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1101
1102 /* Inconveniently, this is only readily available in hard reg set form. */
1103 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1104 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1105 SET_REGNO_REG_SET (invalidated_by_call, i);
1106
1107 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1108 because the `head == tail' style test for an empty queue doesn't
1109 work with a full queue. */
1110 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1111 qtail = queue;
1112 qhead = qend = queue + n_basic_blocks + 2;
1113
1114 /* Queue the blocks set in the initial mask. Do this in reverse block
1115 number order so that we are more likely for the first round to do
1116 useful work. We use AUX non-null to flag that the block is queued. */
1117 if (blocks_in)
1118 {
1119 FOR_EACH_BB (bb)
1120 if (TEST_BIT (blocks_in, bb->index))
1121 {
1122 *--qhead = bb;
1123 bb->aux = bb;
1124 }
1125 }
1126 else
1127 {
1128 FOR_EACH_BB (bb)
1129 {
1130 *--qhead = bb;
1131 bb->aux = bb;
1132 }
1133 }
1134
1135 /* We clean aux when we remove the initially-enqueued bbs, but we
1136 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1137 unconditionally. */
1138 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1139
1140 if (blocks_out)
1141 sbitmap_zero (blocks_out);
1142
1143 /* We work through the queue until there are no more blocks. What
1144 is live at the end of this block is precisely the union of what
1145 is live at the beginning of all its successors. So, we set its
1146 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1147 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1148 this block by walking through the instructions in this block in
1149 reverse order and updating as we go. If that changed
1150 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1151 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1152
1153 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1154 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1155 must either be live at the end of the block, or used within the
1156 block. In the latter case, it will certainly never disappear
1157 from GLOBAL_LIVE_AT_START. In the former case, the register
1158 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1159 for one of the successor blocks. By induction, that cannot
1160 occur. */
1161 while (qhead != qtail)
1162 {
1163 int rescan, changed;
1164 basic_block bb;
1165 edge e;
1166
1167 bb = *qhead++;
1168 if (qhead == qend)
1169 qhead = queue;
1170 bb->aux = NULL;
1171
1172 /* Begin by propagating live_at_start from the successor blocks. */
1173 CLEAR_REG_SET (new_live_at_end);
1174
1175 if (bb->succ)
1176 for (e = bb->succ; e; e = e->succ_next)
1177 {
1178 basic_block sb = e->dest;
1179
1180 /* Call-clobbered registers die across exception and
1181 call edges. */
1182 /* ??? Abnormal call edges ignored for the moment, as this gets
1183 confused by sibling call edges, which crashes reg-stack. */
1184 if (e->flags & EDGE_EH)
1185 {
1186 bitmap_operation (tmp, sb->global_live_at_start,
1187 invalidated_by_call, BITMAP_AND_COMPL);
1188 IOR_REG_SET (new_live_at_end, tmp);
1189 }
1190 else
1191 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1192
1193 /* If a target saves one register in another (instead of on
1194 the stack) the save register will need to be live for EH. */
1195 if (e->flags & EDGE_EH)
1196 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1197 if (EH_USES (i))
1198 SET_REGNO_REG_SET (new_live_at_end, i);
1199 }
1200 else
1201 {
1202 /* This might be a noreturn function that throws. And
1203 even if it isn't, getting the unwind info right helps
1204 debugging. */
1205 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1206 if (EH_USES (i))
1207 SET_REGNO_REG_SET (new_live_at_end, i);
1208 }
1209
1210 /* The all-important stack pointer must always be live. */
1211 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1212
1213 /* Before reload, there are a few registers that must be forced
1214 live everywhere -- which might not already be the case for
1215 blocks within infinite loops. */
1216 if (! reload_completed)
1217 {
1218 /* Any reference to any pseudo before reload is a potential
1219 reference of the frame pointer. */
1220 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1221
1222 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1223 /* Pseudos with argument area equivalences may require
1224 reloading via the argument pointer. */
1225 if (fixed_regs[ARG_POINTER_REGNUM])
1226 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1227 #endif
1228
1229 /* Any constant, or pseudo with constant equivalences, may
1230 require reloading from memory using the pic register. */
1231 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1232 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1233 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1234 }
1235
1236 /* Regs used in phi nodes are not included in
1237 global_live_at_start, since they are live only along a
1238 particular edge. Set those regs that are live because of a
1239 phi node alternative corresponding to this particular block. */
1240 if (in_ssa_form)
1241 for_each_successor_phi (bb, &set_phi_alternative_reg,
1242 new_live_at_end);
1243
1244 if (bb == ENTRY_BLOCK_PTR)
1245 {
1246 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1247 continue;
1248 }
1249
1250 /* On our first pass through this block, we'll go ahead and continue.
1251 Recognize first pass by local_set NULL. On subsequent passes, we
1252 get to skip out early if live_at_end wouldn't have changed. */
1253
1254 if (bb->local_set == NULL)
1255 {
1256 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1257 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1258 rescan = 1;
1259 }
1260 else
1261 {
1262 /* If any bits were removed from live_at_end, we'll have to
1263 rescan the block. This wouldn't be necessary if we had
1264 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1265 local_live is really dependent on live_at_end. */
1266 CLEAR_REG_SET (tmp);
1267 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1268 new_live_at_end, BITMAP_AND_COMPL);
1269
1270 if (! rescan)
1271 {
1272 /* If any of the registers in the new live_at_end set are
1273 conditionally set in this basic block, we must rescan.
1274 This is because conditional lifetimes at the end of the
1275 block do not just take the live_at_end set into account,
1276 but also the liveness at the start of each successor
1277 block. We can miss changes in those sets if we only
1278 compare the new live_at_end against the previous one. */
1279 CLEAR_REG_SET (tmp);
1280 rescan = bitmap_operation (tmp, new_live_at_end,
1281 bb->cond_local_set, BITMAP_AND);
1282 }
1283
1284 if (! rescan)
1285 {
1286 /* Find the set of changed bits. Take this opportunity
1287 to notice that this set is empty and early out. */
1288 CLEAR_REG_SET (tmp);
1289 changed = bitmap_operation (tmp, bb->global_live_at_end,
1290 new_live_at_end, BITMAP_XOR);
1291 if (! changed)
1292 continue;
1293
1294 /* If any of the changed bits overlap with local_set,
1295 we'll have to rescan the block. Detect overlap by
1296 the AND with ~local_set turning off bits. */
1297 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1298 BITMAP_AND_COMPL);
1299 }
1300 }
1301
1302 /* Let our caller know that BB changed enough to require its
1303 death notes updated. */
1304 if (blocks_out)
1305 SET_BIT (blocks_out, bb->index);
1306
1307 if (! rescan)
1308 {
1309 /* Add to live_at_start the set of all registers in
1310 new_live_at_end that aren't in the old live_at_end. */
1311
1312 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1313 BITMAP_AND_COMPL);
1314 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1315
1316 changed = bitmap_operation (bb->global_live_at_start,
1317 bb->global_live_at_start,
1318 tmp, BITMAP_IOR);
1319 if (! changed)
1320 continue;
1321 }
1322 else
1323 {
1324 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1325
1326 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1327 into live_at_start. */
1328 propagate_block (bb, new_live_at_end, bb->local_set,
1329 bb->cond_local_set, flags);
1330
1331 /* If live_at start didn't change, no need to go farther. */
1332 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1333 continue;
1334
1335 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1336 }
1337
1338 /* Queue all predecessors of BB so that we may re-examine
1339 their live_at_end. */
1340 for (e = bb->pred; e; e = e->pred_next)
1341 {
1342 basic_block pb = e->src;
1343 if (pb->aux == NULL)
1344 {
1345 *qtail++ = pb;
1346 if (qtail == qend)
1347 qtail = queue;
1348 pb->aux = pb;
1349 }
1350 }
1351 }
1352
1353 FREE_REG_SET (tmp);
1354 FREE_REG_SET (new_live_at_end);
1355 FREE_REG_SET (invalidated_by_call);
1356
1357 if (blocks_out)
1358 {
1359 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1360 {
1361 basic_block bb = BASIC_BLOCK (i);
1362 FREE_REG_SET (bb->local_set);
1363 FREE_REG_SET (bb->cond_local_set);
1364 });
1365 }
1366 else
1367 {
1368 FOR_EACH_BB (bb)
1369 {
1370 FREE_REG_SET (bb->local_set);
1371 FREE_REG_SET (bb->cond_local_set);
1372 }
1373 }
1374
1375 free (queue);
1376 }
1377
1378 \f
1379 /* This structure is used to pass parameters to an from the
1380 the function find_regno_partial(). It is used to pass in the
1381 register number we are looking, as well as to return any rtx
1382 we find. */
1383
1384 typedef struct {
1385 unsigned regno_to_find;
1386 rtx retval;
1387 } find_regno_partial_param;
1388
1389
1390 /* Find the rtx for the reg numbers specified in 'data' if it is
1391 part of an expression which only uses part of the register. Return
1392 it in the structure passed in. */
1393 static int
1394 find_regno_partial (ptr, data)
1395 rtx *ptr;
1396 void *data;
1397 {
1398 find_regno_partial_param *param = (find_regno_partial_param *)data;
1399 unsigned reg = param->regno_to_find;
1400 param->retval = NULL_RTX;
1401
1402 if (*ptr == NULL_RTX)
1403 return 0;
1404
1405 switch (GET_CODE (*ptr))
1406 {
1407 case ZERO_EXTRACT:
1408 case SIGN_EXTRACT:
1409 case STRICT_LOW_PART:
1410 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1411 {
1412 param->retval = XEXP (*ptr, 0);
1413 return 1;
1414 }
1415 break;
1416
1417 case SUBREG:
1418 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1419 && REGNO (SUBREG_REG (*ptr)) == reg)
1420 {
1421 param->retval = SUBREG_REG (*ptr);
1422 return 1;
1423 }
1424 break;
1425
1426 default:
1427 break;
1428 }
1429
1430 return 0;
1431 }
1432
1433 /* Process all immediate successors of the entry block looking for pseudo
1434 registers which are live on entry. Find all of those whose first
1435 instance is a partial register reference of some kind, and initialize
1436 them to 0 after the entry block. This will prevent bit sets within
1437 registers whose value is unknown, and may contain some kind of sticky
1438 bits we don't want. */
1439
1440 int
1441 initialize_uninitialized_subregs ()
1442 {
1443 rtx insn;
1444 edge e;
1445 int reg, did_something = 0;
1446 find_regno_partial_param param;
1447
1448 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1449 {
1450 basic_block bb = e->dest;
1451 regset map = bb->global_live_at_start;
1452 EXECUTE_IF_SET_IN_REG_SET (map,
1453 FIRST_PSEUDO_REGISTER, reg,
1454 {
1455 int uid = REGNO_FIRST_UID (reg);
1456 rtx i;
1457
1458 /* Find an insn which mentions the register we are looking for.
1459 Its preferable to have an instance of the register's rtl since
1460 there may be various flags set which we need to duplicate.
1461 If we can't find it, its probably an automatic whose initial
1462 value doesn't matter, or hopefully something we don't care about. */
1463 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1464 ;
1465 if (i != NULL_RTX)
1466 {
1467 /* Found the insn, now get the REG rtx, if we can. */
1468 param.regno_to_find = reg;
1469 for_each_rtx (&i, find_regno_partial, &param);
1470 if (param.retval != NULL_RTX)
1471 {
1472 insn = gen_move_insn (param.retval,
1473 CONST0_RTX (GET_MODE (param.retval)));
1474 insert_insn_on_edge (insn, e);
1475 did_something = 1;
1476 }
1477 }
1478 });
1479 }
1480
1481 if (did_something)
1482 commit_edge_insertions ();
1483 return did_something;
1484 }
1485
1486 \f
1487 /* Subroutines of life analysis. */
1488
1489 /* Allocate the permanent data structures that represent the results
1490 of life analysis. Not static since used also for stupid life analysis. */
1491
1492 void
1493 allocate_bb_life_data ()
1494 {
1495 basic_block bb;
1496
1497 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1498 {
1499 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1500 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1501 }
1502
1503 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1504 }
1505
1506 void
1507 allocate_reg_life_data ()
1508 {
1509 int i;
1510
1511 max_regno = max_reg_num ();
1512
1513 /* Recalculate the register space, in case it has grown. Old style
1514 vector oriented regsets would set regset_{size,bytes} here also. */
1515 allocate_reg_info (max_regno, FALSE, FALSE);
1516
1517 /* Reset all the data we'll collect in propagate_block and its
1518 subroutines. */
1519 for (i = 0; i < max_regno; i++)
1520 {
1521 REG_N_SETS (i) = 0;
1522 REG_N_REFS (i) = 0;
1523 REG_N_DEATHS (i) = 0;
1524 REG_N_CALLS_CROSSED (i) = 0;
1525 REG_LIVE_LENGTH (i) = 0;
1526 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1527 }
1528 }
1529
1530 /* Delete dead instructions for propagate_block. */
1531
1532 static void
1533 propagate_block_delete_insn (insn)
1534 rtx insn;
1535 {
1536 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1537
1538 /* If the insn referred to a label, and that label was attached to
1539 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1540 pretty much mandatory to delete it, because the ADDR_VEC may be
1541 referencing labels that no longer exist.
1542
1543 INSN may reference a deleted label, particularly when a jump
1544 table has been optimized into a direct jump. There's no
1545 real good way to fix up the reference to the deleted label
1546 when the label is deleted, so we just allow it here. */
1547
1548 if (inote && GET_CODE (inote) == CODE_LABEL)
1549 {
1550 rtx label = XEXP (inote, 0);
1551 rtx next;
1552
1553 /* The label may be forced if it has been put in the constant
1554 pool. If that is the only use we must discard the table
1555 jump following it, but not the label itself. */
1556 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1557 && (next = next_nonnote_insn (label)) != NULL
1558 && GET_CODE (next) == JUMP_INSN
1559 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1560 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1561 {
1562 rtx pat = PATTERN (next);
1563 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1564 int len = XVECLEN (pat, diff_vec_p);
1565 int i;
1566
1567 for (i = 0; i < len; i++)
1568 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1569
1570 delete_insn_and_edges (next);
1571 ndead++;
1572 }
1573 }
1574
1575 delete_insn_and_edges (insn);
1576 ndead++;
1577 }
1578
1579 /* Delete dead libcalls for propagate_block. Return the insn
1580 before the libcall. */
1581
1582 static rtx
1583 propagate_block_delete_libcall ( insn, note)
1584 rtx insn, note;
1585 {
1586 rtx first = XEXP (note, 0);
1587 rtx before = PREV_INSN (first);
1588
1589 delete_insn_chain_and_edges (first, insn);
1590 ndead++;
1591 return before;
1592 }
1593
1594 /* Update the life-status of regs for one insn. Return the previous insn. */
1595
1596 rtx
1597 propagate_one_insn (pbi, insn)
1598 struct propagate_block_info *pbi;
1599 rtx insn;
1600 {
1601 rtx prev = PREV_INSN (insn);
1602 int flags = pbi->flags;
1603 int insn_is_dead = 0;
1604 int libcall_is_dead = 0;
1605 rtx note;
1606 int i;
1607
1608 if (! INSN_P (insn))
1609 return prev;
1610
1611 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1612 if (flags & PROP_SCAN_DEAD_CODE)
1613 {
1614 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1615 libcall_is_dead = (insn_is_dead && note != 0
1616 && libcall_dead_p (pbi, note, insn));
1617 }
1618
1619 /* If an instruction consists of just dead store(s) on final pass,
1620 delete it. */
1621 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1622 {
1623 /* If we're trying to delete a prologue or epilogue instruction
1624 that isn't flagged as possibly being dead, something is wrong.
1625 But if we are keeping the stack pointer depressed, we might well
1626 be deleting insns that are used to compute the amount to update
1627 it by, so they are fine. */
1628 if (reload_completed
1629 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1630 && (TYPE_RETURNS_STACK_DEPRESSED
1631 (TREE_TYPE (current_function_decl))))
1632 && (((HAVE_epilogue || HAVE_prologue)
1633 && prologue_epilogue_contains (insn))
1634 || (HAVE_sibcall_epilogue
1635 && sibcall_epilogue_contains (insn)))
1636 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1637 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1638
1639 /* Record sets. Do this even for dead instructions, since they
1640 would have killed the values if they hadn't been deleted. */
1641 mark_set_regs (pbi, PATTERN (insn), insn);
1642
1643 /* CC0 is now known to be dead. Either this insn used it,
1644 in which case it doesn't anymore, or clobbered it,
1645 so the next insn can't use it. */
1646 pbi->cc0_live = 0;
1647
1648 if (libcall_is_dead)
1649 prev = propagate_block_delete_libcall ( insn, note);
1650 else
1651 {
1652
1653 if (note)
1654 {
1655 /* If INSN contains a RETVAL note and is dead, but the libcall
1656 as a whole is not dead, then we want to remove INSN, but
1657 not the whole libcall sequence.
1658
1659 However, we need to also remove the dangling REG_LIBCALL
1660 note so that we do not have mis-matched LIBCALL/RETVAL
1661 notes. In theory we could find a new location for the
1662 REG_RETVAL note, but it hardly seems worth the effort. */
1663 rtx libcall_note;
1664
1665 libcall_note
1666 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1667 remove_note (XEXP (note, 0), libcall_note);
1668 }
1669 propagate_block_delete_insn (insn);
1670 }
1671
1672 return prev;
1673 }
1674
1675 /* See if this is an increment or decrement that can be merged into
1676 a following memory address. */
1677 #ifdef AUTO_INC_DEC
1678 {
1679 rtx x = single_set (insn);
1680
1681 /* Does this instruction increment or decrement a register? */
1682 if ((flags & PROP_AUTOINC)
1683 && x != 0
1684 && GET_CODE (SET_DEST (x)) == REG
1685 && (GET_CODE (SET_SRC (x)) == PLUS
1686 || GET_CODE (SET_SRC (x)) == MINUS)
1687 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1688 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1689 /* Ok, look for a following memory ref we can combine with.
1690 If one is found, change the memory ref to a PRE_INC
1691 or PRE_DEC, cancel this insn, and return 1.
1692 Return 0 if nothing has been done. */
1693 && try_pre_increment_1 (pbi, insn))
1694 return prev;
1695 }
1696 #endif /* AUTO_INC_DEC */
1697
1698 CLEAR_REG_SET (pbi->new_set);
1699
1700 /* If this is not the final pass, and this insn is copying the value of
1701 a library call and it's dead, don't scan the insns that perform the
1702 library call, so that the call's arguments are not marked live. */
1703 if (libcall_is_dead)
1704 {
1705 /* Record the death of the dest reg. */
1706 mark_set_regs (pbi, PATTERN (insn), insn);
1707
1708 insn = XEXP (note, 0);
1709 return PREV_INSN (insn);
1710 }
1711 else if (GET_CODE (PATTERN (insn)) == SET
1712 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1713 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1714 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1715 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1716 /* We have an insn to pop a constant amount off the stack.
1717 (Such insns use PLUS regardless of the direction of the stack,
1718 and any insn to adjust the stack by a constant is always a pop.)
1719 These insns, if not dead stores, have no effect on life, though
1720 they do have an effect on the memory stores we are tracking. */
1721 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1722 else
1723 {
1724 rtx note;
1725 /* Any regs live at the time of a call instruction must not go
1726 in a register clobbered by calls. Find all regs now live and
1727 record this for them. */
1728
1729 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1730 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1731 { REG_N_CALLS_CROSSED (i)++; });
1732
1733 /* Record sets. Do this even for dead instructions, since they
1734 would have killed the values if they hadn't been deleted. */
1735 mark_set_regs (pbi, PATTERN (insn), insn);
1736
1737 if (GET_CODE (insn) == CALL_INSN)
1738 {
1739 int i;
1740 rtx note, cond;
1741
1742 cond = NULL_RTX;
1743 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1744 cond = COND_EXEC_TEST (PATTERN (insn));
1745
1746 /* Non-constant calls clobber memory, constant calls do not
1747 clobber memory, though they may clobber outgoing arguments
1748 on the stack. */
1749 if (! CONST_OR_PURE_CALL_P (insn))
1750 {
1751 free_EXPR_LIST_list (&pbi->mem_set_list);
1752 pbi->mem_set_list_len = 0;
1753 }
1754 else
1755 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1756
1757 /* There may be extra registers to be clobbered. */
1758 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1759 note;
1760 note = XEXP (note, 1))
1761 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1762 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1763 cond, insn, pbi->flags);
1764
1765 /* Calls change all call-used and global registers. */
1766 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1767 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1768 {
1769 /* We do not want REG_UNUSED notes for these registers. */
1770 mark_set_1 (pbi, CLOBBER, gen_rtx_REG (reg_raw_mode[i], i),
1771 cond, insn,
1772 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1773 }
1774 }
1775
1776 /* If an insn doesn't use CC0, it becomes dead since we assume
1777 that every insn clobbers it. So show it dead here;
1778 mark_used_regs will set it live if it is referenced. */
1779 pbi->cc0_live = 0;
1780
1781 /* Record uses. */
1782 if (! insn_is_dead)
1783 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1784 if ((flags & PROP_EQUAL_NOTES)
1785 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1786 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1787 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1788
1789 /* Sometimes we may have inserted something before INSN (such as a move)
1790 when we make an auto-inc. So ensure we will scan those insns. */
1791 #ifdef AUTO_INC_DEC
1792 prev = PREV_INSN (insn);
1793 #endif
1794
1795 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1796 {
1797 int i;
1798 rtx note, cond;
1799
1800 cond = NULL_RTX;
1801 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1802 cond = COND_EXEC_TEST (PATTERN (insn));
1803
1804 /* Calls use their arguments. */
1805 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1806 note;
1807 note = XEXP (note, 1))
1808 if (GET_CODE (XEXP (note, 0)) == USE)
1809 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0),
1810 cond, insn);
1811
1812 /* The stack ptr is used (honorarily) by a CALL insn. */
1813 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1814
1815 /* Calls may also reference any of the global registers,
1816 so they are made live. */
1817 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1818 if (global_regs[i])
1819 mark_used_reg (pbi, gen_rtx_REG (reg_raw_mode[i], i),
1820 cond, insn);
1821 }
1822 }
1823
1824 /* On final pass, update counts of how many insns in which each reg
1825 is live. */
1826 if (flags & PROP_REG_INFO)
1827 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1828 { REG_LIVE_LENGTH (i)++; });
1829
1830 return prev;
1831 }
1832
1833 /* Initialize a propagate_block_info struct for public consumption.
1834 Note that the structure itself is opaque to this file, but that
1835 the user can use the regsets provided here. */
1836
1837 struct propagate_block_info *
1838 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
1839 basic_block bb;
1840 regset live, local_set, cond_local_set;
1841 int flags;
1842 {
1843 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1844
1845 pbi->bb = bb;
1846 pbi->reg_live = live;
1847 pbi->mem_set_list = NULL_RTX;
1848 pbi->mem_set_list_len = 0;
1849 pbi->local_set = local_set;
1850 pbi->cond_local_set = cond_local_set;
1851 pbi->cc0_live = 0;
1852 pbi->flags = flags;
1853
1854 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1855 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
1856 else
1857 pbi->reg_next_use = NULL;
1858
1859 pbi->new_set = BITMAP_XMALLOC ();
1860
1861 #ifdef HAVE_conditional_execution
1862 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1863 free_reg_cond_life_info);
1864 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1865
1866 /* If this block ends in a conditional branch, for each register live
1867 from one side of the branch and not the other, record the register
1868 as conditionally dead. */
1869 if (GET_CODE (bb->end) == JUMP_INSN
1870 && any_condjump_p (bb->end))
1871 {
1872 regset_head diff_head;
1873 regset diff = INITIALIZE_REG_SET (diff_head);
1874 basic_block bb_true, bb_false;
1875 rtx cond_true, cond_false, set_src;
1876 int i;
1877
1878 /* Identify the successor blocks. */
1879 bb_true = bb->succ->dest;
1880 if (bb->succ->succ_next != NULL)
1881 {
1882 bb_false = bb->succ->succ_next->dest;
1883
1884 if (bb->succ->flags & EDGE_FALLTHRU)
1885 {
1886 basic_block t = bb_false;
1887 bb_false = bb_true;
1888 bb_true = t;
1889 }
1890 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1891 abort ();
1892 }
1893 else
1894 {
1895 /* This can happen with a conditional jump to the next insn. */
1896 if (JUMP_LABEL (bb->end) != bb_true->head)
1897 abort ();
1898
1899 /* Simplest way to do nothing. */
1900 bb_false = bb_true;
1901 }
1902
1903 /* Extract the condition from the branch. */
1904 set_src = SET_SRC (pc_set (bb->end));
1905 cond_true = XEXP (set_src, 0);
1906 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1907 GET_MODE (cond_true), XEXP (cond_true, 0),
1908 XEXP (cond_true, 1));
1909 if (GET_CODE (XEXP (set_src, 1)) == PC)
1910 {
1911 rtx t = cond_false;
1912 cond_false = cond_true;
1913 cond_true = t;
1914 }
1915
1916 /* Compute which register lead different lives in the successors. */
1917 if (bitmap_operation (diff, bb_true->global_live_at_start,
1918 bb_false->global_live_at_start, BITMAP_XOR))
1919 {
1920 rtx reg = XEXP (cond_true, 0);
1921
1922 if (GET_CODE (reg) == SUBREG)
1923 reg = SUBREG_REG (reg);
1924
1925 if (GET_CODE (reg) != REG)
1926 abort ();
1927
1928 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1929
1930 /* For each such register, mark it conditionally dead. */
1931 EXECUTE_IF_SET_IN_REG_SET
1932 (diff, 0, i,
1933 {
1934 struct reg_cond_life_info *rcli;
1935 rtx cond;
1936
1937 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
1938
1939 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1940 cond = cond_false;
1941 else
1942 cond = cond_true;
1943 rcli->condition = cond;
1944 rcli->stores = const0_rtx;
1945 rcli->orig_condition = cond;
1946
1947 splay_tree_insert (pbi->reg_cond_dead, i,
1948 (splay_tree_value) rcli);
1949 });
1950 }
1951
1952 FREE_REG_SET (diff);
1953 }
1954 #endif
1955
1956 /* If this block has no successors, any stores to the frame that aren't
1957 used later in the block are dead. So make a pass over the block
1958 recording any such that are made and show them dead at the end. We do
1959 a very conservative and simple job here. */
1960 if (optimize
1961 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1962 && (TYPE_RETURNS_STACK_DEPRESSED
1963 (TREE_TYPE (current_function_decl))))
1964 && (flags & PROP_SCAN_DEAD_STORES)
1965 && (bb->succ == NULL
1966 || (bb->succ->succ_next == NULL
1967 && bb->succ->dest == EXIT_BLOCK_PTR
1968 && ! current_function_calls_eh_return)))
1969 {
1970 rtx insn, set;
1971 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
1972 if (GET_CODE (insn) == INSN
1973 && (set = single_set (insn))
1974 && GET_CODE (SET_DEST (set)) == MEM)
1975 {
1976 rtx mem = SET_DEST (set);
1977 rtx canon_mem = canon_rtx (mem);
1978
1979 /* This optimization is performed by faking a store to the
1980 memory at the end of the block. This doesn't work for
1981 unchanging memories because multiple stores to unchanging
1982 memory is illegal and alias analysis doesn't consider it. */
1983 if (RTX_UNCHANGING_P (canon_mem))
1984 continue;
1985
1986 if (XEXP (canon_mem, 0) == frame_pointer_rtx
1987 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1988 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1989 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1990 add_to_mem_set_list (pbi, canon_mem);
1991 }
1992 }
1993
1994 return pbi;
1995 }
1996
1997 /* Release a propagate_block_info struct. */
1998
1999 void
2000 free_propagate_block_info (pbi)
2001 struct propagate_block_info *pbi;
2002 {
2003 free_EXPR_LIST_list (&pbi->mem_set_list);
2004
2005 BITMAP_XFREE (pbi->new_set);
2006
2007 #ifdef HAVE_conditional_execution
2008 splay_tree_delete (pbi->reg_cond_dead);
2009 BITMAP_XFREE (pbi->reg_cond_reg);
2010 #endif
2011
2012 if (pbi->reg_next_use)
2013 free (pbi->reg_next_use);
2014
2015 free (pbi);
2016 }
2017
2018 /* Compute the registers live at the beginning of a basic block BB from
2019 those live at the end.
2020
2021 When called, REG_LIVE contains those live at the end. On return, it
2022 contains those live at the beginning.
2023
2024 LOCAL_SET, if non-null, will be set with all registers killed
2025 unconditionally by this basic block.
2026 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2027 killed conditionally by this basic block. If there is any unconditional
2028 set of a register, then the corresponding bit will be set in LOCAL_SET
2029 and cleared in COND_LOCAL_SET.
2030 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2031 case, the resulting set will be equal to the union of the two sets that
2032 would otherwise be computed.
2033
2034 Return non-zero if an INSN is deleted (i.e. by dead code removal). */
2035
2036 int
2037 propagate_block (bb, live, local_set, cond_local_set, flags)
2038 basic_block bb;
2039 regset live;
2040 regset local_set;
2041 regset cond_local_set;
2042 int flags;
2043 {
2044 struct propagate_block_info *pbi;
2045 rtx insn, prev;
2046 int changed;
2047
2048 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2049
2050 if (flags & PROP_REG_INFO)
2051 {
2052 int i;
2053
2054 /* Process the regs live at the end of the block.
2055 Mark them as not local to any one basic block. */
2056 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2057 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2058 }
2059
2060 /* Scan the block an insn at a time from end to beginning. */
2061
2062 changed = 0;
2063 for (insn = bb->end;; insn = prev)
2064 {
2065 /* If this is a call to `setjmp' et al, warn if any
2066 non-volatile datum is live. */
2067 if ((flags & PROP_REG_INFO)
2068 && GET_CODE (insn) == CALL_INSN
2069 && find_reg_note (insn, REG_SETJMP, NULL))
2070 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2071
2072 prev = propagate_one_insn (pbi, insn);
2073 changed |= NEXT_INSN (prev) != insn;
2074
2075 if (insn == bb->head)
2076 break;
2077 }
2078
2079 free_propagate_block_info (pbi);
2080
2081 return changed;
2082 }
2083 \f
2084 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2085 (SET expressions whose destinations are registers dead after the insn).
2086 NEEDED is the regset that says which regs are alive after the insn.
2087
2088 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.
2089
2090 If X is the entire body of an insn, NOTES contains the reg notes
2091 pertaining to the insn. */
2092
2093 static int
2094 insn_dead_p (pbi, x, call_ok, notes)
2095 struct propagate_block_info *pbi;
2096 rtx x;
2097 int call_ok;
2098 rtx notes ATTRIBUTE_UNUSED;
2099 {
2100 enum rtx_code code = GET_CODE (x);
2101
2102 #ifdef AUTO_INC_DEC
2103 /* As flow is invoked after combine, we must take existing AUTO_INC
2104 expressions into account. */
2105 for (; notes; notes = XEXP (notes, 1))
2106 {
2107 if (REG_NOTE_KIND (notes) == REG_INC)
2108 {
2109 int regno = REGNO (XEXP (notes, 0));
2110
2111 /* Don't delete insns to set global regs. */
2112 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2113 || REGNO_REG_SET_P (pbi->reg_live, regno))
2114 return 0;
2115 }
2116 }
2117 #endif
2118
2119 /* If setting something that's a reg or part of one,
2120 see if that register's altered value will be live. */
2121
2122 if (code == SET)
2123 {
2124 rtx r = SET_DEST (x);
2125
2126 #ifdef HAVE_cc0
2127 if (GET_CODE (r) == CC0)
2128 return ! pbi->cc0_live;
2129 #endif
2130
2131 /* A SET that is a subroutine call cannot be dead. */
2132 if (GET_CODE (SET_SRC (x)) == CALL)
2133 {
2134 if (! call_ok)
2135 return 0;
2136 }
2137
2138 /* Don't eliminate loads from volatile memory or volatile asms. */
2139 else if (volatile_refs_p (SET_SRC (x)))
2140 return 0;
2141
2142 if (GET_CODE (r) == MEM)
2143 {
2144 rtx temp, canon_r;
2145
2146 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2147 return 0;
2148
2149 canon_r = canon_rtx (r);
2150
2151 /* Walk the set of memory locations we are currently tracking
2152 and see if one is an identical match to this memory location.
2153 If so, this memory write is dead (remember, we're walking
2154 backwards from the end of the block to the start). Since
2155 rtx_equal_p does not check the alias set or flags, we also
2156 must have the potential for them to conflict (anti_dependence). */
2157 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2158 if (anti_dependence (r, XEXP (temp, 0)))
2159 {
2160 rtx mem = XEXP (temp, 0);
2161
2162 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2163 && (GET_MODE_SIZE (GET_MODE (canon_r))
2164 <= GET_MODE_SIZE (GET_MODE (mem))))
2165 return 1;
2166
2167 #ifdef AUTO_INC_DEC
2168 /* Check if memory reference matches an auto increment. Only
2169 post increment/decrement or modify are valid. */
2170 if (GET_MODE (mem) == GET_MODE (r)
2171 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2172 || GET_CODE (XEXP (mem, 0)) == POST_INC
2173 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2174 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2175 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2176 return 1;
2177 #endif
2178 }
2179 }
2180 else
2181 {
2182 while (GET_CODE (r) == SUBREG
2183 || GET_CODE (r) == STRICT_LOW_PART
2184 || GET_CODE (r) == ZERO_EXTRACT)
2185 r = XEXP (r, 0);
2186
2187 if (GET_CODE (r) == REG)
2188 {
2189 int regno = REGNO (r);
2190
2191 /* Obvious. */
2192 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2193 return 0;
2194
2195 /* If this is a hard register, verify that subsequent
2196 words are not needed. */
2197 if (regno < FIRST_PSEUDO_REGISTER)
2198 {
2199 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
2200
2201 while (--n > 0)
2202 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2203 return 0;
2204 }
2205
2206 /* Don't delete insns to set global regs. */
2207 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2208 return 0;
2209
2210 /* Make sure insns to set the stack pointer aren't deleted. */
2211 if (regno == STACK_POINTER_REGNUM)
2212 return 0;
2213
2214 /* ??? These bits might be redundant with the force live bits
2215 in calculate_global_regs_live. We would delete from
2216 sequential sets; whether this actually affects real code
2217 for anything but the stack pointer I don't know. */
2218 /* Make sure insns to set the frame pointer aren't deleted. */
2219 if (regno == FRAME_POINTER_REGNUM
2220 && (! reload_completed || frame_pointer_needed))
2221 return 0;
2222 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2223 if (regno == HARD_FRAME_POINTER_REGNUM
2224 && (! reload_completed || frame_pointer_needed))
2225 return 0;
2226 #endif
2227
2228 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2229 /* Make sure insns to set arg pointer are never deleted
2230 (if the arg pointer isn't fixed, there will be a USE
2231 for it, so we can treat it normally). */
2232 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2233 return 0;
2234 #endif
2235
2236 /* Otherwise, the set is dead. */
2237 return 1;
2238 }
2239 }
2240 }
2241
2242 /* If performing several activities, insn is dead if each activity
2243 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2244 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2245 worth keeping. */
2246 else if (code == PARALLEL)
2247 {
2248 int i = XVECLEN (x, 0);
2249
2250 for (i--; i >= 0; i--)
2251 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2252 && GET_CODE (XVECEXP (x, 0, i)) != USE
2253 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2254 return 0;
2255
2256 return 1;
2257 }
2258
2259 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2260 is not necessarily true for hard registers. */
2261 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2262 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2263 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2264 return 1;
2265
2266 /* We do not check other CLOBBER or USE here. An insn consisting of just
2267 a CLOBBER or just a USE should not be deleted. */
2268 return 0;
2269 }
2270
2271 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2272 return 1 if the entire library call is dead.
2273 This is true if INSN copies a register (hard or pseudo)
2274 and if the hard return reg of the call insn is dead.
2275 (The caller should have tested the destination of the SET inside
2276 INSN already for death.)
2277
2278 If this insn doesn't just copy a register, then we don't
2279 have an ordinary libcall. In that case, cse could not have
2280 managed to substitute the source for the dest later on,
2281 so we can assume the libcall is dead.
2282
2283 PBI is the block info giving pseudoregs live before this insn.
2284 NOTE is the REG_RETVAL note of the insn. */
2285
2286 static int
2287 libcall_dead_p (pbi, note, insn)
2288 struct propagate_block_info *pbi;
2289 rtx note;
2290 rtx insn;
2291 {
2292 rtx x = single_set (insn);
2293
2294 if (x)
2295 {
2296 rtx r = SET_SRC (x);
2297
2298 if (GET_CODE (r) == REG)
2299 {
2300 rtx call = XEXP (note, 0);
2301 rtx call_pat;
2302 int i;
2303
2304 /* Find the call insn. */
2305 while (call != insn && GET_CODE (call) != CALL_INSN)
2306 call = NEXT_INSN (call);
2307
2308 /* If there is none, do nothing special,
2309 since ordinary death handling can understand these insns. */
2310 if (call == insn)
2311 return 0;
2312
2313 /* See if the hard reg holding the value is dead.
2314 If this is a PARALLEL, find the call within it. */
2315 call_pat = PATTERN (call);
2316 if (GET_CODE (call_pat) == PARALLEL)
2317 {
2318 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2319 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2320 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2321 break;
2322
2323 /* This may be a library call that is returning a value
2324 via invisible pointer. Do nothing special, since
2325 ordinary death handling can understand these insns. */
2326 if (i < 0)
2327 return 0;
2328
2329 call_pat = XVECEXP (call_pat, 0, i);
2330 }
2331
2332 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2333 }
2334 }
2335 return 1;
2336 }
2337
2338 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2339 live at function entry. Don't count global register variables, variables
2340 in registers that can be used for function arg passing, or variables in
2341 fixed hard registers. */
2342
2343 int
2344 regno_uninitialized (regno)
2345 unsigned int regno;
2346 {
2347 if (n_basic_blocks == 0
2348 || (regno < FIRST_PSEUDO_REGISTER
2349 && (global_regs[regno]
2350 || fixed_regs[regno]
2351 || FUNCTION_ARG_REGNO_P (regno))))
2352 return 0;
2353
2354 return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno);
2355 }
2356
2357 /* 1 if register REGNO was alive at a place where `setjmp' was called
2358 and was set more than once or is an argument.
2359 Such regs may be clobbered by `longjmp'. */
2360
2361 int
2362 regno_clobbered_at_setjmp (regno)
2363 int regno;
2364 {
2365 if (n_basic_blocks == 0)
2366 return 0;
2367
2368 return ((REG_N_SETS (regno) > 1
2369 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno))
2370 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2371 }
2372 \f
2373 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2374 maximal list size; look for overlaps in mode and select the largest. */
2375 static void
2376 add_to_mem_set_list (pbi, mem)
2377 struct propagate_block_info *pbi;
2378 rtx mem;
2379 {
2380 rtx i;
2381
2382 /* We don't know how large a BLKmode store is, so we must not
2383 take them into consideration. */
2384 if (GET_MODE (mem) == BLKmode)
2385 return;
2386
2387 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2388 {
2389 rtx e = XEXP (i, 0);
2390 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2391 {
2392 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2393 {
2394 #ifdef AUTO_INC_DEC
2395 /* If we must store a copy of the mem, we can just modify
2396 the mode of the stored copy. */
2397 if (pbi->flags & PROP_AUTOINC)
2398 PUT_MODE (e, GET_MODE (mem));
2399 else
2400 #endif
2401 XEXP (i, 0) = mem;
2402 }
2403 return;
2404 }
2405 }
2406
2407 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2408 {
2409 #ifdef AUTO_INC_DEC
2410 /* Store a copy of mem, otherwise the address may be
2411 scrogged by find_auto_inc. */
2412 if (pbi->flags & PROP_AUTOINC)
2413 mem = shallow_copy_rtx (mem);
2414 #endif
2415 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2416 pbi->mem_set_list_len++;
2417 }
2418 }
2419
2420 /* INSN references memory, possibly using autoincrement addressing modes.
2421 Find any entries on the mem_set_list that need to be invalidated due
2422 to an address change. */
2423
2424 static int
2425 invalidate_mems_from_autoinc (px, data)
2426 rtx *px;
2427 void *data;
2428 {
2429 rtx x = *px;
2430 struct propagate_block_info *pbi = data;
2431
2432 if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
2433 {
2434 invalidate_mems_from_set (pbi, XEXP (x, 0));
2435 return -1;
2436 }
2437
2438 return 0;
2439 }
2440
2441 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2442
2443 static void
2444 invalidate_mems_from_set (pbi, exp)
2445 struct propagate_block_info *pbi;
2446 rtx exp;
2447 {
2448 rtx temp = pbi->mem_set_list;
2449 rtx prev = NULL_RTX;
2450 rtx next;
2451
2452 while (temp)
2453 {
2454 next = XEXP (temp, 1);
2455 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2456 {
2457 /* Splice this entry out of the list. */
2458 if (prev)
2459 XEXP (prev, 1) = next;
2460 else
2461 pbi->mem_set_list = next;
2462 free_EXPR_LIST_node (temp);
2463 pbi->mem_set_list_len--;
2464 }
2465 else
2466 prev = temp;
2467 temp = next;
2468 }
2469 }
2470
2471 /* Process the registers that are set within X. Their bits are set to
2472 1 in the regset DEAD, because they are dead prior to this insn.
2473
2474 If INSN is nonzero, it is the insn being processed.
2475
2476 FLAGS is the set of operations to perform. */
2477
2478 static void
2479 mark_set_regs (pbi, x, insn)
2480 struct propagate_block_info *pbi;
2481 rtx x, insn;
2482 {
2483 rtx cond = NULL_RTX;
2484 rtx link;
2485 enum rtx_code code;
2486
2487 if (insn)
2488 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2489 {
2490 if (REG_NOTE_KIND (link) == REG_INC)
2491 mark_set_1 (pbi, SET, XEXP (link, 0),
2492 (GET_CODE (x) == COND_EXEC
2493 ? COND_EXEC_TEST (x) : NULL_RTX),
2494 insn, pbi->flags);
2495 }
2496 retry:
2497 switch (code = GET_CODE (x))
2498 {
2499 case SET:
2500 case CLOBBER:
2501 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
2502 return;
2503
2504 case COND_EXEC:
2505 cond = COND_EXEC_TEST (x);
2506 x = COND_EXEC_CODE (x);
2507 goto retry;
2508
2509 case PARALLEL:
2510 {
2511 int i;
2512
2513 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2514 {
2515 rtx sub = XVECEXP (x, 0, i);
2516 switch (code = GET_CODE (sub))
2517 {
2518 case COND_EXEC:
2519 if (cond != NULL_RTX)
2520 abort ();
2521
2522 cond = COND_EXEC_TEST (sub);
2523 sub = COND_EXEC_CODE (sub);
2524 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
2525 break;
2526 /* Fall through. */
2527
2528 case SET:
2529 case CLOBBER:
2530 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
2531 break;
2532
2533 default:
2534 break;
2535 }
2536 }
2537 break;
2538 }
2539
2540 default:
2541 break;
2542 }
2543 }
2544
2545 /* Process a single set, which appears in INSN. REG (which may not
2546 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2547 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2548 If the set is conditional (because it appear in a COND_EXEC), COND
2549 will be the condition. */
2550
2551 static void
2552 mark_set_1 (pbi, code, reg, cond, insn, flags)
2553 struct propagate_block_info *pbi;
2554 enum rtx_code code;
2555 rtx reg, cond, insn;
2556 int flags;
2557 {
2558 int regno_first = -1, regno_last = -1;
2559 unsigned long not_dead = 0;
2560 int i;
2561
2562 /* Modifying just one hardware register of a multi-reg value or just a
2563 byte field of a register does not mean the value from before this insn
2564 is now dead. Of course, if it was dead after it's unused now. */
2565
2566 switch (GET_CODE (reg))
2567 {
2568 case PARALLEL:
2569 /* Some targets place small structures in registers for return values of
2570 functions. We have to detect this case specially here to get correct
2571 flow information. */
2572 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2573 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2574 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2575 flags);
2576 return;
2577
2578 case ZERO_EXTRACT:
2579 case SIGN_EXTRACT:
2580 case STRICT_LOW_PART:
2581 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2582 do
2583 reg = XEXP (reg, 0);
2584 while (GET_CODE (reg) == SUBREG
2585 || GET_CODE (reg) == ZERO_EXTRACT
2586 || GET_CODE (reg) == SIGN_EXTRACT
2587 || GET_CODE (reg) == STRICT_LOW_PART);
2588 if (GET_CODE (reg) == MEM)
2589 break;
2590 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2591 /* Fall through. */
2592
2593 case REG:
2594 regno_last = regno_first = REGNO (reg);
2595 if (regno_first < FIRST_PSEUDO_REGISTER)
2596 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2597 break;
2598
2599 case SUBREG:
2600 if (GET_CODE (SUBREG_REG (reg)) == REG)
2601 {
2602 enum machine_mode outer_mode = GET_MODE (reg);
2603 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2604
2605 /* Identify the range of registers affected. This is moderately
2606 tricky for hard registers. See alter_subreg. */
2607
2608 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2609 if (regno_first < FIRST_PSEUDO_REGISTER)
2610 {
2611 regno_first += subreg_regno_offset (regno_first, inner_mode,
2612 SUBREG_BYTE (reg),
2613 outer_mode);
2614 regno_last = (regno_first
2615 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2616
2617 /* Since we've just adjusted the register number ranges, make
2618 sure REG matches. Otherwise some_was_live will be clear
2619 when it shouldn't have been, and we'll create incorrect
2620 REG_UNUSED notes. */
2621 reg = gen_rtx_REG (outer_mode, regno_first);
2622 }
2623 else
2624 {
2625 /* If the number of words in the subreg is less than the number
2626 of words in the full register, we have a well-defined partial
2627 set. Otherwise the high bits are undefined.
2628
2629 This is only really applicable to pseudos, since we just took
2630 care of multi-word hard registers. */
2631 if (((GET_MODE_SIZE (outer_mode)
2632 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2633 < ((GET_MODE_SIZE (inner_mode)
2634 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2635 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2636 regno_first);
2637
2638 reg = SUBREG_REG (reg);
2639 }
2640 }
2641 else
2642 reg = SUBREG_REG (reg);
2643 break;
2644
2645 default:
2646 break;
2647 }
2648
2649 /* If this set is a MEM, then it kills any aliased writes.
2650 If this set is a REG, then it kills any MEMs which use the reg. */
2651 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2652 {
2653 if (GET_CODE (reg) == REG)
2654 invalidate_mems_from_set (pbi, reg);
2655
2656 /* If the memory reference had embedded side effects (autoincrement
2657 address modes. Then we may need to kill some entries on the
2658 memory set list. */
2659 if (insn && GET_CODE (reg) == MEM)
2660 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2661
2662 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2663 /* ??? With more effort we could track conditional memory life. */
2664 && ! cond)
2665 add_to_mem_set_list (pbi, canon_rtx (reg));
2666 }
2667
2668 if (GET_CODE (reg) == REG
2669 && ! (regno_first == FRAME_POINTER_REGNUM
2670 && (! reload_completed || frame_pointer_needed))
2671 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2672 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2673 && (! reload_completed || frame_pointer_needed))
2674 #endif
2675 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2676 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2677 #endif
2678 )
2679 {
2680 int some_was_live = 0, some_was_dead = 0;
2681
2682 for (i = regno_first; i <= regno_last; ++i)
2683 {
2684 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2685 if (pbi->local_set)
2686 {
2687 /* Order of the set operation matters here since both
2688 sets may be the same. */
2689 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2690 if (cond != NULL_RTX
2691 && ! REGNO_REG_SET_P (pbi->local_set, i))
2692 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2693 else
2694 SET_REGNO_REG_SET (pbi->local_set, i);
2695 }
2696 if (code != CLOBBER)
2697 SET_REGNO_REG_SET (pbi->new_set, i);
2698
2699 some_was_live |= needed_regno;
2700 some_was_dead |= ! needed_regno;
2701 }
2702
2703 #ifdef HAVE_conditional_execution
2704 /* Consider conditional death in deciding that the register needs
2705 a death note. */
2706 if (some_was_live && ! not_dead
2707 /* The stack pointer is never dead. Well, not strictly true,
2708 but it's very difficult to tell from here. Hopefully
2709 combine_stack_adjustments will fix up the most egregious
2710 errors. */
2711 && regno_first != STACK_POINTER_REGNUM)
2712 {
2713 for (i = regno_first; i <= regno_last; ++i)
2714 if (! mark_regno_cond_dead (pbi, i, cond))
2715 not_dead |= ((unsigned long) 1) << (i - regno_first);
2716 }
2717 #endif
2718
2719 /* Additional data to record if this is the final pass. */
2720 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2721 | PROP_DEATH_NOTES | PROP_AUTOINC))
2722 {
2723 rtx y;
2724 int blocknum = pbi->bb->index;
2725
2726 y = NULL_RTX;
2727 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2728 {
2729 y = pbi->reg_next_use[regno_first];
2730
2731 /* The next use is no longer next, since a store intervenes. */
2732 for (i = regno_first; i <= regno_last; ++i)
2733 pbi->reg_next_use[i] = 0;
2734 }
2735
2736 if (flags & PROP_REG_INFO)
2737 {
2738 for (i = regno_first; i <= regno_last; ++i)
2739 {
2740 /* Count (weighted) references, stores, etc. This counts a
2741 register twice if it is modified, but that is correct. */
2742 REG_N_SETS (i) += 1;
2743 REG_N_REFS (i) += 1;
2744 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2745
2746 /* The insns where a reg is live are normally counted
2747 elsewhere, but we want the count to include the insn
2748 where the reg is set, and the normal counting mechanism
2749 would not count it. */
2750 REG_LIVE_LENGTH (i) += 1;
2751 }
2752
2753 /* If this is a hard reg, record this function uses the reg. */
2754 if (regno_first < FIRST_PSEUDO_REGISTER)
2755 {
2756 for (i = regno_first; i <= regno_last; i++)
2757 regs_ever_live[i] = 1;
2758 }
2759 else
2760 {
2761 /* Keep track of which basic blocks each reg appears in. */
2762 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2763 REG_BASIC_BLOCK (regno_first) = blocknum;
2764 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2765 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2766 }
2767 }
2768
2769 if (! some_was_dead)
2770 {
2771 if (flags & PROP_LOG_LINKS)
2772 {
2773 /* Make a logical link from the next following insn
2774 that uses this register, back to this insn.
2775 The following insns have already been processed.
2776
2777 We don't build a LOG_LINK for hard registers containing
2778 in ASM_OPERANDs. If these registers get replaced,
2779 we might wind up changing the semantics of the insn,
2780 even if reload can make what appear to be valid
2781 assignments later. */
2782 if (y && (BLOCK_NUM (y) == blocknum)
2783 && (regno_first >= FIRST_PSEUDO_REGISTER
2784 || asm_noperands (PATTERN (y)) < 0))
2785 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2786 }
2787 }
2788 else if (not_dead)
2789 ;
2790 else if (! some_was_live)
2791 {
2792 if (flags & PROP_REG_INFO)
2793 REG_N_DEATHS (regno_first) += 1;
2794
2795 if (flags & PROP_DEATH_NOTES)
2796 {
2797 /* Note that dead stores have already been deleted
2798 when possible. If we get here, we have found a
2799 dead store that cannot be eliminated (because the
2800 same insn does something useful). Indicate this
2801 by marking the reg being set as dying here. */
2802 REG_NOTES (insn)
2803 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2804 }
2805 }
2806 else
2807 {
2808 if (flags & PROP_DEATH_NOTES)
2809 {
2810 /* This is a case where we have a multi-word hard register
2811 and some, but not all, of the words of the register are
2812 needed in subsequent insns. Write REG_UNUSED notes
2813 for those parts that were not needed. This case should
2814 be rare. */
2815
2816 for (i = regno_first; i <= regno_last; ++i)
2817 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2818 REG_NOTES (insn)
2819 = alloc_EXPR_LIST (REG_UNUSED,
2820 gen_rtx_REG (reg_raw_mode[i], i),
2821 REG_NOTES (insn));
2822 }
2823 }
2824 }
2825
2826 /* Mark the register as being dead. */
2827 if (some_was_live
2828 /* The stack pointer is never dead. Well, not strictly true,
2829 but it's very difficult to tell from here. Hopefully
2830 combine_stack_adjustments will fix up the most egregious
2831 errors. */
2832 && regno_first != STACK_POINTER_REGNUM)
2833 {
2834 for (i = regno_first; i <= regno_last; ++i)
2835 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2836 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2837 }
2838 }
2839 else if (GET_CODE (reg) == REG)
2840 {
2841 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2842 pbi->reg_next_use[regno_first] = 0;
2843 }
2844
2845 /* If this is the last pass and this is a SCRATCH, show it will be dying
2846 here and count it. */
2847 else if (GET_CODE (reg) == SCRATCH)
2848 {
2849 if (flags & PROP_DEATH_NOTES)
2850 REG_NOTES (insn)
2851 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2852 }
2853 }
2854 \f
2855 #ifdef HAVE_conditional_execution
2856 /* Mark REGNO conditionally dead.
2857 Return true if the register is now unconditionally dead. */
2858
2859 static int
2860 mark_regno_cond_dead (pbi, regno, cond)
2861 struct propagate_block_info *pbi;
2862 int regno;
2863 rtx cond;
2864 {
2865 /* If this is a store to a predicate register, the value of the
2866 predicate is changing, we don't know that the predicate as seen
2867 before is the same as that seen after. Flush all dependent
2868 conditions from reg_cond_dead. This will make all such
2869 conditionally live registers unconditionally live. */
2870 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2871 flush_reg_cond_reg (pbi, regno);
2872
2873 /* If this is an unconditional store, remove any conditional
2874 life that may have existed. */
2875 if (cond == NULL_RTX)
2876 splay_tree_remove (pbi->reg_cond_dead, regno);
2877 else
2878 {
2879 splay_tree_node node;
2880 struct reg_cond_life_info *rcli;
2881 rtx ncond;
2882
2883 /* Otherwise this is a conditional set. Record that fact.
2884 It may have been conditionally used, or there may be a
2885 subsequent set with a complimentary condition. */
2886
2887 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2888 if (node == NULL)
2889 {
2890 /* The register was unconditionally live previously.
2891 Record the current condition as the condition under
2892 which it is dead. */
2893 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
2894 rcli->condition = cond;
2895 rcli->stores = cond;
2896 rcli->orig_condition = const0_rtx;
2897 splay_tree_insert (pbi->reg_cond_dead, regno,
2898 (splay_tree_value) rcli);
2899
2900 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2901
2902 /* Not unconditionally dead. */
2903 return 0;
2904 }
2905 else
2906 {
2907 /* The register was conditionally live previously.
2908 Add the new condition to the old. */
2909 rcli = (struct reg_cond_life_info *) node->value;
2910 ncond = rcli->condition;
2911 ncond = ior_reg_cond (ncond, cond, 1);
2912 if (rcli->stores == const0_rtx)
2913 rcli->stores = cond;
2914 else if (rcli->stores != const1_rtx)
2915 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2916
2917 /* If the register is now unconditionally dead, remove the entry
2918 in the splay_tree. A register is unconditionally dead if the
2919 dead condition ncond is true. A register is also unconditionally
2920 dead if the sum of all conditional stores is an unconditional
2921 store (stores is true), and the dead condition is identically the
2922 same as the original dead condition initialized at the end of
2923 the block. This is a pointer compare, not an rtx_equal_p
2924 compare. */
2925 if (ncond == const1_rtx
2926 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2927 splay_tree_remove (pbi->reg_cond_dead, regno);
2928 else
2929 {
2930 rcli->condition = ncond;
2931
2932 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2933
2934 /* Not unconditionally dead. */
2935 return 0;
2936 }
2937 }
2938 }
2939
2940 return 1;
2941 }
2942
2943 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2944
2945 static void
2946 free_reg_cond_life_info (value)
2947 splay_tree_value value;
2948 {
2949 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2950 free (rcli);
2951 }
2952
2953 /* Helper function for flush_reg_cond_reg. */
2954
2955 static int
2956 flush_reg_cond_reg_1 (node, data)
2957 splay_tree_node node;
2958 void *data;
2959 {
2960 struct reg_cond_life_info *rcli;
2961 int *xdata = (int *) data;
2962 unsigned int regno = xdata[0];
2963
2964 /* Don't need to search if last flushed value was farther on in
2965 the in-order traversal. */
2966 if (xdata[1] >= (int) node->key)
2967 return 0;
2968
2969 /* Splice out portions of the expression that refer to regno. */
2970 rcli = (struct reg_cond_life_info *) node->value;
2971 rcli->condition = elim_reg_cond (rcli->condition, regno);
2972 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2973 rcli->stores = elim_reg_cond (rcli->stores, regno);
2974
2975 /* If the entire condition is now false, signal the node to be removed. */
2976 if (rcli->condition == const0_rtx)
2977 {
2978 xdata[1] = node->key;
2979 return -1;
2980 }
2981 else if (rcli->condition == const1_rtx)
2982 abort ();
2983
2984 return 0;
2985 }
2986
2987 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
2988
2989 static void
2990 flush_reg_cond_reg (pbi, regno)
2991 struct propagate_block_info *pbi;
2992 int regno;
2993 {
2994 int pair[2];
2995
2996 pair[0] = regno;
2997 pair[1] = -1;
2998 while (splay_tree_foreach (pbi->reg_cond_dead,
2999 flush_reg_cond_reg_1, pair) == -1)
3000 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3001
3002 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3003 }
3004
3005 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3006 For ior/and, the ADD flag determines whether we want to add the new
3007 condition X to the old one unconditionally. If it is zero, we will
3008 only return a new expression if X allows us to simplify part of
3009 OLD, otherwise we return NULL to the caller.
3010 If ADD is nonzero, we will return a new condition in all cases. The
3011 toplevel caller of one of these functions should always pass 1 for
3012 ADD. */
3013
3014 static rtx
3015 ior_reg_cond (old, x, add)
3016 rtx old, x;
3017 int add;
3018 {
3019 rtx op0, op1;
3020
3021 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3022 {
3023 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3024 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
3025 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3026 return const1_rtx;
3027 if (GET_CODE (x) == GET_CODE (old)
3028 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3029 return old;
3030 if (! add)
3031 return NULL;
3032 return gen_rtx_IOR (0, old, x);
3033 }
3034
3035 switch (GET_CODE (old))
3036 {
3037 case IOR:
3038 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3039 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3040 if (op0 != NULL || op1 != NULL)
3041 {
3042 if (op0 == const0_rtx)
3043 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3044 if (op1 == const0_rtx)
3045 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3046 if (op0 == const1_rtx || op1 == const1_rtx)
3047 return const1_rtx;
3048 if (op0 == NULL)
3049 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3050 else if (rtx_equal_p (x, op0))
3051 /* (x | A) | x ~ (x | A). */
3052 return old;
3053 if (op1 == NULL)
3054 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3055 else if (rtx_equal_p (x, op1))
3056 /* (A | x) | x ~ (A | x). */
3057 return old;
3058 return gen_rtx_IOR (0, op0, op1);
3059 }
3060 if (! add)
3061 return NULL;
3062 return gen_rtx_IOR (0, old, x);
3063
3064 case AND:
3065 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3066 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3067 if (op0 != NULL || op1 != NULL)
3068 {
3069 if (op0 == const1_rtx)
3070 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3071 if (op1 == const1_rtx)
3072 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3073 if (op0 == const0_rtx || op1 == const0_rtx)
3074 return const0_rtx;
3075 if (op0 == NULL)
3076 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3077 else if (rtx_equal_p (x, op0))
3078 /* (x & A) | x ~ x. */
3079 return op0;
3080 if (op1 == NULL)
3081 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3082 else if (rtx_equal_p (x, op1))
3083 /* (A & x) | x ~ x. */
3084 return op1;
3085 return gen_rtx_AND (0, op0, op1);
3086 }
3087 if (! add)
3088 return NULL;
3089 return gen_rtx_IOR (0, old, x);
3090
3091 case NOT:
3092 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3093 if (op0 != NULL)
3094 return not_reg_cond (op0);
3095 if (! add)
3096 return NULL;
3097 return gen_rtx_IOR (0, old, x);
3098
3099 default:
3100 abort ();
3101 }
3102 }
3103
3104 static rtx
3105 not_reg_cond (x)
3106 rtx x;
3107 {
3108 enum rtx_code x_code;
3109
3110 if (x == const0_rtx)
3111 return const1_rtx;
3112 else if (x == const1_rtx)
3113 return const0_rtx;
3114 x_code = GET_CODE (x);
3115 if (x_code == NOT)
3116 return XEXP (x, 0);
3117 if (GET_RTX_CLASS (x_code) == '<'
3118 && GET_CODE (XEXP (x, 0)) == REG)
3119 {
3120 if (XEXP (x, 1) != const0_rtx)
3121 abort ();
3122
3123 return gen_rtx_fmt_ee (reverse_condition (x_code),
3124 VOIDmode, XEXP (x, 0), const0_rtx);
3125 }
3126 return gen_rtx_NOT (0, x);
3127 }
3128
3129 static rtx
3130 and_reg_cond (old, x, add)
3131 rtx old, x;
3132 int add;
3133 {
3134 rtx op0, op1;
3135
3136 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3137 {
3138 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3139 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3140 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3141 return const0_rtx;
3142 if (GET_CODE (x) == GET_CODE (old)
3143 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3144 return old;
3145 if (! add)
3146 return NULL;
3147 return gen_rtx_AND (0, old, x);
3148 }
3149
3150 switch (GET_CODE (old))
3151 {
3152 case IOR:
3153 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3154 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3155 if (op0 != NULL || op1 != NULL)
3156 {
3157 if (op0 == const0_rtx)
3158 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3159 if (op1 == const0_rtx)
3160 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3161 if (op0 == const1_rtx || op1 == const1_rtx)
3162 return const1_rtx;
3163 if (op0 == NULL)
3164 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3165 else if (rtx_equal_p (x, op0))
3166 /* (x | A) & x ~ x. */
3167 return op0;
3168 if (op1 == NULL)
3169 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3170 else if (rtx_equal_p (x, op1))
3171 /* (A | x) & x ~ x. */
3172 return op1;
3173 return gen_rtx_IOR (0, op0, op1);
3174 }
3175 if (! add)
3176 return NULL;
3177 return gen_rtx_AND (0, old, x);
3178
3179 case AND:
3180 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3181 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3182 if (op0 != NULL || op1 != NULL)
3183 {
3184 if (op0 == const1_rtx)
3185 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3186 if (op1 == const1_rtx)
3187 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3188 if (op0 == const0_rtx || op1 == const0_rtx)
3189 return const0_rtx;
3190 if (op0 == NULL)
3191 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3192 else if (rtx_equal_p (x, op0))
3193 /* (x & A) & x ~ (x & A). */
3194 return old;
3195 if (op1 == NULL)
3196 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3197 else if (rtx_equal_p (x, op1))
3198 /* (A & x) & x ~ (A & x). */
3199 return old;
3200 return gen_rtx_AND (0, op0, op1);
3201 }
3202 if (! add)
3203 return NULL;
3204 return gen_rtx_AND (0, old, x);
3205
3206 case NOT:
3207 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3208 if (op0 != NULL)
3209 return not_reg_cond (op0);
3210 if (! add)
3211 return NULL;
3212 return gen_rtx_AND (0, old, x);
3213
3214 default:
3215 abort ();
3216 }
3217 }
3218
3219 /* Given a condition X, remove references to reg REGNO and return the
3220 new condition. The removal will be done so that all conditions
3221 involving REGNO are considered to evaluate to false. This function
3222 is used when the value of REGNO changes. */
3223
3224 static rtx
3225 elim_reg_cond (x, regno)
3226 rtx x;
3227 unsigned int regno;
3228 {
3229 rtx op0, op1;
3230
3231 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3232 {
3233 if (REGNO (XEXP (x, 0)) == regno)
3234 return const0_rtx;
3235 return x;
3236 }
3237
3238 switch (GET_CODE (x))
3239 {
3240 case AND:
3241 op0 = elim_reg_cond (XEXP (x, 0), regno);
3242 op1 = elim_reg_cond (XEXP (x, 1), regno);
3243 if (op0 == const0_rtx || op1 == const0_rtx)
3244 return const0_rtx;
3245 if (op0 == const1_rtx)
3246 return op1;
3247 if (op1 == const1_rtx)
3248 return op0;
3249 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3250 return x;
3251 return gen_rtx_AND (0, op0, op1);
3252
3253 case IOR:
3254 op0 = elim_reg_cond (XEXP (x, 0), regno);
3255 op1 = elim_reg_cond (XEXP (x, 1), regno);
3256 if (op0 == const1_rtx || op1 == const1_rtx)
3257 return const1_rtx;
3258 if (op0 == const0_rtx)
3259 return op1;
3260 if (op1 == const0_rtx)
3261 return op0;
3262 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3263 return x;
3264 return gen_rtx_IOR (0, op0, op1);
3265
3266 case NOT:
3267 op0 = elim_reg_cond (XEXP (x, 0), regno);
3268 if (op0 == const0_rtx)
3269 return const1_rtx;
3270 if (op0 == const1_rtx)
3271 return const0_rtx;
3272 if (op0 != XEXP (x, 0))
3273 return not_reg_cond (op0);
3274 return x;
3275
3276 default:
3277 abort ();
3278 }
3279 }
3280 #endif /* HAVE_conditional_execution */
3281 \f
3282 #ifdef AUTO_INC_DEC
3283
3284 /* Try to substitute the auto-inc expression INC as the address inside
3285 MEM which occurs in INSN. Currently, the address of MEM is an expression
3286 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3287 that has a single set whose source is a PLUS of INCR_REG and something
3288 else. */
3289
3290 static void
3291 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
3292 struct propagate_block_info *pbi;
3293 rtx inc, insn, mem, incr, incr_reg;
3294 {
3295 int regno = REGNO (incr_reg);
3296 rtx set = single_set (incr);
3297 rtx q = SET_DEST (set);
3298 rtx y = SET_SRC (set);
3299 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3300
3301 /* Make sure this reg appears only once in this insn. */
3302 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3303 return;
3304
3305 if (dead_or_set_p (incr, incr_reg)
3306 /* Mustn't autoinc an eliminable register. */
3307 && (regno >= FIRST_PSEUDO_REGISTER
3308 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3309 {
3310 /* This is the simple case. Try to make the auto-inc. If
3311 we can't, we are done. Otherwise, we will do any
3312 needed updates below. */
3313 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3314 return;
3315 }
3316 else if (GET_CODE (q) == REG
3317 /* PREV_INSN used here to check the semi-open interval
3318 [insn,incr). */
3319 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3320 /* We must also check for sets of q as q may be
3321 a call clobbered hard register and there may
3322 be a call between PREV_INSN (insn) and incr. */
3323 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3324 {
3325 /* We have *p followed sometime later by q = p+size.
3326 Both p and q must be live afterward,
3327 and q is not used between INSN and its assignment.
3328 Change it to q = p, ...*q..., q = q+size.
3329 Then fall into the usual case. */
3330 rtx insns, temp;
3331
3332 start_sequence ();
3333 emit_move_insn (q, incr_reg);
3334 insns = get_insns ();
3335 end_sequence ();
3336
3337 /* If we can't make the auto-inc, or can't make the
3338 replacement into Y, exit. There's no point in making
3339 the change below if we can't do the auto-inc and doing
3340 so is not correct in the pre-inc case. */
3341
3342 XEXP (inc, 0) = q;
3343 validate_change (insn, &XEXP (mem, 0), inc, 1);
3344 validate_change (incr, &XEXP (y, opnum), q, 1);
3345 if (! apply_change_group ())
3346 return;
3347
3348 /* We now know we'll be doing this change, so emit the
3349 new insn(s) and do the updates. */
3350 emit_insns_before (insns, insn);
3351
3352 if (pbi->bb->head == insn)
3353 pbi->bb->head = insns;
3354
3355 /* INCR will become a NOTE and INSN won't contain a
3356 use of INCR_REG. If a use of INCR_REG was just placed in
3357 the insn before INSN, make that the next use.
3358 Otherwise, invalidate it. */
3359 if (GET_CODE (PREV_INSN (insn)) == INSN
3360 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3361 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3362 pbi->reg_next_use[regno] = PREV_INSN (insn);
3363 else
3364 pbi->reg_next_use[regno] = 0;
3365
3366 incr_reg = q;
3367 regno = REGNO (q);
3368
3369 /* REGNO is now used in INCR which is below INSN, but
3370 it previously wasn't live here. If we don't mark
3371 it as live, we'll put a REG_DEAD note for it
3372 on this insn, which is incorrect. */
3373 SET_REGNO_REG_SET (pbi->reg_live, regno);
3374
3375 /* If there are any calls between INSN and INCR, show
3376 that REGNO now crosses them. */
3377 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3378 if (GET_CODE (temp) == CALL_INSN)
3379 REG_N_CALLS_CROSSED (regno)++;
3380
3381 /* Invalidate alias info for Q since we just changed its value. */
3382 clear_reg_alias_info (q);
3383 }
3384 else
3385 return;
3386
3387 /* If we haven't returned, it means we were able to make the
3388 auto-inc, so update the status. First, record that this insn
3389 has an implicit side effect. */
3390
3391 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3392
3393 /* Modify the old increment-insn to simply copy
3394 the already-incremented value of our register. */
3395 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3396 abort ();
3397
3398 /* If that makes it a no-op (copying the register into itself) delete
3399 it so it won't appear to be a "use" and a "set" of this
3400 register. */
3401 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3402 {
3403 /* If the original source was dead, it's dead now. */
3404 rtx note;
3405
3406 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3407 {
3408 remove_note (incr, note);
3409 if (XEXP (note, 0) != incr_reg)
3410 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3411 }
3412
3413 PUT_CODE (incr, NOTE);
3414 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3415 NOTE_SOURCE_FILE (incr) = 0;
3416 }
3417
3418 if (regno >= FIRST_PSEUDO_REGISTER)
3419 {
3420 /* Count an extra reference to the reg. When a reg is
3421 incremented, spilling it is worse, so we want to make
3422 that less likely. */
3423 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3424
3425 /* Count the increment as a setting of the register,
3426 even though it isn't a SET in rtl. */
3427 REG_N_SETS (regno)++;
3428 }
3429 }
3430
3431 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3432 reference. */
3433
3434 static void
3435 find_auto_inc (pbi, x, insn)
3436 struct propagate_block_info *pbi;
3437 rtx x;
3438 rtx insn;
3439 {
3440 rtx addr = XEXP (x, 0);
3441 HOST_WIDE_INT offset = 0;
3442 rtx set, y, incr, inc_val;
3443 int regno;
3444 int size = GET_MODE_SIZE (GET_MODE (x));
3445
3446 if (GET_CODE (insn) == JUMP_INSN)
3447 return;
3448
3449 /* Here we detect use of an index register which might be good for
3450 postincrement, postdecrement, preincrement, or predecrement. */
3451
3452 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3453 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3454
3455 if (GET_CODE (addr) != REG)
3456 return;
3457
3458 regno = REGNO (addr);
3459
3460 /* Is the next use an increment that might make auto-increment? */
3461 incr = pbi->reg_next_use[regno];
3462 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3463 return;
3464 set = single_set (incr);
3465 if (set == 0 || GET_CODE (set) != SET)
3466 return;
3467 y = SET_SRC (set);
3468
3469 if (GET_CODE (y) != PLUS)
3470 return;
3471
3472 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3473 inc_val = XEXP (y, 1);
3474 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3475 inc_val = XEXP (y, 0);
3476 else
3477 return;
3478
3479 if (GET_CODE (inc_val) == CONST_INT)
3480 {
3481 if (HAVE_POST_INCREMENT
3482 && (INTVAL (inc_val) == size && offset == 0))
3483 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3484 incr, addr);
3485 else if (HAVE_POST_DECREMENT
3486 && (INTVAL (inc_val) == -size && offset == 0))
3487 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3488 incr, addr);
3489 else if (HAVE_PRE_INCREMENT
3490 && (INTVAL (inc_val) == size && offset == size))
3491 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3492 incr, addr);
3493 else if (HAVE_PRE_DECREMENT
3494 && (INTVAL (inc_val) == -size && offset == -size))
3495 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3496 incr, addr);
3497 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3498 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3499 gen_rtx_PLUS (Pmode,
3500 addr,
3501 inc_val)),
3502 insn, x, incr, addr);
3503 }
3504 else if (GET_CODE (inc_val) == REG
3505 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3506 NEXT_INSN (incr)))
3507
3508 {
3509 if (HAVE_POST_MODIFY_REG && offset == 0)
3510 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3511 gen_rtx_PLUS (Pmode,
3512 addr,
3513 inc_val)),
3514 insn, x, incr, addr);
3515 }
3516 }
3517
3518 #endif /* AUTO_INC_DEC */
3519 \f
3520 static void
3521 mark_used_reg (pbi, reg, cond, insn)
3522 struct propagate_block_info *pbi;
3523 rtx reg;
3524 rtx cond ATTRIBUTE_UNUSED;
3525 rtx insn;
3526 {
3527 unsigned int regno_first, regno_last, i;
3528 int some_was_live, some_was_dead, some_not_set;
3529
3530 regno_last = regno_first = REGNO (reg);
3531 if (regno_first < FIRST_PSEUDO_REGISTER)
3532 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3533
3534 /* Find out if any of this register is live after this instruction. */
3535 some_was_live = some_was_dead = 0;
3536 for (i = regno_first; i <= regno_last; ++i)
3537 {
3538 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3539 some_was_live |= needed_regno;
3540 some_was_dead |= ! needed_regno;
3541 }
3542
3543 /* Find out if any of the register was set this insn. */
3544 some_not_set = 0;
3545 for (i = regno_first; i <= regno_last; ++i)
3546 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3547
3548 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3549 {
3550 /* Record where each reg is used, so when the reg is set we know
3551 the next insn that uses it. */
3552 pbi->reg_next_use[regno_first] = insn;
3553 }
3554
3555 if (pbi->flags & PROP_REG_INFO)
3556 {
3557 if (regno_first < FIRST_PSEUDO_REGISTER)
3558 {
3559 /* If this is a register we are going to try to eliminate,
3560 don't mark it live here. If we are successful in
3561 eliminating it, it need not be live unless it is used for
3562 pseudos, in which case it will have been set live when it
3563 was allocated to the pseudos. If the register will not
3564 be eliminated, reload will set it live at that point.
3565
3566 Otherwise, record that this function uses this register. */
3567 /* ??? The PPC backend tries to "eliminate" on the pic
3568 register to itself. This should be fixed. In the mean
3569 time, hack around it. */
3570
3571 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3572 && (regno_first == FRAME_POINTER_REGNUM
3573 || regno_first == ARG_POINTER_REGNUM)))
3574 for (i = regno_first; i <= regno_last; ++i)
3575 regs_ever_live[i] = 1;
3576 }
3577 else
3578 {
3579 /* Keep track of which basic block each reg appears in. */
3580
3581 int blocknum = pbi->bb->index;
3582 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3583 REG_BASIC_BLOCK (regno_first) = blocknum;
3584 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3585 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3586
3587 /* Count (weighted) number of uses of each reg. */
3588 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3589 REG_N_REFS (regno_first)++;
3590 }
3591 }
3592
3593 /* Record and count the insns in which a reg dies. If it is used in
3594 this insn and was dead below the insn then it dies in this insn.
3595 If it was set in this insn, we do not make a REG_DEAD note;
3596 likewise if we already made such a note. */
3597 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3598 && some_was_dead
3599 && some_not_set)
3600 {
3601 /* Check for the case where the register dying partially
3602 overlaps the register set by this insn. */
3603 if (regno_first != regno_last)
3604 for (i = regno_first; i <= regno_last; ++i)
3605 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3606
3607 /* If none of the words in X is needed, make a REG_DEAD note.
3608 Otherwise, we must make partial REG_DEAD notes. */
3609 if (! some_was_live)
3610 {
3611 if ((pbi->flags & PROP_DEATH_NOTES)
3612 && ! find_regno_note (insn, REG_DEAD, regno_first))
3613 REG_NOTES (insn)
3614 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3615
3616 if (pbi->flags & PROP_REG_INFO)
3617 REG_N_DEATHS (regno_first)++;
3618 }
3619 else
3620 {
3621 /* Don't make a REG_DEAD note for a part of a register
3622 that is set in the insn. */
3623 for (i = regno_first; i <= regno_last; ++i)
3624 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3625 && ! dead_or_set_regno_p (insn, i))
3626 REG_NOTES (insn)
3627 = alloc_EXPR_LIST (REG_DEAD,
3628 gen_rtx_REG (reg_raw_mode[i], i),
3629 REG_NOTES (insn));
3630 }
3631 }
3632
3633 /* Mark the register as being live. */
3634 for (i = regno_first; i <= regno_last; ++i)
3635 {
3636 #ifdef HAVE_conditional_execution
3637 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3638 #endif
3639
3640 SET_REGNO_REG_SET (pbi->reg_live, i);
3641
3642 #ifdef HAVE_conditional_execution
3643 /* If this is a conditional use, record that fact. If it is later
3644 conditionally set, we'll know to kill the register. */
3645 if (cond != NULL_RTX)
3646 {
3647 splay_tree_node node;
3648 struct reg_cond_life_info *rcli;
3649 rtx ncond;
3650
3651 if (this_was_live)
3652 {
3653 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3654 if (node == NULL)
3655 {
3656 /* The register was unconditionally live previously.
3657 No need to do anything. */
3658 }
3659 else
3660 {
3661 /* The register was conditionally live previously.
3662 Subtract the new life cond from the old death cond. */
3663 rcli = (struct reg_cond_life_info *) node->value;
3664 ncond = rcli->condition;
3665 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3666
3667 /* If the register is now unconditionally live,
3668 remove the entry in the splay_tree. */
3669 if (ncond == const0_rtx)
3670 splay_tree_remove (pbi->reg_cond_dead, i);
3671 else
3672 {
3673 rcli->condition = ncond;
3674 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3675 REGNO (XEXP (cond, 0)));
3676 }
3677 }
3678 }
3679 else
3680 {
3681 /* The register was not previously live at all. Record
3682 the condition under which it is still dead. */
3683 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
3684 rcli->condition = not_reg_cond (cond);
3685 rcli->stores = const0_rtx;
3686 rcli->orig_condition = const0_rtx;
3687 splay_tree_insert (pbi->reg_cond_dead, i,
3688 (splay_tree_value) rcli);
3689
3690 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3691 }
3692 }
3693 else if (this_was_live)
3694 {
3695 /* The register may have been conditionally live previously, but
3696 is now unconditionally live. Remove it from the conditionally
3697 dead list, so that a conditional set won't cause us to think
3698 it dead. */
3699 splay_tree_remove (pbi->reg_cond_dead, i);
3700 }
3701 #endif
3702 }
3703 }
3704
3705 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3706 This is done assuming the registers needed from X are those that
3707 have 1-bits in PBI->REG_LIVE.
3708
3709 INSN is the containing instruction. If INSN is dead, this function
3710 is not called. */
3711
3712 static void
3713 mark_used_regs (pbi, x, cond, insn)
3714 struct propagate_block_info *pbi;
3715 rtx x, cond, insn;
3716 {
3717 RTX_CODE code;
3718 int regno;
3719 int flags = pbi->flags;
3720
3721 retry:
3722 if (!x)
3723 return;
3724 code = GET_CODE (x);
3725 switch (code)
3726 {
3727 case LABEL_REF:
3728 case SYMBOL_REF:
3729 case CONST_INT:
3730 case CONST:
3731 case CONST_DOUBLE:
3732 case CONST_VECTOR:
3733 case PC:
3734 case ADDR_VEC:
3735 case ADDR_DIFF_VEC:
3736 return;
3737
3738 #ifdef HAVE_cc0
3739 case CC0:
3740 pbi->cc0_live = 1;
3741 return;
3742 #endif
3743
3744 case CLOBBER:
3745 /* If we are clobbering a MEM, mark any registers inside the address
3746 as being used. */
3747 if (GET_CODE (XEXP (x, 0)) == MEM)
3748 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3749 return;
3750
3751 case MEM:
3752 /* Don't bother watching stores to mems if this is not the
3753 final pass. We'll not be deleting dead stores this round. */
3754 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3755 {
3756 /* Invalidate the data for the last MEM stored, but only if MEM is
3757 something that can be stored into. */
3758 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3759 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3760 /* Needn't clear the memory set list. */
3761 ;
3762 else
3763 {
3764 rtx temp = pbi->mem_set_list;
3765 rtx prev = NULL_RTX;
3766 rtx next;
3767
3768 while (temp)
3769 {
3770 next = XEXP (temp, 1);
3771 if (anti_dependence (XEXP (temp, 0), x))
3772 {
3773 /* Splice temp out of the list. */
3774 if (prev)
3775 XEXP (prev, 1) = next;
3776 else
3777 pbi->mem_set_list = next;
3778 free_EXPR_LIST_node (temp);
3779 pbi->mem_set_list_len--;
3780 }
3781 else
3782 prev = temp;
3783 temp = next;
3784 }
3785 }
3786
3787 /* If the memory reference had embedded side effects (autoincrement
3788 address modes. Then we may need to kill some entries on the
3789 memory set list. */
3790 if (insn)
3791 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3792 }
3793
3794 #ifdef AUTO_INC_DEC
3795 if (flags & PROP_AUTOINC)
3796 find_auto_inc (pbi, x, insn);
3797 #endif
3798 break;
3799
3800 case SUBREG:
3801 #ifdef CLASS_CANNOT_CHANGE_MODE
3802 if (GET_CODE (SUBREG_REG (x)) == REG
3803 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
3804 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (x),
3805 GET_MODE (SUBREG_REG (x))))
3806 REG_CHANGES_MODE (REGNO (SUBREG_REG (x))) = 1;
3807 #endif
3808
3809 /* While we're here, optimize this case. */
3810 x = SUBREG_REG (x);
3811 if (GET_CODE (x) != REG)
3812 goto retry;
3813 /* Fall through. */
3814
3815 case REG:
3816 /* See a register other than being set => mark it as needed. */
3817 mark_used_reg (pbi, x, cond, insn);
3818 return;
3819
3820 case SET:
3821 {
3822 rtx testreg = SET_DEST (x);
3823 int mark_dest = 0;
3824
3825 /* If storing into MEM, don't show it as being used. But do
3826 show the address as being used. */
3827 if (GET_CODE (testreg) == MEM)
3828 {
3829 #ifdef AUTO_INC_DEC
3830 if (flags & PROP_AUTOINC)
3831 find_auto_inc (pbi, testreg, insn);
3832 #endif
3833 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3834 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3835 return;
3836 }
3837
3838 /* Storing in STRICT_LOW_PART is like storing in a reg
3839 in that this SET might be dead, so ignore it in TESTREG.
3840 but in some other ways it is like using the reg.
3841
3842 Storing in a SUBREG or a bit field is like storing the entire
3843 register in that if the register's value is not used
3844 then this SET is not needed. */
3845 while (GET_CODE (testreg) == STRICT_LOW_PART
3846 || GET_CODE (testreg) == ZERO_EXTRACT
3847 || GET_CODE (testreg) == SIGN_EXTRACT
3848 || GET_CODE (testreg) == SUBREG)
3849 {
3850 #ifdef CLASS_CANNOT_CHANGE_MODE
3851 if (GET_CODE (testreg) == SUBREG
3852 && GET_CODE (SUBREG_REG (testreg)) == REG
3853 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
3854 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (testreg)),
3855 GET_MODE (testreg)))
3856 REG_CHANGES_MODE (REGNO (SUBREG_REG (testreg))) = 1;
3857 #endif
3858
3859 /* Modifying a single register in an alternate mode
3860 does not use any of the old value. But these other
3861 ways of storing in a register do use the old value. */
3862 if (GET_CODE (testreg) == SUBREG
3863 && !((REG_BYTES (SUBREG_REG (testreg))
3864 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3865 > (REG_BYTES (testreg)
3866 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3867 ;
3868 else
3869 mark_dest = 1;
3870
3871 testreg = XEXP (testreg, 0);
3872 }
3873
3874 /* If this is a store into a register or group of registers,
3875 recursively scan the value being stored. */
3876
3877 if ((GET_CODE (testreg) == PARALLEL
3878 && GET_MODE (testreg) == BLKmode)
3879 || (GET_CODE (testreg) == REG
3880 && (regno = REGNO (testreg),
3881 ! (regno == FRAME_POINTER_REGNUM
3882 && (! reload_completed || frame_pointer_needed)))
3883 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3884 && ! (regno == HARD_FRAME_POINTER_REGNUM
3885 && (! reload_completed || frame_pointer_needed))
3886 #endif
3887 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3888 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3889 #endif
3890 ))
3891 {
3892 if (mark_dest)
3893 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3894 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3895 return;
3896 }
3897 }
3898 break;
3899
3900 case ASM_OPERANDS:
3901 case UNSPEC_VOLATILE:
3902 case TRAP_IF:
3903 case ASM_INPUT:
3904 {
3905 /* Traditional and volatile asm instructions must be considered to use
3906 and clobber all hard registers, all pseudo-registers and all of
3907 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3908
3909 Consider for instance a volatile asm that changes the fpu rounding
3910 mode. An insn should not be moved across this even if it only uses
3911 pseudo-regs because it might give an incorrectly rounded result.
3912
3913 ?!? Unfortunately, marking all hard registers as live causes massive
3914 problems for the register allocator and marking all pseudos as live
3915 creates mountains of uninitialized variable warnings.
3916
3917 So for now, just clear the memory set list and mark any regs
3918 we can find in ASM_OPERANDS as used. */
3919 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3920 {
3921 free_EXPR_LIST_list (&pbi->mem_set_list);
3922 pbi->mem_set_list_len = 0;
3923 }
3924
3925 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3926 We can not just fall through here since then we would be confused
3927 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3928 traditional asms unlike their normal usage. */
3929 if (code == ASM_OPERANDS)
3930 {
3931 int j;
3932
3933 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3934 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3935 }
3936 break;
3937 }
3938
3939 case COND_EXEC:
3940 if (cond != NULL_RTX)
3941 abort ();
3942
3943 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3944
3945 cond = COND_EXEC_TEST (x);
3946 x = COND_EXEC_CODE (x);
3947 goto retry;
3948
3949 case PHI:
3950 /* We _do_not_ want to scan operands of phi nodes. Operands of
3951 a phi function are evaluated only when control reaches this
3952 block along a particular edge. Therefore, regs that appear
3953 as arguments to phi should not be added to the global live at
3954 start. */
3955 return;
3956
3957 default:
3958 break;
3959 }
3960
3961 /* Recursively scan the operands of this expression. */
3962
3963 {
3964 const char * const fmt = GET_RTX_FORMAT (code);
3965 int i;
3966
3967 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3968 {
3969 if (fmt[i] == 'e')
3970 {
3971 /* Tail recursive case: save a function call level. */
3972 if (i == 0)
3973 {
3974 x = XEXP (x, 0);
3975 goto retry;
3976 }
3977 mark_used_regs (pbi, XEXP (x, i), cond, insn);
3978 }
3979 else if (fmt[i] == 'E')
3980 {
3981 int j;
3982 for (j = 0; j < XVECLEN (x, i); j++)
3983 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
3984 }
3985 }
3986 }
3987 }
3988 \f
3989 #ifdef AUTO_INC_DEC
3990
3991 static int
3992 try_pre_increment_1 (pbi, insn)
3993 struct propagate_block_info *pbi;
3994 rtx insn;
3995 {
3996 /* Find the next use of this reg. If in same basic block,
3997 make it do pre-increment or pre-decrement if appropriate. */
3998 rtx x = single_set (insn);
3999 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
4000 * INTVAL (XEXP (SET_SRC (x), 1)));
4001 int regno = REGNO (SET_DEST (x));
4002 rtx y = pbi->reg_next_use[regno];
4003 if (y != 0
4004 && SET_DEST (x) != stack_pointer_rtx
4005 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4006 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4007 mode would be better. */
4008 && ! dead_or_set_p (y, SET_DEST (x))
4009 && try_pre_increment (y, SET_DEST (x), amount))
4010 {
4011 /* We have found a suitable auto-increment and already changed
4012 insn Y to do it. So flush this increment instruction. */
4013 propagate_block_delete_insn (insn);
4014
4015 /* Count a reference to this reg for the increment insn we are
4016 deleting. When a reg is incremented, spilling it is worse,
4017 so we want to make that less likely. */
4018 if (regno >= FIRST_PSEUDO_REGISTER)
4019 {
4020 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4021 REG_N_SETS (regno)++;
4022 }
4023
4024 /* Flush any remembered memories depending on the value of
4025 the incremented register. */
4026 invalidate_mems_from_set (pbi, SET_DEST (x));
4027
4028 return 1;
4029 }
4030 return 0;
4031 }
4032
4033 /* Try to change INSN so that it does pre-increment or pre-decrement
4034 addressing on register REG in order to add AMOUNT to REG.
4035 AMOUNT is negative for pre-decrement.
4036 Returns 1 if the change could be made.
4037 This checks all about the validity of the result of modifying INSN. */
4038
4039 static int
4040 try_pre_increment (insn, reg, amount)
4041 rtx insn, reg;
4042 HOST_WIDE_INT amount;
4043 {
4044 rtx use;
4045
4046 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4047 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4048 int pre_ok = 0;
4049 /* Nonzero if we can try to make a post-increment or post-decrement.
4050 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4051 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4052 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4053 int post_ok = 0;
4054
4055 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4056 int do_post = 0;
4057
4058 /* From the sign of increment, see which possibilities are conceivable
4059 on this target machine. */
4060 if (HAVE_PRE_INCREMENT && amount > 0)
4061 pre_ok = 1;
4062 if (HAVE_POST_INCREMENT && amount > 0)
4063 post_ok = 1;
4064
4065 if (HAVE_PRE_DECREMENT && amount < 0)
4066 pre_ok = 1;
4067 if (HAVE_POST_DECREMENT && amount < 0)
4068 post_ok = 1;
4069
4070 if (! (pre_ok || post_ok))
4071 return 0;
4072
4073 /* It is not safe to add a side effect to a jump insn
4074 because if the incremented register is spilled and must be reloaded
4075 there would be no way to store the incremented value back in memory. */
4076
4077 if (GET_CODE (insn) == JUMP_INSN)
4078 return 0;
4079
4080 use = 0;
4081 if (pre_ok)
4082 use = find_use_as_address (PATTERN (insn), reg, 0);
4083 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4084 {
4085 use = find_use_as_address (PATTERN (insn), reg, -amount);
4086 do_post = 1;
4087 }
4088
4089 if (use == 0 || use == (rtx) (size_t) 1)
4090 return 0;
4091
4092 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4093 return 0;
4094
4095 /* See if this combination of instruction and addressing mode exists. */
4096 if (! validate_change (insn, &XEXP (use, 0),
4097 gen_rtx_fmt_e (amount > 0
4098 ? (do_post ? POST_INC : PRE_INC)
4099 : (do_post ? POST_DEC : PRE_DEC),
4100 Pmode, reg), 0))
4101 return 0;
4102
4103 /* Record that this insn now has an implicit side effect on X. */
4104 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4105 return 1;
4106 }
4107
4108 #endif /* AUTO_INC_DEC */
4109 \f
4110 /* Find the place in the rtx X where REG is used as a memory address.
4111 Return the MEM rtx that so uses it.
4112 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4113 (plus REG (const_int PLUSCONST)).
4114
4115 If such an address does not appear, return 0.
4116 If REG appears more than once, or is used other than in such an address,
4117 return (rtx) 1. */
4118
4119 rtx
4120 find_use_as_address (x, reg, plusconst)
4121 rtx x;
4122 rtx reg;
4123 HOST_WIDE_INT plusconst;
4124 {
4125 enum rtx_code code = GET_CODE (x);
4126 const char * const fmt = GET_RTX_FORMAT (code);
4127 int i;
4128 rtx value = 0;
4129 rtx tem;
4130
4131 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4132 return x;
4133
4134 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4135 && XEXP (XEXP (x, 0), 0) == reg
4136 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4137 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4138 return x;
4139
4140 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4141 {
4142 /* If REG occurs inside a MEM used in a bit-field reference,
4143 that is unacceptable. */
4144 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4145 return (rtx) (size_t) 1;
4146 }
4147
4148 if (x == reg)
4149 return (rtx) (size_t) 1;
4150
4151 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4152 {
4153 if (fmt[i] == 'e')
4154 {
4155 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4156 if (value == 0)
4157 value = tem;
4158 else if (tem != 0)
4159 return (rtx) (size_t) 1;
4160 }
4161 else if (fmt[i] == 'E')
4162 {
4163 int j;
4164 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4165 {
4166 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4167 if (value == 0)
4168 value = tem;
4169 else if (tem != 0)
4170 return (rtx) (size_t) 1;
4171 }
4172 }
4173 }
4174
4175 return value;
4176 }
4177 \f
4178 /* Write information about registers and basic blocks into FILE.
4179 This is part of making a debugging dump. */
4180
4181 void
4182 dump_regset (r, outf)
4183 regset r;
4184 FILE *outf;
4185 {
4186 int i;
4187 if (r == NULL)
4188 {
4189 fputs (" (nil)", outf);
4190 return;
4191 }
4192
4193 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4194 {
4195 fprintf (outf, " %d", i);
4196 if (i < FIRST_PSEUDO_REGISTER)
4197 fprintf (outf, " [%s]",
4198 reg_names[i]);
4199 });
4200 }
4201
4202 /* Print a human-reaable representation of R on the standard error
4203 stream. This function is designed to be used from within the
4204 debugger. */
4205
4206 void
4207 debug_regset (r)
4208 regset r;
4209 {
4210 dump_regset (r, stderr);
4211 putc ('\n', stderr);
4212 }
4213
4214 /* Recompute register set/reference counts immediately prior to register
4215 allocation.
4216
4217 This avoids problems with set/reference counts changing to/from values
4218 which have special meanings to the register allocators.
4219
4220 Additionally, the reference counts are the primary component used by the
4221 register allocators to prioritize pseudos for allocation to hard regs.
4222 More accurate reference counts generally lead to better register allocation.
4223
4224 F is the first insn to be scanned.
4225
4226 LOOP_STEP denotes how much loop_depth should be incremented per
4227 loop nesting level in order to increase the ref count more for
4228 references in a loop.
4229
4230 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4231 possibly other information which is used by the register allocators. */
4232
4233 void
4234 recompute_reg_usage (f, loop_step)
4235 rtx f ATTRIBUTE_UNUSED;
4236 int loop_step ATTRIBUTE_UNUSED;
4237 {
4238 allocate_reg_life_data ();
4239 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4240 }
4241
4242 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4243 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4244 of the number of registers that died. */
4245
4246 int
4247 count_or_remove_death_notes (blocks, kill)
4248 sbitmap blocks;
4249 int kill;
4250 {
4251 int count = 0;
4252 basic_block bb;
4253
4254 FOR_EACH_BB_REVERSE (bb)
4255 {
4256 rtx insn;
4257
4258 if (blocks && ! TEST_BIT (blocks, bb->index))
4259 continue;
4260
4261 for (insn = bb->head;; insn = NEXT_INSN (insn))
4262 {
4263 if (INSN_P (insn))
4264 {
4265 rtx *pprev = &REG_NOTES (insn);
4266 rtx link = *pprev;
4267
4268 while (link)
4269 {
4270 switch (REG_NOTE_KIND (link))
4271 {
4272 case REG_DEAD:
4273 if (GET_CODE (XEXP (link, 0)) == REG)
4274 {
4275 rtx reg = XEXP (link, 0);
4276 int n;
4277
4278 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4279 n = 1;
4280 else
4281 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4282 count += n;
4283 }
4284 /* Fall through. */
4285
4286 case REG_UNUSED:
4287 if (kill)
4288 {
4289 rtx next = XEXP (link, 1);
4290 free_EXPR_LIST_node (link);
4291 *pprev = link = next;
4292 break;
4293 }
4294 /* Fall through. */
4295
4296 default:
4297 pprev = &XEXP (link, 1);
4298 link = *pprev;
4299 break;
4300 }
4301 }
4302 }
4303
4304 if (insn == bb->end)
4305 break;
4306 }
4307 }
4308
4309 return count;
4310 }
4311 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4312 if blocks is NULL. */
4313
4314 static void
4315 clear_log_links (blocks)
4316 sbitmap blocks;
4317 {
4318 rtx insn;
4319 int i;
4320
4321 if (!blocks)
4322 {
4323 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4324 if (INSN_P (insn))
4325 free_INSN_LIST_list (&LOG_LINKS (insn));
4326 }
4327 else
4328 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4329 {
4330 basic_block bb = BASIC_BLOCK (i);
4331
4332 for (insn = bb->head; insn != NEXT_INSN (bb->end);
4333 insn = NEXT_INSN (insn))
4334 if (INSN_P (insn))
4335 free_INSN_LIST_list (&LOG_LINKS (insn));
4336 });
4337 }
4338
4339 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4340 correspond to the hard registers, if any, set in that map. This
4341 could be done far more efficiently by having all sorts of special-cases
4342 with moving single words, but probably isn't worth the trouble. */
4343
4344 void
4345 reg_set_to_hard_reg_set (to, from)
4346 HARD_REG_SET *to;
4347 bitmap from;
4348 {
4349 int i;
4350
4351 EXECUTE_IF_SET_IN_BITMAP
4352 (from, 0, i,
4353 {
4354 if (i >= FIRST_PSEUDO_REGISTER)
4355 return;
4356 SET_HARD_REG_BIT (*to, i);
4357 });
4358 }
This page took 0.240177 seconds and 6 git commands to generate.