]> gcc.gnu.org Git - gcc.git/blob - gcc/flow.c
formatting tweaks
[gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 88, 92, 93, 94, 95, 1996 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This file contains the data flow analysis pass of the compiler.
23 It computes data flow information
24 which tells combine_instructions which insns to consider combining
25 and controls register allocation.
26
27 Additional data flow information that is too bulky to record
28 is generated during the analysis, and is used at that time to
29 create autoincrement and autodecrement addressing.
30
31 The first step is dividing the function into basic blocks.
32 find_basic_blocks does this. Then life_analysis determines
33 where each register is live and where it is dead.
34
35 ** find_basic_blocks **
36
37 find_basic_blocks divides the current function's rtl
38 into basic blocks. It records the beginnings and ends of the
39 basic blocks in the vectors basic_block_head and basic_block_end,
40 and the number of blocks in n_basic_blocks.
41
42 find_basic_blocks also finds any unreachable loops
43 and deletes them.
44
45 ** life_analysis **
46
47 life_analysis is called immediately after find_basic_blocks.
48 It uses the basic block information to determine where each
49 hard or pseudo register is live.
50
51 ** live-register info **
52
53 The information about where each register is live is in two parts:
54 the REG_NOTES of insns, and the vector basic_block_live_at_start.
55
56 basic_block_live_at_start has an element for each basic block,
57 and the element is a bit-vector with a bit for each hard or pseudo
58 register. The bit is 1 if the register is live at the beginning
59 of the basic block.
60
61 Two types of elements can be added to an insn's REG_NOTES.
62 A REG_DEAD note is added to an insn's REG_NOTES for any register
63 that meets both of two conditions: The value in the register is not
64 needed in subsequent insns and the insn does not replace the value in
65 the register (in the case of multi-word hard registers, the value in
66 each register must be replaced by the insn to avoid a REG_DEAD note).
67
68 In the vast majority of cases, an object in a REG_DEAD note will be
69 used somewhere in the insn. The (rare) exception to this is if an
70 insn uses a multi-word hard register and only some of the registers are
71 needed in subsequent insns. In that case, REG_DEAD notes will be
72 provided for those hard registers that are not subsequently needed.
73 Partial REG_DEAD notes of this type do not occur when an insn sets
74 only some of the hard registers used in such a multi-word operand;
75 omitting REG_DEAD notes for objects stored in an insn is optional and
76 the desire to do so does not justify the complexity of the partial
77 REG_DEAD notes.
78
79 REG_UNUSED notes are added for each register that is set by the insn
80 but is unused subsequently (if every register set by the insn is unused
81 and the insn does not reference memory or have some other side-effect,
82 the insn is deleted instead). If only part of a multi-word hard
83 register is used in a subsequent insn, REG_UNUSED notes are made for
84 the parts that will not be used.
85
86 To determine which registers are live after any insn, one can
87 start from the beginning of the basic block and scan insns, noting
88 which registers are set by each insn and which die there.
89
90 ** Other actions of life_analysis **
91
92 life_analysis sets up the LOG_LINKS fields of insns because the
93 information needed to do so is readily available.
94
95 life_analysis deletes insns whose only effect is to store a value
96 that is never used.
97
98 life_analysis notices cases where a reference to a register as
99 a memory address can be combined with a preceding or following
100 incrementation or decrementation of the register. The separate
101 instruction to increment or decrement is deleted and the address
102 is changed to a POST_INC or similar rtx.
103
104 Each time an incrementing or decrementing address is created,
105 a REG_INC element is added to the insn's REG_NOTES list.
106
107 life_analysis fills in certain vectors containing information about
108 register usage: reg_n_refs, reg_n_deaths, reg_n_sets, reg_live_length,
109 reg_n_calls_crosses and reg_basic_block. */
110 \f
111 #include <stdio.h>
112 #include "config.h"
113 #include "rtl.h"
114 #include "basic-block.h"
115 #include "insn-config.h"
116 #include "regs.h"
117 #include "hard-reg-set.h"
118 #include "flags.h"
119 #include "output.h"
120
121 #include "obstack.h"
122 #define obstack_chunk_alloc xmalloc
123 #define obstack_chunk_free free
124
125 /* List of labels that must never be deleted. */
126 extern rtx forced_labels;
127
128 /* Get the basic block number of an insn.
129 This info should not be expected to remain available
130 after the end of life_analysis. */
131
132 /* This is the limit of the allocated space in the following two arrays. */
133
134 static int max_uid_for_flow;
135
136 #define BLOCK_NUM(INSN) uid_block_number[INSN_UID (INSN)]
137
138 /* This is where the BLOCK_NUM values are really stored.
139 This is set up by find_basic_blocks and used there and in life_analysis,
140 and then freed. */
141
142 static int *uid_block_number;
143
144 /* INSN_VOLATILE (insn) is 1 if the insn refers to anything volatile. */
145
146 #define INSN_VOLATILE(INSN) uid_volatile[INSN_UID (INSN)]
147 static char *uid_volatile;
148
149 /* Number of basic blocks in the current function. */
150
151 int n_basic_blocks;
152
153 /* Maximum register number used in this function, plus one. */
154
155 int max_regno;
156
157 /* Maximum number of SCRATCH rtx's used in any basic block of this
158 function. */
159
160 int max_scratch;
161
162 /* Number of SCRATCH rtx's in the current block. */
163
164 static int num_scratch;
165
166 /* Indexed by n, gives number of basic block that (REG n) is used in.
167 If the value is REG_BLOCK_GLOBAL (-2),
168 it means (REG n) is used in more than one basic block.
169 REG_BLOCK_UNKNOWN (-1) means it hasn't been seen yet so we don't know.
170 This information remains valid for the rest of the compilation
171 of the current function; it is used to control register allocation. */
172
173 int *reg_basic_block;
174
175 /* Indexed by n, gives number of times (REG n) is used or set, each
176 weighted by its loop-depth.
177 This information remains valid for the rest of the compilation
178 of the current function; it is used to control register allocation. */
179
180 int *reg_n_refs;
181
182 /* Indexed by N; says whether a pseudo register N was ever used
183 within a SUBREG that changes the size of the reg. Some machines prohibit
184 such objects to be in certain (usually floating-point) registers. */
185
186 char *reg_changes_size;
187
188 /* Indexed by N, gives number of places register N dies.
189 This information remains valid for the rest of the compilation
190 of the current function; it is used to control register allocation. */
191
192 short *reg_n_deaths;
193
194 /* Indexed by N, gives 1 if that reg is live across any CALL_INSNs.
195 This information remains valid for the rest of the compilation
196 of the current function; it is used to control register allocation. */
197
198 int *reg_n_calls_crossed;
199
200 /* Total number of instructions at which (REG n) is live.
201 The larger this is, the less priority (REG n) gets for
202 allocation in a real register.
203 This information remains valid for the rest of the compilation
204 of the current function; it is used to control register allocation.
205
206 local-alloc.c may alter this number to change the priority.
207
208 Negative values are special.
209 -1 is used to mark a pseudo reg which has a constant or memory equivalent
210 and is used infrequently enough that it should not get a hard register.
211 -2 is used to mark a pseudo reg for a parameter, when a frame pointer
212 is not required. global.c makes an allocno for this but does
213 not try to assign a hard register to it. */
214
215 int *reg_live_length;
216
217 /* Element N is the next insn that uses (hard or pseudo) register number N
218 within the current basic block; or zero, if there is no such insn.
219 This is valid only during the final backward scan in propagate_block. */
220
221 static rtx *reg_next_use;
222
223 /* Size of a regset for the current function,
224 in (1) bytes and (2) elements. */
225
226 int regset_bytes;
227 int regset_size;
228
229 /* Element N is first insn in basic block N.
230 This info lasts until we finish compiling the function. */
231
232 rtx *basic_block_head;
233
234 /* Element N is last insn in basic block N.
235 This info lasts until we finish compiling the function. */
236
237 rtx *basic_block_end;
238
239 /* Element N is a regset describing the registers live
240 at the start of basic block N.
241 This info lasts until we finish compiling the function. */
242
243 regset *basic_block_live_at_start;
244
245 /* Regset of regs live when calls to `setjmp'-like functions happen. */
246
247 regset regs_live_at_setjmp;
248
249 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
250 that have to go in the same hard reg.
251 The first two regs in the list are a pair, and the next two
252 are another pair, etc. */
253 rtx regs_may_share;
254
255 /* Element N is nonzero if control can drop into basic block N
256 from the preceding basic block. Freed after life_analysis. */
257
258 static char *basic_block_drops_in;
259
260 /* Element N is depth within loops of the last insn in basic block number N.
261 Freed after life_analysis. */
262
263 static short *basic_block_loop_depth;
264
265 /* Element N nonzero if basic block N can actually be reached.
266 Vector exists only during find_basic_blocks. */
267
268 static char *block_live_static;
269
270 /* Depth within loops of basic block being scanned for lifetime analysis,
271 plus one. This is the weight attached to references to registers. */
272
273 static int loop_depth;
274
275 /* During propagate_block, this is non-zero if the value of CC0 is live. */
276
277 static int cc0_live;
278
279 /* During propagate_block, this contains the last MEM stored into. It
280 is used to eliminate consecutive stores to the same location. */
281
282 static rtx last_mem_set;
283
284 /* Set of registers that may be eliminable. These are handled specially
285 in updating regs_ever_live. */
286
287 static HARD_REG_SET elim_reg_set;
288
289 /* Forward declarations */
290 static void find_basic_blocks PROTO((rtx, rtx));
291 static int jmp_uses_reg_or_mem PROTO((rtx));
292 static void mark_label_ref PROTO((rtx, rtx, int));
293 static void life_analysis PROTO((rtx, int));
294 void allocate_for_life_analysis PROTO((void));
295 static void init_regset_vector PROTO((regset *, regset, int, int));
296 static void propagate_block PROTO((regset, rtx, rtx, int,
297 regset, int));
298 static rtx flow_delete_insn PROTO((rtx));
299 static int insn_dead_p PROTO((rtx, regset, int));
300 static int libcall_dead_p PROTO((rtx, regset, rtx, rtx));
301 static void mark_set_regs PROTO((regset, regset, rtx,
302 rtx, regset));
303 static void mark_set_1 PROTO((regset, regset, rtx,
304 rtx, regset));
305 static void find_auto_inc PROTO((regset, rtx, rtx));
306 static void mark_used_regs PROTO((regset, regset, rtx, int, rtx));
307 static int try_pre_increment_1 PROTO((rtx));
308 static int try_pre_increment PROTO((rtx, rtx, HOST_WIDE_INT));
309 static rtx find_use_as_address PROTO((rtx, rtx, HOST_WIDE_INT));
310 void dump_flow_info PROTO((FILE *));
311 \f
312 /* Find basic blocks of the current function and perform data flow analysis.
313 F is the first insn of the function and NREGS the number of register numbers
314 in use. */
315
316 void
317 flow_analysis (f, nregs, file)
318 rtx f;
319 int nregs;
320 FILE *file;
321 {
322 register rtx insn;
323 register int i;
324 rtx nonlocal_label_list = nonlocal_label_rtx_list ();
325
326 #ifdef ELIMINABLE_REGS
327 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
328 #endif
329
330 /* Record which registers will be eliminated. We use this in
331 mark_used_regs. */
332
333 CLEAR_HARD_REG_SET (elim_reg_set);
334
335 #ifdef ELIMINABLE_REGS
336 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
337 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
338 #else
339 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
340 #endif
341
342 /* Count the basic blocks. Also find maximum insn uid value used. */
343
344 {
345 register RTX_CODE prev_code = JUMP_INSN;
346 register RTX_CODE code;
347
348 max_uid_for_flow = 0;
349
350 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
351 {
352 code = GET_CODE (insn);
353 if (INSN_UID (insn) > max_uid_for_flow)
354 max_uid_for_flow = INSN_UID (insn);
355 if (code == CODE_LABEL
356 || (GET_RTX_CLASS (code) == 'i'
357 && (prev_code == JUMP_INSN
358 || (prev_code == CALL_INSN
359 && nonlocal_label_list != 0)
360 || prev_code == BARRIER)))
361 i++;
362
363 if (code == CALL_INSN && find_reg_note (insn, REG_RETVAL, NULL_RTX))
364 code = INSN;
365
366 if (code != NOTE)
367 prev_code = code;
368 }
369 }
370
371 #ifdef AUTO_INC_DEC
372 /* Leave space for insns we make in some cases for auto-inc. These cases
373 are rare, so we don't need too much space. */
374 max_uid_for_flow += max_uid_for_flow / 10;
375 #endif
376
377 /* Allocate some tables that last till end of compiling this function
378 and some needed only in find_basic_blocks and life_analysis. */
379
380 n_basic_blocks = i;
381 basic_block_head = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
382 basic_block_end = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
383 basic_block_drops_in = (char *) alloca (n_basic_blocks);
384 basic_block_loop_depth = (short *) alloca (n_basic_blocks * sizeof (short));
385 uid_block_number
386 = (int *) alloca ((max_uid_for_flow + 1) * sizeof (int));
387 uid_volatile = (char *) alloca (max_uid_for_flow + 1);
388 bzero (uid_volatile, max_uid_for_flow + 1);
389
390 find_basic_blocks (f, nonlocal_label_list);
391 life_analysis (f, nregs);
392 if (file)
393 dump_flow_info (file);
394
395 basic_block_drops_in = 0;
396 uid_block_number = 0;
397 basic_block_loop_depth = 0;
398 }
399 \f
400 /* Find all basic blocks of the function whose first insn is F.
401 Store the correct data in the tables that describe the basic blocks,
402 set up the chains of references for each CODE_LABEL, and
403 delete any entire basic blocks that cannot be reached.
404
405 NONLOCAL_LABEL_LIST is the same local variable from flow_analysis. */
406
407 static void
408 find_basic_blocks (f, nonlocal_label_list)
409 rtx f, nonlocal_label_list;
410 {
411 register rtx insn;
412 register int i;
413 register char *block_live = (char *) alloca (n_basic_blocks);
414 register char *block_marked = (char *) alloca (n_basic_blocks);
415 /* List of label_refs to all labels whose addresses are taken
416 and used as data. */
417 rtx label_value_list;
418 rtx x, note;
419 enum rtx_code prev_code, code;
420 int depth, pass;
421
422 pass = 1;
423 restart:
424
425 label_value_list = 0;
426 block_live_static = block_live;
427 bzero (block_live, n_basic_blocks);
428 bzero (block_marked, n_basic_blocks);
429
430 /* Initialize with just block 0 reachable and no blocks marked. */
431 if (n_basic_blocks > 0)
432 block_live[0] = 1;
433
434 /* Initialize the ref chain of each label to 0. Record where all the
435 blocks start and end and their depth in loops. For each insn, record
436 the block it is in. Also mark as reachable any blocks headed by labels
437 that must not be deleted. */
438
439 for (insn = f, i = -1, prev_code = JUMP_INSN, depth = 1;
440 insn; insn = NEXT_INSN (insn))
441 {
442 code = GET_CODE (insn);
443 if (code == NOTE)
444 {
445 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
446 depth++;
447 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
448 depth--;
449 }
450
451 /* A basic block starts at label, or after something that can jump. */
452 else if (code == CODE_LABEL
453 || (GET_RTX_CLASS (code) == 'i'
454 && (prev_code == JUMP_INSN
455 || (prev_code == CALL_INSN
456 && nonlocal_label_list != 0
457 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
458 || prev_code == BARRIER)))
459 {
460 basic_block_head[++i] = insn;
461 basic_block_end[i] = insn;
462 basic_block_loop_depth[i] = depth;
463
464 if (code == CODE_LABEL)
465 {
466 LABEL_REFS (insn) = insn;
467 /* Any label that cannot be deleted
468 is considered to start a reachable block. */
469 if (LABEL_PRESERVE_P (insn))
470 block_live[i] = 1;
471 }
472 }
473
474 else if (GET_RTX_CLASS (code) == 'i')
475 {
476 basic_block_end[i] = insn;
477 basic_block_loop_depth[i] = depth;
478 }
479
480 if (GET_RTX_CLASS (code) == 'i')
481 {
482 /* Make a list of all labels referred to other than by jumps. */
483 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
484 if (REG_NOTE_KIND (note) == REG_LABEL)
485 label_value_list = gen_rtx (EXPR_LIST, VOIDmode, XEXP (note, 0),
486 label_value_list);
487 }
488
489 BLOCK_NUM (insn) = i;
490
491 if (code != NOTE)
492 prev_code = code;
493 }
494
495 /* During the second pass, `n_basic_blocks' is only an upper bound.
496 Only perform the sanity check for the first pass, and on the second
497 pass ensure `n_basic_blocks' is set to the correct value. */
498 if (pass == 1 && i + 1 != n_basic_blocks)
499 abort ();
500 n_basic_blocks = i + 1;
501
502 /* Don't delete the labels (in this function)
503 that are referenced by non-jump instructions. */
504
505 for (x = label_value_list; x; x = XEXP (x, 1))
506 if (! LABEL_REF_NONLOCAL_P (x))
507 block_live[BLOCK_NUM (XEXP (x, 0))] = 1;
508
509 for (x = forced_labels; x; x = XEXP (x, 1))
510 if (! LABEL_REF_NONLOCAL_P (x))
511 block_live[BLOCK_NUM (XEXP (x, 0))] = 1;
512
513 /* Record which basic blocks control can drop in to. */
514
515 for (i = 0; i < n_basic_blocks; i++)
516 {
517 for (insn = PREV_INSN (basic_block_head[i]);
518 insn && GET_CODE (insn) == NOTE; insn = PREV_INSN (insn))
519 ;
520
521 basic_block_drops_in[i] = insn && GET_CODE (insn) != BARRIER;
522 }
523
524 /* Now find which basic blocks can actually be reached
525 and put all jump insns' LABEL_REFS onto the ref-chains
526 of their target labels. */
527
528 if (n_basic_blocks > 0)
529 {
530 int something_marked = 1;
531 int deleted;
532
533 /* Find all indirect jump insns and mark them as possibly jumping to all
534 the labels whose addresses are explicitly used. This is because,
535 when there are computed gotos, we can't tell which labels they jump
536 to, of all the possibilities.
537
538 Tablejumps and casesi insns are OK and we can recognize them by
539 a (use (label_ref)). */
540
541 for (insn = f; insn; insn = NEXT_INSN (insn))
542 if (GET_CODE (insn) == JUMP_INSN)
543 {
544 rtx pat = PATTERN (insn);
545 int computed_jump = 0;
546
547 if (GET_CODE (pat) == PARALLEL)
548 {
549 int len = XVECLEN (pat, 0);
550 int has_use_labelref = 0;
551
552 for (i = len - 1; i >= 0; i--)
553 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
554 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
555 == LABEL_REF))
556 has_use_labelref = 1;
557
558 if (! has_use_labelref)
559 for (i = len - 1; i >= 0; i--)
560 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
561 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
562 && jmp_uses_reg_or_mem (SET_SRC (XVECEXP (pat, 0, i))))
563 computed_jump = 1;
564 }
565 else if (GET_CODE (pat) == SET
566 && SET_DEST (pat) == pc_rtx
567 && jmp_uses_reg_or_mem (SET_SRC (pat)))
568 computed_jump = 1;
569
570 if (computed_jump)
571 {
572 for (x = label_value_list; x; x = XEXP (x, 1))
573 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
574 insn, 0);
575
576 for (x = forced_labels; x; x = XEXP (x, 1))
577 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
578 insn, 0);
579 }
580 }
581
582 /* Find all call insns and mark them as possibly jumping
583 to all the nonlocal goto handler labels. */
584
585 for (insn = f; insn; insn = NEXT_INSN (insn))
586 if (GET_CODE (insn) == CALL_INSN
587 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
588 {
589 for (x = nonlocal_label_list; x; x = XEXP (x, 1))
590 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
591 insn, 0);
592
593 /* ??? This could be made smarter:
594 in some cases it's possible to tell that certain
595 calls will not do a nonlocal goto.
596
597 For example, if the nested functions that do the
598 nonlocal gotos do not have their addresses taken, then
599 only calls to those functions or to other nested
600 functions that use them could possibly do nonlocal
601 gotos. */
602 }
603
604 /* Pass over all blocks, marking each block that is reachable
605 and has not yet been marked.
606 Keep doing this until, in one pass, no blocks have been marked.
607 Then blocks_live and blocks_marked are identical and correct.
608 In addition, all jumps actually reachable have been marked. */
609
610 while (something_marked)
611 {
612 something_marked = 0;
613 for (i = 0; i < n_basic_blocks; i++)
614 if (block_live[i] && !block_marked[i])
615 {
616 block_marked[i] = 1;
617 something_marked = 1;
618 if (i + 1 < n_basic_blocks && basic_block_drops_in[i + 1])
619 block_live[i + 1] = 1;
620 insn = basic_block_end[i];
621 if (GET_CODE (insn) == JUMP_INSN)
622 mark_label_ref (PATTERN (insn), insn, 0);
623 }
624 }
625
626 /* ??? See if we have a "live" basic block that is not reachable.
627 This can happen if it is headed by a label that is preserved or
628 in one of the label lists, but no call or computed jump is in
629 the loop. It's not clear if we can delete the block or not,
630 but don't for now. However, we will mess up register status if
631 it remains unreachable, so add a fake reachability from the
632 previous block. */
633
634 for (i = 1; i < n_basic_blocks; i++)
635 if (block_live[i] && ! basic_block_drops_in[i]
636 && GET_CODE (basic_block_head[i]) == CODE_LABEL
637 && LABEL_REFS (basic_block_head[i]) == basic_block_head[i])
638 basic_block_drops_in[i] = 1;
639
640 /* Now delete the code for any basic blocks that can't be reached.
641 They can occur because jump_optimize does not recognize
642 unreachable loops as unreachable. */
643
644 deleted = 0;
645 for (i = 0; i < n_basic_blocks; i++)
646 if (!block_live[i])
647 {
648 deleted++;
649
650 /* Delete the insns in a (non-live) block. We physically delete
651 every non-note insn except the start and end (so
652 basic_block_head/end needn't be updated), we turn the latter
653 into NOTE_INSN_DELETED notes.
654 We use to "delete" the insns by turning them into notes, but
655 we may be deleting lots of insns that subsequent passes would
656 otherwise have to process. Secondly, lots of deleted blocks in
657 a row can really slow down propagate_block since it will
658 otherwise process insn-turned-notes multiple times when it
659 looks for loop begin/end notes. */
660 if (basic_block_head[i] != basic_block_end[i])
661 {
662 /* It would be quicker to delete all of these with a single
663 unchaining, rather than one at a time, but we need to keep
664 the NOTE's. */
665 insn = NEXT_INSN (basic_block_head[i]);
666 while (insn != basic_block_end[i])
667 {
668 if (GET_CODE (insn) == BARRIER)
669 abort ();
670 else if (GET_CODE (insn) != NOTE)
671 insn = flow_delete_insn (insn);
672 else
673 insn = NEXT_INSN (insn);
674 }
675 }
676 insn = basic_block_head[i];
677 if (GET_CODE (insn) != NOTE)
678 {
679 /* Turn the head into a deleted insn note. */
680 if (GET_CODE (insn) == BARRIER)
681 abort ();
682 PUT_CODE (insn, NOTE);
683 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
684 NOTE_SOURCE_FILE (insn) = 0;
685 }
686 insn = basic_block_end[i];
687 if (GET_CODE (insn) != NOTE)
688 {
689 /* Turn the tail into a deleted insn note. */
690 if (GET_CODE (insn) == BARRIER)
691 abort ();
692 PUT_CODE (insn, NOTE);
693 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
694 NOTE_SOURCE_FILE (insn) = 0;
695 }
696 /* BARRIERs are between basic blocks, not part of one.
697 Delete a BARRIER if the preceding jump is deleted.
698 We cannot alter a BARRIER into a NOTE
699 because it is too short; but we can really delete
700 it because it is not part of a basic block. */
701 if (NEXT_INSN (insn) != 0
702 && GET_CODE (NEXT_INSN (insn)) == BARRIER)
703 delete_insn (NEXT_INSN (insn));
704
705 /* Each time we delete some basic blocks,
706 see if there is a jump around them that is
707 being turned into a no-op. If so, delete it. */
708
709 if (block_live[i - 1])
710 {
711 register int j;
712 for (j = i + 1; j < n_basic_blocks; j++)
713 if (block_live[j])
714 {
715 rtx label;
716 insn = basic_block_end[i - 1];
717 if (GET_CODE (insn) == JUMP_INSN
718 /* An unconditional jump is the only possibility
719 we must check for, since a conditional one
720 would make these blocks live. */
721 && simplejump_p (insn)
722 && (label = XEXP (SET_SRC (PATTERN (insn)), 0), 1)
723 && INSN_UID (label) != 0
724 && BLOCK_NUM (label) == j)
725 {
726 PUT_CODE (insn, NOTE);
727 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
728 NOTE_SOURCE_FILE (insn) = 0;
729 if (GET_CODE (NEXT_INSN (insn)) != BARRIER)
730 abort ();
731 delete_insn (NEXT_INSN (insn));
732 }
733 break;
734 }
735 }
736 }
737
738 /* There are pathological cases where one function calling hundreds of
739 nested inline functions can generate lots and lots of unreachable
740 blocks that jump can't delete. Since we don't use sparse matrices
741 a lot of memory will be needed to compile such functions.
742 Implementing sparse matrices is a fair bit of work and it is not
743 clear that they win more than they lose (we don't want to
744 unnecessarily slow down compilation of normal code). By making
745 another pass for the pathological case, we can greatly speed up
746 their compilation without hurting normal code. This works because
747 all the insns in the unreachable blocks have either been deleted or
748 turned into notes.
749 Note that we're talking about reducing memory usage by 10's of
750 megabytes and reducing compilation time by several minutes. */
751 /* ??? The choice of when to make another pass is a bit arbitrary,
752 and was derived from empirical data. */
753 if (pass == 1
754 && deleted > 200)
755 {
756 pass++;
757 n_basic_blocks -= deleted;
758 /* `n_basic_blocks' may not be correct at this point: two previously
759 separate blocks may now be merged. That's ok though as we
760 recalculate it during the second pass. It certainly can't be
761 any larger than the current value. */
762 goto restart;
763 }
764 }
765 }
766 \f
767 /* Subroutines of find_basic_blocks. */
768
769 /* Return 1 if X, the SRC_SRC of SET of (pc) contain a REG or MEM that is
770 not in the constant pool and not in the condition of an IF_THEN_ELSE. */
771
772 static int
773 jmp_uses_reg_or_mem (x)
774 rtx x;
775 {
776 enum rtx_code code = GET_CODE (x);
777 int i, j;
778 char *fmt;
779
780 switch (code)
781 {
782 case CONST:
783 case LABEL_REF:
784 case PC:
785 return 0;
786
787 case REG:
788 return 1;
789
790 case MEM:
791 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
792 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
793
794 case IF_THEN_ELSE:
795 return (jmp_uses_reg_or_mem (XEXP (x, 1))
796 || jmp_uses_reg_or_mem (XEXP (x, 2)));
797
798 case PLUS: case MINUS: case MULT:
799 return (jmp_uses_reg_or_mem (XEXP (x, 0))
800 || jmp_uses_reg_or_mem (XEXP (x, 1)));
801 }
802
803 fmt = GET_RTX_FORMAT (code);
804 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
805 {
806 if (fmt[i] == 'e'
807 && jmp_uses_reg_or_mem (XEXP (x, i)))
808 return 1;
809
810 if (fmt[i] == 'E')
811 for (j = 0; j < XVECLEN (x, i); j++)
812 if (jmp_uses_reg_or_mem (XVECEXP (x, i, j)))
813 return 1;
814 }
815
816 return 0;
817 }
818
819 /* Check expression X for label references;
820 if one is found, add INSN to the label's chain of references.
821
822 CHECKDUP means check for and avoid creating duplicate references
823 from the same insn. Such duplicates do no serious harm but
824 can slow life analysis. CHECKDUP is set only when duplicates
825 are likely. */
826
827 static void
828 mark_label_ref (x, insn, checkdup)
829 rtx x, insn;
830 int checkdup;
831 {
832 register RTX_CODE code;
833 register int i;
834 register char *fmt;
835
836 /* We can be called with NULL when scanning label_value_list. */
837 if (x == 0)
838 return;
839
840 code = GET_CODE (x);
841 if (code == LABEL_REF)
842 {
843 register rtx label = XEXP (x, 0);
844 register rtx y;
845 if (GET_CODE (label) != CODE_LABEL)
846 abort ();
847 /* If the label was never emitted, this insn is junk,
848 but avoid a crash trying to refer to BLOCK_NUM (label).
849 This can happen as a result of a syntax error
850 and a diagnostic has already been printed. */
851 if (INSN_UID (label) == 0)
852 return;
853 CONTAINING_INSN (x) = insn;
854 /* if CHECKDUP is set, check for duplicate ref from same insn
855 and don't insert. */
856 if (checkdup)
857 for (y = LABEL_REFS (label); y != label; y = LABEL_NEXTREF (y))
858 if (CONTAINING_INSN (y) == insn)
859 return;
860 LABEL_NEXTREF (x) = LABEL_REFS (label);
861 LABEL_REFS (label) = x;
862 block_live_static[BLOCK_NUM (label)] = 1;
863 return;
864 }
865
866 fmt = GET_RTX_FORMAT (code);
867 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
868 {
869 if (fmt[i] == 'e')
870 mark_label_ref (XEXP (x, i), insn, 0);
871 if (fmt[i] == 'E')
872 {
873 register int j;
874 for (j = 0; j < XVECLEN (x, i); j++)
875 mark_label_ref (XVECEXP (x, i, j), insn, 1);
876 }
877 }
878 }
879
880 /* Delete INSN by patching it out.
881 Return the next insn. */
882
883 static rtx
884 flow_delete_insn (insn)
885 rtx insn;
886 {
887 /* ??? For the moment we assume we don't have to watch for NULLs here
888 since the start/end of basic blocks aren't deleted like this. */
889 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
890 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
891 return NEXT_INSN (insn);
892 }
893 \f
894 /* Determine which registers are live at the start of each
895 basic block of the function whose first insn is F.
896 NREGS is the number of registers used in F.
897 We allocate the vector basic_block_live_at_start
898 and the regsets that it points to, and fill them with the data.
899 regset_size and regset_bytes are also set here. */
900
901 static void
902 life_analysis (f, nregs)
903 rtx f;
904 int nregs;
905 {
906 register regset tem;
907 int first_pass;
908 int changed;
909 /* For each basic block, a bitmask of regs
910 live on exit from the block. */
911 regset *basic_block_live_at_end;
912 /* For each basic block, a bitmask of regs
913 live on entry to a successor-block of this block.
914 If this does not match basic_block_live_at_end,
915 that must be updated, and the block must be rescanned. */
916 regset *basic_block_new_live_at_end;
917 /* For each basic block, a bitmask of regs
918 whose liveness at the end of the basic block
919 can make a difference in which regs are live on entry to the block.
920 These are the regs that are set within the basic block,
921 possibly excluding those that are used after they are set. */
922 regset *basic_block_significant;
923 register int i;
924 rtx insn;
925
926 struct obstack flow_obstack;
927
928 gcc_obstack_init (&flow_obstack);
929
930 max_regno = nregs;
931
932 bzero (regs_ever_live, sizeof regs_ever_live);
933
934 /* Allocate and zero out many data structures
935 that will record the data from lifetime analysis. */
936
937 allocate_for_life_analysis ();
938
939 reg_next_use = (rtx *) alloca (nregs * sizeof (rtx));
940 bzero ((char *) reg_next_use, nregs * sizeof (rtx));
941
942 /* Set up several regset-vectors used internally within this function.
943 Their meanings are documented above, with their declarations. */
944
945 basic_block_live_at_end
946 = (regset *) alloca (n_basic_blocks * sizeof (regset));
947
948 /* Don't use alloca since that leads to a crash rather than an error message
949 if there isn't enough space.
950 Don't use oballoc since we may need to allocate other things during
951 this function on the temporary obstack. */
952 tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
953 bzero ((char *) tem, n_basic_blocks * regset_bytes);
954 init_regset_vector (basic_block_live_at_end, tem,
955 n_basic_blocks, regset_bytes);
956
957 basic_block_new_live_at_end
958 = (regset *) alloca (n_basic_blocks * sizeof (regset));
959 tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
960 bzero ((char *) tem, n_basic_blocks * regset_bytes);
961 init_regset_vector (basic_block_new_live_at_end, tem,
962 n_basic_blocks, regset_bytes);
963
964 basic_block_significant
965 = (regset *) alloca (n_basic_blocks * sizeof (regset));
966 tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
967 bzero ((char *) tem, n_basic_blocks * regset_bytes);
968 init_regset_vector (basic_block_significant, tem,
969 n_basic_blocks, regset_bytes);
970
971 /* Record which insns refer to any volatile memory
972 or for any reason can't be deleted just because they are dead stores.
973 Also, delete any insns that copy a register to itself. */
974
975 for (insn = f; insn; insn = NEXT_INSN (insn))
976 {
977 enum rtx_code code1 = GET_CODE (insn);
978 if (code1 == CALL_INSN)
979 INSN_VOLATILE (insn) = 1;
980 else if (code1 == INSN || code1 == JUMP_INSN)
981 {
982 /* Delete (in effect) any obvious no-op moves. */
983 if (GET_CODE (PATTERN (insn)) == SET
984 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
985 && GET_CODE (SET_SRC (PATTERN (insn))) == REG
986 && REGNO (SET_DEST (PATTERN (insn))) ==
987 REGNO (SET_SRC (PATTERN (insn)))
988 /* Insns carrying these notes are useful later on. */
989 && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
990 {
991 PUT_CODE (insn, NOTE);
992 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
993 NOTE_SOURCE_FILE (insn) = 0;
994 }
995 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
996 {
997 /* If nothing but SETs of registers to themselves,
998 this insn can also be deleted. */
999 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1000 {
1001 rtx tem = XVECEXP (PATTERN (insn), 0, i);
1002
1003 if (GET_CODE (tem) == USE
1004 || GET_CODE (tem) == CLOBBER)
1005 continue;
1006
1007 if (GET_CODE (tem) != SET
1008 || GET_CODE (SET_DEST (tem)) != REG
1009 || GET_CODE (SET_SRC (tem)) != REG
1010 || REGNO (SET_DEST (tem)) != REGNO (SET_SRC (tem)))
1011 break;
1012 }
1013
1014 if (i == XVECLEN (PATTERN (insn), 0)
1015 /* Insns carrying these notes are useful later on. */
1016 && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
1017 {
1018 PUT_CODE (insn, NOTE);
1019 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1020 NOTE_SOURCE_FILE (insn) = 0;
1021 }
1022 else
1023 INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
1024 }
1025 else if (GET_CODE (PATTERN (insn)) != USE)
1026 INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
1027 /* A SET that makes space on the stack cannot be dead.
1028 (Such SETs occur only for allocating variable-size data,
1029 so they will always have a PLUS or MINUS according to the
1030 direction of stack growth.)
1031 Even if this function never uses this stack pointer value,
1032 signal handlers do! */
1033 else if (code1 == INSN && GET_CODE (PATTERN (insn)) == SET
1034 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1035 #ifdef STACK_GROWS_DOWNWARD
1036 && GET_CODE (SET_SRC (PATTERN (insn))) == MINUS
1037 #else
1038 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1039 #endif
1040 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx)
1041 INSN_VOLATILE (insn) = 1;
1042 }
1043 }
1044
1045 if (n_basic_blocks > 0)
1046 #ifdef EXIT_IGNORE_STACK
1047 if (! EXIT_IGNORE_STACK
1048 || (! FRAME_POINTER_REQUIRED && flag_omit_frame_pointer))
1049 #endif
1050 {
1051 /* If exiting needs the right stack value,
1052 consider the stack pointer live at the end of the function. */
1053 basic_block_live_at_end[n_basic_blocks - 1]
1054 [STACK_POINTER_REGNUM / REGSET_ELT_BITS]
1055 |= (REGSET_ELT_TYPE) 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
1056 basic_block_new_live_at_end[n_basic_blocks - 1]
1057 [STACK_POINTER_REGNUM / REGSET_ELT_BITS]
1058 |= (REGSET_ELT_TYPE) 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
1059 }
1060
1061 /* Mark the frame pointer is needed at the end of the function. If
1062 we end up eliminating it, it will be removed from the live list
1063 of each basic block by reload. */
1064
1065 if (n_basic_blocks > 0)
1066 {
1067 basic_block_live_at_end[n_basic_blocks - 1]
1068 [FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
1069 |= (REGSET_ELT_TYPE) 1 << (FRAME_POINTER_REGNUM % REGSET_ELT_BITS);
1070 basic_block_new_live_at_end[n_basic_blocks - 1]
1071 [FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
1072 |= (REGSET_ELT_TYPE) 1 << (FRAME_POINTER_REGNUM % REGSET_ELT_BITS);
1073 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1074 /* If they are different, also mark the hard frame pointer as live */
1075 basic_block_live_at_end[n_basic_blocks - 1]
1076 [HARD_FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
1077 |= (REGSET_ELT_TYPE) 1 << (HARD_FRAME_POINTER_REGNUM
1078 % REGSET_ELT_BITS);
1079 basic_block_new_live_at_end[n_basic_blocks - 1]
1080 [HARD_FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
1081 |= (REGSET_ELT_TYPE) 1 << (HARD_FRAME_POINTER_REGNUM
1082 % REGSET_ELT_BITS);
1083 #endif
1084 }
1085
1086 /* Mark all global registers as being live at the end of the function
1087 since they may be referenced by our caller. */
1088
1089 if (n_basic_blocks > 0)
1090 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1091 if (global_regs[i])
1092 {
1093 basic_block_live_at_end[n_basic_blocks - 1]
1094 [i / REGSET_ELT_BITS]
1095 |= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
1096 basic_block_new_live_at_end[n_basic_blocks - 1]
1097 [i / REGSET_ELT_BITS]
1098 |= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
1099 }
1100
1101 /* Propagate life info through the basic blocks
1102 around the graph of basic blocks.
1103
1104 This is a relaxation process: each time a new register
1105 is live at the end of the basic block, we must scan the block
1106 to determine which registers are, as a consequence, live at the beginning
1107 of that block. These registers must then be marked live at the ends
1108 of all the blocks that can transfer control to that block.
1109 The process continues until it reaches a fixed point. */
1110
1111 first_pass = 1;
1112 changed = 1;
1113 while (changed)
1114 {
1115 changed = 0;
1116 for (i = n_basic_blocks - 1; i >= 0; i--)
1117 {
1118 int consider = first_pass;
1119 int must_rescan = first_pass;
1120 register int j;
1121
1122 if (!first_pass)
1123 {
1124 /* Set CONSIDER if this block needs thinking about at all
1125 (that is, if the regs live now at the end of it
1126 are not the same as were live at the end of it when
1127 we last thought about it).
1128 Set must_rescan if it needs to be thought about
1129 instruction by instruction (that is, if any additional
1130 reg that is live at the end now but was not live there before
1131 is one of the significant regs of this basic block). */
1132
1133 for (j = 0; j < regset_size; j++)
1134 {
1135 register REGSET_ELT_TYPE x
1136 = (basic_block_new_live_at_end[i][j]
1137 & ~basic_block_live_at_end[i][j]);
1138 if (x)
1139 consider = 1;
1140 if (x & basic_block_significant[i][j])
1141 {
1142 must_rescan = 1;
1143 consider = 1;
1144 break;
1145 }
1146 }
1147
1148 if (! consider)
1149 continue;
1150 }
1151
1152 /* The live_at_start of this block may be changing,
1153 so another pass will be required after this one. */
1154 changed = 1;
1155
1156 if (! must_rescan)
1157 {
1158 /* No complete rescan needed;
1159 just record those variables newly known live at end
1160 as live at start as well. */
1161 for (j = 0; j < regset_size; j++)
1162 {
1163 register REGSET_ELT_TYPE x
1164 = (basic_block_new_live_at_end[i][j]
1165 & ~basic_block_live_at_end[i][j]);
1166 basic_block_live_at_start[i][j] |= x;
1167 basic_block_live_at_end[i][j] |= x;
1168 }
1169 }
1170 else
1171 {
1172 /* Update the basic_block_live_at_start
1173 by propagation backwards through the block. */
1174 bcopy ((char *) basic_block_new_live_at_end[i],
1175 (char *) basic_block_live_at_end[i], regset_bytes);
1176 bcopy ((char *) basic_block_live_at_end[i],
1177 (char *) basic_block_live_at_start[i], regset_bytes);
1178 propagate_block (basic_block_live_at_start[i],
1179 basic_block_head[i], basic_block_end[i], 0,
1180 first_pass ? basic_block_significant[i]
1181 : (regset) 0,
1182 i);
1183 }
1184
1185 {
1186 register rtx jump, head;
1187
1188 /* Update the basic_block_new_live_at_end's of the block
1189 that falls through into this one (if any). */
1190 head = basic_block_head[i];
1191 if (basic_block_drops_in[i])
1192 {
1193 register int j;
1194 for (j = 0; j < regset_size; j++)
1195 basic_block_new_live_at_end[i-1][j]
1196 |= basic_block_live_at_start[i][j];
1197 }
1198
1199 /* Update the basic_block_new_live_at_end's of
1200 all the blocks that jump to this one. */
1201 if (GET_CODE (head) == CODE_LABEL)
1202 for (jump = LABEL_REFS (head);
1203 jump != head;
1204 jump = LABEL_NEXTREF (jump))
1205 {
1206 register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
1207 register int j;
1208 for (j = 0; j < regset_size; j++)
1209 basic_block_new_live_at_end[from_block][j]
1210 |= basic_block_live_at_start[i][j];
1211 }
1212 }
1213 #ifdef USE_C_ALLOCA
1214 alloca (0);
1215 #endif
1216 }
1217 first_pass = 0;
1218 }
1219
1220 /* The only pseudos that are live at the beginning of the function are
1221 those that were not set anywhere in the function. local-alloc doesn't
1222 know how to handle these correctly, so mark them as not local to any
1223 one basic block. */
1224
1225 if (n_basic_blocks > 0)
1226 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1227 if (basic_block_live_at_start[0][i / REGSET_ELT_BITS]
1228 & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS)))
1229 reg_basic_block[i] = REG_BLOCK_GLOBAL;
1230
1231 /* Now the life information is accurate.
1232 Make one more pass over each basic block
1233 to delete dead stores, create autoincrement addressing
1234 and record how many times each register is used, is set, or dies.
1235
1236 To save time, we operate directly in basic_block_live_at_end[i],
1237 thus destroying it (in fact, converting it into a copy of
1238 basic_block_live_at_start[i]). This is ok now because
1239 basic_block_live_at_end[i] is no longer used past this point. */
1240
1241 max_scratch = 0;
1242
1243 for (i = 0; i < n_basic_blocks; i++)
1244 {
1245 propagate_block (basic_block_live_at_end[i],
1246 basic_block_head[i], basic_block_end[i], 1,
1247 (regset) 0, i);
1248 #ifdef USE_C_ALLOCA
1249 alloca (0);
1250 #endif
1251 }
1252
1253 #if 0
1254 /* Something live during a setjmp should not be put in a register
1255 on certain machines which restore regs from stack frames
1256 rather than from the jmpbuf.
1257 But we don't need to do this for the user's variables, since
1258 ANSI says only volatile variables need this. */
1259 #ifdef LONGJMP_RESTORE_FROM_STACK
1260 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1261 if (regs_live_at_setjmp[i / REGSET_ELT_BITS]
1262 & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS))
1263 && regno_reg_rtx[i] != 0 && ! REG_USERVAR_P (regno_reg_rtx[i]))
1264 {
1265 reg_live_length[i] = -1;
1266 reg_basic_block[i] = -1;
1267 }
1268 #endif
1269 #endif
1270
1271 /* We have a problem with any pseudoreg that
1272 lives across the setjmp. ANSI says that if a
1273 user variable does not change in value
1274 between the setjmp and the longjmp, then the longjmp preserves it.
1275 This includes longjmp from a place where the pseudo appears dead.
1276 (In principle, the value still exists if it is in scope.)
1277 If the pseudo goes in a hard reg, some other value may occupy
1278 that hard reg where this pseudo is dead, thus clobbering the pseudo.
1279 Conclusion: such a pseudo must not go in a hard reg. */
1280 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1281 if ((regs_live_at_setjmp[i / REGSET_ELT_BITS]
1282 & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS)))
1283 && regno_reg_rtx[i] != 0)
1284 {
1285 reg_live_length[i] = -1;
1286 reg_basic_block[i] = -1;
1287 }
1288
1289 obstack_free (&flow_obstack, NULL_PTR);
1290 }
1291 \f
1292 /* Subroutines of life analysis. */
1293
1294 /* Allocate the permanent data structures that represent the results
1295 of life analysis. Not static since used also for stupid life analysis. */
1296
1297 void
1298 allocate_for_life_analysis ()
1299 {
1300 register int i;
1301 register regset tem;
1302
1303 regset_size = ((max_regno + REGSET_ELT_BITS - 1) / REGSET_ELT_BITS);
1304 regset_bytes = regset_size * sizeof (*(regset) 0);
1305
1306 reg_n_refs = (int *) oballoc (max_regno * sizeof (int));
1307 bzero ((char *) reg_n_refs, max_regno * sizeof (int));
1308
1309 reg_n_sets = (short *) oballoc (max_regno * sizeof (short));
1310 bzero ((char *) reg_n_sets, max_regno * sizeof (short));
1311
1312 reg_n_deaths = (short *) oballoc (max_regno * sizeof (short));
1313 bzero ((char *) reg_n_deaths, max_regno * sizeof (short));
1314
1315 reg_changes_size = (char *) oballoc (max_regno * sizeof (char));
1316 bzero (reg_changes_size, max_regno * sizeof (char));;
1317
1318 reg_live_length = (int *) oballoc (max_regno * sizeof (int));
1319 bzero ((char *) reg_live_length, max_regno * sizeof (int));
1320
1321 reg_n_calls_crossed = (int *) oballoc (max_regno * sizeof (int));
1322 bzero ((char *) reg_n_calls_crossed, max_regno * sizeof (int));
1323
1324 reg_basic_block = (int *) oballoc (max_regno * sizeof (int));
1325 for (i = 0; i < max_regno; i++)
1326 reg_basic_block[i] = REG_BLOCK_UNKNOWN;
1327
1328 basic_block_live_at_start
1329 = (regset *) oballoc (n_basic_blocks * sizeof (regset));
1330 tem = (regset) oballoc (n_basic_blocks * regset_bytes);
1331 bzero ((char *) tem, n_basic_blocks * regset_bytes);
1332 init_regset_vector (basic_block_live_at_start, tem,
1333 n_basic_blocks, regset_bytes);
1334
1335 regs_live_at_setjmp = (regset) oballoc (regset_bytes);
1336 bzero ((char *) regs_live_at_setjmp, regset_bytes);
1337 }
1338
1339 /* Make each element of VECTOR point at a regset,
1340 taking the space for all those regsets from SPACE.
1341 SPACE is of type regset, but it is really as long as NELTS regsets.
1342 BYTES_PER_ELT is the number of bytes in one regset. */
1343
1344 static void
1345 init_regset_vector (vector, space, nelts, bytes_per_elt)
1346 regset *vector;
1347 regset space;
1348 int nelts;
1349 int bytes_per_elt;
1350 {
1351 register int i;
1352 register regset p = space;
1353
1354 for (i = 0; i < nelts; i++)
1355 {
1356 vector[i] = p;
1357 p += bytes_per_elt / sizeof (*p);
1358 }
1359 }
1360
1361 /* Compute the registers live at the beginning of a basic block
1362 from those live at the end.
1363
1364 When called, OLD contains those live at the end.
1365 On return, it contains those live at the beginning.
1366 FIRST and LAST are the first and last insns of the basic block.
1367
1368 FINAL is nonzero if we are doing the final pass which is not
1369 for computing the life info (since that has already been done)
1370 but for acting on it. On this pass, we delete dead stores,
1371 set up the logical links and dead-variables lists of instructions,
1372 and merge instructions for autoincrement and autodecrement addresses.
1373
1374 SIGNIFICANT is nonzero only the first time for each basic block.
1375 If it is nonzero, it points to a regset in which we store
1376 a 1 for each register that is set within the block.
1377
1378 BNUM is the number of the basic block. */
1379
1380 static void
1381 propagate_block (old, first, last, final, significant, bnum)
1382 register regset old;
1383 rtx first;
1384 rtx last;
1385 int final;
1386 regset significant;
1387 int bnum;
1388 {
1389 register rtx insn;
1390 rtx prev;
1391 regset live;
1392 regset dead;
1393
1394 /* The following variables are used only if FINAL is nonzero. */
1395 /* This vector gets one element for each reg that has been live
1396 at any point in the basic block that has been scanned so far.
1397 SOMETIMES_MAX says how many elements are in use so far.
1398 In each element, OFFSET is the byte-number within a regset
1399 for the register described by the element, and BIT is a mask
1400 for that register's bit within the byte. */
1401 register struct sometimes { short offset; short bit; } *regs_sometimes_live;
1402 int sometimes_max = 0;
1403 /* This regset has 1 for each reg that we have seen live so far.
1404 It and REGS_SOMETIMES_LIVE are updated together. */
1405 regset maxlive;
1406
1407 /* The loop depth may change in the middle of a basic block. Since we
1408 scan from end to beginning, we start with the depth at the end of the
1409 current basic block, and adjust as we pass ends and starts of loops. */
1410 loop_depth = basic_block_loop_depth[bnum];
1411
1412 dead = (regset) alloca (regset_bytes);
1413 live = (regset) alloca (regset_bytes);
1414
1415 cc0_live = 0;
1416 last_mem_set = 0;
1417
1418 /* Include any notes at the end of the block in the scan.
1419 This is in case the block ends with a call to setjmp. */
1420
1421 while (NEXT_INSN (last) != 0 && GET_CODE (NEXT_INSN (last)) == NOTE)
1422 {
1423 /* Look for loop boundaries, we are going forward here. */
1424 last = NEXT_INSN (last);
1425 if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_BEG)
1426 loop_depth++;
1427 else if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_END)
1428 loop_depth--;
1429 }
1430
1431 if (final)
1432 {
1433 register int i, offset;
1434 REGSET_ELT_TYPE bit;
1435
1436 num_scratch = 0;
1437 maxlive = (regset) alloca (regset_bytes);
1438 bcopy ((char *) old, (char *) maxlive, regset_bytes);
1439 regs_sometimes_live
1440 = (struct sometimes *) alloca (max_regno * sizeof (struct sometimes));
1441
1442 /* Process the regs live at the end of the block.
1443 Enter them in MAXLIVE and REGS_SOMETIMES_LIVE.
1444 Also mark them as not local to any one basic block. */
1445
1446 for (offset = 0, i = 0; offset < regset_size; offset++)
1447 for (bit = 1; bit; bit <<= 1, i++)
1448 {
1449 if (i == max_regno)
1450 break;
1451 if (old[offset] & bit)
1452 {
1453 reg_basic_block[i] = REG_BLOCK_GLOBAL;
1454 regs_sometimes_live[sometimes_max].offset = offset;
1455 regs_sometimes_live[sometimes_max].bit = i % REGSET_ELT_BITS;
1456 sometimes_max++;
1457 }
1458 }
1459 }
1460
1461 /* Scan the block an insn at a time from end to beginning. */
1462
1463 for (insn = last; ; insn = prev)
1464 {
1465 prev = PREV_INSN (insn);
1466
1467 if (GET_CODE (insn) == NOTE)
1468 {
1469 /* Look for loop boundaries, remembering that we are going
1470 backwards. */
1471 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1472 loop_depth++;
1473 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1474 loop_depth--;
1475
1476 /* If we have LOOP_DEPTH == 0, there has been a bookkeeping error.
1477 Abort now rather than setting register status incorrectly. */
1478 if (loop_depth == 0)
1479 abort ();
1480
1481 /* If this is a call to `setjmp' et al,
1482 warn if any non-volatile datum is live. */
1483
1484 if (final && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
1485 {
1486 int i;
1487 for (i = 0; i < regset_size; i++)
1488 regs_live_at_setjmp[i] |= old[i];
1489 }
1490 }
1491
1492 /* Update the life-status of regs for this insn.
1493 First DEAD gets which regs are set in this insn
1494 then LIVE gets which regs are used in this insn.
1495 Then the regs live before the insn
1496 are those live after, with DEAD regs turned off,
1497 and then LIVE regs turned on. */
1498
1499 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1500 {
1501 register int i;
1502 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1503 int insn_is_dead
1504 = (insn_dead_p (PATTERN (insn), old, 0)
1505 /* Don't delete something that refers to volatile storage! */
1506 && ! INSN_VOLATILE (insn));
1507 int libcall_is_dead
1508 = (insn_is_dead && note != 0
1509 && libcall_dead_p (PATTERN (insn), old, note, insn));
1510
1511 /* If an instruction consists of just dead store(s) on final pass,
1512 "delete" it by turning it into a NOTE of type NOTE_INSN_DELETED.
1513 We could really delete it with delete_insn, but that
1514 can cause trouble for first or last insn in a basic block. */
1515 if (final && insn_is_dead)
1516 {
1517 PUT_CODE (insn, NOTE);
1518 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1519 NOTE_SOURCE_FILE (insn) = 0;
1520
1521 /* CC0 is now known to be dead. Either this insn used it,
1522 in which case it doesn't anymore, or clobbered it,
1523 so the next insn can't use it. */
1524 cc0_live = 0;
1525
1526 /* If this insn is copying the return value from a library call,
1527 delete the entire library call. */
1528 if (libcall_is_dead)
1529 {
1530 rtx first = XEXP (note, 0);
1531 rtx p = insn;
1532 while (INSN_DELETED_P (first))
1533 first = NEXT_INSN (first);
1534 while (p != first)
1535 {
1536 p = PREV_INSN (p);
1537 PUT_CODE (p, NOTE);
1538 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
1539 NOTE_SOURCE_FILE (p) = 0;
1540 }
1541 }
1542 goto flushed;
1543 }
1544
1545 for (i = 0; i < regset_size; i++)
1546 {
1547 dead[i] = 0; /* Faster than bzero here */
1548 live[i] = 0; /* since regset_size is usually small */
1549 }
1550
1551 /* See if this is an increment or decrement that can be
1552 merged into a following memory address. */
1553 #ifdef AUTO_INC_DEC
1554 {
1555 register rtx x = PATTERN (insn);
1556 /* Does this instruction increment or decrement a register? */
1557 if (final && GET_CODE (x) == SET
1558 && GET_CODE (SET_DEST (x)) == REG
1559 && (GET_CODE (SET_SRC (x)) == PLUS
1560 || GET_CODE (SET_SRC (x)) == MINUS)
1561 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1562 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1563 /* Ok, look for a following memory ref we can combine with.
1564 If one is found, change the memory ref to a PRE_INC
1565 or PRE_DEC, cancel this insn, and return 1.
1566 Return 0 if nothing has been done. */
1567 && try_pre_increment_1 (insn))
1568 goto flushed;
1569 }
1570 #endif /* AUTO_INC_DEC */
1571
1572 /* If this is not the final pass, and this insn is copying the
1573 value of a library call and it's dead, don't scan the
1574 insns that perform the library call, so that the call's
1575 arguments are not marked live. */
1576 if (libcall_is_dead)
1577 {
1578 /* Mark the dest reg as `significant'. */
1579 mark_set_regs (old, dead, PATTERN (insn), NULL_RTX, significant);
1580
1581 insn = XEXP (note, 0);
1582 prev = PREV_INSN (insn);
1583 }
1584 else if (GET_CODE (PATTERN (insn)) == SET
1585 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1586 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1587 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1588 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1589 /* We have an insn to pop a constant amount off the stack.
1590 (Such insns use PLUS regardless of the direction of the stack,
1591 and any insn to adjust the stack by a constant is always a pop.)
1592 These insns, if not dead stores, have no effect on life. */
1593 ;
1594 else
1595 {
1596 /* LIVE gets the regs used in INSN;
1597 DEAD gets those set by it. Dead insns don't make anything
1598 live. */
1599
1600 mark_set_regs (old, dead, PATTERN (insn),
1601 final ? insn : NULL_RTX, significant);
1602
1603 /* If an insn doesn't use CC0, it becomes dead since we
1604 assume that every insn clobbers it. So show it dead here;
1605 mark_used_regs will set it live if it is referenced. */
1606 cc0_live = 0;
1607
1608 if (! insn_is_dead)
1609 mark_used_regs (old, live, PATTERN (insn), final, insn);
1610
1611 /* Sometimes we may have inserted something before INSN (such as
1612 a move) when we make an auto-inc. So ensure we will scan
1613 those insns. */
1614 #ifdef AUTO_INC_DEC
1615 prev = PREV_INSN (insn);
1616 #endif
1617
1618 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1619 {
1620 register int i;
1621
1622 rtx note;
1623
1624 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1625 note;
1626 note = XEXP (note, 1))
1627 if (GET_CODE (XEXP (note, 0)) == USE)
1628 mark_used_regs (old, live, SET_DEST (XEXP (note, 0)),
1629 final, insn);
1630
1631 /* Each call clobbers all call-clobbered regs that are not
1632 global or fixed. Note that the function-value reg is a
1633 call-clobbered reg, and mark_set_regs has already had
1634 a chance to handle it. */
1635
1636 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1637 if (call_used_regs[i] && ! global_regs[i]
1638 && ! fixed_regs[i])
1639 dead[i / REGSET_ELT_BITS]
1640 |= ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS));
1641
1642 /* The stack ptr is used (honorarily) by a CALL insn. */
1643 live[STACK_POINTER_REGNUM / REGSET_ELT_BITS]
1644 |= ((REGSET_ELT_TYPE) 1
1645 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS));
1646
1647 /* Calls may also reference any of the global registers,
1648 so they are made live. */
1649 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1650 if (global_regs[i])
1651 mark_used_regs (old, live,
1652 gen_rtx (REG, reg_raw_mode[i], i),
1653 final, insn);
1654
1655 /* Calls also clobber memory. */
1656 last_mem_set = 0;
1657 }
1658
1659 /* Update OLD for the registers used or set. */
1660 for (i = 0; i < regset_size; i++)
1661 {
1662 old[i] &= ~dead[i];
1663 old[i] |= live[i];
1664 }
1665
1666 if (GET_CODE (insn) == CALL_INSN && final)
1667 {
1668 /* Any regs live at the time of a call instruction
1669 must not go in a register clobbered by calls.
1670 Find all regs now live and record this for them. */
1671
1672 register struct sometimes *p = regs_sometimes_live;
1673
1674 for (i = 0; i < sometimes_max; i++, p++)
1675 if (old[p->offset] & ((REGSET_ELT_TYPE) 1 << p->bit))
1676 reg_n_calls_crossed[p->offset * REGSET_ELT_BITS + p->bit]+= 1;
1677 }
1678 }
1679
1680 /* On final pass, add any additional sometimes-live regs
1681 into MAXLIVE and REGS_SOMETIMES_LIVE.
1682 Also update counts of how many insns each reg is live at. */
1683
1684 if (final)
1685 {
1686 for (i = 0; i < regset_size; i++)
1687 {
1688 register REGSET_ELT_TYPE diff = live[i] & ~maxlive[i];
1689
1690 if (diff)
1691 {
1692 register int regno;
1693 maxlive[i] |= diff;
1694 for (regno = 0; diff && regno < REGSET_ELT_BITS; regno++)
1695 if (diff & ((REGSET_ELT_TYPE) 1 << regno))
1696 {
1697 regs_sometimes_live[sometimes_max].offset = i;
1698 regs_sometimes_live[sometimes_max].bit = regno;
1699 diff &= ~ ((REGSET_ELT_TYPE) 1 << regno);
1700 sometimes_max++;
1701 }
1702 }
1703 }
1704
1705 {
1706 register struct sometimes *p = regs_sometimes_live;
1707 for (i = 0; i < sometimes_max; i++, p++)
1708 {
1709 if (old[p->offset] & ((REGSET_ELT_TYPE) 1 << p->bit))
1710 reg_live_length[p->offset * REGSET_ELT_BITS + p->bit]++;
1711 }
1712 }
1713 }
1714 }
1715 flushed: ;
1716 if (insn == first)
1717 break;
1718 }
1719
1720 if (num_scratch > max_scratch)
1721 max_scratch = num_scratch;
1722 }
1723 \f
1724 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
1725 (SET expressions whose destinations are registers dead after the insn).
1726 NEEDED is the regset that says which regs are alive after the insn.
1727
1728 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL. */
1729
1730 static int
1731 insn_dead_p (x, needed, call_ok)
1732 rtx x;
1733 regset needed;
1734 int call_ok;
1735 {
1736 register RTX_CODE code = GET_CODE (x);
1737 /* If setting something that's a reg or part of one,
1738 see if that register's altered value will be live. */
1739
1740 if (code == SET)
1741 {
1742 register rtx r = SET_DEST (x);
1743 /* A SET that is a subroutine call cannot be dead. */
1744 if (! call_ok && GET_CODE (SET_SRC (x)) == CALL)
1745 return 0;
1746
1747 #ifdef HAVE_cc0
1748 if (GET_CODE (r) == CC0)
1749 return ! cc0_live;
1750 #endif
1751
1752 if (GET_CODE (r) == MEM && last_mem_set && ! MEM_VOLATILE_P (r)
1753 && rtx_equal_p (r, last_mem_set))
1754 return 1;
1755
1756 while (GET_CODE (r) == SUBREG
1757 || GET_CODE (r) == STRICT_LOW_PART
1758 || GET_CODE (r) == ZERO_EXTRACT
1759 || GET_CODE (r) == SIGN_EXTRACT)
1760 r = SUBREG_REG (r);
1761
1762 if (GET_CODE (r) == REG)
1763 {
1764 register int regno = REGNO (r);
1765 register int offset = regno / REGSET_ELT_BITS;
1766 register REGSET_ELT_TYPE bit
1767 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
1768
1769 /* Don't delete insns to set global regs. */
1770 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1771 /* Make sure insns to set frame pointer aren't deleted. */
1772 || regno == FRAME_POINTER_REGNUM
1773 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1774 || regno == HARD_FRAME_POINTER_REGNUM
1775 #endif
1776 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1777 /* Make sure insns to set arg pointer are never deleted
1778 (if the arg pointer isn't fixed, there will be a USE for
1779 it, so we can treat it normally). */
1780 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1781 #endif
1782 || (needed[offset] & bit) != 0)
1783 return 0;
1784
1785 /* If this is a hard register, verify that subsequent words are
1786 not needed. */
1787 if (regno < FIRST_PSEUDO_REGISTER)
1788 {
1789 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
1790
1791 while (--n > 0)
1792 if ((needed[(regno + n) / REGSET_ELT_BITS]
1793 & ((REGSET_ELT_TYPE) 1
1794 << ((regno + n) % REGSET_ELT_BITS))) != 0)
1795 return 0;
1796 }
1797
1798 return 1;
1799 }
1800 }
1801 /* If performing several activities,
1802 insn is dead if each activity is individually dead.
1803 Also, CLOBBERs and USEs can be ignored; a CLOBBER or USE
1804 that's inside a PARALLEL doesn't make the insn worth keeping. */
1805 else if (code == PARALLEL)
1806 {
1807 register int i = XVECLEN (x, 0);
1808 for (i--; i >= 0; i--)
1809 {
1810 rtx elt = XVECEXP (x, 0, i);
1811 if (!insn_dead_p (elt, needed, call_ok)
1812 && GET_CODE (elt) != CLOBBER
1813 && GET_CODE (elt) != USE)
1814 return 0;
1815 }
1816 return 1;
1817 }
1818 /* We do not check CLOBBER or USE here.
1819 An insn consisting of just a CLOBBER or just a USE
1820 should not be deleted. */
1821 return 0;
1822 }
1823
1824 /* If X is the pattern of the last insn in a libcall, and assuming X is dead,
1825 return 1 if the entire library call is dead.
1826 This is true if X copies a register (hard or pseudo)
1827 and if the hard return reg of the call insn is dead.
1828 (The caller should have tested the destination of X already for death.)
1829
1830 If this insn doesn't just copy a register, then we don't
1831 have an ordinary libcall. In that case, cse could not have
1832 managed to substitute the source for the dest later on,
1833 so we can assume the libcall is dead.
1834
1835 NEEDED is the bit vector of pseudoregs live before this insn.
1836 NOTE is the REG_RETVAL note of the insn. INSN is the insn itself. */
1837
1838 static int
1839 libcall_dead_p (x, needed, note, insn)
1840 rtx x;
1841 regset needed;
1842 rtx note;
1843 rtx insn;
1844 {
1845 register RTX_CODE code = GET_CODE (x);
1846
1847 if (code == SET)
1848 {
1849 register rtx r = SET_SRC (x);
1850 if (GET_CODE (r) == REG)
1851 {
1852 rtx call = XEXP (note, 0);
1853 register int i;
1854
1855 /* Find the call insn. */
1856 while (call != insn && GET_CODE (call) != CALL_INSN)
1857 call = NEXT_INSN (call);
1858
1859 /* If there is none, do nothing special,
1860 since ordinary death handling can understand these insns. */
1861 if (call == insn)
1862 return 0;
1863
1864 /* See if the hard reg holding the value is dead.
1865 If this is a PARALLEL, find the call within it. */
1866 call = PATTERN (call);
1867 if (GET_CODE (call) == PARALLEL)
1868 {
1869 for (i = XVECLEN (call, 0) - 1; i >= 0; i--)
1870 if (GET_CODE (XVECEXP (call, 0, i)) == SET
1871 && GET_CODE (SET_SRC (XVECEXP (call, 0, i))) == CALL)
1872 break;
1873
1874 /* This may be a library call that is returning a value
1875 via invisible pointer. Do nothing special, since
1876 ordinary death handling can understand these insns. */
1877 if (i < 0)
1878 return 0;
1879
1880 call = XVECEXP (call, 0, i);
1881 }
1882
1883 return insn_dead_p (call, needed, 1);
1884 }
1885 }
1886 return 1;
1887 }
1888
1889 /* Return 1 if register REGNO was used before it was set.
1890 In other words, if it is live at function entry.
1891 Don't count global register variables, though. */
1892
1893 int
1894 regno_uninitialized (regno)
1895 int regno;
1896 {
1897 if (n_basic_blocks == 0
1898 || (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
1899 return 0;
1900
1901 return (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
1902 & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS)));
1903 }
1904
1905 /* 1 if register REGNO was alive at a place where `setjmp' was called
1906 and was set more than once or is an argument.
1907 Such regs may be clobbered by `longjmp'. */
1908
1909 int
1910 regno_clobbered_at_setjmp (regno)
1911 int regno;
1912 {
1913 if (n_basic_blocks == 0)
1914 return 0;
1915
1916 return ((reg_n_sets[regno] > 1
1917 || (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
1918 & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))))
1919 && (regs_live_at_setjmp[regno / REGSET_ELT_BITS]
1920 & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))));
1921 }
1922 \f
1923 /* Process the registers that are set within X.
1924 Their bits are set to 1 in the regset DEAD,
1925 because they are dead prior to this insn.
1926
1927 If INSN is nonzero, it is the insn being processed
1928 and the fact that it is nonzero implies this is the FINAL pass
1929 in propagate_block. In this case, various info about register
1930 usage is stored, LOG_LINKS fields of insns are set up. */
1931
1932 static void
1933 mark_set_regs (needed, dead, x, insn, significant)
1934 regset needed;
1935 regset dead;
1936 rtx x;
1937 rtx insn;
1938 regset significant;
1939 {
1940 register RTX_CODE code = GET_CODE (x);
1941
1942 if (code == SET || code == CLOBBER)
1943 mark_set_1 (needed, dead, x, insn, significant);
1944 else if (code == PARALLEL)
1945 {
1946 register int i;
1947 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1948 {
1949 code = GET_CODE (XVECEXP (x, 0, i));
1950 if (code == SET || code == CLOBBER)
1951 mark_set_1 (needed, dead, XVECEXP (x, 0, i), insn, significant);
1952 }
1953 }
1954 }
1955
1956 /* Process a single SET rtx, X. */
1957
1958 static void
1959 mark_set_1 (needed, dead, x, insn, significant)
1960 regset needed;
1961 regset dead;
1962 rtx x;
1963 rtx insn;
1964 regset significant;
1965 {
1966 register int regno;
1967 register rtx reg = SET_DEST (x);
1968
1969 /* Modifying just one hardware register of a multi-reg value
1970 or just a byte field of a register
1971 does not mean the value from before this insn is now dead.
1972 But it does mean liveness of that register at the end of the block
1973 is significant.
1974
1975 Within mark_set_1, however, we treat it as if the register is
1976 indeed modified. mark_used_regs will, however, also treat this
1977 register as being used. Thus, we treat these insns as setting a
1978 new value for the register as a function of its old value. This
1979 cases LOG_LINKS to be made appropriately and this will help combine. */
1980
1981 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
1982 || GET_CODE (reg) == SIGN_EXTRACT
1983 || GET_CODE (reg) == STRICT_LOW_PART)
1984 reg = XEXP (reg, 0);
1985
1986 /* If we are writing into memory or into a register mentioned in the
1987 address of the last thing stored into memory, show we don't know
1988 what the last store was. If we are writing memory, save the address
1989 unless it is volatile. */
1990 if (GET_CODE (reg) == MEM
1991 || (GET_CODE (reg) == REG
1992 && last_mem_set != 0 && reg_overlap_mentioned_p (reg, last_mem_set)))
1993 last_mem_set = 0;
1994
1995 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
1996 /* There are no REG_INC notes for SP, so we can't assume we'll see
1997 everything that invalidates it. To be safe, don't eliminate any
1998 stores though SP; none of them should be redundant anyway. */
1999 && ! reg_mentioned_p (stack_pointer_rtx, reg))
2000 last_mem_set = reg;
2001
2002 if (GET_CODE (reg) == REG
2003 && (regno = REGNO (reg), regno != FRAME_POINTER_REGNUM)
2004 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2005 && regno != HARD_FRAME_POINTER_REGNUM
2006 #endif
2007 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2008 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2009 #endif
2010 && ! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
2011 /* && regno != STACK_POINTER_REGNUM) -- let's try without this. */
2012 {
2013 register int offset = regno / REGSET_ELT_BITS;
2014 register REGSET_ELT_TYPE bit
2015 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
2016 REGSET_ELT_TYPE some_needed = (needed[offset] & bit);
2017 REGSET_ELT_TYPE some_not_needed = (~ needed[offset]) & bit;
2018
2019 /* Mark it as a significant register for this basic block. */
2020 if (significant)
2021 significant[offset] |= bit;
2022
2023 /* Mark it as as dead before this insn. */
2024 dead[offset] |= bit;
2025
2026 /* A hard reg in a wide mode may really be multiple registers.
2027 If so, mark all of them just like the first. */
2028 if (regno < FIRST_PSEUDO_REGISTER)
2029 {
2030 int n;
2031
2032 /* Nothing below is needed for the stack pointer; get out asap.
2033 Eg, log links aren't needed, since combine won't use them. */
2034 if (regno == STACK_POINTER_REGNUM)
2035 return;
2036
2037 n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
2038 while (--n > 0)
2039 {
2040 REGSET_ELT_TYPE n_bit
2041 = (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS);
2042
2043 if (significant)
2044 significant[(regno + n) / REGSET_ELT_BITS] |= n_bit;
2045
2046 dead[(regno + n) / REGSET_ELT_BITS] |= n_bit;
2047 some_needed
2048 |= (needed[(regno + n) / REGSET_ELT_BITS] & n_bit);
2049 some_not_needed
2050 |= ((~ needed[(regno + n) / REGSET_ELT_BITS]) & n_bit);
2051 }
2052 }
2053 /* Additional data to record if this is the final pass. */
2054 if (insn)
2055 {
2056 register rtx y = reg_next_use[regno];
2057 register int blocknum = BLOCK_NUM (insn);
2058
2059 /* If this is a hard reg, record this function uses the reg. */
2060
2061 if (regno < FIRST_PSEUDO_REGISTER)
2062 {
2063 register int i;
2064 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
2065
2066 for (i = regno; i < endregno; i++)
2067 {
2068 /* The next use is no longer "next", since a store
2069 intervenes. */
2070 reg_next_use[i] = 0;
2071
2072 regs_ever_live[i] = 1;
2073 reg_n_sets[i]++;
2074 }
2075 }
2076 else
2077 {
2078 /* The next use is no longer "next", since a store
2079 intervenes. */
2080 reg_next_use[regno] = 0;
2081
2082 /* Keep track of which basic blocks each reg appears in. */
2083
2084 if (reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
2085 reg_basic_block[regno] = blocknum;
2086 else if (reg_basic_block[regno] != blocknum)
2087 reg_basic_block[regno] = REG_BLOCK_GLOBAL;
2088
2089 /* Count (weighted) references, stores, etc. This counts a
2090 register twice if it is modified, but that is correct. */
2091 reg_n_sets[regno]++;
2092
2093 reg_n_refs[regno] += loop_depth;
2094
2095 /* The insns where a reg is live are normally counted
2096 elsewhere, but we want the count to include the insn
2097 where the reg is set, and the normal counting mechanism
2098 would not count it. */
2099 reg_live_length[regno]++;
2100 }
2101
2102 if (! some_not_needed)
2103 {
2104 /* Make a logical link from the next following insn
2105 that uses this register, back to this insn.
2106 The following insns have already been processed.
2107
2108 We don't build a LOG_LINK for hard registers containing
2109 in ASM_OPERANDs. If these registers get replaced,
2110 we might wind up changing the semantics of the insn,
2111 even if reload can make what appear to be valid assignments
2112 later. */
2113 if (y && (BLOCK_NUM (y) == blocknum)
2114 && (regno >= FIRST_PSEUDO_REGISTER
2115 || asm_noperands (PATTERN (y)) < 0))
2116 LOG_LINKS (y)
2117 = gen_rtx (INSN_LIST, VOIDmode, insn, LOG_LINKS (y));
2118 }
2119 else if (! some_needed)
2120 {
2121 /* Note that dead stores have already been deleted when possible
2122 If we get here, we have found a dead store that cannot
2123 be eliminated (because the same insn does something useful).
2124 Indicate this by marking the reg being set as dying here. */
2125 REG_NOTES (insn)
2126 = gen_rtx (EXPR_LIST, REG_UNUSED, reg, REG_NOTES (insn));
2127 reg_n_deaths[REGNO (reg)]++;
2128 }
2129 else
2130 {
2131 /* This is a case where we have a multi-word hard register
2132 and some, but not all, of the words of the register are
2133 needed in subsequent insns. Write REG_UNUSED notes
2134 for those parts that were not needed. This case should
2135 be rare. */
2136
2137 int i;
2138
2139 for (i = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1;
2140 i >= 0; i--)
2141 if ((needed[(regno + i) / REGSET_ELT_BITS]
2142 & ((REGSET_ELT_TYPE) 1
2143 << ((regno + i) % REGSET_ELT_BITS))) == 0)
2144 REG_NOTES (insn)
2145 = gen_rtx (EXPR_LIST, REG_UNUSED,
2146 gen_rtx (REG, reg_raw_mode[regno + i],
2147 regno + i),
2148 REG_NOTES (insn));
2149 }
2150 }
2151 }
2152 else if (GET_CODE (reg) == REG)
2153 reg_next_use[regno] = 0;
2154
2155 /* If this is the last pass and this is a SCRATCH, show it will be dying
2156 here and count it. */
2157 else if (GET_CODE (reg) == SCRATCH && insn != 0)
2158 {
2159 REG_NOTES (insn)
2160 = gen_rtx (EXPR_LIST, REG_UNUSED, reg, REG_NOTES (insn));
2161 num_scratch++;
2162 }
2163 }
2164 \f
2165 #ifdef AUTO_INC_DEC
2166
2167 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
2168 reference. */
2169
2170 static void
2171 find_auto_inc (needed, x, insn)
2172 regset needed;
2173 rtx x;
2174 rtx insn;
2175 {
2176 rtx addr = XEXP (x, 0);
2177 HOST_WIDE_INT offset = 0;
2178 rtx set;
2179
2180 /* Here we detect use of an index register which might be good for
2181 postincrement, postdecrement, preincrement, or predecrement. */
2182
2183 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
2184 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
2185
2186 if (GET_CODE (addr) == REG)
2187 {
2188 register rtx y;
2189 register int size = GET_MODE_SIZE (GET_MODE (x));
2190 rtx use;
2191 rtx incr;
2192 int regno = REGNO (addr);
2193
2194 /* Is the next use an increment that might make auto-increment? */
2195 if ((incr = reg_next_use[regno]) != 0
2196 && (set = single_set (incr)) != 0
2197 && GET_CODE (set) == SET
2198 && BLOCK_NUM (incr) == BLOCK_NUM (insn)
2199 /* Can't add side effects to jumps; if reg is spilled and
2200 reloaded, there's no way to store back the altered value. */
2201 && GET_CODE (insn) != JUMP_INSN
2202 && (y = SET_SRC (set), GET_CODE (y) == PLUS)
2203 && XEXP (y, 0) == addr
2204 && GET_CODE (XEXP (y, 1)) == CONST_INT
2205 && (0
2206 #ifdef HAVE_POST_INCREMENT
2207 || (INTVAL (XEXP (y, 1)) == size && offset == 0)
2208 #endif
2209 #ifdef HAVE_POST_DECREMENT
2210 || (INTVAL (XEXP (y, 1)) == - size && offset == 0)
2211 #endif
2212 #ifdef HAVE_PRE_INCREMENT
2213 || (INTVAL (XEXP (y, 1)) == size && offset == size)
2214 #endif
2215 #ifdef HAVE_PRE_DECREMENT
2216 || (INTVAL (XEXP (y, 1)) == - size && offset == - size)
2217 #endif
2218 )
2219 /* Make sure this reg appears only once in this insn. */
2220 && (use = find_use_as_address (PATTERN (insn), addr, offset),
2221 use != 0 && use != (rtx) 1))
2222 {
2223 rtx q = SET_DEST (set);
2224 enum rtx_code inc_code = (INTVAL (XEXP (y, 1)) == size
2225 ? (offset ? PRE_INC : POST_INC)
2226 : (offset ? PRE_DEC : POST_DEC));
2227
2228 if (dead_or_set_p (incr, addr))
2229 {
2230 /* This is the simple case. Try to make the auto-inc. If
2231 we can't, we are done. Otherwise, we will do any
2232 needed updates below. */
2233 if (! validate_change (insn, &XEXP (x, 0),
2234 gen_rtx (inc_code, Pmode, addr),
2235 0))
2236 return;
2237 }
2238 else if (GET_CODE (q) == REG
2239 /* PREV_INSN used here to check the semi-open interval
2240 [insn,incr). */
2241 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
2242 /* We must also check for sets of q as q may be
2243 a call clobbered hard register and there may
2244 be a call between PREV_INSN (insn) and incr. */
2245 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
2246 {
2247 /* We have *p followed sometime later by q = p+size.
2248 Both p and q must be live afterward,
2249 and q is not used between INSN and it's assignment.
2250 Change it to q = p, ...*q..., q = q+size.
2251 Then fall into the usual case. */
2252 rtx insns, temp;
2253
2254 start_sequence ();
2255 emit_move_insn (q, addr);
2256 insns = get_insns ();
2257 end_sequence ();
2258
2259 /* If anything in INSNS have UID's that don't fit within the
2260 extra space we allocate earlier, we can't make this auto-inc.
2261 This should never happen. */
2262 for (temp = insns; temp; temp = NEXT_INSN (temp))
2263 {
2264 if (INSN_UID (temp) > max_uid_for_flow)
2265 return;
2266 BLOCK_NUM (temp) = BLOCK_NUM (insn);
2267 }
2268
2269 /* If we can't make the auto-inc, or can't make the
2270 replacement into Y, exit. There's no point in making
2271 the change below if we can't do the auto-inc and doing
2272 so is not correct in the pre-inc case. */
2273
2274 validate_change (insn, &XEXP (x, 0),
2275 gen_rtx (inc_code, Pmode, q),
2276 1);
2277 validate_change (incr, &XEXP (y, 0), q, 1);
2278 if (! apply_change_group ())
2279 return;
2280
2281 /* We now know we'll be doing this change, so emit the
2282 new insn(s) and do the updates. */
2283 emit_insns_before (insns, insn);
2284
2285 if (basic_block_head[BLOCK_NUM (insn)] == insn)
2286 basic_block_head[BLOCK_NUM (insn)] = insns;
2287
2288 /* INCR will become a NOTE and INSN won't contain a
2289 use of ADDR. If a use of ADDR was just placed in
2290 the insn before INSN, make that the next use.
2291 Otherwise, invalidate it. */
2292 if (GET_CODE (PREV_INSN (insn)) == INSN
2293 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
2294 && SET_SRC (PATTERN (PREV_INSN (insn))) == addr)
2295 reg_next_use[regno] = PREV_INSN (insn);
2296 else
2297 reg_next_use[regno] = 0;
2298
2299 addr = q;
2300 regno = REGNO (q);
2301
2302 /* REGNO is now used in INCR which is below INSN, but
2303 it previously wasn't live here. If we don't mark
2304 it as needed, we'll put a REG_DEAD note for it
2305 on this insn, which is incorrect. */
2306 needed[regno / REGSET_ELT_BITS]
2307 |= (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
2308
2309 /* If there are any calls between INSN and INCR, show
2310 that REGNO now crosses them. */
2311 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
2312 if (GET_CODE (temp) == CALL_INSN)
2313 reg_n_calls_crossed[regno]++;
2314 }
2315 else
2316 return;
2317
2318 /* If we haven't returned, it means we were able to make the
2319 auto-inc, so update the status. First, record that this insn
2320 has an implicit side effect. */
2321
2322 REG_NOTES (insn)
2323 = gen_rtx (EXPR_LIST, REG_INC, addr, REG_NOTES (insn));
2324
2325 /* Modify the old increment-insn to simply copy
2326 the already-incremented value of our register. */
2327 if (! validate_change (incr, &SET_SRC (set), addr, 0))
2328 abort ();
2329
2330 /* If that makes it a no-op (copying the register into itself) delete
2331 it so it won't appear to be a "use" and a "set" of this
2332 register. */
2333 if (SET_DEST (set) == addr)
2334 {
2335 PUT_CODE (incr, NOTE);
2336 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
2337 NOTE_SOURCE_FILE (incr) = 0;
2338 }
2339
2340 if (regno >= FIRST_PSEUDO_REGISTER)
2341 {
2342 /* Count an extra reference to the reg. When a reg is
2343 incremented, spilling it is worse, so we want to make
2344 that less likely. */
2345 reg_n_refs[regno] += loop_depth;
2346
2347 /* Count the increment as a setting of the register,
2348 even though it isn't a SET in rtl. */
2349 reg_n_sets[regno]++;
2350 }
2351 }
2352 }
2353 }
2354 #endif /* AUTO_INC_DEC */
2355 \f
2356 /* Scan expression X and store a 1-bit in LIVE for each reg it uses.
2357 This is done assuming the registers needed from X
2358 are those that have 1-bits in NEEDED.
2359
2360 On the final pass, FINAL is 1. This means try for autoincrement
2361 and count the uses and deaths of each pseudo-reg.
2362
2363 INSN is the containing instruction. If INSN is dead, this function is not
2364 called. */
2365
2366 static void
2367 mark_used_regs (needed, live, x, final, insn)
2368 regset needed;
2369 regset live;
2370 rtx x;
2371 int final;
2372 rtx insn;
2373 {
2374 register RTX_CODE code;
2375 register int regno;
2376 int i;
2377
2378 retry:
2379 code = GET_CODE (x);
2380 switch (code)
2381 {
2382 case LABEL_REF:
2383 case SYMBOL_REF:
2384 case CONST_INT:
2385 case CONST:
2386 case CONST_DOUBLE:
2387 case PC:
2388 case ADDR_VEC:
2389 case ADDR_DIFF_VEC:
2390 case ASM_INPUT:
2391 return;
2392
2393 #ifdef HAVE_cc0
2394 case CC0:
2395 cc0_live = 1;
2396 return;
2397 #endif
2398
2399 case CLOBBER:
2400 /* If we are clobbering a MEM, mark any registers inside the address
2401 as being used. */
2402 if (GET_CODE (XEXP (x, 0)) == MEM)
2403 mark_used_regs (needed, live, XEXP (XEXP (x, 0), 0), final, insn);
2404 return;
2405
2406 case MEM:
2407 /* Invalidate the data for the last MEM stored. We could do this only
2408 if the addresses conflict, but this doesn't seem worthwhile. */
2409 last_mem_set = 0;
2410
2411 #ifdef AUTO_INC_DEC
2412 if (final)
2413 find_auto_inc (needed, x, insn);
2414 #endif
2415 break;
2416
2417 case SUBREG:
2418 if (GET_CODE (SUBREG_REG (x)) == REG
2419 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
2420 && (GET_MODE_SIZE (GET_MODE (x))
2421 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
2422 reg_changes_size[REGNO (SUBREG_REG (x))] = 1;
2423
2424 /* While we're here, optimize this case. */
2425 x = SUBREG_REG (x);
2426
2427 /* In case the SUBREG is not of a register, don't optimize */
2428 if (GET_CODE (x) != REG)
2429 {
2430 mark_used_regs (needed, live, x, final, insn);
2431 return;
2432 }
2433
2434 /* ... fall through ... */
2435
2436 case REG:
2437 /* See a register other than being set
2438 => mark it as needed. */
2439
2440 regno = REGNO (x);
2441 {
2442 register int offset = regno / REGSET_ELT_BITS;
2443 register REGSET_ELT_TYPE bit
2444 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
2445 REGSET_ELT_TYPE some_needed = needed[offset] & bit;
2446 REGSET_ELT_TYPE some_not_needed = (~ needed[offset]) & bit;
2447
2448 live[offset] |= bit;
2449
2450 /* A hard reg in a wide mode may really be multiple registers.
2451 If so, mark all of them just like the first. */
2452 if (regno < FIRST_PSEUDO_REGISTER)
2453 {
2454 int n;
2455
2456 /* For stack ptr or fixed arg pointer,
2457 nothing below can be necessary, so waste no more time. */
2458 if (regno == STACK_POINTER_REGNUM
2459 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2460 || regno == HARD_FRAME_POINTER_REGNUM
2461 #endif
2462 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2463 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2464 #endif
2465 || regno == FRAME_POINTER_REGNUM)
2466 {
2467 /* If this is a register we are going to try to eliminate,
2468 don't mark it live here. If we are successful in
2469 eliminating it, it need not be live unless it is used for
2470 pseudos, in which case it will have been set live when
2471 it was allocated to the pseudos. If the register will not
2472 be eliminated, reload will set it live at that point. */
2473
2474 if (! TEST_HARD_REG_BIT (elim_reg_set, regno))
2475 regs_ever_live[regno] = 1;
2476 return;
2477 }
2478 /* No death notes for global register variables;
2479 their values are live after this function exits. */
2480 if (global_regs[regno])
2481 {
2482 if (final)
2483 reg_next_use[regno] = insn;
2484 return;
2485 }
2486
2487 n = HARD_REGNO_NREGS (regno, GET_MODE (x));
2488 while (--n > 0)
2489 {
2490 REGSET_ELT_TYPE n_bit
2491 = (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS);
2492
2493 live[(regno + n) / REGSET_ELT_BITS] |= n_bit;
2494 some_needed |= (needed[(regno + n) / REGSET_ELT_BITS] & n_bit);
2495 some_not_needed
2496 |= ((~ needed[(regno + n) / REGSET_ELT_BITS]) & n_bit);
2497 }
2498 }
2499 if (final)
2500 {
2501 /* Record where each reg is used, so when the reg
2502 is set we know the next insn that uses it. */
2503
2504 reg_next_use[regno] = insn;
2505
2506 if (regno < FIRST_PSEUDO_REGISTER)
2507 {
2508 /* If a hard reg is being used,
2509 record that this function does use it. */
2510
2511 i = HARD_REGNO_NREGS (regno, GET_MODE (x));
2512 if (i == 0)
2513 i = 1;
2514 do
2515 regs_ever_live[regno + --i] = 1;
2516 while (i > 0);
2517 }
2518 else
2519 {
2520 /* Keep track of which basic block each reg appears in. */
2521
2522 register int blocknum = BLOCK_NUM (insn);
2523
2524 if (reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
2525 reg_basic_block[regno] = blocknum;
2526 else if (reg_basic_block[regno] != blocknum)
2527 reg_basic_block[regno] = REG_BLOCK_GLOBAL;
2528
2529 /* Count (weighted) number of uses of each reg. */
2530
2531 reg_n_refs[regno] += loop_depth;
2532 }
2533
2534 /* Record and count the insns in which a reg dies.
2535 If it is used in this insn and was dead below the insn
2536 then it dies in this insn. If it was set in this insn,
2537 we do not make a REG_DEAD note; likewise if we already
2538 made such a note. */
2539
2540 if (some_not_needed
2541 && ! dead_or_set_p (insn, x)
2542 #if 0
2543 && (regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
2544 #endif
2545 )
2546 {
2547 /* Check for the case where the register dying partially
2548 overlaps the register set by this insn. */
2549 if (regno < FIRST_PSEUDO_REGISTER
2550 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
2551 {
2552 int n = HARD_REGNO_NREGS (regno, GET_MODE (x));
2553 while (--n >= 0)
2554 some_needed |= dead_or_set_regno_p (insn, regno + n);
2555 }
2556
2557 /* If none of the words in X is needed, make a REG_DEAD
2558 note. Otherwise, we must make partial REG_DEAD notes. */
2559 if (! some_needed)
2560 {
2561 REG_NOTES (insn)
2562 = gen_rtx (EXPR_LIST, REG_DEAD, x, REG_NOTES (insn));
2563 reg_n_deaths[regno]++;
2564 }
2565 else
2566 {
2567 int i;
2568
2569 /* Don't make a REG_DEAD note for a part of a register
2570 that is set in the insn. */
2571
2572 for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
2573 i >= 0; i--)
2574 if ((needed[(regno + i) / REGSET_ELT_BITS]
2575 & ((REGSET_ELT_TYPE) 1
2576 << ((regno + i) % REGSET_ELT_BITS))) == 0
2577 && ! dead_or_set_regno_p (insn, regno + i))
2578 REG_NOTES (insn)
2579 = gen_rtx (EXPR_LIST, REG_DEAD,
2580 gen_rtx (REG, reg_raw_mode[regno + i],
2581 regno + i),
2582 REG_NOTES (insn));
2583 }
2584 }
2585 }
2586 }
2587 return;
2588
2589 case SET:
2590 {
2591 register rtx testreg = SET_DEST (x);
2592 int mark_dest = 0;
2593
2594 /* If storing into MEM, don't show it as being used. But do
2595 show the address as being used. */
2596 if (GET_CODE (testreg) == MEM)
2597 {
2598 #ifdef AUTO_INC_DEC
2599 if (final)
2600 find_auto_inc (needed, testreg, insn);
2601 #endif
2602 mark_used_regs (needed, live, XEXP (testreg, 0), final, insn);
2603 mark_used_regs (needed, live, SET_SRC (x), final, insn);
2604 return;
2605 }
2606
2607 /* Storing in STRICT_LOW_PART is like storing in a reg
2608 in that this SET might be dead, so ignore it in TESTREG.
2609 but in some other ways it is like using the reg.
2610
2611 Storing in a SUBREG or a bit field is like storing the entire
2612 register in that if the register's value is not used
2613 then this SET is not needed. */
2614 while (GET_CODE (testreg) == STRICT_LOW_PART
2615 || GET_CODE (testreg) == ZERO_EXTRACT
2616 || GET_CODE (testreg) == SIGN_EXTRACT
2617 || GET_CODE (testreg) == SUBREG)
2618 {
2619 if (GET_CODE (testreg) == SUBREG
2620 && GET_CODE (SUBREG_REG (testreg)) == REG
2621 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
2622 && (GET_MODE_SIZE (GET_MODE (testreg))
2623 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (testreg)))))
2624 reg_changes_size[REGNO (SUBREG_REG (testreg))] = 1;
2625
2626 /* Modifying a single register in an alternate mode
2627 does not use any of the old value. But these other
2628 ways of storing in a register do use the old value. */
2629 if (GET_CODE (testreg) == SUBREG
2630 && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
2631 ;
2632 else
2633 mark_dest = 1;
2634
2635 testreg = XEXP (testreg, 0);
2636 }
2637
2638 /* If this is a store into a register,
2639 recursively scan the value being stored. */
2640
2641 if (GET_CODE (testreg) == REG
2642 && (regno = REGNO (testreg), regno != FRAME_POINTER_REGNUM)
2643 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2644 && regno != HARD_FRAME_POINTER_REGNUM
2645 #endif
2646 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2647 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2648 #endif
2649 )
2650 /* We used to exclude global_regs here, but that seems wrong.
2651 Storing in them is like storing in mem. */
2652 {
2653 mark_used_regs (needed, live, SET_SRC (x), final, insn);
2654 if (mark_dest)
2655 mark_used_regs (needed, live, SET_DEST (x), final, insn);
2656 return;
2657 }
2658 }
2659 break;
2660
2661 case RETURN:
2662 /* If exiting needs the right stack value, consider this insn as
2663 using the stack pointer. In any event, consider it as using
2664 all global registers. */
2665
2666 #ifdef EXIT_IGNORE_STACK
2667 if (! EXIT_IGNORE_STACK
2668 || (! FRAME_POINTER_REQUIRED && flag_omit_frame_pointer))
2669 #endif
2670 live[STACK_POINTER_REGNUM / REGSET_ELT_BITS]
2671 |= (REGSET_ELT_TYPE) 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
2672
2673 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2674 if (global_regs[i])
2675 live[i / REGSET_ELT_BITS]
2676 |= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
2677 break;
2678 }
2679
2680 /* Recursively scan the operands of this expression. */
2681
2682 {
2683 register char *fmt = GET_RTX_FORMAT (code);
2684 register int i;
2685
2686 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2687 {
2688 if (fmt[i] == 'e')
2689 {
2690 /* Tail recursive case: save a function call level. */
2691 if (i == 0)
2692 {
2693 x = XEXP (x, 0);
2694 goto retry;
2695 }
2696 mark_used_regs (needed, live, XEXP (x, i), final, insn);
2697 }
2698 else if (fmt[i] == 'E')
2699 {
2700 register int j;
2701 for (j = 0; j < XVECLEN (x, i); j++)
2702 mark_used_regs (needed, live, XVECEXP (x, i, j), final, insn);
2703 }
2704 }
2705 }
2706 }
2707 \f
2708 #ifdef AUTO_INC_DEC
2709
2710 static int
2711 try_pre_increment_1 (insn)
2712 rtx insn;
2713 {
2714 /* Find the next use of this reg. If in same basic block,
2715 make it do pre-increment or pre-decrement if appropriate. */
2716 rtx x = PATTERN (insn);
2717 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
2718 * INTVAL (XEXP (SET_SRC (x), 1)));
2719 int regno = REGNO (SET_DEST (x));
2720 rtx y = reg_next_use[regno];
2721 if (y != 0
2722 && BLOCK_NUM (y) == BLOCK_NUM (insn)
2723 /* Don't do this if the reg dies, or gets set in y; a standard addressing
2724 mode would be better. */
2725 && ! dead_or_set_p (y, SET_DEST (x))
2726 && try_pre_increment (y, SET_DEST (PATTERN (insn)),
2727 amount))
2728 {
2729 /* We have found a suitable auto-increment
2730 and already changed insn Y to do it.
2731 So flush this increment-instruction. */
2732 PUT_CODE (insn, NOTE);
2733 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2734 NOTE_SOURCE_FILE (insn) = 0;
2735 /* Count a reference to this reg for the increment
2736 insn we are deleting. When a reg is incremented.
2737 spilling it is worse, so we want to make that
2738 less likely. */
2739 if (regno >= FIRST_PSEUDO_REGISTER)
2740 {
2741 reg_n_refs[regno] += loop_depth;
2742 reg_n_sets[regno]++;
2743 }
2744 return 1;
2745 }
2746 return 0;
2747 }
2748
2749 /* Try to change INSN so that it does pre-increment or pre-decrement
2750 addressing on register REG in order to add AMOUNT to REG.
2751 AMOUNT is negative for pre-decrement.
2752 Returns 1 if the change could be made.
2753 This checks all about the validity of the result of modifying INSN. */
2754
2755 static int
2756 try_pre_increment (insn, reg, amount)
2757 rtx insn, reg;
2758 HOST_WIDE_INT amount;
2759 {
2760 register rtx use;
2761
2762 /* Nonzero if we can try to make a pre-increment or pre-decrement.
2763 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
2764 int pre_ok = 0;
2765 /* Nonzero if we can try to make a post-increment or post-decrement.
2766 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
2767 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
2768 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
2769 int post_ok = 0;
2770
2771 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
2772 int do_post = 0;
2773
2774 /* From the sign of increment, see which possibilities are conceivable
2775 on this target machine. */
2776 #ifdef HAVE_PRE_INCREMENT
2777 if (amount > 0)
2778 pre_ok = 1;
2779 #endif
2780 #ifdef HAVE_POST_INCREMENT
2781 if (amount > 0)
2782 post_ok = 1;
2783 #endif
2784
2785 #ifdef HAVE_PRE_DECREMENT
2786 if (amount < 0)
2787 pre_ok = 1;
2788 #endif
2789 #ifdef HAVE_POST_DECREMENT
2790 if (amount < 0)
2791 post_ok = 1;
2792 #endif
2793
2794 if (! (pre_ok || post_ok))
2795 return 0;
2796
2797 /* It is not safe to add a side effect to a jump insn
2798 because if the incremented register is spilled and must be reloaded
2799 there would be no way to store the incremented value back in memory. */
2800
2801 if (GET_CODE (insn) == JUMP_INSN)
2802 return 0;
2803
2804 use = 0;
2805 if (pre_ok)
2806 use = find_use_as_address (PATTERN (insn), reg, 0);
2807 if (post_ok && (use == 0 || use == (rtx) 1))
2808 {
2809 use = find_use_as_address (PATTERN (insn), reg, -amount);
2810 do_post = 1;
2811 }
2812
2813 if (use == 0 || use == (rtx) 1)
2814 return 0;
2815
2816 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
2817 return 0;
2818
2819 /* See if this combination of instruction and addressing mode exists. */
2820 if (! validate_change (insn, &XEXP (use, 0),
2821 gen_rtx (amount > 0
2822 ? (do_post ? POST_INC : PRE_INC)
2823 : (do_post ? POST_DEC : PRE_DEC),
2824 Pmode, reg), 0))
2825 return 0;
2826
2827 /* Record that this insn now has an implicit side effect on X. */
2828 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_INC, reg, REG_NOTES (insn));
2829 return 1;
2830 }
2831
2832 #endif /* AUTO_INC_DEC */
2833 \f
2834 /* Find the place in the rtx X where REG is used as a memory address.
2835 Return the MEM rtx that so uses it.
2836 If PLUSCONST is nonzero, search instead for a memory address equivalent to
2837 (plus REG (const_int PLUSCONST)).
2838
2839 If such an address does not appear, return 0.
2840 If REG appears more than once, or is used other than in such an address,
2841 return (rtx)1. */
2842
2843 static rtx
2844 find_use_as_address (x, reg, plusconst)
2845 register rtx x;
2846 rtx reg;
2847 HOST_WIDE_INT plusconst;
2848 {
2849 enum rtx_code code = GET_CODE (x);
2850 char *fmt = GET_RTX_FORMAT (code);
2851 register int i;
2852 register rtx value = 0;
2853 register rtx tem;
2854
2855 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
2856 return x;
2857
2858 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
2859 && XEXP (XEXP (x, 0), 0) == reg
2860 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2861 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
2862 return x;
2863
2864 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
2865 {
2866 /* If REG occurs inside a MEM used in a bit-field reference,
2867 that is unacceptable. */
2868 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
2869 return (rtx) (HOST_WIDE_INT) 1;
2870 }
2871
2872 if (x == reg)
2873 return (rtx) (HOST_WIDE_INT) 1;
2874
2875 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2876 {
2877 if (fmt[i] == 'e')
2878 {
2879 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
2880 if (value == 0)
2881 value = tem;
2882 else if (tem != 0)
2883 return (rtx) (HOST_WIDE_INT) 1;
2884 }
2885 if (fmt[i] == 'E')
2886 {
2887 register int j;
2888 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2889 {
2890 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
2891 if (value == 0)
2892 value = tem;
2893 else if (tem != 0)
2894 return (rtx) (HOST_WIDE_INT) 1;
2895 }
2896 }
2897 }
2898
2899 return value;
2900 }
2901 \f
2902 /* Write information about registers and basic blocks into FILE.
2903 This is part of making a debugging dump. */
2904
2905 void
2906 dump_flow_info (file)
2907 FILE *file;
2908 {
2909 register int i;
2910 static char *reg_class_names[] = REG_CLASS_NAMES;
2911
2912 fprintf (file, "%d registers.\n", max_regno);
2913
2914 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2915 if (reg_n_refs[i])
2916 {
2917 enum reg_class class, altclass;
2918 fprintf (file, "\nRegister %d used %d times across %d insns",
2919 i, reg_n_refs[i], reg_live_length[i]);
2920 if (reg_basic_block[i] >= 0)
2921 fprintf (file, " in block %d", reg_basic_block[i]);
2922 if (reg_n_deaths[i] != 1)
2923 fprintf (file, "; dies in %d places", reg_n_deaths[i]);
2924 if (reg_n_calls_crossed[i] == 1)
2925 fprintf (file, "; crosses 1 call");
2926 else if (reg_n_calls_crossed[i])
2927 fprintf (file, "; crosses %d calls", reg_n_calls_crossed[i]);
2928 if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
2929 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
2930 class = reg_preferred_class (i);
2931 altclass = reg_alternate_class (i);
2932 if (class != GENERAL_REGS || altclass != ALL_REGS)
2933 {
2934 if (altclass == ALL_REGS || class == ALL_REGS)
2935 fprintf (file, "; pref %s", reg_class_names[(int) class]);
2936 else if (altclass == NO_REGS)
2937 fprintf (file, "; %s or none", reg_class_names[(int) class]);
2938 else
2939 fprintf (file, "; pref %s, else %s",
2940 reg_class_names[(int) class],
2941 reg_class_names[(int) altclass]);
2942 }
2943 if (REGNO_POINTER_FLAG (i))
2944 fprintf (file, "; pointer");
2945 fprintf (file, ".\n");
2946 }
2947 fprintf (file, "\n%d basic blocks.\n", n_basic_blocks);
2948 for (i = 0; i < n_basic_blocks; i++)
2949 {
2950 register rtx head, jump;
2951 register int regno;
2952 fprintf (file, "\nBasic block %d: first insn %d, last %d.\n",
2953 i,
2954 INSN_UID (basic_block_head[i]),
2955 INSN_UID (basic_block_end[i]));
2956 /* The control flow graph's storage is freed
2957 now when flow_analysis returns.
2958 Don't try to print it if it is gone. */
2959 if (basic_block_drops_in)
2960 {
2961 fprintf (file, "Reached from blocks: ");
2962 head = basic_block_head[i];
2963 if (GET_CODE (head) == CODE_LABEL)
2964 for (jump = LABEL_REFS (head);
2965 jump != head;
2966 jump = LABEL_NEXTREF (jump))
2967 {
2968 register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
2969 fprintf (file, " %d", from_block);
2970 }
2971 if (basic_block_drops_in[i])
2972 fprintf (file, " previous");
2973 }
2974 fprintf (file, "\nRegisters live at start:");
2975 for (regno = 0; regno < max_regno; regno++)
2976 {
2977 register int offset = regno / REGSET_ELT_BITS;
2978 register REGSET_ELT_TYPE bit
2979 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
2980 if (basic_block_live_at_start[i][offset] & bit)
2981 fprintf (file, " %d", regno);
2982 }
2983 fprintf (file, "\n");
2984 }
2985 fprintf (file, "\n");
2986 }
This page took 0.178834 seconds and 5 git commands to generate.