]> gcc.gnu.org Git - gcc.git/blob - gcc/flow.c
(make_var_volatile): Return type is void.
[gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* This file contains the data flow analysis pass of the compiler.
22 It computes data flow information
23 which tells combine_instructions which insns to consider combining
24 and controls register allocation.
25
26 Additional data flow information that is too bulky to record
27 is generated during the analysis, and is used at that time to
28 create autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl
37 into basic blocks. It records the beginnings and ends of the
38 basic blocks in the vectors basic_block_head and basic_block_end,
39 and the number of blocks in n_basic_blocks.
40
41 find_basic_blocks also finds any unreachable loops
42 and deletes them.
43
44 ** life_analysis **
45
46 life_analysis is called immediately after find_basic_blocks.
47 It uses the basic block information to determine where each
48 hard or pseudo register is live.
49
50 ** live-register info **
51
52 The information about where each register is live is in two parts:
53 the REG_NOTES of insns, and the vector basic_block_live_at_start.
54
55 basic_block_live_at_start has an element for each basic block,
56 and the element is a bit-vector with a bit for each hard or pseudo
57 register. The bit is 1 if the register is live at the beginning
58 of the basic block.
59
60 Two types of elements can be added to an insn's REG_NOTES.
61 A REG_DEAD note is added to an insn's REG_NOTES for any register
62 that meets both of two conditions: The value in the register is not
63 needed in subsequent insns and the insn does not replace the value in
64 the register (in the case of multi-word hard registers, the value in
65 each register must be replaced by the insn to avoid a REG_DEAD note).
66
67 In the vast majority of cases, an object in a REG_DEAD note will be
68 used somewhere in the insn. The (rare) exception to this is if an
69 insn uses a multi-word hard register and only some of the registers are
70 needed in subsequent insns. In that case, REG_DEAD notes will be
71 provided for those hard registers that are not subsequently needed.
72 Partial REG_DEAD notes of this type do not occur when an insn sets
73 only some of the hard registers used in such a multi-word operand;
74 omitting REG_DEAD notes for objects stored in an insn is optional and
75 the desire to do so does not justify the complexity of the partial
76 REG_DEAD notes.
77
78 REG_UNUSED notes are added for each register that is set by the insn
79 but is unused subsequently (if every register set by the insn is unused
80 and the insn does not reference memory or have some other side-effect,
81 the insn is deleted instead). If only part of a multi-word hard
82 register is used in a subsequent insn, REG_UNUSED notes are made for
83 the parts that will not be used.
84
85 To determine which registers are live after any insn, one can
86 start from the beginning of the basic block and scan insns, noting
87 which registers are set by each insn and which die there.
88
89 ** Other actions of life_analysis **
90
91 life_analysis sets up the LOG_LINKS fields of insns because the
92 information needed to do so is readily available.
93
94 life_analysis deletes insns whose only effect is to store a value
95 that is never used.
96
97 life_analysis notices cases where a reference to a register as
98 a memory address can be combined with a preceding or following
99 incrementation or decrementation of the register. The separate
100 instruction to increment or decrement is deleted and the address
101 is changed to a POST_INC or similar rtx.
102
103 Each time an incrementing or decrementing address is created,
104 a REG_INC element is added to the insn's REG_NOTES list.
105
106 life_analysis fills in certain vectors containing information about
107 register usage: reg_n_refs, reg_n_deaths, reg_n_sets, reg_live_length,
108 reg_n_calls_crosses and reg_basic_block. */
109 \f
110 #include <stdio.h>
111 #include "config.h"
112 #include "rtl.h"
113 #include "basic-block.h"
114 #include "insn-config.h"
115 #include "regs.h"
116 #include "hard-reg-set.h"
117 #include "flags.h"
118 #include "output.h"
119
120 #include "obstack.h"
121 #define obstack_chunk_alloc xmalloc
122 #define obstack_chunk_free free
123
124 /* List of labels that must never be deleted. */
125 extern rtx forced_labels;
126
127 /* Get the basic block number of an insn.
128 This info should not be expected to remain available
129 after the end of life_analysis. */
130
131 /* This is the limit of the allocated space in the following two arrays. */
132
133 static int max_uid_for_flow;
134
135 #define BLOCK_NUM(INSN) uid_block_number[INSN_UID (INSN)]
136
137 /* This is where the BLOCK_NUM values are really stored.
138 This is set up by find_basic_blocks and used there and in life_analysis,
139 and then freed. */
140
141 static short *uid_block_number;
142
143 /* INSN_VOLATILE (insn) is 1 if the insn refers to anything volatile. */
144
145 #define INSN_VOLATILE(INSN) uid_volatile[INSN_UID (INSN)]
146 static char *uid_volatile;
147
148 /* Number of basic blocks in the current function. */
149
150 int n_basic_blocks;
151
152 /* Maximum register number used in this function, plus one. */
153
154 int max_regno;
155
156 /* Maximum number of SCRATCH rtx's used in any basic block of this function. */
157
158 int max_scratch;
159
160 /* Number of SCRATCH rtx's in the current block. */
161
162 static int num_scratch;
163
164 /* Indexed by n, gives number of basic block that (REG n) is used in.
165 If the value is REG_BLOCK_GLOBAL (-2),
166 it means (REG n) is used in more than one basic block.
167 REG_BLOCK_UNKNOWN (-1) means it hasn't been seen yet so we don't know.
168 This information remains valid for the rest of the compilation
169 of the current function; it is used to control register allocation. */
170
171 short *reg_basic_block;
172
173 /* Indexed by n, gives number of times (REG n) is used or set, each
174 weighted by its loop-depth.
175 This information remains valid for the rest of the compilation
176 of the current function; it is used to control register allocation. */
177
178 int *reg_n_refs;
179
180 /* Indexed by N, gives number of places register N dies.
181 This information remains valid for the rest of the compilation
182 of the current function; it is used to control register allocation. */
183
184 short *reg_n_deaths;
185
186 /* Indexed by N, gives 1 if that reg is live across any CALL_INSNs.
187 This information remains valid for the rest of the compilation
188 of the current function; it is used to control register allocation. */
189
190 int *reg_n_calls_crossed;
191
192 /* Total number of instructions at which (REG n) is live.
193 The larger this is, the less priority (REG n) gets for
194 allocation in a real register.
195 This information remains valid for the rest of the compilation
196 of the current function; it is used to control register allocation.
197
198 local-alloc.c may alter this number to change the priority.
199
200 Negative values are special.
201 -1 is used to mark a pseudo reg which has a constant or memory equivalent
202 and is used infrequently enough that it should not get a hard register.
203 -2 is used to mark a pseudo reg for a parameter, when a frame pointer
204 is not required. global.c makes an allocno for this but does
205 not try to assign a hard register to it. */
206
207 int *reg_live_length;
208
209 /* Element N is the next insn that uses (hard or pseudo) register number N
210 within the current basic block; or zero, if there is no such insn.
211 This is valid only during the final backward scan in propagate_block. */
212
213 static rtx *reg_next_use;
214
215 /* Size of a regset for the current function,
216 in (1) bytes and (2) elements. */
217
218 int regset_bytes;
219 int regset_size;
220
221 /* Element N is first insn in basic block N.
222 This info lasts until we finish compiling the function. */
223
224 rtx *basic_block_head;
225
226 /* Element N is last insn in basic block N.
227 This info lasts until we finish compiling the function. */
228
229 rtx *basic_block_end;
230
231 /* Element N is a regset describing the registers live
232 at the start of basic block N.
233 This info lasts until we finish compiling the function. */
234
235 regset *basic_block_live_at_start;
236
237 /* Regset of regs live when calls to `setjmp'-like functions happen. */
238
239 regset regs_live_at_setjmp;
240
241 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
242 that have to go in the same hard reg.
243 The first two regs in the list are a pair, and the next two
244 are another pair, etc. */
245 rtx regs_may_share;
246
247 /* Element N is nonzero if control can drop into basic block N
248 from the preceding basic block. Freed after life_analysis. */
249
250 static char *basic_block_drops_in;
251
252 /* Element N is depth within loops of the last insn in basic block number N.
253 Freed after life_analysis. */
254
255 static short *basic_block_loop_depth;
256
257 /* Element N nonzero if basic block N can actually be reached.
258 Vector exists only during find_basic_blocks. */
259
260 static char *block_live_static;
261
262 /* Depth within loops of basic block being scanned for lifetime analysis,
263 plus one. This is the weight attached to references to registers. */
264
265 static int loop_depth;
266
267 /* During propagate_block, this is non-zero if the value of CC0 is live. */
268
269 static int cc0_live;
270
271 /* During propagate_block, this contains the last MEM stored into. It
272 is used to eliminate consecutive stores to the same location. */
273
274 static rtx last_mem_set;
275
276 /* Set of registers that may be eliminable. These are handled specially
277 in updating regs_ever_live. */
278
279 static HARD_REG_SET elim_reg_set;
280
281 /* Forward declarations */
282 static void find_basic_blocks ();
283 static void life_analysis ();
284 static void mark_label_ref ();
285 void allocate_for_life_analysis (); /* Used also in stupid_life_analysis */
286 static void init_regset_vector ();
287 static void propagate_block ();
288 static void mark_set_regs ();
289 static void mark_used_regs ();
290 static int insn_dead_p ();
291 static int libcall_dead_p ();
292 static int try_pre_increment ();
293 static int try_pre_increment_1 ();
294 static rtx find_use_as_address ();
295 void dump_flow_info ();
296 \f
297 /* Find basic blocks of the current function and perform data flow analysis.
298 F is the first insn of the function and NREGS the number of register numbers
299 in use. */
300
301 void
302 flow_analysis (f, nregs, file)
303 rtx f;
304 int nregs;
305 FILE *file;
306 {
307 register rtx insn;
308 register int i;
309 rtx nonlocal_label_list = nonlocal_label_rtx_list ();
310
311 #ifdef ELIMINABLE_REGS
312 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
313 #endif
314
315 /* Record which registers will be eliminated. We use this in
316 mark_used_regs. */
317
318 CLEAR_HARD_REG_SET (elim_reg_set);
319
320 #ifdef ELIMINABLE_REGS
321 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
322 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
323 #else
324 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
325 #endif
326
327 /* Count the basic blocks. Also find maximum insn uid value used. */
328
329 {
330 register RTX_CODE prev_code = JUMP_INSN;
331 register RTX_CODE code;
332
333 max_uid_for_flow = 0;
334
335 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
336 {
337 code = GET_CODE (insn);
338 if (INSN_UID (insn) > max_uid_for_flow)
339 max_uid_for_flow = INSN_UID (insn);
340 if (code == CODE_LABEL
341 || (GET_RTX_CLASS (code) == 'i'
342 && (prev_code == JUMP_INSN
343 || (prev_code == CALL_INSN
344 && nonlocal_label_list != 0)
345 || prev_code == BARRIER)))
346 i++;
347 if (code != NOTE)
348 prev_code = code;
349 }
350 }
351
352 #ifdef AUTO_INC_DEC
353 /* Leave space for insns we make in some cases for auto-inc. These cases
354 are rare, so we don't need too much space. */
355 max_uid_for_flow += max_uid_for_flow / 10;
356 #endif
357
358 /* Allocate some tables that last till end of compiling this function
359 and some needed only in find_basic_blocks and life_analysis. */
360
361 n_basic_blocks = i;
362 basic_block_head = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
363 basic_block_end = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
364 basic_block_drops_in = (char *) alloca (n_basic_blocks);
365 basic_block_loop_depth = (short *) alloca (n_basic_blocks * sizeof (short));
366 uid_block_number
367 = (short *) alloca ((max_uid_for_flow + 1) * sizeof (short));
368 uid_volatile = (char *) alloca (max_uid_for_flow + 1);
369 bzero (uid_volatile, max_uid_for_flow + 1);
370
371 find_basic_blocks (f, nonlocal_label_list);
372 life_analysis (f, nregs);
373 if (file)
374 dump_flow_info (file);
375
376 basic_block_drops_in = 0;
377 uid_block_number = 0;
378 basic_block_loop_depth = 0;
379 }
380 \f
381 /* Find all basic blocks of the function whose first insn is F.
382 Store the correct data in the tables that describe the basic blocks,
383 set up the chains of references for each CODE_LABEL, and
384 delete any entire basic blocks that cannot be reached.
385
386 NONLOCAL_LABEL_LIST is the same local variable from flow_analysis. */
387
388 static void
389 find_basic_blocks (f, nonlocal_label_list)
390 rtx f, nonlocal_label_list;
391 {
392 register rtx insn;
393 register int i;
394 register char *block_live = (char *) alloca (n_basic_blocks);
395 register char *block_marked = (char *) alloca (n_basic_blocks);
396 /* List of label_refs to all labels whose addresses are taken
397 and used as data. */
398 rtx label_value_list = 0;
399
400 block_live_static = block_live;
401 bzero (block_live, n_basic_blocks);
402 bzero (block_marked, n_basic_blocks);
403
404 /* Initialize with just block 0 reachable and no blocks marked. */
405 if (n_basic_blocks > 0)
406 block_live[0] = 1;
407
408 /* Initialize the ref chain of each label to 0. */
409 /* Record where all the blocks start and end and their depth in loops. */
410 /* For each insn, record the block it is in. */
411 /* Also mark as reachable any blocks headed by labels that
412 must not be deleted. */
413
414 {
415 register RTX_CODE prev_code = JUMP_INSN;
416 register RTX_CODE code;
417 int depth = 1;
418
419 for (insn = f, i = -1; insn; insn = NEXT_INSN (insn))
420 {
421 code = GET_CODE (insn);
422 if (code == NOTE)
423 {
424 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
425 depth++;
426 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
427 depth--;
428 }
429 /* A basic block starts at label, or after something that can jump. */
430 else if (code == CODE_LABEL
431 || (GET_RTX_CLASS (code) == 'i'
432 && (prev_code == JUMP_INSN
433 || (prev_code == CALL_INSN
434 && nonlocal_label_list != 0)
435 || prev_code == BARRIER)))
436 {
437 basic_block_head[++i] = insn;
438 basic_block_end[i] = insn;
439 basic_block_loop_depth[i] = depth;
440 if (code == CODE_LABEL)
441 {
442 LABEL_REFS (insn) = insn;
443 /* Any label that cannot be deleted
444 is considered to start a reachable block. */
445 if (LABEL_PRESERVE_P (insn))
446 block_live[i] = 1;
447 }
448 }
449 else if (GET_RTX_CLASS (code) == 'i')
450 {
451 basic_block_end[i] = insn;
452 basic_block_loop_depth[i] = depth;
453 }
454
455 /* Make a list of all labels referred to other than by jumps. */
456 if (code == INSN || code == CALL_INSN)
457 {
458 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
459 if (note != 0)
460 label_value_list = gen_rtx (EXPR_LIST, VOIDmode, XEXP (note, 0),
461 label_value_list);
462 }
463
464 BLOCK_NUM (insn) = i;
465
466 /* Don't separate a CALL_INSN from following CLOBBER insns. This is
467 a kludge that will go away when each CALL_INSN records its
468 USE and CLOBBERs. */
469
470 if (code != NOTE
471 && ! (prev_code == CALL_INSN && code == INSN
472 && GET_CODE (PATTERN (insn)) == CLOBBER))
473 prev_code = code;
474 }
475 if (i + 1 != n_basic_blocks)
476 abort ();
477 }
478
479 /* Don't delete the labels (in this function)
480 that are referenced by non-jump instructions. */
481 {
482 register rtx x;
483 for (x = label_value_list; x; x = XEXP (x, 1))
484 if (! LABEL_REF_NONLOCAL_P (x))
485 block_live[BLOCK_NUM (XEXP (x, 0))] = 1;
486 }
487
488 /* Record which basic blocks control can drop in to. */
489
490 {
491 register int i;
492 for (i = 0; i < n_basic_blocks; i++)
493 {
494 register rtx insn = PREV_INSN (basic_block_head[i]);
495 /* TEMP1 is used to avoid a bug in Sequent's compiler. */
496 register int temp1;
497 while (insn && GET_CODE (insn) == NOTE)
498 insn = PREV_INSN (insn);
499 temp1 = insn && GET_CODE (insn) != BARRIER;
500 basic_block_drops_in[i] = temp1;
501 }
502 }
503
504 /* Now find which basic blocks can actually be reached
505 and put all jump insns' LABEL_REFS onto the ref-chains
506 of their target labels. */
507
508 if (n_basic_blocks > 0)
509 {
510 int something_marked = 1;
511
512 /* Find all indirect jump insns and mark them as possibly jumping
513 to all the labels whose addresses are explicitly used.
514 This is because, when there are computed gotos,
515 we can't tell which labels they jump to, of all the possibilities. */
516
517 for (insn = f; insn; insn = NEXT_INSN (insn))
518 if (GET_CODE (insn) == JUMP_INSN
519 && GET_CODE (PATTERN (insn)) == SET
520 && SET_DEST (PATTERN (insn)) == pc_rtx
521 && (GET_CODE (SET_SRC (PATTERN (insn))) == REG
522 || GET_CODE (SET_SRC (PATTERN (insn))) == MEM))
523 {
524 rtx x;
525 for (x = label_value_list; x; x = XEXP (x, 1))
526 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
527 insn, 0);
528 for (x = forced_labels; x; x = XEXP (x, 1))
529 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
530 insn, 0);
531 }
532
533 /* Find all call insns and mark them as possibly jumping
534 to all the nonlocal goto handler labels. */
535
536 for (insn = f; insn; insn = NEXT_INSN (insn))
537 if (GET_CODE (insn) == CALL_INSN)
538 {
539 rtx x;
540 for (x = nonlocal_label_list; x; x = XEXP (x, 1))
541 /* Don't try marking labels that
542 were deleted as unreferenced. */
543 if (GET_CODE (XEXP (x, 0)) == CODE_LABEL)
544 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
545 insn, 0);
546 /* ??? This could be made smarter:
547 in some cases it's possible to tell that certain
548 calls will not do a nonlocal goto.
549
550 For example, if the nested functions that do the
551 nonlocal gotos do not have their addresses taken, then
552 only calls to those functions or to other nested
553 functions that use them could possibly do nonlocal
554 gotos. */
555 }
556
557 /* Pass over all blocks, marking each block that is reachable
558 and has not yet been marked.
559 Keep doing this until, in one pass, no blocks have been marked.
560 Then blocks_live and blocks_marked are identical and correct.
561 In addition, all jumps actually reachable have been marked. */
562
563 while (something_marked)
564 {
565 something_marked = 0;
566 for (i = 0; i < n_basic_blocks; i++)
567 if (block_live[i] && !block_marked[i])
568 {
569 block_marked[i] = 1;
570 something_marked = 1;
571 if (i + 1 < n_basic_blocks && basic_block_drops_in[i + 1])
572 block_live[i + 1] = 1;
573 insn = basic_block_end[i];
574 if (GET_CODE (insn) == JUMP_INSN)
575 mark_label_ref (PATTERN (insn), insn, 0);
576 }
577 }
578
579 /* Now delete the code for any basic blocks that can't be reached.
580 They can occur because jump_optimize does not recognize
581 unreachable loops as unreachable. */
582
583 for (i = 0; i < n_basic_blocks; i++)
584 if (!block_live[i])
585 {
586 insn = basic_block_head[i];
587 while (1)
588 {
589 if (GET_CODE (insn) == BARRIER)
590 abort ();
591 if (GET_CODE (insn) != NOTE)
592 {
593 PUT_CODE (insn, NOTE);
594 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
595 NOTE_SOURCE_FILE (insn) = 0;
596 }
597 if (insn == basic_block_end[i])
598 {
599 /* BARRIERs are between basic blocks, not part of one.
600 Delete a BARRIER if the preceding jump is deleted.
601 We cannot alter a BARRIER into a NOTE
602 because it is too short; but we can really delete
603 it because it is not part of a basic block. */
604 if (NEXT_INSN (insn) != 0
605 && GET_CODE (NEXT_INSN (insn)) == BARRIER)
606 delete_insn (NEXT_INSN (insn));
607 break;
608 }
609 insn = NEXT_INSN (insn);
610 }
611 /* Each time we delete some basic blocks,
612 see if there is a jump around them that is
613 being turned into a no-op. If so, delete it. */
614
615 if (block_live[i - 1])
616 {
617 register int j;
618 for (j = i; j < n_basic_blocks; j++)
619 if (block_live[j])
620 {
621 rtx label;
622 insn = basic_block_end[i - 1];
623 if (GET_CODE (insn) == JUMP_INSN
624 /* An unconditional jump is the only possibility
625 we must check for, since a conditional one
626 would make these blocks live. */
627 && simplejump_p (insn)
628 && (label = XEXP (SET_SRC (PATTERN (insn)), 0), 1)
629 && INSN_UID (label) != 0
630 && BLOCK_NUM (label) == j)
631 {
632 PUT_CODE (insn, NOTE);
633 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
634 NOTE_SOURCE_FILE (insn) = 0;
635 if (GET_CODE (NEXT_INSN (insn)) != BARRIER)
636 abort ();
637 delete_insn (NEXT_INSN (insn));
638 }
639 break;
640 }
641 }
642 }
643 }
644 }
645 \f
646 /* Check expression X for label references;
647 if one is found, add INSN to the label's chain of references.
648
649 CHECKDUP means check for and avoid creating duplicate references
650 from the same insn. Such duplicates do no serious harm but
651 can slow life analysis. CHECKDUP is set only when duplicates
652 are likely. */
653
654 static void
655 mark_label_ref (x, insn, checkdup)
656 rtx x, insn;
657 int checkdup;
658 {
659 register RTX_CODE code;
660 register int i;
661 register char *fmt;
662
663 /* We can be called with NULL when scanning label_value_list. */
664 if (x == 0)
665 return;
666
667 code = GET_CODE (x);
668 if (code == LABEL_REF)
669 {
670 register rtx label = XEXP (x, 0);
671 register rtx y;
672 if (GET_CODE (label) != CODE_LABEL)
673 abort ();
674 /* If the label was never emitted, this insn is junk,
675 but avoid a crash trying to refer to BLOCK_NUM (label).
676 This can happen as a result of a syntax error
677 and a diagnostic has already been printed. */
678 if (INSN_UID (label) == 0)
679 return;
680 CONTAINING_INSN (x) = insn;
681 /* if CHECKDUP is set, check for duplicate ref from same insn
682 and don't insert. */
683 if (checkdup)
684 for (y = LABEL_REFS (label); y != label; y = LABEL_NEXTREF (y))
685 if (CONTAINING_INSN (y) == insn)
686 return;
687 LABEL_NEXTREF (x) = LABEL_REFS (label);
688 LABEL_REFS (label) = x;
689 block_live_static[BLOCK_NUM (label)] = 1;
690 return;
691 }
692
693 fmt = GET_RTX_FORMAT (code);
694 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
695 {
696 if (fmt[i] == 'e')
697 mark_label_ref (XEXP (x, i), insn, 0);
698 if (fmt[i] == 'E')
699 {
700 register int j;
701 for (j = 0; j < XVECLEN (x, i); j++)
702 mark_label_ref (XVECEXP (x, i, j), insn, 1);
703 }
704 }
705 }
706 \f
707 /* Determine which registers are live at the start of each
708 basic block of the function whose first insn is F.
709 NREGS is the number of registers used in F.
710 We allocate the vector basic_block_live_at_start
711 and the regsets that it points to, and fill them with the data.
712 regset_size and regset_bytes are also set here. */
713
714 static void
715 life_analysis (f, nregs)
716 rtx f;
717 int nregs;
718 {
719 register regset tem;
720 int first_pass;
721 int changed;
722 /* For each basic block, a bitmask of regs
723 live on exit from the block. */
724 regset *basic_block_live_at_end;
725 /* For each basic block, a bitmask of regs
726 live on entry to a successor-block of this block.
727 If this does not match basic_block_live_at_end,
728 that must be updated, and the block must be rescanned. */
729 regset *basic_block_new_live_at_end;
730 /* For each basic block, a bitmask of regs
731 whose liveness at the end of the basic block
732 can make a difference in which regs are live on entry to the block.
733 These are the regs that are set within the basic block,
734 possibly excluding those that are used after they are set. */
735 regset *basic_block_significant;
736 register int i;
737 rtx insn;
738
739 struct obstack flow_obstack;
740
741 gcc_obstack_init (&flow_obstack);
742
743 max_regno = nregs;
744
745 bzero (regs_ever_live, sizeof regs_ever_live);
746
747 /* Allocate and zero out many data structures
748 that will record the data from lifetime analysis. */
749
750 allocate_for_life_analysis ();
751
752 reg_next_use = (rtx *) alloca (nregs * sizeof (rtx));
753 bzero (reg_next_use, nregs * sizeof (rtx));
754
755 /* Set up several regset-vectors used internally within this function.
756 Their meanings are documented above, with their declarations. */
757
758 basic_block_live_at_end = (regset *) alloca (n_basic_blocks * sizeof (regset));
759 /* Don't use alloca since that leads to a crash rather than an error message
760 if there isn't enough space.
761 Don't use oballoc since we may need to allocate other things during
762 this function on the temporary obstack. */
763 tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
764 bzero (tem, n_basic_blocks * regset_bytes);
765 init_regset_vector (basic_block_live_at_end, tem, n_basic_blocks, regset_bytes);
766
767 basic_block_new_live_at_end = (regset *) alloca (n_basic_blocks * sizeof (regset));
768 tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
769 bzero (tem, n_basic_blocks * regset_bytes);
770 init_regset_vector (basic_block_new_live_at_end, tem, n_basic_blocks, regset_bytes);
771
772 basic_block_significant = (regset *) alloca (n_basic_blocks * sizeof (regset));
773 tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
774 bzero (tem, n_basic_blocks * regset_bytes);
775 init_regset_vector (basic_block_significant, tem, n_basic_blocks, regset_bytes);
776
777 /* Record which insns refer to any volatile memory
778 or for any reason can't be deleted just because they are dead stores.
779 Also, delete any insns that copy a register to itself. */
780
781 for (insn = f; insn; insn = NEXT_INSN (insn))
782 {
783 enum rtx_code code1 = GET_CODE (insn);
784 if (code1 == CALL_INSN)
785 INSN_VOLATILE (insn) = 1;
786 else if (code1 == INSN || code1 == JUMP_INSN)
787 {
788 /* Delete (in effect) any obvious no-op moves. */
789 if (GET_CODE (PATTERN (insn)) == SET
790 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
791 && GET_CODE (SET_SRC (PATTERN (insn))) == REG
792 && REGNO (SET_DEST (PATTERN (insn))) ==
793 REGNO (SET_SRC (PATTERN (insn)))
794 /* Insns carrying these notes are useful later on. */
795 && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
796 {
797 PUT_CODE (insn, NOTE);
798 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
799 NOTE_SOURCE_FILE (insn) = 0;
800 }
801 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
802 {
803 /* If nothing but SETs of registers to themselves,
804 this insn can also be deleted. */
805 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
806 {
807 rtx tem = XVECEXP (PATTERN (insn), 0, i);
808
809 if (GET_CODE (tem) == USE
810 || GET_CODE (tem) == CLOBBER)
811 continue;
812
813 if (GET_CODE (tem) != SET
814 || GET_CODE (SET_DEST (tem)) != REG
815 || GET_CODE (SET_SRC (tem)) != REG
816 || REGNO (SET_DEST (tem)) != REGNO (SET_SRC (tem)))
817 break;
818 }
819
820 if (i == XVECLEN (PATTERN (insn), 0)
821 /* Insns carrying these notes are useful later on. */
822 && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
823 {
824 PUT_CODE (insn, NOTE);
825 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
826 NOTE_SOURCE_FILE (insn) = 0;
827 }
828 else
829 INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
830 }
831 else if (GET_CODE (PATTERN (insn)) != USE)
832 INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
833 /* A SET that makes space on the stack cannot be dead.
834 (Such SETs occur only for allocating variable-size data,
835 so they will always have a PLUS or MINUS according to the
836 direction of stack growth.)
837 Even if this function never uses this stack pointer value,
838 signal handlers do! */
839 else if (code1 == INSN && GET_CODE (PATTERN (insn)) == SET
840 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
841 #ifdef STACK_GROWS_DOWNWARD
842 && GET_CODE (SET_SRC (PATTERN (insn))) == MINUS
843 #else
844 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
845 #endif
846 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx)
847 INSN_VOLATILE (insn) = 1;
848 }
849 }
850
851 if (n_basic_blocks > 0)
852 #ifdef EXIT_IGNORE_STACK
853 if (! EXIT_IGNORE_STACK
854 || (! FRAME_POINTER_REQUIRED && flag_omit_frame_pointer))
855 #endif
856 {
857 /* If exiting needs the right stack value,
858 consider the stack pointer live at the end of the function. */
859 basic_block_live_at_end[n_basic_blocks - 1]
860 [STACK_POINTER_REGNUM / REGSET_ELT_BITS]
861 |= (REGSET_ELT_TYPE) 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
862 basic_block_new_live_at_end[n_basic_blocks - 1]
863 [STACK_POINTER_REGNUM / REGSET_ELT_BITS]
864 |= (REGSET_ELT_TYPE) 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
865 }
866
867 /* Mark the frame pointer is needed at the end of the function. If
868 we end up eliminating it, it will be removed from the live list
869 of each basic block by reload. */
870
871 if (n_basic_blocks > 0)
872 {
873 basic_block_live_at_end[n_basic_blocks - 1]
874 [FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
875 |= (REGSET_ELT_TYPE) 1 << (FRAME_POINTER_REGNUM % REGSET_ELT_BITS);
876 basic_block_new_live_at_end[n_basic_blocks - 1]
877 [FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
878 |= (REGSET_ELT_TYPE) 1 << (FRAME_POINTER_REGNUM % REGSET_ELT_BITS);
879 }
880
881 /* Mark all global registers as being live at the end of the function
882 since they may be referenced by our caller. */
883
884 if (n_basic_blocks > 0)
885 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
886 if (global_regs[i])
887 {
888 basic_block_live_at_end[n_basic_blocks - 1]
889 [i / REGSET_ELT_BITS]
890 |= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
891 basic_block_new_live_at_end[n_basic_blocks - 1]
892 [i / REGSET_ELT_BITS]
893 |= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
894 }
895
896 /* Propagate life info through the basic blocks
897 around the graph of basic blocks.
898
899 This is a relaxation process: each time a new register
900 is live at the end of the basic block, we must scan the block
901 to determine which registers are, as a consequence, live at the beginning
902 of that block. These registers must then be marked live at the ends
903 of all the blocks that can transfer control to that block.
904 The process continues until it reaches a fixed point. */
905
906 first_pass = 1;
907 changed = 1;
908 while (changed)
909 {
910 changed = 0;
911 for (i = n_basic_blocks - 1; i >= 0; i--)
912 {
913 int consider = first_pass;
914 int must_rescan = first_pass;
915 register int j;
916
917 if (!first_pass)
918 {
919 /* Set CONSIDER if this block needs thinking about at all
920 (that is, if the regs live now at the end of it
921 are not the same as were live at the end of it when
922 we last thought about it).
923 Set must_rescan if it needs to be thought about
924 instruction by instruction (that is, if any additional
925 reg that is live at the end now but was not live there before
926 is one of the significant regs of this basic block). */
927
928 for (j = 0; j < regset_size; j++)
929 {
930 register REGSET_ELT_TYPE x
931 = (basic_block_new_live_at_end[i][j]
932 & ~basic_block_live_at_end[i][j]);
933 if (x)
934 consider = 1;
935 if (x & basic_block_significant[i][j])
936 {
937 must_rescan = 1;
938 consider = 1;
939 break;
940 }
941 }
942
943 if (! consider)
944 continue;
945 }
946
947 /* The live_at_start of this block may be changing,
948 so another pass will be required after this one. */
949 changed = 1;
950
951 if (! must_rescan)
952 {
953 /* No complete rescan needed;
954 just record those variables newly known live at end
955 as live at start as well. */
956 for (j = 0; j < regset_size; j++)
957 {
958 register REGSET_ELT_TYPE x
959 = (basic_block_new_live_at_end[i][j]
960 & ~basic_block_live_at_end[i][j]);
961 basic_block_live_at_start[i][j] |= x;
962 basic_block_live_at_end[i][j] |= x;
963 }
964 }
965 else
966 {
967 /* Update the basic_block_live_at_start
968 by propagation backwards through the block. */
969 bcopy (basic_block_new_live_at_end[i],
970 basic_block_live_at_end[i], regset_bytes);
971 bcopy (basic_block_live_at_end[i],
972 basic_block_live_at_start[i], regset_bytes);
973 propagate_block (basic_block_live_at_start[i],
974 basic_block_head[i], basic_block_end[i], 0,
975 first_pass ? basic_block_significant[i]
976 : (regset) 0,
977 i);
978 }
979
980 {
981 register rtx jump, head;
982 /* Update the basic_block_new_live_at_end's of the block
983 that falls through into this one (if any). */
984 head = basic_block_head[i];
985 jump = PREV_INSN (head);
986 if (basic_block_drops_in[i])
987 {
988 register int from_block = BLOCK_NUM (jump);
989 register int j;
990 for (j = 0; j < regset_size; j++)
991 basic_block_new_live_at_end[from_block][j]
992 |= basic_block_live_at_start[i][j];
993 }
994 /* Update the basic_block_new_live_at_end's of
995 all the blocks that jump to this one. */
996 if (GET_CODE (head) == CODE_LABEL)
997 for (jump = LABEL_REFS (head);
998 jump != head;
999 jump = LABEL_NEXTREF (jump))
1000 {
1001 register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
1002 register int j;
1003 for (j = 0; j < regset_size; j++)
1004 basic_block_new_live_at_end[from_block][j]
1005 |= basic_block_live_at_start[i][j];
1006 }
1007 }
1008 #ifdef USE_C_ALLOCA
1009 alloca (0);
1010 #endif
1011 }
1012 first_pass = 0;
1013 }
1014
1015 /* The only pseudos that are live at the beginning of the function are
1016 those that were not set anywhere in the function. local-alloc doesn't
1017 know how to handle these correctly, so mark them as not local to any
1018 one basic block. */
1019
1020 if (n_basic_blocks > 0)
1021 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1022 if (basic_block_live_at_start[0][i / REGSET_ELT_BITS]
1023 & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS)))
1024 reg_basic_block[i] = REG_BLOCK_GLOBAL;
1025
1026 /* Now the life information is accurate.
1027 Make one more pass over each basic block
1028 to delete dead stores, create autoincrement addressing
1029 and record how many times each register is used, is set, or dies.
1030
1031 To save time, we operate directly in basic_block_live_at_end[i],
1032 thus destroying it (in fact, converting it into a copy of
1033 basic_block_live_at_start[i]). This is ok now because
1034 basic_block_live_at_end[i] is no longer used past this point. */
1035
1036 max_scratch = 0;
1037
1038 for (i = 0; i < n_basic_blocks; i++)
1039 {
1040 propagate_block (basic_block_live_at_end[i],
1041 basic_block_head[i], basic_block_end[i], 1,
1042 (regset) 0, i);
1043 #ifdef USE_C_ALLOCA
1044 alloca (0);
1045 #endif
1046 }
1047
1048 #if 0
1049 /* Something live during a setjmp should not be put in a register
1050 on certain machines which restore regs from stack frames
1051 rather than from the jmpbuf.
1052 But we don't need to do this for the user's variables, since
1053 ANSI says only volatile variables need this. */
1054 #ifdef LONGJMP_RESTORE_FROM_STACK
1055 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1056 if (regs_live_at_setjmp[i / REGSET_ELT_BITS]
1057 & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS))
1058 && regno_reg_rtx[i] != 0 && ! REG_USERVAR_P (regno_reg_rtx[i]))
1059 {
1060 reg_live_length[i] = -1;
1061 reg_basic_block[i] = -1;
1062 }
1063 #endif
1064 #endif
1065
1066 /* We have a problem with any pseudoreg that
1067 lives across the setjmp. ANSI says that if a
1068 user variable does not change in value
1069 between the setjmp and the longjmp, then the longjmp preserves it.
1070 This includes longjmp from a place where the pseudo appears dead.
1071 (In principle, the value still exists if it is in scope.)
1072 If the pseudo goes in a hard reg, some other value may occupy
1073 that hard reg where this pseudo is dead, thus clobbering the pseudo.
1074 Conclusion: such a pseudo must not go in a hard reg. */
1075 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1076 if ((regs_live_at_setjmp[i / REGSET_ELT_BITS]
1077 & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS)))
1078 && regno_reg_rtx[i] != 0)
1079 {
1080 reg_live_length[i] = -1;
1081 reg_basic_block[i] = -1;
1082 }
1083
1084 obstack_free (&flow_obstack, NULL_PTR);
1085 }
1086 \f
1087 /* Subroutines of life analysis. */
1088
1089 /* Allocate the permanent data structures that represent the results
1090 of life analysis. Not static since used also for stupid life analysis. */
1091
1092 void
1093 allocate_for_life_analysis ()
1094 {
1095 register int i;
1096 register regset tem;
1097
1098 regset_size = ((max_regno + REGSET_ELT_BITS - 1) / REGSET_ELT_BITS);
1099 regset_bytes = regset_size * sizeof (*(regset)0);
1100
1101 reg_n_refs = (int *) oballoc (max_regno * sizeof (int));
1102 bzero (reg_n_refs, max_regno * sizeof (int));
1103
1104 reg_n_sets = (short *) oballoc (max_regno * sizeof (short));
1105 bzero (reg_n_sets, max_regno * sizeof (short));
1106
1107 reg_n_deaths = (short *) oballoc (max_regno * sizeof (short));
1108 bzero (reg_n_deaths, max_regno * sizeof (short));
1109
1110 reg_live_length = (int *) oballoc (max_regno * sizeof (int));
1111 bzero (reg_live_length, max_regno * sizeof (int));
1112
1113 reg_n_calls_crossed = (int *) oballoc (max_regno * sizeof (int));
1114 bzero (reg_n_calls_crossed, max_regno * sizeof (int));
1115
1116 reg_basic_block = (short *) oballoc (max_regno * sizeof (short));
1117 for (i = 0; i < max_regno; i++)
1118 reg_basic_block[i] = REG_BLOCK_UNKNOWN;
1119
1120 basic_block_live_at_start = (regset *) oballoc (n_basic_blocks * sizeof (regset));
1121 tem = (regset) oballoc (n_basic_blocks * regset_bytes);
1122 bzero (tem, n_basic_blocks * regset_bytes);
1123 init_regset_vector (basic_block_live_at_start, tem, n_basic_blocks, regset_bytes);
1124
1125 regs_live_at_setjmp = (regset) oballoc (regset_bytes);
1126 bzero (regs_live_at_setjmp, regset_bytes);
1127 }
1128
1129 /* Make each element of VECTOR point at a regset,
1130 taking the space for all those regsets from SPACE.
1131 SPACE is of type regset, but it is really as long as NELTS regsets.
1132 BYTES_PER_ELT is the number of bytes in one regset. */
1133
1134 static void
1135 init_regset_vector (vector, space, nelts, bytes_per_elt)
1136 regset *vector;
1137 regset space;
1138 int nelts;
1139 int bytes_per_elt;
1140 {
1141 register int i;
1142 register regset p = space;
1143
1144 for (i = 0; i < nelts; i++)
1145 {
1146 vector[i] = p;
1147 p += bytes_per_elt / sizeof (*p);
1148 }
1149 }
1150 \f
1151 /* Compute the registers live at the beginning of a basic block
1152 from those live at the end.
1153
1154 When called, OLD contains those live at the end.
1155 On return, it contains those live at the beginning.
1156 FIRST and LAST are the first and last insns of the basic block.
1157
1158 FINAL is nonzero if we are doing the final pass which is not
1159 for computing the life info (since that has already been done)
1160 but for acting on it. On this pass, we delete dead stores,
1161 set up the logical links and dead-variables lists of instructions,
1162 and merge instructions for autoincrement and autodecrement addresses.
1163
1164 SIGNIFICANT is nonzero only the first time for each basic block.
1165 If it is nonzero, it points to a regset in which we store
1166 a 1 for each register that is set within the block.
1167
1168 BNUM is the number of the basic block. */
1169
1170 static void
1171 propagate_block (old, first, last, final, significant, bnum)
1172 register regset old;
1173 rtx first;
1174 rtx last;
1175 int final;
1176 regset significant;
1177 int bnum;
1178 {
1179 register rtx insn;
1180 rtx prev;
1181 regset live;
1182 regset dead;
1183
1184 /* The following variables are used only if FINAL is nonzero. */
1185 /* This vector gets one element for each reg that has been live
1186 at any point in the basic block that has been scanned so far.
1187 SOMETIMES_MAX says how many elements are in use so far.
1188 In each element, OFFSET is the byte-number within a regset
1189 for the register described by the element, and BIT is a mask
1190 for that register's bit within the byte. */
1191 register struct sometimes { short offset; short bit; } *regs_sometimes_live;
1192 int sometimes_max = 0;
1193 /* This regset has 1 for each reg that we have seen live so far.
1194 It and REGS_SOMETIMES_LIVE are updated together. */
1195 regset maxlive;
1196
1197 /* The loop depth may change in the middle of a basic block. Since we
1198 scan from end to beginning, we start with the depth at the end of the
1199 current basic block, and adjust as we pass ends and starts of loops. */
1200 loop_depth = basic_block_loop_depth[bnum];
1201
1202 dead = (regset) alloca (regset_bytes);
1203 live = (regset) alloca (regset_bytes);
1204
1205 cc0_live = 0;
1206 last_mem_set = 0;
1207
1208 /* Include any notes at the end of the block in the scan.
1209 This is in case the block ends with a call to setjmp. */
1210
1211 while (NEXT_INSN (last) != 0 && GET_CODE (NEXT_INSN (last)) == NOTE)
1212 {
1213 /* Look for loop boundaries, we are going forward here. */
1214 last = NEXT_INSN (last);
1215 if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_BEG)
1216 loop_depth++;
1217 else if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_END)
1218 loop_depth--;
1219 }
1220
1221 if (final)
1222 {
1223 register int i, offset;
1224 REGSET_ELT_TYPE bit;
1225
1226 num_scratch = 0;
1227 maxlive = (regset) alloca (regset_bytes);
1228 bcopy (old, maxlive, regset_bytes);
1229 regs_sometimes_live
1230 = (struct sometimes *) alloca (max_regno * sizeof (struct sometimes));
1231
1232 /* Process the regs live at the end of the block.
1233 Enter them in MAXLIVE and REGS_SOMETIMES_LIVE.
1234 Also mark them as not local to any one basic block. */
1235
1236 for (offset = 0, i = 0; offset < regset_size; offset++)
1237 for (bit = 1; bit; bit <<= 1, i++)
1238 {
1239 if (i == max_regno)
1240 break;
1241 if (old[offset] & bit)
1242 {
1243 reg_basic_block[i] = REG_BLOCK_GLOBAL;
1244 regs_sometimes_live[sometimes_max].offset = offset;
1245 regs_sometimes_live[sometimes_max].bit = i % REGSET_ELT_BITS;
1246 sometimes_max++;
1247 }
1248 }
1249 }
1250
1251 /* Scan the block an insn at a time from end to beginning. */
1252
1253 for (insn = last; ; insn = prev)
1254 {
1255 prev = PREV_INSN (insn);
1256
1257 /* Look for loop boundaries, remembering that we are going backwards. */
1258 if (GET_CODE (insn) == NOTE
1259 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1260 loop_depth++;
1261 else if (GET_CODE (insn) == NOTE
1262 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1263 loop_depth--;
1264
1265 /* If we have LOOP_DEPTH == 0, there has been a bookkeeping error.
1266 Abort now rather than setting register status incorrectly. */
1267 if (loop_depth == 0)
1268 abort ();
1269
1270 /* If this is a call to `setjmp' et al,
1271 warn if any non-volatile datum is live. */
1272
1273 if (final && GET_CODE (insn) == NOTE
1274 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
1275 {
1276 int i;
1277 for (i = 0; i < regset_size; i++)
1278 regs_live_at_setjmp[i] |= old[i];
1279 }
1280
1281 /* Update the life-status of regs for this insn.
1282 First DEAD gets which regs are set in this insn
1283 then LIVE gets which regs are used in this insn.
1284 Then the regs live before the insn
1285 are those live after, with DEAD regs turned off,
1286 and then LIVE regs turned on. */
1287
1288 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1289 {
1290 register int i;
1291 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1292 int insn_is_dead
1293 = (insn_dead_p (PATTERN (insn), old, 0)
1294 /* Don't delete something that refers to volatile storage! */
1295 && ! INSN_VOLATILE (insn));
1296 int libcall_is_dead
1297 = (insn_is_dead && note != 0
1298 && libcall_dead_p (PATTERN (insn), old, note, insn));
1299
1300 /* If an instruction consists of just dead store(s) on final pass,
1301 "delete" it by turning it into a NOTE of type NOTE_INSN_DELETED.
1302 We could really delete it with delete_insn, but that
1303 can cause trouble for first or last insn in a basic block. */
1304 if (final && insn_is_dead)
1305 {
1306 PUT_CODE (insn, NOTE);
1307 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1308 NOTE_SOURCE_FILE (insn) = 0;
1309
1310 /* CC0 is now known to be dead. Either this insn used it,
1311 in which case it doesn't anymore, or clobbered it,
1312 so the next insn can't use it. */
1313 cc0_live = 0;
1314
1315 /* If this insn is copying the return value from a library call,
1316 delete the entire library call. */
1317 if (libcall_is_dead)
1318 {
1319 rtx first = XEXP (note, 0);
1320 rtx p = insn;
1321 while (INSN_DELETED_P (first))
1322 first = NEXT_INSN (first);
1323 while (p != first)
1324 {
1325 p = PREV_INSN (p);
1326 PUT_CODE (p, NOTE);
1327 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
1328 NOTE_SOURCE_FILE (p) = 0;
1329 }
1330 }
1331 goto flushed;
1332 }
1333
1334 for (i = 0; i < regset_size; i++)
1335 {
1336 dead[i] = 0; /* Faster than bzero here */
1337 live[i] = 0; /* since regset_size is usually small */
1338 }
1339
1340 /* See if this is an increment or decrement that can be
1341 merged into a following memory address. */
1342 #ifdef AUTO_INC_DEC
1343 {
1344 register rtx x = PATTERN (insn);
1345 /* Does this instruction increment or decrement a register? */
1346 if (final && GET_CODE (x) == SET
1347 && GET_CODE (SET_DEST (x)) == REG
1348 && (GET_CODE (SET_SRC (x)) == PLUS
1349 || GET_CODE (SET_SRC (x)) == MINUS)
1350 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1351 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1352 /* Ok, look for a following memory ref we can combine with.
1353 If one is found, change the memory ref to a PRE_INC
1354 or PRE_DEC, cancel this insn, and return 1.
1355 Return 0 if nothing has been done. */
1356 && try_pre_increment_1 (insn))
1357 goto flushed;
1358 }
1359 #endif /* AUTO_INC_DEC */
1360
1361 /* If this is not the final pass, and this insn is copying the
1362 value of a library call and it's dead, don't scan the
1363 insns that perform the library call, so that the call's
1364 arguments are not marked live. */
1365 if (libcall_is_dead)
1366 {
1367 /* Mark the dest reg as `significant'. */
1368 mark_set_regs (old, dead, PATTERN (insn), NULL_RTX, significant);
1369
1370 insn = XEXP (note, 0);
1371 prev = PREV_INSN (insn);
1372 }
1373 else if (GET_CODE (PATTERN (insn)) == SET
1374 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1375 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1376 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1377 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1378 /* We have an insn to pop a constant amount off the stack.
1379 (Such insns use PLUS regardless of the direction of the stack,
1380 and any insn to adjust the stack by a constant is always a pop.)
1381 These insns, if not dead stores, have no effect on life. */
1382 ;
1383 else
1384 {
1385 /* LIVE gets the regs used in INSN;
1386 DEAD gets those set by it. Dead insns don't make anything
1387 live. */
1388
1389 mark_set_regs (old, dead, PATTERN (insn),
1390 final ? insn : NULL_RTX, significant);
1391
1392 /* If an insn doesn't use CC0, it becomes dead since we
1393 assume that every insn clobbers it. So show it dead here;
1394 mark_used_regs will set it live if it is referenced. */
1395 cc0_live = 0;
1396
1397 if (! insn_is_dead)
1398 mark_used_regs (old, live, PATTERN (insn), final, insn);
1399
1400 /* Sometimes we may have inserted something before INSN (such as
1401 a move) when we make an auto-inc. So ensure we will scan
1402 those insns. */
1403 #ifdef AUTO_INC_DEC
1404 prev = PREV_INSN (insn);
1405 #endif
1406
1407 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1408 {
1409 register int i;
1410
1411 /* Each call clobbers all call-clobbered regs that are not
1412 global. Note that the function-value reg is a
1413 call-clobbered reg, and mark_set_regs has already had
1414 a chance to handle it. */
1415
1416 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1417 if (call_used_regs[i] && ! global_regs[i])
1418 dead[i / REGSET_ELT_BITS]
1419 |= ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS));
1420
1421 /* The stack ptr is used (honorarily) by a CALL insn. */
1422 live[STACK_POINTER_REGNUM / REGSET_ELT_BITS]
1423 |= ((REGSET_ELT_TYPE) 1
1424 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS));
1425
1426 /* Calls may also reference any of the global registers,
1427 so they are made live. */
1428
1429 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1430 if (global_regs[i])
1431 live[i / REGSET_ELT_BITS]
1432 |= ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS));
1433
1434 /* Calls also clobber memory. */
1435 last_mem_set = 0;
1436 }
1437
1438 /* Update OLD for the registers used or set. */
1439 for (i = 0; i < regset_size; i++)
1440 {
1441 old[i] &= ~dead[i];
1442 old[i] |= live[i];
1443 }
1444
1445 if (GET_CODE (insn) == CALL_INSN && final)
1446 {
1447 /* Any regs live at the time of a call instruction
1448 must not go in a register clobbered by calls.
1449 Find all regs now live and record this for them. */
1450
1451 register struct sometimes *p = regs_sometimes_live;
1452
1453 for (i = 0; i < sometimes_max; i++, p++)
1454 if (old[p->offset] & ((REGSET_ELT_TYPE) 1 << p->bit))
1455 reg_n_calls_crossed[p->offset * REGSET_ELT_BITS + p->bit]+= 1;
1456 }
1457 }
1458
1459 /* On final pass, add any additional sometimes-live regs
1460 into MAXLIVE and REGS_SOMETIMES_LIVE.
1461 Also update counts of how many insns each reg is live at. */
1462
1463 if (final)
1464 {
1465 for (i = 0; i < regset_size; i++)
1466 {
1467 register REGSET_ELT_TYPE diff = live[i] & ~maxlive[i];
1468
1469 if (diff)
1470 {
1471 register int regno;
1472 maxlive[i] |= diff;
1473 for (regno = 0; diff && regno < REGSET_ELT_BITS; regno++)
1474 if (diff & ((REGSET_ELT_TYPE) 1 << regno))
1475 {
1476 regs_sometimes_live[sometimes_max].offset = i;
1477 regs_sometimes_live[sometimes_max].bit = regno;
1478 diff &= ~ ((REGSET_ELT_TYPE) 1 << regno);
1479 sometimes_max++;
1480 }
1481 }
1482 }
1483
1484 {
1485 register struct sometimes *p = regs_sometimes_live;
1486 for (i = 0; i < sometimes_max; i++, p++)
1487 {
1488 if (old[p->offset] & ((REGSET_ELT_TYPE) 1 << p->bit))
1489 reg_live_length[p->offset * REGSET_ELT_BITS + p->bit]++;
1490 }
1491 }
1492 }
1493 }
1494 flushed: ;
1495 if (insn == first)
1496 break;
1497 }
1498
1499 if (num_scratch > max_scratch)
1500 max_scratch = num_scratch;
1501 }
1502 \f
1503 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
1504 (SET expressions whose destinations are registers dead after the insn).
1505 NEEDED is the regset that says which regs are alive after the insn.
1506
1507 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL. */
1508
1509 static int
1510 insn_dead_p (x, needed, call_ok)
1511 rtx x;
1512 regset needed;
1513 int call_ok;
1514 {
1515 register RTX_CODE code = GET_CODE (x);
1516 /* If setting something that's a reg or part of one,
1517 see if that register's altered value will be live. */
1518
1519 if (code == SET)
1520 {
1521 register rtx r = SET_DEST (x);
1522 /* A SET that is a subroutine call cannot be dead. */
1523 if (! call_ok && GET_CODE (SET_SRC (x)) == CALL)
1524 return 0;
1525
1526 #ifdef HAVE_cc0
1527 if (GET_CODE (r) == CC0)
1528 return ! cc0_live;
1529 #endif
1530
1531 if (GET_CODE (r) == MEM && last_mem_set && ! MEM_VOLATILE_P (r)
1532 && rtx_equal_p (r, last_mem_set))
1533 return 1;
1534
1535 while (GET_CODE (r) == SUBREG
1536 || GET_CODE (r) == STRICT_LOW_PART
1537 || GET_CODE (r) == ZERO_EXTRACT
1538 || GET_CODE (r) == SIGN_EXTRACT)
1539 r = SUBREG_REG (r);
1540
1541 if (GET_CODE (r) == REG)
1542 {
1543 register int regno = REGNO (r);
1544 register int offset = regno / REGSET_ELT_BITS;
1545 register REGSET_ELT_TYPE bit
1546 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
1547
1548 /* Don't delete insns to set global regs. */
1549 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1550 /* Make sure insns to set frame pointer aren't deleted. */
1551 || regno == FRAME_POINTER_REGNUM
1552 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1553 /* Make sure insns to set arg pointer are never deleted
1554 (if the arg pointer isn't fixed, there will be a USE for
1555 it, so we can treat it normally). */
1556 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1557 #endif
1558 || (needed[offset] & bit) != 0)
1559 return 0;
1560
1561 /* If this is a hard register, verify that subsequent words are
1562 not needed. */
1563 if (regno < FIRST_PSEUDO_REGISTER)
1564 {
1565 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
1566
1567 while (--n > 0)
1568 if ((needed[(regno + n) / REGSET_ELT_BITS]
1569 & ((REGSET_ELT_TYPE) 1
1570 << ((regno + n) % REGSET_ELT_BITS))) != 0)
1571 return 0;
1572 }
1573
1574 return 1;
1575 }
1576 }
1577 /* If performing several activities,
1578 insn is dead if each activity is individually dead.
1579 Also, CLOBBERs and USEs can be ignored; a CLOBBER or USE
1580 that's inside a PARALLEL doesn't make the insn worth keeping. */
1581 else if (code == PARALLEL)
1582 {
1583 register int i = XVECLEN (x, 0);
1584 for (i--; i >= 0; i--)
1585 {
1586 rtx elt = XVECEXP (x, 0, i);
1587 if (!insn_dead_p (elt, needed, call_ok)
1588 && GET_CODE (elt) != CLOBBER
1589 && GET_CODE (elt) != USE)
1590 return 0;
1591 }
1592 return 1;
1593 }
1594 /* We do not check CLOBBER or USE here.
1595 An insn consisting of just a CLOBBER or just a USE
1596 should not be deleted. */
1597 return 0;
1598 }
1599
1600 /* If X is the pattern of the last insn in a libcall, and assuming X is dead,
1601 return 1 if the entire library call is dead.
1602 This is true if X copies a register (hard or pseudo)
1603 and if the hard return reg of the call insn is dead.
1604 (The caller should have tested the destination of X already for death.)
1605
1606 If this insn doesn't just copy a register, then we don't
1607 have an ordinary libcall. In that case, cse could not have
1608 managed to substitute the source for the dest later on,
1609 so we can assume the libcall is dead.
1610
1611 NEEDED is the bit vector of pseudoregs live before this insn.
1612 NOTE is the REG_RETVAL note of the insn. INSN is the insn itself. */
1613
1614 static int
1615 libcall_dead_p (x, needed, note, insn)
1616 rtx x;
1617 regset needed;
1618 rtx note;
1619 rtx insn;
1620 {
1621 register RTX_CODE code = GET_CODE (x);
1622
1623 if (code == SET)
1624 {
1625 register rtx r = SET_SRC (x);
1626 if (GET_CODE (r) == REG)
1627 {
1628 rtx call = XEXP (note, 0);
1629 register int i;
1630
1631 /* Find the call insn. */
1632 while (call != insn && GET_CODE (call) != CALL_INSN)
1633 call = NEXT_INSN (call);
1634
1635 /* If there is none, do nothing special,
1636 since ordinary death handling can understand these insns. */
1637 if (call == insn)
1638 return 0;
1639
1640 /* See if the hard reg holding the value is dead.
1641 If this is a PARALLEL, find the call within it. */
1642 call = PATTERN (call);
1643 if (GET_CODE (call) == PARALLEL)
1644 {
1645 for (i = XVECLEN (call, 0) - 1; i >= 0; i--)
1646 if (GET_CODE (XVECEXP (call, 0, i)) == SET
1647 && GET_CODE (SET_SRC (XVECEXP (call, 0, i))) == CALL)
1648 break;
1649
1650 if (i < 0)
1651 abort ();
1652
1653 call = XVECEXP (call, 0, i);
1654 }
1655
1656 return insn_dead_p (call, needed, 1);
1657 }
1658 }
1659 return 1;
1660 }
1661
1662 /* Return 1 if register REGNO was used before it was set.
1663 In other words, if it is live at function entry.
1664 Don't count global regster variables, though. */
1665
1666 int
1667 regno_uninitialized (regno)
1668 int regno;
1669 {
1670 if (n_basic_blocks == 0
1671 || (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
1672 return 0;
1673
1674 return (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
1675 & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS)));
1676 }
1677
1678 /* 1 if register REGNO was alive at a place where `setjmp' was called
1679 and was set more than once or is an argument.
1680 Such regs may be clobbered by `longjmp'. */
1681
1682 int
1683 regno_clobbered_at_setjmp (regno)
1684 int regno;
1685 {
1686 if (n_basic_blocks == 0)
1687 return 0;
1688
1689 return ((reg_n_sets[regno] > 1
1690 || (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
1691 & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))))
1692 && (regs_live_at_setjmp[regno / REGSET_ELT_BITS]
1693 & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))));
1694 }
1695 \f
1696 /* Process the registers that are set within X.
1697 Their bits are set to 1 in the regset DEAD,
1698 because they are dead prior to this insn.
1699
1700 If INSN is nonzero, it is the insn being processed
1701 and the fact that it is nonzero implies this is the FINAL pass
1702 in propagate_block. In this case, various info about register
1703 usage is stored, LOG_LINKS fields of insns are set up. */
1704
1705 static void mark_set_1 ();
1706
1707 static void
1708 mark_set_regs (needed, dead, x, insn, significant)
1709 regset needed;
1710 regset dead;
1711 rtx x;
1712 rtx insn;
1713 regset significant;
1714 {
1715 register RTX_CODE code = GET_CODE (x);
1716
1717 if (code == SET || code == CLOBBER)
1718 mark_set_1 (needed, dead, x, insn, significant);
1719 else if (code == PARALLEL)
1720 {
1721 register int i;
1722 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1723 {
1724 code = GET_CODE (XVECEXP (x, 0, i));
1725 if (code == SET || code == CLOBBER)
1726 mark_set_1 (needed, dead, XVECEXP (x, 0, i), insn, significant);
1727 }
1728 }
1729 }
1730
1731 /* Process a single SET rtx, X. */
1732
1733 static void
1734 mark_set_1 (needed, dead, x, insn, significant)
1735 regset needed;
1736 regset dead;
1737 rtx x;
1738 rtx insn;
1739 regset significant;
1740 {
1741 register int regno;
1742 register rtx reg = SET_DEST (x);
1743
1744 /* Modifying just one hardware register of a multi-reg value
1745 or just a byte field of a register
1746 does not mean the value from before this insn is now dead.
1747 But it does mean liveness of that register at the end of the block
1748 is significant.
1749
1750 Within mark_set_1, however, we treat it as if the register is
1751 indeed modified. mark_used_regs will, however, also treat this
1752 register as being used. Thus, we treat these insns as setting a
1753 new value for the register as a function of its old value. This
1754 cases LOG_LINKS to be made appropriately and this will help combine. */
1755
1756 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
1757 || GET_CODE (reg) == SIGN_EXTRACT
1758 || GET_CODE (reg) == STRICT_LOW_PART)
1759 reg = XEXP (reg, 0);
1760
1761 /* If we are writing into memory or into a register mentioned in the
1762 address of the last thing stored into memory, show we don't know
1763 what the last store was. If we are writing memory, save the address
1764 unless it is volatile. */
1765 if (GET_CODE (reg) == MEM
1766 || (GET_CODE (reg) == REG
1767 && last_mem_set != 0 && reg_overlap_mentioned_p (reg, last_mem_set)))
1768 last_mem_set = 0;
1769
1770 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
1771 /* There are no REG_INC notes for SP, so we can't assume we'll see
1772 everything that invalidates it. To be safe, don't eliminate any
1773 stores though SP; none of them should be redundant anyway. */
1774 && ! reg_mentioned_p (stack_pointer_rtx, reg))
1775 last_mem_set = reg;
1776
1777 if (GET_CODE (reg) == REG
1778 && (regno = REGNO (reg), regno != FRAME_POINTER_REGNUM)
1779 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1780 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1781 #endif
1782 && ! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
1783 /* && regno != STACK_POINTER_REGNUM) -- let's try without this. */
1784 {
1785 register int offset = regno / REGSET_ELT_BITS;
1786 register REGSET_ELT_TYPE bit
1787 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
1788 REGSET_ELT_TYPE all_needed = (needed[offset] & bit);
1789 REGSET_ELT_TYPE some_needed = (needed[offset] & bit);
1790
1791 /* Mark it as a significant register for this basic block. */
1792 if (significant)
1793 significant[offset] |= bit;
1794
1795 /* Mark it as as dead before this insn. */
1796 dead[offset] |= bit;
1797
1798 /* A hard reg in a wide mode may really be multiple registers.
1799 If so, mark all of them just like the first. */
1800 if (regno < FIRST_PSEUDO_REGISTER)
1801 {
1802 int n;
1803
1804 /* Nothing below is needed for the stack pointer; get out asap.
1805 Eg, log links aren't needed, since combine won't use them. */
1806 if (regno == STACK_POINTER_REGNUM)
1807 return;
1808
1809 n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
1810 while (--n > 0)
1811 {
1812 if (significant)
1813 significant[(regno + n) / REGSET_ELT_BITS]
1814 |= (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS);
1815 dead[(regno + n) / REGSET_ELT_BITS]
1816 |= (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS);
1817 some_needed
1818 |= (needed[(regno + n) / REGSET_ELT_BITS]
1819 & (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS));
1820 all_needed
1821 &= (needed[(regno + n) / REGSET_ELT_BITS]
1822 & (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS));
1823 }
1824 }
1825 /* Additional data to record if this is the final pass. */
1826 if (insn)
1827 {
1828 register rtx y = reg_next_use[regno];
1829 register int blocknum = BLOCK_NUM (insn);
1830
1831 /* The next use is no longer "next", since a store intervenes. */
1832 reg_next_use[regno] = 0;
1833
1834 /* If this is a hard reg, record this function uses the reg. */
1835
1836 if (regno < FIRST_PSEUDO_REGISTER)
1837 {
1838 register int i;
1839 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1840
1841 for (i = regno; i < endregno; i++)
1842 {
1843 regs_ever_live[i] = 1;
1844 reg_n_sets[i]++;
1845 }
1846 }
1847 else
1848 {
1849 /* Keep track of which basic blocks each reg appears in. */
1850
1851 if (reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
1852 reg_basic_block[regno] = blocknum;
1853 else if (reg_basic_block[regno] != blocknum)
1854 reg_basic_block[regno] = REG_BLOCK_GLOBAL;
1855
1856 /* Count (weighted) references, stores, etc. This counts a
1857 register twice if it is modified, but that is correct. */
1858 reg_n_sets[regno]++;
1859
1860 reg_n_refs[regno] += loop_depth;
1861
1862 /* The insns where a reg is live are normally counted
1863 elsewhere, but we want the count to include the insn
1864 where the reg is set, and the normal counting mechanism
1865 would not count it. */
1866 reg_live_length[regno]++;
1867 }
1868
1869 if (all_needed)
1870 {
1871 /* Make a logical link from the next following insn
1872 that uses this register, back to this insn.
1873 The following insns have already been processed.
1874
1875 We don't build a LOG_LINK for hard registers containing
1876 in ASM_OPERANDs. If these registers get replaced,
1877 we might wind up changing the semantics of the insn,
1878 even if reload can make what appear to be valid assignments
1879 later. */
1880 if (y && (BLOCK_NUM (y) == blocknum)
1881 && (regno >= FIRST_PSEUDO_REGISTER
1882 || asm_noperands (PATTERN (y)) < 0))
1883 LOG_LINKS (y)
1884 = gen_rtx (INSN_LIST, VOIDmode, insn, LOG_LINKS (y));
1885 }
1886 else if (! some_needed)
1887 {
1888 /* Note that dead stores have already been deleted when possible
1889 If we get here, we have found a dead store that cannot
1890 be eliminated (because the same insn does something useful).
1891 Indicate this by marking the reg being set as dying here. */
1892 REG_NOTES (insn)
1893 = gen_rtx (EXPR_LIST, REG_UNUSED, reg, REG_NOTES (insn));
1894 reg_n_deaths[REGNO (reg)]++;
1895 }
1896 else
1897 {
1898 /* This is a case where we have a multi-word hard register
1899 and some, but not all, of the words of the register are
1900 needed in subsequent insns. Write REG_UNUSED notes
1901 for those parts that were not needed. This case should
1902 be rare. */
1903
1904 int i;
1905
1906 for (i = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1;
1907 i >= 0; i--)
1908 if ((needed[(regno + i) / REGSET_ELT_BITS]
1909 & ((REGSET_ELT_TYPE) 1
1910 << ((regno + i) % REGSET_ELT_BITS))) == 0)
1911 REG_NOTES (insn)
1912 = gen_rtx (EXPR_LIST, REG_UNUSED,
1913 gen_rtx (REG, word_mode, regno + i),
1914 REG_NOTES (insn));
1915 }
1916 }
1917 }
1918 else if (GET_CODE (reg) == REG)
1919 reg_next_use[regno] = 0;
1920
1921 /* If this is the last pass and this is a SCRATCH, show it will be dying
1922 here and count it. */
1923 else if (GET_CODE (reg) == SCRATCH && insn != 0)
1924 {
1925 REG_NOTES (insn)
1926 = gen_rtx (EXPR_LIST, REG_UNUSED, reg, REG_NOTES (insn));
1927 num_scratch++;
1928 }
1929 }
1930 \f
1931 #ifdef AUTO_INC_DEC
1932
1933 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
1934 reference. */
1935
1936 static void
1937 find_auto_inc (needed, x, insn)
1938 regset needed;
1939 rtx x;
1940 rtx insn;
1941 {
1942 rtx addr = XEXP (x, 0);
1943 int offset = 0;
1944
1945 /* Here we detect use of an index register which might be good for
1946 postincrement, postdecrement, preincrement, or predecrement. */
1947
1948 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
1949 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
1950
1951 if (GET_CODE (addr) == REG)
1952 {
1953 register rtx y;
1954 register int size = GET_MODE_SIZE (GET_MODE (x));
1955 rtx use;
1956 rtx incr;
1957 int regno = REGNO (addr);
1958
1959 /* Is the next use an increment that might make auto-increment? */
1960 incr = reg_next_use[regno];
1961 if (incr && GET_CODE (PATTERN (incr)) == SET
1962 && BLOCK_NUM (incr) == BLOCK_NUM (insn)
1963 /* Can't add side effects to jumps; if reg is spilled and
1964 reloaded, there's no way to store back the altered value. */
1965 && GET_CODE (insn) != JUMP_INSN
1966 && (y = SET_SRC (PATTERN (incr)), GET_CODE (y) == PLUS)
1967 && XEXP (y, 0) == addr
1968 && GET_CODE (XEXP (y, 1)) == CONST_INT
1969 && (0
1970 #ifdef HAVE_POST_INCREMENT
1971 || (INTVAL (XEXP (y, 1)) == size && offset == 0)
1972 #endif
1973 #ifdef HAVE_POST_DECREMENT
1974 || (INTVAL (XEXP (y, 1)) == - size && offset == 0)
1975 #endif
1976 #ifdef HAVE_PRE_INCREMENT
1977 || (INTVAL (XEXP (y, 1)) == size && offset == size)
1978 #endif
1979 #ifdef HAVE_PRE_DECREMENT
1980 || (INTVAL (XEXP (y, 1)) == - size && offset == - size)
1981 #endif
1982 )
1983 /* Make sure this reg appears only once in this insn. */
1984 && (use = find_use_as_address (PATTERN (insn), addr, offset),
1985 use != 0 && use != (rtx) 1))
1986 {
1987 int win = 0;
1988 rtx q = SET_DEST (PATTERN (incr));
1989
1990 if (dead_or_set_p (incr, addr))
1991 win = 1;
1992 else if (GET_CODE (q) == REG && ! reg_used_between_p (q, insn, incr))
1993 {
1994 /* We have *p followed by q = p+size.
1995 Both p and q must be live afterward,
1996 and q must be dead before.
1997 Change it to q = p, ...*q..., q = q+size.
1998 Then fall into the usual case. */
1999 rtx insns, temp;
2000
2001 start_sequence ();
2002 emit_move_insn (q, addr);
2003 insns = get_insns ();
2004 end_sequence ();
2005
2006 /* If anything in INSNS have UID's that don't fit within the
2007 extra space we allocate earlier, we can't make this auto-inc.
2008 This should never happen. */
2009 for (temp = insns; temp; temp = NEXT_INSN (temp))
2010 {
2011 if (INSN_UID (temp) > max_uid_for_flow)
2012 return;
2013 BLOCK_NUM (temp) = BLOCK_NUM (insn);
2014 }
2015
2016 emit_insns_before (insns, insn);
2017
2018 if (basic_block_head[BLOCK_NUM (insn)] == insn)
2019 basic_block_head[BLOCK_NUM (insn)] = insns;
2020
2021 XEXP (x, 0) = q;
2022 XEXP (y, 0) = q;
2023
2024 /* INCR will become a NOTE and INSN won't contain a
2025 use of ADDR. If a use of ADDR was just placed in
2026 the insn before INSN, make that the next use.
2027 Otherwise, invalidate it. */
2028 if (GET_CODE (PREV_INSN (insn)) == INSN
2029 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
2030 && SET_SRC (PATTERN (PREV_INSN (insn))) == addr)
2031 reg_next_use[regno] = PREV_INSN (insn);
2032 else
2033 reg_next_use[regno] = 0;
2034
2035 addr = q;
2036 regno = REGNO (q);
2037 win = 1;
2038
2039 /* REGNO is now used in INCR which is below INSN, but
2040 it previously wasn't live here. If we don't mark
2041 it as needed, we'll put a REG_DEAD note for it
2042 on this insn, which is incorrect. */
2043 needed[regno / REGSET_ELT_BITS]
2044 |= (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
2045
2046 /* If there are any calls between INSN and INCR, show
2047 that REGNO now crosses them. */
2048 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
2049 if (GET_CODE (temp) == CALL_INSN)
2050 reg_n_calls_crossed[regno]++;
2051 }
2052
2053 if (win)
2054 {
2055 /* We have found a suitable auto-increment: do POST_INC around
2056 the register here, and patch out the increment instruction
2057 that follows. */
2058 XEXP (x, 0) = gen_rtx ((INTVAL (XEXP (y, 1)) == size
2059 ? (offset ? PRE_INC : POST_INC)
2060 : (offset ? PRE_DEC : POST_DEC)),
2061 Pmode, addr);
2062
2063 /* Record that this insn has an implicit side effect. */
2064 REG_NOTES (insn)
2065 = gen_rtx (EXPR_LIST, REG_INC, addr, REG_NOTES (insn));
2066
2067 /* Modify the old increment-insn to simply copy
2068 the already-incremented value of our register. */
2069 SET_SRC (PATTERN (incr)) = addr;
2070 /* Indicate insn must be re-recognized. */
2071 INSN_CODE (incr) = -1;
2072
2073 /* If that makes it a no-op (copying the register into itself)
2074 then delete it so it won't appear to be a "use" and a "set"
2075 of this register. */
2076 if (SET_DEST (PATTERN (incr)) == addr)
2077 {
2078 PUT_CODE (incr, NOTE);
2079 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
2080 NOTE_SOURCE_FILE (incr) = 0;
2081 }
2082
2083 if (regno >= FIRST_PSEUDO_REGISTER)
2084 {
2085 /* Count an extra reference to the reg. When a reg is
2086 incremented, spilling it is worse, so we want to make
2087 that less likely. */
2088 reg_n_refs[regno] += loop_depth;
2089 /* Count the increment as a setting of the register,
2090 even though it isn't a SET in rtl. */
2091 reg_n_sets[regno]++;
2092 }
2093 }
2094 }
2095 }
2096 }
2097 #endif /* AUTO_INC_DEC */
2098 \f
2099 /* Scan expression X and store a 1-bit in LIVE for each reg it uses.
2100 This is done assuming the registers needed from X
2101 are those that have 1-bits in NEEDED.
2102
2103 On the final pass, FINAL is 1. This means try for autoincrement
2104 and count the uses and deaths of each pseudo-reg.
2105
2106 INSN is the containing instruction. If INSN is dead, this function is not
2107 called. */
2108
2109 static void
2110 mark_used_regs (needed, live, x, final, insn)
2111 regset needed;
2112 regset live;
2113 rtx x;
2114 rtx insn;
2115 int final;
2116 {
2117 register RTX_CODE code;
2118 register int regno;
2119 int i;
2120
2121 retry:
2122 code = GET_CODE (x);
2123 switch (code)
2124 {
2125 case LABEL_REF:
2126 case SYMBOL_REF:
2127 case CONST_INT:
2128 case CONST:
2129 case CONST_DOUBLE:
2130 case PC:
2131 case CLOBBER:
2132 case ADDR_VEC:
2133 case ADDR_DIFF_VEC:
2134 case ASM_INPUT:
2135 return;
2136
2137 #ifdef HAVE_cc0
2138 case CC0:
2139 cc0_live = 1;
2140 return;
2141 #endif
2142
2143 case MEM:
2144 /* Invalidate the data for the last MEM stored. We could do this only
2145 if the addresses conflict, but this doesn't seem worthwhile. */
2146 last_mem_set = 0;
2147
2148 #ifdef AUTO_INC_DEC
2149 if (final)
2150 find_auto_inc (needed, x, insn);
2151 #endif
2152 break;
2153
2154 case REG:
2155 /* See a register other than being set
2156 => mark it as needed. */
2157
2158 regno = REGNO (x);
2159 {
2160 register int offset = regno / REGSET_ELT_BITS;
2161 register REGSET_ELT_TYPE bit
2162 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
2163 int all_needed = (needed[offset] & bit) != 0;
2164 int some_needed = (needed[offset] & bit) != 0;
2165
2166 live[offset] |= bit;
2167 /* A hard reg in a wide mode may really be multiple registers.
2168 If so, mark all of them just like the first. */
2169 if (regno < FIRST_PSEUDO_REGISTER)
2170 {
2171 int n;
2172
2173 /* For stack ptr or fixed arg pointer,
2174 nothing below can be necessary, so waste no more time. */
2175 if (regno == STACK_POINTER_REGNUM
2176 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2177 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2178 #endif
2179 || regno == FRAME_POINTER_REGNUM)
2180 {
2181 /* If this is a register we are going to try to eliminate,
2182 don't mark it live here. If we are successful in
2183 eliminating it, it need not be live unless it is used for
2184 pseudos, in which case it will have been set live when
2185 it was allocated to the pseudos. If the register will not
2186 be eliminated, reload will set it live at that point. */
2187
2188 if (! TEST_HARD_REG_BIT (elim_reg_set, regno))
2189 regs_ever_live[regno] = 1;
2190 return;
2191 }
2192 /* No death notes for global register variables;
2193 their values are live after this function exits. */
2194 if (global_regs[regno])
2195 {
2196 if (final)
2197 reg_next_use[regno] = insn;
2198 return;
2199 }
2200
2201 n = HARD_REGNO_NREGS (regno, GET_MODE (x));
2202 while (--n > 0)
2203 {
2204 live[(regno + n) / REGSET_ELT_BITS]
2205 |= (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS);
2206 some_needed
2207 |= (needed[(regno + n) / REGSET_ELT_BITS]
2208 & (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS));
2209 all_needed
2210 &= (needed[(regno + n) / REGSET_ELT_BITS]
2211 & (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS));
2212 }
2213 }
2214 if (final)
2215 {
2216 /* Record where each reg is used, so when the reg
2217 is set we know the next insn that uses it. */
2218
2219 reg_next_use[regno] = insn;
2220
2221 if (regno < FIRST_PSEUDO_REGISTER)
2222 {
2223 /* If a hard reg is being used,
2224 record that this function does use it. */
2225
2226 i = HARD_REGNO_NREGS (regno, GET_MODE (x));
2227 if (i == 0)
2228 i = 1;
2229 do
2230 regs_ever_live[regno + --i] = 1;
2231 while (i > 0);
2232 }
2233 else
2234 {
2235 /* Keep track of which basic block each reg appears in. */
2236
2237 register int blocknum = BLOCK_NUM (insn);
2238
2239 if (reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
2240 reg_basic_block[regno] = blocknum;
2241 else if (reg_basic_block[regno] != blocknum)
2242 reg_basic_block[regno] = REG_BLOCK_GLOBAL;
2243
2244 /* Count (weighted) number of uses of each reg. */
2245
2246 reg_n_refs[regno] += loop_depth;
2247 }
2248
2249 /* Record and count the insns in which a reg dies.
2250 If it is used in this insn and was dead below the insn
2251 then it dies in this insn. If it was set in this insn,
2252 we do not make a REG_DEAD note; likewise if we already
2253 made such a note. */
2254
2255 if (! all_needed
2256 && ! dead_or_set_p (insn, x)
2257 #if 0
2258 && (regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
2259 #endif
2260 )
2261 {
2262 /* If none of the words in X is needed, make a REG_DEAD
2263 note. Otherwise, we must make partial REG_DEAD notes. */
2264 if (! some_needed)
2265 {
2266 REG_NOTES (insn)
2267 = gen_rtx (EXPR_LIST, REG_DEAD, x, REG_NOTES (insn));
2268 reg_n_deaths[regno]++;
2269 }
2270 else
2271 {
2272 int i;
2273
2274 /* Don't make a REG_DEAD note for a part of a register
2275 that is set in the insn. */
2276
2277 for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
2278 i >= 0; i--)
2279 if ((needed[(regno + i) / REGSET_ELT_BITS]
2280 & ((REGSET_ELT_TYPE) 1
2281 << ((regno + i) % REGSET_ELT_BITS))) == 0
2282 && ! dead_or_set_regno_p (insn, regno + i))
2283 REG_NOTES (insn)
2284 = gen_rtx (EXPR_LIST, REG_DEAD,
2285 gen_rtx (REG, word_mode, regno + i),
2286 REG_NOTES (insn));
2287 }
2288 }
2289 }
2290 }
2291 return;
2292
2293 case SET:
2294 {
2295 register rtx testreg = SET_DEST (x);
2296 int mark_dest = 0;
2297
2298 /* If storing into MEM, don't show it as being used. But do
2299 show the address as being used. */
2300 if (GET_CODE (testreg) == MEM)
2301 {
2302 #ifdef AUTO_INC_DEC
2303 if (final)
2304 find_auto_inc (needed, testreg, insn);
2305 #endif
2306 mark_used_regs (needed, live, XEXP (testreg, 0), final, insn);
2307 mark_used_regs (needed, live, SET_SRC (x), final, insn);
2308 return;
2309 }
2310
2311 /* Storing in STRICT_LOW_PART is like storing in a reg
2312 in that this SET might be dead, so ignore it in TESTREG.
2313 but in some other ways it is like using the reg.
2314
2315 Storing in a SUBREG or a bit field is like storing the entire
2316 register in that if the register's value is not used
2317 then this SET is not needed. */
2318 while (GET_CODE (testreg) == STRICT_LOW_PART
2319 || GET_CODE (testreg) == ZERO_EXTRACT
2320 || GET_CODE (testreg) == SIGN_EXTRACT
2321 || GET_CODE (testreg) == SUBREG)
2322 {
2323 /* Modifying a single register in an alternate mode
2324 does not use any of the old value. But these other
2325 ways of storing in a register do use the old value. */
2326 if (GET_CODE (testreg) == SUBREG
2327 && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
2328 ;
2329 else
2330 mark_dest = 1;
2331
2332 testreg = XEXP (testreg, 0);
2333 }
2334
2335 /* If this is a store into a register,
2336 recursively scan the value being stored. */
2337
2338 if (GET_CODE (testreg) == REG
2339 && (regno = REGNO (testreg), regno != FRAME_POINTER_REGNUM)
2340 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2341 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2342 #endif
2343 )
2344 /* We used to exclude global_regs here, but that seems wrong.
2345 Storing in them is like storing in mem. */
2346 {
2347 mark_used_regs (needed, live, SET_SRC (x), final, insn);
2348 if (mark_dest)
2349 mark_used_regs (needed, live, SET_DEST (x), final, insn);
2350 return;
2351 }
2352 }
2353 break;
2354
2355 case RETURN:
2356 /* If exiting needs the right stack value, consider this insn as
2357 using the stack pointer. In any event, consider it as using
2358 all global registers. */
2359
2360 #ifdef EXIT_IGNORE_STACK
2361 if (! EXIT_IGNORE_STACK
2362 || (! FRAME_POINTER_REQUIRED && flag_omit_frame_pointer))
2363 #endif
2364 live[STACK_POINTER_REGNUM / REGSET_ELT_BITS]
2365 |= (REGSET_ELT_TYPE) 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
2366
2367 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2368 if (global_regs[i])
2369 live[i / REGSET_ELT_BITS]
2370 |= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
2371 break;
2372 }
2373
2374 /* Recursively scan the operands of this expression. */
2375
2376 {
2377 register char *fmt = GET_RTX_FORMAT (code);
2378 register int i;
2379
2380 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2381 {
2382 if (fmt[i] == 'e')
2383 {
2384 /* Tail recursive case: save a function call level. */
2385 if (i == 0)
2386 {
2387 x = XEXP (x, 0);
2388 goto retry;
2389 }
2390 mark_used_regs (needed, live, XEXP (x, i), final, insn);
2391 }
2392 else if (fmt[i] == 'E')
2393 {
2394 register int j;
2395 for (j = 0; j < XVECLEN (x, i); j++)
2396 mark_used_regs (needed, live, XVECEXP (x, i, j), final, insn);
2397 }
2398 }
2399 }
2400 }
2401 \f
2402 #ifdef AUTO_INC_DEC
2403
2404 static int
2405 try_pre_increment_1 (insn)
2406 rtx insn;
2407 {
2408 /* Find the next use of this reg. If in same basic block,
2409 make it do pre-increment or pre-decrement if appropriate. */
2410 rtx x = PATTERN (insn);
2411 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
2412 * INTVAL (XEXP (SET_SRC (x), 1)));
2413 int regno = REGNO (SET_DEST (x));
2414 rtx y = reg_next_use[regno];
2415 if (y != 0
2416 && BLOCK_NUM (y) == BLOCK_NUM (insn)
2417 && try_pre_increment (y, SET_DEST (PATTERN (insn)),
2418 amount))
2419 {
2420 /* We have found a suitable auto-increment
2421 and already changed insn Y to do it.
2422 So flush this increment-instruction. */
2423 PUT_CODE (insn, NOTE);
2424 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2425 NOTE_SOURCE_FILE (insn) = 0;
2426 /* Count a reference to this reg for the increment
2427 insn we are deleting. When a reg is incremented.
2428 spilling it is worse, so we want to make that
2429 less likely. */
2430 if (regno >= FIRST_PSEUDO_REGISTER)
2431 {
2432 reg_n_refs[regno] += loop_depth;
2433 reg_n_sets[regno]++;
2434 }
2435 return 1;
2436 }
2437 return 0;
2438 }
2439
2440 /* Try to change INSN so that it does pre-increment or pre-decrement
2441 addressing on register REG in order to add AMOUNT to REG.
2442 AMOUNT is negative for pre-decrement.
2443 Returns 1 if the change could be made.
2444 This checks all about the validity of the result of modifying INSN. */
2445
2446 static int
2447 try_pre_increment (insn, reg, amount)
2448 rtx insn, reg;
2449 HOST_WIDE_INT amount;
2450 {
2451 register rtx use;
2452
2453 /* Nonzero if we can try to make a pre-increment or pre-decrement.
2454 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
2455 int pre_ok = 0;
2456 /* Nonzero if we can try to make a post-increment or post-decrement.
2457 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
2458 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
2459 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
2460 int post_ok = 0;
2461
2462 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
2463 int do_post = 0;
2464
2465 /* From the sign of increment, see which possibilities are conceivable
2466 on this target machine. */
2467 #ifdef HAVE_PRE_INCREMENT
2468 if (amount > 0)
2469 pre_ok = 1;
2470 #endif
2471 #ifdef HAVE_POST_INCREMENT
2472 if (amount > 0)
2473 post_ok = 1;
2474 #endif
2475
2476 #ifdef HAVE_PRE_DECREMENT
2477 if (amount < 0)
2478 pre_ok = 1;
2479 #endif
2480 #ifdef HAVE_POST_DECREMENT
2481 if (amount < 0)
2482 post_ok = 1;
2483 #endif
2484
2485 if (! (pre_ok || post_ok))
2486 return 0;
2487
2488 /* It is not safe to add a side effect to a jump insn
2489 because if the incremented register is spilled and must be reloaded
2490 there would be no way to store the incremented value back in memory. */
2491
2492 if (GET_CODE (insn) == JUMP_INSN)
2493 return 0;
2494
2495 use = 0;
2496 if (pre_ok)
2497 use = find_use_as_address (PATTERN (insn), reg, 0);
2498 if (post_ok && (use == 0 || use == (rtx) 1))
2499 {
2500 use = find_use_as_address (PATTERN (insn), reg, -amount);
2501 do_post = 1;
2502 }
2503
2504 if (use == 0 || use == (rtx) 1)
2505 return 0;
2506
2507 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
2508 return 0;
2509
2510 XEXP (use, 0) = gen_rtx (amount > 0
2511 ? (do_post ? POST_INC : PRE_INC)
2512 : (do_post ? POST_DEC : PRE_DEC),
2513 Pmode, reg);
2514
2515 /* Record that this insn now has an implicit side effect on X. */
2516 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_INC, reg, REG_NOTES (insn));
2517 return 1;
2518 }
2519
2520 #endif /* AUTO_INC_DEC */
2521 \f
2522 /* Find the place in the rtx X where REG is used as a memory address.
2523 Return the MEM rtx that so uses it.
2524 If PLUSCONST is nonzero, search instead for a memory address equivalent to
2525 (plus REG (const_int PLUSCONST)).
2526
2527 If such an address does not appear, return 0.
2528 If REG appears more than once, or is used other than in such an address,
2529 return (rtx)1. */
2530
2531 static rtx
2532 find_use_as_address (x, reg, plusconst)
2533 register rtx x;
2534 rtx reg;
2535 int plusconst;
2536 {
2537 enum rtx_code code = GET_CODE (x);
2538 char *fmt = GET_RTX_FORMAT (code);
2539 register int i;
2540 register rtx value = 0;
2541 register rtx tem;
2542
2543 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
2544 return x;
2545
2546 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
2547 && XEXP (XEXP (x, 0), 0) == reg
2548 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2549 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
2550 return x;
2551
2552 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
2553 {
2554 /* If REG occurs inside a MEM used in a bit-field reference,
2555 that is unacceptable. */
2556 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
2557 return (rtx) (HOST_WIDE_INT) 1;
2558 }
2559
2560 if (x == reg)
2561 return (rtx) (HOST_WIDE_INT) 1;
2562
2563 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2564 {
2565 if (fmt[i] == 'e')
2566 {
2567 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
2568 if (value == 0)
2569 value = tem;
2570 else if (tem != 0)
2571 return (rtx) (HOST_WIDE_INT) 1;
2572 }
2573 if (fmt[i] == 'E')
2574 {
2575 register int j;
2576 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2577 {
2578 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
2579 if (value == 0)
2580 value = tem;
2581 else if (tem != 0)
2582 return (rtx) (HOST_WIDE_INT) 1;
2583 }
2584 }
2585 }
2586
2587 return value;
2588 }
2589 \f
2590 /* Write information about registers and basic blocks into FILE.
2591 This is part of making a debugging dump. */
2592
2593 void
2594 dump_flow_info (file)
2595 FILE *file;
2596 {
2597 register int i;
2598 static char *reg_class_names[] = REG_CLASS_NAMES;
2599
2600 fprintf (file, "%d registers.\n", max_regno);
2601
2602 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2603 if (reg_n_refs[i])
2604 {
2605 enum reg_class class, altclass;
2606 fprintf (file, "\nRegister %d used %d times across %d insns",
2607 i, reg_n_refs[i], reg_live_length[i]);
2608 if (reg_basic_block[i] >= 0)
2609 fprintf (file, " in block %d", reg_basic_block[i]);
2610 if (reg_n_deaths[i] != 1)
2611 fprintf (file, "; dies in %d places", reg_n_deaths[i]);
2612 if (reg_n_calls_crossed[i] == 1)
2613 fprintf (file, "; crosses 1 call");
2614 else if (reg_n_calls_crossed[i])
2615 fprintf (file, "; crosses %d calls", reg_n_calls_crossed[i]);
2616 if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
2617 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
2618 class = reg_preferred_class (i);
2619 altclass = reg_alternate_class (i);
2620 if (class != GENERAL_REGS || altclass != ALL_REGS)
2621 {
2622 if (altclass == ALL_REGS || class == ALL_REGS)
2623 fprintf (file, "; pref %s", reg_class_names[(int) class]);
2624 else if (altclass == NO_REGS)
2625 fprintf (file, "; %s or none", reg_class_names[(int) class]);
2626 else
2627 fprintf (file, "; pref %s, else %s",
2628 reg_class_names[(int) class],
2629 reg_class_names[(int) altclass]);
2630 }
2631 if (REGNO_POINTER_FLAG (i))
2632 fprintf (file, "; pointer");
2633 fprintf (file, ".\n");
2634 }
2635 fprintf (file, "\n%d basic blocks.\n", n_basic_blocks);
2636 for (i = 0; i < n_basic_blocks; i++)
2637 {
2638 register rtx head, jump;
2639 register int regno;
2640 fprintf (file, "\nBasic block %d: first insn %d, last %d.\n",
2641 i,
2642 INSN_UID (basic_block_head[i]),
2643 INSN_UID (basic_block_end[i]));
2644 /* The control flow graph's storage is freed
2645 now when flow_analysis returns.
2646 Don't try to print it if it is gone. */
2647 if (basic_block_drops_in)
2648 {
2649 fprintf (file, "Reached from blocks: ");
2650 head = basic_block_head[i];
2651 if (GET_CODE (head) == CODE_LABEL)
2652 for (jump = LABEL_REFS (head);
2653 jump != head;
2654 jump = LABEL_NEXTREF (jump))
2655 {
2656 register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
2657 fprintf (file, " %d", from_block);
2658 }
2659 if (basic_block_drops_in[i])
2660 fprintf (file, " previous");
2661 }
2662 fprintf (file, "\nRegisters live at start:");
2663 for (regno = 0; regno < max_regno; regno++)
2664 {
2665 register int offset = regno / REGSET_ELT_BITS;
2666 register REGSET_ELT_TYPE bit
2667 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
2668 if (basic_block_live_at_start[i][offset] & bit)
2669 fprintf (file, " %d", regno);
2670 }
2671 fprintf (file, "\n");
2672 }
2673 fprintf (file, "\n");
2674 }
This page took 0.160953 seconds and 5 git commands to generate.