]> gcc.gnu.org Git - gcc.git/blob - gcc/final.c
Sparc backend rewrite by rth and myself, please
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 88, 89, 92-97, 1998 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
44 directly as assembler code by the macros FUNCTION_PROLOGUE and
45 FUNCTION_EPILOGUE. Those instructions never exist as rtl. */
46
47 #include "config.h"
48 #ifdef __STDC__
49 #include <stdarg.h>
50 #else
51 #include <varargs.h>
52 #endif
53 #include "system.h"
54
55 #include "tree.h"
56 #include "rtl.h"
57 #include "regs.h"
58 #include "insn-config.h"
59 #include "insn-flags.h"
60 #include "insn-attr.h"
61 #include "insn-codes.h"
62 #include "recog.h"
63 #include "conditions.h"
64 #include "flags.h"
65 #include "real.h"
66 #include "hard-reg-set.h"
67 #include "defaults.h"
68 #include "output.h"
69 #include "except.h"
70 #include "toplev.h"
71 #include "reload.h"
72
73 /* Get N_SLINE and N_SOL from stab.h if we can expect the file to exist. */
74 #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
75 #include "dbxout.h"
76 #if defined (USG) || !defined (HAVE_STAB_H)
77 #include "gstab.h" /* If doing DBX on sysV, use our own stab.h. */
78 #else
79 #include <stab.h>
80 #endif
81
82 #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
83
84 #ifdef XCOFF_DEBUGGING_INFO
85 #include "xcoffout.h"
86 #endif
87
88 #ifdef DWARF_DEBUGGING_INFO
89 #include "dwarfout.h"
90 #endif
91
92 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
93 #include "dwarf2out.h"
94 #endif
95
96 #ifdef SDB_DEBUGGING_INFO
97 #include "sdbout.h"
98 #endif
99
100 /* .stabd code for line number. */
101 #ifndef N_SLINE
102 #define N_SLINE 0x44
103 #endif
104
105 /* .stabs code for included file name. */
106 #ifndef N_SOL
107 #define N_SOL 0x84
108 #endif
109
110 #ifndef INT_TYPE_SIZE
111 #define INT_TYPE_SIZE BITS_PER_WORD
112 #endif
113
114 #ifndef LONG_TYPE_SIZE
115 #define LONG_TYPE_SIZE BITS_PER_WORD
116 #endif
117
118 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
119 null default for it to save conditionalization later. */
120 #ifndef CC_STATUS_INIT
121 #define CC_STATUS_INIT
122 #endif
123
124 /* How to start an assembler comment. */
125 #ifndef ASM_COMMENT_START
126 #define ASM_COMMENT_START ";#"
127 #endif
128
129 /* Is the given character a logical line separator for the assembler? */
130 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
131 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
132 #endif
133
134 #ifndef JUMP_TABLES_IN_TEXT_SECTION
135 #define JUMP_TABLES_IN_TEXT_SECTION 0
136 #endif
137
138 /* Nonzero means this function is a leaf function, with no function calls.
139 This variable exists to be examined in FUNCTION_PROLOGUE
140 and FUNCTION_EPILOGUE. Always zero, unless set by some action. */
141 int leaf_function;
142
143 /* Last insn processed by final_scan_insn. */
144 static rtx debug_insn = 0;
145
146 /* Line number of last NOTE. */
147 static int last_linenum;
148
149 /* Highest line number in current block. */
150 static int high_block_linenum;
151
152 /* Likewise for function. */
153 static int high_function_linenum;
154
155 /* Filename of last NOTE. */
156 static char *last_filename;
157
158 /* Number of basic blocks seen so far;
159 used if profile_block_flag is set. */
160 static int count_basic_blocks;
161
162 /* Number of instrumented arcs when profile_arc_flag is set. */
163 extern int count_instrumented_arcs;
164
165 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
166
167 /* Nonzero while outputting an `asm' with operands.
168 This means that inconsistencies are the user's fault, so don't abort.
169 The precise value is the insn being output, to pass to error_for_asm. */
170 static rtx this_is_asm_operands;
171
172 /* Number of operands of this insn, for an `asm' with operands. */
173 static unsigned int insn_noperands;
174
175 /* Compare optimization flag. */
176
177 static rtx last_ignored_compare = 0;
178
179 /* Flag indicating this insn is the start of a new basic block. */
180
181 static int new_block = 1;
182
183 /* All the symbol-blocks (levels of scoping) in the compilation
184 are assigned sequence numbers in order of appearance of the
185 beginnings of the symbol-blocks. Both final and dbxout do this,
186 and assume that they will both give the same number to each block.
187 Final uses these sequence numbers to generate assembler label names
188 LBBnnn and LBEnnn for the beginning and end of the symbol-block.
189 Dbxout uses the sequence numbers to generate references to the same labels
190 from the dbx debugging information.
191
192 Sdb records this level at the beginning of each function,
193 in order to find the current level when recursing down declarations.
194 It outputs the block beginning and endings
195 at the point in the asm file where the blocks would begin and end. */
196
197 int next_block_index;
198
199 /* Assign a unique number to each insn that is output.
200 This can be used to generate unique local labels. */
201
202 static int insn_counter = 0;
203
204 #ifdef HAVE_cc0
205 /* This variable contains machine-dependent flags (defined in tm.h)
206 set and examined by output routines
207 that describe how to interpret the condition codes properly. */
208
209 CC_STATUS cc_status;
210
211 /* During output of an insn, this contains a copy of cc_status
212 from before the insn. */
213
214 CC_STATUS cc_prev_status;
215 #endif
216
217 /* Indexed by hardware reg number, is 1 if that register is ever
218 used in the current function.
219
220 In life_analysis, or in stupid_life_analysis, this is set
221 up to record the hard regs used explicitly. Reload adds
222 in the hard regs used for holding pseudo regs. Final uses
223 it to generate the code in the function prologue and epilogue
224 to save and restore registers as needed. */
225
226 char regs_ever_live[FIRST_PSEUDO_REGISTER];
227
228 /* Nonzero means current function must be given a frame pointer.
229 Set in stmt.c if anything is allocated on the stack there.
230 Set in reload1.c if anything is allocated on the stack there. */
231
232 int frame_pointer_needed;
233
234 /* Assign unique numbers to labels generated for profiling. */
235
236 int profile_label_no;
237
238 /* Length so far allocated in PENDING_BLOCKS. */
239
240 static int max_block_depth;
241
242 /* Stack of sequence numbers of symbol-blocks of which we have seen the
243 beginning but not yet the end. Sequence numbers are assigned at
244 the beginning; this stack allows us to find the sequence number
245 of a block that is ending. */
246
247 static int *pending_blocks;
248
249 /* Number of elements currently in use in PENDING_BLOCKS. */
250
251 static int block_depth;
252
253 /* Nonzero if have enabled APP processing of our assembler output. */
254
255 static int app_on;
256
257 /* If we are outputting an insn sequence, this contains the sequence rtx.
258 Zero otherwise. */
259
260 rtx final_sequence;
261
262 #ifdef ASSEMBLER_DIALECT
263
264 /* Number of the assembler dialect to use, starting at 0. */
265 static int dialect_number;
266 #endif
267
268 /* Indexed by line number, nonzero if there is a note for that line. */
269
270 static char *line_note_exists;
271
272 /* Linked list to hold line numbers for each basic block. */
273
274 struct bb_list {
275 struct bb_list *next; /* pointer to next basic block */
276 int line_num; /* line number */
277 int file_label_num; /* LPBC<n> label # for stored filename */
278 int func_label_num; /* LPBC<n> label # for stored function name */
279 };
280
281 static struct bb_list *bb_head = 0; /* Head of basic block list */
282 static struct bb_list **bb_tail = &bb_head; /* Ptr to store next bb ptr */
283 static int bb_file_label_num = -1; /* Current label # for file */
284 static int bb_func_label_num = -1; /* Current label # for func */
285
286 /* Linked list to hold the strings for each file and function name output. */
287
288 struct bb_str {
289 struct bb_str *next; /* pointer to next string */
290 char *string; /* string */
291 int label_num; /* label number */
292 int length; /* string length */
293 };
294
295 extern rtx peephole PROTO((rtx));
296
297 static struct bb_str *sbb_head = 0; /* Head of string list. */
298 static struct bb_str **sbb_tail = &sbb_head; /* Ptr to store next bb str */
299 static int sbb_label_num = 0; /* Last label used */
300
301 #ifdef HAVE_ATTR_length
302 static int asm_insn_count PROTO((rtx));
303 #endif
304 static void profile_function PROTO((FILE *));
305 static void profile_after_prologue PROTO((FILE *));
306 static void add_bb PROTO((FILE *));
307 static int add_bb_string PROTO((char *, int));
308 static void output_source_line PROTO((FILE *, rtx));
309 static rtx walk_alter_subreg PROTO((rtx));
310 static void output_asm_name PROTO((void));
311 static void output_operand PROTO((rtx, int));
312 #ifdef LEAF_REGISTERS
313 static void leaf_renumber_regs PROTO((rtx));
314 #endif
315 #ifdef HAVE_cc0
316 static int alter_cond PROTO((rtx));
317 #endif
318
319 extern char *getpwd ();
320 \f
321 /* Initialize data in final at the beginning of a compilation. */
322
323 void
324 init_final (filename)
325 char *filename;
326 {
327 next_block_index = 2;
328 app_on = 0;
329 max_block_depth = 20;
330 pending_blocks = (int *) xmalloc (20 * sizeof *pending_blocks);
331 final_sequence = 0;
332
333 #ifdef ASSEMBLER_DIALECT
334 dialect_number = ASSEMBLER_DIALECT;
335 #endif
336 }
337
338 /* Called at end of source file,
339 to output the block-profiling table for this entire compilation. */
340
341 void
342 end_final (filename)
343 char *filename;
344 {
345 int i;
346
347 if (profile_block_flag || profile_arc_flag)
348 {
349 char name[20];
350 int align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
351 int size, rounded;
352 struct bb_list *ptr;
353 struct bb_str *sptr;
354 int long_bytes = LONG_TYPE_SIZE / BITS_PER_UNIT;
355 int pointer_bytes = POINTER_SIZE / BITS_PER_UNIT;
356
357 if (profile_block_flag)
358 size = long_bytes * count_basic_blocks;
359 else
360 size = long_bytes * count_instrumented_arcs;
361 rounded = size;
362
363 rounded += (BIGGEST_ALIGNMENT / BITS_PER_UNIT) - 1;
364 rounded = (rounded / (BIGGEST_ALIGNMENT / BITS_PER_UNIT)
365 * (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
366
367 data_section ();
368
369 /* Output the main header, of 11 words:
370 0: 1 if this file is initialized, else 0.
371 1: address of file name (LPBX1).
372 2: address of table of counts (LPBX2).
373 3: number of counts in the table.
374 4: always 0, for compatibility with Sun.
375
376 The following are GNU extensions:
377
378 5: address of table of start addrs of basic blocks (LPBX3).
379 6: Number of bytes in this header.
380 7: address of table of function names (LPBX4).
381 8: address of table of line numbers (LPBX5) or 0.
382 9: address of table of file names (LPBX6) or 0.
383 10: space reserved for basic block profiling. */
384
385 ASM_OUTPUT_ALIGN (asm_out_file, align);
386
387 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 0);
388 /* zero word */
389 assemble_integer (const0_rtx, long_bytes, 1);
390
391 /* address of filename */
392 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 1);
393 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
394
395 /* address of count table */
396 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
397 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
398
399 /* count of the # of basic blocks or # of instrumented arcs */
400 if (profile_block_flag)
401 assemble_integer (GEN_INT (count_basic_blocks), long_bytes, 1);
402 else
403 assemble_integer (GEN_INT (count_instrumented_arcs), long_bytes,
404 1);
405
406 /* zero word (link field) */
407 assemble_integer (const0_rtx, pointer_bytes, 1);
408
409 /* address of basic block start address table */
410 if (profile_block_flag)
411 {
412 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
413 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
414 1);
415 }
416 else
417 assemble_integer (const0_rtx, pointer_bytes, 1);
418
419 /* byte count for extended structure. */
420 assemble_integer (GEN_INT (10 * UNITS_PER_WORD), long_bytes, 1);
421
422 /* address of function name table */
423 if (profile_block_flag)
424 {
425 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 4);
426 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
427 1);
428 }
429 else
430 assemble_integer (const0_rtx, pointer_bytes, 1);
431
432 /* address of line number and filename tables if debugging. */
433 if (write_symbols != NO_DEBUG && profile_block_flag)
434 {
435 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 5);
436 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
437 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 6);
438 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
439 }
440 else
441 {
442 assemble_integer (const0_rtx, pointer_bytes, 1);
443 assemble_integer (const0_rtx, pointer_bytes, 1);
444 }
445
446 /* space for extension ptr (link field) */
447 assemble_integer (const0_rtx, UNITS_PER_WORD, 1);
448
449 /* Output the file name changing the suffix to .d for Sun tcov
450 compatibility. */
451 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 1);
452 {
453 char *cwd = getpwd ();
454 int len = strlen (filename) + strlen (cwd) + 1;
455 char *data_file = (char *) alloca (len + 4);
456
457 strcpy (data_file, cwd);
458 strcat (data_file, "/");
459 strcat (data_file, filename);
460 strip_off_ending (data_file, len);
461 if (profile_block_flag)
462 strcat (data_file, ".d");
463 else
464 strcat (data_file, ".da");
465 assemble_string (data_file, strlen (data_file) + 1);
466 }
467
468 /* Make space for the table of counts. */
469 if (size == 0)
470 {
471 /* Realign data section. */
472 ASM_OUTPUT_ALIGN (asm_out_file, align);
473 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 2);
474 if (size != 0)
475 assemble_zeros (size);
476 }
477 else
478 {
479 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
480 #ifdef ASM_OUTPUT_SHARED_LOCAL
481 if (flag_shared_data)
482 ASM_OUTPUT_SHARED_LOCAL (asm_out_file, name, size, rounded);
483 else
484 #endif
485 #ifdef ASM_OUTPUT_ALIGNED_DECL_LOCAL
486 ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file, NULL_TREE, name, size,
487 BIGGEST_ALIGNMENT);
488 #else
489 #ifdef ASM_OUTPUT_ALIGNED_LOCAL
490 ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file, name, size,
491 BIGGEST_ALIGNMENT);
492 #else
493 ASM_OUTPUT_LOCAL (asm_out_file, name, size, rounded);
494 #endif
495 #endif
496 }
497
498 /* Output any basic block strings */
499 if (profile_block_flag)
500 {
501 readonly_data_section ();
502 if (sbb_head)
503 {
504 ASM_OUTPUT_ALIGN (asm_out_file, align);
505 for (sptr = sbb_head; sptr != 0; sptr = sptr->next)
506 {
507 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBC",
508 sptr->label_num);
509 assemble_string (sptr->string, sptr->length);
510 }
511 }
512 }
513
514 /* Output the table of addresses. */
515 if (profile_block_flag)
516 {
517 /* Realign in new section */
518 ASM_OUTPUT_ALIGN (asm_out_file, align);
519 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 3);
520 for (i = 0; i < count_basic_blocks; i++)
521 {
522 ASM_GENERATE_INTERNAL_LABEL (name, "LPB", i);
523 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
524 pointer_bytes, 1);
525 }
526 }
527
528 /* Output the table of function names. */
529 if (profile_block_flag)
530 {
531 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 4);
532 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
533 {
534 if (ptr->func_label_num >= 0)
535 {
536 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
537 ptr->func_label_num);
538 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
539 pointer_bytes, 1);
540 }
541 else
542 assemble_integer (const0_rtx, pointer_bytes, 1);
543 }
544
545 for ( ; i < count_basic_blocks; i++)
546 assemble_integer (const0_rtx, pointer_bytes, 1);
547 }
548
549 if (write_symbols != NO_DEBUG && profile_block_flag)
550 {
551 /* Output the table of line numbers. */
552 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 5);
553 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
554 assemble_integer (GEN_INT (ptr->line_num), long_bytes, 1);
555
556 for ( ; i < count_basic_blocks; i++)
557 assemble_integer (const0_rtx, long_bytes, 1);
558
559 /* Output the table of file names. */
560 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 6);
561 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
562 {
563 if (ptr->file_label_num >= 0)
564 {
565 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
566 ptr->file_label_num);
567 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
568 pointer_bytes, 1);
569 }
570 else
571 assemble_integer (const0_rtx, pointer_bytes, 1);
572 }
573
574 for ( ; i < count_basic_blocks; i++)
575 assemble_integer (const0_rtx, pointer_bytes, 1);
576 }
577
578 /* End with the address of the table of addresses,
579 so we can find it easily, as the last word in the file's text. */
580 if (profile_block_flag)
581 {
582 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
583 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
584 1);
585 }
586 }
587 }
588
589 /* Enable APP processing of subsequent output.
590 Used before the output from an `asm' statement. */
591
592 void
593 app_enable ()
594 {
595 if (! app_on)
596 {
597 fputs (ASM_APP_ON, asm_out_file);
598 app_on = 1;
599 }
600 }
601
602 /* Disable APP processing of subsequent output.
603 Called from varasm.c before most kinds of output. */
604
605 void
606 app_disable ()
607 {
608 if (app_on)
609 {
610 fputs (ASM_APP_OFF, asm_out_file);
611 app_on = 0;
612 }
613 }
614 \f
615 /* Return the number of slots filled in the current
616 delayed branch sequence (we don't count the insn needing the
617 delay slot). Zero if not in a delayed branch sequence. */
618
619 #ifdef DELAY_SLOTS
620 int
621 dbr_sequence_length ()
622 {
623 if (final_sequence != 0)
624 return XVECLEN (final_sequence, 0) - 1;
625 else
626 return 0;
627 }
628 #endif
629 \f
630 /* The next two pages contain routines used to compute the length of an insn
631 and to shorten branches. */
632
633 /* Arrays for insn lengths, and addresses. The latter is referenced by
634 `insn_current_length'. */
635
636 static short *insn_lengths;
637 int *insn_addresses;
638
639 /* Address of insn being processed. Used by `insn_current_length'. */
640 int insn_current_address;
641
642 /* Address of insn being processed in previous iteration. */
643 int insn_last_address;
644
645 /* konwn invariant alignment of insn being processed. */
646 int insn_current_align;
647
648 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
649 gives the next following alignment insn that increases the known
650 alignment, or NULL_RTX if there is no such insn.
651 For any alignment obtained this way, we can again index uid_align with
652 its uid to obtain the next following align that in turn increases the
653 alignment, till we reach NULL_RTX; the sequence obtained this way
654 for each insn we'll call the alignment chain of this insn in the following
655 comments. */
656
657 struct label_alignment {
658 short alignment;
659 short max_skip;
660 };
661
662 static rtx *uid_align;
663 static int *uid_shuid;
664 static struct label_alignment *label_align;
665
666 /* Indicate that branch shortening hasn't yet been done. */
667
668 void
669 init_insn_lengths ()
670 {
671 if (label_align)
672 {
673 free (label_align);
674 label_align = 0;
675 }
676 if (uid_shuid)
677 {
678 free (uid_shuid);
679 uid_shuid = 0;
680 }
681 if (insn_lengths)
682 {
683 free (insn_lengths);
684 insn_lengths = 0;
685 }
686 if (insn_addresses)
687 {
688 free (insn_addresses);
689 insn_addresses = 0;
690 }
691 if (uid_align)
692 {
693 free (uid_align);
694 uid_align = 0;
695 }
696 }
697
698 /* Obtain the current length of an insn. If branch shortening has been done,
699 get its actual length. Otherwise, get its maximum length. */
700
701 int
702 get_attr_length (insn)
703 rtx insn;
704 {
705 #ifdef HAVE_ATTR_length
706 rtx body;
707 int i;
708 int length = 0;
709
710 if (insn_lengths)
711 return insn_lengths[INSN_UID (insn)];
712 else
713 switch (GET_CODE (insn))
714 {
715 case NOTE:
716 case BARRIER:
717 case CODE_LABEL:
718 return 0;
719
720 case CALL_INSN:
721 length = insn_default_length (insn);
722 break;
723
724 case JUMP_INSN:
725 body = PATTERN (insn);
726 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
727 {
728 /* Alignment is machine-dependent and should be handled by
729 ADDR_VEC_ALIGN. */
730 }
731 else
732 length = insn_default_length (insn);
733 break;
734
735 case INSN:
736 body = PATTERN (insn);
737 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
738 return 0;
739
740 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
741 length = asm_insn_count (body) * insn_default_length (insn);
742 else if (GET_CODE (body) == SEQUENCE)
743 for (i = 0; i < XVECLEN (body, 0); i++)
744 length += get_attr_length (XVECEXP (body, 0, i));
745 else
746 length = insn_default_length (insn);
747 break;
748
749 default:
750 break;
751 }
752
753 #ifdef ADJUST_INSN_LENGTH
754 ADJUST_INSN_LENGTH (insn, length);
755 #endif
756 return length;
757 #else /* not HAVE_ATTR_length */
758 return 0;
759 #endif /* not HAVE_ATTR_length */
760 }
761 \f
762 /* Code to handle alignment inside shorten_branches. */
763
764 /* Here is an explanation how the algorithm in align_fuzz can give
765 proper results:
766
767 Call a sequence of instructions beginning with alignment point X
768 and continuing until the next alignment point `block X'. When `X'
769 is used in an expression, it means the alignment value of the
770 alignment point.
771
772 Call the distance between the start of the first insn of block X, and
773 the end of the last insn of block X `IX', for the `inner size of X'.
774 This is clearly the sum of the instruction lengths.
775
776 Likewise with the next alignment-delimited block following X, which we
777 shall call block Y.
778
779 Call the distance between the start of the first insn of block X, and
780 the start of the first insn of block Y `OX', for the `outer size of X'.
781
782 The estimated padding is then OX - IX.
783
784 OX can be safely estimated as
785
786 if (X >= Y)
787 OX = round_up(IX, Y)
788 else
789 OX = round_up(IX, X) + Y - X
790
791 Clearly est(IX) >= real(IX), because that only depends on the
792 instruction lengths, and those being overestimated is a given.
793
794 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
795 we needn't worry about that when thinking about OX.
796
797 When X >= Y, the alignment provided by Y adds no uncertainty factor
798 for branch ranges starting before X, so we can just round what we have.
799 But when X < Y, we don't know anything about the, so to speak,
800 `middle bits', so we have to assume the worst when aligning up from an
801 address mod X to one mod Y, which is Y - X. */
802
803 #ifndef LABEL_ALIGN
804 #define LABEL_ALIGN(LABEL) 0
805 #endif
806
807 #ifndef LABEL_ALIGN_MAX_SKIP
808 #define LABEL_ALIGN_MAX_SKIP 0
809 #endif
810
811 #ifndef LOOP_ALIGN
812 #define LOOP_ALIGN(LABEL) 0
813 #endif
814
815 #ifndef LOOP_ALIGN_MAX_SKIP
816 #define LOOP_ALIGN_MAX_SKIP 0
817 #endif
818
819 #ifndef LABEL_ALIGN_AFTER_BARRIER
820 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
821 #endif
822
823 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
824 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
825 #endif
826
827 #ifndef ADDR_VEC_ALIGN
828 int
829 final_addr_vec_align (addr_vec)
830 rtx addr_vec;
831 {
832 int align = exact_log2 (GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec))));
833
834 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
835 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
836 return align;
837
838 }
839 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
840 #endif
841
842 #ifndef INSN_LENGTH_ALIGNMENT
843 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
844 #endif
845
846 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
847
848 static int min_labelno, max_labelno;
849
850 #define LABEL_TO_ALIGNMENT(LABEL) \
851 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
852
853 #define LABEL_TO_MAX_SKIP(LABEL) \
854 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
855
856 /* For the benefit of port specific code do this also as a function. */
857 int
858 label_to_alignment (label)
859 rtx label;
860 {
861 return LABEL_TO_ALIGNMENT (label);
862 }
863
864 #ifdef HAVE_ATTR_length
865 /* The differences in addresses
866 between a branch and its target might grow or shrink depending on
867 the alignment the start insn of the range (the branch for a forward
868 branch or the label for a backward branch) starts out on; if these
869 differences are used naively, they can even oscillate infinitely.
870 We therefore want to compute a 'worst case' address difference that
871 is independent of the alignment the start insn of the range end
872 up on, and that is at least as large as the actual difference.
873 The function align_fuzz calculates the amount we have to add to the
874 naively computed difference, by traversing the part of the alignment
875 chain of the start insn of the range that is in front of the end insn
876 of the range, and considering for each alignment the maximum amount
877 that it might contribute to a size increase.
878
879 For casesi tables, we also want to know worst case minimum amounts of
880 address difference, in case a machine description wants to introduce
881 some common offset that is added to all offsets in a table.
882 For this purpose, align_fuzz with a growth argument of 0 comuptes the
883 appropriate adjustment. */
884
885
886 /* Compute the maximum delta by which the difference of the addresses of
887 START and END might grow / shrink due to a different address for start
888 which changes the size of alignment insns between START and END.
889 KNOWN_ALIGN_LOG is the alignment known for START.
890 GROWTH should be ~0 if the objective is to compute potential code size
891 increase, and 0 if the objective is to compute potential shrink.
892 The return value is undefined for any other value of GROWTH. */
893 int
894 align_fuzz (start, end, known_align_log, growth)
895 rtx start, end;
896 int known_align_log;
897 unsigned growth;
898 {
899 int uid = INSN_UID (start);
900 rtx align_label;
901 int known_align = 1 << known_align_log;
902 int end_shuid = INSN_SHUID (end);
903 int fuzz = 0;
904
905 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
906 {
907 int align_addr, new_align;
908
909 uid = INSN_UID (align_label);
910 align_addr = insn_addresses[uid] - insn_lengths[uid];
911 if (uid_shuid[uid] > end_shuid)
912 break;
913 known_align_log = LABEL_TO_ALIGNMENT (align_label);
914 new_align = 1 << known_align_log;
915 if (new_align < known_align)
916 continue;
917 fuzz += (-align_addr ^ growth) & (new_align - known_align);
918 known_align = new_align;
919 }
920 return fuzz;
921 }
922
923 /* Compute a worst-case reference address of a branch so that it
924 can be safely used in the presence of aligned labels. Since the
925 size of the branch itself is unknown, the size of the branch is
926 not included in the range. I.e. for a forward branch, the reference
927 address is the end address of the branch as known from the previous
928 branch shortening pass, minus a value to account for possible size
929 increase due to alignment. For a backward branch, it is the start
930 address of the branch as known from the current pass, plus a value
931 to account for possible size increase due to alignment.
932 NB.: Therefore, the maximum offset allowed for backward branches needs
933 to exclude the branch size. */
934 int
935 insn_current_reference_address (branch)
936 rtx branch;
937 {
938 rtx dest;
939 rtx seq = NEXT_INSN (PREV_INSN (branch));
940 int seq_uid = INSN_UID (seq);
941 if (GET_CODE (branch) != JUMP_INSN)
942 /* This can happen for example on the PA; the objective is to know the
943 offset to address something in front of the start of the function.
944 Thus, we can treat it like a backward branch.
945 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
946 any alignment we'd encounter, so we skip the call to align_fuzz. */
947 return insn_current_address;
948 dest = JUMP_LABEL (branch);
949 /* BRANCH has no proper alignment chain set, so use SEQ. */
950 if (INSN_SHUID (branch) < INSN_SHUID (dest))
951 {
952 /* Forward branch. */
953 return (insn_last_address + insn_lengths[seq_uid]
954 - align_fuzz (seq, dest, length_unit_log, ~0));
955 }
956 else
957 {
958 /* Backward branch. */
959 return (insn_current_address
960 + align_fuzz (dest, seq, length_unit_log, ~0));
961 }
962 }
963 #endif /* HAVE_ATTR_length */
964 \f
965 /* Make a pass over all insns and compute their actual lengths by shortening
966 any branches of variable length if possible. */
967
968 /* Give a default value for the lowest address in a function. */
969
970 #ifndef FIRST_INSN_ADDRESS
971 #define FIRST_INSN_ADDRESS 0
972 #endif
973
974 /* shorten_branches might be called multiple times: for example, the SH
975 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
976 In order to do this, it needs proper length information, which it obtains
977 by calling shorten_branches. This cannot be collapsed with
978 shorten_branches itself into a single pass unless we also want to intergate
979 reorg.c, since the branch splitting exposes new instructions with delay
980 slots. */
981
982 void
983 shorten_branches (first)
984 rtx first;
985 {
986 rtx insn;
987 int max_uid;
988 int i;
989 int max_log;
990 int max_skip;
991 #ifdef HAVE_ATTR_length
992 #define MAX_CODE_ALIGN 16
993 rtx seq;
994 int something_changed = 1;
995 char *varying_length;
996 rtx body;
997 int uid;
998 rtx align_tab[MAX_CODE_ALIGN];
999
1000 /* In order to make sure that all instructions have valid length info,
1001 we must split them before we compute the address/length info. */
1002
1003 for (insn = NEXT_INSN (first); insn; insn = NEXT_INSN (insn))
1004 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1005 {
1006 rtx old = insn;
1007 insn = try_split (PATTERN (old), old, 1);
1008 /* When not optimizing, the old insn will be still left around
1009 with only the 'deleted' bit set. Transform it into a note
1010 to avoid confusion of subsequent processing. */
1011 if (INSN_DELETED_P (old))
1012 {
1013 PUT_CODE (old , NOTE);
1014 NOTE_LINE_NUMBER (old) = NOTE_INSN_DELETED;
1015 NOTE_SOURCE_FILE (old) = 0;
1016 }
1017 }
1018 #endif
1019
1020 /* We must do some computations even when not actually shortening, in
1021 order to get the alignment information for the labels. */
1022
1023 init_insn_lengths ();
1024
1025 /* Compute maximum UID and allocate label_align / uid_shuid. */
1026 max_uid = get_max_uid ();
1027
1028 max_labelno = max_label_num ();
1029 min_labelno = get_first_label_num ();
1030 label_align = (struct label_alignment *) xmalloc (
1031 (max_labelno - min_labelno + 1) * sizeof (struct label_alignment));
1032 bzero ((char *) label_align,
1033 (max_labelno - min_labelno + 1) * sizeof (struct label_alignment));
1034
1035 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
1036
1037 /* Initialize label_align and set up uid_shuid to be strictly
1038 monotonically rising with insn order. */
1039 /* We use max_log here to keep track of the maximum alignment we want to
1040 impose on the next CODE_LABEL (or the current one if we are processing
1041 the CODE_LABEL itself). */
1042
1043 max_log = 0;
1044 max_skip = 0;
1045
1046 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
1047 {
1048 int log;
1049
1050 INSN_SHUID (insn) = i++;
1051 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1052 {
1053 /* reorg might make the first insn of a loop being run once only,
1054 and delete the label in front of it. Then we want to apply
1055 the loop alignment to the new label created by reorg, which
1056 is separated by the former loop start insn from the
1057 NOTE_INSN_LOOP_BEG. */
1058 }
1059 else if (GET_CODE (insn) == CODE_LABEL)
1060 {
1061 rtx next;
1062
1063 log = LABEL_ALIGN (insn);
1064 if (max_log < log)
1065 {
1066 max_log = log;
1067 max_skip = LABEL_ALIGN_MAX_SKIP;
1068 }
1069 next = NEXT_INSN (insn);
1070 /* ADDR_VECs only take room if read-only data goes into the text
1071 section. */
1072 if (JUMP_TABLES_IN_TEXT_SECTION
1073 #if !defined(READONLY_DATA_SECTION)
1074 || 1
1075 #endif
1076 )
1077 if (next && GET_CODE (next) == JUMP_INSN)
1078 {
1079 rtx nextbody = PATTERN (next);
1080 if (GET_CODE (nextbody) == ADDR_VEC
1081 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1082 {
1083 log = ADDR_VEC_ALIGN (next);
1084 if (max_log < log)
1085 {
1086 max_log = log;
1087 max_skip = LABEL_ALIGN_MAX_SKIP;
1088 }
1089 }
1090 }
1091 LABEL_TO_ALIGNMENT (insn) = max_log;
1092 LABEL_TO_MAX_SKIP (insn) = max_skip;
1093 max_log = 0;
1094 max_skip = 0;
1095 }
1096 else if (GET_CODE (insn) == BARRIER)
1097 {
1098 rtx label;
1099
1100 for (label = insn; label && GET_RTX_CLASS (GET_CODE (label)) != 'i';
1101 label = NEXT_INSN (label))
1102 if (GET_CODE (label) == CODE_LABEL)
1103 {
1104 log = LABEL_ALIGN_AFTER_BARRIER (insn);
1105 if (max_log < log)
1106 {
1107 max_log = log;
1108 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
1109 }
1110 break;
1111 }
1112 }
1113 /* Again, we allow NOTE_INSN_LOOP_BEG - INSN - CODE_LABEL
1114 sequences in order to handle reorg output efficiently. */
1115 else if (GET_CODE (insn) == NOTE
1116 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1117 {
1118 rtx label;
1119
1120 for (label = insn; label; label = NEXT_INSN (label))
1121 if (GET_CODE (label) == CODE_LABEL)
1122 {
1123 log = LOOP_ALIGN (insn);
1124 if (max_log < log)
1125 {
1126 max_log = log;
1127 max_skip = LOOP_ALIGN_MAX_SKIP;
1128 }
1129 break;
1130 }
1131 }
1132 else
1133 continue;
1134 }
1135 #ifdef HAVE_ATTR_length
1136
1137 /* Allocate the rest of the arrays. */
1138 insn_lengths = (short *) xmalloc (max_uid * sizeof (short));
1139 insn_addresses = (int *) xmalloc (max_uid * sizeof (int));
1140 /* Syntax errors can lead to labels being outside of the main insn stream.
1141 Initialize insn_addresses, so that we get reproducible results. */
1142 bzero ((char *)insn_addresses, max_uid * sizeof *insn_addresses);
1143 uid_align = (rtx *) xmalloc (max_uid * sizeof *uid_align);
1144
1145 varying_length = (char *) xmalloc (max_uid * sizeof (char));
1146
1147 bzero (varying_length, max_uid);
1148
1149 /* Initialize uid_align. We scan instructions
1150 from end to start, and keep in align_tab[n] the last seen insn
1151 that does an alignment of at least n+1, i.e. the successor
1152 in the alignment chain for an insn that does / has a known
1153 alignment of n. */
1154
1155 bzero ((char *) uid_align, max_uid * sizeof *uid_align);
1156
1157 for (i = MAX_CODE_ALIGN; --i >= 0; )
1158 align_tab[i] = NULL_RTX;
1159 seq = get_last_insn ();
1160 for (; seq; seq = PREV_INSN (seq))
1161 {
1162 int uid = INSN_UID (seq);
1163 int log;
1164 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
1165 uid_align[uid] = align_tab[0];
1166 if (log)
1167 {
1168 /* Found an alignment label. */
1169 uid_align[uid] = align_tab[log];
1170 for (i = log - 1; i >= 0; i--)
1171 align_tab[i] = seq;
1172 }
1173 }
1174 #ifdef CASE_VECTOR_SHORTEN_MODE
1175 if (optimize)
1176 {
1177 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1178 label fields. */
1179
1180 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1181 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1182 int rel;
1183
1184 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1185 {
1186 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1187 int len, i, min, max, insn_shuid;
1188 int min_align;
1189 addr_diff_vec_flags flags;
1190
1191 if (GET_CODE (insn) != JUMP_INSN
1192 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1193 continue;
1194 pat = PATTERN (insn);
1195 len = XVECLEN (pat, 1);
1196 if (len <= 0)
1197 abort ();
1198 min_align = MAX_CODE_ALIGN;
1199 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1200 {
1201 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1202 int shuid = INSN_SHUID (lab);
1203 if (shuid < min)
1204 {
1205 min = shuid;
1206 min_lab = lab;
1207 }
1208 if (shuid > max)
1209 {
1210 max = shuid;
1211 max_lab = lab;
1212 }
1213 if (min_align > LABEL_TO_ALIGNMENT (lab))
1214 min_align = LABEL_TO_ALIGNMENT (lab);
1215 }
1216 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
1217 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
1218 insn_shuid = INSN_SHUID (insn);
1219 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1220 flags.min_align = min_align;
1221 flags.base_after_vec = rel > insn_shuid;
1222 flags.min_after_vec = min > insn_shuid;
1223 flags.max_after_vec = max > insn_shuid;
1224 flags.min_after_base = min > rel;
1225 flags.max_after_base = max > rel;
1226 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1227 }
1228 }
1229 #endif /* CASE_VECTOR_SHORTEN_MODE */
1230
1231
1232 /* Compute initial lengths, addresses, and varying flags for each insn. */
1233 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1234 insn != 0;
1235 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1236 {
1237 uid = INSN_UID (insn);
1238
1239 insn_lengths[uid] = 0;
1240
1241 if (GET_CODE (insn) == CODE_LABEL)
1242 {
1243 int log = LABEL_TO_ALIGNMENT (insn);
1244 if (log)
1245 {
1246 int align = 1 << log;
1247 int new_address = (insn_current_address + align - 1) & -align;
1248 insn_lengths[uid] = new_address - insn_current_address;
1249 insn_current_address = new_address;
1250 }
1251 }
1252
1253 insn_addresses[uid] = insn_current_address;
1254
1255 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
1256 || GET_CODE (insn) == CODE_LABEL)
1257 continue;
1258 if (INSN_DELETED_P (insn))
1259 continue;
1260
1261 body = PATTERN (insn);
1262 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1263 {
1264 /* This only takes room if read-only data goes into the text
1265 section. */
1266 if (JUMP_TABLES_IN_TEXT_SECTION
1267 #if !defined(READONLY_DATA_SECTION)
1268 || 1
1269 #endif
1270 )
1271 insn_lengths[uid] = (XVECLEN (body,
1272 GET_CODE (body) == ADDR_DIFF_VEC)
1273 * GET_MODE_SIZE (GET_MODE (body)));
1274 /* Alignment is handled by ADDR_VEC_ALIGN. */
1275 }
1276 else if (asm_noperands (body) >= 0)
1277 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1278 else if (GET_CODE (body) == SEQUENCE)
1279 {
1280 int i;
1281 int const_delay_slots;
1282 #ifdef DELAY_SLOTS
1283 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1284 #else
1285 const_delay_slots = 0;
1286 #endif
1287 /* Inside a delay slot sequence, we do not do any branch shortening
1288 if the shortening could change the number of delay slots
1289 of the branch. */
1290 for (i = 0; i < XVECLEN (body, 0); i++)
1291 {
1292 rtx inner_insn = XVECEXP (body, 0, i);
1293 int inner_uid = INSN_UID (inner_insn);
1294 int inner_length;
1295
1296 if (asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1297 inner_length = (asm_insn_count (PATTERN (inner_insn))
1298 * insn_default_length (inner_insn));
1299 else
1300 inner_length = insn_default_length (inner_insn);
1301
1302 insn_lengths[inner_uid] = inner_length;
1303 if (const_delay_slots)
1304 {
1305 if ((varying_length[inner_uid]
1306 = insn_variable_length_p (inner_insn)) != 0)
1307 varying_length[uid] = 1;
1308 insn_addresses[inner_uid] = (insn_current_address +
1309 insn_lengths[uid]);
1310 }
1311 else
1312 varying_length[inner_uid] = 0;
1313 insn_lengths[uid] += inner_length;
1314 }
1315 }
1316 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1317 {
1318 insn_lengths[uid] = insn_default_length (insn);
1319 varying_length[uid] = insn_variable_length_p (insn);
1320 }
1321
1322 /* If needed, do any adjustment. */
1323 #ifdef ADJUST_INSN_LENGTH
1324 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1325 #endif
1326 }
1327
1328 /* Now loop over all the insns finding varying length insns. For each,
1329 get the current insn length. If it has changed, reflect the change.
1330 When nothing changes for a full pass, we are done. */
1331
1332 while (something_changed)
1333 {
1334 something_changed = 0;
1335 insn_current_align = MAX_CODE_ALIGN - 1;
1336 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1337 insn != 0;
1338 insn = NEXT_INSN (insn))
1339 {
1340 int new_length;
1341 #ifdef ADJUST_INSN_LENGTH
1342 int tmp_length;
1343 #endif
1344 int length_align;
1345
1346 uid = INSN_UID (insn);
1347
1348 if (GET_CODE (insn) == CODE_LABEL)
1349 {
1350 int log = LABEL_TO_ALIGNMENT (insn);
1351 if (log > insn_current_align)
1352 {
1353 int align = 1 << log;
1354 int new_address= (insn_current_address + align - 1) & -align;
1355 insn_lengths[uid] = new_address - insn_current_address;
1356 insn_current_align = log;
1357 insn_current_address = new_address;
1358 }
1359 else
1360 insn_lengths[uid] = 0;
1361 insn_addresses[uid] = insn_current_address;
1362 continue;
1363 }
1364
1365 length_align = INSN_LENGTH_ALIGNMENT (insn);
1366 if (length_align < insn_current_align)
1367 insn_current_align = length_align;
1368
1369 insn_last_address = insn_addresses[uid];
1370 insn_addresses[uid] = insn_current_address;
1371
1372 #ifdef CASE_VECTOR_SHORTEN_MODE
1373 if (optimize && GET_CODE (insn) == JUMP_INSN
1374 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1375 {
1376 rtx body = PATTERN (insn);
1377 int old_length = insn_lengths[uid];
1378 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1379 rtx min_lab = XEXP (XEXP (body, 2), 0);
1380 rtx max_lab = XEXP (XEXP (body, 3), 0);
1381 addr_diff_vec_flags flags = ADDR_DIFF_VEC_FLAGS (body);
1382 int rel_addr = insn_addresses[INSN_UID (rel_lab)];
1383 int min_addr = insn_addresses[INSN_UID (min_lab)];
1384 int max_addr = insn_addresses[INSN_UID (max_lab)];
1385 rtx prev;
1386 int rel_align = 0;
1387
1388 /* Try to find a known alignment for rel_lab. */
1389 for (prev = rel_lab;
1390 prev
1391 && ! insn_lengths[INSN_UID (prev)]
1392 && ! (varying_length[INSN_UID (prev)] & 1);
1393 prev = PREV_INSN (prev))
1394 if (varying_length[INSN_UID (prev)] & 2)
1395 {
1396 rel_align = LABEL_TO_ALIGNMENT (prev);
1397 break;
1398 }
1399
1400 /* See the comment on addr_diff_vec_flags in rtl.h for the
1401 meaning of the flags values. base: REL_LAB vec: INSN */
1402 /* Anything after INSN has still addresses from the last
1403 pass; adjust these so that they reflect our current
1404 estimate for this pass. */
1405 if (flags.base_after_vec)
1406 rel_addr += insn_current_address - insn_last_address;
1407 if (flags.min_after_vec)
1408 min_addr += insn_current_address - insn_last_address;
1409 if (flags.max_after_vec)
1410 max_addr += insn_current_address - insn_last_address;
1411 /* We want to know the worst case, i.e. lowest possible value
1412 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1413 its offset is positive, and we have to be wary of code shrink;
1414 otherwise, it is negative, and we have to be vary of code
1415 size increase. */
1416 if (flags.min_after_base)
1417 {
1418 /* If INSN is between REL_LAB and MIN_LAB, the size
1419 changes we are about to make can change the alignment
1420 within the observed offset, therefore we have to break
1421 it up into two parts that are independent. */
1422 if (! flags.base_after_vec && flags.min_after_vec)
1423 {
1424 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1425 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1426 }
1427 else
1428 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1429 }
1430 else
1431 {
1432 if (flags.base_after_vec && ! flags.min_after_vec)
1433 {
1434 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1435 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1436 }
1437 else
1438 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1439 }
1440 /* Likewise, determine the highest lowest possible value
1441 for the offset of MAX_LAB. */
1442 if (flags.max_after_base)
1443 {
1444 if (! flags.base_after_vec && flags.max_after_vec)
1445 {
1446 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1447 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1448 }
1449 else
1450 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1451 }
1452 else
1453 {
1454 if (flags.base_after_vec && ! flags.max_after_vec)
1455 {
1456 max_addr += align_fuzz (max_lab, insn, 0, 0);
1457 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1458 }
1459 else
1460 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1461 }
1462 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1463 max_addr - rel_addr,
1464 body));
1465 if (JUMP_TABLES_IN_TEXT_SECTION
1466 #if !defined(READONLY_DATA_SECTION)
1467 || 1
1468 #endif
1469 )
1470 {
1471 insn_lengths[uid]
1472 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1473 insn_current_address += insn_lengths[uid];
1474 if (insn_lengths[uid] != old_length)
1475 something_changed = 1;
1476 }
1477
1478 continue;
1479 }
1480 #endif /* CASE_VECTOR_SHORTEN_MODE */
1481
1482 if (! (varying_length[uid]))
1483 {
1484 insn_current_address += insn_lengths[uid];
1485 continue;
1486 }
1487 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1488 {
1489 int i;
1490
1491 body = PATTERN (insn);
1492 new_length = 0;
1493 for (i = 0; i < XVECLEN (body, 0); i++)
1494 {
1495 rtx inner_insn = XVECEXP (body, 0, i);
1496 int inner_uid = INSN_UID (inner_insn);
1497 int inner_length;
1498
1499 insn_addresses[inner_uid] = insn_current_address;
1500
1501 /* insn_current_length returns 0 for insns with a
1502 non-varying length. */
1503 if (! varying_length[inner_uid])
1504 inner_length = insn_lengths[inner_uid];
1505 else
1506 inner_length = insn_current_length (inner_insn);
1507
1508 if (inner_length != insn_lengths[inner_uid])
1509 {
1510 insn_lengths[inner_uid] = inner_length;
1511 something_changed = 1;
1512 }
1513 insn_current_address += insn_lengths[inner_uid];
1514 new_length += inner_length;
1515 }
1516 }
1517 else
1518 {
1519 new_length = insn_current_length (insn);
1520 insn_current_address += new_length;
1521 }
1522
1523 #ifdef ADJUST_INSN_LENGTH
1524 /* If needed, do any adjustment. */
1525 tmp_length = new_length;
1526 ADJUST_INSN_LENGTH (insn, new_length);
1527 insn_current_address += (new_length - tmp_length);
1528 #endif
1529
1530 if (new_length != insn_lengths[uid])
1531 {
1532 insn_lengths[uid] = new_length;
1533 something_changed = 1;
1534 }
1535 }
1536 /* For a non-optimizing compile, do only a single pass. */
1537 if (!optimize)
1538 break;
1539 }
1540
1541 free (varying_length);
1542
1543 #endif /* HAVE_ATTR_length */
1544 }
1545
1546 #ifdef HAVE_ATTR_length
1547 /* Given the body of an INSN known to be generated by an ASM statement, return
1548 the number of machine instructions likely to be generated for this insn.
1549 This is used to compute its length. */
1550
1551 static int
1552 asm_insn_count (body)
1553 rtx body;
1554 {
1555 char *template;
1556 int count = 1;
1557
1558 if (GET_CODE (body) == ASM_INPUT)
1559 template = XSTR (body, 0);
1560 else
1561 template = decode_asm_operands (body, NULL_PTR, NULL_PTR,
1562 NULL_PTR, NULL_PTR);
1563
1564 for ( ; *template; template++)
1565 if (IS_ASM_LOGICAL_LINE_SEPARATOR(*template) || *template == '\n')
1566 count++;
1567
1568 return count;
1569 }
1570 #endif
1571 \f
1572 /* Output assembler code for the start of a function,
1573 and initialize some of the variables in this file
1574 for the new function. The label for the function and associated
1575 assembler pseudo-ops have already been output in `assemble_start_function'.
1576
1577 FIRST is the first insn of the rtl for the function being compiled.
1578 FILE is the file to write assembler code to.
1579 OPTIMIZE is nonzero if we should eliminate redundant
1580 test and compare insns. */
1581
1582 void
1583 final_start_function (first, file, optimize)
1584 rtx first;
1585 FILE *file;
1586 int optimize;
1587 {
1588 block_depth = 0;
1589
1590 this_is_asm_operands = 0;
1591
1592 #ifdef NON_SAVING_SETJMP
1593 /* A function that calls setjmp should save and restore all the
1594 call-saved registers on a system where longjmp clobbers them. */
1595 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1596 {
1597 int i;
1598
1599 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1600 if (!call_used_regs[i] && !call_fixed_regs[i])
1601 regs_ever_live[i] = 1;
1602 }
1603 #endif
1604
1605 /* Initial line number is supposed to be output
1606 before the function's prologue and label
1607 so that the function's address will not appear to be
1608 in the last statement of the preceding function. */
1609 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1610 last_linenum = high_block_linenum = high_function_linenum
1611 = NOTE_LINE_NUMBER (first);
1612
1613 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
1614 /* Output DWARF definition of the function. */
1615 if (dwarf2out_do_frame ())
1616 dwarf2out_begin_prologue ();
1617 #endif
1618
1619 /* For SDB and XCOFF, the function beginning must be marked between
1620 the function label and the prologue. We always need this, even when
1621 -g1 was used. Defer on MIPS systems so that parameter descriptions
1622 follow function entry. */
1623 #if defined(SDB_DEBUGGING_INFO) && !defined(MIPS_DEBUGGING_INFO)
1624 if (write_symbols == SDB_DEBUG)
1625 sdbout_begin_function (last_linenum);
1626 else
1627 #endif
1628 #ifdef XCOFF_DEBUGGING_INFO
1629 if (write_symbols == XCOFF_DEBUG)
1630 xcoffout_begin_function (file, last_linenum);
1631 else
1632 #endif
1633 /* But only output line number for other debug info types if -g2
1634 or better. */
1635 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1636 output_source_line (file, first);
1637
1638 #ifdef LEAF_REG_REMAP
1639 if (leaf_function)
1640 leaf_renumber_regs (first);
1641 #endif
1642
1643 /* The Sun386i and perhaps other machines don't work right
1644 if the profiling code comes after the prologue. */
1645 #ifdef PROFILE_BEFORE_PROLOGUE
1646 if (profile_flag)
1647 profile_function (file);
1648 #endif /* PROFILE_BEFORE_PROLOGUE */
1649
1650 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1651 if (dwarf2out_do_frame ())
1652 dwarf2out_frame_debug (NULL_RTX);
1653 #endif
1654
1655 #ifdef FUNCTION_PROLOGUE
1656 /* First output the function prologue: code to set up the stack frame. */
1657 FUNCTION_PROLOGUE (file, get_frame_size ());
1658 #endif
1659
1660 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
1661 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
1662 next_block_index = 1;
1663 #endif
1664
1665 /* If the machine represents the prologue as RTL, the profiling code must
1666 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1667 #ifdef HAVE_prologue
1668 if (! HAVE_prologue)
1669 #endif
1670 profile_after_prologue (file);
1671
1672 profile_label_no++;
1673
1674 /* If we are doing basic block profiling, remember a printable version
1675 of the function name. */
1676 if (profile_block_flag)
1677 {
1678 bb_func_label_num
1679 = add_bb_string ((*decl_printable_name) (current_function_decl, 2), FALSE);
1680 }
1681 }
1682
1683 static void
1684 profile_after_prologue (file)
1685 FILE *file;
1686 {
1687 #ifdef FUNCTION_BLOCK_PROFILER
1688 if (profile_block_flag)
1689 {
1690 FUNCTION_BLOCK_PROFILER (file, count_basic_blocks);
1691 }
1692 #endif /* FUNCTION_BLOCK_PROFILER */
1693
1694 #ifndef PROFILE_BEFORE_PROLOGUE
1695 if (profile_flag)
1696 profile_function (file);
1697 #endif /* not PROFILE_BEFORE_PROLOGUE */
1698 }
1699
1700 static void
1701 profile_function (file)
1702 FILE *file;
1703 {
1704 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1705 #if defined(ASM_OUTPUT_REG_PUSH)
1706 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1707 int sval = current_function_returns_struct;
1708 #endif
1709 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1710 int cxt = current_function_needs_context;
1711 #endif
1712 #endif /* ASM_OUTPUT_REG_PUSH */
1713
1714 data_section ();
1715 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1716 ASM_OUTPUT_INTERNAL_LABEL (file, "LP", profile_label_no);
1717 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, 1);
1718
1719 function_section (current_function_decl);
1720
1721 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1722 if (sval)
1723 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1724 #else
1725 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1726 if (sval)
1727 {
1728 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1729 }
1730 #endif
1731 #endif
1732
1733 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1734 if (cxt)
1735 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1736 #else
1737 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1738 if (cxt)
1739 {
1740 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1741 }
1742 #endif
1743 #endif
1744
1745 FUNCTION_PROFILER (file, profile_label_no);
1746
1747 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1748 if (cxt)
1749 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1750 #else
1751 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1752 if (cxt)
1753 {
1754 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1755 }
1756 #endif
1757 #endif
1758
1759 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1760 if (sval)
1761 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1762 #else
1763 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1764 if (sval)
1765 {
1766 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1767 }
1768 #endif
1769 #endif
1770 }
1771
1772 /* Output assembler code for the end of a function.
1773 For clarity, args are same as those of `final_start_function'
1774 even though not all of them are needed. */
1775
1776 void
1777 final_end_function (first, file, optimize)
1778 rtx first;
1779 FILE *file;
1780 int optimize;
1781 {
1782 if (app_on)
1783 {
1784 fputs (ASM_APP_OFF, file);
1785 app_on = 0;
1786 }
1787
1788 #ifdef SDB_DEBUGGING_INFO
1789 if (write_symbols == SDB_DEBUG)
1790 sdbout_end_function (high_function_linenum);
1791 #endif
1792
1793 #ifdef DWARF_DEBUGGING_INFO
1794 if (write_symbols == DWARF_DEBUG)
1795 dwarfout_end_function ();
1796 #endif
1797
1798 #ifdef XCOFF_DEBUGGING_INFO
1799 if (write_symbols == XCOFF_DEBUG)
1800 xcoffout_end_function (file, high_function_linenum);
1801 #endif
1802
1803 #ifdef FUNCTION_EPILOGUE
1804 /* Finally, output the function epilogue:
1805 code to restore the stack frame and return to the caller. */
1806 FUNCTION_EPILOGUE (file, get_frame_size ());
1807 #endif
1808
1809 #ifdef SDB_DEBUGGING_INFO
1810 if (write_symbols == SDB_DEBUG)
1811 sdbout_end_epilogue ();
1812 #endif
1813
1814 #ifdef DWARF_DEBUGGING_INFO
1815 if (write_symbols == DWARF_DEBUG)
1816 dwarfout_end_epilogue ();
1817 #endif
1818
1819 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
1820 if (dwarf2out_do_frame ())
1821 dwarf2out_end_epilogue ();
1822 #endif
1823
1824 #ifdef XCOFF_DEBUGGING_INFO
1825 if (write_symbols == XCOFF_DEBUG)
1826 xcoffout_end_epilogue (file);
1827 #endif
1828
1829 bb_func_label_num = -1; /* not in function, nuke label # */
1830
1831 /* If FUNCTION_EPILOGUE is not defined, then the function body
1832 itself contains return instructions wherever needed. */
1833 }
1834 \f
1835 /* Add a block to the linked list that remembers the current line/file/function
1836 for basic block profiling. Emit the label in front of the basic block and
1837 the instructions that increment the count field. */
1838
1839 static void
1840 add_bb (file)
1841 FILE *file;
1842 {
1843 struct bb_list *ptr = (struct bb_list *) permalloc (sizeof (struct bb_list));
1844
1845 /* Add basic block to linked list. */
1846 ptr->next = 0;
1847 ptr->line_num = last_linenum;
1848 ptr->file_label_num = bb_file_label_num;
1849 ptr->func_label_num = bb_func_label_num;
1850 *bb_tail = ptr;
1851 bb_tail = &ptr->next;
1852
1853 /* Enable the table of basic-block use counts
1854 to point at the code it applies to. */
1855 ASM_OUTPUT_INTERNAL_LABEL (file, "LPB", count_basic_blocks);
1856
1857 /* Before first insn of this basic block, increment the
1858 count of times it was entered. */
1859 #ifdef BLOCK_PROFILER
1860 BLOCK_PROFILER (file, count_basic_blocks);
1861 #endif
1862 #ifdef HAVE_cc0
1863 CC_STATUS_INIT;
1864 #endif
1865
1866 new_block = 0;
1867 count_basic_blocks++;
1868 }
1869
1870 /* Add a string to be used for basic block profiling. */
1871
1872 static int
1873 add_bb_string (string, perm_p)
1874 char *string;
1875 int perm_p;
1876 {
1877 int len;
1878 struct bb_str *ptr = 0;
1879
1880 if (!string)
1881 {
1882 string = "<unknown>";
1883 perm_p = TRUE;
1884 }
1885
1886 /* Allocate a new string if the current string isn't permanent. If
1887 the string is permanent search for the same string in other
1888 allocations. */
1889
1890 len = strlen (string) + 1;
1891 if (!perm_p)
1892 {
1893 char *p = (char *) permalloc (len);
1894 bcopy (string, p, len);
1895 string = p;
1896 }
1897 else
1898 for (ptr = sbb_head; ptr != (struct bb_str *) 0; ptr = ptr->next)
1899 if (ptr->string == string)
1900 break;
1901
1902 /* Allocate a new string block if we need to. */
1903 if (!ptr)
1904 {
1905 ptr = (struct bb_str *) permalloc (sizeof (*ptr));
1906 ptr->next = 0;
1907 ptr->length = len;
1908 ptr->label_num = sbb_label_num++;
1909 ptr->string = string;
1910 *sbb_tail = ptr;
1911 sbb_tail = &ptr->next;
1912 }
1913
1914 return ptr->label_num;
1915 }
1916
1917 \f
1918 /* Output assembler code for some insns: all or part of a function.
1919 For description of args, see `final_start_function', above.
1920
1921 PRESCAN is 1 if we are not really outputting,
1922 just scanning as if we were outputting.
1923 Prescanning deletes and rearranges insns just like ordinary output.
1924 PRESCAN is -2 if we are outputting after having prescanned.
1925 In this case, don't try to delete or rearrange insns
1926 because that has already been done.
1927 Prescanning is done only on certain machines. */
1928
1929 void
1930 final (first, file, optimize, prescan)
1931 rtx first;
1932 FILE *file;
1933 int optimize;
1934 int prescan;
1935 {
1936 register rtx insn;
1937 int max_line = 0;
1938 int max_uid = 0;
1939
1940 last_ignored_compare = 0;
1941 new_block = 1;
1942
1943 check_exception_handler_labels ();
1944
1945 /* Make a map indicating which line numbers appear in this function.
1946 When producing SDB debugging info, delete troublesome line number
1947 notes from inlined functions in other files as well as duplicate
1948 line number notes. */
1949 #ifdef SDB_DEBUGGING_INFO
1950 if (write_symbols == SDB_DEBUG)
1951 {
1952 rtx last = 0;
1953 for (insn = first; insn; insn = NEXT_INSN (insn))
1954 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1955 {
1956 if ((RTX_INTEGRATED_P (insn)
1957 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1958 || (last != 0
1959 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1960 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1961 {
1962 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1963 NOTE_SOURCE_FILE (insn) = 0;
1964 continue;
1965 }
1966 last = insn;
1967 if (NOTE_LINE_NUMBER (insn) > max_line)
1968 max_line = NOTE_LINE_NUMBER (insn);
1969 }
1970 }
1971 else
1972 #endif
1973 {
1974 for (insn = first; insn; insn = NEXT_INSN (insn))
1975 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1976 max_line = NOTE_LINE_NUMBER (insn);
1977 }
1978
1979 line_note_exists = (char *) oballoc (max_line + 1);
1980 bzero (line_note_exists, max_line + 1);
1981
1982 for (insn = first; insn; insn = NEXT_INSN (insn))
1983 {
1984 if (INSN_UID (insn) > max_uid) /* find largest UID */
1985 max_uid = INSN_UID (insn);
1986 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1987 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
1988 }
1989
1990 /* Initialize insn_eh_region table if eh is being used. */
1991
1992 init_insn_eh_region (first, max_uid);
1993
1994 init_recog ();
1995
1996 CC_STATUS_INIT;
1997
1998 /* Output the insns. */
1999 for (insn = NEXT_INSN (first); insn;)
2000 {
2001 #ifdef HAVE_ATTR_length
2002 insn_current_address = insn_addresses[INSN_UID (insn)];
2003 #endif
2004 insn = final_scan_insn (insn, file, optimize, prescan, 0);
2005 }
2006
2007 /* Do basic-block profiling here
2008 if the last insn was a conditional branch. */
2009 if (profile_block_flag && new_block)
2010 add_bb (file);
2011
2012 free_insn_eh_region ();
2013 }
2014 \f
2015 /* The final scan for one insn, INSN.
2016 Args are same as in `final', except that INSN
2017 is the insn being scanned.
2018 Value returned is the next insn to be scanned.
2019
2020 NOPEEPHOLES is the flag to disallow peephole processing (currently
2021 used for within delayed branch sequence output). */
2022
2023 rtx
2024 final_scan_insn (insn, file, optimize, prescan, nopeepholes)
2025 rtx insn;
2026 FILE *file;
2027 int optimize;
2028 int prescan;
2029 int nopeepholes;
2030 {
2031 register int i;
2032 #ifdef HAVE_cc0
2033 rtx set;
2034 #endif
2035
2036 insn_counter++;
2037
2038 /* Ignore deleted insns. These can occur when we split insns (due to a
2039 template of "#") while not optimizing. */
2040 if (INSN_DELETED_P (insn))
2041 return NEXT_INSN (insn);
2042
2043 switch (GET_CODE (insn))
2044 {
2045 case NOTE:
2046 if (prescan > 0)
2047 break;
2048
2049 /* Align the beginning of a loop, for higher speed
2050 on certain machines. */
2051
2052 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2053 break; /* This used to depend on optimize, but that was bogus. */
2054 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2055 break;
2056
2057 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
2058 && ! exceptions_via_longjmp)
2059 {
2060 ASM_OUTPUT_INTERNAL_LABEL (file, "LEHB", NOTE_BLOCK_NUMBER (insn));
2061 if (! flag_new_exceptions)
2062 add_eh_table_entry (NOTE_BLOCK_NUMBER (insn));
2063 #ifdef ASM_OUTPUT_EH_REGION_BEG
2064 ASM_OUTPUT_EH_REGION_BEG (file, NOTE_BLOCK_NUMBER (insn));
2065 #endif
2066 break;
2067 }
2068
2069 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END
2070 && ! exceptions_via_longjmp)
2071 {
2072 ASM_OUTPUT_INTERNAL_LABEL (file, "LEHE", NOTE_BLOCK_NUMBER (insn));
2073 if (flag_new_exceptions)
2074 add_eh_table_entry (NOTE_BLOCK_NUMBER (insn));
2075 #ifdef ASM_OUTPUT_EH_REGION_END
2076 ASM_OUTPUT_EH_REGION_END (file, NOTE_BLOCK_NUMBER (insn));
2077 #endif
2078 break;
2079 }
2080
2081 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
2082 {
2083 #ifdef FUNCTION_END_PROLOGUE
2084 FUNCTION_END_PROLOGUE (file);
2085 #endif
2086 profile_after_prologue (file);
2087 break;
2088 }
2089
2090 #ifdef FUNCTION_BEGIN_EPILOGUE
2091 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
2092 {
2093 FUNCTION_BEGIN_EPILOGUE (file);
2094 break;
2095 }
2096 #endif
2097
2098 if (write_symbols == NO_DEBUG)
2099 break;
2100 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2101 {
2102 #if defined(SDB_DEBUGGING_INFO) && defined(MIPS_DEBUGGING_INFO)
2103 /* MIPS stabs require the parameter descriptions to be after the
2104 function entry point rather than before. */
2105 if (write_symbols == SDB_DEBUG)
2106 sdbout_begin_function (last_linenum);
2107 else
2108 #endif
2109 #ifdef DWARF_DEBUGGING_INFO
2110 /* This outputs a marker where the function body starts, so it
2111 must be after the prologue. */
2112 if (write_symbols == DWARF_DEBUG)
2113 dwarfout_begin_function ();
2114 #endif
2115 break;
2116 }
2117 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
2118 break; /* An insn that was "deleted" */
2119 if (app_on)
2120 {
2121 fputs (ASM_APP_OFF, file);
2122 app_on = 0;
2123 }
2124 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2125 && (debug_info_level == DINFO_LEVEL_NORMAL
2126 || debug_info_level == DINFO_LEVEL_VERBOSE
2127 || write_symbols == DWARF_DEBUG
2128 || write_symbols == DWARF2_DEBUG))
2129 {
2130 /* Beginning of a symbol-block. Assign it a sequence number
2131 and push the number onto the stack PENDING_BLOCKS. */
2132
2133 if (block_depth == max_block_depth)
2134 {
2135 /* PENDING_BLOCKS is full; make it longer. */
2136 max_block_depth *= 2;
2137 pending_blocks
2138 = (int *) xrealloc (pending_blocks,
2139 max_block_depth * sizeof (int));
2140 }
2141 pending_blocks[block_depth++] = next_block_index;
2142
2143 high_block_linenum = last_linenum;
2144
2145 /* Output debugging info about the symbol-block beginning. */
2146
2147 #ifdef SDB_DEBUGGING_INFO
2148 if (write_symbols == SDB_DEBUG)
2149 sdbout_begin_block (file, last_linenum, next_block_index);
2150 #endif
2151 #ifdef XCOFF_DEBUGGING_INFO
2152 if (write_symbols == XCOFF_DEBUG)
2153 xcoffout_begin_block (file, last_linenum, next_block_index);
2154 #endif
2155 #ifdef DBX_DEBUGGING_INFO
2156 if (write_symbols == DBX_DEBUG)
2157 ASM_OUTPUT_INTERNAL_LABEL (file, "LBB", next_block_index);
2158 #endif
2159 #ifdef DWARF_DEBUGGING_INFO
2160 if (write_symbols == DWARF_DEBUG)
2161 dwarfout_begin_block (next_block_index);
2162 #endif
2163 #ifdef DWARF2_DEBUGGING_INFO
2164 if (write_symbols == DWARF2_DEBUG)
2165 dwarf2out_begin_block (next_block_index);
2166 #endif
2167
2168 next_block_index++;
2169 }
2170 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
2171 && (debug_info_level == DINFO_LEVEL_NORMAL
2172 || debug_info_level == DINFO_LEVEL_VERBOSE
2173 || write_symbols == DWARF_DEBUG
2174 || write_symbols == DWARF2_DEBUG))
2175 {
2176 /* End of a symbol-block. Pop its sequence number off
2177 PENDING_BLOCKS and output debugging info based on that. */
2178
2179 --block_depth;
2180
2181 #ifdef XCOFF_DEBUGGING_INFO
2182 if (write_symbols == XCOFF_DEBUG && block_depth >= 0)
2183 xcoffout_end_block (file, high_block_linenum,
2184 pending_blocks[block_depth]);
2185 #endif
2186 #ifdef DBX_DEBUGGING_INFO
2187 if (write_symbols == DBX_DEBUG && block_depth >= 0)
2188 ASM_OUTPUT_INTERNAL_LABEL (file, "LBE",
2189 pending_blocks[block_depth]);
2190 #endif
2191 #ifdef SDB_DEBUGGING_INFO
2192 if (write_symbols == SDB_DEBUG && block_depth >= 0)
2193 sdbout_end_block (file, high_block_linenum,
2194 pending_blocks[block_depth]);
2195 #endif
2196 #ifdef DWARF_DEBUGGING_INFO
2197 if (write_symbols == DWARF_DEBUG && block_depth >= 0)
2198 dwarfout_end_block (pending_blocks[block_depth]);
2199 #endif
2200 #ifdef DWARF2_DEBUGGING_INFO
2201 if (write_symbols == DWARF2_DEBUG && block_depth >= 0)
2202 dwarf2out_end_block (pending_blocks[block_depth]);
2203 #endif
2204 }
2205 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL
2206 && (debug_info_level == DINFO_LEVEL_NORMAL
2207 || debug_info_level == DINFO_LEVEL_VERBOSE))
2208 {
2209 #ifdef DWARF_DEBUGGING_INFO
2210 if (write_symbols == DWARF_DEBUG)
2211 dwarfout_label (insn);
2212 #endif
2213 #ifdef DWARF2_DEBUGGING_INFO
2214 if (write_symbols == DWARF2_DEBUG)
2215 dwarf2out_label (insn);
2216 #endif
2217 }
2218 else if (NOTE_LINE_NUMBER (insn) > 0)
2219 /* This note is a line-number. */
2220 {
2221 register rtx note;
2222
2223 #if 0 /* This is what we used to do. */
2224 output_source_line (file, insn);
2225 #endif
2226 int note_after = 0;
2227
2228 /* If there is anything real after this note,
2229 output it. If another line note follows, omit this one. */
2230 for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
2231 {
2232 if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
2233 break;
2234 /* These types of notes can be significant
2235 so make sure the preceding line number stays. */
2236 else if (GET_CODE (note) == NOTE
2237 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
2238 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
2239 || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
2240 break;
2241 else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
2242 {
2243 /* Another line note follows; we can delete this note
2244 if no intervening line numbers have notes elsewhere. */
2245 int num;
2246 for (num = NOTE_LINE_NUMBER (insn) + 1;
2247 num < NOTE_LINE_NUMBER (note);
2248 num++)
2249 if (line_note_exists[num])
2250 break;
2251
2252 if (num >= NOTE_LINE_NUMBER (note))
2253 note_after = 1;
2254 break;
2255 }
2256 }
2257
2258 /* Output this line note
2259 if it is the first or the last line note in a row. */
2260 if (!note_after)
2261 output_source_line (file, insn);
2262 }
2263 break;
2264
2265 case BARRIER:
2266 #if defined (DWARF2_UNWIND_INFO) && !defined (ACCUMULATE_OUTGOING_ARGS)
2267 /* If we push arguments, we need to check all insns for stack
2268 adjustments. */
2269 if (dwarf2out_do_frame ())
2270 dwarf2out_frame_debug (insn);
2271 #endif
2272 break;
2273
2274 case CODE_LABEL:
2275 /* The target port might emit labels in the output function for
2276 some insn, e.g. sh.c output_branchy_insn. */
2277 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2278 {
2279 int align = LABEL_TO_ALIGNMENT (insn);
2280 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2281 int max_skip = LABEL_TO_MAX_SKIP (insn);
2282 #endif
2283
2284 if (align && NEXT_INSN (insn))
2285 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2286 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2287 #else
2288 ASM_OUTPUT_ALIGN (file, align);
2289 #endif
2290 }
2291 CC_STATUS_INIT;
2292 if (prescan > 0)
2293 break;
2294 new_block = 1;
2295
2296 #ifdef FINAL_PRESCAN_LABEL
2297 FINAL_PRESCAN_INSN (insn, NULL_PTR, 0);
2298 #endif
2299
2300 #ifdef SDB_DEBUGGING_INFO
2301 if (write_symbols == SDB_DEBUG && LABEL_NAME (insn))
2302 sdbout_label (insn);
2303 #endif
2304 #ifdef DWARF_DEBUGGING_INFO
2305 if (write_symbols == DWARF_DEBUG && LABEL_NAME (insn))
2306 dwarfout_label (insn);
2307 #endif
2308 #ifdef DWARF2_DEBUGGING_INFO
2309 if (write_symbols == DWARF2_DEBUG && LABEL_NAME (insn))
2310 dwarf2out_label (insn);
2311 #endif
2312 if (app_on)
2313 {
2314 fputs (ASM_APP_OFF, file);
2315 app_on = 0;
2316 }
2317 if (NEXT_INSN (insn) != 0
2318 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
2319 {
2320 rtx nextbody = PATTERN (NEXT_INSN (insn));
2321
2322 /* If this label is followed by a jump-table,
2323 make sure we put the label in the read-only section. Also
2324 possibly write the label and jump table together. */
2325
2326 if (GET_CODE (nextbody) == ADDR_VEC
2327 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2328 {
2329 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2330 /* In this case, the case vector is being moved by the
2331 target, so don't output the label at all. Leave that
2332 to the back end macros. */
2333 #else
2334 if (! JUMP_TABLES_IN_TEXT_SECTION)
2335 {
2336 readonly_data_section ();
2337 #ifdef READONLY_DATA_SECTION
2338 ASM_OUTPUT_ALIGN (file,
2339 exact_log2 (BIGGEST_ALIGNMENT
2340 / BITS_PER_UNIT));
2341 #endif /* READONLY_DATA_SECTION */
2342 }
2343 else
2344 function_section (current_function_decl);
2345
2346 #ifdef ASM_OUTPUT_CASE_LABEL
2347 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2348 NEXT_INSN (insn));
2349 #else
2350 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2351 #endif
2352 #endif
2353 break;
2354 }
2355 }
2356
2357 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2358 break;
2359
2360 default:
2361 {
2362 register rtx body = PATTERN (insn);
2363 int insn_code_number;
2364 char *template;
2365 #ifdef HAVE_cc0
2366 rtx note;
2367 #endif
2368
2369 /* An INSN, JUMP_INSN or CALL_INSN.
2370 First check for special kinds that recog doesn't recognize. */
2371
2372 if (GET_CODE (body) == USE /* These are just declarations */
2373 || GET_CODE (body) == CLOBBER)
2374 break;
2375
2376 #ifdef HAVE_cc0
2377 /* If there is a REG_CC_SETTER note on this insn, it means that
2378 the setting of the condition code was done in the delay slot
2379 of the insn that branched here. So recover the cc status
2380 from the insn that set it. */
2381
2382 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2383 if (note)
2384 {
2385 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2386 cc_prev_status = cc_status;
2387 }
2388 #endif
2389
2390 /* Detect insns that are really jump-tables
2391 and output them as such. */
2392
2393 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2394 {
2395 register int vlen, idx;
2396
2397 if (prescan > 0)
2398 break;
2399
2400 if (app_on)
2401 {
2402 fputs (ASM_APP_OFF, file);
2403 app_on = 0;
2404 }
2405
2406 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2407 if (GET_CODE (body) == ADDR_VEC)
2408 {
2409 #ifdef ASM_OUTPUT_ADDR_VEC
2410 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2411 #else
2412 abort();
2413 #endif
2414 }
2415 else
2416 {
2417 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2418 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2419 #else
2420 abort();
2421 #endif
2422 }
2423 #else
2424 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2425 for (idx = 0; idx < vlen; idx++)
2426 {
2427 if (GET_CODE (body) == ADDR_VEC)
2428 {
2429 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2430 ASM_OUTPUT_ADDR_VEC_ELT
2431 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2432 #else
2433 abort ();
2434 #endif
2435 }
2436 else
2437 {
2438 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2439 ASM_OUTPUT_ADDR_DIFF_ELT
2440 (file,
2441 body,
2442 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2443 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2444 #else
2445 abort ();
2446 #endif
2447 }
2448 }
2449 #ifdef ASM_OUTPUT_CASE_END
2450 ASM_OUTPUT_CASE_END (file,
2451 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2452 insn);
2453 #endif
2454 #endif
2455
2456 function_section (current_function_decl);
2457
2458 break;
2459 }
2460
2461 /* Do basic-block profiling when we reach a new block.
2462 Done here to avoid jump tables. */
2463 if (profile_block_flag && new_block)
2464 add_bb (file);
2465
2466 if (GET_CODE (body) == ASM_INPUT)
2467 {
2468 /* There's no telling what that did to the condition codes. */
2469 CC_STATUS_INIT;
2470 if (prescan > 0)
2471 break;
2472 if (! app_on)
2473 {
2474 fputs (ASM_APP_ON, file);
2475 app_on = 1;
2476 }
2477 fprintf (asm_out_file, "\t%s\n", XSTR (body, 0));
2478 break;
2479 }
2480
2481 /* Detect `asm' construct with operands. */
2482 if (asm_noperands (body) >= 0)
2483 {
2484 unsigned int noperands = asm_noperands (body);
2485 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
2486 char *string;
2487
2488 /* There's no telling what that did to the condition codes. */
2489 CC_STATUS_INIT;
2490 if (prescan > 0)
2491 break;
2492
2493 if (! app_on)
2494 {
2495 fputs (ASM_APP_ON, file);
2496 app_on = 1;
2497 }
2498
2499 /* Get out the operand values. */
2500 string = decode_asm_operands (body, ops, NULL_PTR,
2501 NULL_PTR, NULL_PTR);
2502 /* Inhibit aborts on what would otherwise be compiler bugs. */
2503 insn_noperands = noperands;
2504 this_is_asm_operands = insn;
2505
2506 /* Output the insn using them. */
2507 output_asm_insn (string, ops);
2508 this_is_asm_operands = 0;
2509 break;
2510 }
2511
2512 if (prescan <= 0 && app_on)
2513 {
2514 fputs (ASM_APP_OFF, file);
2515 app_on = 0;
2516 }
2517
2518 if (GET_CODE (body) == SEQUENCE)
2519 {
2520 /* A delayed-branch sequence */
2521 register int i;
2522 rtx next;
2523
2524 if (prescan > 0)
2525 break;
2526 final_sequence = body;
2527
2528 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2529 force the restoration of a comparison that was previously
2530 thought unnecessary. If that happens, cancel this sequence
2531 and cause that insn to be restored. */
2532
2533 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2534 if (next != XVECEXP (body, 0, 1))
2535 {
2536 final_sequence = 0;
2537 return next;
2538 }
2539
2540 for (i = 1; i < XVECLEN (body, 0); i++)
2541 {
2542 rtx insn = XVECEXP (body, 0, i);
2543 rtx next = NEXT_INSN (insn);
2544 /* We loop in case any instruction in a delay slot gets
2545 split. */
2546 do
2547 insn = final_scan_insn (insn, file, 0, prescan, 1);
2548 while (insn != next);
2549 }
2550 #ifdef DBR_OUTPUT_SEQEND
2551 DBR_OUTPUT_SEQEND (file);
2552 #endif
2553 final_sequence = 0;
2554
2555 /* If the insn requiring the delay slot was a CALL_INSN, the
2556 insns in the delay slot are actually executed before the
2557 called function. Hence we don't preserve any CC-setting
2558 actions in these insns and the CC must be marked as being
2559 clobbered by the function. */
2560 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2561 {
2562 CC_STATUS_INIT;
2563 }
2564
2565 /* Following a conditional branch sequence, we have a new basic
2566 block. */
2567 if (profile_block_flag)
2568 {
2569 rtx insn = XVECEXP (body, 0, 0);
2570 rtx body = PATTERN (insn);
2571
2572 if ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2573 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2574 || (GET_CODE (insn) == JUMP_INSN
2575 && GET_CODE (body) == PARALLEL
2576 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2577 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF))
2578 new_block = 1;
2579 }
2580 break;
2581 }
2582
2583 /* We have a real machine instruction as rtl. */
2584
2585 body = PATTERN (insn);
2586
2587 #ifdef HAVE_cc0
2588 set = single_set(insn);
2589
2590 /* Check for redundant test and compare instructions
2591 (when the condition codes are already set up as desired).
2592 This is done only when optimizing; if not optimizing,
2593 it should be possible for the user to alter a variable
2594 with the debugger in between statements
2595 and the next statement should reexamine the variable
2596 to compute the condition codes. */
2597
2598 if (optimize)
2599 {
2600 #if 0
2601 rtx set = single_set(insn);
2602 #endif
2603
2604 if (set
2605 && GET_CODE (SET_DEST (set)) == CC0
2606 && insn != last_ignored_compare)
2607 {
2608 if (GET_CODE (SET_SRC (set)) == SUBREG)
2609 SET_SRC (set) = alter_subreg (SET_SRC (set));
2610 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2611 {
2612 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2613 XEXP (SET_SRC (set), 0)
2614 = alter_subreg (XEXP (SET_SRC (set), 0));
2615 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2616 XEXP (SET_SRC (set), 1)
2617 = alter_subreg (XEXP (SET_SRC (set), 1));
2618 }
2619 if ((cc_status.value1 != 0
2620 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2621 || (cc_status.value2 != 0
2622 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2623 {
2624 /* Don't delete insn if it has an addressing side-effect. */
2625 if (! FIND_REG_INC_NOTE (insn, 0)
2626 /* or if anything in it is volatile. */
2627 && ! volatile_refs_p (PATTERN (insn)))
2628 {
2629 /* We don't really delete the insn; just ignore it. */
2630 last_ignored_compare = insn;
2631 break;
2632 }
2633 }
2634 }
2635 }
2636 #endif
2637
2638 /* Following a conditional branch, we have a new basic block.
2639 But if we are inside a sequence, the new block starts after the
2640 last insn of the sequence. */
2641 if (profile_block_flag && final_sequence == 0
2642 && ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2643 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2644 || (GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == PARALLEL
2645 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2646 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF)))
2647 new_block = 1;
2648
2649 #ifndef STACK_REGS
2650 /* Don't bother outputting obvious no-ops, even without -O.
2651 This optimization is fast and doesn't interfere with debugging.
2652 Don't do this if the insn is in a delay slot, since this
2653 will cause an improper number of delay insns to be written. */
2654 if (final_sequence == 0
2655 && prescan >= 0
2656 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2657 && GET_CODE (SET_SRC (body)) == REG
2658 && GET_CODE (SET_DEST (body)) == REG
2659 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2660 break;
2661 #endif
2662
2663 #ifdef HAVE_cc0
2664 /* If this is a conditional branch, maybe modify it
2665 if the cc's are in a nonstandard state
2666 so that it accomplishes the same thing that it would
2667 do straightforwardly if the cc's were set up normally. */
2668
2669 if (cc_status.flags != 0
2670 && GET_CODE (insn) == JUMP_INSN
2671 && GET_CODE (body) == SET
2672 && SET_DEST (body) == pc_rtx
2673 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2674 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2675 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2676 /* This is done during prescan; it is not done again
2677 in final scan when prescan has been done. */
2678 && prescan >= 0)
2679 {
2680 /* This function may alter the contents of its argument
2681 and clear some of the cc_status.flags bits.
2682 It may also return 1 meaning condition now always true
2683 or -1 meaning condition now always false
2684 or 2 meaning condition nontrivial but altered. */
2685 register int result = alter_cond (XEXP (SET_SRC (body), 0));
2686 /* If condition now has fixed value, replace the IF_THEN_ELSE
2687 with its then-operand or its else-operand. */
2688 if (result == 1)
2689 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2690 if (result == -1)
2691 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2692
2693 /* The jump is now either unconditional or a no-op.
2694 If it has become a no-op, don't try to output it.
2695 (It would not be recognized.) */
2696 if (SET_SRC (body) == pc_rtx)
2697 {
2698 PUT_CODE (insn, NOTE);
2699 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2700 NOTE_SOURCE_FILE (insn) = 0;
2701 break;
2702 }
2703 else if (GET_CODE (SET_SRC (body)) == RETURN)
2704 /* Replace (set (pc) (return)) with (return). */
2705 PATTERN (insn) = body = SET_SRC (body);
2706
2707 /* Rerecognize the instruction if it has changed. */
2708 if (result != 0)
2709 INSN_CODE (insn) = -1;
2710 }
2711
2712 /* Make same adjustments to instructions that examine the
2713 condition codes without jumping and instructions that
2714 handle conditional moves (if this machine has either one). */
2715
2716 if (cc_status.flags != 0
2717 && set != 0)
2718 {
2719 rtx cond_rtx, then_rtx, else_rtx;
2720
2721 if (GET_CODE (insn) != JUMP_INSN
2722 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2723 {
2724 cond_rtx = XEXP (SET_SRC (set), 0);
2725 then_rtx = XEXP (SET_SRC (set), 1);
2726 else_rtx = XEXP (SET_SRC (set), 2);
2727 }
2728 else
2729 {
2730 cond_rtx = SET_SRC (set);
2731 then_rtx = const_true_rtx;
2732 else_rtx = const0_rtx;
2733 }
2734
2735 switch (GET_CODE (cond_rtx))
2736 {
2737 case GTU:
2738 case GT:
2739 case LTU:
2740 case LT:
2741 case GEU:
2742 case GE:
2743 case LEU:
2744 case LE:
2745 case EQ:
2746 case NE:
2747 {
2748 register int result;
2749 if (XEXP (cond_rtx, 0) != cc0_rtx)
2750 break;
2751 result = alter_cond (cond_rtx);
2752 if (result == 1)
2753 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2754 else if (result == -1)
2755 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2756 else if (result == 2)
2757 INSN_CODE (insn) = -1;
2758 if (SET_DEST (set) == SET_SRC (set))
2759 {
2760 PUT_CODE (insn, NOTE);
2761 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2762 NOTE_SOURCE_FILE (insn) = 0;
2763 }
2764 }
2765 break;
2766
2767 default:
2768 break;
2769 }
2770 }
2771
2772 #endif
2773
2774 /* Do machine-specific peephole optimizations if desired. */
2775
2776 if (optimize && !flag_no_peephole && !nopeepholes)
2777 {
2778 rtx next = peephole (insn);
2779 /* When peepholing, if there were notes within the peephole,
2780 emit them before the peephole. */
2781 if (next != 0 && next != NEXT_INSN (insn))
2782 {
2783 rtx prev = PREV_INSN (insn);
2784 rtx note;
2785
2786 for (note = NEXT_INSN (insn); note != next;
2787 note = NEXT_INSN (note))
2788 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2789
2790 /* In case this is prescan, put the notes
2791 in proper position for later rescan. */
2792 note = NEXT_INSN (insn);
2793 PREV_INSN (note) = prev;
2794 NEXT_INSN (prev) = note;
2795 NEXT_INSN (PREV_INSN (next)) = insn;
2796 PREV_INSN (insn) = PREV_INSN (next);
2797 NEXT_INSN (insn) = next;
2798 PREV_INSN (next) = insn;
2799 }
2800
2801 /* PEEPHOLE might have changed this. */
2802 body = PATTERN (insn);
2803 }
2804
2805 /* Try to recognize the instruction.
2806 If successful, verify that the operands satisfy the
2807 constraints for the instruction. Crash if they don't,
2808 since `reload' should have changed them so that they do. */
2809
2810 insn_code_number = recog_memoized (insn);
2811 insn_extract (insn);
2812 for (i = 0; i < insn_n_operands[insn_code_number]; i++)
2813 {
2814 if (GET_CODE (recog_operand[i]) == SUBREG)
2815 recog_operand[i] = alter_subreg (recog_operand[i]);
2816 else if (GET_CODE (recog_operand[i]) == PLUS
2817 || GET_CODE (recog_operand[i]) == MULT)
2818 recog_operand[i] = walk_alter_subreg (recog_operand[i]);
2819 }
2820
2821 for (i = 0; i < insn_n_dups[insn_code_number]; i++)
2822 {
2823 if (GET_CODE (*recog_dup_loc[i]) == SUBREG)
2824 *recog_dup_loc[i] = alter_subreg (*recog_dup_loc[i]);
2825 else if (GET_CODE (*recog_dup_loc[i]) == PLUS
2826 || GET_CODE (*recog_dup_loc[i]) == MULT)
2827 *recog_dup_loc[i] = walk_alter_subreg (*recog_dup_loc[i]);
2828 }
2829
2830 #ifdef REGISTER_CONSTRAINTS
2831 if (! constrain_operands (insn_code_number, 1))
2832 fatal_insn_not_found (insn);
2833 #endif
2834
2835 /* Some target machines need to prescan each insn before
2836 it is output. */
2837
2838 #ifdef FINAL_PRESCAN_INSN
2839 FINAL_PRESCAN_INSN (insn, recog_operand,
2840 insn_n_operands[insn_code_number]);
2841 #endif
2842
2843 #ifdef HAVE_cc0
2844 cc_prev_status = cc_status;
2845
2846 /* Update `cc_status' for this instruction.
2847 The instruction's output routine may change it further.
2848 If the output routine for a jump insn needs to depend
2849 on the cc status, it should look at cc_prev_status. */
2850
2851 NOTICE_UPDATE_CC (body, insn);
2852 #endif
2853
2854 debug_insn = insn;
2855
2856 #if defined (DWARF2_UNWIND_INFO) && !defined (ACCUMULATE_OUTGOING_ARGS)
2857 /* If we push arguments, we want to know where the calls are. */
2858 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2859 dwarf2out_frame_debug (insn);
2860 #endif
2861
2862 /* If the proper template needs to be chosen by some C code,
2863 run that code and get the real template. */
2864
2865 template = insn_template[insn_code_number];
2866 if (template == 0)
2867 {
2868 template = (*insn_outfun[insn_code_number]) (recog_operand, insn);
2869
2870 /* If the C code returns 0, it means that it is a jump insn
2871 which follows a deleted test insn, and that test insn
2872 needs to be reinserted. */
2873 if (template == 0)
2874 {
2875 if (prev_nonnote_insn (insn) != last_ignored_compare)
2876 abort ();
2877 new_block = 0;
2878 return prev_nonnote_insn (insn);
2879 }
2880 }
2881
2882 /* If the template is the string "#", it means that this insn must
2883 be split. */
2884 if (template[0] == '#' && template[1] == '\0')
2885 {
2886 rtx new = try_split (body, insn, 0);
2887
2888 /* If we didn't split the insn, go away. */
2889 if (new == insn && PATTERN (new) == body)
2890 fatal_insn ("Could not split insn", insn);
2891
2892 #ifdef HAVE_ATTR_length
2893 /* This instruction should have been split in shorten_branches,
2894 to ensure that we would have valid length info for the
2895 splitees. */
2896 abort ();
2897 #endif
2898
2899 new_block = 0;
2900 return new;
2901 }
2902
2903 if (prescan > 0)
2904 break;
2905
2906 /* Output assembler code from the template. */
2907
2908 output_asm_insn (template, recog_operand);
2909
2910 #if defined (DWARF2_UNWIND_INFO)
2911 #if !defined (ACCUMULATE_OUTGOING_ARGS)
2912 /* If we push arguments, we need to check all insns for stack
2913 adjustments. */
2914 if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
2915 dwarf2out_frame_debug (insn);
2916 #else
2917 #if defined (HAVE_prologue)
2918 /* If this insn is part of the prologue, emit DWARF v2
2919 call frame info. */
2920 if (RTX_FRAME_RELATED_P (insn) && dwarf2out_do_frame ())
2921 dwarf2out_frame_debug (insn);
2922 #endif
2923 #endif
2924 #endif
2925
2926 #if 0
2927 /* It's not at all clear why we did this and doing so interferes
2928 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2929 with this out. */
2930
2931 /* Mark this insn as having been output. */
2932 INSN_DELETED_P (insn) = 1;
2933 #endif
2934
2935 debug_insn = 0;
2936 }
2937 }
2938 return NEXT_INSN (insn);
2939 }
2940 \f
2941 /* Output debugging info to the assembler file FILE
2942 based on the NOTE-insn INSN, assumed to be a line number. */
2943
2944 static void
2945 output_source_line (file, insn)
2946 FILE *file;
2947 rtx insn;
2948 {
2949 register char *filename = NOTE_SOURCE_FILE (insn);
2950
2951 /* Remember filename for basic block profiling.
2952 Filenames are allocated on the permanent obstack
2953 or are passed in ARGV, so we don't have to save
2954 the string. */
2955
2956 if (profile_block_flag && last_filename != filename)
2957 bb_file_label_num = add_bb_string (filename, TRUE);
2958
2959 last_filename = filename;
2960 last_linenum = NOTE_LINE_NUMBER (insn);
2961 high_block_linenum = MAX (last_linenum, high_block_linenum);
2962 high_function_linenum = MAX (last_linenum, high_function_linenum);
2963
2964 if (write_symbols != NO_DEBUG)
2965 {
2966 #ifdef SDB_DEBUGGING_INFO
2967 if (write_symbols == SDB_DEBUG
2968 #if 0 /* People like having line numbers even in wrong file! */
2969 /* COFF can't handle multiple source files--lose, lose. */
2970 && !strcmp (filename, main_input_filename)
2971 #endif
2972 /* COFF relative line numbers must be positive. */
2973 && last_linenum > sdb_begin_function_line)
2974 {
2975 #ifdef ASM_OUTPUT_SOURCE_LINE
2976 ASM_OUTPUT_SOURCE_LINE (file, last_linenum);
2977 #else
2978 fprintf (file, "\t.ln\t%d\n",
2979 ((sdb_begin_function_line > -1)
2980 ? last_linenum - sdb_begin_function_line : 1));
2981 #endif
2982 }
2983 #endif
2984
2985 #if defined (DBX_DEBUGGING_INFO)
2986 if (write_symbols == DBX_DEBUG)
2987 dbxout_source_line (file, filename, NOTE_LINE_NUMBER (insn));
2988 #endif
2989
2990 #if defined (XCOFF_DEBUGGING_INFO)
2991 if (write_symbols == XCOFF_DEBUG)
2992 xcoffout_source_line (file, filename, insn);
2993 #endif
2994
2995 #ifdef DWARF_DEBUGGING_INFO
2996 if (write_symbols == DWARF_DEBUG)
2997 dwarfout_line (filename, NOTE_LINE_NUMBER (insn));
2998 #endif
2999
3000 #ifdef DWARF2_DEBUGGING_INFO
3001 if (write_symbols == DWARF2_DEBUG)
3002 dwarf2out_line (filename, NOTE_LINE_NUMBER (insn));
3003 #endif
3004 }
3005 }
3006 \f
3007 /* If X is a SUBREG, replace it with a REG or a MEM,
3008 based on the thing it is a subreg of. */
3009
3010 rtx
3011 alter_subreg (x)
3012 register rtx x;
3013 {
3014 register rtx y = SUBREG_REG (x);
3015
3016 if (GET_CODE (y) == SUBREG)
3017 y = alter_subreg (y);
3018
3019 /* If reload is operating, we may be replacing inside this SUBREG.
3020 Check for that and make a new one if so. */
3021 if (reload_in_progress && find_replacement (&SUBREG_REG (x)) != 0)
3022 x = copy_rtx (x);
3023
3024 if (GET_CODE (y) == REG)
3025 {
3026 /* If the word size is larger than the size of this register,
3027 adjust the register number to compensate. */
3028 /* ??? Note that this just catches stragglers created by/for
3029 integrate. It would be better if we either caught these
3030 earlier, or kept _all_ subregs until now and eliminate
3031 gen_lowpart and friends. */
3032
3033 PUT_CODE (x, REG);
3034 #ifdef ALTER_HARD_SUBREG
3035 REGNO (x) = ALTER_HARD_SUBREG(GET_MODE (x), SUBREG_WORD (x),
3036 GET_MODE (y), REGNO (y));
3037 #else
3038 REGNO (x) = REGNO (y) + SUBREG_WORD (x);
3039 #endif
3040 }
3041 else if (GET_CODE (y) == MEM)
3042 {
3043 register int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
3044 if (BYTES_BIG_ENDIAN)
3045 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x)))
3046 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (y))));
3047 PUT_CODE (x, MEM);
3048 MEM_VOLATILE_P (x) = MEM_VOLATILE_P (y);
3049 MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (y);
3050 MEM_ALIAS_SET (x) = MEM_ALIAS_SET (y);
3051 XEXP (x, 0) = plus_constant (XEXP (y, 0), offset);
3052 }
3053
3054 return x;
3055 }
3056
3057 /* Do alter_subreg on all the SUBREGs contained in X. */
3058
3059 static rtx
3060 walk_alter_subreg (x)
3061 rtx x;
3062 {
3063 switch (GET_CODE (x))
3064 {
3065 case PLUS:
3066 case MULT:
3067 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
3068 XEXP (x, 1) = walk_alter_subreg (XEXP (x, 1));
3069 break;
3070
3071 case MEM:
3072 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
3073 break;
3074
3075 case SUBREG:
3076 return alter_subreg (x);
3077
3078 default:
3079 break;
3080 }
3081
3082 return x;
3083 }
3084 \f
3085 #ifdef HAVE_cc0
3086
3087 /* Given BODY, the body of a jump instruction, alter the jump condition
3088 as required by the bits that are set in cc_status.flags.
3089 Not all of the bits there can be handled at this level in all cases.
3090
3091 The value is normally 0.
3092 1 means that the condition has become always true.
3093 -1 means that the condition has become always false.
3094 2 means that COND has been altered. */
3095
3096 static int
3097 alter_cond (cond)
3098 register rtx cond;
3099 {
3100 int value = 0;
3101
3102 if (cc_status.flags & CC_REVERSED)
3103 {
3104 value = 2;
3105 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3106 }
3107
3108 if (cc_status.flags & CC_INVERTED)
3109 {
3110 value = 2;
3111 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3112 }
3113
3114 if (cc_status.flags & CC_NOT_POSITIVE)
3115 switch (GET_CODE (cond))
3116 {
3117 case LE:
3118 case LEU:
3119 case GEU:
3120 /* Jump becomes unconditional. */
3121 return 1;
3122
3123 case GT:
3124 case GTU:
3125 case LTU:
3126 /* Jump becomes no-op. */
3127 return -1;
3128
3129 case GE:
3130 PUT_CODE (cond, EQ);
3131 value = 2;
3132 break;
3133
3134 case LT:
3135 PUT_CODE (cond, NE);
3136 value = 2;
3137 break;
3138
3139 default:
3140 break;
3141 }
3142
3143 if (cc_status.flags & CC_NOT_NEGATIVE)
3144 switch (GET_CODE (cond))
3145 {
3146 case GE:
3147 case GEU:
3148 /* Jump becomes unconditional. */
3149 return 1;
3150
3151 case LT:
3152 case LTU:
3153 /* Jump becomes no-op. */
3154 return -1;
3155
3156 case LE:
3157 case LEU:
3158 PUT_CODE (cond, EQ);
3159 value = 2;
3160 break;
3161
3162 case GT:
3163 case GTU:
3164 PUT_CODE (cond, NE);
3165 value = 2;
3166 break;
3167
3168 default:
3169 break;
3170 }
3171
3172 if (cc_status.flags & CC_NO_OVERFLOW)
3173 switch (GET_CODE (cond))
3174 {
3175 case GEU:
3176 /* Jump becomes unconditional. */
3177 return 1;
3178
3179 case LEU:
3180 PUT_CODE (cond, EQ);
3181 value = 2;
3182 break;
3183
3184 case GTU:
3185 PUT_CODE (cond, NE);
3186 value = 2;
3187 break;
3188
3189 case LTU:
3190 /* Jump becomes no-op. */
3191 return -1;
3192
3193 default:
3194 break;
3195 }
3196
3197 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3198 switch (GET_CODE (cond))
3199 {
3200 default:
3201 abort ();
3202
3203 case NE:
3204 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3205 value = 2;
3206 break;
3207
3208 case EQ:
3209 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3210 value = 2;
3211 break;
3212 }
3213
3214 if (cc_status.flags & CC_NOT_SIGNED)
3215 /* The flags are valid if signed condition operators are converted
3216 to unsigned. */
3217 switch (GET_CODE (cond))
3218 {
3219 case LE:
3220 PUT_CODE (cond, LEU);
3221 value = 2;
3222 break;
3223
3224 case LT:
3225 PUT_CODE (cond, LTU);
3226 value = 2;
3227 break;
3228
3229 case GT:
3230 PUT_CODE (cond, GTU);
3231 value = 2;
3232 break;
3233
3234 case GE:
3235 PUT_CODE (cond, GEU);
3236 value = 2;
3237 break;
3238
3239 default:
3240 break;
3241 }
3242
3243 return value;
3244 }
3245 #endif
3246 \f
3247 /* Report inconsistency between the assembler template and the operands.
3248 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3249
3250 void
3251 output_operand_lossage (str)
3252 char *str;
3253 {
3254 if (this_is_asm_operands)
3255 error_for_asm (this_is_asm_operands, "invalid `asm': %s", str);
3256 else
3257 fatal ("Internal compiler error, output_operand_lossage `%s'", str);
3258 }
3259 \f
3260 /* Output of assembler code from a template, and its subroutines. */
3261
3262 /* Output text from TEMPLATE to the assembler output file,
3263 obeying %-directions to substitute operands taken from
3264 the vector OPERANDS.
3265
3266 %N (for N a digit) means print operand N in usual manner.
3267 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3268 and print the label name with no punctuation.
3269 %cN means require operand N to be a constant
3270 and print the constant expression with no punctuation.
3271 %aN means expect operand N to be a memory address
3272 (not a memory reference!) and print a reference
3273 to that address.
3274 %nN means expect operand N to be a constant
3275 and print a constant expression for minus the value
3276 of the operand, with no other punctuation. */
3277
3278 static void
3279 output_asm_name ()
3280 {
3281 if (flag_print_asm_name)
3282 {
3283 /* Annotate the assembly with a comment describing the pattern and
3284 alternative used. */
3285 if (debug_insn)
3286 {
3287 register int num = INSN_CODE (debug_insn);
3288 fprintf (asm_out_file, " %s %d %s",
3289 ASM_COMMENT_START, INSN_UID (debug_insn), insn_name[num]);
3290 if (insn_n_alternatives[num] > 1)
3291 fprintf (asm_out_file, "/%d", which_alternative + 1);
3292
3293 /* Clear this so only the first assembler insn
3294 of any rtl insn will get the special comment for -dp. */
3295 debug_insn = 0;
3296 }
3297 }
3298 }
3299
3300 void
3301 output_asm_insn (template, operands)
3302 char *template;
3303 rtx *operands;
3304 {
3305 register char *p;
3306 register int c;
3307
3308 /* An insn may return a null string template
3309 in a case where no assembler code is needed. */
3310 if (*template == 0)
3311 return;
3312
3313 p = template;
3314 putc ('\t', asm_out_file);
3315
3316 #ifdef ASM_OUTPUT_OPCODE
3317 ASM_OUTPUT_OPCODE (asm_out_file, p);
3318 #endif
3319
3320 while ((c = *p++))
3321 switch (c)
3322 {
3323 case '\n':
3324 output_asm_name ();
3325 putc (c, asm_out_file);
3326 #ifdef ASM_OUTPUT_OPCODE
3327 while ((c = *p) == '\t')
3328 {
3329 putc (c, asm_out_file);
3330 p++;
3331 }
3332 ASM_OUTPUT_OPCODE (asm_out_file, p);
3333 #endif
3334 break;
3335
3336 #ifdef ASSEMBLER_DIALECT
3337 case '{':
3338 {
3339 register int i;
3340
3341 /* If we want the first dialect, do nothing. Otherwise, skip
3342 DIALECT_NUMBER of strings ending with '|'. */
3343 for (i = 0; i < dialect_number; i++)
3344 {
3345 while (*p && *p++ != '|')
3346 ;
3347
3348 if (*p == '|')
3349 p++;
3350 }
3351 }
3352 break;
3353
3354 case '|':
3355 /* Skip to close brace. */
3356 while (*p && *p++ != '}')
3357 ;
3358 break;
3359
3360 case '}':
3361 break;
3362 #endif
3363
3364 case '%':
3365 /* %% outputs a single %. */
3366 if (*p == '%')
3367 {
3368 p++;
3369 putc (c, asm_out_file);
3370 }
3371 /* %= outputs a number which is unique to each insn in the entire
3372 compilation. This is useful for making local labels that are
3373 referred to more than once in a given insn. */
3374 else if (*p == '=')
3375 {
3376 p++;
3377 fprintf (asm_out_file, "%d", insn_counter);
3378 }
3379 /* % followed by a letter and some digits
3380 outputs an operand in a special way depending on the letter.
3381 Letters `acln' are implemented directly.
3382 Other letters are passed to `output_operand' so that
3383 the PRINT_OPERAND macro can define them. */
3384 else if ((*p >= 'a' && *p <= 'z')
3385 || (*p >= 'A' && *p <= 'Z'))
3386 {
3387 int letter = *p++;
3388 c = atoi (p);
3389
3390 if (! (*p >= '0' && *p <= '9'))
3391 output_operand_lossage ("operand number missing after %-letter");
3392 else if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
3393 output_operand_lossage ("operand number out of range");
3394 else if (letter == 'l')
3395 output_asm_label (operands[c]);
3396 else if (letter == 'a')
3397 output_address (operands[c]);
3398 else if (letter == 'c')
3399 {
3400 if (CONSTANT_ADDRESS_P (operands[c]))
3401 output_addr_const (asm_out_file, operands[c]);
3402 else
3403 output_operand (operands[c], 'c');
3404 }
3405 else if (letter == 'n')
3406 {
3407 if (GET_CODE (operands[c]) == CONST_INT)
3408 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3409 - INTVAL (operands[c]));
3410 else
3411 {
3412 putc ('-', asm_out_file);
3413 output_addr_const (asm_out_file, operands[c]);
3414 }
3415 }
3416 else
3417 output_operand (operands[c], letter);
3418
3419 while ((c = *p) >= '0' && c <= '9') p++;
3420 }
3421 /* % followed by a digit outputs an operand the default way. */
3422 else if (*p >= '0' && *p <= '9')
3423 {
3424 c = atoi (p);
3425 if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
3426 output_operand_lossage ("operand number out of range");
3427 else
3428 output_operand (operands[c], 0);
3429 while ((c = *p) >= '0' && c <= '9') p++;
3430 }
3431 /* % followed by punctuation: output something for that
3432 punctuation character alone, with no operand.
3433 The PRINT_OPERAND macro decides what is actually done. */
3434 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3435 else if (PRINT_OPERAND_PUNCT_VALID_P (*p))
3436 output_operand (NULL_RTX, *p++);
3437 #endif
3438 else
3439 output_operand_lossage ("invalid %%-code");
3440 break;
3441
3442 default:
3443 putc (c, asm_out_file);
3444 }
3445
3446 output_asm_name ();
3447
3448 putc ('\n', asm_out_file);
3449 }
3450 \f
3451 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3452
3453 void
3454 output_asm_label (x)
3455 rtx x;
3456 {
3457 char buf[256];
3458
3459 if (GET_CODE (x) == LABEL_REF)
3460 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
3461 else if (GET_CODE (x) == CODE_LABEL)
3462 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3463 else
3464 output_operand_lossage ("`%l' operand isn't a label");
3465
3466 assemble_name (asm_out_file, buf);
3467 }
3468
3469 /* Print operand X using machine-dependent assembler syntax.
3470 The macro PRINT_OPERAND is defined just to control this function.
3471 CODE is a non-digit that preceded the operand-number in the % spec,
3472 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3473 between the % and the digits.
3474 When CODE is a non-letter, X is 0.
3475
3476 The meanings of the letters are machine-dependent and controlled
3477 by PRINT_OPERAND. */
3478
3479 static void
3480 output_operand (x, code)
3481 rtx x;
3482 int code;
3483 {
3484 if (x && GET_CODE (x) == SUBREG)
3485 x = alter_subreg (x);
3486
3487 /* If X is a pseudo-register, abort now rather than writing trash to the
3488 assembler file. */
3489
3490 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3491 abort ();
3492
3493 PRINT_OPERAND (asm_out_file, x, code);
3494 }
3495
3496 /* Print a memory reference operand for address X
3497 using machine-dependent assembler syntax.
3498 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3499
3500 void
3501 output_address (x)
3502 rtx x;
3503 {
3504 walk_alter_subreg (x);
3505 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3506 }
3507 \f
3508 /* Print an integer constant expression in assembler syntax.
3509 Addition and subtraction are the only arithmetic
3510 that may appear in these expressions. */
3511
3512 void
3513 output_addr_const (file, x)
3514 FILE *file;
3515 rtx x;
3516 {
3517 char buf[256];
3518
3519 restart:
3520 switch (GET_CODE (x))
3521 {
3522 case PC:
3523 if (flag_pic)
3524 putc ('.', file);
3525 else
3526 abort ();
3527 break;
3528
3529 case SYMBOL_REF:
3530 assemble_name (file, XSTR (x, 0));
3531 break;
3532
3533 case LABEL_REF:
3534 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
3535 assemble_name (file, buf);
3536 break;
3537
3538 case CODE_LABEL:
3539 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3540 assemble_name (file, buf);
3541 break;
3542
3543 case CONST_INT:
3544 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3545 break;
3546
3547 case CONST:
3548 /* This used to output parentheses around the expression,
3549 but that does not work on the 386 (either ATT or BSD assembler). */
3550 output_addr_const (file, XEXP (x, 0));
3551 break;
3552
3553 case CONST_DOUBLE:
3554 if (GET_MODE (x) == VOIDmode)
3555 {
3556 /* We can use %d if the number is one word and positive. */
3557 if (CONST_DOUBLE_HIGH (x))
3558 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3559 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3560 else if (CONST_DOUBLE_LOW (x) < 0)
3561 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3562 else
3563 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3564 }
3565 else
3566 /* We can't handle floating point constants;
3567 PRINT_OPERAND must handle them. */
3568 output_operand_lossage ("floating constant misused");
3569 break;
3570
3571 case PLUS:
3572 /* Some assemblers need integer constants to appear last (eg masm). */
3573 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3574 {
3575 output_addr_const (file, XEXP (x, 1));
3576 if (INTVAL (XEXP (x, 0)) >= 0)
3577 fprintf (file, "+");
3578 output_addr_const (file, XEXP (x, 0));
3579 }
3580 else
3581 {
3582 output_addr_const (file, XEXP (x, 0));
3583 if (INTVAL (XEXP (x, 1)) >= 0)
3584 fprintf (file, "+");
3585 output_addr_const (file, XEXP (x, 1));
3586 }
3587 break;
3588
3589 case MINUS:
3590 /* Avoid outputting things like x-x or x+5-x,
3591 since some assemblers can't handle that. */
3592 x = simplify_subtraction (x);
3593 if (GET_CODE (x) != MINUS)
3594 goto restart;
3595
3596 output_addr_const (file, XEXP (x, 0));
3597 fprintf (file, "-");
3598 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3599 && INTVAL (XEXP (x, 1)) < 0)
3600 {
3601 fprintf (file, ASM_OPEN_PAREN);
3602 output_addr_const (file, XEXP (x, 1));
3603 fprintf (file, ASM_CLOSE_PAREN);
3604 }
3605 else
3606 output_addr_const (file, XEXP (x, 1));
3607 break;
3608
3609 case ZERO_EXTEND:
3610 case SIGN_EXTEND:
3611 output_addr_const (file, XEXP (x, 0));
3612 break;
3613
3614 default:
3615 output_operand_lossage ("invalid expression as operand");
3616 }
3617 }
3618 \f
3619 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3620 %R prints the value of REGISTER_PREFIX.
3621 %L prints the value of LOCAL_LABEL_PREFIX.
3622 %U prints the value of USER_LABEL_PREFIX.
3623 %I prints the value of IMMEDIATE_PREFIX.
3624 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3625 Also supported are %d, %x, %s, %e, %f, %g and %%.
3626
3627 We handle alternate assembler dialects here, just like output_asm_insn. */
3628
3629 void
3630 asm_fprintf VPROTO((FILE *file, char *p, ...))
3631 {
3632 #ifndef __STDC__
3633 FILE *file;
3634 char *p;
3635 #endif
3636 va_list argptr;
3637 char buf[10];
3638 char *q, c;
3639
3640 VA_START (argptr, p);
3641
3642 #ifndef __STDC__
3643 file = va_arg (argptr, FILE *);
3644 p = va_arg (argptr, char *);
3645 #endif
3646
3647 buf[0] = '%';
3648
3649 while ((c = *p++))
3650 switch (c)
3651 {
3652 #ifdef ASSEMBLER_DIALECT
3653 case '{':
3654 {
3655 int i;
3656
3657 /* If we want the first dialect, do nothing. Otherwise, skip
3658 DIALECT_NUMBER of strings ending with '|'. */
3659 for (i = 0; i < dialect_number; i++)
3660 {
3661 while (*p && *p++ != '|')
3662 ;
3663
3664 if (*p == '|')
3665 p++;
3666 }
3667 }
3668 break;
3669
3670 case '|':
3671 /* Skip to close brace. */
3672 while (*p && *p++ != '}')
3673 ;
3674 break;
3675
3676 case '}':
3677 break;
3678 #endif
3679
3680 case '%':
3681 c = *p++;
3682 q = &buf[1];
3683 while ((c >= '0' && c <= '9') || c == '.')
3684 {
3685 *q++ = c;
3686 c = *p++;
3687 }
3688 switch (c)
3689 {
3690 case '%':
3691 fprintf (file, "%%");
3692 break;
3693
3694 case 'd': case 'i': case 'u':
3695 case 'x': case 'p': case 'X':
3696 case 'o':
3697 *q++ = c;
3698 *q = 0;
3699 fprintf (file, buf, va_arg (argptr, int));
3700 break;
3701
3702 case 'w':
3703 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3704 but we do not check for those cases. It means that the value
3705 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3706
3707 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3708 #else
3709 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3710 *q++ = 'l';
3711 #else
3712 *q++ = 'l';
3713 *q++ = 'l';
3714 #endif
3715 #endif
3716
3717 *q++ = *p++;
3718 *q = 0;
3719 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3720 break;
3721
3722 case 'l':
3723 *q++ = c;
3724 *q++ = *p++;
3725 *q = 0;
3726 fprintf (file, buf, va_arg (argptr, long));
3727 break;
3728
3729 case 'e':
3730 case 'f':
3731 case 'g':
3732 *q++ = c;
3733 *q = 0;
3734 fprintf (file, buf, va_arg (argptr, double));
3735 break;
3736
3737 case 's':
3738 *q++ = c;
3739 *q = 0;
3740 fprintf (file, buf, va_arg (argptr, char *));
3741 break;
3742
3743 case 'O':
3744 #ifdef ASM_OUTPUT_OPCODE
3745 ASM_OUTPUT_OPCODE (asm_out_file, p);
3746 #endif
3747 break;
3748
3749 case 'R':
3750 #ifdef REGISTER_PREFIX
3751 fprintf (file, "%s", REGISTER_PREFIX);
3752 #endif
3753 break;
3754
3755 case 'I':
3756 #ifdef IMMEDIATE_PREFIX
3757 fprintf (file, "%s", IMMEDIATE_PREFIX);
3758 #endif
3759 break;
3760
3761 case 'L':
3762 #ifdef LOCAL_LABEL_PREFIX
3763 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3764 #endif
3765 break;
3766
3767 case 'U':
3768 #ifdef USER_LABEL_PREFIX
3769 fprintf (file, "%s", USER_LABEL_PREFIX);
3770 #endif
3771 break;
3772
3773 default:
3774 abort ();
3775 }
3776 break;
3777
3778 default:
3779 fputc (c, file);
3780 }
3781 }
3782 \f
3783 /* Split up a CONST_DOUBLE or integer constant rtx
3784 into two rtx's for single words,
3785 storing in *FIRST the word that comes first in memory in the target
3786 and in *SECOND the other. */
3787
3788 void
3789 split_double (value, first, second)
3790 rtx value;
3791 rtx *first, *second;
3792 {
3793 if (GET_CODE (value) == CONST_INT)
3794 {
3795 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3796 {
3797 /* In this case the CONST_INT holds both target words.
3798 Extract the bits from it into two word-sized pieces.
3799 Sign extend each half to HOST_WIDE_INT. */
3800 rtx low, high;
3801 /* On machines where HOST_BITS_PER_WIDE_INT == BITS_PER_WORD
3802 the shift below will cause a compiler warning, even though
3803 this code won't be executed. So put the shift amounts in
3804 variables to avoid the warning. */
3805 int rshift = HOST_BITS_PER_WIDE_INT - BITS_PER_WORD;
3806 int lshift = HOST_BITS_PER_WIDE_INT - 2 * BITS_PER_WORD;
3807
3808 low = GEN_INT ((INTVAL (value) << rshift) >> rshift);
3809 high = GEN_INT ((INTVAL (value) << lshift) >> rshift);
3810 if (WORDS_BIG_ENDIAN)
3811 {
3812 *first = high;
3813 *second = low;
3814 }
3815 else
3816 {
3817 *first = low;
3818 *second = high;
3819 }
3820 }
3821 else
3822 {
3823 /* The rule for using CONST_INT for a wider mode
3824 is that we regard the value as signed.
3825 So sign-extend it. */
3826 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3827 if (WORDS_BIG_ENDIAN)
3828 {
3829 *first = high;
3830 *second = value;
3831 }
3832 else
3833 {
3834 *first = value;
3835 *second = high;
3836 }
3837 }
3838 }
3839 else if (GET_CODE (value) != CONST_DOUBLE)
3840 {
3841 if (WORDS_BIG_ENDIAN)
3842 {
3843 *first = const0_rtx;
3844 *second = value;
3845 }
3846 else
3847 {
3848 *first = value;
3849 *second = const0_rtx;
3850 }
3851 }
3852 else if (GET_MODE (value) == VOIDmode
3853 /* This is the old way we did CONST_DOUBLE integers. */
3854 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3855 {
3856 /* In an integer, the words are defined as most and least significant.
3857 So order them by the target's convention. */
3858 if (WORDS_BIG_ENDIAN)
3859 {
3860 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3861 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3862 }
3863 else
3864 {
3865 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3866 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3867 }
3868 }
3869 else
3870 {
3871 #ifdef REAL_ARITHMETIC
3872 REAL_VALUE_TYPE r; long l[2];
3873 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3874
3875 /* Note, this converts the REAL_VALUE_TYPE to the target's
3876 format, splits up the floating point double and outputs
3877 exactly 32 bits of it into each of l[0] and l[1] --
3878 not necessarily BITS_PER_WORD bits. */
3879 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3880
3881 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3882 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3883 #else
3884 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3885 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3886 && ! flag_pretend_float)
3887 abort ();
3888
3889 if (
3890 #ifdef HOST_WORDS_BIG_ENDIAN
3891 WORDS_BIG_ENDIAN
3892 #else
3893 ! WORDS_BIG_ENDIAN
3894 #endif
3895 )
3896 {
3897 /* Host and target agree => no need to swap. */
3898 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3899 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3900 }
3901 else
3902 {
3903 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3904 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3905 }
3906 #endif /* no REAL_ARITHMETIC */
3907 }
3908 }
3909 \f
3910 /* Return nonzero if this function has no function calls. */
3911
3912 int
3913 leaf_function_p ()
3914 {
3915 rtx insn;
3916
3917 if (profile_flag || profile_block_flag || profile_arc_flag)
3918 return 0;
3919
3920 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3921 {
3922 if (GET_CODE (insn) == CALL_INSN)
3923 return 0;
3924 if (GET_CODE (insn) == INSN
3925 && GET_CODE (PATTERN (insn)) == SEQUENCE
3926 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN)
3927 return 0;
3928 }
3929 for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1))
3930 {
3931 if (GET_CODE (XEXP (insn, 0)) == CALL_INSN)
3932 return 0;
3933 if (GET_CODE (XEXP (insn, 0)) == INSN
3934 && GET_CODE (PATTERN (XEXP (insn, 0))) == SEQUENCE
3935 && GET_CODE (XVECEXP (PATTERN (XEXP (insn, 0)), 0, 0)) == CALL_INSN)
3936 return 0;
3937 }
3938
3939 return 1;
3940 }
3941
3942 /* On some machines, a function with no call insns
3943 can run faster if it doesn't create its own register window.
3944 When output, the leaf function should use only the "output"
3945 registers. Ordinarily, the function would be compiled to use
3946 the "input" registers to find its arguments; it is a candidate
3947 for leaf treatment if it uses only the "input" registers.
3948 Leaf function treatment means renumbering so the function
3949 uses the "output" registers instead. */
3950
3951 #ifdef LEAF_REGISTERS
3952
3953 static char permitted_reg_in_leaf_functions[] = LEAF_REGISTERS;
3954
3955 /* Return 1 if this function uses only the registers that can be
3956 safely renumbered. */
3957
3958 int
3959 only_leaf_regs_used ()
3960 {
3961 int i;
3962
3963 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3964 if ((regs_ever_live[i] || global_regs[i])
3965 && ! permitted_reg_in_leaf_functions[i])
3966 return 0;
3967
3968 if (current_function_uses_pic_offset_table
3969 && pic_offset_table_rtx != 0
3970 && GET_CODE (pic_offset_table_rtx) == REG
3971 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3972 return 0;
3973
3974 return 1;
3975 }
3976
3977 /* Scan all instructions and renumber all registers into those
3978 available in leaf functions. */
3979
3980 static void
3981 leaf_renumber_regs (first)
3982 rtx first;
3983 {
3984 rtx insn;
3985
3986 /* Renumber only the actual patterns.
3987 The reg-notes can contain frame pointer refs,
3988 and renumbering them could crash, and should not be needed. */
3989 for (insn = first; insn; insn = NEXT_INSN (insn))
3990 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3991 leaf_renumber_regs_insn (PATTERN (insn));
3992 for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1))
3993 if (GET_RTX_CLASS (GET_CODE (XEXP (insn, 0))) == 'i')
3994 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3995 }
3996
3997 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3998 available in leaf functions. */
3999
4000 void
4001 leaf_renumber_regs_insn (in_rtx)
4002 register rtx in_rtx;
4003 {
4004 register int i, j;
4005 register char *format_ptr;
4006
4007 if (in_rtx == 0)
4008 return;
4009
4010 /* Renumber all input-registers into output-registers.
4011 renumbered_regs would be 1 for an output-register;
4012 they */
4013
4014 if (GET_CODE (in_rtx) == REG)
4015 {
4016 int newreg;
4017
4018 /* Don't renumber the same reg twice. */
4019 if (in_rtx->used)
4020 return;
4021
4022 newreg = REGNO (in_rtx);
4023 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4024 to reach here as part of a REG_NOTE. */
4025 if (newreg >= FIRST_PSEUDO_REGISTER)
4026 {
4027 in_rtx->used = 1;
4028 return;
4029 }
4030 newreg = LEAF_REG_REMAP (newreg);
4031 if (newreg < 0)
4032 abort ();
4033 regs_ever_live[REGNO (in_rtx)] = 0;
4034 regs_ever_live[newreg] = 1;
4035 REGNO (in_rtx) = newreg;
4036 in_rtx->used = 1;
4037 }
4038
4039 if (GET_RTX_CLASS (GET_CODE (in_rtx)) == 'i')
4040 {
4041 /* Inside a SEQUENCE, we find insns.
4042 Renumber just the patterns of these insns,
4043 just as we do for the top-level insns. */
4044 leaf_renumber_regs_insn (PATTERN (in_rtx));
4045 return;
4046 }
4047
4048 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4049
4050 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4051 switch (*format_ptr++)
4052 {
4053 case 'e':
4054 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4055 break;
4056
4057 case 'E':
4058 if (NULL != XVEC (in_rtx, i))
4059 {
4060 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4061 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4062 }
4063 break;
4064
4065 case 'S':
4066 case 's':
4067 case '0':
4068 case 'i':
4069 case 'w':
4070 case 'n':
4071 case 'u':
4072 break;
4073
4074 default:
4075 abort ();
4076 }
4077 }
4078 #endif
This page took 0.211179 seconds and 6 git commands to generate.