]> gcc.gnu.org Git - gcc.git/blob - gcc/final.c
final.c (JUMP_TABLES_IN_TEXT_SECTION): Provide a default value.
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 88, 89, 92-97, 1998 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
44 directly as assembler code by the macros FUNCTION_PROLOGUE and
45 FUNCTION_EPILOGUE. Those instructions never exist as rtl. */
46
47 #include "config.h"
48 #ifdef __STDC__
49 #include <stdarg.h>
50 #else
51 #include <varargs.h>
52 #endif
53 #include "system.h"
54
55 #include "tree.h"
56 #include "rtl.h"
57 #include "regs.h"
58 #include "insn-config.h"
59 #include "insn-flags.h"
60 #include "insn-attr.h"
61 #include "insn-codes.h"
62 #include "recog.h"
63 #include "conditions.h"
64 #include "flags.h"
65 #include "real.h"
66 #include "hard-reg-set.h"
67 #include "defaults.h"
68 #include "output.h"
69 #include "except.h"
70 #include "toplev.h"
71 #include "reload.h"
72
73 /* Get N_SLINE and N_SOL from stab.h if we can expect the file to exist. */
74 #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
75 #include "dbxout.h"
76 #if defined (USG) || !defined (HAVE_STAB_H)
77 #include "gstab.h" /* If doing DBX on sysV, use our own stab.h. */
78 #else
79 #include <stab.h> /* On BSD, use the system's stab.h. */
80 #endif /* not USG */
81 #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
82
83 #ifdef XCOFF_DEBUGGING_INFO
84 #include "xcoffout.h"
85 #endif
86
87 #ifdef DWARF_DEBUGGING_INFO
88 #include "dwarfout.h"
89 #endif
90
91 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
92 #include "dwarf2out.h"
93 #endif
94
95 #ifdef SDB_DEBUGGING_INFO
96 #include "sdbout.h"
97 #endif
98
99 /* .stabd code for line number. */
100 #ifndef N_SLINE
101 #define N_SLINE 0x44
102 #endif
103
104 /* .stabs code for included file name. */
105 #ifndef N_SOL
106 #define N_SOL 0x84
107 #endif
108
109 #ifndef INT_TYPE_SIZE
110 #define INT_TYPE_SIZE BITS_PER_WORD
111 #endif
112
113 #ifndef LONG_TYPE_SIZE
114 #define LONG_TYPE_SIZE BITS_PER_WORD
115 #endif
116
117 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
118 null default for it to save conditionalization later. */
119 #ifndef CC_STATUS_INIT
120 #define CC_STATUS_INIT
121 #endif
122
123 /* How to start an assembler comment. */
124 #ifndef ASM_COMMENT_START
125 #define ASM_COMMENT_START ";#"
126 #endif
127
128 /* Is the given character a logical line separator for the assembler? */
129 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
130 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
131 #endif
132
133 #ifndef JUMP_TABLES_IN_TEXT_SECTION
134 #define JUMP_TABLES_IN_TEXT_SECTION 0
135 #endif
136
137 /* Nonzero means this function is a leaf function, with no function calls.
138 This variable exists to be examined in FUNCTION_PROLOGUE
139 and FUNCTION_EPILOGUE. Always zero, unless set by some action. */
140 int leaf_function;
141
142 /* Last insn processed by final_scan_insn. */
143 static rtx debug_insn = 0;
144
145 /* Line number of last NOTE. */
146 static int last_linenum;
147
148 /* Highest line number in current block. */
149 static int high_block_linenum;
150
151 /* Likewise for function. */
152 static int high_function_linenum;
153
154 /* Filename of last NOTE. */
155 static char *last_filename;
156
157 /* Number of basic blocks seen so far;
158 used if profile_block_flag is set. */
159 static int count_basic_blocks;
160
161 /* Number of instrumented arcs when profile_arc_flag is set. */
162 extern int count_instrumented_arcs;
163
164 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
165
166 /* Nonzero while outputting an `asm' with operands.
167 This means that inconsistencies are the user's fault, so don't abort.
168 The precise value is the insn being output, to pass to error_for_asm. */
169 static rtx this_is_asm_operands;
170
171 /* Number of operands of this insn, for an `asm' with operands. */
172 static unsigned int insn_noperands;
173
174 /* Compare optimization flag. */
175
176 static rtx last_ignored_compare = 0;
177
178 /* Flag indicating this insn is the start of a new basic block. */
179
180 static int new_block = 1;
181
182 /* All the symbol-blocks (levels of scoping) in the compilation
183 are assigned sequence numbers in order of appearance of the
184 beginnings of the symbol-blocks. Both final and dbxout do this,
185 and assume that they will both give the same number to each block.
186 Final uses these sequence numbers to generate assembler label names
187 LBBnnn and LBEnnn for the beginning and end of the symbol-block.
188 Dbxout uses the sequence numbers to generate references to the same labels
189 from the dbx debugging information.
190
191 Sdb records this level at the beginning of each function,
192 in order to find the current level when recursing down declarations.
193 It outputs the block beginning and endings
194 at the point in the asm file where the blocks would begin and end. */
195
196 int next_block_index;
197
198 /* Assign a unique number to each insn that is output.
199 This can be used to generate unique local labels. */
200
201 static int insn_counter = 0;
202
203 #ifdef HAVE_cc0
204 /* This variable contains machine-dependent flags (defined in tm.h)
205 set and examined by output routines
206 that describe how to interpret the condition codes properly. */
207
208 CC_STATUS cc_status;
209
210 /* During output of an insn, this contains a copy of cc_status
211 from before the insn. */
212
213 CC_STATUS cc_prev_status;
214 #endif
215
216 /* Indexed by hardware reg number, is 1 if that register is ever
217 used in the current function.
218
219 In life_analysis, or in stupid_life_analysis, this is set
220 up to record the hard regs used explicitly. Reload adds
221 in the hard regs used for holding pseudo regs. Final uses
222 it to generate the code in the function prologue and epilogue
223 to save and restore registers as needed. */
224
225 char regs_ever_live[FIRST_PSEUDO_REGISTER];
226
227 /* Nonzero means current function must be given a frame pointer.
228 Set in stmt.c if anything is allocated on the stack there.
229 Set in reload1.c if anything is allocated on the stack there. */
230
231 int frame_pointer_needed;
232
233 /* Assign unique numbers to labels generated for profiling. */
234
235 int profile_label_no;
236
237 /* Length so far allocated in PENDING_BLOCKS. */
238
239 static int max_block_depth;
240
241 /* Stack of sequence numbers of symbol-blocks of which we have seen the
242 beginning but not yet the end. Sequence numbers are assigned at
243 the beginning; this stack allows us to find the sequence number
244 of a block that is ending. */
245
246 static int *pending_blocks;
247
248 /* Number of elements currently in use in PENDING_BLOCKS. */
249
250 static int block_depth;
251
252 /* Nonzero if have enabled APP processing of our assembler output. */
253
254 static int app_on;
255
256 /* If we are outputting an insn sequence, this contains the sequence rtx.
257 Zero otherwise. */
258
259 rtx final_sequence;
260
261 #ifdef ASSEMBLER_DIALECT
262
263 /* Number of the assembler dialect to use, starting at 0. */
264 static int dialect_number;
265 #endif
266
267 /* Indexed by line number, nonzero if there is a note for that line. */
268
269 static char *line_note_exists;
270
271 /* Linked list to hold line numbers for each basic block. */
272
273 struct bb_list {
274 struct bb_list *next; /* pointer to next basic block */
275 int line_num; /* line number */
276 int file_label_num; /* LPBC<n> label # for stored filename */
277 int func_label_num; /* LPBC<n> label # for stored function name */
278 };
279
280 static struct bb_list *bb_head = 0; /* Head of basic block list */
281 static struct bb_list **bb_tail = &bb_head; /* Ptr to store next bb ptr */
282 static int bb_file_label_num = -1; /* Current label # for file */
283 static int bb_func_label_num = -1; /* Current label # for func */
284
285 /* Linked list to hold the strings for each file and function name output. */
286
287 struct bb_str {
288 struct bb_str *next; /* pointer to next string */
289 char *string; /* string */
290 int label_num; /* label number */
291 int length; /* string length */
292 };
293
294 extern rtx peephole PROTO((rtx));
295
296 static struct bb_str *sbb_head = 0; /* Head of string list. */
297 static struct bb_str **sbb_tail = &sbb_head; /* Ptr to store next bb str */
298 static int sbb_label_num = 0; /* Last label used */
299
300 #ifdef HAVE_ATTR_length
301 static int asm_insn_count PROTO((rtx));
302 #endif
303 static void profile_function PROTO((FILE *));
304 static void profile_after_prologue PROTO((FILE *));
305 static void add_bb PROTO((FILE *));
306 static int add_bb_string PROTO((char *, int));
307 static void output_source_line PROTO((FILE *, rtx));
308 static rtx walk_alter_subreg PROTO((rtx));
309 static void output_asm_name PROTO((void));
310 static void output_operand PROTO((rtx, int));
311 #ifdef LEAF_REGISTERS
312 static void leaf_renumber_regs PROTO((rtx));
313 #endif
314 #ifdef HAVE_cc0
315 static int alter_cond PROTO((rtx));
316 #endif
317
318 extern char *getpwd ();
319 \f
320 /* Initialize data in final at the beginning of a compilation. */
321
322 void
323 init_final (filename)
324 char *filename;
325 {
326 next_block_index = 2;
327 app_on = 0;
328 max_block_depth = 20;
329 pending_blocks = (int *) xmalloc (20 * sizeof *pending_blocks);
330 final_sequence = 0;
331
332 #ifdef ASSEMBLER_DIALECT
333 dialect_number = ASSEMBLER_DIALECT;
334 #endif
335 }
336
337 /* Called at end of source file,
338 to output the block-profiling table for this entire compilation. */
339
340 void
341 end_final (filename)
342 char *filename;
343 {
344 int i;
345
346 if (profile_block_flag || profile_arc_flag)
347 {
348 char name[20];
349 int align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
350 int size, rounded;
351 struct bb_list *ptr;
352 struct bb_str *sptr;
353 int long_bytes = LONG_TYPE_SIZE / BITS_PER_UNIT;
354 int pointer_bytes = POINTER_SIZE / BITS_PER_UNIT;
355
356 if (profile_block_flag)
357 size = long_bytes * count_basic_blocks;
358 else
359 size = long_bytes * count_instrumented_arcs;
360 rounded = size;
361
362 rounded += (BIGGEST_ALIGNMENT / BITS_PER_UNIT) - 1;
363 rounded = (rounded / (BIGGEST_ALIGNMENT / BITS_PER_UNIT)
364 * (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
365
366 data_section ();
367
368 /* Output the main header, of 11 words:
369 0: 1 if this file is initialized, else 0.
370 1: address of file name (LPBX1).
371 2: address of table of counts (LPBX2).
372 3: number of counts in the table.
373 4: always 0, for compatibility with Sun.
374
375 The following are GNU extensions:
376
377 5: address of table of start addrs of basic blocks (LPBX3).
378 6: Number of bytes in this header.
379 7: address of table of function names (LPBX4).
380 8: address of table of line numbers (LPBX5) or 0.
381 9: address of table of file names (LPBX6) or 0.
382 10: space reserved for basic block profiling. */
383
384 ASM_OUTPUT_ALIGN (asm_out_file, align);
385
386 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 0);
387 /* zero word */
388 assemble_integer (const0_rtx, long_bytes, 1);
389
390 /* address of filename */
391 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 1);
392 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
393
394 /* address of count table */
395 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
396 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
397
398 /* count of the # of basic blocks or # of instrumented arcs */
399 if (profile_block_flag)
400 assemble_integer (GEN_INT (count_basic_blocks), long_bytes, 1);
401 else
402 assemble_integer (GEN_INT (count_instrumented_arcs), long_bytes,
403 1);
404
405 /* zero word (link field) */
406 assemble_integer (const0_rtx, pointer_bytes, 1);
407
408 /* address of basic block start address table */
409 if (profile_block_flag)
410 {
411 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
412 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
413 1);
414 }
415 else
416 assemble_integer (const0_rtx, pointer_bytes, 1);
417
418 /* byte count for extended structure. */
419 assemble_integer (GEN_INT (10 * UNITS_PER_WORD), long_bytes, 1);
420
421 /* address of function name table */
422 if (profile_block_flag)
423 {
424 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 4);
425 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
426 1);
427 }
428 else
429 assemble_integer (const0_rtx, pointer_bytes, 1);
430
431 /* address of line number and filename tables if debugging. */
432 if (write_symbols != NO_DEBUG && profile_block_flag)
433 {
434 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 5);
435 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
436 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 6);
437 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
438 }
439 else
440 {
441 assemble_integer (const0_rtx, pointer_bytes, 1);
442 assemble_integer (const0_rtx, pointer_bytes, 1);
443 }
444
445 /* space for extension ptr (link field) */
446 assemble_integer (const0_rtx, UNITS_PER_WORD, 1);
447
448 /* Output the file name changing the suffix to .d for Sun tcov
449 compatibility. */
450 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 1);
451 {
452 char *cwd = getpwd ();
453 int len = strlen (filename) + strlen (cwd) + 1;
454 char *data_file = (char *) alloca (len + 4);
455
456 strcpy (data_file, cwd);
457 strcat (data_file, "/");
458 strcat (data_file, filename);
459 strip_off_ending (data_file, len);
460 if (profile_block_flag)
461 strcat (data_file, ".d");
462 else
463 strcat (data_file, ".da");
464 assemble_string (data_file, strlen (data_file) + 1);
465 }
466
467 /* Make space for the table of counts. */
468 if (size == 0)
469 {
470 /* Realign data section. */
471 ASM_OUTPUT_ALIGN (asm_out_file, align);
472 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 2);
473 if (size != 0)
474 assemble_zeros (size);
475 }
476 else
477 {
478 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
479 #ifdef ASM_OUTPUT_SHARED_LOCAL
480 if (flag_shared_data)
481 ASM_OUTPUT_SHARED_LOCAL (asm_out_file, name, size, rounded);
482 else
483 #endif
484 #ifdef ASM_OUTPUT_ALIGNED_DECL_LOCAL
485 ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file, NULL_TREE, name, size,
486 BIGGEST_ALIGNMENT);
487 #else
488 #ifdef ASM_OUTPUT_ALIGNED_LOCAL
489 ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file, name, size,
490 BIGGEST_ALIGNMENT);
491 #else
492 ASM_OUTPUT_LOCAL (asm_out_file, name, size, rounded);
493 #endif
494 #endif
495 }
496
497 /* Output any basic block strings */
498 if (profile_block_flag)
499 {
500 readonly_data_section ();
501 if (sbb_head)
502 {
503 ASM_OUTPUT_ALIGN (asm_out_file, align);
504 for (sptr = sbb_head; sptr != 0; sptr = sptr->next)
505 {
506 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBC",
507 sptr->label_num);
508 assemble_string (sptr->string, sptr->length);
509 }
510 }
511 }
512
513 /* Output the table of addresses. */
514 if (profile_block_flag)
515 {
516 /* Realign in new section */
517 ASM_OUTPUT_ALIGN (asm_out_file, align);
518 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 3);
519 for (i = 0; i < count_basic_blocks; i++)
520 {
521 ASM_GENERATE_INTERNAL_LABEL (name, "LPB", i);
522 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
523 pointer_bytes, 1);
524 }
525 }
526
527 /* Output the table of function names. */
528 if (profile_block_flag)
529 {
530 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 4);
531 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
532 {
533 if (ptr->func_label_num >= 0)
534 {
535 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
536 ptr->func_label_num);
537 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
538 pointer_bytes, 1);
539 }
540 else
541 assemble_integer (const0_rtx, pointer_bytes, 1);
542 }
543
544 for ( ; i < count_basic_blocks; i++)
545 assemble_integer (const0_rtx, pointer_bytes, 1);
546 }
547
548 if (write_symbols != NO_DEBUG && profile_block_flag)
549 {
550 /* Output the table of line numbers. */
551 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 5);
552 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
553 assemble_integer (GEN_INT (ptr->line_num), long_bytes, 1);
554
555 for ( ; i < count_basic_blocks; i++)
556 assemble_integer (const0_rtx, long_bytes, 1);
557
558 /* Output the table of file names. */
559 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 6);
560 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
561 {
562 if (ptr->file_label_num >= 0)
563 {
564 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
565 ptr->file_label_num);
566 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
567 pointer_bytes, 1);
568 }
569 else
570 assemble_integer (const0_rtx, pointer_bytes, 1);
571 }
572
573 for ( ; i < count_basic_blocks; i++)
574 assemble_integer (const0_rtx, pointer_bytes, 1);
575 }
576
577 /* End with the address of the table of addresses,
578 so we can find it easily, as the last word in the file's text. */
579 if (profile_block_flag)
580 {
581 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
582 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
583 1);
584 }
585 }
586 }
587
588 /* Enable APP processing of subsequent output.
589 Used before the output from an `asm' statement. */
590
591 void
592 app_enable ()
593 {
594 if (! app_on)
595 {
596 fputs (ASM_APP_ON, asm_out_file);
597 app_on = 1;
598 }
599 }
600
601 /* Disable APP processing of subsequent output.
602 Called from varasm.c before most kinds of output. */
603
604 void
605 app_disable ()
606 {
607 if (app_on)
608 {
609 fputs (ASM_APP_OFF, asm_out_file);
610 app_on = 0;
611 }
612 }
613 \f
614 /* Return the number of slots filled in the current
615 delayed branch sequence (we don't count the insn needing the
616 delay slot). Zero if not in a delayed branch sequence. */
617
618 #ifdef DELAY_SLOTS
619 int
620 dbr_sequence_length ()
621 {
622 if (final_sequence != 0)
623 return XVECLEN (final_sequence, 0) - 1;
624 else
625 return 0;
626 }
627 #endif
628 \f
629 /* The next two pages contain routines used to compute the length of an insn
630 and to shorten branches. */
631
632 /* Arrays for insn lengths, and addresses. The latter is referenced by
633 `insn_current_length'. */
634
635 static short *insn_lengths;
636 int *insn_addresses;
637
638 /* Address of insn being processed. Used by `insn_current_length'. */
639 int insn_current_address;
640
641 /* Address of insn being processed in previous iteration. */
642 int insn_last_address;
643
644 /* konwn invariant alignment of insn being processed. */
645 int insn_current_align;
646
647 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
648 gives the next following alignment insn that increases the known
649 alignment, or NULL_RTX if there is no such insn.
650 For any alignment obtained this way, we can again index uid_align with
651 its uid to obtain the next following align that in turn increases the
652 alignment, till we reach NULL_RTX; the sequence obtained this way
653 for each insn we'll call the alignment chain of this insn in the following
654 comments. */
655
656 struct label_alignment {
657 short alignment;
658 short max_skip;
659 };
660
661 static rtx *uid_align;
662 static int *uid_shuid;
663 static struct label_alignment *label_align;
664
665 /* Indicate that branch shortening hasn't yet been done. */
666
667 void
668 init_insn_lengths ()
669 {
670 if (label_align)
671 {
672 free (label_align);
673 label_align = 0;
674 }
675 if (uid_shuid)
676 {
677 free (uid_shuid);
678 uid_shuid = 0;
679 }
680 if (insn_lengths)
681 {
682 free (insn_lengths);
683 insn_lengths = 0;
684 }
685 if (insn_addresses)
686 {
687 free (insn_addresses);
688 insn_addresses = 0;
689 }
690 if (uid_align)
691 {
692 free (uid_align);
693 uid_align = 0;
694 }
695 }
696
697 /* Obtain the current length of an insn. If branch shortening has been done,
698 get its actual length. Otherwise, get its maximum length. */
699
700 int
701 get_attr_length (insn)
702 rtx insn;
703 {
704 #ifdef HAVE_ATTR_length
705 rtx body;
706 int i;
707 int length = 0;
708
709 if (insn_lengths)
710 return insn_lengths[INSN_UID (insn)];
711 else
712 switch (GET_CODE (insn))
713 {
714 case NOTE:
715 case BARRIER:
716 case CODE_LABEL:
717 return 0;
718
719 case CALL_INSN:
720 length = insn_default_length (insn);
721 break;
722
723 case JUMP_INSN:
724 body = PATTERN (insn);
725 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
726 {
727 /* Alignment is machine-dependent and should be handled by
728 ADDR_VEC_ALIGN. */
729 }
730 else
731 length = insn_default_length (insn);
732 break;
733
734 case INSN:
735 body = PATTERN (insn);
736 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
737 return 0;
738
739 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
740 length = asm_insn_count (body) * insn_default_length (insn);
741 else if (GET_CODE (body) == SEQUENCE)
742 for (i = 0; i < XVECLEN (body, 0); i++)
743 length += get_attr_length (XVECEXP (body, 0, i));
744 else
745 length = insn_default_length (insn);
746 break;
747
748 default:
749 break;
750 }
751
752 #ifdef ADJUST_INSN_LENGTH
753 ADJUST_INSN_LENGTH (insn, length);
754 #endif
755 return length;
756 #else /* not HAVE_ATTR_length */
757 return 0;
758 #endif /* not HAVE_ATTR_length */
759 }
760 \f
761 /* Code to handle alignment inside shorten_branches. */
762
763 /* Here is an explanation how the algorithm in align_fuzz can give
764 proper results:
765
766 Call a sequence of instructions beginning with alignment point X
767 and continuing until the next alignment point `block X'. When `X'
768 is used in an expression, it means the alignment value of the
769 alignment point.
770
771 Call the distance between the start of the first insn of block X, and
772 the end of the last insn of block X `IX', for the `inner size of X'.
773 This is clearly the sum of the instruction lengths.
774
775 Likewise with the next alignment-delimited block following X, which we
776 shall call block Y.
777
778 Call the distance between the start of the first insn of block X, and
779 the start of the first insn of block Y `OX', for the `outer size of X'.
780
781 The estimated padding is then OX - IX.
782
783 OX can be safely estimated as
784
785 if (X >= Y)
786 OX = round_up(IX, Y)
787 else
788 OX = round_up(IX, X) + Y - X
789
790 Clearly est(IX) >= real(IX), because that only depends on the
791 instruction lengths, and those being overestimated is a given.
792
793 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
794 we needn't worry about that when thinking about OX.
795
796 When X >= Y, the alignment provided by Y adds no uncertainty factor
797 for branch ranges starting before X, so we can just round what we have.
798 But when X < Y, we don't know anything about the, so to speak,
799 `middle bits', so we have to assume the worst when aligning up from an
800 address mod X to one mod Y, which is Y - X. */
801
802 #ifndef LABEL_ALIGN
803 #define LABEL_ALIGN(LABEL) 0
804 #endif
805
806 #ifndef LABEL_ALIGN_MAX_SKIP
807 #define LABEL_ALIGN_MAX_SKIP 0
808 #endif
809
810 #ifndef LOOP_ALIGN
811 #define LOOP_ALIGN(LABEL) 0
812 #endif
813
814 #ifndef LOOP_ALIGN_MAX_SKIP
815 #define LOOP_ALIGN_MAX_SKIP 0
816 #endif
817
818 #ifndef LABEL_ALIGN_AFTER_BARRIER
819 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
820 #endif
821
822 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
823 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
824 #endif
825
826 #ifndef ADDR_VEC_ALIGN
827 int
828 final_addr_vec_align (addr_vec)
829 rtx addr_vec;
830 {
831 int align = exact_log2 (GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec))));
832
833 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
834 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
835 return align;
836
837 }
838 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
839 #endif
840
841 #ifndef INSN_LENGTH_ALIGNMENT
842 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
843 #endif
844
845 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
846
847 static int min_labelno, max_labelno;
848
849 #define LABEL_TO_ALIGNMENT(LABEL) \
850 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
851
852 #define LABEL_TO_MAX_SKIP(LABEL) \
853 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
854
855 /* For the benefit of port specific code do this also as a function. */
856 int
857 label_to_alignment (label)
858 rtx label;
859 {
860 return LABEL_TO_ALIGNMENT (label);
861 }
862
863 #ifdef HAVE_ATTR_length
864 /* The differences in addresses
865 between a branch and its target might grow or shrink depending on
866 the alignment the start insn of the range (the branch for a forward
867 branch or the label for a backward branch) starts out on; if these
868 differences are used naively, they can even oscillate infinitely.
869 We therefore want to compute a 'worst case' address difference that
870 is independent of the alignment the start insn of the range end
871 up on, and that is at least as large as the actual difference.
872 The function align_fuzz calculates the amount we have to add to the
873 naively computed difference, by traversing the part of the alignment
874 chain of the start insn of the range that is in front of the end insn
875 of the range, and considering for each alignment the maximum amount
876 that it might contribute to a size increase.
877
878 For casesi tables, we also want to know worst case minimum amounts of
879 address difference, in case a machine description wants to introduce
880 some common offset that is added to all offsets in a table.
881 For this purpose, align_fuzz with a growth argument of 0 comuptes the
882 appropriate adjustment. */
883
884
885 /* Compute the maximum delta by which the difference of the addresses of
886 START and END might grow / shrink due to a different address for start
887 which changes the size of alignment insns between START and END.
888 KNOWN_ALIGN_LOG is the alignment known for START.
889 GROWTH should be ~0 if the objective is to compute potential code size
890 increase, and 0 if the objective is to compute potential shrink.
891 The return value is undefined for any other value of GROWTH. */
892 int
893 align_fuzz (start, end, known_align_log, growth)
894 rtx start, end;
895 int known_align_log;
896 unsigned growth;
897 {
898 int uid = INSN_UID (start);
899 rtx align_label;
900 int known_align = 1 << known_align_log;
901 int end_shuid = INSN_SHUID (end);
902 int fuzz = 0;
903
904 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
905 {
906 int align_addr, new_align;
907
908 uid = INSN_UID (align_label);
909 align_addr = insn_addresses[uid] - insn_lengths[uid];
910 if (uid_shuid[uid] > end_shuid)
911 break;
912 known_align_log = LABEL_TO_ALIGNMENT (align_label);
913 new_align = 1 << known_align_log;
914 if (new_align < known_align)
915 continue;
916 fuzz += (-align_addr ^ growth) & (new_align - known_align);
917 known_align = new_align;
918 }
919 return fuzz;
920 }
921
922 /* Compute a worst-case reference address of a branch so that it
923 can be safely used in the presence of aligned labels. Since the
924 size of the branch itself is unknown, the size of the branch is
925 not included in the range. I.e. for a forward branch, the reference
926 address is the end address of the branch as known from the previous
927 branch shortening pass, minus a value to account for possible size
928 increase due to alignment. For a backward branch, it is the start
929 address of the branch as known from the current pass, plus a value
930 to account for possible size increase due to alignment.
931 NB.: Therefore, the maximum offset allowed for backward branches needs
932 to exclude the branch size. */
933 int
934 insn_current_reference_address (branch)
935 rtx branch;
936 {
937 rtx dest;
938 rtx seq = NEXT_INSN (PREV_INSN (branch));
939 int seq_uid = INSN_UID (seq);
940 if (GET_CODE (branch) != JUMP_INSN)
941 /* This can happen for example on the PA; the objective is to know the
942 offset to address something in front of the start of the function.
943 Thus, we can treat it like a backward branch.
944 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
945 any alignment we'd encounter, so we skip the call to align_fuzz. */
946 return insn_current_address;
947 dest = JUMP_LABEL (branch);
948 /* BRANCH has no proper alignment chain set, so use SEQ. */
949 if (INSN_SHUID (branch) < INSN_SHUID (dest))
950 {
951 /* Forward branch. */
952 return (insn_last_address + insn_lengths[seq_uid]
953 - align_fuzz (seq, dest, length_unit_log, ~0));
954 }
955 else
956 {
957 /* Backward branch. */
958 return (insn_current_address
959 + align_fuzz (dest, seq, length_unit_log, ~0));
960 }
961 }
962 #endif /* HAVE_ATTR_length */
963 \f
964 /* Make a pass over all insns and compute their actual lengths by shortening
965 any branches of variable length if possible. */
966
967 /* Give a default value for the lowest address in a function. */
968
969 #ifndef FIRST_INSN_ADDRESS
970 #define FIRST_INSN_ADDRESS 0
971 #endif
972
973 /* shorten_branches might be called multiple times: for example, the SH
974 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
975 In order to do this, it needs proper length information, which it obtains
976 by calling shorten_branches. This cannot be collapsed with
977 shorten_branches itself into a single pass unless we also want to intergate
978 reorg.c, since the branch splitting exposes new instructions with delay
979 slots. */
980
981 void
982 shorten_branches (first)
983 rtx first;
984 {
985 rtx insn;
986 int max_uid;
987 int i;
988 int max_log;
989 int max_skip;
990 #ifdef HAVE_ATTR_length
991 #define MAX_CODE_ALIGN 16
992 rtx seq;
993 int something_changed = 1;
994 char *varying_length;
995 rtx body;
996 int uid;
997 rtx align_tab[MAX_CODE_ALIGN];
998
999 /* In order to make sure that all instructions have valid length info,
1000 we must split them before we compute the address/length info. */
1001
1002 for (insn = NEXT_INSN (first); insn; insn = NEXT_INSN (insn))
1003 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1004 {
1005 rtx old = insn;
1006 insn = try_split (PATTERN (old), old, 1);
1007 /* When not optimizing, the old insn will be still left around
1008 with only the 'deleted' bit set. Transform it into a note
1009 to avoid confusion of subsequent processing. */
1010 if (INSN_DELETED_P (old))
1011 {
1012 PUT_CODE (old , NOTE);
1013 NOTE_LINE_NUMBER (old) = NOTE_INSN_DELETED;
1014 NOTE_SOURCE_FILE (old) = 0;
1015 }
1016 }
1017 #endif
1018
1019 /* We must do some computations even when not actually shortening, in
1020 order to get the alignment information for the labels. */
1021
1022 init_insn_lengths ();
1023
1024 /* Compute maximum UID and allocate label_align / uid_shuid. */
1025 max_uid = get_max_uid ();
1026
1027 max_labelno = max_label_num ();
1028 min_labelno = get_first_label_num ();
1029 label_align = (struct label_alignment *) xmalloc (
1030 (max_labelno - min_labelno + 1) * sizeof (struct label_alignment));
1031 bzero (label_align,
1032 (max_labelno - min_labelno + 1) * sizeof (struct label_alignment));
1033
1034 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
1035
1036 /* Initialize label_align and set up uid_shuid to be strictly
1037 monotonically rising with insn order. */
1038 /* We use max_log here to keep track of the maximum alignment we want to
1039 impose on the next CODE_LABEL (or the current one if we are processing
1040 the CODE_LABEL itself). */
1041
1042 max_log = 0;
1043 max_skip = 0;
1044
1045 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
1046 {
1047 int log;
1048
1049 INSN_SHUID (insn) = i++;
1050 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1051 {
1052 /* reorg might make the first insn of a loop being run once only,
1053 and delete the label in front of it. Then we want to apply
1054 the loop alignment to the new label created by reorg, which
1055 is separated by the former loop start insn from the
1056 NOTE_INSN_LOOP_BEG. */
1057 }
1058 else if (GET_CODE (insn) == CODE_LABEL)
1059 {
1060 rtx next;
1061
1062 log = LABEL_ALIGN (insn);
1063 if (max_log < log)
1064 {
1065 max_log = log;
1066 max_skip = LABEL_ALIGN_MAX_SKIP;
1067 }
1068 next = NEXT_INSN (insn);
1069 /* ADDR_VECs only take room if read-only data goes into the text
1070 section. */
1071 if (JUMP_TABLES_IN_TEXT_SECTION
1072 #if !defined(READONLY_DATA_SECTION)
1073 || 1
1074 #endif
1075 )
1076 if (next && GET_CODE (next) == JUMP_INSN)
1077 {
1078 rtx nextbody = PATTERN (next);
1079 if (GET_CODE (nextbody) == ADDR_VEC
1080 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1081 {
1082 log = ADDR_VEC_ALIGN (next);
1083 if (max_log < log)
1084 {
1085 max_log = log;
1086 max_skip = LABEL_ALIGN_MAX_SKIP;
1087 }
1088 }
1089 }
1090 LABEL_TO_ALIGNMENT (insn) = max_log;
1091 LABEL_TO_MAX_SKIP (insn) = max_skip;
1092 max_log = 0;
1093 max_skip = 0;
1094 }
1095 else if (GET_CODE (insn) == BARRIER)
1096 {
1097 rtx label;
1098
1099 for (label = insn; label && GET_RTX_CLASS (GET_CODE (label)) != 'i';
1100 label = NEXT_INSN (label))
1101 if (GET_CODE (label) == CODE_LABEL)
1102 {
1103 log = LABEL_ALIGN_AFTER_BARRIER (insn);
1104 if (max_log < log)
1105 {
1106 max_log = log;
1107 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
1108 }
1109 break;
1110 }
1111 }
1112 /* Again, we allow NOTE_INSN_LOOP_BEG - INSN - CODE_LABEL
1113 sequences in order to handle reorg output efficiently. */
1114 else if (GET_CODE (insn) == NOTE
1115 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1116 {
1117 rtx label;
1118
1119 for (label = insn; label; label = NEXT_INSN (label))
1120 if (GET_CODE (label) == CODE_LABEL)
1121 {
1122 log = LOOP_ALIGN (insn);
1123 if (max_log < log)
1124 {
1125 max_log = log;
1126 max_skip = LOOP_ALIGN_MAX_SKIP;
1127 }
1128 break;
1129 }
1130 }
1131 else
1132 continue;
1133 }
1134 #ifdef HAVE_ATTR_length
1135
1136 /* Allocate the rest of the arrays. */
1137 insn_lengths = (short *) xmalloc (max_uid * sizeof (short));
1138 insn_addresses = (int *) xmalloc (max_uid * sizeof (int));
1139 /* Syntax errors can lead to labels being outside of the main insn stream.
1140 Initialize insn_addresses, so that we get reproducible results. */
1141 bzero ((char *)insn_addresses, max_uid * sizeof *insn_addresses);
1142 uid_align = (rtx *) xmalloc (max_uid * sizeof *uid_align);
1143
1144 varying_length = (char *) xmalloc (max_uid * sizeof (char));
1145
1146 bzero (varying_length, max_uid);
1147
1148 /* Initialize uid_align. We scan instructions
1149 from end to start, and keep in align_tab[n] the last seen insn
1150 that does an alignment of at least n+1, i.e. the successor
1151 in the alignment chain for an insn that does / has a known
1152 alignment of n. */
1153
1154 bzero ((char *) uid_align, max_uid * sizeof *uid_align);
1155
1156 for (i = MAX_CODE_ALIGN; --i >= 0; )
1157 align_tab[i] = NULL_RTX;
1158 seq = get_last_insn ();
1159 for (; seq; seq = PREV_INSN (seq))
1160 {
1161 int uid = INSN_UID (seq);
1162 int log;
1163 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
1164 uid_align[uid] = align_tab[0];
1165 if (log)
1166 {
1167 /* Found an alignment label. */
1168 uid_align[uid] = align_tab[log];
1169 for (i = log - 1; i >= 0; i--)
1170 align_tab[i] = seq;
1171 }
1172 }
1173 #ifdef CASE_VECTOR_SHORTEN_MODE
1174 if (optimize)
1175 {
1176 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1177 label fields. */
1178
1179 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1180 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1181 int rel;
1182
1183 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1184 {
1185 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1186 int len, i, min, max, insn_shuid;
1187 int min_align;
1188 addr_diff_vec_flags flags;
1189
1190 if (GET_CODE (insn) != JUMP_INSN
1191 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1192 continue;
1193 pat = PATTERN (insn);
1194 len = XVECLEN (pat, 1);
1195 if (len <= 0)
1196 abort ();
1197 min_align = MAX_CODE_ALIGN;
1198 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1199 {
1200 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1201 int shuid = INSN_SHUID (lab);
1202 if (shuid < min)
1203 {
1204 min = shuid;
1205 min_lab = lab;
1206 }
1207 if (shuid > max)
1208 {
1209 max = shuid;
1210 max_lab = lab;
1211 }
1212 if (min_align > LABEL_TO_ALIGNMENT (lab))
1213 min_align = LABEL_TO_ALIGNMENT (lab);
1214 }
1215 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
1216 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
1217 insn_shuid = INSN_SHUID (insn);
1218 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1219 flags.min_align = min_align;
1220 flags.base_after_vec = rel > insn_shuid;
1221 flags.min_after_vec = min > insn_shuid;
1222 flags.max_after_vec = max > insn_shuid;
1223 flags.min_after_base = min > rel;
1224 flags.max_after_base = max > rel;
1225 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1226 }
1227 }
1228 #endif /* CASE_VECTOR_SHORTEN_MODE */
1229
1230
1231 /* Compute initial lengths, addresses, and varying flags for each insn. */
1232 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1233 insn != 0;
1234 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1235 {
1236 uid = INSN_UID (insn);
1237
1238 insn_lengths[uid] = 0;
1239
1240 if (GET_CODE (insn) == CODE_LABEL)
1241 {
1242 int log = LABEL_TO_ALIGNMENT (insn);
1243 if (log)
1244 {
1245 int align = 1 << log;
1246 int new_address = (insn_current_address + align - 1) & -align;
1247 insn_lengths[uid] = new_address - insn_current_address;
1248 insn_current_address = new_address;
1249 }
1250 }
1251
1252 insn_addresses[uid] = insn_current_address;
1253
1254 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
1255 || GET_CODE (insn) == CODE_LABEL)
1256 continue;
1257 if (INSN_DELETED_P (insn))
1258 continue;
1259
1260 body = PATTERN (insn);
1261 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1262 {
1263 /* This only takes room if read-only data goes into the text
1264 section. */
1265 if (JUMP_TABLES_IN_TEXT_SECTION
1266 #if !defined(READONLY_DATA_SECTION)
1267 || 1
1268 #endif
1269 )
1270 insn_lengths[uid] = (XVECLEN (body,
1271 GET_CODE (body) == ADDR_DIFF_VEC)
1272 * GET_MODE_SIZE (GET_MODE (body)));
1273 /* Alignment is handled by ADDR_VEC_ALIGN. */
1274 }
1275 else if (asm_noperands (body) >= 0)
1276 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1277 else if (GET_CODE (body) == SEQUENCE)
1278 {
1279 int i;
1280 int const_delay_slots;
1281 #ifdef DELAY_SLOTS
1282 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1283 #else
1284 const_delay_slots = 0;
1285 #endif
1286 /* Inside a delay slot sequence, we do not do any branch shortening
1287 if the shortening could change the number of delay slots
1288 of the branch. */
1289 for (i = 0; i < XVECLEN (body, 0); i++)
1290 {
1291 rtx inner_insn = XVECEXP (body, 0, i);
1292 int inner_uid = INSN_UID (inner_insn);
1293 int inner_length;
1294
1295 if (asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1296 inner_length = (asm_insn_count (PATTERN (inner_insn))
1297 * insn_default_length (inner_insn));
1298 else
1299 inner_length = insn_default_length (inner_insn);
1300
1301 insn_lengths[inner_uid] = inner_length;
1302 if (const_delay_slots)
1303 {
1304 if ((varying_length[inner_uid]
1305 = insn_variable_length_p (inner_insn)) != 0)
1306 varying_length[uid] = 1;
1307 insn_addresses[inner_uid] = (insn_current_address +
1308 insn_lengths[uid]);
1309 }
1310 else
1311 varying_length[inner_uid] = 0;
1312 insn_lengths[uid] += inner_length;
1313 }
1314 }
1315 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1316 {
1317 insn_lengths[uid] = insn_default_length (insn);
1318 varying_length[uid] = insn_variable_length_p (insn);
1319 }
1320
1321 /* If needed, do any adjustment. */
1322 #ifdef ADJUST_INSN_LENGTH
1323 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1324 #endif
1325 }
1326
1327 /* Now loop over all the insns finding varying length insns. For each,
1328 get the current insn length. If it has changed, reflect the change.
1329 When nothing changes for a full pass, we are done. */
1330
1331 while (something_changed)
1332 {
1333 something_changed = 0;
1334 insn_current_align = MAX_CODE_ALIGN - 1;
1335 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1336 insn != 0;
1337 insn = NEXT_INSN (insn))
1338 {
1339 int new_length;
1340 #ifdef ADJUST_INSN_LENGTH
1341 int tmp_length;
1342 #endif
1343 int length_align;
1344
1345 uid = INSN_UID (insn);
1346
1347 if (GET_CODE (insn) == CODE_LABEL)
1348 {
1349 int log = LABEL_TO_ALIGNMENT (insn);
1350 if (log > insn_current_align)
1351 {
1352 int align = 1 << log;
1353 int new_address= (insn_current_address + align - 1) & -align;
1354 insn_lengths[uid] = new_address - insn_current_address;
1355 insn_current_align = log;
1356 insn_current_address = new_address;
1357 }
1358 else
1359 insn_lengths[uid] = 0;
1360 insn_addresses[uid] = insn_current_address;
1361 continue;
1362 }
1363
1364 length_align = INSN_LENGTH_ALIGNMENT (insn);
1365 if (length_align < insn_current_align)
1366 insn_current_align = length_align;
1367
1368 insn_last_address = insn_addresses[uid];
1369 insn_addresses[uid] = insn_current_address;
1370
1371 #ifdef CASE_VECTOR_SHORTEN_MODE
1372 if (optimize && GET_CODE (insn) == JUMP_INSN
1373 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1374 {
1375 rtx body = PATTERN (insn);
1376 int old_length = insn_lengths[uid];
1377 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1378 rtx min_lab = XEXP (XEXP (body, 2), 0);
1379 rtx max_lab = XEXP (XEXP (body, 3), 0);
1380 addr_diff_vec_flags flags = ADDR_DIFF_VEC_FLAGS (body);
1381 int rel_addr = insn_addresses[INSN_UID (rel_lab)];
1382 int min_addr = insn_addresses[INSN_UID (min_lab)];
1383 int max_addr = insn_addresses[INSN_UID (max_lab)];
1384 rtx prev;
1385 int rel_align = 0;
1386
1387 /* Try to find a known alignment for rel_lab. */
1388 for (prev = rel_lab;
1389 prev
1390 && ! insn_lengths[INSN_UID (prev)]
1391 && ! (varying_length[INSN_UID (prev)] & 1);
1392 prev = PREV_INSN (prev))
1393 if (varying_length[INSN_UID (prev)] & 2)
1394 {
1395 rel_align = LABEL_TO_ALIGNMENT (prev);
1396 break;
1397 }
1398
1399 /* See the comment on addr_diff_vec_flags in rtl.h for the
1400 meaning of the flags values. base: REL_LAB vec: INSN */
1401 /* Anything after INSN has still addresses from the last
1402 pass; adjust these so that they reflect our current
1403 estimate for this pass. */
1404 if (flags.base_after_vec)
1405 rel_addr += insn_current_address - insn_last_address;
1406 if (flags.min_after_vec)
1407 min_addr += insn_current_address - insn_last_address;
1408 if (flags.max_after_vec)
1409 max_addr += insn_current_address - insn_last_address;
1410 /* We want to know the worst case, i.e. lowest possible value
1411 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1412 its offset is positive, and we have to be wary of code shrink;
1413 otherwise, it is negative, and we have to be vary of code
1414 size increase. */
1415 if (flags.min_after_base)
1416 {
1417 /* If INSN is between REL_LAB and MIN_LAB, the size
1418 changes we are about to make can change the alignment
1419 within the observed offset, therefore we have to break
1420 it up into two parts that are independent. */
1421 if (! flags.base_after_vec && flags.min_after_vec)
1422 {
1423 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1424 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1425 }
1426 else
1427 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1428 }
1429 else
1430 {
1431 if (flags.base_after_vec && ! flags.min_after_vec)
1432 {
1433 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1434 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1435 }
1436 else
1437 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1438 }
1439 /* Likewise, determine the highest lowest possible value
1440 for the offset of MAX_LAB. */
1441 if (flags.max_after_base)
1442 {
1443 if (! flags.base_after_vec && flags.max_after_vec)
1444 {
1445 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1446 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1447 }
1448 else
1449 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1450 }
1451 else
1452 {
1453 if (flags.base_after_vec && ! flags.max_after_vec)
1454 {
1455 max_addr += align_fuzz (max_lab, insn, 0, 0);
1456 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1457 }
1458 else
1459 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1460 }
1461 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1462 max_addr - rel_addr,
1463 body));
1464 if (JUMP_TABLES_IN_TEXT_SECTION
1465 #if !defined(READONLY_DATA_SECTION)
1466 || 1
1467 #endif
1468 )
1469 {
1470 insn_lengths[uid]
1471 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1472 insn_current_address += insn_lengths[uid];
1473 if (insn_lengths[uid] != old_length)
1474 something_changed = 1;
1475 }
1476
1477 continue;
1478 }
1479 #endif /* CASE_VECTOR_SHORTEN_MODE */
1480
1481 if (! (varying_length[uid]))
1482 {
1483 insn_current_address += insn_lengths[uid];
1484 continue;
1485 }
1486 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1487 {
1488 int i;
1489
1490 body = PATTERN (insn);
1491 new_length = 0;
1492 for (i = 0; i < XVECLEN (body, 0); i++)
1493 {
1494 rtx inner_insn = XVECEXP (body, 0, i);
1495 int inner_uid = INSN_UID (inner_insn);
1496 int inner_length;
1497
1498 insn_addresses[inner_uid] = insn_current_address;
1499
1500 /* insn_current_length returns 0 for insns with a
1501 non-varying length. */
1502 if (! varying_length[inner_uid])
1503 inner_length = insn_lengths[inner_uid];
1504 else
1505 inner_length = insn_current_length (inner_insn);
1506
1507 if (inner_length != insn_lengths[inner_uid])
1508 {
1509 insn_lengths[inner_uid] = inner_length;
1510 something_changed = 1;
1511 }
1512 insn_current_address += insn_lengths[inner_uid];
1513 new_length += inner_length;
1514 }
1515 }
1516 else
1517 {
1518 new_length = insn_current_length (insn);
1519 insn_current_address += new_length;
1520 }
1521
1522 #ifdef ADJUST_INSN_LENGTH
1523 /* If needed, do any adjustment. */
1524 tmp_length = new_length;
1525 ADJUST_INSN_LENGTH (insn, new_length);
1526 insn_current_address += (new_length - tmp_length);
1527 #endif
1528
1529 if (new_length != insn_lengths[uid])
1530 {
1531 insn_lengths[uid] = new_length;
1532 something_changed = 1;
1533 }
1534 }
1535 /* For a non-optimizing compile, do only a single pass. */
1536 if (!optimize)
1537 break;
1538 }
1539
1540 free (varying_length);
1541
1542 #endif /* HAVE_ATTR_length */
1543 }
1544
1545 #ifdef HAVE_ATTR_length
1546 /* Given the body of an INSN known to be generated by an ASM statement, return
1547 the number of machine instructions likely to be generated for this insn.
1548 This is used to compute its length. */
1549
1550 static int
1551 asm_insn_count (body)
1552 rtx body;
1553 {
1554 char *template;
1555 int count = 1;
1556
1557 if (GET_CODE (body) == ASM_INPUT)
1558 template = XSTR (body, 0);
1559 else
1560 template = decode_asm_operands (body, NULL_PTR, NULL_PTR,
1561 NULL_PTR, NULL_PTR);
1562
1563 for ( ; *template; template++)
1564 if (IS_ASM_LOGICAL_LINE_SEPARATOR(*template) || *template == '\n')
1565 count++;
1566
1567 return count;
1568 }
1569 #endif
1570 \f
1571 /* Output assembler code for the start of a function,
1572 and initialize some of the variables in this file
1573 for the new function. The label for the function and associated
1574 assembler pseudo-ops have already been output in `assemble_start_function'.
1575
1576 FIRST is the first insn of the rtl for the function being compiled.
1577 FILE is the file to write assembler code to.
1578 OPTIMIZE is nonzero if we should eliminate redundant
1579 test and compare insns. */
1580
1581 void
1582 final_start_function (first, file, optimize)
1583 rtx first;
1584 FILE *file;
1585 int optimize;
1586 {
1587 block_depth = 0;
1588
1589 this_is_asm_operands = 0;
1590
1591 #ifdef NON_SAVING_SETJMP
1592 /* A function that calls setjmp should save and restore all the
1593 call-saved registers on a system where longjmp clobbers them. */
1594 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1595 {
1596 int i;
1597
1598 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1599 if (!call_used_regs[i] && !call_fixed_regs[i])
1600 regs_ever_live[i] = 1;
1601 }
1602 #endif
1603
1604 /* Initial line number is supposed to be output
1605 before the function's prologue and label
1606 so that the function's address will not appear to be
1607 in the last statement of the preceding function. */
1608 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1609 last_linenum = high_block_linenum = high_function_linenum
1610 = NOTE_LINE_NUMBER (first);
1611
1612 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
1613 /* Output DWARF definition of the function. */
1614 if (dwarf2out_do_frame ())
1615 dwarf2out_begin_prologue ();
1616 #endif
1617
1618 /* For SDB and XCOFF, the function beginning must be marked between
1619 the function label and the prologue. We always need this, even when
1620 -g1 was used. Defer on MIPS systems so that parameter descriptions
1621 follow function entry. */
1622 #if defined(SDB_DEBUGGING_INFO) && !defined(MIPS_DEBUGGING_INFO)
1623 if (write_symbols == SDB_DEBUG)
1624 sdbout_begin_function (last_linenum);
1625 else
1626 #endif
1627 #ifdef XCOFF_DEBUGGING_INFO
1628 if (write_symbols == XCOFF_DEBUG)
1629 xcoffout_begin_function (file, last_linenum);
1630 else
1631 #endif
1632 /* But only output line number for other debug info types if -g2
1633 or better. */
1634 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1635 output_source_line (file, first);
1636
1637 #ifdef LEAF_REG_REMAP
1638 if (leaf_function)
1639 leaf_renumber_regs (first);
1640 #endif
1641
1642 /* The Sun386i and perhaps other machines don't work right
1643 if the profiling code comes after the prologue. */
1644 #ifdef PROFILE_BEFORE_PROLOGUE
1645 if (profile_flag)
1646 profile_function (file);
1647 #endif /* PROFILE_BEFORE_PROLOGUE */
1648
1649 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1650 if (dwarf2out_do_frame ())
1651 dwarf2out_frame_debug (NULL_RTX);
1652 #endif
1653
1654 #ifdef FUNCTION_PROLOGUE
1655 /* First output the function prologue: code to set up the stack frame. */
1656 FUNCTION_PROLOGUE (file, get_frame_size ());
1657 #endif
1658
1659 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
1660 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
1661 next_block_index = 1;
1662 #endif
1663
1664 /* If the machine represents the prologue as RTL, the profiling code must
1665 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1666 #ifdef HAVE_prologue
1667 if (! HAVE_prologue)
1668 #endif
1669 profile_after_prologue (file);
1670
1671 profile_label_no++;
1672
1673 /* If we are doing basic block profiling, remember a printable version
1674 of the function name. */
1675 if (profile_block_flag)
1676 {
1677 bb_func_label_num
1678 = add_bb_string ((*decl_printable_name) (current_function_decl, 2), FALSE);
1679 }
1680 }
1681
1682 static void
1683 profile_after_prologue (file)
1684 FILE *file;
1685 {
1686 #ifdef FUNCTION_BLOCK_PROFILER
1687 if (profile_block_flag)
1688 {
1689 FUNCTION_BLOCK_PROFILER (file, count_basic_blocks);
1690 }
1691 #endif /* FUNCTION_BLOCK_PROFILER */
1692
1693 #ifndef PROFILE_BEFORE_PROLOGUE
1694 if (profile_flag)
1695 profile_function (file);
1696 #endif /* not PROFILE_BEFORE_PROLOGUE */
1697 }
1698
1699 static void
1700 profile_function (file)
1701 FILE *file;
1702 {
1703 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1704 #if defined(ASM_OUTPUT_REG_PUSH)
1705 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1706 int sval = current_function_returns_struct;
1707 #endif
1708 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1709 int cxt = current_function_needs_context;
1710 #endif
1711 #endif /* ASM_OUTPUT_REG_PUSH */
1712
1713 data_section ();
1714 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1715 ASM_OUTPUT_INTERNAL_LABEL (file, "LP", profile_label_no);
1716 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, 1);
1717
1718 function_section (current_function_decl);
1719
1720 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1721 if (sval)
1722 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1723 #else
1724 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1725 if (sval)
1726 {
1727 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1728 }
1729 #endif
1730 #endif
1731
1732 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1733 if (cxt)
1734 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1735 #else
1736 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1737 if (cxt)
1738 {
1739 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1740 }
1741 #endif
1742 #endif
1743
1744 FUNCTION_PROFILER (file, profile_label_no);
1745
1746 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1747 if (cxt)
1748 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1749 #else
1750 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1751 if (cxt)
1752 {
1753 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1754 }
1755 #endif
1756 #endif
1757
1758 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1759 if (sval)
1760 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1761 #else
1762 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1763 if (sval)
1764 {
1765 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1766 }
1767 #endif
1768 #endif
1769 }
1770
1771 /* Output assembler code for the end of a function.
1772 For clarity, args are same as those of `final_start_function'
1773 even though not all of them are needed. */
1774
1775 void
1776 final_end_function (first, file, optimize)
1777 rtx first;
1778 FILE *file;
1779 int optimize;
1780 {
1781 if (app_on)
1782 {
1783 fputs (ASM_APP_OFF, file);
1784 app_on = 0;
1785 }
1786
1787 #ifdef SDB_DEBUGGING_INFO
1788 if (write_symbols == SDB_DEBUG)
1789 sdbout_end_function (high_function_linenum);
1790 #endif
1791
1792 #ifdef DWARF_DEBUGGING_INFO
1793 if (write_symbols == DWARF_DEBUG)
1794 dwarfout_end_function ();
1795 #endif
1796
1797 #ifdef XCOFF_DEBUGGING_INFO
1798 if (write_symbols == XCOFF_DEBUG)
1799 xcoffout_end_function (file, high_function_linenum);
1800 #endif
1801
1802 #ifdef FUNCTION_EPILOGUE
1803 /* Finally, output the function epilogue:
1804 code to restore the stack frame and return to the caller. */
1805 FUNCTION_EPILOGUE (file, get_frame_size ());
1806 #endif
1807
1808 #ifdef SDB_DEBUGGING_INFO
1809 if (write_symbols == SDB_DEBUG)
1810 sdbout_end_epilogue ();
1811 #endif
1812
1813 #ifdef DWARF_DEBUGGING_INFO
1814 if (write_symbols == DWARF_DEBUG)
1815 dwarfout_end_epilogue ();
1816 #endif
1817
1818 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
1819 if (dwarf2out_do_frame ())
1820 dwarf2out_end_epilogue ();
1821 #endif
1822
1823 #ifdef XCOFF_DEBUGGING_INFO
1824 if (write_symbols == XCOFF_DEBUG)
1825 xcoffout_end_epilogue (file);
1826 #endif
1827
1828 bb_func_label_num = -1; /* not in function, nuke label # */
1829
1830 /* If FUNCTION_EPILOGUE is not defined, then the function body
1831 itself contains return instructions wherever needed. */
1832 }
1833 \f
1834 /* Add a block to the linked list that remembers the current line/file/function
1835 for basic block profiling. Emit the label in front of the basic block and
1836 the instructions that increment the count field. */
1837
1838 static void
1839 add_bb (file)
1840 FILE *file;
1841 {
1842 struct bb_list *ptr = (struct bb_list *) permalloc (sizeof (struct bb_list));
1843
1844 /* Add basic block to linked list. */
1845 ptr->next = 0;
1846 ptr->line_num = last_linenum;
1847 ptr->file_label_num = bb_file_label_num;
1848 ptr->func_label_num = bb_func_label_num;
1849 *bb_tail = ptr;
1850 bb_tail = &ptr->next;
1851
1852 /* Enable the table of basic-block use counts
1853 to point at the code it applies to. */
1854 ASM_OUTPUT_INTERNAL_LABEL (file, "LPB", count_basic_blocks);
1855
1856 /* Before first insn of this basic block, increment the
1857 count of times it was entered. */
1858 #ifdef BLOCK_PROFILER
1859 BLOCK_PROFILER (file, count_basic_blocks);
1860 #endif
1861 #ifdef HAVE_cc0
1862 CC_STATUS_INIT;
1863 #endif
1864
1865 new_block = 0;
1866 count_basic_blocks++;
1867 }
1868
1869 /* Add a string to be used for basic block profiling. */
1870
1871 static int
1872 add_bb_string (string, perm_p)
1873 char *string;
1874 int perm_p;
1875 {
1876 int len;
1877 struct bb_str *ptr = 0;
1878
1879 if (!string)
1880 {
1881 string = "<unknown>";
1882 perm_p = TRUE;
1883 }
1884
1885 /* Allocate a new string if the current string isn't permanent. If
1886 the string is permanent search for the same string in other
1887 allocations. */
1888
1889 len = strlen (string) + 1;
1890 if (!perm_p)
1891 {
1892 char *p = (char *) permalloc (len);
1893 bcopy (string, p, len);
1894 string = p;
1895 }
1896 else
1897 for (ptr = sbb_head; ptr != (struct bb_str *) 0; ptr = ptr->next)
1898 if (ptr->string == string)
1899 break;
1900
1901 /* Allocate a new string block if we need to. */
1902 if (!ptr)
1903 {
1904 ptr = (struct bb_str *) permalloc (sizeof (*ptr));
1905 ptr->next = 0;
1906 ptr->length = len;
1907 ptr->label_num = sbb_label_num++;
1908 ptr->string = string;
1909 *sbb_tail = ptr;
1910 sbb_tail = &ptr->next;
1911 }
1912
1913 return ptr->label_num;
1914 }
1915
1916 \f
1917 /* Output assembler code for some insns: all or part of a function.
1918 For description of args, see `final_start_function', above.
1919
1920 PRESCAN is 1 if we are not really outputting,
1921 just scanning as if we were outputting.
1922 Prescanning deletes and rearranges insns just like ordinary output.
1923 PRESCAN is -2 if we are outputting after having prescanned.
1924 In this case, don't try to delete or rearrange insns
1925 because that has already been done.
1926 Prescanning is done only on certain machines. */
1927
1928 void
1929 final (first, file, optimize, prescan)
1930 rtx first;
1931 FILE *file;
1932 int optimize;
1933 int prescan;
1934 {
1935 register rtx insn;
1936 int max_line = 0;
1937 int max_uid = 0;
1938
1939 last_ignored_compare = 0;
1940 new_block = 1;
1941
1942 check_exception_handler_labels ();
1943
1944 /* Make a map indicating which line numbers appear in this function.
1945 When producing SDB debugging info, delete troublesome line number
1946 notes from inlined functions in other files as well as duplicate
1947 line number notes. */
1948 #ifdef SDB_DEBUGGING_INFO
1949 if (write_symbols == SDB_DEBUG)
1950 {
1951 rtx last = 0;
1952 for (insn = first; insn; insn = NEXT_INSN (insn))
1953 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1954 {
1955 if ((RTX_INTEGRATED_P (insn)
1956 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1957 || (last != 0
1958 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1959 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1960 {
1961 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1962 NOTE_SOURCE_FILE (insn) = 0;
1963 continue;
1964 }
1965 last = insn;
1966 if (NOTE_LINE_NUMBER (insn) > max_line)
1967 max_line = NOTE_LINE_NUMBER (insn);
1968 }
1969 }
1970 else
1971 #endif
1972 {
1973 for (insn = first; insn; insn = NEXT_INSN (insn))
1974 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1975 max_line = NOTE_LINE_NUMBER (insn);
1976 }
1977
1978 line_note_exists = (char *) oballoc (max_line + 1);
1979 bzero (line_note_exists, max_line + 1);
1980
1981 for (insn = first; insn; insn = NEXT_INSN (insn))
1982 {
1983 if (INSN_UID (insn) > max_uid) /* find largest UID */
1984 max_uid = INSN_UID (insn);
1985 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1986 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
1987 }
1988
1989 /* Initialize insn_eh_region table if eh is being used. */
1990
1991 init_insn_eh_region (first, max_uid);
1992
1993 init_recog ();
1994
1995 CC_STATUS_INIT;
1996
1997 /* Output the insns. */
1998 for (insn = NEXT_INSN (first); insn;)
1999 {
2000 #ifdef HAVE_ATTR_length
2001 insn_current_address = insn_addresses[INSN_UID (insn)];
2002 #endif
2003 insn = final_scan_insn (insn, file, optimize, prescan, 0);
2004 }
2005
2006 /* Do basic-block profiling here
2007 if the last insn was a conditional branch. */
2008 if (profile_block_flag && new_block)
2009 add_bb (file);
2010
2011 free_insn_eh_region ();
2012 }
2013 \f
2014 /* The final scan for one insn, INSN.
2015 Args are same as in `final', except that INSN
2016 is the insn being scanned.
2017 Value returned is the next insn to be scanned.
2018
2019 NOPEEPHOLES is the flag to disallow peephole processing (currently
2020 used for within delayed branch sequence output). */
2021
2022 rtx
2023 final_scan_insn (insn, file, optimize, prescan, nopeepholes)
2024 rtx insn;
2025 FILE *file;
2026 int optimize;
2027 int prescan;
2028 int nopeepholes;
2029 {
2030 register int i;
2031 #ifdef HAVE_cc0
2032 rtx set;
2033 #endif
2034
2035 insn_counter++;
2036
2037 /* Ignore deleted insns. These can occur when we split insns (due to a
2038 template of "#") while not optimizing. */
2039 if (INSN_DELETED_P (insn))
2040 return NEXT_INSN (insn);
2041
2042 switch (GET_CODE (insn))
2043 {
2044 case NOTE:
2045 if (prescan > 0)
2046 break;
2047
2048 /* Align the beginning of a loop, for higher speed
2049 on certain machines. */
2050
2051 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2052 break; /* This used to depend on optimize, but that was bogus. */
2053 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2054 break;
2055
2056 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
2057 && ! exceptions_via_longjmp)
2058 {
2059 ASM_OUTPUT_INTERNAL_LABEL (file, "LEHB", NOTE_BLOCK_NUMBER (insn));
2060 #ifndef NEW_EH_MODEL
2061 add_eh_table_entry (NOTE_BLOCK_NUMBER (insn));
2062 #endif
2063 #ifdef ASM_OUTPUT_EH_REGION_BEG
2064 ASM_OUTPUT_EH_REGION_BEG (file, NOTE_BLOCK_NUMBER (insn));
2065 #endif
2066 break;
2067 }
2068
2069 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END
2070 && ! exceptions_via_longjmp)
2071 {
2072 ASM_OUTPUT_INTERNAL_LABEL (file, "LEHE", NOTE_BLOCK_NUMBER (insn));
2073 #ifdef NEW_EH_MODEL
2074 add_eh_table_entry (NOTE_BLOCK_NUMBER (insn));
2075 #endif
2076 #ifdef ASM_OUTPUT_EH_REGION_END
2077 ASM_OUTPUT_EH_REGION_END (file, NOTE_BLOCK_NUMBER (insn));
2078 #endif
2079 break;
2080 }
2081
2082 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
2083 {
2084 #ifdef FUNCTION_END_PROLOGUE
2085 FUNCTION_END_PROLOGUE (file);
2086 #endif
2087 profile_after_prologue (file);
2088 break;
2089 }
2090
2091 #ifdef FUNCTION_BEGIN_EPILOGUE
2092 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
2093 {
2094 FUNCTION_BEGIN_EPILOGUE (file);
2095 break;
2096 }
2097 #endif
2098
2099 if (write_symbols == NO_DEBUG)
2100 break;
2101 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2102 {
2103 #if defined(SDB_DEBUGGING_INFO) && defined(MIPS_DEBUGGING_INFO)
2104 /* MIPS stabs require the parameter descriptions to be after the
2105 function entry point rather than before. */
2106 if (write_symbols == SDB_DEBUG)
2107 sdbout_begin_function (last_linenum);
2108 else
2109 #endif
2110 #ifdef DWARF_DEBUGGING_INFO
2111 /* This outputs a marker where the function body starts, so it
2112 must be after the prologue. */
2113 if (write_symbols == DWARF_DEBUG)
2114 dwarfout_begin_function ();
2115 #endif
2116 break;
2117 }
2118 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
2119 break; /* An insn that was "deleted" */
2120 if (app_on)
2121 {
2122 fputs (ASM_APP_OFF, file);
2123 app_on = 0;
2124 }
2125 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2126 && (debug_info_level == DINFO_LEVEL_NORMAL
2127 || debug_info_level == DINFO_LEVEL_VERBOSE
2128 || write_symbols == DWARF_DEBUG
2129 || write_symbols == DWARF2_DEBUG))
2130 {
2131 /* Beginning of a symbol-block. Assign it a sequence number
2132 and push the number onto the stack PENDING_BLOCKS. */
2133
2134 if (block_depth == max_block_depth)
2135 {
2136 /* PENDING_BLOCKS is full; make it longer. */
2137 max_block_depth *= 2;
2138 pending_blocks
2139 = (int *) xrealloc (pending_blocks,
2140 max_block_depth * sizeof (int));
2141 }
2142 pending_blocks[block_depth++] = next_block_index;
2143
2144 high_block_linenum = last_linenum;
2145
2146 /* Output debugging info about the symbol-block beginning. */
2147
2148 #ifdef SDB_DEBUGGING_INFO
2149 if (write_symbols == SDB_DEBUG)
2150 sdbout_begin_block (file, last_linenum, next_block_index);
2151 #endif
2152 #ifdef XCOFF_DEBUGGING_INFO
2153 if (write_symbols == XCOFF_DEBUG)
2154 xcoffout_begin_block (file, last_linenum, next_block_index);
2155 #endif
2156 #ifdef DBX_DEBUGGING_INFO
2157 if (write_symbols == DBX_DEBUG)
2158 ASM_OUTPUT_INTERNAL_LABEL (file, "LBB", next_block_index);
2159 #endif
2160 #ifdef DWARF_DEBUGGING_INFO
2161 if (write_symbols == DWARF_DEBUG)
2162 dwarfout_begin_block (next_block_index);
2163 #endif
2164 #ifdef DWARF2_DEBUGGING_INFO
2165 if (write_symbols == DWARF2_DEBUG)
2166 dwarf2out_begin_block (next_block_index);
2167 #endif
2168
2169 next_block_index++;
2170 }
2171 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
2172 && (debug_info_level == DINFO_LEVEL_NORMAL
2173 || debug_info_level == DINFO_LEVEL_VERBOSE
2174 || write_symbols == DWARF_DEBUG
2175 || write_symbols == DWARF2_DEBUG))
2176 {
2177 /* End of a symbol-block. Pop its sequence number off
2178 PENDING_BLOCKS and output debugging info based on that. */
2179
2180 --block_depth;
2181
2182 #ifdef XCOFF_DEBUGGING_INFO
2183 if (write_symbols == XCOFF_DEBUG && block_depth >= 0)
2184 xcoffout_end_block (file, high_block_linenum,
2185 pending_blocks[block_depth]);
2186 #endif
2187 #ifdef DBX_DEBUGGING_INFO
2188 if (write_symbols == DBX_DEBUG && block_depth >= 0)
2189 ASM_OUTPUT_INTERNAL_LABEL (file, "LBE",
2190 pending_blocks[block_depth]);
2191 #endif
2192 #ifdef SDB_DEBUGGING_INFO
2193 if (write_symbols == SDB_DEBUG && block_depth >= 0)
2194 sdbout_end_block (file, high_block_linenum,
2195 pending_blocks[block_depth]);
2196 #endif
2197 #ifdef DWARF_DEBUGGING_INFO
2198 if (write_symbols == DWARF_DEBUG && block_depth >= 0)
2199 dwarfout_end_block (pending_blocks[block_depth]);
2200 #endif
2201 #ifdef DWARF2_DEBUGGING_INFO
2202 if (write_symbols == DWARF2_DEBUG && block_depth >= 0)
2203 dwarf2out_end_block (pending_blocks[block_depth]);
2204 #endif
2205 }
2206 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL
2207 && (debug_info_level == DINFO_LEVEL_NORMAL
2208 || debug_info_level == DINFO_LEVEL_VERBOSE))
2209 {
2210 #ifdef DWARF_DEBUGGING_INFO
2211 if (write_symbols == DWARF_DEBUG)
2212 dwarfout_label (insn);
2213 #endif
2214 #ifdef DWARF2_DEBUGGING_INFO
2215 if (write_symbols == DWARF2_DEBUG)
2216 dwarf2out_label (insn);
2217 #endif
2218 }
2219 else if (NOTE_LINE_NUMBER (insn) > 0)
2220 /* This note is a line-number. */
2221 {
2222 register rtx note;
2223
2224 #if 0 /* This is what we used to do. */
2225 output_source_line (file, insn);
2226 #endif
2227 int note_after = 0;
2228
2229 /* If there is anything real after this note,
2230 output it. If another line note follows, omit this one. */
2231 for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
2232 {
2233 if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
2234 break;
2235 /* These types of notes can be significant
2236 so make sure the preceding line number stays. */
2237 else if (GET_CODE (note) == NOTE
2238 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
2239 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
2240 || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
2241 break;
2242 else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
2243 {
2244 /* Another line note follows; we can delete this note
2245 if no intervening line numbers have notes elsewhere. */
2246 int num;
2247 for (num = NOTE_LINE_NUMBER (insn) + 1;
2248 num < NOTE_LINE_NUMBER (note);
2249 num++)
2250 if (line_note_exists[num])
2251 break;
2252
2253 if (num >= NOTE_LINE_NUMBER (note))
2254 note_after = 1;
2255 break;
2256 }
2257 }
2258
2259 /* Output this line note
2260 if it is the first or the last line note in a row. */
2261 if (!note_after)
2262 output_source_line (file, insn);
2263 }
2264 break;
2265
2266 case BARRIER:
2267 #if defined (DWARF2_UNWIND_INFO) && !defined (ACCUMULATE_OUTGOING_ARGS)
2268 /* If we push arguments, we need to check all insns for stack
2269 adjustments. */
2270 if (dwarf2out_do_frame ())
2271 dwarf2out_frame_debug (insn);
2272 #endif
2273 break;
2274
2275 case CODE_LABEL:
2276 /* The target port might emit labels in the output function for
2277 some insn, e.g. sh.c output_branchy_insn. */
2278 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2279 {
2280 int align = LABEL_TO_ALIGNMENT (insn);
2281 int max_skip = LABEL_TO_MAX_SKIP (insn);
2282
2283 if (align && NEXT_INSN (insn))
2284 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2285 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2286 #else
2287 ASM_OUTPUT_ALIGN (file, align);
2288 #endif
2289 }
2290 CC_STATUS_INIT;
2291 if (prescan > 0)
2292 break;
2293 new_block = 1;
2294
2295 #ifdef FINAL_PRESCAN_LABEL
2296 FINAL_PRESCAN_INSN (insn, NULL_PTR, 0);
2297 #endif
2298
2299 #ifdef SDB_DEBUGGING_INFO
2300 if (write_symbols == SDB_DEBUG && LABEL_NAME (insn))
2301 sdbout_label (insn);
2302 #endif
2303 #ifdef DWARF_DEBUGGING_INFO
2304 if (write_symbols == DWARF_DEBUG && LABEL_NAME (insn))
2305 dwarfout_label (insn);
2306 #endif
2307 #ifdef DWARF2_DEBUGGING_INFO
2308 if (write_symbols == DWARF2_DEBUG && LABEL_NAME (insn))
2309 dwarf2out_label (insn);
2310 #endif
2311 if (app_on)
2312 {
2313 fputs (ASM_APP_OFF, file);
2314 app_on = 0;
2315 }
2316 if (NEXT_INSN (insn) != 0
2317 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
2318 {
2319 rtx nextbody = PATTERN (NEXT_INSN (insn));
2320
2321 /* If this label is followed by a jump-table,
2322 make sure we put the label in the read-only section. Also
2323 possibly write the label and jump table together. */
2324
2325 if (GET_CODE (nextbody) == ADDR_VEC
2326 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2327 {
2328 if (! JUMP_TABLES_IN_TEXT_SECTION)
2329 {
2330 readonly_data_section ();
2331 #ifdef READONLY_DATA_SECTION
2332 ASM_OUTPUT_ALIGN (file,
2333 exact_log2 (BIGGEST_ALIGNMENT
2334 / BITS_PER_UNIT));
2335 #endif /* READONLY_DATA_SECTION */
2336 }
2337 else
2338 function_section (current_function_decl);
2339
2340 #ifdef ASM_OUTPUT_CASE_LABEL
2341 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2342 NEXT_INSN (insn));
2343 #else
2344 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2345 #endif
2346 break;
2347 }
2348 }
2349
2350 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2351 break;
2352
2353 default:
2354 {
2355 register rtx body = PATTERN (insn);
2356 int insn_code_number;
2357 char *template;
2358 #ifdef HAVE_cc0
2359 rtx note;
2360 #endif
2361
2362 /* An INSN, JUMP_INSN or CALL_INSN.
2363 First check for special kinds that recog doesn't recognize. */
2364
2365 if (GET_CODE (body) == USE /* These are just declarations */
2366 || GET_CODE (body) == CLOBBER)
2367 break;
2368
2369 #ifdef HAVE_cc0
2370 /* If there is a REG_CC_SETTER note on this insn, it means that
2371 the setting of the condition code was done in the delay slot
2372 of the insn that branched here. So recover the cc status
2373 from the insn that set it. */
2374
2375 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2376 if (note)
2377 {
2378 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2379 cc_prev_status = cc_status;
2380 }
2381 #endif
2382
2383 /* Detect insns that are really jump-tables
2384 and output them as such. */
2385
2386 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2387 {
2388 register int vlen, idx;
2389
2390 if (prescan > 0)
2391 break;
2392
2393 if (app_on)
2394 {
2395 fputs (ASM_APP_OFF, file);
2396 app_on = 0;
2397 }
2398
2399 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2400 for (idx = 0; idx < vlen; idx++)
2401 {
2402 if (GET_CODE (body) == ADDR_VEC)
2403 {
2404 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2405 ASM_OUTPUT_ADDR_VEC_ELT
2406 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2407 #else
2408 abort ();
2409 #endif
2410 }
2411 else
2412 {
2413 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2414 ASM_OUTPUT_ADDR_DIFF_ELT
2415 (file,
2416 body,
2417 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2418 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2419 #else
2420 abort ();
2421 #endif
2422 }
2423 }
2424 #ifdef ASM_OUTPUT_CASE_END
2425 ASM_OUTPUT_CASE_END (file,
2426 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2427 insn);
2428 #endif
2429
2430 function_section (current_function_decl);
2431
2432 break;
2433 }
2434
2435 /* Do basic-block profiling when we reach a new block.
2436 Done here to avoid jump tables. */
2437 if (profile_block_flag && new_block)
2438 add_bb (file);
2439
2440 if (GET_CODE (body) == ASM_INPUT)
2441 {
2442 /* There's no telling what that did to the condition codes. */
2443 CC_STATUS_INIT;
2444 if (prescan > 0)
2445 break;
2446 if (! app_on)
2447 {
2448 fputs (ASM_APP_ON, file);
2449 app_on = 1;
2450 }
2451 fprintf (asm_out_file, "\t%s\n", XSTR (body, 0));
2452 break;
2453 }
2454
2455 /* Detect `asm' construct with operands. */
2456 if (asm_noperands (body) >= 0)
2457 {
2458 unsigned int noperands = asm_noperands (body);
2459 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
2460 char *string;
2461
2462 /* There's no telling what that did to the condition codes. */
2463 CC_STATUS_INIT;
2464 if (prescan > 0)
2465 break;
2466
2467 if (! app_on)
2468 {
2469 fputs (ASM_APP_ON, file);
2470 app_on = 1;
2471 }
2472
2473 /* Get out the operand values. */
2474 string = decode_asm_operands (body, ops, NULL_PTR,
2475 NULL_PTR, NULL_PTR);
2476 /* Inhibit aborts on what would otherwise be compiler bugs. */
2477 insn_noperands = noperands;
2478 this_is_asm_operands = insn;
2479
2480 /* Output the insn using them. */
2481 output_asm_insn (string, ops);
2482 this_is_asm_operands = 0;
2483 break;
2484 }
2485
2486 if (prescan <= 0 && app_on)
2487 {
2488 fputs (ASM_APP_OFF, file);
2489 app_on = 0;
2490 }
2491
2492 if (GET_CODE (body) == SEQUENCE)
2493 {
2494 /* A delayed-branch sequence */
2495 register int i;
2496 rtx next;
2497
2498 if (prescan > 0)
2499 break;
2500 final_sequence = body;
2501
2502 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2503 force the restoration of a comparison that was previously
2504 thought unnecessary. If that happens, cancel this sequence
2505 and cause that insn to be restored. */
2506
2507 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2508 if (next != XVECEXP (body, 0, 1))
2509 {
2510 final_sequence = 0;
2511 return next;
2512 }
2513
2514 for (i = 1; i < XVECLEN (body, 0); i++)
2515 {
2516 rtx insn = XVECEXP (body, 0, i);
2517 rtx next = NEXT_INSN (insn);
2518 /* We loop in case any instruction in a delay slot gets
2519 split. */
2520 do
2521 insn = final_scan_insn (insn, file, 0, prescan, 1);
2522 while (insn != next);
2523 }
2524 #ifdef DBR_OUTPUT_SEQEND
2525 DBR_OUTPUT_SEQEND (file);
2526 #endif
2527 final_sequence = 0;
2528
2529 /* If the insn requiring the delay slot was a CALL_INSN, the
2530 insns in the delay slot are actually executed before the
2531 called function. Hence we don't preserve any CC-setting
2532 actions in these insns and the CC must be marked as being
2533 clobbered by the function. */
2534 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2535 {
2536 CC_STATUS_INIT;
2537 }
2538
2539 /* Following a conditional branch sequence, we have a new basic
2540 block. */
2541 if (profile_block_flag)
2542 {
2543 rtx insn = XVECEXP (body, 0, 0);
2544 rtx body = PATTERN (insn);
2545
2546 if ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2547 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2548 || (GET_CODE (insn) == JUMP_INSN
2549 && GET_CODE (body) == PARALLEL
2550 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2551 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF))
2552 new_block = 1;
2553 }
2554 break;
2555 }
2556
2557 /* We have a real machine instruction as rtl. */
2558
2559 body = PATTERN (insn);
2560
2561 #ifdef HAVE_cc0
2562 set = single_set(insn);
2563
2564 /* Check for redundant test and compare instructions
2565 (when the condition codes are already set up as desired).
2566 This is done only when optimizing; if not optimizing,
2567 it should be possible for the user to alter a variable
2568 with the debugger in between statements
2569 and the next statement should reexamine the variable
2570 to compute the condition codes. */
2571
2572 if (optimize)
2573 {
2574 #if 0
2575 rtx set = single_set(insn);
2576 #endif
2577
2578 if (set
2579 && GET_CODE (SET_DEST (set)) == CC0
2580 && insn != last_ignored_compare)
2581 {
2582 if (GET_CODE (SET_SRC (set)) == SUBREG)
2583 SET_SRC (set) = alter_subreg (SET_SRC (set));
2584 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2585 {
2586 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2587 XEXP (SET_SRC (set), 0)
2588 = alter_subreg (XEXP (SET_SRC (set), 0));
2589 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2590 XEXP (SET_SRC (set), 1)
2591 = alter_subreg (XEXP (SET_SRC (set), 1));
2592 }
2593 if ((cc_status.value1 != 0
2594 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2595 || (cc_status.value2 != 0
2596 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2597 {
2598 /* Don't delete insn if it has an addressing side-effect. */
2599 if (! FIND_REG_INC_NOTE (insn, 0)
2600 /* or if anything in it is volatile. */
2601 && ! volatile_refs_p (PATTERN (insn)))
2602 {
2603 /* We don't really delete the insn; just ignore it. */
2604 last_ignored_compare = insn;
2605 break;
2606 }
2607 }
2608 }
2609 }
2610 #endif
2611
2612 /* Following a conditional branch, we have a new basic block.
2613 But if we are inside a sequence, the new block starts after the
2614 last insn of the sequence. */
2615 if (profile_block_flag && final_sequence == 0
2616 && ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2617 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2618 || (GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == PARALLEL
2619 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2620 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF)))
2621 new_block = 1;
2622
2623 #ifndef STACK_REGS
2624 /* Don't bother outputting obvious no-ops, even without -O.
2625 This optimization is fast and doesn't interfere with debugging.
2626 Don't do this if the insn is in a delay slot, since this
2627 will cause an improper number of delay insns to be written. */
2628 if (final_sequence == 0
2629 && prescan >= 0
2630 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2631 && GET_CODE (SET_SRC (body)) == REG
2632 && GET_CODE (SET_DEST (body)) == REG
2633 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2634 break;
2635 #endif
2636
2637 #ifdef HAVE_cc0
2638 /* If this is a conditional branch, maybe modify it
2639 if the cc's are in a nonstandard state
2640 so that it accomplishes the same thing that it would
2641 do straightforwardly if the cc's were set up normally. */
2642
2643 if (cc_status.flags != 0
2644 && GET_CODE (insn) == JUMP_INSN
2645 && GET_CODE (body) == SET
2646 && SET_DEST (body) == pc_rtx
2647 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2648 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2649 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2650 /* This is done during prescan; it is not done again
2651 in final scan when prescan has been done. */
2652 && prescan >= 0)
2653 {
2654 /* This function may alter the contents of its argument
2655 and clear some of the cc_status.flags bits.
2656 It may also return 1 meaning condition now always true
2657 or -1 meaning condition now always false
2658 or 2 meaning condition nontrivial but altered. */
2659 register int result = alter_cond (XEXP (SET_SRC (body), 0));
2660 /* If condition now has fixed value, replace the IF_THEN_ELSE
2661 with its then-operand or its else-operand. */
2662 if (result == 1)
2663 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2664 if (result == -1)
2665 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2666
2667 /* The jump is now either unconditional or a no-op.
2668 If it has become a no-op, don't try to output it.
2669 (It would not be recognized.) */
2670 if (SET_SRC (body) == pc_rtx)
2671 {
2672 PUT_CODE (insn, NOTE);
2673 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2674 NOTE_SOURCE_FILE (insn) = 0;
2675 break;
2676 }
2677 else if (GET_CODE (SET_SRC (body)) == RETURN)
2678 /* Replace (set (pc) (return)) with (return). */
2679 PATTERN (insn) = body = SET_SRC (body);
2680
2681 /* Rerecognize the instruction if it has changed. */
2682 if (result != 0)
2683 INSN_CODE (insn) = -1;
2684 }
2685
2686 /* Make same adjustments to instructions that examine the
2687 condition codes without jumping and instructions that
2688 handle conditional moves (if this machine has either one). */
2689
2690 if (cc_status.flags != 0
2691 && set != 0)
2692 {
2693 rtx cond_rtx, then_rtx, else_rtx;
2694
2695 if (GET_CODE (insn) != JUMP_INSN
2696 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2697 {
2698 cond_rtx = XEXP (SET_SRC (set), 0);
2699 then_rtx = XEXP (SET_SRC (set), 1);
2700 else_rtx = XEXP (SET_SRC (set), 2);
2701 }
2702 else
2703 {
2704 cond_rtx = SET_SRC (set);
2705 then_rtx = const_true_rtx;
2706 else_rtx = const0_rtx;
2707 }
2708
2709 switch (GET_CODE (cond_rtx))
2710 {
2711 case GTU:
2712 case GT:
2713 case LTU:
2714 case LT:
2715 case GEU:
2716 case GE:
2717 case LEU:
2718 case LE:
2719 case EQ:
2720 case NE:
2721 {
2722 register int result;
2723 if (XEXP (cond_rtx, 0) != cc0_rtx)
2724 break;
2725 result = alter_cond (cond_rtx);
2726 if (result == 1)
2727 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2728 else if (result == -1)
2729 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2730 else if (result == 2)
2731 INSN_CODE (insn) = -1;
2732 if (SET_DEST (set) == SET_SRC (set))
2733 {
2734 PUT_CODE (insn, NOTE);
2735 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2736 NOTE_SOURCE_FILE (insn) = 0;
2737 }
2738 }
2739 break;
2740
2741 default:
2742 break;
2743 }
2744 }
2745
2746 #endif
2747
2748 /* Do machine-specific peephole optimizations if desired. */
2749
2750 if (optimize && !flag_no_peephole && !nopeepholes)
2751 {
2752 rtx next = peephole (insn);
2753 /* When peepholing, if there were notes within the peephole,
2754 emit them before the peephole. */
2755 if (next != 0 && next != NEXT_INSN (insn))
2756 {
2757 rtx prev = PREV_INSN (insn);
2758 rtx note;
2759
2760 for (note = NEXT_INSN (insn); note != next;
2761 note = NEXT_INSN (note))
2762 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2763
2764 /* In case this is prescan, put the notes
2765 in proper position for later rescan. */
2766 note = NEXT_INSN (insn);
2767 PREV_INSN (note) = prev;
2768 NEXT_INSN (prev) = note;
2769 NEXT_INSN (PREV_INSN (next)) = insn;
2770 PREV_INSN (insn) = PREV_INSN (next);
2771 NEXT_INSN (insn) = next;
2772 PREV_INSN (next) = insn;
2773 }
2774
2775 /* PEEPHOLE might have changed this. */
2776 body = PATTERN (insn);
2777 }
2778
2779 /* Try to recognize the instruction.
2780 If successful, verify that the operands satisfy the
2781 constraints for the instruction. Crash if they don't,
2782 since `reload' should have changed them so that they do. */
2783
2784 insn_code_number = recog_memoized (insn);
2785 insn_extract (insn);
2786 for (i = 0; i < insn_n_operands[insn_code_number]; i++)
2787 {
2788 if (GET_CODE (recog_operand[i]) == SUBREG)
2789 recog_operand[i] = alter_subreg (recog_operand[i]);
2790 else if (GET_CODE (recog_operand[i]) == PLUS
2791 || GET_CODE (recog_operand[i]) == MULT)
2792 recog_operand[i] = walk_alter_subreg (recog_operand[i]);
2793 }
2794
2795 for (i = 0; i < insn_n_dups[insn_code_number]; i++)
2796 {
2797 if (GET_CODE (*recog_dup_loc[i]) == SUBREG)
2798 *recog_dup_loc[i] = alter_subreg (*recog_dup_loc[i]);
2799 else if (GET_CODE (*recog_dup_loc[i]) == PLUS
2800 || GET_CODE (*recog_dup_loc[i]) == MULT)
2801 *recog_dup_loc[i] = walk_alter_subreg (*recog_dup_loc[i]);
2802 }
2803
2804 #ifdef REGISTER_CONSTRAINTS
2805 if (! constrain_operands (insn_code_number, 1))
2806 fatal_insn_not_found (insn);
2807 #endif
2808
2809 /* Some target machines need to prescan each insn before
2810 it is output. */
2811
2812 #ifdef FINAL_PRESCAN_INSN
2813 FINAL_PRESCAN_INSN (insn, recog_operand,
2814 insn_n_operands[insn_code_number]);
2815 #endif
2816
2817 #ifdef HAVE_cc0
2818 cc_prev_status = cc_status;
2819
2820 /* Update `cc_status' for this instruction.
2821 The instruction's output routine may change it further.
2822 If the output routine for a jump insn needs to depend
2823 on the cc status, it should look at cc_prev_status. */
2824
2825 NOTICE_UPDATE_CC (body, insn);
2826 #endif
2827
2828 debug_insn = insn;
2829
2830 #if defined (DWARF2_UNWIND_INFO) && !defined (ACCUMULATE_OUTGOING_ARGS)
2831 /* If we push arguments, we want to know where the calls are. */
2832 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2833 dwarf2out_frame_debug (insn);
2834 #endif
2835
2836 /* If the proper template needs to be chosen by some C code,
2837 run that code and get the real template. */
2838
2839 template = insn_template[insn_code_number];
2840 if (template == 0)
2841 {
2842 template = (*insn_outfun[insn_code_number]) (recog_operand, insn);
2843
2844 /* If the C code returns 0, it means that it is a jump insn
2845 which follows a deleted test insn, and that test insn
2846 needs to be reinserted. */
2847 if (template == 0)
2848 {
2849 if (prev_nonnote_insn (insn) != last_ignored_compare)
2850 abort ();
2851 new_block = 0;
2852 return prev_nonnote_insn (insn);
2853 }
2854 }
2855
2856 /* If the template is the string "#", it means that this insn must
2857 be split. */
2858 if (template[0] == '#' && template[1] == '\0')
2859 {
2860 rtx new = try_split (body, insn, 0);
2861
2862 /* If we didn't split the insn, go away. */
2863 if (new == insn && PATTERN (new) == body)
2864 fatal_insn ("Could not split insn", insn);
2865
2866 #ifdef HAVE_ATTR_length
2867 /* This instruction should have been split in shorten_branches,
2868 to ensure that we would have valid length info for the
2869 splitees. */
2870 abort ();
2871 #endif
2872
2873 new_block = 0;
2874 return new;
2875 }
2876
2877 if (prescan > 0)
2878 break;
2879
2880 /* Output assembler code from the template. */
2881
2882 output_asm_insn (template, recog_operand);
2883
2884 #if defined (DWARF2_UNWIND_INFO)
2885 #if !defined (ACCUMULATE_OUTGOING_ARGS)
2886 /* If we push arguments, we need to check all insns for stack
2887 adjustments. */
2888 if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
2889 dwarf2out_frame_debug (insn);
2890 #else
2891 #if defined (HAVE_prologue)
2892 /* If this insn is part of the prologue, emit DWARF v2
2893 call frame info. */
2894 if (RTX_FRAME_RELATED_P (insn) && dwarf2out_do_frame ())
2895 dwarf2out_frame_debug (insn);
2896 #endif
2897 #endif
2898 #endif
2899
2900 #if 0
2901 /* It's not at all clear why we did this and doing so interferes
2902 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2903 with this out. */
2904
2905 /* Mark this insn as having been output. */
2906 INSN_DELETED_P (insn) = 1;
2907 #endif
2908
2909 debug_insn = 0;
2910 }
2911 }
2912 return NEXT_INSN (insn);
2913 }
2914 \f
2915 /* Output debugging info to the assembler file FILE
2916 based on the NOTE-insn INSN, assumed to be a line number. */
2917
2918 static void
2919 output_source_line (file, insn)
2920 FILE *file;
2921 rtx insn;
2922 {
2923 register char *filename = NOTE_SOURCE_FILE (insn);
2924
2925 /* Remember filename for basic block profiling.
2926 Filenames are allocated on the permanent obstack
2927 or are passed in ARGV, so we don't have to save
2928 the string. */
2929
2930 if (profile_block_flag && last_filename != filename)
2931 bb_file_label_num = add_bb_string (filename, TRUE);
2932
2933 last_filename = filename;
2934 last_linenum = NOTE_LINE_NUMBER (insn);
2935 high_block_linenum = MAX (last_linenum, high_block_linenum);
2936 high_function_linenum = MAX (last_linenum, high_function_linenum);
2937
2938 if (write_symbols != NO_DEBUG)
2939 {
2940 #ifdef SDB_DEBUGGING_INFO
2941 if (write_symbols == SDB_DEBUG
2942 #if 0 /* People like having line numbers even in wrong file! */
2943 /* COFF can't handle multiple source files--lose, lose. */
2944 && !strcmp (filename, main_input_filename)
2945 #endif
2946 /* COFF relative line numbers must be positive. */
2947 && last_linenum > sdb_begin_function_line)
2948 {
2949 #ifdef ASM_OUTPUT_SOURCE_LINE
2950 ASM_OUTPUT_SOURCE_LINE (file, last_linenum);
2951 #else
2952 fprintf (file, "\t.ln\t%d\n",
2953 ((sdb_begin_function_line > -1)
2954 ? last_linenum - sdb_begin_function_line : 1));
2955 #endif
2956 }
2957 #endif
2958
2959 #if defined (DBX_DEBUGGING_INFO)
2960 if (write_symbols == DBX_DEBUG)
2961 dbxout_source_line (file, filename, NOTE_LINE_NUMBER (insn));
2962 #endif
2963
2964 #if defined (XCOFF_DEBUGGING_INFO)
2965 if (write_symbols == XCOFF_DEBUG)
2966 xcoffout_source_line (file, filename, insn);
2967 #endif
2968
2969 #ifdef DWARF_DEBUGGING_INFO
2970 if (write_symbols == DWARF_DEBUG)
2971 dwarfout_line (filename, NOTE_LINE_NUMBER (insn));
2972 #endif
2973
2974 #ifdef DWARF2_DEBUGGING_INFO
2975 if (write_symbols == DWARF2_DEBUG)
2976 dwarf2out_line (filename, NOTE_LINE_NUMBER (insn));
2977 #endif
2978 }
2979 }
2980 \f
2981 /* If X is a SUBREG, replace it with a REG or a MEM,
2982 based on the thing it is a subreg of. */
2983
2984 rtx
2985 alter_subreg (x)
2986 register rtx x;
2987 {
2988 register rtx y = SUBREG_REG (x);
2989
2990 if (GET_CODE (y) == SUBREG)
2991 y = alter_subreg (y);
2992
2993 /* If reload is operating, we may be replacing inside this SUBREG.
2994 Check for that and make a new one if so. */
2995 if (reload_in_progress && find_replacement (&SUBREG_REG (x)) != 0)
2996 x = copy_rtx (x);
2997
2998 if (GET_CODE (y) == REG)
2999 {
3000 /* If the word size is larger than the size of this register,
3001 adjust the register number to compensate. */
3002 /* ??? Note that this just catches stragglers created by/for
3003 integrate. It would be better if we either caught these
3004 earlier, or kept _all_ subregs until now and eliminate
3005 gen_lowpart and friends. */
3006
3007 PUT_CODE (x, REG);
3008 #ifdef ALTER_HARD_SUBREG
3009 REGNO (x) = ALTER_HARD_SUBREG(GET_MODE (x), SUBREG_WORD (x),
3010 GET_MODE (y), REGNO (y));
3011 #else
3012 REGNO (x) = REGNO (y) + SUBREG_WORD (x);
3013 #endif
3014 }
3015 else if (GET_CODE (y) == MEM)
3016 {
3017 register int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
3018 if (BYTES_BIG_ENDIAN)
3019 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x)))
3020 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (y))));
3021 PUT_CODE (x, MEM);
3022 MEM_VOLATILE_P (x) = MEM_VOLATILE_P (y);
3023 XEXP (x, 0) = plus_constant (XEXP (y, 0), offset);
3024 }
3025
3026 return x;
3027 }
3028
3029 /* Do alter_subreg on all the SUBREGs contained in X. */
3030
3031 static rtx
3032 walk_alter_subreg (x)
3033 rtx x;
3034 {
3035 switch (GET_CODE (x))
3036 {
3037 case PLUS:
3038 case MULT:
3039 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
3040 XEXP (x, 1) = walk_alter_subreg (XEXP (x, 1));
3041 break;
3042
3043 case MEM:
3044 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
3045 break;
3046
3047 case SUBREG:
3048 return alter_subreg (x);
3049
3050 default:
3051 break;
3052 }
3053
3054 return x;
3055 }
3056 \f
3057 #ifdef HAVE_cc0
3058
3059 /* Given BODY, the body of a jump instruction, alter the jump condition
3060 as required by the bits that are set in cc_status.flags.
3061 Not all of the bits there can be handled at this level in all cases.
3062
3063 The value is normally 0.
3064 1 means that the condition has become always true.
3065 -1 means that the condition has become always false.
3066 2 means that COND has been altered. */
3067
3068 static int
3069 alter_cond (cond)
3070 register rtx cond;
3071 {
3072 int value = 0;
3073
3074 if (cc_status.flags & CC_REVERSED)
3075 {
3076 value = 2;
3077 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3078 }
3079
3080 if (cc_status.flags & CC_INVERTED)
3081 {
3082 value = 2;
3083 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3084 }
3085
3086 if (cc_status.flags & CC_NOT_POSITIVE)
3087 switch (GET_CODE (cond))
3088 {
3089 case LE:
3090 case LEU:
3091 case GEU:
3092 /* Jump becomes unconditional. */
3093 return 1;
3094
3095 case GT:
3096 case GTU:
3097 case LTU:
3098 /* Jump becomes no-op. */
3099 return -1;
3100
3101 case GE:
3102 PUT_CODE (cond, EQ);
3103 value = 2;
3104 break;
3105
3106 case LT:
3107 PUT_CODE (cond, NE);
3108 value = 2;
3109 break;
3110
3111 default:
3112 break;
3113 }
3114
3115 if (cc_status.flags & CC_NOT_NEGATIVE)
3116 switch (GET_CODE (cond))
3117 {
3118 case GE:
3119 case GEU:
3120 /* Jump becomes unconditional. */
3121 return 1;
3122
3123 case LT:
3124 case LTU:
3125 /* Jump becomes no-op. */
3126 return -1;
3127
3128 case LE:
3129 case LEU:
3130 PUT_CODE (cond, EQ);
3131 value = 2;
3132 break;
3133
3134 case GT:
3135 case GTU:
3136 PUT_CODE (cond, NE);
3137 value = 2;
3138 break;
3139
3140 default:
3141 break;
3142 }
3143
3144 if (cc_status.flags & CC_NO_OVERFLOW)
3145 switch (GET_CODE (cond))
3146 {
3147 case GEU:
3148 /* Jump becomes unconditional. */
3149 return 1;
3150
3151 case LEU:
3152 PUT_CODE (cond, EQ);
3153 value = 2;
3154 break;
3155
3156 case GTU:
3157 PUT_CODE (cond, NE);
3158 value = 2;
3159 break;
3160
3161 case LTU:
3162 /* Jump becomes no-op. */
3163 return -1;
3164
3165 default:
3166 break;
3167 }
3168
3169 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3170 switch (GET_CODE (cond))
3171 {
3172 default:
3173 abort ();
3174
3175 case NE:
3176 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3177 value = 2;
3178 break;
3179
3180 case EQ:
3181 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3182 value = 2;
3183 break;
3184 }
3185
3186 if (cc_status.flags & CC_NOT_SIGNED)
3187 /* The flags are valid if signed condition operators are converted
3188 to unsigned. */
3189 switch (GET_CODE (cond))
3190 {
3191 case LE:
3192 PUT_CODE (cond, LEU);
3193 value = 2;
3194 break;
3195
3196 case LT:
3197 PUT_CODE (cond, LTU);
3198 value = 2;
3199 break;
3200
3201 case GT:
3202 PUT_CODE (cond, GTU);
3203 value = 2;
3204 break;
3205
3206 case GE:
3207 PUT_CODE (cond, GEU);
3208 value = 2;
3209 break;
3210
3211 default:
3212 break;
3213 }
3214
3215 return value;
3216 }
3217 #endif
3218 \f
3219 /* Report inconsistency between the assembler template and the operands.
3220 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3221
3222 void
3223 output_operand_lossage (str)
3224 char *str;
3225 {
3226 if (this_is_asm_operands)
3227 error_for_asm (this_is_asm_operands, "invalid `asm': %s", str);
3228 else
3229 fatal ("Internal compiler error, output_operand_lossage `%s'", str);
3230 }
3231 \f
3232 /* Output of assembler code from a template, and its subroutines. */
3233
3234 /* Output text from TEMPLATE to the assembler output file,
3235 obeying %-directions to substitute operands taken from
3236 the vector OPERANDS.
3237
3238 %N (for N a digit) means print operand N in usual manner.
3239 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3240 and print the label name with no punctuation.
3241 %cN means require operand N to be a constant
3242 and print the constant expression with no punctuation.
3243 %aN means expect operand N to be a memory address
3244 (not a memory reference!) and print a reference
3245 to that address.
3246 %nN means expect operand N to be a constant
3247 and print a constant expression for minus the value
3248 of the operand, with no other punctuation. */
3249
3250 static void
3251 output_asm_name ()
3252 {
3253 if (flag_print_asm_name)
3254 {
3255 /* Annotate the assembly with a comment describing the pattern and
3256 alternative used. */
3257 if (debug_insn)
3258 {
3259 register int num = INSN_CODE (debug_insn);
3260 fprintf (asm_out_file, " %s %d %s",
3261 ASM_COMMENT_START, INSN_UID (debug_insn), insn_name[num]);
3262 if (insn_n_alternatives[num] > 1)
3263 fprintf (asm_out_file, "/%d", which_alternative + 1);
3264
3265 /* Clear this so only the first assembler insn
3266 of any rtl insn will get the special comment for -dp. */
3267 debug_insn = 0;
3268 }
3269 }
3270 }
3271
3272 void
3273 output_asm_insn (template, operands)
3274 char *template;
3275 rtx *operands;
3276 {
3277 register char *p;
3278 register int c;
3279
3280 /* An insn may return a null string template
3281 in a case where no assembler code is needed. */
3282 if (*template == 0)
3283 return;
3284
3285 p = template;
3286 putc ('\t', asm_out_file);
3287
3288 #ifdef ASM_OUTPUT_OPCODE
3289 ASM_OUTPUT_OPCODE (asm_out_file, p);
3290 #endif
3291
3292 while ((c = *p++))
3293 switch (c)
3294 {
3295 case '\n':
3296 output_asm_name ();
3297 putc (c, asm_out_file);
3298 #ifdef ASM_OUTPUT_OPCODE
3299 while ((c = *p) == '\t')
3300 {
3301 putc (c, asm_out_file);
3302 p++;
3303 }
3304 ASM_OUTPUT_OPCODE (asm_out_file, p);
3305 #endif
3306 break;
3307
3308 #ifdef ASSEMBLER_DIALECT
3309 case '{':
3310 {
3311 register int i;
3312
3313 /* If we want the first dialect, do nothing. Otherwise, skip
3314 DIALECT_NUMBER of strings ending with '|'. */
3315 for (i = 0; i < dialect_number; i++)
3316 {
3317 while (*p && *p++ != '|')
3318 ;
3319
3320 if (*p == '|')
3321 p++;
3322 }
3323 }
3324 break;
3325
3326 case '|':
3327 /* Skip to close brace. */
3328 while (*p && *p++ != '}')
3329 ;
3330 break;
3331
3332 case '}':
3333 break;
3334 #endif
3335
3336 case '%':
3337 /* %% outputs a single %. */
3338 if (*p == '%')
3339 {
3340 p++;
3341 putc (c, asm_out_file);
3342 }
3343 /* %= outputs a number which is unique to each insn in the entire
3344 compilation. This is useful for making local labels that are
3345 referred to more than once in a given insn. */
3346 else if (*p == '=')
3347 {
3348 p++;
3349 fprintf (asm_out_file, "%d", insn_counter);
3350 }
3351 /* % followed by a letter and some digits
3352 outputs an operand in a special way depending on the letter.
3353 Letters `acln' are implemented directly.
3354 Other letters are passed to `output_operand' so that
3355 the PRINT_OPERAND macro can define them. */
3356 else if ((*p >= 'a' && *p <= 'z')
3357 || (*p >= 'A' && *p <= 'Z'))
3358 {
3359 int letter = *p++;
3360 c = atoi (p);
3361
3362 if (! (*p >= '0' && *p <= '9'))
3363 output_operand_lossage ("operand number missing after %-letter");
3364 else if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
3365 output_operand_lossage ("operand number out of range");
3366 else if (letter == 'l')
3367 output_asm_label (operands[c]);
3368 else if (letter == 'a')
3369 output_address (operands[c]);
3370 else if (letter == 'c')
3371 {
3372 if (CONSTANT_ADDRESS_P (operands[c]))
3373 output_addr_const (asm_out_file, operands[c]);
3374 else
3375 output_operand (operands[c], 'c');
3376 }
3377 else if (letter == 'n')
3378 {
3379 if (GET_CODE (operands[c]) == CONST_INT)
3380 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3381 - INTVAL (operands[c]));
3382 else
3383 {
3384 putc ('-', asm_out_file);
3385 output_addr_const (asm_out_file, operands[c]);
3386 }
3387 }
3388 else
3389 output_operand (operands[c], letter);
3390
3391 while ((c = *p) >= '0' && c <= '9') p++;
3392 }
3393 /* % followed by a digit outputs an operand the default way. */
3394 else if (*p >= '0' && *p <= '9')
3395 {
3396 c = atoi (p);
3397 if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
3398 output_operand_lossage ("operand number out of range");
3399 else
3400 output_operand (operands[c], 0);
3401 while ((c = *p) >= '0' && c <= '9') p++;
3402 }
3403 /* % followed by punctuation: output something for that
3404 punctuation character alone, with no operand.
3405 The PRINT_OPERAND macro decides what is actually done. */
3406 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3407 else if (PRINT_OPERAND_PUNCT_VALID_P (*p))
3408 output_operand (NULL_RTX, *p++);
3409 #endif
3410 else
3411 output_operand_lossage ("invalid %%-code");
3412 break;
3413
3414 default:
3415 putc (c, asm_out_file);
3416 }
3417
3418 output_asm_name ();
3419
3420 putc ('\n', asm_out_file);
3421 }
3422 \f
3423 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3424
3425 void
3426 output_asm_label (x)
3427 rtx x;
3428 {
3429 char buf[256];
3430
3431 if (GET_CODE (x) == LABEL_REF)
3432 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
3433 else if (GET_CODE (x) == CODE_LABEL)
3434 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3435 else
3436 output_operand_lossage ("`%l' operand isn't a label");
3437
3438 assemble_name (asm_out_file, buf);
3439 }
3440
3441 /* Print operand X using machine-dependent assembler syntax.
3442 The macro PRINT_OPERAND is defined just to control this function.
3443 CODE is a non-digit that preceded the operand-number in the % spec,
3444 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3445 between the % and the digits.
3446 When CODE is a non-letter, X is 0.
3447
3448 The meanings of the letters are machine-dependent and controlled
3449 by PRINT_OPERAND. */
3450
3451 static void
3452 output_operand (x, code)
3453 rtx x;
3454 int code;
3455 {
3456 if (x && GET_CODE (x) == SUBREG)
3457 x = alter_subreg (x);
3458
3459 /* If X is a pseudo-register, abort now rather than writing trash to the
3460 assembler file. */
3461
3462 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3463 abort ();
3464
3465 PRINT_OPERAND (asm_out_file, x, code);
3466 }
3467
3468 /* Print a memory reference operand for address X
3469 using machine-dependent assembler syntax.
3470 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3471
3472 void
3473 output_address (x)
3474 rtx x;
3475 {
3476 walk_alter_subreg (x);
3477 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3478 }
3479 \f
3480 /* Print an integer constant expression in assembler syntax.
3481 Addition and subtraction are the only arithmetic
3482 that may appear in these expressions. */
3483
3484 void
3485 output_addr_const (file, x)
3486 FILE *file;
3487 rtx x;
3488 {
3489 char buf[256];
3490
3491 restart:
3492 switch (GET_CODE (x))
3493 {
3494 case PC:
3495 if (flag_pic)
3496 putc ('.', file);
3497 else
3498 abort ();
3499 break;
3500
3501 case SYMBOL_REF:
3502 assemble_name (file, XSTR (x, 0));
3503 break;
3504
3505 case LABEL_REF:
3506 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
3507 assemble_name (file, buf);
3508 break;
3509
3510 case CODE_LABEL:
3511 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3512 assemble_name (file, buf);
3513 break;
3514
3515 case CONST_INT:
3516 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3517 break;
3518
3519 case CONST:
3520 /* This used to output parentheses around the expression,
3521 but that does not work on the 386 (either ATT or BSD assembler). */
3522 output_addr_const (file, XEXP (x, 0));
3523 break;
3524
3525 case CONST_DOUBLE:
3526 if (GET_MODE (x) == VOIDmode)
3527 {
3528 /* We can use %d if the number is one word and positive. */
3529 if (CONST_DOUBLE_HIGH (x))
3530 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3531 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3532 else if (CONST_DOUBLE_LOW (x) < 0)
3533 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3534 else
3535 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3536 }
3537 else
3538 /* We can't handle floating point constants;
3539 PRINT_OPERAND must handle them. */
3540 output_operand_lossage ("floating constant misused");
3541 break;
3542
3543 case PLUS:
3544 /* Some assemblers need integer constants to appear last (eg masm). */
3545 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3546 {
3547 output_addr_const (file, XEXP (x, 1));
3548 if (INTVAL (XEXP (x, 0)) >= 0)
3549 fprintf (file, "+");
3550 output_addr_const (file, XEXP (x, 0));
3551 }
3552 else
3553 {
3554 output_addr_const (file, XEXP (x, 0));
3555 if (INTVAL (XEXP (x, 1)) >= 0)
3556 fprintf (file, "+");
3557 output_addr_const (file, XEXP (x, 1));
3558 }
3559 break;
3560
3561 case MINUS:
3562 /* Avoid outputting things like x-x or x+5-x,
3563 since some assemblers can't handle that. */
3564 x = simplify_subtraction (x);
3565 if (GET_CODE (x) != MINUS)
3566 goto restart;
3567
3568 output_addr_const (file, XEXP (x, 0));
3569 fprintf (file, "-");
3570 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3571 && INTVAL (XEXP (x, 1)) < 0)
3572 {
3573 fprintf (file, ASM_OPEN_PAREN);
3574 output_addr_const (file, XEXP (x, 1));
3575 fprintf (file, ASM_CLOSE_PAREN);
3576 }
3577 else
3578 output_addr_const (file, XEXP (x, 1));
3579 break;
3580
3581 case ZERO_EXTEND:
3582 case SIGN_EXTEND:
3583 output_addr_const (file, XEXP (x, 0));
3584 break;
3585
3586 default:
3587 output_operand_lossage ("invalid expression as operand");
3588 }
3589 }
3590 \f
3591 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3592 %R prints the value of REGISTER_PREFIX.
3593 %L prints the value of LOCAL_LABEL_PREFIX.
3594 %U prints the value of USER_LABEL_PREFIX.
3595 %I prints the value of IMMEDIATE_PREFIX.
3596 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3597 Also supported are %d, %x, %s, %e, %f, %g and %%.
3598
3599 We handle alternate assembler dialects here, just like output_asm_insn. */
3600
3601 void
3602 asm_fprintf VPROTO((FILE *file, char *p, ...))
3603 {
3604 #ifndef __STDC__
3605 FILE *file;
3606 char *p;
3607 #endif
3608 va_list argptr;
3609 char buf[10];
3610 char *q, c;
3611
3612 VA_START (argptr, p);
3613
3614 #ifndef __STDC__
3615 file = va_arg (argptr, FILE *);
3616 p = va_arg (argptr, char *);
3617 #endif
3618
3619 buf[0] = '%';
3620
3621 while ((c = *p++))
3622 switch (c)
3623 {
3624 #ifdef ASSEMBLER_DIALECT
3625 case '{':
3626 {
3627 int i;
3628
3629 /* If we want the first dialect, do nothing. Otherwise, skip
3630 DIALECT_NUMBER of strings ending with '|'. */
3631 for (i = 0; i < dialect_number; i++)
3632 {
3633 while (*p && *p++ != '|')
3634 ;
3635
3636 if (*p == '|')
3637 p++;
3638 }
3639 }
3640 break;
3641
3642 case '|':
3643 /* Skip to close brace. */
3644 while (*p && *p++ != '}')
3645 ;
3646 break;
3647
3648 case '}':
3649 break;
3650 #endif
3651
3652 case '%':
3653 c = *p++;
3654 q = &buf[1];
3655 while ((c >= '0' && c <= '9') || c == '.')
3656 {
3657 *q++ = c;
3658 c = *p++;
3659 }
3660 switch (c)
3661 {
3662 case '%':
3663 fprintf (file, "%%");
3664 break;
3665
3666 case 'd': case 'i': case 'u':
3667 case 'x': case 'p': case 'X':
3668 case 'o':
3669 *q++ = c;
3670 *q = 0;
3671 fprintf (file, buf, va_arg (argptr, int));
3672 break;
3673
3674 case 'w':
3675 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3676 but we do not check for those cases. It means that the value
3677 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3678
3679 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3680 #else
3681 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3682 *q++ = 'l';
3683 #else
3684 *q++ = 'l';
3685 *q++ = 'l';
3686 #endif
3687 #endif
3688
3689 *q++ = *p++;
3690 *q = 0;
3691 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3692 break;
3693
3694 case 'l':
3695 *q++ = c;
3696 *q++ = *p++;
3697 *q = 0;
3698 fprintf (file, buf, va_arg (argptr, long));
3699 break;
3700
3701 case 'e':
3702 case 'f':
3703 case 'g':
3704 *q++ = c;
3705 *q = 0;
3706 fprintf (file, buf, va_arg (argptr, double));
3707 break;
3708
3709 case 's':
3710 *q++ = c;
3711 *q = 0;
3712 fprintf (file, buf, va_arg (argptr, char *));
3713 break;
3714
3715 case 'O':
3716 #ifdef ASM_OUTPUT_OPCODE
3717 ASM_OUTPUT_OPCODE (asm_out_file, p);
3718 #endif
3719 break;
3720
3721 case 'R':
3722 #ifdef REGISTER_PREFIX
3723 fprintf (file, "%s", REGISTER_PREFIX);
3724 #endif
3725 break;
3726
3727 case 'I':
3728 #ifdef IMMEDIATE_PREFIX
3729 fprintf (file, "%s", IMMEDIATE_PREFIX);
3730 #endif
3731 break;
3732
3733 case 'L':
3734 #ifdef LOCAL_LABEL_PREFIX
3735 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3736 #endif
3737 break;
3738
3739 case 'U':
3740 #ifdef USER_LABEL_PREFIX
3741 fprintf (file, "%s", USER_LABEL_PREFIX);
3742 #endif
3743 break;
3744
3745 default:
3746 abort ();
3747 }
3748 break;
3749
3750 default:
3751 fputc (c, file);
3752 }
3753 }
3754 \f
3755 /* Split up a CONST_DOUBLE or integer constant rtx
3756 into two rtx's for single words,
3757 storing in *FIRST the word that comes first in memory in the target
3758 and in *SECOND the other. */
3759
3760 void
3761 split_double (value, first, second)
3762 rtx value;
3763 rtx *first, *second;
3764 {
3765 if (GET_CODE (value) == CONST_INT)
3766 {
3767 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3768 {
3769 /* In this case the CONST_INT holds both target words.
3770 Extract the bits from it into two word-sized pieces.
3771 Sign extend each half to HOST_WIDE_INT. */
3772 rtx low, high;
3773 /* On machines where HOST_BITS_PER_WIDE_INT == BITS_PER_WORD
3774 the shift below will cause a compiler warning, even though
3775 this code won't be executed. So put the shift amounts in
3776 variables to avoid the warning. */
3777 int rshift = HOST_BITS_PER_WIDE_INT - BITS_PER_WORD;
3778 int lshift = HOST_BITS_PER_WIDE_INT - 2 * BITS_PER_WORD;
3779
3780 low = GEN_INT ((INTVAL (value) << rshift) >> rshift);
3781 high = GEN_INT ((INTVAL (value) << lshift) >> rshift);
3782 if (WORDS_BIG_ENDIAN)
3783 {
3784 *first = high;
3785 *second = low;
3786 }
3787 else
3788 {
3789 *first = low;
3790 *second = high;
3791 }
3792 }
3793 else
3794 {
3795 /* The rule for using CONST_INT for a wider mode
3796 is that we regard the value as signed.
3797 So sign-extend it. */
3798 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3799 if (WORDS_BIG_ENDIAN)
3800 {
3801 *first = high;
3802 *second = value;
3803 }
3804 else
3805 {
3806 *first = value;
3807 *second = high;
3808 }
3809 }
3810 }
3811 else if (GET_CODE (value) != CONST_DOUBLE)
3812 {
3813 if (WORDS_BIG_ENDIAN)
3814 {
3815 *first = const0_rtx;
3816 *second = value;
3817 }
3818 else
3819 {
3820 *first = value;
3821 *second = const0_rtx;
3822 }
3823 }
3824 else if (GET_MODE (value) == VOIDmode
3825 /* This is the old way we did CONST_DOUBLE integers. */
3826 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3827 {
3828 /* In an integer, the words are defined as most and least significant.
3829 So order them by the target's convention. */
3830 if (WORDS_BIG_ENDIAN)
3831 {
3832 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3833 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3834 }
3835 else
3836 {
3837 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3838 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3839 }
3840 }
3841 else
3842 {
3843 #ifdef REAL_ARITHMETIC
3844 REAL_VALUE_TYPE r; long l[2];
3845 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3846
3847 /* Note, this converts the REAL_VALUE_TYPE to the target's
3848 format, splits up the floating point double and outputs
3849 exactly 32 bits of it into each of l[0] and l[1] --
3850 not necessarily BITS_PER_WORD bits. */
3851 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3852
3853 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3854 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3855 #else
3856 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3857 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3858 && ! flag_pretend_float)
3859 abort ();
3860
3861 if (
3862 #ifdef HOST_WORDS_BIG_ENDIAN
3863 WORDS_BIG_ENDIAN
3864 #else
3865 ! WORDS_BIG_ENDIAN
3866 #endif
3867 )
3868 {
3869 /* Host and target agree => no need to swap. */
3870 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3871 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3872 }
3873 else
3874 {
3875 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3876 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3877 }
3878 #endif /* no REAL_ARITHMETIC */
3879 }
3880 }
3881 \f
3882 /* Return nonzero if this function has no function calls. */
3883
3884 int
3885 leaf_function_p ()
3886 {
3887 rtx insn;
3888
3889 if (profile_flag || profile_block_flag || profile_arc_flag)
3890 return 0;
3891
3892 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3893 {
3894 if (GET_CODE (insn) == CALL_INSN)
3895 return 0;
3896 if (GET_CODE (insn) == INSN
3897 && GET_CODE (PATTERN (insn)) == SEQUENCE
3898 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN)
3899 return 0;
3900 }
3901 for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1))
3902 {
3903 if (GET_CODE (XEXP (insn, 0)) == CALL_INSN)
3904 return 0;
3905 if (GET_CODE (XEXP (insn, 0)) == INSN
3906 && GET_CODE (PATTERN (XEXP (insn, 0))) == SEQUENCE
3907 && GET_CODE (XVECEXP (PATTERN (XEXP (insn, 0)), 0, 0)) == CALL_INSN)
3908 return 0;
3909 }
3910
3911 return 1;
3912 }
3913
3914 /* On some machines, a function with no call insns
3915 can run faster if it doesn't create its own register window.
3916 When output, the leaf function should use only the "output"
3917 registers. Ordinarily, the function would be compiled to use
3918 the "input" registers to find its arguments; it is a candidate
3919 for leaf treatment if it uses only the "input" registers.
3920 Leaf function treatment means renumbering so the function
3921 uses the "output" registers instead. */
3922
3923 #ifdef LEAF_REGISTERS
3924
3925 static char permitted_reg_in_leaf_functions[] = LEAF_REGISTERS;
3926
3927 /* Return 1 if this function uses only the registers that can be
3928 safely renumbered. */
3929
3930 int
3931 only_leaf_regs_used ()
3932 {
3933 int i;
3934
3935 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3936 if ((regs_ever_live[i] || global_regs[i])
3937 && ! permitted_reg_in_leaf_functions[i])
3938 return 0;
3939
3940 if (current_function_uses_pic_offset_table
3941 && pic_offset_table_rtx != 0
3942 && GET_CODE (pic_offset_table_rtx) == REG
3943 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3944 return 0;
3945
3946 return 1;
3947 }
3948
3949 /* Scan all instructions and renumber all registers into those
3950 available in leaf functions. */
3951
3952 static void
3953 leaf_renumber_regs (first)
3954 rtx first;
3955 {
3956 rtx insn;
3957
3958 /* Renumber only the actual patterns.
3959 The reg-notes can contain frame pointer refs,
3960 and renumbering them could crash, and should not be needed. */
3961 for (insn = first; insn; insn = NEXT_INSN (insn))
3962 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3963 leaf_renumber_regs_insn (PATTERN (insn));
3964 for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1))
3965 if (GET_RTX_CLASS (GET_CODE (XEXP (insn, 0))) == 'i')
3966 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3967 }
3968
3969 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3970 available in leaf functions. */
3971
3972 void
3973 leaf_renumber_regs_insn (in_rtx)
3974 register rtx in_rtx;
3975 {
3976 register int i, j;
3977 register char *format_ptr;
3978
3979 if (in_rtx == 0)
3980 return;
3981
3982 /* Renumber all input-registers into output-registers.
3983 renumbered_regs would be 1 for an output-register;
3984 they */
3985
3986 if (GET_CODE (in_rtx) == REG)
3987 {
3988 int newreg;
3989
3990 /* Don't renumber the same reg twice. */
3991 if (in_rtx->used)
3992 return;
3993
3994 newreg = REGNO (in_rtx);
3995 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3996 to reach here as part of a REG_NOTE. */
3997 if (newreg >= FIRST_PSEUDO_REGISTER)
3998 {
3999 in_rtx->used = 1;
4000 return;
4001 }
4002 newreg = LEAF_REG_REMAP (newreg);
4003 if (newreg < 0)
4004 abort ();
4005 regs_ever_live[REGNO (in_rtx)] = 0;
4006 regs_ever_live[newreg] = 1;
4007 REGNO (in_rtx) = newreg;
4008 in_rtx->used = 1;
4009 }
4010
4011 if (GET_RTX_CLASS (GET_CODE (in_rtx)) == 'i')
4012 {
4013 /* Inside a SEQUENCE, we find insns.
4014 Renumber just the patterns of these insns,
4015 just as we do for the top-level insns. */
4016 leaf_renumber_regs_insn (PATTERN (in_rtx));
4017 return;
4018 }
4019
4020 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4021
4022 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4023 switch (*format_ptr++)
4024 {
4025 case 'e':
4026 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4027 break;
4028
4029 case 'E':
4030 if (NULL != XVEC (in_rtx, i))
4031 {
4032 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4033 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4034 }
4035 break;
4036
4037 case 'S':
4038 case 's':
4039 case '0':
4040 case 'i':
4041 case 'w':
4042 case 'n':
4043 case 'u':
4044 break;
4045
4046 default:
4047 abort ();
4048 }
4049 }
4050 #endif
This page took 0.215399 seconds and 6 git commands to generate.