]> gcc.gnu.org Git - gcc.git/blob - gcc/final.c
[multiple changes]
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 88, 89, 92-97, 1998 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
44 directly as assembler code by the macros FUNCTION_PROLOGUE and
45 FUNCTION_EPILOGUE. Those instructions never exist as rtl. */
46
47 #include "config.h"
48 #ifdef __STDC__
49 #include <stdarg.h>
50 #else
51 #include <varargs.h>
52 #endif
53 #include "system.h"
54
55 #include "tree.h"
56 #include "rtl.h"
57 #include "regs.h"
58 #include "insn-config.h"
59 #include "insn-flags.h"
60 #include "insn-attr.h"
61 #include "insn-codes.h"
62 #include "recog.h"
63 #include "conditions.h"
64 #include "flags.h"
65 #include "real.h"
66 #include "hard-reg-set.h"
67 #include "defaults.h"
68 #include "output.h"
69 #include "except.h"
70 #include "toplev.h"
71 #include "reload.h"
72
73 /* Get N_SLINE and N_SOL from stab.h if we can expect the file to exist. */
74 #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
75 #include "dbxout.h"
76 #if defined (USG) || !defined (HAVE_STAB_H)
77 #include "gstab.h" /* If doing DBX on sysV, use our own stab.h. */
78 #else
79 #include <stab.h> /* On BSD, use the system's stab.h. */
80 #endif /* not USG */
81 #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
82
83 #ifdef XCOFF_DEBUGGING_INFO
84 #include "xcoffout.h"
85 #endif
86
87 #ifdef DWARF_DEBUGGING_INFO
88 #include "dwarfout.h"
89 #endif
90
91 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
92 #include "dwarf2out.h"
93 #endif
94
95 #ifdef SDB_DEBUGGING_INFO
96 #include "sdbout.h"
97 #endif
98
99 /* .stabd code for line number. */
100 #ifndef N_SLINE
101 #define N_SLINE 0x44
102 #endif
103
104 /* .stabs code for included file name. */
105 #ifndef N_SOL
106 #define N_SOL 0x84
107 #endif
108
109 #ifndef INT_TYPE_SIZE
110 #define INT_TYPE_SIZE BITS_PER_WORD
111 #endif
112
113 #ifndef LONG_TYPE_SIZE
114 #define LONG_TYPE_SIZE BITS_PER_WORD
115 #endif
116
117 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
118 null default for it to save conditionalization later. */
119 #ifndef CC_STATUS_INIT
120 #define CC_STATUS_INIT
121 #endif
122
123 /* How to start an assembler comment. */
124 #ifndef ASM_COMMENT_START
125 #define ASM_COMMENT_START ";#"
126 #endif
127
128 /* Is the given character a logical line separator for the assembler? */
129 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
130 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
131 #endif
132
133 #ifndef JUMP_TABLES_IN_TEXT_SECTION
134 #define JUMP_TABLES_IN_TEXT_SECTION 0
135 #endif
136
137 /* Nonzero means this function is a leaf function, with no function calls.
138 This variable exists to be examined in FUNCTION_PROLOGUE
139 and FUNCTION_EPILOGUE. Always zero, unless set by some action. */
140 int leaf_function;
141
142 /* Last insn processed by final_scan_insn. */
143 static rtx debug_insn = 0;
144
145 /* Line number of last NOTE. */
146 static int last_linenum;
147
148 /* Highest line number in current block. */
149 static int high_block_linenum;
150
151 /* Likewise for function. */
152 static int high_function_linenum;
153
154 /* Filename of last NOTE. */
155 static char *last_filename;
156
157 /* Number of basic blocks seen so far;
158 used if profile_block_flag is set. */
159 static int count_basic_blocks;
160
161 /* Number of instrumented arcs when profile_arc_flag is set. */
162 extern int count_instrumented_arcs;
163
164 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
165
166 /* Nonzero while outputting an `asm' with operands.
167 This means that inconsistencies are the user's fault, so don't abort.
168 The precise value is the insn being output, to pass to error_for_asm. */
169 static rtx this_is_asm_operands;
170
171 /* Number of operands of this insn, for an `asm' with operands. */
172 static unsigned int insn_noperands;
173
174 /* Compare optimization flag. */
175
176 static rtx last_ignored_compare = 0;
177
178 /* Flag indicating this insn is the start of a new basic block. */
179
180 static int new_block = 1;
181
182 /* All the symbol-blocks (levels of scoping) in the compilation
183 are assigned sequence numbers in order of appearance of the
184 beginnings of the symbol-blocks. Both final and dbxout do this,
185 and assume that they will both give the same number to each block.
186 Final uses these sequence numbers to generate assembler label names
187 LBBnnn and LBEnnn for the beginning and end of the symbol-block.
188 Dbxout uses the sequence numbers to generate references to the same labels
189 from the dbx debugging information.
190
191 Sdb records this level at the beginning of each function,
192 in order to find the current level when recursing down declarations.
193 It outputs the block beginning and endings
194 at the point in the asm file where the blocks would begin and end. */
195
196 int next_block_index;
197
198 /* Assign a unique number to each insn that is output.
199 This can be used to generate unique local labels. */
200
201 static int insn_counter = 0;
202
203 #ifdef HAVE_cc0
204 /* This variable contains machine-dependent flags (defined in tm.h)
205 set and examined by output routines
206 that describe how to interpret the condition codes properly. */
207
208 CC_STATUS cc_status;
209
210 /* During output of an insn, this contains a copy of cc_status
211 from before the insn. */
212
213 CC_STATUS cc_prev_status;
214 #endif
215
216 /* Indexed by hardware reg number, is 1 if that register is ever
217 used in the current function.
218
219 In life_analysis, or in stupid_life_analysis, this is set
220 up to record the hard regs used explicitly. Reload adds
221 in the hard regs used for holding pseudo regs. Final uses
222 it to generate the code in the function prologue and epilogue
223 to save and restore registers as needed. */
224
225 char regs_ever_live[FIRST_PSEUDO_REGISTER];
226
227 /* Nonzero means current function must be given a frame pointer.
228 Set in stmt.c if anything is allocated on the stack there.
229 Set in reload1.c if anything is allocated on the stack there. */
230
231 int frame_pointer_needed;
232
233 /* Assign unique numbers to labels generated for profiling. */
234
235 int profile_label_no;
236
237 /* Length so far allocated in PENDING_BLOCKS. */
238
239 static int max_block_depth;
240
241 /* Stack of sequence numbers of symbol-blocks of which we have seen the
242 beginning but not yet the end. Sequence numbers are assigned at
243 the beginning; this stack allows us to find the sequence number
244 of a block that is ending. */
245
246 static int *pending_blocks;
247
248 /* Number of elements currently in use in PENDING_BLOCKS. */
249
250 static int block_depth;
251
252 /* Nonzero if have enabled APP processing of our assembler output. */
253
254 static int app_on;
255
256 /* If we are outputting an insn sequence, this contains the sequence rtx.
257 Zero otherwise. */
258
259 rtx final_sequence;
260
261 #ifdef ASSEMBLER_DIALECT
262
263 /* Number of the assembler dialect to use, starting at 0. */
264 static int dialect_number;
265 #endif
266
267 /* Indexed by line number, nonzero if there is a note for that line. */
268
269 static char *line_note_exists;
270
271 /* Linked list to hold line numbers for each basic block. */
272
273 struct bb_list {
274 struct bb_list *next; /* pointer to next basic block */
275 int line_num; /* line number */
276 int file_label_num; /* LPBC<n> label # for stored filename */
277 int func_label_num; /* LPBC<n> label # for stored function name */
278 };
279
280 static struct bb_list *bb_head = 0; /* Head of basic block list */
281 static struct bb_list **bb_tail = &bb_head; /* Ptr to store next bb ptr */
282 static int bb_file_label_num = -1; /* Current label # for file */
283 static int bb_func_label_num = -1; /* Current label # for func */
284
285 /* Linked list to hold the strings for each file and function name output. */
286
287 struct bb_str {
288 struct bb_str *next; /* pointer to next string */
289 char *string; /* string */
290 int label_num; /* label number */
291 int length; /* string length */
292 };
293
294 extern rtx peephole PROTO((rtx));
295
296 static struct bb_str *sbb_head = 0; /* Head of string list. */
297 static struct bb_str **sbb_tail = &sbb_head; /* Ptr to store next bb str */
298 static int sbb_label_num = 0; /* Last label used */
299
300 #ifdef HAVE_ATTR_length
301 static int asm_insn_count PROTO((rtx));
302 #endif
303 static void profile_function PROTO((FILE *));
304 static void profile_after_prologue PROTO((FILE *));
305 static void add_bb PROTO((FILE *));
306 static int add_bb_string PROTO((char *, int));
307 static void output_source_line PROTO((FILE *, rtx));
308 static rtx walk_alter_subreg PROTO((rtx));
309 static void output_asm_name PROTO((void));
310 static void output_operand PROTO((rtx, int));
311 #ifdef LEAF_REGISTERS
312 static void leaf_renumber_regs PROTO((rtx));
313 #endif
314 #ifdef HAVE_cc0
315 static int alter_cond PROTO((rtx));
316 #endif
317
318 extern char *getpwd ();
319 \f
320 /* Initialize data in final at the beginning of a compilation. */
321
322 void
323 init_final (filename)
324 char *filename;
325 {
326 next_block_index = 2;
327 app_on = 0;
328 max_block_depth = 20;
329 pending_blocks = (int *) xmalloc (20 * sizeof *pending_blocks);
330 final_sequence = 0;
331
332 #ifdef ASSEMBLER_DIALECT
333 dialect_number = ASSEMBLER_DIALECT;
334 #endif
335 }
336
337 /* Called at end of source file,
338 to output the block-profiling table for this entire compilation. */
339
340 void
341 end_final (filename)
342 char *filename;
343 {
344 int i;
345
346 if (profile_block_flag || profile_arc_flag)
347 {
348 char name[20];
349 int align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
350 int size, rounded;
351 struct bb_list *ptr;
352 struct bb_str *sptr;
353 int long_bytes = LONG_TYPE_SIZE / BITS_PER_UNIT;
354 int pointer_bytes = POINTER_SIZE / BITS_PER_UNIT;
355
356 if (profile_block_flag)
357 size = long_bytes * count_basic_blocks;
358 else
359 size = long_bytes * count_instrumented_arcs;
360 rounded = size;
361
362 rounded += (BIGGEST_ALIGNMENT / BITS_PER_UNIT) - 1;
363 rounded = (rounded / (BIGGEST_ALIGNMENT / BITS_PER_UNIT)
364 * (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
365
366 data_section ();
367
368 /* Output the main header, of 11 words:
369 0: 1 if this file is initialized, else 0.
370 1: address of file name (LPBX1).
371 2: address of table of counts (LPBX2).
372 3: number of counts in the table.
373 4: always 0, for compatibility with Sun.
374
375 The following are GNU extensions:
376
377 5: address of table of start addrs of basic blocks (LPBX3).
378 6: Number of bytes in this header.
379 7: address of table of function names (LPBX4).
380 8: address of table of line numbers (LPBX5) or 0.
381 9: address of table of file names (LPBX6) or 0.
382 10: space reserved for basic block profiling. */
383
384 ASM_OUTPUT_ALIGN (asm_out_file, align);
385
386 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 0);
387 /* zero word */
388 assemble_integer (const0_rtx, long_bytes, 1);
389
390 /* address of filename */
391 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 1);
392 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
393
394 /* address of count table */
395 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
396 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
397
398 /* count of the # of basic blocks or # of instrumented arcs */
399 if (profile_block_flag)
400 assemble_integer (GEN_INT (count_basic_blocks), long_bytes, 1);
401 else
402 assemble_integer (GEN_INT (count_instrumented_arcs), long_bytes,
403 1);
404
405 /* zero word (link field) */
406 assemble_integer (const0_rtx, pointer_bytes, 1);
407
408 /* address of basic block start address table */
409 if (profile_block_flag)
410 {
411 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
412 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
413 1);
414 }
415 else
416 assemble_integer (const0_rtx, pointer_bytes, 1);
417
418 /* byte count for extended structure. */
419 assemble_integer (GEN_INT (10 * UNITS_PER_WORD), long_bytes, 1);
420
421 /* address of function name table */
422 if (profile_block_flag)
423 {
424 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 4);
425 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
426 1);
427 }
428 else
429 assemble_integer (const0_rtx, pointer_bytes, 1);
430
431 /* address of line number and filename tables if debugging. */
432 if (write_symbols != NO_DEBUG && profile_block_flag)
433 {
434 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 5);
435 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
436 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 6);
437 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
438 }
439 else
440 {
441 assemble_integer (const0_rtx, pointer_bytes, 1);
442 assemble_integer (const0_rtx, pointer_bytes, 1);
443 }
444
445 /* space for extension ptr (link field) */
446 assemble_integer (const0_rtx, UNITS_PER_WORD, 1);
447
448 /* Output the file name changing the suffix to .d for Sun tcov
449 compatibility. */
450 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 1);
451 {
452 char *cwd = getpwd ();
453 int len = strlen (filename) + strlen (cwd) + 1;
454 char *data_file = (char *) alloca (len + 4);
455
456 strcpy (data_file, cwd);
457 strcat (data_file, "/");
458 strcat (data_file, filename);
459 strip_off_ending (data_file, len);
460 if (profile_block_flag)
461 strcat (data_file, ".d");
462 else
463 strcat (data_file, ".da");
464 assemble_string (data_file, strlen (data_file) + 1);
465 }
466
467 /* Make space for the table of counts. */
468 if (size == 0)
469 {
470 /* Realign data section. */
471 ASM_OUTPUT_ALIGN (asm_out_file, align);
472 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 2);
473 if (size != 0)
474 assemble_zeros (size);
475 }
476 else
477 {
478 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
479 #ifdef ASM_OUTPUT_SHARED_LOCAL
480 if (flag_shared_data)
481 ASM_OUTPUT_SHARED_LOCAL (asm_out_file, name, size, rounded);
482 else
483 #endif
484 #ifdef ASM_OUTPUT_ALIGNED_DECL_LOCAL
485 ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file, NULL_TREE, name, size,
486 BIGGEST_ALIGNMENT);
487 #else
488 #ifdef ASM_OUTPUT_ALIGNED_LOCAL
489 ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file, name, size,
490 BIGGEST_ALIGNMENT);
491 #else
492 ASM_OUTPUT_LOCAL (asm_out_file, name, size, rounded);
493 #endif
494 #endif
495 }
496
497 /* Output any basic block strings */
498 if (profile_block_flag)
499 {
500 readonly_data_section ();
501 if (sbb_head)
502 {
503 ASM_OUTPUT_ALIGN (asm_out_file, align);
504 for (sptr = sbb_head; sptr != 0; sptr = sptr->next)
505 {
506 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBC",
507 sptr->label_num);
508 assemble_string (sptr->string, sptr->length);
509 }
510 }
511 }
512
513 /* Output the table of addresses. */
514 if (profile_block_flag)
515 {
516 /* Realign in new section */
517 ASM_OUTPUT_ALIGN (asm_out_file, align);
518 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 3);
519 for (i = 0; i < count_basic_blocks; i++)
520 {
521 ASM_GENERATE_INTERNAL_LABEL (name, "LPB", i);
522 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
523 pointer_bytes, 1);
524 }
525 }
526
527 /* Output the table of function names. */
528 if (profile_block_flag)
529 {
530 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 4);
531 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
532 {
533 if (ptr->func_label_num >= 0)
534 {
535 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
536 ptr->func_label_num);
537 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
538 pointer_bytes, 1);
539 }
540 else
541 assemble_integer (const0_rtx, pointer_bytes, 1);
542 }
543
544 for ( ; i < count_basic_blocks; i++)
545 assemble_integer (const0_rtx, pointer_bytes, 1);
546 }
547
548 if (write_symbols != NO_DEBUG && profile_block_flag)
549 {
550 /* Output the table of line numbers. */
551 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 5);
552 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
553 assemble_integer (GEN_INT (ptr->line_num), long_bytes, 1);
554
555 for ( ; i < count_basic_blocks; i++)
556 assemble_integer (const0_rtx, long_bytes, 1);
557
558 /* Output the table of file names. */
559 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 6);
560 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
561 {
562 if (ptr->file_label_num >= 0)
563 {
564 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
565 ptr->file_label_num);
566 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
567 pointer_bytes, 1);
568 }
569 else
570 assemble_integer (const0_rtx, pointer_bytes, 1);
571 }
572
573 for ( ; i < count_basic_blocks; i++)
574 assemble_integer (const0_rtx, pointer_bytes, 1);
575 }
576
577 /* End with the address of the table of addresses,
578 so we can find it easily, as the last word in the file's text. */
579 if (profile_block_flag)
580 {
581 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
582 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
583 1);
584 }
585 }
586 }
587
588 /* Enable APP processing of subsequent output.
589 Used before the output from an `asm' statement. */
590
591 void
592 app_enable ()
593 {
594 if (! app_on)
595 {
596 fputs (ASM_APP_ON, asm_out_file);
597 app_on = 1;
598 }
599 }
600
601 /* Disable APP processing of subsequent output.
602 Called from varasm.c before most kinds of output. */
603
604 void
605 app_disable ()
606 {
607 if (app_on)
608 {
609 fputs (ASM_APP_OFF, asm_out_file);
610 app_on = 0;
611 }
612 }
613 \f
614 /* Return the number of slots filled in the current
615 delayed branch sequence (we don't count the insn needing the
616 delay slot). Zero if not in a delayed branch sequence. */
617
618 #ifdef DELAY_SLOTS
619 int
620 dbr_sequence_length ()
621 {
622 if (final_sequence != 0)
623 return XVECLEN (final_sequence, 0) - 1;
624 else
625 return 0;
626 }
627 #endif
628 \f
629 /* The next two pages contain routines used to compute the length of an insn
630 and to shorten branches. */
631
632 /* Arrays for insn lengths, and addresses. The latter is referenced by
633 `insn_current_length'. */
634
635 static short *insn_lengths;
636 int *insn_addresses;
637
638 /* Address of insn being processed. Used by `insn_current_length'. */
639 int insn_current_address;
640
641 /* Address of insn being processed in previous iteration. */
642 int insn_last_address;
643
644 /* konwn invariant alignment of insn being processed. */
645 int insn_current_align;
646
647 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
648 gives the next following alignment insn that increases the known
649 alignment, or NULL_RTX if there is no such insn.
650 For any alignment obtained this way, we can again index uid_align with
651 its uid to obtain the next following align that in turn increases the
652 alignment, till we reach NULL_RTX; the sequence obtained this way
653 for each insn we'll call the alignment chain of this insn in the following
654 comments. */
655
656 struct label_alignment {
657 short alignment;
658 short max_skip;
659 };
660
661 static rtx *uid_align;
662 static int *uid_shuid;
663 static struct label_alignment *label_align;
664
665 /* Indicate that branch shortening hasn't yet been done. */
666
667 void
668 init_insn_lengths ()
669 {
670 if (label_align)
671 {
672 free (label_align);
673 label_align = 0;
674 }
675 if (uid_shuid)
676 {
677 free (uid_shuid);
678 uid_shuid = 0;
679 }
680 if (insn_lengths)
681 {
682 free (insn_lengths);
683 insn_lengths = 0;
684 }
685 if (insn_addresses)
686 {
687 free (insn_addresses);
688 insn_addresses = 0;
689 }
690 if (uid_align)
691 {
692 free (uid_align);
693 uid_align = 0;
694 }
695 }
696
697 /* Obtain the current length of an insn. If branch shortening has been done,
698 get its actual length. Otherwise, get its maximum length. */
699
700 int
701 get_attr_length (insn)
702 rtx insn;
703 {
704 #ifdef HAVE_ATTR_length
705 rtx body;
706 int i;
707 int length = 0;
708
709 if (insn_lengths)
710 return insn_lengths[INSN_UID (insn)];
711 else
712 switch (GET_CODE (insn))
713 {
714 case NOTE:
715 case BARRIER:
716 case CODE_LABEL:
717 return 0;
718
719 case CALL_INSN:
720 length = insn_default_length (insn);
721 break;
722
723 case JUMP_INSN:
724 body = PATTERN (insn);
725 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
726 {
727 /* Alignment is machine-dependent and should be handled by
728 ADDR_VEC_ALIGN. */
729 }
730 else
731 length = insn_default_length (insn);
732 break;
733
734 case INSN:
735 body = PATTERN (insn);
736 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
737 return 0;
738
739 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
740 length = asm_insn_count (body) * insn_default_length (insn);
741 else if (GET_CODE (body) == SEQUENCE)
742 for (i = 0; i < XVECLEN (body, 0); i++)
743 length += get_attr_length (XVECEXP (body, 0, i));
744 else
745 length = insn_default_length (insn);
746 break;
747
748 default:
749 break;
750 }
751
752 #ifdef ADJUST_INSN_LENGTH
753 ADJUST_INSN_LENGTH (insn, length);
754 #endif
755 return length;
756 #else /* not HAVE_ATTR_length */
757 return 0;
758 #endif /* not HAVE_ATTR_length */
759 }
760 \f
761 /* Code to handle alignment inside shorten_branches. */
762
763 /* Here is an explanation how the algorithm in align_fuzz can give
764 proper results:
765
766 Call a sequence of instructions beginning with alignment point X
767 and continuing until the next alignment point `block X'. When `X'
768 is used in an expression, it means the alignment value of the
769 alignment point.
770
771 Call the distance between the start of the first insn of block X, and
772 the end of the last insn of block X `IX', for the `inner size of X'.
773 This is clearly the sum of the instruction lengths.
774
775 Likewise with the next alignment-delimited block following X, which we
776 shall call block Y.
777
778 Call the distance between the start of the first insn of block X, and
779 the start of the first insn of block Y `OX', for the `outer size of X'.
780
781 The estimated padding is then OX - IX.
782
783 OX can be safely estimated as
784
785 if (X >= Y)
786 OX = round_up(IX, Y)
787 else
788 OX = round_up(IX, X) + Y - X
789
790 Clearly est(IX) >= real(IX), because that only depends on the
791 instruction lengths, and those being overestimated is a given.
792
793 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
794 we needn't worry about that when thinking about OX.
795
796 When X >= Y, the alignment provided by Y adds no uncertainty factor
797 for branch ranges starting before X, so we can just round what we have.
798 But when X < Y, we don't know anything about the, so to speak,
799 `middle bits', so we have to assume the worst when aligning up from an
800 address mod X to one mod Y, which is Y - X. */
801
802 #ifndef LABEL_ALIGN
803 #define LABEL_ALIGN(LABEL) 0
804 #endif
805
806 #ifndef LABEL_ALIGN_MAX_SKIP
807 #define LABEL_ALIGN_MAX_SKIP 0
808 #endif
809
810 #ifndef LOOP_ALIGN
811 #define LOOP_ALIGN(LABEL) 0
812 #endif
813
814 #ifndef LOOP_ALIGN_MAX_SKIP
815 #define LOOP_ALIGN_MAX_SKIP 0
816 #endif
817
818 #ifndef LABEL_ALIGN_AFTER_BARRIER
819 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
820 #endif
821
822 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
823 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
824 #endif
825
826 #ifndef ADDR_VEC_ALIGN
827 int
828 final_addr_vec_align (addr_vec)
829 rtx addr_vec;
830 {
831 int align = exact_log2 (GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec))));
832
833 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
834 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
835 return align;
836
837 }
838 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
839 #endif
840
841 #ifndef INSN_LENGTH_ALIGNMENT
842 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
843 #endif
844
845 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
846
847 static int min_labelno, max_labelno;
848
849 #define LABEL_TO_ALIGNMENT(LABEL) \
850 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
851
852 #define LABEL_TO_MAX_SKIP(LABEL) \
853 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
854
855 /* For the benefit of port specific code do this also as a function. */
856 int
857 label_to_alignment (label)
858 rtx label;
859 {
860 return LABEL_TO_ALIGNMENT (label);
861 }
862
863 #ifdef HAVE_ATTR_length
864 /* The differences in addresses
865 between a branch and its target might grow or shrink depending on
866 the alignment the start insn of the range (the branch for a forward
867 branch or the label for a backward branch) starts out on; if these
868 differences are used naively, they can even oscillate infinitely.
869 We therefore want to compute a 'worst case' address difference that
870 is independent of the alignment the start insn of the range end
871 up on, and that is at least as large as the actual difference.
872 The function align_fuzz calculates the amount we have to add to the
873 naively computed difference, by traversing the part of the alignment
874 chain of the start insn of the range that is in front of the end insn
875 of the range, and considering for each alignment the maximum amount
876 that it might contribute to a size increase.
877
878 For casesi tables, we also want to know worst case minimum amounts of
879 address difference, in case a machine description wants to introduce
880 some common offset that is added to all offsets in a table.
881 For this purpose, align_fuzz with a growth argument of 0 comuptes the
882 appropriate adjustment. */
883
884
885 /* Compute the maximum delta by which the difference of the addresses of
886 START and END might grow / shrink due to a different address for start
887 which changes the size of alignment insns between START and END.
888 KNOWN_ALIGN_LOG is the alignment known for START.
889 GROWTH should be ~0 if the objective is to compute potential code size
890 increase, and 0 if the objective is to compute potential shrink.
891 The return value is undefined for any other value of GROWTH. */
892 int
893 align_fuzz (start, end, known_align_log, growth)
894 rtx start, end;
895 int known_align_log;
896 unsigned growth;
897 {
898 int uid = INSN_UID (start);
899 rtx align_label;
900 int known_align = 1 << known_align_log;
901 int end_shuid = INSN_SHUID (end);
902 int fuzz = 0;
903
904 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
905 {
906 int align_addr, new_align;
907
908 uid = INSN_UID (align_label);
909 align_addr = insn_addresses[uid] - insn_lengths[uid];
910 if (uid_shuid[uid] > end_shuid)
911 break;
912 known_align_log = LABEL_TO_ALIGNMENT (align_label);
913 new_align = 1 << known_align_log;
914 if (new_align < known_align)
915 continue;
916 fuzz += (-align_addr ^ growth) & (new_align - known_align);
917 known_align = new_align;
918 }
919 return fuzz;
920 }
921
922 /* Compute a worst-case reference address of a branch so that it
923 can be safely used in the presence of aligned labels. Since the
924 size of the branch itself is unknown, the size of the branch is
925 not included in the range. I.e. for a forward branch, the reference
926 address is the end address of the branch as known from the previous
927 branch shortening pass, minus a value to account for possible size
928 increase due to alignment. For a backward branch, it is the start
929 address of the branch as known from the current pass, plus a value
930 to account for possible size increase due to alignment.
931 NB.: Therefore, the maximum offset allowed for backward branches needs
932 to exclude the branch size. */
933 int
934 insn_current_reference_address (branch)
935 rtx branch;
936 {
937 rtx dest;
938 rtx seq = NEXT_INSN (PREV_INSN (branch));
939 int seq_uid = INSN_UID (seq);
940 if (GET_CODE (branch) != JUMP_INSN)
941 /* This can happen for example on the PA; the objective is to know the
942 offset to address something in front of the start of the function.
943 Thus, we can treat it like a backward branch.
944 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
945 any alignment we'd encounter, so we skip the call to align_fuzz. */
946 return insn_current_address;
947 dest = JUMP_LABEL (branch);
948 /* BRANCH has no proper alignment chain set, so use SEQ. */
949 if (INSN_SHUID (branch) < INSN_SHUID (dest))
950 {
951 /* Forward branch. */
952 return (insn_last_address + insn_lengths[seq_uid]
953 - align_fuzz (seq, dest, length_unit_log, ~0));
954 }
955 else
956 {
957 /* Backward branch. */
958 return (insn_current_address
959 + align_fuzz (dest, seq, length_unit_log, ~0));
960 }
961 }
962 #endif /* HAVE_ATTR_length */
963 \f
964 /* Make a pass over all insns and compute their actual lengths by shortening
965 any branches of variable length if possible. */
966
967 /* Give a default value for the lowest address in a function. */
968
969 #ifndef FIRST_INSN_ADDRESS
970 #define FIRST_INSN_ADDRESS 0
971 #endif
972
973 /* shorten_branches might be called multiple times: for example, the SH
974 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
975 In order to do this, it needs proper length information, which it obtains
976 by calling shorten_branches. This cannot be collapsed with
977 shorten_branches itself into a single pass unless we also want to intergate
978 reorg.c, since the branch splitting exposes new instructions with delay
979 slots. */
980
981 void
982 shorten_branches (first)
983 rtx first;
984 {
985 rtx insn;
986 int max_uid;
987 int i;
988 int max_log;
989 int max_skip;
990 #ifdef HAVE_ATTR_length
991 #define MAX_CODE_ALIGN 16
992 rtx seq;
993 int something_changed = 1;
994 char *varying_length;
995 rtx body;
996 int uid;
997 rtx align_tab[MAX_CODE_ALIGN];
998
999 /* In order to make sure that all instructions have valid length info,
1000 we must split them before we compute the address/length info. */
1001
1002 for (insn = NEXT_INSN (first); insn; insn = NEXT_INSN (insn))
1003 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1004 {
1005 rtx old = insn;
1006 insn = try_split (PATTERN (old), old, 1);
1007 /* When not optimizing, the old insn will be still left around
1008 with only the 'deleted' bit set. Transform it into a note
1009 to avoid confusion of subsequent processing. */
1010 if (INSN_DELETED_P (old))
1011 {
1012 PUT_CODE (old , NOTE);
1013 NOTE_LINE_NUMBER (old) = NOTE_INSN_DELETED;
1014 NOTE_SOURCE_FILE (old) = 0;
1015 }
1016 }
1017 #endif
1018
1019 /* We must do some computations even when not actually shortening, in
1020 order to get the alignment information for the labels. */
1021
1022 init_insn_lengths ();
1023
1024 /* Compute maximum UID and allocate label_align / uid_shuid. */
1025 max_uid = get_max_uid ();
1026
1027 max_labelno = max_label_num ();
1028 min_labelno = get_first_label_num ();
1029 label_align = (struct label_alignment *) xmalloc (
1030 (max_labelno - min_labelno + 1) * sizeof (struct label_alignment));
1031 bzero (label_align,
1032 (max_labelno - min_labelno + 1) * sizeof (struct label_alignment));
1033
1034 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
1035
1036 /* Initialize label_align and set up uid_shuid to be strictly
1037 monotonically rising with insn order. */
1038 /* We use max_log here to keep track of the maximum alignment we want to
1039 impose on the next CODE_LABEL (or the current one if we are processing
1040 the CODE_LABEL itself). */
1041
1042 max_log = 0;
1043 max_skip = 0;
1044
1045 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
1046 {
1047 int log;
1048
1049 INSN_SHUID (insn) = i++;
1050 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1051 {
1052 /* reorg might make the first insn of a loop being run once only,
1053 and delete the label in front of it. Then we want to apply
1054 the loop alignment to the new label created by reorg, which
1055 is separated by the former loop start insn from the
1056 NOTE_INSN_LOOP_BEG. */
1057 }
1058 else if (GET_CODE (insn) == CODE_LABEL)
1059 {
1060 rtx next;
1061
1062 log = LABEL_ALIGN (insn);
1063 if (max_log < log)
1064 {
1065 max_log = log;
1066 max_skip = LABEL_ALIGN_MAX_SKIP;
1067 }
1068 next = NEXT_INSN (insn);
1069 /* ADDR_VECs only take room if read-only data goes into the text
1070 section. */
1071 if (JUMP_TABLES_IN_TEXT_SECTION
1072 #if !defined(READONLY_DATA_SECTION)
1073 || 1
1074 #endif
1075 )
1076 if (next && GET_CODE (next) == JUMP_INSN)
1077 {
1078 rtx nextbody = PATTERN (next);
1079 if (GET_CODE (nextbody) == ADDR_VEC
1080 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1081 {
1082 log = ADDR_VEC_ALIGN (next);
1083 if (max_log < log)
1084 {
1085 max_log = log;
1086 max_skip = LABEL_ALIGN_MAX_SKIP;
1087 }
1088 }
1089 }
1090 LABEL_TO_ALIGNMENT (insn) = max_log;
1091 LABEL_TO_MAX_SKIP (insn) = max_skip;
1092 max_log = 0;
1093 max_skip = 0;
1094 }
1095 else if (GET_CODE (insn) == BARRIER)
1096 {
1097 rtx label;
1098
1099 for (label = insn; label && GET_RTX_CLASS (GET_CODE (label)) != 'i';
1100 label = NEXT_INSN (label))
1101 if (GET_CODE (label) == CODE_LABEL)
1102 {
1103 log = LABEL_ALIGN_AFTER_BARRIER (insn);
1104 if (max_log < log)
1105 {
1106 max_log = log;
1107 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
1108 }
1109 break;
1110 }
1111 }
1112 /* Again, we allow NOTE_INSN_LOOP_BEG - INSN - CODE_LABEL
1113 sequences in order to handle reorg output efficiently. */
1114 else if (GET_CODE (insn) == NOTE
1115 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1116 {
1117 rtx label;
1118
1119 for (label = insn; label; label = NEXT_INSN (label))
1120 if (GET_CODE (label) == CODE_LABEL)
1121 {
1122 log = LOOP_ALIGN (insn);
1123 if (max_log < log)
1124 {
1125 max_log = log;
1126 max_skip = LOOP_ALIGN_MAX_SKIP;
1127 }
1128 break;
1129 }
1130 }
1131 else
1132 continue;
1133 }
1134 #ifdef HAVE_ATTR_length
1135
1136 /* Allocate the rest of the arrays. */
1137 insn_lengths = (short *) xmalloc (max_uid * sizeof (short));
1138 insn_addresses = (int *) xmalloc (max_uid * sizeof (int));
1139 /* Syntax errors can lead to labels being outside of the main insn stream.
1140 Initialize insn_addresses, so that we get reproducible results. */
1141 bzero ((char *)insn_addresses, max_uid * sizeof *insn_addresses);
1142 uid_align = (rtx *) xmalloc (max_uid * sizeof *uid_align);
1143
1144 varying_length = (char *) xmalloc (max_uid * sizeof (char));
1145
1146 bzero (varying_length, max_uid);
1147
1148 /* Initialize uid_align. We scan instructions
1149 from end to start, and keep in align_tab[n] the last seen insn
1150 that does an alignment of at least n+1, i.e. the successor
1151 in the alignment chain for an insn that does / has a known
1152 alignment of n. */
1153
1154 bzero ((char *) uid_align, max_uid * sizeof *uid_align);
1155
1156 for (i = MAX_CODE_ALIGN; --i >= 0; )
1157 align_tab[i] = NULL_RTX;
1158 seq = get_last_insn ();
1159 for (; seq; seq = PREV_INSN (seq))
1160 {
1161 int uid = INSN_UID (seq);
1162 int log;
1163 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
1164 uid_align[uid] = align_tab[0];
1165 if (log)
1166 {
1167 /* Found an alignment label. */
1168 uid_align[uid] = align_tab[log];
1169 for (i = log - 1; i >= 0; i--)
1170 align_tab[i] = seq;
1171 }
1172 }
1173 #ifdef CASE_VECTOR_SHORTEN_MODE
1174 if (optimize)
1175 {
1176 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1177 label fields. */
1178
1179 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1180 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1181 int rel;
1182
1183 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1184 {
1185 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1186 int len, i, min, max, insn_shuid;
1187 int min_align;
1188 addr_diff_vec_flags flags;
1189
1190 if (GET_CODE (insn) != JUMP_INSN
1191 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1192 continue;
1193 pat = PATTERN (insn);
1194 len = XVECLEN (pat, 1);
1195 if (len <= 0)
1196 abort ();
1197 min_align = MAX_CODE_ALIGN;
1198 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1199 {
1200 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1201 int shuid = INSN_SHUID (lab);
1202 if (shuid < min)
1203 {
1204 min = shuid;
1205 min_lab = lab;
1206 }
1207 if (shuid > max)
1208 {
1209 max = shuid;
1210 max_lab = lab;
1211 }
1212 if (min_align > LABEL_TO_ALIGNMENT (lab))
1213 min_align = LABEL_TO_ALIGNMENT (lab);
1214 }
1215 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
1216 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
1217 insn_shuid = INSN_SHUID (insn);
1218 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1219 flags.min_align = min_align;
1220 flags.base_after_vec = rel > insn_shuid;
1221 flags.min_after_vec = min > insn_shuid;
1222 flags.max_after_vec = max > insn_shuid;
1223 flags.min_after_base = min > rel;
1224 flags.max_after_base = max > rel;
1225 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1226 }
1227 }
1228 #endif /* CASE_VECTOR_SHORTEN_MODE */
1229
1230
1231 /* Compute initial lengths, addresses, and varying flags for each insn. */
1232 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1233 insn != 0;
1234 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1235 {
1236 uid = INSN_UID (insn);
1237
1238 insn_lengths[uid] = 0;
1239
1240 if (GET_CODE (insn) == CODE_LABEL)
1241 {
1242 int log = LABEL_TO_ALIGNMENT (insn);
1243 if (log)
1244 {
1245 int align = 1 << log;
1246 int new_address = (insn_current_address + align - 1) & -align;
1247 insn_lengths[uid] = new_address - insn_current_address;
1248 insn_current_address = new_address;
1249 }
1250 }
1251
1252 insn_addresses[uid] = insn_current_address;
1253
1254 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
1255 || GET_CODE (insn) == CODE_LABEL)
1256 continue;
1257 if (INSN_DELETED_P (insn))
1258 continue;
1259
1260 body = PATTERN (insn);
1261 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1262 {
1263 /* This only takes room if read-only data goes into the text
1264 section. */
1265 if (JUMP_TABLES_IN_TEXT_SECTION
1266 #if !defined(READONLY_DATA_SECTION)
1267 || 1
1268 #endif
1269 )
1270 insn_lengths[uid] = (XVECLEN (body,
1271 GET_CODE (body) == ADDR_DIFF_VEC)
1272 * GET_MODE_SIZE (GET_MODE (body)));
1273 /* Alignment is handled by ADDR_VEC_ALIGN. */
1274 }
1275 else if (asm_noperands (body) >= 0)
1276 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1277 else if (GET_CODE (body) == SEQUENCE)
1278 {
1279 int i;
1280 int const_delay_slots;
1281 #ifdef DELAY_SLOTS
1282 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1283 #else
1284 const_delay_slots = 0;
1285 #endif
1286 /* Inside a delay slot sequence, we do not do any branch shortening
1287 if the shortening could change the number of delay slots
1288 of the branch. */
1289 for (i = 0; i < XVECLEN (body, 0); i++)
1290 {
1291 rtx inner_insn = XVECEXP (body, 0, i);
1292 int inner_uid = INSN_UID (inner_insn);
1293 int inner_length;
1294
1295 if (asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1296 inner_length = (asm_insn_count (PATTERN (inner_insn))
1297 * insn_default_length (inner_insn));
1298 else
1299 inner_length = insn_default_length (inner_insn);
1300
1301 insn_lengths[inner_uid] = inner_length;
1302 if (const_delay_slots)
1303 {
1304 if ((varying_length[inner_uid]
1305 = insn_variable_length_p (inner_insn)) != 0)
1306 varying_length[uid] = 1;
1307 insn_addresses[inner_uid] = (insn_current_address +
1308 insn_lengths[uid]);
1309 }
1310 else
1311 varying_length[inner_uid] = 0;
1312 insn_lengths[uid] += inner_length;
1313 }
1314 }
1315 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1316 {
1317 insn_lengths[uid] = insn_default_length (insn);
1318 varying_length[uid] = insn_variable_length_p (insn);
1319 }
1320
1321 /* If needed, do any adjustment. */
1322 #ifdef ADJUST_INSN_LENGTH
1323 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1324 #endif
1325 }
1326
1327 /* Now loop over all the insns finding varying length insns. For each,
1328 get the current insn length. If it has changed, reflect the change.
1329 When nothing changes for a full pass, we are done. */
1330
1331 while (something_changed)
1332 {
1333 something_changed = 0;
1334 insn_current_align = MAX_CODE_ALIGN - 1;
1335 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1336 insn != 0;
1337 insn = NEXT_INSN (insn))
1338 {
1339 int new_length;
1340 #ifdef ADJUST_INSN_LENGTH
1341 int tmp_length;
1342 #endif
1343 int length_align;
1344
1345 uid = INSN_UID (insn);
1346
1347 if (GET_CODE (insn) == CODE_LABEL)
1348 {
1349 int log = LABEL_TO_ALIGNMENT (insn);
1350 if (log > insn_current_align)
1351 {
1352 int align = 1 << log;
1353 int new_address= (insn_current_address + align - 1) & -align;
1354 insn_lengths[uid] = new_address - insn_current_address;
1355 insn_current_align = log;
1356 insn_current_address = new_address;
1357 }
1358 else
1359 insn_lengths[uid] = 0;
1360 insn_addresses[uid] = insn_current_address;
1361 continue;
1362 }
1363
1364 length_align = INSN_LENGTH_ALIGNMENT (insn);
1365 if (length_align < insn_current_align)
1366 insn_current_align = length_align;
1367
1368 insn_last_address = insn_addresses[uid];
1369 insn_addresses[uid] = insn_current_address;
1370
1371 #ifdef CASE_VECTOR_SHORTEN_MODE
1372 if (optimize && GET_CODE (insn) == JUMP_INSN
1373 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1374 {
1375 rtx body = PATTERN (insn);
1376 int old_length = insn_lengths[uid];
1377 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1378 rtx min_lab = XEXP (XEXP (body, 2), 0);
1379 rtx max_lab = XEXP (XEXP (body, 3), 0);
1380 addr_diff_vec_flags flags = ADDR_DIFF_VEC_FLAGS (body);
1381 int rel_addr = insn_addresses[INSN_UID (rel_lab)];
1382 int min_addr = insn_addresses[INSN_UID (min_lab)];
1383 int max_addr = insn_addresses[INSN_UID (max_lab)];
1384 rtx prev;
1385 int rel_align = 0;
1386
1387 /* Try to find a known alignment for rel_lab. */
1388 for (prev = rel_lab;
1389 prev
1390 && ! insn_lengths[INSN_UID (prev)]
1391 && ! (varying_length[INSN_UID (prev)] & 1);
1392 prev = PREV_INSN (prev))
1393 if (varying_length[INSN_UID (prev)] & 2)
1394 {
1395 rel_align = LABEL_TO_ALIGNMENT (prev);
1396 break;
1397 }
1398
1399 /* See the comment on addr_diff_vec_flags in rtl.h for the
1400 meaning of the flags values. base: REL_LAB vec: INSN */
1401 /* Anything after INSN has still addresses from the last
1402 pass; adjust these so that they reflect our current
1403 estimate for this pass. */
1404 if (flags.base_after_vec)
1405 rel_addr += insn_current_address - insn_last_address;
1406 if (flags.min_after_vec)
1407 min_addr += insn_current_address - insn_last_address;
1408 if (flags.max_after_vec)
1409 max_addr += insn_current_address - insn_last_address;
1410 /* We want to know the worst case, i.e. lowest possible value
1411 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1412 its offset is positive, and we have to be wary of code shrink;
1413 otherwise, it is negative, and we have to be vary of code
1414 size increase. */
1415 if (flags.min_after_base)
1416 {
1417 /* If INSN is between REL_LAB and MIN_LAB, the size
1418 changes we are about to make can change the alignment
1419 within the observed offset, therefore we have to break
1420 it up into two parts that are independent. */
1421 if (! flags.base_after_vec && flags.min_after_vec)
1422 {
1423 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1424 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1425 }
1426 else
1427 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1428 }
1429 else
1430 {
1431 if (flags.base_after_vec && ! flags.min_after_vec)
1432 {
1433 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1434 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1435 }
1436 else
1437 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1438 }
1439 /* Likewise, determine the highest lowest possible value
1440 for the offset of MAX_LAB. */
1441 if (flags.max_after_base)
1442 {
1443 if (! flags.base_after_vec && flags.max_after_vec)
1444 {
1445 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1446 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1447 }
1448 else
1449 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1450 }
1451 else
1452 {
1453 if (flags.base_after_vec && ! flags.max_after_vec)
1454 {
1455 max_addr += align_fuzz (max_lab, insn, 0, 0);
1456 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1457 }
1458 else
1459 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1460 }
1461 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1462 max_addr - rel_addr,
1463 body));
1464 if (JUMP_TABLES_IN_TEXT_SECTION
1465 #if !defined(READONLY_DATA_SECTION)
1466 || 1
1467 #endif
1468 )
1469 {
1470 insn_lengths[uid]
1471 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1472 insn_current_address += insn_lengths[uid];
1473 if (insn_lengths[uid] != old_length)
1474 something_changed = 1;
1475 }
1476
1477 continue;
1478 }
1479 #endif /* CASE_VECTOR_SHORTEN_MODE */
1480
1481 if (! (varying_length[uid]))
1482 {
1483 insn_current_address += insn_lengths[uid];
1484 continue;
1485 }
1486 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1487 {
1488 int i;
1489
1490 body = PATTERN (insn);
1491 new_length = 0;
1492 for (i = 0; i < XVECLEN (body, 0); i++)
1493 {
1494 rtx inner_insn = XVECEXP (body, 0, i);
1495 int inner_uid = INSN_UID (inner_insn);
1496 int inner_length;
1497
1498 insn_addresses[inner_uid] = insn_current_address;
1499
1500 /* insn_current_length returns 0 for insns with a
1501 non-varying length. */
1502 if (! varying_length[inner_uid])
1503 inner_length = insn_lengths[inner_uid];
1504 else
1505 inner_length = insn_current_length (inner_insn);
1506
1507 if (inner_length != insn_lengths[inner_uid])
1508 {
1509 insn_lengths[inner_uid] = inner_length;
1510 something_changed = 1;
1511 }
1512 insn_current_address += insn_lengths[inner_uid];
1513 new_length += inner_length;
1514 }
1515 }
1516 else
1517 {
1518 new_length = insn_current_length (insn);
1519 insn_current_address += new_length;
1520 }
1521
1522 #ifdef ADJUST_INSN_LENGTH
1523 /* If needed, do any adjustment. */
1524 tmp_length = new_length;
1525 ADJUST_INSN_LENGTH (insn, new_length);
1526 insn_current_address += (new_length - tmp_length);
1527 #endif
1528
1529 if (new_length != insn_lengths[uid])
1530 {
1531 insn_lengths[uid] = new_length;
1532 something_changed = 1;
1533 }
1534 }
1535 /* For a non-optimizing compile, do only a single pass. */
1536 if (!optimize)
1537 break;
1538 }
1539
1540 free (varying_length);
1541
1542 #endif /* HAVE_ATTR_length */
1543 }
1544
1545 #ifdef HAVE_ATTR_length
1546 /* Given the body of an INSN known to be generated by an ASM statement, return
1547 the number of machine instructions likely to be generated for this insn.
1548 This is used to compute its length. */
1549
1550 static int
1551 asm_insn_count (body)
1552 rtx body;
1553 {
1554 char *template;
1555 int count = 1;
1556
1557 if (GET_CODE (body) == ASM_INPUT)
1558 template = XSTR (body, 0);
1559 else
1560 template = decode_asm_operands (body, NULL_PTR, NULL_PTR,
1561 NULL_PTR, NULL_PTR);
1562
1563 for ( ; *template; template++)
1564 if (IS_ASM_LOGICAL_LINE_SEPARATOR(*template) || *template == '\n')
1565 count++;
1566
1567 return count;
1568 }
1569 #endif
1570 \f
1571 /* Output assembler code for the start of a function,
1572 and initialize some of the variables in this file
1573 for the new function. The label for the function and associated
1574 assembler pseudo-ops have already been output in `assemble_start_function'.
1575
1576 FIRST is the first insn of the rtl for the function being compiled.
1577 FILE is the file to write assembler code to.
1578 OPTIMIZE is nonzero if we should eliminate redundant
1579 test and compare insns. */
1580
1581 void
1582 final_start_function (first, file, optimize)
1583 rtx first;
1584 FILE *file;
1585 int optimize;
1586 {
1587 block_depth = 0;
1588
1589 this_is_asm_operands = 0;
1590
1591 #ifdef NON_SAVING_SETJMP
1592 /* A function that calls setjmp should save and restore all the
1593 call-saved registers on a system where longjmp clobbers them. */
1594 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1595 {
1596 int i;
1597
1598 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1599 if (!call_used_regs[i] && !call_fixed_regs[i])
1600 regs_ever_live[i] = 1;
1601 }
1602 #endif
1603
1604 /* Initial line number is supposed to be output
1605 before the function's prologue and label
1606 so that the function's address will not appear to be
1607 in the last statement of the preceding function. */
1608 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1609 last_linenum = high_block_linenum = high_function_linenum
1610 = NOTE_LINE_NUMBER (first);
1611
1612 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
1613 /* Output DWARF definition of the function. */
1614 if (dwarf2out_do_frame ())
1615 dwarf2out_begin_prologue ();
1616 #endif
1617
1618 /* For SDB and XCOFF, the function beginning must be marked between
1619 the function label and the prologue. We always need this, even when
1620 -g1 was used. Defer on MIPS systems so that parameter descriptions
1621 follow function entry. */
1622 #if defined(SDB_DEBUGGING_INFO) && !defined(MIPS_DEBUGGING_INFO)
1623 if (write_symbols == SDB_DEBUG)
1624 sdbout_begin_function (last_linenum);
1625 else
1626 #endif
1627 #ifdef XCOFF_DEBUGGING_INFO
1628 if (write_symbols == XCOFF_DEBUG)
1629 xcoffout_begin_function (file, last_linenum);
1630 else
1631 #endif
1632 /* But only output line number for other debug info types if -g2
1633 or better. */
1634 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1635 output_source_line (file, first);
1636
1637 #ifdef LEAF_REG_REMAP
1638 if (leaf_function)
1639 leaf_renumber_regs (first);
1640 #endif
1641
1642 /* The Sun386i and perhaps other machines don't work right
1643 if the profiling code comes after the prologue. */
1644 #ifdef PROFILE_BEFORE_PROLOGUE
1645 if (profile_flag)
1646 profile_function (file);
1647 #endif /* PROFILE_BEFORE_PROLOGUE */
1648
1649 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1650 if (dwarf2out_do_frame ())
1651 dwarf2out_frame_debug (NULL_RTX);
1652 #endif
1653
1654 #ifdef FUNCTION_PROLOGUE
1655 /* First output the function prologue: code to set up the stack frame. */
1656 FUNCTION_PROLOGUE (file, get_frame_size ());
1657 #endif
1658
1659 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
1660 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
1661 next_block_index = 1;
1662 #endif
1663
1664 /* If the machine represents the prologue as RTL, the profiling code must
1665 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1666 #ifdef HAVE_prologue
1667 if (! HAVE_prologue)
1668 #endif
1669 profile_after_prologue (file);
1670
1671 profile_label_no++;
1672
1673 /* If we are doing basic block profiling, remember a printable version
1674 of the function name. */
1675 if (profile_block_flag)
1676 {
1677 bb_func_label_num
1678 = add_bb_string ((*decl_printable_name) (current_function_decl, 2), FALSE);
1679 }
1680 }
1681
1682 static void
1683 profile_after_prologue (file)
1684 FILE *file;
1685 {
1686 #ifdef FUNCTION_BLOCK_PROFILER
1687 if (profile_block_flag)
1688 {
1689 FUNCTION_BLOCK_PROFILER (file, count_basic_blocks);
1690 }
1691 #endif /* FUNCTION_BLOCK_PROFILER */
1692
1693 #ifndef PROFILE_BEFORE_PROLOGUE
1694 if (profile_flag)
1695 profile_function (file);
1696 #endif /* not PROFILE_BEFORE_PROLOGUE */
1697 }
1698
1699 static void
1700 profile_function (file)
1701 FILE *file;
1702 {
1703 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1704 #if defined(ASM_OUTPUT_REG_PUSH)
1705 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1706 int sval = current_function_returns_struct;
1707 #endif
1708 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1709 int cxt = current_function_needs_context;
1710 #endif
1711 #endif /* ASM_OUTPUT_REG_PUSH */
1712
1713 data_section ();
1714 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1715 ASM_OUTPUT_INTERNAL_LABEL (file, "LP", profile_label_no);
1716 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, 1);
1717
1718 function_section (current_function_decl);
1719
1720 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1721 if (sval)
1722 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1723 #else
1724 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1725 if (sval)
1726 {
1727 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1728 }
1729 #endif
1730 #endif
1731
1732 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1733 if (cxt)
1734 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1735 #else
1736 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1737 if (cxt)
1738 {
1739 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1740 }
1741 #endif
1742 #endif
1743
1744 FUNCTION_PROFILER (file, profile_label_no);
1745
1746 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1747 if (cxt)
1748 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1749 #else
1750 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1751 if (cxt)
1752 {
1753 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1754 }
1755 #endif
1756 #endif
1757
1758 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1759 if (sval)
1760 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1761 #else
1762 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1763 if (sval)
1764 {
1765 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1766 }
1767 #endif
1768 #endif
1769 }
1770
1771 /* Output assembler code for the end of a function.
1772 For clarity, args are same as those of `final_start_function'
1773 even though not all of them are needed. */
1774
1775 void
1776 final_end_function (first, file, optimize)
1777 rtx first;
1778 FILE *file;
1779 int optimize;
1780 {
1781 if (app_on)
1782 {
1783 fputs (ASM_APP_OFF, file);
1784 app_on = 0;
1785 }
1786
1787 #ifdef SDB_DEBUGGING_INFO
1788 if (write_symbols == SDB_DEBUG)
1789 sdbout_end_function (high_function_linenum);
1790 #endif
1791
1792 #ifdef DWARF_DEBUGGING_INFO
1793 if (write_symbols == DWARF_DEBUG)
1794 dwarfout_end_function ();
1795 #endif
1796
1797 #ifdef XCOFF_DEBUGGING_INFO
1798 if (write_symbols == XCOFF_DEBUG)
1799 xcoffout_end_function (file, high_function_linenum);
1800 #endif
1801
1802 #ifdef FUNCTION_EPILOGUE
1803 /* Finally, output the function epilogue:
1804 code to restore the stack frame and return to the caller. */
1805 FUNCTION_EPILOGUE (file, get_frame_size ());
1806 #endif
1807
1808 #ifdef SDB_DEBUGGING_INFO
1809 if (write_symbols == SDB_DEBUG)
1810 sdbout_end_epilogue ();
1811 #endif
1812
1813 #ifdef DWARF_DEBUGGING_INFO
1814 if (write_symbols == DWARF_DEBUG)
1815 dwarfout_end_epilogue ();
1816 #endif
1817
1818 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
1819 if (dwarf2out_do_frame ())
1820 dwarf2out_end_epilogue ();
1821 #endif
1822
1823 #ifdef XCOFF_DEBUGGING_INFO
1824 if (write_symbols == XCOFF_DEBUG)
1825 xcoffout_end_epilogue (file);
1826 #endif
1827
1828 bb_func_label_num = -1; /* not in function, nuke label # */
1829
1830 /* If FUNCTION_EPILOGUE is not defined, then the function body
1831 itself contains return instructions wherever needed. */
1832 }
1833 \f
1834 /* Add a block to the linked list that remembers the current line/file/function
1835 for basic block profiling. Emit the label in front of the basic block and
1836 the instructions that increment the count field. */
1837
1838 static void
1839 add_bb (file)
1840 FILE *file;
1841 {
1842 struct bb_list *ptr = (struct bb_list *) permalloc (sizeof (struct bb_list));
1843
1844 /* Add basic block to linked list. */
1845 ptr->next = 0;
1846 ptr->line_num = last_linenum;
1847 ptr->file_label_num = bb_file_label_num;
1848 ptr->func_label_num = bb_func_label_num;
1849 *bb_tail = ptr;
1850 bb_tail = &ptr->next;
1851
1852 /* Enable the table of basic-block use counts
1853 to point at the code it applies to. */
1854 ASM_OUTPUT_INTERNAL_LABEL (file, "LPB", count_basic_blocks);
1855
1856 /* Before first insn of this basic block, increment the
1857 count of times it was entered. */
1858 #ifdef BLOCK_PROFILER
1859 BLOCK_PROFILER (file, count_basic_blocks);
1860 #endif
1861 #ifdef HAVE_cc0
1862 CC_STATUS_INIT;
1863 #endif
1864
1865 new_block = 0;
1866 count_basic_blocks++;
1867 }
1868
1869 /* Add a string to be used for basic block profiling. */
1870
1871 static int
1872 add_bb_string (string, perm_p)
1873 char *string;
1874 int perm_p;
1875 {
1876 int len;
1877 struct bb_str *ptr = 0;
1878
1879 if (!string)
1880 {
1881 string = "<unknown>";
1882 perm_p = TRUE;
1883 }
1884
1885 /* Allocate a new string if the current string isn't permanent. If
1886 the string is permanent search for the same string in other
1887 allocations. */
1888
1889 len = strlen (string) + 1;
1890 if (!perm_p)
1891 {
1892 char *p = (char *) permalloc (len);
1893 bcopy (string, p, len);
1894 string = p;
1895 }
1896 else
1897 for (ptr = sbb_head; ptr != (struct bb_str *) 0; ptr = ptr->next)
1898 if (ptr->string == string)
1899 break;
1900
1901 /* Allocate a new string block if we need to. */
1902 if (!ptr)
1903 {
1904 ptr = (struct bb_str *) permalloc (sizeof (*ptr));
1905 ptr->next = 0;
1906 ptr->length = len;
1907 ptr->label_num = sbb_label_num++;
1908 ptr->string = string;
1909 *sbb_tail = ptr;
1910 sbb_tail = &ptr->next;
1911 }
1912
1913 return ptr->label_num;
1914 }
1915
1916 \f
1917 /* Output assembler code for some insns: all or part of a function.
1918 For description of args, see `final_start_function', above.
1919
1920 PRESCAN is 1 if we are not really outputting,
1921 just scanning as if we were outputting.
1922 Prescanning deletes and rearranges insns just like ordinary output.
1923 PRESCAN is -2 if we are outputting after having prescanned.
1924 In this case, don't try to delete or rearrange insns
1925 because that has already been done.
1926 Prescanning is done only on certain machines. */
1927
1928 void
1929 final (first, file, optimize, prescan)
1930 rtx first;
1931 FILE *file;
1932 int optimize;
1933 int prescan;
1934 {
1935 register rtx insn;
1936 int max_line = 0;
1937 int max_uid = 0;
1938
1939 last_ignored_compare = 0;
1940 new_block = 1;
1941
1942 check_exception_handler_labels ();
1943
1944 /* Make a map indicating which line numbers appear in this function.
1945 When producing SDB debugging info, delete troublesome line number
1946 notes from inlined functions in other files as well as duplicate
1947 line number notes. */
1948 #ifdef SDB_DEBUGGING_INFO
1949 if (write_symbols == SDB_DEBUG)
1950 {
1951 rtx last = 0;
1952 for (insn = first; insn; insn = NEXT_INSN (insn))
1953 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1954 {
1955 if ((RTX_INTEGRATED_P (insn)
1956 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1957 || (last != 0
1958 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1959 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1960 {
1961 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1962 NOTE_SOURCE_FILE (insn) = 0;
1963 continue;
1964 }
1965 last = insn;
1966 if (NOTE_LINE_NUMBER (insn) > max_line)
1967 max_line = NOTE_LINE_NUMBER (insn);
1968 }
1969 }
1970 else
1971 #endif
1972 {
1973 for (insn = first; insn; insn = NEXT_INSN (insn))
1974 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1975 max_line = NOTE_LINE_NUMBER (insn);
1976 }
1977
1978 line_note_exists = (char *) oballoc (max_line + 1);
1979 bzero (line_note_exists, max_line + 1);
1980
1981 for (insn = first; insn; insn = NEXT_INSN (insn))
1982 {
1983 if (INSN_UID (insn) > max_uid) /* find largest UID */
1984 max_uid = INSN_UID (insn);
1985 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1986 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
1987 }
1988
1989 /* Initialize insn_eh_region table if eh is being used. */
1990
1991 init_insn_eh_region (first, max_uid);
1992
1993 init_recog ();
1994
1995 CC_STATUS_INIT;
1996
1997 /* Output the insns. */
1998 for (insn = NEXT_INSN (first); insn;)
1999 {
2000 #ifdef HAVE_ATTR_length
2001 insn_current_address = insn_addresses[INSN_UID (insn)];
2002 #endif
2003 insn = final_scan_insn (insn, file, optimize, prescan, 0);
2004 }
2005
2006 /* Do basic-block profiling here
2007 if the last insn was a conditional branch. */
2008 if (profile_block_flag && new_block)
2009 add_bb (file);
2010
2011 free_insn_eh_region ();
2012 }
2013 \f
2014 /* The final scan for one insn, INSN.
2015 Args are same as in `final', except that INSN
2016 is the insn being scanned.
2017 Value returned is the next insn to be scanned.
2018
2019 NOPEEPHOLES is the flag to disallow peephole processing (currently
2020 used for within delayed branch sequence output). */
2021
2022 rtx
2023 final_scan_insn (insn, file, optimize, prescan, nopeepholes)
2024 rtx insn;
2025 FILE *file;
2026 int optimize;
2027 int prescan;
2028 int nopeepholes;
2029 {
2030 register int i;
2031 #ifdef HAVE_cc0
2032 rtx set;
2033 #endif
2034
2035 insn_counter++;
2036
2037 /* Ignore deleted insns. These can occur when we split insns (due to a
2038 template of "#") while not optimizing. */
2039 if (INSN_DELETED_P (insn))
2040 return NEXT_INSN (insn);
2041
2042 switch (GET_CODE (insn))
2043 {
2044 case NOTE:
2045 if (prescan > 0)
2046 break;
2047
2048 /* Align the beginning of a loop, for higher speed
2049 on certain machines. */
2050
2051 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2052 break; /* This used to depend on optimize, but that was bogus. */
2053 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2054 break;
2055
2056 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
2057 && ! exceptions_via_longjmp)
2058 {
2059 ASM_OUTPUT_INTERNAL_LABEL (file, "LEHB", NOTE_BLOCK_NUMBER (insn));
2060 if (! flag_new_exceptions)
2061 add_eh_table_entry (NOTE_BLOCK_NUMBER (insn));
2062 #ifdef ASM_OUTPUT_EH_REGION_BEG
2063 ASM_OUTPUT_EH_REGION_BEG (file, NOTE_BLOCK_NUMBER (insn));
2064 #endif
2065 break;
2066 }
2067
2068 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END
2069 && ! exceptions_via_longjmp)
2070 {
2071 ASM_OUTPUT_INTERNAL_LABEL (file, "LEHE", NOTE_BLOCK_NUMBER (insn));
2072 if (flag_new_exceptions)
2073 add_eh_table_entry (NOTE_BLOCK_NUMBER (insn));
2074 #ifdef ASM_OUTPUT_EH_REGION_END
2075 ASM_OUTPUT_EH_REGION_END (file, NOTE_BLOCK_NUMBER (insn));
2076 #endif
2077 break;
2078 }
2079
2080 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
2081 {
2082 #ifdef FUNCTION_END_PROLOGUE
2083 FUNCTION_END_PROLOGUE (file);
2084 #endif
2085 profile_after_prologue (file);
2086 break;
2087 }
2088
2089 #ifdef FUNCTION_BEGIN_EPILOGUE
2090 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
2091 {
2092 FUNCTION_BEGIN_EPILOGUE (file);
2093 break;
2094 }
2095 #endif
2096
2097 if (write_symbols == NO_DEBUG)
2098 break;
2099 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2100 {
2101 #if defined(SDB_DEBUGGING_INFO) && defined(MIPS_DEBUGGING_INFO)
2102 /* MIPS stabs require the parameter descriptions to be after the
2103 function entry point rather than before. */
2104 if (write_symbols == SDB_DEBUG)
2105 sdbout_begin_function (last_linenum);
2106 else
2107 #endif
2108 #ifdef DWARF_DEBUGGING_INFO
2109 /* This outputs a marker where the function body starts, so it
2110 must be after the prologue. */
2111 if (write_symbols == DWARF_DEBUG)
2112 dwarfout_begin_function ();
2113 #endif
2114 break;
2115 }
2116 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
2117 break; /* An insn that was "deleted" */
2118 if (app_on)
2119 {
2120 fputs (ASM_APP_OFF, file);
2121 app_on = 0;
2122 }
2123 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2124 && (debug_info_level == DINFO_LEVEL_NORMAL
2125 || debug_info_level == DINFO_LEVEL_VERBOSE
2126 || write_symbols == DWARF_DEBUG
2127 || write_symbols == DWARF2_DEBUG))
2128 {
2129 /* Beginning of a symbol-block. Assign it a sequence number
2130 and push the number onto the stack PENDING_BLOCKS. */
2131
2132 if (block_depth == max_block_depth)
2133 {
2134 /* PENDING_BLOCKS is full; make it longer. */
2135 max_block_depth *= 2;
2136 pending_blocks
2137 = (int *) xrealloc (pending_blocks,
2138 max_block_depth * sizeof (int));
2139 }
2140 pending_blocks[block_depth++] = next_block_index;
2141
2142 high_block_linenum = last_linenum;
2143
2144 /* Output debugging info about the symbol-block beginning. */
2145
2146 #ifdef SDB_DEBUGGING_INFO
2147 if (write_symbols == SDB_DEBUG)
2148 sdbout_begin_block (file, last_linenum, next_block_index);
2149 #endif
2150 #ifdef XCOFF_DEBUGGING_INFO
2151 if (write_symbols == XCOFF_DEBUG)
2152 xcoffout_begin_block (file, last_linenum, next_block_index);
2153 #endif
2154 #ifdef DBX_DEBUGGING_INFO
2155 if (write_symbols == DBX_DEBUG)
2156 ASM_OUTPUT_INTERNAL_LABEL (file, "LBB", next_block_index);
2157 #endif
2158 #ifdef DWARF_DEBUGGING_INFO
2159 if (write_symbols == DWARF_DEBUG)
2160 dwarfout_begin_block (next_block_index);
2161 #endif
2162 #ifdef DWARF2_DEBUGGING_INFO
2163 if (write_symbols == DWARF2_DEBUG)
2164 dwarf2out_begin_block (next_block_index);
2165 #endif
2166
2167 next_block_index++;
2168 }
2169 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
2170 && (debug_info_level == DINFO_LEVEL_NORMAL
2171 || debug_info_level == DINFO_LEVEL_VERBOSE
2172 || write_symbols == DWARF_DEBUG
2173 || write_symbols == DWARF2_DEBUG))
2174 {
2175 /* End of a symbol-block. Pop its sequence number off
2176 PENDING_BLOCKS and output debugging info based on that. */
2177
2178 --block_depth;
2179
2180 #ifdef XCOFF_DEBUGGING_INFO
2181 if (write_symbols == XCOFF_DEBUG && block_depth >= 0)
2182 xcoffout_end_block (file, high_block_linenum,
2183 pending_blocks[block_depth]);
2184 #endif
2185 #ifdef DBX_DEBUGGING_INFO
2186 if (write_symbols == DBX_DEBUG && block_depth >= 0)
2187 ASM_OUTPUT_INTERNAL_LABEL (file, "LBE",
2188 pending_blocks[block_depth]);
2189 #endif
2190 #ifdef SDB_DEBUGGING_INFO
2191 if (write_symbols == SDB_DEBUG && block_depth >= 0)
2192 sdbout_end_block (file, high_block_linenum,
2193 pending_blocks[block_depth]);
2194 #endif
2195 #ifdef DWARF_DEBUGGING_INFO
2196 if (write_symbols == DWARF_DEBUG && block_depth >= 0)
2197 dwarfout_end_block (pending_blocks[block_depth]);
2198 #endif
2199 #ifdef DWARF2_DEBUGGING_INFO
2200 if (write_symbols == DWARF2_DEBUG && block_depth >= 0)
2201 dwarf2out_end_block (pending_blocks[block_depth]);
2202 #endif
2203 }
2204 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL
2205 && (debug_info_level == DINFO_LEVEL_NORMAL
2206 || debug_info_level == DINFO_LEVEL_VERBOSE))
2207 {
2208 #ifdef DWARF_DEBUGGING_INFO
2209 if (write_symbols == DWARF_DEBUG)
2210 dwarfout_label (insn);
2211 #endif
2212 #ifdef DWARF2_DEBUGGING_INFO
2213 if (write_symbols == DWARF2_DEBUG)
2214 dwarf2out_label (insn);
2215 #endif
2216 }
2217 else if (NOTE_LINE_NUMBER (insn) > 0)
2218 /* This note is a line-number. */
2219 {
2220 register rtx note;
2221
2222 #if 0 /* This is what we used to do. */
2223 output_source_line (file, insn);
2224 #endif
2225 int note_after = 0;
2226
2227 /* If there is anything real after this note,
2228 output it. If another line note follows, omit this one. */
2229 for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
2230 {
2231 if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
2232 break;
2233 /* These types of notes can be significant
2234 so make sure the preceding line number stays. */
2235 else if (GET_CODE (note) == NOTE
2236 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
2237 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
2238 || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
2239 break;
2240 else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
2241 {
2242 /* Another line note follows; we can delete this note
2243 if no intervening line numbers have notes elsewhere. */
2244 int num;
2245 for (num = NOTE_LINE_NUMBER (insn) + 1;
2246 num < NOTE_LINE_NUMBER (note);
2247 num++)
2248 if (line_note_exists[num])
2249 break;
2250
2251 if (num >= NOTE_LINE_NUMBER (note))
2252 note_after = 1;
2253 break;
2254 }
2255 }
2256
2257 /* Output this line note
2258 if it is the first or the last line note in a row. */
2259 if (!note_after)
2260 output_source_line (file, insn);
2261 }
2262 break;
2263
2264 case BARRIER:
2265 #if defined (DWARF2_UNWIND_INFO) && !defined (ACCUMULATE_OUTGOING_ARGS)
2266 /* If we push arguments, we need to check all insns for stack
2267 adjustments. */
2268 if (dwarf2out_do_frame ())
2269 dwarf2out_frame_debug (insn);
2270 #endif
2271 break;
2272
2273 case CODE_LABEL:
2274 /* The target port might emit labels in the output function for
2275 some insn, e.g. sh.c output_branchy_insn. */
2276 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2277 {
2278 int align = LABEL_TO_ALIGNMENT (insn);
2279 int max_skip = LABEL_TO_MAX_SKIP (insn);
2280
2281 if (align && NEXT_INSN (insn))
2282 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2283 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2284 #else
2285 ASM_OUTPUT_ALIGN (file, align);
2286 #endif
2287 }
2288 CC_STATUS_INIT;
2289 if (prescan > 0)
2290 break;
2291 new_block = 1;
2292
2293 #ifdef FINAL_PRESCAN_LABEL
2294 FINAL_PRESCAN_INSN (insn, NULL_PTR, 0);
2295 #endif
2296
2297 #ifdef SDB_DEBUGGING_INFO
2298 if (write_symbols == SDB_DEBUG && LABEL_NAME (insn))
2299 sdbout_label (insn);
2300 #endif
2301 #ifdef DWARF_DEBUGGING_INFO
2302 if (write_symbols == DWARF_DEBUG && LABEL_NAME (insn))
2303 dwarfout_label (insn);
2304 #endif
2305 #ifdef DWARF2_DEBUGGING_INFO
2306 if (write_symbols == DWARF2_DEBUG && LABEL_NAME (insn))
2307 dwarf2out_label (insn);
2308 #endif
2309 if (app_on)
2310 {
2311 fputs (ASM_APP_OFF, file);
2312 app_on = 0;
2313 }
2314 if (NEXT_INSN (insn) != 0
2315 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
2316 {
2317 rtx nextbody = PATTERN (NEXT_INSN (insn));
2318
2319 /* If this label is followed by a jump-table,
2320 make sure we put the label in the read-only section. Also
2321 possibly write the label and jump table together. */
2322
2323 if (GET_CODE (nextbody) == ADDR_VEC
2324 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2325 {
2326 if (! JUMP_TABLES_IN_TEXT_SECTION)
2327 {
2328 readonly_data_section ();
2329 #ifdef READONLY_DATA_SECTION
2330 ASM_OUTPUT_ALIGN (file,
2331 exact_log2 (BIGGEST_ALIGNMENT
2332 / BITS_PER_UNIT));
2333 #endif /* READONLY_DATA_SECTION */
2334 }
2335 else
2336 function_section (current_function_decl);
2337
2338 #ifdef ASM_OUTPUT_CASE_LABEL
2339 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2340 NEXT_INSN (insn));
2341 #else
2342 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2343 #endif
2344 break;
2345 }
2346 }
2347
2348 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2349 break;
2350
2351 default:
2352 {
2353 register rtx body = PATTERN (insn);
2354 int insn_code_number;
2355 char *template;
2356 #ifdef HAVE_cc0
2357 rtx note;
2358 #endif
2359
2360 /* An INSN, JUMP_INSN or CALL_INSN.
2361 First check for special kinds that recog doesn't recognize. */
2362
2363 if (GET_CODE (body) == USE /* These are just declarations */
2364 || GET_CODE (body) == CLOBBER)
2365 break;
2366
2367 #ifdef HAVE_cc0
2368 /* If there is a REG_CC_SETTER note on this insn, it means that
2369 the setting of the condition code was done in the delay slot
2370 of the insn that branched here. So recover the cc status
2371 from the insn that set it. */
2372
2373 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2374 if (note)
2375 {
2376 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2377 cc_prev_status = cc_status;
2378 }
2379 #endif
2380
2381 /* Detect insns that are really jump-tables
2382 and output them as such. */
2383
2384 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2385 {
2386 register int vlen, idx;
2387
2388 if (prescan > 0)
2389 break;
2390
2391 if (app_on)
2392 {
2393 fputs (ASM_APP_OFF, file);
2394 app_on = 0;
2395 }
2396
2397 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2398 for (idx = 0; idx < vlen; idx++)
2399 {
2400 if (GET_CODE (body) == ADDR_VEC)
2401 {
2402 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2403 ASM_OUTPUT_ADDR_VEC_ELT
2404 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2405 #else
2406 abort ();
2407 #endif
2408 }
2409 else
2410 {
2411 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2412 ASM_OUTPUT_ADDR_DIFF_ELT
2413 (file,
2414 body,
2415 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2416 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2417 #else
2418 abort ();
2419 #endif
2420 }
2421 }
2422 #ifdef ASM_OUTPUT_CASE_END
2423 ASM_OUTPUT_CASE_END (file,
2424 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2425 insn);
2426 #endif
2427
2428 function_section (current_function_decl);
2429
2430 break;
2431 }
2432
2433 /* Do basic-block profiling when we reach a new block.
2434 Done here to avoid jump tables. */
2435 if (profile_block_flag && new_block)
2436 add_bb (file);
2437
2438 if (GET_CODE (body) == ASM_INPUT)
2439 {
2440 /* There's no telling what that did to the condition codes. */
2441 CC_STATUS_INIT;
2442 if (prescan > 0)
2443 break;
2444 if (! app_on)
2445 {
2446 fputs (ASM_APP_ON, file);
2447 app_on = 1;
2448 }
2449 fprintf (asm_out_file, "\t%s\n", XSTR (body, 0));
2450 break;
2451 }
2452
2453 /* Detect `asm' construct with operands. */
2454 if (asm_noperands (body) >= 0)
2455 {
2456 unsigned int noperands = asm_noperands (body);
2457 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
2458 char *string;
2459
2460 /* There's no telling what that did to the condition codes. */
2461 CC_STATUS_INIT;
2462 if (prescan > 0)
2463 break;
2464
2465 if (! app_on)
2466 {
2467 fputs (ASM_APP_ON, file);
2468 app_on = 1;
2469 }
2470
2471 /* Get out the operand values. */
2472 string = decode_asm_operands (body, ops, NULL_PTR,
2473 NULL_PTR, NULL_PTR);
2474 /* Inhibit aborts on what would otherwise be compiler bugs. */
2475 insn_noperands = noperands;
2476 this_is_asm_operands = insn;
2477
2478 /* Output the insn using them. */
2479 output_asm_insn (string, ops);
2480 this_is_asm_operands = 0;
2481 break;
2482 }
2483
2484 if (prescan <= 0 && app_on)
2485 {
2486 fputs (ASM_APP_OFF, file);
2487 app_on = 0;
2488 }
2489
2490 if (GET_CODE (body) == SEQUENCE)
2491 {
2492 /* A delayed-branch sequence */
2493 register int i;
2494 rtx next;
2495
2496 if (prescan > 0)
2497 break;
2498 final_sequence = body;
2499
2500 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2501 force the restoration of a comparison that was previously
2502 thought unnecessary. If that happens, cancel this sequence
2503 and cause that insn to be restored. */
2504
2505 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2506 if (next != XVECEXP (body, 0, 1))
2507 {
2508 final_sequence = 0;
2509 return next;
2510 }
2511
2512 for (i = 1; i < XVECLEN (body, 0); i++)
2513 {
2514 rtx insn = XVECEXP (body, 0, i);
2515 rtx next = NEXT_INSN (insn);
2516 /* We loop in case any instruction in a delay slot gets
2517 split. */
2518 do
2519 insn = final_scan_insn (insn, file, 0, prescan, 1);
2520 while (insn != next);
2521 }
2522 #ifdef DBR_OUTPUT_SEQEND
2523 DBR_OUTPUT_SEQEND (file);
2524 #endif
2525 final_sequence = 0;
2526
2527 /* If the insn requiring the delay slot was a CALL_INSN, the
2528 insns in the delay slot are actually executed before the
2529 called function. Hence we don't preserve any CC-setting
2530 actions in these insns and the CC must be marked as being
2531 clobbered by the function. */
2532 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2533 {
2534 CC_STATUS_INIT;
2535 }
2536
2537 /* Following a conditional branch sequence, we have a new basic
2538 block. */
2539 if (profile_block_flag)
2540 {
2541 rtx insn = XVECEXP (body, 0, 0);
2542 rtx body = PATTERN (insn);
2543
2544 if ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2545 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2546 || (GET_CODE (insn) == JUMP_INSN
2547 && GET_CODE (body) == PARALLEL
2548 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2549 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF))
2550 new_block = 1;
2551 }
2552 break;
2553 }
2554
2555 /* We have a real machine instruction as rtl. */
2556
2557 body = PATTERN (insn);
2558
2559 #ifdef HAVE_cc0
2560 set = single_set(insn);
2561
2562 /* Check for redundant test and compare instructions
2563 (when the condition codes are already set up as desired).
2564 This is done only when optimizing; if not optimizing,
2565 it should be possible for the user to alter a variable
2566 with the debugger in between statements
2567 and the next statement should reexamine the variable
2568 to compute the condition codes. */
2569
2570 if (optimize)
2571 {
2572 #if 0
2573 rtx set = single_set(insn);
2574 #endif
2575
2576 if (set
2577 && GET_CODE (SET_DEST (set)) == CC0
2578 && insn != last_ignored_compare)
2579 {
2580 if (GET_CODE (SET_SRC (set)) == SUBREG)
2581 SET_SRC (set) = alter_subreg (SET_SRC (set));
2582 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2583 {
2584 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2585 XEXP (SET_SRC (set), 0)
2586 = alter_subreg (XEXP (SET_SRC (set), 0));
2587 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2588 XEXP (SET_SRC (set), 1)
2589 = alter_subreg (XEXP (SET_SRC (set), 1));
2590 }
2591 if ((cc_status.value1 != 0
2592 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2593 || (cc_status.value2 != 0
2594 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2595 {
2596 /* Don't delete insn if it has an addressing side-effect. */
2597 if (! FIND_REG_INC_NOTE (insn, 0)
2598 /* or if anything in it is volatile. */
2599 && ! volatile_refs_p (PATTERN (insn)))
2600 {
2601 /* We don't really delete the insn; just ignore it. */
2602 last_ignored_compare = insn;
2603 break;
2604 }
2605 }
2606 }
2607 }
2608 #endif
2609
2610 /* Following a conditional branch, we have a new basic block.
2611 But if we are inside a sequence, the new block starts after the
2612 last insn of the sequence. */
2613 if (profile_block_flag && final_sequence == 0
2614 && ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2615 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2616 || (GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == PARALLEL
2617 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2618 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF)))
2619 new_block = 1;
2620
2621 #ifndef STACK_REGS
2622 /* Don't bother outputting obvious no-ops, even without -O.
2623 This optimization is fast and doesn't interfere with debugging.
2624 Don't do this if the insn is in a delay slot, since this
2625 will cause an improper number of delay insns to be written. */
2626 if (final_sequence == 0
2627 && prescan >= 0
2628 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2629 && GET_CODE (SET_SRC (body)) == REG
2630 && GET_CODE (SET_DEST (body)) == REG
2631 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2632 break;
2633 #endif
2634
2635 #ifdef HAVE_cc0
2636 /* If this is a conditional branch, maybe modify it
2637 if the cc's are in a nonstandard state
2638 so that it accomplishes the same thing that it would
2639 do straightforwardly if the cc's were set up normally. */
2640
2641 if (cc_status.flags != 0
2642 && GET_CODE (insn) == JUMP_INSN
2643 && GET_CODE (body) == SET
2644 && SET_DEST (body) == pc_rtx
2645 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2646 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2647 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2648 /* This is done during prescan; it is not done again
2649 in final scan when prescan has been done. */
2650 && prescan >= 0)
2651 {
2652 /* This function may alter the contents of its argument
2653 and clear some of the cc_status.flags bits.
2654 It may also return 1 meaning condition now always true
2655 or -1 meaning condition now always false
2656 or 2 meaning condition nontrivial but altered. */
2657 register int result = alter_cond (XEXP (SET_SRC (body), 0));
2658 /* If condition now has fixed value, replace the IF_THEN_ELSE
2659 with its then-operand or its else-operand. */
2660 if (result == 1)
2661 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2662 if (result == -1)
2663 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2664
2665 /* The jump is now either unconditional or a no-op.
2666 If it has become a no-op, don't try to output it.
2667 (It would not be recognized.) */
2668 if (SET_SRC (body) == pc_rtx)
2669 {
2670 PUT_CODE (insn, NOTE);
2671 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2672 NOTE_SOURCE_FILE (insn) = 0;
2673 break;
2674 }
2675 else if (GET_CODE (SET_SRC (body)) == RETURN)
2676 /* Replace (set (pc) (return)) with (return). */
2677 PATTERN (insn) = body = SET_SRC (body);
2678
2679 /* Rerecognize the instruction if it has changed. */
2680 if (result != 0)
2681 INSN_CODE (insn) = -1;
2682 }
2683
2684 /* Make same adjustments to instructions that examine the
2685 condition codes without jumping and instructions that
2686 handle conditional moves (if this machine has either one). */
2687
2688 if (cc_status.flags != 0
2689 && set != 0)
2690 {
2691 rtx cond_rtx, then_rtx, else_rtx;
2692
2693 if (GET_CODE (insn) != JUMP_INSN
2694 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2695 {
2696 cond_rtx = XEXP (SET_SRC (set), 0);
2697 then_rtx = XEXP (SET_SRC (set), 1);
2698 else_rtx = XEXP (SET_SRC (set), 2);
2699 }
2700 else
2701 {
2702 cond_rtx = SET_SRC (set);
2703 then_rtx = const_true_rtx;
2704 else_rtx = const0_rtx;
2705 }
2706
2707 switch (GET_CODE (cond_rtx))
2708 {
2709 case GTU:
2710 case GT:
2711 case LTU:
2712 case LT:
2713 case GEU:
2714 case GE:
2715 case LEU:
2716 case LE:
2717 case EQ:
2718 case NE:
2719 {
2720 register int result;
2721 if (XEXP (cond_rtx, 0) != cc0_rtx)
2722 break;
2723 result = alter_cond (cond_rtx);
2724 if (result == 1)
2725 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2726 else if (result == -1)
2727 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2728 else if (result == 2)
2729 INSN_CODE (insn) = -1;
2730 if (SET_DEST (set) == SET_SRC (set))
2731 {
2732 PUT_CODE (insn, NOTE);
2733 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2734 NOTE_SOURCE_FILE (insn) = 0;
2735 }
2736 }
2737 break;
2738
2739 default:
2740 break;
2741 }
2742 }
2743
2744 #endif
2745
2746 /* Do machine-specific peephole optimizations if desired. */
2747
2748 if (optimize && !flag_no_peephole && !nopeepholes)
2749 {
2750 rtx next = peephole (insn);
2751 /* When peepholing, if there were notes within the peephole,
2752 emit them before the peephole. */
2753 if (next != 0 && next != NEXT_INSN (insn))
2754 {
2755 rtx prev = PREV_INSN (insn);
2756 rtx note;
2757
2758 for (note = NEXT_INSN (insn); note != next;
2759 note = NEXT_INSN (note))
2760 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2761
2762 /* In case this is prescan, put the notes
2763 in proper position for later rescan. */
2764 note = NEXT_INSN (insn);
2765 PREV_INSN (note) = prev;
2766 NEXT_INSN (prev) = note;
2767 NEXT_INSN (PREV_INSN (next)) = insn;
2768 PREV_INSN (insn) = PREV_INSN (next);
2769 NEXT_INSN (insn) = next;
2770 PREV_INSN (next) = insn;
2771 }
2772
2773 /* PEEPHOLE might have changed this. */
2774 body = PATTERN (insn);
2775 }
2776
2777 /* Try to recognize the instruction.
2778 If successful, verify that the operands satisfy the
2779 constraints for the instruction. Crash if they don't,
2780 since `reload' should have changed them so that they do. */
2781
2782 insn_code_number = recog_memoized (insn);
2783 insn_extract (insn);
2784 for (i = 0; i < insn_n_operands[insn_code_number]; i++)
2785 {
2786 if (GET_CODE (recog_operand[i]) == SUBREG)
2787 recog_operand[i] = alter_subreg (recog_operand[i]);
2788 else if (GET_CODE (recog_operand[i]) == PLUS
2789 || GET_CODE (recog_operand[i]) == MULT)
2790 recog_operand[i] = walk_alter_subreg (recog_operand[i]);
2791 }
2792
2793 for (i = 0; i < insn_n_dups[insn_code_number]; i++)
2794 {
2795 if (GET_CODE (*recog_dup_loc[i]) == SUBREG)
2796 *recog_dup_loc[i] = alter_subreg (*recog_dup_loc[i]);
2797 else if (GET_CODE (*recog_dup_loc[i]) == PLUS
2798 || GET_CODE (*recog_dup_loc[i]) == MULT)
2799 *recog_dup_loc[i] = walk_alter_subreg (*recog_dup_loc[i]);
2800 }
2801
2802 #ifdef REGISTER_CONSTRAINTS
2803 if (! constrain_operands (insn_code_number, 1))
2804 fatal_insn_not_found (insn);
2805 #endif
2806
2807 /* Some target machines need to prescan each insn before
2808 it is output. */
2809
2810 #ifdef FINAL_PRESCAN_INSN
2811 FINAL_PRESCAN_INSN (insn, recog_operand,
2812 insn_n_operands[insn_code_number]);
2813 #endif
2814
2815 #ifdef HAVE_cc0
2816 cc_prev_status = cc_status;
2817
2818 /* Update `cc_status' for this instruction.
2819 The instruction's output routine may change it further.
2820 If the output routine for a jump insn needs to depend
2821 on the cc status, it should look at cc_prev_status. */
2822
2823 NOTICE_UPDATE_CC (body, insn);
2824 #endif
2825
2826 debug_insn = insn;
2827
2828 #if defined (DWARF2_UNWIND_INFO) && !defined (ACCUMULATE_OUTGOING_ARGS)
2829 /* If we push arguments, we want to know where the calls are. */
2830 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2831 dwarf2out_frame_debug (insn);
2832 #endif
2833
2834 /* If the proper template needs to be chosen by some C code,
2835 run that code and get the real template. */
2836
2837 template = insn_template[insn_code_number];
2838 if (template == 0)
2839 {
2840 template = (*insn_outfun[insn_code_number]) (recog_operand, insn);
2841
2842 /* If the C code returns 0, it means that it is a jump insn
2843 which follows a deleted test insn, and that test insn
2844 needs to be reinserted. */
2845 if (template == 0)
2846 {
2847 if (prev_nonnote_insn (insn) != last_ignored_compare)
2848 abort ();
2849 new_block = 0;
2850 return prev_nonnote_insn (insn);
2851 }
2852 }
2853
2854 /* If the template is the string "#", it means that this insn must
2855 be split. */
2856 if (template[0] == '#' && template[1] == '\0')
2857 {
2858 rtx new = try_split (body, insn, 0);
2859
2860 /* If we didn't split the insn, go away. */
2861 if (new == insn && PATTERN (new) == body)
2862 fatal_insn ("Could not split insn", insn);
2863
2864 #ifdef HAVE_ATTR_length
2865 /* This instruction should have been split in shorten_branches,
2866 to ensure that we would have valid length info for the
2867 splitees. */
2868 abort ();
2869 #endif
2870
2871 new_block = 0;
2872 return new;
2873 }
2874
2875 if (prescan > 0)
2876 break;
2877
2878 /* Output assembler code from the template. */
2879
2880 output_asm_insn (template, recog_operand);
2881
2882 #if defined (DWARF2_UNWIND_INFO)
2883 #if !defined (ACCUMULATE_OUTGOING_ARGS)
2884 /* If we push arguments, we need to check all insns for stack
2885 adjustments. */
2886 if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
2887 dwarf2out_frame_debug (insn);
2888 #else
2889 #if defined (HAVE_prologue)
2890 /* If this insn is part of the prologue, emit DWARF v2
2891 call frame info. */
2892 if (RTX_FRAME_RELATED_P (insn) && dwarf2out_do_frame ())
2893 dwarf2out_frame_debug (insn);
2894 #endif
2895 #endif
2896 #endif
2897
2898 #if 0
2899 /* It's not at all clear why we did this and doing so interferes
2900 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2901 with this out. */
2902
2903 /* Mark this insn as having been output. */
2904 INSN_DELETED_P (insn) = 1;
2905 #endif
2906
2907 debug_insn = 0;
2908 }
2909 }
2910 return NEXT_INSN (insn);
2911 }
2912 \f
2913 /* Output debugging info to the assembler file FILE
2914 based on the NOTE-insn INSN, assumed to be a line number. */
2915
2916 static void
2917 output_source_line (file, insn)
2918 FILE *file;
2919 rtx insn;
2920 {
2921 register char *filename = NOTE_SOURCE_FILE (insn);
2922
2923 /* Remember filename for basic block profiling.
2924 Filenames are allocated on the permanent obstack
2925 or are passed in ARGV, so we don't have to save
2926 the string. */
2927
2928 if (profile_block_flag && last_filename != filename)
2929 bb_file_label_num = add_bb_string (filename, TRUE);
2930
2931 last_filename = filename;
2932 last_linenum = NOTE_LINE_NUMBER (insn);
2933 high_block_linenum = MAX (last_linenum, high_block_linenum);
2934 high_function_linenum = MAX (last_linenum, high_function_linenum);
2935
2936 if (write_symbols != NO_DEBUG)
2937 {
2938 #ifdef SDB_DEBUGGING_INFO
2939 if (write_symbols == SDB_DEBUG
2940 #if 0 /* People like having line numbers even in wrong file! */
2941 /* COFF can't handle multiple source files--lose, lose. */
2942 && !strcmp (filename, main_input_filename)
2943 #endif
2944 /* COFF relative line numbers must be positive. */
2945 && last_linenum > sdb_begin_function_line)
2946 {
2947 #ifdef ASM_OUTPUT_SOURCE_LINE
2948 ASM_OUTPUT_SOURCE_LINE (file, last_linenum);
2949 #else
2950 fprintf (file, "\t.ln\t%d\n",
2951 ((sdb_begin_function_line > -1)
2952 ? last_linenum - sdb_begin_function_line : 1));
2953 #endif
2954 }
2955 #endif
2956
2957 #if defined (DBX_DEBUGGING_INFO)
2958 if (write_symbols == DBX_DEBUG)
2959 dbxout_source_line (file, filename, NOTE_LINE_NUMBER (insn));
2960 #endif
2961
2962 #if defined (XCOFF_DEBUGGING_INFO)
2963 if (write_symbols == XCOFF_DEBUG)
2964 xcoffout_source_line (file, filename, insn);
2965 #endif
2966
2967 #ifdef DWARF_DEBUGGING_INFO
2968 if (write_symbols == DWARF_DEBUG)
2969 dwarfout_line (filename, NOTE_LINE_NUMBER (insn));
2970 #endif
2971
2972 #ifdef DWARF2_DEBUGGING_INFO
2973 if (write_symbols == DWARF2_DEBUG)
2974 dwarf2out_line (filename, NOTE_LINE_NUMBER (insn));
2975 #endif
2976 }
2977 }
2978 \f
2979 /* If X is a SUBREG, replace it with a REG or a MEM,
2980 based on the thing it is a subreg of. */
2981
2982 rtx
2983 alter_subreg (x)
2984 register rtx x;
2985 {
2986 register rtx y = SUBREG_REG (x);
2987
2988 if (GET_CODE (y) == SUBREG)
2989 y = alter_subreg (y);
2990
2991 /* If reload is operating, we may be replacing inside this SUBREG.
2992 Check for that and make a new one if so. */
2993 if (reload_in_progress && find_replacement (&SUBREG_REG (x)) != 0)
2994 x = copy_rtx (x);
2995
2996 if (GET_CODE (y) == REG)
2997 {
2998 /* If the word size is larger than the size of this register,
2999 adjust the register number to compensate. */
3000 /* ??? Note that this just catches stragglers created by/for
3001 integrate. It would be better if we either caught these
3002 earlier, or kept _all_ subregs until now and eliminate
3003 gen_lowpart and friends. */
3004
3005 PUT_CODE (x, REG);
3006 #ifdef ALTER_HARD_SUBREG
3007 REGNO (x) = ALTER_HARD_SUBREG(GET_MODE (x), SUBREG_WORD (x),
3008 GET_MODE (y), REGNO (y));
3009 #else
3010 REGNO (x) = REGNO (y) + SUBREG_WORD (x);
3011 #endif
3012 }
3013 else if (GET_CODE (y) == MEM)
3014 {
3015 register int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
3016 if (BYTES_BIG_ENDIAN)
3017 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x)))
3018 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (y))));
3019 PUT_CODE (x, MEM);
3020 MEM_VOLATILE_P (x) = MEM_VOLATILE_P (y);
3021 XEXP (x, 0) = plus_constant (XEXP (y, 0), offset);
3022 }
3023
3024 return x;
3025 }
3026
3027 /* Do alter_subreg on all the SUBREGs contained in X. */
3028
3029 static rtx
3030 walk_alter_subreg (x)
3031 rtx x;
3032 {
3033 switch (GET_CODE (x))
3034 {
3035 case PLUS:
3036 case MULT:
3037 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
3038 XEXP (x, 1) = walk_alter_subreg (XEXP (x, 1));
3039 break;
3040
3041 case MEM:
3042 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
3043 break;
3044
3045 case SUBREG:
3046 return alter_subreg (x);
3047
3048 default:
3049 break;
3050 }
3051
3052 return x;
3053 }
3054 \f
3055 #ifdef HAVE_cc0
3056
3057 /* Given BODY, the body of a jump instruction, alter the jump condition
3058 as required by the bits that are set in cc_status.flags.
3059 Not all of the bits there can be handled at this level in all cases.
3060
3061 The value is normally 0.
3062 1 means that the condition has become always true.
3063 -1 means that the condition has become always false.
3064 2 means that COND has been altered. */
3065
3066 static int
3067 alter_cond (cond)
3068 register rtx cond;
3069 {
3070 int value = 0;
3071
3072 if (cc_status.flags & CC_REVERSED)
3073 {
3074 value = 2;
3075 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3076 }
3077
3078 if (cc_status.flags & CC_INVERTED)
3079 {
3080 value = 2;
3081 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3082 }
3083
3084 if (cc_status.flags & CC_NOT_POSITIVE)
3085 switch (GET_CODE (cond))
3086 {
3087 case LE:
3088 case LEU:
3089 case GEU:
3090 /* Jump becomes unconditional. */
3091 return 1;
3092
3093 case GT:
3094 case GTU:
3095 case LTU:
3096 /* Jump becomes no-op. */
3097 return -1;
3098
3099 case GE:
3100 PUT_CODE (cond, EQ);
3101 value = 2;
3102 break;
3103
3104 case LT:
3105 PUT_CODE (cond, NE);
3106 value = 2;
3107 break;
3108
3109 default:
3110 break;
3111 }
3112
3113 if (cc_status.flags & CC_NOT_NEGATIVE)
3114 switch (GET_CODE (cond))
3115 {
3116 case GE:
3117 case GEU:
3118 /* Jump becomes unconditional. */
3119 return 1;
3120
3121 case LT:
3122 case LTU:
3123 /* Jump becomes no-op. */
3124 return -1;
3125
3126 case LE:
3127 case LEU:
3128 PUT_CODE (cond, EQ);
3129 value = 2;
3130 break;
3131
3132 case GT:
3133 case GTU:
3134 PUT_CODE (cond, NE);
3135 value = 2;
3136 break;
3137
3138 default:
3139 break;
3140 }
3141
3142 if (cc_status.flags & CC_NO_OVERFLOW)
3143 switch (GET_CODE (cond))
3144 {
3145 case GEU:
3146 /* Jump becomes unconditional. */
3147 return 1;
3148
3149 case LEU:
3150 PUT_CODE (cond, EQ);
3151 value = 2;
3152 break;
3153
3154 case GTU:
3155 PUT_CODE (cond, NE);
3156 value = 2;
3157 break;
3158
3159 case LTU:
3160 /* Jump becomes no-op. */
3161 return -1;
3162
3163 default:
3164 break;
3165 }
3166
3167 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3168 switch (GET_CODE (cond))
3169 {
3170 default:
3171 abort ();
3172
3173 case NE:
3174 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3175 value = 2;
3176 break;
3177
3178 case EQ:
3179 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3180 value = 2;
3181 break;
3182 }
3183
3184 if (cc_status.flags & CC_NOT_SIGNED)
3185 /* The flags are valid if signed condition operators are converted
3186 to unsigned. */
3187 switch (GET_CODE (cond))
3188 {
3189 case LE:
3190 PUT_CODE (cond, LEU);
3191 value = 2;
3192 break;
3193
3194 case LT:
3195 PUT_CODE (cond, LTU);
3196 value = 2;
3197 break;
3198
3199 case GT:
3200 PUT_CODE (cond, GTU);
3201 value = 2;
3202 break;
3203
3204 case GE:
3205 PUT_CODE (cond, GEU);
3206 value = 2;
3207 break;
3208
3209 default:
3210 break;
3211 }
3212
3213 return value;
3214 }
3215 #endif
3216 \f
3217 /* Report inconsistency between the assembler template and the operands.
3218 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3219
3220 void
3221 output_operand_lossage (str)
3222 char *str;
3223 {
3224 if (this_is_asm_operands)
3225 error_for_asm (this_is_asm_operands, "invalid `asm': %s", str);
3226 else
3227 fatal ("Internal compiler error, output_operand_lossage `%s'", str);
3228 }
3229 \f
3230 /* Output of assembler code from a template, and its subroutines. */
3231
3232 /* Output text from TEMPLATE to the assembler output file,
3233 obeying %-directions to substitute operands taken from
3234 the vector OPERANDS.
3235
3236 %N (for N a digit) means print operand N in usual manner.
3237 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3238 and print the label name with no punctuation.
3239 %cN means require operand N to be a constant
3240 and print the constant expression with no punctuation.
3241 %aN means expect operand N to be a memory address
3242 (not a memory reference!) and print a reference
3243 to that address.
3244 %nN means expect operand N to be a constant
3245 and print a constant expression for minus the value
3246 of the operand, with no other punctuation. */
3247
3248 static void
3249 output_asm_name ()
3250 {
3251 if (flag_print_asm_name)
3252 {
3253 /* Annotate the assembly with a comment describing the pattern and
3254 alternative used. */
3255 if (debug_insn)
3256 {
3257 register int num = INSN_CODE (debug_insn);
3258 fprintf (asm_out_file, " %s %d %s",
3259 ASM_COMMENT_START, INSN_UID (debug_insn), insn_name[num]);
3260 if (insn_n_alternatives[num] > 1)
3261 fprintf (asm_out_file, "/%d", which_alternative + 1);
3262
3263 /* Clear this so only the first assembler insn
3264 of any rtl insn will get the special comment for -dp. */
3265 debug_insn = 0;
3266 }
3267 }
3268 }
3269
3270 void
3271 output_asm_insn (template, operands)
3272 char *template;
3273 rtx *operands;
3274 {
3275 register char *p;
3276 register int c;
3277
3278 /* An insn may return a null string template
3279 in a case where no assembler code is needed. */
3280 if (*template == 0)
3281 return;
3282
3283 p = template;
3284 putc ('\t', asm_out_file);
3285
3286 #ifdef ASM_OUTPUT_OPCODE
3287 ASM_OUTPUT_OPCODE (asm_out_file, p);
3288 #endif
3289
3290 while ((c = *p++))
3291 switch (c)
3292 {
3293 case '\n':
3294 output_asm_name ();
3295 putc (c, asm_out_file);
3296 #ifdef ASM_OUTPUT_OPCODE
3297 while ((c = *p) == '\t')
3298 {
3299 putc (c, asm_out_file);
3300 p++;
3301 }
3302 ASM_OUTPUT_OPCODE (asm_out_file, p);
3303 #endif
3304 break;
3305
3306 #ifdef ASSEMBLER_DIALECT
3307 case '{':
3308 {
3309 register int i;
3310
3311 /* If we want the first dialect, do nothing. Otherwise, skip
3312 DIALECT_NUMBER of strings ending with '|'. */
3313 for (i = 0; i < dialect_number; i++)
3314 {
3315 while (*p && *p++ != '|')
3316 ;
3317
3318 if (*p == '|')
3319 p++;
3320 }
3321 }
3322 break;
3323
3324 case '|':
3325 /* Skip to close brace. */
3326 while (*p && *p++ != '}')
3327 ;
3328 break;
3329
3330 case '}':
3331 break;
3332 #endif
3333
3334 case '%':
3335 /* %% outputs a single %. */
3336 if (*p == '%')
3337 {
3338 p++;
3339 putc (c, asm_out_file);
3340 }
3341 /* %= outputs a number which is unique to each insn in the entire
3342 compilation. This is useful for making local labels that are
3343 referred to more than once in a given insn. */
3344 else if (*p == '=')
3345 {
3346 p++;
3347 fprintf (asm_out_file, "%d", insn_counter);
3348 }
3349 /* % followed by a letter and some digits
3350 outputs an operand in a special way depending on the letter.
3351 Letters `acln' are implemented directly.
3352 Other letters are passed to `output_operand' so that
3353 the PRINT_OPERAND macro can define them. */
3354 else if ((*p >= 'a' && *p <= 'z')
3355 || (*p >= 'A' && *p <= 'Z'))
3356 {
3357 int letter = *p++;
3358 c = atoi (p);
3359
3360 if (! (*p >= '0' && *p <= '9'))
3361 output_operand_lossage ("operand number missing after %-letter");
3362 else if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
3363 output_operand_lossage ("operand number out of range");
3364 else if (letter == 'l')
3365 output_asm_label (operands[c]);
3366 else if (letter == 'a')
3367 output_address (operands[c]);
3368 else if (letter == 'c')
3369 {
3370 if (CONSTANT_ADDRESS_P (operands[c]))
3371 output_addr_const (asm_out_file, operands[c]);
3372 else
3373 output_operand (operands[c], 'c');
3374 }
3375 else if (letter == 'n')
3376 {
3377 if (GET_CODE (operands[c]) == CONST_INT)
3378 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3379 - INTVAL (operands[c]));
3380 else
3381 {
3382 putc ('-', asm_out_file);
3383 output_addr_const (asm_out_file, operands[c]);
3384 }
3385 }
3386 else
3387 output_operand (operands[c], letter);
3388
3389 while ((c = *p) >= '0' && c <= '9') p++;
3390 }
3391 /* % followed by a digit outputs an operand the default way. */
3392 else if (*p >= '0' && *p <= '9')
3393 {
3394 c = atoi (p);
3395 if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
3396 output_operand_lossage ("operand number out of range");
3397 else
3398 output_operand (operands[c], 0);
3399 while ((c = *p) >= '0' && c <= '9') p++;
3400 }
3401 /* % followed by punctuation: output something for that
3402 punctuation character alone, with no operand.
3403 The PRINT_OPERAND macro decides what is actually done. */
3404 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3405 else if (PRINT_OPERAND_PUNCT_VALID_P (*p))
3406 output_operand (NULL_RTX, *p++);
3407 #endif
3408 else
3409 output_operand_lossage ("invalid %%-code");
3410 break;
3411
3412 default:
3413 putc (c, asm_out_file);
3414 }
3415
3416 output_asm_name ();
3417
3418 putc ('\n', asm_out_file);
3419 }
3420 \f
3421 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3422
3423 void
3424 output_asm_label (x)
3425 rtx x;
3426 {
3427 char buf[256];
3428
3429 if (GET_CODE (x) == LABEL_REF)
3430 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
3431 else if (GET_CODE (x) == CODE_LABEL)
3432 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3433 else
3434 output_operand_lossage ("`%l' operand isn't a label");
3435
3436 assemble_name (asm_out_file, buf);
3437 }
3438
3439 /* Print operand X using machine-dependent assembler syntax.
3440 The macro PRINT_OPERAND is defined just to control this function.
3441 CODE is a non-digit that preceded the operand-number in the % spec,
3442 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3443 between the % and the digits.
3444 When CODE is a non-letter, X is 0.
3445
3446 The meanings of the letters are machine-dependent and controlled
3447 by PRINT_OPERAND. */
3448
3449 static void
3450 output_operand (x, code)
3451 rtx x;
3452 int code;
3453 {
3454 if (x && GET_CODE (x) == SUBREG)
3455 x = alter_subreg (x);
3456
3457 /* If X is a pseudo-register, abort now rather than writing trash to the
3458 assembler file. */
3459
3460 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3461 abort ();
3462
3463 PRINT_OPERAND (asm_out_file, x, code);
3464 }
3465
3466 /* Print a memory reference operand for address X
3467 using machine-dependent assembler syntax.
3468 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3469
3470 void
3471 output_address (x)
3472 rtx x;
3473 {
3474 walk_alter_subreg (x);
3475 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3476 }
3477 \f
3478 /* Print an integer constant expression in assembler syntax.
3479 Addition and subtraction are the only arithmetic
3480 that may appear in these expressions. */
3481
3482 void
3483 output_addr_const (file, x)
3484 FILE *file;
3485 rtx x;
3486 {
3487 char buf[256];
3488
3489 restart:
3490 switch (GET_CODE (x))
3491 {
3492 case PC:
3493 if (flag_pic)
3494 putc ('.', file);
3495 else
3496 abort ();
3497 break;
3498
3499 case SYMBOL_REF:
3500 assemble_name (file, XSTR (x, 0));
3501 break;
3502
3503 case LABEL_REF:
3504 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
3505 assemble_name (file, buf);
3506 break;
3507
3508 case CODE_LABEL:
3509 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3510 assemble_name (file, buf);
3511 break;
3512
3513 case CONST_INT:
3514 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3515 break;
3516
3517 case CONST:
3518 /* This used to output parentheses around the expression,
3519 but that does not work on the 386 (either ATT or BSD assembler). */
3520 output_addr_const (file, XEXP (x, 0));
3521 break;
3522
3523 case CONST_DOUBLE:
3524 if (GET_MODE (x) == VOIDmode)
3525 {
3526 /* We can use %d if the number is one word and positive. */
3527 if (CONST_DOUBLE_HIGH (x))
3528 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3529 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3530 else if (CONST_DOUBLE_LOW (x) < 0)
3531 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3532 else
3533 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3534 }
3535 else
3536 /* We can't handle floating point constants;
3537 PRINT_OPERAND must handle them. */
3538 output_operand_lossage ("floating constant misused");
3539 break;
3540
3541 case PLUS:
3542 /* Some assemblers need integer constants to appear last (eg masm). */
3543 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3544 {
3545 output_addr_const (file, XEXP (x, 1));
3546 if (INTVAL (XEXP (x, 0)) >= 0)
3547 fprintf (file, "+");
3548 output_addr_const (file, XEXP (x, 0));
3549 }
3550 else
3551 {
3552 output_addr_const (file, XEXP (x, 0));
3553 if (INTVAL (XEXP (x, 1)) >= 0)
3554 fprintf (file, "+");
3555 output_addr_const (file, XEXP (x, 1));
3556 }
3557 break;
3558
3559 case MINUS:
3560 /* Avoid outputting things like x-x or x+5-x,
3561 since some assemblers can't handle that. */
3562 x = simplify_subtraction (x);
3563 if (GET_CODE (x) != MINUS)
3564 goto restart;
3565
3566 output_addr_const (file, XEXP (x, 0));
3567 fprintf (file, "-");
3568 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3569 && INTVAL (XEXP (x, 1)) < 0)
3570 {
3571 fprintf (file, ASM_OPEN_PAREN);
3572 output_addr_const (file, XEXP (x, 1));
3573 fprintf (file, ASM_CLOSE_PAREN);
3574 }
3575 else
3576 output_addr_const (file, XEXP (x, 1));
3577 break;
3578
3579 case ZERO_EXTEND:
3580 case SIGN_EXTEND:
3581 output_addr_const (file, XEXP (x, 0));
3582 break;
3583
3584 default:
3585 output_operand_lossage ("invalid expression as operand");
3586 }
3587 }
3588 \f
3589 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3590 %R prints the value of REGISTER_PREFIX.
3591 %L prints the value of LOCAL_LABEL_PREFIX.
3592 %U prints the value of USER_LABEL_PREFIX.
3593 %I prints the value of IMMEDIATE_PREFIX.
3594 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3595 Also supported are %d, %x, %s, %e, %f, %g and %%.
3596
3597 We handle alternate assembler dialects here, just like output_asm_insn. */
3598
3599 void
3600 asm_fprintf VPROTO((FILE *file, char *p, ...))
3601 {
3602 #ifndef __STDC__
3603 FILE *file;
3604 char *p;
3605 #endif
3606 va_list argptr;
3607 char buf[10];
3608 char *q, c;
3609
3610 VA_START (argptr, p);
3611
3612 #ifndef __STDC__
3613 file = va_arg (argptr, FILE *);
3614 p = va_arg (argptr, char *);
3615 #endif
3616
3617 buf[0] = '%';
3618
3619 while ((c = *p++))
3620 switch (c)
3621 {
3622 #ifdef ASSEMBLER_DIALECT
3623 case '{':
3624 {
3625 int i;
3626
3627 /* If we want the first dialect, do nothing. Otherwise, skip
3628 DIALECT_NUMBER of strings ending with '|'. */
3629 for (i = 0; i < dialect_number; i++)
3630 {
3631 while (*p && *p++ != '|')
3632 ;
3633
3634 if (*p == '|')
3635 p++;
3636 }
3637 }
3638 break;
3639
3640 case '|':
3641 /* Skip to close brace. */
3642 while (*p && *p++ != '}')
3643 ;
3644 break;
3645
3646 case '}':
3647 break;
3648 #endif
3649
3650 case '%':
3651 c = *p++;
3652 q = &buf[1];
3653 while ((c >= '0' && c <= '9') || c == '.')
3654 {
3655 *q++ = c;
3656 c = *p++;
3657 }
3658 switch (c)
3659 {
3660 case '%':
3661 fprintf (file, "%%");
3662 break;
3663
3664 case 'd': case 'i': case 'u':
3665 case 'x': case 'p': case 'X':
3666 case 'o':
3667 *q++ = c;
3668 *q = 0;
3669 fprintf (file, buf, va_arg (argptr, int));
3670 break;
3671
3672 case 'w':
3673 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3674 but we do not check for those cases. It means that the value
3675 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3676
3677 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3678 #else
3679 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3680 *q++ = 'l';
3681 #else
3682 *q++ = 'l';
3683 *q++ = 'l';
3684 #endif
3685 #endif
3686
3687 *q++ = *p++;
3688 *q = 0;
3689 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3690 break;
3691
3692 case 'l':
3693 *q++ = c;
3694 *q++ = *p++;
3695 *q = 0;
3696 fprintf (file, buf, va_arg (argptr, long));
3697 break;
3698
3699 case 'e':
3700 case 'f':
3701 case 'g':
3702 *q++ = c;
3703 *q = 0;
3704 fprintf (file, buf, va_arg (argptr, double));
3705 break;
3706
3707 case 's':
3708 *q++ = c;
3709 *q = 0;
3710 fprintf (file, buf, va_arg (argptr, char *));
3711 break;
3712
3713 case 'O':
3714 #ifdef ASM_OUTPUT_OPCODE
3715 ASM_OUTPUT_OPCODE (asm_out_file, p);
3716 #endif
3717 break;
3718
3719 case 'R':
3720 #ifdef REGISTER_PREFIX
3721 fprintf (file, "%s", REGISTER_PREFIX);
3722 #endif
3723 break;
3724
3725 case 'I':
3726 #ifdef IMMEDIATE_PREFIX
3727 fprintf (file, "%s", IMMEDIATE_PREFIX);
3728 #endif
3729 break;
3730
3731 case 'L':
3732 #ifdef LOCAL_LABEL_PREFIX
3733 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3734 #endif
3735 break;
3736
3737 case 'U':
3738 #ifdef USER_LABEL_PREFIX
3739 fprintf (file, "%s", USER_LABEL_PREFIX);
3740 #endif
3741 break;
3742
3743 default:
3744 abort ();
3745 }
3746 break;
3747
3748 default:
3749 fputc (c, file);
3750 }
3751 }
3752 \f
3753 /* Split up a CONST_DOUBLE or integer constant rtx
3754 into two rtx's for single words,
3755 storing in *FIRST the word that comes first in memory in the target
3756 and in *SECOND the other. */
3757
3758 void
3759 split_double (value, first, second)
3760 rtx value;
3761 rtx *first, *second;
3762 {
3763 if (GET_CODE (value) == CONST_INT)
3764 {
3765 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3766 {
3767 /* In this case the CONST_INT holds both target words.
3768 Extract the bits from it into two word-sized pieces.
3769 Sign extend each half to HOST_WIDE_INT. */
3770 rtx low, high;
3771 /* On machines where HOST_BITS_PER_WIDE_INT == BITS_PER_WORD
3772 the shift below will cause a compiler warning, even though
3773 this code won't be executed. So put the shift amounts in
3774 variables to avoid the warning. */
3775 int rshift = HOST_BITS_PER_WIDE_INT - BITS_PER_WORD;
3776 int lshift = HOST_BITS_PER_WIDE_INT - 2 * BITS_PER_WORD;
3777
3778 low = GEN_INT ((INTVAL (value) << rshift) >> rshift);
3779 high = GEN_INT ((INTVAL (value) << lshift) >> rshift);
3780 if (WORDS_BIG_ENDIAN)
3781 {
3782 *first = high;
3783 *second = low;
3784 }
3785 else
3786 {
3787 *first = low;
3788 *second = high;
3789 }
3790 }
3791 else
3792 {
3793 /* The rule for using CONST_INT for a wider mode
3794 is that we regard the value as signed.
3795 So sign-extend it. */
3796 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3797 if (WORDS_BIG_ENDIAN)
3798 {
3799 *first = high;
3800 *second = value;
3801 }
3802 else
3803 {
3804 *first = value;
3805 *second = high;
3806 }
3807 }
3808 }
3809 else if (GET_CODE (value) != CONST_DOUBLE)
3810 {
3811 if (WORDS_BIG_ENDIAN)
3812 {
3813 *first = const0_rtx;
3814 *second = value;
3815 }
3816 else
3817 {
3818 *first = value;
3819 *second = const0_rtx;
3820 }
3821 }
3822 else if (GET_MODE (value) == VOIDmode
3823 /* This is the old way we did CONST_DOUBLE integers. */
3824 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3825 {
3826 /* In an integer, the words are defined as most and least significant.
3827 So order them by the target's convention. */
3828 if (WORDS_BIG_ENDIAN)
3829 {
3830 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3831 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3832 }
3833 else
3834 {
3835 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3836 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3837 }
3838 }
3839 else
3840 {
3841 #ifdef REAL_ARITHMETIC
3842 REAL_VALUE_TYPE r; long l[2];
3843 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3844
3845 /* Note, this converts the REAL_VALUE_TYPE to the target's
3846 format, splits up the floating point double and outputs
3847 exactly 32 bits of it into each of l[0] and l[1] --
3848 not necessarily BITS_PER_WORD bits. */
3849 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3850
3851 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3852 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3853 #else
3854 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3855 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3856 && ! flag_pretend_float)
3857 abort ();
3858
3859 if (
3860 #ifdef HOST_WORDS_BIG_ENDIAN
3861 WORDS_BIG_ENDIAN
3862 #else
3863 ! WORDS_BIG_ENDIAN
3864 #endif
3865 )
3866 {
3867 /* Host and target agree => no need to swap. */
3868 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3869 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3870 }
3871 else
3872 {
3873 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3874 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3875 }
3876 #endif /* no REAL_ARITHMETIC */
3877 }
3878 }
3879 \f
3880 /* Return nonzero if this function has no function calls. */
3881
3882 int
3883 leaf_function_p ()
3884 {
3885 rtx insn;
3886
3887 if (profile_flag || profile_block_flag || profile_arc_flag)
3888 return 0;
3889
3890 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3891 {
3892 if (GET_CODE (insn) == CALL_INSN)
3893 return 0;
3894 if (GET_CODE (insn) == INSN
3895 && GET_CODE (PATTERN (insn)) == SEQUENCE
3896 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN)
3897 return 0;
3898 }
3899 for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1))
3900 {
3901 if (GET_CODE (XEXP (insn, 0)) == CALL_INSN)
3902 return 0;
3903 if (GET_CODE (XEXP (insn, 0)) == INSN
3904 && GET_CODE (PATTERN (XEXP (insn, 0))) == SEQUENCE
3905 && GET_CODE (XVECEXP (PATTERN (XEXP (insn, 0)), 0, 0)) == CALL_INSN)
3906 return 0;
3907 }
3908
3909 return 1;
3910 }
3911
3912 /* On some machines, a function with no call insns
3913 can run faster if it doesn't create its own register window.
3914 When output, the leaf function should use only the "output"
3915 registers. Ordinarily, the function would be compiled to use
3916 the "input" registers to find its arguments; it is a candidate
3917 for leaf treatment if it uses only the "input" registers.
3918 Leaf function treatment means renumbering so the function
3919 uses the "output" registers instead. */
3920
3921 #ifdef LEAF_REGISTERS
3922
3923 static char permitted_reg_in_leaf_functions[] = LEAF_REGISTERS;
3924
3925 /* Return 1 if this function uses only the registers that can be
3926 safely renumbered. */
3927
3928 int
3929 only_leaf_regs_used ()
3930 {
3931 int i;
3932
3933 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3934 if ((regs_ever_live[i] || global_regs[i])
3935 && ! permitted_reg_in_leaf_functions[i])
3936 return 0;
3937
3938 if (current_function_uses_pic_offset_table
3939 && pic_offset_table_rtx != 0
3940 && GET_CODE (pic_offset_table_rtx) == REG
3941 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3942 return 0;
3943
3944 return 1;
3945 }
3946
3947 /* Scan all instructions and renumber all registers into those
3948 available in leaf functions. */
3949
3950 static void
3951 leaf_renumber_regs (first)
3952 rtx first;
3953 {
3954 rtx insn;
3955
3956 /* Renumber only the actual patterns.
3957 The reg-notes can contain frame pointer refs,
3958 and renumbering them could crash, and should not be needed. */
3959 for (insn = first; insn; insn = NEXT_INSN (insn))
3960 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3961 leaf_renumber_regs_insn (PATTERN (insn));
3962 for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1))
3963 if (GET_RTX_CLASS (GET_CODE (XEXP (insn, 0))) == 'i')
3964 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3965 }
3966
3967 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3968 available in leaf functions. */
3969
3970 void
3971 leaf_renumber_regs_insn (in_rtx)
3972 register rtx in_rtx;
3973 {
3974 register int i, j;
3975 register char *format_ptr;
3976
3977 if (in_rtx == 0)
3978 return;
3979
3980 /* Renumber all input-registers into output-registers.
3981 renumbered_regs would be 1 for an output-register;
3982 they */
3983
3984 if (GET_CODE (in_rtx) == REG)
3985 {
3986 int newreg;
3987
3988 /* Don't renumber the same reg twice. */
3989 if (in_rtx->used)
3990 return;
3991
3992 newreg = REGNO (in_rtx);
3993 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3994 to reach here as part of a REG_NOTE. */
3995 if (newreg >= FIRST_PSEUDO_REGISTER)
3996 {
3997 in_rtx->used = 1;
3998 return;
3999 }
4000 newreg = LEAF_REG_REMAP (newreg);
4001 if (newreg < 0)
4002 abort ();
4003 regs_ever_live[REGNO (in_rtx)] = 0;
4004 regs_ever_live[newreg] = 1;
4005 REGNO (in_rtx) = newreg;
4006 in_rtx->used = 1;
4007 }
4008
4009 if (GET_RTX_CLASS (GET_CODE (in_rtx)) == 'i')
4010 {
4011 /* Inside a SEQUENCE, we find insns.
4012 Renumber just the patterns of these insns,
4013 just as we do for the top-level insns. */
4014 leaf_renumber_regs_insn (PATTERN (in_rtx));
4015 return;
4016 }
4017
4018 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4019
4020 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4021 switch (*format_ptr++)
4022 {
4023 case 'e':
4024 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4025 break;
4026
4027 case 'E':
4028 if (NULL != XVEC (in_rtx, i))
4029 {
4030 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4031 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4032 }
4033 break;
4034
4035 case 'S':
4036 case 's':
4037 case '0':
4038 case 'i':
4039 case 'w':
4040 case 'n':
4041 case 'u':
4042 break;
4043
4044 default:
4045 abort ();
4046 }
4047 }
4048 #endif
This page took 0.217008 seconds and 5 git commands to generate.