]> gcc.gnu.org Git - gcc.git/blob - gcc/expr.c
Add SSE5 vector shift/rotate; Update SSE5 vector multiply
[gcc.git] / gcc / expr.c
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "real.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "flags.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "except.h"
34 #include "function.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "output.h"
44 #include "typeclass.h"
45 #include "toplev.h"
46 #include "ggc.h"
47 #include "langhooks.h"
48 #include "intl.h"
49 #include "tm_p.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-flow.h"
53 #include "target.h"
54 #include "timevar.h"
55 #include "df.h"
56 #include "diagnostic.h"
57
58 /* Decide whether a function's arguments should be processed
59 from first to last or from last to first.
60
61 They should if the stack and args grow in opposite directions, but
62 only if we have push insns. */
63
64 #ifdef PUSH_ROUNDING
65
66 #ifndef PUSH_ARGS_REVERSED
67 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
68 #define PUSH_ARGS_REVERSED /* If it's last to first. */
69 #endif
70 #endif
71
72 #endif
73
74 #ifndef STACK_PUSH_CODE
75 #ifdef STACK_GROWS_DOWNWARD
76 #define STACK_PUSH_CODE PRE_DEC
77 #else
78 #define STACK_PUSH_CODE PRE_INC
79 #endif
80 #endif
81
82
83 /* If this is nonzero, we do not bother generating VOLATILE
84 around volatile memory references, and we are willing to
85 output indirect addresses. If cse is to follow, we reject
86 indirect addresses so a useful potential cse is generated;
87 if it is used only once, instruction combination will produce
88 the same indirect address eventually. */
89 int cse_not_expected;
90
91 /* This structure is used by move_by_pieces to describe the move to
92 be performed. */
93 struct move_by_pieces
94 {
95 rtx to;
96 rtx to_addr;
97 int autinc_to;
98 int explicit_inc_to;
99 rtx from;
100 rtx from_addr;
101 int autinc_from;
102 int explicit_inc_from;
103 unsigned HOST_WIDE_INT len;
104 HOST_WIDE_INT offset;
105 int reverse;
106 };
107
108 /* This structure is used by store_by_pieces to describe the clear to
109 be performed. */
110
111 struct store_by_pieces
112 {
113 rtx to;
114 rtx to_addr;
115 int autinc_to;
116 int explicit_inc_to;
117 unsigned HOST_WIDE_INT len;
118 HOST_WIDE_INT offset;
119 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
120 void *constfundata;
121 int reverse;
122 };
123
124 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
125 unsigned int,
126 unsigned int);
127 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
128 struct move_by_pieces *);
129 static bool block_move_libcall_safe_for_call_parm (void);
130 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
131 static tree emit_block_move_libcall_fn (int);
132 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
133 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
134 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
135 static void store_by_pieces_1 (struct store_by_pieces *, unsigned int);
136 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
137 struct store_by_pieces *);
138 static tree clear_storage_libcall_fn (int);
139 static rtx compress_float_constant (rtx, rtx);
140 static rtx get_subtarget (rtx);
141 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
142 HOST_WIDE_INT, enum machine_mode,
143 tree, tree, int, alias_set_type);
144 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
145 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
146 tree, tree, alias_set_type, bool);
147
148 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
149
150 static int is_aligning_offset (const_tree, const_tree);
151 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
152 enum expand_modifier);
153 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
154 static rtx do_store_flag (tree, rtx, enum machine_mode, int);
155 #ifdef PUSH_ROUNDING
156 static void emit_single_push_insn (enum machine_mode, rtx, tree);
157 #endif
158 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
159 static rtx const_vector_from_tree (tree);
160 static void write_complex_part (rtx, rtx, bool);
161
162 /* Record for each mode whether we can move a register directly to or
163 from an object of that mode in memory. If we can't, we won't try
164 to use that mode directly when accessing a field of that mode. */
165
166 static char direct_load[NUM_MACHINE_MODES];
167 static char direct_store[NUM_MACHINE_MODES];
168
169 /* Record for each mode whether we can float-extend from memory. */
170
171 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
172
173 /* This macro is used to determine whether move_by_pieces should be called
174 to perform a structure copy. */
175 #ifndef MOVE_BY_PIECES_P
176 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
177 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
178 < (unsigned int) MOVE_RATIO)
179 #endif
180
181 /* This macro is used to determine whether clear_by_pieces should be
182 called to clear storage. */
183 #ifndef CLEAR_BY_PIECES_P
184 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
185 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
186 < (unsigned int) CLEAR_RATIO)
187 #endif
188
189 /* This macro is used to determine whether store_by_pieces should be
190 called to "memset" storage with byte values other than zero. */
191 #ifndef SET_BY_PIECES_P
192 #define SET_BY_PIECES_P(SIZE, ALIGN) \
193 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
194 < (unsigned int) SET_RATIO)
195 #endif
196
197 /* This macro is used to determine whether store_by_pieces should be
198 called to "memcpy" storage when the source is a constant string. */
199 #ifndef STORE_BY_PIECES_P
200 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
201 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
202 < (unsigned int) MOVE_RATIO)
203 #endif
204
205 /* This array records the insn_code of insns to perform block moves. */
206 enum insn_code movmem_optab[NUM_MACHINE_MODES];
207
208 /* This array records the insn_code of insns to perform block sets. */
209 enum insn_code setmem_optab[NUM_MACHINE_MODES];
210
211 /* These arrays record the insn_code of three different kinds of insns
212 to perform block compares. */
213 enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
214 enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
215 enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
216
217 /* Synchronization primitives. */
218 enum insn_code sync_add_optab[NUM_MACHINE_MODES];
219 enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
220 enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
221 enum insn_code sync_and_optab[NUM_MACHINE_MODES];
222 enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
223 enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
224 enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
225 enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
226 enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
227 enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
228 enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
229 enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
230 enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
231 enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
232 enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
233 enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
234 enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
235 enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
236 enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
237 enum insn_code sync_compare_and_swap_cc[NUM_MACHINE_MODES];
238 enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
239 enum insn_code sync_lock_release[NUM_MACHINE_MODES];
240
241 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
242
243 #ifndef SLOW_UNALIGNED_ACCESS
244 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
245 #endif
246 \f
247 /* This is run to set up which modes can be used
248 directly in memory and to initialize the block move optab. It is run
249 at the beginning of compilation and when the target is reinitialized. */
250
251 void
252 init_expr_target (void)
253 {
254 rtx insn, pat;
255 enum machine_mode mode;
256 int num_clobbers;
257 rtx mem, mem1;
258 rtx reg;
259
260 /* Try indexing by frame ptr and try by stack ptr.
261 It is known that on the Convex the stack ptr isn't a valid index.
262 With luck, one or the other is valid on any machine. */
263 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
264 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
265
266 /* A scratch register we can modify in-place below to avoid
267 useless RTL allocations. */
268 reg = gen_rtx_REG (VOIDmode, -1);
269
270 insn = rtx_alloc (INSN);
271 pat = gen_rtx_SET (0, NULL_RTX, NULL_RTX);
272 PATTERN (insn) = pat;
273
274 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
275 mode = (enum machine_mode) ((int) mode + 1))
276 {
277 int regno;
278
279 direct_load[(int) mode] = direct_store[(int) mode] = 0;
280 PUT_MODE (mem, mode);
281 PUT_MODE (mem1, mode);
282 PUT_MODE (reg, mode);
283
284 /* See if there is some register that can be used in this mode and
285 directly loaded or stored from memory. */
286
287 if (mode != VOIDmode && mode != BLKmode)
288 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
289 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
290 regno++)
291 {
292 if (! HARD_REGNO_MODE_OK (regno, mode))
293 continue;
294
295 SET_REGNO (reg, regno);
296
297 SET_SRC (pat) = mem;
298 SET_DEST (pat) = reg;
299 if (recog (pat, insn, &num_clobbers) >= 0)
300 direct_load[(int) mode] = 1;
301
302 SET_SRC (pat) = mem1;
303 SET_DEST (pat) = reg;
304 if (recog (pat, insn, &num_clobbers) >= 0)
305 direct_load[(int) mode] = 1;
306
307 SET_SRC (pat) = reg;
308 SET_DEST (pat) = mem;
309 if (recog (pat, insn, &num_clobbers) >= 0)
310 direct_store[(int) mode] = 1;
311
312 SET_SRC (pat) = reg;
313 SET_DEST (pat) = mem1;
314 if (recog (pat, insn, &num_clobbers) >= 0)
315 direct_store[(int) mode] = 1;
316 }
317 }
318
319 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
320
321 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
322 mode = GET_MODE_WIDER_MODE (mode))
323 {
324 enum machine_mode srcmode;
325 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
326 srcmode = GET_MODE_WIDER_MODE (srcmode))
327 {
328 enum insn_code ic;
329
330 ic = can_extend_p (mode, srcmode, 0);
331 if (ic == CODE_FOR_nothing)
332 continue;
333
334 PUT_MODE (mem, srcmode);
335
336 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
337 float_extend_from_mem[mode][srcmode] = true;
338 }
339 }
340 }
341
342 /* This is run at the start of compiling a function. */
343
344 void
345 init_expr (void)
346 {
347 memset (&crtl->expr, 0, sizeof (crtl->expr));
348 }
349 \f
350 /* Copy data from FROM to TO, where the machine modes are not the same.
351 Both modes may be integer, or both may be floating, or both may be
352 fixed-point.
353 UNSIGNEDP should be nonzero if FROM is an unsigned type.
354 This causes zero-extension instead of sign-extension. */
355
356 void
357 convert_move (rtx to, rtx from, int unsignedp)
358 {
359 enum machine_mode to_mode = GET_MODE (to);
360 enum machine_mode from_mode = GET_MODE (from);
361 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
362 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
363 enum insn_code code;
364 rtx libcall;
365
366 /* rtx code for making an equivalent value. */
367 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
368 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
369
370
371 gcc_assert (to_real == from_real);
372 gcc_assert (to_mode != BLKmode);
373 gcc_assert (from_mode != BLKmode);
374
375 /* If the source and destination are already the same, then there's
376 nothing to do. */
377 if (to == from)
378 return;
379
380 /* If FROM is a SUBREG that indicates that we have already done at least
381 the required extension, strip it. We don't handle such SUBREGs as
382 TO here. */
383
384 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
385 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
386 >= GET_MODE_SIZE (to_mode))
387 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
388 from = gen_lowpart (to_mode, from), from_mode = to_mode;
389
390 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
391
392 if (to_mode == from_mode
393 || (from_mode == VOIDmode && CONSTANT_P (from)))
394 {
395 emit_move_insn (to, from);
396 return;
397 }
398
399 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
400 {
401 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
402
403 if (VECTOR_MODE_P (to_mode))
404 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
405 else
406 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
407
408 emit_move_insn (to, from);
409 return;
410 }
411
412 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
413 {
414 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
415 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
416 return;
417 }
418
419 if (to_real)
420 {
421 rtx value, insns;
422 convert_optab tab;
423
424 gcc_assert ((GET_MODE_PRECISION (from_mode)
425 != GET_MODE_PRECISION (to_mode))
426 || (DECIMAL_FLOAT_MODE_P (from_mode)
427 != DECIMAL_FLOAT_MODE_P (to_mode)));
428
429 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
430 /* Conversion between decimal float and binary float, same size. */
431 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
432 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
433 tab = sext_optab;
434 else
435 tab = trunc_optab;
436
437 /* Try converting directly if the insn is supported. */
438
439 code = convert_optab_handler (tab, to_mode, from_mode)->insn_code;
440 if (code != CODE_FOR_nothing)
441 {
442 emit_unop_insn (code, to, from,
443 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
444 return;
445 }
446
447 /* Otherwise use a libcall. */
448 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
449
450 /* Is this conversion implemented yet? */
451 gcc_assert (libcall);
452
453 start_sequence ();
454 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
455 1, from, from_mode);
456 insns = get_insns ();
457 end_sequence ();
458 emit_libcall_block (insns, to, value,
459 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
460 from)
461 : gen_rtx_FLOAT_EXTEND (to_mode, from));
462 return;
463 }
464
465 /* Handle pointer conversion. */ /* SPEE 900220. */
466 /* Targets are expected to provide conversion insns between PxImode and
467 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
468 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
469 {
470 enum machine_mode full_mode
471 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
472
473 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code
474 != CODE_FOR_nothing);
475
476 if (full_mode != from_mode)
477 from = convert_to_mode (full_mode, from, unsignedp);
478 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code,
479 to, from, UNKNOWN);
480 return;
481 }
482 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
483 {
484 rtx new_from;
485 enum machine_mode full_mode
486 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
487
488 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code
489 != CODE_FOR_nothing);
490
491 if (to_mode == full_mode)
492 {
493 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
494 to, from, UNKNOWN);
495 return;
496 }
497
498 new_from = gen_reg_rtx (full_mode);
499 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
500 new_from, from, UNKNOWN);
501
502 /* else proceed to integer conversions below. */
503 from_mode = full_mode;
504 from = new_from;
505 }
506
507 /* Make sure both are fixed-point modes or both are not. */
508 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
509 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
510 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
511 {
512 /* If we widen from_mode to to_mode and they are in the same class,
513 we won't saturate the result.
514 Otherwise, always saturate the result to play safe. */
515 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
516 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
517 expand_fixed_convert (to, from, 0, 0);
518 else
519 expand_fixed_convert (to, from, 0, 1);
520 return;
521 }
522
523 /* Now both modes are integers. */
524
525 /* Handle expanding beyond a word. */
526 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
527 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
528 {
529 rtx insns;
530 rtx lowpart;
531 rtx fill_value;
532 rtx lowfrom;
533 int i;
534 enum machine_mode lowpart_mode;
535 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
536
537 /* Try converting directly if the insn is supported. */
538 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
539 != CODE_FOR_nothing)
540 {
541 /* If FROM is a SUBREG, put it into a register. Do this
542 so that we always generate the same set of insns for
543 better cse'ing; if an intermediate assignment occurred,
544 we won't be doing the operation directly on the SUBREG. */
545 if (optimize > 0 && GET_CODE (from) == SUBREG)
546 from = force_reg (from_mode, from);
547 emit_unop_insn (code, to, from, equiv_code);
548 return;
549 }
550 /* Next, try converting via full word. */
551 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
552 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
553 != CODE_FOR_nothing))
554 {
555 rtx word_to = gen_reg_rtx (word_mode);
556 if (REG_P (to))
557 {
558 if (reg_overlap_mentioned_p (to, from))
559 from = force_reg (from_mode, from);
560 emit_insn (gen_rtx_CLOBBER (VOIDmode, to));
561 }
562 convert_move (word_to, from, unsignedp);
563 emit_unop_insn (code, to, word_to, equiv_code);
564 return;
565 }
566
567 /* No special multiword conversion insn; do it by hand. */
568 start_sequence ();
569
570 /* Since we will turn this into a no conflict block, we must ensure
571 that the source does not overlap the target. */
572
573 if (reg_overlap_mentioned_p (to, from))
574 from = force_reg (from_mode, from);
575
576 /* Get a copy of FROM widened to a word, if necessary. */
577 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
578 lowpart_mode = word_mode;
579 else
580 lowpart_mode = from_mode;
581
582 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
583
584 lowpart = gen_lowpart (lowpart_mode, to);
585 emit_move_insn (lowpart, lowfrom);
586
587 /* Compute the value to put in each remaining word. */
588 if (unsignedp)
589 fill_value = const0_rtx;
590 else
591 {
592 #ifdef HAVE_slt
593 if (HAVE_slt
594 && insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
595 && STORE_FLAG_VALUE == -1)
596 {
597 emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
598 lowpart_mode, 0);
599 fill_value = gen_reg_rtx (word_mode);
600 emit_insn (gen_slt (fill_value));
601 }
602 else
603 #endif
604 {
605 fill_value
606 = expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
607 size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
608 NULL_RTX, 0);
609 fill_value = convert_to_mode (word_mode, fill_value, 1);
610 }
611 }
612
613 /* Fill the remaining words. */
614 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
615 {
616 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
617 rtx subword = operand_subword (to, index, 1, to_mode);
618
619 gcc_assert (subword);
620
621 if (fill_value != subword)
622 emit_move_insn (subword, fill_value);
623 }
624
625 insns = get_insns ();
626 end_sequence ();
627
628 emit_insn (insns);
629 return;
630 }
631
632 /* Truncating multi-word to a word or less. */
633 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
634 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
635 {
636 if (!((MEM_P (from)
637 && ! MEM_VOLATILE_P (from)
638 && direct_load[(int) to_mode]
639 && ! mode_dependent_address_p (XEXP (from, 0)))
640 || REG_P (from)
641 || GET_CODE (from) == SUBREG))
642 from = force_reg (from_mode, from);
643 convert_move (to, gen_lowpart (word_mode, from), 0);
644 return;
645 }
646
647 /* Now follow all the conversions between integers
648 no more than a word long. */
649
650 /* For truncation, usually we can just refer to FROM in a narrower mode. */
651 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
652 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
653 GET_MODE_BITSIZE (from_mode)))
654 {
655 if (!((MEM_P (from)
656 && ! MEM_VOLATILE_P (from)
657 && direct_load[(int) to_mode]
658 && ! mode_dependent_address_p (XEXP (from, 0)))
659 || REG_P (from)
660 || GET_CODE (from) == SUBREG))
661 from = force_reg (from_mode, from);
662 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
663 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
664 from = copy_to_reg (from);
665 emit_move_insn (to, gen_lowpart (to_mode, from));
666 return;
667 }
668
669 /* Handle extension. */
670 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
671 {
672 /* Convert directly if that works. */
673 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
674 != CODE_FOR_nothing)
675 {
676 emit_unop_insn (code, to, from, equiv_code);
677 return;
678 }
679 else
680 {
681 enum machine_mode intermediate;
682 rtx tmp;
683 tree shift_amount;
684
685 /* Search for a mode to convert via. */
686 for (intermediate = from_mode; intermediate != VOIDmode;
687 intermediate = GET_MODE_WIDER_MODE (intermediate))
688 if (((can_extend_p (to_mode, intermediate, unsignedp)
689 != CODE_FOR_nothing)
690 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
691 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
692 GET_MODE_BITSIZE (intermediate))))
693 && (can_extend_p (intermediate, from_mode, unsignedp)
694 != CODE_FOR_nothing))
695 {
696 convert_move (to, convert_to_mode (intermediate, from,
697 unsignedp), unsignedp);
698 return;
699 }
700
701 /* No suitable intermediate mode.
702 Generate what we need with shifts. */
703 shift_amount = build_int_cst (NULL_TREE,
704 GET_MODE_BITSIZE (to_mode)
705 - GET_MODE_BITSIZE (from_mode));
706 from = gen_lowpart (to_mode, force_reg (from_mode, from));
707 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
708 to, unsignedp);
709 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
710 to, unsignedp);
711 if (tmp != to)
712 emit_move_insn (to, tmp);
713 return;
714 }
715 }
716
717 /* Support special truncate insns for certain modes. */
718 if (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code != CODE_FOR_nothing)
719 {
720 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code,
721 to, from, UNKNOWN);
722 return;
723 }
724
725 /* Handle truncation of volatile memrefs, and so on;
726 the things that couldn't be truncated directly,
727 and for which there was no special instruction.
728
729 ??? Code above formerly short-circuited this, for most integer
730 mode pairs, with a force_reg in from_mode followed by a recursive
731 call to this routine. Appears always to have been wrong. */
732 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
733 {
734 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
735 emit_move_insn (to, temp);
736 return;
737 }
738
739 /* Mode combination is not recognized. */
740 gcc_unreachable ();
741 }
742
743 /* Return an rtx for a value that would result
744 from converting X to mode MODE.
745 Both X and MODE may be floating, or both integer.
746 UNSIGNEDP is nonzero if X is an unsigned value.
747 This can be done by referring to a part of X in place
748 or by copying to a new temporary with conversion. */
749
750 rtx
751 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
752 {
753 return convert_modes (mode, VOIDmode, x, unsignedp);
754 }
755
756 /* Return an rtx for a value that would result
757 from converting X from mode OLDMODE to mode MODE.
758 Both modes may be floating, or both integer.
759 UNSIGNEDP is nonzero if X is an unsigned value.
760
761 This can be done by referring to a part of X in place
762 or by copying to a new temporary with conversion.
763
764 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
765
766 rtx
767 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
768 {
769 rtx temp;
770
771 /* If FROM is a SUBREG that indicates that we have already done at least
772 the required extension, strip it. */
773
774 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
775 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
776 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
777 x = gen_lowpart (mode, x);
778
779 if (GET_MODE (x) != VOIDmode)
780 oldmode = GET_MODE (x);
781
782 if (mode == oldmode)
783 return x;
784
785 /* There is one case that we must handle specially: If we are converting
786 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
787 we are to interpret the constant as unsigned, gen_lowpart will do
788 the wrong if the constant appears negative. What we want to do is
789 make the high-order word of the constant zero, not all ones. */
790
791 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
792 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
793 && GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
794 {
795 HOST_WIDE_INT val = INTVAL (x);
796
797 if (oldmode != VOIDmode
798 && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
799 {
800 int width = GET_MODE_BITSIZE (oldmode);
801
802 /* We need to zero extend VAL. */
803 val &= ((HOST_WIDE_INT) 1 << width) - 1;
804 }
805
806 return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
807 }
808
809 /* We can do this with a gen_lowpart if both desired and current modes
810 are integer, and this is either a constant integer, a register, or a
811 non-volatile MEM. Except for the constant case where MODE is no
812 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
813
814 if ((GET_CODE (x) == CONST_INT
815 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
816 || (GET_MODE_CLASS (mode) == MODE_INT
817 && GET_MODE_CLASS (oldmode) == MODE_INT
818 && (GET_CODE (x) == CONST_DOUBLE
819 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
820 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
821 && direct_load[(int) mode])
822 || (REG_P (x)
823 && (! HARD_REGISTER_P (x)
824 || HARD_REGNO_MODE_OK (REGNO (x), mode))
825 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
826 GET_MODE_BITSIZE (GET_MODE (x)))))))))
827 {
828 /* ?? If we don't know OLDMODE, we have to assume here that
829 X does not need sign- or zero-extension. This may not be
830 the case, but it's the best we can do. */
831 if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
832 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
833 {
834 HOST_WIDE_INT val = INTVAL (x);
835 int width = GET_MODE_BITSIZE (oldmode);
836
837 /* We must sign or zero-extend in this case. Start by
838 zero-extending, then sign extend if we need to. */
839 val &= ((HOST_WIDE_INT) 1 << width) - 1;
840 if (! unsignedp
841 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
842 val |= (HOST_WIDE_INT) (-1) << width;
843
844 return gen_int_mode (val, mode);
845 }
846
847 return gen_lowpart (mode, x);
848 }
849
850 /* Converting from integer constant into mode is always equivalent to an
851 subreg operation. */
852 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
853 {
854 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
855 return simplify_gen_subreg (mode, x, oldmode, 0);
856 }
857
858 temp = gen_reg_rtx (mode);
859 convert_move (temp, x, unsignedp);
860 return temp;
861 }
862 \f
863 /* STORE_MAX_PIECES is the number of bytes at a time that we can
864 store efficiently. Due to internal GCC limitations, this is
865 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
866 for an immediate constant. */
867
868 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
869
870 /* Determine whether the LEN bytes can be moved by using several move
871 instructions. Return nonzero if a call to move_by_pieces should
872 succeed. */
873
874 int
875 can_move_by_pieces (unsigned HOST_WIDE_INT len,
876 unsigned int align ATTRIBUTE_UNUSED)
877 {
878 return MOVE_BY_PIECES_P (len, align);
879 }
880
881 /* Generate several move instructions to copy LEN bytes from block FROM to
882 block TO. (These are MEM rtx's with BLKmode).
883
884 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
885 used to push FROM to the stack.
886
887 ALIGN is maximum stack alignment we can assume.
888
889 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
890 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
891 stpcpy. */
892
893 rtx
894 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
895 unsigned int align, int endp)
896 {
897 struct move_by_pieces data;
898 rtx to_addr, from_addr = XEXP (from, 0);
899 unsigned int max_size = MOVE_MAX_PIECES + 1;
900 enum machine_mode mode = VOIDmode, tmode;
901 enum insn_code icode;
902
903 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
904
905 data.offset = 0;
906 data.from_addr = from_addr;
907 if (to)
908 {
909 to_addr = XEXP (to, 0);
910 data.to = to;
911 data.autinc_to
912 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
913 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
914 data.reverse
915 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
916 }
917 else
918 {
919 to_addr = NULL_RTX;
920 data.to = NULL_RTX;
921 data.autinc_to = 1;
922 #ifdef STACK_GROWS_DOWNWARD
923 data.reverse = 1;
924 #else
925 data.reverse = 0;
926 #endif
927 }
928 data.to_addr = to_addr;
929 data.from = from;
930 data.autinc_from
931 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
932 || GET_CODE (from_addr) == POST_INC
933 || GET_CODE (from_addr) == POST_DEC);
934
935 data.explicit_inc_from = 0;
936 data.explicit_inc_to = 0;
937 if (data.reverse) data.offset = len;
938 data.len = len;
939
940 /* If copying requires more than two move insns,
941 copy addresses to registers (to make displacements shorter)
942 and use post-increment if available. */
943 if (!(data.autinc_from && data.autinc_to)
944 && move_by_pieces_ninsns (len, align, max_size) > 2)
945 {
946 /* Find the mode of the largest move... */
947 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
948 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
949 if (GET_MODE_SIZE (tmode) < max_size)
950 mode = tmode;
951
952 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
953 {
954 data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
955 data.autinc_from = 1;
956 data.explicit_inc_from = -1;
957 }
958 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
959 {
960 data.from_addr = copy_addr_to_reg (from_addr);
961 data.autinc_from = 1;
962 data.explicit_inc_from = 1;
963 }
964 if (!data.autinc_from && CONSTANT_P (from_addr))
965 data.from_addr = copy_addr_to_reg (from_addr);
966 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
967 {
968 data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
969 data.autinc_to = 1;
970 data.explicit_inc_to = -1;
971 }
972 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
973 {
974 data.to_addr = copy_addr_to_reg (to_addr);
975 data.autinc_to = 1;
976 data.explicit_inc_to = 1;
977 }
978 if (!data.autinc_to && CONSTANT_P (to_addr))
979 data.to_addr = copy_addr_to_reg (to_addr);
980 }
981
982 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
983 if (align >= GET_MODE_ALIGNMENT (tmode))
984 align = GET_MODE_ALIGNMENT (tmode);
985 else
986 {
987 enum machine_mode xmode;
988
989 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
990 tmode != VOIDmode;
991 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
992 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
993 || SLOW_UNALIGNED_ACCESS (tmode, align))
994 break;
995
996 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
997 }
998
999 /* First move what we can in the largest integer mode, then go to
1000 successively smaller modes. */
1001
1002 while (max_size > 1)
1003 {
1004 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1005 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1006 if (GET_MODE_SIZE (tmode) < max_size)
1007 mode = tmode;
1008
1009 if (mode == VOIDmode)
1010 break;
1011
1012 icode = optab_handler (mov_optab, mode)->insn_code;
1013 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1014 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
1015
1016 max_size = GET_MODE_SIZE (mode);
1017 }
1018
1019 /* The code above should have handled everything. */
1020 gcc_assert (!data.len);
1021
1022 if (endp)
1023 {
1024 rtx to1;
1025
1026 gcc_assert (!data.reverse);
1027 if (data.autinc_to)
1028 {
1029 if (endp == 2)
1030 {
1031 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1032 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1033 else
1034 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
1035 -1));
1036 }
1037 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1038 data.offset);
1039 }
1040 else
1041 {
1042 if (endp == 2)
1043 --data.offset;
1044 to1 = adjust_address (data.to, QImode, data.offset);
1045 }
1046 return to1;
1047 }
1048 else
1049 return data.to;
1050 }
1051
1052 /* Return number of insns required to move L bytes by pieces.
1053 ALIGN (in bits) is maximum alignment we can assume. */
1054
1055 static unsigned HOST_WIDE_INT
1056 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1057 unsigned int max_size)
1058 {
1059 unsigned HOST_WIDE_INT n_insns = 0;
1060 enum machine_mode tmode;
1061
1062 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1063 if (align >= GET_MODE_ALIGNMENT (tmode))
1064 align = GET_MODE_ALIGNMENT (tmode);
1065 else
1066 {
1067 enum machine_mode tmode, xmode;
1068
1069 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1070 tmode != VOIDmode;
1071 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1072 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1073 || SLOW_UNALIGNED_ACCESS (tmode, align))
1074 break;
1075
1076 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1077 }
1078
1079 while (max_size > 1)
1080 {
1081 enum machine_mode mode = VOIDmode;
1082 enum insn_code icode;
1083
1084 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1085 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1086 if (GET_MODE_SIZE (tmode) < max_size)
1087 mode = tmode;
1088
1089 if (mode == VOIDmode)
1090 break;
1091
1092 icode = optab_handler (mov_optab, mode)->insn_code;
1093 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1094 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1095
1096 max_size = GET_MODE_SIZE (mode);
1097 }
1098
1099 gcc_assert (!l);
1100 return n_insns;
1101 }
1102
1103 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1104 with move instructions for mode MODE. GENFUN is the gen_... function
1105 to make a move insn for that mode. DATA has all the other info. */
1106
1107 static void
1108 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1109 struct move_by_pieces *data)
1110 {
1111 unsigned int size = GET_MODE_SIZE (mode);
1112 rtx to1 = NULL_RTX, from1;
1113
1114 while (data->len >= size)
1115 {
1116 if (data->reverse)
1117 data->offset -= size;
1118
1119 if (data->to)
1120 {
1121 if (data->autinc_to)
1122 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1123 data->offset);
1124 else
1125 to1 = adjust_address (data->to, mode, data->offset);
1126 }
1127
1128 if (data->autinc_from)
1129 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1130 data->offset);
1131 else
1132 from1 = adjust_address (data->from, mode, data->offset);
1133
1134 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1135 emit_insn (gen_add2_insn (data->to_addr,
1136 GEN_INT (-(HOST_WIDE_INT)size)));
1137 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1138 emit_insn (gen_add2_insn (data->from_addr,
1139 GEN_INT (-(HOST_WIDE_INT)size)));
1140
1141 if (data->to)
1142 emit_insn ((*genfun) (to1, from1));
1143 else
1144 {
1145 #ifdef PUSH_ROUNDING
1146 emit_single_push_insn (mode, from1, NULL);
1147 #else
1148 gcc_unreachable ();
1149 #endif
1150 }
1151
1152 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1153 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1154 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1155 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1156
1157 if (! data->reverse)
1158 data->offset += size;
1159
1160 data->len -= size;
1161 }
1162 }
1163 \f
1164 /* Emit code to move a block Y to a block X. This may be done with
1165 string-move instructions, with multiple scalar move instructions,
1166 or with a library call.
1167
1168 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1169 SIZE is an rtx that says how long they are.
1170 ALIGN is the maximum alignment we can assume they have.
1171 METHOD describes what kind of copy this is, and what mechanisms may be used.
1172
1173 Return the address of the new block, if memcpy is called and returns it,
1174 0 otherwise. */
1175
1176 rtx
1177 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1178 unsigned int expected_align, HOST_WIDE_INT expected_size)
1179 {
1180 bool may_use_call;
1181 rtx retval = 0;
1182 unsigned int align;
1183
1184 switch (method)
1185 {
1186 case BLOCK_OP_NORMAL:
1187 case BLOCK_OP_TAILCALL:
1188 may_use_call = true;
1189 break;
1190
1191 case BLOCK_OP_CALL_PARM:
1192 may_use_call = block_move_libcall_safe_for_call_parm ();
1193
1194 /* Make inhibit_defer_pop nonzero around the library call
1195 to force it to pop the arguments right away. */
1196 NO_DEFER_POP;
1197 break;
1198
1199 case BLOCK_OP_NO_LIBCALL:
1200 may_use_call = false;
1201 break;
1202
1203 default:
1204 gcc_unreachable ();
1205 }
1206
1207 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1208
1209 gcc_assert (MEM_P (x));
1210 gcc_assert (MEM_P (y));
1211 gcc_assert (size);
1212
1213 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1214 block copy is more efficient for other large modes, e.g. DCmode. */
1215 x = adjust_address (x, BLKmode, 0);
1216 y = adjust_address (y, BLKmode, 0);
1217
1218 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1219 can be incorrect is coming from __builtin_memcpy. */
1220 if (GET_CODE (size) == CONST_INT)
1221 {
1222 if (INTVAL (size) == 0)
1223 return 0;
1224
1225 x = shallow_copy_rtx (x);
1226 y = shallow_copy_rtx (y);
1227 set_mem_size (x, size);
1228 set_mem_size (y, size);
1229 }
1230
1231 if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
1232 move_by_pieces (x, y, INTVAL (size), align, 0);
1233 else if (emit_block_move_via_movmem (x, y, size, align,
1234 expected_align, expected_size))
1235 ;
1236 else if (may_use_call)
1237 retval = emit_block_move_via_libcall (x, y, size,
1238 method == BLOCK_OP_TAILCALL);
1239 else
1240 emit_block_move_via_loop (x, y, size, align);
1241
1242 if (method == BLOCK_OP_CALL_PARM)
1243 OK_DEFER_POP;
1244
1245 return retval;
1246 }
1247
1248 rtx
1249 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1250 {
1251 return emit_block_move_hints (x, y, size, method, 0, -1);
1252 }
1253
1254 /* A subroutine of emit_block_move. Returns true if calling the
1255 block move libcall will not clobber any parameters which may have
1256 already been placed on the stack. */
1257
1258 static bool
1259 block_move_libcall_safe_for_call_parm (void)
1260 {
1261 #if defined (REG_PARM_STACK_SPACE)
1262 tree fn;
1263 #endif
1264
1265 /* If arguments are pushed on the stack, then they're safe. */
1266 if (PUSH_ARGS)
1267 return true;
1268
1269 /* If registers go on the stack anyway, any argument is sure to clobber
1270 an outgoing argument. */
1271 #if defined (REG_PARM_STACK_SPACE)
1272 fn = emit_block_move_libcall_fn (false);
1273 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1274 && REG_PARM_STACK_SPACE (fn) != 0)
1275 return false;
1276 #endif
1277
1278 /* If any argument goes in memory, then it might clobber an outgoing
1279 argument. */
1280 {
1281 CUMULATIVE_ARGS args_so_far;
1282 tree fn, arg;
1283
1284 fn = emit_block_move_libcall_fn (false);
1285 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1286
1287 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1288 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1289 {
1290 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1291 rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1292 if (!tmp || !REG_P (tmp))
1293 return false;
1294 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1295 return false;
1296 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1297 }
1298 }
1299 return true;
1300 }
1301
1302 /* A subroutine of emit_block_move. Expand a movmem pattern;
1303 return true if successful. */
1304
1305 static bool
1306 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1307 unsigned int expected_align, HOST_WIDE_INT expected_size)
1308 {
1309 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1310 int save_volatile_ok = volatile_ok;
1311 enum machine_mode mode;
1312
1313 if (expected_align < align)
1314 expected_align = align;
1315
1316 /* Since this is a move insn, we don't care about volatility. */
1317 volatile_ok = 1;
1318
1319 /* Try the most limited insn first, because there's no point
1320 including more than one in the machine description unless
1321 the more limited one has some advantage. */
1322
1323 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1324 mode = GET_MODE_WIDER_MODE (mode))
1325 {
1326 enum insn_code code = movmem_optab[(int) mode];
1327 insn_operand_predicate_fn pred;
1328
1329 if (code != CODE_FOR_nothing
1330 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1331 here because if SIZE is less than the mode mask, as it is
1332 returned by the macro, it will definitely be less than the
1333 actual mode mask. */
1334 && ((GET_CODE (size) == CONST_INT
1335 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1336 <= (GET_MODE_MASK (mode) >> 1)))
1337 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1338 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1339 || (*pred) (x, BLKmode))
1340 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1341 || (*pred) (y, BLKmode))
1342 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1343 || (*pred) (opalign, VOIDmode)))
1344 {
1345 rtx op2;
1346 rtx last = get_last_insn ();
1347 rtx pat;
1348
1349 op2 = convert_to_mode (mode, size, 1);
1350 pred = insn_data[(int) code].operand[2].predicate;
1351 if (pred != 0 && ! (*pred) (op2, mode))
1352 op2 = copy_to_mode_reg (mode, op2);
1353
1354 /* ??? When called via emit_block_move_for_call, it'd be
1355 nice if there were some way to inform the backend, so
1356 that it doesn't fail the expansion because it thinks
1357 emitting the libcall would be more efficient. */
1358
1359 if (insn_data[(int) code].n_operands == 4)
1360 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1361 else
1362 pat = GEN_FCN ((int) code) (x, y, op2, opalign,
1363 GEN_INT (expected_align),
1364 GEN_INT (expected_size));
1365 if (pat)
1366 {
1367 emit_insn (pat);
1368 volatile_ok = save_volatile_ok;
1369 return true;
1370 }
1371 else
1372 delete_insns_since (last);
1373 }
1374 }
1375
1376 volatile_ok = save_volatile_ok;
1377 return false;
1378 }
1379
1380 /* A subroutine of emit_block_move. Expand a call to memcpy.
1381 Return the return value from memcpy, 0 otherwise. */
1382
1383 rtx
1384 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1385 {
1386 rtx dst_addr, src_addr;
1387 tree call_expr, fn, src_tree, dst_tree, size_tree;
1388 enum machine_mode size_mode;
1389 rtx retval;
1390
1391 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1392 pseudos. We can then place those new pseudos into a VAR_DECL and
1393 use them later. */
1394
1395 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1396 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1397
1398 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1399 src_addr = convert_memory_address (ptr_mode, src_addr);
1400
1401 dst_tree = make_tree (ptr_type_node, dst_addr);
1402 src_tree = make_tree (ptr_type_node, src_addr);
1403
1404 size_mode = TYPE_MODE (sizetype);
1405
1406 size = convert_to_mode (size_mode, size, 1);
1407 size = copy_to_mode_reg (size_mode, size);
1408
1409 /* It is incorrect to use the libcall calling conventions to call
1410 memcpy in this context. This could be a user call to memcpy and
1411 the user may wish to examine the return value from memcpy. For
1412 targets where libcalls and normal calls have different conventions
1413 for returning pointers, we could end up generating incorrect code. */
1414
1415 size_tree = make_tree (sizetype, size);
1416
1417 fn = emit_block_move_libcall_fn (true);
1418 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1419 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1420
1421 retval = expand_normal (call_expr);
1422
1423 return retval;
1424 }
1425
1426 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1427 for the function we use for block copies. The first time FOR_CALL
1428 is true, we call assemble_external. */
1429
1430 static GTY(()) tree block_move_fn;
1431
1432 void
1433 init_block_move_fn (const char *asmspec)
1434 {
1435 if (!block_move_fn)
1436 {
1437 tree args, fn;
1438
1439 fn = get_identifier ("memcpy");
1440 args = build_function_type_list (ptr_type_node, ptr_type_node,
1441 const_ptr_type_node, sizetype,
1442 NULL_TREE);
1443
1444 fn = build_decl (FUNCTION_DECL, fn, args);
1445 DECL_EXTERNAL (fn) = 1;
1446 TREE_PUBLIC (fn) = 1;
1447 DECL_ARTIFICIAL (fn) = 1;
1448 TREE_NOTHROW (fn) = 1;
1449 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1450 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1451
1452 block_move_fn = fn;
1453 }
1454
1455 if (asmspec)
1456 set_user_assembler_name (block_move_fn, asmspec);
1457 }
1458
1459 static tree
1460 emit_block_move_libcall_fn (int for_call)
1461 {
1462 static bool emitted_extern;
1463
1464 if (!block_move_fn)
1465 init_block_move_fn (NULL);
1466
1467 if (for_call && !emitted_extern)
1468 {
1469 emitted_extern = true;
1470 make_decl_rtl (block_move_fn);
1471 assemble_external (block_move_fn);
1472 }
1473
1474 return block_move_fn;
1475 }
1476
1477 /* A subroutine of emit_block_move. Copy the data via an explicit
1478 loop. This is used only when libcalls are forbidden. */
1479 /* ??? It'd be nice to copy in hunks larger than QImode. */
1480
1481 static void
1482 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1483 unsigned int align ATTRIBUTE_UNUSED)
1484 {
1485 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1486 enum machine_mode iter_mode;
1487
1488 iter_mode = GET_MODE (size);
1489 if (iter_mode == VOIDmode)
1490 iter_mode = word_mode;
1491
1492 top_label = gen_label_rtx ();
1493 cmp_label = gen_label_rtx ();
1494 iter = gen_reg_rtx (iter_mode);
1495
1496 emit_move_insn (iter, const0_rtx);
1497
1498 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1499 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1500 do_pending_stack_adjust ();
1501
1502 emit_jump (cmp_label);
1503 emit_label (top_label);
1504
1505 tmp = convert_modes (Pmode, iter_mode, iter, true);
1506 x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp);
1507 y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp);
1508 x = change_address (x, QImode, x_addr);
1509 y = change_address (y, QImode, y_addr);
1510
1511 emit_move_insn (x, y);
1512
1513 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1514 true, OPTAB_LIB_WIDEN);
1515 if (tmp != iter)
1516 emit_move_insn (iter, tmp);
1517
1518 emit_label (cmp_label);
1519
1520 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1521 true, top_label);
1522 }
1523 \f
1524 /* Copy all or part of a value X into registers starting at REGNO.
1525 The number of registers to be filled is NREGS. */
1526
1527 void
1528 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1529 {
1530 int i;
1531 #ifdef HAVE_load_multiple
1532 rtx pat;
1533 rtx last;
1534 #endif
1535
1536 if (nregs == 0)
1537 return;
1538
1539 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1540 x = validize_mem (force_const_mem (mode, x));
1541
1542 /* See if the machine can do this with a load multiple insn. */
1543 #ifdef HAVE_load_multiple
1544 if (HAVE_load_multiple)
1545 {
1546 last = get_last_insn ();
1547 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1548 GEN_INT (nregs));
1549 if (pat)
1550 {
1551 emit_insn (pat);
1552 return;
1553 }
1554 else
1555 delete_insns_since (last);
1556 }
1557 #endif
1558
1559 for (i = 0; i < nregs; i++)
1560 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1561 operand_subword_force (x, i, mode));
1562 }
1563
1564 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1565 The number of registers to be filled is NREGS. */
1566
1567 void
1568 move_block_from_reg (int regno, rtx x, int nregs)
1569 {
1570 int i;
1571
1572 if (nregs == 0)
1573 return;
1574
1575 /* See if the machine can do this with a store multiple insn. */
1576 #ifdef HAVE_store_multiple
1577 if (HAVE_store_multiple)
1578 {
1579 rtx last = get_last_insn ();
1580 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1581 GEN_INT (nregs));
1582 if (pat)
1583 {
1584 emit_insn (pat);
1585 return;
1586 }
1587 else
1588 delete_insns_since (last);
1589 }
1590 #endif
1591
1592 for (i = 0; i < nregs; i++)
1593 {
1594 rtx tem = operand_subword (x, i, 1, BLKmode);
1595
1596 gcc_assert (tem);
1597
1598 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1599 }
1600 }
1601
1602 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1603 ORIG, where ORIG is a non-consecutive group of registers represented by
1604 a PARALLEL. The clone is identical to the original except in that the
1605 original set of registers is replaced by a new set of pseudo registers.
1606 The new set has the same modes as the original set. */
1607
1608 rtx
1609 gen_group_rtx (rtx orig)
1610 {
1611 int i, length;
1612 rtx *tmps;
1613
1614 gcc_assert (GET_CODE (orig) == PARALLEL);
1615
1616 length = XVECLEN (orig, 0);
1617 tmps = alloca (sizeof (rtx) * length);
1618
1619 /* Skip a NULL entry in first slot. */
1620 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1621
1622 if (i)
1623 tmps[0] = 0;
1624
1625 for (; i < length; i++)
1626 {
1627 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1628 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1629
1630 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1631 }
1632
1633 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1634 }
1635
1636 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1637 except that values are placed in TMPS[i], and must later be moved
1638 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1639
1640 static void
1641 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1642 {
1643 rtx src;
1644 int start, i;
1645 enum machine_mode m = GET_MODE (orig_src);
1646
1647 gcc_assert (GET_CODE (dst) == PARALLEL);
1648
1649 if (m != VOIDmode
1650 && !SCALAR_INT_MODE_P (m)
1651 && !MEM_P (orig_src)
1652 && GET_CODE (orig_src) != CONCAT)
1653 {
1654 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1655 if (imode == BLKmode)
1656 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1657 else
1658 src = gen_reg_rtx (imode);
1659 if (imode != BLKmode)
1660 src = gen_lowpart (GET_MODE (orig_src), src);
1661 emit_move_insn (src, orig_src);
1662 /* ...and back again. */
1663 if (imode != BLKmode)
1664 src = gen_lowpart (imode, src);
1665 emit_group_load_1 (tmps, dst, src, type, ssize);
1666 return;
1667 }
1668
1669 /* Check for a NULL entry, used to indicate that the parameter goes
1670 both on the stack and in registers. */
1671 if (XEXP (XVECEXP (dst, 0, 0), 0))
1672 start = 0;
1673 else
1674 start = 1;
1675
1676 /* Process the pieces. */
1677 for (i = start; i < XVECLEN (dst, 0); i++)
1678 {
1679 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1680 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1681 unsigned int bytelen = GET_MODE_SIZE (mode);
1682 int shift = 0;
1683
1684 /* Handle trailing fragments that run over the size of the struct. */
1685 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1686 {
1687 /* Arrange to shift the fragment to where it belongs.
1688 extract_bit_field loads to the lsb of the reg. */
1689 if (
1690 #ifdef BLOCK_REG_PADDING
1691 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1692 == (BYTES_BIG_ENDIAN ? upward : downward)
1693 #else
1694 BYTES_BIG_ENDIAN
1695 #endif
1696 )
1697 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1698 bytelen = ssize - bytepos;
1699 gcc_assert (bytelen > 0);
1700 }
1701
1702 /* If we won't be loading directly from memory, protect the real source
1703 from strange tricks we might play; but make sure that the source can
1704 be loaded directly into the destination. */
1705 src = orig_src;
1706 if (!MEM_P (orig_src)
1707 && (!CONSTANT_P (orig_src)
1708 || (GET_MODE (orig_src) != mode
1709 && GET_MODE (orig_src) != VOIDmode)))
1710 {
1711 if (GET_MODE (orig_src) == VOIDmode)
1712 src = gen_reg_rtx (mode);
1713 else
1714 src = gen_reg_rtx (GET_MODE (orig_src));
1715
1716 emit_move_insn (src, orig_src);
1717 }
1718
1719 /* Optimize the access just a bit. */
1720 if (MEM_P (src)
1721 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1722 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1723 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1724 && bytelen == GET_MODE_SIZE (mode))
1725 {
1726 tmps[i] = gen_reg_rtx (mode);
1727 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1728 }
1729 else if (COMPLEX_MODE_P (mode)
1730 && GET_MODE (src) == mode
1731 && bytelen == GET_MODE_SIZE (mode))
1732 /* Let emit_move_complex do the bulk of the work. */
1733 tmps[i] = src;
1734 else if (GET_CODE (src) == CONCAT)
1735 {
1736 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1737 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1738
1739 if ((bytepos == 0 && bytelen == slen0)
1740 || (bytepos != 0 && bytepos + bytelen <= slen))
1741 {
1742 /* The following assumes that the concatenated objects all
1743 have the same size. In this case, a simple calculation
1744 can be used to determine the object and the bit field
1745 to be extracted. */
1746 tmps[i] = XEXP (src, bytepos / slen0);
1747 if (! CONSTANT_P (tmps[i])
1748 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1749 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1750 (bytepos % slen0) * BITS_PER_UNIT,
1751 1, NULL_RTX, mode, mode);
1752 }
1753 else
1754 {
1755 rtx mem;
1756
1757 gcc_assert (!bytepos);
1758 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1759 emit_move_insn (mem, src);
1760 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1761 0, 1, NULL_RTX, mode, mode);
1762 }
1763 }
1764 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1765 SIMD register, which is currently broken. While we get GCC
1766 to emit proper RTL for these cases, let's dump to memory. */
1767 else if (VECTOR_MODE_P (GET_MODE (dst))
1768 && REG_P (src))
1769 {
1770 int slen = GET_MODE_SIZE (GET_MODE (src));
1771 rtx mem;
1772
1773 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1774 emit_move_insn (mem, src);
1775 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1776 }
1777 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1778 && XVECLEN (dst, 0) > 1)
1779 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1780 else if (CONSTANT_P (src))
1781 {
1782 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1783
1784 if (len == ssize)
1785 tmps[i] = src;
1786 else
1787 {
1788 rtx first, second;
1789
1790 gcc_assert (2 * len == ssize);
1791 split_double (src, &first, &second);
1792 if (i)
1793 tmps[i] = second;
1794 else
1795 tmps[i] = first;
1796 }
1797 }
1798 else if (REG_P (src) && GET_MODE (src) == mode)
1799 tmps[i] = src;
1800 else
1801 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1802 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1803 mode, mode);
1804
1805 if (shift)
1806 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1807 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1808 }
1809 }
1810
1811 /* Emit code to move a block SRC of type TYPE to a block DST,
1812 where DST is non-consecutive registers represented by a PARALLEL.
1813 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1814 if not known. */
1815
1816 void
1817 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1818 {
1819 rtx *tmps;
1820 int i;
1821
1822 tmps = alloca (sizeof (rtx) * XVECLEN (dst, 0));
1823 emit_group_load_1 (tmps, dst, src, type, ssize);
1824
1825 /* Copy the extracted pieces into the proper (probable) hard regs. */
1826 for (i = 0; i < XVECLEN (dst, 0); i++)
1827 {
1828 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1829 if (d == NULL)
1830 continue;
1831 emit_move_insn (d, tmps[i]);
1832 }
1833 }
1834
1835 /* Similar, but load SRC into new pseudos in a format that looks like
1836 PARALLEL. This can later be fed to emit_group_move to get things
1837 in the right place. */
1838
1839 rtx
1840 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1841 {
1842 rtvec vec;
1843 int i;
1844
1845 vec = rtvec_alloc (XVECLEN (parallel, 0));
1846 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1847
1848 /* Convert the vector to look just like the original PARALLEL, except
1849 with the computed values. */
1850 for (i = 0; i < XVECLEN (parallel, 0); i++)
1851 {
1852 rtx e = XVECEXP (parallel, 0, i);
1853 rtx d = XEXP (e, 0);
1854
1855 if (d)
1856 {
1857 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1858 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1859 }
1860 RTVEC_ELT (vec, i) = e;
1861 }
1862
1863 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1864 }
1865
1866 /* Emit code to move a block SRC to block DST, where SRC and DST are
1867 non-consecutive groups of registers, each represented by a PARALLEL. */
1868
1869 void
1870 emit_group_move (rtx dst, rtx src)
1871 {
1872 int i;
1873
1874 gcc_assert (GET_CODE (src) == PARALLEL
1875 && GET_CODE (dst) == PARALLEL
1876 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1877
1878 /* Skip first entry if NULL. */
1879 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1880 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1881 XEXP (XVECEXP (src, 0, i), 0));
1882 }
1883
1884 /* Move a group of registers represented by a PARALLEL into pseudos. */
1885
1886 rtx
1887 emit_group_move_into_temps (rtx src)
1888 {
1889 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1890 int i;
1891
1892 for (i = 0; i < XVECLEN (src, 0); i++)
1893 {
1894 rtx e = XVECEXP (src, 0, i);
1895 rtx d = XEXP (e, 0);
1896
1897 if (d)
1898 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1899 RTVEC_ELT (vec, i) = e;
1900 }
1901
1902 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1903 }
1904
1905 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1906 where SRC is non-consecutive registers represented by a PARALLEL.
1907 SSIZE represents the total size of block ORIG_DST, or -1 if not
1908 known. */
1909
1910 void
1911 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1912 {
1913 rtx *tmps, dst;
1914 int start, finish, i;
1915 enum machine_mode m = GET_MODE (orig_dst);
1916
1917 gcc_assert (GET_CODE (src) == PARALLEL);
1918
1919 if (!SCALAR_INT_MODE_P (m)
1920 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1921 {
1922 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1923 if (imode == BLKmode)
1924 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1925 else
1926 dst = gen_reg_rtx (imode);
1927 emit_group_store (dst, src, type, ssize);
1928 if (imode != BLKmode)
1929 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1930 emit_move_insn (orig_dst, dst);
1931 return;
1932 }
1933
1934 /* Check for a NULL entry, used to indicate that the parameter goes
1935 both on the stack and in registers. */
1936 if (XEXP (XVECEXP (src, 0, 0), 0))
1937 start = 0;
1938 else
1939 start = 1;
1940 finish = XVECLEN (src, 0);
1941
1942 tmps = alloca (sizeof (rtx) * finish);
1943
1944 /* Copy the (probable) hard regs into pseudos. */
1945 for (i = start; i < finish; i++)
1946 {
1947 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1948 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1949 {
1950 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1951 emit_move_insn (tmps[i], reg);
1952 }
1953 else
1954 tmps[i] = reg;
1955 }
1956
1957 /* If we won't be storing directly into memory, protect the real destination
1958 from strange tricks we might play. */
1959 dst = orig_dst;
1960 if (GET_CODE (dst) == PARALLEL)
1961 {
1962 rtx temp;
1963
1964 /* We can get a PARALLEL dst if there is a conditional expression in
1965 a return statement. In that case, the dst and src are the same,
1966 so no action is necessary. */
1967 if (rtx_equal_p (dst, src))
1968 return;
1969
1970 /* It is unclear if we can ever reach here, but we may as well handle
1971 it. Allocate a temporary, and split this into a store/load to/from
1972 the temporary. */
1973
1974 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1975 emit_group_store (temp, src, type, ssize);
1976 emit_group_load (dst, temp, type, ssize);
1977 return;
1978 }
1979 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1980 {
1981 enum machine_mode outer = GET_MODE (dst);
1982 enum machine_mode inner;
1983 HOST_WIDE_INT bytepos;
1984 bool done = false;
1985 rtx temp;
1986
1987 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1988 dst = gen_reg_rtx (outer);
1989
1990 /* Make life a bit easier for combine. */
1991 /* If the first element of the vector is the low part
1992 of the destination mode, use a paradoxical subreg to
1993 initialize the destination. */
1994 if (start < finish)
1995 {
1996 inner = GET_MODE (tmps[start]);
1997 bytepos = subreg_lowpart_offset (inner, outer);
1998 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1999 {
2000 temp = simplify_gen_subreg (outer, tmps[start],
2001 inner, 0);
2002 if (temp)
2003 {
2004 emit_move_insn (dst, temp);
2005 done = true;
2006 start++;
2007 }
2008 }
2009 }
2010
2011 /* If the first element wasn't the low part, try the last. */
2012 if (!done
2013 && start < finish - 1)
2014 {
2015 inner = GET_MODE (tmps[finish - 1]);
2016 bytepos = subreg_lowpart_offset (inner, outer);
2017 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2018 {
2019 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2020 inner, 0);
2021 if (temp)
2022 {
2023 emit_move_insn (dst, temp);
2024 done = true;
2025 finish--;
2026 }
2027 }
2028 }
2029
2030 /* Otherwise, simply initialize the result to zero. */
2031 if (!done)
2032 emit_move_insn (dst, CONST0_RTX (outer));
2033 }
2034
2035 /* Process the pieces. */
2036 for (i = start; i < finish; i++)
2037 {
2038 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2039 enum machine_mode mode = GET_MODE (tmps[i]);
2040 unsigned int bytelen = GET_MODE_SIZE (mode);
2041 rtx dest = dst;
2042
2043 /* Handle trailing fragments that run over the size of the struct. */
2044 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2045 {
2046 /* store_bit_field always takes its value from the lsb.
2047 Move the fragment to the lsb if it's not already there. */
2048 if (
2049 #ifdef BLOCK_REG_PADDING
2050 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2051 == (BYTES_BIG_ENDIAN ? upward : downward)
2052 #else
2053 BYTES_BIG_ENDIAN
2054 #endif
2055 )
2056 {
2057 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2058 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2059 build_int_cst (NULL_TREE, shift),
2060 tmps[i], 0);
2061 }
2062 bytelen = ssize - bytepos;
2063 }
2064
2065 if (GET_CODE (dst) == CONCAT)
2066 {
2067 if (bytepos + bytelen <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2068 dest = XEXP (dst, 0);
2069 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2070 {
2071 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2072 dest = XEXP (dst, 1);
2073 }
2074 else
2075 {
2076 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2077 dest = assign_stack_temp (GET_MODE (dest),
2078 GET_MODE_SIZE (GET_MODE (dest)), 0);
2079 emit_move_insn (adjust_address (dest, GET_MODE (tmps[i]), bytepos),
2080 tmps[i]);
2081 dst = dest;
2082 break;
2083 }
2084 }
2085
2086 /* Optimize the access just a bit. */
2087 if (MEM_P (dest)
2088 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2089 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2090 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2091 && bytelen == GET_MODE_SIZE (mode))
2092 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2093 else
2094 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2095 mode, tmps[i]);
2096 }
2097
2098 /* Copy from the pseudo into the (probable) hard reg. */
2099 if (orig_dst != dst)
2100 emit_move_insn (orig_dst, dst);
2101 }
2102
2103 /* Generate code to copy a BLKmode object of TYPE out of a
2104 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2105 is null, a stack temporary is created. TGTBLK is returned.
2106
2107 The purpose of this routine is to handle functions that return
2108 BLKmode structures in registers. Some machines (the PA for example)
2109 want to return all small structures in registers regardless of the
2110 structure's alignment. */
2111
2112 rtx
2113 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2114 {
2115 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2116 rtx src = NULL, dst = NULL;
2117 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2118 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2119 enum machine_mode copy_mode;
2120
2121 if (tgtblk == 0)
2122 {
2123 tgtblk = assign_temp (build_qualified_type (type,
2124 (TYPE_QUALS (type)
2125 | TYPE_QUAL_CONST)),
2126 0, 1, 1);
2127 preserve_temp_slots (tgtblk);
2128 }
2129
2130 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2131 into a new pseudo which is a full word. */
2132
2133 if (GET_MODE (srcreg) != BLKmode
2134 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2135 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2136
2137 /* If the structure doesn't take up a whole number of words, see whether
2138 SRCREG is padded on the left or on the right. If it's on the left,
2139 set PADDING_CORRECTION to the number of bits to skip.
2140
2141 In most ABIs, the structure will be returned at the least end of
2142 the register, which translates to right padding on little-endian
2143 targets and left padding on big-endian targets. The opposite
2144 holds if the structure is returned at the most significant
2145 end of the register. */
2146 if (bytes % UNITS_PER_WORD != 0
2147 && (targetm.calls.return_in_msb (type)
2148 ? !BYTES_BIG_ENDIAN
2149 : BYTES_BIG_ENDIAN))
2150 padding_correction
2151 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2152
2153 /* Copy the structure BITSIZE bits at a time. If the target lives in
2154 memory, take care of not reading/writing past its end by selecting
2155 a copy mode suited to BITSIZE. This should always be possible given
2156 how it is computed.
2157
2158 We could probably emit more efficient code for machines which do not use
2159 strict alignment, but it doesn't seem worth the effort at the current
2160 time. */
2161
2162 copy_mode = word_mode;
2163 if (MEM_P (tgtblk))
2164 {
2165 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2166 if (mem_mode != BLKmode)
2167 copy_mode = mem_mode;
2168 }
2169
2170 for (bitpos = 0, xbitpos = padding_correction;
2171 bitpos < bytes * BITS_PER_UNIT;
2172 bitpos += bitsize, xbitpos += bitsize)
2173 {
2174 /* We need a new source operand each time xbitpos is on a
2175 word boundary and when xbitpos == padding_correction
2176 (the first time through). */
2177 if (xbitpos % BITS_PER_WORD == 0
2178 || xbitpos == padding_correction)
2179 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2180 GET_MODE (srcreg));
2181
2182 /* We need a new destination operand each time bitpos is on
2183 a word boundary. */
2184 if (bitpos % BITS_PER_WORD == 0)
2185 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2186
2187 /* Use xbitpos for the source extraction (right justified) and
2188 bitpos for the destination store (left justified). */
2189 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
2190 extract_bit_field (src, bitsize,
2191 xbitpos % BITS_PER_WORD, 1,
2192 NULL_RTX, copy_mode, copy_mode));
2193 }
2194
2195 return tgtblk;
2196 }
2197
2198 /* Add a USE expression for REG to the (possibly empty) list pointed
2199 to by CALL_FUSAGE. REG must denote a hard register. */
2200
2201 void
2202 use_reg (rtx *call_fusage, rtx reg)
2203 {
2204 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2205
2206 *call_fusage
2207 = gen_rtx_EXPR_LIST (VOIDmode,
2208 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2209 }
2210
2211 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2212 starting at REGNO. All of these registers must be hard registers. */
2213
2214 void
2215 use_regs (rtx *call_fusage, int regno, int nregs)
2216 {
2217 int i;
2218
2219 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2220
2221 for (i = 0; i < nregs; i++)
2222 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2223 }
2224
2225 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2226 PARALLEL REGS. This is for calls that pass values in multiple
2227 non-contiguous locations. The Irix 6 ABI has examples of this. */
2228
2229 void
2230 use_group_regs (rtx *call_fusage, rtx regs)
2231 {
2232 int i;
2233
2234 for (i = 0; i < XVECLEN (regs, 0); i++)
2235 {
2236 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2237
2238 /* A NULL entry means the parameter goes both on the stack and in
2239 registers. This can also be a MEM for targets that pass values
2240 partially on the stack and partially in registers. */
2241 if (reg != 0 && REG_P (reg))
2242 use_reg (call_fusage, reg);
2243 }
2244 }
2245 \f
2246
2247 /* Determine whether the LEN bytes generated by CONSTFUN can be
2248 stored to memory using several move instructions. CONSTFUNDATA is
2249 a pointer which will be passed as argument in every CONSTFUN call.
2250 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2251 a memset operation and false if it's a copy of a constant string.
2252 Return nonzero if a call to store_by_pieces should succeed. */
2253
2254 int
2255 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2256 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2257 void *constfundata, unsigned int align, bool memsetp)
2258 {
2259 unsigned HOST_WIDE_INT l;
2260 unsigned int max_size;
2261 HOST_WIDE_INT offset = 0;
2262 enum machine_mode mode, tmode;
2263 enum insn_code icode;
2264 int reverse;
2265 rtx cst;
2266
2267 if (len == 0)
2268 return 1;
2269
2270 if (! (memsetp
2271 ? SET_BY_PIECES_P (len, align)
2272 : STORE_BY_PIECES_P (len, align)))
2273 return 0;
2274
2275 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2276 if (align >= GET_MODE_ALIGNMENT (tmode))
2277 align = GET_MODE_ALIGNMENT (tmode);
2278 else
2279 {
2280 enum machine_mode xmode;
2281
2282 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2283 tmode != VOIDmode;
2284 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2285 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2286 || SLOW_UNALIGNED_ACCESS (tmode, align))
2287 break;
2288
2289 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2290 }
2291
2292 /* We would first store what we can in the largest integer mode, then go to
2293 successively smaller modes. */
2294
2295 for (reverse = 0;
2296 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2297 reverse++)
2298 {
2299 l = len;
2300 mode = VOIDmode;
2301 max_size = STORE_MAX_PIECES + 1;
2302 while (max_size > 1)
2303 {
2304 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2305 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2306 if (GET_MODE_SIZE (tmode) < max_size)
2307 mode = tmode;
2308
2309 if (mode == VOIDmode)
2310 break;
2311
2312 icode = optab_handler (mov_optab, mode)->insn_code;
2313 if (icode != CODE_FOR_nothing
2314 && align >= GET_MODE_ALIGNMENT (mode))
2315 {
2316 unsigned int size = GET_MODE_SIZE (mode);
2317
2318 while (l >= size)
2319 {
2320 if (reverse)
2321 offset -= size;
2322
2323 cst = (*constfun) (constfundata, offset, mode);
2324 if (!LEGITIMATE_CONSTANT_P (cst))
2325 return 0;
2326
2327 if (!reverse)
2328 offset += size;
2329
2330 l -= size;
2331 }
2332 }
2333
2334 max_size = GET_MODE_SIZE (mode);
2335 }
2336
2337 /* The code above should have handled everything. */
2338 gcc_assert (!l);
2339 }
2340
2341 return 1;
2342 }
2343
2344 /* Generate several move instructions to store LEN bytes generated by
2345 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2346 pointer which will be passed as argument in every CONSTFUN call.
2347 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2348 a memset operation and false if it's a copy of a constant string.
2349 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2350 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2351 stpcpy. */
2352
2353 rtx
2354 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2355 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2356 void *constfundata, unsigned int align, bool memsetp, int endp)
2357 {
2358 struct store_by_pieces data;
2359
2360 if (len == 0)
2361 {
2362 gcc_assert (endp != 2);
2363 return to;
2364 }
2365
2366 gcc_assert (memsetp
2367 ? SET_BY_PIECES_P (len, align)
2368 : STORE_BY_PIECES_P (len, align));
2369 data.constfun = constfun;
2370 data.constfundata = constfundata;
2371 data.len = len;
2372 data.to = to;
2373 store_by_pieces_1 (&data, align);
2374 if (endp)
2375 {
2376 rtx to1;
2377
2378 gcc_assert (!data.reverse);
2379 if (data.autinc_to)
2380 {
2381 if (endp == 2)
2382 {
2383 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2384 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2385 else
2386 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
2387 -1));
2388 }
2389 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2390 data.offset);
2391 }
2392 else
2393 {
2394 if (endp == 2)
2395 --data.offset;
2396 to1 = adjust_address (data.to, QImode, data.offset);
2397 }
2398 return to1;
2399 }
2400 else
2401 return data.to;
2402 }
2403
2404 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2405 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2406
2407 static void
2408 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2409 {
2410 struct store_by_pieces data;
2411
2412 if (len == 0)
2413 return;
2414
2415 data.constfun = clear_by_pieces_1;
2416 data.constfundata = NULL;
2417 data.len = len;
2418 data.to = to;
2419 store_by_pieces_1 (&data, align);
2420 }
2421
2422 /* Callback routine for clear_by_pieces.
2423 Return const0_rtx unconditionally. */
2424
2425 static rtx
2426 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2427 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2428 enum machine_mode mode ATTRIBUTE_UNUSED)
2429 {
2430 return const0_rtx;
2431 }
2432
2433 /* Subroutine of clear_by_pieces and store_by_pieces.
2434 Generate several move instructions to store LEN bytes of block TO. (A MEM
2435 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2436
2437 static void
2438 store_by_pieces_1 (struct store_by_pieces *data ATTRIBUTE_UNUSED,
2439 unsigned int align ATTRIBUTE_UNUSED)
2440 {
2441 rtx to_addr = XEXP (data->to, 0);
2442 unsigned int max_size = STORE_MAX_PIECES + 1;
2443 enum machine_mode mode = VOIDmode, tmode;
2444 enum insn_code icode;
2445
2446 data->offset = 0;
2447 data->to_addr = to_addr;
2448 data->autinc_to
2449 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2450 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2451
2452 data->explicit_inc_to = 0;
2453 data->reverse
2454 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2455 if (data->reverse)
2456 data->offset = data->len;
2457
2458 /* If storing requires more than two move insns,
2459 copy addresses to registers (to make displacements shorter)
2460 and use post-increment if available. */
2461 if (!data->autinc_to
2462 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2463 {
2464 /* Determine the main mode we'll be using. */
2465 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2466 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2467 if (GET_MODE_SIZE (tmode) < max_size)
2468 mode = tmode;
2469
2470 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2471 {
2472 data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
2473 data->autinc_to = 1;
2474 data->explicit_inc_to = -1;
2475 }
2476
2477 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2478 && ! data->autinc_to)
2479 {
2480 data->to_addr = copy_addr_to_reg (to_addr);
2481 data->autinc_to = 1;
2482 data->explicit_inc_to = 1;
2483 }
2484
2485 if ( !data->autinc_to && CONSTANT_P (to_addr))
2486 data->to_addr = copy_addr_to_reg (to_addr);
2487 }
2488
2489 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2490 if (align >= GET_MODE_ALIGNMENT (tmode))
2491 align = GET_MODE_ALIGNMENT (tmode);
2492 else
2493 {
2494 enum machine_mode xmode;
2495
2496 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2497 tmode != VOIDmode;
2498 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2499 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2500 || SLOW_UNALIGNED_ACCESS (tmode, align))
2501 break;
2502
2503 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2504 }
2505
2506 /* First store what we can in the largest integer mode, then go to
2507 successively smaller modes. */
2508
2509 while (max_size > 1)
2510 {
2511 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2512 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2513 if (GET_MODE_SIZE (tmode) < max_size)
2514 mode = tmode;
2515
2516 if (mode == VOIDmode)
2517 break;
2518
2519 icode = optab_handler (mov_optab, mode)->insn_code;
2520 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2521 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2522
2523 max_size = GET_MODE_SIZE (mode);
2524 }
2525
2526 /* The code above should have handled everything. */
2527 gcc_assert (!data->len);
2528 }
2529
2530 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2531 with move instructions for mode MODE. GENFUN is the gen_... function
2532 to make a move insn for that mode. DATA has all the other info. */
2533
2534 static void
2535 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2536 struct store_by_pieces *data)
2537 {
2538 unsigned int size = GET_MODE_SIZE (mode);
2539 rtx to1, cst;
2540
2541 while (data->len >= size)
2542 {
2543 if (data->reverse)
2544 data->offset -= size;
2545
2546 if (data->autinc_to)
2547 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2548 data->offset);
2549 else
2550 to1 = adjust_address (data->to, mode, data->offset);
2551
2552 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2553 emit_insn (gen_add2_insn (data->to_addr,
2554 GEN_INT (-(HOST_WIDE_INT) size)));
2555
2556 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2557 emit_insn ((*genfun) (to1, cst));
2558
2559 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2560 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2561
2562 if (! data->reverse)
2563 data->offset += size;
2564
2565 data->len -= size;
2566 }
2567 }
2568 \f
2569 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2570 its length in bytes. */
2571
2572 rtx
2573 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2574 unsigned int expected_align, HOST_WIDE_INT expected_size)
2575 {
2576 enum machine_mode mode = GET_MODE (object);
2577 unsigned int align;
2578
2579 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2580
2581 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2582 just move a zero. Otherwise, do this a piece at a time. */
2583 if (mode != BLKmode
2584 && GET_CODE (size) == CONST_INT
2585 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2586 {
2587 rtx zero = CONST0_RTX (mode);
2588 if (zero != NULL)
2589 {
2590 emit_move_insn (object, zero);
2591 return NULL;
2592 }
2593
2594 if (COMPLEX_MODE_P (mode))
2595 {
2596 zero = CONST0_RTX (GET_MODE_INNER (mode));
2597 if (zero != NULL)
2598 {
2599 write_complex_part (object, zero, 0);
2600 write_complex_part (object, zero, 1);
2601 return NULL;
2602 }
2603 }
2604 }
2605
2606 if (size == const0_rtx)
2607 return NULL;
2608
2609 align = MEM_ALIGN (object);
2610
2611 if (GET_CODE (size) == CONST_INT
2612 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2613 clear_by_pieces (object, INTVAL (size), align);
2614 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2615 expected_align, expected_size))
2616 ;
2617 else
2618 return set_storage_via_libcall (object, size, const0_rtx,
2619 method == BLOCK_OP_TAILCALL);
2620
2621 return NULL;
2622 }
2623
2624 rtx
2625 clear_storage (rtx object, rtx size, enum block_op_methods method)
2626 {
2627 return clear_storage_hints (object, size, method, 0, -1);
2628 }
2629
2630
2631 /* A subroutine of clear_storage. Expand a call to memset.
2632 Return the return value of memset, 0 otherwise. */
2633
2634 rtx
2635 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2636 {
2637 tree call_expr, fn, object_tree, size_tree, val_tree;
2638 enum machine_mode size_mode;
2639 rtx retval;
2640
2641 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2642 place those into new pseudos into a VAR_DECL and use them later. */
2643
2644 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2645
2646 size_mode = TYPE_MODE (sizetype);
2647 size = convert_to_mode (size_mode, size, 1);
2648 size = copy_to_mode_reg (size_mode, size);
2649
2650 /* It is incorrect to use the libcall calling conventions to call
2651 memset in this context. This could be a user call to memset and
2652 the user may wish to examine the return value from memset. For
2653 targets where libcalls and normal calls have different conventions
2654 for returning pointers, we could end up generating incorrect code. */
2655
2656 object_tree = make_tree (ptr_type_node, object);
2657 if (GET_CODE (val) != CONST_INT)
2658 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2659 size_tree = make_tree (sizetype, size);
2660 val_tree = make_tree (integer_type_node, val);
2661
2662 fn = clear_storage_libcall_fn (true);
2663 call_expr = build_call_expr (fn, 3,
2664 object_tree, integer_zero_node, size_tree);
2665 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2666
2667 retval = expand_normal (call_expr);
2668
2669 return retval;
2670 }
2671
2672 /* A subroutine of set_storage_via_libcall. Create the tree node
2673 for the function we use for block clears. The first time FOR_CALL
2674 is true, we call assemble_external. */
2675
2676 static GTY(()) tree block_clear_fn;
2677
2678 void
2679 init_block_clear_fn (const char *asmspec)
2680 {
2681 if (!block_clear_fn)
2682 {
2683 tree fn, args;
2684
2685 fn = get_identifier ("memset");
2686 args = build_function_type_list (ptr_type_node, ptr_type_node,
2687 integer_type_node, sizetype,
2688 NULL_TREE);
2689
2690 fn = build_decl (FUNCTION_DECL, fn, args);
2691 DECL_EXTERNAL (fn) = 1;
2692 TREE_PUBLIC (fn) = 1;
2693 DECL_ARTIFICIAL (fn) = 1;
2694 TREE_NOTHROW (fn) = 1;
2695 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2696 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2697
2698 block_clear_fn = fn;
2699 }
2700
2701 if (asmspec)
2702 set_user_assembler_name (block_clear_fn, asmspec);
2703 }
2704
2705 static tree
2706 clear_storage_libcall_fn (int for_call)
2707 {
2708 static bool emitted_extern;
2709
2710 if (!block_clear_fn)
2711 init_block_clear_fn (NULL);
2712
2713 if (for_call && !emitted_extern)
2714 {
2715 emitted_extern = true;
2716 make_decl_rtl (block_clear_fn);
2717 assemble_external (block_clear_fn);
2718 }
2719
2720 return block_clear_fn;
2721 }
2722 \f
2723 /* Expand a setmem pattern; return true if successful. */
2724
2725 bool
2726 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2727 unsigned int expected_align, HOST_WIDE_INT expected_size)
2728 {
2729 /* Try the most limited insn first, because there's no point
2730 including more than one in the machine description unless
2731 the more limited one has some advantage. */
2732
2733 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2734 enum machine_mode mode;
2735
2736 if (expected_align < align)
2737 expected_align = align;
2738
2739 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2740 mode = GET_MODE_WIDER_MODE (mode))
2741 {
2742 enum insn_code code = setmem_optab[(int) mode];
2743 insn_operand_predicate_fn pred;
2744
2745 if (code != CODE_FOR_nothing
2746 /* We don't need MODE to be narrower than
2747 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2748 the mode mask, as it is returned by the macro, it will
2749 definitely be less than the actual mode mask. */
2750 && ((GET_CODE (size) == CONST_INT
2751 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2752 <= (GET_MODE_MASK (mode) >> 1)))
2753 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2754 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2755 || (*pred) (object, BLKmode))
2756 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2757 || (*pred) (opalign, VOIDmode)))
2758 {
2759 rtx opsize, opchar;
2760 enum machine_mode char_mode;
2761 rtx last = get_last_insn ();
2762 rtx pat;
2763
2764 opsize = convert_to_mode (mode, size, 1);
2765 pred = insn_data[(int) code].operand[1].predicate;
2766 if (pred != 0 && ! (*pred) (opsize, mode))
2767 opsize = copy_to_mode_reg (mode, opsize);
2768
2769 opchar = val;
2770 char_mode = insn_data[(int) code].operand[2].mode;
2771 if (char_mode != VOIDmode)
2772 {
2773 opchar = convert_to_mode (char_mode, opchar, 1);
2774 pred = insn_data[(int) code].operand[2].predicate;
2775 if (pred != 0 && ! (*pred) (opchar, char_mode))
2776 opchar = copy_to_mode_reg (char_mode, opchar);
2777 }
2778
2779 if (insn_data[(int) code].n_operands == 4)
2780 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2781 else
2782 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign,
2783 GEN_INT (expected_align),
2784 GEN_INT (expected_size));
2785 if (pat)
2786 {
2787 emit_insn (pat);
2788 return true;
2789 }
2790 else
2791 delete_insns_since (last);
2792 }
2793 }
2794
2795 return false;
2796 }
2797
2798 \f
2799 /* Write to one of the components of the complex value CPLX. Write VAL to
2800 the real part if IMAG_P is false, and the imaginary part if its true. */
2801
2802 static void
2803 write_complex_part (rtx cplx, rtx val, bool imag_p)
2804 {
2805 enum machine_mode cmode;
2806 enum machine_mode imode;
2807 unsigned ibitsize;
2808
2809 if (GET_CODE (cplx) == CONCAT)
2810 {
2811 emit_move_insn (XEXP (cplx, imag_p), val);
2812 return;
2813 }
2814
2815 cmode = GET_MODE (cplx);
2816 imode = GET_MODE_INNER (cmode);
2817 ibitsize = GET_MODE_BITSIZE (imode);
2818
2819 /* For MEMs simplify_gen_subreg may generate an invalid new address
2820 because, e.g., the original address is considered mode-dependent
2821 by the target, which restricts simplify_subreg from invoking
2822 adjust_address_nv. Instead of preparing fallback support for an
2823 invalid address, we call adjust_address_nv directly. */
2824 if (MEM_P (cplx))
2825 {
2826 emit_move_insn (adjust_address_nv (cplx, imode,
2827 imag_p ? GET_MODE_SIZE (imode) : 0),
2828 val);
2829 return;
2830 }
2831
2832 /* If the sub-object is at least word sized, then we know that subregging
2833 will work. This special case is important, since store_bit_field
2834 wants to operate on integer modes, and there's rarely an OImode to
2835 correspond to TCmode. */
2836 if (ibitsize >= BITS_PER_WORD
2837 /* For hard regs we have exact predicates. Assume we can split
2838 the original object if it spans an even number of hard regs.
2839 This special case is important for SCmode on 64-bit platforms
2840 where the natural size of floating-point regs is 32-bit. */
2841 || (REG_P (cplx)
2842 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2843 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2844 {
2845 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2846 imag_p ? GET_MODE_SIZE (imode) : 0);
2847 if (part)
2848 {
2849 emit_move_insn (part, val);
2850 return;
2851 }
2852 else
2853 /* simplify_gen_subreg may fail for sub-word MEMs. */
2854 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2855 }
2856
2857 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2858 }
2859
2860 /* Extract one of the components of the complex value CPLX. Extract the
2861 real part if IMAG_P is false, and the imaginary part if it's true. */
2862
2863 static rtx
2864 read_complex_part (rtx cplx, bool imag_p)
2865 {
2866 enum machine_mode cmode, imode;
2867 unsigned ibitsize;
2868
2869 if (GET_CODE (cplx) == CONCAT)
2870 return XEXP (cplx, imag_p);
2871
2872 cmode = GET_MODE (cplx);
2873 imode = GET_MODE_INNER (cmode);
2874 ibitsize = GET_MODE_BITSIZE (imode);
2875
2876 /* Special case reads from complex constants that got spilled to memory. */
2877 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2878 {
2879 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2880 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2881 {
2882 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2883 if (CONSTANT_CLASS_P (part))
2884 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2885 }
2886 }
2887
2888 /* For MEMs simplify_gen_subreg may generate an invalid new address
2889 because, e.g., the original address is considered mode-dependent
2890 by the target, which restricts simplify_subreg from invoking
2891 adjust_address_nv. Instead of preparing fallback support for an
2892 invalid address, we call adjust_address_nv directly. */
2893 if (MEM_P (cplx))
2894 return adjust_address_nv (cplx, imode,
2895 imag_p ? GET_MODE_SIZE (imode) : 0);
2896
2897 /* If the sub-object is at least word sized, then we know that subregging
2898 will work. This special case is important, since extract_bit_field
2899 wants to operate on integer modes, and there's rarely an OImode to
2900 correspond to TCmode. */
2901 if (ibitsize >= BITS_PER_WORD
2902 /* For hard regs we have exact predicates. Assume we can split
2903 the original object if it spans an even number of hard regs.
2904 This special case is important for SCmode on 64-bit platforms
2905 where the natural size of floating-point regs is 32-bit. */
2906 || (REG_P (cplx)
2907 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2908 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2909 {
2910 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2911 imag_p ? GET_MODE_SIZE (imode) : 0);
2912 if (ret)
2913 return ret;
2914 else
2915 /* simplify_gen_subreg may fail for sub-word MEMs. */
2916 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2917 }
2918
2919 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2920 true, NULL_RTX, imode, imode);
2921 }
2922 \f
2923 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2924 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2925 represented in NEW_MODE. If FORCE is true, this will never happen, as
2926 we'll force-create a SUBREG if needed. */
2927
2928 static rtx
2929 emit_move_change_mode (enum machine_mode new_mode,
2930 enum machine_mode old_mode, rtx x, bool force)
2931 {
2932 rtx ret;
2933
2934 if (push_operand (x, GET_MODE (x)))
2935 {
2936 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2937 MEM_COPY_ATTRIBUTES (ret, x);
2938 }
2939 else if (MEM_P (x))
2940 {
2941 /* We don't have to worry about changing the address since the
2942 size in bytes is supposed to be the same. */
2943 if (reload_in_progress)
2944 {
2945 /* Copy the MEM to change the mode and move any
2946 substitutions from the old MEM to the new one. */
2947 ret = adjust_address_nv (x, new_mode, 0);
2948 copy_replacements (x, ret);
2949 }
2950 else
2951 ret = adjust_address (x, new_mode, 0);
2952 }
2953 else
2954 {
2955 /* Note that we do want simplify_subreg's behavior of validating
2956 that the new mode is ok for a hard register. If we were to use
2957 simplify_gen_subreg, we would create the subreg, but would
2958 probably run into the target not being able to implement it. */
2959 /* Except, of course, when FORCE is true, when this is exactly what
2960 we want. Which is needed for CCmodes on some targets. */
2961 if (force)
2962 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2963 else
2964 ret = simplify_subreg (new_mode, x, old_mode, 0);
2965 }
2966
2967 return ret;
2968 }
2969
2970 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2971 an integer mode of the same size as MODE. Returns the instruction
2972 emitted, or NULL if such a move could not be generated. */
2973
2974 static rtx
2975 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2976 {
2977 enum machine_mode imode;
2978 enum insn_code code;
2979
2980 /* There must exist a mode of the exact size we require. */
2981 imode = int_mode_for_mode (mode);
2982 if (imode == BLKmode)
2983 return NULL_RTX;
2984
2985 /* The target must support moves in this mode. */
2986 code = optab_handler (mov_optab, imode)->insn_code;
2987 if (code == CODE_FOR_nothing)
2988 return NULL_RTX;
2989
2990 x = emit_move_change_mode (imode, mode, x, force);
2991 if (x == NULL_RTX)
2992 return NULL_RTX;
2993 y = emit_move_change_mode (imode, mode, y, force);
2994 if (y == NULL_RTX)
2995 return NULL_RTX;
2996 return emit_insn (GEN_FCN (code) (x, y));
2997 }
2998
2999 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3000 Return an equivalent MEM that does not use an auto-increment. */
3001
3002 static rtx
3003 emit_move_resolve_push (enum machine_mode mode, rtx x)
3004 {
3005 enum rtx_code code = GET_CODE (XEXP (x, 0));
3006 HOST_WIDE_INT adjust;
3007 rtx temp;
3008
3009 adjust = GET_MODE_SIZE (mode);
3010 #ifdef PUSH_ROUNDING
3011 adjust = PUSH_ROUNDING (adjust);
3012 #endif
3013 if (code == PRE_DEC || code == POST_DEC)
3014 adjust = -adjust;
3015 else if (code == PRE_MODIFY || code == POST_MODIFY)
3016 {
3017 rtx expr = XEXP (XEXP (x, 0), 1);
3018 HOST_WIDE_INT val;
3019
3020 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3021 gcc_assert (GET_CODE (XEXP (expr, 1)) == CONST_INT);
3022 val = INTVAL (XEXP (expr, 1));
3023 if (GET_CODE (expr) == MINUS)
3024 val = -val;
3025 gcc_assert (adjust == val || adjust == -val);
3026 adjust = val;
3027 }
3028
3029 /* Do not use anti_adjust_stack, since we don't want to update
3030 stack_pointer_delta. */
3031 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3032 GEN_INT (adjust), stack_pointer_rtx,
3033 0, OPTAB_LIB_WIDEN);
3034 if (temp != stack_pointer_rtx)
3035 emit_move_insn (stack_pointer_rtx, temp);
3036
3037 switch (code)
3038 {
3039 case PRE_INC:
3040 case PRE_DEC:
3041 case PRE_MODIFY:
3042 temp = stack_pointer_rtx;
3043 break;
3044 case POST_INC:
3045 case POST_DEC:
3046 case POST_MODIFY:
3047 temp = plus_constant (stack_pointer_rtx, -adjust);
3048 break;
3049 default:
3050 gcc_unreachable ();
3051 }
3052
3053 return replace_equiv_address (x, temp);
3054 }
3055
3056 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3057 X is known to satisfy push_operand, and MODE is known to be complex.
3058 Returns the last instruction emitted. */
3059
3060 rtx
3061 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3062 {
3063 enum machine_mode submode = GET_MODE_INNER (mode);
3064 bool imag_first;
3065
3066 #ifdef PUSH_ROUNDING
3067 unsigned int submodesize = GET_MODE_SIZE (submode);
3068
3069 /* In case we output to the stack, but the size is smaller than the
3070 machine can push exactly, we need to use move instructions. */
3071 if (PUSH_ROUNDING (submodesize) != submodesize)
3072 {
3073 x = emit_move_resolve_push (mode, x);
3074 return emit_move_insn (x, y);
3075 }
3076 #endif
3077
3078 /* Note that the real part always precedes the imag part in memory
3079 regardless of machine's endianness. */
3080 switch (GET_CODE (XEXP (x, 0)))
3081 {
3082 case PRE_DEC:
3083 case POST_DEC:
3084 imag_first = true;
3085 break;
3086 case PRE_INC:
3087 case POST_INC:
3088 imag_first = false;
3089 break;
3090 default:
3091 gcc_unreachable ();
3092 }
3093
3094 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3095 read_complex_part (y, imag_first));
3096 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3097 read_complex_part (y, !imag_first));
3098 }
3099
3100 /* A subroutine of emit_move_complex. Perform the move from Y to X
3101 via two moves of the parts. Returns the last instruction emitted. */
3102
3103 rtx
3104 emit_move_complex_parts (rtx x, rtx y)
3105 {
3106 /* Show the output dies here. This is necessary for SUBREGs
3107 of pseudos since we cannot track their lifetimes correctly;
3108 hard regs shouldn't appear here except as return values. */
3109 if (!reload_completed && !reload_in_progress
3110 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3111 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
3112
3113 write_complex_part (x, read_complex_part (y, false), false);
3114 write_complex_part (x, read_complex_part (y, true), true);
3115
3116 return get_last_insn ();
3117 }
3118
3119 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3120 MODE is known to be complex. Returns the last instruction emitted. */
3121
3122 static rtx
3123 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3124 {
3125 bool try_int;
3126
3127 /* Need to take special care for pushes, to maintain proper ordering
3128 of the data, and possibly extra padding. */
3129 if (push_operand (x, mode))
3130 return emit_move_complex_push (mode, x, y);
3131
3132 /* See if we can coerce the target into moving both values at once. */
3133
3134 /* Move floating point as parts. */
3135 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3136 && optab_handler (mov_optab, GET_MODE_INNER (mode))->insn_code != CODE_FOR_nothing)
3137 try_int = false;
3138 /* Not possible if the values are inherently not adjacent. */
3139 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3140 try_int = false;
3141 /* Is possible if both are registers (or subregs of registers). */
3142 else if (register_operand (x, mode) && register_operand (y, mode))
3143 try_int = true;
3144 /* If one of the operands is a memory, and alignment constraints
3145 are friendly enough, we may be able to do combined memory operations.
3146 We do not attempt this if Y is a constant because that combination is
3147 usually better with the by-parts thing below. */
3148 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3149 && (!STRICT_ALIGNMENT
3150 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3151 try_int = true;
3152 else
3153 try_int = false;
3154
3155 if (try_int)
3156 {
3157 rtx ret;
3158
3159 /* For memory to memory moves, optimal behavior can be had with the
3160 existing block move logic. */
3161 if (MEM_P (x) && MEM_P (y))
3162 {
3163 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3164 BLOCK_OP_NO_LIBCALL);
3165 return get_last_insn ();
3166 }
3167
3168 ret = emit_move_via_integer (mode, x, y, true);
3169 if (ret)
3170 return ret;
3171 }
3172
3173 return emit_move_complex_parts (x, y);
3174 }
3175
3176 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3177 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3178
3179 static rtx
3180 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3181 {
3182 rtx ret;
3183
3184 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3185 if (mode != CCmode)
3186 {
3187 enum insn_code code = optab_handler (mov_optab, CCmode)->insn_code;
3188 if (code != CODE_FOR_nothing)
3189 {
3190 x = emit_move_change_mode (CCmode, mode, x, true);
3191 y = emit_move_change_mode (CCmode, mode, y, true);
3192 return emit_insn (GEN_FCN (code) (x, y));
3193 }
3194 }
3195
3196 /* Otherwise, find the MODE_INT mode of the same width. */
3197 ret = emit_move_via_integer (mode, x, y, false);
3198 gcc_assert (ret != NULL);
3199 return ret;
3200 }
3201
3202 /* Return true if word I of OP lies entirely in the
3203 undefined bits of a paradoxical subreg. */
3204
3205 static bool
3206 undefined_operand_subword_p (const_rtx op, int i)
3207 {
3208 enum machine_mode innermode, innermostmode;
3209 int offset;
3210 if (GET_CODE (op) != SUBREG)
3211 return false;
3212 innermode = GET_MODE (op);
3213 innermostmode = GET_MODE (SUBREG_REG (op));
3214 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3215 /* The SUBREG_BYTE represents offset, as if the value were stored in
3216 memory, except for a paradoxical subreg where we define
3217 SUBREG_BYTE to be 0; undo this exception as in
3218 simplify_subreg. */
3219 if (SUBREG_BYTE (op) == 0
3220 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3221 {
3222 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3223 if (WORDS_BIG_ENDIAN)
3224 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3225 if (BYTES_BIG_ENDIAN)
3226 offset += difference % UNITS_PER_WORD;
3227 }
3228 if (offset >= GET_MODE_SIZE (innermostmode)
3229 || offset <= -GET_MODE_SIZE (word_mode))
3230 return true;
3231 return false;
3232 }
3233
3234 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3235 MODE is any multi-word or full-word mode that lacks a move_insn
3236 pattern. Note that you will get better code if you define such
3237 patterns, even if they must turn into multiple assembler instructions. */
3238
3239 static rtx
3240 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3241 {
3242 rtx last_insn = 0;
3243 rtx seq, inner;
3244 bool need_clobber;
3245 int i;
3246
3247 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3248
3249 /* If X is a push on the stack, do the push now and replace
3250 X with a reference to the stack pointer. */
3251 if (push_operand (x, mode))
3252 x = emit_move_resolve_push (mode, x);
3253
3254 /* If we are in reload, see if either operand is a MEM whose address
3255 is scheduled for replacement. */
3256 if (reload_in_progress && MEM_P (x)
3257 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3258 x = replace_equiv_address_nv (x, inner);
3259 if (reload_in_progress && MEM_P (y)
3260 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3261 y = replace_equiv_address_nv (y, inner);
3262
3263 start_sequence ();
3264
3265 need_clobber = false;
3266 for (i = 0;
3267 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3268 i++)
3269 {
3270 rtx xpart = operand_subword (x, i, 1, mode);
3271 rtx ypart;
3272
3273 /* Do not generate code for a move if it would come entirely
3274 from the undefined bits of a paradoxical subreg. */
3275 if (undefined_operand_subword_p (y, i))
3276 continue;
3277
3278 ypart = operand_subword (y, i, 1, mode);
3279
3280 /* If we can't get a part of Y, put Y into memory if it is a
3281 constant. Otherwise, force it into a register. Then we must
3282 be able to get a part of Y. */
3283 if (ypart == 0 && CONSTANT_P (y))
3284 {
3285 y = use_anchored_address (force_const_mem (mode, y));
3286 ypart = operand_subword (y, i, 1, mode);
3287 }
3288 else if (ypart == 0)
3289 ypart = operand_subword_force (y, i, mode);
3290
3291 gcc_assert (xpart && ypart);
3292
3293 need_clobber |= (GET_CODE (xpart) == SUBREG);
3294
3295 last_insn = emit_move_insn (xpart, ypart);
3296 }
3297
3298 seq = get_insns ();
3299 end_sequence ();
3300
3301 /* Show the output dies here. This is necessary for SUBREGs
3302 of pseudos since we cannot track their lifetimes correctly;
3303 hard regs shouldn't appear here except as return values.
3304 We never want to emit such a clobber after reload. */
3305 if (x != y
3306 && ! (reload_in_progress || reload_completed)
3307 && need_clobber != 0)
3308 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
3309
3310 emit_insn (seq);
3311
3312 return last_insn;
3313 }
3314
3315 /* Low level part of emit_move_insn.
3316 Called just like emit_move_insn, but assumes X and Y
3317 are basically valid. */
3318
3319 rtx
3320 emit_move_insn_1 (rtx x, rtx y)
3321 {
3322 enum machine_mode mode = GET_MODE (x);
3323 enum insn_code code;
3324
3325 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3326
3327 code = optab_handler (mov_optab, mode)->insn_code;
3328 if (code != CODE_FOR_nothing)
3329 return emit_insn (GEN_FCN (code) (x, y));
3330
3331 /* Expand complex moves by moving real part and imag part. */
3332 if (COMPLEX_MODE_P (mode))
3333 return emit_move_complex (mode, x, y);
3334
3335 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3336 || ALL_FIXED_POINT_MODE_P (mode))
3337 {
3338 rtx result = emit_move_via_integer (mode, x, y, true);
3339
3340 /* If we can't find an integer mode, use multi words. */
3341 if (result)
3342 return result;
3343 else
3344 return emit_move_multi_word (mode, x, y);
3345 }
3346
3347 if (GET_MODE_CLASS (mode) == MODE_CC)
3348 return emit_move_ccmode (mode, x, y);
3349
3350 /* Try using a move pattern for the corresponding integer mode. This is
3351 only safe when simplify_subreg can convert MODE constants into integer
3352 constants. At present, it can only do this reliably if the value
3353 fits within a HOST_WIDE_INT. */
3354 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3355 {
3356 rtx ret = emit_move_via_integer (mode, x, y, false);
3357 if (ret)
3358 return ret;
3359 }
3360
3361 return emit_move_multi_word (mode, x, y);
3362 }
3363
3364 /* Generate code to copy Y into X.
3365 Both Y and X must have the same mode, except that
3366 Y can be a constant with VOIDmode.
3367 This mode cannot be BLKmode; use emit_block_move for that.
3368
3369 Return the last instruction emitted. */
3370
3371 rtx
3372 emit_move_insn (rtx x, rtx y)
3373 {
3374 enum machine_mode mode = GET_MODE (x);
3375 rtx y_cst = NULL_RTX;
3376 rtx last_insn, set;
3377
3378 gcc_assert (mode != BLKmode
3379 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3380
3381 if (CONSTANT_P (y))
3382 {
3383 if (optimize
3384 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3385 && (last_insn = compress_float_constant (x, y)))
3386 return last_insn;
3387
3388 y_cst = y;
3389
3390 if (!LEGITIMATE_CONSTANT_P (y))
3391 {
3392 y = force_const_mem (mode, y);
3393
3394 /* If the target's cannot_force_const_mem prevented the spill,
3395 assume that the target's move expanders will also take care
3396 of the non-legitimate constant. */
3397 if (!y)
3398 y = y_cst;
3399 else
3400 y = use_anchored_address (y);
3401 }
3402 }
3403
3404 /* If X or Y are memory references, verify that their addresses are valid
3405 for the machine. */
3406 if (MEM_P (x)
3407 && (! memory_address_p (GET_MODE (x), XEXP (x, 0))
3408 && ! push_operand (x, GET_MODE (x))))
3409 x = validize_mem (x);
3410
3411 if (MEM_P (y)
3412 && ! memory_address_p (GET_MODE (y), XEXP (y, 0)))
3413 y = validize_mem (y);
3414
3415 gcc_assert (mode != BLKmode);
3416
3417 last_insn = emit_move_insn_1 (x, y);
3418
3419 if (y_cst && REG_P (x)
3420 && (set = single_set (last_insn)) != NULL_RTX
3421 && SET_DEST (set) == x
3422 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3423 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3424
3425 return last_insn;
3426 }
3427
3428 /* If Y is representable exactly in a narrower mode, and the target can
3429 perform the extension directly from constant or memory, then emit the
3430 move as an extension. */
3431
3432 static rtx
3433 compress_float_constant (rtx x, rtx y)
3434 {
3435 enum machine_mode dstmode = GET_MODE (x);
3436 enum machine_mode orig_srcmode = GET_MODE (y);
3437 enum machine_mode srcmode;
3438 REAL_VALUE_TYPE r;
3439 int oldcost, newcost;
3440
3441 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3442
3443 if (LEGITIMATE_CONSTANT_P (y))
3444 oldcost = rtx_cost (y, SET);
3445 else
3446 oldcost = rtx_cost (force_const_mem (dstmode, y), SET);
3447
3448 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3449 srcmode != orig_srcmode;
3450 srcmode = GET_MODE_WIDER_MODE (srcmode))
3451 {
3452 enum insn_code ic;
3453 rtx trunc_y, last_insn;
3454
3455 /* Skip if the target can't extend this way. */
3456 ic = can_extend_p (dstmode, srcmode, 0);
3457 if (ic == CODE_FOR_nothing)
3458 continue;
3459
3460 /* Skip if the narrowed value isn't exact. */
3461 if (! exact_real_truncate (srcmode, &r))
3462 continue;
3463
3464 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3465
3466 if (LEGITIMATE_CONSTANT_P (trunc_y))
3467 {
3468 /* Skip if the target needs extra instructions to perform
3469 the extension. */
3470 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3471 continue;
3472 /* This is valid, but may not be cheaper than the original. */
3473 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
3474 if (oldcost < newcost)
3475 continue;
3476 }
3477 else if (float_extend_from_mem[dstmode][srcmode])
3478 {
3479 trunc_y = force_const_mem (srcmode, trunc_y);
3480 /* This is valid, but may not be cheaper than the original. */
3481 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
3482 if (oldcost < newcost)
3483 continue;
3484 trunc_y = validize_mem (trunc_y);
3485 }
3486 else
3487 continue;
3488
3489 /* For CSE's benefit, force the compressed constant pool entry
3490 into a new pseudo. This constant may be used in different modes,
3491 and if not, combine will put things back together for us. */
3492 trunc_y = force_reg (srcmode, trunc_y);
3493 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3494 last_insn = get_last_insn ();
3495
3496 if (REG_P (x))
3497 set_unique_reg_note (last_insn, REG_EQUAL, y);
3498
3499 return last_insn;
3500 }
3501
3502 return NULL_RTX;
3503 }
3504 \f
3505 /* Pushing data onto the stack. */
3506
3507 /* Push a block of length SIZE (perhaps variable)
3508 and return an rtx to address the beginning of the block.
3509 The value may be virtual_outgoing_args_rtx.
3510
3511 EXTRA is the number of bytes of padding to push in addition to SIZE.
3512 BELOW nonzero means this padding comes at low addresses;
3513 otherwise, the padding comes at high addresses. */
3514
3515 rtx
3516 push_block (rtx size, int extra, int below)
3517 {
3518 rtx temp;
3519
3520 size = convert_modes (Pmode, ptr_mode, size, 1);
3521 if (CONSTANT_P (size))
3522 anti_adjust_stack (plus_constant (size, extra));
3523 else if (REG_P (size) && extra == 0)
3524 anti_adjust_stack (size);
3525 else
3526 {
3527 temp = copy_to_mode_reg (Pmode, size);
3528 if (extra != 0)
3529 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3530 temp, 0, OPTAB_LIB_WIDEN);
3531 anti_adjust_stack (temp);
3532 }
3533
3534 #ifndef STACK_GROWS_DOWNWARD
3535 if (0)
3536 #else
3537 if (1)
3538 #endif
3539 {
3540 temp = virtual_outgoing_args_rtx;
3541 if (extra != 0 && below)
3542 temp = plus_constant (temp, extra);
3543 }
3544 else
3545 {
3546 if (GET_CODE (size) == CONST_INT)
3547 temp = plus_constant (virtual_outgoing_args_rtx,
3548 -INTVAL (size) - (below ? 0 : extra));
3549 else if (extra != 0 && !below)
3550 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3551 negate_rtx (Pmode, plus_constant (size, extra)));
3552 else
3553 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3554 negate_rtx (Pmode, size));
3555 }
3556
3557 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3558 }
3559
3560 #ifdef PUSH_ROUNDING
3561
3562 /* Emit single push insn. */
3563
3564 static void
3565 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3566 {
3567 rtx dest_addr;
3568 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3569 rtx dest;
3570 enum insn_code icode;
3571 insn_operand_predicate_fn pred;
3572
3573 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3574 /* If there is push pattern, use it. Otherwise try old way of throwing
3575 MEM representing push operation to move expander. */
3576 icode = optab_handler (push_optab, mode)->insn_code;
3577 if (icode != CODE_FOR_nothing)
3578 {
3579 if (((pred = insn_data[(int) icode].operand[0].predicate)
3580 && !((*pred) (x, mode))))
3581 x = force_reg (mode, x);
3582 emit_insn (GEN_FCN (icode) (x));
3583 return;
3584 }
3585 if (GET_MODE_SIZE (mode) == rounded_size)
3586 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3587 /* If we are to pad downward, adjust the stack pointer first and
3588 then store X into the stack location using an offset. This is
3589 because emit_move_insn does not know how to pad; it does not have
3590 access to type. */
3591 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3592 {
3593 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3594 HOST_WIDE_INT offset;
3595
3596 emit_move_insn (stack_pointer_rtx,
3597 expand_binop (Pmode,
3598 #ifdef STACK_GROWS_DOWNWARD
3599 sub_optab,
3600 #else
3601 add_optab,
3602 #endif
3603 stack_pointer_rtx,
3604 GEN_INT (rounded_size),
3605 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3606
3607 offset = (HOST_WIDE_INT) padding_size;
3608 #ifdef STACK_GROWS_DOWNWARD
3609 if (STACK_PUSH_CODE == POST_DEC)
3610 /* We have already decremented the stack pointer, so get the
3611 previous value. */
3612 offset += (HOST_WIDE_INT) rounded_size;
3613 #else
3614 if (STACK_PUSH_CODE == POST_INC)
3615 /* We have already incremented the stack pointer, so get the
3616 previous value. */
3617 offset -= (HOST_WIDE_INT) rounded_size;
3618 #endif
3619 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3620 }
3621 else
3622 {
3623 #ifdef STACK_GROWS_DOWNWARD
3624 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3625 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3626 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3627 #else
3628 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3629 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3630 GEN_INT (rounded_size));
3631 #endif
3632 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3633 }
3634
3635 dest = gen_rtx_MEM (mode, dest_addr);
3636
3637 if (type != 0)
3638 {
3639 set_mem_attributes (dest, type, 1);
3640
3641 if (flag_optimize_sibling_calls)
3642 /* Function incoming arguments may overlap with sibling call
3643 outgoing arguments and we cannot allow reordering of reads
3644 from function arguments with stores to outgoing arguments
3645 of sibling calls. */
3646 set_mem_alias_set (dest, 0);
3647 }
3648 emit_move_insn (dest, x);
3649 }
3650 #endif
3651
3652 /* Generate code to push X onto the stack, assuming it has mode MODE and
3653 type TYPE.
3654 MODE is redundant except when X is a CONST_INT (since they don't
3655 carry mode info).
3656 SIZE is an rtx for the size of data to be copied (in bytes),
3657 needed only if X is BLKmode.
3658
3659 ALIGN (in bits) is maximum alignment we can assume.
3660
3661 If PARTIAL and REG are both nonzero, then copy that many of the first
3662 bytes of X into registers starting with REG, and push the rest of X.
3663 The amount of space pushed is decreased by PARTIAL bytes.
3664 REG must be a hard register in this case.
3665 If REG is zero but PARTIAL is not, take any all others actions for an
3666 argument partially in registers, but do not actually load any
3667 registers.
3668
3669 EXTRA is the amount in bytes of extra space to leave next to this arg.
3670 This is ignored if an argument block has already been allocated.
3671
3672 On a machine that lacks real push insns, ARGS_ADDR is the address of
3673 the bottom of the argument block for this call. We use indexing off there
3674 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3675 argument block has not been preallocated.
3676
3677 ARGS_SO_FAR is the size of args previously pushed for this call.
3678
3679 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3680 for arguments passed in registers. If nonzero, it will be the number
3681 of bytes required. */
3682
3683 void
3684 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3685 unsigned int align, int partial, rtx reg, int extra,
3686 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3687 rtx alignment_pad)
3688 {
3689 rtx xinner;
3690 enum direction stack_direction
3691 #ifdef STACK_GROWS_DOWNWARD
3692 = downward;
3693 #else
3694 = upward;
3695 #endif
3696
3697 /* Decide where to pad the argument: `downward' for below,
3698 `upward' for above, or `none' for don't pad it.
3699 Default is below for small data on big-endian machines; else above. */
3700 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3701
3702 /* Invert direction if stack is post-decrement.
3703 FIXME: why? */
3704 if (STACK_PUSH_CODE == POST_DEC)
3705 if (where_pad != none)
3706 where_pad = (where_pad == downward ? upward : downward);
3707
3708 xinner = x;
3709
3710 if (mode == BLKmode
3711 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3712 {
3713 /* Copy a block into the stack, entirely or partially. */
3714
3715 rtx temp;
3716 int used;
3717 int offset;
3718 int skip;
3719
3720 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3721 used = partial - offset;
3722
3723 if (mode != BLKmode)
3724 {
3725 /* A value is to be stored in an insufficiently aligned
3726 stack slot; copy via a suitably aligned slot if
3727 necessary. */
3728 size = GEN_INT (GET_MODE_SIZE (mode));
3729 if (!MEM_P (xinner))
3730 {
3731 temp = assign_temp (type, 0, 1, 1);
3732 emit_move_insn (temp, xinner);
3733 xinner = temp;
3734 }
3735 }
3736
3737 gcc_assert (size);
3738
3739 /* USED is now the # of bytes we need not copy to the stack
3740 because registers will take care of them. */
3741
3742 if (partial != 0)
3743 xinner = adjust_address (xinner, BLKmode, used);
3744
3745 /* If the partial register-part of the arg counts in its stack size,
3746 skip the part of stack space corresponding to the registers.
3747 Otherwise, start copying to the beginning of the stack space,
3748 by setting SKIP to 0. */
3749 skip = (reg_parm_stack_space == 0) ? 0 : used;
3750
3751 #ifdef PUSH_ROUNDING
3752 /* Do it with several push insns if that doesn't take lots of insns
3753 and if there is no difficulty with push insns that skip bytes
3754 on the stack for alignment purposes. */
3755 if (args_addr == 0
3756 && PUSH_ARGS
3757 && GET_CODE (size) == CONST_INT
3758 && skip == 0
3759 && MEM_ALIGN (xinner) >= align
3760 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3761 /* Here we avoid the case of a structure whose weak alignment
3762 forces many pushes of a small amount of data,
3763 and such small pushes do rounding that causes trouble. */
3764 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3765 || align >= BIGGEST_ALIGNMENT
3766 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3767 == (align / BITS_PER_UNIT)))
3768 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3769 {
3770 /* Push padding now if padding above and stack grows down,
3771 or if padding below and stack grows up.
3772 But if space already allocated, this has already been done. */
3773 if (extra && args_addr == 0
3774 && where_pad != none && where_pad != stack_direction)
3775 anti_adjust_stack (GEN_INT (extra));
3776
3777 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3778 }
3779 else
3780 #endif /* PUSH_ROUNDING */
3781 {
3782 rtx target;
3783
3784 /* Otherwise make space on the stack and copy the data
3785 to the address of that space. */
3786
3787 /* Deduct words put into registers from the size we must copy. */
3788 if (partial != 0)
3789 {
3790 if (GET_CODE (size) == CONST_INT)
3791 size = GEN_INT (INTVAL (size) - used);
3792 else
3793 size = expand_binop (GET_MODE (size), sub_optab, size,
3794 GEN_INT (used), NULL_RTX, 0,
3795 OPTAB_LIB_WIDEN);
3796 }
3797
3798 /* Get the address of the stack space.
3799 In this case, we do not deal with EXTRA separately.
3800 A single stack adjust will do. */
3801 if (! args_addr)
3802 {
3803 temp = push_block (size, extra, where_pad == downward);
3804 extra = 0;
3805 }
3806 else if (GET_CODE (args_so_far) == CONST_INT)
3807 temp = memory_address (BLKmode,
3808 plus_constant (args_addr,
3809 skip + INTVAL (args_so_far)));
3810 else
3811 temp = memory_address (BLKmode,
3812 plus_constant (gen_rtx_PLUS (Pmode,
3813 args_addr,
3814 args_so_far),
3815 skip));
3816
3817 if (!ACCUMULATE_OUTGOING_ARGS)
3818 {
3819 /* If the source is referenced relative to the stack pointer,
3820 copy it to another register to stabilize it. We do not need
3821 to do this if we know that we won't be changing sp. */
3822
3823 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3824 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3825 temp = copy_to_reg (temp);
3826 }
3827
3828 target = gen_rtx_MEM (BLKmode, temp);
3829
3830 /* We do *not* set_mem_attributes here, because incoming arguments
3831 may overlap with sibling call outgoing arguments and we cannot
3832 allow reordering of reads from function arguments with stores
3833 to outgoing arguments of sibling calls. We do, however, want
3834 to record the alignment of the stack slot. */
3835 /* ALIGN may well be better aligned than TYPE, e.g. due to
3836 PARM_BOUNDARY. Assume the caller isn't lying. */
3837 set_mem_align (target, align);
3838
3839 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3840 }
3841 }
3842 else if (partial > 0)
3843 {
3844 /* Scalar partly in registers. */
3845
3846 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3847 int i;
3848 int not_stack;
3849 /* # bytes of start of argument
3850 that we must make space for but need not store. */
3851 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3852 int args_offset = INTVAL (args_so_far);
3853 int skip;
3854
3855 /* Push padding now if padding above and stack grows down,
3856 or if padding below and stack grows up.
3857 But if space already allocated, this has already been done. */
3858 if (extra && args_addr == 0
3859 && where_pad != none && where_pad != stack_direction)
3860 anti_adjust_stack (GEN_INT (extra));
3861
3862 /* If we make space by pushing it, we might as well push
3863 the real data. Otherwise, we can leave OFFSET nonzero
3864 and leave the space uninitialized. */
3865 if (args_addr == 0)
3866 offset = 0;
3867
3868 /* Now NOT_STACK gets the number of words that we don't need to
3869 allocate on the stack. Convert OFFSET to words too. */
3870 not_stack = (partial - offset) / UNITS_PER_WORD;
3871 offset /= UNITS_PER_WORD;
3872
3873 /* If the partial register-part of the arg counts in its stack size,
3874 skip the part of stack space corresponding to the registers.
3875 Otherwise, start copying to the beginning of the stack space,
3876 by setting SKIP to 0. */
3877 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3878
3879 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3880 x = validize_mem (force_const_mem (mode, x));
3881
3882 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3883 SUBREGs of such registers are not allowed. */
3884 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3885 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3886 x = copy_to_reg (x);
3887
3888 /* Loop over all the words allocated on the stack for this arg. */
3889 /* We can do it by words, because any scalar bigger than a word
3890 has a size a multiple of a word. */
3891 #ifndef PUSH_ARGS_REVERSED
3892 for (i = not_stack; i < size; i++)
3893 #else
3894 for (i = size - 1; i >= not_stack; i--)
3895 #endif
3896 if (i >= not_stack + offset)
3897 emit_push_insn (operand_subword_force (x, i, mode),
3898 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3899 0, args_addr,
3900 GEN_INT (args_offset + ((i - not_stack + skip)
3901 * UNITS_PER_WORD)),
3902 reg_parm_stack_space, alignment_pad);
3903 }
3904 else
3905 {
3906 rtx addr;
3907 rtx dest;
3908
3909 /* Push padding now if padding above and stack grows down,
3910 or if padding below and stack grows up.
3911 But if space already allocated, this has already been done. */
3912 if (extra && args_addr == 0
3913 && where_pad != none && where_pad != stack_direction)
3914 anti_adjust_stack (GEN_INT (extra));
3915
3916 #ifdef PUSH_ROUNDING
3917 if (args_addr == 0 && PUSH_ARGS)
3918 emit_single_push_insn (mode, x, type);
3919 else
3920 #endif
3921 {
3922 if (GET_CODE (args_so_far) == CONST_INT)
3923 addr
3924 = memory_address (mode,
3925 plus_constant (args_addr,
3926 INTVAL (args_so_far)));
3927 else
3928 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3929 args_so_far));
3930 dest = gen_rtx_MEM (mode, addr);
3931
3932 /* We do *not* set_mem_attributes here, because incoming arguments
3933 may overlap with sibling call outgoing arguments and we cannot
3934 allow reordering of reads from function arguments with stores
3935 to outgoing arguments of sibling calls. We do, however, want
3936 to record the alignment of the stack slot. */
3937 /* ALIGN may well be better aligned than TYPE, e.g. due to
3938 PARM_BOUNDARY. Assume the caller isn't lying. */
3939 set_mem_align (dest, align);
3940
3941 emit_move_insn (dest, x);
3942 }
3943 }
3944
3945 /* If part should go in registers, copy that part
3946 into the appropriate registers. Do this now, at the end,
3947 since mem-to-mem copies above may do function calls. */
3948 if (partial > 0 && reg != 0)
3949 {
3950 /* Handle calls that pass values in multiple non-contiguous locations.
3951 The Irix 6 ABI has examples of this. */
3952 if (GET_CODE (reg) == PARALLEL)
3953 emit_group_load (reg, x, type, -1);
3954 else
3955 {
3956 gcc_assert (partial % UNITS_PER_WORD == 0);
3957 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3958 }
3959 }
3960
3961 if (extra && args_addr == 0 && where_pad == stack_direction)
3962 anti_adjust_stack (GEN_INT (extra));
3963
3964 if (alignment_pad && args_addr == 0)
3965 anti_adjust_stack (alignment_pad);
3966 }
3967 \f
3968 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3969 operations. */
3970
3971 static rtx
3972 get_subtarget (rtx x)
3973 {
3974 return (optimize
3975 || x == 0
3976 /* Only registers can be subtargets. */
3977 || !REG_P (x)
3978 /* Don't use hard regs to avoid extending their life. */
3979 || REGNO (x) < FIRST_PSEUDO_REGISTER
3980 ? 0 : x);
3981 }
3982
3983 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3984 FIELD is a bitfield. Returns true if the optimization was successful,
3985 and there's nothing else to do. */
3986
3987 static bool
3988 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
3989 unsigned HOST_WIDE_INT bitpos,
3990 enum machine_mode mode1, rtx str_rtx,
3991 tree to, tree src)
3992 {
3993 enum machine_mode str_mode = GET_MODE (str_rtx);
3994 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
3995 tree op0, op1;
3996 rtx value, result;
3997 optab binop;
3998
3999 if (mode1 != VOIDmode
4000 || bitsize >= BITS_PER_WORD
4001 || str_bitsize > BITS_PER_WORD
4002 || TREE_SIDE_EFFECTS (to)
4003 || TREE_THIS_VOLATILE (to))
4004 return false;
4005
4006 STRIP_NOPS (src);
4007 if (!BINARY_CLASS_P (src)
4008 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4009 return false;
4010
4011 op0 = TREE_OPERAND (src, 0);
4012 op1 = TREE_OPERAND (src, 1);
4013 STRIP_NOPS (op0);
4014
4015 if (!operand_equal_p (to, op0, 0))
4016 return false;
4017
4018 if (MEM_P (str_rtx))
4019 {
4020 unsigned HOST_WIDE_INT offset1;
4021
4022 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4023 str_mode = word_mode;
4024 str_mode = get_best_mode (bitsize, bitpos,
4025 MEM_ALIGN (str_rtx), str_mode, 0);
4026 if (str_mode == VOIDmode)
4027 return false;
4028 str_bitsize = GET_MODE_BITSIZE (str_mode);
4029
4030 offset1 = bitpos;
4031 bitpos %= str_bitsize;
4032 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4033 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4034 }
4035 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4036 return false;
4037
4038 /* If the bit field covers the whole REG/MEM, store_field
4039 will likely generate better code. */
4040 if (bitsize >= str_bitsize)
4041 return false;
4042
4043 /* We can't handle fields split across multiple entities. */
4044 if (bitpos + bitsize > str_bitsize)
4045 return false;
4046
4047 if (BYTES_BIG_ENDIAN)
4048 bitpos = str_bitsize - bitpos - bitsize;
4049
4050 switch (TREE_CODE (src))
4051 {
4052 case PLUS_EXPR:
4053 case MINUS_EXPR:
4054 /* For now, just optimize the case of the topmost bitfield
4055 where we don't need to do any masking and also
4056 1 bit bitfields where xor can be used.
4057 We might win by one instruction for the other bitfields
4058 too if insv/extv instructions aren't used, so that
4059 can be added later. */
4060 if (bitpos + bitsize != str_bitsize
4061 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4062 break;
4063
4064 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4065 value = convert_modes (str_mode,
4066 TYPE_MODE (TREE_TYPE (op1)), value,
4067 TYPE_UNSIGNED (TREE_TYPE (op1)));
4068
4069 /* We may be accessing data outside the field, which means
4070 we can alias adjacent data. */
4071 if (MEM_P (str_rtx))
4072 {
4073 str_rtx = shallow_copy_rtx (str_rtx);
4074 set_mem_alias_set (str_rtx, 0);
4075 set_mem_expr (str_rtx, 0);
4076 }
4077
4078 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
4079 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4080 {
4081 value = expand_and (str_mode, value, const1_rtx, NULL);
4082 binop = xor_optab;
4083 }
4084 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4085 build_int_cst (NULL_TREE, bitpos),
4086 NULL_RTX, 1);
4087 result = expand_binop (str_mode, binop, str_rtx,
4088 value, str_rtx, 1, OPTAB_WIDEN);
4089 if (result != str_rtx)
4090 emit_move_insn (str_rtx, result);
4091 return true;
4092
4093 case BIT_IOR_EXPR:
4094 case BIT_XOR_EXPR:
4095 if (TREE_CODE (op1) != INTEGER_CST)
4096 break;
4097 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4098 value = convert_modes (GET_MODE (str_rtx),
4099 TYPE_MODE (TREE_TYPE (op1)), value,
4100 TYPE_UNSIGNED (TREE_TYPE (op1)));
4101
4102 /* We may be accessing data outside the field, which means
4103 we can alias adjacent data. */
4104 if (MEM_P (str_rtx))
4105 {
4106 str_rtx = shallow_copy_rtx (str_rtx);
4107 set_mem_alias_set (str_rtx, 0);
4108 set_mem_expr (str_rtx, 0);
4109 }
4110
4111 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
4112 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4113 {
4114 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4115 - 1);
4116 value = expand_and (GET_MODE (str_rtx), value, mask,
4117 NULL_RTX);
4118 }
4119 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4120 build_int_cst (NULL_TREE, bitpos),
4121 NULL_RTX, 1);
4122 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4123 value, str_rtx, 1, OPTAB_WIDEN);
4124 if (result != str_rtx)
4125 emit_move_insn (str_rtx, result);
4126 return true;
4127
4128 default:
4129 break;
4130 }
4131
4132 return false;
4133 }
4134
4135
4136 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4137 is true, try generating a nontemporal store. */
4138
4139 void
4140 expand_assignment (tree to, tree from, bool nontemporal)
4141 {
4142 rtx to_rtx = 0;
4143 rtx result;
4144
4145 /* Don't crash if the lhs of the assignment was erroneous. */
4146 if (TREE_CODE (to) == ERROR_MARK)
4147 {
4148 result = expand_normal (from);
4149 return;
4150 }
4151
4152 /* Optimize away no-op moves without side-effects. */
4153 if (operand_equal_p (to, from, 0))
4154 return;
4155
4156 /* Assignment of a structure component needs special treatment
4157 if the structure component's rtx is not simply a MEM.
4158 Assignment of an array element at a constant index, and assignment of
4159 an array element in an unaligned packed structure field, has the same
4160 problem. */
4161 if (handled_component_p (to)
4162 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4163 {
4164 enum machine_mode mode1;
4165 HOST_WIDE_INT bitsize, bitpos;
4166 tree offset;
4167 int unsignedp;
4168 int volatilep = 0;
4169 tree tem;
4170
4171 push_temp_slots ();
4172 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4173 &unsignedp, &volatilep, true);
4174
4175 /* If we are going to use store_bit_field and extract_bit_field,
4176 make sure to_rtx will be safe for multiple use. */
4177
4178 to_rtx = expand_normal (tem);
4179
4180 if (offset != 0)
4181 {
4182 rtx offset_rtx;
4183
4184 if (!MEM_P (to_rtx))
4185 {
4186 /* We can get constant negative offsets into arrays with broken
4187 user code. Translate this to a trap instead of ICEing. */
4188 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4189 expand_builtin_trap ();
4190 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4191 }
4192
4193 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4194 #ifdef POINTERS_EXTEND_UNSIGNED
4195 if (GET_MODE (offset_rtx) != Pmode)
4196 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
4197 #else
4198 if (GET_MODE (offset_rtx) != ptr_mode)
4199 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
4200 #endif
4201
4202 /* A constant address in TO_RTX can have VOIDmode, we must not try
4203 to call force_reg for that case. Avoid that case. */
4204 if (MEM_P (to_rtx)
4205 && GET_MODE (to_rtx) == BLKmode
4206 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4207 && bitsize > 0
4208 && (bitpos % bitsize) == 0
4209 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4210 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4211 {
4212 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4213 bitpos = 0;
4214 }
4215
4216 to_rtx = offset_address (to_rtx, offset_rtx,
4217 highest_pow2_factor_for_target (to,
4218 offset));
4219 }
4220
4221 /* Handle expand_expr of a complex value returning a CONCAT. */
4222 if (GET_CODE (to_rtx) == CONCAT)
4223 {
4224 if (TREE_CODE (TREE_TYPE (from)) == COMPLEX_TYPE)
4225 {
4226 gcc_assert (bitpos == 0);
4227 result = store_expr (from, to_rtx, false, nontemporal);
4228 }
4229 else
4230 {
4231 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4232 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4233 nontemporal);
4234 }
4235 }
4236 else
4237 {
4238 if (MEM_P (to_rtx))
4239 {
4240 /* If the field is at offset zero, we could have been given the
4241 DECL_RTX of the parent struct. Don't munge it. */
4242 to_rtx = shallow_copy_rtx (to_rtx);
4243
4244 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4245
4246 /* Deal with volatile and readonly fields. The former is only
4247 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4248 if (volatilep)
4249 MEM_VOLATILE_P (to_rtx) = 1;
4250 if (component_uses_parent_alias_set (to))
4251 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4252 }
4253
4254 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4255 to_rtx, to, from))
4256 result = NULL;
4257 else
4258 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4259 TREE_TYPE (tem), get_alias_set (to),
4260 nontemporal);
4261 }
4262
4263 if (result)
4264 preserve_temp_slots (result);
4265 free_temp_slots ();
4266 pop_temp_slots ();
4267 return;
4268 }
4269
4270 /* If the rhs is a function call and its value is not an aggregate,
4271 call the function before we start to compute the lhs.
4272 This is needed for correct code for cases such as
4273 val = setjmp (buf) on machines where reference to val
4274 requires loading up part of an address in a separate insn.
4275
4276 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4277 since it might be a promoted variable where the zero- or sign- extension
4278 needs to be done. Handling this in the normal way is safe because no
4279 computation is done before the call. */
4280 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4281 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4282 && ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4283 && REG_P (DECL_RTL (to))))
4284 {
4285 rtx value;
4286
4287 push_temp_slots ();
4288 value = expand_normal (from);
4289 if (to_rtx == 0)
4290 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4291
4292 /* Handle calls that return values in multiple non-contiguous locations.
4293 The Irix 6 ABI has examples of this. */
4294 if (GET_CODE (to_rtx) == PARALLEL)
4295 emit_group_load (to_rtx, value, TREE_TYPE (from),
4296 int_size_in_bytes (TREE_TYPE (from)));
4297 else if (GET_MODE (to_rtx) == BLKmode)
4298 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4299 else
4300 {
4301 if (POINTER_TYPE_P (TREE_TYPE (to)))
4302 value = convert_memory_address (GET_MODE (to_rtx), value);
4303 emit_move_insn (to_rtx, value);
4304 }
4305 preserve_temp_slots (to_rtx);
4306 free_temp_slots ();
4307 pop_temp_slots ();
4308 return;
4309 }
4310
4311 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4312 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4313
4314 if (to_rtx == 0)
4315 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4316
4317 /* Don't move directly into a return register. */
4318 if (TREE_CODE (to) == RESULT_DECL
4319 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4320 {
4321 rtx temp;
4322
4323 push_temp_slots ();
4324 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4325
4326 if (GET_CODE (to_rtx) == PARALLEL)
4327 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4328 int_size_in_bytes (TREE_TYPE (from)));
4329 else
4330 emit_move_insn (to_rtx, temp);
4331
4332 preserve_temp_slots (to_rtx);
4333 free_temp_slots ();
4334 pop_temp_slots ();
4335 return;
4336 }
4337
4338 /* In case we are returning the contents of an object which overlaps
4339 the place the value is being stored, use a safe function when copying
4340 a value through a pointer into a structure value return block. */
4341 if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
4342 && cfun->returns_struct
4343 && !cfun->returns_pcc_struct)
4344 {
4345 rtx from_rtx, size;
4346
4347 push_temp_slots ();
4348 size = expr_size (from);
4349 from_rtx = expand_normal (from);
4350
4351 emit_library_call (memmove_libfunc, LCT_NORMAL,
4352 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4353 XEXP (from_rtx, 0), Pmode,
4354 convert_to_mode (TYPE_MODE (sizetype),
4355 size, TYPE_UNSIGNED (sizetype)),
4356 TYPE_MODE (sizetype));
4357
4358 preserve_temp_slots (to_rtx);
4359 free_temp_slots ();
4360 pop_temp_slots ();
4361 return;
4362 }
4363
4364 /* Compute FROM and store the value in the rtx we got. */
4365
4366 push_temp_slots ();
4367 result = store_expr (from, to_rtx, 0, nontemporal);
4368 preserve_temp_slots (result);
4369 free_temp_slots ();
4370 pop_temp_slots ();
4371 return;
4372 }
4373
4374 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4375 succeeded, false otherwise. */
4376
4377 static bool
4378 emit_storent_insn (rtx to, rtx from)
4379 {
4380 enum machine_mode mode = GET_MODE (to), imode;
4381 enum insn_code code = optab_handler (storent_optab, mode)->insn_code;
4382 rtx pattern;
4383
4384 if (code == CODE_FOR_nothing)
4385 return false;
4386
4387 imode = insn_data[code].operand[0].mode;
4388 if (!insn_data[code].operand[0].predicate (to, imode))
4389 return false;
4390
4391 imode = insn_data[code].operand[1].mode;
4392 if (!insn_data[code].operand[1].predicate (from, imode))
4393 {
4394 from = copy_to_mode_reg (imode, from);
4395 if (!insn_data[code].operand[1].predicate (from, imode))
4396 return false;
4397 }
4398
4399 pattern = GEN_FCN (code) (to, from);
4400 if (pattern == NULL_RTX)
4401 return false;
4402
4403 emit_insn (pattern);
4404 return true;
4405 }
4406
4407 /* Generate code for computing expression EXP,
4408 and storing the value into TARGET.
4409
4410 If the mode is BLKmode then we may return TARGET itself.
4411 It turns out that in BLKmode it doesn't cause a problem.
4412 because C has no operators that could combine two different
4413 assignments into the same BLKmode object with different values
4414 with no sequence point. Will other languages need this to
4415 be more thorough?
4416
4417 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4418 stack, and block moves may need to be treated specially.
4419
4420 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4421
4422 rtx
4423 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4424 {
4425 rtx temp;
4426 rtx alt_rtl = NULL_RTX;
4427 int dont_return_target = 0;
4428
4429 if (VOID_TYPE_P (TREE_TYPE (exp)))
4430 {
4431 /* C++ can generate ?: expressions with a throw expression in one
4432 branch and an rvalue in the other. Here, we resolve attempts to
4433 store the throw expression's nonexistent result. */
4434 gcc_assert (!call_param_p);
4435 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4436 return NULL_RTX;
4437 }
4438 if (TREE_CODE (exp) == COMPOUND_EXPR)
4439 {
4440 /* Perform first part of compound expression, then assign from second
4441 part. */
4442 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4443 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4444 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4445 nontemporal);
4446 }
4447 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4448 {
4449 /* For conditional expression, get safe form of the target. Then
4450 test the condition, doing the appropriate assignment on either
4451 side. This avoids the creation of unnecessary temporaries.
4452 For non-BLKmode, it is more efficient not to do this. */
4453
4454 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4455
4456 do_pending_stack_adjust ();
4457 NO_DEFER_POP;
4458 jumpifnot (TREE_OPERAND (exp, 0), lab1);
4459 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4460 nontemporal);
4461 emit_jump_insn (gen_jump (lab2));
4462 emit_barrier ();
4463 emit_label (lab1);
4464 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4465 nontemporal);
4466 emit_label (lab2);
4467 OK_DEFER_POP;
4468
4469 return NULL_RTX;
4470 }
4471 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4472 /* If this is a scalar in a register that is stored in a wider mode
4473 than the declared mode, compute the result into its declared mode
4474 and then convert to the wider mode. Our value is the computed
4475 expression. */
4476 {
4477 rtx inner_target = 0;
4478
4479 /* We can do the conversion inside EXP, which will often result
4480 in some optimizations. Do the conversion in two steps: first
4481 change the signedness, if needed, then the extend. But don't
4482 do this if the type of EXP is a subtype of something else
4483 since then the conversion might involve more than just
4484 converting modes. */
4485 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4486 && TREE_TYPE (TREE_TYPE (exp)) == 0
4487 && GET_MODE_PRECISION (GET_MODE (target))
4488 == TYPE_PRECISION (TREE_TYPE (exp)))
4489 {
4490 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4491 != SUBREG_PROMOTED_UNSIGNED_P (target))
4492 {
4493 /* Some types, e.g. Fortran's logical*4, won't have a signed
4494 version, so use the mode instead. */
4495 tree ntype
4496 = (signed_or_unsigned_type_for
4497 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4498 if (ntype == NULL)
4499 ntype = lang_hooks.types.type_for_mode
4500 (TYPE_MODE (TREE_TYPE (exp)),
4501 SUBREG_PROMOTED_UNSIGNED_P (target));
4502
4503 exp = fold_convert (ntype, exp);
4504 }
4505
4506 exp = fold_convert (lang_hooks.types.type_for_mode
4507 (GET_MODE (SUBREG_REG (target)),
4508 SUBREG_PROMOTED_UNSIGNED_P (target)),
4509 exp);
4510
4511 inner_target = SUBREG_REG (target);
4512 }
4513
4514 temp = expand_expr (exp, inner_target, VOIDmode,
4515 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4516
4517 /* If TEMP is a VOIDmode constant, use convert_modes to make
4518 sure that we properly convert it. */
4519 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4520 {
4521 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4522 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4523 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4524 GET_MODE (target), temp,
4525 SUBREG_PROMOTED_UNSIGNED_P (target));
4526 }
4527
4528 convert_move (SUBREG_REG (target), temp,
4529 SUBREG_PROMOTED_UNSIGNED_P (target));
4530
4531 return NULL_RTX;
4532 }
4533 else if (TREE_CODE (exp) == STRING_CST
4534 && !nontemporal && !call_param_p
4535 && TREE_STRING_LENGTH (exp) > 0
4536 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
4537 {
4538 /* Optimize initialization of an array with a STRING_CST. */
4539 HOST_WIDE_INT exp_len, str_copy_len;
4540 rtx dest_mem;
4541
4542 exp_len = int_expr_size (exp);
4543 if (exp_len <= 0)
4544 goto normal_expr;
4545
4546 str_copy_len = strlen (TREE_STRING_POINTER (exp));
4547 if (str_copy_len < TREE_STRING_LENGTH (exp) - 1)
4548 goto normal_expr;
4549
4550 str_copy_len = TREE_STRING_LENGTH (exp);
4551 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
4552 {
4553 str_copy_len += STORE_MAX_PIECES - 1;
4554 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4555 }
4556 str_copy_len = MIN (str_copy_len, exp_len);
4557 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4558 (void *) TREE_STRING_POINTER (exp),
4559 MEM_ALIGN (target), false))
4560 goto normal_expr;
4561
4562 dest_mem = target;
4563
4564 dest_mem = store_by_pieces (dest_mem,
4565 str_copy_len, builtin_strncpy_read_str,
4566 (void *) TREE_STRING_POINTER (exp),
4567 MEM_ALIGN (target), false,
4568 exp_len > str_copy_len ? 1 : 0);
4569 if (exp_len > str_copy_len)
4570 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4571 GEN_INT (exp_len - str_copy_len),
4572 BLOCK_OP_NORMAL);
4573 return NULL_RTX;
4574 }
4575 else
4576 {
4577 rtx tmp_target;
4578
4579 normal_expr:
4580 /* If we want to use a nontemporal store, force the value to
4581 register first. */
4582 tmp_target = nontemporal ? NULL_RTX : target;
4583 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4584 (call_param_p
4585 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4586 &alt_rtl);
4587 /* Return TARGET if it's a specified hardware register.
4588 If TARGET is a volatile mem ref, either return TARGET
4589 or return a reg copied *from* TARGET; ANSI requires this.
4590
4591 Otherwise, if TEMP is not TARGET, return TEMP
4592 if it is constant (for efficiency),
4593 or if we really want the correct value. */
4594 if (!(target && REG_P (target)
4595 && REGNO (target) < FIRST_PSEUDO_REGISTER)
4596 && !(MEM_P (target) && MEM_VOLATILE_P (target))
4597 && ! rtx_equal_p (temp, target)
4598 && CONSTANT_P (temp))
4599 dont_return_target = 1;
4600 }
4601
4602 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4603 the same as that of TARGET, adjust the constant. This is needed, for
4604 example, in case it is a CONST_DOUBLE and we want only a word-sized
4605 value. */
4606 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4607 && TREE_CODE (exp) != ERROR_MARK
4608 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4609 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4610 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4611
4612 /* If value was not generated in the target, store it there.
4613 Convert the value to TARGET's type first if necessary and emit the
4614 pending incrementations that have been queued when expanding EXP.
4615 Note that we cannot emit the whole queue blindly because this will
4616 effectively disable the POST_INC optimization later.
4617
4618 If TEMP and TARGET compare equal according to rtx_equal_p, but
4619 one or both of them are volatile memory refs, we have to distinguish
4620 two cases:
4621 - expand_expr has used TARGET. In this case, we must not generate
4622 another copy. This can be detected by TARGET being equal according
4623 to == .
4624 - expand_expr has not used TARGET - that means that the source just
4625 happens to have the same RTX form. Since temp will have been created
4626 by expand_expr, it will compare unequal according to == .
4627 We must generate a copy in this case, to reach the correct number
4628 of volatile memory references. */
4629
4630 if ((! rtx_equal_p (temp, target)
4631 || (temp != target && (side_effects_p (temp)
4632 || side_effects_p (target))))
4633 && TREE_CODE (exp) != ERROR_MARK
4634 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4635 but TARGET is not valid memory reference, TEMP will differ
4636 from TARGET although it is really the same location. */
4637 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4638 /* If there's nothing to copy, don't bother. Don't call
4639 expr_size unless necessary, because some front-ends (C++)
4640 expr_size-hook must not be given objects that are not
4641 supposed to be bit-copied or bit-initialized. */
4642 && expr_size (exp) != const0_rtx)
4643 {
4644 if (GET_MODE (temp) != GET_MODE (target)
4645 && GET_MODE (temp) != VOIDmode)
4646 {
4647 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4648 if (dont_return_target)
4649 {
4650 /* In this case, we will return TEMP,
4651 so make sure it has the proper mode.
4652 But don't forget to store the value into TARGET. */
4653 temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
4654 emit_move_insn (target, temp);
4655 }
4656 else if (GET_MODE (target) == BLKmode
4657 || GET_MODE (temp) == BLKmode)
4658 emit_block_move (target, temp, expr_size (exp),
4659 (call_param_p
4660 ? BLOCK_OP_CALL_PARM
4661 : BLOCK_OP_NORMAL));
4662 else
4663 convert_move (target, temp, unsignedp);
4664 }
4665
4666 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4667 {
4668 /* Handle copying a string constant into an array. The string
4669 constant may be shorter than the array. So copy just the string's
4670 actual length, and clear the rest. First get the size of the data
4671 type of the string, which is actually the size of the target. */
4672 rtx size = expr_size (exp);
4673
4674 if (GET_CODE (size) == CONST_INT
4675 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4676 emit_block_move (target, temp, size,
4677 (call_param_p
4678 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4679 else
4680 {
4681 /* Compute the size of the data to copy from the string. */
4682 tree copy_size
4683 = size_binop (MIN_EXPR,
4684 make_tree (sizetype, size),
4685 size_int (TREE_STRING_LENGTH (exp)));
4686 rtx copy_size_rtx
4687 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4688 (call_param_p
4689 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4690 rtx label = 0;
4691
4692 /* Copy that much. */
4693 copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx,
4694 TYPE_UNSIGNED (sizetype));
4695 emit_block_move (target, temp, copy_size_rtx,
4696 (call_param_p
4697 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4698
4699 /* Figure out how much is left in TARGET that we have to clear.
4700 Do all calculations in ptr_mode. */
4701 if (GET_CODE (copy_size_rtx) == CONST_INT)
4702 {
4703 size = plus_constant (size, -INTVAL (copy_size_rtx));
4704 target = adjust_address (target, BLKmode,
4705 INTVAL (copy_size_rtx));
4706 }
4707 else
4708 {
4709 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4710 copy_size_rtx, NULL_RTX, 0,
4711 OPTAB_LIB_WIDEN);
4712
4713 #ifdef POINTERS_EXTEND_UNSIGNED
4714 if (GET_MODE (copy_size_rtx) != Pmode)
4715 copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx,
4716 TYPE_UNSIGNED (sizetype));
4717 #endif
4718
4719 target = offset_address (target, copy_size_rtx,
4720 highest_pow2_factor (copy_size));
4721 label = gen_label_rtx ();
4722 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4723 GET_MODE (size), 0, label);
4724 }
4725
4726 if (size != const0_rtx)
4727 clear_storage (target, size, BLOCK_OP_NORMAL);
4728
4729 if (label)
4730 emit_label (label);
4731 }
4732 }
4733 /* Handle calls that return values in multiple non-contiguous locations.
4734 The Irix 6 ABI has examples of this. */
4735 else if (GET_CODE (target) == PARALLEL)
4736 emit_group_load (target, temp, TREE_TYPE (exp),
4737 int_size_in_bytes (TREE_TYPE (exp)));
4738 else if (GET_MODE (temp) == BLKmode)
4739 emit_block_move (target, temp, expr_size (exp),
4740 (call_param_p
4741 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4742 else if (nontemporal
4743 && emit_storent_insn (target, temp))
4744 /* If we managed to emit a nontemporal store, there is nothing else to
4745 do. */
4746 ;
4747 else
4748 {
4749 temp = force_operand (temp, target);
4750 if (temp != target)
4751 emit_move_insn (target, temp);
4752 }
4753 }
4754
4755 return NULL_RTX;
4756 }
4757 \f
4758 /* Helper for categorize_ctor_elements. Identical interface. */
4759
4760 static bool
4761 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4762 HOST_WIDE_INT *p_elt_count,
4763 bool *p_must_clear)
4764 {
4765 unsigned HOST_WIDE_INT idx;
4766 HOST_WIDE_INT nz_elts, elt_count;
4767 tree value, purpose;
4768
4769 /* Whether CTOR is a valid constant initializer, in accordance with what
4770 initializer_constant_valid_p does. If inferred from the constructor
4771 elements, true until proven otherwise. */
4772 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4773 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4774
4775 nz_elts = 0;
4776 elt_count = 0;
4777
4778 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4779 {
4780 HOST_WIDE_INT mult;
4781
4782 mult = 1;
4783 if (TREE_CODE (purpose) == RANGE_EXPR)
4784 {
4785 tree lo_index = TREE_OPERAND (purpose, 0);
4786 tree hi_index = TREE_OPERAND (purpose, 1);
4787
4788 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4789 mult = (tree_low_cst (hi_index, 1)
4790 - tree_low_cst (lo_index, 1) + 1);
4791 }
4792
4793 switch (TREE_CODE (value))
4794 {
4795 case CONSTRUCTOR:
4796 {
4797 HOST_WIDE_INT nz = 0, ic = 0;
4798
4799 bool const_elt_p
4800 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4801
4802 nz_elts += mult * nz;
4803 elt_count += mult * ic;
4804
4805 if (const_from_elts_p && const_p)
4806 const_p = const_elt_p;
4807 }
4808 break;
4809
4810 case INTEGER_CST:
4811 case REAL_CST:
4812 case FIXED_CST:
4813 if (!initializer_zerop (value))
4814 nz_elts += mult;
4815 elt_count += mult;
4816 break;
4817
4818 case STRING_CST:
4819 nz_elts += mult * TREE_STRING_LENGTH (value);
4820 elt_count += mult * TREE_STRING_LENGTH (value);
4821 break;
4822
4823 case COMPLEX_CST:
4824 if (!initializer_zerop (TREE_REALPART (value)))
4825 nz_elts += mult;
4826 if (!initializer_zerop (TREE_IMAGPART (value)))
4827 nz_elts += mult;
4828 elt_count += mult;
4829 break;
4830
4831 case VECTOR_CST:
4832 {
4833 tree v;
4834 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4835 {
4836 if (!initializer_zerop (TREE_VALUE (v)))
4837 nz_elts += mult;
4838 elt_count += mult;
4839 }
4840 }
4841 break;
4842
4843 default:
4844 nz_elts += mult;
4845 elt_count += mult;
4846
4847 if (const_from_elts_p && const_p)
4848 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4849 != NULL_TREE;
4850 break;
4851 }
4852 }
4853
4854 if (!*p_must_clear
4855 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4856 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4857 {
4858 tree init_sub_type;
4859 bool clear_this = true;
4860
4861 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4862 {
4863 /* We don't expect more than one element of the union to be
4864 initialized. Not sure what we should do otherwise... */
4865 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4866 == 1);
4867
4868 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4869 CONSTRUCTOR_ELTS (ctor),
4870 0)->value);
4871
4872 /* ??? We could look at each element of the union, and find the
4873 largest element. Which would avoid comparing the size of the
4874 initialized element against any tail padding in the union.
4875 Doesn't seem worth the effort... */
4876 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4877 TYPE_SIZE (init_sub_type)) == 1)
4878 {
4879 /* And now we have to find out if the element itself is fully
4880 constructed. E.g. for union { struct { int a, b; } s; } u
4881 = { .s = { .a = 1 } }. */
4882 if (elt_count == count_type_elements (init_sub_type, false))
4883 clear_this = false;
4884 }
4885 }
4886
4887 *p_must_clear = clear_this;
4888 }
4889
4890 *p_nz_elts += nz_elts;
4891 *p_elt_count += elt_count;
4892
4893 return const_p;
4894 }
4895
4896 /* Examine CTOR to discover:
4897 * how many scalar fields are set to nonzero values,
4898 and place it in *P_NZ_ELTS;
4899 * how many scalar fields in total are in CTOR,
4900 and place it in *P_ELT_COUNT.
4901 * if a type is a union, and the initializer from the constructor
4902 is not the largest element in the union, then set *p_must_clear.
4903
4904 Return whether or not CTOR is a valid static constant initializer, the same
4905 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
4906
4907 bool
4908 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4909 HOST_WIDE_INT *p_elt_count,
4910 bool *p_must_clear)
4911 {
4912 *p_nz_elts = 0;
4913 *p_elt_count = 0;
4914 *p_must_clear = false;
4915
4916 return
4917 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
4918 }
4919
4920 /* Count the number of scalars in TYPE. Return -1 on overflow or
4921 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
4922 array member at the end of the structure. */
4923
4924 HOST_WIDE_INT
4925 count_type_elements (const_tree type, bool allow_flexarr)
4926 {
4927 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
4928 switch (TREE_CODE (type))
4929 {
4930 case ARRAY_TYPE:
4931 {
4932 tree telts = array_type_nelts (type);
4933 if (telts && host_integerp (telts, 1))
4934 {
4935 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
4936 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
4937 if (n == 0)
4938 return 0;
4939 else if (max / n > m)
4940 return n * m;
4941 }
4942 return -1;
4943 }
4944
4945 case RECORD_TYPE:
4946 {
4947 HOST_WIDE_INT n = 0, t;
4948 tree f;
4949
4950 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
4951 if (TREE_CODE (f) == FIELD_DECL)
4952 {
4953 t = count_type_elements (TREE_TYPE (f), false);
4954 if (t < 0)
4955 {
4956 /* Check for structures with flexible array member. */
4957 tree tf = TREE_TYPE (f);
4958 if (allow_flexarr
4959 && TREE_CHAIN (f) == NULL
4960 && TREE_CODE (tf) == ARRAY_TYPE
4961 && TYPE_DOMAIN (tf)
4962 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
4963 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
4964 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
4965 && int_size_in_bytes (type) >= 0)
4966 break;
4967
4968 return -1;
4969 }
4970 n += t;
4971 }
4972
4973 return n;
4974 }
4975
4976 case UNION_TYPE:
4977 case QUAL_UNION_TYPE:
4978 return -1;
4979
4980 case COMPLEX_TYPE:
4981 return 2;
4982
4983 case VECTOR_TYPE:
4984 return TYPE_VECTOR_SUBPARTS (type);
4985
4986 case INTEGER_TYPE:
4987 case REAL_TYPE:
4988 case FIXED_POINT_TYPE:
4989 case ENUMERAL_TYPE:
4990 case BOOLEAN_TYPE:
4991 case POINTER_TYPE:
4992 case OFFSET_TYPE:
4993 case REFERENCE_TYPE:
4994 return 1;
4995
4996 case VOID_TYPE:
4997 case METHOD_TYPE:
4998 case FUNCTION_TYPE:
4999 case LANG_TYPE:
5000 default:
5001 gcc_unreachable ();
5002 }
5003 }
5004
5005 /* Return 1 if EXP contains mostly (3/4) zeros. */
5006
5007 static int
5008 mostly_zeros_p (const_tree exp)
5009 {
5010 if (TREE_CODE (exp) == CONSTRUCTOR)
5011
5012 {
5013 HOST_WIDE_INT nz_elts, count, elts;
5014 bool must_clear;
5015
5016 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5017 if (must_clear)
5018 return 1;
5019
5020 elts = count_type_elements (TREE_TYPE (exp), false);
5021
5022 return nz_elts < elts / 4;
5023 }
5024
5025 return initializer_zerop (exp);
5026 }
5027
5028 /* Return 1 if EXP contains all zeros. */
5029
5030 static int
5031 all_zeros_p (const_tree exp)
5032 {
5033 if (TREE_CODE (exp) == CONSTRUCTOR)
5034
5035 {
5036 HOST_WIDE_INT nz_elts, count;
5037 bool must_clear;
5038
5039 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5040 return nz_elts == 0;
5041 }
5042
5043 return initializer_zerop (exp);
5044 }
5045 \f
5046 /* Helper function for store_constructor.
5047 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5048 TYPE is the type of the CONSTRUCTOR, not the element type.
5049 CLEARED is as for store_constructor.
5050 ALIAS_SET is the alias set to use for any stores.
5051
5052 This provides a recursive shortcut back to store_constructor when it isn't
5053 necessary to go through store_field. This is so that we can pass through
5054 the cleared field to let store_constructor know that we may not have to
5055 clear a substructure if the outer structure has already been cleared. */
5056
5057 static void
5058 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5059 HOST_WIDE_INT bitpos, enum machine_mode mode,
5060 tree exp, tree type, int cleared,
5061 alias_set_type alias_set)
5062 {
5063 if (TREE_CODE (exp) == CONSTRUCTOR
5064 /* We can only call store_constructor recursively if the size and
5065 bit position are on a byte boundary. */
5066 && bitpos % BITS_PER_UNIT == 0
5067 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5068 /* If we have a nonzero bitpos for a register target, then we just
5069 let store_field do the bitfield handling. This is unlikely to
5070 generate unnecessary clear instructions anyways. */
5071 && (bitpos == 0 || MEM_P (target)))
5072 {
5073 if (MEM_P (target))
5074 target
5075 = adjust_address (target,
5076 GET_MODE (target) == BLKmode
5077 || 0 != (bitpos
5078 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5079 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5080
5081
5082 /* Update the alias set, if required. */
5083 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5084 && MEM_ALIAS_SET (target) != 0)
5085 {
5086 target = copy_rtx (target);
5087 set_mem_alias_set (target, alias_set);
5088 }
5089
5090 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5091 }
5092 else
5093 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5094 }
5095
5096 /* Store the value of constructor EXP into the rtx TARGET.
5097 TARGET is either a REG or a MEM; we know it cannot conflict, since
5098 safe_from_p has been called.
5099 CLEARED is true if TARGET is known to have been zero'd.
5100 SIZE is the number of bytes of TARGET we are allowed to modify: this
5101 may not be the same as the size of EXP if we are assigning to a field
5102 which has been packed to exclude padding bits. */
5103
5104 static void
5105 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5106 {
5107 tree type = TREE_TYPE (exp);
5108 #ifdef WORD_REGISTER_OPERATIONS
5109 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5110 #endif
5111
5112 switch (TREE_CODE (type))
5113 {
5114 case RECORD_TYPE:
5115 case UNION_TYPE:
5116 case QUAL_UNION_TYPE:
5117 {
5118 unsigned HOST_WIDE_INT idx;
5119 tree field, value;
5120
5121 /* If size is zero or the target is already cleared, do nothing. */
5122 if (size == 0 || cleared)
5123 cleared = 1;
5124 /* We either clear the aggregate or indicate the value is dead. */
5125 else if ((TREE_CODE (type) == UNION_TYPE
5126 || TREE_CODE (type) == QUAL_UNION_TYPE)
5127 && ! CONSTRUCTOR_ELTS (exp))
5128 /* If the constructor is empty, clear the union. */
5129 {
5130 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5131 cleared = 1;
5132 }
5133
5134 /* If we are building a static constructor into a register,
5135 set the initial value as zero so we can fold the value into
5136 a constant. But if more than one register is involved,
5137 this probably loses. */
5138 else if (REG_P (target) && TREE_STATIC (exp)
5139 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5140 {
5141 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5142 cleared = 1;
5143 }
5144
5145 /* If the constructor has fewer fields than the structure or
5146 if we are initializing the structure to mostly zeros, clear
5147 the whole structure first. Don't do this if TARGET is a
5148 register whose mode size isn't equal to SIZE since
5149 clear_storage can't handle this case. */
5150 else if (size > 0
5151 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5152 != fields_length (type))
5153 || mostly_zeros_p (exp))
5154 && (!REG_P (target)
5155 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5156 == size)))
5157 {
5158 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5159 cleared = 1;
5160 }
5161
5162 if (REG_P (target) && !cleared)
5163 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
5164
5165 /* Store each element of the constructor into the
5166 corresponding field of TARGET. */
5167 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5168 {
5169 enum machine_mode mode;
5170 HOST_WIDE_INT bitsize;
5171 HOST_WIDE_INT bitpos = 0;
5172 tree offset;
5173 rtx to_rtx = target;
5174
5175 /* Just ignore missing fields. We cleared the whole
5176 structure, above, if any fields are missing. */
5177 if (field == 0)
5178 continue;
5179
5180 if (cleared && initializer_zerop (value))
5181 continue;
5182
5183 if (host_integerp (DECL_SIZE (field), 1))
5184 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5185 else
5186 bitsize = -1;
5187
5188 mode = DECL_MODE (field);
5189 if (DECL_BIT_FIELD (field))
5190 mode = VOIDmode;
5191
5192 offset = DECL_FIELD_OFFSET (field);
5193 if (host_integerp (offset, 0)
5194 && host_integerp (bit_position (field), 0))
5195 {
5196 bitpos = int_bit_position (field);
5197 offset = 0;
5198 }
5199 else
5200 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5201
5202 if (offset)
5203 {
5204 rtx offset_rtx;
5205
5206 offset
5207 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5208 make_tree (TREE_TYPE (exp),
5209 target));
5210
5211 offset_rtx = expand_normal (offset);
5212 gcc_assert (MEM_P (to_rtx));
5213
5214 #ifdef POINTERS_EXTEND_UNSIGNED
5215 if (GET_MODE (offset_rtx) != Pmode)
5216 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
5217 #else
5218 if (GET_MODE (offset_rtx) != ptr_mode)
5219 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
5220 #endif
5221
5222 to_rtx = offset_address (to_rtx, offset_rtx,
5223 highest_pow2_factor (offset));
5224 }
5225
5226 #ifdef WORD_REGISTER_OPERATIONS
5227 /* If this initializes a field that is smaller than a
5228 word, at the start of a word, try to widen it to a full
5229 word. This special case allows us to output C++ member
5230 function initializations in a form that the optimizers
5231 can understand. */
5232 if (REG_P (target)
5233 && bitsize < BITS_PER_WORD
5234 && bitpos % BITS_PER_WORD == 0
5235 && GET_MODE_CLASS (mode) == MODE_INT
5236 && TREE_CODE (value) == INTEGER_CST
5237 && exp_size >= 0
5238 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5239 {
5240 tree type = TREE_TYPE (value);
5241
5242 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5243 {
5244 type = lang_hooks.types.type_for_size
5245 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5246 value = fold_convert (type, value);
5247 }
5248
5249 if (BYTES_BIG_ENDIAN)
5250 value
5251 = fold_build2 (LSHIFT_EXPR, type, value,
5252 build_int_cst (type,
5253 BITS_PER_WORD - bitsize));
5254 bitsize = BITS_PER_WORD;
5255 mode = word_mode;
5256 }
5257 #endif
5258
5259 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5260 && DECL_NONADDRESSABLE_P (field))
5261 {
5262 to_rtx = copy_rtx (to_rtx);
5263 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5264 }
5265
5266 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5267 value, type, cleared,
5268 get_alias_set (TREE_TYPE (field)));
5269 }
5270 break;
5271 }
5272 case ARRAY_TYPE:
5273 {
5274 tree value, index;
5275 unsigned HOST_WIDE_INT i;
5276 int need_to_clear;
5277 tree domain;
5278 tree elttype = TREE_TYPE (type);
5279 int const_bounds_p;
5280 HOST_WIDE_INT minelt = 0;
5281 HOST_WIDE_INT maxelt = 0;
5282
5283 domain = TYPE_DOMAIN (type);
5284 const_bounds_p = (TYPE_MIN_VALUE (domain)
5285 && TYPE_MAX_VALUE (domain)
5286 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5287 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5288
5289 /* If we have constant bounds for the range of the type, get them. */
5290 if (const_bounds_p)
5291 {
5292 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5293 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5294 }
5295
5296 /* If the constructor has fewer elements than the array, clear
5297 the whole array first. Similarly if this is static
5298 constructor of a non-BLKmode object. */
5299 if (cleared)
5300 need_to_clear = 0;
5301 else if (REG_P (target) && TREE_STATIC (exp))
5302 need_to_clear = 1;
5303 else
5304 {
5305 unsigned HOST_WIDE_INT idx;
5306 tree index, value;
5307 HOST_WIDE_INT count = 0, zero_count = 0;
5308 need_to_clear = ! const_bounds_p;
5309
5310 /* This loop is a more accurate version of the loop in
5311 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5312 is also needed to check for missing elements. */
5313 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5314 {
5315 HOST_WIDE_INT this_node_count;
5316
5317 if (need_to_clear)
5318 break;
5319
5320 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5321 {
5322 tree lo_index = TREE_OPERAND (index, 0);
5323 tree hi_index = TREE_OPERAND (index, 1);
5324
5325 if (! host_integerp (lo_index, 1)
5326 || ! host_integerp (hi_index, 1))
5327 {
5328 need_to_clear = 1;
5329 break;
5330 }
5331
5332 this_node_count = (tree_low_cst (hi_index, 1)
5333 - tree_low_cst (lo_index, 1) + 1);
5334 }
5335 else
5336 this_node_count = 1;
5337
5338 count += this_node_count;
5339 if (mostly_zeros_p (value))
5340 zero_count += this_node_count;
5341 }
5342
5343 /* Clear the entire array first if there are any missing
5344 elements, or if the incidence of zero elements is >=
5345 75%. */
5346 if (! need_to_clear
5347 && (count < maxelt - minelt + 1
5348 || 4 * zero_count >= 3 * count))
5349 need_to_clear = 1;
5350 }
5351
5352 if (need_to_clear && size > 0)
5353 {
5354 if (REG_P (target))
5355 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5356 else
5357 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5358 cleared = 1;
5359 }
5360
5361 if (!cleared && REG_P (target))
5362 /* Inform later passes that the old value is dead. */
5363 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
5364
5365 /* Store each element of the constructor into the
5366 corresponding element of TARGET, determined by counting the
5367 elements. */
5368 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5369 {
5370 enum machine_mode mode;
5371 HOST_WIDE_INT bitsize;
5372 HOST_WIDE_INT bitpos;
5373 int unsignedp;
5374 rtx xtarget = target;
5375
5376 if (cleared && initializer_zerop (value))
5377 continue;
5378
5379 unsignedp = TYPE_UNSIGNED (elttype);
5380 mode = TYPE_MODE (elttype);
5381 if (mode == BLKmode)
5382 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5383 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5384 : -1);
5385 else
5386 bitsize = GET_MODE_BITSIZE (mode);
5387
5388 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5389 {
5390 tree lo_index = TREE_OPERAND (index, 0);
5391 tree hi_index = TREE_OPERAND (index, 1);
5392 rtx index_r, pos_rtx;
5393 HOST_WIDE_INT lo, hi, count;
5394 tree position;
5395
5396 /* If the range is constant and "small", unroll the loop. */
5397 if (const_bounds_p
5398 && host_integerp (lo_index, 0)
5399 && host_integerp (hi_index, 0)
5400 && (lo = tree_low_cst (lo_index, 0),
5401 hi = tree_low_cst (hi_index, 0),
5402 count = hi - lo + 1,
5403 (!MEM_P (target)
5404 || count <= 2
5405 || (host_integerp (TYPE_SIZE (elttype), 1)
5406 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5407 <= 40 * 8)))))
5408 {
5409 lo -= minelt; hi -= minelt;
5410 for (; lo <= hi; lo++)
5411 {
5412 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5413
5414 if (MEM_P (target)
5415 && !MEM_KEEP_ALIAS_SET_P (target)
5416 && TREE_CODE (type) == ARRAY_TYPE
5417 && TYPE_NONALIASED_COMPONENT (type))
5418 {
5419 target = copy_rtx (target);
5420 MEM_KEEP_ALIAS_SET_P (target) = 1;
5421 }
5422
5423 store_constructor_field
5424 (target, bitsize, bitpos, mode, value, type, cleared,
5425 get_alias_set (elttype));
5426 }
5427 }
5428 else
5429 {
5430 rtx loop_start = gen_label_rtx ();
5431 rtx loop_end = gen_label_rtx ();
5432 tree exit_cond;
5433
5434 expand_normal (hi_index);
5435 unsignedp = TYPE_UNSIGNED (domain);
5436
5437 index = build_decl (VAR_DECL, NULL_TREE, domain);
5438
5439 index_r
5440 = gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
5441 &unsignedp, 0));
5442 SET_DECL_RTL (index, index_r);
5443 store_expr (lo_index, index_r, 0, false);
5444
5445 /* Build the head of the loop. */
5446 do_pending_stack_adjust ();
5447 emit_label (loop_start);
5448
5449 /* Assign value to element index. */
5450 position =
5451 fold_convert (ssizetype,
5452 fold_build2 (MINUS_EXPR,
5453 TREE_TYPE (index),
5454 index,
5455 TYPE_MIN_VALUE (domain)));
5456
5457 position =
5458 size_binop (MULT_EXPR, position,
5459 fold_convert (ssizetype,
5460 TYPE_SIZE_UNIT (elttype)));
5461
5462 pos_rtx = expand_normal (position);
5463 xtarget = offset_address (target, pos_rtx,
5464 highest_pow2_factor (position));
5465 xtarget = adjust_address (xtarget, mode, 0);
5466 if (TREE_CODE (value) == CONSTRUCTOR)
5467 store_constructor (value, xtarget, cleared,
5468 bitsize / BITS_PER_UNIT);
5469 else
5470 store_expr (value, xtarget, 0, false);
5471
5472 /* Generate a conditional jump to exit the loop. */
5473 exit_cond = build2 (LT_EXPR, integer_type_node,
5474 index, hi_index);
5475 jumpif (exit_cond, loop_end);
5476
5477 /* Update the loop counter, and jump to the head of
5478 the loop. */
5479 expand_assignment (index,
5480 build2 (PLUS_EXPR, TREE_TYPE (index),
5481 index, integer_one_node),
5482 false);
5483
5484 emit_jump (loop_start);
5485
5486 /* Build the end of the loop. */
5487 emit_label (loop_end);
5488 }
5489 }
5490 else if ((index != 0 && ! host_integerp (index, 0))
5491 || ! host_integerp (TYPE_SIZE (elttype), 1))
5492 {
5493 tree position;
5494
5495 if (index == 0)
5496 index = ssize_int (1);
5497
5498 if (minelt)
5499 index = fold_convert (ssizetype,
5500 fold_build2 (MINUS_EXPR,
5501 TREE_TYPE (index),
5502 index,
5503 TYPE_MIN_VALUE (domain)));
5504
5505 position =
5506 size_binop (MULT_EXPR, index,
5507 fold_convert (ssizetype,
5508 TYPE_SIZE_UNIT (elttype)));
5509 xtarget = offset_address (target,
5510 expand_normal (position),
5511 highest_pow2_factor (position));
5512 xtarget = adjust_address (xtarget, mode, 0);
5513 store_expr (value, xtarget, 0, false);
5514 }
5515 else
5516 {
5517 if (index != 0)
5518 bitpos = ((tree_low_cst (index, 0) - minelt)
5519 * tree_low_cst (TYPE_SIZE (elttype), 1));
5520 else
5521 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5522
5523 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5524 && TREE_CODE (type) == ARRAY_TYPE
5525 && TYPE_NONALIASED_COMPONENT (type))
5526 {
5527 target = copy_rtx (target);
5528 MEM_KEEP_ALIAS_SET_P (target) = 1;
5529 }
5530 store_constructor_field (target, bitsize, bitpos, mode, value,
5531 type, cleared, get_alias_set (elttype));
5532 }
5533 }
5534 break;
5535 }
5536
5537 case VECTOR_TYPE:
5538 {
5539 unsigned HOST_WIDE_INT idx;
5540 constructor_elt *ce;
5541 int i;
5542 int need_to_clear;
5543 int icode = 0;
5544 tree elttype = TREE_TYPE (type);
5545 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5546 enum machine_mode eltmode = TYPE_MODE (elttype);
5547 HOST_WIDE_INT bitsize;
5548 HOST_WIDE_INT bitpos;
5549 rtvec vector = NULL;
5550 unsigned n_elts;
5551
5552 gcc_assert (eltmode != BLKmode);
5553
5554 n_elts = TYPE_VECTOR_SUBPARTS (type);
5555 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5556 {
5557 enum machine_mode mode = GET_MODE (target);
5558
5559 icode = (int) optab_handler (vec_init_optab, mode)->insn_code;
5560 if (icode != CODE_FOR_nothing)
5561 {
5562 unsigned int i;
5563
5564 vector = rtvec_alloc (n_elts);
5565 for (i = 0; i < n_elts; i++)
5566 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5567 }
5568 }
5569
5570 /* If the constructor has fewer elements than the vector,
5571 clear the whole array first. Similarly if this is static
5572 constructor of a non-BLKmode object. */
5573 if (cleared)
5574 need_to_clear = 0;
5575 else if (REG_P (target) && TREE_STATIC (exp))
5576 need_to_clear = 1;
5577 else
5578 {
5579 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5580 tree value;
5581
5582 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5583 {
5584 int n_elts_here = tree_low_cst
5585 (int_const_binop (TRUNC_DIV_EXPR,
5586 TYPE_SIZE (TREE_TYPE (value)),
5587 TYPE_SIZE (elttype), 0), 1);
5588
5589 count += n_elts_here;
5590 if (mostly_zeros_p (value))
5591 zero_count += n_elts_here;
5592 }
5593
5594 /* Clear the entire vector first if there are any missing elements,
5595 or if the incidence of zero elements is >= 75%. */
5596 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5597 }
5598
5599 if (need_to_clear && size > 0 && !vector)
5600 {
5601 if (REG_P (target))
5602 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5603 else
5604 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5605 cleared = 1;
5606 }
5607
5608 /* Inform later passes that the old value is dead. */
5609 if (!cleared && !vector && REG_P (target))
5610 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5611
5612 /* Store each element of the constructor into the corresponding
5613 element of TARGET, determined by counting the elements. */
5614 for (idx = 0, i = 0;
5615 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5616 idx++, i += bitsize / elt_size)
5617 {
5618 HOST_WIDE_INT eltpos;
5619 tree value = ce->value;
5620
5621 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5622 if (cleared && initializer_zerop (value))
5623 continue;
5624
5625 if (ce->index)
5626 eltpos = tree_low_cst (ce->index, 1);
5627 else
5628 eltpos = i;
5629
5630 if (vector)
5631 {
5632 /* Vector CONSTRUCTORs should only be built from smaller
5633 vectors in the case of BLKmode vectors. */
5634 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5635 RTVEC_ELT (vector, eltpos)
5636 = expand_normal (value);
5637 }
5638 else
5639 {
5640 enum machine_mode value_mode =
5641 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5642 ? TYPE_MODE (TREE_TYPE (value))
5643 : eltmode;
5644 bitpos = eltpos * elt_size;
5645 store_constructor_field (target, bitsize, bitpos,
5646 value_mode, value, type,
5647 cleared, get_alias_set (elttype));
5648 }
5649 }
5650
5651 if (vector)
5652 emit_insn (GEN_FCN (icode)
5653 (target,
5654 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5655 break;
5656 }
5657
5658 default:
5659 gcc_unreachable ();
5660 }
5661 }
5662
5663 /* Store the value of EXP (an expression tree)
5664 into a subfield of TARGET which has mode MODE and occupies
5665 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5666 If MODE is VOIDmode, it means that we are storing into a bit-field.
5667
5668 Always return const0_rtx unless we have something particular to
5669 return.
5670
5671 TYPE is the type of the underlying object,
5672
5673 ALIAS_SET is the alias set for the destination. This value will
5674 (in general) be different from that for TARGET, since TARGET is a
5675 reference to the containing structure.
5676
5677 If NONTEMPORAL is true, try generating a nontemporal store. */
5678
5679 static rtx
5680 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5681 enum machine_mode mode, tree exp, tree type,
5682 alias_set_type alias_set, bool nontemporal)
5683 {
5684 HOST_WIDE_INT width_mask = 0;
5685
5686 if (TREE_CODE (exp) == ERROR_MARK)
5687 return const0_rtx;
5688
5689 /* If we have nothing to store, do nothing unless the expression has
5690 side-effects. */
5691 if (bitsize == 0)
5692 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5693 else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
5694 width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
5695
5696 /* If we are storing into an unaligned field of an aligned union that is
5697 in a register, we may have the mode of TARGET being an integer mode but
5698 MODE == BLKmode. In that case, get an aligned object whose size and
5699 alignment are the same as TARGET and store TARGET into it (we can avoid
5700 the store if the field being stored is the entire width of TARGET). Then
5701 call ourselves recursively to store the field into a BLKmode version of
5702 that object. Finally, load from the object into TARGET. This is not
5703 very efficient in general, but should only be slightly more expensive
5704 than the otherwise-required unaligned accesses. Perhaps this can be
5705 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5706 twice, once with emit_move_insn and once via store_field. */
5707
5708 if (mode == BLKmode
5709 && (REG_P (target) || GET_CODE (target) == SUBREG))
5710 {
5711 rtx object = assign_temp (type, 0, 1, 1);
5712 rtx blk_object = adjust_address (object, BLKmode, 0);
5713
5714 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5715 emit_move_insn (object, target);
5716
5717 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5718 nontemporal);
5719
5720 emit_move_insn (target, object);
5721
5722 /* We want to return the BLKmode version of the data. */
5723 return blk_object;
5724 }
5725
5726 if (GET_CODE (target) == CONCAT)
5727 {
5728 /* We're storing into a struct containing a single __complex. */
5729
5730 gcc_assert (!bitpos);
5731 return store_expr (exp, target, 0, nontemporal);
5732 }
5733
5734 /* If the structure is in a register or if the component
5735 is a bit field, we cannot use addressing to access it.
5736 Use bit-field techniques or SUBREG to store in it. */
5737
5738 if (mode == VOIDmode
5739 || (mode != BLKmode && ! direct_store[(int) mode]
5740 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5741 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5742 || REG_P (target)
5743 || GET_CODE (target) == SUBREG
5744 /* If the field isn't aligned enough to store as an ordinary memref,
5745 store it as a bit field. */
5746 || (mode != BLKmode
5747 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5748 || bitpos % GET_MODE_ALIGNMENT (mode))
5749 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5750 || (bitpos % BITS_PER_UNIT != 0)))
5751 /* If the RHS and field are a constant size and the size of the
5752 RHS isn't the same size as the bitfield, we must use bitfield
5753 operations. */
5754 || (bitsize >= 0
5755 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5756 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5757 {
5758 rtx temp;
5759
5760 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5761 implies a mask operation. If the precision is the same size as
5762 the field we're storing into, that mask is redundant. This is
5763 particularly common with bit field assignments generated by the
5764 C front end. */
5765 if (TREE_CODE (exp) == NOP_EXPR)
5766 {
5767 tree type = TREE_TYPE (exp);
5768 if (INTEGRAL_TYPE_P (type)
5769 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5770 && bitsize == TYPE_PRECISION (type))
5771 {
5772 type = TREE_TYPE (TREE_OPERAND (exp, 0));
5773 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5774 exp = TREE_OPERAND (exp, 0);
5775 }
5776 }
5777
5778 temp = expand_normal (exp);
5779
5780 /* If BITSIZE is narrower than the size of the type of EXP
5781 we will be narrowing TEMP. Normally, what's wanted are the
5782 low-order bits. However, if EXP's type is a record and this is
5783 big-endian machine, we want the upper BITSIZE bits. */
5784 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5785 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5786 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5787 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5788 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5789 - bitsize),
5790 NULL_RTX, 1);
5791
5792 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5793 MODE. */
5794 if (mode != VOIDmode && mode != BLKmode
5795 && mode != TYPE_MODE (TREE_TYPE (exp)))
5796 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5797
5798 /* If the modes of TARGET and TEMP are both BLKmode, both
5799 must be in memory and BITPOS must be aligned on a byte
5800 boundary. If so, we simply do a block copy. */
5801 if (GET_MODE (target) == BLKmode && GET_MODE (temp) == BLKmode)
5802 {
5803 gcc_assert (MEM_P (target) && MEM_P (temp)
5804 && !(bitpos % BITS_PER_UNIT));
5805
5806 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5807 emit_block_move (target, temp,
5808 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5809 / BITS_PER_UNIT),
5810 BLOCK_OP_NORMAL);
5811
5812 return const0_rtx;
5813 }
5814
5815 /* Store the value in the bitfield. */
5816 store_bit_field (target, bitsize, bitpos, mode, temp);
5817
5818 return const0_rtx;
5819 }
5820 else
5821 {
5822 /* Now build a reference to just the desired component. */
5823 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5824
5825 if (to_rtx == target)
5826 to_rtx = copy_rtx (to_rtx);
5827
5828 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5829 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5830 set_mem_alias_set (to_rtx, alias_set);
5831
5832 return store_expr (exp, to_rtx, 0, nontemporal);
5833 }
5834 }
5835 \f
5836 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5837 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5838 codes and find the ultimate containing object, which we return.
5839
5840 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5841 bit position, and *PUNSIGNEDP to the signedness of the field.
5842 If the position of the field is variable, we store a tree
5843 giving the variable offset (in units) in *POFFSET.
5844 This offset is in addition to the bit position.
5845 If the position is not variable, we store 0 in *POFFSET.
5846
5847 If any of the extraction expressions is volatile,
5848 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5849
5850 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
5851 is a mode that can be used to access the field. In that case, *PBITSIZE
5852 is redundant.
5853
5854 If the field describes a variable-sized object, *PMODE is set to
5855 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
5856 this case, but the address of the object can be found.
5857
5858 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5859 look through nodes that serve as markers of a greater alignment than
5860 the one that can be deduced from the expression. These nodes make it
5861 possible for front-ends to prevent temporaries from being created by
5862 the middle-end on alignment considerations. For that purpose, the
5863 normal operating mode at high-level is to always pass FALSE so that
5864 the ultimate containing object is really returned; moreover, the
5865 associated predicate handled_component_p will always return TRUE
5866 on these nodes, thus indicating that they are essentially handled
5867 by get_inner_reference. TRUE should only be passed when the caller
5868 is scanning the expression in order to build another representation
5869 and specifically knows how to handle these nodes; as such, this is
5870 the normal operating mode in the RTL expanders. */
5871
5872 tree
5873 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5874 HOST_WIDE_INT *pbitpos, tree *poffset,
5875 enum machine_mode *pmode, int *punsignedp,
5876 int *pvolatilep, bool keep_aligning)
5877 {
5878 tree size_tree = 0;
5879 enum machine_mode mode = VOIDmode;
5880 tree offset = size_zero_node;
5881 tree bit_offset = bitsize_zero_node;
5882
5883 /* First get the mode, signedness, and size. We do this from just the
5884 outermost expression. */
5885 if (TREE_CODE (exp) == COMPONENT_REF)
5886 {
5887 size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
5888 if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
5889 mode = DECL_MODE (TREE_OPERAND (exp, 1));
5890
5891 *punsignedp = DECL_UNSIGNED (TREE_OPERAND (exp, 1));
5892 }
5893 else if (TREE_CODE (exp) == BIT_FIELD_REF)
5894 {
5895 size_tree = TREE_OPERAND (exp, 1);
5896 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
5897 || TYPE_UNSIGNED (TREE_TYPE (exp)));
5898
5899 /* For vector types, with the correct size of access, use the mode of
5900 inner type. */
5901 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
5902 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
5903 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
5904 mode = TYPE_MODE (TREE_TYPE (exp));
5905 }
5906 else
5907 {
5908 mode = TYPE_MODE (TREE_TYPE (exp));
5909 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5910
5911 if (mode == BLKmode)
5912 size_tree = TYPE_SIZE (TREE_TYPE (exp));
5913 else
5914 *pbitsize = GET_MODE_BITSIZE (mode);
5915 }
5916
5917 if (size_tree != 0)
5918 {
5919 if (! host_integerp (size_tree, 1))
5920 mode = BLKmode, *pbitsize = -1;
5921 else
5922 *pbitsize = tree_low_cst (size_tree, 1);
5923 }
5924
5925 *pmode = mode;
5926
5927 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5928 and find the ultimate containing object. */
5929 while (1)
5930 {
5931 switch (TREE_CODE (exp))
5932 {
5933 case BIT_FIELD_REF:
5934 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5935 TREE_OPERAND (exp, 2));
5936 break;
5937
5938 case COMPONENT_REF:
5939 {
5940 tree field = TREE_OPERAND (exp, 1);
5941 tree this_offset = component_ref_field_offset (exp);
5942
5943 /* If this field hasn't been filled in yet, don't go past it.
5944 This should only happen when folding expressions made during
5945 type construction. */
5946 if (this_offset == 0)
5947 break;
5948
5949 offset = size_binop (PLUS_EXPR, offset, this_offset);
5950 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5951 DECL_FIELD_BIT_OFFSET (field));
5952
5953 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5954 }
5955 break;
5956
5957 case ARRAY_REF:
5958 case ARRAY_RANGE_REF:
5959 {
5960 tree index = TREE_OPERAND (exp, 1);
5961 tree low_bound = array_ref_low_bound (exp);
5962 tree unit_size = array_ref_element_size (exp);
5963
5964 /* We assume all arrays have sizes that are a multiple of a byte.
5965 First subtract the lower bound, if any, in the type of the
5966 index, then convert to sizetype and multiply by the size of
5967 the array element. */
5968 if (! integer_zerop (low_bound))
5969 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
5970 index, low_bound);
5971
5972 offset = size_binop (PLUS_EXPR, offset,
5973 size_binop (MULT_EXPR,
5974 fold_convert (sizetype, index),
5975 unit_size));
5976 }
5977 break;
5978
5979 case REALPART_EXPR:
5980 break;
5981
5982 case IMAGPART_EXPR:
5983 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5984 bitsize_int (*pbitsize));
5985 break;
5986
5987 case VIEW_CONVERT_EXPR:
5988 if (keep_aligning && STRICT_ALIGNMENT
5989 && (TYPE_ALIGN (TREE_TYPE (exp))
5990 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
5991 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
5992 < BIGGEST_ALIGNMENT)
5993 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
5994 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
5995 goto done;
5996 break;
5997
5998 default:
5999 goto done;
6000 }
6001
6002 /* If any reference in the chain is volatile, the effect is volatile. */
6003 if (TREE_THIS_VOLATILE (exp))
6004 *pvolatilep = 1;
6005
6006 exp = TREE_OPERAND (exp, 0);
6007 }
6008 done:
6009
6010 /* If OFFSET is constant, see if we can return the whole thing as a
6011 constant bit position. Make sure to handle overflow during
6012 this conversion. */
6013 if (host_integerp (offset, 0))
6014 {
6015 double_int tem = double_int_mul (tree_to_double_int (offset),
6016 uhwi_to_double_int (BITS_PER_UNIT));
6017 tem = double_int_add (tem, tree_to_double_int (bit_offset));
6018 if (double_int_fits_in_shwi_p (tem))
6019 {
6020 *pbitpos = double_int_to_shwi (tem);
6021 *poffset = NULL_TREE;
6022 return exp;
6023 }
6024 }
6025
6026 /* Otherwise, split it up. */
6027 *pbitpos = tree_low_cst (bit_offset, 0);
6028 *poffset = offset;
6029
6030 return exp;
6031 }
6032
6033 /* Given an expression EXP that may be a COMPONENT_REF or an ARRAY_REF,
6034 look for whether EXP or any nested component-refs within EXP is marked
6035 as PACKED. */
6036
6037 bool
6038 contains_packed_reference (const_tree exp)
6039 {
6040 bool packed_p = false;
6041
6042 while (1)
6043 {
6044 switch (TREE_CODE (exp))
6045 {
6046 case COMPONENT_REF:
6047 {
6048 tree field = TREE_OPERAND (exp, 1);
6049 packed_p = DECL_PACKED (field)
6050 || TYPE_PACKED (TREE_TYPE (field))
6051 || TYPE_PACKED (TREE_TYPE (exp));
6052 if (packed_p)
6053 goto done;
6054 }
6055 break;
6056
6057 case BIT_FIELD_REF:
6058 case ARRAY_REF:
6059 case ARRAY_RANGE_REF:
6060 case REALPART_EXPR:
6061 case IMAGPART_EXPR:
6062 case VIEW_CONVERT_EXPR:
6063 break;
6064
6065 default:
6066 goto done;
6067 }
6068 exp = TREE_OPERAND (exp, 0);
6069 }
6070 done:
6071 return packed_p;
6072 }
6073
6074 /* Return a tree of sizetype representing the size, in bytes, of the element
6075 of EXP, an ARRAY_REF. */
6076
6077 tree
6078 array_ref_element_size (tree exp)
6079 {
6080 tree aligned_size = TREE_OPERAND (exp, 3);
6081 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6082
6083 /* If a size was specified in the ARRAY_REF, it's the size measured
6084 in alignment units of the element type. So multiply by that value. */
6085 if (aligned_size)
6086 {
6087 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6088 sizetype from another type of the same width and signedness. */
6089 if (TREE_TYPE (aligned_size) != sizetype)
6090 aligned_size = fold_convert (sizetype, aligned_size);
6091 return size_binop (MULT_EXPR, aligned_size,
6092 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6093 }
6094
6095 /* Otherwise, take the size from that of the element type. Substitute
6096 any PLACEHOLDER_EXPR that we have. */
6097 else
6098 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6099 }
6100
6101 /* Return a tree representing the lower bound of the array mentioned in
6102 EXP, an ARRAY_REF. */
6103
6104 tree
6105 array_ref_low_bound (tree exp)
6106 {
6107 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6108
6109 /* If a lower bound is specified in EXP, use it. */
6110 if (TREE_OPERAND (exp, 2))
6111 return TREE_OPERAND (exp, 2);
6112
6113 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6114 substituting for a PLACEHOLDER_EXPR as needed. */
6115 if (domain_type && TYPE_MIN_VALUE (domain_type))
6116 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6117
6118 /* Otherwise, return a zero of the appropriate type. */
6119 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6120 }
6121
6122 /* Return a tree representing the upper bound of the array mentioned in
6123 EXP, an ARRAY_REF. */
6124
6125 tree
6126 array_ref_up_bound (tree exp)
6127 {
6128 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6129
6130 /* If there is a domain type and it has an upper bound, use it, substituting
6131 for a PLACEHOLDER_EXPR as needed. */
6132 if (domain_type && TYPE_MAX_VALUE (domain_type))
6133 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6134
6135 /* Otherwise fail. */
6136 return NULL_TREE;
6137 }
6138
6139 /* Return a tree representing the offset, in bytes, of the field referenced
6140 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6141
6142 tree
6143 component_ref_field_offset (tree exp)
6144 {
6145 tree aligned_offset = TREE_OPERAND (exp, 2);
6146 tree field = TREE_OPERAND (exp, 1);
6147
6148 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6149 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6150 value. */
6151 if (aligned_offset)
6152 {
6153 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6154 sizetype from another type of the same width and signedness. */
6155 if (TREE_TYPE (aligned_offset) != sizetype)
6156 aligned_offset = fold_convert (sizetype, aligned_offset);
6157 return size_binop (MULT_EXPR, aligned_offset,
6158 size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT));
6159 }
6160
6161 /* Otherwise, take the offset from that of the field. Substitute
6162 any PLACEHOLDER_EXPR that we have. */
6163 else
6164 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6165 }
6166
6167 /* Return 1 if T is an expression that get_inner_reference handles. */
6168
6169 int
6170 handled_component_p (const_tree t)
6171 {
6172 switch (TREE_CODE (t))
6173 {
6174 case BIT_FIELD_REF:
6175 case COMPONENT_REF:
6176 case ARRAY_REF:
6177 case ARRAY_RANGE_REF:
6178 case VIEW_CONVERT_EXPR:
6179 case REALPART_EXPR:
6180 case IMAGPART_EXPR:
6181 return 1;
6182
6183 default:
6184 return 0;
6185 }
6186 }
6187 \f
6188 /* Given an rtx VALUE that may contain additions and multiplications, return
6189 an equivalent value that just refers to a register, memory, or constant.
6190 This is done by generating instructions to perform the arithmetic and
6191 returning a pseudo-register containing the value.
6192
6193 The returned value may be a REG, SUBREG, MEM or constant. */
6194
6195 rtx
6196 force_operand (rtx value, rtx target)
6197 {
6198 rtx op1, op2;
6199 /* Use subtarget as the target for operand 0 of a binary operation. */
6200 rtx subtarget = get_subtarget (target);
6201 enum rtx_code code = GET_CODE (value);
6202
6203 /* Check for subreg applied to an expression produced by loop optimizer. */
6204 if (code == SUBREG
6205 && !REG_P (SUBREG_REG (value))
6206 && !MEM_P (SUBREG_REG (value)))
6207 {
6208 value
6209 = simplify_gen_subreg (GET_MODE (value),
6210 force_reg (GET_MODE (SUBREG_REG (value)),
6211 force_operand (SUBREG_REG (value),
6212 NULL_RTX)),
6213 GET_MODE (SUBREG_REG (value)),
6214 SUBREG_BYTE (value));
6215 code = GET_CODE (value);
6216 }
6217
6218 /* Check for a PIC address load. */
6219 if ((code == PLUS || code == MINUS)
6220 && XEXP (value, 0) == pic_offset_table_rtx
6221 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6222 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6223 || GET_CODE (XEXP (value, 1)) == CONST))
6224 {
6225 if (!subtarget)
6226 subtarget = gen_reg_rtx (GET_MODE (value));
6227 emit_move_insn (subtarget, value);
6228 return subtarget;
6229 }
6230
6231 if (ARITHMETIC_P (value))
6232 {
6233 op2 = XEXP (value, 1);
6234 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6235 subtarget = 0;
6236 if (code == MINUS && GET_CODE (op2) == CONST_INT)
6237 {
6238 code = PLUS;
6239 op2 = negate_rtx (GET_MODE (value), op2);
6240 }
6241
6242 /* Check for an addition with OP2 a constant integer and our first
6243 operand a PLUS of a virtual register and something else. In that
6244 case, we want to emit the sum of the virtual register and the
6245 constant first and then add the other value. This allows virtual
6246 register instantiation to simply modify the constant rather than
6247 creating another one around this addition. */
6248 if (code == PLUS && GET_CODE (op2) == CONST_INT
6249 && GET_CODE (XEXP (value, 0)) == PLUS
6250 && REG_P (XEXP (XEXP (value, 0), 0))
6251 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6252 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6253 {
6254 rtx temp = expand_simple_binop (GET_MODE (value), code,
6255 XEXP (XEXP (value, 0), 0), op2,
6256 subtarget, 0, OPTAB_LIB_WIDEN);
6257 return expand_simple_binop (GET_MODE (value), code, temp,
6258 force_operand (XEXP (XEXP (value,
6259 0), 1), 0),
6260 target, 0, OPTAB_LIB_WIDEN);
6261 }
6262
6263 op1 = force_operand (XEXP (value, 0), subtarget);
6264 op2 = force_operand (op2, NULL_RTX);
6265 switch (code)
6266 {
6267 case MULT:
6268 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6269 case DIV:
6270 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6271 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6272 target, 1, OPTAB_LIB_WIDEN);
6273 else
6274 return expand_divmod (0,
6275 FLOAT_MODE_P (GET_MODE (value))
6276 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6277 GET_MODE (value), op1, op2, target, 0);
6278 case MOD:
6279 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6280 target, 0);
6281 case UDIV:
6282 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6283 target, 1);
6284 case UMOD:
6285 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6286 target, 1);
6287 case ASHIFTRT:
6288 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6289 target, 0, OPTAB_LIB_WIDEN);
6290 default:
6291 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6292 target, 1, OPTAB_LIB_WIDEN);
6293 }
6294 }
6295 if (UNARY_P (value))
6296 {
6297 if (!target)
6298 target = gen_reg_rtx (GET_MODE (value));
6299 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6300 switch (code)
6301 {
6302 case ZERO_EXTEND:
6303 case SIGN_EXTEND:
6304 case TRUNCATE:
6305 case FLOAT_EXTEND:
6306 case FLOAT_TRUNCATE:
6307 convert_move (target, op1, code == ZERO_EXTEND);
6308 return target;
6309
6310 case FIX:
6311 case UNSIGNED_FIX:
6312 expand_fix (target, op1, code == UNSIGNED_FIX);
6313 return target;
6314
6315 case FLOAT:
6316 case UNSIGNED_FLOAT:
6317 expand_float (target, op1, code == UNSIGNED_FLOAT);
6318 return target;
6319
6320 default:
6321 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6322 }
6323 }
6324
6325 #ifdef INSN_SCHEDULING
6326 /* On machines that have insn scheduling, we want all memory reference to be
6327 explicit, so we need to deal with such paradoxical SUBREGs. */
6328 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6329 && (GET_MODE_SIZE (GET_MODE (value))
6330 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6331 value
6332 = simplify_gen_subreg (GET_MODE (value),
6333 force_reg (GET_MODE (SUBREG_REG (value)),
6334 force_operand (SUBREG_REG (value),
6335 NULL_RTX)),
6336 GET_MODE (SUBREG_REG (value)),
6337 SUBREG_BYTE (value));
6338 #endif
6339
6340 return value;
6341 }
6342 \f
6343 /* Subroutine of expand_expr: return nonzero iff there is no way that
6344 EXP can reference X, which is being modified. TOP_P is nonzero if this
6345 call is going to be used to determine whether we need a temporary
6346 for EXP, as opposed to a recursive call to this function.
6347
6348 It is always safe for this routine to return zero since it merely
6349 searches for optimization opportunities. */
6350
6351 int
6352 safe_from_p (const_rtx x, tree exp, int top_p)
6353 {
6354 rtx exp_rtl = 0;
6355 int i, nops;
6356
6357 if (x == 0
6358 /* If EXP has varying size, we MUST use a target since we currently
6359 have no way of allocating temporaries of variable size
6360 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6361 So we assume here that something at a higher level has prevented a
6362 clash. This is somewhat bogus, but the best we can do. Only
6363 do this when X is BLKmode and when we are at the top level. */
6364 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6365 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6366 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6367 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6368 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6369 != INTEGER_CST)
6370 && GET_MODE (x) == BLKmode)
6371 /* If X is in the outgoing argument area, it is always safe. */
6372 || (MEM_P (x)
6373 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6374 || (GET_CODE (XEXP (x, 0)) == PLUS
6375 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6376 return 1;
6377
6378 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6379 find the underlying pseudo. */
6380 if (GET_CODE (x) == SUBREG)
6381 {
6382 x = SUBREG_REG (x);
6383 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6384 return 0;
6385 }
6386
6387 /* Now look at our tree code and possibly recurse. */
6388 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6389 {
6390 case tcc_declaration:
6391 exp_rtl = DECL_RTL_IF_SET (exp);
6392 break;
6393
6394 case tcc_constant:
6395 return 1;
6396
6397 case tcc_exceptional:
6398 if (TREE_CODE (exp) == TREE_LIST)
6399 {
6400 while (1)
6401 {
6402 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6403 return 0;
6404 exp = TREE_CHAIN (exp);
6405 if (!exp)
6406 return 1;
6407 if (TREE_CODE (exp) != TREE_LIST)
6408 return safe_from_p (x, exp, 0);
6409 }
6410 }
6411 else if (TREE_CODE (exp) == CONSTRUCTOR)
6412 {
6413 constructor_elt *ce;
6414 unsigned HOST_WIDE_INT idx;
6415
6416 for (idx = 0;
6417 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6418 idx++)
6419 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6420 || !safe_from_p (x, ce->value, 0))
6421 return 0;
6422 return 1;
6423 }
6424 else if (TREE_CODE (exp) == ERROR_MARK)
6425 return 1; /* An already-visited SAVE_EXPR? */
6426 else
6427 return 0;
6428
6429 case tcc_statement:
6430 /* The only case we look at here is the DECL_INITIAL inside a
6431 DECL_EXPR. */
6432 return (TREE_CODE (exp) != DECL_EXPR
6433 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6434 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6435 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6436
6437 case tcc_binary:
6438 case tcc_comparison:
6439 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6440 return 0;
6441 /* Fall through. */
6442
6443 case tcc_unary:
6444 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6445
6446 case tcc_expression:
6447 case tcc_reference:
6448 case tcc_vl_exp:
6449 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6450 the expression. If it is set, we conflict iff we are that rtx or
6451 both are in memory. Otherwise, we check all operands of the
6452 expression recursively. */
6453
6454 switch (TREE_CODE (exp))
6455 {
6456 case ADDR_EXPR:
6457 /* If the operand is static or we are static, we can't conflict.
6458 Likewise if we don't conflict with the operand at all. */
6459 if (staticp (TREE_OPERAND (exp, 0))
6460 || TREE_STATIC (exp)
6461 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6462 return 1;
6463
6464 /* Otherwise, the only way this can conflict is if we are taking
6465 the address of a DECL a that address if part of X, which is
6466 very rare. */
6467 exp = TREE_OPERAND (exp, 0);
6468 if (DECL_P (exp))
6469 {
6470 if (!DECL_RTL_SET_P (exp)
6471 || !MEM_P (DECL_RTL (exp)))
6472 return 0;
6473 else
6474 exp_rtl = XEXP (DECL_RTL (exp), 0);
6475 }
6476 break;
6477
6478 case MISALIGNED_INDIRECT_REF:
6479 case ALIGN_INDIRECT_REF:
6480 case INDIRECT_REF:
6481 if (MEM_P (x)
6482 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6483 get_alias_set (exp)))
6484 return 0;
6485 break;
6486
6487 case CALL_EXPR:
6488 /* Assume that the call will clobber all hard registers and
6489 all of memory. */
6490 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6491 || MEM_P (x))
6492 return 0;
6493 break;
6494
6495 case WITH_CLEANUP_EXPR:
6496 case CLEANUP_POINT_EXPR:
6497 /* Lowered by gimplify.c. */
6498 gcc_unreachable ();
6499
6500 case SAVE_EXPR:
6501 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6502
6503 default:
6504 break;
6505 }
6506
6507 /* If we have an rtx, we do not need to scan our operands. */
6508 if (exp_rtl)
6509 break;
6510
6511 nops = TREE_OPERAND_LENGTH (exp);
6512 for (i = 0; i < nops; i++)
6513 if (TREE_OPERAND (exp, i) != 0
6514 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6515 return 0;
6516
6517 break;
6518
6519 case tcc_type:
6520 /* Should never get a type here. */
6521 gcc_unreachable ();
6522
6523 case tcc_gimple_stmt:
6524 gcc_unreachable ();
6525 }
6526
6527 /* If we have an rtl, find any enclosed object. Then see if we conflict
6528 with it. */
6529 if (exp_rtl)
6530 {
6531 if (GET_CODE (exp_rtl) == SUBREG)
6532 {
6533 exp_rtl = SUBREG_REG (exp_rtl);
6534 if (REG_P (exp_rtl)
6535 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6536 return 0;
6537 }
6538
6539 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6540 are memory and they conflict. */
6541 return ! (rtx_equal_p (x, exp_rtl)
6542 || (MEM_P (x) && MEM_P (exp_rtl)
6543 && true_dependence (exp_rtl, VOIDmode, x,
6544 rtx_addr_varies_p)));
6545 }
6546
6547 /* If we reach here, it is safe. */
6548 return 1;
6549 }
6550
6551 \f
6552 /* Return the highest power of two that EXP is known to be a multiple of.
6553 This is used in updating alignment of MEMs in array references. */
6554
6555 unsigned HOST_WIDE_INT
6556 highest_pow2_factor (const_tree exp)
6557 {
6558 unsigned HOST_WIDE_INT c0, c1;
6559
6560 switch (TREE_CODE (exp))
6561 {
6562 case INTEGER_CST:
6563 /* We can find the lowest bit that's a one. If the low
6564 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6565 We need to handle this case since we can find it in a COND_EXPR,
6566 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6567 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6568 later ICE. */
6569 if (TREE_OVERFLOW (exp))
6570 return BIGGEST_ALIGNMENT;
6571 else
6572 {
6573 /* Note: tree_low_cst is intentionally not used here,
6574 we don't care about the upper bits. */
6575 c0 = TREE_INT_CST_LOW (exp);
6576 c0 &= -c0;
6577 return c0 ? c0 : BIGGEST_ALIGNMENT;
6578 }
6579 break;
6580
6581 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6582 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6583 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6584 return MIN (c0, c1);
6585
6586 case MULT_EXPR:
6587 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6588 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6589 return c0 * c1;
6590
6591 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6592 case CEIL_DIV_EXPR:
6593 if (integer_pow2p (TREE_OPERAND (exp, 1))
6594 && host_integerp (TREE_OPERAND (exp, 1), 1))
6595 {
6596 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6597 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6598 return MAX (1, c0 / c1);
6599 }
6600 break;
6601
6602 CASE_CONVERT:
6603 case SAVE_EXPR:
6604 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6605
6606 case COMPOUND_EXPR:
6607 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6608
6609 case COND_EXPR:
6610 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6611 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6612 return MIN (c0, c1);
6613
6614 default:
6615 break;
6616 }
6617
6618 return 1;
6619 }
6620
6621 /* Similar, except that the alignment requirements of TARGET are
6622 taken into account. Assume it is at least as aligned as its
6623 type, unless it is a COMPONENT_REF in which case the layout of
6624 the structure gives the alignment. */
6625
6626 static unsigned HOST_WIDE_INT
6627 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6628 {
6629 unsigned HOST_WIDE_INT target_align, factor;
6630
6631 factor = highest_pow2_factor (exp);
6632 if (TREE_CODE (target) == COMPONENT_REF)
6633 target_align = DECL_ALIGN_UNIT (TREE_OPERAND (target, 1));
6634 else
6635 target_align = TYPE_ALIGN_UNIT (TREE_TYPE (target));
6636 return MAX (factor, target_align);
6637 }
6638 \f
6639 /* Return &VAR expression for emulated thread local VAR. */
6640
6641 static tree
6642 emutls_var_address (tree var)
6643 {
6644 tree emuvar = emutls_decl (var);
6645 tree fn = built_in_decls [BUILT_IN_EMUTLS_GET_ADDRESS];
6646 tree arg = build_fold_addr_expr_with_type (emuvar, ptr_type_node);
6647 tree arglist = build_tree_list (NULL_TREE, arg);
6648 tree call = build_function_call_expr (fn, arglist);
6649 return fold_convert (build_pointer_type (TREE_TYPE (var)), call);
6650 }
6651 \f
6652
6653 /* Subroutine of expand_expr. Expand the two operands of a binary
6654 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6655 The value may be stored in TARGET if TARGET is nonzero. The
6656 MODIFIER argument is as documented by expand_expr. */
6657
6658 static void
6659 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6660 enum expand_modifier modifier)
6661 {
6662 if (! safe_from_p (target, exp1, 1))
6663 target = 0;
6664 if (operand_equal_p (exp0, exp1, 0))
6665 {
6666 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6667 *op1 = copy_rtx (*op0);
6668 }
6669 else
6670 {
6671 /* If we need to preserve evaluation order, copy exp0 into its own
6672 temporary variable so that it can't be clobbered by exp1. */
6673 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6674 exp0 = save_expr (exp0);
6675 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6676 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6677 }
6678 }
6679
6680 \f
6681 /* Return a MEM that contains constant EXP. DEFER is as for
6682 output_constant_def and MODIFIER is as for expand_expr. */
6683
6684 static rtx
6685 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6686 {
6687 rtx mem;
6688
6689 mem = output_constant_def (exp, defer);
6690 if (modifier != EXPAND_INITIALIZER)
6691 mem = use_anchored_address (mem);
6692 return mem;
6693 }
6694
6695 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6696 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6697
6698 static rtx
6699 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6700 enum expand_modifier modifier)
6701 {
6702 rtx result, subtarget;
6703 tree inner, offset;
6704 HOST_WIDE_INT bitsize, bitpos;
6705 int volatilep, unsignedp;
6706 enum machine_mode mode1;
6707
6708 /* If we are taking the address of a constant and are at the top level,
6709 we have to use output_constant_def since we can't call force_const_mem
6710 at top level. */
6711 /* ??? This should be considered a front-end bug. We should not be
6712 generating ADDR_EXPR of something that isn't an LVALUE. The only
6713 exception here is STRING_CST. */
6714 if (CONSTANT_CLASS_P (exp))
6715 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6716
6717 /* Everything must be something allowed by is_gimple_addressable. */
6718 switch (TREE_CODE (exp))
6719 {
6720 case INDIRECT_REF:
6721 /* This case will happen via recursion for &a->b. */
6722 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6723
6724 case CONST_DECL:
6725 /* Recurse and make the output_constant_def clause above handle this. */
6726 return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
6727 tmode, modifier);
6728
6729 case REALPART_EXPR:
6730 /* The real part of the complex number is always first, therefore
6731 the address is the same as the address of the parent object. */
6732 offset = 0;
6733 bitpos = 0;
6734 inner = TREE_OPERAND (exp, 0);
6735 break;
6736
6737 case IMAGPART_EXPR:
6738 /* The imaginary part of the complex number is always second.
6739 The expression is therefore always offset by the size of the
6740 scalar type. */
6741 offset = 0;
6742 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6743 inner = TREE_OPERAND (exp, 0);
6744 break;
6745
6746 case VAR_DECL:
6747 /* TLS emulation hook - replace __thread VAR's &VAR with
6748 __emutls_get_address (&_emutls.VAR). */
6749 if (! targetm.have_tls
6750 && TREE_CODE (exp) == VAR_DECL
6751 && DECL_THREAD_LOCAL_P (exp))
6752 {
6753 exp = emutls_var_address (exp);
6754 return expand_expr (exp, target, tmode, modifier);
6755 }
6756 /* Fall through. */
6757
6758 default:
6759 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6760 expand_expr, as that can have various side effects; LABEL_DECLs for
6761 example, may not have their DECL_RTL set yet. Expand the rtl of
6762 CONSTRUCTORs too, which should yield a memory reference for the
6763 constructor's contents. Assume language specific tree nodes can
6764 be expanded in some interesting way. */
6765 if (DECL_P (exp)
6766 || TREE_CODE (exp) == CONSTRUCTOR
6767 || TREE_CODE (exp) >= LAST_AND_UNUSED_TREE_CODE)
6768 {
6769 result = expand_expr (exp, target, tmode,
6770 modifier == EXPAND_INITIALIZER
6771 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6772
6773 /* If the DECL isn't in memory, then the DECL wasn't properly
6774 marked TREE_ADDRESSABLE, which will be either a front-end
6775 or a tree optimizer bug. */
6776 gcc_assert (MEM_P (result));
6777 result = XEXP (result, 0);
6778
6779 /* ??? Is this needed anymore? */
6780 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6781 {
6782 assemble_external (exp);
6783 TREE_USED (exp) = 1;
6784 }
6785
6786 if (modifier != EXPAND_INITIALIZER
6787 && modifier != EXPAND_CONST_ADDRESS)
6788 result = force_operand (result, target);
6789 return result;
6790 }
6791
6792 /* Pass FALSE as the last argument to get_inner_reference although
6793 we are expanding to RTL. The rationale is that we know how to
6794 handle "aligning nodes" here: we can just bypass them because
6795 they won't change the final object whose address will be returned
6796 (they actually exist only for that purpose). */
6797 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6798 &mode1, &unsignedp, &volatilep, false);
6799 break;
6800 }
6801
6802 /* We must have made progress. */
6803 gcc_assert (inner != exp);
6804
6805 subtarget = offset || bitpos ? NULL_RTX : target;
6806 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier);
6807
6808 if (offset)
6809 {
6810 rtx tmp;
6811
6812 if (modifier != EXPAND_NORMAL)
6813 result = force_operand (result, NULL);
6814 tmp = expand_expr (offset, NULL_RTX, tmode,
6815 modifier == EXPAND_INITIALIZER
6816 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
6817
6818 result = convert_memory_address (tmode, result);
6819 tmp = convert_memory_address (tmode, tmp);
6820
6821 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6822 result = gen_rtx_PLUS (tmode, result, tmp);
6823 else
6824 {
6825 subtarget = bitpos ? NULL_RTX : target;
6826 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6827 1, OPTAB_LIB_WIDEN);
6828 }
6829 }
6830
6831 if (bitpos)
6832 {
6833 /* Someone beforehand should have rejected taking the address
6834 of such an object. */
6835 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6836
6837 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6838 if (modifier < EXPAND_SUM)
6839 result = force_operand (result, target);
6840 }
6841
6842 return result;
6843 }
6844
6845 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6846 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6847
6848 static rtx
6849 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6850 enum expand_modifier modifier)
6851 {
6852 enum machine_mode rmode;
6853 rtx result;
6854
6855 /* Target mode of VOIDmode says "whatever's natural". */
6856 if (tmode == VOIDmode)
6857 tmode = TYPE_MODE (TREE_TYPE (exp));
6858
6859 /* We can get called with some Weird Things if the user does silliness
6860 like "(short) &a". In that case, convert_memory_address won't do
6861 the right thing, so ignore the given target mode. */
6862 if (tmode != Pmode && tmode != ptr_mode)
6863 tmode = Pmode;
6864
6865 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
6866 tmode, modifier);
6867
6868 /* Despite expand_expr claims concerning ignoring TMODE when not
6869 strictly convenient, stuff breaks if we don't honor it. Note
6870 that combined with the above, we only do this for pointer modes. */
6871 rmode = GET_MODE (result);
6872 if (rmode == VOIDmode)
6873 rmode = tmode;
6874 if (rmode != tmode)
6875 result = convert_memory_address (tmode, result);
6876
6877 return result;
6878 }
6879
6880 /* Generate code for computing CONSTRUCTOR EXP.
6881 An rtx for the computed value is returned. If AVOID_TEMP_MEM
6882 is TRUE, instead of creating a temporary variable in memory
6883 NULL is returned and the caller needs to handle it differently. */
6884
6885 static rtx
6886 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
6887 bool avoid_temp_mem)
6888 {
6889 tree type = TREE_TYPE (exp);
6890 enum machine_mode mode = TYPE_MODE (type);
6891
6892 /* Try to avoid creating a temporary at all. This is possible
6893 if all of the initializer is zero.
6894 FIXME: try to handle all [0..255] initializers we can handle
6895 with memset. */
6896 if (TREE_STATIC (exp)
6897 && !TREE_ADDRESSABLE (exp)
6898 && target != 0 && mode == BLKmode
6899 && all_zeros_p (exp))
6900 {
6901 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6902 return target;
6903 }
6904
6905 /* All elts simple constants => refer to a constant in memory. But
6906 if this is a non-BLKmode mode, let it store a field at a time
6907 since that should make a CONST_INT or CONST_DOUBLE when we
6908 fold. Likewise, if we have a target we can use, it is best to
6909 store directly into the target unless the type is large enough
6910 that memcpy will be used. If we are making an initializer and
6911 all operands are constant, put it in memory as well.
6912
6913 FIXME: Avoid trying to fill vector constructors piece-meal.
6914 Output them with output_constant_def below unless we're sure
6915 they're zeros. This should go away when vector initializers
6916 are treated like VECTOR_CST instead of arrays. */
6917 if ((TREE_STATIC (exp)
6918 && ((mode == BLKmode
6919 && ! (target != 0 && safe_from_p (target, exp, 1)))
6920 || TREE_ADDRESSABLE (exp)
6921 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
6922 && (! MOVE_BY_PIECES_P
6923 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
6924 TYPE_ALIGN (type)))
6925 && ! mostly_zeros_p (exp))))
6926 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
6927 && TREE_CONSTANT (exp)))
6928 {
6929 rtx constructor;
6930
6931 if (avoid_temp_mem)
6932 return NULL_RTX;
6933
6934 constructor = expand_expr_constant (exp, 1, modifier);
6935
6936 if (modifier != EXPAND_CONST_ADDRESS
6937 && modifier != EXPAND_INITIALIZER
6938 && modifier != EXPAND_SUM)
6939 constructor = validize_mem (constructor);
6940
6941 return constructor;
6942 }
6943
6944 /* Handle calls that pass values in multiple non-contiguous
6945 locations. The Irix 6 ABI has examples of this. */
6946 if (target == 0 || ! safe_from_p (target, exp, 1)
6947 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
6948 {
6949 if (avoid_temp_mem)
6950 return NULL_RTX;
6951
6952 target
6953 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
6954 | (TREE_READONLY (exp)
6955 * TYPE_QUAL_CONST))),
6956 0, TREE_ADDRESSABLE (exp), 1);
6957 }
6958
6959 store_constructor (exp, target, 0, int_expr_size (exp));
6960 return target;
6961 }
6962
6963
6964 /* expand_expr: generate code for computing expression EXP.
6965 An rtx for the computed value is returned. The value is never null.
6966 In the case of a void EXP, const0_rtx is returned.
6967
6968 The value may be stored in TARGET if TARGET is nonzero.
6969 TARGET is just a suggestion; callers must assume that
6970 the rtx returned may not be the same as TARGET.
6971
6972 If TARGET is CONST0_RTX, it means that the value will be ignored.
6973
6974 If TMODE is not VOIDmode, it suggests generating the
6975 result in mode TMODE. But this is done only when convenient.
6976 Otherwise, TMODE is ignored and the value generated in its natural mode.
6977 TMODE is just a suggestion; callers must assume that
6978 the rtx returned may not have mode TMODE.
6979
6980 Note that TARGET may have neither TMODE nor MODE. In that case, it
6981 probably will not be used.
6982
6983 If MODIFIER is EXPAND_SUM then when EXP is an addition
6984 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
6985 or a nest of (PLUS ...) and (MINUS ...) where the terms are
6986 products as above, or REG or MEM, or constant.
6987 Ordinarily in such cases we would output mul or add instructions
6988 and then return a pseudo reg containing the sum.
6989
6990 EXPAND_INITIALIZER is much like EXPAND_SUM except that
6991 it also marks a label as absolutely required (it can't be dead).
6992 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
6993 This is used for outputting expressions used in initializers.
6994
6995 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
6996 with a constant address even if that address is not normally legitimate.
6997 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
6998
6999 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7000 a call parameter. Such targets require special care as we haven't yet
7001 marked TARGET so that it's safe from being trashed by libcalls. We
7002 don't want to use TARGET for anything but the final result;
7003 Intermediate values must go elsewhere. Additionally, calls to
7004 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7005
7006 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7007 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7008 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7009 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7010 recursively. */
7011
7012 static rtx expand_expr_real_1 (tree, rtx, enum machine_mode,
7013 enum expand_modifier, rtx *);
7014
7015 rtx
7016 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7017 enum expand_modifier modifier, rtx *alt_rtl)
7018 {
7019 int rn = -1;
7020 rtx ret, last = NULL;
7021
7022 /* Handle ERROR_MARK before anybody tries to access its type. */
7023 if (TREE_CODE (exp) == ERROR_MARK
7024 || TREE_CODE (exp) == PREDICT_EXPR
7025 || (!GIMPLE_TUPLE_P (exp) && TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7026 {
7027 ret = CONST0_RTX (tmode);
7028 return ret ? ret : const0_rtx;
7029 }
7030
7031 if (flag_non_call_exceptions)
7032 {
7033 rn = lookup_stmt_eh_region (exp);
7034 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
7035 if (rn >= 0)
7036 last = get_last_insn ();
7037 }
7038
7039 /* If this is an expression of some kind and it has an associated line
7040 number, then emit the line number before expanding the expression.
7041
7042 We need to save and restore the file and line information so that
7043 errors discovered during expansion are emitted with the right
7044 information. It would be better of the diagnostic routines
7045 used the file/line information embedded in the tree nodes rather
7046 than globals. */
7047 if (cfun && EXPR_HAS_LOCATION (exp))
7048 {
7049 location_t saved_location = input_location;
7050 input_location = EXPR_LOCATION (exp);
7051 set_curr_insn_source_location (input_location);
7052
7053 /* Record where the insns produced belong. */
7054 set_curr_insn_block (TREE_BLOCK (exp));
7055
7056 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7057
7058 input_location = saved_location;
7059 }
7060 else
7061 {
7062 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7063 }
7064
7065 /* If using non-call exceptions, mark all insns that may trap.
7066 expand_call() will mark CALL_INSNs before we get to this code,
7067 but it doesn't handle libcalls, and these may trap. */
7068 if (rn >= 0)
7069 {
7070 rtx insn;
7071 for (insn = next_real_insn (last); insn;
7072 insn = next_real_insn (insn))
7073 {
7074 if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
7075 /* If we want exceptions for non-call insns, any
7076 may_trap_p instruction may throw. */
7077 && GET_CODE (PATTERN (insn)) != CLOBBER
7078 && GET_CODE (PATTERN (insn)) != USE
7079 && (CALL_P (insn) || may_trap_p (PATTERN (insn))))
7080 {
7081 REG_NOTES (insn) = alloc_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
7082 REG_NOTES (insn));
7083 }
7084 }
7085 }
7086
7087 return ret;
7088 }
7089
7090 static rtx
7091 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
7092 enum expand_modifier modifier, rtx *alt_rtl)
7093 {
7094 rtx op0, op1, op2, temp, decl_rtl;
7095 tree type;
7096 int unsignedp;
7097 enum machine_mode mode;
7098 enum tree_code code = TREE_CODE (exp);
7099 optab this_optab;
7100 rtx subtarget, original_target;
7101 int ignore;
7102 tree context, subexp0, subexp1;
7103 bool reduce_bit_field;
7104 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7105 ? reduce_to_bit_field_precision ((expr), \
7106 target, \
7107 type) \
7108 : (expr))
7109
7110 if (GIMPLE_STMT_P (exp))
7111 {
7112 type = void_type_node;
7113 mode = VOIDmode;
7114 unsignedp = 0;
7115 }
7116 else
7117 {
7118 type = TREE_TYPE (exp);
7119 mode = TYPE_MODE (type);
7120 unsignedp = TYPE_UNSIGNED (type);
7121 }
7122
7123 ignore = (target == const0_rtx
7124 || ((code == NOP_EXPR || code == CONVERT_EXPR
7125 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7126 && TREE_CODE (type) == VOID_TYPE));
7127
7128 /* An operation in what may be a bit-field type needs the
7129 result to be reduced to the precision of the bit-field type,
7130 which is narrower than that of the type's mode. */
7131 reduce_bit_field = (!ignore
7132 && TREE_CODE (type) == INTEGER_TYPE
7133 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7134
7135 /* If we are going to ignore this result, we need only do something
7136 if there is a side-effect somewhere in the expression. If there
7137 is, short-circuit the most common cases here. Note that we must
7138 not call expand_expr with anything but const0_rtx in case this
7139 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
7140
7141 if (ignore)
7142 {
7143 if (! TREE_SIDE_EFFECTS (exp))
7144 return const0_rtx;
7145
7146 /* Ensure we reference a volatile object even if value is ignored, but
7147 don't do this if all we are doing is taking its address. */
7148 if (TREE_THIS_VOLATILE (exp)
7149 && TREE_CODE (exp) != FUNCTION_DECL
7150 && mode != VOIDmode && mode != BLKmode
7151 && modifier != EXPAND_CONST_ADDRESS)
7152 {
7153 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
7154 if (MEM_P (temp))
7155 temp = copy_to_reg (temp);
7156 return const0_rtx;
7157 }
7158
7159 if (TREE_CODE_CLASS (code) == tcc_unary
7160 || code == COMPONENT_REF || code == INDIRECT_REF)
7161 return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
7162 modifier);
7163
7164 else if (TREE_CODE_CLASS (code) == tcc_binary
7165 || TREE_CODE_CLASS (code) == tcc_comparison
7166 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
7167 {
7168 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
7169 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
7170 return const0_rtx;
7171 }
7172 else if (code == BIT_FIELD_REF)
7173 {
7174 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
7175 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
7176 expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier);
7177 return const0_rtx;
7178 }
7179
7180 target = 0;
7181 }
7182
7183 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7184 target = 0;
7185
7186 /* Use subtarget as the target for operand 0 of a binary operation. */
7187 subtarget = get_subtarget (target);
7188 original_target = target;
7189
7190 switch (code)
7191 {
7192 case LABEL_DECL:
7193 {
7194 tree function = decl_function_context (exp);
7195
7196 temp = label_rtx (exp);
7197 temp = gen_rtx_LABEL_REF (Pmode, temp);
7198
7199 if (function != current_function_decl
7200 && function != 0)
7201 LABEL_REF_NONLOCAL_P (temp) = 1;
7202
7203 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
7204 return temp;
7205 }
7206
7207 case SSA_NAME:
7208 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
7209 NULL);
7210
7211 case PARM_DECL:
7212 case VAR_DECL:
7213 /* If a static var's type was incomplete when the decl was written,
7214 but the type is complete now, lay out the decl now. */
7215 if (DECL_SIZE (exp) == 0
7216 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
7217 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
7218 layout_decl (exp, 0);
7219
7220 /* TLS emulation hook - replace __thread vars with
7221 *__emutls_get_address (&_emutls.var). */
7222 if (! targetm.have_tls
7223 && TREE_CODE (exp) == VAR_DECL
7224 && DECL_THREAD_LOCAL_P (exp))
7225 {
7226 exp = build_fold_indirect_ref (emutls_var_address (exp));
7227 return expand_expr_real_1 (exp, target, tmode, modifier, NULL);
7228 }
7229
7230 /* ... fall through ... */
7231
7232 case FUNCTION_DECL:
7233 case RESULT_DECL:
7234 decl_rtl = DECL_RTL (exp);
7235 gcc_assert (decl_rtl);
7236 decl_rtl = copy_rtx (decl_rtl);
7237
7238 /* Ensure variable marked as used even if it doesn't go through
7239 a parser. If it hasn't be used yet, write out an external
7240 definition. */
7241 if (! TREE_USED (exp))
7242 {
7243 assemble_external (exp);
7244 TREE_USED (exp) = 1;
7245 }
7246
7247 /* Show we haven't gotten RTL for this yet. */
7248 temp = 0;
7249
7250 /* Variables inherited from containing functions should have
7251 been lowered by this point. */
7252 context = decl_function_context (exp);
7253 gcc_assert (!context
7254 || context == current_function_decl
7255 || TREE_STATIC (exp)
7256 /* ??? C++ creates functions that are not TREE_STATIC. */
7257 || TREE_CODE (exp) == FUNCTION_DECL);
7258
7259 /* This is the case of an array whose size is to be determined
7260 from its initializer, while the initializer is still being parsed.
7261 See expand_decl. */
7262
7263 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
7264 temp = validize_mem (decl_rtl);
7265
7266 /* If DECL_RTL is memory, we are in the normal case and the
7267 address is not valid, get the address into a register. */
7268
7269 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
7270 {
7271 if (alt_rtl)
7272 *alt_rtl = decl_rtl;
7273 decl_rtl = use_anchored_address (decl_rtl);
7274 if (modifier != EXPAND_CONST_ADDRESS
7275 && modifier != EXPAND_SUM
7276 && !memory_address_p (DECL_MODE (exp), XEXP (decl_rtl, 0)))
7277 temp = replace_equiv_address (decl_rtl,
7278 copy_rtx (XEXP (decl_rtl, 0)));
7279 }
7280
7281 /* If we got something, return it. But first, set the alignment
7282 if the address is a register. */
7283 if (temp != 0)
7284 {
7285 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
7286 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
7287
7288 return temp;
7289 }
7290
7291 /* If the mode of DECL_RTL does not match that of the decl, it
7292 must be a promoted value. We return a SUBREG of the wanted mode,
7293 but mark it so that we know that it was already extended. */
7294
7295 if (REG_P (decl_rtl)
7296 && GET_MODE (decl_rtl) != DECL_MODE (exp))
7297 {
7298 enum machine_mode pmode;
7299
7300 /* Get the signedness used for this variable. Ensure we get the
7301 same mode we got when the variable was declared. */
7302 pmode = promote_mode (type, DECL_MODE (exp), &unsignedp,
7303 (TREE_CODE (exp) == RESULT_DECL
7304 || TREE_CODE (exp) == PARM_DECL) ? 1 : 0);
7305 gcc_assert (GET_MODE (decl_rtl) == pmode);
7306
7307 temp = gen_lowpart_SUBREG (mode, decl_rtl);
7308 SUBREG_PROMOTED_VAR_P (temp) = 1;
7309 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
7310 return temp;
7311 }
7312
7313 return decl_rtl;
7314
7315 case INTEGER_CST:
7316 temp = immed_double_const (TREE_INT_CST_LOW (exp),
7317 TREE_INT_CST_HIGH (exp), mode);
7318
7319 return temp;
7320
7321 case VECTOR_CST:
7322 {
7323 tree tmp = NULL_TREE;
7324 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
7325 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
7326 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
7327 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
7328 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
7329 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
7330 return const_vector_from_tree (exp);
7331 if (GET_MODE_CLASS (mode) == MODE_INT)
7332 {
7333 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
7334 if (type_for_mode)
7335 tmp = fold_unary (VIEW_CONVERT_EXPR, type_for_mode, exp);
7336 }
7337 if (!tmp)
7338 tmp = build_constructor_from_list (type,
7339 TREE_VECTOR_CST_ELTS (exp));
7340 return expand_expr (tmp, ignore ? const0_rtx : target,
7341 tmode, modifier);
7342 }
7343
7344 case CONST_DECL:
7345 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
7346
7347 case REAL_CST:
7348 /* If optimized, generate immediate CONST_DOUBLE
7349 which will be turned into memory by reload if necessary.
7350
7351 We used to force a register so that loop.c could see it. But
7352 this does not allow gen_* patterns to perform optimizations with
7353 the constants. It also produces two insns in cases like "x = 1.0;".
7354 On most machines, floating-point constants are not permitted in
7355 many insns, so we'd end up copying it to a register in any case.
7356
7357 Now, we do the copying in expand_binop, if appropriate. */
7358 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
7359 TYPE_MODE (TREE_TYPE (exp)));
7360
7361 case FIXED_CST:
7362 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
7363 TYPE_MODE (TREE_TYPE (exp)));
7364
7365 case COMPLEX_CST:
7366 /* Handle evaluating a complex constant in a CONCAT target. */
7367 if (original_target && GET_CODE (original_target) == CONCAT)
7368 {
7369 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
7370 rtx rtarg, itarg;
7371
7372 rtarg = XEXP (original_target, 0);
7373 itarg = XEXP (original_target, 1);
7374
7375 /* Move the real and imaginary parts separately. */
7376 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
7377 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
7378
7379 if (op0 != rtarg)
7380 emit_move_insn (rtarg, op0);
7381 if (op1 != itarg)
7382 emit_move_insn (itarg, op1);
7383
7384 return original_target;
7385 }
7386
7387 /* ... fall through ... */
7388
7389 case STRING_CST:
7390 temp = expand_expr_constant (exp, 1, modifier);
7391
7392 /* temp contains a constant address.
7393 On RISC machines where a constant address isn't valid,
7394 make some insns to get that address into a register. */
7395 if (modifier != EXPAND_CONST_ADDRESS
7396 && modifier != EXPAND_INITIALIZER
7397 && modifier != EXPAND_SUM
7398 && ! memory_address_p (mode, XEXP (temp, 0)))
7399 return replace_equiv_address (temp,
7400 copy_rtx (XEXP (temp, 0)));
7401 return temp;
7402
7403 case SAVE_EXPR:
7404 {
7405 tree val = TREE_OPERAND (exp, 0);
7406 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
7407
7408 if (!SAVE_EXPR_RESOLVED_P (exp))
7409 {
7410 /* We can indeed still hit this case, typically via builtin
7411 expanders calling save_expr immediately before expanding
7412 something. Assume this means that we only have to deal
7413 with non-BLKmode values. */
7414 gcc_assert (GET_MODE (ret) != BLKmode);
7415
7416 val = build_decl (VAR_DECL, NULL, TREE_TYPE (exp));
7417 DECL_ARTIFICIAL (val) = 1;
7418 DECL_IGNORED_P (val) = 1;
7419 TREE_OPERAND (exp, 0) = val;
7420 SAVE_EXPR_RESOLVED_P (exp) = 1;
7421
7422 if (!CONSTANT_P (ret))
7423 ret = copy_to_reg (ret);
7424 SET_DECL_RTL (val, ret);
7425 }
7426
7427 return ret;
7428 }
7429
7430 case GOTO_EXPR:
7431 if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
7432 expand_goto (TREE_OPERAND (exp, 0));
7433 else
7434 expand_computed_goto (TREE_OPERAND (exp, 0));
7435 return const0_rtx;
7436
7437 case CONSTRUCTOR:
7438 /* If we don't need the result, just ensure we evaluate any
7439 subexpressions. */
7440 if (ignore)
7441 {
7442 unsigned HOST_WIDE_INT idx;
7443 tree value;
7444
7445 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
7446 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
7447
7448 return const0_rtx;
7449 }
7450
7451 return expand_constructor (exp, target, modifier, false);
7452
7453 case MISALIGNED_INDIRECT_REF:
7454 case ALIGN_INDIRECT_REF:
7455 case INDIRECT_REF:
7456 {
7457 tree exp1 = TREE_OPERAND (exp, 0);
7458
7459 if (modifier != EXPAND_WRITE)
7460 {
7461 tree t;
7462
7463 t = fold_read_from_constant_string (exp);
7464 if (t)
7465 return expand_expr (t, target, tmode, modifier);
7466 }
7467
7468 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
7469 op0 = memory_address (mode, op0);
7470
7471 if (code == ALIGN_INDIRECT_REF)
7472 {
7473 int align = TYPE_ALIGN_UNIT (type);
7474 op0 = gen_rtx_AND (Pmode, op0, GEN_INT (-align));
7475 op0 = memory_address (mode, op0);
7476 }
7477
7478 temp = gen_rtx_MEM (mode, op0);
7479
7480 set_mem_attributes (temp, exp, 0);
7481
7482 /* Resolve the misalignment now, so that we don't have to remember
7483 to resolve it later. Of course, this only works for reads. */
7484 /* ??? When we get around to supporting writes, we'll have to handle
7485 this in store_expr directly. The vectorizer isn't generating
7486 those yet, however. */
7487 if (code == MISALIGNED_INDIRECT_REF)
7488 {
7489 int icode;
7490 rtx reg, insn;
7491
7492 gcc_assert (modifier == EXPAND_NORMAL
7493 || modifier == EXPAND_STACK_PARM);
7494
7495 /* The vectorizer should have already checked the mode. */
7496 icode = optab_handler (movmisalign_optab, mode)->insn_code;
7497 gcc_assert (icode != CODE_FOR_nothing);
7498
7499 /* We've already validated the memory, and we're creating a
7500 new pseudo destination. The predicates really can't fail. */
7501 reg = gen_reg_rtx (mode);
7502
7503 /* Nor can the insn generator. */
7504 insn = GEN_FCN (icode) (reg, temp);
7505 emit_insn (insn);
7506
7507 return reg;
7508 }
7509
7510 return temp;
7511 }
7512
7513 case TARGET_MEM_REF:
7514 {
7515 struct mem_address addr;
7516
7517 get_address_description (exp, &addr);
7518 op0 = addr_for_mem_ref (&addr, true);
7519 op0 = memory_address (mode, op0);
7520 temp = gen_rtx_MEM (mode, op0);
7521 set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
7522 }
7523 return temp;
7524
7525 case ARRAY_REF:
7526
7527 {
7528 tree array = TREE_OPERAND (exp, 0);
7529 tree index = TREE_OPERAND (exp, 1);
7530
7531 /* Fold an expression like: "foo"[2].
7532 This is not done in fold so it won't happen inside &.
7533 Don't fold if this is for wide characters since it's too
7534 difficult to do correctly and this is a very rare case. */
7535
7536 if (modifier != EXPAND_CONST_ADDRESS
7537 && modifier != EXPAND_INITIALIZER
7538 && modifier != EXPAND_MEMORY)
7539 {
7540 tree t = fold_read_from_constant_string (exp);
7541
7542 if (t)
7543 return expand_expr (t, target, tmode, modifier);
7544 }
7545
7546 /* If this is a constant index into a constant array,
7547 just get the value from the array. Handle both the cases when
7548 we have an explicit constructor and when our operand is a variable
7549 that was declared const. */
7550
7551 if (modifier != EXPAND_CONST_ADDRESS
7552 && modifier != EXPAND_INITIALIZER
7553 && modifier != EXPAND_MEMORY
7554 && TREE_CODE (array) == CONSTRUCTOR
7555 && ! TREE_SIDE_EFFECTS (array)
7556 && TREE_CODE (index) == INTEGER_CST)
7557 {
7558 unsigned HOST_WIDE_INT ix;
7559 tree field, value;
7560
7561 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
7562 field, value)
7563 if (tree_int_cst_equal (field, index))
7564 {
7565 if (!TREE_SIDE_EFFECTS (value))
7566 return expand_expr (fold (value), target, tmode, modifier);
7567 break;
7568 }
7569 }
7570
7571 else if (optimize >= 1
7572 && modifier != EXPAND_CONST_ADDRESS
7573 && modifier != EXPAND_INITIALIZER
7574 && modifier != EXPAND_MEMORY
7575 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
7576 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
7577 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
7578 && targetm.binds_local_p (array))
7579 {
7580 if (TREE_CODE (index) == INTEGER_CST)
7581 {
7582 tree init = DECL_INITIAL (array);
7583
7584 if (TREE_CODE (init) == CONSTRUCTOR)
7585 {
7586 unsigned HOST_WIDE_INT ix;
7587 tree field, value;
7588
7589 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
7590 field, value)
7591 if (tree_int_cst_equal (field, index))
7592 {
7593 if (TREE_SIDE_EFFECTS (value))
7594 break;
7595
7596 if (TREE_CODE (value) == CONSTRUCTOR)
7597 {
7598 /* If VALUE is a CONSTRUCTOR, this
7599 optimization is only useful if
7600 this doesn't store the CONSTRUCTOR
7601 into memory. If it does, it is more
7602 efficient to just load the data from
7603 the array directly. */
7604 rtx ret = expand_constructor (value, target,
7605 modifier, true);
7606 if (ret == NULL_RTX)
7607 break;
7608 }
7609
7610 return expand_expr (fold (value), target, tmode,
7611 modifier);
7612 }
7613 }
7614 else if(TREE_CODE (init) == STRING_CST)
7615 {
7616 tree index1 = index;
7617 tree low_bound = array_ref_low_bound (exp);
7618 index1 = fold_convert (sizetype, TREE_OPERAND (exp, 1));
7619
7620 /* Optimize the special-case of a zero lower bound.
7621
7622 We convert the low_bound to sizetype to avoid some problems
7623 with constant folding. (E.g. suppose the lower bound is 1,
7624 and its mode is QI. Without the conversion,l (ARRAY
7625 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
7626 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
7627
7628 if (! integer_zerop (low_bound))
7629 index1 = size_diffop (index1, fold_convert (sizetype,
7630 low_bound));
7631
7632 if (0 > compare_tree_int (index1,
7633 TREE_STRING_LENGTH (init)))
7634 {
7635 tree type = TREE_TYPE (TREE_TYPE (init));
7636 enum machine_mode mode = TYPE_MODE (type);
7637
7638 if (GET_MODE_CLASS (mode) == MODE_INT
7639 && GET_MODE_SIZE (mode) == 1)
7640 return gen_int_mode (TREE_STRING_POINTER (init)
7641 [TREE_INT_CST_LOW (index1)],
7642 mode);
7643 }
7644 }
7645 }
7646 }
7647 }
7648 goto normal_inner_ref;
7649
7650 case COMPONENT_REF:
7651 /* If the operand is a CONSTRUCTOR, we can just extract the
7652 appropriate field if it is present. */
7653 if (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR)
7654 {
7655 unsigned HOST_WIDE_INT idx;
7656 tree field, value;
7657
7658 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
7659 idx, field, value)
7660 if (field == TREE_OPERAND (exp, 1)
7661 /* We can normally use the value of the field in the
7662 CONSTRUCTOR. However, if this is a bitfield in
7663 an integral mode that we can fit in a HOST_WIDE_INT,
7664 we must mask only the number of bits in the bitfield,
7665 since this is done implicitly by the constructor. If
7666 the bitfield does not meet either of those conditions,
7667 we can't do this optimization. */
7668 && (! DECL_BIT_FIELD (field)
7669 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
7670 && (GET_MODE_BITSIZE (DECL_MODE (field))
7671 <= HOST_BITS_PER_WIDE_INT))))
7672 {
7673 if (DECL_BIT_FIELD (field)
7674 && modifier == EXPAND_STACK_PARM)
7675 target = 0;
7676 op0 = expand_expr (value, target, tmode, modifier);
7677 if (DECL_BIT_FIELD (field))
7678 {
7679 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
7680 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
7681
7682 if (TYPE_UNSIGNED (TREE_TYPE (field)))
7683 {
7684 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
7685 op0 = expand_and (imode, op0, op1, target);
7686 }
7687 else
7688 {
7689 tree count
7690 = build_int_cst (NULL_TREE,
7691 GET_MODE_BITSIZE (imode) - bitsize);
7692
7693 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
7694 target, 0);
7695 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
7696 target, 0);
7697 }
7698 }
7699
7700 return op0;
7701 }
7702 }
7703 goto normal_inner_ref;
7704
7705 case BIT_FIELD_REF:
7706 case ARRAY_RANGE_REF:
7707 normal_inner_ref:
7708 {
7709 enum machine_mode mode1;
7710 HOST_WIDE_INT bitsize, bitpos;
7711 tree offset;
7712 int volatilep = 0;
7713 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7714 &mode1, &unsignedp, &volatilep, true);
7715 rtx orig_op0;
7716
7717 /* If we got back the original object, something is wrong. Perhaps
7718 we are evaluating an expression too early. In any event, don't
7719 infinitely recurse. */
7720 gcc_assert (tem != exp);
7721
7722 /* If TEM's type is a union of variable size, pass TARGET to the inner
7723 computation, since it will need a temporary and TARGET is known
7724 to have to do. This occurs in unchecked conversion in Ada. */
7725
7726 orig_op0 = op0
7727 = expand_expr (tem,
7728 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
7729 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
7730 != INTEGER_CST)
7731 && modifier != EXPAND_STACK_PARM
7732 ? target : NULL_RTX),
7733 VOIDmode,
7734 (modifier == EXPAND_INITIALIZER
7735 || modifier == EXPAND_CONST_ADDRESS
7736 || modifier == EXPAND_STACK_PARM)
7737 ? modifier : EXPAND_NORMAL);
7738
7739 /* If this is a constant, put it into a register if it is a legitimate
7740 constant, OFFSET is 0, and we won't try to extract outside the
7741 register (in case we were passed a partially uninitialized object
7742 or a view_conversion to a larger size) or a BLKmode piece of it
7743 (e.g. if it is unchecked-converted to a record type in Ada). Force
7744 the constant to memory otherwise. */
7745 if (CONSTANT_P (op0))
7746 {
7747 enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
7748 if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
7749 && offset == 0
7750 && mode1 != BLKmode
7751 && bitpos + bitsize <= GET_MODE_BITSIZE (mode))
7752 op0 = force_reg (mode, op0);
7753 else
7754 op0 = validize_mem (force_const_mem (mode, op0));
7755 }
7756
7757 /* Otherwise, if this object not in memory and we either have an
7758 offset, a BLKmode result, or a reference outside the object, put it
7759 there. Such cases can occur in Ada if we have unchecked conversion
7760 of an expression from a scalar type to an array or record type or
7761 for an ARRAY_RANGE_REF whose type is BLKmode. */
7762 else if (!MEM_P (op0)
7763 && (offset != 0
7764 || mode1 == BLKmode
7765 || (bitpos + bitsize
7766 > GET_MODE_BITSIZE (GET_MODE (op0)))))
7767 {
7768 tree nt = build_qualified_type (TREE_TYPE (tem),
7769 (TYPE_QUALS (TREE_TYPE (tem))
7770 | TYPE_QUAL_CONST));
7771 rtx memloc = assign_temp (nt, 1, 1, 1);
7772
7773 emit_move_insn (memloc, op0);
7774 op0 = memloc;
7775 }
7776
7777 if (offset != 0)
7778 {
7779 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
7780 EXPAND_SUM);
7781
7782 gcc_assert (MEM_P (op0));
7783
7784 #ifdef POINTERS_EXTEND_UNSIGNED
7785 if (GET_MODE (offset_rtx) != Pmode)
7786 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
7787 #else
7788 if (GET_MODE (offset_rtx) != ptr_mode)
7789 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
7790 #endif
7791
7792 if (GET_MODE (op0) == BLKmode
7793 /* A constant address in OP0 can have VOIDmode, we must
7794 not try to call force_reg in that case. */
7795 && GET_MODE (XEXP (op0, 0)) != VOIDmode
7796 && bitsize != 0
7797 && (bitpos % bitsize) == 0
7798 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
7799 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
7800 {
7801 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7802 bitpos = 0;
7803 }
7804
7805 op0 = offset_address (op0, offset_rtx,
7806 highest_pow2_factor (offset));
7807 }
7808
7809 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7810 record its alignment as BIGGEST_ALIGNMENT. */
7811 if (MEM_P (op0) && bitpos == 0 && offset != 0
7812 && is_aligning_offset (offset, tem))
7813 set_mem_align (op0, BIGGEST_ALIGNMENT);
7814
7815 /* Don't forget about volatility even if this is a bitfield. */
7816 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
7817 {
7818 if (op0 == orig_op0)
7819 op0 = copy_rtx (op0);
7820
7821 MEM_VOLATILE_P (op0) = 1;
7822 }
7823
7824 /* The following code doesn't handle CONCAT.
7825 Assume only bitpos == 0 can be used for CONCAT, due to
7826 one element arrays having the same mode as its element. */
7827 if (GET_CODE (op0) == CONCAT)
7828 {
7829 gcc_assert (bitpos == 0
7830 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)));
7831 return op0;
7832 }
7833
7834 /* In cases where an aligned union has an unaligned object
7835 as a field, we might be extracting a BLKmode value from
7836 an integer-mode (e.g., SImode) object. Handle this case
7837 by doing the extract into an object as wide as the field
7838 (which we know to be the width of a basic mode), then
7839 storing into memory, and changing the mode to BLKmode. */
7840 if (mode1 == VOIDmode
7841 || REG_P (op0) || GET_CODE (op0) == SUBREG
7842 || (mode1 != BLKmode && ! direct_load[(int) mode1]
7843 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7844 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
7845 && modifier != EXPAND_CONST_ADDRESS
7846 && modifier != EXPAND_INITIALIZER)
7847 /* If the field isn't aligned enough to fetch as a memref,
7848 fetch it as a bit field. */
7849 || (mode1 != BLKmode
7850 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
7851 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
7852 || (MEM_P (op0)
7853 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
7854 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
7855 && ((modifier == EXPAND_CONST_ADDRESS
7856 || modifier == EXPAND_INITIALIZER)
7857 ? STRICT_ALIGNMENT
7858 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
7859 || (bitpos % BITS_PER_UNIT != 0)))
7860 /* If the type and the field are a constant size and the
7861 size of the type isn't the same size as the bitfield,
7862 we must use bitfield operations. */
7863 || (bitsize >= 0
7864 && TYPE_SIZE (TREE_TYPE (exp))
7865 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
7866 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
7867 bitsize)))
7868 {
7869 enum machine_mode ext_mode = mode;
7870
7871 if (ext_mode == BLKmode
7872 && ! (target != 0 && MEM_P (op0)
7873 && MEM_P (target)
7874 && bitpos % BITS_PER_UNIT == 0))
7875 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
7876
7877 if (ext_mode == BLKmode)
7878 {
7879 if (target == 0)
7880 target = assign_temp (type, 0, 1, 1);
7881
7882 if (bitsize == 0)
7883 return target;
7884
7885 /* In this case, BITPOS must start at a byte boundary and
7886 TARGET, if specified, must be a MEM. */
7887 gcc_assert (MEM_P (op0)
7888 && (!target || MEM_P (target))
7889 && !(bitpos % BITS_PER_UNIT));
7890
7891 emit_block_move (target,
7892 adjust_address (op0, VOIDmode,
7893 bitpos / BITS_PER_UNIT),
7894 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
7895 / BITS_PER_UNIT),
7896 (modifier == EXPAND_STACK_PARM
7897 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7898
7899 return target;
7900 }
7901
7902 op0 = validize_mem (op0);
7903
7904 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
7905 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7906
7907 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
7908 (modifier == EXPAND_STACK_PARM
7909 ? NULL_RTX : target),
7910 ext_mode, ext_mode);
7911
7912 /* If the result is a record type and BITSIZE is narrower than
7913 the mode of OP0, an integral mode, and this is a big endian
7914 machine, we must put the field into the high-order bits. */
7915 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
7916 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
7917 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
7918 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
7919 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
7920 - bitsize),
7921 op0, 1);
7922
7923 /* If the result type is BLKmode, store the data into a temporary
7924 of the appropriate type, but with the mode corresponding to the
7925 mode for the data we have (op0's mode). It's tempting to make
7926 this a constant type, since we know it's only being stored once,
7927 but that can cause problems if we are taking the address of this
7928 COMPONENT_REF because the MEM of any reference via that address
7929 will have flags corresponding to the type, which will not
7930 necessarily be constant. */
7931 if (mode == BLKmode)
7932 {
7933 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
7934 rtx new;
7935
7936 /* If the reference doesn't use the alias set of its type,
7937 we cannot create the temporary using that type. */
7938 if (component_uses_parent_alias_set (exp))
7939 {
7940 new = assign_stack_local (ext_mode, size, 0);
7941 set_mem_alias_set (new, get_alias_set (exp));
7942 }
7943 else
7944 new = assign_stack_temp_for_type (ext_mode, size, 0, type);
7945
7946 emit_move_insn (new, op0);
7947 op0 = copy_rtx (new);
7948 PUT_MODE (op0, BLKmode);
7949 set_mem_attributes (op0, exp, 1);
7950 }
7951
7952 return op0;
7953 }
7954
7955 /* If the result is BLKmode, use that to access the object
7956 now as well. */
7957 if (mode == BLKmode)
7958 mode1 = BLKmode;
7959
7960 /* Get a reference to just this component. */
7961 if (modifier == EXPAND_CONST_ADDRESS
7962 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7963 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
7964 else
7965 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7966
7967 if (op0 == orig_op0)
7968 op0 = copy_rtx (op0);
7969
7970 set_mem_attributes (op0, exp, 0);
7971 if (REG_P (XEXP (op0, 0)))
7972 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7973
7974 MEM_VOLATILE_P (op0) |= volatilep;
7975 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
7976 || modifier == EXPAND_CONST_ADDRESS
7977 || modifier == EXPAND_INITIALIZER)
7978 return op0;
7979 else if (target == 0)
7980 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
7981
7982 convert_move (target, op0, unsignedp);
7983 return target;
7984 }
7985
7986 case OBJ_TYPE_REF:
7987 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
7988
7989 case CALL_EXPR:
7990 /* All valid uses of __builtin_va_arg_pack () are removed during
7991 inlining. */
7992 if (CALL_EXPR_VA_ARG_PACK (exp))
7993 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
7994 {
7995 tree fndecl = get_callee_fndecl (exp), attr;
7996
7997 if (fndecl
7998 && (attr = lookup_attribute ("error",
7999 DECL_ATTRIBUTES (fndecl))) != NULL)
8000 error ("%Kcall to %qs declared with attribute error: %s",
8001 exp, lang_hooks.decl_printable_name (fndecl, 1),
8002 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
8003 if (fndecl
8004 && (attr = lookup_attribute ("warning",
8005 DECL_ATTRIBUTES (fndecl))) != NULL)
8006 warning (0, "%Kcall to %qs declared with attribute warning: %s",
8007 exp, lang_hooks.decl_printable_name (fndecl, 1),
8008 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
8009
8010 /* Check for a built-in function. */
8011 if (fndecl && DECL_BUILT_IN (fndecl))
8012 {
8013 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_FRONTEND)
8014 return lang_hooks.expand_expr (exp, original_target,
8015 tmode, modifier, alt_rtl);
8016 else
8017 return expand_builtin (exp, target, subtarget, tmode, ignore);
8018 }
8019 }
8020 return expand_call (exp, target, ignore);
8021
8022 case PAREN_EXPR:
8023 CASE_CONVERT:
8024 if (TREE_OPERAND (exp, 0) == error_mark_node)
8025 return const0_rtx;
8026
8027 if (TREE_CODE (type) == UNION_TYPE)
8028 {
8029 tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
8030
8031 /* If both input and output are BLKmode, this conversion isn't doing
8032 anything except possibly changing memory attribute. */
8033 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8034 {
8035 rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode,
8036 modifier);
8037
8038 result = copy_rtx (result);
8039 set_mem_attributes (result, exp, 0);
8040 return result;
8041 }
8042
8043 if (target == 0)
8044 {
8045 if (TYPE_MODE (type) != BLKmode)
8046 target = gen_reg_rtx (TYPE_MODE (type));
8047 else
8048 target = assign_temp (type, 0, 1, 1);
8049 }
8050
8051 if (MEM_P (target))
8052 /* Store data into beginning of memory target. */
8053 store_expr (TREE_OPERAND (exp, 0),
8054 adjust_address (target, TYPE_MODE (valtype), 0),
8055 modifier == EXPAND_STACK_PARM,
8056 false);
8057
8058 else
8059 {
8060 gcc_assert (REG_P (target));
8061
8062 /* Store this field into a union of the proper type. */
8063 store_field (target,
8064 MIN ((int_size_in_bytes (TREE_TYPE
8065 (TREE_OPERAND (exp, 0)))
8066 * BITS_PER_UNIT),
8067 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
8068 0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
8069 type, 0, false);
8070 }
8071
8072 /* Return the entire union. */
8073 return target;
8074 }
8075
8076 if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
8077 {
8078 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
8079 modifier);
8080
8081 /* If the signedness of the conversion differs and OP0 is
8082 a promoted SUBREG, clear that indication since we now
8083 have to do the proper extension. */
8084 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
8085 && GET_CODE (op0) == SUBREG)
8086 SUBREG_PROMOTED_VAR_P (op0) = 0;
8087
8088 return REDUCE_BIT_FIELD (op0);
8089 }
8090
8091 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode,
8092 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8093 if (GET_MODE (op0) == mode)
8094 ;
8095
8096 /* If OP0 is a constant, just convert it into the proper mode. */
8097 else if (CONSTANT_P (op0))
8098 {
8099 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8100 enum machine_mode inner_mode = TYPE_MODE (inner_type);
8101
8102 if (modifier == EXPAND_INITIALIZER)
8103 op0 = simplify_gen_subreg (mode, op0, inner_mode,
8104 subreg_lowpart_offset (mode,
8105 inner_mode));
8106 else
8107 op0= convert_modes (mode, inner_mode, op0,
8108 TYPE_UNSIGNED (inner_type));
8109 }
8110
8111 else if (modifier == EXPAND_INITIALIZER)
8112 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8113
8114 else if (target == 0)
8115 op0 = convert_to_mode (mode, op0,
8116 TYPE_UNSIGNED (TREE_TYPE
8117 (TREE_OPERAND (exp, 0))));
8118 else
8119 {
8120 convert_move (target, op0,
8121 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8122 op0 = target;
8123 }
8124
8125 return REDUCE_BIT_FIELD (op0);
8126
8127 case VIEW_CONVERT_EXPR:
8128 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
8129
8130 /* If the input and output modes are both the same, we are done. */
8131 if (TYPE_MODE (type) == GET_MODE (op0))
8132 ;
8133 /* If neither mode is BLKmode, and both modes are the same size
8134 then we can use gen_lowpart. */
8135 else if (TYPE_MODE (type) != BLKmode && GET_MODE (op0) != BLKmode
8136 && GET_MODE_SIZE (TYPE_MODE (type))
8137 == GET_MODE_SIZE (GET_MODE (op0)))
8138 {
8139 if (GET_CODE (op0) == SUBREG)
8140 op0 = force_reg (GET_MODE (op0), op0);
8141 op0 = gen_lowpart (TYPE_MODE (type), op0);
8142 }
8143 /* If both modes are integral, then we can convert from one to the
8144 other. */
8145 else if (SCALAR_INT_MODE_P (GET_MODE (op0))
8146 && SCALAR_INT_MODE_P (TYPE_MODE (type)))
8147 op0 = convert_modes (TYPE_MODE (type), GET_MODE (op0), op0,
8148 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8149 /* As a last resort, spill op0 to memory, and reload it in a
8150 different mode. */
8151 else if (!MEM_P (op0))
8152 {
8153 /* If the operand is not a MEM, force it into memory. Since we
8154 are going to be changing the mode of the MEM, don't call
8155 force_const_mem for constants because we don't allow pool
8156 constants to change mode. */
8157 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8158
8159 gcc_assert (!TREE_ADDRESSABLE (exp));
8160
8161 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
8162 target
8163 = assign_stack_temp_for_type
8164 (TYPE_MODE (inner_type),
8165 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
8166
8167 emit_move_insn (target, op0);
8168 op0 = target;
8169 }
8170
8171 /* At this point, OP0 is in the correct mode. If the output type is such
8172 that the operand is known to be aligned, indicate that it is.
8173 Otherwise, we need only be concerned about alignment for non-BLKmode
8174 results. */
8175 if (MEM_P (op0))
8176 {
8177 op0 = copy_rtx (op0);
8178
8179 if (TYPE_ALIGN_OK (type))
8180 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
8181 else if (TYPE_MODE (type) != BLKmode && STRICT_ALIGNMENT
8182 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
8183 {
8184 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8185 HOST_WIDE_INT temp_size
8186 = MAX (int_size_in_bytes (inner_type),
8187 (HOST_WIDE_INT) GET_MODE_SIZE (TYPE_MODE (type)));
8188 rtx new = assign_stack_temp_for_type (TYPE_MODE (type),
8189 temp_size, 0, type);
8190 rtx new_with_op0_mode = adjust_address (new, GET_MODE (op0), 0);
8191
8192 gcc_assert (!TREE_ADDRESSABLE (exp));
8193
8194 if (GET_MODE (op0) == BLKmode)
8195 emit_block_move (new_with_op0_mode, op0,
8196 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type))),
8197 (modifier == EXPAND_STACK_PARM
8198 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
8199 else
8200 emit_move_insn (new_with_op0_mode, op0);
8201
8202 op0 = new;
8203 }
8204
8205 op0 = adjust_address (op0, TYPE_MODE (type), 0);
8206 }
8207
8208 return op0;
8209
8210 case POINTER_PLUS_EXPR:
8211 /* Even though the sizetype mode and the pointer's mode can be different
8212 expand is able to handle this correctly and get the correct result out
8213 of the PLUS_EXPR code. */
8214 case PLUS_EXPR:
8215
8216 /* Check if this is a case for multiplication and addition. */
8217 if ((TREE_CODE (type) == INTEGER_TYPE
8218 || TREE_CODE (type) == FIXED_POINT_TYPE)
8219 && TREE_CODE (TREE_OPERAND (exp, 0)) == MULT_EXPR)
8220 {
8221 tree subsubexp0, subsubexp1;
8222 enum tree_code code0, code1, this_code;
8223
8224 subexp0 = TREE_OPERAND (exp, 0);
8225 subsubexp0 = TREE_OPERAND (subexp0, 0);
8226 subsubexp1 = TREE_OPERAND (subexp0, 1);
8227 code0 = TREE_CODE (subsubexp0);
8228 code1 = TREE_CODE (subsubexp1);
8229 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
8230 : FIXED_CONVERT_EXPR;
8231 if (code0 == this_code && code1 == this_code
8232 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8233 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
8234 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8235 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp1, 0))))
8236 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8237 == TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp1, 0)))))
8238 {
8239 tree op0type = TREE_TYPE (TREE_OPERAND (subsubexp0, 0));
8240 enum machine_mode innermode = TYPE_MODE (op0type);
8241 bool zextend_p = TYPE_UNSIGNED (op0type);
8242 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
8243 if (sat_p == 0)
8244 this_optab = zextend_p ? umadd_widen_optab : smadd_widen_optab;
8245 else
8246 this_optab = zextend_p ? usmadd_widen_optab
8247 : ssmadd_widen_optab;
8248 if (mode == GET_MODE_2XWIDER_MODE (innermode)
8249 && (optab_handler (this_optab, mode)->insn_code
8250 != CODE_FOR_nothing))
8251 {
8252 expand_operands (TREE_OPERAND (subsubexp0, 0),
8253 TREE_OPERAND (subsubexp1, 0),
8254 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8255 op2 = expand_expr (TREE_OPERAND (exp, 1), subtarget,
8256 VOIDmode, EXPAND_NORMAL);
8257 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8258 target, unsignedp);
8259 gcc_assert (temp);
8260 return REDUCE_BIT_FIELD (temp);
8261 }
8262 }
8263 }
8264
8265 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8266 something else, make sure we add the register to the constant and
8267 then to the other thing. This case can occur during strength
8268 reduction and doing it this way will produce better code if the
8269 frame pointer or argument pointer is eliminated.
8270
8271 fold-const.c will ensure that the constant is always in the inner
8272 PLUS_EXPR, so the only case we need to do anything about is if
8273 sp, ap, or fp is our second argument, in which case we must swap
8274 the innermost first argument and our second argument. */
8275
8276 if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
8277 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
8278 && TREE_CODE (TREE_OPERAND (exp, 1)) == VAR_DECL
8279 && (DECL_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
8280 || DECL_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
8281 || DECL_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
8282 {
8283 tree t = TREE_OPERAND (exp, 1);
8284
8285 TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
8286 TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
8287 }
8288
8289 /* If the result is to be ptr_mode and we are adding an integer to
8290 something, we might be forming a constant. So try to use
8291 plus_constant. If it produces a sum and we can't accept it,
8292 use force_operand. This allows P = &ARR[const] to generate
8293 efficient code on machines where a SYMBOL_REF is not a valid
8294 address.
8295
8296 If this is an EXPAND_SUM call, always return the sum. */
8297 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8298 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8299 {
8300 if (modifier == EXPAND_STACK_PARM)
8301 target = 0;
8302 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
8303 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8304 && TREE_CONSTANT (TREE_OPERAND (exp, 1)))
8305 {
8306 rtx constant_part;
8307
8308 op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
8309 EXPAND_SUM);
8310 /* Use immed_double_const to ensure that the constant is
8311 truncated according to the mode of OP1, then sign extended
8312 to a HOST_WIDE_INT. Using the constant directly can result
8313 in non-canonical RTL in a 64x32 cross compile. */
8314 constant_part
8315 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
8316 (HOST_WIDE_INT) 0,
8317 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
8318 op1 = plus_constant (op1, INTVAL (constant_part));
8319 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8320 op1 = force_operand (op1, target);
8321 return REDUCE_BIT_FIELD (op1);
8322 }
8323
8324 else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
8325 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8326 && TREE_CONSTANT (TREE_OPERAND (exp, 0)))
8327 {
8328 rtx constant_part;
8329
8330 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
8331 (modifier == EXPAND_INITIALIZER
8332 ? EXPAND_INITIALIZER : EXPAND_SUM));
8333 if (! CONSTANT_P (op0))
8334 {
8335 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
8336 VOIDmode, modifier);
8337 /* Return a PLUS if modifier says it's OK. */
8338 if (modifier == EXPAND_SUM
8339 || modifier == EXPAND_INITIALIZER)
8340 return simplify_gen_binary (PLUS, mode, op0, op1);
8341 goto binop2;
8342 }
8343 /* Use immed_double_const to ensure that the constant is
8344 truncated according to the mode of OP1, then sign extended
8345 to a HOST_WIDE_INT. Using the constant directly can result
8346 in non-canonical RTL in a 64x32 cross compile. */
8347 constant_part
8348 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
8349 (HOST_WIDE_INT) 0,
8350 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
8351 op0 = plus_constant (op0, INTVAL (constant_part));
8352 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8353 op0 = force_operand (op0, target);
8354 return REDUCE_BIT_FIELD (op0);
8355 }
8356 }
8357
8358 /* No sense saving up arithmetic to be done
8359 if it's all in the wrong mode to form part of an address.
8360 And force_operand won't know whether to sign-extend or
8361 zero-extend. */
8362 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8363 || mode != ptr_mode)
8364 {
8365 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8366 subtarget, &op0, &op1, 0);
8367 if (op0 == const0_rtx)
8368 return op1;
8369 if (op1 == const0_rtx)
8370 return op0;
8371 goto binop2;
8372 }
8373
8374 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8375 subtarget, &op0, &op1, modifier);
8376 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8377
8378 case MINUS_EXPR:
8379 /* Check if this is a case for multiplication and subtraction. */
8380 if ((TREE_CODE (type) == INTEGER_TYPE
8381 || TREE_CODE (type) == FIXED_POINT_TYPE)
8382 && TREE_CODE (TREE_OPERAND (exp, 1)) == MULT_EXPR)
8383 {
8384 tree subsubexp0, subsubexp1;
8385 enum tree_code code0, code1, this_code;
8386
8387 subexp1 = TREE_OPERAND (exp, 1);
8388 subsubexp0 = TREE_OPERAND (subexp1, 0);
8389 subsubexp1 = TREE_OPERAND (subexp1, 1);
8390 code0 = TREE_CODE (subsubexp0);
8391 code1 = TREE_CODE (subsubexp1);
8392 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
8393 : FIXED_CONVERT_EXPR;
8394 if (code0 == this_code && code1 == this_code
8395 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8396 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
8397 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8398 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp1, 0))))
8399 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8400 == TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp1, 0)))))
8401 {
8402 tree op0type = TREE_TYPE (TREE_OPERAND (subsubexp0, 0));
8403 enum machine_mode innermode = TYPE_MODE (op0type);
8404 bool zextend_p = TYPE_UNSIGNED (op0type);
8405 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
8406 if (sat_p == 0)
8407 this_optab = zextend_p ? umsub_widen_optab : smsub_widen_optab;
8408 else
8409 this_optab = zextend_p ? usmsub_widen_optab
8410 : ssmsub_widen_optab;
8411 if (mode == GET_MODE_2XWIDER_MODE (innermode)
8412 && (optab_handler (this_optab, mode)->insn_code
8413 != CODE_FOR_nothing))
8414 {
8415 expand_operands (TREE_OPERAND (subsubexp0, 0),
8416 TREE_OPERAND (subsubexp1, 0),
8417 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8418 op2 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8419 VOIDmode, EXPAND_NORMAL);
8420 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8421 target, unsignedp);
8422 gcc_assert (temp);
8423 return REDUCE_BIT_FIELD (temp);
8424 }
8425 }
8426 }
8427
8428 /* For initializers, we are allowed to return a MINUS of two
8429 symbolic constants. Here we handle all cases when both operands
8430 are constant. */
8431 /* Handle difference of two symbolic constants,
8432 for the sake of an initializer. */
8433 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8434 && really_constant_p (TREE_OPERAND (exp, 0))
8435 && really_constant_p (TREE_OPERAND (exp, 1)))
8436 {
8437 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8438 NULL_RTX, &op0, &op1, modifier);
8439
8440 /* If the last operand is a CONST_INT, use plus_constant of
8441 the negated constant. Else make the MINUS. */
8442 if (GET_CODE (op1) == CONST_INT)
8443 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
8444 else
8445 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
8446 }
8447
8448 /* No sense saving up arithmetic to be done
8449 if it's all in the wrong mode to form part of an address.
8450 And force_operand won't know whether to sign-extend or
8451 zero-extend. */
8452 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8453 || mode != ptr_mode)
8454 goto binop;
8455
8456 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8457 subtarget, &op0, &op1, modifier);
8458
8459 /* Convert A - const to A + (-const). */
8460 if (GET_CODE (op1) == CONST_INT)
8461 {
8462 op1 = negate_rtx (mode, op1);
8463 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8464 }
8465
8466 goto binop2;
8467
8468 case MULT_EXPR:
8469 /* If this is a fixed-point operation, then we cannot use the code
8470 below because "expand_mult" doesn't support sat/no-sat fixed-point
8471 multiplications. */
8472 if (ALL_FIXED_POINT_MODE_P (mode))
8473 goto binop;
8474
8475 /* If first operand is constant, swap them.
8476 Thus the following special case checks need only
8477 check the second operand. */
8478 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
8479 {
8480 tree t1 = TREE_OPERAND (exp, 0);
8481 TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
8482 TREE_OPERAND (exp, 1) = t1;
8483 }
8484
8485 /* Attempt to return something suitable for generating an
8486 indexed address, for machines that support that. */
8487
8488 if (modifier == EXPAND_SUM && mode == ptr_mode
8489 && host_integerp (TREE_OPERAND (exp, 1), 0))
8490 {
8491 tree exp1 = TREE_OPERAND (exp, 1);
8492
8493 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
8494 EXPAND_SUM);
8495
8496 if (!REG_P (op0))
8497 op0 = force_operand (op0, NULL_RTX);
8498 if (!REG_P (op0))
8499 op0 = copy_to_mode_reg (mode, op0);
8500
8501 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8502 gen_int_mode (tree_low_cst (exp1, 0),
8503 TYPE_MODE (TREE_TYPE (exp1)))));
8504 }
8505
8506 if (modifier == EXPAND_STACK_PARM)
8507 target = 0;
8508
8509 /* Check for multiplying things that have been extended
8510 from a narrower type. If this machine supports multiplying
8511 in that narrower type with a result in the desired type,
8512 do it that way, and avoid the explicit type-conversion. */
8513
8514 subexp0 = TREE_OPERAND (exp, 0);
8515 subexp1 = TREE_OPERAND (exp, 1);
8516 /* First, check if we have a multiplication of one signed and one
8517 unsigned operand. */
8518 if (TREE_CODE (subexp0) == NOP_EXPR
8519 && TREE_CODE (subexp1) == NOP_EXPR
8520 && TREE_CODE (type) == INTEGER_TYPE
8521 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8522 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
8523 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8524 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp1, 0))))
8525 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8526 != TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp1, 0)))))
8527 {
8528 enum machine_mode innermode
8529 = TYPE_MODE (TREE_TYPE (TREE_OPERAND (subexp0, 0)));
8530 this_optab = usmul_widen_optab;
8531 if (mode == GET_MODE_WIDER_MODE (innermode))
8532 {
8533 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
8534 {
8535 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0))))
8536 expand_operands (TREE_OPERAND (subexp0, 0),
8537 TREE_OPERAND (subexp1, 0),
8538 NULL_RTX, &op0, &op1, 0);
8539 else
8540 expand_operands (TREE_OPERAND (subexp0, 0),
8541 TREE_OPERAND (subexp1, 0),
8542 NULL_RTX, &op1, &op0, 0);
8543
8544 goto binop3;
8545 }
8546 }
8547 }
8548 /* Check for a multiplication with matching signedness. */
8549 else if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
8550 && TREE_CODE (type) == INTEGER_TYPE
8551 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
8552 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
8553 && ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
8554 && int_fits_type_p (TREE_OPERAND (exp, 1),
8555 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
8556 /* Don't use a widening multiply if a shift will do. */
8557 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
8558 > HOST_BITS_PER_WIDE_INT)
8559 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
8560 ||
8561 (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
8562 && (TYPE_PRECISION (TREE_TYPE
8563 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
8564 == TYPE_PRECISION (TREE_TYPE
8565 (TREE_OPERAND
8566 (TREE_OPERAND (exp, 0), 0))))
8567 /* If both operands are extended, they must either both
8568 be zero-extended or both be sign-extended. */
8569 && (TYPE_UNSIGNED (TREE_TYPE
8570 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
8571 == TYPE_UNSIGNED (TREE_TYPE
8572 (TREE_OPERAND
8573 (TREE_OPERAND (exp, 0), 0)))))))
8574 {
8575 tree op0type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
8576 enum machine_mode innermode = TYPE_MODE (op0type);
8577 bool zextend_p = TYPE_UNSIGNED (op0type);
8578 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8579 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8580
8581 if (mode == GET_MODE_2XWIDER_MODE (innermode))
8582 {
8583 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
8584 {
8585 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
8586 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
8587 TREE_OPERAND (exp, 1),
8588 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8589 else
8590 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
8591 TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
8592 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8593 goto binop3;
8594 }
8595 else if (optab_handler (other_optab, mode)->insn_code != CODE_FOR_nothing
8596 && innermode == word_mode)
8597 {
8598 rtx htem, hipart;
8599 op0 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
8600 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
8601 op1 = convert_modes (innermode, mode,
8602 expand_normal (TREE_OPERAND (exp, 1)),
8603 unsignedp);
8604 else
8605 op1 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 1), 0));
8606 temp = expand_binop (mode, other_optab, op0, op1, target,
8607 unsignedp, OPTAB_LIB_WIDEN);
8608 hipart = gen_highpart (innermode, temp);
8609 htem = expand_mult_highpart_adjust (innermode, hipart,
8610 op0, op1, hipart,
8611 zextend_p);
8612 if (htem != hipart)
8613 emit_move_insn (hipart, htem);
8614 return REDUCE_BIT_FIELD (temp);
8615 }
8616 }
8617 }
8618 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8619 subtarget, &op0, &op1, 0);
8620 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8621
8622 case TRUNC_DIV_EXPR:
8623 case FLOOR_DIV_EXPR:
8624 case CEIL_DIV_EXPR:
8625 case ROUND_DIV_EXPR:
8626 case EXACT_DIV_EXPR:
8627 /* If this is a fixed-point operation, then we cannot use the code
8628 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8629 divisions. */
8630 if (ALL_FIXED_POINT_MODE_P (mode))
8631 goto binop;
8632
8633 if (modifier == EXPAND_STACK_PARM)
8634 target = 0;
8635 /* Possible optimization: compute the dividend with EXPAND_SUM
8636 then if the divisor is constant can optimize the case
8637 where some terms of the dividend have coeffs divisible by it. */
8638 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8639 subtarget, &op0, &op1, 0);
8640 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8641
8642 case RDIV_EXPR:
8643 goto binop;
8644
8645 case TRUNC_MOD_EXPR:
8646 case FLOOR_MOD_EXPR:
8647 case CEIL_MOD_EXPR:
8648 case ROUND_MOD_EXPR:
8649 if (modifier == EXPAND_STACK_PARM)
8650 target = 0;
8651 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8652 subtarget, &op0, &op1, 0);
8653 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8654
8655 case FIXED_CONVERT_EXPR:
8656 op0 = expand_normal (TREE_OPERAND (exp, 0));
8657 if (target == 0 || modifier == EXPAND_STACK_PARM)
8658 target = gen_reg_rtx (mode);
8659
8660 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == INTEGER_TYPE
8661 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))))
8662 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8663 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8664 else
8665 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8666 return target;
8667
8668 case FIX_TRUNC_EXPR:
8669 op0 = expand_normal (TREE_OPERAND (exp, 0));
8670 if (target == 0 || modifier == EXPAND_STACK_PARM)
8671 target = gen_reg_rtx (mode);
8672 expand_fix (target, op0, unsignedp);
8673 return target;
8674
8675 case FLOAT_EXPR:
8676 op0 = expand_normal (TREE_OPERAND (exp, 0));
8677 if (target == 0 || modifier == EXPAND_STACK_PARM)
8678 target = gen_reg_rtx (mode);
8679 /* expand_float can't figure out what to do if FROM has VOIDmode.
8680 So give it the correct mode. With -O, cse will optimize this. */
8681 if (GET_MODE (op0) == VOIDmode)
8682 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
8683 op0);
8684 expand_float (target, op0,
8685 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8686 return target;
8687
8688 case NEGATE_EXPR:
8689 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8690 VOIDmode, EXPAND_NORMAL);
8691 if (modifier == EXPAND_STACK_PARM)
8692 target = 0;
8693 temp = expand_unop (mode,
8694 optab_for_tree_code (NEGATE_EXPR, type,
8695 optab_default),
8696 op0, target, 0);
8697 gcc_assert (temp);
8698 return REDUCE_BIT_FIELD (temp);
8699
8700 case ABS_EXPR:
8701 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8702 VOIDmode, EXPAND_NORMAL);
8703 if (modifier == EXPAND_STACK_PARM)
8704 target = 0;
8705
8706 /* ABS_EXPR is not valid for complex arguments. */
8707 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8708 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8709
8710 /* Unsigned abs is simply the operand. Testing here means we don't
8711 risk generating incorrect code below. */
8712 if (TYPE_UNSIGNED (type))
8713 return op0;
8714
8715 return expand_abs (mode, op0, target, unsignedp,
8716 safe_from_p (target, TREE_OPERAND (exp, 0), 1));
8717
8718 case MAX_EXPR:
8719 case MIN_EXPR:
8720 target = original_target;
8721 if (target == 0
8722 || modifier == EXPAND_STACK_PARM
8723 || (MEM_P (target) && MEM_VOLATILE_P (target))
8724 || GET_MODE (target) != mode
8725 || (REG_P (target)
8726 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8727 target = gen_reg_rtx (mode);
8728 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8729 target, &op0, &op1, 0);
8730
8731 /* First try to do it with a special MIN or MAX instruction.
8732 If that does not win, use a conditional jump to select the proper
8733 value. */
8734 this_optab = optab_for_tree_code (code, type, optab_default);
8735 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8736 OPTAB_WIDEN);
8737 if (temp != 0)
8738 return temp;
8739
8740 /* At this point, a MEM target is no longer useful; we will get better
8741 code without it. */
8742
8743 if (! REG_P (target))
8744 target = gen_reg_rtx (mode);
8745
8746 /* If op1 was placed in target, swap op0 and op1. */
8747 if (target != op0 && target == op1)
8748 {
8749 temp = op0;
8750 op0 = op1;
8751 op1 = temp;
8752 }
8753
8754 /* We generate better code and avoid problems with op1 mentioning
8755 target by forcing op1 into a pseudo if it isn't a constant. */
8756 if (! CONSTANT_P (op1))
8757 op1 = force_reg (mode, op1);
8758
8759 {
8760 enum rtx_code comparison_code;
8761 rtx cmpop1 = op1;
8762
8763 if (code == MAX_EXPR)
8764 comparison_code = unsignedp ? GEU : GE;
8765 else
8766 comparison_code = unsignedp ? LEU : LE;
8767
8768 /* Canonicalize to comparisons against 0. */
8769 if (op1 == const1_rtx)
8770 {
8771 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8772 or (a != 0 ? a : 1) for unsigned.
8773 For MIN we are safe converting (a <= 1 ? a : 1)
8774 into (a <= 0 ? a : 1) */
8775 cmpop1 = const0_rtx;
8776 if (code == MAX_EXPR)
8777 comparison_code = unsignedp ? NE : GT;
8778 }
8779 if (op1 == constm1_rtx && !unsignedp)
8780 {
8781 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8782 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8783 cmpop1 = const0_rtx;
8784 if (code == MIN_EXPR)
8785 comparison_code = LT;
8786 }
8787 #ifdef HAVE_conditional_move
8788 /* Use a conditional move if possible. */
8789 if (can_conditionally_move_p (mode))
8790 {
8791 rtx insn;
8792
8793 /* ??? Same problem as in expmed.c: emit_conditional_move
8794 forces a stack adjustment via compare_from_rtx, and we
8795 lose the stack adjustment if the sequence we are about
8796 to create is discarded. */
8797 do_pending_stack_adjust ();
8798
8799 start_sequence ();
8800
8801 /* Try to emit the conditional move. */
8802 insn = emit_conditional_move (target, comparison_code,
8803 op0, cmpop1, mode,
8804 op0, op1, mode,
8805 unsignedp);
8806
8807 /* If we could do the conditional move, emit the sequence,
8808 and return. */
8809 if (insn)
8810 {
8811 rtx seq = get_insns ();
8812 end_sequence ();
8813 emit_insn (seq);
8814 return target;
8815 }
8816
8817 /* Otherwise discard the sequence and fall back to code with
8818 branches. */
8819 end_sequence ();
8820 }
8821 #endif
8822 if (target != op0)
8823 emit_move_insn (target, op0);
8824
8825 temp = gen_label_rtx ();
8826 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8827 unsignedp, mode, NULL_RTX, NULL_RTX, temp);
8828 }
8829 emit_move_insn (target, op1);
8830 emit_label (temp);
8831 return target;
8832
8833 case BIT_NOT_EXPR:
8834 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8835 VOIDmode, EXPAND_NORMAL);
8836 if (modifier == EXPAND_STACK_PARM)
8837 target = 0;
8838 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8839 gcc_assert (temp);
8840 return temp;
8841
8842 /* ??? Can optimize bitwise operations with one arg constant.
8843 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8844 and (a bitwise1 b) bitwise2 b (etc)
8845 but that is probably not worth while. */
8846
8847 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8848 boolean values when we want in all cases to compute both of them. In
8849 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8850 as actual zero-or-1 values and then bitwise anding. In cases where
8851 there cannot be any side effects, better code would be made by
8852 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8853 how to recognize those cases. */
8854
8855 case TRUTH_AND_EXPR:
8856 code = BIT_AND_EXPR;
8857 case BIT_AND_EXPR:
8858 goto binop;
8859
8860 case TRUTH_OR_EXPR:
8861 code = BIT_IOR_EXPR;
8862 case BIT_IOR_EXPR:
8863 goto binop;
8864
8865 case TRUTH_XOR_EXPR:
8866 code = BIT_XOR_EXPR;
8867 case BIT_XOR_EXPR:
8868 goto binop;
8869
8870 case LROTATE_EXPR:
8871 case RROTATE_EXPR:
8872 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8873 || (GET_MODE_PRECISION (TYPE_MODE (type))
8874 == TYPE_PRECISION (type)));
8875 /* fall through */
8876
8877 case LSHIFT_EXPR:
8878 case RSHIFT_EXPR:
8879 /* If this is a fixed-point operation, then we cannot use the code
8880 below because "expand_shift" doesn't support sat/no-sat fixed-point
8881 shifts. */
8882 if (ALL_FIXED_POINT_MODE_P (mode))
8883 goto binop;
8884
8885 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
8886 subtarget = 0;
8887 if (modifier == EXPAND_STACK_PARM)
8888 target = 0;
8889 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8890 VOIDmode, EXPAND_NORMAL);
8891 temp = expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
8892 unsignedp);
8893 if (code == LSHIFT_EXPR)
8894 temp = REDUCE_BIT_FIELD (temp);
8895 return temp;
8896
8897 /* Could determine the answer when only additive constants differ. Also,
8898 the addition of one can be handled by changing the condition. */
8899 case LT_EXPR:
8900 case LE_EXPR:
8901 case GT_EXPR:
8902 case GE_EXPR:
8903 case EQ_EXPR:
8904 case NE_EXPR:
8905 case UNORDERED_EXPR:
8906 case ORDERED_EXPR:
8907 case UNLT_EXPR:
8908 case UNLE_EXPR:
8909 case UNGT_EXPR:
8910 case UNGE_EXPR:
8911 case UNEQ_EXPR:
8912 case LTGT_EXPR:
8913 temp = do_store_flag (exp,
8914 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8915 tmode != VOIDmode ? tmode : mode, 0);
8916 if (temp != 0)
8917 return temp;
8918
8919 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
8920 if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
8921 && original_target
8922 && REG_P (original_target)
8923 && (GET_MODE (original_target)
8924 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
8925 {
8926 temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
8927 VOIDmode, EXPAND_NORMAL);
8928
8929 /* If temp is constant, we can just compute the result. */
8930 if (GET_CODE (temp) == CONST_INT)
8931 {
8932 if (INTVAL (temp) != 0)
8933 emit_move_insn (target, const1_rtx);
8934 else
8935 emit_move_insn (target, const0_rtx);
8936
8937 return target;
8938 }
8939
8940 if (temp != original_target)
8941 {
8942 enum machine_mode mode1 = GET_MODE (temp);
8943 if (mode1 == VOIDmode)
8944 mode1 = tmode != VOIDmode ? tmode : mode;
8945
8946 temp = copy_to_mode_reg (mode1, temp);
8947 }
8948
8949 op1 = gen_label_rtx ();
8950 emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
8951 GET_MODE (temp), unsignedp, op1);
8952 emit_move_insn (temp, const1_rtx);
8953 emit_label (op1);
8954 return temp;
8955 }
8956
8957 /* If no set-flag instruction, must generate a conditional store
8958 into a temporary variable. Drop through and handle this
8959 like && and ||. */
8960
8961 if (! ignore
8962 && (target == 0
8963 || modifier == EXPAND_STACK_PARM
8964 || ! safe_from_p (target, exp, 1)
8965 /* Make sure we don't have a hard reg (such as function's return
8966 value) live across basic blocks, if not optimizing. */
8967 || (!optimize && REG_P (target)
8968 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8969 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8970
8971 if (target)
8972 emit_move_insn (target, const0_rtx);
8973
8974 op1 = gen_label_rtx ();
8975 jumpifnot (exp, op1);
8976
8977 if (target)
8978 emit_move_insn (target, const1_rtx);
8979
8980 emit_label (op1);
8981 return ignore ? const0_rtx : target;
8982
8983 case TRUTH_NOT_EXPR:
8984 if (modifier == EXPAND_STACK_PARM)
8985 target = 0;
8986 op0 = expand_expr (TREE_OPERAND (exp, 0), target,
8987 VOIDmode, EXPAND_NORMAL);
8988 /* The parser is careful to generate TRUTH_NOT_EXPR
8989 only with operands that are always zero or one. */
8990 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8991 target, 1, OPTAB_LIB_WIDEN);
8992 gcc_assert (temp);
8993 return temp;
8994
8995 case STATEMENT_LIST:
8996 {
8997 tree_stmt_iterator iter;
8998
8999 gcc_assert (ignore);
9000
9001 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9002 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9003 }
9004 return const0_rtx;
9005
9006 case COND_EXPR:
9007 /* A COND_EXPR with its type being VOID_TYPE represents a
9008 conditional jump and is handled in
9009 expand_gimple_cond_expr. */
9010 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp)));
9011
9012 /* Note that COND_EXPRs whose type is a structure or union
9013 are required to be constructed to contain assignments of
9014 a temporary variable, so that we can evaluate them here
9015 for side effect only. If type is void, we must do likewise. */
9016
9017 gcc_assert (!TREE_ADDRESSABLE (type)
9018 && !ignore
9019 && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node
9020 && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node);
9021
9022 /* If we are not to produce a result, we have no target. Otherwise,
9023 if a target was specified use it; it will not be used as an
9024 intermediate target unless it is safe. If no target, use a
9025 temporary. */
9026
9027 if (modifier != EXPAND_STACK_PARM
9028 && original_target
9029 && safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
9030 && GET_MODE (original_target) == mode
9031 #ifdef HAVE_conditional_move
9032 && (! can_conditionally_move_p (mode)
9033 || REG_P (original_target))
9034 #endif
9035 && !MEM_P (original_target))
9036 temp = original_target;
9037 else
9038 temp = assign_temp (type, 0, 0, 1);
9039
9040 do_pending_stack_adjust ();
9041 NO_DEFER_POP;
9042 op0 = gen_label_rtx ();
9043 op1 = gen_label_rtx ();
9044 jumpifnot (TREE_OPERAND (exp, 0), op0);
9045 store_expr (TREE_OPERAND (exp, 1), temp,
9046 modifier == EXPAND_STACK_PARM,
9047 false);
9048
9049 emit_jump_insn (gen_jump (op1));
9050 emit_barrier ();
9051 emit_label (op0);
9052 store_expr (TREE_OPERAND (exp, 2), temp,
9053 modifier == EXPAND_STACK_PARM,
9054 false);
9055
9056 emit_label (op1);
9057 OK_DEFER_POP;
9058 return temp;
9059
9060 case VEC_COND_EXPR:
9061 target = expand_vec_cond_expr (exp, target);
9062 return target;
9063
9064 case MODIFY_EXPR:
9065 {
9066 tree lhs = TREE_OPERAND (exp, 0);
9067 tree rhs = TREE_OPERAND (exp, 1);
9068 gcc_assert (ignore);
9069 expand_assignment (lhs, rhs, false);
9070 return const0_rtx;
9071 }
9072
9073 case GIMPLE_MODIFY_STMT:
9074 {
9075 tree lhs = GIMPLE_STMT_OPERAND (exp, 0);
9076 tree rhs = GIMPLE_STMT_OPERAND (exp, 1);
9077
9078 gcc_assert (ignore);
9079
9080 /* Check for |= or &= of a bitfield of size one into another bitfield
9081 of size 1. In this case, (unless we need the result of the
9082 assignment) we can do this more efficiently with a
9083 test followed by an assignment, if necessary.
9084
9085 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9086 things change so we do, this code should be enhanced to
9087 support it. */
9088 if (TREE_CODE (lhs) == COMPONENT_REF
9089 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9090 || TREE_CODE (rhs) == BIT_AND_EXPR)
9091 && TREE_OPERAND (rhs, 0) == lhs
9092 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9093 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9094 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9095 {
9096 rtx label = gen_label_rtx ();
9097 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9098 do_jump (TREE_OPERAND (rhs, 1),
9099 value ? label : 0,
9100 value ? 0 : label);
9101 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9102 MOVE_NONTEMPORAL (exp));
9103 do_pending_stack_adjust ();
9104 emit_label (label);
9105 return const0_rtx;
9106 }
9107
9108 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9109 return const0_rtx;
9110 }
9111
9112 case RETURN_EXPR:
9113 if (!TREE_OPERAND (exp, 0))
9114 expand_null_return ();
9115 else
9116 expand_return (TREE_OPERAND (exp, 0));
9117 return const0_rtx;
9118
9119 case ADDR_EXPR:
9120 return expand_expr_addr_expr (exp, target, tmode, modifier);
9121
9122 case COMPLEX_EXPR:
9123 /* Get the rtx code of the operands. */
9124 op0 = expand_normal (TREE_OPERAND (exp, 0));
9125 op1 = expand_normal (TREE_OPERAND (exp, 1));
9126
9127 if (!target)
9128 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
9129
9130 /* Move the real (op0) and imaginary (op1) parts to their location. */
9131 write_complex_part (target, op0, false);
9132 write_complex_part (target, op1, true);
9133
9134 return target;
9135
9136 case REALPART_EXPR:
9137 op0 = expand_normal (TREE_OPERAND (exp, 0));
9138 return read_complex_part (op0, false);
9139
9140 case IMAGPART_EXPR:
9141 op0 = expand_normal (TREE_OPERAND (exp, 0));
9142 return read_complex_part (op0, true);
9143
9144 case RESX_EXPR:
9145 expand_resx_expr (exp);
9146 return const0_rtx;
9147
9148 case TRY_CATCH_EXPR:
9149 case CATCH_EXPR:
9150 case EH_FILTER_EXPR:
9151 case TRY_FINALLY_EXPR:
9152 /* Lowered by tree-eh.c. */
9153 gcc_unreachable ();
9154
9155 case WITH_CLEANUP_EXPR:
9156 case CLEANUP_POINT_EXPR:
9157 case TARGET_EXPR:
9158 case CASE_LABEL_EXPR:
9159 case VA_ARG_EXPR:
9160 case BIND_EXPR:
9161 case INIT_EXPR:
9162 case CONJ_EXPR:
9163 case COMPOUND_EXPR:
9164 case PREINCREMENT_EXPR:
9165 case PREDECREMENT_EXPR:
9166 case POSTINCREMENT_EXPR:
9167 case POSTDECREMENT_EXPR:
9168 case LOOP_EXPR:
9169 case EXIT_EXPR:
9170 case TRUTH_ANDIF_EXPR:
9171 case TRUTH_ORIF_EXPR:
9172 /* Lowered by gimplify.c. */
9173 gcc_unreachable ();
9174
9175 case CHANGE_DYNAMIC_TYPE_EXPR:
9176 /* This is ignored at the RTL level. The tree level set
9177 DECL_POINTER_ALIAS_SET of any variable to be 0, which is
9178 overkill for the RTL layer but is all that we can
9179 represent. */
9180 return const0_rtx;
9181
9182 case EXC_PTR_EXPR:
9183 return get_exception_pointer ();
9184
9185 case FILTER_EXPR:
9186 return get_exception_filter ();
9187
9188 case FDESC_EXPR:
9189 /* Function descriptors are not valid except for as
9190 initialization constants, and should not be expanded. */
9191 gcc_unreachable ();
9192
9193 case SWITCH_EXPR:
9194 expand_case (exp);
9195 return const0_rtx;
9196
9197 case LABEL_EXPR:
9198 expand_label (TREE_OPERAND (exp, 0));
9199 return const0_rtx;
9200
9201 case ASM_EXPR:
9202 expand_asm_expr (exp);
9203 return const0_rtx;
9204
9205 case WITH_SIZE_EXPR:
9206 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9207 have pulled out the size to use in whatever context it needed. */
9208 return expand_expr_real (TREE_OPERAND (exp, 0), original_target, tmode,
9209 modifier, alt_rtl);
9210
9211 case REALIGN_LOAD_EXPR:
9212 {
9213 tree oprnd0 = TREE_OPERAND (exp, 0);
9214 tree oprnd1 = TREE_OPERAND (exp, 1);
9215 tree oprnd2 = TREE_OPERAND (exp, 2);
9216 rtx op2;
9217
9218 this_optab = optab_for_tree_code (code, type, optab_default);
9219 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9220 op2 = expand_normal (oprnd2);
9221 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9222 target, unsignedp);
9223 gcc_assert (temp);
9224 return temp;
9225 }
9226
9227 case DOT_PROD_EXPR:
9228 {
9229 tree oprnd0 = TREE_OPERAND (exp, 0);
9230 tree oprnd1 = TREE_OPERAND (exp, 1);
9231 tree oprnd2 = TREE_OPERAND (exp, 2);
9232 rtx op2;
9233
9234 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9235 op2 = expand_normal (oprnd2);
9236 target = expand_widen_pattern_expr (exp, op0, op1, op2,
9237 target, unsignedp);
9238 return target;
9239 }
9240
9241 case WIDEN_SUM_EXPR:
9242 {
9243 tree oprnd0 = TREE_OPERAND (exp, 0);
9244 tree oprnd1 = TREE_OPERAND (exp, 1);
9245
9246 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
9247 target = expand_widen_pattern_expr (exp, op0, NULL_RTX, op1,
9248 target, unsignedp);
9249 return target;
9250 }
9251
9252 case REDUC_MAX_EXPR:
9253 case REDUC_MIN_EXPR:
9254 case REDUC_PLUS_EXPR:
9255 {
9256 op0 = expand_normal (TREE_OPERAND (exp, 0));
9257 this_optab = optab_for_tree_code (code, type, optab_default);
9258 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
9259 gcc_assert (temp);
9260 return temp;
9261 }
9262
9263 case VEC_EXTRACT_EVEN_EXPR:
9264 case VEC_EXTRACT_ODD_EXPR:
9265 {
9266 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
9267 NULL_RTX, &op0, &op1, 0);
9268 this_optab = optab_for_tree_code (code, type, optab_default);
9269 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9270 OPTAB_WIDEN);
9271 gcc_assert (temp);
9272 return temp;
9273 }
9274
9275 case VEC_INTERLEAVE_HIGH_EXPR:
9276 case VEC_INTERLEAVE_LOW_EXPR:
9277 {
9278 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
9279 NULL_RTX, &op0, &op1, 0);
9280 this_optab = optab_for_tree_code (code, type, optab_default);
9281 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9282 OPTAB_WIDEN);
9283 gcc_assert (temp);
9284 return temp;
9285 }
9286
9287 case VEC_LSHIFT_EXPR:
9288 case VEC_RSHIFT_EXPR:
9289 {
9290 target = expand_vec_shift_expr (exp, target);
9291 return target;
9292 }
9293
9294 case VEC_UNPACK_HI_EXPR:
9295 case VEC_UNPACK_LO_EXPR:
9296 {
9297 op0 = expand_normal (TREE_OPERAND (exp, 0));
9298 this_optab = optab_for_tree_code (code, type, optab_default);
9299 temp = expand_widen_pattern_expr (exp, op0, NULL_RTX, NULL_RTX,
9300 target, unsignedp);
9301 gcc_assert (temp);
9302 return temp;
9303 }
9304
9305 case VEC_UNPACK_FLOAT_HI_EXPR:
9306 case VEC_UNPACK_FLOAT_LO_EXPR:
9307 {
9308 op0 = expand_normal (TREE_OPERAND (exp, 0));
9309 /* The signedness is determined from input operand. */
9310 this_optab = optab_for_tree_code (code,
9311 TREE_TYPE (TREE_OPERAND (exp, 0)),
9312 optab_default);
9313 temp = expand_widen_pattern_expr
9314 (exp, op0, NULL_RTX, NULL_RTX,
9315 target, TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
9316
9317 gcc_assert (temp);
9318 return temp;
9319 }
9320
9321 case VEC_WIDEN_MULT_HI_EXPR:
9322 case VEC_WIDEN_MULT_LO_EXPR:
9323 {
9324 tree oprnd0 = TREE_OPERAND (exp, 0);
9325 tree oprnd1 = TREE_OPERAND (exp, 1);
9326
9327 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
9328 target = expand_widen_pattern_expr (exp, op0, op1, NULL_RTX,
9329 target, unsignedp);
9330 gcc_assert (target);
9331 return target;
9332 }
9333
9334 case VEC_PACK_TRUNC_EXPR:
9335 case VEC_PACK_SAT_EXPR:
9336 case VEC_PACK_FIX_TRUNC_EXPR:
9337 {
9338 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9339 goto binop;
9340 }
9341
9342 case OMP_ATOMIC_LOAD:
9343 case OMP_ATOMIC_STORE:
9344 /* OMP expansion is not run when there were errors, so these codes
9345 can get here. */
9346 gcc_assert (errorcount != 0);
9347 return NULL_RTX;
9348
9349 default:
9350 return lang_hooks.expand_expr (exp, original_target, tmode,
9351 modifier, alt_rtl);
9352 }
9353
9354 /* Here to do an ordinary binary operator. */
9355 binop:
9356 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
9357 subtarget, &op0, &op1, 0);
9358 binop2:
9359 this_optab = optab_for_tree_code (code, type, optab_default);
9360 binop3:
9361 if (modifier == EXPAND_STACK_PARM)
9362 target = 0;
9363 temp = expand_binop (mode, this_optab, op0, op1, target,
9364 unsignedp, OPTAB_LIB_WIDEN);
9365 gcc_assert (temp);
9366 return REDUCE_BIT_FIELD (temp);
9367 }
9368 #undef REDUCE_BIT_FIELD
9369 \f
9370 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9371 signedness of TYPE), possibly returning the result in TARGET. */
9372 static rtx
9373 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9374 {
9375 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9376 if (target && GET_MODE (target) != GET_MODE (exp))
9377 target = 0;
9378 /* For constant values, reduce using build_int_cst_type. */
9379 if (GET_CODE (exp) == CONST_INT)
9380 {
9381 HOST_WIDE_INT value = INTVAL (exp);
9382 tree t = build_int_cst_type (type, value);
9383 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9384 }
9385 else if (TYPE_UNSIGNED (type))
9386 {
9387 rtx mask;
9388 if (prec < HOST_BITS_PER_WIDE_INT)
9389 mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
9390 GET_MODE (exp));
9391 else
9392 mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
9393 ((unsigned HOST_WIDE_INT) 1
9394 << (prec - HOST_BITS_PER_WIDE_INT)) - 1,
9395 GET_MODE (exp));
9396 return expand_and (GET_MODE (exp), exp, mask, target);
9397 }
9398 else
9399 {
9400 tree count = build_int_cst (NULL_TREE,
9401 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
9402 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9403 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9404 }
9405 }
9406 \f
9407 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9408 when applied to the address of EXP produces an address known to be
9409 aligned more than BIGGEST_ALIGNMENT. */
9410
9411 static int
9412 is_aligning_offset (const_tree offset, const_tree exp)
9413 {
9414 /* Strip off any conversions. */
9415 while (CONVERT_EXPR_P (offset))
9416 offset = TREE_OPERAND (offset, 0);
9417
9418 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9419 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9420 if (TREE_CODE (offset) != BIT_AND_EXPR
9421 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9422 || compare_tree_int (TREE_OPERAND (offset, 1),
9423 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9424 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9425 return 0;
9426
9427 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9428 It must be NEGATE_EXPR. Then strip any more conversions. */
9429 offset = TREE_OPERAND (offset, 0);
9430 while (CONVERT_EXPR_P (offset))
9431 offset = TREE_OPERAND (offset, 0);
9432
9433 if (TREE_CODE (offset) != NEGATE_EXPR)
9434 return 0;
9435
9436 offset = TREE_OPERAND (offset, 0);
9437 while (CONVERT_EXPR_P (offset))
9438 offset = TREE_OPERAND (offset, 0);
9439
9440 /* This must now be the address of EXP. */
9441 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9442 }
9443 \f
9444 /* Return the tree node if an ARG corresponds to a string constant or zero
9445 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9446 in bytes within the string that ARG is accessing. The type of the
9447 offset will be `sizetype'. */
9448
9449 tree
9450 string_constant (tree arg, tree *ptr_offset)
9451 {
9452 tree array, offset, lower_bound;
9453 STRIP_NOPS (arg);
9454
9455 if (TREE_CODE (arg) == ADDR_EXPR)
9456 {
9457 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9458 {
9459 *ptr_offset = size_zero_node;
9460 return TREE_OPERAND (arg, 0);
9461 }
9462 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9463 {
9464 array = TREE_OPERAND (arg, 0);
9465 offset = size_zero_node;
9466 }
9467 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9468 {
9469 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9470 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9471 if (TREE_CODE (array) != STRING_CST
9472 && TREE_CODE (array) != VAR_DECL)
9473 return 0;
9474
9475 /* Check if the array has a nonzero lower bound. */
9476 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9477 if (!integer_zerop (lower_bound))
9478 {
9479 /* If the offset and base aren't both constants, return 0. */
9480 if (TREE_CODE (lower_bound) != INTEGER_CST)
9481 return 0;
9482 if (TREE_CODE (offset) != INTEGER_CST)
9483 return 0;
9484 /* Adjust offset by the lower bound. */
9485 offset = size_diffop (fold_convert (sizetype, offset),
9486 fold_convert (sizetype, lower_bound));
9487 }
9488 }
9489 else
9490 return 0;
9491 }
9492 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9493 {
9494 tree arg0 = TREE_OPERAND (arg, 0);
9495 tree arg1 = TREE_OPERAND (arg, 1);
9496
9497 STRIP_NOPS (arg0);
9498 STRIP_NOPS (arg1);
9499
9500 if (TREE_CODE (arg0) == ADDR_EXPR
9501 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9502 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9503 {
9504 array = TREE_OPERAND (arg0, 0);
9505 offset = arg1;
9506 }
9507 else if (TREE_CODE (arg1) == ADDR_EXPR
9508 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9509 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9510 {
9511 array = TREE_OPERAND (arg1, 0);
9512 offset = arg0;
9513 }
9514 else
9515 return 0;
9516 }
9517 else
9518 return 0;
9519
9520 if (TREE_CODE (array) == STRING_CST)
9521 {
9522 *ptr_offset = fold_convert (sizetype, offset);
9523 return array;
9524 }
9525 else if (TREE_CODE (array) == VAR_DECL)
9526 {
9527 int length;
9528
9529 /* Variables initialized to string literals can be handled too. */
9530 if (DECL_INITIAL (array) == NULL_TREE
9531 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9532 return 0;
9533
9534 /* If they are read-only, non-volatile and bind locally. */
9535 if (! TREE_READONLY (array)
9536 || TREE_SIDE_EFFECTS (array)
9537 || ! targetm.binds_local_p (array))
9538 return 0;
9539
9540 /* Avoid const char foo[4] = "abcde"; */
9541 if (DECL_SIZE_UNIT (array) == NULL_TREE
9542 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9543 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9544 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9545 return 0;
9546
9547 /* If variable is bigger than the string literal, OFFSET must be constant
9548 and inside of the bounds of the string literal. */
9549 offset = fold_convert (sizetype, offset);
9550 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9551 && (! host_integerp (offset, 1)
9552 || compare_tree_int (offset, length) >= 0))
9553 return 0;
9554
9555 *ptr_offset = offset;
9556 return DECL_INITIAL (array);
9557 }
9558
9559 return 0;
9560 }
9561 \f
9562 /* Generate code to calculate EXP using a store-flag instruction
9563 and return an rtx for the result. EXP is either a comparison
9564 or a TRUTH_NOT_EXPR whose operand is a comparison.
9565
9566 If TARGET is nonzero, store the result there if convenient.
9567
9568 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
9569 cheap.
9570
9571 Return zero if there is no suitable set-flag instruction
9572 available on this machine.
9573
9574 Once expand_expr has been called on the arguments of the comparison,
9575 we are committed to doing the store flag, since it is not safe to
9576 re-evaluate the expression. We emit the store-flag insn by calling
9577 emit_store_flag, but only expand the arguments if we have a reason
9578 to believe that emit_store_flag will be successful. If we think that
9579 it will, but it isn't, we have to simulate the store-flag with a
9580 set/jump/set sequence. */
9581
9582 static rtx
9583 do_store_flag (tree exp, rtx target, enum machine_mode mode, int only_cheap)
9584 {
9585 enum rtx_code code;
9586 tree arg0, arg1, type;
9587 tree tem;
9588 enum machine_mode operand_mode;
9589 int invert = 0;
9590 int unsignedp;
9591 rtx op0, op1;
9592 enum insn_code icode;
9593 rtx subtarget = target;
9594 rtx result, label;
9595
9596 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
9597 result at the end. We can't simply invert the test since it would
9598 have already been inverted if it were valid. This case occurs for
9599 some floating-point comparisons. */
9600
9601 if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
9602 invert = 1, exp = TREE_OPERAND (exp, 0);
9603
9604 arg0 = TREE_OPERAND (exp, 0);
9605 arg1 = TREE_OPERAND (exp, 1);
9606
9607 /* Don't crash if the comparison was erroneous. */
9608 if (arg0 == error_mark_node || arg1 == error_mark_node)
9609 return const0_rtx;
9610
9611 type = TREE_TYPE (arg0);
9612 operand_mode = TYPE_MODE (type);
9613 unsignedp = TYPE_UNSIGNED (type);
9614
9615 /* We won't bother with BLKmode store-flag operations because it would mean
9616 passing a lot of information to emit_store_flag. */
9617 if (operand_mode == BLKmode)
9618 return 0;
9619
9620 /* We won't bother with store-flag operations involving function pointers
9621 when function pointers must be canonicalized before comparisons. */
9622 #ifdef HAVE_canonicalize_funcptr_for_compare
9623 if (HAVE_canonicalize_funcptr_for_compare
9624 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
9625 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
9626 == FUNCTION_TYPE))
9627 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
9628 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
9629 == FUNCTION_TYPE))))
9630 return 0;
9631 #endif
9632
9633 STRIP_NOPS (arg0);
9634 STRIP_NOPS (arg1);
9635
9636 /* Get the rtx comparison code to use. We know that EXP is a comparison
9637 operation of some type. Some comparisons against 1 and -1 can be
9638 converted to comparisons with zero. Do so here so that the tests
9639 below will be aware that we have a comparison with zero. These
9640 tests will not catch constants in the first operand, but constants
9641 are rarely passed as the first operand. */
9642
9643 switch (TREE_CODE (exp))
9644 {
9645 case EQ_EXPR:
9646 code = EQ;
9647 break;
9648 case NE_EXPR:
9649 code = NE;
9650 break;
9651 case LT_EXPR:
9652 if (integer_onep (arg1))
9653 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9654 else
9655 code = unsignedp ? LTU : LT;
9656 break;
9657 case LE_EXPR:
9658 if (! unsignedp && integer_all_onesp (arg1))
9659 arg1 = integer_zero_node, code = LT;
9660 else
9661 code = unsignedp ? LEU : LE;
9662 break;
9663 case GT_EXPR:
9664 if (! unsignedp && integer_all_onesp (arg1))
9665 arg1 = integer_zero_node, code = GE;
9666 else
9667 code = unsignedp ? GTU : GT;
9668 break;
9669 case GE_EXPR:
9670 if (integer_onep (arg1))
9671 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
9672 else
9673 code = unsignedp ? GEU : GE;
9674 break;
9675
9676 case UNORDERED_EXPR:
9677 code = UNORDERED;
9678 break;
9679 case ORDERED_EXPR:
9680 code = ORDERED;
9681 break;
9682 case UNLT_EXPR:
9683 code = UNLT;
9684 break;
9685 case UNLE_EXPR:
9686 code = UNLE;
9687 break;
9688 case UNGT_EXPR:
9689 code = UNGT;
9690 break;
9691 case UNGE_EXPR:
9692 code = UNGE;
9693 break;
9694 case UNEQ_EXPR:
9695 code = UNEQ;
9696 break;
9697 case LTGT_EXPR:
9698 code = LTGT;
9699 break;
9700
9701 default:
9702 gcc_unreachable ();
9703 }
9704
9705 /* Put a constant second. */
9706 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
9707 || TREE_CODE (arg0) == FIXED_CST)
9708 {
9709 tem = arg0; arg0 = arg1; arg1 = tem;
9710 code = swap_condition (code);
9711 }
9712
9713 /* If this is an equality or inequality test of a single bit, we can
9714 do this by shifting the bit being tested to the low-order bit and
9715 masking the result with the constant 1. If the condition was EQ,
9716 we xor it with 1. This does not require an scc insn and is faster
9717 than an scc insn even if we have it.
9718
9719 The code to make this transformation was moved into fold_single_bit_test,
9720 so we just call into the folder and expand its result. */
9721
9722 if ((code == NE || code == EQ)
9723 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
9724 && integer_pow2p (TREE_OPERAND (arg0, 1)))
9725 {
9726 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
9727 return expand_expr (fold_single_bit_test (code == NE ? NE_EXPR : EQ_EXPR,
9728 arg0, arg1, type),
9729 target, VOIDmode, EXPAND_NORMAL);
9730 }
9731
9732 /* Now see if we are likely to be able to do this. Return if not. */
9733 if (! can_compare_p (code, operand_mode, ccp_store_flag))
9734 return 0;
9735
9736 icode = setcc_gen_code[(int) code];
9737
9738 if (icode == CODE_FOR_nothing)
9739 {
9740 enum machine_mode wmode;
9741
9742 for (wmode = operand_mode;
9743 icode == CODE_FOR_nothing && wmode != VOIDmode;
9744 wmode = GET_MODE_WIDER_MODE (wmode))
9745 icode = optab_handler (cstore_optab, wmode)->insn_code;
9746 }
9747
9748 if (icode == CODE_FOR_nothing
9749 || (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
9750 {
9751 /* We can only do this if it is one of the special cases that
9752 can be handled without an scc insn. */
9753 if ((code == LT && integer_zerop (arg1))
9754 || (! only_cheap && code == GE && integer_zerop (arg1)))
9755 ;
9756 else if (! only_cheap && (code == NE || code == EQ)
9757 && TREE_CODE (type) != REAL_TYPE
9758 && ((optab_handler (abs_optab, operand_mode)->insn_code
9759 != CODE_FOR_nothing)
9760 || (optab_handler (ffs_optab, operand_mode)->insn_code
9761 != CODE_FOR_nothing)))
9762 ;
9763 else
9764 return 0;
9765 }
9766
9767 if (! get_subtarget (target)
9768 || GET_MODE (subtarget) != operand_mode)
9769 subtarget = 0;
9770
9771 expand_operands (arg0, arg1, subtarget, &op0, &op1, 0);
9772
9773 if (target == 0)
9774 target = gen_reg_rtx (mode);
9775
9776 result = emit_store_flag (target, code, op0, op1,
9777 operand_mode, unsignedp, 1);
9778
9779 if (result)
9780 {
9781 if (invert)
9782 result = expand_binop (mode, xor_optab, result, const1_rtx,
9783 result, 0, OPTAB_LIB_WIDEN);
9784 return result;
9785 }
9786
9787 /* If this failed, we have to do this with set/compare/jump/set code. */
9788 if (!REG_P (target)
9789 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
9790 target = gen_reg_rtx (GET_MODE (target));
9791
9792 emit_move_insn (target, invert ? const0_rtx : const1_rtx);
9793 label = gen_label_rtx ();
9794 do_compare_rtx_and_jump (op0, op1, code, unsignedp, operand_mode, NULL_RTX,
9795 NULL_RTX, label);
9796
9797 emit_move_insn (target, invert ? const1_rtx : const0_rtx);
9798 emit_label (label);
9799
9800 return target;
9801 }
9802 \f
9803
9804 /* Stubs in case we haven't got a casesi insn. */
9805 #ifndef HAVE_casesi
9806 # define HAVE_casesi 0
9807 # define gen_casesi(a, b, c, d, e) (0)
9808 # define CODE_FOR_casesi CODE_FOR_nothing
9809 #endif
9810
9811 /* If the machine does not have a case insn that compares the bounds,
9812 this means extra overhead for dispatch tables, which raises the
9813 threshold for using them. */
9814 #ifndef CASE_VALUES_THRESHOLD
9815 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
9816 #endif /* CASE_VALUES_THRESHOLD */
9817
9818 unsigned int
9819 case_values_threshold (void)
9820 {
9821 return CASE_VALUES_THRESHOLD;
9822 }
9823
9824 /* Attempt to generate a casesi instruction. Returns 1 if successful,
9825 0 otherwise (i.e. if there is no casesi instruction). */
9826 int
9827 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
9828 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
9829 rtx fallback_label ATTRIBUTE_UNUSED)
9830 {
9831 enum machine_mode index_mode = SImode;
9832 int index_bits = GET_MODE_BITSIZE (index_mode);
9833 rtx op1, op2, index;
9834 enum machine_mode op_mode;
9835
9836 if (! HAVE_casesi)
9837 return 0;
9838
9839 /* Convert the index to SImode. */
9840 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
9841 {
9842 enum machine_mode omode = TYPE_MODE (index_type);
9843 rtx rangertx = expand_normal (range);
9844
9845 /* We must handle the endpoints in the original mode. */
9846 index_expr = build2 (MINUS_EXPR, index_type,
9847 index_expr, minval);
9848 minval = integer_zero_node;
9849 index = expand_normal (index_expr);
9850 if (default_label)
9851 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
9852 omode, 1, default_label);
9853 /* Now we can safely truncate. */
9854 index = convert_to_mode (index_mode, index, 0);
9855 }
9856 else
9857 {
9858 if (TYPE_MODE (index_type) != index_mode)
9859 {
9860 index_type = lang_hooks.types.type_for_size (index_bits, 0);
9861 index_expr = fold_convert (index_type, index_expr);
9862 }
9863
9864 index = expand_normal (index_expr);
9865 }
9866
9867 do_pending_stack_adjust ();
9868
9869 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
9870 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
9871 (index, op_mode))
9872 index = copy_to_mode_reg (op_mode, index);
9873
9874 op1 = expand_normal (minval);
9875
9876 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
9877 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
9878 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
9879 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
9880 (op1, op_mode))
9881 op1 = copy_to_mode_reg (op_mode, op1);
9882
9883 op2 = expand_normal (range);
9884
9885 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
9886 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
9887 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
9888 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
9889 (op2, op_mode))
9890 op2 = copy_to_mode_reg (op_mode, op2);
9891
9892 emit_jump_insn (gen_casesi (index, op1, op2,
9893 table_label, !default_label
9894 ? fallback_label : default_label));
9895 return 1;
9896 }
9897
9898 /* Attempt to generate a tablejump instruction; same concept. */
9899 #ifndef HAVE_tablejump
9900 #define HAVE_tablejump 0
9901 #define gen_tablejump(x, y) (0)
9902 #endif
9903
9904 /* Subroutine of the next function.
9905
9906 INDEX is the value being switched on, with the lowest value
9907 in the table already subtracted.
9908 MODE is its expected mode (needed if INDEX is constant).
9909 RANGE is the length of the jump table.
9910 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
9911
9912 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
9913 index value is out of range. */
9914
9915 static void
9916 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
9917 rtx default_label)
9918 {
9919 rtx temp, vector;
9920
9921 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
9922 cfun->cfg->max_jumptable_ents = INTVAL (range);
9923
9924 /* Do an unsigned comparison (in the proper mode) between the index
9925 expression and the value which represents the length of the range.
9926 Since we just finished subtracting the lower bound of the range
9927 from the index expression, this comparison allows us to simultaneously
9928 check that the original index expression value is both greater than
9929 or equal to the minimum value of the range and less than or equal to
9930 the maximum value of the range. */
9931
9932 if (default_label)
9933 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
9934 default_label);
9935
9936 /* If index is in range, it must fit in Pmode.
9937 Convert to Pmode so we can index with it. */
9938 if (mode != Pmode)
9939 index = convert_to_mode (Pmode, index, 1);
9940
9941 /* Don't let a MEM slip through, because then INDEX that comes
9942 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
9943 and break_out_memory_refs will go to work on it and mess it up. */
9944 #ifdef PIC_CASE_VECTOR_ADDRESS
9945 if (flag_pic && !REG_P (index))
9946 index = copy_to_mode_reg (Pmode, index);
9947 #endif
9948
9949 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
9950 GET_MODE_SIZE, because this indicates how large insns are. The other
9951 uses should all be Pmode, because they are addresses. This code
9952 could fail if addresses and insns are not the same size. */
9953 index = gen_rtx_PLUS (Pmode,
9954 gen_rtx_MULT (Pmode, index,
9955 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
9956 gen_rtx_LABEL_REF (Pmode, table_label));
9957 #ifdef PIC_CASE_VECTOR_ADDRESS
9958 if (flag_pic)
9959 index = PIC_CASE_VECTOR_ADDRESS (index);
9960 else
9961 #endif
9962 index = memory_address (CASE_VECTOR_MODE, index);
9963 temp = gen_reg_rtx (CASE_VECTOR_MODE);
9964 vector = gen_const_mem (CASE_VECTOR_MODE, index);
9965 convert_move (temp, vector, 0);
9966
9967 emit_jump_insn (gen_tablejump (temp, table_label));
9968
9969 /* If we are generating PIC code or if the table is PC-relative, the
9970 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
9971 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
9972 emit_barrier ();
9973 }
9974
9975 int
9976 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
9977 rtx table_label, rtx default_label)
9978 {
9979 rtx index;
9980
9981 if (! HAVE_tablejump)
9982 return 0;
9983
9984 index_expr = fold_build2 (MINUS_EXPR, index_type,
9985 fold_convert (index_type, index_expr),
9986 fold_convert (index_type, minval));
9987 index = expand_normal (index_expr);
9988 do_pending_stack_adjust ();
9989
9990 do_tablejump (index, TYPE_MODE (index_type),
9991 convert_modes (TYPE_MODE (index_type),
9992 TYPE_MODE (TREE_TYPE (range)),
9993 expand_normal (range),
9994 TYPE_UNSIGNED (TREE_TYPE (range))),
9995 table_label, default_label);
9996 return 1;
9997 }
9998
9999 /* Nonzero if the mode is a valid vector mode for this architecture.
10000 This returns nonzero even if there is no hardware support for the
10001 vector mode, but we can emulate with narrower modes. */
10002
10003 int
10004 vector_mode_valid_p (enum machine_mode mode)
10005 {
10006 enum mode_class class = GET_MODE_CLASS (mode);
10007 enum machine_mode innermode;
10008
10009 /* Doh! What's going on? */
10010 if (class != MODE_VECTOR_INT
10011 && class != MODE_VECTOR_FLOAT
10012 && class != MODE_VECTOR_FRACT
10013 && class != MODE_VECTOR_UFRACT
10014 && class != MODE_VECTOR_ACCUM
10015 && class != MODE_VECTOR_UACCUM)
10016 return 0;
10017
10018 /* Hardware support. Woo hoo! */
10019 if (targetm.vector_mode_supported_p (mode))
10020 return 1;
10021
10022 innermode = GET_MODE_INNER (mode);
10023
10024 /* We should probably return 1 if requesting V4DI and we have no DI,
10025 but we have V2DI, but this is probably very unlikely. */
10026
10027 /* If we have support for the inner mode, we can safely emulate it.
10028 We may not have V2DI, but me can emulate with a pair of DIs. */
10029 return targetm.scalar_mode_supported_p (innermode);
10030 }
10031
10032 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10033 static rtx
10034 const_vector_from_tree (tree exp)
10035 {
10036 rtvec v;
10037 int units, i;
10038 tree link, elt;
10039 enum machine_mode inner, mode;
10040
10041 mode = TYPE_MODE (TREE_TYPE (exp));
10042
10043 if (initializer_zerop (exp))
10044 return CONST0_RTX (mode);
10045
10046 units = GET_MODE_NUNITS (mode);
10047 inner = GET_MODE_INNER (mode);
10048
10049 v = rtvec_alloc (units);
10050
10051 link = TREE_VECTOR_CST_ELTS (exp);
10052 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10053 {
10054 elt = TREE_VALUE (link);
10055
10056 if (TREE_CODE (elt) == REAL_CST)
10057 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10058 inner);
10059 else if (TREE_CODE (elt) == FIXED_CST)
10060 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10061 inner);
10062 else
10063 RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
10064 TREE_INT_CST_HIGH (elt),
10065 inner);
10066 }
10067
10068 /* Initialize remaining elements to 0. */
10069 for (; i < units; ++i)
10070 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10071
10072 return gen_rtx_CONST_VECTOR (mode, v);
10073 }
10074 #include "gt-expr.h"
This page took 0.516489 seconds and 6 git commands to generate.