]> gcc.gnu.org Git - gcc.git/blob - gcc/expr.c
re PR middle-end/53790 (ICE on dereferencing a extern union in asm statement)
[gcc.git] / gcc / expr.c
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
4 2012 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "except.h"
33 #include "function.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
37 #include "expr.h"
38 #include "optabs.h"
39 #include "libfuncs.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "typeclass.h"
43 #include "toplev.h"
44 #include "langhooks.h"
45 #include "intl.h"
46 #include "tm_p.h"
47 #include "tree-iterator.h"
48 #include "tree-pass.h"
49 #include "tree-flow.h"
50 #include "target.h"
51 #include "common/common-target.h"
52 #include "timevar.h"
53 #include "df.h"
54 #include "diagnostic.h"
55 #include "ssaexpand.h"
56 #include "target-globals.h"
57 #include "params.h"
58
59 /* Decide whether a function's arguments should be processed
60 from first to last or from last to first.
61
62 They should if the stack and args grow in opposite directions, but
63 only if we have push insns. */
64
65 #ifdef PUSH_ROUNDING
66
67 #ifndef PUSH_ARGS_REVERSED
68 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
69 #define PUSH_ARGS_REVERSED /* If it's last to first. */
70 #endif
71 #endif
72
73 #endif
74
75 #ifndef STACK_PUSH_CODE
76 #ifdef STACK_GROWS_DOWNWARD
77 #define STACK_PUSH_CODE PRE_DEC
78 #else
79 #define STACK_PUSH_CODE PRE_INC
80 #endif
81 #endif
82
83
84 /* If this is nonzero, we do not bother generating VOLATILE
85 around volatile memory references, and we are willing to
86 output indirect addresses. If cse is to follow, we reject
87 indirect addresses so a useful potential cse is generated;
88 if it is used only once, instruction combination will produce
89 the same indirect address eventually. */
90 int cse_not_expected;
91
92 /* This structure is used by move_by_pieces to describe the move to
93 be performed. */
94 struct move_by_pieces_d
95 {
96 rtx to;
97 rtx to_addr;
98 int autinc_to;
99 int explicit_inc_to;
100 rtx from;
101 rtx from_addr;
102 int autinc_from;
103 int explicit_inc_from;
104 unsigned HOST_WIDE_INT len;
105 HOST_WIDE_INT offset;
106 int reverse;
107 };
108
109 /* This structure is used by store_by_pieces to describe the clear to
110 be performed. */
111
112 struct store_by_pieces_d
113 {
114 rtx to;
115 rtx to_addr;
116 int autinc_to;
117 int explicit_inc_to;
118 unsigned HOST_WIDE_INT len;
119 HOST_WIDE_INT offset;
120 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
121 void *constfundata;
122 int reverse;
123 };
124
125 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
126 struct move_by_pieces_d *);
127 static bool block_move_libcall_safe_for_call_parm (void);
128 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
129 static tree emit_block_move_libcall_fn (int);
130 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
131 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
132 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
133 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
134 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
135 struct store_by_pieces_d *);
136 static tree clear_storage_libcall_fn (int);
137 static rtx compress_float_constant (rtx, rtx);
138 static rtx get_subtarget (rtx);
139 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
140 HOST_WIDE_INT, enum machine_mode,
141 tree, tree, int, alias_set_type);
142 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
143 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT,
144 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
145 enum machine_mode,
146 tree, tree, alias_set_type, bool);
147
148 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
149
150 static int is_aligning_offset (const_tree, const_tree);
151 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
152 enum expand_modifier);
153 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
154 static rtx do_store_flag (sepops, rtx, enum machine_mode);
155 #ifdef PUSH_ROUNDING
156 static void emit_single_push_insn (enum machine_mode, rtx, tree);
157 #endif
158 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
159 static rtx const_vector_from_tree (tree);
160 static void write_complex_part (rtx, rtx, bool);
161
162 /* This macro is used to determine whether move_by_pieces should be called
163 to perform a structure copy. */
164 #ifndef MOVE_BY_PIECES_P
165 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
166 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
167 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
168 #endif
169
170 /* This macro is used to determine whether clear_by_pieces should be
171 called to clear storage. */
172 #ifndef CLEAR_BY_PIECES_P
173 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
174 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
175 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
176 #endif
177
178 /* This macro is used to determine whether store_by_pieces should be
179 called to "memset" storage with byte values other than zero. */
180 #ifndef SET_BY_PIECES_P
181 #define SET_BY_PIECES_P(SIZE, ALIGN) \
182 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
183 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
184 #endif
185
186 /* This macro is used to determine whether store_by_pieces should be
187 called to "memcpy" storage when the source is a constant string. */
188 #ifndef STORE_BY_PIECES_P
189 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
190 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
191 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
192 #endif
193
194 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
195
196 #ifndef SLOW_UNALIGNED_ACCESS
197 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
198 #endif
199 \f
200 /* This is run to set up which modes can be used
201 directly in memory and to initialize the block move optab. It is run
202 at the beginning of compilation and when the target is reinitialized. */
203
204 void
205 init_expr_target (void)
206 {
207 rtx insn, pat;
208 enum machine_mode mode;
209 int num_clobbers;
210 rtx mem, mem1;
211 rtx reg;
212
213 /* Try indexing by frame ptr and try by stack ptr.
214 It is known that on the Convex the stack ptr isn't a valid index.
215 With luck, one or the other is valid on any machine. */
216 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
217 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
218
219 /* A scratch register we can modify in-place below to avoid
220 useless RTL allocations. */
221 reg = gen_rtx_REG (VOIDmode, -1);
222
223 insn = rtx_alloc (INSN);
224 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
225 PATTERN (insn) = pat;
226
227 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
228 mode = (enum machine_mode) ((int) mode + 1))
229 {
230 int regno;
231
232 direct_load[(int) mode] = direct_store[(int) mode] = 0;
233 PUT_MODE (mem, mode);
234 PUT_MODE (mem1, mode);
235 PUT_MODE (reg, mode);
236
237 /* See if there is some register that can be used in this mode and
238 directly loaded or stored from memory. */
239
240 if (mode != VOIDmode && mode != BLKmode)
241 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
242 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
243 regno++)
244 {
245 if (! HARD_REGNO_MODE_OK (regno, mode))
246 continue;
247
248 SET_REGNO (reg, regno);
249
250 SET_SRC (pat) = mem;
251 SET_DEST (pat) = reg;
252 if (recog (pat, insn, &num_clobbers) >= 0)
253 direct_load[(int) mode] = 1;
254
255 SET_SRC (pat) = mem1;
256 SET_DEST (pat) = reg;
257 if (recog (pat, insn, &num_clobbers) >= 0)
258 direct_load[(int) mode] = 1;
259
260 SET_SRC (pat) = reg;
261 SET_DEST (pat) = mem;
262 if (recog (pat, insn, &num_clobbers) >= 0)
263 direct_store[(int) mode] = 1;
264
265 SET_SRC (pat) = reg;
266 SET_DEST (pat) = mem1;
267 if (recog (pat, insn, &num_clobbers) >= 0)
268 direct_store[(int) mode] = 1;
269 }
270 }
271
272 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
273
274 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
275 mode = GET_MODE_WIDER_MODE (mode))
276 {
277 enum machine_mode srcmode;
278 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
279 srcmode = GET_MODE_WIDER_MODE (srcmode))
280 {
281 enum insn_code ic;
282
283 ic = can_extend_p (mode, srcmode, 0);
284 if (ic == CODE_FOR_nothing)
285 continue;
286
287 PUT_MODE (mem, srcmode);
288
289 if (insn_operand_matches (ic, 1, mem))
290 float_extend_from_mem[mode][srcmode] = true;
291 }
292 }
293 }
294
295 /* This is run at the start of compiling a function. */
296
297 void
298 init_expr (void)
299 {
300 memset (&crtl->expr, 0, sizeof (crtl->expr));
301 }
302 \f
303 /* Copy data from FROM to TO, where the machine modes are not the same.
304 Both modes may be integer, or both may be floating, or both may be
305 fixed-point.
306 UNSIGNEDP should be nonzero if FROM is an unsigned type.
307 This causes zero-extension instead of sign-extension. */
308
309 void
310 convert_move (rtx to, rtx from, int unsignedp)
311 {
312 enum machine_mode to_mode = GET_MODE (to);
313 enum machine_mode from_mode = GET_MODE (from);
314 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
315 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
316 enum insn_code code;
317 rtx libcall;
318
319 /* rtx code for making an equivalent value. */
320 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
321 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
322
323
324 gcc_assert (to_real == from_real);
325 gcc_assert (to_mode != BLKmode);
326 gcc_assert (from_mode != BLKmode);
327
328 /* If the source and destination are already the same, then there's
329 nothing to do. */
330 if (to == from)
331 return;
332
333 /* If FROM is a SUBREG that indicates that we have already done at least
334 the required extension, strip it. We don't handle such SUBREGs as
335 TO here. */
336
337 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
338 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from)))
339 >= GET_MODE_PRECISION (to_mode))
340 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
341 from = gen_lowpart (to_mode, from), from_mode = to_mode;
342
343 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
344
345 if (to_mode == from_mode
346 || (from_mode == VOIDmode && CONSTANT_P (from)))
347 {
348 emit_move_insn (to, from);
349 return;
350 }
351
352 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
353 {
354 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
355
356 if (VECTOR_MODE_P (to_mode))
357 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
358 else
359 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
360
361 emit_move_insn (to, from);
362 return;
363 }
364
365 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
366 {
367 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
368 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
369 return;
370 }
371
372 if (to_real)
373 {
374 rtx value, insns;
375 convert_optab tab;
376
377 gcc_assert ((GET_MODE_PRECISION (from_mode)
378 != GET_MODE_PRECISION (to_mode))
379 || (DECIMAL_FLOAT_MODE_P (from_mode)
380 != DECIMAL_FLOAT_MODE_P (to_mode)));
381
382 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
383 /* Conversion between decimal float and binary float, same size. */
384 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
385 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
386 tab = sext_optab;
387 else
388 tab = trunc_optab;
389
390 /* Try converting directly if the insn is supported. */
391
392 code = convert_optab_handler (tab, to_mode, from_mode);
393 if (code != CODE_FOR_nothing)
394 {
395 emit_unop_insn (code, to, from,
396 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
397 return;
398 }
399
400 /* Otherwise use a libcall. */
401 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
402
403 /* Is this conversion implemented yet? */
404 gcc_assert (libcall);
405
406 start_sequence ();
407 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
408 1, from, from_mode);
409 insns = get_insns ();
410 end_sequence ();
411 emit_libcall_block (insns, to, value,
412 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
413 from)
414 : gen_rtx_FLOAT_EXTEND (to_mode, from));
415 return;
416 }
417
418 /* Handle pointer conversion. */ /* SPEE 900220. */
419 /* Targets are expected to provide conversion insns between PxImode and
420 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
421 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
422 {
423 enum machine_mode full_mode
424 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
425
426 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
427 != CODE_FOR_nothing);
428
429 if (full_mode != from_mode)
430 from = convert_to_mode (full_mode, from, unsignedp);
431 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
432 to, from, UNKNOWN);
433 return;
434 }
435 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
436 {
437 rtx new_from;
438 enum machine_mode full_mode
439 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
440 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
441 enum insn_code icode;
442
443 icode = convert_optab_handler (ctab, full_mode, from_mode);
444 gcc_assert (icode != CODE_FOR_nothing);
445
446 if (to_mode == full_mode)
447 {
448 emit_unop_insn (icode, to, from, UNKNOWN);
449 return;
450 }
451
452 new_from = gen_reg_rtx (full_mode);
453 emit_unop_insn (icode, new_from, from, UNKNOWN);
454
455 /* else proceed to integer conversions below. */
456 from_mode = full_mode;
457 from = new_from;
458 }
459
460 /* Make sure both are fixed-point modes or both are not. */
461 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
462 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
463 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
464 {
465 /* If we widen from_mode to to_mode and they are in the same class,
466 we won't saturate the result.
467 Otherwise, always saturate the result to play safe. */
468 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
469 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
470 expand_fixed_convert (to, from, 0, 0);
471 else
472 expand_fixed_convert (to, from, 0, 1);
473 return;
474 }
475
476 /* Now both modes are integers. */
477
478 /* Handle expanding beyond a word. */
479 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
480 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
481 {
482 rtx insns;
483 rtx lowpart;
484 rtx fill_value;
485 rtx lowfrom;
486 int i;
487 enum machine_mode lowpart_mode;
488 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
489
490 /* Try converting directly if the insn is supported. */
491 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
492 != CODE_FOR_nothing)
493 {
494 /* If FROM is a SUBREG, put it into a register. Do this
495 so that we always generate the same set of insns for
496 better cse'ing; if an intermediate assignment occurred,
497 we won't be doing the operation directly on the SUBREG. */
498 if (optimize > 0 && GET_CODE (from) == SUBREG)
499 from = force_reg (from_mode, from);
500 emit_unop_insn (code, to, from, equiv_code);
501 return;
502 }
503 /* Next, try converting via full word. */
504 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
505 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
506 != CODE_FOR_nothing))
507 {
508 rtx word_to = gen_reg_rtx (word_mode);
509 if (REG_P (to))
510 {
511 if (reg_overlap_mentioned_p (to, from))
512 from = force_reg (from_mode, from);
513 emit_clobber (to);
514 }
515 convert_move (word_to, from, unsignedp);
516 emit_unop_insn (code, to, word_to, equiv_code);
517 return;
518 }
519
520 /* No special multiword conversion insn; do it by hand. */
521 start_sequence ();
522
523 /* Since we will turn this into a no conflict block, we must ensure the
524 the source does not overlap the target so force it into an isolated
525 register when maybe so. Likewise for any MEM input, since the
526 conversion sequence might require several references to it and we
527 must ensure we're getting the same value every time. */
528
529 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
530 from = force_reg (from_mode, from);
531
532 /* Get a copy of FROM widened to a word, if necessary. */
533 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
534 lowpart_mode = word_mode;
535 else
536 lowpart_mode = from_mode;
537
538 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
539
540 lowpart = gen_lowpart (lowpart_mode, to);
541 emit_move_insn (lowpart, lowfrom);
542
543 /* Compute the value to put in each remaining word. */
544 if (unsignedp)
545 fill_value = const0_rtx;
546 else
547 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
548 LT, lowfrom, const0_rtx,
549 VOIDmode, 0, -1);
550
551 /* Fill the remaining words. */
552 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
553 {
554 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
555 rtx subword = operand_subword (to, index, 1, to_mode);
556
557 gcc_assert (subword);
558
559 if (fill_value != subword)
560 emit_move_insn (subword, fill_value);
561 }
562
563 insns = get_insns ();
564 end_sequence ();
565
566 emit_insn (insns);
567 return;
568 }
569
570 /* Truncating multi-word to a word or less. */
571 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
572 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
573 {
574 if (!((MEM_P (from)
575 && ! MEM_VOLATILE_P (from)
576 && direct_load[(int) to_mode]
577 && ! mode_dependent_address_p (XEXP (from, 0)))
578 || REG_P (from)
579 || GET_CODE (from) == SUBREG))
580 from = force_reg (from_mode, from);
581 convert_move (to, gen_lowpart (word_mode, from), 0);
582 return;
583 }
584
585 /* Now follow all the conversions between integers
586 no more than a word long. */
587
588 /* For truncation, usually we can just refer to FROM in a narrower mode. */
589 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
590 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
591 {
592 if (!((MEM_P (from)
593 && ! MEM_VOLATILE_P (from)
594 && direct_load[(int) to_mode]
595 && ! mode_dependent_address_p (XEXP (from, 0)))
596 || REG_P (from)
597 || GET_CODE (from) == SUBREG))
598 from = force_reg (from_mode, from);
599 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
600 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
601 from = copy_to_reg (from);
602 emit_move_insn (to, gen_lowpart (to_mode, from));
603 return;
604 }
605
606 /* Handle extension. */
607 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
608 {
609 /* Convert directly if that works. */
610 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
611 != CODE_FOR_nothing)
612 {
613 emit_unop_insn (code, to, from, equiv_code);
614 return;
615 }
616 else
617 {
618 enum machine_mode intermediate;
619 rtx tmp;
620 int shift_amount;
621
622 /* Search for a mode to convert via. */
623 for (intermediate = from_mode; intermediate != VOIDmode;
624 intermediate = GET_MODE_WIDER_MODE (intermediate))
625 if (((can_extend_p (to_mode, intermediate, unsignedp)
626 != CODE_FOR_nothing)
627 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
628 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, intermediate)))
629 && (can_extend_p (intermediate, from_mode, unsignedp)
630 != CODE_FOR_nothing))
631 {
632 convert_move (to, convert_to_mode (intermediate, from,
633 unsignedp), unsignedp);
634 return;
635 }
636
637 /* No suitable intermediate mode.
638 Generate what we need with shifts. */
639 shift_amount = (GET_MODE_PRECISION (to_mode)
640 - GET_MODE_PRECISION (from_mode));
641 from = gen_lowpart (to_mode, force_reg (from_mode, from));
642 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
643 to, unsignedp);
644 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
645 to, unsignedp);
646 if (tmp != to)
647 emit_move_insn (to, tmp);
648 return;
649 }
650 }
651
652 /* Support special truncate insns for certain modes. */
653 if (convert_optab_handler (trunc_optab, to_mode,
654 from_mode) != CODE_FOR_nothing)
655 {
656 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
657 to, from, UNKNOWN);
658 return;
659 }
660
661 /* Handle truncation of volatile memrefs, and so on;
662 the things that couldn't be truncated directly,
663 and for which there was no special instruction.
664
665 ??? Code above formerly short-circuited this, for most integer
666 mode pairs, with a force_reg in from_mode followed by a recursive
667 call to this routine. Appears always to have been wrong. */
668 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
669 {
670 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
671 emit_move_insn (to, temp);
672 return;
673 }
674
675 /* Mode combination is not recognized. */
676 gcc_unreachable ();
677 }
678
679 /* Return an rtx for a value that would result
680 from converting X to mode MODE.
681 Both X and MODE may be floating, or both integer.
682 UNSIGNEDP is nonzero if X is an unsigned value.
683 This can be done by referring to a part of X in place
684 or by copying to a new temporary with conversion. */
685
686 rtx
687 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
688 {
689 return convert_modes (mode, VOIDmode, x, unsignedp);
690 }
691
692 /* Return an rtx for a value that would result
693 from converting X from mode OLDMODE to mode MODE.
694 Both modes may be floating, or both integer.
695 UNSIGNEDP is nonzero if X is an unsigned value.
696
697 This can be done by referring to a part of X in place
698 or by copying to a new temporary with conversion.
699
700 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
701
702 rtx
703 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
704 {
705 rtx temp;
706
707 /* If FROM is a SUBREG that indicates that we have already done at least
708 the required extension, strip it. */
709
710 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
711 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
712 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
713 x = gen_lowpart (mode, x);
714
715 if (GET_MODE (x) != VOIDmode)
716 oldmode = GET_MODE (x);
717
718 if (mode == oldmode)
719 return x;
720
721 /* There is one case that we must handle specially: If we are converting
722 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
723 we are to interpret the constant as unsigned, gen_lowpart will do
724 the wrong if the constant appears negative. What we want to do is
725 make the high-order word of the constant zero, not all ones. */
726
727 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
728 && GET_MODE_BITSIZE (mode) == HOST_BITS_PER_DOUBLE_INT
729 && CONST_INT_P (x) && INTVAL (x) < 0)
730 {
731 double_int val = uhwi_to_double_int (INTVAL (x));
732
733 /* We need to zero extend VAL. */
734 if (oldmode != VOIDmode)
735 val = double_int_zext (val, GET_MODE_BITSIZE (oldmode));
736
737 return immed_double_int_const (val, mode);
738 }
739
740 /* We can do this with a gen_lowpart if both desired and current modes
741 are integer, and this is either a constant integer, a register, or a
742 non-volatile MEM. Except for the constant case where MODE is no
743 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
744
745 if ((CONST_INT_P (x)
746 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT)
747 || (GET_MODE_CLASS (mode) == MODE_INT
748 && GET_MODE_CLASS (oldmode) == MODE_INT
749 && (GET_CODE (x) == CONST_DOUBLE
750 || (GET_MODE_PRECISION (mode) <= GET_MODE_PRECISION (oldmode)
751 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
752 && direct_load[(int) mode])
753 || (REG_P (x)
754 && (! HARD_REGISTER_P (x)
755 || HARD_REGNO_MODE_OK (REGNO (x), mode))
756 && TRULY_NOOP_TRUNCATION_MODES_P (mode,
757 GET_MODE (x))))))))
758 {
759 /* ?? If we don't know OLDMODE, we have to assume here that
760 X does not need sign- or zero-extension. This may not be
761 the case, but it's the best we can do. */
762 if (CONST_INT_P (x) && oldmode != VOIDmode
763 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (oldmode))
764 {
765 HOST_WIDE_INT val = INTVAL (x);
766
767 /* We must sign or zero-extend in this case. Start by
768 zero-extending, then sign extend if we need to. */
769 val &= GET_MODE_MASK (oldmode);
770 if (! unsignedp
771 && val_signbit_known_set_p (oldmode, val))
772 val |= ~GET_MODE_MASK (oldmode);
773
774 return gen_int_mode (val, mode);
775 }
776
777 return gen_lowpart (mode, x);
778 }
779
780 /* Converting from integer constant into mode is always equivalent to an
781 subreg operation. */
782 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
783 {
784 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
785 return simplify_gen_subreg (mode, x, oldmode, 0);
786 }
787
788 temp = gen_reg_rtx (mode);
789 convert_move (temp, x, unsignedp);
790 return temp;
791 }
792 \f
793 /* Return the largest alignment we can use for doing a move (or store)
794 of MAX_PIECES. ALIGN is the largest alignment we could use. */
795
796 static unsigned int
797 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
798 {
799 enum machine_mode tmode;
800
801 tmode = mode_for_size (max_pieces * BITS_PER_UNIT, MODE_INT, 1);
802 if (align >= GET_MODE_ALIGNMENT (tmode))
803 align = GET_MODE_ALIGNMENT (tmode);
804 else
805 {
806 enum machine_mode tmode, xmode;
807
808 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
809 tmode != VOIDmode;
810 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
811 if (GET_MODE_SIZE (tmode) > max_pieces
812 || SLOW_UNALIGNED_ACCESS (tmode, align))
813 break;
814
815 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
816 }
817
818 return align;
819 }
820
821 /* Return the widest integer mode no wider than SIZE. If no such mode
822 can be found, return VOIDmode. */
823
824 static enum machine_mode
825 widest_int_mode_for_size (unsigned int size)
826 {
827 enum machine_mode tmode, mode = VOIDmode;
828
829 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
830 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
831 if (GET_MODE_SIZE (tmode) < size)
832 mode = tmode;
833
834 return mode;
835 }
836
837 /* STORE_MAX_PIECES is the number of bytes at a time that we can
838 store efficiently. Due to internal GCC limitations, this is
839 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
840 for an immediate constant. */
841
842 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
843
844 /* Determine whether the LEN bytes can be moved by using several move
845 instructions. Return nonzero if a call to move_by_pieces should
846 succeed. */
847
848 int
849 can_move_by_pieces (unsigned HOST_WIDE_INT len,
850 unsigned int align ATTRIBUTE_UNUSED)
851 {
852 return MOVE_BY_PIECES_P (len, align);
853 }
854
855 /* Generate several move instructions to copy LEN bytes from block FROM to
856 block TO. (These are MEM rtx's with BLKmode).
857
858 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
859 used to push FROM to the stack.
860
861 ALIGN is maximum stack alignment we can assume.
862
863 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
864 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
865 stpcpy. */
866
867 rtx
868 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
869 unsigned int align, int endp)
870 {
871 struct move_by_pieces_d data;
872 enum machine_mode to_addr_mode;
873 enum machine_mode from_addr_mode = get_address_mode (from);
874 rtx to_addr, from_addr = XEXP (from, 0);
875 unsigned int max_size = MOVE_MAX_PIECES + 1;
876 enum insn_code icode;
877
878 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
879
880 data.offset = 0;
881 data.from_addr = from_addr;
882 if (to)
883 {
884 to_addr_mode = get_address_mode (to);
885 to_addr = XEXP (to, 0);
886 data.to = to;
887 data.autinc_to
888 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
889 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
890 data.reverse
891 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
892 }
893 else
894 {
895 to_addr_mode = VOIDmode;
896 to_addr = NULL_RTX;
897 data.to = NULL_RTX;
898 data.autinc_to = 1;
899 #ifdef STACK_GROWS_DOWNWARD
900 data.reverse = 1;
901 #else
902 data.reverse = 0;
903 #endif
904 }
905 data.to_addr = to_addr;
906 data.from = from;
907 data.autinc_from
908 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
909 || GET_CODE (from_addr) == POST_INC
910 || GET_CODE (from_addr) == POST_DEC);
911
912 data.explicit_inc_from = 0;
913 data.explicit_inc_to = 0;
914 if (data.reverse) data.offset = len;
915 data.len = len;
916
917 /* If copying requires more than two move insns,
918 copy addresses to registers (to make displacements shorter)
919 and use post-increment if available. */
920 if (!(data.autinc_from && data.autinc_to)
921 && move_by_pieces_ninsns (len, align, max_size) > 2)
922 {
923 /* Find the mode of the largest move...
924 MODE might not be used depending on the definitions of the
925 USE_* macros below. */
926 enum machine_mode mode ATTRIBUTE_UNUSED
927 = widest_int_mode_for_size (max_size);
928
929 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
930 {
931 data.from_addr = copy_to_mode_reg (from_addr_mode,
932 plus_constant (from_addr_mode,
933 from_addr, len));
934 data.autinc_from = 1;
935 data.explicit_inc_from = -1;
936 }
937 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
938 {
939 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
940 data.autinc_from = 1;
941 data.explicit_inc_from = 1;
942 }
943 if (!data.autinc_from && CONSTANT_P (from_addr))
944 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
945 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
946 {
947 data.to_addr = copy_to_mode_reg (to_addr_mode,
948 plus_constant (to_addr_mode,
949 to_addr, len));
950 data.autinc_to = 1;
951 data.explicit_inc_to = -1;
952 }
953 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
954 {
955 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
956 data.autinc_to = 1;
957 data.explicit_inc_to = 1;
958 }
959 if (!data.autinc_to && CONSTANT_P (to_addr))
960 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
961 }
962
963 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
964
965 /* First move what we can in the largest integer mode, then go to
966 successively smaller modes. */
967
968 while (max_size > 1)
969 {
970 enum machine_mode mode = widest_int_mode_for_size (max_size);
971
972 if (mode == VOIDmode)
973 break;
974
975 icode = optab_handler (mov_optab, mode);
976 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
977 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
978
979 max_size = GET_MODE_SIZE (mode);
980 }
981
982 /* The code above should have handled everything. */
983 gcc_assert (!data.len);
984
985 if (endp)
986 {
987 rtx to1;
988
989 gcc_assert (!data.reverse);
990 if (data.autinc_to)
991 {
992 if (endp == 2)
993 {
994 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
995 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
996 else
997 data.to_addr = copy_to_mode_reg (to_addr_mode,
998 plus_constant (to_addr_mode,
999 data.to_addr,
1000 -1));
1001 }
1002 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1003 data.offset);
1004 }
1005 else
1006 {
1007 if (endp == 2)
1008 --data.offset;
1009 to1 = adjust_address (data.to, QImode, data.offset);
1010 }
1011 return to1;
1012 }
1013 else
1014 return data.to;
1015 }
1016
1017 /* Return number of insns required to move L bytes by pieces.
1018 ALIGN (in bits) is maximum alignment we can assume. */
1019
1020 unsigned HOST_WIDE_INT
1021 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1022 unsigned int max_size)
1023 {
1024 unsigned HOST_WIDE_INT n_insns = 0;
1025
1026 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1027
1028 while (max_size > 1)
1029 {
1030 enum machine_mode mode;
1031 enum insn_code icode;
1032
1033 mode = widest_int_mode_for_size (max_size);
1034
1035 if (mode == VOIDmode)
1036 break;
1037
1038 icode = optab_handler (mov_optab, mode);
1039 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1040 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1041
1042 max_size = GET_MODE_SIZE (mode);
1043 }
1044
1045 gcc_assert (!l);
1046 return n_insns;
1047 }
1048
1049 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1050 with move instructions for mode MODE. GENFUN is the gen_... function
1051 to make a move insn for that mode. DATA has all the other info. */
1052
1053 static void
1054 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1055 struct move_by_pieces_d *data)
1056 {
1057 unsigned int size = GET_MODE_SIZE (mode);
1058 rtx to1 = NULL_RTX, from1;
1059
1060 while (data->len >= size)
1061 {
1062 if (data->reverse)
1063 data->offset -= size;
1064
1065 if (data->to)
1066 {
1067 if (data->autinc_to)
1068 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1069 data->offset);
1070 else
1071 to1 = adjust_address (data->to, mode, data->offset);
1072 }
1073
1074 if (data->autinc_from)
1075 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1076 data->offset);
1077 else
1078 from1 = adjust_address (data->from, mode, data->offset);
1079
1080 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1081 emit_insn (gen_add2_insn (data->to_addr,
1082 GEN_INT (-(HOST_WIDE_INT)size)));
1083 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1084 emit_insn (gen_add2_insn (data->from_addr,
1085 GEN_INT (-(HOST_WIDE_INT)size)));
1086
1087 if (data->to)
1088 emit_insn ((*genfun) (to1, from1));
1089 else
1090 {
1091 #ifdef PUSH_ROUNDING
1092 emit_single_push_insn (mode, from1, NULL);
1093 #else
1094 gcc_unreachable ();
1095 #endif
1096 }
1097
1098 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1099 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1100 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1101 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1102
1103 if (! data->reverse)
1104 data->offset += size;
1105
1106 data->len -= size;
1107 }
1108 }
1109 \f
1110 /* Emit code to move a block Y to a block X. This may be done with
1111 string-move instructions, with multiple scalar move instructions,
1112 or with a library call.
1113
1114 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1115 SIZE is an rtx that says how long they are.
1116 ALIGN is the maximum alignment we can assume they have.
1117 METHOD describes what kind of copy this is, and what mechanisms may be used.
1118
1119 Return the address of the new block, if memcpy is called and returns it,
1120 0 otherwise. */
1121
1122 rtx
1123 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1124 unsigned int expected_align, HOST_WIDE_INT expected_size)
1125 {
1126 bool may_use_call;
1127 rtx retval = 0;
1128 unsigned int align;
1129
1130 gcc_assert (size);
1131 if (CONST_INT_P (size)
1132 && INTVAL (size) == 0)
1133 return 0;
1134
1135 switch (method)
1136 {
1137 case BLOCK_OP_NORMAL:
1138 case BLOCK_OP_TAILCALL:
1139 may_use_call = true;
1140 break;
1141
1142 case BLOCK_OP_CALL_PARM:
1143 may_use_call = block_move_libcall_safe_for_call_parm ();
1144
1145 /* Make inhibit_defer_pop nonzero around the library call
1146 to force it to pop the arguments right away. */
1147 NO_DEFER_POP;
1148 break;
1149
1150 case BLOCK_OP_NO_LIBCALL:
1151 may_use_call = false;
1152 break;
1153
1154 default:
1155 gcc_unreachable ();
1156 }
1157
1158 gcc_assert (MEM_P (x) && MEM_P (y));
1159 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1160 gcc_assert (align >= BITS_PER_UNIT);
1161
1162 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1163 block copy is more efficient for other large modes, e.g. DCmode. */
1164 x = adjust_address (x, BLKmode, 0);
1165 y = adjust_address (y, BLKmode, 0);
1166
1167 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1168 can be incorrect is coming from __builtin_memcpy. */
1169 if (CONST_INT_P (size))
1170 {
1171 x = shallow_copy_rtx (x);
1172 y = shallow_copy_rtx (y);
1173 set_mem_size (x, INTVAL (size));
1174 set_mem_size (y, INTVAL (size));
1175 }
1176
1177 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1178 move_by_pieces (x, y, INTVAL (size), align, 0);
1179 else if (emit_block_move_via_movmem (x, y, size, align,
1180 expected_align, expected_size))
1181 ;
1182 else if (may_use_call
1183 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1184 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1185 {
1186 /* Since x and y are passed to a libcall, mark the corresponding
1187 tree EXPR as addressable. */
1188 tree y_expr = MEM_EXPR (y);
1189 tree x_expr = MEM_EXPR (x);
1190 if (y_expr)
1191 mark_addressable (y_expr);
1192 if (x_expr)
1193 mark_addressable (x_expr);
1194 retval = emit_block_move_via_libcall (x, y, size,
1195 method == BLOCK_OP_TAILCALL);
1196 }
1197
1198 else
1199 emit_block_move_via_loop (x, y, size, align);
1200
1201 if (method == BLOCK_OP_CALL_PARM)
1202 OK_DEFER_POP;
1203
1204 return retval;
1205 }
1206
1207 rtx
1208 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1209 {
1210 return emit_block_move_hints (x, y, size, method, 0, -1);
1211 }
1212
1213 /* A subroutine of emit_block_move. Returns true if calling the
1214 block move libcall will not clobber any parameters which may have
1215 already been placed on the stack. */
1216
1217 static bool
1218 block_move_libcall_safe_for_call_parm (void)
1219 {
1220 #if defined (REG_PARM_STACK_SPACE)
1221 tree fn;
1222 #endif
1223
1224 /* If arguments are pushed on the stack, then they're safe. */
1225 if (PUSH_ARGS)
1226 return true;
1227
1228 /* If registers go on the stack anyway, any argument is sure to clobber
1229 an outgoing argument. */
1230 #if defined (REG_PARM_STACK_SPACE)
1231 fn = emit_block_move_libcall_fn (false);
1232 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1233 depend on its argument. */
1234 (void) fn;
1235 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1236 && REG_PARM_STACK_SPACE (fn) != 0)
1237 return false;
1238 #endif
1239
1240 /* If any argument goes in memory, then it might clobber an outgoing
1241 argument. */
1242 {
1243 CUMULATIVE_ARGS args_so_far_v;
1244 cumulative_args_t args_so_far;
1245 tree fn, arg;
1246
1247 fn = emit_block_move_libcall_fn (false);
1248 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1249 args_so_far = pack_cumulative_args (&args_so_far_v);
1250
1251 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1252 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1253 {
1254 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1255 rtx tmp = targetm.calls.function_arg (args_so_far, mode,
1256 NULL_TREE, true);
1257 if (!tmp || !REG_P (tmp))
1258 return false;
1259 if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
1260 return false;
1261 targetm.calls.function_arg_advance (args_so_far, mode,
1262 NULL_TREE, true);
1263 }
1264 }
1265 return true;
1266 }
1267
1268 /* A subroutine of emit_block_move. Expand a movmem pattern;
1269 return true if successful. */
1270
1271 static bool
1272 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1273 unsigned int expected_align, HOST_WIDE_INT expected_size)
1274 {
1275 int save_volatile_ok = volatile_ok;
1276 enum machine_mode mode;
1277
1278 if (expected_align < align)
1279 expected_align = align;
1280
1281 /* Since this is a move insn, we don't care about volatility. */
1282 volatile_ok = 1;
1283
1284 /* Try the most limited insn first, because there's no point
1285 including more than one in the machine description unless
1286 the more limited one has some advantage. */
1287
1288 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1289 mode = GET_MODE_WIDER_MODE (mode))
1290 {
1291 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1292
1293 if (code != CODE_FOR_nothing
1294 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1295 here because if SIZE is less than the mode mask, as it is
1296 returned by the macro, it will definitely be less than the
1297 actual mode mask. */
1298 && ((CONST_INT_P (size)
1299 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1300 <= (GET_MODE_MASK (mode) >> 1)))
1301 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD))
1302 {
1303 struct expand_operand ops[6];
1304 unsigned int nops;
1305
1306 /* ??? When called via emit_block_move_for_call, it'd be
1307 nice if there were some way to inform the backend, so
1308 that it doesn't fail the expansion because it thinks
1309 emitting the libcall would be more efficient. */
1310 nops = insn_data[(int) code].n_generator_args;
1311 gcc_assert (nops == 4 || nops == 6);
1312
1313 create_fixed_operand (&ops[0], x);
1314 create_fixed_operand (&ops[1], y);
1315 /* The check above guarantees that this size conversion is valid. */
1316 create_convert_operand_to (&ops[2], size, mode, true);
1317 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1318 if (nops == 6)
1319 {
1320 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1321 create_integer_operand (&ops[5], expected_size);
1322 }
1323 if (maybe_expand_insn (code, nops, ops))
1324 {
1325 volatile_ok = save_volatile_ok;
1326 return true;
1327 }
1328 }
1329 }
1330
1331 volatile_ok = save_volatile_ok;
1332 return false;
1333 }
1334
1335 /* A subroutine of emit_block_move. Expand a call to memcpy.
1336 Return the return value from memcpy, 0 otherwise. */
1337
1338 rtx
1339 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1340 {
1341 rtx dst_addr, src_addr;
1342 tree call_expr, fn, src_tree, dst_tree, size_tree;
1343 enum machine_mode size_mode;
1344 rtx retval;
1345
1346 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1347 pseudos. We can then place those new pseudos into a VAR_DECL and
1348 use them later. */
1349
1350 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
1351 src_addr = copy_addr_to_reg (XEXP (src, 0));
1352
1353 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1354 src_addr = convert_memory_address (ptr_mode, src_addr);
1355
1356 dst_tree = make_tree (ptr_type_node, dst_addr);
1357 src_tree = make_tree (ptr_type_node, src_addr);
1358
1359 size_mode = TYPE_MODE (sizetype);
1360
1361 size = convert_to_mode (size_mode, size, 1);
1362 size = copy_to_mode_reg (size_mode, size);
1363
1364 /* It is incorrect to use the libcall calling conventions to call
1365 memcpy in this context. This could be a user call to memcpy and
1366 the user may wish to examine the return value from memcpy. For
1367 targets where libcalls and normal calls have different conventions
1368 for returning pointers, we could end up generating incorrect code. */
1369
1370 size_tree = make_tree (sizetype, size);
1371
1372 fn = emit_block_move_libcall_fn (true);
1373 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1374 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1375
1376 retval = expand_normal (call_expr);
1377
1378 return retval;
1379 }
1380
1381 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1382 for the function we use for block copies. */
1383
1384 static GTY(()) tree block_move_fn;
1385
1386 void
1387 init_block_move_fn (const char *asmspec)
1388 {
1389 if (!block_move_fn)
1390 {
1391 tree args, fn, attrs, attr_args;
1392
1393 fn = get_identifier ("memcpy");
1394 args = build_function_type_list (ptr_type_node, ptr_type_node,
1395 const_ptr_type_node, sizetype,
1396 NULL_TREE);
1397
1398 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1399 DECL_EXTERNAL (fn) = 1;
1400 TREE_PUBLIC (fn) = 1;
1401 DECL_ARTIFICIAL (fn) = 1;
1402 TREE_NOTHROW (fn) = 1;
1403 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1404 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1405
1406 attr_args = build_tree_list (NULL_TREE, build_string (1, "1"));
1407 attrs = tree_cons (get_identifier ("fn spec"), attr_args, NULL);
1408
1409 decl_attributes (&fn, attrs, ATTR_FLAG_BUILT_IN);
1410
1411 block_move_fn = fn;
1412 }
1413
1414 if (asmspec)
1415 set_user_assembler_name (block_move_fn, asmspec);
1416 }
1417
1418 static tree
1419 emit_block_move_libcall_fn (int for_call)
1420 {
1421 static bool emitted_extern;
1422
1423 if (!block_move_fn)
1424 init_block_move_fn (NULL);
1425
1426 if (for_call && !emitted_extern)
1427 {
1428 emitted_extern = true;
1429 make_decl_rtl (block_move_fn);
1430 }
1431
1432 return block_move_fn;
1433 }
1434
1435 /* A subroutine of emit_block_move. Copy the data via an explicit
1436 loop. This is used only when libcalls are forbidden. */
1437 /* ??? It'd be nice to copy in hunks larger than QImode. */
1438
1439 static void
1440 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1441 unsigned int align ATTRIBUTE_UNUSED)
1442 {
1443 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1444 enum machine_mode x_addr_mode = get_address_mode (x);
1445 enum machine_mode y_addr_mode = get_address_mode (y);
1446 enum machine_mode iter_mode;
1447
1448 iter_mode = GET_MODE (size);
1449 if (iter_mode == VOIDmode)
1450 iter_mode = word_mode;
1451
1452 top_label = gen_label_rtx ();
1453 cmp_label = gen_label_rtx ();
1454 iter = gen_reg_rtx (iter_mode);
1455
1456 emit_move_insn (iter, const0_rtx);
1457
1458 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1459 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1460 do_pending_stack_adjust ();
1461
1462 emit_jump (cmp_label);
1463 emit_label (top_label);
1464
1465 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1466 x_addr = gen_rtx_PLUS (x_addr_mode, x_addr, tmp);
1467
1468 if (x_addr_mode != y_addr_mode)
1469 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1470 y_addr = gen_rtx_PLUS (y_addr_mode, y_addr, tmp);
1471
1472 x = change_address (x, QImode, x_addr);
1473 y = change_address (y, QImode, y_addr);
1474
1475 emit_move_insn (x, y);
1476
1477 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1478 true, OPTAB_LIB_WIDEN);
1479 if (tmp != iter)
1480 emit_move_insn (iter, tmp);
1481
1482 emit_label (cmp_label);
1483
1484 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1485 true, top_label);
1486 }
1487 \f
1488 /* Copy all or part of a value X into registers starting at REGNO.
1489 The number of registers to be filled is NREGS. */
1490
1491 void
1492 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1493 {
1494 int i;
1495 #ifdef HAVE_load_multiple
1496 rtx pat;
1497 rtx last;
1498 #endif
1499
1500 if (nregs == 0)
1501 return;
1502
1503 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
1504 x = validize_mem (force_const_mem (mode, x));
1505
1506 /* See if the machine can do this with a load multiple insn. */
1507 #ifdef HAVE_load_multiple
1508 if (HAVE_load_multiple)
1509 {
1510 last = get_last_insn ();
1511 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1512 GEN_INT (nregs));
1513 if (pat)
1514 {
1515 emit_insn (pat);
1516 return;
1517 }
1518 else
1519 delete_insns_since (last);
1520 }
1521 #endif
1522
1523 for (i = 0; i < nregs; i++)
1524 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1525 operand_subword_force (x, i, mode));
1526 }
1527
1528 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1529 The number of registers to be filled is NREGS. */
1530
1531 void
1532 move_block_from_reg (int regno, rtx x, int nregs)
1533 {
1534 int i;
1535
1536 if (nregs == 0)
1537 return;
1538
1539 /* See if the machine can do this with a store multiple insn. */
1540 #ifdef HAVE_store_multiple
1541 if (HAVE_store_multiple)
1542 {
1543 rtx last = get_last_insn ();
1544 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1545 GEN_INT (nregs));
1546 if (pat)
1547 {
1548 emit_insn (pat);
1549 return;
1550 }
1551 else
1552 delete_insns_since (last);
1553 }
1554 #endif
1555
1556 for (i = 0; i < nregs; i++)
1557 {
1558 rtx tem = operand_subword (x, i, 1, BLKmode);
1559
1560 gcc_assert (tem);
1561
1562 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1563 }
1564 }
1565
1566 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1567 ORIG, where ORIG is a non-consecutive group of registers represented by
1568 a PARALLEL. The clone is identical to the original except in that the
1569 original set of registers is replaced by a new set of pseudo registers.
1570 The new set has the same modes as the original set. */
1571
1572 rtx
1573 gen_group_rtx (rtx orig)
1574 {
1575 int i, length;
1576 rtx *tmps;
1577
1578 gcc_assert (GET_CODE (orig) == PARALLEL);
1579
1580 length = XVECLEN (orig, 0);
1581 tmps = XALLOCAVEC (rtx, length);
1582
1583 /* Skip a NULL entry in first slot. */
1584 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1585
1586 if (i)
1587 tmps[0] = 0;
1588
1589 for (; i < length; i++)
1590 {
1591 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1592 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1593
1594 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1595 }
1596
1597 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1598 }
1599
1600 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1601 except that values are placed in TMPS[i], and must later be moved
1602 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1603
1604 static void
1605 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1606 {
1607 rtx src;
1608 int start, i;
1609 enum machine_mode m = GET_MODE (orig_src);
1610
1611 gcc_assert (GET_CODE (dst) == PARALLEL);
1612
1613 if (m != VOIDmode
1614 && !SCALAR_INT_MODE_P (m)
1615 && !MEM_P (orig_src)
1616 && GET_CODE (orig_src) != CONCAT)
1617 {
1618 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1619 if (imode == BLKmode)
1620 src = assign_stack_temp (GET_MODE (orig_src), ssize);
1621 else
1622 src = gen_reg_rtx (imode);
1623 if (imode != BLKmode)
1624 src = gen_lowpart (GET_MODE (orig_src), src);
1625 emit_move_insn (src, orig_src);
1626 /* ...and back again. */
1627 if (imode != BLKmode)
1628 src = gen_lowpart (imode, src);
1629 emit_group_load_1 (tmps, dst, src, type, ssize);
1630 return;
1631 }
1632
1633 /* Check for a NULL entry, used to indicate that the parameter goes
1634 both on the stack and in registers. */
1635 if (XEXP (XVECEXP (dst, 0, 0), 0))
1636 start = 0;
1637 else
1638 start = 1;
1639
1640 /* Process the pieces. */
1641 for (i = start; i < XVECLEN (dst, 0); i++)
1642 {
1643 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1644 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1645 unsigned int bytelen = GET_MODE_SIZE (mode);
1646 int shift = 0;
1647
1648 /* Handle trailing fragments that run over the size of the struct. */
1649 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1650 {
1651 /* Arrange to shift the fragment to where it belongs.
1652 extract_bit_field loads to the lsb of the reg. */
1653 if (
1654 #ifdef BLOCK_REG_PADDING
1655 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1656 == (BYTES_BIG_ENDIAN ? upward : downward)
1657 #else
1658 BYTES_BIG_ENDIAN
1659 #endif
1660 )
1661 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1662 bytelen = ssize - bytepos;
1663 gcc_assert (bytelen > 0);
1664 }
1665
1666 /* If we won't be loading directly from memory, protect the real source
1667 from strange tricks we might play; but make sure that the source can
1668 be loaded directly into the destination. */
1669 src = orig_src;
1670 if (!MEM_P (orig_src)
1671 && (!CONSTANT_P (orig_src)
1672 || (GET_MODE (orig_src) != mode
1673 && GET_MODE (orig_src) != VOIDmode)))
1674 {
1675 if (GET_MODE (orig_src) == VOIDmode)
1676 src = gen_reg_rtx (mode);
1677 else
1678 src = gen_reg_rtx (GET_MODE (orig_src));
1679
1680 emit_move_insn (src, orig_src);
1681 }
1682
1683 /* Optimize the access just a bit. */
1684 if (MEM_P (src)
1685 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1686 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1687 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1688 && bytelen == GET_MODE_SIZE (mode))
1689 {
1690 tmps[i] = gen_reg_rtx (mode);
1691 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1692 }
1693 else if (COMPLEX_MODE_P (mode)
1694 && GET_MODE (src) == mode
1695 && bytelen == GET_MODE_SIZE (mode))
1696 /* Let emit_move_complex do the bulk of the work. */
1697 tmps[i] = src;
1698 else if (GET_CODE (src) == CONCAT)
1699 {
1700 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1701 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1702
1703 if ((bytepos == 0 && bytelen == slen0)
1704 || (bytepos != 0 && bytepos + bytelen <= slen))
1705 {
1706 /* The following assumes that the concatenated objects all
1707 have the same size. In this case, a simple calculation
1708 can be used to determine the object and the bit field
1709 to be extracted. */
1710 tmps[i] = XEXP (src, bytepos / slen0);
1711 if (! CONSTANT_P (tmps[i])
1712 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1713 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1714 (bytepos % slen0) * BITS_PER_UNIT,
1715 1, false, NULL_RTX, mode, mode);
1716 }
1717 else
1718 {
1719 rtx mem;
1720
1721 gcc_assert (!bytepos);
1722 mem = assign_stack_temp (GET_MODE (src), slen);
1723 emit_move_insn (mem, src);
1724 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1725 0, 1, false, NULL_RTX, mode, mode);
1726 }
1727 }
1728 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1729 SIMD register, which is currently broken. While we get GCC
1730 to emit proper RTL for these cases, let's dump to memory. */
1731 else if (VECTOR_MODE_P (GET_MODE (dst))
1732 && REG_P (src))
1733 {
1734 int slen = GET_MODE_SIZE (GET_MODE (src));
1735 rtx mem;
1736
1737 mem = assign_stack_temp (GET_MODE (src), slen);
1738 emit_move_insn (mem, src);
1739 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1740 }
1741 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1742 && XVECLEN (dst, 0) > 1)
1743 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1744 else if (CONSTANT_P (src))
1745 {
1746 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1747
1748 if (len == ssize)
1749 tmps[i] = src;
1750 else
1751 {
1752 rtx first, second;
1753
1754 gcc_assert (2 * len == ssize);
1755 split_double (src, &first, &second);
1756 if (i)
1757 tmps[i] = second;
1758 else
1759 tmps[i] = first;
1760 }
1761 }
1762 else if (REG_P (src) && GET_MODE (src) == mode)
1763 tmps[i] = src;
1764 else
1765 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1766 bytepos * BITS_PER_UNIT, 1, false, NULL_RTX,
1767 mode, mode);
1768
1769 if (shift)
1770 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1771 shift, tmps[i], 0);
1772 }
1773 }
1774
1775 /* Emit code to move a block SRC of type TYPE to a block DST,
1776 where DST is non-consecutive registers represented by a PARALLEL.
1777 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1778 if not known. */
1779
1780 void
1781 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1782 {
1783 rtx *tmps;
1784 int i;
1785
1786 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1787 emit_group_load_1 (tmps, dst, src, type, ssize);
1788
1789 /* Copy the extracted pieces into the proper (probable) hard regs. */
1790 for (i = 0; i < XVECLEN (dst, 0); i++)
1791 {
1792 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1793 if (d == NULL)
1794 continue;
1795 emit_move_insn (d, tmps[i]);
1796 }
1797 }
1798
1799 /* Similar, but load SRC into new pseudos in a format that looks like
1800 PARALLEL. This can later be fed to emit_group_move to get things
1801 in the right place. */
1802
1803 rtx
1804 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1805 {
1806 rtvec vec;
1807 int i;
1808
1809 vec = rtvec_alloc (XVECLEN (parallel, 0));
1810 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1811
1812 /* Convert the vector to look just like the original PARALLEL, except
1813 with the computed values. */
1814 for (i = 0; i < XVECLEN (parallel, 0); i++)
1815 {
1816 rtx e = XVECEXP (parallel, 0, i);
1817 rtx d = XEXP (e, 0);
1818
1819 if (d)
1820 {
1821 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1822 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1823 }
1824 RTVEC_ELT (vec, i) = e;
1825 }
1826
1827 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1828 }
1829
1830 /* Emit code to move a block SRC to block DST, where SRC and DST are
1831 non-consecutive groups of registers, each represented by a PARALLEL. */
1832
1833 void
1834 emit_group_move (rtx dst, rtx src)
1835 {
1836 int i;
1837
1838 gcc_assert (GET_CODE (src) == PARALLEL
1839 && GET_CODE (dst) == PARALLEL
1840 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1841
1842 /* Skip first entry if NULL. */
1843 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1844 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1845 XEXP (XVECEXP (src, 0, i), 0));
1846 }
1847
1848 /* Move a group of registers represented by a PARALLEL into pseudos. */
1849
1850 rtx
1851 emit_group_move_into_temps (rtx src)
1852 {
1853 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1854 int i;
1855
1856 for (i = 0; i < XVECLEN (src, 0); i++)
1857 {
1858 rtx e = XVECEXP (src, 0, i);
1859 rtx d = XEXP (e, 0);
1860
1861 if (d)
1862 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1863 RTVEC_ELT (vec, i) = e;
1864 }
1865
1866 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1867 }
1868
1869 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1870 where SRC is non-consecutive registers represented by a PARALLEL.
1871 SSIZE represents the total size of block ORIG_DST, or -1 if not
1872 known. */
1873
1874 void
1875 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1876 {
1877 rtx *tmps, dst;
1878 int start, finish, i;
1879 enum machine_mode m = GET_MODE (orig_dst);
1880
1881 gcc_assert (GET_CODE (src) == PARALLEL);
1882
1883 if (!SCALAR_INT_MODE_P (m)
1884 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1885 {
1886 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1887 if (imode == BLKmode)
1888 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
1889 else
1890 dst = gen_reg_rtx (imode);
1891 emit_group_store (dst, src, type, ssize);
1892 if (imode != BLKmode)
1893 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1894 emit_move_insn (orig_dst, dst);
1895 return;
1896 }
1897
1898 /* Check for a NULL entry, used to indicate that the parameter goes
1899 both on the stack and in registers. */
1900 if (XEXP (XVECEXP (src, 0, 0), 0))
1901 start = 0;
1902 else
1903 start = 1;
1904 finish = XVECLEN (src, 0);
1905
1906 tmps = XALLOCAVEC (rtx, finish);
1907
1908 /* Copy the (probable) hard regs into pseudos. */
1909 for (i = start; i < finish; i++)
1910 {
1911 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1912 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1913 {
1914 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1915 emit_move_insn (tmps[i], reg);
1916 }
1917 else
1918 tmps[i] = reg;
1919 }
1920
1921 /* If we won't be storing directly into memory, protect the real destination
1922 from strange tricks we might play. */
1923 dst = orig_dst;
1924 if (GET_CODE (dst) == PARALLEL)
1925 {
1926 rtx temp;
1927
1928 /* We can get a PARALLEL dst if there is a conditional expression in
1929 a return statement. In that case, the dst and src are the same,
1930 so no action is necessary. */
1931 if (rtx_equal_p (dst, src))
1932 return;
1933
1934 /* It is unclear if we can ever reach here, but we may as well handle
1935 it. Allocate a temporary, and split this into a store/load to/from
1936 the temporary. */
1937
1938 temp = assign_stack_temp (GET_MODE (dst), ssize);
1939 emit_group_store (temp, src, type, ssize);
1940 emit_group_load (dst, temp, type, ssize);
1941 return;
1942 }
1943 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1944 {
1945 enum machine_mode outer = GET_MODE (dst);
1946 enum machine_mode inner;
1947 HOST_WIDE_INT bytepos;
1948 bool done = false;
1949 rtx temp;
1950
1951 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1952 dst = gen_reg_rtx (outer);
1953
1954 /* Make life a bit easier for combine. */
1955 /* If the first element of the vector is the low part
1956 of the destination mode, use a paradoxical subreg to
1957 initialize the destination. */
1958 if (start < finish)
1959 {
1960 inner = GET_MODE (tmps[start]);
1961 bytepos = subreg_lowpart_offset (inner, outer);
1962 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1963 {
1964 temp = simplify_gen_subreg (outer, tmps[start],
1965 inner, 0);
1966 if (temp)
1967 {
1968 emit_move_insn (dst, temp);
1969 done = true;
1970 start++;
1971 }
1972 }
1973 }
1974
1975 /* If the first element wasn't the low part, try the last. */
1976 if (!done
1977 && start < finish - 1)
1978 {
1979 inner = GET_MODE (tmps[finish - 1]);
1980 bytepos = subreg_lowpart_offset (inner, outer);
1981 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
1982 {
1983 temp = simplify_gen_subreg (outer, tmps[finish - 1],
1984 inner, 0);
1985 if (temp)
1986 {
1987 emit_move_insn (dst, temp);
1988 done = true;
1989 finish--;
1990 }
1991 }
1992 }
1993
1994 /* Otherwise, simply initialize the result to zero. */
1995 if (!done)
1996 emit_move_insn (dst, CONST0_RTX (outer));
1997 }
1998
1999 /* Process the pieces. */
2000 for (i = start; i < finish; i++)
2001 {
2002 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2003 enum machine_mode mode = GET_MODE (tmps[i]);
2004 unsigned int bytelen = GET_MODE_SIZE (mode);
2005 unsigned int adj_bytelen = bytelen;
2006 rtx dest = dst;
2007
2008 /* Handle trailing fragments that run over the size of the struct. */
2009 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2010 adj_bytelen = ssize - bytepos;
2011
2012 if (GET_CODE (dst) == CONCAT)
2013 {
2014 if (bytepos + adj_bytelen
2015 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2016 dest = XEXP (dst, 0);
2017 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2018 {
2019 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2020 dest = XEXP (dst, 1);
2021 }
2022 else
2023 {
2024 enum machine_mode dest_mode = GET_MODE (dest);
2025 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2026
2027 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2028
2029 if (GET_MODE_ALIGNMENT (dest_mode)
2030 >= GET_MODE_ALIGNMENT (tmp_mode))
2031 {
2032 dest = assign_stack_temp (dest_mode,
2033 GET_MODE_SIZE (dest_mode));
2034 emit_move_insn (adjust_address (dest,
2035 tmp_mode,
2036 bytepos),
2037 tmps[i]);
2038 dst = dest;
2039 }
2040 else
2041 {
2042 dest = assign_stack_temp (tmp_mode,
2043 GET_MODE_SIZE (tmp_mode));
2044 emit_move_insn (dest, tmps[i]);
2045 dst = adjust_address (dest, dest_mode, bytepos);
2046 }
2047 break;
2048 }
2049 }
2050
2051 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2052 {
2053 /* store_bit_field always takes its value from the lsb.
2054 Move the fragment to the lsb if it's not already there. */
2055 if (
2056 #ifdef BLOCK_REG_PADDING
2057 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2058 == (BYTES_BIG_ENDIAN ? upward : downward)
2059 #else
2060 BYTES_BIG_ENDIAN
2061 #endif
2062 )
2063 {
2064 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2065 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2066 shift, tmps[i], 0);
2067 }
2068 bytelen = adj_bytelen;
2069 }
2070
2071 /* Optimize the access just a bit. */
2072 if (MEM_P (dest)
2073 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2074 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2075 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2076 && bytelen == GET_MODE_SIZE (mode))
2077 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2078 else
2079 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2080 0, 0, mode, tmps[i]);
2081 }
2082
2083 /* Copy from the pseudo into the (probable) hard reg. */
2084 if (orig_dst != dst)
2085 emit_move_insn (orig_dst, dst);
2086 }
2087
2088 /* Generate code to copy a BLKmode object of TYPE out of a
2089 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2090 is null, a stack temporary is created. TGTBLK is returned.
2091
2092 The purpose of this routine is to handle functions that return
2093 BLKmode structures in registers. Some machines (the PA for example)
2094 want to return all small structures in registers regardless of the
2095 structure's alignment. */
2096
2097 rtx
2098 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2099 {
2100 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2101 rtx src = NULL, dst = NULL;
2102 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2103 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2104 enum machine_mode copy_mode;
2105
2106 if (tgtblk == 0)
2107 {
2108 tgtblk = assign_temp (build_qualified_type (type,
2109 (TYPE_QUALS (type)
2110 | TYPE_QUAL_CONST)),
2111 1, 1);
2112 preserve_temp_slots (tgtblk);
2113 }
2114
2115 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2116 into a new pseudo which is a full word. */
2117
2118 if (GET_MODE (srcreg) != BLKmode
2119 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2120 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2121
2122 /* If the structure doesn't take up a whole number of words, see whether
2123 SRCREG is padded on the left or on the right. If it's on the left,
2124 set PADDING_CORRECTION to the number of bits to skip.
2125
2126 In most ABIs, the structure will be returned at the least end of
2127 the register, which translates to right padding on little-endian
2128 targets and left padding on big-endian targets. The opposite
2129 holds if the structure is returned at the most significant
2130 end of the register. */
2131 if (bytes % UNITS_PER_WORD != 0
2132 && (targetm.calls.return_in_msb (type)
2133 ? !BYTES_BIG_ENDIAN
2134 : BYTES_BIG_ENDIAN))
2135 padding_correction
2136 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2137
2138 /* Copy the structure BITSIZE bits at a time. If the target lives in
2139 memory, take care of not reading/writing past its end by selecting
2140 a copy mode suited to BITSIZE. This should always be possible given
2141 how it is computed.
2142
2143 We could probably emit more efficient code for machines which do not use
2144 strict alignment, but it doesn't seem worth the effort at the current
2145 time. */
2146
2147 copy_mode = word_mode;
2148 if (MEM_P (tgtblk))
2149 {
2150 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2151 if (mem_mode != BLKmode)
2152 copy_mode = mem_mode;
2153 }
2154
2155 for (bitpos = 0, xbitpos = padding_correction;
2156 bitpos < bytes * BITS_PER_UNIT;
2157 bitpos += bitsize, xbitpos += bitsize)
2158 {
2159 /* We need a new source operand each time xbitpos is on a
2160 word boundary and when xbitpos == padding_correction
2161 (the first time through). */
2162 if (xbitpos % BITS_PER_WORD == 0
2163 || xbitpos == padding_correction)
2164 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2165 GET_MODE (srcreg));
2166
2167 /* We need a new destination operand each time bitpos is on
2168 a word boundary. */
2169 if (bitpos % BITS_PER_WORD == 0)
2170 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2171
2172 /* Use xbitpos for the source extraction (right justified) and
2173 bitpos for the destination store (left justified). */
2174 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2175 extract_bit_field (src, bitsize,
2176 xbitpos % BITS_PER_WORD, 1, false,
2177 NULL_RTX, copy_mode, copy_mode));
2178 }
2179
2180 return tgtblk;
2181 }
2182
2183 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2184 register if it contains any data, otherwise return null.
2185
2186 This is used on targets that return BLKmode values in registers. */
2187
2188 rtx
2189 copy_blkmode_to_reg (enum machine_mode mode, tree src)
2190 {
2191 int i, n_regs;
2192 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2193 unsigned int bitsize;
2194 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2195 enum machine_mode dst_mode;
2196
2197 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2198
2199 x = expand_normal (src);
2200
2201 bytes = int_size_in_bytes (TREE_TYPE (src));
2202 if (bytes == 0)
2203 return NULL_RTX;
2204
2205 /* If the structure doesn't take up a whole number of words, see
2206 whether the register value should be padded on the left or on
2207 the right. Set PADDING_CORRECTION to the number of padding
2208 bits needed on the left side.
2209
2210 In most ABIs, the structure will be returned at the least end of
2211 the register, which translates to right padding on little-endian
2212 targets and left padding on big-endian targets. The opposite
2213 holds if the structure is returned at the most significant
2214 end of the register. */
2215 if (bytes % UNITS_PER_WORD != 0
2216 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2217 ? !BYTES_BIG_ENDIAN
2218 : BYTES_BIG_ENDIAN))
2219 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2220 * BITS_PER_UNIT));
2221
2222 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2223 dst_words = XALLOCAVEC (rtx, n_regs);
2224 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2225
2226 /* Copy the structure BITSIZE bits at a time. */
2227 for (bitpos = 0, xbitpos = padding_correction;
2228 bitpos < bytes * BITS_PER_UNIT;
2229 bitpos += bitsize, xbitpos += bitsize)
2230 {
2231 /* We need a new destination pseudo each time xbitpos is
2232 on a word boundary and when xbitpos == padding_correction
2233 (the first time through). */
2234 if (xbitpos % BITS_PER_WORD == 0
2235 || xbitpos == padding_correction)
2236 {
2237 /* Generate an appropriate register. */
2238 dst_word = gen_reg_rtx (word_mode);
2239 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2240
2241 /* Clear the destination before we move anything into it. */
2242 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2243 }
2244
2245 /* We need a new source operand each time bitpos is on a word
2246 boundary. */
2247 if (bitpos % BITS_PER_WORD == 0)
2248 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2249
2250 /* Use bitpos for the source extraction (left justified) and
2251 xbitpos for the destination store (right justified). */
2252 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2253 0, 0, word_mode,
2254 extract_bit_field (src_word, bitsize,
2255 bitpos % BITS_PER_WORD, 1, false,
2256 NULL_RTX, word_mode, word_mode));
2257 }
2258
2259 if (mode == BLKmode)
2260 {
2261 /* Find the smallest integer mode large enough to hold the
2262 entire structure. */
2263 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2264 mode != VOIDmode;
2265 mode = GET_MODE_WIDER_MODE (mode))
2266 /* Have we found a large enough mode? */
2267 if (GET_MODE_SIZE (mode) >= bytes)
2268 break;
2269
2270 /* A suitable mode should have been found. */
2271 gcc_assert (mode != VOIDmode);
2272 }
2273
2274 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2275 dst_mode = word_mode;
2276 else
2277 dst_mode = mode;
2278 dst = gen_reg_rtx (dst_mode);
2279
2280 for (i = 0; i < n_regs; i++)
2281 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2282
2283 if (mode != dst_mode)
2284 dst = gen_lowpart (mode, dst);
2285
2286 return dst;
2287 }
2288
2289 /* Add a USE expression for REG to the (possibly empty) list pointed
2290 to by CALL_FUSAGE. REG must denote a hard register. */
2291
2292 void
2293 use_reg_mode (rtx *call_fusage, rtx reg, enum machine_mode mode)
2294 {
2295 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2296
2297 *call_fusage
2298 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2299 }
2300
2301 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2302 starting at REGNO. All of these registers must be hard registers. */
2303
2304 void
2305 use_regs (rtx *call_fusage, int regno, int nregs)
2306 {
2307 int i;
2308
2309 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2310
2311 for (i = 0; i < nregs; i++)
2312 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2313 }
2314
2315 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2316 PARALLEL REGS. This is for calls that pass values in multiple
2317 non-contiguous locations. The Irix 6 ABI has examples of this. */
2318
2319 void
2320 use_group_regs (rtx *call_fusage, rtx regs)
2321 {
2322 int i;
2323
2324 for (i = 0; i < XVECLEN (regs, 0); i++)
2325 {
2326 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2327
2328 /* A NULL entry means the parameter goes both on the stack and in
2329 registers. This can also be a MEM for targets that pass values
2330 partially on the stack and partially in registers. */
2331 if (reg != 0 && REG_P (reg))
2332 use_reg (call_fusage, reg);
2333 }
2334 }
2335
2336 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2337 assigment and the code of the expresion on the RHS is CODE. Return
2338 NULL otherwise. */
2339
2340 static gimple
2341 get_def_for_expr (tree name, enum tree_code code)
2342 {
2343 gimple def_stmt;
2344
2345 if (TREE_CODE (name) != SSA_NAME)
2346 return NULL;
2347
2348 def_stmt = get_gimple_for_ssa_name (name);
2349 if (!def_stmt
2350 || gimple_assign_rhs_code (def_stmt) != code)
2351 return NULL;
2352
2353 return def_stmt;
2354 }
2355
2356 #ifdef HAVE_conditional_move
2357 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2358 assigment and the class of the expresion on the RHS is CLASS. Return
2359 NULL otherwise. */
2360
2361 static gimple
2362 get_def_for_expr_class (tree name, enum tree_code_class tclass)
2363 {
2364 gimple def_stmt;
2365
2366 if (TREE_CODE (name) != SSA_NAME)
2367 return NULL;
2368
2369 def_stmt = get_gimple_for_ssa_name (name);
2370 if (!def_stmt
2371 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
2372 return NULL;
2373
2374 return def_stmt;
2375 }
2376 #endif
2377 \f
2378
2379 /* Determine whether the LEN bytes generated by CONSTFUN can be
2380 stored to memory using several move instructions. CONSTFUNDATA is
2381 a pointer which will be passed as argument in every CONSTFUN call.
2382 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2383 a memset operation and false if it's a copy of a constant string.
2384 Return nonzero if a call to store_by_pieces should succeed. */
2385
2386 int
2387 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2388 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2389 void *constfundata, unsigned int align, bool memsetp)
2390 {
2391 unsigned HOST_WIDE_INT l;
2392 unsigned int max_size;
2393 HOST_WIDE_INT offset = 0;
2394 enum machine_mode mode;
2395 enum insn_code icode;
2396 int reverse;
2397 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2398 rtx cst ATTRIBUTE_UNUSED;
2399
2400 if (len == 0)
2401 return 1;
2402
2403 if (! (memsetp
2404 ? SET_BY_PIECES_P (len, align)
2405 : STORE_BY_PIECES_P (len, align)))
2406 return 0;
2407
2408 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2409
2410 /* We would first store what we can in the largest integer mode, then go to
2411 successively smaller modes. */
2412
2413 for (reverse = 0;
2414 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2415 reverse++)
2416 {
2417 l = len;
2418 max_size = STORE_MAX_PIECES + 1;
2419 while (max_size > 1)
2420 {
2421 mode = widest_int_mode_for_size (max_size);
2422
2423 if (mode == VOIDmode)
2424 break;
2425
2426 icode = optab_handler (mov_optab, mode);
2427 if (icode != CODE_FOR_nothing
2428 && align >= GET_MODE_ALIGNMENT (mode))
2429 {
2430 unsigned int size = GET_MODE_SIZE (mode);
2431
2432 while (l >= size)
2433 {
2434 if (reverse)
2435 offset -= size;
2436
2437 cst = (*constfun) (constfundata, offset, mode);
2438 if (!targetm.legitimate_constant_p (mode, cst))
2439 return 0;
2440
2441 if (!reverse)
2442 offset += size;
2443
2444 l -= size;
2445 }
2446 }
2447
2448 max_size = GET_MODE_SIZE (mode);
2449 }
2450
2451 /* The code above should have handled everything. */
2452 gcc_assert (!l);
2453 }
2454
2455 return 1;
2456 }
2457
2458 /* Generate several move instructions to store LEN bytes generated by
2459 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2460 pointer which will be passed as argument in every CONSTFUN call.
2461 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2462 a memset operation and false if it's a copy of a constant string.
2463 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2464 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2465 stpcpy. */
2466
2467 rtx
2468 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2469 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2470 void *constfundata, unsigned int align, bool memsetp, int endp)
2471 {
2472 enum machine_mode to_addr_mode = get_address_mode (to);
2473 struct store_by_pieces_d data;
2474
2475 if (len == 0)
2476 {
2477 gcc_assert (endp != 2);
2478 return to;
2479 }
2480
2481 gcc_assert (memsetp
2482 ? SET_BY_PIECES_P (len, align)
2483 : STORE_BY_PIECES_P (len, align));
2484 data.constfun = constfun;
2485 data.constfundata = constfundata;
2486 data.len = len;
2487 data.to = to;
2488 store_by_pieces_1 (&data, align);
2489 if (endp)
2490 {
2491 rtx to1;
2492
2493 gcc_assert (!data.reverse);
2494 if (data.autinc_to)
2495 {
2496 if (endp == 2)
2497 {
2498 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2499 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2500 else
2501 data.to_addr = copy_to_mode_reg (to_addr_mode,
2502 plus_constant (to_addr_mode,
2503 data.to_addr,
2504 -1));
2505 }
2506 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2507 data.offset);
2508 }
2509 else
2510 {
2511 if (endp == 2)
2512 --data.offset;
2513 to1 = adjust_address (data.to, QImode, data.offset);
2514 }
2515 return to1;
2516 }
2517 else
2518 return data.to;
2519 }
2520
2521 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2522 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2523
2524 static void
2525 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2526 {
2527 struct store_by_pieces_d data;
2528
2529 if (len == 0)
2530 return;
2531
2532 data.constfun = clear_by_pieces_1;
2533 data.constfundata = NULL;
2534 data.len = len;
2535 data.to = to;
2536 store_by_pieces_1 (&data, align);
2537 }
2538
2539 /* Callback routine for clear_by_pieces.
2540 Return const0_rtx unconditionally. */
2541
2542 static rtx
2543 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2544 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2545 enum machine_mode mode ATTRIBUTE_UNUSED)
2546 {
2547 return const0_rtx;
2548 }
2549
2550 /* Subroutine of clear_by_pieces and store_by_pieces.
2551 Generate several move instructions to store LEN bytes of block TO. (A MEM
2552 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2553
2554 static void
2555 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2556 unsigned int align ATTRIBUTE_UNUSED)
2557 {
2558 enum machine_mode to_addr_mode = get_address_mode (data->to);
2559 rtx to_addr = XEXP (data->to, 0);
2560 unsigned int max_size = STORE_MAX_PIECES + 1;
2561 enum insn_code icode;
2562
2563 data->offset = 0;
2564 data->to_addr = to_addr;
2565 data->autinc_to
2566 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2567 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2568
2569 data->explicit_inc_to = 0;
2570 data->reverse
2571 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2572 if (data->reverse)
2573 data->offset = data->len;
2574
2575 /* If storing requires more than two move insns,
2576 copy addresses to registers (to make displacements shorter)
2577 and use post-increment if available. */
2578 if (!data->autinc_to
2579 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2580 {
2581 /* Determine the main mode we'll be using.
2582 MODE might not be used depending on the definitions of the
2583 USE_* macros below. */
2584 enum machine_mode mode ATTRIBUTE_UNUSED
2585 = widest_int_mode_for_size (max_size);
2586
2587 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2588 {
2589 data->to_addr = copy_to_mode_reg (to_addr_mode,
2590 plus_constant (to_addr_mode,
2591 to_addr,
2592 data->len));
2593 data->autinc_to = 1;
2594 data->explicit_inc_to = -1;
2595 }
2596
2597 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2598 && ! data->autinc_to)
2599 {
2600 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2601 data->autinc_to = 1;
2602 data->explicit_inc_to = 1;
2603 }
2604
2605 if ( !data->autinc_to && CONSTANT_P (to_addr))
2606 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2607 }
2608
2609 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2610
2611 /* First store what we can in the largest integer mode, then go to
2612 successively smaller modes. */
2613
2614 while (max_size > 1)
2615 {
2616 enum machine_mode mode = widest_int_mode_for_size (max_size);
2617
2618 if (mode == VOIDmode)
2619 break;
2620
2621 icode = optab_handler (mov_optab, mode);
2622 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2623 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2624
2625 max_size = GET_MODE_SIZE (mode);
2626 }
2627
2628 /* The code above should have handled everything. */
2629 gcc_assert (!data->len);
2630 }
2631
2632 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2633 with move instructions for mode MODE. GENFUN is the gen_... function
2634 to make a move insn for that mode. DATA has all the other info. */
2635
2636 static void
2637 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2638 struct store_by_pieces_d *data)
2639 {
2640 unsigned int size = GET_MODE_SIZE (mode);
2641 rtx to1, cst;
2642
2643 while (data->len >= size)
2644 {
2645 if (data->reverse)
2646 data->offset -= size;
2647
2648 if (data->autinc_to)
2649 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2650 data->offset);
2651 else
2652 to1 = adjust_address (data->to, mode, data->offset);
2653
2654 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2655 emit_insn (gen_add2_insn (data->to_addr,
2656 GEN_INT (-(HOST_WIDE_INT) size)));
2657
2658 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2659 emit_insn ((*genfun) (to1, cst));
2660
2661 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2662 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2663
2664 if (! data->reverse)
2665 data->offset += size;
2666
2667 data->len -= size;
2668 }
2669 }
2670 \f
2671 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2672 its length in bytes. */
2673
2674 rtx
2675 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2676 unsigned int expected_align, HOST_WIDE_INT expected_size)
2677 {
2678 enum machine_mode mode = GET_MODE (object);
2679 unsigned int align;
2680
2681 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2682
2683 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2684 just move a zero. Otherwise, do this a piece at a time. */
2685 if (mode != BLKmode
2686 && CONST_INT_P (size)
2687 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2688 {
2689 rtx zero = CONST0_RTX (mode);
2690 if (zero != NULL)
2691 {
2692 emit_move_insn (object, zero);
2693 return NULL;
2694 }
2695
2696 if (COMPLEX_MODE_P (mode))
2697 {
2698 zero = CONST0_RTX (GET_MODE_INNER (mode));
2699 if (zero != NULL)
2700 {
2701 write_complex_part (object, zero, 0);
2702 write_complex_part (object, zero, 1);
2703 return NULL;
2704 }
2705 }
2706 }
2707
2708 if (size == const0_rtx)
2709 return NULL;
2710
2711 align = MEM_ALIGN (object);
2712
2713 if (CONST_INT_P (size)
2714 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2715 clear_by_pieces (object, INTVAL (size), align);
2716 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2717 expected_align, expected_size))
2718 ;
2719 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2720 return set_storage_via_libcall (object, size, const0_rtx,
2721 method == BLOCK_OP_TAILCALL);
2722 else
2723 gcc_unreachable ();
2724
2725 return NULL;
2726 }
2727
2728 rtx
2729 clear_storage (rtx object, rtx size, enum block_op_methods method)
2730 {
2731 return clear_storage_hints (object, size, method, 0, -1);
2732 }
2733
2734
2735 /* A subroutine of clear_storage. Expand a call to memset.
2736 Return the return value of memset, 0 otherwise. */
2737
2738 rtx
2739 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2740 {
2741 tree call_expr, fn, object_tree, size_tree, val_tree;
2742 enum machine_mode size_mode;
2743 rtx retval;
2744
2745 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2746 place those into new pseudos into a VAR_DECL and use them later. */
2747
2748 object = copy_addr_to_reg (XEXP (object, 0));
2749
2750 size_mode = TYPE_MODE (sizetype);
2751 size = convert_to_mode (size_mode, size, 1);
2752 size = copy_to_mode_reg (size_mode, size);
2753
2754 /* It is incorrect to use the libcall calling conventions to call
2755 memset in this context. This could be a user call to memset and
2756 the user may wish to examine the return value from memset. For
2757 targets where libcalls and normal calls have different conventions
2758 for returning pointers, we could end up generating incorrect code. */
2759
2760 object_tree = make_tree (ptr_type_node, object);
2761 if (!CONST_INT_P (val))
2762 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2763 size_tree = make_tree (sizetype, size);
2764 val_tree = make_tree (integer_type_node, val);
2765
2766 fn = clear_storage_libcall_fn (true);
2767 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2768 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2769
2770 retval = expand_normal (call_expr);
2771
2772 return retval;
2773 }
2774
2775 /* A subroutine of set_storage_via_libcall. Create the tree node
2776 for the function we use for block clears. */
2777
2778 tree block_clear_fn;
2779
2780 void
2781 init_block_clear_fn (const char *asmspec)
2782 {
2783 if (!block_clear_fn)
2784 {
2785 tree fn, args;
2786
2787 fn = get_identifier ("memset");
2788 args = build_function_type_list (ptr_type_node, ptr_type_node,
2789 integer_type_node, sizetype,
2790 NULL_TREE);
2791
2792 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2793 DECL_EXTERNAL (fn) = 1;
2794 TREE_PUBLIC (fn) = 1;
2795 DECL_ARTIFICIAL (fn) = 1;
2796 TREE_NOTHROW (fn) = 1;
2797 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2798 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2799
2800 block_clear_fn = fn;
2801 }
2802
2803 if (asmspec)
2804 set_user_assembler_name (block_clear_fn, asmspec);
2805 }
2806
2807 static tree
2808 clear_storage_libcall_fn (int for_call)
2809 {
2810 static bool emitted_extern;
2811
2812 if (!block_clear_fn)
2813 init_block_clear_fn (NULL);
2814
2815 if (for_call && !emitted_extern)
2816 {
2817 emitted_extern = true;
2818 make_decl_rtl (block_clear_fn);
2819 }
2820
2821 return block_clear_fn;
2822 }
2823 \f
2824 /* Expand a setmem pattern; return true if successful. */
2825
2826 bool
2827 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2828 unsigned int expected_align, HOST_WIDE_INT expected_size)
2829 {
2830 /* Try the most limited insn first, because there's no point
2831 including more than one in the machine description unless
2832 the more limited one has some advantage. */
2833
2834 enum machine_mode mode;
2835
2836 if (expected_align < align)
2837 expected_align = align;
2838
2839 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2840 mode = GET_MODE_WIDER_MODE (mode))
2841 {
2842 enum insn_code code = direct_optab_handler (setmem_optab, mode);
2843
2844 if (code != CODE_FOR_nothing
2845 /* We don't need MODE to be narrower than
2846 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2847 the mode mask, as it is returned by the macro, it will
2848 definitely be less than the actual mode mask. */
2849 && ((CONST_INT_P (size)
2850 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2851 <= (GET_MODE_MASK (mode) >> 1)))
2852 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD))
2853 {
2854 struct expand_operand ops[6];
2855 unsigned int nops;
2856
2857 nops = insn_data[(int) code].n_generator_args;
2858 gcc_assert (nops == 4 || nops == 6);
2859
2860 create_fixed_operand (&ops[0], object);
2861 /* The check above guarantees that this size conversion is valid. */
2862 create_convert_operand_to (&ops[1], size, mode, true);
2863 create_convert_operand_from (&ops[2], val, byte_mode, true);
2864 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
2865 if (nops == 6)
2866 {
2867 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
2868 create_integer_operand (&ops[5], expected_size);
2869 }
2870 if (maybe_expand_insn (code, nops, ops))
2871 return true;
2872 }
2873 }
2874
2875 return false;
2876 }
2877
2878 \f
2879 /* Write to one of the components of the complex value CPLX. Write VAL to
2880 the real part if IMAG_P is false, and the imaginary part if its true. */
2881
2882 static void
2883 write_complex_part (rtx cplx, rtx val, bool imag_p)
2884 {
2885 enum machine_mode cmode;
2886 enum machine_mode imode;
2887 unsigned ibitsize;
2888
2889 if (GET_CODE (cplx) == CONCAT)
2890 {
2891 emit_move_insn (XEXP (cplx, imag_p), val);
2892 return;
2893 }
2894
2895 cmode = GET_MODE (cplx);
2896 imode = GET_MODE_INNER (cmode);
2897 ibitsize = GET_MODE_BITSIZE (imode);
2898
2899 /* For MEMs simplify_gen_subreg may generate an invalid new address
2900 because, e.g., the original address is considered mode-dependent
2901 by the target, which restricts simplify_subreg from invoking
2902 adjust_address_nv. Instead of preparing fallback support for an
2903 invalid address, we call adjust_address_nv directly. */
2904 if (MEM_P (cplx))
2905 {
2906 emit_move_insn (adjust_address_nv (cplx, imode,
2907 imag_p ? GET_MODE_SIZE (imode) : 0),
2908 val);
2909 return;
2910 }
2911
2912 /* If the sub-object is at least word sized, then we know that subregging
2913 will work. This special case is important, since store_bit_field
2914 wants to operate on integer modes, and there's rarely an OImode to
2915 correspond to TCmode. */
2916 if (ibitsize >= BITS_PER_WORD
2917 /* For hard regs we have exact predicates. Assume we can split
2918 the original object if it spans an even number of hard regs.
2919 This special case is important for SCmode on 64-bit platforms
2920 where the natural size of floating-point regs is 32-bit. */
2921 || (REG_P (cplx)
2922 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2923 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2924 {
2925 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2926 imag_p ? GET_MODE_SIZE (imode) : 0);
2927 if (part)
2928 {
2929 emit_move_insn (part, val);
2930 return;
2931 }
2932 else
2933 /* simplify_gen_subreg may fail for sub-word MEMs. */
2934 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2935 }
2936
2937 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val);
2938 }
2939
2940 /* Extract one of the components of the complex value CPLX. Extract the
2941 real part if IMAG_P is false, and the imaginary part if it's true. */
2942
2943 static rtx
2944 read_complex_part (rtx cplx, bool imag_p)
2945 {
2946 enum machine_mode cmode, imode;
2947 unsigned ibitsize;
2948
2949 if (GET_CODE (cplx) == CONCAT)
2950 return XEXP (cplx, imag_p);
2951
2952 cmode = GET_MODE (cplx);
2953 imode = GET_MODE_INNER (cmode);
2954 ibitsize = GET_MODE_BITSIZE (imode);
2955
2956 /* Special case reads from complex constants that got spilled to memory. */
2957 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2958 {
2959 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2960 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2961 {
2962 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2963 if (CONSTANT_CLASS_P (part))
2964 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2965 }
2966 }
2967
2968 /* For MEMs simplify_gen_subreg may generate an invalid new address
2969 because, e.g., the original address is considered mode-dependent
2970 by the target, which restricts simplify_subreg from invoking
2971 adjust_address_nv. Instead of preparing fallback support for an
2972 invalid address, we call adjust_address_nv directly. */
2973 if (MEM_P (cplx))
2974 return adjust_address_nv (cplx, imode,
2975 imag_p ? GET_MODE_SIZE (imode) : 0);
2976
2977 /* If the sub-object is at least word sized, then we know that subregging
2978 will work. This special case is important, since extract_bit_field
2979 wants to operate on integer modes, and there's rarely an OImode to
2980 correspond to TCmode. */
2981 if (ibitsize >= BITS_PER_WORD
2982 /* For hard regs we have exact predicates. Assume we can split
2983 the original object if it spans an even number of hard regs.
2984 This special case is important for SCmode on 64-bit platforms
2985 where the natural size of floating-point regs is 32-bit. */
2986 || (REG_P (cplx)
2987 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2988 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2989 {
2990 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2991 imag_p ? GET_MODE_SIZE (imode) : 0);
2992 if (ret)
2993 return ret;
2994 else
2995 /* simplify_gen_subreg may fail for sub-word MEMs. */
2996 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2997 }
2998
2999 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3000 true, false, NULL_RTX, imode, imode);
3001 }
3002 \f
3003 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3004 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3005 represented in NEW_MODE. If FORCE is true, this will never happen, as
3006 we'll force-create a SUBREG if needed. */
3007
3008 static rtx
3009 emit_move_change_mode (enum machine_mode new_mode,
3010 enum machine_mode old_mode, rtx x, bool force)
3011 {
3012 rtx ret;
3013
3014 if (push_operand (x, GET_MODE (x)))
3015 {
3016 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3017 MEM_COPY_ATTRIBUTES (ret, x);
3018 }
3019 else if (MEM_P (x))
3020 {
3021 /* We don't have to worry about changing the address since the
3022 size in bytes is supposed to be the same. */
3023 if (reload_in_progress)
3024 {
3025 /* Copy the MEM to change the mode and move any
3026 substitutions from the old MEM to the new one. */
3027 ret = adjust_address_nv (x, new_mode, 0);
3028 copy_replacements (x, ret);
3029 }
3030 else
3031 ret = adjust_address (x, new_mode, 0);
3032 }
3033 else
3034 {
3035 /* Note that we do want simplify_subreg's behavior of validating
3036 that the new mode is ok for a hard register. If we were to use
3037 simplify_gen_subreg, we would create the subreg, but would
3038 probably run into the target not being able to implement it. */
3039 /* Except, of course, when FORCE is true, when this is exactly what
3040 we want. Which is needed for CCmodes on some targets. */
3041 if (force)
3042 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3043 else
3044 ret = simplify_subreg (new_mode, x, old_mode, 0);
3045 }
3046
3047 return ret;
3048 }
3049
3050 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3051 an integer mode of the same size as MODE. Returns the instruction
3052 emitted, or NULL if such a move could not be generated. */
3053
3054 static rtx
3055 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
3056 {
3057 enum machine_mode imode;
3058 enum insn_code code;
3059
3060 /* There must exist a mode of the exact size we require. */
3061 imode = int_mode_for_mode (mode);
3062 if (imode == BLKmode)
3063 return NULL_RTX;
3064
3065 /* The target must support moves in this mode. */
3066 code = optab_handler (mov_optab, imode);
3067 if (code == CODE_FOR_nothing)
3068 return NULL_RTX;
3069
3070 x = emit_move_change_mode (imode, mode, x, force);
3071 if (x == NULL_RTX)
3072 return NULL_RTX;
3073 y = emit_move_change_mode (imode, mode, y, force);
3074 if (y == NULL_RTX)
3075 return NULL_RTX;
3076 return emit_insn (GEN_FCN (code) (x, y));
3077 }
3078
3079 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3080 Return an equivalent MEM that does not use an auto-increment. */
3081
3082 static rtx
3083 emit_move_resolve_push (enum machine_mode mode, rtx x)
3084 {
3085 enum rtx_code code = GET_CODE (XEXP (x, 0));
3086 HOST_WIDE_INT adjust;
3087 rtx temp;
3088
3089 adjust = GET_MODE_SIZE (mode);
3090 #ifdef PUSH_ROUNDING
3091 adjust = PUSH_ROUNDING (adjust);
3092 #endif
3093 if (code == PRE_DEC || code == POST_DEC)
3094 adjust = -adjust;
3095 else if (code == PRE_MODIFY || code == POST_MODIFY)
3096 {
3097 rtx expr = XEXP (XEXP (x, 0), 1);
3098 HOST_WIDE_INT val;
3099
3100 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3101 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3102 val = INTVAL (XEXP (expr, 1));
3103 if (GET_CODE (expr) == MINUS)
3104 val = -val;
3105 gcc_assert (adjust == val || adjust == -val);
3106 adjust = val;
3107 }
3108
3109 /* Do not use anti_adjust_stack, since we don't want to update
3110 stack_pointer_delta. */
3111 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3112 GEN_INT (adjust), stack_pointer_rtx,
3113 0, OPTAB_LIB_WIDEN);
3114 if (temp != stack_pointer_rtx)
3115 emit_move_insn (stack_pointer_rtx, temp);
3116
3117 switch (code)
3118 {
3119 case PRE_INC:
3120 case PRE_DEC:
3121 case PRE_MODIFY:
3122 temp = stack_pointer_rtx;
3123 break;
3124 case POST_INC:
3125 case POST_DEC:
3126 case POST_MODIFY:
3127 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3128 break;
3129 default:
3130 gcc_unreachable ();
3131 }
3132
3133 return replace_equiv_address (x, temp);
3134 }
3135
3136 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3137 X is known to satisfy push_operand, and MODE is known to be complex.
3138 Returns the last instruction emitted. */
3139
3140 rtx
3141 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3142 {
3143 enum machine_mode submode = GET_MODE_INNER (mode);
3144 bool imag_first;
3145
3146 #ifdef PUSH_ROUNDING
3147 unsigned int submodesize = GET_MODE_SIZE (submode);
3148
3149 /* In case we output to the stack, but the size is smaller than the
3150 machine can push exactly, we need to use move instructions. */
3151 if (PUSH_ROUNDING (submodesize) != submodesize)
3152 {
3153 x = emit_move_resolve_push (mode, x);
3154 return emit_move_insn (x, y);
3155 }
3156 #endif
3157
3158 /* Note that the real part always precedes the imag part in memory
3159 regardless of machine's endianness. */
3160 switch (GET_CODE (XEXP (x, 0)))
3161 {
3162 case PRE_DEC:
3163 case POST_DEC:
3164 imag_first = true;
3165 break;
3166 case PRE_INC:
3167 case POST_INC:
3168 imag_first = false;
3169 break;
3170 default:
3171 gcc_unreachable ();
3172 }
3173
3174 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3175 read_complex_part (y, imag_first));
3176 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3177 read_complex_part (y, !imag_first));
3178 }
3179
3180 /* A subroutine of emit_move_complex. Perform the move from Y to X
3181 via two moves of the parts. Returns the last instruction emitted. */
3182
3183 rtx
3184 emit_move_complex_parts (rtx x, rtx y)
3185 {
3186 /* Show the output dies here. This is necessary for SUBREGs
3187 of pseudos since we cannot track their lifetimes correctly;
3188 hard regs shouldn't appear here except as return values. */
3189 if (!reload_completed && !reload_in_progress
3190 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3191 emit_clobber (x);
3192
3193 write_complex_part (x, read_complex_part (y, false), false);
3194 write_complex_part (x, read_complex_part (y, true), true);
3195
3196 return get_last_insn ();
3197 }
3198
3199 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3200 MODE is known to be complex. Returns the last instruction emitted. */
3201
3202 static rtx
3203 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3204 {
3205 bool try_int;
3206
3207 /* Need to take special care for pushes, to maintain proper ordering
3208 of the data, and possibly extra padding. */
3209 if (push_operand (x, mode))
3210 return emit_move_complex_push (mode, x, y);
3211
3212 /* See if we can coerce the target into moving both values at once. */
3213
3214 /* Move floating point as parts. */
3215 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3216 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing)
3217 try_int = false;
3218 /* Not possible if the values are inherently not adjacent. */
3219 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3220 try_int = false;
3221 /* Is possible if both are registers (or subregs of registers). */
3222 else if (register_operand (x, mode) && register_operand (y, mode))
3223 try_int = true;
3224 /* If one of the operands is a memory, and alignment constraints
3225 are friendly enough, we may be able to do combined memory operations.
3226 We do not attempt this if Y is a constant because that combination is
3227 usually better with the by-parts thing below. */
3228 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3229 && (!STRICT_ALIGNMENT
3230 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3231 try_int = true;
3232 else
3233 try_int = false;
3234
3235 if (try_int)
3236 {
3237 rtx ret;
3238
3239 /* For memory to memory moves, optimal behavior can be had with the
3240 existing block move logic. */
3241 if (MEM_P (x) && MEM_P (y))
3242 {
3243 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3244 BLOCK_OP_NO_LIBCALL);
3245 return get_last_insn ();
3246 }
3247
3248 ret = emit_move_via_integer (mode, x, y, true);
3249 if (ret)
3250 return ret;
3251 }
3252
3253 return emit_move_complex_parts (x, y);
3254 }
3255
3256 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3257 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3258
3259 static rtx
3260 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3261 {
3262 rtx ret;
3263
3264 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3265 if (mode != CCmode)
3266 {
3267 enum insn_code code = optab_handler (mov_optab, CCmode);
3268 if (code != CODE_FOR_nothing)
3269 {
3270 x = emit_move_change_mode (CCmode, mode, x, true);
3271 y = emit_move_change_mode (CCmode, mode, y, true);
3272 return emit_insn (GEN_FCN (code) (x, y));
3273 }
3274 }
3275
3276 /* Otherwise, find the MODE_INT mode of the same width. */
3277 ret = emit_move_via_integer (mode, x, y, false);
3278 gcc_assert (ret != NULL);
3279 return ret;
3280 }
3281
3282 /* Return true if word I of OP lies entirely in the
3283 undefined bits of a paradoxical subreg. */
3284
3285 static bool
3286 undefined_operand_subword_p (const_rtx op, int i)
3287 {
3288 enum machine_mode innermode, innermostmode;
3289 int offset;
3290 if (GET_CODE (op) != SUBREG)
3291 return false;
3292 innermode = GET_MODE (op);
3293 innermostmode = GET_MODE (SUBREG_REG (op));
3294 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3295 /* The SUBREG_BYTE represents offset, as if the value were stored in
3296 memory, except for a paradoxical subreg where we define
3297 SUBREG_BYTE to be 0; undo this exception as in
3298 simplify_subreg. */
3299 if (SUBREG_BYTE (op) == 0
3300 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3301 {
3302 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3303 if (WORDS_BIG_ENDIAN)
3304 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3305 if (BYTES_BIG_ENDIAN)
3306 offset += difference % UNITS_PER_WORD;
3307 }
3308 if (offset >= GET_MODE_SIZE (innermostmode)
3309 || offset <= -GET_MODE_SIZE (word_mode))
3310 return true;
3311 return false;
3312 }
3313
3314 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3315 MODE is any multi-word or full-word mode that lacks a move_insn
3316 pattern. Note that you will get better code if you define such
3317 patterns, even if they must turn into multiple assembler instructions. */
3318
3319 static rtx
3320 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3321 {
3322 rtx last_insn = 0;
3323 rtx seq, inner;
3324 bool need_clobber;
3325 int i;
3326
3327 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3328
3329 /* If X is a push on the stack, do the push now and replace
3330 X with a reference to the stack pointer. */
3331 if (push_operand (x, mode))
3332 x = emit_move_resolve_push (mode, x);
3333
3334 /* If we are in reload, see if either operand is a MEM whose address
3335 is scheduled for replacement. */
3336 if (reload_in_progress && MEM_P (x)
3337 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3338 x = replace_equiv_address_nv (x, inner);
3339 if (reload_in_progress && MEM_P (y)
3340 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3341 y = replace_equiv_address_nv (y, inner);
3342
3343 start_sequence ();
3344
3345 need_clobber = false;
3346 for (i = 0;
3347 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3348 i++)
3349 {
3350 rtx xpart = operand_subword (x, i, 1, mode);
3351 rtx ypart;
3352
3353 /* Do not generate code for a move if it would come entirely
3354 from the undefined bits of a paradoxical subreg. */
3355 if (undefined_operand_subword_p (y, i))
3356 continue;
3357
3358 ypart = operand_subword (y, i, 1, mode);
3359
3360 /* If we can't get a part of Y, put Y into memory if it is a
3361 constant. Otherwise, force it into a register. Then we must
3362 be able to get a part of Y. */
3363 if (ypart == 0 && CONSTANT_P (y))
3364 {
3365 y = use_anchored_address (force_const_mem (mode, y));
3366 ypart = operand_subword (y, i, 1, mode);
3367 }
3368 else if (ypart == 0)
3369 ypart = operand_subword_force (y, i, mode);
3370
3371 gcc_assert (xpart && ypart);
3372
3373 need_clobber |= (GET_CODE (xpart) == SUBREG);
3374
3375 last_insn = emit_move_insn (xpart, ypart);
3376 }
3377
3378 seq = get_insns ();
3379 end_sequence ();
3380
3381 /* Show the output dies here. This is necessary for SUBREGs
3382 of pseudos since we cannot track their lifetimes correctly;
3383 hard regs shouldn't appear here except as return values.
3384 We never want to emit such a clobber after reload. */
3385 if (x != y
3386 && ! (reload_in_progress || reload_completed)
3387 && need_clobber != 0)
3388 emit_clobber (x);
3389
3390 emit_insn (seq);
3391
3392 return last_insn;
3393 }
3394
3395 /* Low level part of emit_move_insn.
3396 Called just like emit_move_insn, but assumes X and Y
3397 are basically valid. */
3398
3399 rtx
3400 emit_move_insn_1 (rtx x, rtx y)
3401 {
3402 enum machine_mode mode = GET_MODE (x);
3403 enum insn_code code;
3404
3405 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3406
3407 code = optab_handler (mov_optab, mode);
3408 if (code != CODE_FOR_nothing)
3409 return emit_insn (GEN_FCN (code) (x, y));
3410
3411 /* Expand complex moves by moving real part and imag part. */
3412 if (COMPLEX_MODE_P (mode))
3413 return emit_move_complex (mode, x, y);
3414
3415 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3416 || ALL_FIXED_POINT_MODE_P (mode))
3417 {
3418 rtx result = emit_move_via_integer (mode, x, y, true);
3419
3420 /* If we can't find an integer mode, use multi words. */
3421 if (result)
3422 return result;
3423 else
3424 return emit_move_multi_word (mode, x, y);
3425 }
3426
3427 if (GET_MODE_CLASS (mode) == MODE_CC)
3428 return emit_move_ccmode (mode, x, y);
3429
3430 /* Try using a move pattern for the corresponding integer mode. This is
3431 only safe when simplify_subreg can convert MODE constants into integer
3432 constants. At present, it can only do this reliably if the value
3433 fits within a HOST_WIDE_INT. */
3434 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3435 {
3436 rtx ret = emit_move_via_integer (mode, x, y, false);
3437 if (ret)
3438 return ret;
3439 }
3440
3441 return emit_move_multi_word (mode, x, y);
3442 }
3443
3444 /* Generate code to copy Y into X.
3445 Both Y and X must have the same mode, except that
3446 Y can be a constant with VOIDmode.
3447 This mode cannot be BLKmode; use emit_block_move for that.
3448
3449 Return the last instruction emitted. */
3450
3451 rtx
3452 emit_move_insn (rtx x, rtx y)
3453 {
3454 enum machine_mode mode = GET_MODE (x);
3455 rtx y_cst = NULL_RTX;
3456 rtx last_insn, set;
3457
3458 gcc_assert (mode != BLKmode
3459 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3460
3461 if (CONSTANT_P (y))
3462 {
3463 if (optimize
3464 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3465 && (last_insn = compress_float_constant (x, y)))
3466 return last_insn;
3467
3468 y_cst = y;
3469
3470 if (!targetm.legitimate_constant_p (mode, y))
3471 {
3472 y = force_const_mem (mode, y);
3473
3474 /* If the target's cannot_force_const_mem prevented the spill,
3475 assume that the target's move expanders will also take care
3476 of the non-legitimate constant. */
3477 if (!y)
3478 y = y_cst;
3479 else
3480 y = use_anchored_address (y);
3481 }
3482 }
3483
3484 /* If X or Y are memory references, verify that their addresses are valid
3485 for the machine. */
3486 if (MEM_P (x)
3487 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3488 MEM_ADDR_SPACE (x))
3489 && ! push_operand (x, GET_MODE (x))))
3490 x = validize_mem (x);
3491
3492 if (MEM_P (y)
3493 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3494 MEM_ADDR_SPACE (y)))
3495 y = validize_mem (y);
3496
3497 gcc_assert (mode != BLKmode);
3498
3499 last_insn = emit_move_insn_1 (x, y);
3500
3501 if (y_cst && REG_P (x)
3502 && (set = single_set (last_insn)) != NULL_RTX
3503 && SET_DEST (set) == x
3504 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3505 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3506
3507 return last_insn;
3508 }
3509
3510 /* If Y is representable exactly in a narrower mode, and the target can
3511 perform the extension directly from constant or memory, then emit the
3512 move as an extension. */
3513
3514 static rtx
3515 compress_float_constant (rtx x, rtx y)
3516 {
3517 enum machine_mode dstmode = GET_MODE (x);
3518 enum machine_mode orig_srcmode = GET_MODE (y);
3519 enum machine_mode srcmode;
3520 REAL_VALUE_TYPE r;
3521 int oldcost, newcost;
3522 bool speed = optimize_insn_for_speed_p ();
3523
3524 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3525
3526 if (targetm.legitimate_constant_p (dstmode, y))
3527 oldcost = set_src_cost (y, speed);
3528 else
3529 oldcost = set_src_cost (force_const_mem (dstmode, y), speed);
3530
3531 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3532 srcmode != orig_srcmode;
3533 srcmode = GET_MODE_WIDER_MODE (srcmode))
3534 {
3535 enum insn_code ic;
3536 rtx trunc_y, last_insn;
3537
3538 /* Skip if the target can't extend this way. */
3539 ic = can_extend_p (dstmode, srcmode, 0);
3540 if (ic == CODE_FOR_nothing)
3541 continue;
3542
3543 /* Skip if the narrowed value isn't exact. */
3544 if (! exact_real_truncate (srcmode, &r))
3545 continue;
3546
3547 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3548
3549 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3550 {
3551 /* Skip if the target needs extra instructions to perform
3552 the extension. */
3553 if (!insn_operand_matches (ic, 1, trunc_y))
3554 continue;
3555 /* This is valid, but may not be cheaper than the original. */
3556 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3557 speed);
3558 if (oldcost < newcost)
3559 continue;
3560 }
3561 else if (float_extend_from_mem[dstmode][srcmode])
3562 {
3563 trunc_y = force_const_mem (srcmode, trunc_y);
3564 /* This is valid, but may not be cheaper than the original. */
3565 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3566 speed);
3567 if (oldcost < newcost)
3568 continue;
3569 trunc_y = validize_mem (trunc_y);
3570 }
3571 else
3572 continue;
3573
3574 /* For CSE's benefit, force the compressed constant pool entry
3575 into a new pseudo. This constant may be used in different modes,
3576 and if not, combine will put things back together for us. */
3577 trunc_y = force_reg (srcmode, trunc_y);
3578 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3579 last_insn = get_last_insn ();
3580
3581 if (REG_P (x))
3582 set_unique_reg_note (last_insn, REG_EQUAL, y);
3583
3584 return last_insn;
3585 }
3586
3587 return NULL_RTX;
3588 }
3589 \f
3590 /* Pushing data onto the stack. */
3591
3592 /* Push a block of length SIZE (perhaps variable)
3593 and return an rtx to address the beginning of the block.
3594 The value may be virtual_outgoing_args_rtx.
3595
3596 EXTRA is the number of bytes of padding to push in addition to SIZE.
3597 BELOW nonzero means this padding comes at low addresses;
3598 otherwise, the padding comes at high addresses. */
3599
3600 rtx
3601 push_block (rtx size, int extra, int below)
3602 {
3603 rtx temp;
3604
3605 size = convert_modes (Pmode, ptr_mode, size, 1);
3606 if (CONSTANT_P (size))
3607 anti_adjust_stack (plus_constant (Pmode, size, extra));
3608 else if (REG_P (size) && extra == 0)
3609 anti_adjust_stack (size);
3610 else
3611 {
3612 temp = copy_to_mode_reg (Pmode, size);
3613 if (extra != 0)
3614 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3615 temp, 0, OPTAB_LIB_WIDEN);
3616 anti_adjust_stack (temp);
3617 }
3618
3619 #ifndef STACK_GROWS_DOWNWARD
3620 if (0)
3621 #else
3622 if (1)
3623 #endif
3624 {
3625 temp = virtual_outgoing_args_rtx;
3626 if (extra != 0 && below)
3627 temp = plus_constant (Pmode, temp, extra);
3628 }
3629 else
3630 {
3631 if (CONST_INT_P (size))
3632 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
3633 -INTVAL (size) - (below ? 0 : extra));
3634 else if (extra != 0 && !below)
3635 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3636 negate_rtx (Pmode, plus_constant (Pmode, size,
3637 extra)));
3638 else
3639 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3640 negate_rtx (Pmode, size));
3641 }
3642
3643 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3644 }
3645
3646 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3647
3648 static rtx
3649 mem_autoinc_base (rtx mem)
3650 {
3651 if (MEM_P (mem))
3652 {
3653 rtx addr = XEXP (mem, 0);
3654 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
3655 return XEXP (addr, 0);
3656 }
3657 return NULL;
3658 }
3659
3660 /* A utility routine used here, in reload, and in try_split. The insns
3661 after PREV up to and including LAST are known to adjust the stack,
3662 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3663 placing notes as appropriate. PREV may be NULL, indicating the
3664 entire insn sequence prior to LAST should be scanned.
3665
3666 The set of allowed stack pointer modifications is small:
3667 (1) One or more auto-inc style memory references (aka pushes),
3668 (2) One or more addition/subtraction with the SP as destination,
3669 (3) A single move insn with the SP as destination,
3670 (4) A call_pop insn,
3671 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3672
3673 Insns in the sequence that do not modify the SP are ignored,
3674 except for noreturn calls.
3675
3676 The return value is the amount of adjustment that can be trivially
3677 verified, via immediate operand or auto-inc. If the adjustment
3678 cannot be trivially extracted, the return value is INT_MIN. */
3679
3680 HOST_WIDE_INT
3681 find_args_size_adjust (rtx insn)
3682 {
3683 rtx dest, set, pat;
3684 int i;
3685
3686 pat = PATTERN (insn);
3687 set = NULL;
3688
3689 /* Look for a call_pop pattern. */
3690 if (CALL_P (insn))
3691 {
3692 /* We have to allow non-call_pop patterns for the case
3693 of emit_single_push_insn of a TLS address. */
3694 if (GET_CODE (pat) != PARALLEL)
3695 return 0;
3696
3697 /* All call_pop have a stack pointer adjust in the parallel.
3698 The call itself is always first, and the stack adjust is
3699 usually last, so search from the end. */
3700 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
3701 {
3702 set = XVECEXP (pat, 0, i);
3703 if (GET_CODE (set) != SET)
3704 continue;
3705 dest = SET_DEST (set);
3706 if (dest == stack_pointer_rtx)
3707 break;
3708 }
3709 /* We'd better have found the stack pointer adjust. */
3710 if (i == 0)
3711 return 0;
3712 /* Fall through to process the extracted SET and DEST
3713 as if it was a standalone insn. */
3714 }
3715 else if (GET_CODE (pat) == SET)
3716 set = pat;
3717 else if ((set = single_set (insn)) != NULL)
3718 ;
3719 else if (GET_CODE (pat) == PARALLEL)
3720 {
3721 /* ??? Some older ports use a parallel with a stack adjust
3722 and a store for a PUSH_ROUNDING pattern, rather than a
3723 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3724 /* ??? See h8300 and m68k, pushqi1. */
3725 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
3726 {
3727 set = XVECEXP (pat, 0, i);
3728 if (GET_CODE (set) != SET)
3729 continue;
3730 dest = SET_DEST (set);
3731 if (dest == stack_pointer_rtx)
3732 break;
3733
3734 /* We do not expect an auto-inc of the sp in the parallel. */
3735 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
3736 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3737 != stack_pointer_rtx);
3738 }
3739 if (i < 0)
3740 return 0;
3741 }
3742 else
3743 return 0;
3744
3745 dest = SET_DEST (set);
3746
3747 /* Look for direct modifications of the stack pointer. */
3748 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
3749 {
3750 /* Look for a trivial adjustment, otherwise assume nothing. */
3751 /* Note that the SPU restore_stack_block pattern refers to
3752 the stack pointer in V4SImode. Consider that non-trivial. */
3753 if (SCALAR_INT_MODE_P (GET_MODE (dest))
3754 && GET_CODE (SET_SRC (set)) == PLUS
3755 && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
3756 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
3757 return INTVAL (XEXP (SET_SRC (set), 1));
3758 /* ??? Reload can generate no-op moves, which will be cleaned
3759 up later. Recognize it and continue searching. */
3760 else if (rtx_equal_p (dest, SET_SRC (set)))
3761 return 0;
3762 else
3763 return HOST_WIDE_INT_MIN;
3764 }
3765 else
3766 {
3767 rtx mem, addr;
3768
3769 /* Otherwise only think about autoinc patterns. */
3770 if (mem_autoinc_base (dest) == stack_pointer_rtx)
3771 {
3772 mem = dest;
3773 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3774 != stack_pointer_rtx);
3775 }
3776 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
3777 mem = SET_SRC (set);
3778 else
3779 return 0;
3780
3781 addr = XEXP (mem, 0);
3782 switch (GET_CODE (addr))
3783 {
3784 case PRE_INC:
3785 case POST_INC:
3786 return GET_MODE_SIZE (GET_MODE (mem));
3787 case PRE_DEC:
3788 case POST_DEC:
3789 return -GET_MODE_SIZE (GET_MODE (mem));
3790 case PRE_MODIFY:
3791 case POST_MODIFY:
3792 addr = XEXP (addr, 1);
3793 gcc_assert (GET_CODE (addr) == PLUS);
3794 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
3795 gcc_assert (CONST_INT_P (XEXP (addr, 1)));
3796 return INTVAL (XEXP (addr, 1));
3797 default:
3798 gcc_unreachable ();
3799 }
3800 }
3801 }
3802
3803 int
3804 fixup_args_size_notes (rtx prev, rtx last, int end_args_size)
3805 {
3806 int args_size = end_args_size;
3807 bool saw_unknown = false;
3808 rtx insn;
3809
3810 for (insn = last; insn != prev; insn = PREV_INSN (insn))
3811 {
3812 HOST_WIDE_INT this_delta;
3813
3814 if (!NONDEBUG_INSN_P (insn))
3815 continue;
3816
3817 this_delta = find_args_size_adjust (insn);
3818 if (this_delta == 0)
3819 {
3820 if (!CALL_P (insn)
3821 || ACCUMULATE_OUTGOING_ARGS
3822 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
3823 continue;
3824 }
3825
3826 gcc_assert (!saw_unknown);
3827 if (this_delta == HOST_WIDE_INT_MIN)
3828 saw_unknown = true;
3829
3830 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (args_size));
3831 #ifdef STACK_GROWS_DOWNWARD
3832 this_delta = -this_delta;
3833 #endif
3834 args_size -= this_delta;
3835 }
3836
3837 return saw_unknown ? INT_MIN : args_size;
3838 }
3839
3840 #ifdef PUSH_ROUNDING
3841 /* Emit single push insn. */
3842
3843 static void
3844 emit_single_push_insn_1 (enum machine_mode mode, rtx x, tree type)
3845 {
3846 rtx dest_addr;
3847 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3848 rtx dest;
3849 enum insn_code icode;
3850
3851 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3852 /* If there is push pattern, use it. Otherwise try old way of throwing
3853 MEM representing push operation to move expander. */
3854 icode = optab_handler (push_optab, mode);
3855 if (icode != CODE_FOR_nothing)
3856 {
3857 struct expand_operand ops[1];
3858
3859 create_input_operand (&ops[0], x, mode);
3860 if (maybe_expand_insn (icode, 1, ops))
3861 return;
3862 }
3863 if (GET_MODE_SIZE (mode) == rounded_size)
3864 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3865 /* If we are to pad downward, adjust the stack pointer first and
3866 then store X into the stack location using an offset. This is
3867 because emit_move_insn does not know how to pad; it does not have
3868 access to type. */
3869 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3870 {
3871 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3872 HOST_WIDE_INT offset;
3873
3874 emit_move_insn (stack_pointer_rtx,
3875 expand_binop (Pmode,
3876 #ifdef STACK_GROWS_DOWNWARD
3877 sub_optab,
3878 #else
3879 add_optab,
3880 #endif
3881 stack_pointer_rtx,
3882 GEN_INT (rounded_size),
3883 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3884
3885 offset = (HOST_WIDE_INT) padding_size;
3886 #ifdef STACK_GROWS_DOWNWARD
3887 if (STACK_PUSH_CODE == POST_DEC)
3888 /* We have already decremented the stack pointer, so get the
3889 previous value. */
3890 offset += (HOST_WIDE_INT) rounded_size;
3891 #else
3892 if (STACK_PUSH_CODE == POST_INC)
3893 /* We have already incremented the stack pointer, so get the
3894 previous value. */
3895 offset -= (HOST_WIDE_INT) rounded_size;
3896 #endif
3897 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3898 }
3899 else
3900 {
3901 #ifdef STACK_GROWS_DOWNWARD
3902 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3903 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3904 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3905 #else
3906 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3907 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3908 GEN_INT (rounded_size));
3909 #endif
3910 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3911 }
3912
3913 dest = gen_rtx_MEM (mode, dest_addr);
3914
3915 if (type != 0)
3916 {
3917 set_mem_attributes (dest, type, 1);
3918
3919 if (flag_optimize_sibling_calls)
3920 /* Function incoming arguments may overlap with sibling call
3921 outgoing arguments and we cannot allow reordering of reads
3922 from function arguments with stores to outgoing arguments
3923 of sibling calls. */
3924 set_mem_alias_set (dest, 0);
3925 }
3926 emit_move_insn (dest, x);
3927 }
3928
3929 /* Emit and annotate a single push insn. */
3930
3931 static void
3932 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3933 {
3934 int delta, old_delta = stack_pointer_delta;
3935 rtx prev = get_last_insn ();
3936 rtx last;
3937
3938 emit_single_push_insn_1 (mode, x, type);
3939
3940 last = get_last_insn ();
3941
3942 /* Notice the common case where we emitted exactly one insn. */
3943 if (PREV_INSN (last) == prev)
3944 {
3945 add_reg_note (last, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
3946 return;
3947 }
3948
3949 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
3950 gcc_assert (delta == INT_MIN || delta == old_delta);
3951 }
3952 #endif
3953
3954 /* Generate code to push X onto the stack, assuming it has mode MODE and
3955 type TYPE.
3956 MODE is redundant except when X is a CONST_INT (since they don't
3957 carry mode info).
3958 SIZE is an rtx for the size of data to be copied (in bytes),
3959 needed only if X is BLKmode.
3960
3961 ALIGN (in bits) is maximum alignment we can assume.
3962
3963 If PARTIAL and REG are both nonzero, then copy that many of the first
3964 bytes of X into registers starting with REG, and push the rest of X.
3965 The amount of space pushed is decreased by PARTIAL bytes.
3966 REG must be a hard register in this case.
3967 If REG is zero but PARTIAL is not, take any all others actions for an
3968 argument partially in registers, but do not actually load any
3969 registers.
3970
3971 EXTRA is the amount in bytes of extra space to leave next to this arg.
3972 This is ignored if an argument block has already been allocated.
3973
3974 On a machine that lacks real push insns, ARGS_ADDR is the address of
3975 the bottom of the argument block for this call. We use indexing off there
3976 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3977 argument block has not been preallocated.
3978
3979 ARGS_SO_FAR is the size of args previously pushed for this call.
3980
3981 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3982 for arguments passed in registers. If nonzero, it will be the number
3983 of bytes required. */
3984
3985 void
3986 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3987 unsigned int align, int partial, rtx reg, int extra,
3988 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3989 rtx alignment_pad)
3990 {
3991 rtx xinner;
3992 enum direction stack_direction
3993 #ifdef STACK_GROWS_DOWNWARD
3994 = downward;
3995 #else
3996 = upward;
3997 #endif
3998
3999 /* Decide where to pad the argument: `downward' for below,
4000 `upward' for above, or `none' for don't pad it.
4001 Default is below for small data on big-endian machines; else above. */
4002 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
4003
4004 /* Invert direction if stack is post-decrement.
4005 FIXME: why? */
4006 if (STACK_PUSH_CODE == POST_DEC)
4007 if (where_pad != none)
4008 where_pad = (where_pad == downward ? upward : downward);
4009
4010 xinner = x;
4011
4012 if (mode == BLKmode
4013 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4014 {
4015 /* Copy a block into the stack, entirely or partially. */
4016
4017 rtx temp;
4018 int used;
4019 int offset;
4020 int skip;
4021
4022 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4023 used = partial - offset;
4024
4025 if (mode != BLKmode)
4026 {
4027 /* A value is to be stored in an insufficiently aligned
4028 stack slot; copy via a suitably aligned slot if
4029 necessary. */
4030 size = GEN_INT (GET_MODE_SIZE (mode));
4031 if (!MEM_P (xinner))
4032 {
4033 temp = assign_temp (type, 1, 1);
4034 emit_move_insn (temp, xinner);
4035 xinner = temp;
4036 }
4037 }
4038
4039 gcc_assert (size);
4040
4041 /* USED is now the # of bytes we need not copy to the stack
4042 because registers will take care of them. */
4043
4044 if (partial != 0)
4045 xinner = adjust_address (xinner, BLKmode, used);
4046
4047 /* If the partial register-part of the arg counts in its stack size,
4048 skip the part of stack space corresponding to the registers.
4049 Otherwise, start copying to the beginning of the stack space,
4050 by setting SKIP to 0. */
4051 skip = (reg_parm_stack_space == 0) ? 0 : used;
4052
4053 #ifdef PUSH_ROUNDING
4054 /* Do it with several push insns if that doesn't take lots of insns
4055 and if there is no difficulty with push insns that skip bytes
4056 on the stack for alignment purposes. */
4057 if (args_addr == 0
4058 && PUSH_ARGS
4059 && CONST_INT_P (size)
4060 && skip == 0
4061 && MEM_ALIGN (xinner) >= align
4062 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
4063 /* Here we avoid the case of a structure whose weak alignment
4064 forces many pushes of a small amount of data,
4065 and such small pushes do rounding that causes trouble. */
4066 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
4067 || align >= BIGGEST_ALIGNMENT
4068 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
4069 == (align / BITS_PER_UNIT)))
4070 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
4071 {
4072 /* Push padding now if padding above and stack grows down,
4073 or if padding below and stack grows up.
4074 But if space already allocated, this has already been done. */
4075 if (extra && args_addr == 0
4076 && where_pad != none && where_pad != stack_direction)
4077 anti_adjust_stack (GEN_INT (extra));
4078
4079 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
4080 }
4081 else
4082 #endif /* PUSH_ROUNDING */
4083 {
4084 rtx target;
4085
4086 /* Otherwise make space on the stack and copy the data
4087 to the address of that space. */
4088
4089 /* Deduct words put into registers from the size we must copy. */
4090 if (partial != 0)
4091 {
4092 if (CONST_INT_P (size))
4093 size = GEN_INT (INTVAL (size) - used);
4094 else
4095 size = expand_binop (GET_MODE (size), sub_optab, size,
4096 GEN_INT (used), NULL_RTX, 0,
4097 OPTAB_LIB_WIDEN);
4098 }
4099
4100 /* Get the address of the stack space.
4101 In this case, we do not deal with EXTRA separately.
4102 A single stack adjust will do. */
4103 if (! args_addr)
4104 {
4105 temp = push_block (size, extra, where_pad == downward);
4106 extra = 0;
4107 }
4108 else if (CONST_INT_P (args_so_far))
4109 temp = memory_address (BLKmode,
4110 plus_constant (Pmode, args_addr,
4111 skip + INTVAL (args_so_far)));
4112 else
4113 temp = memory_address (BLKmode,
4114 plus_constant (Pmode,
4115 gen_rtx_PLUS (Pmode,
4116 args_addr,
4117 args_so_far),
4118 skip));
4119
4120 if (!ACCUMULATE_OUTGOING_ARGS)
4121 {
4122 /* If the source is referenced relative to the stack pointer,
4123 copy it to another register to stabilize it. We do not need
4124 to do this if we know that we won't be changing sp. */
4125
4126 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4127 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4128 temp = copy_to_reg (temp);
4129 }
4130
4131 target = gen_rtx_MEM (BLKmode, temp);
4132
4133 /* We do *not* set_mem_attributes here, because incoming arguments
4134 may overlap with sibling call outgoing arguments and we cannot
4135 allow reordering of reads from function arguments with stores
4136 to outgoing arguments of sibling calls. We do, however, want
4137 to record the alignment of the stack slot. */
4138 /* ALIGN may well be better aligned than TYPE, e.g. due to
4139 PARM_BOUNDARY. Assume the caller isn't lying. */
4140 set_mem_align (target, align);
4141
4142 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4143 }
4144 }
4145 else if (partial > 0)
4146 {
4147 /* Scalar partly in registers. */
4148
4149 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4150 int i;
4151 int not_stack;
4152 /* # bytes of start of argument
4153 that we must make space for but need not store. */
4154 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4155 int args_offset = INTVAL (args_so_far);
4156 int skip;
4157
4158 /* Push padding now if padding above and stack grows down,
4159 or if padding below and stack grows up.
4160 But if space already allocated, this has already been done. */
4161 if (extra && args_addr == 0
4162 && where_pad != none && where_pad != stack_direction)
4163 anti_adjust_stack (GEN_INT (extra));
4164
4165 /* If we make space by pushing it, we might as well push
4166 the real data. Otherwise, we can leave OFFSET nonzero
4167 and leave the space uninitialized. */
4168 if (args_addr == 0)
4169 offset = 0;
4170
4171 /* Now NOT_STACK gets the number of words that we don't need to
4172 allocate on the stack. Convert OFFSET to words too. */
4173 not_stack = (partial - offset) / UNITS_PER_WORD;
4174 offset /= UNITS_PER_WORD;
4175
4176 /* If the partial register-part of the arg counts in its stack size,
4177 skip the part of stack space corresponding to the registers.
4178 Otherwise, start copying to the beginning of the stack space,
4179 by setting SKIP to 0. */
4180 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4181
4182 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4183 x = validize_mem (force_const_mem (mode, x));
4184
4185 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4186 SUBREGs of such registers are not allowed. */
4187 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4188 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4189 x = copy_to_reg (x);
4190
4191 /* Loop over all the words allocated on the stack for this arg. */
4192 /* We can do it by words, because any scalar bigger than a word
4193 has a size a multiple of a word. */
4194 #ifndef PUSH_ARGS_REVERSED
4195 for (i = not_stack; i < size; i++)
4196 #else
4197 for (i = size - 1; i >= not_stack; i--)
4198 #endif
4199 if (i >= not_stack + offset)
4200 emit_push_insn (operand_subword_force (x, i, mode),
4201 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4202 0, args_addr,
4203 GEN_INT (args_offset + ((i - not_stack + skip)
4204 * UNITS_PER_WORD)),
4205 reg_parm_stack_space, alignment_pad);
4206 }
4207 else
4208 {
4209 rtx addr;
4210 rtx dest;
4211
4212 /* Push padding now if padding above and stack grows down,
4213 or if padding below and stack grows up.
4214 But if space already allocated, this has already been done. */
4215 if (extra && args_addr == 0
4216 && where_pad != none && where_pad != stack_direction)
4217 anti_adjust_stack (GEN_INT (extra));
4218
4219 #ifdef PUSH_ROUNDING
4220 if (args_addr == 0 && PUSH_ARGS)
4221 emit_single_push_insn (mode, x, type);
4222 else
4223 #endif
4224 {
4225 if (CONST_INT_P (args_so_far))
4226 addr
4227 = memory_address (mode,
4228 plus_constant (Pmode, args_addr,
4229 INTVAL (args_so_far)));
4230 else
4231 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
4232 args_so_far));
4233 dest = gen_rtx_MEM (mode, addr);
4234
4235 /* We do *not* set_mem_attributes here, because incoming arguments
4236 may overlap with sibling call outgoing arguments and we cannot
4237 allow reordering of reads from function arguments with stores
4238 to outgoing arguments of sibling calls. We do, however, want
4239 to record the alignment of the stack slot. */
4240 /* ALIGN may well be better aligned than TYPE, e.g. due to
4241 PARM_BOUNDARY. Assume the caller isn't lying. */
4242 set_mem_align (dest, align);
4243
4244 emit_move_insn (dest, x);
4245 }
4246 }
4247
4248 /* If part should go in registers, copy that part
4249 into the appropriate registers. Do this now, at the end,
4250 since mem-to-mem copies above may do function calls. */
4251 if (partial > 0 && reg != 0)
4252 {
4253 /* Handle calls that pass values in multiple non-contiguous locations.
4254 The Irix 6 ABI has examples of this. */
4255 if (GET_CODE (reg) == PARALLEL)
4256 emit_group_load (reg, x, type, -1);
4257 else
4258 {
4259 gcc_assert (partial % UNITS_PER_WORD == 0);
4260 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
4261 }
4262 }
4263
4264 if (extra && args_addr == 0 && where_pad == stack_direction)
4265 anti_adjust_stack (GEN_INT (extra));
4266
4267 if (alignment_pad && args_addr == 0)
4268 anti_adjust_stack (alignment_pad);
4269 }
4270 \f
4271 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4272 operations. */
4273
4274 static rtx
4275 get_subtarget (rtx x)
4276 {
4277 return (optimize
4278 || x == 0
4279 /* Only registers can be subtargets. */
4280 || !REG_P (x)
4281 /* Don't use hard regs to avoid extending their life. */
4282 || REGNO (x) < FIRST_PSEUDO_REGISTER
4283 ? 0 : x);
4284 }
4285
4286 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4287 FIELD is a bitfield. Returns true if the optimization was successful,
4288 and there's nothing else to do. */
4289
4290 static bool
4291 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4292 unsigned HOST_WIDE_INT bitpos,
4293 unsigned HOST_WIDE_INT bitregion_start,
4294 unsigned HOST_WIDE_INT bitregion_end,
4295 enum machine_mode mode1, rtx str_rtx,
4296 tree to, tree src)
4297 {
4298 enum machine_mode str_mode = GET_MODE (str_rtx);
4299 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4300 tree op0, op1;
4301 rtx value, result;
4302 optab binop;
4303 gimple srcstmt;
4304 enum tree_code code;
4305
4306 if (mode1 != VOIDmode
4307 || bitsize >= BITS_PER_WORD
4308 || str_bitsize > BITS_PER_WORD
4309 || TREE_SIDE_EFFECTS (to)
4310 || TREE_THIS_VOLATILE (to))
4311 return false;
4312
4313 STRIP_NOPS (src);
4314 if (TREE_CODE (src) != SSA_NAME)
4315 return false;
4316 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4317 return false;
4318
4319 srcstmt = get_gimple_for_ssa_name (src);
4320 if (!srcstmt
4321 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4322 return false;
4323
4324 code = gimple_assign_rhs_code (srcstmt);
4325
4326 op0 = gimple_assign_rhs1 (srcstmt);
4327
4328 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4329 to find its initialization. Hopefully the initialization will
4330 be from a bitfield load. */
4331 if (TREE_CODE (op0) == SSA_NAME)
4332 {
4333 gimple op0stmt = get_gimple_for_ssa_name (op0);
4334
4335 /* We want to eventually have OP0 be the same as TO, which
4336 should be a bitfield. */
4337 if (!op0stmt
4338 || !is_gimple_assign (op0stmt)
4339 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4340 return false;
4341 op0 = gimple_assign_rhs1 (op0stmt);
4342 }
4343
4344 op1 = gimple_assign_rhs2 (srcstmt);
4345
4346 if (!operand_equal_p (to, op0, 0))
4347 return false;
4348
4349 if (MEM_P (str_rtx))
4350 {
4351 unsigned HOST_WIDE_INT offset1;
4352
4353 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4354 str_mode = word_mode;
4355 str_mode = get_best_mode (bitsize, bitpos,
4356 bitregion_start, bitregion_end,
4357 MEM_ALIGN (str_rtx), str_mode, 0);
4358 if (str_mode == VOIDmode)
4359 return false;
4360 str_bitsize = GET_MODE_BITSIZE (str_mode);
4361
4362 offset1 = bitpos;
4363 bitpos %= str_bitsize;
4364 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4365 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4366 }
4367 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4368 return false;
4369
4370 /* If the bit field covers the whole REG/MEM, store_field
4371 will likely generate better code. */
4372 if (bitsize >= str_bitsize)
4373 return false;
4374
4375 /* We can't handle fields split across multiple entities. */
4376 if (bitpos + bitsize > str_bitsize)
4377 return false;
4378
4379 if (BYTES_BIG_ENDIAN)
4380 bitpos = str_bitsize - bitpos - bitsize;
4381
4382 switch (code)
4383 {
4384 case PLUS_EXPR:
4385 case MINUS_EXPR:
4386 /* For now, just optimize the case of the topmost bitfield
4387 where we don't need to do any masking and also
4388 1 bit bitfields where xor can be used.
4389 We might win by one instruction for the other bitfields
4390 too if insv/extv instructions aren't used, so that
4391 can be added later. */
4392 if (bitpos + bitsize != str_bitsize
4393 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4394 break;
4395
4396 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4397 value = convert_modes (str_mode,
4398 TYPE_MODE (TREE_TYPE (op1)), value,
4399 TYPE_UNSIGNED (TREE_TYPE (op1)));
4400
4401 /* We may be accessing data outside the field, which means
4402 we can alias adjacent data. */
4403 if (MEM_P (str_rtx))
4404 {
4405 str_rtx = shallow_copy_rtx (str_rtx);
4406 set_mem_alias_set (str_rtx, 0);
4407 set_mem_expr (str_rtx, 0);
4408 }
4409
4410 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4411 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4412 {
4413 value = expand_and (str_mode, value, const1_rtx, NULL);
4414 binop = xor_optab;
4415 }
4416 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4417 result = expand_binop (str_mode, binop, str_rtx,
4418 value, str_rtx, 1, OPTAB_WIDEN);
4419 if (result != str_rtx)
4420 emit_move_insn (str_rtx, result);
4421 return true;
4422
4423 case BIT_IOR_EXPR:
4424 case BIT_XOR_EXPR:
4425 if (TREE_CODE (op1) != INTEGER_CST)
4426 break;
4427 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4428 value = convert_modes (str_mode,
4429 TYPE_MODE (TREE_TYPE (op1)), value,
4430 TYPE_UNSIGNED (TREE_TYPE (op1)));
4431
4432 /* We may be accessing data outside the field, which means
4433 we can alias adjacent data. */
4434 if (MEM_P (str_rtx))
4435 {
4436 str_rtx = shallow_copy_rtx (str_rtx);
4437 set_mem_alias_set (str_rtx, 0);
4438 set_mem_expr (str_rtx, 0);
4439 }
4440
4441 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4442 if (bitpos + bitsize != str_bitsize)
4443 {
4444 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize) - 1);
4445 value = expand_and (str_mode, value, mask, NULL_RTX);
4446 }
4447 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4448 result = expand_binop (str_mode, binop, str_rtx,
4449 value, str_rtx, 1, OPTAB_WIDEN);
4450 if (result != str_rtx)
4451 emit_move_insn (str_rtx, result);
4452 return true;
4453
4454 default:
4455 break;
4456 }
4457
4458 return false;
4459 }
4460
4461 /* In the C++ memory model, consecutive bit fields in a structure are
4462 considered one memory location.
4463
4464 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4465 returns the bit range of consecutive bits in which this COMPONENT_REF
4466 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4467 and *OFFSET may be adjusted in the process.
4468
4469 If the access does not need to be restricted, 0 is returned in both
4470 *BITSTART and *BITEND. */
4471
4472 static void
4473 get_bit_range (unsigned HOST_WIDE_INT *bitstart,
4474 unsigned HOST_WIDE_INT *bitend,
4475 tree exp,
4476 HOST_WIDE_INT *bitpos,
4477 tree *offset)
4478 {
4479 HOST_WIDE_INT bitoffset;
4480 tree field, repr;
4481
4482 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4483
4484 field = TREE_OPERAND (exp, 1);
4485 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
4486 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4487 need to limit the range we can access. */
4488 if (!repr)
4489 {
4490 *bitstart = *bitend = 0;
4491 return;
4492 }
4493
4494 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4495 part of a larger bit field, then the representative does not serve any
4496 useful purpose. This can occur in Ada. */
4497 if (handled_component_p (TREE_OPERAND (exp, 0)))
4498 {
4499 enum machine_mode rmode;
4500 HOST_WIDE_INT rbitsize, rbitpos;
4501 tree roffset;
4502 int unsignedp;
4503 int volatilep = 0;
4504 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
4505 &roffset, &rmode, &unsignedp, &volatilep, false);
4506 if ((rbitpos % BITS_PER_UNIT) != 0)
4507 {
4508 *bitstart = *bitend = 0;
4509 return;
4510 }
4511 }
4512
4513 /* Compute the adjustment to bitpos from the offset of the field
4514 relative to the representative. DECL_FIELD_OFFSET of field and
4515 repr are the same by construction if they are not constants,
4516 see finish_bitfield_layout. */
4517 if (host_integerp (DECL_FIELD_OFFSET (field), 1)
4518 && host_integerp (DECL_FIELD_OFFSET (repr), 1))
4519 bitoffset = (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
4520 - tree_low_cst (DECL_FIELD_OFFSET (repr), 1)) * BITS_PER_UNIT;
4521 else
4522 bitoffset = 0;
4523 bitoffset += (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
4524 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr), 1));
4525
4526 /* If the adjustment is larger than bitpos, we would have a negative bit
4527 position for the lower bound and this may wreak havoc later. This can
4528 occur only if we have a non-null offset, so adjust offset and bitpos
4529 to make the lower bound non-negative. */
4530 if (bitoffset > *bitpos)
4531 {
4532 HOST_WIDE_INT adjust = bitoffset - *bitpos;
4533
4534 gcc_assert ((adjust % BITS_PER_UNIT) == 0);
4535 gcc_assert (*offset != NULL_TREE);
4536
4537 *bitpos += adjust;
4538 *offset
4539 = size_binop (MINUS_EXPR, *offset, size_int (adjust / BITS_PER_UNIT));
4540 *bitstart = 0;
4541 }
4542 else
4543 *bitstart = *bitpos - bitoffset;
4544
4545 *bitend = *bitstart + tree_low_cst (DECL_SIZE (repr), 1) - 1;
4546 }
4547
4548 /* Returns true if the MEM_REF REF refers to an object that does not
4549 reside in memory and has non-BLKmode. */
4550
4551 static bool
4552 mem_ref_refers_to_non_mem_p (tree ref)
4553 {
4554 tree base = TREE_OPERAND (ref, 0);
4555 if (TREE_CODE (base) != ADDR_EXPR)
4556 return false;
4557 base = TREE_OPERAND (base, 0);
4558 return (DECL_P (base)
4559 && !TREE_ADDRESSABLE (base)
4560 && DECL_MODE (base) != BLKmode
4561 && DECL_RTL_SET_P (base)
4562 && !MEM_P (DECL_RTL (base)));
4563 }
4564
4565 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4566 is true, try generating a nontemporal store. */
4567
4568 void
4569 expand_assignment (tree to, tree from, bool nontemporal)
4570 {
4571 rtx to_rtx = 0;
4572 rtx result;
4573 enum machine_mode mode;
4574 unsigned int align;
4575 enum insn_code icode;
4576
4577 /* Don't crash if the lhs of the assignment was erroneous. */
4578 if (TREE_CODE (to) == ERROR_MARK)
4579 {
4580 expand_normal (from);
4581 return;
4582 }
4583
4584 /* Optimize away no-op moves without side-effects. */
4585 if (operand_equal_p (to, from, 0))
4586 return;
4587
4588 /* Handle misaligned stores. */
4589 mode = TYPE_MODE (TREE_TYPE (to));
4590 if ((TREE_CODE (to) == MEM_REF
4591 || TREE_CODE (to) == TARGET_MEM_REF)
4592 && mode != BLKmode
4593 && !mem_ref_refers_to_non_mem_p (to)
4594 && ((align = get_object_or_type_alignment (to))
4595 < GET_MODE_ALIGNMENT (mode))
4596 && (((icode = optab_handler (movmisalign_optab, mode))
4597 != CODE_FOR_nothing)
4598 || SLOW_UNALIGNED_ACCESS (mode, align)))
4599 {
4600 rtx reg, mem;
4601
4602 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4603 reg = force_not_mem (reg);
4604 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4605
4606 if (icode != CODE_FOR_nothing)
4607 {
4608 struct expand_operand ops[2];
4609
4610 create_fixed_operand (&ops[0], mem);
4611 create_input_operand (&ops[1], reg, mode);
4612 /* The movmisalign<mode> pattern cannot fail, else the assignment
4613 would silently be omitted. */
4614 expand_insn (icode, 2, ops);
4615 }
4616 else
4617 store_bit_field (mem, GET_MODE_BITSIZE (mode),
4618 0, 0, 0, mode, reg);
4619 return;
4620 }
4621
4622 /* Assignment of a structure component needs special treatment
4623 if the structure component's rtx is not simply a MEM.
4624 Assignment of an array element at a constant index, and assignment of
4625 an array element in an unaligned packed structure field, has the same
4626 problem. Same for (partially) storing into a non-memory object. */
4627 if (handled_component_p (to)
4628 || (TREE_CODE (to) == MEM_REF
4629 && mem_ref_refers_to_non_mem_p (to))
4630 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4631 {
4632 enum machine_mode mode1;
4633 HOST_WIDE_INT bitsize, bitpos;
4634 unsigned HOST_WIDE_INT bitregion_start = 0;
4635 unsigned HOST_WIDE_INT bitregion_end = 0;
4636 tree offset;
4637 int unsignedp;
4638 int volatilep = 0;
4639 tree tem;
4640 bool misalignp;
4641 rtx mem = NULL_RTX;
4642
4643 push_temp_slots ();
4644 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4645 &unsignedp, &volatilep, true);
4646
4647 if (TREE_CODE (to) == COMPONENT_REF
4648 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
4649 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
4650
4651 /* If we are going to use store_bit_field and extract_bit_field,
4652 make sure to_rtx will be safe for multiple use. */
4653 mode = TYPE_MODE (TREE_TYPE (tem));
4654 if (TREE_CODE (tem) == MEM_REF
4655 && mode != BLKmode
4656 && ((align = get_object_or_type_alignment (tem))
4657 < GET_MODE_ALIGNMENT (mode))
4658 && ((icode = optab_handler (movmisalign_optab, mode))
4659 != CODE_FOR_nothing))
4660 {
4661 struct expand_operand ops[2];
4662
4663 misalignp = true;
4664 to_rtx = gen_reg_rtx (mode);
4665 mem = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
4666
4667 /* If the misaligned store doesn't overwrite all bits, perform
4668 rmw cycle on MEM. */
4669 if (bitsize != GET_MODE_BITSIZE (mode))
4670 {
4671 create_input_operand (&ops[0], to_rtx, mode);
4672 create_fixed_operand (&ops[1], mem);
4673 /* The movmisalign<mode> pattern cannot fail, else the assignment
4674 would silently be omitted. */
4675 expand_insn (icode, 2, ops);
4676
4677 mem = copy_rtx (mem);
4678 }
4679 }
4680 else
4681 {
4682 misalignp = false;
4683 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
4684 }
4685
4686 /* If the bitfield is volatile, we want to access it in the
4687 field's mode, not the computed mode.
4688 If a MEM has VOIDmode (external with incomplete type),
4689 use BLKmode for it instead. */
4690 if (MEM_P (to_rtx))
4691 {
4692 if (volatilep && flag_strict_volatile_bitfields > 0)
4693 to_rtx = adjust_address (to_rtx, mode1, 0);
4694 else if (GET_MODE (to_rtx) == VOIDmode)
4695 to_rtx = adjust_address (to_rtx, BLKmode, 0);
4696 }
4697
4698 if (offset != 0)
4699 {
4700 enum machine_mode address_mode;
4701 rtx offset_rtx;
4702
4703 if (!MEM_P (to_rtx))
4704 {
4705 /* We can get constant negative offsets into arrays with broken
4706 user code. Translate this to a trap instead of ICEing. */
4707 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4708 expand_builtin_trap ();
4709 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4710 }
4711
4712 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4713 address_mode = get_address_mode (to_rtx);
4714 if (GET_MODE (offset_rtx) != address_mode)
4715 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4716
4717 /* A constant address in TO_RTX can have VOIDmode, we must not try
4718 to call force_reg for that case. Avoid that case. */
4719 if (MEM_P (to_rtx)
4720 && GET_MODE (to_rtx) == BLKmode
4721 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4722 && bitsize > 0
4723 && (bitpos % bitsize) == 0
4724 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4725 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4726 {
4727 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4728 bitpos = 0;
4729 }
4730
4731 to_rtx = offset_address (to_rtx, offset_rtx,
4732 highest_pow2_factor_for_target (to,
4733 offset));
4734 }
4735
4736 /* No action is needed if the target is not a memory and the field
4737 lies completely outside that target. This can occur if the source
4738 code contains an out-of-bounds access to a small array. */
4739 if (!MEM_P (to_rtx)
4740 && GET_MODE (to_rtx) != BLKmode
4741 && (unsigned HOST_WIDE_INT) bitpos
4742 >= GET_MODE_PRECISION (GET_MODE (to_rtx)))
4743 {
4744 expand_normal (from);
4745 result = NULL;
4746 }
4747 /* Handle expand_expr of a complex value returning a CONCAT. */
4748 else if (GET_CODE (to_rtx) == CONCAT)
4749 {
4750 unsigned short mode_bitsize = GET_MODE_BITSIZE (GET_MODE (to_rtx));
4751 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from)))
4752 && bitpos == 0
4753 && bitsize == mode_bitsize)
4754 result = store_expr (from, to_rtx, false, nontemporal);
4755 else if (bitsize == mode_bitsize / 2
4756 && (bitpos == 0 || bitpos == mode_bitsize / 2))
4757 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4758 nontemporal);
4759 else if (bitpos + bitsize <= mode_bitsize / 2)
4760 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
4761 bitregion_start, bitregion_end,
4762 mode1, from, TREE_TYPE (tem),
4763 get_alias_set (to), nontemporal);
4764 else if (bitpos >= mode_bitsize / 2)
4765 result = store_field (XEXP (to_rtx, 1), bitsize,
4766 bitpos - mode_bitsize / 2,
4767 bitregion_start, bitregion_end,
4768 mode1, from,
4769 TREE_TYPE (tem), get_alias_set (to),
4770 nontemporal);
4771 else if (bitpos == 0 && bitsize == mode_bitsize)
4772 {
4773 rtx from_rtx;
4774 result = expand_normal (from);
4775 from_rtx = simplify_gen_subreg (GET_MODE (to_rtx), result,
4776 TYPE_MODE (TREE_TYPE (from)), 0);
4777 emit_move_insn (XEXP (to_rtx, 0),
4778 read_complex_part (from_rtx, false));
4779 emit_move_insn (XEXP (to_rtx, 1),
4780 read_complex_part (from_rtx, true));
4781 }
4782 else
4783 {
4784 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
4785 GET_MODE_SIZE (GET_MODE (to_rtx)));
4786 write_complex_part (temp, XEXP (to_rtx, 0), false);
4787 write_complex_part (temp, XEXP (to_rtx, 1), true);
4788 result = store_field (temp, bitsize, bitpos,
4789 bitregion_start, bitregion_end,
4790 mode1, from,
4791 TREE_TYPE (tem), get_alias_set (to),
4792 nontemporal);
4793 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
4794 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
4795 }
4796 }
4797 else
4798 {
4799 if (MEM_P (to_rtx))
4800 {
4801 /* If the field is at offset zero, we could have been given the
4802 DECL_RTX of the parent struct. Don't munge it. */
4803 to_rtx = shallow_copy_rtx (to_rtx);
4804
4805 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4806
4807 /* Deal with volatile and readonly fields. The former is only
4808 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4809 if (volatilep)
4810 MEM_VOLATILE_P (to_rtx) = 1;
4811 if (component_uses_parent_alias_set (to))
4812 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4813 }
4814
4815 if (optimize_bitfield_assignment_op (bitsize, bitpos,
4816 bitregion_start, bitregion_end,
4817 mode1,
4818 to_rtx, to, from))
4819 result = NULL;
4820 else
4821 result = store_field (to_rtx, bitsize, bitpos,
4822 bitregion_start, bitregion_end,
4823 mode1, from,
4824 TREE_TYPE (tem), get_alias_set (to),
4825 nontemporal);
4826 }
4827
4828 if (misalignp)
4829 {
4830 struct expand_operand ops[2];
4831
4832 create_fixed_operand (&ops[0], mem);
4833 create_input_operand (&ops[1], to_rtx, mode);
4834 /* The movmisalign<mode> pattern cannot fail, else the assignment
4835 would silently be omitted. */
4836 expand_insn (icode, 2, ops);
4837 }
4838
4839 if (result)
4840 preserve_temp_slots (result);
4841 pop_temp_slots ();
4842 return;
4843 }
4844
4845 /* If the rhs is a function call and its value is not an aggregate,
4846 call the function before we start to compute the lhs.
4847 This is needed for correct code for cases such as
4848 val = setjmp (buf) on machines where reference to val
4849 requires loading up part of an address in a separate insn.
4850
4851 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4852 since it might be a promoted variable where the zero- or sign- extension
4853 needs to be done. Handling this in the normal way is safe because no
4854 computation is done before the call. The same is true for SSA names. */
4855 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4856 && COMPLETE_TYPE_P (TREE_TYPE (from))
4857 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4858 && ! (((TREE_CODE (to) == VAR_DECL
4859 || TREE_CODE (to) == PARM_DECL
4860 || TREE_CODE (to) == RESULT_DECL)
4861 && REG_P (DECL_RTL (to)))
4862 || TREE_CODE (to) == SSA_NAME))
4863 {
4864 rtx value;
4865
4866 push_temp_slots ();
4867 value = expand_normal (from);
4868 if (to_rtx == 0)
4869 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4870
4871 /* Handle calls that return values in multiple non-contiguous locations.
4872 The Irix 6 ABI has examples of this. */
4873 if (GET_CODE (to_rtx) == PARALLEL)
4874 emit_group_load (to_rtx, value, TREE_TYPE (from),
4875 int_size_in_bytes (TREE_TYPE (from)));
4876 else if (GET_MODE (to_rtx) == BLKmode)
4877 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4878 else
4879 {
4880 if (POINTER_TYPE_P (TREE_TYPE (to)))
4881 value = convert_memory_address_addr_space
4882 (GET_MODE (to_rtx), value,
4883 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
4884
4885 emit_move_insn (to_rtx, value);
4886 }
4887 preserve_temp_slots (to_rtx);
4888 pop_temp_slots ();
4889 return;
4890 }
4891
4892 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
4893 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4894
4895 /* Don't move directly into a return register. */
4896 if (TREE_CODE (to) == RESULT_DECL
4897 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4898 {
4899 rtx temp;
4900
4901 push_temp_slots ();
4902 if (REG_P (to_rtx) && TYPE_MODE (TREE_TYPE (from)) == BLKmode)
4903 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
4904 else
4905 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4906
4907 if (GET_CODE (to_rtx) == PARALLEL)
4908 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4909 int_size_in_bytes (TREE_TYPE (from)));
4910 else if (temp)
4911 emit_move_insn (to_rtx, temp);
4912
4913 preserve_temp_slots (to_rtx);
4914 pop_temp_slots ();
4915 return;
4916 }
4917
4918 /* In case we are returning the contents of an object which overlaps
4919 the place the value is being stored, use a safe function when copying
4920 a value through a pointer into a structure value return block. */
4921 if (TREE_CODE (to) == RESULT_DECL
4922 && TREE_CODE (from) == INDIRECT_REF
4923 && ADDR_SPACE_GENERIC_P
4924 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
4925 && refs_may_alias_p (to, from)
4926 && cfun->returns_struct
4927 && !cfun->returns_pcc_struct)
4928 {
4929 rtx from_rtx, size;
4930
4931 push_temp_slots ();
4932 size = expr_size (from);
4933 from_rtx = expand_normal (from);
4934
4935 emit_library_call (memmove_libfunc, LCT_NORMAL,
4936 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4937 XEXP (from_rtx, 0), Pmode,
4938 convert_to_mode (TYPE_MODE (sizetype),
4939 size, TYPE_UNSIGNED (sizetype)),
4940 TYPE_MODE (sizetype));
4941
4942 preserve_temp_slots (to_rtx);
4943 pop_temp_slots ();
4944 return;
4945 }
4946
4947 /* Compute FROM and store the value in the rtx we got. */
4948
4949 push_temp_slots ();
4950 result = store_expr (from, to_rtx, 0, nontemporal);
4951 preserve_temp_slots (result);
4952 pop_temp_slots ();
4953 return;
4954 }
4955
4956 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4957 succeeded, false otherwise. */
4958
4959 bool
4960 emit_storent_insn (rtx to, rtx from)
4961 {
4962 struct expand_operand ops[2];
4963 enum machine_mode mode = GET_MODE (to);
4964 enum insn_code code = optab_handler (storent_optab, mode);
4965
4966 if (code == CODE_FOR_nothing)
4967 return false;
4968
4969 create_fixed_operand (&ops[0], to);
4970 create_input_operand (&ops[1], from, mode);
4971 return maybe_expand_insn (code, 2, ops);
4972 }
4973
4974 /* Generate code for computing expression EXP,
4975 and storing the value into TARGET.
4976
4977 If the mode is BLKmode then we may return TARGET itself.
4978 It turns out that in BLKmode it doesn't cause a problem.
4979 because C has no operators that could combine two different
4980 assignments into the same BLKmode object with different values
4981 with no sequence point. Will other languages need this to
4982 be more thorough?
4983
4984 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4985 stack, and block moves may need to be treated specially.
4986
4987 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4988
4989 rtx
4990 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4991 {
4992 rtx temp;
4993 rtx alt_rtl = NULL_RTX;
4994 location_t loc = EXPR_LOCATION (exp);
4995
4996 if (VOID_TYPE_P (TREE_TYPE (exp)))
4997 {
4998 /* C++ can generate ?: expressions with a throw expression in one
4999 branch and an rvalue in the other. Here, we resolve attempts to
5000 store the throw expression's nonexistent result. */
5001 gcc_assert (!call_param_p);
5002 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5003 return NULL_RTX;
5004 }
5005 if (TREE_CODE (exp) == COMPOUND_EXPR)
5006 {
5007 /* Perform first part of compound expression, then assign from second
5008 part. */
5009 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5010 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5011 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
5012 nontemporal);
5013 }
5014 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5015 {
5016 /* For conditional expression, get safe form of the target. Then
5017 test the condition, doing the appropriate assignment on either
5018 side. This avoids the creation of unnecessary temporaries.
5019 For non-BLKmode, it is more efficient not to do this. */
5020
5021 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
5022
5023 do_pending_stack_adjust ();
5024 NO_DEFER_POP;
5025 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
5026 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
5027 nontemporal);
5028 emit_jump_insn (gen_jump (lab2));
5029 emit_barrier ();
5030 emit_label (lab1);
5031 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
5032 nontemporal);
5033 emit_label (lab2);
5034 OK_DEFER_POP;
5035
5036 return NULL_RTX;
5037 }
5038 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5039 /* If this is a scalar in a register that is stored in a wider mode
5040 than the declared mode, compute the result into its declared mode
5041 and then convert to the wider mode. Our value is the computed
5042 expression. */
5043 {
5044 rtx inner_target = 0;
5045
5046 /* We can do the conversion inside EXP, which will often result
5047 in some optimizations. Do the conversion in two steps: first
5048 change the signedness, if needed, then the extend. But don't
5049 do this if the type of EXP is a subtype of something else
5050 since then the conversion might involve more than just
5051 converting modes. */
5052 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5053 && TREE_TYPE (TREE_TYPE (exp)) == 0
5054 && GET_MODE_PRECISION (GET_MODE (target))
5055 == TYPE_PRECISION (TREE_TYPE (exp)))
5056 {
5057 if (TYPE_UNSIGNED (TREE_TYPE (exp))
5058 != SUBREG_PROMOTED_UNSIGNED_P (target))
5059 {
5060 /* Some types, e.g. Fortran's logical*4, won't have a signed
5061 version, so use the mode instead. */
5062 tree ntype
5063 = (signed_or_unsigned_type_for
5064 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
5065 if (ntype == NULL)
5066 ntype = lang_hooks.types.type_for_mode
5067 (TYPE_MODE (TREE_TYPE (exp)),
5068 SUBREG_PROMOTED_UNSIGNED_P (target));
5069
5070 exp = fold_convert_loc (loc, ntype, exp);
5071 }
5072
5073 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5074 (GET_MODE (SUBREG_REG (target)),
5075 SUBREG_PROMOTED_UNSIGNED_P (target)),
5076 exp);
5077
5078 inner_target = SUBREG_REG (target);
5079 }
5080
5081 temp = expand_expr (exp, inner_target, VOIDmode,
5082 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5083
5084 /* If TEMP is a VOIDmode constant, use convert_modes to make
5085 sure that we properly convert it. */
5086 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5087 {
5088 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5089 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
5090 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
5091 GET_MODE (target), temp,
5092 SUBREG_PROMOTED_UNSIGNED_P (target));
5093 }
5094
5095 convert_move (SUBREG_REG (target), temp,
5096 SUBREG_PROMOTED_UNSIGNED_P (target));
5097
5098 return NULL_RTX;
5099 }
5100 else if ((TREE_CODE (exp) == STRING_CST
5101 || (TREE_CODE (exp) == MEM_REF
5102 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5103 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5104 == STRING_CST
5105 && integer_zerop (TREE_OPERAND (exp, 1))))
5106 && !nontemporal && !call_param_p
5107 && MEM_P (target))
5108 {
5109 /* Optimize initialization of an array with a STRING_CST. */
5110 HOST_WIDE_INT exp_len, str_copy_len;
5111 rtx dest_mem;
5112 tree str = TREE_CODE (exp) == STRING_CST
5113 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5114
5115 exp_len = int_expr_size (exp);
5116 if (exp_len <= 0)
5117 goto normal_expr;
5118
5119 if (TREE_STRING_LENGTH (str) <= 0)
5120 goto normal_expr;
5121
5122 str_copy_len = strlen (TREE_STRING_POINTER (str));
5123 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
5124 goto normal_expr;
5125
5126 str_copy_len = TREE_STRING_LENGTH (str);
5127 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
5128 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
5129 {
5130 str_copy_len += STORE_MAX_PIECES - 1;
5131 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5132 }
5133 str_copy_len = MIN (str_copy_len, exp_len);
5134 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
5135 CONST_CAST (char *, TREE_STRING_POINTER (str)),
5136 MEM_ALIGN (target), false))
5137 goto normal_expr;
5138
5139 dest_mem = target;
5140
5141 dest_mem = store_by_pieces (dest_mem,
5142 str_copy_len, builtin_strncpy_read_str,
5143 CONST_CAST (char *,
5144 TREE_STRING_POINTER (str)),
5145 MEM_ALIGN (target), false,
5146 exp_len > str_copy_len ? 1 : 0);
5147 if (exp_len > str_copy_len)
5148 clear_storage (adjust_address (dest_mem, BLKmode, 0),
5149 GEN_INT (exp_len - str_copy_len),
5150 BLOCK_OP_NORMAL);
5151 return NULL_RTX;
5152 }
5153 else
5154 {
5155 rtx tmp_target;
5156
5157 normal_expr:
5158 /* If we want to use a nontemporal store, force the value to
5159 register first. */
5160 tmp_target = nontemporal ? NULL_RTX : target;
5161 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
5162 (call_param_p
5163 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5164 &alt_rtl);
5165 }
5166
5167 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5168 the same as that of TARGET, adjust the constant. This is needed, for
5169 example, in case it is a CONST_DOUBLE and we want only a word-sized
5170 value. */
5171 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5172 && TREE_CODE (exp) != ERROR_MARK
5173 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5174 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5175 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5176
5177 /* If value was not generated in the target, store it there.
5178 Convert the value to TARGET's type first if necessary and emit the
5179 pending incrementations that have been queued when expanding EXP.
5180 Note that we cannot emit the whole queue blindly because this will
5181 effectively disable the POST_INC optimization later.
5182
5183 If TEMP and TARGET compare equal according to rtx_equal_p, but
5184 one or both of them are volatile memory refs, we have to distinguish
5185 two cases:
5186 - expand_expr has used TARGET. In this case, we must not generate
5187 another copy. This can be detected by TARGET being equal according
5188 to == .
5189 - expand_expr has not used TARGET - that means that the source just
5190 happens to have the same RTX form. Since temp will have been created
5191 by expand_expr, it will compare unequal according to == .
5192 We must generate a copy in this case, to reach the correct number
5193 of volatile memory references. */
5194
5195 if ((! rtx_equal_p (temp, target)
5196 || (temp != target && (side_effects_p (temp)
5197 || side_effects_p (target))))
5198 && TREE_CODE (exp) != ERROR_MARK
5199 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5200 but TARGET is not valid memory reference, TEMP will differ
5201 from TARGET although it is really the same location. */
5202 && !(alt_rtl
5203 && rtx_equal_p (alt_rtl, target)
5204 && !side_effects_p (alt_rtl)
5205 && !side_effects_p (target))
5206 /* If there's nothing to copy, don't bother. Don't call
5207 expr_size unless necessary, because some front-ends (C++)
5208 expr_size-hook must not be given objects that are not
5209 supposed to be bit-copied or bit-initialized. */
5210 && expr_size (exp) != const0_rtx)
5211 {
5212 if (GET_MODE (temp) != GET_MODE (target)
5213 && GET_MODE (temp) != VOIDmode)
5214 {
5215 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5216 if (GET_MODE (target) == BLKmode
5217 && GET_MODE (temp) == BLKmode)
5218 emit_block_move (target, temp, expr_size (exp),
5219 (call_param_p
5220 ? BLOCK_OP_CALL_PARM
5221 : BLOCK_OP_NORMAL));
5222 else if (GET_MODE (target) == BLKmode)
5223 store_bit_field (target, INTVAL (expr_size (exp)) * BITS_PER_UNIT,
5224 0, 0, 0, GET_MODE (temp), temp);
5225 else
5226 convert_move (target, temp, unsignedp);
5227 }
5228
5229 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5230 {
5231 /* Handle copying a string constant into an array. The string
5232 constant may be shorter than the array. So copy just the string's
5233 actual length, and clear the rest. First get the size of the data
5234 type of the string, which is actually the size of the target. */
5235 rtx size = expr_size (exp);
5236
5237 if (CONST_INT_P (size)
5238 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5239 emit_block_move (target, temp, size,
5240 (call_param_p
5241 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5242 else
5243 {
5244 enum machine_mode pointer_mode
5245 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5246 enum machine_mode address_mode = get_address_mode (target);
5247
5248 /* Compute the size of the data to copy from the string. */
5249 tree copy_size
5250 = size_binop_loc (loc, MIN_EXPR,
5251 make_tree (sizetype, size),
5252 size_int (TREE_STRING_LENGTH (exp)));
5253 rtx copy_size_rtx
5254 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5255 (call_param_p
5256 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5257 rtx label = 0;
5258
5259 /* Copy that much. */
5260 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5261 TYPE_UNSIGNED (sizetype));
5262 emit_block_move (target, temp, copy_size_rtx,
5263 (call_param_p
5264 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5265
5266 /* Figure out how much is left in TARGET that we have to clear.
5267 Do all calculations in pointer_mode. */
5268 if (CONST_INT_P (copy_size_rtx))
5269 {
5270 size = plus_constant (address_mode, size,
5271 -INTVAL (copy_size_rtx));
5272 target = adjust_address (target, BLKmode,
5273 INTVAL (copy_size_rtx));
5274 }
5275 else
5276 {
5277 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5278 copy_size_rtx, NULL_RTX, 0,
5279 OPTAB_LIB_WIDEN);
5280
5281 if (GET_MODE (copy_size_rtx) != address_mode)
5282 copy_size_rtx = convert_to_mode (address_mode,
5283 copy_size_rtx,
5284 TYPE_UNSIGNED (sizetype));
5285
5286 target = offset_address (target, copy_size_rtx,
5287 highest_pow2_factor (copy_size));
5288 label = gen_label_rtx ();
5289 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5290 GET_MODE (size), 0, label);
5291 }
5292
5293 if (size != const0_rtx)
5294 clear_storage (target, size, BLOCK_OP_NORMAL);
5295
5296 if (label)
5297 emit_label (label);
5298 }
5299 }
5300 /* Handle calls that return values in multiple non-contiguous locations.
5301 The Irix 6 ABI has examples of this. */
5302 else if (GET_CODE (target) == PARALLEL)
5303 emit_group_load (target, temp, TREE_TYPE (exp),
5304 int_size_in_bytes (TREE_TYPE (exp)));
5305 else if (GET_MODE (temp) == BLKmode)
5306 emit_block_move (target, temp, expr_size (exp),
5307 (call_param_p
5308 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5309 else if (nontemporal
5310 && emit_storent_insn (target, temp))
5311 /* If we managed to emit a nontemporal store, there is nothing else to
5312 do. */
5313 ;
5314 else
5315 {
5316 temp = force_operand (temp, target);
5317 if (temp != target)
5318 emit_move_insn (target, temp);
5319 }
5320 }
5321
5322 return NULL_RTX;
5323 }
5324 \f
5325 /* Return true if field F of structure TYPE is a flexible array. */
5326
5327 static bool
5328 flexible_array_member_p (const_tree f, const_tree type)
5329 {
5330 const_tree tf;
5331
5332 tf = TREE_TYPE (f);
5333 return (DECL_CHAIN (f) == NULL
5334 && TREE_CODE (tf) == ARRAY_TYPE
5335 && TYPE_DOMAIN (tf)
5336 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5337 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5338 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5339 && int_size_in_bytes (type) >= 0);
5340 }
5341
5342 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5343 must have in order for it to completely initialize a value of type TYPE.
5344 Return -1 if the number isn't known.
5345
5346 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5347
5348 static HOST_WIDE_INT
5349 count_type_elements (const_tree type, bool for_ctor_p)
5350 {
5351 switch (TREE_CODE (type))
5352 {
5353 case ARRAY_TYPE:
5354 {
5355 tree nelts;
5356
5357 nelts = array_type_nelts (type);
5358 if (nelts && host_integerp (nelts, 1))
5359 {
5360 unsigned HOST_WIDE_INT n;
5361
5362 n = tree_low_cst (nelts, 1) + 1;
5363 if (n == 0 || for_ctor_p)
5364 return n;
5365 else
5366 return n * count_type_elements (TREE_TYPE (type), false);
5367 }
5368 return for_ctor_p ? -1 : 1;
5369 }
5370
5371 case RECORD_TYPE:
5372 {
5373 unsigned HOST_WIDE_INT n;
5374 tree f;
5375
5376 n = 0;
5377 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5378 if (TREE_CODE (f) == FIELD_DECL)
5379 {
5380 if (!for_ctor_p)
5381 n += count_type_elements (TREE_TYPE (f), false);
5382 else if (!flexible_array_member_p (f, type))
5383 /* Don't count flexible arrays, which are not supposed
5384 to be initialized. */
5385 n += 1;
5386 }
5387
5388 return n;
5389 }
5390
5391 case UNION_TYPE:
5392 case QUAL_UNION_TYPE:
5393 {
5394 tree f;
5395 HOST_WIDE_INT n, m;
5396
5397 gcc_assert (!for_ctor_p);
5398 /* Estimate the number of scalars in each field and pick the
5399 maximum. Other estimates would do instead; the idea is simply
5400 to make sure that the estimate is not sensitive to the ordering
5401 of the fields. */
5402 n = 1;
5403 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5404 if (TREE_CODE (f) == FIELD_DECL)
5405 {
5406 m = count_type_elements (TREE_TYPE (f), false);
5407 /* If the field doesn't span the whole union, add an extra
5408 scalar for the rest. */
5409 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
5410 TYPE_SIZE (type)) != 1)
5411 m++;
5412 if (n < m)
5413 n = m;
5414 }
5415 return n;
5416 }
5417
5418 case COMPLEX_TYPE:
5419 return 2;
5420
5421 case VECTOR_TYPE:
5422 return TYPE_VECTOR_SUBPARTS (type);
5423
5424 case INTEGER_TYPE:
5425 case REAL_TYPE:
5426 case FIXED_POINT_TYPE:
5427 case ENUMERAL_TYPE:
5428 case BOOLEAN_TYPE:
5429 case POINTER_TYPE:
5430 case OFFSET_TYPE:
5431 case REFERENCE_TYPE:
5432 case NULLPTR_TYPE:
5433 return 1;
5434
5435 case ERROR_MARK:
5436 return 0;
5437
5438 case VOID_TYPE:
5439 case METHOD_TYPE:
5440 case FUNCTION_TYPE:
5441 case LANG_TYPE:
5442 default:
5443 gcc_unreachable ();
5444 }
5445 }
5446
5447 /* Helper for categorize_ctor_elements. Identical interface. */
5448
5449 static bool
5450 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5451 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5452 {
5453 unsigned HOST_WIDE_INT idx;
5454 HOST_WIDE_INT nz_elts, init_elts, num_fields;
5455 tree value, purpose, elt_type;
5456
5457 /* Whether CTOR is a valid constant initializer, in accordance with what
5458 initializer_constant_valid_p does. If inferred from the constructor
5459 elements, true until proven otherwise. */
5460 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
5461 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
5462
5463 nz_elts = 0;
5464 init_elts = 0;
5465 num_fields = 0;
5466 elt_type = NULL_TREE;
5467
5468 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
5469 {
5470 HOST_WIDE_INT mult = 1;
5471
5472 if (TREE_CODE (purpose) == RANGE_EXPR)
5473 {
5474 tree lo_index = TREE_OPERAND (purpose, 0);
5475 tree hi_index = TREE_OPERAND (purpose, 1);
5476
5477 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
5478 mult = (tree_low_cst (hi_index, 1)
5479 - tree_low_cst (lo_index, 1) + 1);
5480 }
5481 num_fields += mult;
5482 elt_type = TREE_TYPE (value);
5483
5484 switch (TREE_CODE (value))
5485 {
5486 case CONSTRUCTOR:
5487 {
5488 HOST_WIDE_INT nz = 0, ic = 0;
5489
5490 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic,
5491 p_complete);
5492
5493 nz_elts += mult * nz;
5494 init_elts += mult * ic;
5495
5496 if (const_from_elts_p && const_p)
5497 const_p = const_elt_p;
5498 }
5499 break;
5500
5501 case INTEGER_CST:
5502 case REAL_CST:
5503 case FIXED_CST:
5504 if (!initializer_zerop (value))
5505 nz_elts += mult;
5506 init_elts += mult;
5507 break;
5508
5509 case STRING_CST:
5510 nz_elts += mult * TREE_STRING_LENGTH (value);
5511 init_elts += mult * TREE_STRING_LENGTH (value);
5512 break;
5513
5514 case COMPLEX_CST:
5515 if (!initializer_zerop (TREE_REALPART (value)))
5516 nz_elts += mult;
5517 if (!initializer_zerop (TREE_IMAGPART (value)))
5518 nz_elts += mult;
5519 init_elts += mult;
5520 break;
5521
5522 case VECTOR_CST:
5523 {
5524 unsigned i;
5525 for (i = 0; i < VECTOR_CST_NELTS (value); ++i)
5526 {
5527 tree v = VECTOR_CST_ELT (value, i);
5528 if (!initializer_zerop (v))
5529 nz_elts += mult;
5530 init_elts += mult;
5531 }
5532 }
5533 break;
5534
5535 default:
5536 {
5537 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
5538 nz_elts += mult * tc;
5539 init_elts += mult * tc;
5540
5541 if (const_from_elts_p && const_p)
5542 const_p = initializer_constant_valid_p (value, elt_type)
5543 != NULL_TREE;
5544 }
5545 break;
5546 }
5547 }
5548
5549 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
5550 num_fields, elt_type))
5551 *p_complete = false;
5552
5553 *p_nz_elts += nz_elts;
5554 *p_init_elts += init_elts;
5555
5556 return const_p;
5557 }
5558
5559 /* Examine CTOR to discover:
5560 * how many scalar fields are set to nonzero values,
5561 and place it in *P_NZ_ELTS;
5562 * how many scalar fields in total are in CTOR,
5563 and place it in *P_ELT_COUNT.
5564 * whether the constructor is complete -- in the sense that every
5565 meaningful byte is explicitly given a value --
5566 and place it in *P_COMPLETE.
5567
5568 Return whether or not CTOR is a valid static constant initializer, the same
5569 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5570
5571 bool
5572 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5573 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5574 {
5575 *p_nz_elts = 0;
5576 *p_init_elts = 0;
5577 *p_complete = true;
5578
5579 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete);
5580 }
5581
5582 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5583 of which had type LAST_TYPE. Each element was itself a complete
5584 initializer, in the sense that every meaningful byte was explicitly
5585 given a value. Return true if the same is true for the constructor
5586 as a whole. */
5587
5588 bool
5589 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
5590 const_tree last_type)
5591 {
5592 if (TREE_CODE (type) == UNION_TYPE
5593 || TREE_CODE (type) == QUAL_UNION_TYPE)
5594 {
5595 if (num_elts == 0)
5596 return false;
5597
5598 gcc_assert (num_elts == 1 && last_type);
5599
5600 /* ??? We could look at each element of the union, and find the
5601 largest element. Which would avoid comparing the size of the
5602 initialized element against any tail padding in the union.
5603 Doesn't seem worth the effort... */
5604 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
5605 }
5606
5607 return count_type_elements (type, true) == num_elts;
5608 }
5609
5610 /* Return 1 if EXP contains mostly (3/4) zeros. */
5611
5612 static int
5613 mostly_zeros_p (const_tree exp)
5614 {
5615 if (TREE_CODE (exp) == CONSTRUCTOR)
5616 {
5617 HOST_WIDE_INT nz_elts, init_elts;
5618 bool complete_p;
5619
5620 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5621 return !complete_p || nz_elts < init_elts / 4;
5622 }
5623
5624 return initializer_zerop (exp);
5625 }
5626
5627 /* Return 1 if EXP contains all zeros. */
5628
5629 static int
5630 all_zeros_p (const_tree exp)
5631 {
5632 if (TREE_CODE (exp) == CONSTRUCTOR)
5633 {
5634 HOST_WIDE_INT nz_elts, init_elts;
5635 bool complete_p;
5636
5637 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5638 return nz_elts == 0;
5639 }
5640
5641 return initializer_zerop (exp);
5642 }
5643 \f
5644 /* Helper function for store_constructor.
5645 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5646 TYPE is the type of the CONSTRUCTOR, not the element type.
5647 CLEARED is as for store_constructor.
5648 ALIAS_SET is the alias set to use for any stores.
5649
5650 This provides a recursive shortcut back to store_constructor when it isn't
5651 necessary to go through store_field. This is so that we can pass through
5652 the cleared field to let store_constructor know that we may not have to
5653 clear a substructure if the outer structure has already been cleared. */
5654
5655 static void
5656 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5657 HOST_WIDE_INT bitpos, enum machine_mode mode,
5658 tree exp, tree type, int cleared,
5659 alias_set_type alias_set)
5660 {
5661 if (TREE_CODE (exp) == CONSTRUCTOR
5662 /* We can only call store_constructor recursively if the size and
5663 bit position are on a byte boundary. */
5664 && bitpos % BITS_PER_UNIT == 0
5665 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5666 /* If we have a nonzero bitpos for a register target, then we just
5667 let store_field do the bitfield handling. This is unlikely to
5668 generate unnecessary clear instructions anyways. */
5669 && (bitpos == 0 || MEM_P (target)))
5670 {
5671 if (MEM_P (target))
5672 target
5673 = adjust_address (target,
5674 GET_MODE (target) == BLKmode
5675 || 0 != (bitpos
5676 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5677 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5678
5679
5680 /* Update the alias set, if required. */
5681 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5682 && MEM_ALIAS_SET (target) != 0)
5683 {
5684 target = copy_rtx (target);
5685 set_mem_alias_set (target, alias_set);
5686 }
5687
5688 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5689 }
5690 else
5691 store_field (target, bitsize, bitpos, 0, 0, mode, exp, type, alias_set,
5692 false);
5693 }
5694
5695 /* Store the value of constructor EXP into the rtx TARGET.
5696 TARGET is either a REG or a MEM; we know it cannot conflict, since
5697 safe_from_p has been called.
5698 CLEARED is true if TARGET is known to have been zero'd.
5699 SIZE is the number of bytes of TARGET we are allowed to modify: this
5700 may not be the same as the size of EXP if we are assigning to a field
5701 which has been packed to exclude padding bits. */
5702
5703 static void
5704 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5705 {
5706 tree type = TREE_TYPE (exp);
5707 #ifdef WORD_REGISTER_OPERATIONS
5708 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5709 #endif
5710
5711 switch (TREE_CODE (type))
5712 {
5713 case RECORD_TYPE:
5714 case UNION_TYPE:
5715 case QUAL_UNION_TYPE:
5716 {
5717 unsigned HOST_WIDE_INT idx;
5718 tree field, value;
5719
5720 /* If size is zero or the target is already cleared, do nothing. */
5721 if (size == 0 || cleared)
5722 cleared = 1;
5723 /* We either clear the aggregate or indicate the value is dead. */
5724 else if ((TREE_CODE (type) == UNION_TYPE
5725 || TREE_CODE (type) == QUAL_UNION_TYPE)
5726 && ! CONSTRUCTOR_ELTS (exp))
5727 /* If the constructor is empty, clear the union. */
5728 {
5729 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5730 cleared = 1;
5731 }
5732
5733 /* If we are building a static constructor into a register,
5734 set the initial value as zero so we can fold the value into
5735 a constant. But if more than one register is involved,
5736 this probably loses. */
5737 else if (REG_P (target) && TREE_STATIC (exp)
5738 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5739 {
5740 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5741 cleared = 1;
5742 }
5743
5744 /* If the constructor has fewer fields than the structure or
5745 if we are initializing the structure to mostly zeros, clear
5746 the whole structure first. Don't do this if TARGET is a
5747 register whose mode size isn't equal to SIZE since
5748 clear_storage can't handle this case. */
5749 else if (size > 0
5750 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5751 != fields_length (type))
5752 || mostly_zeros_p (exp))
5753 && (!REG_P (target)
5754 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5755 == size)))
5756 {
5757 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5758 cleared = 1;
5759 }
5760
5761 if (REG_P (target) && !cleared)
5762 emit_clobber (target);
5763
5764 /* Store each element of the constructor into the
5765 corresponding field of TARGET. */
5766 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5767 {
5768 enum machine_mode mode;
5769 HOST_WIDE_INT bitsize;
5770 HOST_WIDE_INT bitpos = 0;
5771 tree offset;
5772 rtx to_rtx = target;
5773
5774 /* Just ignore missing fields. We cleared the whole
5775 structure, above, if any fields are missing. */
5776 if (field == 0)
5777 continue;
5778
5779 if (cleared && initializer_zerop (value))
5780 continue;
5781
5782 if (host_integerp (DECL_SIZE (field), 1))
5783 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5784 else
5785 bitsize = -1;
5786
5787 mode = DECL_MODE (field);
5788 if (DECL_BIT_FIELD (field))
5789 mode = VOIDmode;
5790
5791 offset = DECL_FIELD_OFFSET (field);
5792 if (host_integerp (offset, 0)
5793 && host_integerp (bit_position (field), 0))
5794 {
5795 bitpos = int_bit_position (field);
5796 offset = 0;
5797 }
5798 else
5799 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5800
5801 if (offset)
5802 {
5803 enum machine_mode address_mode;
5804 rtx offset_rtx;
5805
5806 offset
5807 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5808 make_tree (TREE_TYPE (exp),
5809 target));
5810
5811 offset_rtx = expand_normal (offset);
5812 gcc_assert (MEM_P (to_rtx));
5813
5814 address_mode = get_address_mode (to_rtx);
5815 if (GET_MODE (offset_rtx) != address_mode)
5816 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5817
5818 to_rtx = offset_address (to_rtx, offset_rtx,
5819 highest_pow2_factor (offset));
5820 }
5821
5822 #ifdef WORD_REGISTER_OPERATIONS
5823 /* If this initializes a field that is smaller than a
5824 word, at the start of a word, try to widen it to a full
5825 word. This special case allows us to output C++ member
5826 function initializations in a form that the optimizers
5827 can understand. */
5828 if (REG_P (target)
5829 && bitsize < BITS_PER_WORD
5830 && bitpos % BITS_PER_WORD == 0
5831 && GET_MODE_CLASS (mode) == MODE_INT
5832 && TREE_CODE (value) == INTEGER_CST
5833 && exp_size >= 0
5834 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5835 {
5836 tree type = TREE_TYPE (value);
5837
5838 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5839 {
5840 type = lang_hooks.types.type_for_mode
5841 (word_mode, TYPE_UNSIGNED (type));
5842 value = fold_convert (type, value);
5843 }
5844
5845 if (BYTES_BIG_ENDIAN)
5846 value
5847 = fold_build2 (LSHIFT_EXPR, type, value,
5848 build_int_cst (type,
5849 BITS_PER_WORD - bitsize));
5850 bitsize = BITS_PER_WORD;
5851 mode = word_mode;
5852 }
5853 #endif
5854
5855 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5856 && DECL_NONADDRESSABLE_P (field))
5857 {
5858 to_rtx = copy_rtx (to_rtx);
5859 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5860 }
5861
5862 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5863 value, type, cleared,
5864 get_alias_set (TREE_TYPE (field)));
5865 }
5866 break;
5867 }
5868 case ARRAY_TYPE:
5869 {
5870 tree value, index;
5871 unsigned HOST_WIDE_INT i;
5872 int need_to_clear;
5873 tree domain;
5874 tree elttype = TREE_TYPE (type);
5875 int const_bounds_p;
5876 HOST_WIDE_INT minelt = 0;
5877 HOST_WIDE_INT maxelt = 0;
5878
5879 domain = TYPE_DOMAIN (type);
5880 const_bounds_p = (TYPE_MIN_VALUE (domain)
5881 && TYPE_MAX_VALUE (domain)
5882 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5883 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5884
5885 /* If we have constant bounds for the range of the type, get them. */
5886 if (const_bounds_p)
5887 {
5888 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5889 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5890 }
5891
5892 /* If the constructor has fewer elements than the array, clear
5893 the whole array first. Similarly if this is static
5894 constructor of a non-BLKmode object. */
5895 if (cleared)
5896 need_to_clear = 0;
5897 else if (REG_P (target) && TREE_STATIC (exp))
5898 need_to_clear = 1;
5899 else
5900 {
5901 unsigned HOST_WIDE_INT idx;
5902 tree index, value;
5903 HOST_WIDE_INT count = 0, zero_count = 0;
5904 need_to_clear = ! const_bounds_p;
5905
5906 /* This loop is a more accurate version of the loop in
5907 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5908 is also needed to check for missing elements. */
5909 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5910 {
5911 HOST_WIDE_INT this_node_count;
5912
5913 if (need_to_clear)
5914 break;
5915
5916 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5917 {
5918 tree lo_index = TREE_OPERAND (index, 0);
5919 tree hi_index = TREE_OPERAND (index, 1);
5920
5921 if (! host_integerp (lo_index, 1)
5922 || ! host_integerp (hi_index, 1))
5923 {
5924 need_to_clear = 1;
5925 break;
5926 }
5927
5928 this_node_count = (tree_low_cst (hi_index, 1)
5929 - tree_low_cst (lo_index, 1) + 1);
5930 }
5931 else
5932 this_node_count = 1;
5933
5934 count += this_node_count;
5935 if (mostly_zeros_p (value))
5936 zero_count += this_node_count;
5937 }
5938
5939 /* Clear the entire array first if there are any missing
5940 elements, or if the incidence of zero elements is >=
5941 75%. */
5942 if (! need_to_clear
5943 && (count < maxelt - minelt + 1
5944 || 4 * zero_count >= 3 * count))
5945 need_to_clear = 1;
5946 }
5947
5948 if (need_to_clear && size > 0)
5949 {
5950 if (REG_P (target))
5951 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5952 else
5953 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5954 cleared = 1;
5955 }
5956
5957 if (!cleared && REG_P (target))
5958 /* Inform later passes that the old value is dead. */
5959 emit_clobber (target);
5960
5961 /* Store each element of the constructor into the
5962 corresponding element of TARGET, determined by counting the
5963 elements. */
5964 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5965 {
5966 enum machine_mode mode;
5967 HOST_WIDE_INT bitsize;
5968 HOST_WIDE_INT bitpos;
5969 rtx xtarget = target;
5970
5971 if (cleared && initializer_zerop (value))
5972 continue;
5973
5974 mode = TYPE_MODE (elttype);
5975 if (mode == BLKmode)
5976 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5977 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5978 : -1);
5979 else
5980 bitsize = GET_MODE_BITSIZE (mode);
5981
5982 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5983 {
5984 tree lo_index = TREE_OPERAND (index, 0);
5985 tree hi_index = TREE_OPERAND (index, 1);
5986 rtx index_r, pos_rtx;
5987 HOST_WIDE_INT lo, hi, count;
5988 tree position;
5989
5990 /* If the range is constant and "small", unroll the loop. */
5991 if (const_bounds_p
5992 && host_integerp (lo_index, 0)
5993 && host_integerp (hi_index, 0)
5994 && (lo = tree_low_cst (lo_index, 0),
5995 hi = tree_low_cst (hi_index, 0),
5996 count = hi - lo + 1,
5997 (!MEM_P (target)
5998 || count <= 2
5999 || (host_integerp (TYPE_SIZE (elttype), 1)
6000 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
6001 <= 40 * 8)))))
6002 {
6003 lo -= minelt; hi -= minelt;
6004 for (; lo <= hi; lo++)
6005 {
6006 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
6007
6008 if (MEM_P (target)
6009 && !MEM_KEEP_ALIAS_SET_P (target)
6010 && TREE_CODE (type) == ARRAY_TYPE
6011 && TYPE_NONALIASED_COMPONENT (type))
6012 {
6013 target = copy_rtx (target);
6014 MEM_KEEP_ALIAS_SET_P (target) = 1;
6015 }
6016
6017 store_constructor_field
6018 (target, bitsize, bitpos, mode, value, type, cleared,
6019 get_alias_set (elttype));
6020 }
6021 }
6022 else
6023 {
6024 rtx loop_start = gen_label_rtx ();
6025 rtx loop_end = gen_label_rtx ();
6026 tree exit_cond;
6027
6028 expand_normal (hi_index);
6029
6030 index = build_decl (EXPR_LOCATION (exp),
6031 VAR_DECL, NULL_TREE, domain);
6032 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6033 SET_DECL_RTL (index, index_r);
6034 store_expr (lo_index, index_r, 0, false);
6035
6036 /* Build the head of the loop. */
6037 do_pending_stack_adjust ();
6038 emit_label (loop_start);
6039
6040 /* Assign value to element index. */
6041 position =
6042 fold_convert (ssizetype,
6043 fold_build2 (MINUS_EXPR,
6044 TREE_TYPE (index),
6045 index,
6046 TYPE_MIN_VALUE (domain)));
6047
6048 position =
6049 size_binop (MULT_EXPR, position,
6050 fold_convert (ssizetype,
6051 TYPE_SIZE_UNIT (elttype)));
6052
6053 pos_rtx = expand_normal (position);
6054 xtarget = offset_address (target, pos_rtx,
6055 highest_pow2_factor (position));
6056 xtarget = adjust_address (xtarget, mode, 0);
6057 if (TREE_CODE (value) == CONSTRUCTOR)
6058 store_constructor (value, xtarget, cleared,
6059 bitsize / BITS_PER_UNIT);
6060 else
6061 store_expr (value, xtarget, 0, false);
6062
6063 /* Generate a conditional jump to exit the loop. */
6064 exit_cond = build2 (LT_EXPR, integer_type_node,
6065 index, hi_index);
6066 jumpif (exit_cond, loop_end, -1);
6067
6068 /* Update the loop counter, and jump to the head of
6069 the loop. */
6070 expand_assignment (index,
6071 build2 (PLUS_EXPR, TREE_TYPE (index),
6072 index, integer_one_node),
6073 false);
6074
6075 emit_jump (loop_start);
6076
6077 /* Build the end of the loop. */
6078 emit_label (loop_end);
6079 }
6080 }
6081 else if ((index != 0 && ! host_integerp (index, 0))
6082 || ! host_integerp (TYPE_SIZE (elttype), 1))
6083 {
6084 tree position;
6085
6086 if (index == 0)
6087 index = ssize_int (1);
6088
6089 if (minelt)
6090 index = fold_convert (ssizetype,
6091 fold_build2 (MINUS_EXPR,
6092 TREE_TYPE (index),
6093 index,
6094 TYPE_MIN_VALUE (domain)));
6095
6096 position =
6097 size_binop (MULT_EXPR, index,
6098 fold_convert (ssizetype,
6099 TYPE_SIZE_UNIT (elttype)));
6100 xtarget = offset_address (target,
6101 expand_normal (position),
6102 highest_pow2_factor (position));
6103 xtarget = adjust_address (xtarget, mode, 0);
6104 store_expr (value, xtarget, 0, false);
6105 }
6106 else
6107 {
6108 if (index != 0)
6109 bitpos = ((tree_low_cst (index, 0) - minelt)
6110 * tree_low_cst (TYPE_SIZE (elttype), 1));
6111 else
6112 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
6113
6114 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6115 && TREE_CODE (type) == ARRAY_TYPE
6116 && TYPE_NONALIASED_COMPONENT (type))
6117 {
6118 target = copy_rtx (target);
6119 MEM_KEEP_ALIAS_SET_P (target) = 1;
6120 }
6121 store_constructor_field (target, bitsize, bitpos, mode, value,
6122 type, cleared, get_alias_set (elttype));
6123 }
6124 }
6125 break;
6126 }
6127
6128 case VECTOR_TYPE:
6129 {
6130 unsigned HOST_WIDE_INT idx;
6131 constructor_elt *ce;
6132 int i;
6133 int need_to_clear;
6134 int icode = 0;
6135 tree elttype = TREE_TYPE (type);
6136 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
6137 enum machine_mode eltmode = TYPE_MODE (elttype);
6138 HOST_WIDE_INT bitsize;
6139 HOST_WIDE_INT bitpos;
6140 rtvec vector = NULL;
6141 unsigned n_elts;
6142 alias_set_type alias;
6143
6144 gcc_assert (eltmode != BLKmode);
6145
6146 n_elts = TYPE_VECTOR_SUBPARTS (type);
6147 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
6148 {
6149 enum machine_mode mode = GET_MODE (target);
6150
6151 icode = (int) optab_handler (vec_init_optab, mode);
6152 if (icode != CODE_FOR_nothing)
6153 {
6154 unsigned int i;
6155
6156 vector = rtvec_alloc (n_elts);
6157 for (i = 0; i < n_elts; i++)
6158 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
6159 }
6160 }
6161
6162 /* If the constructor has fewer elements than the vector,
6163 clear the whole array first. Similarly if this is static
6164 constructor of a non-BLKmode object. */
6165 if (cleared)
6166 need_to_clear = 0;
6167 else if (REG_P (target) && TREE_STATIC (exp))
6168 need_to_clear = 1;
6169 else
6170 {
6171 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6172 tree value;
6173
6174 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6175 {
6176 int n_elts_here = tree_low_cst
6177 (int_const_binop (TRUNC_DIV_EXPR,
6178 TYPE_SIZE (TREE_TYPE (value)),
6179 TYPE_SIZE (elttype)), 1);
6180
6181 count += n_elts_here;
6182 if (mostly_zeros_p (value))
6183 zero_count += n_elts_here;
6184 }
6185
6186 /* Clear the entire vector first if there are any missing elements,
6187 or if the incidence of zero elements is >= 75%. */
6188 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
6189 }
6190
6191 if (need_to_clear && size > 0 && !vector)
6192 {
6193 if (REG_P (target))
6194 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6195 else
6196 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6197 cleared = 1;
6198 }
6199
6200 /* Inform later passes that the old value is dead. */
6201 if (!cleared && !vector && REG_P (target))
6202 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6203
6204 if (MEM_P (target))
6205 alias = MEM_ALIAS_SET (target);
6206 else
6207 alias = get_alias_set (elttype);
6208
6209 /* Store each element of the constructor into the corresponding
6210 element of TARGET, determined by counting the elements. */
6211 for (idx = 0, i = 0;
6212 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6213 idx++, i += bitsize / elt_size)
6214 {
6215 HOST_WIDE_INT eltpos;
6216 tree value = ce->value;
6217
6218 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
6219 if (cleared && initializer_zerop (value))
6220 continue;
6221
6222 if (ce->index)
6223 eltpos = tree_low_cst (ce->index, 1);
6224 else
6225 eltpos = i;
6226
6227 if (vector)
6228 {
6229 /* Vector CONSTRUCTORs should only be built from smaller
6230 vectors in the case of BLKmode vectors. */
6231 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6232 RTVEC_ELT (vector, eltpos)
6233 = expand_normal (value);
6234 }
6235 else
6236 {
6237 enum machine_mode value_mode =
6238 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6239 ? TYPE_MODE (TREE_TYPE (value))
6240 : eltmode;
6241 bitpos = eltpos * elt_size;
6242 store_constructor_field (target, bitsize, bitpos,
6243 value_mode, value, type,
6244 cleared, alias);
6245 }
6246 }
6247
6248 if (vector)
6249 emit_insn (GEN_FCN (icode)
6250 (target,
6251 gen_rtx_PARALLEL (GET_MODE (target), vector)));
6252 break;
6253 }
6254
6255 default:
6256 gcc_unreachable ();
6257 }
6258 }
6259
6260 /* Store the value of EXP (an expression tree)
6261 into a subfield of TARGET which has mode MODE and occupies
6262 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6263 If MODE is VOIDmode, it means that we are storing into a bit-field.
6264
6265 BITREGION_START is bitpos of the first bitfield in this region.
6266 BITREGION_END is the bitpos of the ending bitfield in this region.
6267 These two fields are 0, if the C++ memory model does not apply,
6268 or we are not interested in keeping track of bitfield regions.
6269
6270 Always return const0_rtx unless we have something particular to
6271 return.
6272
6273 TYPE is the type of the underlying object,
6274
6275 ALIAS_SET is the alias set for the destination. This value will
6276 (in general) be different from that for TARGET, since TARGET is a
6277 reference to the containing structure.
6278
6279 If NONTEMPORAL is true, try generating a nontemporal store. */
6280
6281 static rtx
6282 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
6283 unsigned HOST_WIDE_INT bitregion_start,
6284 unsigned HOST_WIDE_INT bitregion_end,
6285 enum machine_mode mode, tree exp, tree type,
6286 alias_set_type alias_set, bool nontemporal)
6287 {
6288 if (TREE_CODE (exp) == ERROR_MARK)
6289 return const0_rtx;
6290
6291 /* If we have nothing to store, do nothing unless the expression has
6292 side-effects. */
6293 if (bitsize == 0)
6294 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6295
6296 /* If we are storing into an unaligned field of an aligned union that is
6297 in a register, we may have the mode of TARGET being an integer mode but
6298 MODE == BLKmode. In that case, get an aligned object whose size and
6299 alignment are the same as TARGET and store TARGET into it (we can avoid
6300 the store if the field being stored is the entire width of TARGET). Then
6301 call ourselves recursively to store the field into a BLKmode version of
6302 that object. Finally, load from the object into TARGET. This is not
6303 very efficient in general, but should only be slightly more expensive
6304 than the otherwise-required unaligned accesses. Perhaps this can be
6305 cleaned up later. It's tempting to make OBJECT readonly, but it's set
6306 twice, once with emit_move_insn and once via store_field. */
6307
6308 if (mode == BLKmode
6309 && (REG_P (target) || GET_CODE (target) == SUBREG))
6310 {
6311 rtx object = assign_temp (type, 1, 1);
6312 rtx blk_object = adjust_address (object, BLKmode, 0);
6313
6314 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
6315 emit_move_insn (object, target);
6316
6317 store_field (blk_object, bitsize, bitpos,
6318 bitregion_start, bitregion_end,
6319 mode, exp, type, MEM_ALIAS_SET (blk_object), nontemporal);
6320
6321 emit_move_insn (target, object);
6322
6323 /* We want to return the BLKmode version of the data. */
6324 return blk_object;
6325 }
6326
6327 if (GET_CODE (target) == CONCAT)
6328 {
6329 /* We're storing into a struct containing a single __complex. */
6330
6331 gcc_assert (!bitpos);
6332 return store_expr (exp, target, 0, nontemporal);
6333 }
6334
6335 /* If the structure is in a register or if the component
6336 is a bit field, we cannot use addressing to access it.
6337 Use bit-field techniques or SUBREG to store in it. */
6338
6339 if (mode == VOIDmode
6340 || (mode != BLKmode && ! direct_store[(int) mode]
6341 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6342 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6343 || REG_P (target)
6344 || GET_CODE (target) == SUBREG
6345 /* If the field isn't aligned enough to store as an ordinary memref,
6346 store it as a bit field. */
6347 || (mode != BLKmode
6348 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
6349 || bitpos % GET_MODE_ALIGNMENT (mode))
6350 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
6351 || (bitpos % BITS_PER_UNIT != 0)))
6352 || (bitsize >= 0 && mode != BLKmode
6353 && GET_MODE_BITSIZE (mode) > bitsize)
6354 /* If the RHS and field are a constant size and the size of the
6355 RHS isn't the same size as the bitfield, we must use bitfield
6356 operations. */
6357 || (bitsize >= 0
6358 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
6359 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)
6360 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6361 decl we must use bitfield operations. */
6362 || (bitsize >= 0
6363 && TREE_CODE (exp) == MEM_REF
6364 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6365 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6366 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0),0 ))
6367 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
6368 {
6369 rtx temp;
6370 gimple nop_def;
6371
6372 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6373 implies a mask operation. If the precision is the same size as
6374 the field we're storing into, that mask is redundant. This is
6375 particularly common with bit field assignments generated by the
6376 C front end. */
6377 nop_def = get_def_for_expr (exp, NOP_EXPR);
6378 if (nop_def)
6379 {
6380 tree type = TREE_TYPE (exp);
6381 if (INTEGRAL_TYPE_P (type)
6382 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
6383 && bitsize == TYPE_PRECISION (type))
6384 {
6385 tree op = gimple_assign_rhs1 (nop_def);
6386 type = TREE_TYPE (op);
6387 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
6388 exp = op;
6389 }
6390 }
6391
6392 temp = expand_normal (exp);
6393
6394 /* If BITSIZE is narrower than the size of the type of EXP
6395 we will be narrowing TEMP. Normally, what's wanted are the
6396 low-order bits. However, if EXP's type is a record and this is
6397 big-endian machine, we want the upper BITSIZE bits. */
6398 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
6399 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
6400 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
6401 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
6402 GET_MODE_BITSIZE (GET_MODE (temp)) - bitsize,
6403 NULL_RTX, 1);
6404
6405 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6406 if (mode != VOIDmode && mode != BLKmode
6407 && mode != TYPE_MODE (TREE_TYPE (exp)))
6408 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
6409
6410 /* If the modes of TEMP and TARGET are both BLKmode, both
6411 must be in memory and BITPOS must be aligned on a byte
6412 boundary. If so, we simply do a block copy. Likewise
6413 for a BLKmode-like TARGET. */
6414 if (GET_MODE (temp) == BLKmode
6415 && (GET_MODE (target) == BLKmode
6416 || (MEM_P (target)
6417 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
6418 && (bitpos % BITS_PER_UNIT) == 0
6419 && (bitsize % BITS_PER_UNIT) == 0)))
6420 {
6421 gcc_assert (MEM_P (target) && MEM_P (temp)
6422 && (bitpos % BITS_PER_UNIT) == 0);
6423
6424 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
6425 emit_block_move (target, temp,
6426 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
6427 / BITS_PER_UNIT),
6428 BLOCK_OP_NORMAL);
6429
6430 return const0_rtx;
6431 }
6432
6433 /* Store the value in the bitfield. */
6434 store_bit_field (target, bitsize, bitpos,
6435 bitregion_start, bitregion_end,
6436 mode, temp);
6437
6438 return const0_rtx;
6439 }
6440 else
6441 {
6442 /* Now build a reference to just the desired component. */
6443 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
6444
6445 if (to_rtx == target)
6446 to_rtx = copy_rtx (to_rtx);
6447
6448 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
6449 set_mem_alias_set (to_rtx, alias_set);
6450
6451 return store_expr (exp, to_rtx, 0, nontemporal);
6452 }
6453 }
6454 \f
6455 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6456 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6457 codes and find the ultimate containing object, which we return.
6458
6459 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6460 bit position, and *PUNSIGNEDP to the signedness of the field.
6461 If the position of the field is variable, we store a tree
6462 giving the variable offset (in units) in *POFFSET.
6463 This offset is in addition to the bit position.
6464 If the position is not variable, we store 0 in *POFFSET.
6465
6466 If any of the extraction expressions is volatile,
6467 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6468
6469 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6470 Otherwise, it is a mode that can be used to access the field.
6471
6472 If the field describes a variable-sized object, *PMODE is set to
6473 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6474 this case, but the address of the object can be found.
6475
6476 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6477 look through nodes that serve as markers of a greater alignment than
6478 the one that can be deduced from the expression. These nodes make it
6479 possible for front-ends to prevent temporaries from being created by
6480 the middle-end on alignment considerations. For that purpose, the
6481 normal operating mode at high-level is to always pass FALSE so that
6482 the ultimate containing object is really returned; moreover, the
6483 associated predicate handled_component_p will always return TRUE
6484 on these nodes, thus indicating that they are essentially handled
6485 by get_inner_reference. TRUE should only be passed when the caller
6486 is scanning the expression in order to build another representation
6487 and specifically knows how to handle these nodes; as such, this is
6488 the normal operating mode in the RTL expanders. */
6489
6490 tree
6491 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
6492 HOST_WIDE_INT *pbitpos, tree *poffset,
6493 enum machine_mode *pmode, int *punsignedp,
6494 int *pvolatilep, bool keep_aligning)
6495 {
6496 tree size_tree = 0;
6497 enum machine_mode mode = VOIDmode;
6498 bool blkmode_bitfield = false;
6499 tree offset = size_zero_node;
6500 double_int bit_offset = double_int_zero;
6501
6502 /* First get the mode, signedness, and size. We do this from just the
6503 outermost expression. */
6504 *pbitsize = -1;
6505 if (TREE_CODE (exp) == COMPONENT_REF)
6506 {
6507 tree field = TREE_OPERAND (exp, 1);
6508 size_tree = DECL_SIZE (field);
6509 if (!DECL_BIT_FIELD (field))
6510 mode = DECL_MODE (field);
6511 else if (DECL_MODE (field) == BLKmode)
6512 blkmode_bitfield = true;
6513 else if (TREE_THIS_VOLATILE (exp)
6514 && flag_strict_volatile_bitfields > 0)
6515 /* Volatile bitfields should be accessed in the mode of the
6516 field's type, not the mode computed based on the bit
6517 size. */
6518 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
6519
6520 *punsignedp = DECL_UNSIGNED (field);
6521 }
6522 else if (TREE_CODE (exp) == BIT_FIELD_REF)
6523 {
6524 size_tree = TREE_OPERAND (exp, 1);
6525 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6526 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6527
6528 /* For vector types, with the correct size of access, use the mode of
6529 inner type. */
6530 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6531 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6532 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6533 mode = TYPE_MODE (TREE_TYPE (exp));
6534 }
6535 else
6536 {
6537 mode = TYPE_MODE (TREE_TYPE (exp));
6538 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6539
6540 if (mode == BLKmode)
6541 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6542 else
6543 *pbitsize = GET_MODE_BITSIZE (mode);
6544 }
6545
6546 if (size_tree != 0)
6547 {
6548 if (! host_integerp (size_tree, 1))
6549 mode = BLKmode, *pbitsize = -1;
6550 else
6551 *pbitsize = tree_low_cst (size_tree, 1);
6552 }
6553
6554 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6555 and find the ultimate containing object. */
6556 while (1)
6557 {
6558 switch (TREE_CODE (exp))
6559 {
6560 case BIT_FIELD_REF:
6561 bit_offset
6562 = double_int_add (bit_offset,
6563 tree_to_double_int (TREE_OPERAND (exp, 2)));
6564 break;
6565
6566 case COMPONENT_REF:
6567 {
6568 tree field = TREE_OPERAND (exp, 1);
6569 tree this_offset = component_ref_field_offset (exp);
6570
6571 /* If this field hasn't been filled in yet, don't go past it.
6572 This should only happen when folding expressions made during
6573 type construction. */
6574 if (this_offset == 0)
6575 break;
6576
6577 offset = size_binop (PLUS_EXPR, offset, this_offset);
6578 bit_offset = double_int_add (bit_offset,
6579 tree_to_double_int
6580 (DECL_FIELD_BIT_OFFSET (field)));
6581
6582 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6583 }
6584 break;
6585
6586 case ARRAY_REF:
6587 case ARRAY_RANGE_REF:
6588 {
6589 tree index = TREE_OPERAND (exp, 1);
6590 tree low_bound = array_ref_low_bound (exp);
6591 tree unit_size = array_ref_element_size (exp);
6592
6593 /* We assume all arrays have sizes that are a multiple of a byte.
6594 First subtract the lower bound, if any, in the type of the
6595 index, then convert to sizetype and multiply by the size of
6596 the array element. */
6597 if (! integer_zerop (low_bound))
6598 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6599 index, low_bound);
6600
6601 offset = size_binop (PLUS_EXPR, offset,
6602 size_binop (MULT_EXPR,
6603 fold_convert (sizetype, index),
6604 unit_size));
6605 }
6606 break;
6607
6608 case REALPART_EXPR:
6609 break;
6610
6611 case IMAGPART_EXPR:
6612 bit_offset = double_int_add (bit_offset,
6613 uhwi_to_double_int (*pbitsize));
6614 break;
6615
6616 case VIEW_CONVERT_EXPR:
6617 if (keep_aligning && STRICT_ALIGNMENT
6618 && (TYPE_ALIGN (TREE_TYPE (exp))
6619 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6620 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6621 < BIGGEST_ALIGNMENT)
6622 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6623 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6624 goto done;
6625 break;
6626
6627 case MEM_REF:
6628 /* Hand back the decl for MEM[&decl, off]. */
6629 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
6630 {
6631 tree off = TREE_OPERAND (exp, 1);
6632 if (!integer_zerop (off))
6633 {
6634 double_int boff, coff = mem_ref_offset (exp);
6635 boff = double_int_lshift (coff,
6636 BITS_PER_UNIT == 8
6637 ? 3 : exact_log2 (BITS_PER_UNIT),
6638 HOST_BITS_PER_DOUBLE_INT, true);
6639 bit_offset = double_int_add (bit_offset, boff);
6640 }
6641 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6642 }
6643 goto done;
6644
6645 default:
6646 goto done;
6647 }
6648
6649 /* If any reference in the chain is volatile, the effect is volatile. */
6650 if (TREE_THIS_VOLATILE (exp))
6651 *pvolatilep = 1;
6652
6653 exp = TREE_OPERAND (exp, 0);
6654 }
6655 done:
6656
6657 /* If OFFSET is constant, see if we can return the whole thing as a
6658 constant bit position. Make sure to handle overflow during
6659 this conversion. */
6660 if (TREE_CODE (offset) == INTEGER_CST)
6661 {
6662 double_int tem = tree_to_double_int (offset);
6663 tem = double_int_sext (tem, TYPE_PRECISION (sizetype));
6664 tem = double_int_lshift (tem,
6665 BITS_PER_UNIT == 8
6666 ? 3 : exact_log2 (BITS_PER_UNIT),
6667 HOST_BITS_PER_DOUBLE_INT, true);
6668 tem = double_int_add (tem, bit_offset);
6669 if (double_int_fits_in_shwi_p (tem))
6670 {
6671 *pbitpos = double_int_to_shwi (tem);
6672 *poffset = offset = NULL_TREE;
6673 }
6674 }
6675
6676 /* Otherwise, split it up. */
6677 if (offset)
6678 {
6679 /* Avoid returning a negative bitpos as this may wreak havoc later. */
6680 if (double_int_negative_p (bit_offset))
6681 {
6682 double_int mask
6683 = double_int_mask (BITS_PER_UNIT == 8
6684 ? 3 : exact_log2 (BITS_PER_UNIT));
6685 double_int tem = double_int_and_not (bit_offset, mask);
6686 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
6687 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
6688 bit_offset = double_int_sub (bit_offset, tem);
6689 tem = double_int_rshift (tem,
6690 BITS_PER_UNIT == 8
6691 ? 3 : exact_log2 (BITS_PER_UNIT),
6692 HOST_BITS_PER_DOUBLE_INT, true);
6693 offset = size_binop (PLUS_EXPR, offset,
6694 double_int_to_tree (sizetype, tem));
6695 }
6696
6697 *pbitpos = double_int_to_shwi (bit_offset);
6698 *poffset = offset;
6699 }
6700
6701 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6702 if (mode == VOIDmode
6703 && blkmode_bitfield
6704 && (*pbitpos % BITS_PER_UNIT) == 0
6705 && (*pbitsize % BITS_PER_UNIT) == 0)
6706 *pmode = BLKmode;
6707 else
6708 *pmode = mode;
6709
6710 return exp;
6711 }
6712
6713 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6714 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6715 EXP is marked as PACKED. */
6716
6717 bool
6718 contains_packed_reference (const_tree exp)
6719 {
6720 bool packed_p = false;
6721
6722 while (1)
6723 {
6724 switch (TREE_CODE (exp))
6725 {
6726 case COMPONENT_REF:
6727 {
6728 tree field = TREE_OPERAND (exp, 1);
6729 packed_p = DECL_PACKED (field)
6730 || TYPE_PACKED (TREE_TYPE (field))
6731 || TYPE_PACKED (TREE_TYPE (exp));
6732 if (packed_p)
6733 goto done;
6734 }
6735 break;
6736
6737 case BIT_FIELD_REF:
6738 case ARRAY_REF:
6739 case ARRAY_RANGE_REF:
6740 case REALPART_EXPR:
6741 case IMAGPART_EXPR:
6742 case VIEW_CONVERT_EXPR:
6743 break;
6744
6745 default:
6746 goto done;
6747 }
6748 exp = TREE_OPERAND (exp, 0);
6749 }
6750 done:
6751 return packed_p;
6752 }
6753
6754 /* Return a tree of sizetype representing the size, in bytes, of the element
6755 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6756
6757 tree
6758 array_ref_element_size (tree exp)
6759 {
6760 tree aligned_size = TREE_OPERAND (exp, 3);
6761 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6762 location_t loc = EXPR_LOCATION (exp);
6763
6764 /* If a size was specified in the ARRAY_REF, it's the size measured
6765 in alignment units of the element type. So multiply by that value. */
6766 if (aligned_size)
6767 {
6768 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6769 sizetype from another type of the same width and signedness. */
6770 if (TREE_TYPE (aligned_size) != sizetype)
6771 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6772 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6773 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6774 }
6775
6776 /* Otherwise, take the size from that of the element type. Substitute
6777 any PLACEHOLDER_EXPR that we have. */
6778 else
6779 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6780 }
6781
6782 /* Return a tree representing the lower bound of the array mentioned in
6783 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6784
6785 tree
6786 array_ref_low_bound (tree exp)
6787 {
6788 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6789
6790 /* If a lower bound is specified in EXP, use it. */
6791 if (TREE_OPERAND (exp, 2))
6792 return TREE_OPERAND (exp, 2);
6793
6794 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6795 substituting for a PLACEHOLDER_EXPR as needed. */
6796 if (domain_type && TYPE_MIN_VALUE (domain_type))
6797 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6798
6799 /* Otherwise, return a zero of the appropriate type. */
6800 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6801 }
6802
6803 /* Returns true if REF is an array reference to an array at the end of
6804 a structure. If this is the case, the array may be allocated larger
6805 than its upper bound implies. */
6806
6807 bool
6808 array_at_struct_end_p (tree ref)
6809 {
6810 if (TREE_CODE (ref) != ARRAY_REF
6811 && TREE_CODE (ref) != ARRAY_RANGE_REF)
6812 return false;
6813
6814 while (handled_component_p (ref))
6815 {
6816 /* If the reference chain contains a component reference to a
6817 non-union type and there follows another field the reference
6818 is not at the end of a structure. */
6819 if (TREE_CODE (ref) == COMPONENT_REF
6820 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
6821 {
6822 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
6823 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
6824 nextf = DECL_CHAIN (nextf);
6825 if (nextf)
6826 return false;
6827 }
6828
6829 ref = TREE_OPERAND (ref, 0);
6830 }
6831
6832 /* If the reference is based on a declared entity, the size of the array
6833 is constrained by its given domain. */
6834 if (DECL_P (ref))
6835 return false;
6836
6837 return true;
6838 }
6839
6840 /* Return a tree representing the upper bound of the array mentioned in
6841 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6842
6843 tree
6844 array_ref_up_bound (tree exp)
6845 {
6846 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6847
6848 /* If there is a domain type and it has an upper bound, use it, substituting
6849 for a PLACEHOLDER_EXPR as needed. */
6850 if (domain_type && TYPE_MAX_VALUE (domain_type))
6851 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6852
6853 /* Otherwise fail. */
6854 return NULL_TREE;
6855 }
6856
6857 /* Return a tree representing the offset, in bytes, of the field referenced
6858 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6859
6860 tree
6861 component_ref_field_offset (tree exp)
6862 {
6863 tree aligned_offset = TREE_OPERAND (exp, 2);
6864 tree field = TREE_OPERAND (exp, 1);
6865 location_t loc = EXPR_LOCATION (exp);
6866
6867 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6868 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6869 value. */
6870 if (aligned_offset)
6871 {
6872 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6873 sizetype from another type of the same width and signedness. */
6874 if (TREE_TYPE (aligned_offset) != sizetype)
6875 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
6876 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
6877 size_int (DECL_OFFSET_ALIGN (field)
6878 / BITS_PER_UNIT));
6879 }
6880
6881 /* Otherwise, take the offset from that of the field. Substitute
6882 any PLACEHOLDER_EXPR that we have. */
6883 else
6884 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6885 }
6886
6887 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6888
6889 static unsigned HOST_WIDE_INT
6890 target_align (const_tree target)
6891 {
6892 /* We might have a chain of nested references with intermediate misaligning
6893 bitfields components, so need to recurse to find out. */
6894
6895 unsigned HOST_WIDE_INT this_align, outer_align;
6896
6897 switch (TREE_CODE (target))
6898 {
6899 case BIT_FIELD_REF:
6900 return 1;
6901
6902 case COMPONENT_REF:
6903 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
6904 outer_align = target_align (TREE_OPERAND (target, 0));
6905 return MIN (this_align, outer_align);
6906
6907 case ARRAY_REF:
6908 case ARRAY_RANGE_REF:
6909 this_align = TYPE_ALIGN (TREE_TYPE (target));
6910 outer_align = target_align (TREE_OPERAND (target, 0));
6911 return MIN (this_align, outer_align);
6912
6913 CASE_CONVERT:
6914 case NON_LVALUE_EXPR:
6915 case VIEW_CONVERT_EXPR:
6916 this_align = TYPE_ALIGN (TREE_TYPE (target));
6917 outer_align = target_align (TREE_OPERAND (target, 0));
6918 return MAX (this_align, outer_align);
6919
6920 default:
6921 return TYPE_ALIGN (TREE_TYPE (target));
6922 }
6923 }
6924
6925 \f
6926 /* Given an rtx VALUE that may contain additions and multiplications, return
6927 an equivalent value that just refers to a register, memory, or constant.
6928 This is done by generating instructions to perform the arithmetic and
6929 returning a pseudo-register containing the value.
6930
6931 The returned value may be a REG, SUBREG, MEM or constant. */
6932
6933 rtx
6934 force_operand (rtx value, rtx target)
6935 {
6936 rtx op1, op2;
6937 /* Use subtarget as the target for operand 0 of a binary operation. */
6938 rtx subtarget = get_subtarget (target);
6939 enum rtx_code code = GET_CODE (value);
6940
6941 /* Check for subreg applied to an expression produced by loop optimizer. */
6942 if (code == SUBREG
6943 && !REG_P (SUBREG_REG (value))
6944 && !MEM_P (SUBREG_REG (value)))
6945 {
6946 value
6947 = simplify_gen_subreg (GET_MODE (value),
6948 force_reg (GET_MODE (SUBREG_REG (value)),
6949 force_operand (SUBREG_REG (value),
6950 NULL_RTX)),
6951 GET_MODE (SUBREG_REG (value)),
6952 SUBREG_BYTE (value));
6953 code = GET_CODE (value);
6954 }
6955
6956 /* Check for a PIC address load. */
6957 if ((code == PLUS || code == MINUS)
6958 && XEXP (value, 0) == pic_offset_table_rtx
6959 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6960 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6961 || GET_CODE (XEXP (value, 1)) == CONST))
6962 {
6963 if (!subtarget)
6964 subtarget = gen_reg_rtx (GET_MODE (value));
6965 emit_move_insn (subtarget, value);
6966 return subtarget;
6967 }
6968
6969 if (ARITHMETIC_P (value))
6970 {
6971 op2 = XEXP (value, 1);
6972 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6973 subtarget = 0;
6974 if (code == MINUS && CONST_INT_P (op2))
6975 {
6976 code = PLUS;
6977 op2 = negate_rtx (GET_MODE (value), op2);
6978 }
6979
6980 /* Check for an addition with OP2 a constant integer and our first
6981 operand a PLUS of a virtual register and something else. In that
6982 case, we want to emit the sum of the virtual register and the
6983 constant first and then add the other value. This allows virtual
6984 register instantiation to simply modify the constant rather than
6985 creating another one around this addition. */
6986 if (code == PLUS && CONST_INT_P (op2)
6987 && GET_CODE (XEXP (value, 0)) == PLUS
6988 && REG_P (XEXP (XEXP (value, 0), 0))
6989 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6990 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6991 {
6992 rtx temp = expand_simple_binop (GET_MODE (value), code,
6993 XEXP (XEXP (value, 0), 0), op2,
6994 subtarget, 0, OPTAB_LIB_WIDEN);
6995 return expand_simple_binop (GET_MODE (value), code, temp,
6996 force_operand (XEXP (XEXP (value,
6997 0), 1), 0),
6998 target, 0, OPTAB_LIB_WIDEN);
6999 }
7000
7001 op1 = force_operand (XEXP (value, 0), subtarget);
7002 op2 = force_operand (op2, NULL_RTX);
7003 switch (code)
7004 {
7005 case MULT:
7006 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7007 case DIV:
7008 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7009 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7010 target, 1, OPTAB_LIB_WIDEN);
7011 else
7012 return expand_divmod (0,
7013 FLOAT_MODE_P (GET_MODE (value))
7014 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7015 GET_MODE (value), op1, op2, target, 0);
7016 case MOD:
7017 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7018 target, 0);
7019 case UDIV:
7020 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7021 target, 1);
7022 case UMOD:
7023 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7024 target, 1);
7025 case ASHIFTRT:
7026 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7027 target, 0, OPTAB_LIB_WIDEN);
7028 default:
7029 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7030 target, 1, OPTAB_LIB_WIDEN);
7031 }
7032 }
7033 if (UNARY_P (value))
7034 {
7035 if (!target)
7036 target = gen_reg_rtx (GET_MODE (value));
7037 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7038 switch (code)
7039 {
7040 case ZERO_EXTEND:
7041 case SIGN_EXTEND:
7042 case TRUNCATE:
7043 case FLOAT_EXTEND:
7044 case FLOAT_TRUNCATE:
7045 convert_move (target, op1, code == ZERO_EXTEND);
7046 return target;
7047
7048 case FIX:
7049 case UNSIGNED_FIX:
7050 expand_fix (target, op1, code == UNSIGNED_FIX);
7051 return target;
7052
7053 case FLOAT:
7054 case UNSIGNED_FLOAT:
7055 expand_float (target, op1, code == UNSIGNED_FLOAT);
7056 return target;
7057
7058 default:
7059 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7060 }
7061 }
7062
7063 #ifdef INSN_SCHEDULING
7064 /* On machines that have insn scheduling, we want all memory reference to be
7065 explicit, so we need to deal with such paradoxical SUBREGs. */
7066 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7067 value
7068 = simplify_gen_subreg (GET_MODE (value),
7069 force_reg (GET_MODE (SUBREG_REG (value)),
7070 force_operand (SUBREG_REG (value),
7071 NULL_RTX)),
7072 GET_MODE (SUBREG_REG (value)),
7073 SUBREG_BYTE (value));
7074 #endif
7075
7076 return value;
7077 }
7078 \f
7079 /* Subroutine of expand_expr: return nonzero iff there is no way that
7080 EXP can reference X, which is being modified. TOP_P is nonzero if this
7081 call is going to be used to determine whether we need a temporary
7082 for EXP, as opposed to a recursive call to this function.
7083
7084 It is always safe for this routine to return zero since it merely
7085 searches for optimization opportunities. */
7086
7087 int
7088 safe_from_p (const_rtx x, tree exp, int top_p)
7089 {
7090 rtx exp_rtl = 0;
7091 int i, nops;
7092
7093 if (x == 0
7094 /* If EXP has varying size, we MUST use a target since we currently
7095 have no way of allocating temporaries of variable size
7096 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7097 So we assume here that something at a higher level has prevented a
7098 clash. This is somewhat bogus, but the best we can do. Only
7099 do this when X is BLKmode and when we are at the top level. */
7100 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7101 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7102 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7103 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7104 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7105 != INTEGER_CST)
7106 && GET_MODE (x) == BLKmode)
7107 /* If X is in the outgoing argument area, it is always safe. */
7108 || (MEM_P (x)
7109 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7110 || (GET_CODE (XEXP (x, 0)) == PLUS
7111 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7112 return 1;
7113
7114 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7115 find the underlying pseudo. */
7116 if (GET_CODE (x) == SUBREG)
7117 {
7118 x = SUBREG_REG (x);
7119 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7120 return 0;
7121 }
7122
7123 /* Now look at our tree code and possibly recurse. */
7124 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7125 {
7126 case tcc_declaration:
7127 exp_rtl = DECL_RTL_IF_SET (exp);
7128 break;
7129
7130 case tcc_constant:
7131 return 1;
7132
7133 case tcc_exceptional:
7134 if (TREE_CODE (exp) == TREE_LIST)
7135 {
7136 while (1)
7137 {
7138 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7139 return 0;
7140 exp = TREE_CHAIN (exp);
7141 if (!exp)
7142 return 1;
7143 if (TREE_CODE (exp) != TREE_LIST)
7144 return safe_from_p (x, exp, 0);
7145 }
7146 }
7147 else if (TREE_CODE (exp) == CONSTRUCTOR)
7148 {
7149 constructor_elt *ce;
7150 unsigned HOST_WIDE_INT idx;
7151
7152 FOR_EACH_VEC_ELT (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce)
7153 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7154 || !safe_from_p (x, ce->value, 0))
7155 return 0;
7156 return 1;
7157 }
7158 else if (TREE_CODE (exp) == ERROR_MARK)
7159 return 1; /* An already-visited SAVE_EXPR? */
7160 else
7161 return 0;
7162
7163 case tcc_statement:
7164 /* The only case we look at here is the DECL_INITIAL inside a
7165 DECL_EXPR. */
7166 return (TREE_CODE (exp) != DECL_EXPR
7167 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7168 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7169 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7170
7171 case tcc_binary:
7172 case tcc_comparison:
7173 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7174 return 0;
7175 /* Fall through. */
7176
7177 case tcc_unary:
7178 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7179
7180 case tcc_expression:
7181 case tcc_reference:
7182 case tcc_vl_exp:
7183 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7184 the expression. If it is set, we conflict iff we are that rtx or
7185 both are in memory. Otherwise, we check all operands of the
7186 expression recursively. */
7187
7188 switch (TREE_CODE (exp))
7189 {
7190 case ADDR_EXPR:
7191 /* If the operand is static or we are static, we can't conflict.
7192 Likewise if we don't conflict with the operand at all. */
7193 if (staticp (TREE_OPERAND (exp, 0))
7194 || TREE_STATIC (exp)
7195 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7196 return 1;
7197
7198 /* Otherwise, the only way this can conflict is if we are taking
7199 the address of a DECL a that address if part of X, which is
7200 very rare. */
7201 exp = TREE_OPERAND (exp, 0);
7202 if (DECL_P (exp))
7203 {
7204 if (!DECL_RTL_SET_P (exp)
7205 || !MEM_P (DECL_RTL (exp)))
7206 return 0;
7207 else
7208 exp_rtl = XEXP (DECL_RTL (exp), 0);
7209 }
7210 break;
7211
7212 case MEM_REF:
7213 if (MEM_P (x)
7214 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7215 get_alias_set (exp)))
7216 return 0;
7217 break;
7218
7219 case CALL_EXPR:
7220 /* Assume that the call will clobber all hard registers and
7221 all of memory. */
7222 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7223 || MEM_P (x))
7224 return 0;
7225 break;
7226
7227 case WITH_CLEANUP_EXPR:
7228 case CLEANUP_POINT_EXPR:
7229 /* Lowered by gimplify.c. */
7230 gcc_unreachable ();
7231
7232 case SAVE_EXPR:
7233 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7234
7235 default:
7236 break;
7237 }
7238
7239 /* If we have an rtx, we do not need to scan our operands. */
7240 if (exp_rtl)
7241 break;
7242
7243 nops = TREE_OPERAND_LENGTH (exp);
7244 for (i = 0; i < nops; i++)
7245 if (TREE_OPERAND (exp, i) != 0
7246 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7247 return 0;
7248
7249 break;
7250
7251 case tcc_type:
7252 /* Should never get a type here. */
7253 gcc_unreachable ();
7254 }
7255
7256 /* If we have an rtl, find any enclosed object. Then see if we conflict
7257 with it. */
7258 if (exp_rtl)
7259 {
7260 if (GET_CODE (exp_rtl) == SUBREG)
7261 {
7262 exp_rtl = SUBREG_REG (exp_rtl);
7263 if (REG_P (exp_rtl)
7264 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7265 return 0;
7266 }
7267
7268 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7269 are memory and they conflict. */
7270 return ! (rtx_equal_p (x, exp_rtl)
7271 || (MEM_P (x) && MEM_P (exp_rtl)
7272 && true_dependence (exp_rtl, VOIDmode, x)));
7273 }
7274
7275 /* If we reach here, it is safe. */
7276 return 1;
7277 }
7278
7279 \f
7280 /* Return the highest power of two that EXP is known to be a multiple of.
7281 This is used in updating alignment of MEMs in array references. */
7282
7283 unsigned HOST_WIDE_INT
7284 highest_pow2_factor (const_tree exp)
7285 {
7286 unsigned HOST_WIDE_INT c0, c1;
7287
7288 switch (TREE_CODE (exp))
7289 {
7290 case INTEGER_CST:
7291 /* We can find the lowest bit that's a one. If the low
7292 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
7293 We need to handle this case since we can find it in a COND_EXPR,
7294 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
7295 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
7296 later ICE. */
7297 if (TREE_OVERFLOW (exp))
7298 return BIGGEST_ALIGNMENT;
7299 else
7300 {
7301 /* Note: tree_low_cst is intentionally not used here,
7302 we don't care about the upper bits. */
7303 c0 = TREE_INT_CST_LOW (exp);
7304 c0 &= -c0;
7305 return c0 ? c0 : BIGGEST_ALIGNMENT;
7306 }
7307 break;
7308
7309 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
7310 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
7311 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
7312 return MIN (c0, c1);
7313
7314 case MULT_EXPR:
7315 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
7316 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
7317 return c0 * c1;
7318
7319 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
7320 case CEIL_DIV_EXPR:
7321 if (integer_pow2p (TREE_OPERAND (exp, 1))
7322 && host_integerp (TREE_OPERAND (exp, 1), 1))
7323 {
7324 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
7325 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
7326 return MAX (1, c0 / c1);
7327 }
7328 break;
7329
7330 case BIT_AND_EXPR:
7331 /* The highest power of two of a bit-and expression is the maximum of
7332 that of its operands. We typically get here for a complex LHS and
7333 a constant negative power of two on the RHS to force an explicit
7334 alignment, so don't bother looking at the LHS. */
7335 return highest_pow2_factor (TREE_OPERAND (exp, 1));
7336
7337 CASE_CONVERT:
7338 case SAVE_EXPR:
7339 return highest_pow2_factor (TREE_OPERAND (exp, 0));
7340
7341 case COMPOUND_EXPR:
7342 return highest_pow2_factor (TREE_OPERAND (exp, 1));
7343
7344 case COND_EXPR:
7345 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
7346 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
7347 return MIN (c0, c1);
7348
7349 default:
7350 break;
7351 }
7352
7353 return 1;
7354 }
7355
7356 /* Similar, except that the alignment requirements of TARGET are
7357 taken into account. Assume it is at least as aligned as its
7358 type, unless it is a COMPONENT_REF in which case the layout of
7359 the structure gives the alignment. */
7360
7361 static unsigned HOST_WIDE_INT
7362 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7363 {
7364 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7365 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7366
7367 return MAX (factor, talign);
7368 }
7369 \f
7370 #ifdef HAVE_conditional_move
7371 /* Convert the tree comparison code TCODE to the rtl one where the
7372 signedness is UNSIGNEDP. */
7373
7374 static enum rtx_code
7375 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
7376 {
7377 enum rtx_code code;
7378 switch (tcode)
7379 {
7380 case EQ_EXPR:
7381 code = EQ;
7382 break;
7383 case NE_EXPR:
7384 code = NE;
7385 break;
7386 case LT_EXPR:
7387 code = unsignedp ? LTU : LT;
7388 break;
7389 case LE_EXPR:
7390 code = unsignedp ? LEU : LE;
7391 break;
7392 case GT_EXPR:
7393 code = unsignedp ? GTU : GT;
7394 break;
7395 case GE_EXPR:
7396 code = unsignedp ? GEU : GE;
7397 break;
7398 case UNORDERED_EXPR:
7399 code = UNORDERED;
7400 break;
7401 case ORDERED_EXPR:
7402 code = ORDERED;
7403 break;
7404 case UNLT_EXPR:
7405 code = UNLT;
7406 break;
7407 case UNLE_EXPR:
7408 code = UNLE;
7409 break;
7410 case UNGT_EXPR:
7411 code = UNGT;
7412 break;
7413 case UNGE_EXPR:
7414 code = UNGE;
7415 break;
7416 case UNEQ_EXPR:
7417 code = UNEQ;
7418 break;
7419 case LTGT_EXPR:
7420 code = LTGT;
7421 break;
7422
7423 default:
7424 gcc_unreachable ();
7425 }
7426 return code;
7427 }
7428 #endif
7429
7430 /* Subroutine of expand_expr. Expand the two operands of a binary
7431 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7432 The value may be stored in TARGET if TARGET is nonzero. The
7433 MODIFIER argument is as documented by expand_expr. */
7434
7435 static void
7436 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7437 enum expand_modifier modifier)
7438 {
7439 if (! safe_from_p (target, exp1, 1))
7440 target = 0;
7441 if (operand_equal_p (exp0, exp1, 0))
7442 {
7443 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7444 *op1 = copy_rtx (*op0);
7445 }
7446 else
7447 {
7448 /* If we need to preserve evaluation order, copy exp0 into its own
7449 temporary variable so that it can't be clobbered by exp1. */
7450 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
7451 exp0 = save_expr (exp0);
7452 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7453 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7454 }
7455 }
7456
7457 \f
7458 /* Return a MEM that contains constant EXP. DEFER is as for
7459 output_constant_def and MODIFIER is as for expand_expr. */
7460
7461 static rtx
7462 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7463 {
7464 rtx mem;
7465
7466 mem = output_constant_def (exp, defer);
7467 if (modifier != EXPAND_INITIALIZER)
7468 mem = use_anchored_address (mem);
7469 return mem;
7470 }
7471
7472 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7473 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7474
7475 static rtx
7476 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
7477 enum expand_modifier modifier, addr_space_t as)
7478 {
7479 rtx result, subtarget;
7480 tree inner, offset;
7481 HOST_WIDE_INT bitsize, bitpos;
7482 int volatilep, unsignedp;
7483 enum machine_mode mode1;
7484
7485 /* If we are taking the address of a constant and are at the top level,
7486 we have to use output_constant_def since we can't call force_const_mem
7487 at top level. */
7488 /* ??? This should be considered a front-end bug. We should not be
7489 generating ADDR_EXPR of something that isn't an LVALUE. The only
7490 exception here is STRING_CST. */
7491 if (CONSTANT_CLASS_P (exp))
7492 {
7493 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
7494 if (modifier < EXPAND_SUM)
7495 result = force_operand (result, target);
7496 return result;
7497 }
7498
7499 /* Everything must be something allowed by is_gimple_addressable. */
7500 switch (TREE_CODE (exp))
7501 {
7502 case INDIRECT_REF:
7503 /* This case will happen via recursion for &a->b. */
7504 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7505
7506 case MEM_REF:
7507 {
7508 tree tem = TREE_OPERAND (exp, 0);
7509 if (!integer_zerop (TREE_OPERAND (exp, 1)))
7510 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
7511 return expand_expr (tem, target, tmode, modifier);
7512 }
7513
7514 case CONST_DECL:
7515 /* Expand the initializer like constants above. */
7516 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
7517 0, modifier), 0);
7518 if (modifier < EXPAND_SUM)
7519 result = force_operand (result, target);
7520 return result;
7521
7522 case REALPART_EXPR:
7523 /* The real part of the complex number is always first, therefore
7524 the address is the same as the address of the parent object. */
7525 offset = 0;
7526 bitpos = 0;
7527 inner = TREE_OPERAND (exp, 0);
7528 break;
7529
7530 case IMAGPART_EXPR:
7531 /* The imaginary part of the complex number is always second.
7532 The expression is therefore always offset by the size of the
7533 scalar type. */
7534 offset = 0;
7535 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
7536 inner = TREE_OPERAND (exp, 0);
7537 break;
7538
7539 default:
7540 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7541 expand_expr, as that can have various side effects; LABEL_DECLs for
7542 example, may not have their DECL_RTL set yet. Expand the rtl of
7543 CONSTRUCTORs too, which should yield a memory reference for the
7544 constructor's contents. Assume language specific tree nodes can
7545 be expanded in some interesting way. */
7546 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
7547 if (DECL_P (exp)
7548 || TREE_CODE (exp) == CONSTRUCTOR
7549 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
7550 {
7551 result = expand_expr (exp, target, tmode,
7552 modifier == EXPAND_INITIALIZER
7553 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
7554
7555 /* If the DECL isn't in memory, then the DECL wasn't properly
7556 marked TREE_ADDRESSABLE, which will be either a front-end
7557 or a tree optimizer bug. */
7558
7559 if (TREE_ADDRESSABLE (exp)
7560 && ! MEM_P (result)
7561 && ! targetm.calls.allocate_stack_slots_for_args())
7562 {
7563 error ("local frame unavailable (naked function?)");
7564 return result;
7565 }
7566 else
7567 gcc_assert (MEM_P (result));
7568 result = XEXP (result, 0);
7569
7570 /* ??? Is this needed anymore? */
7571 if (DECL_P (exp))
7572 TREE_USED (exp) = 1;
7573
7574 if (modifier != EXPAND_INITIALIZER
7575 && modifier != EXPAND_CONST_ADDRESS
7576 && modifier != EXPAND_SUM)
7577 result = force_operand (result, target);
7578 return result;
7579 }
7580
7581 /* Pass FALSE as the last argument to get_inner_reference although
7582 we are expanding to RTL. The rationale is that we know how to
7583 handle "aligning nodes" here: we can just bypass them because
7584 they won't change the final object whose address will be returned
7585 (they actually exist only for that purpose). */
7586 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7587 &mode1, &unsignedp, &volatilep, false);
7588 break;
7589 }
7590
7591 /* We must have made progress. */
7592 gcc_assert (inner != exp);
7593
7594 subtarget = offset || bitpos ? NULL_RTX : target;
7595 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7596 inner alignment, force the inner to be sufficiently aligned. */
7597 if (CONSTANT_CLASS_P (inner)
7598 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
7599 {
7600 inner = copy_node (inner);
7601 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
7602 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
7603 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
7604 }
7605 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
7606
7607 if (offset)
7608 {
7609 rtx tmp;
7610
7611 if (modifier != EXPAND_NORMAL)
7612 result = force_operand (result, NULL);
7613 tmp = expand_expr (offset, NULL_RTX, tmode,
7614 modifier == EXPAND_INITIALIZER
7615 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
7616
7617 result = convert_memory_address_addr_space (tmode, result, as);
7618 tmp = convert_memory_address_addr_space (tmode, tmp, as);
7619
7620 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7621 result = simplify_gen_binary (PLUS, tmode, result, tmp);
7622 else
7623 {
7624 subtarget = bitpos ? NULL_RTX : target;
7625 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7626 1, OPTAB_LIB_WIDEN);
7627 }
7628 }
7629
7630 if (bitpos)
7631 {
7632 /* Someone beforehand should have rejected taking the address
7633 of such an object. */
7634 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7635
7636 result = convert_memory_address_addr_space (tmode, result, as);
7637 result = plus_constant (tmode, result, bitpos / BITS_PER_UNIT);
7638 if (modifier < EXPAND_SUM)
7639 result = force_operand (result, target);
7640 }
7641
7642 return result;
7643 }
7644
7645 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7646 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7647
7648 static rtx
7649 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
7650 enum expand_modifier modifier)
7651 {
7652 addr_space_t as = ADDR_SPACE_GENERIC;
7653 enum machine_mode address_mode = Pmode;
7654 enum machine_mode pointer_mode = ptr_mode;
7655 enum machine_mode rmode;
7656 rtx result;
7657
7658 /* Target mode of VOIDmode says "whatever's natural". */
7659 if (tmode == VOIDmode)
7660 tmode = TYPE_MODE (TREE_TYPE (exp));
7661
7662 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7663 {
7664 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7665 address_mode = targetm.addr_space.address_mode (as);
7666 pointer_mode = targetm.addr_space.pointer_mode (as);
7667 }
7668
7669 /* We can get called with some Weird Things if the user does silliness
7670 like "(short) &a". In that case, convert_memory_address won't do
7671 the right thing, so ignore the given target mode. */
7672 if (tmode != address_mode && tmode != pointer_mode)
7673 tmode = address_mode;
7674
7675 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7676 tmode, modifier, as);
7677
7678 /* Despite expand_expr claims concerning ignoring TMODE when not
7679 strictly convenient, stuff breaks if we don't honor it. Note
7680 that combined with the above, we only do this for pointer modes. */
7681 rmode = GET_MODE (result);
7682 if (rmode == VOIDmode)
7683 rmode = tmode;
7684 if (rmode != tmode)
7685 result = convert_memory_address_addr_space (tmode, result, as);
7686
7687 return result;
7688 }
7689
7690 /* Generate code for computing CONSTRUCTOR EXP.
7691 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7692 is TRUE, instead of creating a temporary variable in memory
7693 NULL is returned and the caller needs to handle it differently. */
7694
7695 static rtx
7696 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7697 bool avoid_temp_mem)
7698 {
7699 tree type = TREE_TYPE (exp);
7700 enum machine_mode mode = TYPE_MODE (type);
7701
7702 /* Try to avoid creating a temporary at all. This is possible
7703 if all of the initializer is zero.
7704 FIXME: try to handle all [0..255] initializers we can handle
7705 with memset. */
7706 if (TREE_STATIC (exp)
7707 && !TREE_ADDRESSABLE (exp)
7708 && target != 0 && mode == BLKmode
7709 && all_zeros_p (exp))
7710 {
7711 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7712 return target;
7713 }
7714
7715 /* All elts simple constants => refer to a constant in memory. But
7716 if this is a non-BLKmode mode, let it store a field at a time
7717 since that should make a CONST_INT or CONST_DOUBLE when we
7718 fold. Likewise, if we have a target we can use, it is best to
7719 store directly into the target unless the type is large enough
7720 that memcpy will be used. If we are making an initializer and
7721 all operands are constant, put it in memory as well.
7722
7723 FIXME: Avoid trying to fill vector constructors piece-meal.
7724 Output them with output_constant_def below unless we're sure
7725 they're zeros. This should go away when vector initializers
7726 are treated like VECTOR_CST instead of arrays. */
7727 if ((TREE_STATIC (exp)
7728 && ((mode == BLKmode
7729 && ! (target != 0 && safe_from_p (target, exp, 1)))
7730 || TREE_ADDRESSABLE (exp)
7731 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7732 && (! MOVE_BY_PIECES_P
7733 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7734 TYPE_ALIGN (type)))
7735 && ! mostly_zeros_p (exp))))
7736 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7737 && TREE_CONSTANT (exp)))
7738 {
7739 rtx constructor;
7740
7741 if (avoid_temp_mem)
7742 return NULL_RTX;
7743
7744 constructor = expand_expr_constant (exp, 1, modifier);
7745
7746 if (modifier != EXPAND_CONST_ADDRESS
7747 && modifier != EXPAND_INITIALIZER
7748 && modifier != EXPAND_SUM)
7749 constructor = validize_mem (constructor);
7750
7751 return constructor;
7752 }
7753
7754 /* Handle calls that pass values in multiple non-contiguous
7755 locations. The Irix 6 ABI has examples of this. */
7756 if (target == 0 || ! safe_from_p (target, exp, 1)
7757 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7758 {
7759 if (avoid_temp_mem)
7760 return NULL_RTX;
7761
7762 target
7763 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7764 | (TREE_READONLY (exp)
7765 * TYPE_QUAL_CONST))),
7766 TREE_ADDRESSABLE (exp), 1);
7767 }
7768
7769 store_constructor (exp, target, 0, int_expr_size (exp));
7770 return target;
7771 }
7772
7773
7774 /* expand_expr: generate code for computing expression EXP.
7775 An rtx for the computed value is returned. The value is never null.
7776 In the case of a void EXP, const0_rtx is returned.
7777
7778 The value may be stored in TARGET if TARGET is nonzero.
7779 TARGET is just a suggestion; callers must assume that
7780 the rtx returned may not be the same as TARGET.
7781
7782 If TARGET is CONST0_RTX, it means that the value will be ignored.
7783
7784 If TMODE is not VOIDmode, it suggests generating the
7785 result in mode TMODE. But this is done only when convenient.
7786 Otherwise, TMODE is ignored and the value generated in its natural mode.
7787 TMODE is just a suggestion; callers must assume that
7788 the rtx returned may not have mode TMODE.
7789
7790 Note that TARGET may have neither TMODE nor MODE. In that case, it
7791 probably will not be used.
7792
7793 If MODIFIER is EXPAND_SUM then when EXP is an addition
7794 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7795 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7796 products as above, or REG or MEM, or constant.
7797 Ordinarily in such cases we would output mul or add instructions
7798 and then return a pseudo reg containing the sum.
7799
7800 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7801 it also marks a label as absolutely required (it can't be dead).
7802 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7803 This is used for outputting expressions used in initializers.
7804
7805 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7806 with a constant address even if that address is not normally legitimate.
7807 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7808
7809 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7810 a call parameter. Such targets require special care as we haven't yet
7811 marked TARGET so that it's safe from being trashed by libcalls. We
7812 don't want to use TARGET for anything but the final result;
7813 Intermediate values must go elsewhere. Additionally, calls to
7814 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7815
7816 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7817 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7818 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7819 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7820 recursively. */
7821
7822 rtx
7823 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7824 enum expand_modifier modifier, rtx *alt_rtl)
7825 {
7826 rtx ret;
7827
7828 /* Handle ERROR_MARK before anybody tries to access its type. */
7829 if (TREE_CODE (exp) == ERROR_MARK
7830 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7831 {
7832 ret = CONST0_RTX (tmode);
7833 return ret ? ret : const0_rtx;
7834 }
7835
7836 /* If this is an expression of some kind and it has an associated line
7837 number, then emit the line number before expanding the expression.
7838
7839 We need to save and restore the file and line information so that
7840 errors discovered during expansion are emitted with the right
7841 information. It would be better of the diagnostic routines
7842 used the file/line information embedded in the tree nodes rather
7843 than globals. */
7844 if (cfun && EXPR_HAS_LOCATION (exp))
7845 {
7846 location_t saved_location = input_location;
7847 location_t saved_curr_loc = get_curr_insn_source_location ();
7848 tree saved_block = get_curr_insn_block ();
7849 input_location = EXPR_LOCATION (exp);
7850 set_curr_insn_source_location (input_location);
7851
7852 /* Record where the insns produced belong. */
7853 set_curr_insn_block (TREE_BLOCK (exp));
7854
7855 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7856
7857 input_location = saved_location;
7858 set_curr_insn_block (saved_block);
7859 set_curr_insn_source_location (saved_curr_loc);
7860 }
7861 else
7862 {
7863 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7864 }
7865
7866 return ret;
7867 }
7868
7869 /* Try to expand the conditional expression which is represented by
7870 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If succeseds
7871 return the rtl reg which repsents the result. Otherwise return
7872 NULL_RTL. */
7873
7874 static rtx
7875 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
7876 tree treeop1 ATTRIBUTE_UNUSED,
7877 tree treeop2 ATTRIBUTE_UNUSED)
7878 {
7879 #ifdef HAVE_conditional_move
7880 rtx insn;
7881 rtx op00, op01, op1, op2;
7882 enum rtx_code comparison_code;
7883 enum machine_mode comparison_mode;
7884 gimple srcstmt;
7885 rtx temp;
7886 tree type = TREE_TYPE (treeop1);
7887 int unsignedp = TYPE_UNSIGNED (type);
7888 enum machine_mode mode = TYPE_MODE (type);
7889
7890 temp = assign_temp (type, 0, 1);
7891
7892 /* If we cannot do a conditional move on the mode, try doing it
7893 with the promoted mode. */
7894 if (!can_conditionally_move_p (mode))
7895 mode = promote_mode (type, mode, &unsignedp);
7896
7897 if (!can_conditionally_move_p (mode))
7898 return NULL_RTX;
7899
7900 start_sequence ();
7901 expand_operands (treeop1, treeop2,
7902 temp, &op1, &op2, EXPAND_NORMAL);
7903
7904 if (TREE_CODE (treeop0) == SSA_NAME
7905 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
7906 {
7907 tree type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
7908 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
7909 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
7910 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
7911 comparison_mode = TYPE_MODE (type);
7912 unsignedp = TYPE_UNSIGNED (type);
7913 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
7914 }
7915 else if (TREE_CODE_CLASS (TREE_CODE (treeop0)) == tcc_comparison)
7916 {
7917 tree type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
7918 enum tree_code cmpcode = TREE_CODE (treeop0);
7919 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
7920 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
7921 unsignedp = TYPE_UNSIGNED (type);
7922 comparison_mode = TYPE_MODE (type);
7923 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
7924 }
7925 else
7926 {
7927 op00 = expand_normal (treeop0);
7928 op01 = const0_rtx;
7929 comparison_code = NE;
7930 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
7931 }
7932
7933 if (GET_MODE (op1) != mode)
7934 op1 = gen_lowpart (mode, op1);
7935
7936 if (GET_MODE (op2) != mode)
7937 op2 = gen_lowpart (mode, op2);
7938
7939 /* Try to emit the conditional move. */
7940 insn = emit_conditional_move (temp, comparison_code,
7941 op00, op01, comparison_mode,
7942 op1, op2, mode,
7943 unsignedp);
7944
7945 /* If we could do the conditional move, emit the sequence,
7946 and return. */
7947 if (insn)
7948 {
7949 rtx seq = get_insns ();
7950 end_sequence ();
7951 emit_insn (seq);
7952 return temp;
7953 }
7954
7955 /* Otherwise discard the sequence and fall back to code with
7956 branches. */
7957 end_sequence ();
7958 #endif
7959 return NULL_RTX;
7960 }
7961
7962 rtx
7963 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
7964 enum expand_modifier modifier)
7965 {
7966 rtx op0, op1, op2, temp;
7967 tree type;
7968 int unsignedp;
7969 enum machine_mode mode;
7970 enum tree_code code = ops->code;
7971 optab this_optab;
7972 rtx subtarget, original_target;
7973 int ignore;
7974 bool reduce_bit_field;
7975 location_t loc = ops->location;
7976 tree treeop0, treeop1, treeop2;
7977 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7978 ? reduce_to_bit_field_precision ((expr), \
7979 target, \
7980 type) \
7981 : (expr))
7982
7983 type = ops->type;
7984 mode = TYPE_MODE (type);
7985 unsignedp = TYPE_UNSIGNED (type);
7986
7987 treeop0 = ops->op0;
7988 treeop1 = ops->op1;
7989 treeop2 = ops->op2;
7990
7991 /* We should be called only on simple (binary or unary) expressions,
7992 exactly those that are valid in gimple expressions that aren't
7993 GIMPLE_SINGLE_RHS (or invalid). */
7994 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
7995 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
7996 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
7997
7998 ignore = (target == const0_rtx
7999 || ((CONVERT_EXPR_CODE_P (code)
8000 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8001 && TREE_CODE (type) == VOID_TYPE));
8002
8003 /* We should be called only if we need the result. */
8004 gcc_assert (!ignore);
8005
8006 /* An operation in what may be a bit-field type needs the
8007 result to be reduced to the precision of the bit-field type,
8008 which is narrower than that of the type's mode. */
8009 reduce_bit_field = (INTEGRAL_TYPE_P (type)
8010 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8011
8012 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8013 target = 0;
8014
8015 /* Use subtarget as the target for operand 0 of a binary operation. */
8016 subtarget = get_subtarget (target);
8017 original_target = target;
8018
8019 switch (code)
8020 {
8021 case NON_LVALUE_EXPR:
8022 case PAREN_EXPR:
8023 CASE_CONVERT:
8024 if (treeop0 == error_mark_node)
8025 return const0_rtx;
8026
8027 if (TREE_CODE (type) == UNION_TYPE)
8028 {
8029 tree valtype = TREE_TYPE (treeop0);
8030
8031 /* If both input and output are BLKmode, this conversion isn't doing
8032 anything except possibly changing memory attribute. */
8033 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8034 {
8035 rtx result = expand_expr (treeop0, target, tmode,
8036 modifier);
8037
8038 result = copy_rtx (result);
8039 set_mem_attributes (result, type, 0);
8040 return result;
8041 }
8042
8043 if (target == 0)
8044 {
8045 if (TYPE_MODE (type) != BLKmode)
8046 target = gen_reg_rtx (TYPE_MODE (type));
8047 else
8048 target = assign_temp (type, 1, 1);
8049 }
8050
8051 if (MEM_P (target))
8052 /* Store data into beginning of memory target. */
8053 store_expr (treeop0,
8054 adjust_address (target, TYPE_MODE (valtype), 0),
8055 modifier == EXPAND_STACK_PARM,
8056 false);
8057
8058 else
8059 {
8060 gcc_assert (REG_P (target));
8061
8062 /* Store this field into a union of the proper type. */
8063 store_field (target,
8064 MIN ((int_size_in_bytes (TREE_TYPE
8065 (treeop0))
8066 * BITS_PER_UNIT),
8067 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
8068 0, 0, 0, TYPE_MODE (valtype), treeop0,
8069 type, 0, false);
8070 }
8071
8072 /* Return the entire union. */
8073 return target;
8074 }
8075
8076 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
8077 {
8078 op0 = expand_expr (treeop0, target, VOIDmode,
8079 modifier);
8080
8081 /* If the signedness of the conversion differs and OP0 is
8082 a promoted SUBREG, clear that indication since we now
8083 have to do the proper extension. */
8084 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
8085 && GET_CODE (op0) == SUBREG)
8086 SUBREG_PROMOTED_VAR_P (op0) = 0;
8087
8088 return REDUCE_BIT_FIELD (op0);
8089 }
8090
8091 op0 = expand_expr (treeop0, NULL_RTX, mode,
8092 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8093 if (GET_MODE (op0) == mode)
8094 ;
8095
8096 /* If OP0 is a constant, just convert it into the proper mode. */
8097 else if (CONSTANT_P (op0))
8098 {
8099 tree inner_type = TREE_TYPE (treeop0);
8100 enum machine_mode inner_mode = GET_MODE (op0);
8101
8102 if (inner_mode == VOIDmode)
8103 inner_mode = TYPE_MODE (inner_type);
8104
8105 if (modifier == EXPAND_INITIALIZER)
8106 op0 = simplify_gen_subreg (mode, op0, inner_mode,
8107 subreg_lowpart_offset (mode,
8108 inner_mode));
8109 else
8110 op0= convert_modes (mode, inner_mode, op0,
8111 TYPE_UNSIGNED (inner_type));
8112 }
8113
8114 else if (modifier == EXPAND_INITIALIZER)
8115 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8116
8117 else if (target == 0)
8118 op0 = convert_to_mode (mode, op0,
8119 TYPE_UNSIGNED (TREE_TYPE
8120 (treeop0)));
8121 else
8122 {
8123 convert_move (target, op0,
8124 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8125 op0 = target;
8126 }
8127
8128 return REDUCE_BIT_FIELD (op0);
8129
8130 case ADDR_SPACE_CONVERT_EXPR:
8131 {
8132 tree treeop0_type = TREE_TYPE (treeop0);
8133 addr_space_t as_to;
8134 addr_space_t as_from;
8135
8136 gcc_assert (POINTER_TYPE_P (type));
8137 gcc_assert (POINTER_TYPE_P (treeop0_type));
8138
8139 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
8140 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
8141
8142 /* Conversions between pointers to the same address space should
8143 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8144 gcc_assert (as_to != as_from);
8145
8146 /* Ask target code to handle conversion between pointers
8147 to overlapping address spaces. */
8148 if (targetm.addr_space.subset_p (as_to, as_from)
8149 || targetm.addr_space.subset_p (as_from, as_to))
8150 {
8151 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
8152 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
8153 gcc_assert (op0);
8154 return op0;
8155 }
8156
8157 /* For disjoint address spaces, converting anything but
8158 a null pointer invokes undefined behaviour. We simply
8159 always return a null pointer here. */
8160 return CONST0_RTX (mode);
8161 }
8162
8163 case POINTER_PLUS_EXPR:
8164 /* Even though the sizetype mode and the pointer's mode can be different
8165 expand is able to handle this correctly and get the correct result out
8166 of the PLUS_EXPR code. */
8167 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8168 if sizetype precision is smaller than pointer precision. */
8169 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8170 treeop1 = fold_convert_loc (loc, type,
8171 fold_convert_loc (loc, ssizetype,
8172 treeop1));
8173 /* If sizetype precision is larger than pointer precision, truncate the
8174 offset to have matching modes. */
8175 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
8176 treeop1 = fold_convert_loc (loc, type, treeop1);
8177
8178 case PLUS_EXPR:
8179 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8180 something else, make sure we add the register to the constant and
8181 then to the other thing. This case can occur during strength
8182 reduction and doing it this way will produce better code if the
8183 frame pointer or argument pointer is eliminated.
8184
8185 fold-const.c will ensure that the constant is always in the inner
8186 PLUS_EXPR, so the only case we need to do anything about is if
8187 sp, ap, or fp is our second argument, in which case we must swap
8188 the innermost first argument and our second argument. */
8189
8190 if (TREE_CODE (treeop0) == PLUS_EXPR
8191 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8192 && TREE_CODE (treeop1) == VAR_DECL
8193 && (DECL_RTL (treeop1) == frame_pointer_rtx
8194 || DECL_RTL (treeop1) == stack_pointer_rtx
8195 || DECL_RTL (treeop1) == arg_pointer_rtx))
8196 {
8197 gcc_unreachable ();
8198 }
8199
8200 /* If the result is to be ptr_mode and we are adding an integer to
8201 something, we might be forming a constant. So try to use
8202 plus_constant. If it produces a sum and we can't accept it,
8203 use force_operand. This allows P = &ARR[const] to generate
8204 efficient code on machines where a SYMBOL_REF is not a valid
8205 address.
8206
8207 If this is an EXPAND_SUM call, always return the sum. */
8208 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8209 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8210 {
8211 if (modifier == EXPAND_STACK_PARM)
8212 target = 0;
8213 if (TREE_CODE (treeop0) == INTEGER_CST
8214 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8215 && TREE_CONSTANT (treeop1))
8216 {
8217 rtx constant_part;
8218
8219 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8220 EXPAND_SUM);
8221 /* Use immed_double_const to ensure that the constant is
8222 truncated according to the mode of OP1, then sign extended
8223 to a HOST_WIDE_INT. Using the constant directly can result
8224 in non-canonical RTL in a 64x32 cross compile. */
8225 constant_part
8226 = immed_double_const (TREE_INT_CST_LOW (treeop0),
8227 (HOST_WIDE_INT) 0,
8228 TYPE_MODE (TREE_TYPE (treeop1)));
8229 op1 = plus_constant (mode, op1, INTVAL (constant_part));
8230 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8231 op1 = force_operand (op1, target);
8232 return REDUCE_BIT_FIELD (op1);
8233 }
8234
8235 else if (TREE_CODE (treeop1) == INTEGER_CST
8236 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8237 && TREE_CONSTANT (treeop0))
8238 {
8239 rtx constant_part;
8240
8241 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8242 (modifier == EXPAND_INITIALIZER
8243 ? EXPAND_INITIALIZER : EXPAND_SUM));
8244 if (! CONSTANT_P (op0))
8245 {
8246 op1 = expand_expr (treeop1, NULL_RTX,
8247 VOIDmode, modifier);
8248 /* Return a PLUS if modifier says it's OK. */
8249 if (modifier == EXPAND_SUM
8250 || modifier == EXPAND_INITIALIZER)
8251 return simplify_gen_binary (PLUS, mode, op0, op1);
8252 goto binop2;
8253 }
8254 /* Use immed_double_const to ensure that the constant is
8255 truncated according to the mode of OP1, then sign extended
8256 to a HOST_WIDE_INT. Using the constant directly can result
8257 in non-canonical RTL in a 64x32 cross compile. */
8258 constant_part
8259 = immed_double_const (TREE_INT_CST_LOW (treeop1),
8260 (HOST_WIDE_INT) 0,
8261 TYPE_MODE (TREE_TYPE (treeop0)));
8262 op0 = plus_constant (mode, op0, INTVAL (constant_part));
8263 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8264 op0 = force_operand (op0, target);
8265 return REDUCE_BIT_FIELD (op0);
8266 }
8267 }
8268
8269 /* Use TER to expand pointer addition of a negated value
8270 as pointer subtraction. */
8271 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8272 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8273 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8274 && TREE_CODE (treeop1) == SSA_NAME
8275 && TYPE_MODE (TREE_TYPE (treeop0))
8276 == TYPE_MODE (TREE_TYPE (treeop1)))
8277 {
8278 gimple def = get_def_for_expr (treeop1, NEGATE_EXPR);
8279 if (def)
8280 {
8281 treeop1 = gimple_assign_rhs1 (def);
8282 code = MINUS_EXPR;
8283 goto do_minus;
8284 }
8285 }
8286
8287 /* No sense saving up arithmetic to be done
8288 if it's all in the wrong mode to form part of an address.
8289 And force_operand won't know whether to sign-extend or
8290 zero-extend. */
8291 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8292 || mode != ptr_mode)
8293 {
8294 expand_operands (treeop0, treeop1,
8295 subtarget, &op0, &op1, EXPAND_NORMAL);
8296 if (op0 == const0_rtx)
8297 return op1;
8298 if (op1 == const0_rtx)
8299 return op0;
8300 goto binop2;
8301 }
8302
8303 expand_operands (treeop0, treeop1,
8304 subtarget, &op0, &op1, modifier);
8305 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8306
8307 case MINUS_EXPR:
8308 do_minus:
8309 /* For initializers, we are allowed to return a MINUS of two
8310 symbolic constants. Here we handle all cases when both operands
8311 are constant. */
8312 /* Handle difference of two symbolic constants,
8313 for the sake of an initializer. */
8314 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8315 && really_constant_p (treeop0)
8316 && really_constant_p (treeop1))
8317 {
8318 expand_operands (treeop0, treeop1,
8319 NULL_RTX, &op0, &op1, modifier);
8320
8321 /* If the last operand is a CONST_INT, use plus_constant of
8322 the negated constant. Else make the MINUS. */
8323 if (CONST_INT_P (op1))
8324 return REDUCE_BIT_FIELD (plus_constant (mode, op0,
8325 -INTVAL (op1)));
8326 else
8327 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
8328 }
8329
8330 /* No sense saving up arithmetic to be done
8331 if it's all in the wrong mode to form part of an address.
8332 And force_operand won't know whether to sign-extend or
8333 zero-extend. */
8334 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8335 || mode != ptr_mode)
8336 goto binop;
8337
8338 expand_operands (treeop0, treeop1,
8339 subtarget, &op0, &op1, modifier);
8340
8341 /* Convert A - const to A + (-const). */
8342 if (CONST_INT_P (op1))
8343 {
8344 op1 = negate_rtx (mode, op1);
8345 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8346 }
8347
8348 goto binop2;
8349
8350 case WIDEN_MULT_PLUS_EXPR:
8351 case WIDEN_MULT_MINUS_EXPR:
8352 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8353 op2 = expand_normal (treeop2);
8354 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8355 target, unsignedp);
8356 return target;
8357
8358 case WIDEN_MULT_EXPR:
8359 /* If first operand is constant, swap them.
8360 Thus the following special case checks need only
8361 check the second operand. */
8362 if (TREE_CODE (treeop0) == INTEGER_CST)
8363 {
8364 tree t1 = treeop0;
8365 treeop0 = treeop1;
8366 treeop1 = t1;
8367 }
8368
8369 /* First, check if we have a multiplication of one signed and one
8370 unsigned operand. */
8371 if (TREE_CODE (treeop1) != INTEGER_CST
8372 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8373 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
8374 {
8375 enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
8376 this_optab = usmul_widen_optab;
8377 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8378 != CODE_FOR_nothing)
8379 {
8380 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8381 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8382 EXPAND_NORMAL);
8383 else
8384 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8385 EXPAND_NORMAL);
8386 goto binop3;
8387 }
8388 }
8389 /* Check for a multiplication with matching signedness. */
8390 else if ((TREE_CODE (treeop1) == INTEGER_CST
8391 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8392 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8393 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8394 {
8395 tree op0type = TREE_TYPE (treeop0);
8396 enum machine_mode innermode = TYPE_MODE (op0type);
8397 bool zextend_p = TYPE_UNSIGNED (op0type);
8398 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8399 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8400
8401 if (TREE_CODE (treeop0) != INTEGER_CST)
8402 {
8403 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8404 != CODE_FOR_nothing)
8405 {
8406 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8407 EXPAND_NORMAL);
8408 temp = expand_widening_mult (mode, op0, op1, target,
8409 unsignedp, this_optab);
8410 return REDUCE_BIT_FIELD (temp);
8411 }
8412 if (find_widening_optab_handler (other_optab, mode, innermode, 0)
8413 != CODE_FOR_nothing
8414 && innermode == word_mode)
8415 {
8416 rtx htem, hipart;
8417 op0 = expand_normal (treeop0);
8418 if (TREE_CODE (treeop1) == INTEGER_CST)
8419 op1 = convert_modes (innermode, mode,
8420 expand_normal (treeop1), unsignedp);
8421 else
8422 op1 = expand_normal (treeop1);
8423 temp = expand_binop (mode, other_optab, op0, op1, target,
8424 unsignedp, OPTAB_LIB_WIDEN);
8425 hipart = gen_highpart (innermode, temp);
8426 htem = expand_mult_highpart_adjust (innermode, hipart,
8427 op0, op1, hipart,
8428 zextend_p);
8429 if (htem != hipart)
8430 emit_move_insn (hipart, htem);
8431 return REDUCE_BIT_FIELD (temp);
8432 }
8433 }
8434 }
8435 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
8436 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
8437 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8438 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8439
8440 case FMA_EXPR:
8441 {
8442 optab opt = fma_optab;
8443 gimple def0, def2;
8444
8445 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8446 call. */
8447 if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
8448 {
8449 tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
8450 tree call_expr;
8451
8452 gcc_assert (fn != NULL_TREE);
8453 call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
8454 return expand_builtin (call_expr, target, subtarget, mode, false);
8455 }
8456
8457 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
8458 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
8459
8460 op0 = op2 = NULL;
8461
8462 if (def0 && def2
8463 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
8464 {
8465 opt = fnms_optab;
8466 op0 = expand_normal (gimple_assign_rhs1 (def0));
8467 op2 = expand_normal (gimple_assign_rhs1 (def2));
8468 }
8469 else if (def0
8470 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
8471 {
8472 opt = fnma_optab;
8473 op0 = expand_normal (gimple_assign_rhs1 (def0));
8474 }
8475 else if (def2
8476 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
8477 {
8478 opt = fms_optab;
8479 op2 = expand_normal (gimple_assign_rhs1 (def2));
8480 }
8481
8482 if (op0 == NULL)
8483 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
8484 if (op2 == NULL)
8485 op2 = expand_normal (treeop2);
8486 op1 = expand_normal (treeop1);
8487
8488 return expand_ternary_op (TYPE_MODE (type), opt,
8489 op0, op1, op2, target, 0);
8490 }
8491
8492 case MULT_EXPR:
8493 /* If this is a fixed-point operation, then we cannot use the code
8494 below because "expand_mult" doesn't support sat/no-sat fixed-point
8495 multiplications. */
8496 if (ALL_FIXED_POINT_MODE_P (mode))
8497 goto binop;
8498
8499 /* If first operand is constant, swap them.
8500 Thus the following special case checks need only
8501 check the second operand. */
8502 if (TREE_CODE (treeop0) == INTEGER_CST)
8503 {
8504 tree t1 = treeop0;
8505 treeop0 = treeop1;
8506 treeop1 = t1;
8507 }
8508
8509 /* Attempt to return something suitable for generating an
8510 indexed address, for machines that support that. */
8511
8512 if (modifier == EXPAND_SUM && mode == ptr_mode
8513 && host_integerp (treeop1, 0))
8514 {
8515 tree exp1 = treeop1;
8516
8517 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8518 EXPAND_SUM);
8519
8520 if (!REG_P (op0))
8521 op0 = force_operand (op0, NULL_RTX);
8522 if (!REG_P (op0))
8523 op0 = copy_to_mode_reg (mode, op0);
8524
8525 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8526 gen_int_mode (tree_low_cst (exp1, 0),
8527 TYPE_MODE (TREE_TYPE (exp1)))));
8528 }
8529
8530 if (modifier == EXPAND_STACK_PARM)
8531 target = 0;
8532
8533 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8534 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8535
8536 case TRUNC_DIV_EXPR:
8537 case FLOOR_DIV_EXPR:
8538 case CEIL_DIV_EXPR:
8539 case ROUND_DIV_EXPR:
8540 case EXACT_DIV_EXPR:
8541 /* If this is a fixed-point operation, then we cannot use the code
8542 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8543 divisions. */
8544 if (ALL_FIXED_POINT_MODE_P (mode))
8545 goto binop;
8546
8547 if (modifier == EXPAND_STACK_PARM)
8548 target = 0;
8549 /* Possible optimization: compute the dividend with EXPAND_SUM
8550 then if the divisor is constant can optimize the case
8551 where some terms of the dividend have coeffs divisible by it. */
8552 expand_operands (treeop0, treeop1,
8553 subtarget, &op0, &op1, EXPAND_NORMAL);
8554 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8555
8556 case RDIV_EXPR:
8557 case MULT_HIGHPART_EXPR:
8558 goto binop;
8559
8560 case TRUNC_MOD_EXPR:
8561 case FLOOR_MOD_EXPR:
8562 case CEIL_MOD_EXPR:
8563 case ROUND_MOD_EXPR:
8564 if (modifier == EXPAND_STACK_PARM)
8565 target = 0;
8566 expand_operands (treeop0, treeop1,
8567 subtarget, &op0, &op1, EXPAND_NORMAL);
8568 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8569
8570 case FIXED_CONVERT_EXPR:
8571 op0 = expand_normal (treeop0);
8572 if (target == 0 || modifier == EXPAND_STACK_PARM)
8573 target = gen_reg_rtx (mode);
8574
8575 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
8576 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8577 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8578 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8579 else
8580 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8581 return target;
8582
8583 case FIX_TRUNC_EXPR:
8584 op0 = expand_normal (treeop0);
8585 if (target == 0 || modifier == EXPAND_STACK_PARM)
8586 target = gen_reg_rtx (mode);
8587 expand_fix (target, op0, unsignedp);
8588 return target;
8589
8590 case FLOAT_EXPR:
8591 op0 = expand_normal (treeop0);
8592 if (target == 0 || modifier == EXPAND_STACK_PARM)
8593 target = gen_reg_rtx (mode);
8594 /* expand_float can't figure out what to do if FROM has VOIDmode.
8595 So give it the correct mode. With -O, cse will optimize this. */
8596 if (GET_MODE (op0) == VOIDmode)
8597 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
8598 op0);
8599 expand_float (target, op0,
8600 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8601 return target;
8602
8603 case NEGATE_EXPR:
8604 op0 = expand_expr (treeop0, subtarget,
8605 VOIDmode, EXPAND_NORMAL);
8606 if (modifier == EXPAND_STACK_PARM)
8607 target = 0;
8608 temp = expand_unop (mode,
8609 optab_for_tree_code (NEGATE_EXPR, type,
8610 optab_default),
8611 op0, target, 0);
8612 gcc_assert (temp);
8613 return REDUCE_BIT_FIELD (temp);
8614
8615 case ABS_EXPR:
8616 op0 = expand_expr (treeop0, subtarget,
8617 VOIDmode, EXPAND_NORMAL);
8618 if (modifier == EXPAND_STACK_PARM)
8619 target = 0;
8620
8621 /* ABS_EXPR is not valid for complex arguments. */
8622 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8623 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8624
8625 /* Unsigned abs is simply the operand. Testing here means we don't
8626 risk generating incorrect code below. */
8627 if (TYPE_UNSIGNED (type))
8628 return op0;
8629
8630 return expand_abs (mode, op0, target, unsignedp,
8631 safe_from_p (target, treeop0, 1));
8632
8633 case MAX_EXPR:
8634 case MIN_EXPR:
8635 target = original_target;
8636 if (target == 0
8637 || modifier == EXPAND_STACK_PARM
8638 || (MEM_P (target) && MEM_VOLATILE_P (target))
8639 || GET_MODE (target) != mode
8640 || (REG_P (target)
8641 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8642 target = gen_reg_rtx (mode);
8643 expand_operands (treeop0, treeop1,
8644 target, &op0, &op1, EXPAND_NORMAL);
8645
8646 /* First try to do it with a special MIN or MAX instruction.
8647 If that does not win, use a conditional jump to select the proper
8648 value. */
8649 this_optab = optab_for_tree_code (code, type, optab_default);
8650 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8651 OPTAB_WIDEN);
8652 if (temp != 0)
8653 return temp;
8654
8655 /* At this point, a MEM target is no longer useful; we will get better
8656 code without it. */
8657
8658 if (! REG_P (target))
8659 target = gen_reg_rtx (mode);
8660
8661 /* If op1 was placed in target, swap op0 and op1. */
8662 if (target != op0 && target == op1)
8663 {
8664 temp = op0;
8665 op0 = op1;
8666 op1 = temp;
8667 }
8668
8669 /* We generate better code and avoid problems with op1 mentioning
8670 target by forcing op1 into a pseudo if it isn't a constant. */
8671 if (! CONSTANT_P (op1))
8672 op1 = force_reg (mode, op1);
8673
8674 {
8675 enum rtx_code comparison_code;
8676 rtx cmpop1 = op1;
8677
8678 if (code == MAX_EXPR)
8679 comparison_code = unsignedp ? GEU : GE;
8680 else
8681 comparison_code = unsignedp ? LEU : LE;
8682
8683 /* Canonicalize to comparisons against 0. */
8684 if (op1 == const1_rtx)
8685 {
8686 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8687 or (a != 0 ? a : 1) for unsigned.
8688 For MIN we are safe converting (a <= 1 ? a : 1)
8689 into (a <= 0 ? a : 1) */
8690 cmpop1 = const0_rtx;
8691 if (code == MAX_EXPR)
8692 comparison_code = unsignedp ? NE : GT;
8693 }
8694 if (op1 == constm1_rtx && !unsignedp)
8695 {
8696 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8697 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8698 cmpop1 = const0_rtx;
8699 if (code == MIN_EXPR)
8700 comparison_code = LT;
8701 }
8702 #ifdef HAVE_conditional_move
8703 /* Use a conditional move if possible. */
8704 if (can_conditionally_move_p (mode))
8705 {
8706 rtx insn;
8707
8708 /* ??? Same problem as in expmed.c: emit_conditional_move
8709 forces a stack adjustment via compare_from_rtx, and we
8710 lose the stack adjustment if the sequence we are about
8711 to create is discarded. */
8712 do_pending_stack_adjust ();
8713
8714 start_sequence ();
8715
8716 /* Try to emit the conditional move. */
8717 insn = emit_conditional_move (target, comparison_code,
8718 op0, cmpop1, mode,
8719 op0, op1, mode,
8720 unsignedp);
8721
8722 /* If we could do the conditional move, emit the sequence,
8723 and return. */
8724 if (insn)
8725 {
8726 rtx seq = get_insns ();
8727 end_sequence ();
8728 emit_insn (seq);
8729 return target;
8730 }
8731
8732 /* Otherwise discard the sequence and fall back to code with
8733 branches. */
8734 end_sequence ();
8735 }
8736 #endif
8737 if (target != op0)
8738 emit_move_insn (target, op0);
8739
8740 temp = gen_label_rtx ();
8741 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8742 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
8743 -1);
8744 }
8745 emit_move_insn (target, op1);
8746 emit_label (temp);
8747 return target;
8748
8749 case BIT_NOT_EXPR:
8750 op0 = expand_expr (treeop0, subtarget,
8751 VOIDmode, EXPAND_NORMAL);
8752 if (modifier == EXPAND_STACK_PARM)
8753 target = 0;
8754 /* In case we have to reduce the result to bitfield precision
8755 for unsigned bitfield expand this as XOR with a proper constant
8756 instead. */
8757 if (reduce_bit_field && TYPE_UNSIGNED (type))
8758 temp = expand_binop (mode, xor_optab, op0,
8759 immed_double_int_const
8760 (double_int_mask (TYPE_PRECISION (type)), mode),
8761 target, 1, OPTAB_LIB_WIDEN);
8762 else
8763 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8764 gcc_assert (temp);
8765 return temp;
8766
8767 /* ??? Can optimize bitwise operations with one arg constant.
8768 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8769 and (a bitwise1 b) bitwise2 b (etc)
8770 but that is probably not worth while. */
8771
8772 case BIT_AND_EXPR:
8773 case BIT_IOR_EXPR:
8774 case BIT_XOR_EXPR:
8775 goto binop;
8776
8777 case LROTATE_EXPR:
8778 case RROTATE_EXPR:
8779 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8780 || (GET_MODE_PRECISION (TYPE_MODE (type))
8781 == TYPE_PRECISION (type)));
8782 /* fall through */
8783
8784 case LSHIFT_EXPR:
8785 case RSHIFT_EXPR:
8786 /* If this is a fixed-point operation, then we cannot use the code
8787 below because "expand_shift" doesn't support sat/no-sat fixed-point
8788 shifts. */
8789 if (ALL_FIXED_POINT_MODE_P (mode))
8790 goto binop;
8791
8792 if (! safe_from_p (subtarget, treeop1, 1))
8793 subtarget = 0;
8794 if (modifier == EXPAND_STACK_PARM)
8795 target = 0;
8796 op0 = expand_expr (treeop0, subtarget,
8797 VOIDmode, EXPAND_NORMAL);
8798 temp = expand_variable_shift (code, mode, op0, treeop1, target,
8799 unsignedp);
8800 if (code == LSHIFT_EXPR)
8801 temp = REDUCE_BIT_FIELD (temp);
8802 return temp;
8803
8804 /* Could determine the answer when only additive constants differ. Also,
8805 the addition of one can be handled by changing the condition. */
8806 case LT_EXPR:
8807 case LE_EXPR:
8808 case GT_EXPR:
8809 case GE_EXPR:
8810 case EQ_EXPR:
8811 case NE_EXPR:
8812 case UNORDERED_EXPR:
8813 case ORDERED_EXPR:
8814 case UNLT_EXPR:
8815 case UNLE_EXPR:
8816 case UNGT_EXPR:
8817 case UNGE_EXPR:
8818 case UNEQ_EXPR:
8819 case LTGT_EXPR:
8820 temp = do_store_flag (ops,
8821 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8822 tmode != VOIDmode ? tmode : mode);
8823 if (temp)
8824 return temp;
8825
8826 /* Use a compare and a jump for BLKmode comparisons, or for function
8827 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8828
8829 if ((target == 0
8830 || modifier == EXPAND_STACK_PARM
8831 || ! safe_from_p (target, treeop0, 1)
8832 || ! safe_from_p (target, treeop1, 1)
8833 /* Make sure we don't have a hard reg (such as function's return
8834 value) live across basic blocks, if not optimizing. */
8835 || (!optimize && REG_P (target)
8836 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8837 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8838
8839 emit_move_insn (target, const0_rtx);
8840
8841 op1 = gen_label_rtx ();
8842 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8843
8844 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
8845 emit_move_insn (target, constm1_rtx);
8846 else
8847 emit_move_insn (target, const1_rtx);
8848
8849 emit_label (op1);
8850 return target;
8851
8852 case COMPLEX_EXPR:
8853 /* Get the rtx code of the operands. */
8854 op0 = expand_normal (treeop0);
8855 op1 = expand_normal (treeop1);
8856
8857 if (!target)
8858 target = gen_reg_rtx (TYPE_MODE (type));
8859
8860 /* Move the real (op0) and imaginary (op1) parts to their location. */
8861 write_complex_part (target, op0, false);
8862 write_complex_part (target, op1, true);
8863
8864 return target;
8865
8866 case WIDEN_SUM_EXPR:
8867 {
8868 tree oprnd0 = treeop0;
8869 tree oprnd1 = treeop1;
8870
8871 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8872 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
8873 target, unsignedp);
8874 return target;
8875 }
8876
8877 case REDUC_MAX_EXPR:
8878 case REDUC_MIN_EXPR:
8879 case REDUC_PLUS_EXPR:
8880 {
8881 op0 = expand_normal (treeop0);
8882 this_optab = optab_for_tree_code (code, type, optab_default);
8883 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8884 gcc_assert (temp);
8885 return temp;
8886 }
8887
8888 case VEC_LSHIFT_EXPR:
8889 case VEC_RSHIFT_EXPR:
8890 {
8891 target = expand_vec_shift_expr (ops, target);
8892 return target;
8893 }
8894
8895 case VEC_UNPACK_HI_EXPR:
8896 case VEC_UNPACK_LO_EXPR:
8897 {
8898 op0 = expand_normal (treeop0);
8899 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
8900 target, unsignedp);
8901 gcc_assert (temp);
8902 return temp;
8903 }
8904
8905 case VEC_UNPACK_FLOAT_HI_EXPR:
8906 case VEC_UNPACK_FLOAT_LO_EXPR:
8907 {
8908 op0 = expand_normal (treeop0);
8909 /* The signedness is determined from input operand. */
8910 temp = expand_widen_pattern_expr
8911 (ops, op0, NULL_RTX, NULL_RTX,
8912 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8913
8914 gcc_assert (temp);
8915 return temp;
8916 }
8917
8918 case VEC_WIDEN_MULT_HI_EXPR:
8919 case VEC_WIDEN_MULT_LO_EXPR:
8920 {
8921 tree oprnd0 = treeop0;
8922 tree oprnd1 = treeop1;
8923
8924 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8925 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8926 target, unsignedp);
8927 gcc_assert (target);
8928 return target;
8929 }
8930
8931 case VEC_WIDEN_LSHIFT_HI_EXPR:
8932 case VEC_WIDEN_LSHIFT_LO_EXPR:
8933 {
8934 tree oprnd0 = treeop0;
8935 tree oprnd1 = treeop1;
8936
8937 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8938 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8939 target, unsignedp);
8940 gcc_assert (target);
8941 return target;
8942 }
8943
8944 case VEC_PACK_TRUNC_EXPR:
8945 case VEC_PACK_SAT_EXPR:
8946 case VEC_PACK_FIX_TRUNC_EXPR:
8947 mode = TYPE_MODE (TREE_TYPE (treeop0));
8948 goto binop;
8949
8950 case VEC_PERM_EXPR:
8951 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
8952 op2 = expand_normal (treeop2);
8953
8954 /* Careful here: if the target doesn't support integral vector modes,
8955 a constant selection vector could wind up smooshed into a normal
8956 integral constant. */
8957 if (CONSTANT_P (op2) && GET_CODE (op2) != CONST_VECTOR)
8958 {
8959 tree sel_type = TREE_TYPE (treeop2);
8960 enum machine_mode vmode
8961 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type)),
8962 TYPE_VECTOR_SUBPARTS (sel_type));
8963 gcc_assert (GET_MODE_CLASS (vmode) == MODE_VECTOR_INT);
8964 op2 = simplify_subreg (vmode, op2, TYPE_MODE (sel_type), 0);
8965 gcc_assert (op2 && GET_CODE (op2) == CONST_VECTOR);
8966 }
8967 else
8968 gcc_assert (GET_MODE_CLASS (GET_MODE (op2)) == MODE_VECTOR_INT);
8969
8970 temp = expand_vec_perm (mode, op0, op1, op2, target);
8971 gcc_assert (temp);
8972 return temp;
8973
8974 case DOT_PROD_EXPR:
8975 {
8976 tree oprnd0 = treeop0;
8977 tree oprnd1 = treeop1;
8978 tree oprnd2 = treeop2;
8979 rtx op2;
8980
8981 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8982 op2 = expand_normal (oprnd2);
8983 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8984 target, unsignedp);
8985 return target;
8986 }
8987
8988 case REALIGN_LOAD_EXPR:
8989 {
8990 tree oprnd0 = treeop0;
8991 tree oprnd1 = treeop1;
8992 tree oprnd2 = treeop2;
8993 rtx op2;
8994
8995 this_optab = optab_for_tree_code (code, type, optab_default);
8996 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8997 op2 = expand_normal (oprnd2);
8998 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8999 target, unsignedp);
9000 gcc_assert (temp);
9001 return temp;
9002 }
9003
9004 case COND_EXPR:
9005 /* A COND_EXPR with its type being VOID_TYPE represents a
9006 conditional jump and is handled in
9007 expand_gimple_cond_expr. */
9008 gcc_assert (!VOID_TYPE_P (type));
9009
9010 /* Note that COND_EXPRs whose type is a structure or union
9011 are required to be constructed to contain assignments of
9012 a temporary variable, so that we can evaluate them here
9013 for side effect only. If type is void, we must do likewise. */
9014
9015 gcc_assert (!TREE_ADDRESSABLE (type)
9016 && !ignore
9017 && TREE_TYPE (treeop1) != void_type_node
9018 && TREE_TYPE (treeop2) != void_type_node);
9019
9020 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
9021 if (temp)
9022 return temp;
9023
9024 /* If we are not to produce a result, we have no target. Otherwise,
9025 if a target was specified use it; it will not be used as an
9026 intermediate target unless it is safe. If no target, use a
9027 temporary. */
9028
9029 if (modifier != EXPAND_STACK_PARM
9030 && original_target
9031 && safe_from_p (original_target, treeop0, 1)
9032 && GET_MODE (original_target) == mode
9033 && !MEM_P (original_target))
9034 temp = original_target;
9035 else
9036 temp = assign_temp (type, 0, 1);
9037
9038 do_pending_stack_adjust ();
9039 NO_DEFER_POP;
9040 op0 = gen_label_rtx ();
9041 op1 = gen_label_rtx ();
9042 jumpifnot (treeop0, op0, -1);
9043 store_expr (treeop1, temp,
9044 modifier == EXPAND_STACK_PARM,
9045 false);
9046
9047 emit_jump_insn (gen_jump (op1));
9048 emit_barrier ();
9049 emit_label (op0);
9050 store_expr (treeop2, temp,
9051 modifier == EXPAND_STACK_PARM,
9052 false);
9053
9054 emit_label (op1);
9055 OK_DEFER_POP;
9056 return temp;
9057
9058 case VEC_COND_EXPR:
9059 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9060 return target;
9061
9062 default:
9063 gcc_unreachable ();
9064 }
9065
9066 /* Here to do an ordinary binary operator. */
9067 binop:
9068 expand_operands (treeop0, treeop1,
9069 subtarget, &op0, &op1, EXPAND_NORMAL);
9070 binop2:
9071 this_optab = optab_for_tree_code (code, type, optab_default);
9072 binop3:
9073 if (modifier == EXPAND_STACK_PARM)
9074 target = 0;
9075 temp = expand_binop (mode, this_optab, op0, op1, target,
9076 unsignedp, OPTAB_LIB_WIDEN);
9077 gcc_assert (temp);
9078 /* Bitwise operations do not need bitfield reduction as we expect their
9079 operands being properly truncated. */
9080 if (code == BIT_XOR_EXPR
9081 || code == BIT_AND_EXPR
9082 || code == BIT_IOR_EXPR)
9083 return temp;
9084 return REDUCE_BIT_FIELD (temp);
9085 }
9086 #undef REDUCE_BIT_FIELD
9087
9088 rtx
9089 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
9090 enum expand_modifier modifier, rtx *alt_rtl)
9091 {
9092 rtx op0, op1, temp, decl_rtl;
9093 tree type;
9094 int unsignedp;
9095 enum machine_mode mode;
9096 enum tree_code code = TREE_CODE (exp);
9097 rtx subtarget, original_target;
9098 int ignore;
9099 tree context;
9100 bool reduce_bit_field;
9101 location_t loc = EXPR_LOCATION (exp);
9102 struct separate_ops ops;
9103 tree treeop0, treeop1, treeop2;
9104 tree ssa_name = NULL_TREE;
9105 gimple g;
9106
9107 type = TREE_TYPE (exp);
9108 mode = TYPE_MODE (type);
9109 unsignedp = TYPE_UNSIGNED (type);
9110
9111 treeop0 = treeop1 = treeop2 = NULL_TREE;
9112 if (!VL_EXP_CLASS_P (exp))
9113 switch (TREE_CODE_LENGTH (code))
9114 {
9115 default:
9116 case 3: treeop2 = TREE_OPERAND (exp, 2);
9117 case 2: treeop1 = TREE_OPERAND (exp, 1);
9118 case 1: treeop0 = TREE_OPERAND (exp, 0);
9119 case 0: break;
9120 }
9121 ops.code = code;
9122 ops.type = type;
9123 ops.op0 = treeop0;
9124 ops.op1 = treeop1;
9125 ops.op2 = treeop2;
9126 ops.location = loc;
9127
9128 ignore = (target == const0_rtx
9129 || ((CONVERT_EXPR_CODE_P (code)
9130 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9131 && TREE_CODE (type) == VOID_TYPE));
9132
9133 /* An operation in what may be a bit-field type needs the
9134 result to be reduced to the precision of the bit-field type,
9135 which is narrower than that of the type's mode. */
9136 reduce_bit_field = (!ignore
9137 && INTEGRAL_TYPE_P (type)
9138 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
9139
9140 /* If we are going to ignore this result, we need only do something
9141 if there is a side-effect somewhere in the expression. If there
9142 is, short-circuit the most common cases here. Note that we must
9143 not call expand_expr with anything but const0_rtx in case this
9144 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9145
9146 if (ignore)
9147 {
9148 if (! TREE_SIDE_EFFECTS (exp))
9149 return const0_rtx;
9150
9151 /* Ensure we reference a volatile object even if value is ignored, but
9152 don't do this if all we are doing is taking its address. */
9153 if (TREE_THIS_VOLATILE (exp)
9154 && TREE_CODE (exp) != FUNCTION_DECL
9155 && mode != VOIDmode && mode != BLKmode
9156 && modifier != EXPAND_CONST_ADDRESS)
9157 {
9158 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
9159 if (MEM_P (temp))
9160 copy_to_reg (temp);
9161 return const0_rtx;
9162 }
9163
9164 if (TREE_CODE_CLASS (code) == tcc_unary
9165 || code == COMPONENT_REF || code == INDIRECT_REF)
9166 return expand_expr (treeop0, const0_rtx, VOIDmode,
9167 modifier);
9168
9169 else if (TREE_CODE_CLASS (code) == tcc_binary
9170 || TREE_CODE_CLASS (code) == tcc_comparison
9171 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
9172 {
9173 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
9174 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
9175 return const0_rtx;
9176 }
9177 else if (code == BIT_FIELD_REF)
9178 {
9179 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
9180 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
9181 expand_expr (treeop2, const0_rtx, VOIDmode, modifier);
9182 return const0_rtx;
9183 }
9184
9185 target = 0;
9186 }
9187
9188 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
9189 target = 0;
9190
9191 /* Use subtarget as the target for operand 0 of a binary operation. */
9192 subtarget = get_subtarget (target);
9193 original_target = target;
9194
9195 switch (code)
9196 {
9197 case LABEL_DECL:
9198 {
9199 tree function = decl_function_context (exp);
9200
9201 temp = label_rtx (exp);
9202 temp = gen_rtx_LABEL_REF (Pmode, temp);
9203
9204 if (function != current_function_decl
9205 && function != 0)
9206 LABEL_REF_NONLOCAL_P (temp) = 1;
9207
9208 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
9209 return temp;
9210 }
9211
9212 case SSA_NAME:
9213 /* ??? ivopts calls expander, without any preparation from
9214 out-of-ssa. So fake instructions as if this was an access to the
9215 base variable. This unnecessarily allocates a pseudo, see how we can
9216 reuse it, if partition base vars have it set already. */
9217 if (!currently_expanding_to_rtl)
9218 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
9219 NULL);
9220
9221 g = get_gimple_for_ssa_name (exp);
9222 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9223 if (g == NULL
9224 && modifier == EXPAND_INITIALIZER
9225 && !SSA_NAME_IS_DEFAULT_DEF (exp)
9226 && (optimize || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
9227 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
9228 g = SSA_NAME_DEF_STMT (exp);
9229 if (g)
9230 {
9231 rtx r = expand_expr_real (gimple_assign_rhs_to_tree (g), target,
9232 tmode, modifier, NULL);
9233 if (REG_P (r) && !REG_EXPR (r))
9234 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
9235 return r;
9236 }
9237
9238 ssa_name = exp;
9239 decl_rtl = get_rtx_for_ssa_name (ssa_name);
9240 exp = SSA_NAME_VAR (ssa_name);
9241 goto expand_decl_rtl;
9242
9243 case PARM_DECL:
9244 case VAR_DECL:
9245 /* If a static var's type was incomplete when the decl was written,
9246 but the type is complete now, lay out the decl now. */
9247 if (DECL_SIZE (exp) == 0
9248 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
9249 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
9250 layout_decl (exp, 0);
9251
9252 /* ... fall through ... */
9253
9254 case FUNCTION_DECL:
9255 case RESULT_DECL:
9256 decl_rtl = DECL_RTL (exp);
9257 expand_decl_rtl:
9258 gcc_assert (decl_rtl);
9259 decl_rtl = copy_rtx (decl_rtl);
9260 /* Record writes to register variables. */
9261 if (modifier == EXPAND_WRITE
9262 && REG_P (decl_rtl)
9263 && HARD_REGISTER_P (decl_rtl))
9264 add_to_hard_reg_set (&crtl->asm_clobbers,
9265 GET_MODE (decl_rtl), REGNO (decl_rtl));
9266
9267 /* Ensure variable marked as used even if it doesn't go through
9268 a parser. If it hasn't be used yet, write out an external
9269 definition. */
9270 TREE_USED (exp) = 1;
9271
9272 /* Show we haven't gotten RTL for this yet. */
9273 temp = 0;
9274
9275 /* Variables inherited from containing functions should have
9276 been lowered by this point. */
9277 context = decl_function_context (exp);
9278 gcc_assert (!context
9279 || context == current_function_decl
9280 || TREE_STATIC (exp)
9281 || DECL_EXTERNAL (exp)
9282 /* ??? C++ creates functions that are not TREE_STATIC. */
9283 || TREE_CODE (exp) == FUNCTION_DECL);
9284
9285 /* This is the case of an array whose size is to be determined
9286 from its initializer, while the initializer is still being parsed.
9287 ??? We aren't parsing while expanding anymore. */
9288
9289 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
9290 temp = validize_mem (decl_rtl);
9291
9292 /* If DECL_RTL is memory, we are in the normal case and the
9293 address is not valid, get the address into a register. */
9294
9295 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
9296 {
9297 if (alt_rtl)
9298 *alt_rtl = decl_rtl;
9299 decl_rtl = use_anchored_address (decl_rtl);
9300 if (modifier != EXPAND_CONST_ADDRESS
9301 && modifier != EXPAND_SUM
9302 && !memory_address_addr_space_p (DECL_MODE (exp),
9303 XEXP (decl_rtl, 0),
9304 MEM_ADDR_SPACE (decl_rtl)))
9305 temp = replace_equiv_address (decl_rtl,
9306 copy_rtx (XEXP (decl_rtl, 0)));
9307 }
9308
9309 /* If we got something, return it. But first, set the alignment
9310 if the address is a register. */
9311 if (temp != 0)
9312 {
9313 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
9314 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
9315
9316 return temp;
9317 }
9318
9319 /* If the mode of DECL_RTL does not match that of the decl,
9320 there are two cases: we are dealing with a BLKmode value
9321 that is returned in a register, or we are dealing with
9322 a promoted value. In the latter case, return a SUBREG
9323 of the wanted mode, but mark it so that we know that it
9324 was already extended. */
9325 if (REG_P (decl_rtl)
9326 && DECL_MODE (exp) != BLKmode
9327 && GET_MODE (decl_rtl) != DECL_MODE (exp))
9328 {
9329 enum machine_mode pmode;
9330
9331 /* Get the signedness to be used for this variable. Ensure we get
9332 the same mode we got when the variable was declared. */
9333 if (code == SSA_NAME
9334 && (g = SSA_NAME_DEF_STMT (ssa_name))
9335 && gimple_code (g) == GIMPLE_CALL)
9336 {
9337 gcc_assert (!gimple_call_internal_p (g));
9338 pmode = promote_function_mode (type, mode, &unsignedp,
9339 gimple_call_fntype (g),
9340 2);
9341 }
9342 else
9343 pmode = promote_decl_mode (exp, &unsignedp);
9344 gcc_assert (GET_MODE (decl_rtl) == pmode);
9345
9346 temp = gen_lowpart_SUBREG (mode, decl_rtl);
9347 SUBREG_PROMOTED_VAR_P (temp) = 1;
9348 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
9349 return temp;
9350 }
9351
9352 return decl_rtl;
9353
9354 case INTEGER_CST:
9355 temp = immed_double_const (TREE_INT_CST_LOW (exp),
9356 TREE_INT_CST_HIGH (exp), mode);
9357
9358 return temp;
9359
9360 case VECTOR_CST:
9361 {
9362 tree tmp = NULL_TREE;
9363 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
9364 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
9365 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
9366 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
9367 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
9368 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
9369 return const_vector_from_tree (exp);
9370 if (GET_MODE_CLASS (mode) == MODE_INT)
9371 {
9372 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
9373 if (type_for_mode)
9374 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
9375 }
9376 if (!tmp)
9377 {
9378 VEC(constructor_elt,gc) *v;
9379 unsigned i;
9380 v = VEC_alloc (constructor_elt, gc, VECTOR_CST_NELTS (exp));
9381 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
9382 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
9383 tmp = build_constructor (type, v);
9384 }
9385 return expand_expr (tmp, ignore ? const0_rtx : target,
9386 tmode, modifier);
9387 }
9388
9389 case CONST_DECL:
9390 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
9391
9392 case REAL_CST:
9393 /* If optimized, generate immediate CONST_DOUBLE
9394 which will be turned into memory by reload if necessary.
9395
9396 We used to force a register so that loop.c could see it. But
9397 this does not allow gen_* patterns to perform optimizations with
9398 the constants. It also produces two insns in cases like "x = 1.0;".
9399 On most machines, floating-point constants are not permitted in
9400 many insns, so we'd end up copying it to a register in any case.
9401
9402 Now, we do the copying in expand_binop, if appropriate. */
9403 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
9404 TYPE_MODE (TREE_TYPE (exp)));
9405
9406 case FIXED_CST:
9407 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
9408 TYPE_MODE (TREE_TYPE (exp)));
9409
9410 case COMPLEX_CST:
9411 /* Handle evaluating a complex constant in a CONCAT target. */
9412 if (original_target && GET_CODE (original_target) == CONCAT)
9413 {
9414 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
9415 rtx rtarg, itarg;
9416
9417 rtarg = XEXP (original_target, 0);
9418 itarg = XEXP (original_target, 1);
9419
9420 /* Move the real and imaginary parts separately. */
9421 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
9422 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
9423
9424 if (op0 != rtarg)
9425 emit_move_insn (rtarg, op0);
9426 if (op1 != itarg)
9427 emit_move_insn (itarg, op1);
9428
9429 return original_target;
9430 }
9431
9432 /* ... fall through ... */
9433
9434 case STRING_CST:
9435 temp = expand_expr_constant (exp, 1, modifier);
9436
9437 /* temp contains a constant address.
9438 On RISC machines where a constant address isn't valid,
9439 make some insns to get that address into a register. */
9440 if (modifier != EXPAND_CONST_ADDRESS
9441 && modifier != EXPAND_INITIALIZER
9442 && modifier != EXPAND_SUM
9443 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
9444 MEM_ADDR_SPACE (temp)))
9445 return replace_equiv_address (temp,
9446 copy_rtx (XEXP (temp, 0)));
9447 return temp;
9448
9449 case SAVE_EXPR:
9450 {
9451 tree val = treeop0;
9452 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
9453
9454 if (!SAVE_EXPR_RESOLVED_P (exp))
9455 {
9456 /* We can indeed still hit this case, typically via builtin
9457 expanders calling save_expr immediately before expanding
9458 something. Assume this means that we only have to deal
9459 with non-BLKmode values. */
9460 gcc_assert (GET_MODE (ret) != BLKmode);
9461
9462 val = build_decl (EXPR_LOCATION (exp),
9463 VAR_DECL, NULL, TREE_TYPE (exp));
9464 DECL_ARTIFICIAL (val) = 1;
9465 DECL_IGNORED_P (val) = 1;
9466 treeop0 = val;
9467 TREE_OPERAND (exp, 0) = treeop0;
9468 SAVE_EXPR_RESOLVED_P (exp) = 1;
9469
9470 if (!CONSTANT_P (ret))
9471 ret = copy_to_reg (ret);
9472 SET_DECL_RTL (val, ret);
9473 }
9474
9475 return ret;
9476 }
9477
9478
9479 case CONSTRUCTOR:
9480 /* If we don't need the result, just ensure we evaluate any
9481 subexpressions. */
9482 if (ignore)
9483 {
9484 unsigned HOST_WIDE_INT idx;
9485 tree value;
9486
9487 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
9488 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
9489
9490 return const0_rtx;
9491 }
9492
9493 return expand_constructor (exp, target, modifier, false);
9494
9495 case TARGET_MEM_REF:
9496 {
9497 addr_space_t as
9498 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
9499 struct mem_address addr;
9500 enum insn_code icode;
9501 unsigned int align;
9502
9503 get_address_description (exp, &addr);
9504 op0 = addr_for_mem_ref (&addr, as, true);
9505 op0 = memory_address_addr_space (mode, op0, as);
9506 temp = gen_rtx_MEM (mode, op0);
9507 set_mem_attributes (temp, exp, 0);
9508 set_mem_addr_space (temp, as);
9509 align = get_object_or_type_alignment (exp);
9510 if (modifier != EXPAND_WRITE
9511 && mode != BLKmode
9512 && align < GET_MODE_ALIGNMENT (mode)
9513 /* If the target does not have special handling for unaligned
9514 loads of mode then it can use regular moves for them. */
9515 && ((icode = optab_handler (movmisalign_optab, mode))
9516 != CODE_FOR_nothing))
9517 {
9518 struct expand_operand ops[2];
9519
9520 /* We've already validated the memory, and we're creating a
9521 new pseudo destination. The predicates really can't fail,
9522 nor can the generator. */
9523 create_output_operand (&ops[0], NULL_RTX, mode);
9524 create_fixed_operand (&ops[1], temp);
9525 expand_insn (icode, 2, ops);
9526 return ops[0].value;
9527 }
9528 return temp;
9529 }
9530
9531 case MEM_REF:
9532 {
9533 addr_space_t as
9534 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
9535 enum machine_mode address_mode;
9536 tree base = TREE_OPERAND (exp, 0);
9537 gimple def_stmt;
9538 enum insn_code icode;
9539 unsigned align;
9540 /* Handle expansion of non-aliased memory with non-BLKmode. That
9541 might end up in a register. */
9542 if (mem_ref_refers_to_non_mem_p (exp))
9543 {
9544 HOST_WIDE_INT offset = mem_ref_offset (exp).low;
9545 tree bit_offset;
9546 tree bftype;
9547 base = TREE_OPERAND (base, 0);
9548 if (offset == 0
9549 && host_integerp (TYPE_SIZE (TREE_TYPE (exp)), 1)
9550 && (GET_MODE_BITSIZE (DECL_MODE (base))
9551 == TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp)))))
9552 return expand_expr (build1 (VIEW_CONVERT_EXPR,
9553 TREE_TYPE (exp), base),
9554 target, tmode, modifier);
9555 bit_offset = bitsize_int (offset * BITS_PER_UNIT);
9556 bftype = TREE_TYPE (base);
9557 if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
9558 bftype = TREE_TYPE (exp);
9559 else
9560 {
9561 temp = assign_stack_temp (DECL_MODE (base),
9562 GET_MODE_SIZE (DECL_MODE (base)));
9563 store_expr (base, temp, 0, false);
9564 temp = adjust_address (temp, BLKmode, offset);
9565 set_mem_size (temp, int_size_in_bytes (TREE_TYPE (exp)));
9566 return temp;
9567 }
9568 return expand_expr (build3 (BIT_FIELD_REF, bftype,
9569 base,
9570 TYPE_SIZE (TREE_TYPE (exp)),
9571 bit_offset),
9572 target, tmode, modifier);
9573 }
9574 address_mode = targetm.addr_space.address_mode (as);
9575 base = TREE_OPERAND (exp, 0);
9576 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
9577 {
9578 tree mask = gimple_assign_rhs2 (def_stmt);
9579 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
9580 gimple_assign_rhs1 (def_stmt), mask);
9581 TREE_OPERAND (exp, 0) = base;
9582 }
9583 align = get_object_or_type_alignment (exp);
9584 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
9585 op0 = memory_address_addr_space (address_mode, op0, as);
9586 if (!integer_zerop (TREE_OPERAND (exp, 1)))
9587 {
9588 rtx off
9589 = immed_double_int_const (mem_ref_offset (exp), address_mode);
9590 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
9591 }
9592 op0 = memory_address_addr_space (mode, op0, as);
9593 temp = gen_rtx_MEM (mode, op0);
9594 set_mem_attributes (temp, exp, 0);
9595 set_mem_addr_space (temp, as);
9596 if (TREE_THIS_VOLATILE (exp))
9597 MEM_VOLATILE_P (temp) = 1;
9598 if (modifier != EXPAND_WRITE
9599 && mode != BLKmode
9600 && align < GET_MODE_ALIGNMENT (mode))
9601 {
9602 if ((icode = optab_handler (movmisalign_optab, mode))
9603 != CODE_FOR_nothing)
9604 {
9605 struct expand_operand ops[2];
9606
9607 /* We've already validated the memory, and we're creating a
9608 new pseudo destination. The predicates really can't fail,
9609 nor can the generator. */
9610 create_output_operand (&ops[0], NULL_RTX, mode);
9611 create_fixed_operand (&ops[1], temp);
9612 expand_insn (icode, 2, ops);
9613 return ops[0].value;
9614 }
9615 else if (SLOW_UNALIGNED_ACCESS (mode, align))
9616 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
9617 0, TYPE_UNSIGNED (TREE_TYPE (exp)),
9618 true, (modifier == EXPAND_STACK_PARM
9619 ? NULL_RTX : target),
9620 mode, mode);
9621 }
9622 return temp;
9623 }
9624
9625 case ARRAY_REF:
9626
9627 {
9628 tree array = treeop0;
9629 tree index = treeop1;
9630
9631 /* Fold an expression like: "foo"[2].
9632 This is not done in fold so it won't happen inside &.
9633 Don't fold if this is for wide characters since it's too
9634 difficult to do correctly and this is a very rare case. */
9635
9636 if (modifier != EXPAND_CONST_ADDRESS
9637 && modifier != EXPAND_INITIALIZER
9638 && modifier != EXPAND_MEMORY)
9639 {
9640 tree t = fold_read_from_constant_string (exp);
9641
9642 if (t)
9643 return expand_expr (t, target, tmode, modifier);
9644 }
9645
9646 /* If this is a constant index into a constant array,
9647 just get the value from the array. Handle both the cases when
9648 we have an explicit constructor and when our operand is a variable
9649 that was declared const. */
9650
9651 if (modifier != EXPAND_CONST_ADDRESS
9652 && modifier != EXPAND_INITIALIZER
9653 && modifier != EXPAND_MEMORY
9654 && TREE_CODE (array) == CONSTRUCTOR
9655 && ! TREE_SIDE_EFFECTS (array)
9656 && TREE_CODE (index) == INTEGER_CST)
9657 {
9658 unsigned HOST_WIDE_INT ix;
9659 tree field, value;
9660
9661 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
9662 field, value)
9663 if (tree_int_cst_equal (field, index))
9664 {
9665 if (!TREE_SIDE_EFFECTS (value))
9666 return expand_expr (fold (value), target, tmode, modifier);
9667 break;
9668 }
9669 }
9670
9671 else if (optimize >= 1
9672 && modifier != EXPAND_CONST_ADDRESS
9673 && modifier != EXPAND_INITIALIZER
9674 && modifier != EXPAND_MEMORY
9675 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
9676 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
9677 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
9678 && const_value_known_p (array))
9679 {
9680 if (TREE_CODE (index) == INTEGER_CST)
9681 {
9682 tree init = DECL_INITIAL (array);
9683
9684 if (TREE_CODE (init) == CONSTRUCTOR)
9685 {
9686 unsigned HOST_WIDE_INT ix;
9687 tree field, value;
9688
9689 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
9690 field, value)
9691 if (tree_int_cst_equal (field, index))
9692 {
9693 if (TREE_SIDE_EFFECTS (value))
9694 break;
9695
9696 if (TREE_CODE (value) == CONSTRUCTOR)
9697 {
9698 /* If VALUE is a CONSTRUCTOR, this
9699 optimization is only useful if
9700 this doesn't store the CONSTRUCTOR
9701 into memory. If it does, it is more
9702 efficient to just load the data from
9703 the array directly. */
9704 rtx ret = expand_constructor (value, target,
9705 modifier, true);
9706 if (ret == NULL_RTX)
9707 break;
9708 }
9709
9710 return expand_expr (fold (value), target, tmode,
9711 modifier);
9712 }
9713 }
9714 else if(TREE_CODE (init) == STRING_CST)
9715 {
9716 tree index1 = index;
9717 tree low_bound = array_ref_low_bound (exp);
9718 index1 = fold_convert_loc (loc, sizetype,
9719 treeop1);
9720
9721 /* Optimize the special-case of a zero lower bound.
9722
9723 We convert the low_bound to sizetype to avoid some problems
9724 with constant folding. (E.g. suppose the lower bound is 1,
9725 and its mode is QI. Without the conversion,l (ARRAY
9726 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
9727 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
9728
9729 if (! integer_zerop (low_bound))
9730 index1 = size_diffop_loc (loc, index1,
9731 fold_convert_loc (loc, sizetype,
9732 low_bound));
9733
9734 if (0 > compare_tree_int (index1,
9735 TREE_STRING_LENGTH (init)))
9736 {
9737 tree type = TREE_TYPE (TREE_TYPE (init));
9738 enum machine_mode mode = TYPE_MODE (type);
9739
9740 if (GET_MODE_CLASS (mode) == MODE_INT
9741 && GET_MODE_SIZE (mode) == 1)
9742 return gen_int_mode (TREE_STRING_POINTER (init)
9743 [TREE_INT_CST_LOW (index1)],
9744 mode);
9745 }
9746 }
9747 }
9748 }
9749 }
9750 goto normal_inner_ref;
9751
9752 case COMPONENT_REF:
9753 /* If the operand is a CONSTRUCTOR, we can just extract the
9754 appropriate field if it is present. */
9755 if (TREE_CODE (treeop0) == CONSTRUCTOR)
9756 {
9757 unsigned HOST_WIDE_INT idx;
9758 tree field, value;
9759
9760 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
9761 idx, field, value)
9762 if (field == treeop1
9763 /* We can normally use the value of the field in the
9764 CONSTRUCTOR. However, if this is a bitfield in
9765 an integral mode that we can fit in a HOST_WIDE_INT,
9766 we must mask only the number of bits in the bitfield,
9767 since this is done implicitly by the constructor. If
9768 the bitfield does not meet either of those conditions,
9769 we can't do this optimization. */
9770 && (! DECL_BIT_FIELD (field)
9771 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
9772 && (GET_MODE_PRECISION (DECL_MODE (field))
9773 <= HOST_BITS_PER_WIDE_INT))))
9774 {
9775 if (DECL_BIT_FIELD (field)
9776 && modifier == EXPAND_STACK_PARM)
9777 target = 0;
9778 op0 = expand_expr (value, target, tmode, modifier);
9779 if (DECL_BIT_FIELD (field))
9780 {
9781 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
9782 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
9783
9784 if (TYPE_UNSIGNED (TREE_TYPE (field)))
9785 {
9786 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
9787 op0 = expand_and (imode, op0, op1, target);
9788 }
9789 else
9790 {
9791 int count = GET_MODE_PRECISION (imode) - bitsize;
9792
9793 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
9794 target, 0);
9795 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
9796 target, 0);
9797 }
9798 }
9799
9800 return op0;
9801 }
9802 }
9803 goto normal_inner_ref;
9804
9805 case BIT_FIELD_REF:
9806 case ARRAY_RANGE_REF:
9807 normal_inner_ref:
9808 {
9809 enum machine_mode mode1, mode2;
9810 HOST_WIDE_INT bitsize, bitpos;
9811 tree offset;
9812 int volatilep = 0, must_force_mem;
9813 bool packedp = false;
9814 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
9815 &mode1, &unsignedp, &volatilep, true);
9816 rtx orig_op0, memloc;
9817 bool mem_attrs_from_type = false;
9818
9819 /* If we got back the original object, something is wrong. Perhaps
9820 we are evaluating an expression too early. In any event, don't
9821 infinitely recurse. */
9822 gcc_assert (tem != exp);
9823
9824 if (TYPE_PACKED (TREE_TYPE (TREE_OPERAND (exp, 0)))
9825 || (TREE_CODE (TREE_OPERAND (exp, 1)) == FIELD_DECL
9826 && DECL_PACKED (TREE_OPERAND (exp, 1))))
9827 packedp = true;
9828
9829 /* If TEM's type is a union of variable size, pass TARGET to the inner
9830 computation, since it will need a temporary and TARGET is known
9831 to have to do. This occurs in unchecked conversion in Ada. */
9832 orig_op0 = op0
9833 = expand_expr (tem,
9834 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9835 && COMPLETE_TYPE_P (TREE_TYPE (tem))
9836 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9837 != INTEGER_CST)
9838 && modifier != EXPAND_STACK_PARM
9839 ? target : NULL_RTX),
9840 VOIDmode,
9841 (modifier == EXPAND_INITIALIZER
9842 || modifier == EXPAND_CONST_ADDRESS
9843 || modifier == EXPAND_STACK_PARM)
9844 ? modifier : EXPAND_NORMAL);
9845
9846
9847 /* If the bitfield is volatile, we want to access it in the
9848 field's mode, not the computed mode.
9849 If a MEM has VOIDmode (external with incomplete type),
9850 use BLKmode for it instead. */
9851 if (MEM_P (op0))
9852 {
9853 if (volatilep && flag_strict_volatile_bitfields > 0)
9854 op0 = adjust_address (op0, mode1, 0);
9855 else if (GET_MODE (op0) == VOIDmode)
9856 op0 = adjust_address (op0, BLKmode, 0);
9857 }
9858
9859 mode2
9860 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
9861
9862 /* If we have either an offset, a BLKmode result, or a reference
9863 outside the underlying object, we must force it to memory.
9864 Such a case can occur in Ada if we have unchecked conversion
9865 of an expression from a scalar type to an aggregate type or
9866 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
9867 passed a partially uninitialized object or a view-conversion
9868 to a larger size. */
9869 must_force_mem = (offset
9870 || mode1 == BLKmode
9871 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
9872
9873 /* Handle CONCAT first. */
9874 if (GET_CODE (op0) == CONCAT && !must_force_mem)
9875 {
9876 if (bitpos == 0
9877 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
9878 return op0;
9879 if (bitpos == 0
9880 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9881 && bitsize)
9882 {
9883 op0 = XEXP (op0, 0);
9884 mode2 = GET_MODE (op0);
9885 }
9886 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9887 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
9888 && bitpos
9889 && bitsize)
9890 {
9891 op0 = XEXP (op0, 1);
9892 bitpos = 0;
9893 mode2 = GET_MODE (op0);
9894 }
9895 else
9896 /* Otherwise force into memory. */
9897 must_force_mem = 1;
9898 }
9899
9900 /* If this is a constant, put it in a register if it is a legitimate
9901 constant and we don't need a memory reference. */
9902 if (CONSTANT_P (op0)
9903 && mode2 != BLKmode
9904 && targetm.legitimate_constant_p (mode2, op0)
9905 && !must_force_mem)
9906 op0 = force_reg (mode2, op0);
9907
9908 /* Otherwise, if this is a constant, try to force it to the constant
9909 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9910 is a legitimate constant. */
9911 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
9912 op0 = validize_mem (memloc);
9913
9914 /* Otherwise, if this is a constant or the object is not in memory
9915 and need be, put it there. */
9916 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
9917 {
9918 tree nt = build_qualified_type (TREE_TYPE (tem),
9919 (TYPE_QUALS (TREE_TYPE (tem))
9920 | TYPE_QUAL_CONST));
9921 memloc = assign_temp (nt, 1, 1);
9922 emit_move_insn (memloc, op0);
9923 op0 = memloc;
9924 mem_attrs_from_type = true;
9925 }
9926
9927 if (offset)
9928 {
9929 enum machine_mode address_mode;
9930 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
9931 EXPAND_SUM);
9932
9933 gcc_assert (MEM_P (op0));
9934
9935 address_mode = get_address_mode (op0);
9936 if (GET_MODE (offset_rtx) != address_mode)
9937 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
9938
9939 if (GET_MODE (op0) == BLKmode
9940 /* A constant address in OP0 can have VOIDmode, we must
9941 not try to call force_reg in that case. */
9942 && GET_MODE (XEXP (op0, 0)) != VOIDmode
9943 && bitsize != 0
9944 && (bitpos % bitsize) == 0
9945 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
9946 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
9947 {
9948 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9949 bitpos = 0;
9950 }
9951
9952 op0 = offset_address (op0, offset_rtx,
9953 highest_pow2_factor (offset));
9954 }
9955
9956 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9957 record its alignment as BIGGEST_ALIGNMENT. */
9958 if (MEM_P (op0) && bitpos == 0 && offset != 0
9959 && is_aligning_offset (offset, tem))
9960 set_mem_align (op0, BIGGEST_ALIGNMENT);
9961
9962 /* Don't forget about volatility even if this is a bitfield. */
9963 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
9964 {
9965 if (op0 == orig_op0)
9966 op0 = copy_rtx (op0);
9967
9968 MEM_VOLATILE_P (op0) = 1;
9969 }
9970
9971 /* In cases where an aligned union has an unaligned object
9972 as a field, we might be extracting a BLKmode value from
9973 an integer-mode (e.g., SImode) object. Handle this case
9974 by doing the extract into an object as wide as the field
9975 (which we know to be the width of a basic mode), then
9976 storing into memory, and changing the mode to BLKmode. */
9977 if (mode1 == VOIDmode
9978 || REG_P (op0) || GET_CODE (op0) == SUBREG
9979 || (mode1 != BLKmode && ! direct_load[(int) mode1]
9980 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9981 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
9982 && modifier != EXPAND_CONST_ADDRESS
9983 && modifier != EXPAND_INITIALIZER)
9984 /* If the field is volatile, we always want an aligned
9985 access. Do this in following two situations:
9986 1. the access is not already naturally
9987 aligned, otherwise "normal" (non-bitfield) volatile fields
9988 become non-addressable.
9989 2. the bitsize is narrower than the access size. Need
9990 to extract bitfields from the access. */
9991 || (volatilep && flag_strict_volatile_bitfields > 0
9992 && (bitpos % GET_MODE_ALIGNMENT (mode) != 0
9993 || (mode1 != BLKmode
9994 && bitsize < GET_MODE_SIZE (mode1) * BITS_PER_UNIT)))
9995 /* If the field isn't aligned enough to fetch as a memref,
9996 fetch it as a bit field. */
9997 || (mode1 != BLKmode
9998 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
9999 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
10000 || (MEM_P (op0)
10001 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
10002 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
10003 && ((modifier == EXPAND_CONST_ADDRESS
10004 || modifier == EXPAND_INITIALIZER)
10005 ? STRICT_ALIGNMENT
10006 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
10007 || (bitpos % BITS_PER_UNIT != 0)))
10008 /* If the type and the field are a constant size and the
10009 size of the type isn't the same size as the bitfield,
10010 we must use bitfield operations. */
10011 || (bitsize >= 0
10012 && TYPE_SIZE (TREE_TYPE (exp))
10013 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
10014 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
10015 bitsize)))
10016 {
10017 enum machine_mode ext_mode = mode;
10018
10019 if (ext_mode == BLKmode
10020 && ! (target != 0 && MEM_P (op0)
10021 && MEM_P (target)
10022 && bitpos % BITS_PER_UNIT == 0))
10023 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
10024
10025 if (ext_mode == BLKmode)
10026 {
10027 if (target == 0)
10028 target = assign_temp (type, 1, 1);
10029
10030 if (bitsize == 0)
10031 return target;
10032
10033 /* In this case, BITPOS must start at a byte boundary and
10034 TARGET, if specified, must be a MEM. */
10035 gcc_assert (MEM_P (op0)
10036 && (!target || MEM_P (target))
10037 && !(bitpos % BITS_PER_UNIT));
10038
10039 emit_block_move (target,
10040 adjust_address (op0, VOIDmode,
10041 bitpos / BITS_PER_UNIT),
10042 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
10043 / BITS_PER_UNIT),
10044 (modifier == EXPAND_STACK_PARM
10045 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10046
10047 return target;
10048 }
10049
10050 op0 = validize_mem (op0);
10051
10052 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
10053 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10054
10055 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp, packedp,
10056 (modifier == EXPAND_STACK_PARM
10057 ? NULL_RTX : target),
10058 ext_mode, ext_mode);
10059
10060 /* If the result is a record type and BITSIZE is narrower than
10061 the mode of OP0, an integral mode, and this is a big endian
10062 machine, we must put the field into the high-order bits. */
10063 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
10064 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10065 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
10066 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
10067 GET_MODE_BITSIZE (GET_MODE (op0))
10068 - bitsize, op0, 1);
10069
10070 /* If the result type is BLKmode, store the data into a temporary
10071 of the appropriate type, but with the mode corresponding to the
10072 mode for the data we have (op0's mode). It's tempting to make
10073 this a constant type, since we know it's only being stored once,
10074 but that can cause problems if we are taking the address of this
10075 COMPONENT_REF because the MEM of any reference via that address
10076 will have flags corresponding to the type, which will not
10077 necessarily be constant. */
10078 if (mode == BLKmode)
10079 {
10080 rtx new_rtx;
10081
10082 new_rtx = assign_stack_temp_for_type (ext_mode,
10083 GET_MODE_BITSIZE (ext_mode),
10084 type);
10085 emit_move_insn (new_rtx, op0);
10086 op0 = copy_rtx (new_rtx);
10087 PUT_MODE (op0, BLKmode);
10088 }
10089
10090 return op0;
10091 }
10092
10093 /* If the result is BLKmode, use that to access the object
10094 now as well. */
10095 if (mode == BLKmode)
10096 mode1 = BLKmode;
10097
10098 /* Get a reference to just this component. */
10099 if (modifier == EXPAND_CONST_ADDRESS
10100 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
10101 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
10102 else
10103 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10104
10105 if (op0 == orig_op0)
10106 op0 = copy_rtx (op0);
10107
10108 /* If op0 is a temporary because of forcing to memory, pass only the
10109 type to set_mem_attributes so that the original expression is never
10110 marked as ADDRESSABLE through MEM_EXPR of the temporary. */
10111 if (mem_attrs_from_type)
10112 set_mem_attributes (op0, type, 0);
10113 else
10114 set_mem_attributes (op0, exp, 0);
10115
10116 if (REG_P (XEXP (op0, 0)))
10117 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10118
10119 MEM_VOLATILE_P (op0) |= volatilep;
10120 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
10121 || modifier == EXPAND_CONST_ADDRESS
10122 || modifier == EXPAND_INITIALIZER)
10123 return op0;
10124 else if (target == 0)
10125 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10126
10127 convert_move (target, op0, unsignedp);
10128 return target;
10129 }
10130
10131 case OBJ_TYPE_REF:
10132 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
10133
10134 case CALL_EXPR:
10135 /* All valid uses of __builtin_va_arg_pack () are removed during
10136 inlining. */
10137 if (CALL_EXPR_VA_ARG_PACK (exp))
10138 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
10139 {
10140 tree fndecl = get_callee_fndecl (exp), attr;
10141
10142 if (fndecl
10143 && (attr = lookup_attribute ("error",
10144 DECL_ATTRIBUTES (fndecl))) != NULL)
10145 error ("%Kcall to %qs declared with attribute error: %s",
10146 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10147 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10148 if (fndecl
10149 && (attr = lookup_attribute ("warning",
10150 DECL_ATTRIBUTES (fndecl))) != NULL)
10151 warning_at (tree_nonartificial_location (exp),
10152 0, "%Kcall to %qs declared with attribute warning: %s",
10153 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10154 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10155
10156 /* Check for a built-in function. */
10157 if (fndecl && DECL_BUILT_IN (fndecl))
10158 {
10159 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
10160 return expand_builtin (exp, target, subtarget, tmode, ignore);
10161 }
10162 }
10163 return expand_call (exp, target, ignore);
10164
10165 case VIEW_CONVERT_EXPR:
10166 op0 = NULL_RTX;
10167
10168 /* If we are converting to BLKmode, try to avoid an intermediate
10169 temporary by fetching an inner memory reference. */
10170 if (mode == BLKmode
10171 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
10172 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
10173 && handled_component_p (treeop0))
10174 {
10175 enum machine_mode mode1;
10176 HOST_WIDE_INT bitsize, bitpos;
10177 tree offset;
10178 int unsignedp;
10179 int volatilep = 0;
10180 tree tem
10181 = get_inner_reference (treeop0, &bitsize, &bitpos,
10182 &offset, &mode1, &unsignedp, &volatilep,
10183 true);
10184 rtx orig_op0;
10185
10186 /* ??? We should work harder and deal with non-zero offsets. */
10187 if (!offset
10188 && (bitpos % BITS_PER_UNIT) == 0
10189 && bitsize >= 0
10190 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
10191 {
10192 /* See the normal_inner_ref case for the rationale. */
10193 orig_op0
10194 = expand_expr (tem,
10195 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10196 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10197 != INTEGER_CST)
10198 && modifier != EXPAND_STACK_PARM
10199 ? target : NULL_RTX),
10200 VOIDmode,
10201 (modifier == EXPAND_INITIALIZER
10202 || modifier == EXPAND_CONST_ADDRESS
10203 || modifier == EXPAND_STACK_PARM)
10204 ? modifier : EXPAND_NORMAL);
10205
10206 if (MEM_P (orig_op0))
10207 {
10208 op0 = orig_op0;
10209
10210 /* Get a reference to just this component. */
10211 if (modifier == EXPAND_CONST_ADDRESS
10212 || modifier == EXPAND_SUM
10213 || modifier == EXPAND_INITIALIZER)
10214 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
10215 else
10216 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
10217
10218 if (op0 == orig_op0)
10219 op0 = copy_rtx (op0);
10220
10221 set_mem_attributes (op0, treeop0, 0);
10222 if (REG_P (XEXP (op0, 0)))
10223 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10224
10225 MEM_VOLATILE_P (op0) |= volatilep;
10226 }
10227 }
10228 }
10229
10230 if (!op0)
10231 op0 = expand_expr (treeop0,
10232 NULL_RTX, VOIDmode, modifier);
10233
10234 /* If the input and output modes are both the same, we are done. */
10235 if (mode == GET_MODE (op0))
10236 ;
10237 /* If neither mode is BLKmode, and both modes are the same size
10238 then we can use gen_lowpart. */
10239 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
10240 && (GET_MODE_PRECISION (mode)
10241 == GET_MODE_PRECISION (GET_MODE (op0)))
10242 && !COMPLEX_MODE_P (GET_MODE (op0)))
10243 {
10244 if (GET_CODE (op0) == SUBREG)
10245 op0 = force_reg (GET_MODE (op0), op0);
10246 temp = gen_lowpart_common (mode, op0);
10247 if (temp)
10248 op0 = temp;
10249 else
10250 {
10251 if (!REG_P (op0) && !MEM_P (op0))
10252 op0 = force_reg (GET_MODE (op0), op0);
10253 op0 = gen_lowpart (mode, op0);
10254 }
10255 }
10256 /* If both types are integral, convert from one mode to the other. */
10257 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
10258 op0 = convert_modes (mode, GET_MODE (op0), op0,
10259 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
10260 /* As a last resort, spill op0 to memory, and reload it in a
10261 different mode. */
10262 else if (!MEM_P (op0))
10263 {
10264 /* If the operand is not a MEM, force it into memory. Since we
10265 are going to be changing the mode of the MEM, don't call
10266 force_const_mem for constants because we don't allow pool
10267 constants to change mode. */
10268 tree inner_type = TREE_TYPE (treeop0);
10269
10270 gcc_assert (!TREE_ADDRESSABLE (exp));
10271
10272 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
10273 target
10274 = assign_stack_temp_for_type
10275 (TYPE_MODE (inner_type),
10276 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
10277
10278 emit_move_insn (target, op0);
10279 op0 = target;
10280 }
10281
10282 /* At this point, OP0 is in the correct mode. If the output type is
10283 such that the operand is known to be aligned, indicate that it is.
10284 Otherwise, we need only be concerned about alignment for non-BLKmode
10285 results. */
10286 if (MEM_P (op0))
10287 {
10288 enum insn_code icode;
10289
10290 op0 = copy_rtx (op0);
10291
10292 if (TYPE_ALIGN_OK (type))
10293 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
10294 else if (mode != BLKmode
10295 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode)
10296 /* If the target does have special handling for unaligned
10297 loads of mode then use them. */
10298 && ((icode = optab_handler (movmisalign_optab, mode))
10299 != CODE_FOR_nothing))
10300 {
10301 rtx reg, insn;
10302
10303 op0 = adjust_address (op0, mode, 0);
10304 /* We've already validated the memory, and we're creating a
10305 new pseudo destination. The predicates really can't
10306 fail. */
10307 reg = gen_reg_rtx (mode);
10308
10309 /* Nor can the insn generator. */
10310 insn = GEN_FCN (icode) (reg, op0);
10311 emit_insn (insn);
10312 return reg;
10313 }
10314 else if (STRICT_ALIGNMENT
10315 && mode != BLKmode
10316 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
10317 {
10318 tree inner_type = TREE_TYPE (treeop0);
10319 HOST_WIDE_INT temp_size
10320 = MAX (int_size_in_bytes (inner_type),
10321 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
10322 rtx new_rtx
10323 = assign_stack_temp_for_type (mode, temp_size, type);
10324 rtx new_with_op0_mode
10325 = adjust_address (new_rtx, GET_MODE (op0), 0);
10326
10327 gcc_assert (!TREE_ADDRESSABLE (exp));
10328
10329 if (GET_MODE (op0) == BLKmode)
10330 emit_block_move (new_with_op0_mode, op0,
10331 GEN_INT (GET_MODE_SIZE (mode)),
10332 (modifier == EXPAND_STACK_PARM
10333 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10334 else
10335 emit_move_insn (new_with_op0_mode, op0);
10336
10337 op0 = new_rtx;
10338 }
10339
10340 op0 = adjust_address (op0, mode, 0);
10341 }
10342
10343 return op0;
10344
10345 case MODIFY_EXPR:
10346 {
10347 tree lhs = treeop0;
10348 tree rhs = treeop1;
10349 gcc_assert (ignore);
10350
10351 /* Check for |= or &= of a bitfield of size one into another bitfield
10352 of size 1. In this case, (unless we need the result of the
10353 assignment) we can do this more efficiently with a
10354 test followed by an assignment, if necessary.
10355
10356 ??? At this point, we can't get a BIT_FIELD_REF here. But if
10357 things change so we do, this code should be enhanced to
10358 support it. */
10359 if (TREE_CODE (lhs) == COMPONENT_REF
10360 && (TREE_CODE (rhs) == BIT_IOR_EXPR
10361 || TREE_CODE (rhs) == BIT_AND_EXPR)
10362 && TREE_OPERAND (rhs, 0) == lhs
10363 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
10364 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
10365 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
10366 {
10367 rtx label = gen_label_rtx ();
10368 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
10369 do_jump (TREE_OPERAND (rhs, 1),
10370 value ? label : 0,
10371 value ? 0 : label, -1);
10372 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
10373 MOVE_NONTEMPORAL (exp));
10374 do_pending_stack_adjust ();
10375 emit_label (label);
10376 return const0_rtx;
10377 }
10378
10379 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
10380 return const0_rtx;
10381 }
10382
10383 case ADDR_EXPR:
10384 return expand_expr_addr_expr (exp, target, tmode, modifier);
10385
10386 case REALPART_EXPR:
10387 op0 = expand_normal (treeop0);
10388 return read_complex_part (op0, false);
10389
10390 case IMAGPART_EXPR:
10391 op0 = expand_normal (treeop0);
10392 return read_complex_part (op0, true);
10393
10394 case RETURN_EXPR:
10395 case LABEL_EXPR:
10396 case GOTO_EXPR:
10397 case SWITCH_EXPR:
10398 case ASM_EXPR:
10399 /* Expanded in cfgexpand.c. */
10400 gcc_unreachable ();
10401
10402 case TRY_CATCH_EXPR:
10403 case CATCH_EXPR:
10404 case EH_FILTER_EXPR:
10405 case TRY_FINALLY_EXPR:
10406 /* Lowered by tree-eh.c. */
10407 gcc_unreachable ();
10408
10409 case WITH_CLEANUP_EXPR:
10410 case CLEANUP_POINT_EXPR:
10411 case TARGET_EXPR:
10412 case CASE_LABEL_EXPR:
10413 case VA_ARG_EXPR:
10414 case BIND_EXPR:
10415 case INIT_EXPR:
10416 case CONJ_EXPR:
10417 case COMPOUND_EXPR:
10418 case PREINCREMENT_EXPR:
10419 case PREDECREMENT_EXPR:
10420 case POSTINCREMENT_EXPR:
10421 case POSTDECREMENT_EXPR:
10422 case LOOP_EXPR:
10423 case EXIT_EXPR:
10424 case COMPOUND_LITERAL_EXPR:
10425 /* Lowered by gimplify.c. */
10426 gcc_unreachable ();
10427
10428 case FDESC_EXPR:
10429 /* Function descriptors are not valid except for as
10430 initialization constants, and should not be expanded. */
10431 gcc_unreachable ();
10432
10433 case WITH_SIZE_EXPR:
10434 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10435 have pulled out the size to use in whatever context it needed. */
10436 return expand_expr_real (treeop0, original_target, tmode,
10437 modifier, alt_rtl);
10438
10439 default:
10440 return expand_expr_real_2 (&ops, target, tmode, modifier);
10441 }
10442 }
10443 \f
10444 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10445 signedness of TYPE), possibly returning the result in TARGET. */
10446 static rtx
10447 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
10448 {
10449 HOST_WIDE_INT prec = TYPE_PRECISION (type);
10450 if (target && GET_MODE (target) != GET_MODE (exp))
10451 target = 0;
10452 /* For constant values, reduce using build_int_cst_type. */
10453 if (CONST_INT_P (exp))
10454 {
10455 HOST_WIDE_INT value = INTVAL (exp);
10456 tree t = build_int_cst_type (type, value);
10457 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
10458 }
10459 else if (TYPE_UNSIGNED (type))
10460 {
10461 rtx mask = immed_double_int_const (double_int_mask (prec),
10462 GET_MODE (exp));
10463 return expand_and (GET_MODE (exp), exp, mask, target);
10464 }
10465 else
10466 {
10467 int count = GET_MODE_PRECISION (GET_MODE (exp)) - prec;
10468 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp),
10469 exp, count, target, 0);
10470 return expand_shift (RSHIFT_EXPR, GET_MODE (exp),
10471 exp, count, target, 0);
10472 }
10473 }
10474 \f
10475 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10476 when applied to the address of EXP produces an address known to be
10477 aligned more than BIGGEST_ALIGNMENT. */
10478
10479 static int
10480 is_aligning_offset (const_tree offset, const_tree exp)
10481 {
10482 /* Strip off any conversions. */
10483 while (CONVERT_EXPR_P (offset))
10484 offset = TREE_OPERAND (offset, 0);
10485
10486 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10487 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10488 if (TREE_CODE (offset) != BIT_AND_EXPR
10489 || !host_integerp (TREE_OPERAND (offset, 1), 1)
10490 || compare_tree_int (TREE_OPERAND (offset, 1),
10491 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
10492 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
10493 return 0;
10494
10495 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10496 It must be NEGATE_EXPR. Then strip any more conversions. */
10497 offset = TREE_OPERAND (offset, 0);
10498 while (CONVERT_EXPR_P (offset))
10499 offset = TREE_OPERAND (offset, 0);
10500
10501 if (TREE_CODE (offset) != NEGATE_EXPR)
10502 return 0;
10503
10504 offset = TREE_OPERAND (offset, 0);
10505 while (CONVERT_EXPR_P (offset))
10506 offset = TREE_OPERAND (offset, 0);
10507
10508 /* This must now be the address of EXP. */
10509 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
10510 }
10511 \f
10512 /* Return the tree node if an ARG corresponds to a string constant or zero
10513 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10514 in bytes within the string that ARG is accessing. The type of the
10515 offset will be `sizetype'. */
10516
10517 tree
10518 string_constant (tree arg, tree *ptr_offset)
10519 {
10520 tree array, offset, lower_bound;
10521 STRIP_NOPS (arg);
10522
10523 if (TREE_CODE (arg) == ADDR_EXPR)
10524 {
10525 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
10526 {
10527 *ptr_offset = size_zero_node;
10528 return TREE_OPERAND (arg, 0);
10529 }
10530 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
10531 {
10532 array = TREE_OPERAND (arg, 0);
10533 offset = size_zero_node;
10534 }
10535 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
10536 {
10537 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
10538 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
10539 if (TREE_CODE (array) != STRING_CST
10540 && TREE_CODE (array) != VAR_DECL)
10541 return 0;
10542
10543 /* Check if the array has a nonzero lower bound. */
10544 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
10545 if (!integer_zerop (lower_bound))
10546 {
10547 /* If the offset and base aren't both constants, return 0. */
10548 if (TREE_CODE (lower_bound) != INTEGER_CST)
10549 return 0;
10550 if (TREE_CODE (offset) != INTEGER_CST)
10551 return 0;
10552 /* Adjust offset by the lower bound. */
10553 offset = size_diffop (fold_convert (sizetype, offset),
10554 fold_convert (sizetype, lower_bound));
10555 }
10556 }
10557 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == MEM_REF)
10558 {
10559 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
10560 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
10561 if (TREE_CODE (array) != ADDR_EXPR)
10562 return 0;
10563 array = TREE_OPERAND (array, 0);
10564 if (TREE_CODE (array) != STRING_CST
10565 && TREE_CODE (array) != VAR_DECL)
10566 return 0;
10567 }
10568 else
10569 return 0;
10570 }
10571 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
10572 {
10573 tree arg0 = TREE_OPERAND (arg, 0);
10574 tree arg1 = TREE_OPERAND (arg, 1);
10575
10576 STRIP_NOPS (arg0);
10577 STRIP_NOPS (arg1);
10578
10579 if (TREE_CODE (arg0) == ADDR_EXPR
10580 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
10581 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
10582 {
10583 array = TREE_OPERAND (arg0, 0);
10584 offset = arg1;
10585 }
10586 else if (TREE_CODE (arg1) == ADDR_EXPR
10587 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
10588 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
10589 {
10590 array = TREE_OPERAND (arg1, 0);
10591 offset = arg0;
10592 }
10593 else
10594 return 0;
10595 }
10596 else
10597 return 0;
10598
10599 if (TREE_CODE (array) == STRING_CST)
10600 {
10601 *ptr_offset = fold_convert (sizetype, offset);
10602 return array;
10603 }
10604 else if (TREE_CODE (array) == VAR_DECL
10605 || TREE_CODE (array) == CONST_DECL)
10606 {
10607 int length;
10608
10609 /* Variables initialized to string literals can be handled too. */
10610 if (!const_value_known_p (array)
10611 || !DECL_INITIAL (array)
10612 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
10613 return 0;
10614
10615 /* Avoid const char foo[4] = "abcde"; */
10616 if (DECL_SIZE_UNIT (array) == NULL_TREE
10617 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
10618 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
10619 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
10620 return 0;
10621
10622 /* If variable is bigger than the string literal, OFFSET must be constant
10623 and inside of the bounds of the string literal. */
10624 offset = fold_convert (sizetype, offset);
10625 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
10626 && (! host_integerp (offset, 1)
10627 || compare_tree_int (offset, length) >= 0))
10628 return 0;
10629
10630 *ptr_offset = offset;
10631 return DECL_INITIAL (array);
10632 }
10633
10634 return 0;
10635 }
10636 \f
10637 /* Generate code to calculate OPS, and exploded expression
10638 using a store-flag instruction and return an rtx for the result.
10639 OPS reflects a comparison.
10640
10641 If TARGET is nonzero, store the result there if convenient.
10642
10643 Return zero if there is no suitable set-flag instruction
10644 available on this machine.
10645
10646 Once expand_expr has been called on the arguments of the comparison,
10647 we are committed to doing the store flag, since it is not safe to
10648 re-evaluate the expression. We emit the store-flag insn by calling
10649 emit_store_flag, but only expand the arguments if we have a reason
10650 to believe that emit_store_flag will be successful. If we think that
10651 it will, but it isn't, we have to simulate the store-flag with a
10652 set/jump/set sequence. */
10653
10654 static rtx
10655 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
10656 {
10657 enum rtx_code code;
10658 tree arg0, arg1, type;
10659 tree tem;
10660 enum machine_mode operand_mode;
10661 int unsignedp;
10662 rtx op0, op1;
10663 rtx subtarget = target;
10664 location_t loc = ops->location;
10665
10666 arg0 = ops->op0;
10667 arg1 = ops->op1;
10668
10669 /* Don't crash if the comparison was erroneous. */
10670 if (arg0 == error_mark_node || arg1 == error_mark_node)
10671 return const0_rtx;
10672
10673 type = TREE_TYPE (arg0);
10674 operand_mode = TYPE_MODE (type);
10675 unsignedp = TYPE_UNSIGNED (type);
10676
10677 /* We won't bother with BLKmode store-flag operations because it would mean
10678 passing a lot of information to emit_store_flag. */
10679 if (operand_mode == BLKmode)
10680 return 0;
10681
10682 /* We won't bother with store-flag operations involving function pointers
10683 when function pointers must be canonicalized before comparisons. */
10684 #ifdef HAVE_canonicalize_funcptr_for_compare
10685 if (HAVE_canonicalize_funcptr_for_compare
10686 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
10687 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
10688 == FUNCTION_TYPE))
10689 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
10690 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
10691 == FUNCTION_TYPE))))
10692 return 0;
10693 #endif
10694
10695 STRIP_NOPS (arg0);
10696 STRIP_NOPS (arg1);
10697
10698 /* For vector typed comparisons emit code to generate the desired
10699 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
10700 expander for this. */
10701 if (TREE_CODE (ops->type) == VECTOR_TYPE)
10702 {
10703 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
10704 tree if_true = constant_boolean_node (true, ops->type);
10705 tree if_false = constant_boolean_node (false, ops->type);
10706 return expand_vec_cond_expr (ops->type, ifexp, if_true, if_false, target);
10707 }
10708
10709 /* For vector typed comparisons emit code to generate the desired
10710 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
10711 expander for this. */
10712 if (TREE_CODE (ops->type) == VECTOR_TYPE)
10713 {
10714 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
10715 tree if_true = constant_boolean_node (true, ops->type);
10716 tree if_false = constant_boolean_node (false, ops->type);
10717 return expand_vec_cond_expr (ops->type, ifexp, if_true, if_false, target);
10718 }
10719
10720 /* Get the rtx comparison code to use. We know that EXP is a comparison
10721 operation of some type. Some comparisons against 1 and -1 can be
10722 converted to comparisons with zero. Do so here so that the tests
10723 below will be aware that we have a comparison with zero. These
10724 tests will not catch constants in the first operand, but constants
10725 are rarely passed as the first operand. */
10726
10727 switch (ops->code)
10728 {
10729 case EQ_EXPR:
10730 code = EQ;
10731 break;
10732 case NE_EXPR:
10733 code = NE;
10734 break;
10735 case LT_EXPR:
10736 if (integer_onep (arg1))
10737 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
10738 else
10739 code = unsignedp ? LTU : LT;
10740 break;
10741 case LE_EXPR:
10742 if (! unsignedp && integer_all_onesp (arg1))
10743 arg1 = integer_zero_node, code = LT;
10744 else
10745 code = unsignedp ? LEU : LE;
10746 break;
10747 case GT_EXPR:
10748 if (! unsignedp && integer_all_onesp (arg1))
10749 arg1 = integer_zero_node, code = GE;
10750 else
10751 code = unsignedp ? GTU : GT;
10752 break;
10753 case GE_EXPR:
10754 if (integer_onep (arg1))
10755 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
10756 else
10757 code = unsignedp ? GEU : GE;
10758 break;
10759
10760 case UNORDERED_EXPR:
10761 code = UNORDERED;
10762 break;
10763 case ORDERED_EXPR:
10764 code = ORDERED;
10765 break;
10766 case UNLT_EXPR:
10767 code = UNLT;
10768 break;
10769 case UNLE_EXPR:
10770 code = UNLE;
10771 break;
10772 case UNGT_EXPR:
10773 code = UNGT;
10774 break;
10775 case UNGE_EXPR:
10776 code = UNGE;
10777 break;
10778 case UNEQ_EXPR:
10779 code = UNEQ;
10780 break;
10781 case LTGT_EXPR:
10782 code = LTGT;
10783 break;
10784
10785 default:
10786 gcc_unreachable ();
10787 }
10788
10789 /* Put a constant second. */
10790 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
10791 || TREE_CODE (arg0) == FIXED_CST)
10792 {
10793 tem = arg0; arg0 = arg1; arg1 = tem;
10794 code = swap_condition (code);
10795 }
10796
10797 /* If this is an equality or inequality test of a single bit, we can
10798 do this by shifting the bit being tested to the low-order bit and
10799 masking the result with the constant 1. If the condition was EQ,
10800 we xor it with 1. This does not require an scc insn and is faster
10801 than an scc insn even if we have it.
10802
10803 The code to make this transformation was moved into fold_single_bit_test,
10804 so we just call into the folder and expand its result. */
10805
10806 if ((code == NE || code == EQ)
10807 && integer_zerop (arg1)
10808 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
10809 {
10810 gimple srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
10811 if (srcstmt
10812 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
10813 {
10814 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
10815 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
10816 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
10817 gimple_assign_rhs1 (srcstmt),
10818 gimple_assign_rhs2 (srcstmt));
10819 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
10820 if (temp)
10821 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
10822 }
10823 }
10824
10825 if (! get_subtarget (target)
10826 || GET_MODE (subtarget) != operand_mode)
10827 subtarget = 0;
10828
10829 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
10830
10831 if (target == 0)
10832 target = gen_reg_rtx (mode);
10833
10834 /* Try a cstore if possible. */
10835 return emit_store_flag_force (target, code, op0, op1,
10836 operand_mode, unsignedp,
10837 (TYPE_PRECISION (ops->type) == 1
10838 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
10839 }
10840 \f
10841
10842 /* Stubs in case we haven't got a casesi insn. */
10843 #ifndef HAVE_casesi
10844 # define HAVE_casesi 0
10845 # define gen_casesi(a, b, c, d, e) (0)
10846 # define CODE_FOR_casesi CODE_FOR_nothing
10847 #endif
10848
10849 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10850 0 otherwise (i.e. if there is no casesi instruction). */
10851 int
10852 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
10853 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
10854 rtx fallback_label ATTRIBUTE_UNUSED)
10855 {
10856 struct expand_operand ops[5];
10857 enum machine_mode index_mode = SImode;
10858 rtx op1, op2, index;
10859
10860 if (! HAVE_casesi)
10861 return 0;
10862
10863 /* Convert the index to SImode. */
10864 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
10865 {
10866 enum machine_mode omode = TYPE_MODE (index_type);
10867 rtx rangertx = expand_normal (range);
10868
10869 /* We must handle the endpoints in the original mode. */
10870 index_expr = build2 (MINUS_EXPR, index_type,
10871 index_expr, minval);
10872 minval = integer_zero_node;
10873 index = expand_normal (index_expr);
10874 if (default_label)
10875 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
10876 omode, 1, default_label);
10877 /* Now we can safely truncate. */
10878 index = convert_to_mode (index_mode, index, 0);
10879 }
10880 else
10881 {
10882 if (TYPE_MODE (index_type) != index_mode)
10883 {
10884 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
10885 index_expr = fold_convert (index_type, index_expr);
10886 }
10887
10888 index = expand_normal (index_expr);
10889 }
10890
10891 do_pending_stack_adjust ();
10892
10893 op1 = expand_normal (minval);
10894 op2 = expand_normal (range);
10895
10896 create_input_operand (&ops[0], index, index_mode);
10897 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
10898 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
10899 create_fixed_operand (&ops[3], table_label);
10900 create_fixed_operand (&ops[4], (default_label
10901 ? default_label
10902 : fallback_label));
10903 expand_jump_insn (CODE_FOR_casesi, 5, ops);
10904 return 1;
10905 }
10906
10907 /* Attempt to generate a tablejump instruction; same concept. */
10908 #ifndef HAVE_tablejump
10909 #define HAVE_tablejump 0
10910 #define gen_tablejump(x, y) (0)
10911 #endif
10912
10913 /* Subroutine of the next function.
10914
10915 INDEX is the value being switched on, with the lowest value
10916 in the table already subtracted.
10917 MODE is its expected mode (needed if INDEX is constant).
10918 RANGE is the length of the jump table.
10919 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10920
10921 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10922 index value is out of range. */
10923
10924 static void
10925 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10926 rtx default_label)
10927 {
10928 rtx temp, vector;
10929
10930 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10931 cfun->cfg->max_jumptable_ents = INTVAL (range);
10932
10933 /* Do an unsigned comparison (in the proper mode) between the index
10934 expression and the value which represents the length of the range.
10935 Since we just finished subtracting the lower bound of the range
10936 from the index expression, this comparison allows us to simultaneously
10937 check that the original index expression value is both greater than
10938 or equal to the minimum value of the range and less than or equal to
10939 the maximum value of the range. */
10940
10941 if (default_label)
10942 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10943 default_label);
10944
10945 /* If index is in range, it must fit in Pmode.
10946 Convert to Pmode so we can index with it. */
10947 if (mode != Pmode)
10948 index = convert_to_mode (Pmode, index, 1);
10949
10950 /* Don't let a MEM slip through, because then INDEX that comes
10951 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10952 and break_out_memory_refs will go to work on it and mess it up. */
10953 #ifdef PIC_CASE_VECTOR_ADDRESS
10954 if (flag_pic && !REG_P (index))
10955 index = copy_to_mode_reg (Pmode, index);
10956 #endif
10957
10958 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10959 GET_MODE_SIZE, because this indicates how large insns are. The other
10960 uses should all be Pmode, because they are addresses. This code
10961 could fail if addresses and insns are not the same size. */
10962 index = gen_rtx_PLUS (Pmode,
10963 gen_rtx_MULT (Pmode, index,
10964 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10965 gen_rtx_LABEL_REF (Pmode, table_label));
10966 #ifdef PIC_CASE_VECTOR_ADDRESS
10967 if (flag_pic)
10968 index = PIC_CASE_VECTOR_ADDRESS (index);
10969 else
10970 #endif
10971 index = memory_address (CASE_VECTOR_MODE, index);
10972 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10973 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10974 convert_move (temp, vector, 0);
10975
10976 emit_jump_insn (gen_tablejump (temp, table_label));
10977
10978 /* If we are generating PIC code or if the table is PC-relative, the
10979 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10980 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10981 emit_barrier ();
10982 }
10983
10984 int
10985 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10986 rtx table_label, rtx default_label)
10987 {
10988 rtx index;
10989
10990 if (! HAVE_tablejump)
10991 return 0;
10992
10993 index_expr = fold_build2 (MINUS_EXPR, index_type,
10994 fold_convert (index_type, index_expr),
10995 fold_convert (index_type, minval));
10996 index = expand_normal (index_expr);
10997 do_pending_stack_adjust ();
10998
10999 do_tablejump (index, TYPE_MODE (index_type),
11000 convert_modes (TYPE_MODE (index_type),
11001 TYPE_MODE (TREE_TYPE (range)),
11002 expand_normal (range),
11003 TYPE_UNSIGNED (TREE_TYPE (range))),
11004 table_label, default_label);
11005 return 1;
11006 }
11007
11008 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11009 static rtx
11010 const_vector_from_tree (tree exp)
11011 {
11012 rtvec v;
11013 unsigned i;
11014 int units;
11015 tree elt;
11016 enum machine_mode inner, mode;
11017
11018 mode = TYPE_MODE (TREE_TYPE (exp));
11019
11020 if (initializer_zerop (exp))
11021 return CONST0_RTX (mode);
11022
11023 units = GET_MODE_NUNITS (mode);
11024 inner = GET_MODE_INNER (mode);
11025
11026 v = rtvec_alloc (units);
11027
11028 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
11029 {
11030 elt = VECTOR_CST_ELT (exp, i);
11031
11032 if (TREE_CODE (elt) == REAL_CST)
11033 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
11034 inner);
11035 else if (TREE_CODE (elt) == FIXED_CST)
11036 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
11037 inner);
11038 else
11039 RTVEC_ELT (v, i) = immed_double_int_const (tree_to_double_int (elt),
11040 inner);
11041 }
11042
11043 return gen_rtx_CONST_VECTOR (mode, v);
11044 }
11045
11046 /* Build a decl for a personality function given a language prefix. */
11047
11048 tree
11049 build_personality_function (const char *lang)
11050 {
11051 const char *unwind_and_version;
11052 tree decl, type;
11053 char *name;
11054
11055 switch (targetm_common.except_unwind_info (&global_options))
11056 {
11057 case UI_NONE:
11058 return NULL;
11059 case UI_SJLJ:
11060 unwind_and_version = "_sj0";
11061 break;
11062 case UI_DWARF2:
11063 case UI_TARGET:
11064 unwind_and_version = "_v0";
11065 break;
11066 default:
11067 gcc_unreachable ();
11068 }
11069
11070 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
11071
11072 type = build_function_type_list (integer_type_node, integer_type_node,
11073 long_long_unsigned_type_node,
11074 ptr_type_node, ptr_type_node, NULL_TREE);
11075 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
11076 get_identifier (name), type);
11077 DECL_ARTIFICIAL (decl) = 1;
11078 DECL_EXTERNAL (decl) = 1;
11079 TREE_PUBLIC (decl) = 1;
11080
11081 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11082 are the flags assigned by targetm.encode_section_info. */
11083 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
11084
11085 return decl;
11086 }
11087
11088 /* Extracts the personality function of DECL and returns the corresponding
11089 libfunc. */
11090
11091 rtx
11092 get_personality_function (tree decl)
11093 {
11094 tree personality = DECL_FUNCTION_PERSONALITY (decl);
11095 enum eh_personality_kind pk;
11096
11097 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
11098 if (pk == eh_personality_none)
11099 return NULL;
11100
11101 if (!personality
11102 && pk == eh_personality_any)
11103 personality = lang_hooks.eh_personality ();
11104
11105 if (pk == eh_personality_lang)
11106 gcc_assert (personality != NULL_TREE);
11107
11108 return XEXP (DECL_RTL (personality), 0);
11109 }
11110
11111 #include "gt-expr.h"
This page took 0.544007 seconds and 5 git commands to generate.