1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
4 2012 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
31 #include "hard-reg-set.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
42 #include "typeclass.h"
44 #include "langhooks.h"
47 #include "tree-iterator.h"
48 #include "tree-pass.h"
49 #include "tree-flow.h"
51 #include "common/common-target.h"
54 #include "diagnostic.h"
55 #include "ssaexpand.h"
56 #include "target-globals.h"
59 /* Decide whether a function's arguments should be processed
60 from first to last or from last to first.
62 They should if the stack and args grow in opposite directions, but
63 only if we have push insns. */
67 #ifndef PUSH_ARGS_REVERSED
68 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
69 #define PUSH_ARGS_REVERSED /* If it's last to first. */
75 #ifndef STACK_PUSH_CODE
76 #ifdef STACK_GROWS_DOWNWARD
77 #define STACK_PUSH_CODE PRE_DEC
79 #define STACK_PUSH_CODE PRE_INC
84 /* If this is nonzero, we do not bother generating VOLATILE
85 around volatile memory references, and we are willing to
86 output indirect addresses. If cse is to follow, we reject
87 indirect addresses so a useful potential cse is generated;
88 if it is used only once, instruction combination will produce
89 the same indirect address eventually. */
92 /* This structure is used by move_by_pieces to describe the move to
94 struct move_by_pieces_d
103 int explicit_inc_from
;
104 unsigned HOST_WIDE_INT len
;
105 HOST_WIDE_INT offset
;
109 /* This structure is used by store_by_pieces to describe the clear to
112 struct store_by_pieces_d
118 unsigned HOST_WIDE_INT len
;
119 HOST_WIDE_INT offset
;
120 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
);
125 static void move_by_pieces_1 (rtx (*) (rtx
, ...), enum machine_mode
,
126 struct move_by_pieces_d
*);
127 static bool block_move_libcall_safe_for_call_parm (void);
128 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned, unsigned, HOST_WIDE_INT
);
129 static tree
emit_block_move_libcall_fn (int);
130 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
131 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, enum machine_mode
);
132 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
133 static void store_by_pieces_1 (struct store_by_pieces_d
*, unsigned int);
134 static void store_by_pieces_2 (rtx (*) (rtx
, ...), enum machine_mode
,
135 struct store_by_pieces_d
*);
136 static tree
clear_storage_libcall_fn (int);
137 static rtx
compress_float_constant (rtx
, rtx
);
138 static rtx
get_subtarget (rtx
);
139 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
140 HOST_WIDE_INT
, enum machine_mode
,
141 tree
, tree
, int, alias_set_type
);
142 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
143 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
,
144 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
146 tree
, tree
, alias_set_type
, bool);
148 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree
, const_tree
);
150 static int is_aligning_offset (const_tree
, const_tree
);
151 static void expand_operands (tree
, tree
, rtx
, rtx
*, rtx
*,
152 enum expand_modifier
);
153 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
154 static rtx
do_store_flag (sepops
, rtx
, enum machine_mode
);
156 static void emit_single_push_insn (enum machine_mode
, rtx
, tree
);
158 static void do_tablejump (rtx
, enum machine_mode
, rtx
, rtx
, rtx
);
159 static rtx
const_vector_from_tree (tree
);
160 static void write_complex_part (rtx
, rtx
, bool);
162 /* This macro is used to determine whether move_by_pieces should be called
163 to perform a structure copy. */
164 #ifndef MOVE_BY_PIECES_P
165 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
166 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
167 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
170 /* This macro is used to determine whether clear_by_pieces should be
171 called to clear storage. */
172 #ifndef CLEAR_BY_PIECES_P
173 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
174 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
175 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
178 /* This macro is used to determine whether store_by_pieces should be
179 called to "memset" storage with byte values other than zero. */
180 #ifndef SET_BY_PIECES_P
181 #define SET_BY_PIECES_P(SIZE, ALIGN) \
182 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
183 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
186 /* This macro is used to determine whether store_by_pieces should be
187 called to "memcpy" storage when the source is a constant string. */
188 #ifndef STORE_BY_PIECES_P
189 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
190 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
191 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
194 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
196 #ifndef SLOW_UNALIGNED_ACCESS
197 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
200 /* This is run to set up which modes can be used
201 directly in memory and to initialize the block move optab. It is run
202 at the beginning of compilation and when the target is reinitialized. */
205 init_expr_target (void)
208 enum machine_mode mode
;
213 /* Try indexing by frame ptr and try by stack ptr.
214 It is known that on the Convex the stack ptr isn't a valid index.
215 With luck, one or the other is valid on any machine. */
216 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
217 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
219 /* A scratch register we can modify in-place below to avoid
220 useless RTL allocations. */
221 reg
= gen_rtx_REG (VOIDmode
, -1);
223 insn
= rtx_alloc (INSN
);
224 pat
= gen_rtx_SET (VOIDmode
, NULL_RTX
, NULL_RTX
);
225 PATTERN (insn
) = pat
;
227 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
228 mode
= (enum machine_mode
) ((int) mode
+ 1))
232 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
233 PUT_MODE (mem
, mode
);
234 PUT_MODE (mem1
, mode
);
235 PUT_MODE (reg
, mode
);
237 /* See if there is some register that can be used in this mode and
238 directly loaded or stored from memory. */
240 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
241 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
242 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
245 if (! HARD_REGNO_MODE_OK (regno
, mode
))
248 SET_REGNO (reg
, regno
);
251 SET_DEST (pat
) = reg
;
252 if (recog (pat
, insn
, &num_clobbers
) >= 0)
253 direct_load
[(int) mode
] = 1;
255 SET_SRC (pat
) = mem1
;
256 SET_DEST (pat
) = reg
;
257 if (recog (pat
, insn
, &num_clobbers
) >= 0)
258 direct_load
[(int) mode
] = 1;
261 SET_DEST (pat
) = mem
;
262 if (recog (pat
, insn
, &num_clobbers
) >= 0)
263 direct_store
[(int) mode
] = 1;
266 SET_DEST (pat
) = mem1
;
267 if (recog (pat
, insn
, &num_clobbers
) >= 0)
268 direct_store
[(int) mode
] = 1;
272 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
274 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
275 mode
= GET_MODE_WIDER_MODE (mode
))
277 enum machine_mode srcmode
;
278 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
279 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
283 ic
= can_extend_p (mode
, srcmode
, 0);
284 if (ic
== CODE_FOR_nothing
)
287 PUT_MODE (mem
, srcmode
);
289 if (insn_operand_matches (ic
, 1, mem
))
290 float_extend_from_mem
[mode
][srcmode
] = true;
295 /* This is run at the start of compiling a function. */
300 memset (&crtl
->expr
, 0, sizeof (crtl
->expr
));
303 /* Copy data from FROM to TO, where the machine modes are not the same.
304 Both modes may be integer, or both may be floating, or both may be
306 UNSIGNEDP should be nonzero if FROM is an unsigned type.
307 This causes zero-extension instead of sign-extension. */
310 convert_move (rtx to
, rtx from
, int unsignedp
)
312 enum machine_mode to_mode
= GET_MODE (to
);
313 enum machine_mode from_mode
= GET_MODE (from
);
314 int to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
315 int from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
319 /* rtx code for making an equivalent value. */
320 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
321 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
324 gcc_assert (to_real
== from_real
);
325 gcc_assert (to_mode
!= BLKmode
);
326 gcc_assert (from_mode
!= BLKmode
);
328 /* If the source and destination are already the same, then there's
333 /* If FROM is a SUBREG that indicates that we have already done at least
334 the required extension, strip it. We don't handle such SUBREGs as
337 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
338 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from
)))
339 >= GET_MODE_PRECISION (to_mode
))
340 && SUBREG_PROMOTED_UNSIGNED_P (from
) == unsignedp
)
341 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
343 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
345 if (to_mode
== from_mode
346 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
348 emit_move_insn (to
, from
);
352 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
354 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
356 if (VECTOR_MODE_P (to_mode
))
357 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
359 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
361 emit_move_insn (to
, from
);
365 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
367 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
368 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
377 gcc_assert ((GET_MODE_PRECISION (from_mode
)
378 != GET_MODE_PRECISION (to_mode
))
379 || (DECIMAL_FLOAT_MODE_P (from_mode
)
380 != DECIMAL_FLOAT_MODE_P (to_mode
)));
382 if (GET_MODE_PRECISION (from_mode
) == GET_MODE_PRECISION (to_mode
))
383 /* Conversion between decimal float and binary float, same size. */
384 tab
= DECIMAL_FLOAT_MODE_P (from_mode
) ? trunc_optab
: sext_optab
;
385 else if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
390 /* Try converting directly if the insn is supported. */
392 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
393 if (code
!= CODE_FOR_nothing
)
395 emit_unop_insn (code
, to
, from
,
396 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
400 /* Otherwise use a libcall. */
401 libcall
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
403 /* Is this conversion implemented yet? */
404 gcc_assert (libcall
);
407 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
409 insns
= get_insns ();
411 emit_libcall_block (insns
, to
, value
,
412 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
414 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
418 /* Handle pointer conversion. */ /* SPEE 900220. */
419 /* Targets are expected to provide conversion insns between PxImode and
420 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
421 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
423 enum machine_mode full_mode
424 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
426 gcc_assert (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)
427 != CODE_FOR_nothing
);
429 if (full_mode
!= from_mode
)
430 from
= convert_to_mode (full_mode
, from
, unsignedp
);
431 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, full_mode
),
435 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
438 enum machine_mode full_mode
439 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
440 convert_optab ctab
= unsignedp
? zext_optab
: sext_optab
;
441 enum insn_code icode
;
443 icode
= convert_optab_handler (ctab
, full_mode
, from_mode
);
444 gcc_assert (icode
!= CODE_FOR_nothing
);
446 if (to_mode
== full_mode
)
448 emit_unop_insn (icode
, to
, from
, UNKNOWN
);
452 new_from
= gen_reg_rtx (full_mode
);
453 emit_unop_insn (icode
, new_from
, from
, UNKNOWN
);
455 /* else proceed to integer conversions below. */
456 from_mode
= full_mode
;
460 /* Make sure both are fixed-point modes or both are not. */
461 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
) ==
462 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode
));
463 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
))
465 /* If we widen from_mode to to_mode and they are in the same class,
466 we won't saturate the result.
467 Otherwise, always saturate the result to play safe. */
468 if (GET_MODE_CLASS (from_mode
) == GET_MODE_CLASS (to_mode
)
469 && GET_MODE_SIZE (from_mode
) < GET_MODE_SIZE (to_mode
))
470 expand_fixed_convert (to
, from
, 0, 0);
472 expand_fixed_convert (to
, from
, 0, 1);
476 /* Now both modes are integers. */
478 /* Handle expanding beyond a word. */
479 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
)
480 && GET_MODE_PRECISION (to_mode
) > BITS_PER_WORD
)
487 enum machine_mode lowpart_mode
;
488 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
490 /* Try converting directly if the insn is supported. */
491 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
494 /* If FROM is a SUBREG, put it into a register. Do this
495 so that we always generate the same set of insns for
496 better cse'ing; if an intermediate assignment occurred,
497 we won't be doing the operation directly on the SUBREG. */
498 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
499 from
= force_reg (from_mode
, from
);
500 emit_unop_insn (code
, to
, from
, equiv_code
);
503 /* Next, try converting via full word. */
504 else if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
505 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
506 != CODE_FOR_nothing
))
508 rtx word_to
= gen_reg_rtx (word_mode
);
511 if (reg_overlap_mentioned_p (to
, from
))
512 from
= force_reg (from_mode
, from
);
515 convert_move (word_to
, from
, unsignedp
);
516 emit_unop_insn (code
, to
, word_to
, equiv_code
);
520 /* No special multiword conversion insn; do it by hand. */
523 /* Since we will turn this into a no conflict block, we must ensure the
524 the source does not overlap the target so force it into an isolated
525 register when maybe so. Likewise for any MEM input, since the
526 conversion sequence might require several references to it and we
527 must ensure we're getting the same value every time. */
529 if (MEM_P (from
) || reg_overlap_mentioned_p (to
, from
))
530 from
= force_reg (from_mode
, from
);
532 /* Get a copy of FROM widened to a word, if necessary. */
533 if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
)
534 lowpart_mode
= word_mode
;
536 lowpart_mode
= from_mode
;
538 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
540 lowpart
= gen_lowpart (lowpart_mode
, to
);
541 emit_move_insn (lowpart
, lowfrom
);
543 /* Compute the value to put in each remaining word. */
545 fill_value
= const0_rtx
;
547 fill_value
= emit_store_flag (gen_reg_rtx (word_mode
),
548 LT
, lowfrom
, const0_rtx
,
551 /* Fill the remaining words. */
552 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
554 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
555 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
557 gcc_assert (subword
);
559 if (fill_value
!= subword
)
560 emit_move_insn (subword
, fill_value
);
563 insns
= get_insns ();
570 /* Truncating multi-word to a word or less. */
571 if (GET_MODE_PRECISION (from_mode
) > BITS_PER_WORD
572 && GET_MODE_PRECISION (to_mode
) <= BITS_PER_WORD
)
575 && ! MEM_VOLATILE_P (from
)
576 && direct_load
[(int) to_mode
]
577 && ! mode_dependent_address_p (XEXP (from
, 0)))
579 || GET_CODE (from
) == SUBREG
))
580 from
= force_reg (from_mode
, from
);
581 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
585 /* Now follow all the conversions between integers
586 no more than a word long. */
588 /* For truncation, usually we can just refer to FROM in a narrower mode. */
589 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
590 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, from_mode
))
593 && ! MEM_VOLATILE_P (from
)
594 && direct_load
[(int) to_mode
]
595 && ! mode_dependent_address_p (XEXP (from
, 0)))
597 || GET_CODE (from
) == SUBREG
))
598 from
= force_reg (from_mode
, from
);
599 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
600 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
601 from
= copy_to_reg (from
);
602 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
606 /* Handle extension. */
607 if (GET_MODE_PRECISION (to_mode
) > GET_MODE_PRECISION (from_mode
))
609 /* Convert directly if that works. */
610 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
613 emit_unop_insn (code
, to
, from
, equiv_code
);
618 enum machine_mode intermediate
;
622 /* Search for a mode to convert via. */
623 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
624 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
625 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
627 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
628 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, intermediate
)))
629 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
630 != CODE_FOR_nothing
))
632 convert_move (to
, convert_to_mode (intermediate
, from
,
633 unsignedp
), unsignedp
);
637 /* No suitable intermediate mode.
638 Generate what we need with shifts. */
639 shift_amount
= (GET_MODE_PRECISION (to_mode
)
640 - GET_MODE_PRECISION (from_mode
));
641 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
642 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
644 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
647 emit_move_insn (to
, tmp
);
652 /* Support special truncate insns for certain modes. */
653 if (convert_optab_handler (trunc_optab
, to_mode
,
654 from_mode
) != CODE_FOR_nothing
)
656 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, from_mode
),
661 /* Handle truncation of volatile memrefs, and so on;
662 the things that couldn't be truncated directly,
663 and for which there was no special instruction.
665 ??? Code above formerly short-circuited this, for most integer
666 mode pairs, with a force_reg in from_mode followed by a recursive
667 call to this routine. Appears always to have been wrong. */
668 if (GET_MODE_PRECISION (to_mode
) < GET_MODE_PRECISION (from_mode
))
670 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
671 emit_move_insn (to
, temp
);
675 /* Mode combination is not recognized. */
679 /* Return an rtx for a value that would result
680 from converting X to mode MODE.
681 Both X and MODE may be floating, or both integer.
682 UNSIGNEDP is nonzero if X is an unsigned value.
683 This can be done by referring to a part of X in place
684 or by copying to a new temporary with conversion. */
687 convert_to_mode (enum machine_mode mode
, rtx x
, int unsignedp
)
689 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
692 /* Return an rtx for a value that would result
693 from converting X from mode OLDMODE to mode MODE.
694 Both modes may be floating, or both integer.
695 UNSIGNEDP is nonzero if X is an unsigned value.
697 This can be done by referring to a part of X in place
698 or by copying to a new temporary with conversion.
700 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
703 convert_modes (enum machine_mode mode
, enum machine_mode oldmode
, rtx x
, int unsignedp
)
707 /* If FROM is a SUBREG that indicates that we have already done at least
708 the required extension, strip it. */
710 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
711 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
712 && SUBREG_PROMOTED_UNSIGNED_P (x
) == unsignedp
)
713 x
= gen_lowpart (mode
, x
);
715 if (GET_MODE (x
) != VOIDmode
)
716 oldmode
= GET_MODE (x
);
721 /* There is one case that we must handle specially: If we are converting
722 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
723 we are to interpret the constant as unsigned, gen_lowpart will do
724 the wrong if the constant appears negative. What we want to do is
725 make the high-order word of the constant zero, not all ones. */
727 if (unsignedp
&& GET_MODE_CLASS (mode
) == MODE_INT
728 && GET_MODE_BITSIZE (mode
) == HOST_BITS_PER_DOUBLE_INT
729 && CONST_INT_P (x
) && INTVAL (x
) < 0)
731 double_int val
= uhwi_to_double_int (INTVAL (x
));
733 /* We need to zero extend VAL. */
734 if (oldmode
!= VOIDmode
)
735 val
= double_int_zext (val
, GET_MODE_BITSIZE (oldmode
));
737 return immed_double_int_const (val
, mode
);
740 /* We can do this with a gen_lowpart if both desired and current modes
741 are integer, and this is either a constant integer, a register, or a
742 non-volatile MEM. Except for the constant case where MODE is no
743 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
746 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
)
747 || (GET_MODE_CLASS (mode
) == MODE_INT
748 && GET_MODE_CLASS (oldmode
) == MODE_INT
749 && (GET_CODE (x
) == CONST_DOUBLE
750 || (GET_MODE_PRECISION (mode
) <= GET_MODE_PRECISION (oldmode
)
751 && ((MEM_P (x
) && ! MEM_VOLATILE_P (x
)
752 && direct_load
[(int) mode
])
754 && (! HARD_REGISTER_P (x
)
755 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
756 && TRULY_NOOP_TRUNCATION_MODES_P (mode
,
759 /* ?? If we don't know OLDMODE, we have to assume here that
760 X does not need sign- or zero-extension. This may not be
761 the case, but it's the best we can do. */
762 if (CONST_INT_P (x
) && oldmode
!= VOIDmode
763 && GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (oldmode
))
765 HOST_WIDE_INT val
= INTVAL (x
);
767 /* We must sign or zero-extend in this case. Start by
768 zero-extending, then sign extend if we need to. */
769 val
&= GET_MODE_MASK (oldmode
);
771 && val_signbit_known_set_p (oldmode
, val
))
772 val
|= ~GET_MODE_MASK (oldmode
);
774 return gen_int_mode (val
, mode
);
777 return gen_lowpart (mode
, x
);
780 /* Converting from integer constant into mode is always equivalent to an
782 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
784 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
785 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
788 temp
= gen_reg_rtx (mode
);
789 convert_move (temp
, x
, unsignedp
);
793 /* Return the largest alignment we can use for doing a move (or store)
794 of MAX_PIECES. ALIGN is the largest alignment we could use. */
797 alignment_for_piecewise_move (unsigned int max_pieces
, unsigned int align
)
799 enum machine_mode tmode
;
801 tmode
= mode_for_size (max_pieces
* BITS_PER_UNIT
, MODE_INT
, 1);
802 if (align
>= GET_MODE_ALIGNMENT (tmode
))
803 align
= GET_MODE_ALIGNMENT (tmode
);
806 enum machine_mode tmode
, xmode
;
808 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
810 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
811 if (GET_MODE_SIZE (tmode
) > max_pieces
812 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
815 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
821 /* Return the widest integer mode no wider than SIZE. If no such mode
822 can be found, return VOIDmode. */
824 static enum machine_mode
825 widest_int_mode_for_size (unsigned int size
)
827 enum machine_mode tmode
, mode
= VOIDmode
;
829 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
830 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
831 if (GET_MODE_SIZE (tmode
) < size
)
837 /* STORE_MAX_PIECES is the number of bytes at a time that we can
838 store efficiently. Due to internal GCC limitations, this is
839 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
840 for an immediate constant. */
842 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
844 /* Determine whether the LEN bytes can be moved by using several move
845 instructions. Return nonzero if a call to move_by_pieces should
849 can_move_by_pieces (unsigned HOST_WIDE_INT len
,
850 unsigned int align ATTRIBUTE_UNUSED
)
852 return MOVE_BY_PIECES_P (len
, align
);
855 /* Generate several move instructions to copy LEN bytes from block FROM to
856 block TO. (These are MEM rtx's with BLKmode).
858 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
859 used to push FROM to the stack.
861 ALIGN is maximum stack alignment we can assume.
863 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
864 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
868 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
869 unsigned int align
, int endp
)
871 struct move_by_pieces_d data
;
872 enum machine_mode to_addr_mode
;
873 enum machine_mode from_addr_mode
= get_address_mode (from
);
874 rtx to_addr
, from_addr
= XEXP (from
, 0);
875 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
876 enum insn_code icode
;
878 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
881 data
.from_addr
= from_addr
;
884 to_addr_mode
= get_address_mode (to
);
885 to_addr
= XEXP (to
, 0);
888 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
889 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
891 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
895 to_addr_mode
= VOIDmode
;
899 #ifdef STACK_GROWS_DOWNWARD
905 data
.to_addr
= to_addr
;
908 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
909 || GET_CODE (from_addr
) == POST_INC
910 || GET_CODE (from_addr
) == POST_DEC
);
912 data
.explicit_inc_from
= 0;
913 data
.explicit_inc_to
= 0;
914 if (data
.reverse
) data
.offset
= len
;
917 /* If copying requires more than two move insns,
918 copy addresses to registers (to make displacements shorter)
919 and use post-increment if available. */
920 if (!(data
.autinc_from
&& data
.autinc_to
)
921 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
923 /* Find the mode of the largest move...
924 MODE might not be used depending on the definitions of the
925 USE_* macros below. */
926 enum machine_mode mode ATTRIBUTE_UNUSED
927 = widest_int_mode_for_size (max_size
);
929 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
931 data
.from_addr
= copy_to_mode_reg (from_addr_mode
,
932 plus_constant (from_addr_mode
,
934 data
.autinc_from
= 1;
935 data
.explicit_inc_from
= -1;
937 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
939 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
940 data
.autinc_from
= 1;
941 data
.explicit_inc_from
= 1;
943 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
944 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
945 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
947 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
948 plus_constant (to_addr_mode
,
951 data
.explicit_inc_to
= -1;
953 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
955 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
957 data
.explicit_inc_to
= 1;
959 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
960 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
963 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
965 /* First move what we can in the largest integer mode, then go to
966 successively smaller modes. */
970 enum machine_mode mode
= widest_int_mode_for_size (max_size
);
972 if (mode
== VOIDmode
)
975 icode
= optab_handler (mov_optab
, mode
);
976 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
977 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
979 max_size
= GET_MODE_SIZE (mode
);
982 /* The code above should have handled everything. */
983 gcc_assert (!data
.len
);
989 gcc_assert (!data
.reverse
);
994 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
995 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
997 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
998 plus_constant (to_addr_mode
,
1002 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
1009 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
1017 /* Return number of insns required to move L bytes by pieces.
1018 ALIGN (in bits) is maximum alignment we can assume. */
1020 unsigned HOST_WIDE_INT
1021 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
1022 unsigned int max_size
)
1024 unsigned HOST_WIDE_INT n_insns
= 0;
1026 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
1028 while (max_size
> 1)
1030 enum machine_mode mode
;
1031 enum insn_code icode
;
1033 mode
= widest_int_mode_for_size (max_size
);
1035 if (mode
== VOIDmode
)
1038 icode
= optab_handler (mov_optab
, mode
);
1039 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1040 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1042 max_size
= GET_MODE_SIZE (mode
);
1049 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1050 with move instructions for mode MODE. GENFUN is the gen_... function
1051 to make a move insn for that mode. DATA has all the other info. */
1054 move_by_pieces_1 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
1055 struct move_by_pieces_d
*data
)
1057 unsigned int size
= GET_MODE_SIZE (mode
);
1058 rtx to1
= NULL_RTX
, from1
;
1060 while (data
->len
>= size
)
1063 data
->offset
-= size
;
1067 if (data
->autinc_to
)
1068 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1071 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1074 if (data
->autinc_from
)
1075 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1078 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1080 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1081 emit_insn (gen_add2_insn (data
->to_addr
,
1082 GEN_INT (-(HOST_WIDE_INT
)size
)));
1083 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1084 emit_insn (gen_add2_insn (data
->from_addr
,
1085 GEN_INT (-(HOST_WIDE_INT
)size
)));
1088 emit_insn ((*genfun
) (to1
, from1
));
1091 #ifdef PUSH_ROUNDING
1092 emit_single_push_insn (mode
, from1
, NULL
);
1098 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1099 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
1100 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1101 emit_insn (gen_add2_insn (data
->from_addr
, GEN_INT (size
)));
1103 if (! data
->reverse
)
1104 data
->offset
+= size
;
1110 /* Emit code to move a block Y to a block X. This may be done with
1111 string-move instructions, with multiple scalar move instructions,
1112 or with a library call.
1114 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1115 SIZE is an rtx that says how long they are.
1116 ALIGN is the maximum alignment we can assume they have.
1117 METHOD describes what kind of copy this is, and what mechanisms may be used.
1119 Return the address of the new block, if memcpy is called and returns it,
1123 emit_block_move_hints (rtx x
, rtx y
, rtx size
, enum block_op_methods method
,
1124 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
1131 if (CONST_INT_P (size
)
1132 && INTVAL (size
) == 0)
1137 case BLOCK_OP_NORMAL
:
1138 case BLOCK_OP_TAILCALL
:
1139 may_use_call
= true;
1142 case BLOCK_OP_CALL_PARM
:
1143 may_use_call
= block_move_libcall_safe_for_call_parm ();
1145 /* Make inhibit_defer_pop nonzero around the library call
1146 to force it to pop the arguments right away. */
1150 case BLOCK_OP_NO_LIBCALL
:
1151 may_use_call
= false;
1158 gcc_assert (MEM_P (x
) && MEM_P (y
));
1159 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1160 gcc_assert (align
>= BITS_PER_UNIT
);
1162 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1163 block copy is more efficient for other large modes, e.g. DCmode. */
1164 x
= adjust_address (x
, BLKmode
, 0);
1165 y
= adjust_address (y
, BLKmode
, 0);
1167 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1168 can be incorrect is coming from __builtin_memcpy. */
1169 if (CONST_INT_P (size
))
1171 x
= shallow_copy_rtx (x
);
1172 y
= shallow_copy_rtx (y
);
1173 set_mem_size (x
, INTVAL (size
));
1174 set_mem_size (y
, INTVAL (size
));
1177 if (CONST_INT_P (size
) && MOVE_BY_PIECES_P (INTVAL (size
), align
))
1178 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1179 else if (emit_block_move_via_movmem (x
, y
, size
, align
,
1180 expected_align
, expected_size
))
1182 else if (may_use_call
1183 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x
))
1184 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y
)))
1186 /* Since x and y are passed to a libcall, mark the corresponding
1187 tree EXPR as addressable. */
1188 tree y_expr
= MEM_EXPR (y
);
1189 tree x_expr
= MEM_EXPR (x
);
1191 mark_addressable (y_expr
);
1193 mark_addressable (x_expr
);
1194 retval
= emit_block_move_via_libcall (x
, y
, size
,
1195 method
== BLOCK_OP_TAILCALL
);
1199 emit_block_move_via_loop (x
, y
, size
, align
);
1201 if (method
== BLOCK_OP_CALL_PARM
)
1208 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1210 return emit_block_move_hints (x
, y
, size
, method
, 0, -1);
1213 /* A subroutine of emit_block_move. Returns true if calling the
1214 block move libcall will not clobber any parameters which may have
1215 already been placed on the stack. */
1218 block_move_libcall_safe_for_call_parm (void)
1220 #if defined (REG_PARM_STACK_SPACE)
1224 /* If arguments are pushed on the stack, then they're safe. */
1228 /* If registers go on the stack anyway, any argument is sure to clobber
1229 an outgoing argument. */
1230 #if defined (REG_PARM_STACK_SPACE)
1231 fn
= emit_block_move_libcall_fn (false);
1232 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1233 depend on its argument. */
1235 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn
? NULL_TREE
: TREE_TYPE (fn
)))
1236 && REG_PARM_STACK_SPACE (fn
) != 0)
1240 /* If any argument goes in memory, then it might clobber an outgoing
1243 CUMULATIVE_ARGS args_so_far_v
;
1244 cumulative_args_t args_so_far
;
1247 fn
= emit_block_move_libcall_fn (false);
1248 INIT_CUMULATIVE_ARGS (args_so_far_v
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1249 args_so_far
= pack_cumulative_args (&args_so_far_v
);
1251 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1252 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1254 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1255 rtx tmp
= targetm
.calls
.function_arg (args_so_far
, mode
,
1257 if (!tmp
|| !REG_P (tmp
))
1259 if (targetm
.calls
.arg_partial_bytes (args_so_far
, mode
, NULL
, 1))
1261 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
1268 /* A subroutine of emit_block_move. Expand a movmem pattern;
1269 return true if successful. */
1272 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
,
1273 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
1275 int save_volatile_ok
= volatile_ok
;
1276 enum machine_mode mode
;
1278 if (expected_align
< align
)
1279 expected_align
= align
;
1281 /* Since this is a move insn, we don't care about volatility. */
1284 /* Try the most limited insn first, because there's no point
1285 including more than one in the machine description unless
1286 the more limited one has some advantage. */
1288 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1289 mode
= GET_MODE_WIDER_MODE (mode
))
1291 enum insn_code code
= direct_optab_handler (movmem_optab
, mode
);
1293 if (code
!= CODE_FOR_nothing
1294 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1295 here because if SIZE is less than the mode mask, as it is
1296 returned by the macro, it will definitely be less than the
1297 actual mode mask. */
1298 && ((CONST_INT_P (size
)
1299 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1300 <= (GET_MODE_MASK (mode
) >> 1)))
1301 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
))
1303 struct expand_operand ops
[6];
1306 /* ??? When called via emit_block_move_for_call, it'd be
1307 nice if there were some way to inform the backend, so
1308 that it doesn't fail the expansion because it thinks
1309 emitting the libcall would be more efficient. */
1310 nops
= insn_data
[(int) code
].n_generator_args
;
1311 gcc_assert (nops
== 4 || nops
== 6);
1313 create_fixed_operand (&ops
[0], x
);
1314 create_fixed_operand (&ops
[1], y
);
1315 /* The check above guarantees that this size conversion is valid. */
1316 create_convert_operand_to (&ops
[2], size
, mode
, true);
1317 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
1320 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
1321 create_integer_operand (&ops
[5], expected_size
);
1323 if (maybe_expand_insn (code
, nops
, ops
))
1325 volatile_ok
= save_volatile_ok
;
1331 volatile_ok
= save_volatile_ok
;
1335 /* A subroutine of emit_block_move. Expand a call to memcpy.
1336 Return the return value from memcpy, 0 otherwise. */
1339 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
, bool tailcall
)
1341 rtx dst_addr
, src_addr
;
1342 tree call_expr
, fn
, src_tree
, dst_tree
, size_tree
;
1343 enum machine_mode size_mode
;
1346 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1347 pseudos. We can then place those new pseudos into a VAR_DECL and
1350 dst_addr
= copy_addr_to_reg (XEXP (dst
, 0));
1351 src_addr
= copy_addr_to_reg (XEXP (src
, 0));
1353 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1354 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1356 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1357 src_tree
= make_tree (ptr_type_node
, src_addr
);
1359 size_mode
= TYPE_MODE (sizetype
);
1361 size
= convert_to_mode (size_mode
, size
, 1);
1362 size
= copy_to_mode_reg (size_mode
, size
);
1364 /* It is incorrect to use the libcall calling conventions to call
1365 memcpy in this context. This could be a user call to memcpy and
1366 the user may wish to examine the return value from memcpy. For
1367 targets where libcalls and normal calls have different conventions
1368 for returning pointers, we could end up generating incorrect code. */
1370 size_tree
= make_tree (sizetype
, size
);
1372 fn
= emit_block_move_libcall_fn (true);
1373 call_expr
= build_call_expr (fn
, 3, dst_tree
, src_tree
, size_tree
);
1374 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1376 retval
= expand_normal (call_expr
);
1381 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1382 for the function we use for block copies. */
1384 static GTY(()) tree block_move_fn
;
1387 init_block_move_fn (const char *asmspec
)
1391 tree args
, fn
, attrs
, attr_args
;
1393 fn
= get_identifier ("memcpy");
1394 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1395 const_ptr_type_node
, sizetype
,
1398 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
1399 DECL_EXTERNAL (fn
) = 1;
1400 TREE_PUBLIC (fn
) = 1;
1401 DECL_ARTIFICIAL (fn
) = 1;
1402 TREE_NOTHROW (fn
) = 1;
1403 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
1404 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
1406 attr_args
= build_tree_list (NULL_TREE
, build_string (1, "1"));
1407 attrs
= tree_cons (get_identifier ("fn spec"), attr_args
, NULL
);
1409 decl_attributes (&fn
, attrs
, ATTR_FLAG_BUILT_IN
);
1415 set_user_assembler_name (block_move_fn
, asmspec
);
1419 emit_block_move_libcall_fn (int for_call
)
1421 static bool emitted_extern
;
1424 init_block_move_fn (NULL
);
1426 if (for_call
&& !emitted_extern
)
1428 emitted_extern
= true;
1429 make_decl_rtl (block_move_fn
);
1432 return block_move_fn
;
1435 /* A subroutine of emit_block_move. Copy the data via an explicit
1436 loop. This is used only when libcalls are forbidden. */
1437 /* ??? It'd be nice to copy in hunks larger than QImode. */
1440 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1441 unsigned int align ATTRIBUTE_UNUSED
)
1443 rtx cmp_label
, top_label
, iter
, x_addr
, y_addr
, tmp
;
1444 enum machine_mode x_addr_mode
= get_address_mode (x
);
1445 enum machine_mode y_addr_mode
= get_address_mode (y
);
1446 enum machine_mode iter_mode
;
1448 iter_mode
= GET_MODE (size
);
1449 if (iter_mode
== VOIDmode
)
1450 iter_mode
= word_mode
;
1452 top_label
= gen_label_rtx ();
1453 cmp_label
= gen_label_rtx ();
1454 iter
= gen_reg_rtx (iter_mode
);
1456 emit_move_insn (iter
, const0_rtx
);
1458 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1459 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1460 do_pending_stack_adjust ();
1462 emit_jump (cmp_label
);
1463 emit_label (top_label
);
1465 tmp
= convert_modes (x_addr_mode
, iter_mode
, iter
, true);
1466 x_addr
= gen_rtx_PLUS (x_addr_mode
, x_addr
, tmp
);
1468 if (x_addr_mode
!= y_addr_mode
)
1469 tmp
= convert_modes (y_addr_mode
, iter_mode
, iter
, true);
1470 y_addr
= gen_rtx_PLUS (y_addr_mode
, y_addr
, tmp
);
1472 x
= change_address (x
, QImode
, x_addr
);
1473 y
= change_address (y
, QImode
, y_addr
);
1475 emit_move_insn (x
, y
);
1477 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1478 true, OPTAB_LIB_WIDEN
);
1480 emit_move_insn (iter
, tmp
);
1482 emit_label (cmp_label
);
1484 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1488 /* Copy all or part of a value X into registers starting at REGNO.
1489 The number of registers to be filled is NREGS. */
1492 move_block_to_reg (int regno
, rtx x
, int nregs
, enum machine_mode mode
)
1495 #ifdef HAVE_load_multiple
1503 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
1504 x
= validize_mem (force_const_mem (mode
, x
));
1506 /* See if the machine can do this with a load multiple insn. */
1507 #ifdef HAVE_load_multiple
1508 if (HAVE_load_multiple
)
1510 last
= get_last_insn ();
1511 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1519 delete_insns_since (last
);
1523 for (i
= 0; i
< nregs
; i
++)
1524 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1525 operand_subword_force (x
, i
, mode
));
1528 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1529 The number of registers to be filled is NREGS. */
1532 move_block_from_reg (int regno
, rtx x
, int nregs
)
1539 /* See if the machine can do this with a store multiple insn. */
1540 #ifdef HAVE_store_multiple
1541 if (HAVE_store_multiple
)
1543 rtx last
= get_last_insn ();
1544 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1552 delete_insns_since (last
);
1556 for (i
= 0; i
< nregs
; i
++)
1558 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1562 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1566 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1567 ORIG, where ORIG is a non-consecutive group of registers represented by
1568 a PARALLEL. The clone is identical to the original except in that the
1569 original set of registers is replaced by a new set of pseudo registers.
1570 The new set has the same modes as the original set. */
1573 gen_group_rtx (rtx orig
)
1578 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1580 length
= XVECLEN (orig
, 0);
1581 tmps
= XALLOCAVEC (rtx
, length
);
1583 /* Skip a NULL entry in first slot. */
1584 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1589 for (; i
< length
; i
++)
1591 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1592 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1594 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1597 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1600 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1601 except that values are placed in TMPS[i], and must later be moved
1602 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1605 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1609 enum machine_mode m
= GET_MODE (orig_src
);
1611 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1614 && !SCALAR_INT_MODE_P (m
)
1615 && !MEM_P (orig_src
)
1616 && GET_CODE (orig_src
) != CONCAT
)
1618 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1619 if (imode
== BLKmode
)
1620 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
);
1622 src
= gen_reg_rtx (imode
);
1623 if (imode
!= BLKmode
)
1624 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1625 emit_move_insn (src
, orig_src
);
1626 /* ...and back again. */
1627 if (imode
!= BLKmode
)
1628 src
= gen_lowpart (imode
, src
);
1629 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1633 /* Check for a NULL entry, used to indicate that the parameter goes
1634 both on the stack and in registers. */
1635 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1640 /* Process the pieces. */
1641 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1643 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1644 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1645 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1648 /* Handle trailing fragments that run over the size of the struct. */
1649 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1651 /* Arrange to shift the fragment to where it belongs.
1652 extract_bit_field loads to the lsb of the reg. */
1654 #ifdef BLOCK_REG_PADDING
1655 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1656 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1661 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1662 bytelen
= ssize
- bytepos
;
1663 gcc_assert (bytelen
> 0);
1666 /* If we won't be loading directly from memory, protect the real source
1667 from strange tricks we might play; but make sure that the source can
1668 be loaded directly into the destination. */
1670 if (!MEM_P (orig_src
)
1671 && (!CONSTANT_P (orig_src
)
1672 || (GET_MODE (orig_src
) != mode
1673 && GET_MODE (orig_src
) != VOIDmode
)))
1675 if (GET_MODE (orig_src
) == VOIDmode
)
1676 src
= gen_reg_rtx (mode
);
1678 src
= gen_reg_rtx (GET_MODE (orig_src
));
1680 emit_move_insn (src
, orig_src
);
1683 /* Optimize the access just a bit. */
1685 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1686 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1687 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1688 && bytelen
== GET_MODE_SIZE (mode
))
1690 tmps
[i
] = gen_reg_rtx (mode
);
1691 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1693 else if (COMPLEX_MODE_P (mode
)
1694 && GET_MODE (src
) == mode
1695 && bytelen
== GET_MODE_SIZE (mode
))
1696 /* Let emit_move_complex do the bulk of the work. */
1698 else if (GET_CODE (src
) == CONCAT
)
1700 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1701 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1703 if ((bytepos
== 0 && bytelen
== slen0
)
1704 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1706 /* The following assumes that the concatenated objects all
1707 have the same size. In this case, a simple calculation
1708 can be used to determine the object and the bit field
1710 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1711 if (! CONSTANT_P (tmps
[i
])
1712 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1713 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1714 (bytepos
% slen0
) * BITS_PER_UNIT
,
1715 1, false, NULL_RTX
, mode
, mode
);
1721 gcc_assert (!bytepos
);
1722 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1723 emit_move_insn (mem
, src
);
1724 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1725 0, 1, false, NULL_RTX
, mode
, mode
);
1728 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1729 SIMD register, which is currently broken. While we get GCC
1730 to emit proper RTL for these cases, let's dump to memory. */
1731 else if (VECTOR_MODE_P (GET_MODE (dst
))
1734 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1737 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1738 emit_move_insn (mem
, src
);
1739 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1741 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1742 && XVECLEN (dst
, 0) > 1)
1743 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE(dst
), bytepos
);
1744 else if (CONSTANT_P (src
))
1746 HOST_WIDE_INT len
= (HOST_WIDE_INT
) bytelen
;
1754 gcc_assert (2 * len
== ssize
);
1755 split_double (src
, &first
, &second
);
1762 else if (REG_P (src
) && GET_MODE (src
) == mode
)
1765 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1766 bytepos
* BITS_PER_UNIT
, 1, false, NULL_RTX
,
1770 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1775 /* Emit code to move a block SRC of type TYPE to a block DST,
1776 where DST is non-consecutive registers represented by a PARALLEL.
1777 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1781 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1786 tmps
= XALLOCAVEC (rtx
, XVECLEN (dst
, 0));
1787 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1789 /* Copy the extracted pieces into the proper (probable) hard regs. */
1790 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1792 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1795 emit_move_insn (d
, tmps
[i
]);
1799 /* Similar, but load SRC into new pseudos in a format that looks like
1800 PARALLEL. This can later be fed to emit_group_move to get things
1801 in the right place. */
1804 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1809 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1810 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1812 /* Convert the vector to look just like the original PARALLEL, except
1813 with the computed values. */
1814 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1816 rtx e
= XVECEXP (parallel
, 0, i
);
1817 rtx d
= XEXP (e
, 0);
1821 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1822 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1824 RTVEC_ELT (vec
, i
) = e
;
1827 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1830 /* Emit code to move a block SRC to block DST, where SRC and DST are
1831 non-consecutive groups of registers, each represented by a PARALLEL. */
1834 emit_group_move (rtx dst
, rtx src
)
1838 gcc_assert (GET_CODE (src
) == PARALLEL
1839 && GET_CODE (dst
) == PARALLEL
1840 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1842 /* Skip first entry if NULL. */
1843 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1844 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1845 XEXP (XVECEXP (src
, 0, i
), 0));
1848 /* Move a group of registers represented by a PARALLEL into pseudos. */
1851 emit_group_move_into_temps (rtx src
)
1853 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1856 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1858 rtx e
= XVECEXP (src
, 0, i
);
1859 rtx d
= XEXP (e
, 0);
1862 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1863 RTVEC_ELT (vec
, i
) = e
;
1866 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1869 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1870 where SRC is non-consecutive registers represented by a PARALLEL.
1871 SSIZE represents the total size of block ORIG_DST, or -1 if not
1875 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1878 int start
, finish
, i
;
1879 enum machine_mode m
= GET_MODE (orig_dst
);
1881 gcc_assert (GET_CODE (src
) == PARALLEL
);
1883 if (!SCALAR_INT_MODE_P (m
)
1884 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1886 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1887 if (imode
== BLKmode
)
1888 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
);
1890 dst
= gen_reg_rtx (imode
);
1891 emit_group_store (dst
, src
, type
, ssize
);
1892 if (imode
!= BLKmode
)
1893 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1894 emit_move_insn (orig_dst
, dst
);
1898 /* Check for a NULL entry, used to indicate that the parameter goes
1899 both on the stack and in registers. */
1900 if (XEXP (XVECEXP (src
, 0, 0), 0))
1904 finish
= XVECLEN (src
, 0);
1906 tmps
= XALLOCAVEC (rtx
, finish
);
1908 /* Copy the (probable) hard regs into pseudos. */
1909 for (i
= start
; i
< finish
; i
++)
1911 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1912 if (!REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
1914 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1915 emit_move_insn (tmps
[i
], reg
);
1921 /* If we won't be storing directly into memory, protect the real destination
1922 from strange tricks we might play. */
1924 if (GET_CODE (dst
) == PARALLEL
)
1928 /* We can get a PARALLEL dst if there is a conditional expression in
1929 a return statement. In that case, the dst and src are the same,
1930 so no action is necessary. */
1931 if (rtx_equal_p (dst
, src
))
1934 /* It is unclear if we can ever reach here, but we may as well handle
1935 it. Allocate a temporary, and split this into a store/load to/from
1938 temp
= assign_stack_temp (GET_MODE (dst
), ssize
);
1939 emit_group_store (temp
, src
, type
, ssize
);
1940 emit_group_load (dst
, temp
, type
, ssize
);
1943 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
1945 enum machine_mode outer
= GET_MODE (dst
);
1946 enum machine_mode inner
;
1947 HOST_WIDE_INT bytepos
;
1951 if (!REG_P (dst
) || REGNO (dst
) < FIRST_PSEUDO_REGISTER
)
1952 dst
= gen_reg_rtx (outer
);
1954 /* Make life a bit easier for combine. */
1955 /* If the first element of the vector is the low part
1956 of the destination mode, use a paradoxical subreg to
1957 initialize the destination. */
1960 inner
= GET_MODE (tmps
[start
]);
1961 bytepos
= subreg_lowpart_offset (inner
, outer
);
1962 if (INTVAL (XEXP (XVECEXP (src
, 0, start
), 1)) == bytepos
)
1964 temp
= simplify_gen_subreg (outer
, tmps
[start
],
1968 emit_move_insn (dst
, temp
);
1975 /* If the first element wasn't the low part, try the last. */
1977 && start
< finish
- 1)
1979 inner
= GET_MODE (tmps
[finish
- 1]);
1980 bytepos
= subreg_lowpart_offset (inner
, outer
);
1981 if (INTVAL (XEXP (XVECEXP (src
, 0, finish
- 1), 1)) == bytepos
)
1983 temp
= simplify_gen_subreg (outer
, tmps
[finish
- 1],
1987 emit_move_insn (dst
, temp
);
1994 /* Otherwise, simply initialize the result to zero. */
1996 emit_move_insn (dst
, CONST0_RTX (outer
));
1999 /* Process the pieces. */
2000 for (i
= start
; i
< finish
; i
++)
2002 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
2003 enum machine_mode mode
= GET_MODE (tmps
[i
]);
2004 unsigned int bytelen
= GET_MODE_SIZE (mode
);
2005 unsigned int adj_bytelen
= bytelen
;
2008 /* Handle trailing fragments that run over the size of the struct. */
2009 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2010 adj_bytelen
= ssize
- bytepos
;
2012 if (GET_CODE (dst
) == CONCAT
)
2014 if (bytepos
+ adj_bytelen
2015 <= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2016 dest
= XEXP (dst
, 0);
2017 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2019 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
2020 dest
= XEXP (dst
, 1);
2024 enum machine_mode dest_mode
= GET_MODE (dest
);
2025 enum machine_mode tmp_mode
= GET_MODE (tmps
[i
]);
2027 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
2029 if (GET_MODE_ALIGNMENT (dest_mode
)
2030 >= GET_MODE_ALIGNMENT (tmp_mode
))
2032 dest
= assign_stack_temp (dest_mode
,
2033 GET_MODE_SIZE (dest_mode
));
2034 emit_move_insn (adjust_address (dest
,
2042 dest
= assign_stack_temp (tmp_mode
,
2043 GET_MODE_SIZE (tmp_mode
));
2044 emit_move_insn (dest
, tmps
[i
]);
2045 dst
= adjust_address (dest
, dest_mode
, bytepos
);
2051 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2053 /* store_bit_field always takes its value from the lsb.
2054 Move the fragment to the lsb if it's not already there. */
2056 #ifdef BLOCK_REG_PADDING
2057 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
2058 == (BYTES_BIG_ENDIAN
? upward
: downward
)
2064 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2065 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
2068 bytelen
= adj_bytelen
;
2071 /* Optimize the access just a bit. */
2073 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
2074 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
2075 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
2076 && bytelen
== GET_MODE_SIZE (mode
))
2077 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
2079 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2080 0, 0, mode
, tmps
[i
]);
2083 /* Copy from the pseudo into the (probable) hard reg. */
2084 if (orig_dst
!= dst
)
2085 emit_move_insn (orig_dst
, dst
);
2088 /* Generate code to copy a BLKmode object of TYPE out of a
2089 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2090 is null, a stack temporary is created. TGTBLK is returned.
2092 The purpose of this routine is to handle functions that return
2093 BLKmode structures in registers. Some machines (the PA for example)
2094 want to return all small structures in registers regardless of the
2095 structure's alignment. */
2098 copy_blkmode_from_reg (rtx tgtblk
, rtx srcreg
, tree type
)
2100 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
2101 rtx src
= NULL
, dst
= NULL
;
2102 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2103 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2104 enum machine_mode copy_mode
;
2108 tgtblk
= assign_temp (build_qualified_type (type
,
2110 | TYPE_QUAL_CONST
)),
2112 preserve_temp_slots (tgtblk
);
2115 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2116 into a new pseudo which is a full word. */
2118 if (GET_MODE (srcreg
) != BLKmode
2119 && GET_MODE_SIZE (GET_MODE (srcreg
)) < UNITS_PER_WORD
)
2120 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2122 /* If the structure doesn't take up a whole number of words, see whether
2123 SRCREG is padded on the left or on the right. If it's on the left,
2124 set PADDING_CORRECTION to the number of bits to skip.
2126 In most ABIs, the structure will be returned at the least end of
2127 the register, which translates to right padding on little-endian
2128 targets and left padding on big-endian targets. The opposite
2129 holds if the structure is returned at the most significant
2130 end of the register. */
2131 if (bytes
% UNITS_PER_WORD
!= 0
2132 && (targetm
.calls
.return_in_msb (type
)
2134 : BYTES_BIG_ENDIAN
))
2136 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2138 /* Copy the structure BITSIZE bits at a time. If the target lives in
2139 memory, take care of not reading/writing past its end by selecting
2140 a copy mode suited to BITSIZE. This should always be possible given
2143 We could probably emit more efficient code for machines which do not use
2144 strict alignment, but it doesn't seem worth the effort at the current
2147 copy_mode
= word_mode
;
2150 enum machine_mode mem_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
2151 if (mem_mode
!= BLKmode
)
2152 copy_mode
= mem_mode
;
2155 for (bitpos
= 0, xbitpos
= padding_correction
;
2156 bitpos
< bytes
* BITS_PER_UNIT
;
2157 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2159 /* We need a new source operand each time xbitpos is on a
2160 word boundary and when xbitpos == padding_correction
2161 (the first time through). */
2162 if (xbitpos
% BITS_PER_WORD
== 0
2163 || xbitpos
== padding_correction
)
2164 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
,
2167 /* We need a new destination operand each time bitpos is on
2169 if (bitpos
% BITS_PER_WORD
== 0)
2170 dst
= operand_subword (tgtblk
, bitpos
/ BITS_PER_WORD
, 1, BLKmode
);
2172 /* Use xbitpos for the source extraction (right justified) and
2173 bitpos for the destination store (left justified). */
2174 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, 0, 0, copy_mode
,
2175 extract_bit_field (src
, bitsize
,
2176 xbitpos
% BITS_PER_WORD
, 1, false,
2177 NULL_RTX
, copy_mode
, copy_mode
));
2183 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2184 register if it contains any data, otherwise return null.
2186 This is used on targets that return BLKmode values in registers. */
2189 copy_blkmode_to_reg (enum machine_mode mode
, tree src
)
2192 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0, bytes
;
2193 unsigned int bitsize
;
2194 rtx
*dst_words
, dst
, x
, src_word
= NULL_RTX
, dst_word
= NULL_RTX
;
2195 enum machine_mode dst_mode
;
2197 gcc_assert (TYPE_MODE (TREE_TYPE (src
)) == BLKmode
);
2199 x
= expand_normal (src
);
2201 bytes
= int_size_in_bytes (TREE_TYPE (src
));
2205 /* If the structure doesn't take up a whole number of words, see
2206 whether the register value should be padded on the left or on
2207 the right. Set PADDING_CORRECTION to the number of padding
2208 bits needed on the left side.
2210 In most ABIs, the structure will be returned at the least end of
2211 the register, which translates to right padding on little-endian
2212 targets and left padding on big-endian targets. The opposite
2213 holds if the structure is returned at the most significant
2214 end of the register. */
2215 if (bytes
% UNITS_PER_WORD
!= 0
2216 && (targetm
.calls
.return_in_msb (TREE_TYPE (src
))
2218 : BYTES_BIG_ENDIAN
))
2219 padding_correction
= (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
)
2222 n_regs
= (bytes
+ UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
2223 dst_words
= XALLOCAVEC (rtx
, n_regs
);
2224 bitsize
= MIN (TYPE_ALIGN (TREE_TYPE (src
)), BITS_PER_WORD
);
2226 /* Copy the structure BITSIZE bits at a time. */
2227 for (bitpos
= 0, xbitpos
= padding_correction
;
2228 bitpos
< bytes
* BITS_PER_UNIT
;
2229 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2231 /* We need a new destination pseudo each time xbitpos is
2232 on a word boundary and when xbitpos == padding_correction
2233 (the first time through). */
2234 if (xbitpos
% BITS_PER_WORD
== 0
2235 || xbitpos
== padding_correction
)
2237 /* Generate an appropriate register. */
2238 dst_word
= gen_reg_rtx (word_mode
);
2239 dst_words
[xbitpos
/ BITS_PER_WORD
] = dst_word
;
2241 /* Clear the destination before we move anything into it. */
2242 emit_move_insn (dst_word
, CONST0_RTX (word_mode
));
2245 /* We need a new source operand each time bitpos is on a word
2247 if (bitpos
% BITS_PER_WORD
== 0)
2248 src_word
= operand_subword_force (x
, bitpos
/ BITS_PER_WORD
, BLKmode
);
2250 /* Use bitpos for the source extraction (left justified) and
2251 xbitpos for the destination store (right justified). */
2252 store_bit_field (dst_word
, bitsize
, xbitpos
% BITS_PER_WORD
,
2254 extract_bit_field (src_word
, bitsize
,
2255 bitpos
% BITS_PER_WORD
, 1, false,
2256 NULL_RTX
, word_mode
, word_mode
));
2259 if (mode
== BLKmode
)
2261 /* Find the smallest integer mode large enough to hold the
2262 entire structure. */
2263 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2265 mode
= GET_MODE_WIDER_MODE (mode
))
2266 /* Have we found a large enough mode? */
2267 if (GET_MODE_SIZE (mode
) >= bytes
)
2270 /* A suitable mode should have been found. */
2271 gcc_assert (mode
!= VOIDmode
);
2274 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (word_mode
))
2275 dst_mode
= word_mode
;
2278 dst
= gen_reg_rtx (dst_mode
);
2280 for (i
= 0; i
< n_regs
; i
++)
2281 emit_move_insn (operand_subword (dst
, i
, 0, dst_mode
), dst_words
[i
]);
2283 if (mode
!= dst_mode
)
2284 dst
= gen_lowpart (mode
, dst
);
2289 /* Add a USE expression for REG to the (possibly empty) list pointed
2290 to by CALL_FUSAGE. REG must denote a hard register. */
2293 use_reg_mode (rtx
*call_fusage
, rtx reg
, enum machine_mode mode
)
2295 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2298 = gen_rtx_EXPR_LIST (mode
, gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2301 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2302 starting at REGNO. All of these registers must be hard registers. */
2305 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2309 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2311 for (i
= 0; i
< nregs
; i
++)
2312 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2315 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2316 PARALLEL REGS. This is for calls that pass values in multiple
2317 non-contiguous locations. The Irix 6 ABI has examples of this. */
2320 use_group_regs (rtx
*call_fusage
, rtx regs
)
2324 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2326 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2328 /* A NULL entry means the parameter goes both on the stack and in
2329 registers. This can also be a MEM for targets that pass values
2330 partially on the stack and partially in registers. */
2331 if (reg
!= 0 && REG_P (reg
))
2332 use_reg (call_fusage
, reg
);
2336 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2337 assigment and the code of the expresion on the RHS is CODE. Return
2341 get_def_for_expr (tree name
, enum tree_code code
)
2345 if (TREE_CODE (name
) != SSA_NAME
)
2348 def_stmt
= get_gimple_for_ssa_name (name
);
2350 || gimple_assign_rhs_code (def_stmt
) != code
)
2356 #ifdef HAVE_conditional_move
2357 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2358 assigment and the class of the expresion on the RHS is CLASS. Return
2362 get_def_for_expr_class (tree name
, enum tree_code_class tclass
)
2366 if (TREE_CODE (name
) != SSA_NAME
)
2369 def_stmt
= get_gimple_for_ssa_name (name
);
2371 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
)) != tclass
)
2379 /* Determine whether the LEN bytes generated by CONSTFUN can be
2380 stored to memory using several move instructions. CONSTFUNDATA is
2381 a pointer which will be passed as argument in every CONSTFUN call.
2382 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2383 a memset operation and false if it's a copy of a constant string.
2384 Return nonzero if a call to store_by_pieces should succeed. */
2387 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2388 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2389 void *constfundata
, unsigned int align
, bool memsetp
)
2391 unsigned HOST_WIDE_INT l
;
2392 unsigned int max_size
;
2393 HOST_WIDE_INT offset
= 0;
2394 enum machine_mode mode
;
2395 enum insn_code icode
;
2397 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2398 rtx cst ATTRIBUTE_UNUSED
;
2404 ? SET_BY_PIECES_P (len
, align
)
2405 : STORE_BY_PIECES_P (len
, align
)))
2408 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2410 /* We would first store what we can in the largest integer mode, then go to
2411 successively smaller modes. */
2414 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2418 max_size
= STORE_MAX_PIECES
+ 1;
2419 while (max_size
> 1)
2421 mode
= widest_int_mode_for_size (max_size
);
2423 if (mode
== VOIDmode
)
2426 icode
= optab_handler (mov_optab
, mode
);
2427 if (icode
!= CODE_FOR_nothing
2428 && align
>= GET_MODE_ALIGNMENT (mode
))
2430 unsigned int size
= GET_MODE_SIZE (mode
);
2437 cst
= (*constfun
) (constfundata
, offset
, mode
);
2438 if (!targetm
.legitimate_constant_p (mode
, cst
))
2448 max_size
= GET_MODE_SIZE (mode
);
2451 /* The code above should have handled everything. */
2458 /* Generate several move instructions to store LEN bytes generated by
2459 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2460 pointer which will be passed as argument in every CONSTFUN call.
2461 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2462 a memset operation and false if it's a copy of a constant string.
2463 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2464 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2468 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2469 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2470 void *constfundata
, unsigned int align
, bool memsetp
, int endp
)
2472 enum machine_mode to_addr_mode
= get_address_mode (to
);
2473 struct store_by_pieces_d data
;
2477 gcc_assert (endp
!= 2);
2482 ? SET_BY_PIECES_P (len
, align
)
2483 : STORE_BY_PIECES_P (len
, align
));
2484 data
.constfun
= constfun
;
2485 data
.constfundata
= constfundata
;
2488 store_by_pieces_1 (&data
, align
);
2493 gcc_assert (!data
.reverse
);
2498 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2499 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2501 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
2502 plus_constant (to_addr_mode
,
2506 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2513 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2521 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2522 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2525 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2527 struct store_by_pieces_d data
;
2532 data
.constfun
= clear_by_pieces_1
;
2533 data
.constfundata
= NULL
;
2536 store_by_pieces_1 (&data
, align
);
2539 /* Callback routine for clear_by_pieces.
2540 Return const0_rtx unconditionally. */
2543 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2544 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2545 enum machine_mode mode ATTRIBUTE_UNUSED
)
2550 /* Subroutine of clear_by_pieces and store_by_pieces.
2551 Generate several move instructions to store LEN bytes of block TO. (A MEM
2552 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2555 store_by_pieces_1 (struct store_by_pieces_d
*data ATTRIBUTE_UNUSED
,
2556 unsigned int align ATTRIBUTE_UNUSED
)
2558 enum machine_mode to_addr_mode
= get_address_mode (data
->to
);
2559 rtx to_addr
= XEXP (data
->to
, 0);
2560 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2561 enum insn_code icode
;
2564 data
->to_addr
= to_addr
;
2566 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2567 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2569 data
->explicit_inc_to
= 0;
2571 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2573 data
->offset
= data
->len
;
2575 /* If storing requires more than two move insns,
2576 copy addresses to registers (to make displacements shorter)
2577 and use post-increment if available. */
2578 if (!data
->autinc_to
2579 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2581 /* Determine the main mode we'll be using.
2582 MODE might not be used depending on the definitions of the
2583 USE_* macros below. */
2584 enum machine_mode mode ATTRIBUTE_UNUSED
2585 = widest_int_mode_for_size (max_size
);
2587 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2589 data
->to_addr
= copy_to_mode_reg (to_addr_mode
,
2590 plus_constant (to_addr_mode
,
2593 data
->autinc_to
= 1;
2594 data
->explicit_inc_to
= -1;
2597 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2598 && ! data
->autinc_to
)
2600 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2601 data
->autinc_to
= 1;
2602 data
->explicit_inc_to
= 1;
2605 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2606 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2609 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2611 /* First store what we can in the largest integer mode, then go to
2612 successively smaller modes. */
2614 while (max_size
> 1)
2616 enum machine_mode mode
= widest_int_mode_for_size (max_size
);
2618 if (mode
== VOIDmode
)
2621 icode
= optab_handler (mov_optab
, mode
);
2622 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2623 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2625 max_size
= GET_MODE_SIZE (mode
);
2628 /* The code above should have handled everything. */
2629 gcc_assert (!data
->len
);
2632 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2633 with move instructions for mode MODE. GENFUN is the gen_... function
2634 to make a move insn for that mode. DATA has all the other info. */
2637 store_by_pieces_2 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
2638 struct store_by_pieces_d
*data
)
2640 unsigned int size
= GET_MODE_SIZE (mode
);
2643 while (data
->len
>= size
)
2646 data
->offset
-= size
;
2648 if (data
->autinc_to
)
2649 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2652 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2654 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2655 emit_insn (gen_add2_insn (data
->to_addr
,
2656 GEN_INT (-(HOST_WIDE_INT
) size
)));
2658 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2659 emit_insn ((*genfun
) (to1
, cst
));
2661 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2662 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
2664 if (! data
->reverse
)
2665 data
->offset
+= size
;
2671 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2672 its length in bytes. */
2675 clear_storage_hints (rtx object
, rtx size
, enum block_op_methods method
,
2676 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
2678 enum machine_mode mode
= GET_MODE (object
);
2681 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
2683 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2684 just move a zero. Otherwise, do this a piece at a time. */
2686 && CONST_INT_P (size
)
2687 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2689 rtx zero
= CONST0_RTX (mode
);
2692 emit_move_insn (object
, zero
);
2696 if (COMPLEX_MODE_P (mode
))
2698 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2701 write_complex_part (object
, zero
, 0);
2702 write_complex_part (object
, zero
, 1);
2708 if (size
== const0_rtx
)
2711 align
= MEM_ALIGN (object
);
2713 if (CONST_INT_P (size
)
2714 && CLEAR_BY_PIECES_P (INTVAL (size
), align
))
2715 clear_by_pieces (object
, INTVAL (size
), align
);
2716 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
,
2717 expected_align
, expected_size
))
2719 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object
)))
2720 return set_storage_via_libcall (object
, size
, const0_rtx
,
2721 method
== BLOCK_OP_TAILCALL
);
2729 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
2731 return clear_storage_hints (object
, size
, method
, 0, -1);
2735 /* A subroutine of clear_storage. Expand a call to memset.
2736 Return the return value of memset, 0 otherwise. */
2739 set_storage_via_libcall (rtx object
, rtx size
, rtx val
, bool tailcall
)
2741 tree call_expr
, fn
, object_tree
, size_tree
, val_tree
;
2742 enum machine_mode size_mode
;
2745 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2746 place those into new pseudos into a VAR_DECL and use them later. */
2748 object
= copy_addr_to_reg (XEXP (object
, 0));
2750 size_mode
= TYPE_MODE (sizetype
);
2751 size
= convert_to_mode (size_mode
, size
, 1);
2752 size
= copy_to_mode_reg (size_mode
, size
);
2754 /* It is incorrect to use the libcall calling conventions to call
2755 memset in this context. This could be a user call to memset and
2756 the user may wish to examine the return value from memset. For
2757 targets where libcalls and normal calls have different conventions
2758 for returning pointers, we could end up generating incorrect code. */
2760 object_tree
= make_tree (ptr_type_node
, object
);
2761 if (!CONST_INT_P (val
))
2762 val
= convert_to_mode (TYPE_MODE (integer_type_node
), val
, 1);
2763 size_tree
= make_tree (sizetype
, size
);
2764 val_tree
= make_tree (integer_type_node
, val
);
2766 fn
= clear_storage_libcall_fn (true);
2767 call_expr
= build_call_expr (fn
, 3, object_tree
, val_tree
, size_tree
);
2768 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
2770 retval
= expand_normal (call_expr
);
2775 /* A subroutine of set_storage_via_libcall. Create the tree node
2776 for the function we use for block clears. */
2778 tree block_clear_fn
;
2781 init_block_clear_fn (const char *asmspec
)
2783 if (!block_clear_fn
)
2787 fn
= get_identifier ("memset");
2788 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2789 integer_type_node
, sizetype
,
2792 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
2793 DECL_EXTERNAL (fn
) = 1;
2794 TREE_PUBLIC (fn
) = 1;
2795 DECL_ARTIFICIAL (fn
) = 1;
2796 TREE_NOTHROW (fn
) = 1;
2797 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
2798 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
2800 block_clear_fn
= fn
;
2804 set_user_assembler_name (block_clear_fn
, asmspec
);
2808 clear_storage_libcall_fn (int for_call
)
2810 static bool emitted_extern
;
2812 if (!block_clear_fn
)
2813 init_block_clear_fn (NULL
);
2815 if (for_call
&& !emitted_extern
)
2817 emitted_extern
= true;
2818 make_decl_rtl (block_clear_fn
);
2821 return block_clear_fn
;
2824 /* Expand a setmem pattern; return true if successful. */
2827 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
,
2828 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
2830 /* Try the most limited insn first, because there's no point
2831 including more than one in the machine description unless
2832 the more limited one has some advantage. */
2834 enum machine_mode mode
;
2836 if (expected_align
< align
)
2837 expected_align
= align
;
2839 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2840 mode
= GET_MODE_WIDER_MODE (mode
))
2842 enum insn_code code
= direct_optab_handler (setmem_optab
, mode
);
2844 if (code
!= CODE_FOR_nothing
2845 /* We don't need MODE to be narrower than
2846 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2847 the mode mask, as it is returned by the macro, it will
2848 definitely be less than the actual mode mask. */
2849 && ((CONST_INT_P (size
)
2850 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2851 <= (GET_MODE_MASK (mode
) >> 1)))
2852 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
))
2854 struct expand_operand ops
[6];
2857 nops
= insn_data
[(int) code
].n_generator_args
;
2858 gcc_assert (nops
== 4 || nops
== 6);
2860 create_fixed_operand (&ops
[0], object
);
2861 /* The check above guarantees that this size conversion is valid. */
2862 create_convert_operand_to (&ops
[1], size
, mode
, true);
2863 create_convert_operand_from (&ops
[2], val
, byte_mode
, true);
2864 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
2867 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
2868 create_integer_operand (&ops
[5], expected_size
);
2870 if (maybe_expand_insn (code
, nops
, ops
))
2879 /* Write to one of the components of the complex value CPLX. Write VAL to
2880 the real part if IMAG_P is false, and the imaginary part if its true. */
2883 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
2885 enum machine_mode cmode
;
2886 enum machine_mode imode
;
2889 if (GET_CODE (cplx
) == CONCAT
)
2891 emit_move_insn (XEXP (cplx
, imag_p
), val
);
2895 cmode
= GET_MODE (cplx
);
2896 imode
= GET_MODE_INNER (cmode
);
2897 ibitsize
= GET_MODE_BITSIZE (imode
);
2899 /* For MEMs simplify_gen_subreg may generate an invalid new address
2900 because, e.g., the original address is considered mode-dependent
2901 by the target, which restricts simplify_subreg from invoking
2902 adjust_address_nv. Instead of preparing fallback support for an
2903 invalid address, we call adjust_address_nv directly. */
2906 emit_move_insn (adjust_address_nv (cplx
, imode
,
2907 imag_p
? GET_MODE_SIZE (imode
) : 0),
2912 /* If the sub-object is at least word sized, then we know that subregging
2913 will work. This special case is important, since store_bit_field
2914 wants to operate on integer modes, and there's rarely an OImode to
2915 correspond to TCmode. */
2916 if (ibitsize
>= BITS_PER_WORD
2917 /* For hard regs we have exact predicates. Assume we can split
2918 the original object if it spans an even number of hard regs.
2919 This special case is important for SCmode on 64-bit platforms
2920 where the natural size of floating-point regs is 32-bit. */
2922 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2923 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
2925 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
2926 imag_p
? GET_MODE_SIZE (imode
) : 0);
2929 emit_move_insn (part
, val
);
2933 /* simplify_gen_subreg may fail for sub-word MEMs. */
2934 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2937 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, 0, 0, imode
, val
);
2940 /* Extract one of the components of the complex value CPLX. Extract the
2941 real part if IMAG_P is false, and the imaginary part if it's true. */
2944 read_complex_part (rtx cplx
, bool imag_p
)
2946 enum machine_mode cmode
, imode
;
2949 if (GET_CODE (cplx
) == CONCAT
)
2950 return XEXP (cplx
, imag_p
);
2952 cmode
= GET_MODE (cplx
);
2953 imode
= GET_MODE_INNER (cmode
);
2954 ibitsize
= GET_MODE_BITSIZE (imode
);
2956 /* Special case reads from complex constants that got spilled to memory. */
2957 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
2959 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
2960 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
2962 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
2963 if (CONSTANT_CLASS_P (part
))
2964 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
2968 /* For MEMs simplify_gen_subreg may generate an invalid new address
2969 because, e.g., the original address is considered mode-dependent
2970 by the target, which restricts simplify_subreg from invoking
2971 adjust_address_nv. Instead of preparing fallback support for an
2972 invalid address, we call adjust_address_nv directly. */
2974 return adjust_address_nv (cplx
, imode
,
2975 imag_p
? GET_MODE_SIZE (imode
) : 0);
2977 /* If the sub-object is at least word sized, then we know that subregging
2978 will work. This special case is important, since extract_bit_field
2979 wants to operate on integer modes, and there's rarely an OImode to
2980 correspond to TCmode. */
2981 if (ibitsize
>= BITS_PER_WORD
2982 /* For hard regs we have exact predicates. Assume we can split
2983 the original object if it spans an even number of hard regs.
2984 This special case is important for SCmode on 64-bit platforms
2985 where the natural size of floating-point regs is 32-bit. */
2987 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2988 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
2990 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
2991 imag_p
? GET_MODE_SIZE (imode
) : 0);
2995 /* simplify_gen_subreg may fail for sub-word MEMs. */
2996 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2999 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
3000 true, false, NULL_RTX
, imode
, imode
);
3003 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3004 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3005 represented in NEW_MODE. If FORCE is true, this will never happen, as
3006 we'll force-create a SUBREG if needed. */
3009 emit_move_change_mode (enum machine_mode new_mode
,
3010 enum machine_mode old_mode
, rtx x
, bool force
)
3014 if (push_operand (x
, GET_MODE (x
)))
3016 ret
= gen_rtx_MEM (new_mode
, XEXP (x
, 0));
3017 MEM_COPY_ATTRIBUTES (ret
, x
);
3021 /* We don't have to worry about changing the address since the
3022 size in bytes is supposed to be the same. */
3023 if (reload_in_progress
)
3025 /* Copy the MEM to change the mode and move any
3026 substitutions from the old MEM to the new one. */
3027 ret
= adjust_address_nv (x
, new_mode
, 0);
3028 copy_replacements (x
, ret
);
3031 ret
= adjust_address (x
, new_mode
, 0);
3035 /* Note that we do want simplify_subreg's behavior of validating
3036 that the new mode is ok for a hard register. If we were to use
3037 simplify_gen_subreg, we would create the subreg, but would
3038 probably run into the target not being able to implement it. */
3039 /* Except, of course, when FORCE is true, when this is exactly what
3040 we want. Which is needed for CCmodes on some targets. */
3042 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
3044 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
3050 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3051 an integer mode of the same size as MODE. Returns the instruction
3052 emitted, or NULL if such a move could not be generated. */
3055 emit_move_via_integer (enum machine_mode mode
, rtx x
, rtx y
, bool force
)
3057 enum machine_mode imode
;
3058 enum insn_code code
;
3060 /* There must exist a mode of the exact size we require. */
3061 imode
= int_mode_for_mode (mode
);
3062 if (imode
== BLKmode
)
3065 /* The target must support moves in this mode. */
3066 code
= optab_handler (mov_optab
, imode
);
3067 if (code
== CODE_FOR_nothing
)
3070 x
= emit_move_change_mode (imode
, mode
, x
, force
);
3073 y
= emit_move_change_mode (imode
, mode
, y
, force
);
3076 return emit_insn (GEN_FCN (code
) (x
, y
));
3079 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3080 Return an equivalent MEM that does not use an auto-increment. */
3083 emit_move_resolve_push (enum machine_mode mode
, rtx x
)
3085 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
3086 HOST_WIDE_INT adjust
;
3089 adjust
= GET_MODE_SIZE (mode
);
3090 #ifdef PUSH_ROUNDING
3091 adjust
= PUSH_ROUNDING (adjust
);
3093 if (code
== PRE_DEC
|| code
== POST_DEC
)
3095 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
3097 rtx expr
= XEXP (XEXP (x
, 0), 1);
3100 gcc_assert (GET_CODE (expr
) == PLUS
|| GET_CODE (expr
) == MINUS
);
3101 gcc_assert (CONST_INT_P (XEXP (expr
, 1)));
3102 val
= INTVAL (XEXP (expr
, 1));
3103 if (GET_CODE (expr
) == MINUS
)
3105 gcc_assert (adjust
== val
|| adjust
== -val
);
3109 /* Do not use anti_adjust_stack, since we don't want to update
3110 stack_pointer_delta. */
3111 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
3112 GEN_INT (adjust
), stack_pointer_rtx
,
3113 0, OPTAB_LIB_WIDEN
);
3114 if (temp
!= stack_pointer_rtx
)
3115 emit_move_insn (stack_pointer_rtx
, temp
);
3122 temp
= stack_pointer_rtx
;
3127 temp
= plus_constant (Pmode
, stack_pointer_rtx
, -adjust
);
3133 return replace_equiv_address (x
, temp
);
3136 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3137 X is known to satisfy push_operand, and MODE is known to be complex.
3138 Returns the last instruction emitted. */
3141 emit_move_complex_push (enum machine_mode mode
, rtx x
, rtx y
)
3143 enum machine_mode submode
= GET_MODE_INNER (mode
);
3146 #ifdef PUSH_ROUNDING
3147 unsigned int submodesize
= GET_MODE_SIZE (submode
);
3149 /* In case we output to the stack, but the size is smaller than the
3150 machine can push exactly, we need to use move instructions. */
3151 if (PUSH_ROUNDING (submodesize
) != submodesize
)
3153 x
= emit_move_resolve_push (mode
, x
);
3154 return emit_move_insn (x
, y
);
3158 /* Note that the real part always precedes the imag part in memory
3159 regardless of machine's endianness. */
3160 switch (GET_CODE (XEXP (x
, 0)))
3174 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3175 read_complex_part (y
, imag_first
));
3176 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3177 read_complex_part (y
, !imag_first
));
3180 /* A subroutine of emit_move_complex. Perform the move from Y to X
3181 via two moves of the parts. Returns the last instruction emitted. */
3184 emit_move_complex_parts (rtx x
, rtx y
)
3186 /* Show the output dies here. This is necessary for SUBREGs
3187 of pseudos since we cannot track their lifetimes correctly;
3188 hard regs shouldn't appear here except as return values. */
3189 if (!reload_completed
&& !reload_in_progress
3190 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
3193 write_complex_part (x
, read_complex_part (y
, false), false);
3194 write_complex_part (x
, read_complex_part (y
, true), true);
3196 return get_last_insn ();
3199 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3200 MODE is known to be complex. Returns the last instruction emitted. */
3203 emit_move_complex (enum machine_mode mode
, rtx x
, rtx y
)
3207 /* Need to take special care for pushes, to maintain proper ordering
3208 of the data, and possibly extra padding. */
3209 if (push_operand (x
, mode
))
3210 return emit_move_complex_push (mode
, x
, y
);
3212 /* See if we can coerce the target into moving both values at once. */
3214 /* Move floating point as parts. */
3215 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
3216 && optab_handler (mov_optab
, GET_MODE_INNER (mode
)) != CODE_FOR_nothing
)
3218 /* Not possible if the values are inherently not adjacent. */
3219 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
3221 /* Is possible if both are registers (or subregs of registers). */
3222 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
3224 /* If one of the operands is a memory, and alignment constraints
3225 are friendly enough, we may be able to do combined memory operations.
3226 We do not attempt this if Y is a constant because that combination is
3227 usually better with the by-parts thing below. */
3228 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
3229 && (!STRICT_ALIGNMENT
3230 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
3239 /* For memory to memory moves, optimal behavior can be had with the
3240 existing block move logic. */
3241 if (MEM_P (x
) && MEM_P (y
))
3243 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
3244 BLOCK_OP_NO_LIBCALL
);
3245 return get_last_insn ();
3248 ret
= emit_move_via_integer (mode
, x
, y
, true);
3253 return emit_move_complex_parts (x
, y
);
3256 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3257 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3260 emit_move_ccmode (enum machine_mode mode
, rtx x
, rtx y
)
3264 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3267 enum insn_code code
= optab_handler (mov_optab
, CCmode
);
3268 if (code
!= CODE_FOR_nothing
)
3270 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
3271 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
3272 return emit_insn (GEN_FCN (code
) (x
, y
));
3276 /* Otherwise, find the MODE_INT mode of the same width. */
3277 ret
= emit_move_via_integer (mode
, x
, y
, false);
3278 gcc_assert (ret
!= NULL
);
3282 /* Return true if word I of OP lies entirely in the
3283 undefined bits of a paradoxical subreg. */
3286 undefined_operand_subword_p (const_rtx op
, int i
)
3288 enum machine_mode innermode
, innermostmode
;
3290 if (GET_CODE (op
) != SUBREG
)
3292 innermode
= GET_MODE (op
);
3293 innermostmode
= GET_MODE (SUBREG_REG (op
));
3294 offset
= i
* UNITS_PER_WORD
+ SUBREG_BYTE (op
);
3295 /* The SUBREG_BYTE represents offset, as if the value were stored in
3296 memory, except for a paradoxical subreg where we define
3297 SUBREG_BYTE to be 0; undo this exception as in
3299 if (SUBREG_BYTE (op
) == 0
3300 && GET_MODE_SIZE (innermostmode
) < GET_MODE_SIZE (innermode
))
3302 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (innermode
));
3303 if (WORDS_BIG_ENDIAN
)
3304 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3305 if (BYTES_BIG_ENDIAN
)
3306 offset
+= difference
% UNITS_PER_WORD
;
3308 if (offset
>= GET_MODE_SIZE (innermostmode
)
3309 || offset
<= -GET_MODE_SIZE (word_mode
))
3314 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3315 MODE is any multi-word or full-word mode that lacks a move_insn
3316 pattern. Note that you will get better code if you define such
3317 patterns, even if they must turn into multiple assembler instructions. */
3320 emit_move_multi_word (enum machine_mode mode
, rtx x
, rtx y
)
3327 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
3329 /* If X is a push on the stack, do the push now and replace
3330 X with a reference to the stack pointer. */
3331 if (push_operand (x
, mode
))
3332 x
= emit_move_resolve_push (mode
, x
);
3334 /* If we are in reload, see if either operand is a MEM whose address
3335 is scheduled for replacement. */
3336 if (reload_in_progress
&& MEM_P (x
)
3337 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3338 x
= replace_equiv_address_nv (x
, inner
);
3339 if (reload_in_progress
&& MEM_P (y
)
3340 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3341 y
= replace_equiv_address_nv (y
, inner
);
3345 need_clobber
= false;
3347 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
3350 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3353 /* Do not generate code for a move if it would come entirely
3354 from the undefined bits of a paradoxical subreg. */
3355 if (undefined_operand_subword_p (y
, i
))
3358 ypart
= operand_subword (y
, i
, 1, mode
);
3360 /* If we can't get a part of Y, put Y into memory if it is a
3361 constant. Otherwise, force it into a register. Then we must
3362 be able to get a part of Y. */
3363 if (ypart
== 0 && CONSTANT_P (y
))
3365 y
= use_anchored_address (force_const_mem (mode
, y
));
3366 ypart
= operand_subword (y
, i
, 1, mode
);
3368 else if (ypart
== 0)
3369 ypart
= operand_subword_force (y
, i
, mode
);
3371 gcc_assert (xpart
&& ypart
);
3373 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3375 last_insn
= emit_move_insn (xpart
, ypart
);
3381 /* Show the output dies here. This is necessary for SUBREGs
3382 of pseudos since we cannot track their lifetimes correctly;
3383 hard regs shouldn't appear here except as return values.
3384 We never want to emit such a clobber after reload. */
3386 && ! (reload_in_progress
|| reload_completed
)
3387 && need_clobber
!= 0)
3395 /* Low level part of emit_move_insn.
3396 Called just like emit_move_insn, but assumes X and Y
3397 are basically valid. */
3400 emit_move_insn_1 (rtx x
, rtx y
)
3402 enum machine_mode mode
= GET_MODE (x
);
3403 enum insn_code code
;
3405 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3407 code
= optab_handler (mov_optab
, mode
);
3408 if (code
!= CODE_FOR_nothing
)
3409 return emit_insn (GEN_FCN (code
) (x
, y
));
3411 /* Expand complex moves by moving real part and imag part. */
3412 if (COMPLEX_MODE_P (mode
))
3413 return emit_move_complex (mode
, x
, y
);
3415 if (GET_MODE_CLASS (mode
) == MODE_DECIMAL_FLOAT
3416 || ALL_FIXED_POINT_MODE_P (mode
))
3418 rtx result
= emit_move_via_integer (mode
, x
, y
, true);
3420 /* If we can't find an integer mode, use multi words. */
3424 return emit_move_multi_word (mode
, x
, y
);
3427 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3428 return emit_move_ccmode (mode
, x
, y
);
3430 /* Try using a move pattern for the corresponding integer mode. This is
3431 only safe when simplify_subreg can convert MODE constants into integer
3432 constants. At present, it can only do this reliably if the value
3433 fits within a HOST_WIDE_INT. */
3434 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3436 rtx ret
= emit_move_via_integer (mode
, x
, y
, false);
3441 return emit_move_multi_word (mode
, x
, y
);
3444 /* Generate code to copy Y into X.
3445 Both Y and X must have the same mode, except that
3446 Y can be a constant with VOIDmode.
3447 This mode cannot be BLKmode; use emit_block_move for that.
3449 Return the last instruction emitted. */
3452 emit_move_insn (rtx x
, rtx y
)
3454 enum machine_mode mode
= GET_MODE (x
);
3455 rtx y_cst
= NULL_RTX
;
3458 gcc_assert (mode
!= BLKmode
3459 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3464 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3465 && (last_insn
= compress_float_constant (x
, y
)))
3470 if (!targetm
.legitimate_constant_p (mode
, y
))
3472 y
= force_const_mem (mode
, y
);
3474 /* If the target's cannot_force_const_mem prevented the spill,
3475 assume that the target's move expanders will also take care
3476 of the non-legitimate constant. */
3480 y
= use_anchored_address (y
);
3484 /* If X or Y are memory references, verify that their addresses are valid
3487 && (! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
3489 && ! push_operand (x
, GET_MODE (x
))))
3490 x
= validize_mem (x
);
3493 && ! memory_address_addr_space_p (GET_MODE (y
), XEXP (y
, 0),
3494 MEM_ADDR_SPACE (y
)))
3495 y
= validize_mem (y
);
3497 gcc_assert (mode
!= BLKmode
);
3499 last_insn
= emit_move_insn_1 (x
, y
);
3501 if (y_cst
&& REG_P (x
)
3502 && (set
= single_set (last_insn
)) != NULL_RTX
3503 && SET_DEST (set
) == x
3504 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3505 set_unique_reg_note (last_insn
, REG_EQUAL
, copy_rtx (y_cst
));
3510 /* If Y is representable exactly in a narrower mode, and the target can
3511 perform the extension directly from constant or memory, then emit the
3512 move as an extension. */
3515 compress_float_constant (rtx x
, rtx y
)
3517 enum machine_mode dstmode
= GET_MODE (x
);
3518 enum machine_mode orig_srcmode
= GET_MODE (y
);
3519 enum machine_mode srcmode
;
3521 int oldcost
, newcost
;
3522 bool speed
= optimize_insn_for_speed_p ();
3524 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3526 if (targetm
.legitimate_constant_p (dstmode
, y
))
3527 oldcost
= set_src_cost (y
, speed
);
3529 oldcost
= set_src_cost (force_const_mem (dstmode
, y
), speed
);
3531 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3532 srcmode
!= orig_srcmode
;
3533 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3536 rtx trunc_y
, last_insn
;
3538 /* Skip if the target can't extend this way. */
3539 ic
= can_extend_p (dstmode
, srcmode
, 0);
3540 if (ic
== CODE_FOR_nothing
)
3543 /* Skip if the narrowed value isn't exact. */
3544 if (! exact_real_truncate (srcmode
, &r
))
3547 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3549 if (targetm
.legitimate_constant_p (srcmode
, trunc_y
))
3551 /* Skip if the target needs extra instructions to perform
3553 if (!insn_operand_matches (ic
, 1, trunc_y
))
3555 /* This is valid, but may not be cheaper than the original. */
3556 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3558 if (oldcost
< newcost
)
3561 else if (float_extend_from_mem
[dstmode
][srcmode
])
3563 trunc_y
= force_const_mem (srcmode
, trunc_y
);
3564 /* This is valid, but may not be cheaper than the original. */
3565 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3567 if (oldcost
< newcost
)
3569 trunc_y
= validize_mem (trunc_y
);
3574 /* For CSE's benefit, force the compressed constant pool entry
3575 into a new pseudo. This constant may be used in different modes,
3576 and if not, combine will put things back together for us. */
3577 trunc_y
= force_reg (srcmode
, trunc_y
);
3578 emit_unop_insn (ic
, x
, trunc_y
, UNKNOWN
);
3579 last_insn
= get_last_insn ();
3582 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3590 /* Pushing data onto the stack. */
3592 /* Push a block of length SIZE (perhaps variable)
3593 and return an rtx to address the beginning of the block.
3594 The value may be virtual_outgoing_args_rtx.
3596 EXTRA is the number of bytes of padding to push in addition to SIZE.
3597 BELOW nonzero means this padding comes at low addresses;
3598 otherwise, the padding comes at high addresses. */
3601 push_block (rtx size
, int extra
, int below
)
3605 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3606 if (CONSTANT_P (size
))
3607 anti_adjust_stack (plus_constant (Pmode
, size
, extra
));
3608 else if (REG_P (size
) && extra
== 0)
3609 anti_adjust_stack (size
);
3612 temp
= copy_to_mode_reg (Pmode
, size
);
3614 temp
= expand_binop (Pmode
, add_optab
, temp
, GEN_INT (extra
),
3615 temp
, 0, OPTAB_LIB_WIDEN
);
3616 anti_adjust_stack (temp
);
3619 #ifndef STACK_GROWS_DOWNWARD
3625 temp
= virtual_outgoing_args_rtx
;
3626 if (extra
!= 0 && below
)
3627 temp
= plus_constant (Pmode
, temp
, extra
);
3631 if (CONST_INT_P (size
))
3632 temp
= plus_constant (Pmode
, virtual_outgoing_args_rtx
,
3633 -INTVAL (size
) - (below
? 0 : extra
));
3634 else if (extra
!= 0 && !below
)
3635 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3636 negate_rtx (Pmode
, plus_constant (Pmode
, size
,
3639 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3640 negate_rtx (Pmode
, size
));
3643 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3646 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3649 mem_autoinc_base (rtx mem
)
3653 rtx addr
= XEXP (mem
, 0);
3654 if (GET_RTX_CLASS (GET_CODE (addr
)) == RTX_AUTOINC
)
3655 return XEXP (addr
, 0);
3660 /* A utility routine used here, in reload, and in try_split. The insns
3661 after PREV up to and including LAST are known to adjust the stack,
3662 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3663 placing notes as appropriate. PREV may be NULL, indicating the
3664 entire insn sequence prior to LAST should be scanned.
3666 The set of allowed stack pointer modifications is small:
3667 (1) One or more auto-inc style memory references (aka pushes),
3668 (2) One or more addition/subtraction with the SP as destination,
3669 (3) A single move insn with the SP as destination,
3670 (4) A call_pop insn,
3671 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3673 Insns in the sequence that do not modify the SP are ignored,
3674 except for noreturn calls.
3676 The return value is the amount of adjustment that can be trivially
3677 verified, via immediate operand or auto-inc. If the adjustment
3678 cannot be trivially extracted, the return value is INT_MIN. */
3681 find_args_size_adjust (rtx insn
)
3686 pat
= PATTERN (insn
);
3689 /* Look for a call_pop pattern. */
3692 /* We have to allow non-call_pop patterns for the case
3693 of emit_single_push_insn of a TLS address. */
3694 if (GET_CODE (pat
) != PARALLEL
)
3697 /* All call_pop have a stack pointer adjust in the parallel.
3698 The call itself is always first, and the stack adjust is
3699 usually last, so search from the end. */
3700 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; --i
)
3702 set
= XVECEXP (pat
, 0, i
);
3703 if (GET_CODE (set
) != SET
)
3705 dest
= SET_DEST (set
);
3706 if (dest
== stack_pointer_rtx
)
3709 /* We'd better have found the stack pointer adjust. */
3712 /* Fall through to process the extracted SET and DEST
3713 as if it was a standalone insn. */
3715 else if (GET_CODE (pat
) == SET
)
3717 else if ((set
= single_set (insn
)) != NULL
)
3719 else if (GET_CODE (pat
) == PARALLEL
)
3721 /* ??? Some older ports use a parallel with a stack adjust
3722 and a store for a PUSH_ROUNDING pattern, rather than a
3723 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3724 /* ??? See h8300 and m68k, pushqi1. */
3725 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; --i
)
3727 set
= XVECEXP (pat
, 0, i
);
3728 if (GET_CODE (set
) != SET
)
3730 dest
= SET_DEST (set
);
3731 if (dest
== stack_pointer_rtx
)
3734 /* We do not expect an auto-inc of the sp in the parallel. */
3735 gcc_checking_assert (mem_autoinc_base (dest
) != stack_pointer_rtx
);
3736 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3737 != stack_pointer_rtx
);
3745 dest
= SET_DEST (set
);
3747 /* Look for direct modifications of the stack pointer. */
3748 if (REG_P (dest
) && REGNO (dest
) == STACK_POINTER_REGNUM
)
3750 /* Look for a trivial adjustment, otherwise assume nothing. */
3751 /* Note that the SPU restore_stack_block pattern refers to
3752 the stack pointer in V4SImode. Consider that non-trivial. */
3753 if (SCALAR_INT_MODE_P (GET_MODE (dest
))
3754 && GET_CODE (SET_SRC (set
)) == PLUS
3755 && XEXP (SET_SRC (set
), 0) == stack_pointer_rtx
3756 && CONST_INT_P (XEXP (SET_SRC (set
), 1)))
3757 return INTVAL (XEXP (SET_SRC (set
), 1));
3758 /* ??? Reload can generate no-op moves, which will be cleaned
3759 up later. Recognize it and continue searching. */
3760 else if (rtx_equal_p (dest
, SET_SRC (set
)))
3763 return HOST_WIDE_INT_MIN
;
3769 /* Otherwise only think about autoinc patterns. */
3770 if (mem_autoinc_base (dest
) == stack_pointer_rtx
)
3773 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3774 != stack_pointer_rtx
);
3776 else if (mem_autoinc_base (SET_SRC (set
)) == stack_pointer_rtx
)
3777 mem
= SET_SRC (set
);
3781 addr
= XEXP (mem
, 0);
3782 switch (GET_CODE (addr
))
3786 return GET_MODE_SIZE (GET_MODE (mem
));
3789 return -GET_MODE_SIZE (GET_MODE (mem
));
3792 addr
= XEXP (addr
, 1);
3793 gcc_assert (GET_CODE (addr
) == PLUS
);
3794 gcc_assert (XEXP (addr
, 0) == stack_pointer_rtx
);
3795 gcc_assert (CONST_INT_P (XEXP (addr
, 1)));
3796 return INTVAL (XEXP (addr
, 1));
3804 fixup_args_size_notes (rtx prev
, rtx last
, int end_args_size
)
3806 int args_size
= end_args_size
;
3807 bool saw_unknown
= false;
3810 for (insn
= last
; insn
!= prev
; insn
= PREV_INSN (insn
))
3812 HOST_WIDE_INT this_delta
;
3814 if (!NONDEBUG_INSN_P (insn
))
3817 this_delta
= find_args_size_adjust (insn
);
3818 if (this_delta
== 0)
3821 || ACCUMULATE_OUTGOING_ARGS
3822 || find_reg_note (insn
, REG_NORETURN
, NULL_RTX
) == NULL_RTX
)
3826 gcc_assert (!saw_unknown
);
3827 if (this_delta
== HOST_WIDE_INT_MIN
)
3830 add_reg_note (insn
, REG_ARGS_SIZE
, GEN_INT (args_size
));
3831 #ifdef STACK_GROWS_DOWNWARD
3832 this_delta
= -this_delta
;
3834 args_size
-= this_delta
;
3837 return saw_unknown
? INT_MIN
: args_size
;
3840 #ifdef PUSH_ROUNDING
3841 /* Emit single push insn. */
3844 emit_single_push_insn_1 (enum machine_mode mode
, rtx x
, tree type
)
3847 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3849 enum insn_code icode
;
3851 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3852 /* If there is push pattern, use it. Otherwise try old way of throwing
3853 MEM representing push operation to move expander. */
3854 icode
= optab_handler (push_optab
, mode
);
3855 if (icode
!= CODE_FOR_nothing
)
3857 struct expand_operand ops
[1];
3859 create_input_operand (&ops
[0], x
, mode
);
3860 if (maybe_expand_insn (icode
, 1, ops
))
3863 if (GET_MODE_SIZE (mode
) == rounded_size
)
3864 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
3865 /* If we are to pad downward, adjust the stack pointer first and
3866 then store X into the stack location using an offset. This is
3867 because emit_move_insn does not know how to pad; it does not have
3869 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
3871 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
3872 HOST_WIDE_INT offset
;
3874 emit_move_insn (stack_pointer_rtx
,
3875 expand_binop (Pmode
,
3876 #ifdef STACK_GROWS_DOWNWARD
3882 GEN_INT (rounded_size
),
3883 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
3885 offset
= (HOST_WIDE_INT
) padding_size
;
3886 #ifdef STACK_GROWS_DOWNWARD
3887 if (STACK_PUSH_CODE
== POST_DEC
)
3888 /* We have already decremented the stack pointer, so get the
3890 offset
+= (HOST_WIDE_INT
) rounded_size
;
3892 if (STACK_PUSH_CODE
== POST_INC
)
3893 /* We have already incremented the stack pointer, so get the
3895 offset
-= (HOST_WIDE_INT
) rounded_size
;
3897 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
, GEN_INT (offset
));
3901 #ifdef STACK_GROWS_DOWNWARD
3902 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3903 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3904 GEN_INT (-(HOST_WIDE_INT
) rounded_size
));
3906 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3907 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3908 GEN_INT (rounded_size
));
3910 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
3913 dest
= gen_rtx_MEM (mode
, dest_addr
);
3917 set_mem_attributes (dest
, type
, 1);
3919 if (flag_optimize_sibling_calls
)
3920 /* Function incoming arguments may overlap with sibling call
3921 outgoing arguments and we cannot allow reordering of reads
3922 from function arguments with stores to outgoing arguments
3923 of sibling calls. */
3924 set_mem_alias_set (dest
, 0);
3926 emit_move_insn (dest
, x
);
3929 /* Emit and annotate a single push insn. */
3932 emit_single_push_insn (enum machine_mode mode
, rtx x
, tree type
)
3934 int delta
, old_delta
= stack_pointer_delta
;
3935 rtx prev
= get_last_insn ();
3938 emit_single_push_insn_1 (mode
, x
, type
);
3940 last
= get_last_insn ();
3942 /* Notice the common case where we emitted exactly one insn. */
3943 if (PREV_INSN (last
) == prev
)
3945 add_reg_note (last
, REG_ARGS_SIZE
, GEN_INT (stack_pointer_delta
));
3949 delta
= fixup_args_size_notes (prev
, last
, stack_pointer_delta
);
3950 gcc_assert (delta
== INT_MIN
|| delta
== old_delta
);
3954 /* Generate code to push X onto the stack, assuming it has mode MODE and
3956 MODE is redundant except when X is a CONST_INT (since they don't
3958 SIZE is an rtx for the size of data to be copied (in bytes),
3959 needed only if X is BLKmode.
3961 ALIGN (in bits) is maximum alignment we can assume.
3963 If PARTIAL and REG are both nonzero, then copy that many of the first
3964 bytes of X into registers starting with REG, and push the rest of X.
3965 The amount of space pushed is decreased by PARTIAL bytes.
3966 REG must be a hard register in this case.
3967 If REG is zero but PARTIAL is not, take any all others actions for an
3968 argument partially in registers, but do not actually load any
3971 EXTRA is the amount in bytes of extra space to leave next to this arg.
3972 This is ignored if an argument block has already been allocated.
3974 On a machine that lacks real push insns, ARGS_ADDR is the address of
3975 the bottom of the argument block for this call. We use indexing off there
3976 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3977 argument block has not been preallocated.
3979 ARGS_SO_FAR is the size of args previously pushed for this call.
3981 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3982 for arguments passed in registers. If nonzero, it will be the number
3983 of bytes required. */
3986 emit_push_insn (rtx x
, enum machine_mode mode
, tree type
, rtx size
,
3987 unsigned int align
, int partial
, rtx reg
, int extra
,
3988 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
3992 enum direction stack_direction
3993 #ifdef STACK_GROWS_DOWNWARD
3999 /* Decide where to pad the argument: `downward' for below,
4000 `upward' for above, or `none' for don't pad it.
4001 Default is below for small data on big-endian machines; else above. */
4002 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
4004 /* Invert direction if stack is post-decrement.
4006 if (STACK_PUSH_CODE
== POST_DEC
)
4007 if (where_pad
!= none
)
4008 where_pad
= (where_pad
== downward
? upward
: downward
);
4013 || (STRICT_ALIGNMENT
&& align
< GET_MODE_ALIGNMENT (mode
)))
4015 /* Copy a block into the stack, entirely or partially. */
4022 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4023 used
= partial
- offset
;
4025 if (mode
!= BLKmode
)
4027 /* A value is to be stored in an insufficiently aligned
4028 stack slot; copy via a suitably aligned slot if
4030 size
= GEN_INT (GET_MODE_SIZE (mode
));
4031 if (!MEM_P (xinner
))
4033 temp
= assign_temp (type
, 1, 1);
4034 emit_move_insn (temp
, xinner
);
4041 /* USED is now the # of bytes we need not copy to the stack
4042 because registers will take care of them. */
4045 xinner
= adjust_address (xinner
, BLKmode
, used
);
4047 /* If the partial register-part of the arg counts in its stack size,
4048 skip the part of stack space corresponding to the registers.
4049 Otherwise, start copying to the beginning of the stack space,
4050 by setting SKIP to 0. */
4051 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
4053 #ifdef PUSH_ROUNDING
4054 /* Do it with several push insns if that doesn't take lots of insns
4055 and if there is no difficulty with push insns that skip bytes
4056 on the stack for alignment purposes. */
4059 && CONST_INT_P (size
)
4061 && MEM_ALIGN (xinner
) >= align
4062 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size
) - used
, align
))
4063 /* Here we avoid the case of a structure whose weak alignment
4064 forces many pushes of a small amount of data,
4065 and such small pushes do rounding that causes trouble. */
4066 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
4067 || align
>= BIGGEST_ALIGNMENT
4068 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
4069 == (align
/ BITS_PER_UNIT
)))
4070 && (HOST_WIDE_INT
) PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
4072 /* Push padding now if padding above and stack grows down,
4073 or if padding below and stack grows up.
4074 But if space already allocated, this has already been done. */
4075 if (extra
&& args_addr
== 0
4076 && where_pad
!= none
&& where_pad
!= stack_direction
)
4077 anti_adjust_stack (GEN_INT (extra
));
4079 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
4082 #endif /* PUSH_ROUNDING */
4086 /* Otherwise make space on the stack and copy the data
4087 to the address of that space. */
4089 /* Deduct words put into registers from the size we must copy. */
4092 if (CONST_INT_P (size
))
4093 size
= GEN_INT (INTVAL (size
) - used
);
4095 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
4096 GEN_INT (used
), NULL_RTX
, 0,
4100 /* Get the address of the stack space.
4101 In this case, we do not deal with EXTRA separately.
4102 A single stack adjust will do. */
4105 temp
= push_block (size
, extra
, where_pad
== downward
);
4108 else if (CONST_INT_P (args_so_far
))
4109 temp
= memory_address (BLKmode
,
4110 plus_constant (Pmode
, args_addr
,
4111 skip
+ INTVAL (args_so_far
)));
4113 temp
= memory_address (BLKmode
,
4114 plus_constant (Pmode
,
4115 gen_rtx_PLUS (Pmode
,
4120 if (!ACCUMULATE_OUTGOING_ARGS
)
4122 /* If the source is referenced relative to the stack pointer,
4123 copy it to another register to stabilize it. We do not need
4124 to do this if we know that we won't be changing sp. */
4126 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
4127 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
4128 temp
= copy_to_reg (temp
);
4131 target
= gen_rtx_MEM (BLKmode
, temp
);
4133 /* We do *not* set_mem_attributes here, because incoming arguments
4134 may overlap with sibling call outgoing arguments and we cannot
4135 allow reordering of reads from function arguments with stores
4136 to outgoing arguments of sibling calls. We do, however, want
4137 to record the alignment of the stack slot. */
4138 /* ALIGN may well be better aligned than TYPE, e.g. due to
4139 PARM_BOUNDARY. Assume the caller isn't lying. */
4140 set_mem_align (target
, align
);
4142 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
4145 else if (partial
> 0)
4147 /* Scalar partly in registers. */
4149 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
4152 /* # bytes of start of argument
4153 that we must make space for but need not store. */
4154 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4155 int args_offset
= INTVAL (args_so_far
);
4158 /* Push padding now if padding above and stack grows down,
4159 or if padding below and stack grows up.
4160 But if space already allocated, this has already been done. */
4161 if (extra
&& args_addr
== 0
4162 && where_pad
!= none
&& where_pad
!= stack_direction
)
4163 anti_adjust_stack (GEN_INT (extra
));
4165 /* If we make space by pushing it, we might as well push
4166 the real data. Otherwise, we can leave OFFSET nonzero
4167 and leave the space uninitialized. */
4171 /* Now NOT_STACK gets the number of words that we don't need to
4172 allocate on the stack. Convert OFFSET to words too. */
4173 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
4174 offset
/= UNITS_PER_WORD
;
4176 /* If the partial register-part of the arg counts in its stack size,
4177 skip the part of stack space corresponding to the registers.
4178 Otherwise, start copying to the beginning of the stack space,
4179 by setting SKIP to 0. */
4180 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
4182 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
4183 x
= validize_mem (force_const_mem (mode
, x
));
4185 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4186 SUBREGs of such registers are not allowed. */
4187 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
4188 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
4189 x
= copy_to_reg (x
);
4191 /* Loop over all the words allocated on the stack for this arg. */
4192 /* We can do it by words, because any scalar bigger than a word
4193 has a size a multiple of a word. */
4194 #ifndef PUSH_ARGS_REVERSED
4195 for (i
= not_stack
; i
< size
; i
++)
4197 for (i
= size
- 1; i
>= not_stack
; i
--)
4199 if (i
>= not_stack
+ offset
)
4200 emit_push_insn (operand_subword_force (x
, i
, mode
),
4201 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
4203 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
4205 reg_parm_stack_space
, alignment_pad
);
4212 /* Push padding now if padding above and stack grows down,
4213 or if padding below and stack grows up.
4214 But if space already allocated, this has already been done. */
4215 if (extra
&& args_addr
== 0
4216 && where_pad
!= none
&& where_pad
!= stack_direction
)
4217 anti_adjust_stack (GEN_INT (extra
));
4219 #ifdef PUSH_ROUNDING
4220 if (args_addr
== 0 && PUSH_ARGS
)
4221 emit_single_push_insn (mode
, x
, type
);
4225 if (CONST_INT_P (args_so_far
))
4227 = memory_address (mode
,
4228 plus_constant (Pmode
, args_addr
,
4229 INTVAL (args_so_far
)));
4231 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
4233 dest
= gen_rtx_MEM (mode
, addr
);
4235 /* We do *not* set_mem_attributes here, because incoming arguments
4236 may overlap with sibling call outgoing arguments and we cannot
4237 allow reordering of reads from function arguments with stores
4238 to outgoing arguments of sibling calls. We do, however, want
4239 to record the alignment of the stack slot. */
4240 /* ALIGN may well be better aligned than TYPE, e.g. due to
4241 PARM_BOUNDARY. Assume the caller isn't lying. */
4242 set_mem_align (dest
, align
);
4244 emit_move_insn (dest
, x
);
4248 /* If part should go in registers, copy that part
4249 into the appropriate registers. Do this now, at the end,
4250 since mem-to-mem copies above may do function calls. */
4251 if (partial
> 0 && reg
!= 0)
4253 /* Handle calls that pass values in multiple non-contiguous locations.
4254 The Irix 6 ABI has examples of this. */
4255 if (GET_CODE (reg
) == PARALLEL
)
4256 emit_group_load (reg
, x
, type
, -1);
4259 gcc_assert (partial
% UNITS_PER_WORD
== 0);
4260 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
4264 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
4265 anti_adjust_stack (GEN_INT (extra
));
4267 if (alignment_pad
&& args_addr
== 0)
4268 anti_adjust_stack (alignment_pad
);
4271 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4275 get_subtarget (rtx x
)
4279 /* Only registers can be subtargets. */
4281 /* Don't use hard regs to avoid extending their life. */
4282 || REGNO (x
) < FIRST_PSEUDO_REGISTER
4286 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4287 FIELD is a bitfield. Returns true if the optimization was successful,
4288 and there's nothing else to do. */
4291 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
4292 unsigned HOST_WIDE_INT bitpos
,
4293 unsigned HOST_WIDE_INT bitregion_start
,
4294 unsigned HOST_WIDE_INT bitregion_end
,
4295 enum machine_mode mode1
, rtx str_rtx
,
4298 enum machine_mode str_mode
= GET_MODE (str_rtx
);
4299 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4304 enum tree_code code
;
4306 if (mode1
!= VOIDmode
4307 || bitsize
>= BITS_PER_WORD
4308 || str_bitsize
> BITS_PER_WORD
4309 || TREE_SIDE_EFFECTS (to
)
4310 || TREE_THIS_VOLATILE (to
))
4314 if (TREE_CODE (src
) != SSA_NAME
)
4316 if (TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
4319 srcstmt
= get_gimple_for_ssa_name (src
);
4321 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt
)) != tcc_binary
)
4324 code
= gimple_assign_rhs_code (srcstmt
);
4326 op0
= gimple_assign_rhs1 (srcstmt
);
4328 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4329 to find its initialization. Hopefully the initialization will
4330 be from a bitfield load. */
4331 if (TREE_CODE (op0
) == SSA_NAME
)
4333 gimple op0stmt
= get_gimple_for_ssa_name (op0
);
4335 /* We want to eventually have OP0 be the same as TO, which
4336 should be a bitfield. */
4338 || !is_gimple_assign (op0stmt
)
4339 || gimple_assign_rhs_code (op0stmt
) != TREE_CODE (to
))
4341 op0
= gimple_assign_rhs1 (op0stmt
);
4344 op1
= gimple_assign_rhs2 (srcstmt
);
4346 if (!operand_equal_p (to
, op0
, 0))
4349 if (MEM_P (str_rtx
))
4351 unsigned HOST_WIDE_INT offset1
;
4353 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
4354 str_mode
= word_mode
;
4355 str_mode
= get_best_mode (bitsize
, bitpos
,
4356 bitregion_start
, bitregion_end
,
4357 MEM_ALIGN (str_rtx
), str_mode
, 0);
4358 if (str_mode
== VOIDmode
)
4360 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4363 bitpos
%= str_bitsize
;
4364 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
4365 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
4367 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
4370 /* If the bit field covers the whole REG/MEM, store_field
4371 will likely generate better code. */
4372 if (bitsize
>= str_bitsize
)
4375 /* We can't handle fields split across multiple entities. */
4376 if (bitpos
+ bitsize
> str_bitsize
)
4379 if (BYTES_BIG_ENDIAN
)
4380 bitpos
= str_bitsize
- bitpos
- bitsize
;
4386 /* For now, just optimize the case of the topmost bitfield
4387 where we don't need to do any masking and also
4388 1 bit bitfields where xor can be used.
4389 We might win by one instruction for the other bitfields
4390 too if insv/extv instructions aren't used, so that
4391 can be added later. */
4392 if (bitpos
+ bitsize
!= str_bitsize
4393 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
4396 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4397 value
= convert_modes (str_mode
,
4398 TYPE_MODE (TREE_TYPE (op1
)), value
,
4399 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4401 /* We may be accessing data outside the field, which means
4402 we can alias adjacent data. */
4403 if (MEM_P (str_rtx
))
4405 str_rtx
= shallow_copy_rtx (str_rtx
);
4406 set_mem_alias_set (str_rtx
, 0);
4407 set_mem_expr (str_rtx
, 0);
4410 binop
= code
== PLUS_EXPR
? add_optab
: sub_optab
;
4411 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
4413 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
4416 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4417 result
= expand_binop (str_mode
, binop
, str_rtx
,
4418 value
, str_rtx
, 1, OPTAB_WIDEN
);
4419 if (result
!= str_rtx
)
4420 emit_move_insn (str_rtx
, result
);
4425 if (TREE_CODE (op1
) != INTEGER_CST
)
4427 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4428 value
= convert_modes (str_mode
,
4429 TYPE_MODE (TREE_TYPE (op1
)), value
,
4430 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4432 /* We may be accessing data outside the field, which means
4433 we can alias adjacent data. */
4434 if (MEM_P (str_rtx
))
4436 str_rtx
= shallow_copy_rtx (str_rtx
);
4437 set_mem_alias_set (str_rtx
, 0);
4438 set_mem_expr (str_rtx
, 0);
4441 binop
= code
== BIT_IOR_EXPR
? ior_optab
: xor_optab
;
4442 if (bitpos
+ bitsize
!= str_bitsize
)
4444 rtx mask
= GEN_INT (((unsigned HOST_WIDE_INT
) 1 << bitsize
) - 1);
4445 value
= expand_and (str_mode
, value
, mask
, NULL_RTX
);
4447 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4448 result
= expand_binop (str_mode
, binop
, str_rtx
,
4449 value
, str_rtx
, 1, OPTAB_WIDEN
);
4450 if (result
!= str_rtx
)
4451 emit_move_insn (str_rtx
, result
);
4461 /* In the C++ memory model, consecutive bit fields in a structure are
4462 considered one memory location.
4464 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4465 returns the bit range of consecutive bits in which this COMPONENT_REF
4466 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4467 and *OFFSET may be adjusted in the process.
4469 If the access does not need to be restricted, 0 is returned in both
4470 *BITSTART and *BITEND. */
4473 get_bit_range (unsigned HOST_WIDE_INT
*bitstart
,
4474 unsigned HOST_WIDE_INT
*bitend
,
4476 HOST_WIDE_INT
*bitpos
,
4479 HOST_WIDE_INT bitoffset
;
4482 gcc_assert (TREE_CODE (exp
) == COMPONENT_REF
);
4484 field
= TREE_OPERAND (exp
, 1);
4485 repr
= DECL_BIT_FIELD_REPRESENTATIVE (field
);
4486 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4487 need to limit the range we can access. */
4490 *bitstart
= *bitend
= 0;
4494 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4495 part of a larger bit field, then the representative does not serve any
4496 useful purpose. This can occur in Ada. */
4497 if (handled_component_p (TREE_OPERAND (exp
, 0)))
4499 enum machine_mode rmode
;
4500 HOST_WIDE_INT rbitsize
, rbitpos
;
4504 get_inner_reference (TREE_OPERAND (exp
, 0), &rbitsize
, &rbitpos
,
4505 &roffset
, &rmode
, &unsignedp
, &volatilep
, false);
4506 if ((rbitpos
% BITS_PER_UNIT
) != 0)
4508 *bitstart
= *bitend
= 0;
4513 /* Compute the adjustment to bitpos from the offset of the field
4514 relative to the representative. DECL_FIELD_OFFSET of field and
4515 repr are the same by construction if they are not constants,
4516 see finish_bitfield_layout. */
4517 if (host_integerp (DECL_FIELD_OFFSET (field
), 1)
4518 && host_integerp (DECL_FIELD_OFFSET (repr
), 1))
4519 bitoffset
= (tree_low_cst (DECL_FIELD_OFFSET (field
), 1)
4520 - tree_low_cst (DECL_FIELD_OFFSET (repr
), 1)) * BITS_PER_UNIT
;
4523 bitoffset
+= (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
4524 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr
), 1));
4526 /* If the adjustment is larger than bitpos, we would have a negative bit
4527 position for the lower bound and this may wreak havoc later. This can
4528 occur only if we have a non-null offset, so adjust offset and bitpos
4529 to make the lower bound non-negative. */
4530 if (bitoffset
> *bitpos
)
4532 HOST_WIDE_INT adjust
= bitoffset
- *bitpos
;
4534 gcc_assert ((adjust
% BITS_PER_UNIT
) == 0);
4535 gcc_assert (*offset
!= NULL_TREE
);
4539 = size_binop (MINUS_EXPR
, *offset
, size_int (adjust
/ BITS_PER_UNIT
));
4543 *bitstart
= *bitpos
- bitoffset
;
4545 *bitend
= *bitstart
+ tree_low_cst (DECL_SIZE (repr
), 1) - 1;
4548 /* Returns true if the MEM_REF REF refers to an object that does not
4549 reside in memory and has non-BLKmode. */
4552 mem_ref_refers_to_non_mem_p (tree ref
)
4554 tree base
= TREE_OPERAND (ref
, 0);
4555 if (TREE_CODE (base
) != ADDR_EXPR
)
4557 base
= TREE_OPERAND (base
, 0);
4558 return (DECL_P (base
)
4559 && !TREE_ADDRESSABLE (base
)
4560 && DECL_MODE (base
) != BLKmode
4561 && DECL_RTL_SET_P (base
)
4562 && !MEM_P (DECL_RTL (base
)));
4565 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4566 is true, try generating a nontemporal store. */
4569 expand_assignment (tree to
, tree from
, bool nontemporal
)
4573 enum machine_mode mode
;
4575 enum insn_code icode
;
4577 /* Don't crash if the lhs of the assignment was erroneous. */
4578 if (TREE_CODE (to
) == ERROR_MARK
)
4580 expand_normal (from
);
4584 /* Optimize away no-op moves without side-effects. */
4585 if (operand_equal_p (to
, from
, 0))
4588 /* Handle misaligned stores. */
4589 mode
= TYPE_MODE (TREE_TYPE (to
));
4590 if ((TREE_CODE (to
) == MEM_REF
4591 || TREE_CODE (to
) == TARGET_MEM_REF
)
4593 && !mem_ref_refers_to_non_mem_p (to
)
4594 && ((align
= get_object_or_type_alignment (to
))
4595 < GET_MODE_ALIGNMENT (mode
))
4596 && (((icode
= optab_handler (movmisalign_optab
, mode
))
4597 != CODE_FOR_nothing
)
4598 || SLOW_UNALIGNED_ACCESS (mode
, align
)))
4602 reg
= expand_expr (from
, NULL_RTX
, VOIDmode
, EXPAND_NORMAL
);
4603 reg
= force_not_mem (reg
);
4604 mem
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4606 if (icode
!= CODE_FOR_nothing
)
4608 struct expand_operand ops
[2];
4610 create_fixed_operand (&ops
[0], mem
);
4611 create_input_operand (&ops
[1], reg
, mode
);
4612 /* The movmisalign<mode> pattern cannot fail, else the assignment
4613 would silently be omitted. */
4614 expand_insn (icode
, 2, ops
);
4617 store_bit_field (mem
, GET_MODE_BITSIZE (mode
),
4618 0, 0, 0, mode
, reg
);
4622 /* Assignment of a structure component needs special treatment
4623 if the structure component's rtx is not simply a MEM.
4624 Assignment of an array element at a constant index, and assignment of
4625 an array element in an unaligned packed structure field, has the same
4626 problem. Same for (partially) storing into a non-memory object. */
4627 if (handled_component_p (to
)
4628 || (TREE_CODE (to
) == MEM_REF
4629 && mem_ref_refers_to_non_mem_p (to
))
4630 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
4632 enum machine_mode mode1
;
4633 HOST_WIDE_INT bitsize
, bitpos
;
4634 unsigned HOST_WIDE_INT bitregion_start
= 0;
4635 unsigned HOST_WIDE_INT bitregion_end
= 0;
4644 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
4645 &unsignedp
, &volatilep
, true);
4647 if (TREE_CODE (to
) == COMPONENT_REF
4648 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to
, 1)))
4649 get_bit_range (&bitregion_start
, &bitregion_end
, to
, &bitpos
, &offset
);
4651 /* If we are going to use store_bit_field and extract_bit_field,
4652 make sure to_rtx will be safe for multiple use. */
4653 mode
= TYPE_MODE (TREE_TYPE (tem
));
4654 if (TREE_CODE (tem
) == MEM_REF
4656 && ((align
= get_object_or_type_alignment (tem
))
4657 < GET_MODE_ALIGNMENT (mode
))
4658 && ((icode
= optab_handler (movmisalign_optab
, mode
))
4659 != CODE_FOR_nothing
))
4661 struct expand_operand ops
[2];
4664 to_rtx
= gen_reg_rtx (mode
);
4665 mem
= expand_expr (tem
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4667 /* If the misaligned store doesn't overwrite all bits, perform
4668 rmw cycle on MEM. */
4669 if (bitsize
!= GET_MODE_BITSIZE (mode
))
4671 create_input_operand (&ops
[0], to_rtx
, mode
);
4672 create_fixed_operand (&ops
[1], mem
);
4673 /* The movmisalign<mode> pattern cannot fail, else the assignment
4674 would silently be omitted. */
4675 expand_insn (icode
, 2, ops
);
4677 mem
= copy_rtx (mem
);
4683 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4686 /* If the bitfield is volatile, we want to access it in the
4687 field's mode, not the computed mode.
4688 If a MEM has VOIDmode (external with incomplete type),
4689 use BLKmode for it instead. */
4692 if (volatilep
&& flag_strict_volatile_bitfields
> 0)
4693 to_rtx
= adjust_address (to_rtx
, mode1
, 0);
4694 else if (GET_MODE (to_rtx
) == VOIDmode
)
4695 to_rtx
= adjust_address (to_rtx
, BLKmode
, 0);
4700 enum machine_mode address_mode
;
4703 if (!MEM_P (to_rtx
))
4705 /* We can get constant negative offsets into arrays with broken
4706 user code. Translate this to a trap instead of ICEing. */
4707 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
4708 expand_builtin_trap ();
4709 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
4712 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
4713 address_mode
= get_address_mode (to_rtx
);
4714 if (GET_MODE (offset_rtx
) != address_mode
)
4715 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
4717 /* A constant address in TO_RTX can have VOIDmode, we must not try
4718 to call force_reg for that case. Avoid that case. */
4720 && GET_MODE (to_rtx
) == BLKmode
4721 && GET_MODE (XEXP (to_rtx
, 0)) != VOIDmode
4723 && (bitpos
% bitsize
) == 0
4724 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
4725 && MEM_ALIGN (to_rtx
) == GET_MODE_ALIGNMENT (mode1
))
4727 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
4731 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4732 highest_pow2_factor_for_target (to
,
4736 /* No action is needed if the target is not a memory and the field
4737 lies completely outside that target. This can occur if the source
4738 code contains an out-of-bounds access to a small array. */
4740 && GET_MODE (to_rtx
) != BLKmode
4741 && (unsigned HOST_WIDE_INT
) bitpos
4742 >= GET_MODE_PRECISION (GET_MODE (to_rtx
)))
4744 expand_normal (from
);
4747 /* Handle expand_expr of a complex value returning a CONCAT. */
4748 else if (GET_CODE (to_rtx
) == CONCAT
)
4750 unsigned short mode_bitsize
= GET_MODE_BITSIZE (GET_MODE (to_rtx
));
4751 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from
)))
4753 && bitsize
== mode_bitsize
)
4754 result
= store_expr (from
, to_rtx
, false, nontemporal
);
4755 else if (bitsize
== mode_bitsize
/ 2
4756 && (bitpos
== 0 || bitpos
== mode_bitsize
/ 2))
4757 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false,
4759 else if (bitpos
+ bitsize
<= mode_bitsize
/ 2)
4760 result
= store_field (XEXP (to_rtx
, 0), bitsize
, bitpos
,
4761 bitregion_start
, bitregion_end
,
4762 mode1
, from
, TREE_TYPE (tem
),
4763 get_alias_set (to
), nontemporal
);
4764 else if (bitpos
>= mode_bitsize
/ 2)
4765 result
= store_field (XEXP (to_rtx
, 1), bitsize
,
4766 bitpos
- mode_bitsize
/ 2,
4767 bitregion_start
, bitregion_end
,
4769 TREE_TYPE (tem
), get_alias_set (to
),
4771 else if (bitpos
== 0 && bitsize
== mode_bitsize
)
4774 result
= expand_normal (from
);
4775 from_rtx
= simplify_gen_subreg (GET_MODE (to_rtx
), result
,
4776 TYPE_MODE (TREE_TYPE (from
)), 0);
4777 emit_move_insn (XEXP (to_rtx
, 0),
4778 read_complex_part (from_rtx
, false));
4779 emit_move_insn (XEXP (to_rtx
, 1),
4780 read_complex_part (from_rtx
, true));
4784 rtx temp
= assign_stack_temp (GET_MODE (to_rtx
),
4785 GET_MODE_SIZE (GET_MODE (to_rtx
)));
4786 write_complex_part (temp
, XEXP (to_rtx
, 0), false);
4787 write_complex_part (temp
, XEXP (to_rtx
, 1), true);
4788 result
= store_field (temp
, bitsize
, bitpos
,
4789 bitregion_start
, bitregion_end
,
4791 TREE_TYPE (tem
), get_alias_set (to
),
4793 emit_move_insn (XEXP (to_rtx
, 0), read_complex_part (temp
, false));
4794 emit_move_insn (XEXP (to_rtx
, 1), read_complex_part (temp
, true));
4801 /* If the field is at offset zero, we could have been given the
4802 DECL_RTX of the parent struct. Don't munge it. */
4803 to_rtx
= shallow_copy_rtx (to_rtx
);
4805 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
4807 /* Deal with volatile and readonly fields. The former is only
4808 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4810 MEM_VOLATILE_P (to_rtx
) = 1;
4811 if (component_uses_parent_alias_set (to
))
4812 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
4815 if (optimize_bitfield_assignment_op (bitsize
, bitpos
,
4816 bitregion_start
, bitregion_end
,
4821 result
= store_field (to_rtx
, bitsize
, bitpos
,
4822 bitregion_start
, bitregion_end
,
4824 TREE_TYPE (tem
), get_alias_set (to
),
4830 struct expand_operand ops
[2];
4832 create_fixed_operand (&ops
[0], mem
);
4833 create_input_operand (&ops
[1], to_rtx
, mode
);
4834 /* The movmisalign<mode> pattern cannot fail, else the assignment
4835 would silently be omitted. */
4836 expand_insn (icode
, 2, ops
);
4840 preserve_temp_slots (result
);
4845 /* If the rhs is a function call and its value is not an aggregate,
4846 call the function before we start to compute the lhs.
4847 This is needed for correct code for cases such as
4848 val = setjmp (buf) on machines where reference to val
4849 requires loading up part of an address in a separate insn.
4851 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4852 since it might be a promoted variable where the zero- or sign- extension
4853 needs to be done. Handling this in the normal way is safe because no
4854 computation is done before the call. The same is true for SSA names. */
4855 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
4856 && COMPLETE_TYPE_P (TREE_TYPE (from
))
4857 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
4858 && ! (((TREE_CODE (to
) == VAR_DECL
4859 || TREE_CODE (to
) == PARM_DECL
4860 || TREE_CODE (to
) == RESULT_DECL
)
4861 && REG_P (DECL_RTL (to
)))
4862 || TREE_CODE (to
) == SSA_NAME
))
4867 value
= expand_normal (from
);
4869 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4871 /* Handle calls that return values in multiple non-contiguous locations.
4872 The Irix 6 ABI has examples of this. */
4873 if (GET_CODE (to_rtx
) == PARALLEL
)
4874 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
4875 int_size_in_bytes (TREE_TYPE (from
)));
4876 else if (GET_MODE (to_rtx
) == BLKmode
)
4877 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
4880 if (POINTER_TYPE_P (TREE_TYPE (to
)))
4881 value
= convert_memory_address_addr_space
4882 (GET_MODE (to_rtx
), value
,
4883 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to
))));
4885 emit_move_insn (to_rtx
, value
);
4887 preserve_temp_slots (to_rtx
);
4892 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
4893 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4895 /* Don't move directly into a return register. */
4896 if (TREE_CODE (to
) == RESULT_DECL
4897 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
4902 if (REG_P (to_rtx
) && TYPE_MODE (TREE_TYPE (from
)) == BLKmode
)
4903 temp
= copy_blkmode_to_reg (GET_MODE (to_rtx
), from
);
4905 temp
= expand_expr (from
, NULL_RTX
, GET_MODE (to_rtx
), EXPAND_NORMAL
);
4907 if (GET_CODE (to_rtx
) == PARALLEL
)
4908 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
4909 int_size_in_bytes (TREE_TYPE (from
)));
4911 emit_move_insn (to_rtx
, temp
);
4913 preserve_temp_slots (to_rtx
);
4918 /* In case we are returning the contents of an object which overlaps
4919 the place the value is being stored, use a safe function when copying
4920 a value through a pointer into a structure value return block. */
4921 if (TREE_CODE (to
) == RESULT_DECL
4922 && TREE_CODE (from
) == INDIRECT_REF
4923 && ADDR_SPACE_GENERIC_P
4924 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from
, 0)))))
4925 && refs_may_alias_p (to
, from
)
4926 && cfun
->returns_struct
4927 && !cfun
->returns_pcc_struct
)
4932 size
= expr_size (from
);
4933 from_rtx
= expand_normal (from
);
4935 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
4936 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
4937 XEXP (from_rtx
, 0), Pmode
,
4938 convert_to_mode (TYPE_MODE (sizetype
),
4939 size
, TYPE_UNSIGNED (sizetype
)),
4940 TYPE_MODE (sizetype
));
4942 preserve_temp_slots (to_rtx
);
4947 /* Compute FROM and store the value in the rtx we got. */
4950 result
= store_expr (from
, to_rtx
, 0, nontemporal
);
4951 preserve_temp_slots (result
);
4956 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4957 succeeded, false otherwise. */
4960 emit_storent_insn (rtx to
, rtx from
)
4962 struct expand_operand ops
[2];
4963 enum machine_mode mode
= GET_MODE (to
);
4964 enum insn_code code
= optab_handler (storent_optab
, mode
);
4966 if (code
== CODE_FOR_nothing
)
4969 create_fixed_operand (&ops
[0], to
);
4970 create_input_operand (&ops
[1], from
, mode
);
4971 return maybe_expand_insn (code
, 2, ops
);
4974 /* Generate code for computing expression EXP,
4975 and storing the value into TARGET.
4977 If the mode is BLKmode then we may return TARGET itself.
4978 It turns out that in BLKmode it doesn't cause a problem.
4979 because C has no operators that could combine two different
4980 assignments into the same BLKmode object with different values
4981 with no sequence point. Will other languages need this to
4984 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4985 stack, and block moves may need to be treated specially.
4987 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4990 store_expr (tree exp
, rtx target
, int call_param_p
, bool nontemporal
)
4993 rtx alt_rtl
= NULL_RTX
;
4994 location_t loc
= EXPR_LOCATION (exp
);
4996 if (VOID_TYPE_P (TREE_TYPE (exp
)))
4998 /* C++ can generate ?: expressions with a throw expression in one
4999 branch and an rvalue in the other. Here, we resolve attempts to
5000 store the throw expression's nonexistent result. */
5001 gcc_assert (!call_param_p
);
5002 expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
5005 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
5007 /* Perform first part of compound expression, then assign from second
5009 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
5010 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5011 return store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5014 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
5016 /* For conditional expression, get safe form of the target. Then
5017 test the condition, doing the appropriate assignment on either
5018 side. This avoids the creation of unnecessary temporaries.
5019 For non-BLKmode, it is more efficient not to do this. */
5021 rtx lab1
= gen_label_rtx (), lab2
= gen_label_rtx ();
5023 do_pending_stack_adjust ();
5025 jumpifnot (TREE_OPERAND (exp
, 0), lab1
, -1);
5026 store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5028 emit_jump_insn (gen_jump (lab2
));
5031 store_expr (TREE_OPERAND (exp
, 2), target
, call_param_p
,
5038 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
5039 /* If this is a scalar in a register that is stored in a wider mode
5040 than the declared mode, compute the result into its declared mode
5041 and then convert to the wider mode. Our value is the computed
5044 rtx inner_target
= 0;
5046 /* We can do the conversion inside EXP, which will often result
5047 in some optimizations. Do the conversion in two steps: first
5048 change the signedness, if needed, then the extend. But don't
5049 do this if the type of EXP is a subtype of something else
5050 since then the conversion might involve more than just
5051 converting modes. */
5052 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
5053 && TREE_TYPE (TREE_TYPE (exp
)) == 0
5054 && GET_MODE_PRECISION (GET_MODE (target
))
5055 == TYPE_PRECISION (TREE_TYPE (exp
)))
5057 if (TYPE_UNSIGNED (TREE_TYPE (exp
))
5058 != SUBREG_PROMOTED_UNSIGNED_P (target
))
5060 /* Some types, e.g. Fortran's logical*4, won't have a signed
5061 version, so use the mode instead. */
5063 = (signed_or_unsigned_type_for
5064 (SUBREG_PROMOTED_UNSIGNED_P (target
), TREE_TYPE (exp
)));
5066 ntype
= lang_hooks
.types
.type_for_mode
5067 (TYPE_MODE (TREE_TYPE (exp
)),
5068 SUBREG_PROMOTED_UNSIGNED_P (target
));
5070 exp
= fold_convert_loc (loc
, ntype
, exp
);
5073 exp
= fold_convert_loc (loc
, lang_hooks
.types
.type_for_mode
5074 (GET_MODE (SUBREG_REG (target
)),
5075 SUBREG_PROMOTED_UNSIGNED_P (target
)),
5078 inner_target
= SUBREG_REG (target
);
5081 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
5082 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5084 /* If TEMP is a VOIDmode constant, use convert_modes to make
5085 sure that we properly convert it. */
5086 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
5088 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5089 temp
, SUBREG_PROMOTED_UNSIGNED_P (target
));
5090 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
5091 GET_MODE (target
), temp
,
5092 SUBREG_PROMOTED_UNSIGNED_P (target
));
5095 convert_move (SUBREG_REG (target
), temp
,
5096 SUBREG_PROMOTED_UNSIGNED_P (target
));
5100 else if ((TREE_CODE (exp
) == STRING_CST
5101 || (TREE_CODE (exp
) == MEM_REF
5102 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
5103 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
5105 && integer_zerop (TREE_OPERAND (exp
, 1))))
5106 && !nontemporal
&& !call_param_p
5109 /* Optimize initialization of an array with a STRING_CST. */
5110 HOST_WIDE_INT exp_len
, str_copy_len
;
5112 tree str
= TREE_CODE (exp
) == STRING_CST
5113 ? exp
: TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
5115 exp_len
= int_expr_size (exp
);
5119 if (TREE_STRING_LENGTH (str
) <= 0)
5122 str_copy_len
= strlen (TREE_STRING_POINTER (str
));
5123 if (str_copy_len
< TREE_STRING_LENGTH (str
) - 1)
5126 str_copy_len
= TREE_STRING_LENGTH (str
);
5127 if ((STORE_MAX_PIECES
& (STORE_MAX_PIECES
- 1)) == 0
5128 && TREE_STRING_POINTER (str
)[TREE_STRING_LENGTH (str
) - 1] == '\0')
5130 str_copy_len
+= STORE_MAX_PIECES
- 1;
5131 str_copy_len
&= ~(STORE_MAX_PIECES
- 1);
5133 str_copy_len
= MIN (str_copy_len
, exp_len
);
5134 if (!can_store_by_pieces (str_copy_len
, builtin_strncpy_read_str
,
5135 CONST_CAST (char *, TREE_STRING_POINTER (str
)),
5136 MEM_ALIGN (target
), false))
5141 dest_mem
= store_by_pieces (dest_mem
,
5142 str_copy_len
, builtin_strncpy_read_str
,
5144 TREE_STRING_POINTER (str
)),
5145 MEM_ALIGN (target
), false,
5146 exp_len
> str_copy_len
? 1 : 0);
5147 if (exp_len
> str_copy_len
)
5148 clear_storage (adjust_address (dest_mem
, BLKmode
, 0),
5149 GEN_INT (exp_len
- str_copy_len
),
5158 /* If we want to use a nontemporal store, force the value to
5160 tmp_target
= nontemporal
? NULL_RTX
: target
;
5161 temp
= expand_expr_real (exp
, tmp_target
, GET_MODE (target
),
5163 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
5167 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5168 the same as that of TARGET, adjust the constant. This is needed, for
5169 example, in case it is a CONST_DOUBLE and we want only a word-sized
5171 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
5172 && TREE_CODE (exp
) != ERROR_MARK
5173 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
5174 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5175 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5177 /* If value was not generated in the target, store it there.
5178 Convert the value to TARGET's type first if necessary and emit the
5179 pending incrementations that have been queued when expanding EXP.
5180 Note that we cannot emit the whole queue blindly because this will
5181 effectively disable the POST_INC optimization later.
5183 If TEMP and TARGET compare equal according to rtx_equal_p, but
5184 one or both of them are volatile memory refs, we have to distinguish
5186 - expand_expr has used TARGET. In this case, we must not generate
5187 another copy. This can be detected by TARGET being equal according
5189 - expand_expr has not used TARGET - that means that the source just
5190 happens to have the same RTX form. Since temp will have been created
5191 by expand_expr, it will compare unequal according to == .
5192 We must generate a copy in this case, to reach the correct number
5193 of volatile memory references. */
5195 if ((! rtx_equal_p (temp
, target
)
5196 || (temp
!= target
&& (side_effects_p (temp
)
5197 || side_effects_p (target
))))
5198 && TREE_CODE (exp
) != ERROR_MARK
5199 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5200 but TARGET is not valid memory reference, TEMP will differ
5201 from TARGET although it is really the same location. */
5203 && rtx_equal_p (alt_rtl
, target
)
5204 && !side_effects_p (alt_rtl
)
5205 && !side_effects_p (target
))
5206 /* If there's nothing to copy, don't bother. Don't call
5207 expr_size unless necessary, because some front-ends (C++)
5208 expr_size-hook must not be given objects that are not
5209 supposed to be bit-copied or bit-initialized. */
5210 && expr_size (exp
) != const0_rtx
)
5212 if (GET_MODE (temp
) != GET_MODE (target
)
5213 && GET_MODE (temp
) != VOIDmode
)
5215 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
5216 if (GET_MODE (target
) == BLKmode
5217 && GET_MODE (temp
) == BLKmode
)
5218 emit_block_move (target
, temp
, expr_size (exp
),
5220 ? BLOCK_OP_CALL_PARM
5221 : BLOCK_OP_NORMAL
));
5222 else if (GET_MODE (target
) == BLKmode
)
5223 store_bit_field (target
, INTVAL (expr_size (exp
)) * BITS_PER_UNIT
,
5224 0, 0, 0, GET_MODE (temp
), temp
);
5226 convert_move (target
, temp
, unsignedp
);
5229 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
5231 /* Handle copying a string constant into an array. The string
5232 constant may be shorter than the array. So copy just the string's
5233 actual length, and clear the rest. First get the size of the data
5234 type of the string, which is actually the size of the target. */
5235 rtx size
= expr_size (exp
);
5237 if (CONST_INT_P (size
)
5238 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
5239 emit_block_move (target
, temp
, size
,
5241 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5244 enum machine_mode pointer_mode
5245 = targetm
.addr_space
.pointer_mode (MEM_ADDR_SPACE (target
));
5246 enum machine_mode address_mode
= get_address_mode (target
);
5248 /* Compute the size of the data to copy from the string. */
5250 = size_binop_loc (loc
, MIN_EXPR
,
5251 make_tree (sizetype
, size
),
5252 size_int (TREE_STRING_LENGTH (exp
)));
5254 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
5256 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
5259 /* Copy that much. */
5260 copy_size_rtx
= convert_to_mode (pointer_mode
, copy_size_rtx
,
5261 TYPE_UNSIGNED (sizetype
));
5262 emit_block_move (target
, temp
, copy_size_rtx
,
5264 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5266 /* Figure out how much is left in TARGET that we have to clear.
5267 Do all calculations in pointer_mode. */
5268 if (CONST_INT_P (copy_size_rtx
))
5270 size
= plus_constant (address_mode
, size
,
5271 -INTVAL (copy_size_rtx
));
5272 target
= adjust_address (target
, BLKmode
,
5273 INTVAL (copy_size_rtx
));
5277 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
5278 copy_size_rtx
, NULL_RTX
, 0,
5281 if (GET_MODE (copy_size_rtx
) != address_mode
)
5282 copy_size_rtx
= convert_to_mode (address_mode
,
5284 TYPE_UNSIGNED (sizetype
));
5286 target
= offset_address (target
, copy_size_rtx
,
5287 highest_pow2_factor (copy_size
));
5288 label
= gen_label_rtx ();
5289 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
5290 GET_MODE (size
), 0, label
);
5293 if (size
!= const0_rtx
)
5294 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
5300 /* Handle calls that return values in multiple non-contiguous locations.
5301 The Irix 6 ABI has examples of this. */
5302 else if (GET_CODE (target
) == PARALLEL
)
5303 emit_group_load (target
, temp
, TREE_TYPE (exp
),
5304 int_size_in_bytes (TREE_TYPE (exp
)));
5305 else if (GET_MODE (temp
) == BLKmode
)
5306 emit_block_move (target
, temp
, expr_size (exp
),
5308 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5309 else if (nontemporal
5310 && emit_storent_insn (target
, temp
))
5311 /* If we managed to emit a nontemporal store, there is nothing else to
5316 temp
= force_operand (temp
, target
);
5318 emit_move_insn (target
, temp
);
5325 /* Return true if field F of structure TYPE is a flexible array. */
5328 flexible_array_member_p (const_tree f
, const_tree type
)
5333 return (DECL_CHAIN (f
) == NULL
5334 && TREE_CODE (tf
) == ARRAY_TYPE
5336 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
5337 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
5338 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
5339 && int_size_in_bytes (type
) >= 0);
5342 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5343 must have in order for it to completely initialize a value of type TYPE.
5344 Return -1 if the number isn't known.
5346 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5348 static HOST_WIDE_INT
5349 count_type_elements (const_tree type
, bool for_ctor_p
)
5351 switch (TREE_CODE (type
))
5357 nelts
= array_type_nelts (type
);
5358 if (nelts
&& host_integerp (nelts
, 1))
5360 unsigned HOST_WIDE_INT n
;
5362 n
= tree_low_cst (nelts
, 1) + 1;
5363 if (n
== 0 || for_ctor_p
)
5366 return n
* count_type_elements (TREE_TYPE (type
), false);
5368 return for_ctor_p
? -1 : 1;
5373 unsigned HOST_WIDE_INT n
;
5377 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5378 if (TREE_CODE (f
) == FIELD_DECL
)
5381 n
+= count_type_elements (TREE_TYPE (f
), false);
5382 else if (!flexible_array_member_p (f
, type
))
5383 /* Don't count flexible arrays, which are not supposed
5384 to be initialized. */
5392 case QUAL_UNION_TYPE
:
5397 gcc_assert (!for_ctor_p
);
5398 /* Estimate the number of scalars in each field and pick the
5399 maximum. Other estimates would do instead; the idea is simply
5400 to make sure that the estimate is not sensitive to the ordering
5403 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5404 if (TREE_CODE (f
) == FIELD_DECL
)
5406 m
= count_type_elements (TREE_TYPE (f
), false);
5407 /* If the field doesn't span the whole union, add an extra
5408 scalar for the rest. */
5409 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f
)),
5410 TYPE_SIZE (type
)) != 1)
5422 return TYPE_VECTOR_SUBPARTS (type
);
5426 case FIXED_POINT_TYPE
:
5431 case REFERENCE_TYPE
:
5447 /* Helper for categorize_ctor_elements. Identical interface. */
5450 categorize_ctor_elements_1 (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5451 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5453 unsigned HOST_WIDE_INT idx
;
5454 HOST_WIDE_INT nz_elts
, init_elts
, num_fields
;
5455 tree value
, purpose
, elt_type
;
5457 /* Whether CTOR is a valid constant initializer, in accordance with what
5458 initializer_constant_valid_p does. If inferred from the constructor
5459 elements, true until proven otherwise. */
5460 bool const_from_elts_p
= constructor_static_from_elts_p (ctor
);
5461 bool const_p
= const_from_elts_p
? true : TREE_STATIC (ctor
);
5466 elt_type
= NULL_TREE
;
5468 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
5470 HOST_WIDE_INT mult
= 1;
5472 if (TREE_CODE (purpose
) == RANGE_EXPR
)
5474 tree lo_index
= TREE_OPERAND (purpose
, 0);
5475 tree hi_index
= TREE_OPERAND (purpose
, 1);
5477 if (host_integerp (lo_index
, 1) && host_integerp (hi_index
, 1))
5478 mult
= (tree_low_cst (hi_index
, 1)
5479 - tree_low_cst (lo_index
, 1) + 1);
5482 elt_type
= TREE_TYPE (value
);
5484 switch (TREE_CODE (value
))
5488 HOST_WIDE_INT nz
= 0, ic
= 0;
5490 bool const_elt_p
= categorize_ctor_elements_1 (value
, &nz
, &ic
,
5493 nz_elts
+= mult
* nz
;
5494 init_elts
+= mult
* ic
;
5496 if (const_from_elts_p
&& const_p
)
5497 const_p
= const_elt_p
;
5504 if (!initializer_zerop (value
))
5510 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
5511 init_elts
+= mult
* TREE_STRING_LENGTH (value
);
5515 if (!initializer_zerop (TREE_REALPART (value
)))
5517 if (!initializer_zerop (TREE_IMAGPART (value
)))
5525 for (i
= 0; i
< VECTOR_CST_NELTS (value
); ++i
)
5527 tree v
= VECTOR_CST_ELT (value
, i
);
5528 if (!initializer_zerop (v
))
5537 HOST_WIDE_INT tc
= count_type_elements (elt_type
, false);
5538 nz_elts
+= mult
* tc
;
5539 init_elts
+= mult
* tc
;
5541 if (const_from_elts_p
&& const_p
)
5542 const_p
= initializer_constant_valid_p (value
, elt_type
)
5549 if (*p_complete
&& !complete_ctor_at_level_p (TREE_TYPE (ctor
),
5550 num_fields
, elt_type
))
5551 *p_complete
= false;
5553 *p_nz_elts
+= nz_elts
;
5554 *p_init_elts
+= init_elts
;
5559 /* Examine CTOR to discover:
5560 * how many scalar fields are set to nonzero values,
5561 and place it in *P_NZ_ELTS;
5562 * how many scalar fields in total are in CTOR,
5563 and place it in *P_ELT_COUNT.
5564 * whether the constructor is complete -- in the sense that every
5565 meaningful byte is explicitly given a value --
5566 and place it in *P_COMPLETE.
5568 Return whether or not CTOR is a valid static constant initializer, the same
5569 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5572 categorize_ctor_elements (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5573 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5579 return categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_init_elts
, p_complete
);
5582 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5583 of which had type LAST_TYPE. Each element was itself a complete
5584 initializer, in the sense that every meaningful byte was explicitly
5585 given a value. Return true if the same is true for the constructor
5589 complete_ctor_at_level_p (const_tree type
, HOST_WIDE_INT num_elts
,
5590 const_tree last_type
)
5592 if (TREE_CODE (type
) == UNION_TYPE
5593 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5598 gcc_assert (num_elts
== 1 && last_type
);
5600 /* ??? We could look at each element of the union, and find the
5601 largest element. Which would avoid comparing the size of the
5602 initialized element against any tail padding in the union.
5603 Doesn't seem worth the effort... */
5604 return simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (last_type
)) == 1;
5607 return count_type_elements (type
, true) == num_elts
;
5610 /* Return 1 if EXP contains mostly (3/4) zeros. */
5613 mostly_zeros_p (const_tree exp
)
5615 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5617 HOST_WIDE_INT nz_elts
, init_elts
;
5620 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5621 return !complete_p
|| nz_elts
< init_elts
/ 4;
5624 return initializer_zerop (exp
);
5627 /* Return 1 if EXP contains all zeros. */
5630 all_zeros_p (const_tree exp
)
5632 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5634 HOST_WIDE_INT nz_elts
, init_elts
;
5637 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5638 return nz_elts
== 0;
5641 return initializer_zerop (exp
);
5644 /* Helper function for store_constructor.
5645 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5646 TYPE is the type of the CONSTRUCTOR, not the element type.
5647 CLEARED is as for store_constructor.
5648 ALIAS_SET is the alias set to use for any stores.
5650 This provides a recursive shortcut back to store_constructor when it isn't
5651 necessary to go through store_field. This is so that we can pass through
5652 the cleared field to let store_constructor know that we may not have to
5653 clear a substructure if the outer structure has already been cleared. */
5656 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
5657 HOST_WIDE_INT bitpos
, enum machine_mode mode
,
5658 tree exp
, tree type
, int cleared
,
5659 alias_set_type alias_set
)
5661 if (TREE_CODE (exp
) == CONSTRUCTOR
5662 /* We can only call store_constructor recursively if the size and
5663 bit position are on a byte boundary. */
5664 && bitpos
% BITS_PER_UNIT
== 0
5665 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
5666 /* If we have a nonzero bitpos for a register target, then we just
5667 let store_field do the bitfield handling. This is unlikely to
5668 generate unnecessary clear instructions anyways. */
5669 && (bitpos
== 0 || MEM_P (target
)))
5673 = adjust_address (target
,
5674 GET_MODE (target
) == BLKmode
5676 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
5677 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5680 /* Update the alias set, if required. */
5681 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
5682 && MEM_ALIAS_SET (target
) != 0)
5684 target
= copy_rtx (target
);
5685 set_mem_alias_set (target
, alias_set
);
5688 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
5691 store_field (target
, bitsize
, bitpos
, 0, 0, mode
, exp
, type
, alias_set
,
5695 /* Store the value of constructor EXP into the rtx TARGET.
5696 TARGET is either a REG or a MEM; we know it cannot conflict, since
5697 safe_from_p has been called.
5698 CLEARED is true if TARGET is known to have been zero'd.
5699 SIZE is the number of bytes of TARGET we are allowed to modify: this
5700 may not be the same as the size of EXP if we are assigning to a field
5701 which has been packed to exclude padding bits. */
5704 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
5706 tree type
= TREE_TYPE (exp
);
5707 #ifdef WORD_REGISTER_OPERATIONS
5708 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
5711 switch (TREE_CODE (type
))
5715 case QUAL_UNION_TYPE
:
5717 unsigned HOST_WIDE_INT idx
;
5720 /* If size is zero or the target is already cleared, do nothing. */
5721 if (size
== 0 || cleared
)
5723 /* We either clear the aggregate or indicate the value is dead. */
5724 else if ((TREE_CODE (type
) == UNION_TYPE
5725 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5726 && ! CONSTRUCTOR_ELTS (exp
))
5727 /* If the constructor is empty, clear the union. */
5729 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
5733 /* If we are building a static constructor into a register,
5734 set the initial value as zero so we can fold the value into
5735 a constant. But if more than one register is involved,
5736 this probably loses. */
5737 else if (REG_P (target
) && TREE_STATIC (exp
)
5738 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
5740 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5744 /* If the constructor has fewer fields than the structure or
5745 if we are initializing the structure to mostly zeros, clear
5746 the whole structure first. Don't do this if TARGET is a
5747 register whose mode size isn't equal to SIZE since
5748 clear_storage can't handle this case. */
5750 && (((int)VEC_length (constructor_elt
, CONSTRUCTOR_ELTS (exp
))
5751 != fields_length (type
))
5752 || mostly_zeros_p (exp
))
5754 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
5757 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5761 if (REG_P (target
) && !cleared
)
5762 emit_clobber (target
);
5764 /* Store each element of the constructor into the
5765 corresponding field of TARGET. */
5766 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
5768 enum machine_mode mode
;
5769 HOST_WIDE_INT bitsize
;
5770 HOST_WIDE_INT bitpos
= 0;
5772 rtx to_rtx
= target
;
5774 /* Just ignore missing fields. We cleared the whole
5775 structure, above, if any fields are missing. */
5779 if (cleared
&& initializer_zerop (value
))
5782 if (host_integerp (DECL_SIZE (field
), 1))
5783 bitsize
= tree_low_cst (DECL_SIZE (field
), 1);
5787 mode
= DECL_MODE (field
);
5788 if (DECL_BIT_FIELD (field
))
5791 offset
= DECL_FIELD_OFFSET (field
);
5792 if (host_integerp (offset
, 0)
5793 && host_integerp (bit_position (field
), 0))
5795 bitpos
= int_bit_position (field
);
5799 bitpos
= tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 0);
5803 enum machine_mode address_mode
;
5807 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
5808 make_tree (TREE_TYPE (exp
),
5811 offset_rtx
= expand_normal (offset
);
5812 gcc_assert (MEM_P (to_rtx
));
5814 address_mode
= get_address_mode (to_rtx
);
5815 if (GET_MODE (offset_rtx
) != address_mode
)
5816 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
5818 to_rtx
= offset_address (to_rtx
, offset_rtx
,
5819 highest_pow2_factor (offset
));
5822 #ifdef WORD_REGISTER_OPERATIONS
5823 /* If this initializes a field that is smaller than a
5824 word, at the start of a word, try to widen it to a full
5825 word. This special case allows us to output C++ member
5826 function initializations in a form that the optimizers
5829 && bitsize
< BITS_PER_WORD
5830 && bitpos
% BITS_PER_WORD
== 0
5831 && GET_MODE_CLASS (mode
) == MODE_INT
5832 && TREE_CODE (value
) == INTEGER_CST
5834 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
5836 tree type
= TREE_TYPE (value
);
5838 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
5840 type
= lang_hooks
.types
.type_for_mode
5841 (word_mode
, TYPE_UNSIGNED (type
));
5842 value
= fold_convert (type
, value
);
5845 if (BYTES_BIG_ENDIAN
)
5847 = fold_build2 (LSHIFT_EXPR
, type
, value
,
5848 build_int_cst (type
,
5849 BITS_PER_WORD
- bitsize
));
5850 bitsize
= BITS_PER_WORD
;
5855 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
5856 && DECL_NONADDRESSABLE_P (field
))
5858 to_rtx
= copy_rtx (to_rtx
);
5859 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
5862 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
5863 value
, type
, cleared
,
5864 get_alias_set (TREE_TYPE (field
)));
5871 unsigned HOST_WIDE_INT i
;
5874 tree elttype
= TREE_TYPE (type
);
5876 HOST_WIDE_INT minelt
= 0;
5877 HOST_WIDE_INT maxelt
= 0;
5879 domain
= TYPE_DOMAIN (type
);
5880 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
5881 && TYPE_MAX_VALUE (domain
)
5882 && host_integerp (TYPE_MIN_VALUE (domain
), 0)
5883 && host_integerp (TYPE_MAX_VALUE (domain
), 0));
5885 /* If we have constant bounds for the range of the type, get them. */
5888 minelt
= tree_low_cst (TYPE_MIN_VALUE (domain
), 0);
5889 maxelt
= tree_low_cst (TYPE_MAX_VALUE (domain
), 0);
5892 /* If the constructor has fewer elements than the array, clear
5893 the whole array first. Similarly if this is static
5894 constructor of a non-BLKmode object. */
5897 else if (REG_P (target
) && TREE_STATIC (exp
))
5901 unsigned HOST_WIDE_INT idx
;
5903 HOST_WIDE_INT count
= 0, zero_count
= 0;
5904 need_to_clear
= ! const_bounds_p
;
5906 /* This loop is a more accurate version of the loop in
5907 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5908 is also needed to check for missing elements. */
5909 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
5911 HOST_WIDE_INT this_node_count
;
5916 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
5918 tree lo_index
= TREE_OPERAND (index
, 0);
5919 tree hi_index
= TREE_OPERAND (index
, 1);
5921 if (! host_integerp (lo_index
, 1)
5922 || ! host_integerp (hi_index
, 1))
5928 this_node_count
= (tree_low_cst (hi_index
, 1)
5929 - tree_low_cst (lo_index
, 1) + 1);
5932 this_node_count
= 1;
5934 count
+= this_node_count
;
5935 if (mostly_zeros_p (value
))
5936 zero_count
+= this_node_count
;
5939 /* Clear the entire array first if there are any missing
5940 elements, or if the incidence of zero elements is >=
5943 && (count
< maxelt
- minelt
+ 1
5944 || 4 * zero_count
>= 3 * count
))
5948 if (need_to_clear
&& size
> 0)
5951 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5953 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5957 if (!cleared
&& REG_P (target
))
5958 /* Inform later passes that the old value is dead. */
5959 emit_clobber (target
);
5961 /* Store each element of the constructor into the
5962 corresponding element of TARGET, determined by counting the
5964 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
5966 enum machine_mode mode
;
5967 HOST_WIDE_INT bitsize
;
5968 HOST_WIDE_INT bitpos
;
5969 rtx xtarget
= target
;
5971 if (cleared
&& initializer_zerop (value
))
5974 mode
= TYPE_MODE (elttype
);
5975 if (mode
== BLKmode
)
5976 bitsize
= (host_integerp (TYPE_SIZE (elttype
), 1)
5977 ? tree_low_cst (TYPE_SIZE (elttype
), 1)
5980 bitsize
= GET_MODE_BITSIZE (mode
);
5982 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
5984 tree lo_index
= TREE_OPERAND (index
, 0);
5985 tree hi_index
= TREE_OPERAND (index
, 1);
5986 rtx index_r
, pos_rtx
;
5987 HOST_WIDE_INT lo
, hi
, count
;
5990 /* If the range is constant and "small", unroll the loop. */
5992 && host_integerp (lo_index
, 0)
5993 && host_integerp (hi_index
, 0)
5994 && (lo
= tree_low_cst (lo_index
, 0),
5995 hi
= tree_low_cst (hi_index
, 0),
5996 count
= hi
- lo
+ 1,
5999 || (host_integerp (TYPE_SIZE (elttype
), 1)
6000 && (tree_low_cst (TYPE_SIZE (elttype
), 1) * count
6003 lo
-= minelt
; hi
-= minelt
;
6004 for (; lo
<= hi
; lo
++)
6006 bitpos
= lo
* tree_low_cst (TYPE_SIZE (elttype
), 0);
6009 && !MEM_KEEP_ALIAS_SET_P (target
)
6010 && TREE_CODE (type
) == ARRAY_TYPE
6011 && TYPE_NONALIASED_COMPONENT (type
))
6013 target
= copy_rtx (target
);
6014 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6017 store_constructor_field
6018 (target
, bitsize
, bitpos
, mode
, value
, type
, cleared
,
6019 get_alias_set (elttype
));
6024 rtx loop_start
= gen_label_rtx ();
6025 rtx loop_end
= gen_label_rtx ();
6028 expand_normal (hi_index
);
6030 index
= build_decl (EXPR_LOCATION (exp
),
6031 VAR_DECL
, NULL_TREE
, domain
);
6032 index_r
= gen_reg_rtx (promote_decl_mode (index
, NULL
));
6033 SET_DECL_RTL (index
, index_r
);
6034 store_expr (lo_index
, index_r
, 0, false);
6036 /* Build the head of the loop. */
6037 do_pending_stack_adjust ();
6038 emit_label (loop_start
);
6040 /* Assign value to element index. */
6042 fold_convert (ssizetype
,
6043 fold_build2 (MINUS_EXPR
,
6046 TYPE_MIN_VALUE (domain
)));
6049 size_binop (MULT_EXPR
, position
,
6050 fold_convert (ssizetype
,
6051 TYPE_SIZE_UNIT (elttype
)));
6053 pos_rtx
= expand_normal (position
);
6054 xtarget
= offset_address (target
, pos_rtx
,
6055 highest_pow2_factor (position
));
6056 xtarget
= adjust_address (xtarget
, mode
, 0);
6057 if (TREE_CODE (value
) == CONSTRUCTOR
)
6058 store_constructor (value
, xtarget
, cleared
,
6059 bitsize
/ BITS_PER_UNIT
);
6061 store_expr (value
, xtarget
, 0, false);
6063 /* Generate a conditional jump to exit the loop. */
6064 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
6066 jumpif (exit_cond
, loop_end
, -1);
6068 /* Update the loop counter, and jump to the head of
6070 expand_assignment (index
,
6071 build2 (PLUS_EXPR
, TREE_TYPE (index
),
6072 index
, integer_one_node
),
6075 emit_jump (loop_start
);
6077 /* Build the end of the loop. */
6078 emit_label (loop_end
);
6081 else if ((index
!= 0 && ! host_integerp (index
, 0))
6082 || ! host_integerp (TYPE_SIZE (elttype
), 1))
6087 index
= ssize_int (1);
6090 index
= fold_convert (ssizetype
,
6091 fold_build2 (MINUS_EXPR
,
6094 TYPE_MIN_VALUE (domain
)));
6097 size_binop (MULT_EXPR
, index
,
6098 fold_convert (ssizetype
,
6099 TYPE_SIZE_UNIT (elttype
)));
6100 xtarget
= offset_address (target
,
6101 expand_normal (position
),
6102 highest_pow2_factor (position
));
6103 xtarget
= adjust_address (xtarget
, mode
, 0);
6104 store_expr (value
, xtarget
, 0, false);
6109 bitpos
= ((tree_low_cst (index
, 0) - minelt
)
6110 * tree_low_cst (TYPE_SIZE (elttype
), 1));
6112 bitpos
= (i
* tree_low_cst (TYPE_SIZE (elttype
), 1));
6114 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
6115 && TREE_CODE (type
) == ARRAY_TYPE
6116 && TYPE_NONALIASED_COMPONENT (type
))
6118 target
= copy_rtx (target
);
6119 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6121 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
6122 type
, cleared
, get_alias_set (elttype
));
6130 unsigned HOST_WIDE_INT idx
;
6131 constructor_elt
*ce
;
6135 tree elttype
= TREE_TYPE (type
);
6136 int elt_size
= tree_low_cst (TYPE_SIZE (elttype
), 1);
6137 enum machine_mode eltmode
= TYPE_MODE (elttype
);
6138 HOST_WIDE_INT bitsize
;
6139 HOST_WIDE_INT bitpos
;
6140 rtvec vector
= NULL
;
6142 alias_set_type alias
;
6144 gcc_assert (eltmode
!= BLKmode
);
6146 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
6147 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
6149 enum machine_mode mode
= GET_MODE (target
);
6151 icode
= (int) optab_handler (vec_init_optab
, mode
);
6152 if (icode
!= CODE_FOR_nothing
)
6156 vector
= rtvec_alloc (n_elts
);
6157 for (i
= 0; i
< n_elts
; i
++)
6158 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
6162 /* If the constructor has fewer elements than the vector,
6163 clear the whole array first. Similarly if this is static
6164 constructor of a non-BLKmode object. */
6167 else if (REG_P (target
) && TREE_STATIC (exp
))
6171 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
6174 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6176 int n_elts_here
= tree_low_cst
6177 (int_const_binop (TRUNC_DIV_EXPR
,
6178 TYPE_SIZE (TREE_TYPE (value
)),
6179 TYPE_SIZE (elttype
)), 1);
6181 count
+= n_elts_here
;
6182 if (mostly_zeros_p (value
))
6183 zero_count
+= n_elts_here
;
6186 /* Clear the entire vector first if there are any missing elements,
6187 or if the incidence of zero elements is >= 75%. */
6188 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
6191 if (need_to_clear
&& size
> 0 && !vector
)
6194 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6196 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6200 /* Inform later passes that the old value is dead. */
6201 if (!cleared
&& !vector
&& REG_P (target
))
6202 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6205 alias
= MEM_ALIAS_SET (target
);
6207 alias
= get_alias_set (elttype
);
6209 /* Store each element of the constructor into the corresponding
6210 element of TARGET, determined by counting the elements. */
6211 for (idx
= 0, i
= 0;
6212 VEC_iterate (constructor_elt
, CONSTRUCTOR_ELTS (exp
), idx
, ce
);
6213 idx
++, i
+= bitsize
/ elt_size
)
6215 HOST_WIDE_INT eltpos
;
6216 tree value
= ce
->value
;
6218 bitsize
= tree_low_cst (TYPE_SIZE (TREE_TYPE (value
)), 1);
6219 if (cleared
&& initializer_zerop (value
))
6223 eltpos
= tree_low_cst (ce
->index
, 1);
6229 /* Vector CONSTRUCTORs should only be built from smaller
6230 vectors in the case of BLKmode vectors. */
6231 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
6232 RTVEC_ELT (vector
, eltpos
)
6233 = expand_normal (value
);
6237 enum machine_mode value_mode
=
6238 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
6239 ? TYPE_MODE (TREE_TYPE (value
))
6241 bitpos
= eltpos
* elt_size
;
6242 store_constructor_field (target
, bitsize
, bitpos
,
6243 value_mode
, value
, type
,
6249 emit_insn (GEN_FCN (icode
)
6251 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
6260 /* Store the value of EXP (an expression tree)
6261 into a subfield of TARGET which has mode MODE and occupies
6262 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6263 If MODE is VOIDmode, it means that we are storing into a bit-field.
6265 BITREGION_START is bitpos of the first bitfield in this region.
6266 BITREGION_END is the bitpos of the ending bitfield in this region.
6267 These two fields are 0, if the C++ memory model does not apply,
6268 or we are not interested in keeping track of bitfield regions.
6270 Always return const0_rtx unless we have something particular to
6273 TYPE is the type of the underlying object,
6275 ALIAS_SET is the alias set for the destination. This value will
6276 (in general) be different from that for TARGET, since TARGET is a
6277 reference to the containing structure.
6279 If NONTEMPORAL is true, try generating a nontemporal store. */
6282 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
6283 unsigned HOST_WIDE_INT bitregion_start
,
6284 unsigned HOST_WIDE_INT bitregion_end
,
6285 enum machine_mode mode
, tree exp
, tree type
,
6286 alias_set_type alias_set
, bool nontemporal
)
6288 if (TREE_CODE (exp
) == ERROR_MARK
)
6291 /* If we have nothing to store, do nothing unless the expression has
6294 return expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6296 /* If we are storing into an unaligned field of an aligned union that is
6297 in a register, we may have the mode of TARGET being an integer mode but
6298 MODE == BLKmode. In that case, get an aligned object whose size and
6299 alignment are the same as TARGET and store TARGET into it (we can avoid
6300 the store if the field being stored is the entire width of TARGET). Then
6301 call ourselves recursively to store the field into a BLKmode version of
6302 that object. Finally, load from the object into TARGET. This is not
6303 very efficient in general, but should only be slightly more expensive
6304 than the otherwise-required unaligned accesses. Perhaps this can be
6305 cleaned up later. It's tempting to make OBJECT readonly, but it's set
6306 twice, once with emit_move_insn and once via store_field. */
6309 && (REG_P (target
) || GET_CODE (target
) == SUBREG
))
6311 rtx object
= assign_temp (type
, 1, 1);
6312 rtx blk_object
= adjust_address (object
, BLKmode
, 0);
6314 if (bitsize
!= (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (target
)))
6315 emit_move_insn (object
, target
);
6317 store_field (blk_object
, bitsize
, bitpos
,
6318 bitregion_start
, bitregion_end
,
6319 mode
, exp
, type
, MEM_ALIAS_SET (blk_object
), nontemporal
);
6321 emit_move_insn (target
, object
);
6323 /* We want to return the BLKmode version of the data. */
6327 if (GET_CODE (target
) == CONCAT
)
6329 /* We're storing into a struct containing a single __complex. */
6331 gcc_assert (!bitpos
);
6332 return store_expr (exp
, target
, 0, nontemporal
);
6335 /* If the structure is in a register or if the component
6336 is a bit field, we cannot use addressing to access it.
6337 Use bit-field techniques or SUBREG to store in it. */
6339 if (mode
== VOIDmode
6340 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
6341 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
6342 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
6344 || GET_CODE (target
) == SUBREG
6345 /* If the field isn't aligned enough to store as an ordinary memref,
6346 store it as a bit field. */
6348 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
6349 || bitpos
% GET_MODE_ALIGNMENT (mode
))
6350 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
6351 || (bitpos
% BITS_PER_UNIT
!= 0)))
6352 || (bitsize
>= 0 && mode
!= BLKmode
6353 && GET_MODE_BITSIZE (mode
) > bitsize
)
6354 /* If the RHS and field are a constant size and the size of the
6355 RHS isn't the same size as the bitfield, we must use bitfield
6358 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
6359 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0)
6360 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6361 decl we must use bitfield operations. */
6363 && TREE_CODE (exp
) == MEM_REF
6364 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
6365 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
6366 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp
, 0),0 ))
6367 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)) != BLKmode
))
6372 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6373 implies a mask operation. If the precision is the same size as
6374 the field we're storing into, that mask is redundant. This is
6375 particularly common with bit field assignments generated by the
6377 nop_def
= get_def_for_expr (exp
, NOP_EXPR
);
6380 tree type
= TREE_TYPE (exp
);
6381 if (INTEGRAL_TYPE_P (type
)
6382 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
6383 && bitsize
== TYPE_PRECISION (type
))
6385 tree op
= gimple_assign_rhs1 (nop_def
);
6386 type
= TREE_TYPE (op
);
6387 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
6392 temp
= expand_normal (exp
);
6394 /* If BITSIZE is narrower than the size of the type of EXP
6395 we will be narrowing TEMP. Normally, what's wanted are the
6396 low-order bits. However, if EXP's type is a record and this is
6397 big-endian machine, we want the upper BITSIZE bits. */
6398 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
6399 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
6400 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
6401 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
6402 GET_MODE_BITSIZE (GET_MODE (temp
)) - bitsize
,
6405 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6406 if (mode
!= VOIDmode
&& mode
!= BLKmode
6407 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
6408 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
6410 /* If the modes of TEMP and TARGET are both BLKmode, both
6411 must be in memory and BITPOS must be aligned on a byte
6412 boundary. If so, we simply do a block copy. Likewise
6413 for a BLKmode-like TARGET. */
6414 if (GET_MODE (temp
) == BLKmode
6415 && (GET_MODE (target
) == BLKmode
6417 && GET_MODE_CLASS (GET_MODE (target
)) == MODE_INT
6418 && (bitpos
% BITS_PER_UNIT
) == 0
6419 && (bitsize
% BITS_PER_UNIT
) == 0)))
6421 gcc_assert (MEM_P (target
) && MEM_P (temp
)
6422 && (bitpos
% BITS_PER_UNIT
) == 0);
6424 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
6425 emit_block_move (target
, temp
,
6426 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
6433 /* Store the value in the bitfield. */
6434 store_bit_field (target
, bitsize
, bitpos
,
6435 bitregion_start
, bitregion_end
,
6442 /* Now build a reference to just the desired component. */
6443 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
6445 if (to_rtx
== target
)
6446 to_rtx
= copy_rtx (to_rtx
);
6448 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
6449 set_mem_alias_set (to_rtx
, alias_set
);
6451 return store_expr (exp
, to_rtx
, 0, nontemporal
);
6455 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6456 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6457 codes and find the ultimate containing object, which we return.
6459 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6460 bit position, and *PUNSIGNEDP to the signedness of the field.
6461 If the position of the field is variable, we store a tree
6462 giving the variable offset (in units) in *POFFSET.
6463 This offset is in addition to the bit position.
6464 If the position is not variable, we store 0 in *POFFSET.
6466 If any of the extraction expressions is volatile,
6467 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6469 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6470 Otherwise, it is a mode that can be used to access the field.
6472 If the field describes a variable-sized object, *PMODE is set to
6473 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6474 this case, but the address of the object can be found.
6476 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6477 look through nodes that serve as markers of a greater alignment than
6478 the one that can be deduced from the expression. These nodes make it
6479 possible for front-ends to prevent temporaries from being created by
6480 the middle-end on alignment considerations. For that purpose, the
6481 normal operating mode at high-level is to always pass FALSE so that
6482 the ultimate containing object is really returned; moreover, the
6483 associated predicate handled_component_p will always return TRUE
6484 on these nodes, thus indicating that they are essentially handled
6485 by get_inner_reference. TRUE should only be passed when the caller
6486 is scanning the expression in order to build another representation
6487 and specifically knows how to handle these nodes; as such, this is
6488 the normal operating mode in the RTL expanders. */
6491 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
6492 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
6493 enum machine_mode
*pmode
, int *punsignedp
,
6494 int *pvolatilep
, bool keep_aligning
)
6497 enum machine_mode mode
= VOIDmode
;
6498 bool blkmode_bitfield
= false;
6499 tree offset
= size_zero_node
;
6500 double_int bit_offset
= double_int_zero
;
6502 /* First get the mode, signedness, and size. We do this from just the
6503 outermost expression. */
6505 if (TREE_CODE (exp
) == COMPONENT_REF
)
6507 tree field
= TREE_OPERAND (exp
, 1);
6508 size_tree
= DECL_SIZE (field
);
6509 if (!DECL_BIT_FIELD (field
))
6510 mode
= DECL_MODE (field
);
6511 else if (DECL_MODE (field
) == BLKmode
)
6512 blkmode_bitfield
= true;
6513 else if (TREE_THIS_VOLATILE (exp
)
6514 && flag_strict_volatile_bitfields
> 0)
6515 /* Volatile bitfields should be accessed in the mode of the
6516 field's type, not the mode computed based on the bit
6518 mode
= TYPE_MODE (DECL_BIT_FIELD_TYPE (field
));
6520 *punsignedp
= DECL_UNSIGNED (field
);
6522 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
6524 size_tree
= TREE_OPERAND (exp
, 1);
6525 *punsignedp
= (! INTEGRAL_TYPE_P (TREE_TYPE (exp
))
6526 || TYPE_UNSIGNED (TREE_TYPE (exp
)));
6528 /* For vector types, with the correct size of access, use the mode of
6530 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == VECTOR_TYPE
6531 && TREE_TYPE (exp
) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6532 && tree_int_cst_equal (size_tree
, TYPE_SIZE (TREE_TYPE (exp
))))
6533 mode
= TYPE_MODE (TREE_TYPE (exp
));
6537 mode
= TYPE_MODE (TREE_TYPE (exp
));
6538 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
6540 if (mode
== BLKmode
)
6541 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
6543 *pbitsize
= GET_MODE_BITSIZE (mode
);
6548 if (! host_integerp (size_tree
, 1))
6549 mode
= BLKmode
, *pbitsize
= -1;
6551 *pbitsize
= tree_low_cst (size_tree
, 1);
6554 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6555 and find the ultimate containing object. */
6558 switch (TREE_CODE (exp
))
6562 = double_int_add (bit_offset
,
6563 tree_to_double_int (TREE_OPERAND (exp
, 2)));
6568 tree field
= TREE_OPERAND (exp
, 1);
6569 tree this_offset
= component_ref_field_offset (exp
);
6571 /* If this field hasn't been filled in yet, don't go past it.
6572 This should only happen when folding expressions made during
6573 type construction. */
6574 if (this_offset
== 0)
6577 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
6578 bit_offset
= double_int_add (bit_offset
,
6580 (DECL_FIELD_BIT_OFFSET (field
)));
6582 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6587 case ARRAY_RANGE_REF
:
6589 tree index
= TREE_OPERAND (exp
, 1);
6590 tree low_bound
= array_ref_low_bound (exp
);
6591 tree unit_size
= array_ref_element_size (exp
);
6593 /* We assume all arrays have sizes that are a multiple of a byte.
6594 First subtract the lower bound, if any, in the type of the
6595 index, then convert to sizetype and multiply by the size of
6596 the array element. */
6597 if (! integer_zerop (low_bound
))
6598 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
6601 offset
= size_binop (PLUS_EXPR
, offset
,
6602 size_binop (MULT_EXPR
,
6603 fold_convert (sizetype
, index
),
6612 bit_offset
= double_int_add (bit_offset
,
6613 uhwi_to_double_int (*pbitsize
));
6616 case VIEW_CONVERT_EXPR
:
6617 if (keep_aligning
&& STRICT_ALIGNMENT
6618 && (TYPE_ALIGN (TREE_TYPE (exp
))
6619 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
6620 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6621 < BIGGEST_ALIGNMENT
)
6622 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
6623 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
6628 /* Hand back the decl for MEM[&decl, off]. */
6629 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
)
6631 tree off
= TREE_OPERAND (exp
, 1);
6632 if (!integer_zerop (off
))
6634 double_int boff
, coff
= mem_ref_offset (exp
);
6635 boff
= double_int_lshift (coff
,
6637 ? 3 : exact_log2 (BITS_PER_UNIT
),
6638 HOST_BITS_PER_DOUBLE_INT
, true);
6639 bit_offset
= double_int_add (bit_offset
, boff
);
6641 exp
= TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
6649 /* If any reference in the chain is volatile, the effect is volatile. */
6650 if (TREE_THIS_VOLATILE (exp
))
6653 exp
= TREE_OPERAND (exp
, 0);
6657 /* If OFFSET is constant, see if we can return the whole thing as a
6658 constant bit position. Make sure to handle overflow during
6660 if (TREE_CODE (offset
) == INTEGER_CST
)
6662 double_int tem
= tree_to_double_int (offset
);
6663 tem
= double_int_sext (tem
, TYPE_PRECISION (sizetype
));
6664 tem
= double_int_lshift (tem
,
6666 ? 3 : exact_log2 (BITS_PER_UNIT
),
6667 HOST_BITS_PER_DOUBLE_INT
, true);
6668 tem
= double_int_add (tem
, bit_offset
);
6669 if (double_int_fits_in_shwi_p (tem
))
6671 *pbitpos
= double_int_to_shwi (tem
);
6672 *poffset
= offset
= NULL_TREE
;
6676 /* Otherwise, split it up. */
6679 /* Avoid returning a negative bitpos as this may wreak havoc later. */
6680 if (double_int_negative_p (bit_offset
))
6683 = double_int_mask (BITS_PER_UNIT
== 8
6684 ? 3 : exact_log2 (BITS_PER_UNIT
));
6685 double_int tem
= double_int_and_not (bit_offset
, mask
);
6686 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
6687 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
6688 bit_offset
= double_int_sub (bit_offset
, tem
);
6689 tem
= double_int_rshift (tem
,
6691 ? 3 : exact_log2 (BITS_PER_UNIT
),
6692 HOST_BITS_PER_DOUBLE_INT
, true);
6693 offset
= size_binop (PLUS_EXPR
, offset
,
6694 double_int_to_tree (sizetype
, tem
));
6697 *pbitpos
= double_int_to_shwi (bit_offset
);
6701 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6702 if (mode
== VOIDmode
6704 && (*pbitpos
% BITS_PER_UNIT
) == 0
6705 && (*pbitsize
% BITS_PER_UNIT
) == 0)
6713 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6714 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6715 EXP is marked as PACKED. */
6718 contains_packed_reference (const_tree exp
)
6720 bool packed_p
= false;
6724 switch (TREE_CODE (exp
))
6728 tree field
= TREE_OPERAND (exp
, 1);
6729 packed_p
= DECL_PACKED (field
)
6730 || TYPE_PACKED (TREE_TYPE (field
))
6731 || TYPE_PACKED (TREE_TYPE (exp
));
6739 case ARRAY_RANGE_REF
:
6742 case VIEW_CONVERT_EXPR
:
6748 exp
= TREE_OPERAND (exp
, 0);
6754 /* Return a tree of sizetype representing the size, in bytes, of the element
6755 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6758 array_ref_element_size (tree exp
)
6760 tree aligned_size
= TREE_OPERAND (exp
, 3);
6761 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6762 location_t loc
= EXPR_LOCATION (exp
);
6764 /* If a size was specified in the ARRAY_REF, it's the size measured
6765 in alignment units of the element type. So multiply by that value. */
6768 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6769 sizetype from another type of the same width and signedness. */
6770 if (TREE_TYPE (aligned_size
) != sizetype
)
6771 aligned_size
= fold_convert_loc (loc
, sizetype
, aligned_size
);
6772 return size_binop_loc (loc
, MULT_EXPR
, aligned_size
,
6773 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
6776 /* Otherwise, take the size from that of the element type. Substitute
6777 any PLACEHOLDER_EXPR that we have. */
6779 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
6782 /* Return a tree representing the lower bound of the array mentioned in
6783 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6786 array_ref_low_bound (tree exp
)
6788 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6790 /* If a lower bound is specified in EXP, use it. */
6791 if (TREE_OPERAND (exp
, 2))
6792 return TREE_OPERAND (exp
, 2);
6794 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6795 substituting for a PLACEHOLDER_EXPR as needed. */
6796 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
6797 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
6799 /* Otherwise, return a zero of the appropriate type. */
6800 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
6803 /* Returns true if REF is an array reference to an array at the end of
6804 a structure. If this is the case, the array may be allocated larger
6805 than its upper bound implies. */
6808 array_at_struct_end_p (tree ref
)
6810 if (TREE_CODE (ref
) != ARRAY_REF
6811 && TREE_CODE (ref
) != ARRAY_RANGE_REF
)
6814 while (handled_component_p (ref
))
6816 /* If the reference chain contains a component reference to a
6817 non-union type and there follows another field the reference
6818 is not at the end of a structure. */
6819 if (TREE_CODE (ref
) == COMPONENT_REF
6820 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref
, 0))) == RECORD_TYPE
)
6822 tree nextf
= DECL_CHAIN (TREE_OPERAND (ref
, 1));
6823 while (nextf
&& TREE_CODE (nextf
) != FIELD_DECL
)
6824 nextf
= DECL_CHAIN (nextf
);
6829 ref
= TREE_OPERAND (ref
, 0);
6832 /* If the reference is based on a declared entity, the size of the array
6833 is constrained by its given domain. */
6840 /* Return a tree representing the upper bound of the array mentioned in
6841 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6844 array_ref_up_bound (tree exp
)
6846 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6848 /* If there is a domain type and it has an upper bound, use it, substituting
6849 for a PLACEHOLDER_EXPR as needed. */
6850 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
6851 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
6853 /* Otherwise fail. */
6857 /* Return a tree representing the offset, in bytes, of the field referenced
6858 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6861 component_ref_field_offset (tree exp
)
6863 tree aligned_offset
= TREE_OPERAND (exp
, 2);
6864 tree field
= TREE_OPERAND (exp
, 1);
6865 location_t loc
= EXPR_LOCATION (exp
);
6867 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6868 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6872 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6873 sizetype from another type of the same width and signedness. */
6874 if (TREE_TYPE (aligned_offset
) != sizetype
)
6875 aligned_offset
= fold_convert_loc (loc
, sizetype
, aligned_offset
);
6876 return size_binop_loc (loc
, MULT_EXPR
, aligned_offset
,
6877 size_int (DECL_OFFSET_ALIGN (field
)
6881 /* Otherwise, take the offset from that of the field. Substitute
6882 any PLACEHOLDER_EXPR that we have. */
6884 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
6887 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6889 static unsigned HOST_WIDE_INT
6890 target_align (const_tree target
)
6892 /* We might have a chain of nested references with intermediate misaligning
6893 bitfields components, so need to recurse to find out. */
6895 unsigned HOST_WIDE_INT this_align
, outer_align
;
6897 switch (TREE_CODE (target
))
6903 this_align
= DECL_ALIGN (TREE_OPERAND (target
, 1));
6904 outer_align
= target_align (TREE_OPERAND (target
, 0));
6905 return MIN (this_align
, outer_align
);
6908 case ARRAY_RANGE_REF
:
6909 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
6910 outer_align
= target_align (TREE_OPERAND (target
, 0));
6911 return MIN (this_align
, outer_align
);
6914 case NON_LVALUE_EXPR
:
6915 case VIEW_CONVERT_EXPR
:
6916 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
6917 outer_align
= target_align (TREE_OPERAND (target
, 0));
6918 return MAX (this_align
, outer_align
);
6921 return TYPE_ALIGN (TREE_TYPE (target
));
6926 /* Given an rtx VALUE that may contain additions and multiplications, return
6927 an equivalent value that just refers to a register, memory, or constant.
6928 This is done by generating instructions to perform the arithmetic and
6929 returning a pseudo-register containing the value.
6931 The returned value may be a REG, SUBREG, MEM or constant. */
6934 force_operand (rtx value
, rtx target
)
6937 /* Use subtarget as the target for operand 0 of a binary operation. */
6938 rtx subtarget
= get_subtarget (target
);
6939 enum rtx_code code
= GET_CODE (value
);
6941 /* Check for subreg applied to an expression produced by loop optimizer. */
6943 && !REG_P (SUBREG_REG (value
))
6944 && !MEM_P (SUBREG_REG (value
)))
6947 = simplify_gen_subreg (GET_MODE (value
),
6948 force_reg (GET_MODE (SUBREG_REG (value
)),
6949 force_operand (SUBREG_REG (value
),
6951 GET_MODE (SUBREG_REG (value
)),
6952 SUBREG_BYTE (value
));
6953 code
= GET_CODE (value
);
6956 /* Check for a PIC address load. */
6957 if ((code
== PLUS
|| code
== MINUS
)
6958 && XEXP (value
, 0) == pic_offset_table_rtx
6959 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
6960 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
6961 || GET_CODE (XEXP (value
, 1)) == CONST
))
6964 subtarget
= gen_reg_rtx (GET_MODE (value
));
6965 emit_move_insn (subtarget
, value
);
6969 if (ARITHMETIC_P (value
))
6971 op2
= XEXP (value
, 1);
6972 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
6974 if (code
== MINUS
&& CONST_INT_P (op2
))
6977 op2
= negate_rtx (GET_MODE (value
), op2
);
6980 /* Check for an addition with OP2 a constant integer and our first
6981 operand a PLUS of a virtual register and something else. In that
6982 case, we want to emit the sum of the virtual register and the
6983 constant first and then add the other value. This allows virtual
6984 register instantiation to simply modify the constant rather than
6985 creating another one around this addition. */
6986 if (code
== PLUS
&& CONST_INT_P (op2
)
6987 && GET_CODE (XEXP (value
, 0)) == PLUS
6988 && REG_P (XEXP (XEXP (value
, 0), 0))
6989 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6990 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
6992 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
6993 XEXP (XEXP (value
, 0), 0), op2
,
6994 subtarget
, 0, OPTAB_LIB_WIDEN
);
6995 return expand_simple_binop (GET_MODE (value
), code
, temp
,
6996 force_operand (XEXP (XEXP (value
,
6998 target
, 0, OPTAB_LIB_WIDEN
);
7001 op1
= force_operand (XEXP (value
, 0), subtarget
);
7002 op2
= force_operand (op2
, NULL_RTX
);
7006 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
7008 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
7009 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7010 target
, 1, OPTAB_LIB_WIDEN
);
7012 return expand_divmod (0,
7013 FLOAT_MODE_P (GET_MODE (value
))
7014 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
7015 GET_MODE (value
), op1
, op2
, target
, 0);
7017 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7020 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
7023 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7026 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7027 target
, 0, OPTAB_LIB_WIDEN
);
7029 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7030 target
, 1, OPTAB_LIB_WIDEN
);
7033 if (UNARY_P (value
))
7036 target
= gen_reg_rtx (GET_MODE (value
));
7037 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
7044 case FLOAT_TRUNCATE
:
7045 convert_move (target
, op1
, code
== ZERO_EXTEND
);
7050 expand_fix (target
, op1
, code
== UNSIGNED_FIX
);
7054 case UNSIGNED_FLOAT
:
7055 expand_float (target
, op1
, code
== UNSIGNED_FLOAT
);
7059 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
7063 #ifdef INSN_SCHEDULING
7064 /* On machines that have insn scheduling, we want all memory reference to be
7065 explicit, so we need to deal with such paradoxical SUBREGs. */
7066 if (paradoxical_subreg_p (value
) && MEM_P (SUBREG_REG (value
)))
7068 = simplify_gen_subreg (GET_MODE (value
),
7069 force_reg (GET_MODE (SUBREG_REG (value
)),
7070 force_operand (SUBREG_REG (value
),
7072 GET_MODE (SUBREG_REG (value
)),
7073 SUBREG_BYTE (value
));
7079 /* Subroutine of expand_expr: return nonzero iff there is no way that
7080 EXP can reference X, which is being modified. TOP_P is nonzero if this
7081 call is going to be used to determine whether we need a temporary
7082 for EXP, as opposed to a recursive call to this function.
7084 It is always safe for this routine to return zero since it merely
7085 searches for optimization opportunities. */
7088 safe_from_p (const_rtx x
, tree exp
, int top_p
)
7094 /* If EXP has varying size, we MUST use a target since we currently
7095 have no way of allocating temporaries of variable size
7096 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7097 So we assume here that something at a higher level has prevented a
7098 clash. This is somewhat bogus, but the best we can do. Only
7099 do this when X is BLKmode and when we are at the top level. */
7100 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
7101 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
7102 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
7103 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
7104 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
7106 && GET_MODE (x
) == BLKmode
)
7107 /* If X is in the outgoing argument area, it is always safe. */
7109 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
7110 || (GET_CODE (XEXP (x
, 0)) == PLUS
7111 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
7114 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7115 find the underlying pseudo. */
7116 if (GET_CODE (x
) == SUBREG
)
7119 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7123 /* Now look at our tree code and possibly recurse. */
7124 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
7126 case tcc_declaration
:
7127 exp_rtl
= DECL_RTL_IF_SET (exp
);
7133 case tcc_exceptional
:
7134 if (TREE_CODE (exp
) == TREE_LIST
)
7138 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
7140 exp
= TREE_CHAIN (exp
);
7143 if (TREE_CODE (exp
) != TREE_LIST
)
7144 return safe_from_p (x
, exp
, 0);
7147 else if (TREE_CODE (exp
) == CONSTRUCTOR
)
7149 constructor_elt
*ce
;
7150 unsigned HOST_WIDE_INT idx
;
7152 FOR_EACH_VEC_ELT (constructor_elt
, CONSTRUCTOR_ELTS (exp
), idx
, ce
)
7153 if ((ce
->index
!= NULL_TREE
&& !safe_from_p (x
, ce
->index
, 0))
7154 || !safe_from_p (x
, ce
->value
, 0))
7158 else if (TREE_CODE (exp
) == ERROR_MARK
)
7159 return 1; /* An already-visited SAVE_EXPR? */
7164 /* The only case we look at here is the DECL_INITIAL inside a
7166 return (TREE_CODE (exp
) != DECL_EXPR
7167 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
7168 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
7169 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
7172 case tcc_comparison
:
7173 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
7178 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7180 case tcc_expression
:
7183 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7184 the expression. If it is set, we conflict iff we are that rtx or
7185 both are in memory. Otherwise, we check all operands of the
7186 expression recursively. */
7188 switch (TREE_CODE (exp
))
7191 /* If the operand is static or we are static, we can't conflict.
7192 Likewise if we don't conflict with the operand at all. */
7193 if (staticp (TREE_OPERAND (exp
, 0))
7194 || TREE_STATIC (exp
)
7195 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
7198 /* Otherwise, the only way this can conflict is if we are taking
7199 the address of a DECL a that address if part of X, which is
7201 exp
= TREE_OPERAND (exp
, 0);
7204 if (!DECL_RTL_SET_P (exp
)
7205 || !MEM_P (DECL_RTL (exp
)))
7208 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
7214 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
7215 get_alias_set (exp
)))
7220 /* Assume that the call will clobber all hard registers and
7222 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7227 case WITH_CLEANUP_EXPR
:
7228 case CLEANUP_POINT_EXPR
:
7229 /* Lowered by gimplify.c. */
7233 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7239 /* If we have an rtx, we do not need to scan our operands. */
7243 nops
= TREE_OPERAND_LENGTH (exp
);
7244 for (i
= 0; i
< nops
; i
++)
7245 if (TREE_OPERAND (exp
, i
) != 0
7246 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
7252 /* Should never get a type here. */
7256 /* If we have an rtl, find any enclosed object. Then see if we conflict
7260 if (GET_CODE (exp_rtl
) == SUBREG
)
7262 exp_rtl
= SUBREG_REG (exp_rtl
);
7264 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
7268 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7269 are memory and they conflict. */
7270 return ! (rtx_equal_p (x
, exp_rtl
)
7271 || (MEM_P (x
) && MEM_P (exp_rtl
)
7272 && true_dependence (exp_rtl
, VOIDmode
, x
)));
7275 /* If we reach here, it is safe. */
7280 /* Return the highest power of two that EXP is known to be a multiple of.
7281 This is used in updating alignment of MEMs in array references. */
7283 unsigned HOST_WIDE_INT
7284 highest_pow2_factor (const_tree exp
)
7286 unsigned HOST_WIDE_INT c0
, c1
;
7288 switch (TREE_CODE (exp
))
7291 /* We can find the lowest bit that's a one. If the low
7292 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
7293 We need to handle this case since we can find it in a COND_EXPR,
7294 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
7295 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
7297 if (TREE_OVERFLOW (exp
))
7298 return BIGGEST_ALIGNMENT
;
7301 /* Note: tree_low_cst is intentionally not used here,
7302 we don't care about the upper bits. */
7303 c0
= TREE_INT_CST_LOW (exp
);
7305 return c0
? c0
: BIGGEST_ALIGNMENT
;
7309 case PLUS_EXPR
: case MINUS_EXPR
: case MIN_EXPR
: case MAX_EXPR
:
7310 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
7311 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
7312 return MIN (c0
, c1
);
7315 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
7316 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
7319 case ROUND_DIV_EXPR
: case TRUNC_DIV_EXPR
: case FLOOR_DIV_EXPR
:
7321 if (integer_pow2p (TREE_OPERAND (exp
, 1))
7322 && host_integerp (TREE_OPERAND (exp
, 1), 1))
7324 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
7325 c1
= tree_low_cst (TREE_OPERAND (exp
, 1), 1);
7326 return MAX (1, c0
/ c1
);
7331 /* The highest power of two of a bit-and expression is the maximum of
7332 that of its operands. We typically get here for a complex LHS and
7333 a constant negative power of two on the RHS to force an explicit
7334 alignment, so don't bother looking at the LHS. */
7335 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
7339 return highest_pow2_factor (TREE_OPERAND (exp
, 0));
7342 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
7345 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
7346 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 2));
7347 return MIN (c0
, c1
);
7356 /* Similar, except that the alignment requirements of TARGET are
7357 taken into account. Assume it is at least as aligned as its
7358 type, unless it is a COMPONENT_REF in which case the layout of
7359 the structure gives the alignment. */
7361 static unsigned HOST_WIDE_INT
7362 highest_pow2_factor_for_target (const_tree target
, const_tree exp
)
7364 unsigned HOST_WIDE_INT talign
= target_align (target
) / BITS_PER_UNIT
;
7365 unsigned HOST_WIDE_INT factor
= highest_pow2_factor (exp
);
7367 return MAX (factor
, talign
);
7370 #ifdef HAVE_conditional_move
7371 /* Convert the tree comparison code TCODE to the rtl one where the
7372 signedness is UNSIGNEDP. */
7374 static enum rtx_code
7375 convert_tree_comp_to_rtx (enum tree_code tcode
, int unsignedp
)
7387 code
= unsignedp
? LTU
: LT
;
7390 code
= unsignedp
? LEU
: LE
;
7393 code
= unsignedp
? GTU
: GT
;
7396 code
= unsignedp
? GEU
: GE
;
7398 case UNORDERED_EXPR
:
7430 /* Subroutine of expand_expr. Expand the two operands of a binary
7431 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7432 The value may be stored in TARGET if TARGET is nonzero. The
7433 MODIFIER argument is as documented by expand_expr. */
7436 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
7437 enum expand_modifier modifier
)
7439 if (! safe_from_p (target
, exp1
, 1))
7441 if (operand_equal_p (exp0
, exp1
, 0))
7443 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7444 *op1
= copy_rtx (*op0
);
7448 /* If we need to preserve evaluation order, copy exp0 into its own
7449 temporary variable so that it can't be clobbered by exp1. */
7450 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
7451 exp0
= save_expr (exp0
);
7452 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7453 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
7458 /* Return a MEM that contains constant EXP. DEFER is as for
7459 output_constant_def and MODIFIER is as for expand_expr. */
7462 expand_expr_constant (tree exp
, int defer
, enum expand_modifier modifier
)
7466 mem
= output_constant_def (exp
, defer
);
7467 if (modifier
!= EXPAND_INITIALIZER
)
7468 mem
= use_anchored_address (mem
);
7472 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7473 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7476 expand_expr_addr_expr_1 (tree exp
, rtx target
, enum machine_mode tmode
,
7477 enum expand_modifier modifier
, addr_space_t as
)
7479 rtx result
, subtarget
;
7481 HOST_WIDE_INT bitsize
, bitpos
;
7482 int volatilep
, unsignedp
;
7483 enum machine_mode mode1
;
7485 /* If we are taking the address of a constant and are at the top level,
7486 we have to use output_constant_def since we can't call force_const_mem
7488 /* ??? This should be considered a front-end bug. We should not be
7489 generating ADDR_EXPR of something that isn't an LVALUE. The only
7490 exception here is STRING_CST. */
7491 if (CONSTANT_CLASS_P (exp
))
7493 result
= XEXP (expand_expr_constant (exp
, 0, modifier
), 0);
7494 if (modifier
< EXPAND_SUM
)
7495 result
= force_operand (result
, target
);
7499 /* Everything must be something allowed by is_gimple_addressable. */
7500 switch (TREE_CODE (exp
))
7503 /* This case will happen via recursion for &a->b. */
7504 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
7508 tree tem
= TREE_OPERAND (exp
, 0);
7509 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
7510 tem
= fold_build_pointer_plus (tem
, TREE_OPERAND (exp
, 1));
7511 return expand_expr (tem
, target
, tmode
, modifier
);
7515 /* Expand the initializer like constants above. */
7516 result
= XEXP (expand_expr_constant (DECL_INITIAL (exp
),
7518 if (modifier
< EXPAND_SUM
)
7519 result
= force_operand (result
, target
);
7523 /* The real part of the complex number is always first, therefore
7524 the address is the same as the address of the parent object. */
7527 inner
= TREE_OPERAND (exp
, 0);
7531 /* The imaginary part of the complex number is always second.
7532 The expression is therefore always offset by the size of the
7535 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
7536 inner
= TREE_OPERAND (exp
, 0);
7540 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7541 expand_expr, as that can have various side effects; LABEL_DECLs for
7542 example, may not have their DECL_RTL set yet. Expand the rtl of
7543 CONSTRUCTORs too, which should yield a memory reference for the
7544 constructor's contents. Assume language specific tree nodes can
7545 be expanded in some interesting way. */
7546 gcc_assert (TREE_CODE (exp
) < LAST_AND_UNUSED_TREE_CODE
);
7548 || TREE_CODE (exp
) == CONSTRUCTOR
7549 || TREE_CODE (exp
) == COMPOUND_LITERAL_EXPR
)
7551 result
= expand_expr (exp
, target
, tmode
,
7552 modifier
== EXPAND_INITIALIZER
7553 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
7555 /* If the DECL isn't in memory, then the DECL wasn't properly
7556 marked TREE_ADDRESSABLE, which will be either a front-end
7557 or a tree optimizer bug. */
7559 if (TREE_ADDRESSABLE (exp
)
7561 && ! targetm
.calls
.allocate_stack_slots_for_args())
7563 error ("local frame unavailable (naked function?)");
7567 gcc_assert (MEM_P (result
));
7568 result
= XEXP (result
, 0);
7570 /* ??? Is this needed anymore? */
7572 TREE_USED (exp
) = 1;
7574 if (modifier
!= EXPAND_INITIALIZER
7575 && modifier
!= EXPAND_CONST_ADDRESS
7576 && modifier
!= EXPAND_SUM
)
7577 result
= force_operand (result
, target
);
7581 /* Pass FALSE as the last argument to get_inner_reference although
7582 we are expanding to RTL. The rationale is that we know how to
7583 handle "aligning nodes" here: we can just bypass them because
7584 they won't change the final object whose address will be returned
7585 (they actually exist only for that purpose). */
7586 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7587 &mode1
, &unsignedp
, &volatilep
, false);
7591 /* We must have made progress. */
7592 gcc_assert (inner
!= exp
);
7594 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
7595 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7596 inner alignment, force the inner to be sufficiently aligned. */
7597 if (CONSTANT_CLASS_P (inner
)
7598 && TYPE_ALIGN (TREE_TYPE (inner
)) < TYPE_ALIGN (TREE_TYPE (exp
)))
7600 inner
= copy_node (inner
);
7601 TREE_TYPE (inner
) = copy_node (TREE_TYPE (inner
));
7602 TYPE_ALIGN (TREE_TYPE (inner
)) = TYPE_ALIGN (TREE_TYPE (exp
));
7603 TYPE_USER_ALIGN (TREE_TYPE (inner
)) = 1;
7605 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
, as
);
7611 if (modifier
!= EXPAND_NORMAL
)
7612 result
= force_operand (result
, NULL
);
7613 tmp
= expand_expr (offset
, NULL_RTX
, tmode
,
7614 modifier
== EXPAND_INITIALIZER
7615 ? EXPAND_INITIALIZER
: EXPAND_NORMAL
);
7617 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7618 tmp
= convert_memory_address_addr_space (tmode
, tmp
, as
);
7620 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7621 result
= simplify_gen_binary (PLUS
, tmode
, result
, tmp
);
7624 subtarget
= bitpos
? NULL_RTX
: target
;
7625 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
7626 1, OPTAB_LIB_WIDEN
);
7632 /* Someone beforehand should have rejected taking the address
7633 of such an object. */
7634 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
7636 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7637 result
= plus_constant (tmode
, result
, bitpos
/ BITS_PER_UNIT
);
7638 if (modifier
< EXPAND_SUM
)
7639 result
= force_operand (result
, target
);
7645 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7646 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7649 expand_expr_addr_expr (tree exp
, rtx target
, enum machine_mode tmode
,
7650 enum expand_modifier modifier
)
7652 addr_space_t as
= ADDR_SPACE_GENERIC
;
7653 enum machine_mode address_mode
= Pmode
;
7654 enum machine_mode pointer_mode
= ptr_mode
;
7655 enum machine_mode rmode
;
7658 /* Target mode of VOIDmode says "whatever's natural". */
7659 if (tmode
== VOIDmode
)
7660 tmode
= TYPE_MODE (TREE_TYPE (exp
));
7662 if (POINTER_TYPE_P (TREE_TYPE (exp
)))
7664 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp
)));
7665 address_mode
= targetm
.addr_space
.address_mode (as
);
7666 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
7669 /* We can get called with some Weird Things if the user does silliness
7670 like "(short) &a". In that case, convert_memory_address won't do
7671 the right thing, so ignore the given target mode. */
7672 if (tmode
!= address_mode
&& tmode
!= pointer_mode
)
7673 tmode
= address_mode
;
7675 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
7676 tmode
, modifier
, as
);
7678 /* Despite expand_expr claims concerning ignoring TMODE when not
7679 strictly convenient, stuff breaks if we don't honor it. Note
7680 that combined with the above, we only do this for pointer modes. */
7681 rmode
= GET_MODE (result
);
7682 if (rmode
== VOIDmode
)
7685 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7690 /* Generate code for computing CONSTRUCTOR EXP.
7691 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7692 is TRUE, instead of creating a temporary variable in memory
7693 NULL is returned and the caller needs to handle it differently. */
7696 expand_constructor (tree exp
, rtx target
, enum expand_modifier modifier
,
7697 bool avoid_temp_mem
)
7699 tree type
= TREE_TYPE (exp
);
7700 enum machine_mode mode
= TYPE_MODE (type
);
7702 /* Try to avoid creating a temporary at all. This is possible
7703 if all of the initializer is zero.
7704 FIXME: try to handle all [0..255] initializers we can handle
7706 if (TREE_STATIC (exp
)
7707 && !TREE_ADDRESSABLE (exp
)
7708 && target
!= 0 && mode
== BLKmode
7709 && all_zeros_p (exp
))
7711 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
7715 /* All elts simple constants => refer to a constant in memory. But
7716 if this is a non-BLKmode mode, let it store a field at a time
7717 since that should make a CONST_INT or CONST_DOUBLE when we
7718 fold. Likewise, if we have a target we can use, it is best to
7719 store directly into the target unless the type is large enough
7720 that memcpy will be used. If we are making an initializer and
7721 all operands are constant, put it in memory as well.
7723 FIXME: Avoid trying to fill vector constructors piece-meal.
7724 Output them with output_constant_def below unless we're sure
7725 they're zeros. This should go away when vector initializers
7726 are treated like VECTOR_CST instead of arrays. */
7727 if ((TREE_STATIC (exp
)
7728 && ((mode
== BLKmode
7729 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
7730 || TREE_ADDRESSABLE (exp
)
7731 || (host_integerp (TYPE_SIZE_UNIT (type
), 1)
7732 && (! MOVE_BY_PIECES_P
7733 (tree_low_cst (TYPE_SIZE_UNIT (type
), 1),
7735 && ! mostly_zeros_p (exp
))))
7736 || ((modifier
== EXPAND_INITIALIZER
|| modifier
== EXPAND_CONST_ADDRESS
)
7737 && TREE_CONSTANT (exp
)))
7744 constructor
= expand_expr_constant (exp
, 1, modifier
);
7746 if (modifier
!= EXPAND_CONST_ADDRESS
7747 && modifier
!= EXPAND_INITIALIZER
7748 && modifier
!= EXPAND_SUM
)
7749 constructor
= validize_mem (constructor
);
7754 /* Handle calls that pass values in multiple non-contiguous
7755 locations. The Irix 6 ABI has examples of this. */
7756 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
7757 || GET_CODE (target
) == PARALLEL
|| modifier
== EXPAND_STACK_PARM
)
7763 = assign_temp (build_qualified_type (type
, (TYPE_QUALS (type
)
7764 | (TREE_READONLY (exp
)
7765 * TYPE_QUAL_CONST
))),
7766 TREE_ADDRESSABLE (exp
), 1);
7769 store_constructor (exp
, target
, 0, int_expr_size (exp
));
7774 /* expand_expr: generate code for computing expression EXP.
7775 An rtx for the computed value is returned. The value is never null.
7776 In the case of a void EXP, const0_rtx is returned.
7778 The value may be stored in TARGET if TARGET is nonzero.
7779 TARGET is just a suggestion; callers must assume that
7780 the rtx returned may not be the same as TARGET.
7782 If TARGET is CONST0_RTX, it means that the value will be ignored.
7784 If TMODE is not VOIDmode, it suggests generating the
7785 result in mode TMODE. But this is done only when convenient.
7786 Otherwise, TMODE is ignored and the value generated in its natural mode.
7787 TMODE is just a suggestion; callers must assume that
7788 the rtx returned may not have mode TMODE.
7790 Note that TARGET may have neither TMODE nor MODE. In that case, it
7791 probably will not be used.
7793 If MODIFIER is EXPAND_SUM then when EXP is an addition
7794 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7795 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7796 products as above, or REG or MEM, or constant.
7797 Ordinarily in such cases we would output mul or add instructions
7798 and then return a pseudo reg containing the sum.
7800 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7801 it also marks a label as absolutely required (it can't be dead).
7802 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7803 This is used for outputting expressions used in initializers.
7805 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7806 with a constant address even if that address is not normally legitimate.
7807 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7809 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7810 a call parameter. Such targets require special care as we haven't yet
7811 marked TARGET so that it's safe from being trashed by libcalls. We
7812 don't want to use TARGET for anything but the final result;
7813 Intermediate values must go elsewhere. Additionally, calls to
7814 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7816 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7817 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7818 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7819 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7823 expand_expr_real (tree exp
, rtx target
, enum machine_mode tmode
,
7824 enum expand_modifier modifier
, rtx
*alt_rtl
)
7828 /* Handle ERROR_MARK before anybody tries to access its type. */
7829 if (TREE_CODE (exp
) == ERROR_MARK
7830 || (TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
))
7832 ret
= CONST0_RTX (tmode
);
7833 return ret
? ret
: const0_rtx
;
7836 /* If this is an expression of some kind and it has an associated line
7837 number, then emit the line number before expanding the expression.
7839 We need to save and restore the file and line information so that
7840 errors discovered during expansion are emitted with the right
7841 information. It would be better of the diagnostic routines
7842 used the file/line information embedded in the tree nodes rather
7844 if (cfun
&& EXPR_HAS_LOCATION (exp
))
7846 location_t saved_location
= input_location
;
7847 location_t saved_curr_loc
= get_curr_insn_source_location ();
7848 tree saved_block
= get_curr_insn_block ();
7849 input_location
= EXPR_LOCATION (exp
);
7850 set_curr_insn_source_location (input_location
);
7852 /* Record where the insns produced belong. */
7853 set_curr_insn_block (TREE_BLOCK (exp
));
7855 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
7857 input_location
= saved_location
;
7858 set_curr_insn_block (saved_block
);
7859 set_curr_insn_source_location (saved_curr_loc
);
7863 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
7869 /* Try to expand the conditional expression which is represented by
7870 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If succeseds
7871 return the rtl reg which repsents the result. Otherwise return
7875 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED
,
7876 tree treeop1 ATTRIBUTE_UNUSED
,
7877 tree treeop2 ATTRIBUTE_UNUSED
)
7879 #ifdef HAVE_conditional_move
7881 rtx op00
, op01
, op1
, op2
;
7882 enum rtx_code comparison_code
;
7883 enum machine_mode comparison_mode
;
7886 tree type
= TREE_TYPE (treeop1
);
7887 int unsignedp
= TYPE_UNSIGNED (type
);
7888 enum machine_mode mode
= TYPE_MODE (type
);
7890 temp
= assign_temp (type
, 0, 1);
7892 /* If we cannot do a conditional move on the mode, try doing it
7893 with the promoted mode. */
7894 if (!can_conditionally_move_p (mode
))
7895 mode
= promote_mode (type
, mode
, &unsignedp
);
7897 if (!can_conditionally_move_p (mode
))
7901 expand_operands (treeop1
, treeop2
,
7902 temp
, &op1
, &op2
, EXPAND_NORMAL
);
7904 if (TREE_CODE (treeop0
) == SSA_NAME
7905 && (srcstmt
= get_def_for_expr_class (treeop0
, tcc_comparison
)))
7907 tree type
= TREE_TYPE (gimple_assign_rhs1 (srcstmt
));
7908 enum tree_code cmpcode
= gimple_assign_rhs_code (srcstmt
);
7909 op00
= expand_normal (gimple_assign_rhs1 (srcstmt
));
7910 op01
= expand_normal (gimple_assign_rhs2 (srcstmt
));
7911 comparison_mode
= TYPE_MODE (type
);
7912 unsignedp
= TYPE_UNSIGNED (type
);
7913 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
7915 else if (TREE_CODE_CLASS (TREE_CODE (treeop0
)) == tcc_comparison
)
7917 tree type
= TREE_TYPE (TREE_OPERAND (treeop0
, 0));
7918 enum tree_code cmpcode
= TREE_CODE (treeop0
);
7919 op00
= expand_normal (TREE_OPERAND (treeop0
, 0));
7920 op01
= expand_normal (TREE_OPERAND (treeop0
, 1));
7921 unsignedp
= TYPE_UNSIGNED (type
);
7922 comparison_mode
= TYPE_MODE (type
);
7923 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
7927 op00
= expand_normal (treeop0
);
7929 comparison_code
= NE
;
7930 comparison_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
7933 if (GET_MODE (op1
) != mode
)
7934 op1
= gen_lowpart (mode
, op1
);
7936 if (GET_MODE (op2
) != mode
)
7937 op2
= gen_lowpart (mode
, op2
);
7939 /* Try to emit the conditional move. */
7940 insn
= emit_conditional_move (temp
, comparison_code
,
7941 op00
, op01
, comparison_mode
,
7945 /* If we could do the conditional move, emit the sequence,
7949 rtx seq
= get_insns ();
7955 /* Otherwise discard the sequence and fall back to code with
7963 expand_expr_real_2 (sepops ops
, rtx target
, enum machine_mode tmode
,
7964 enum expand_modifier modifier
)
7966 rtx op0
, op1
, op2
, temp
;
7969 enum machine_mode mode
;
7970 enum tree_code code
= ops
->code
;
7972 rtx subtarget
, original_target
;
7974 bool reduce_bit_field
;
7975 location_t loc
= ops
->location
;
7976 tree treeop0
, treeop1
, treeop2
;
7977 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7978 ? reduce_to_bit_field_precision ((expr), \
7984 mode
= TYPE_MODE (type
);
7985 unsignedp
= TYPE_UNSIGNED (type
);
7991 /* We should be called only on simple (binary or unary) expressions,
7992 exactly those that are valid in gimple expressions that aren't
7993 GIMPLE_SINGLE_RHS (or invalid). */
7994 gcc_assert (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
7995 || get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
7996 || get_gimple_rhs_class (code
) == GIMPLE_TERNARY_RHS
);
7998 ignore
= (target
== const0_rtx
7999 || ((CONVERT_EXPR_CODE_P (code
)
8000 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
8001 && TREE_CODE (type
) == VOID_TYPE
));
8003 /* We should be called only if we need the result. */
8004 gcc_assert (!ignore
);
8006 /* An operation in what may be a bit-field type needs the
8007 result to be reduced to the precision of the bit-field type,
8008 which is narrower than that of the type's mode. */
8009 reduce_bit_field
= (INTEGRAL_TYPE_P (type
)
8010 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
8012 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
8015 /* Use subtarget as the target for operand 0 of a binary operation. */
8016 subtarget
= get_subtarget (target
);
8017 original_target
= target
;
8021 case NON_LVALUE_EXPR
:
8024 if (treeop0
== error_mark_node
)
8027 if (TREE_CODE (type
) == UNION_TYPE
)
8029 tree valtype
= TREE_TYPE (treeop0
);
8031 /* If both input and output are BLKmode, this conversion isn't doing
8032 anything except possibly changing memory attribute. */
8033 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
8035 rtx result
= expand_expr (treeop0
, target
, tmode
,
8038 result
= copy_rtx (result
);
8039 set_mem_attributes (result
, type
, 0);
8045 if (TYPE_MODE (type
) != BLKmode
)
8046 target
= gen_reg_rtx (TYPE_MODE (type
));
8048 target
= assign_temp (type
, 1, 1);
8052 /* Store data into beginning of memory target. */
8053 store_expr (treeop0
,
8054 adjust_address (target
, TYPE_MODE (valtype
), 0),
8055 modifier
== EXPAND_STACK_PARM
,
8060 gcc_assert (REG_P (target
));
8062 /* Store this field into a union of the proper type. */
8063 store_field (target
,
8064 MIN ((int_size_in_bytes (TREE_TYPE
8067 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
8068 0, 0, 0, TYPE_MODE (valtype
), treeop0
,
8072 /* Return the entire union. */
8076 if (mode
== TYPE_MODE (TREE_TYPE (treeop0
)))
8078 op0
= expand_expr (treeop0
, target
, VOIDmode
,
8081 /* If the signedness of the conversion differs and OP0 is
8082 a promoted SUBREG, clear that indication since we now
8083 have to do the proper extension. */
8084 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)) != unsignedp
8085 && GET_CODE (op0
) == SUBREG
)
8086 SUBREG_PROMOTED_VAR_P (op0
) = 0;
8088 return REDUCE_BIT_FIELD (op0
);
8091 op0
= expand_expr (treeop0
, NULL_RTX
, mode
,
8092 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
8093 if (GET_MODE (op0
) == mode
)
8096 /* If OP0 is a constant, just convert it into the proper mode. */
8097 else if (CONSTANT_P (op0
))
8099 tree inner_type
= TREE_TYPE (treeop0
);
8100 enum machine_mode inner_mode
= GET_MODE (op0
);
8102 if (inner_mode
== VOIDmode
)
8103 inner_mode
= TYPE_MODE (inner_type
);
8105 if (modifier
== EXPAND_INITIALIZER
)
8106 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
8107 subreg_lowpart_offset (mode
,
8110 op0
= convert_modes (mode
, inner_mode
, op0
,
8111 TYPE_UNSIGNED (inner_type
));
8114 else if (modifier
== EXPAND_INITIALIZER
)
8115 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
8117 else if (target
== 0)
8118 op0
= convert_to_mode (mode
, op0
,
8119 TYPE_UNSIGNED (TREE_TYPE
8123 convert_move (target
, op0
,
8124 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8128 return REDUCE_BIT_FIELD (op0
);
8130 case ADDR_SPACE_CONVERT_EXPR
:
8132 tree treeop0_type
= TREE_TYPE (treeop0
);
8134 addr_space_t as_from
;
8136 gcc_assert (POINTER_TYPE_P (type
));
8137 gcc_assert (POINTER_TYPE_P (treeop0_type
));
8139 as_to
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
8140 as_from
= TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type
));
8142 /* Conversions between pointers to the same address space should
8143 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8144 gcc_assert (as_to
!= as_from
);
8146 /* Ask target code to handle conversion between pointers
8147 to overlapping address spaces. */
8148 if (targetm
.addr_space
.subset_p (as_to
, as_from
)
8149 || targetm
.addr_space
.subset_p (as_from
, as_to
))
8151 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
8152 op0
= targetm
.addr_space
.convert (op0
, treeop0_type
, type
);
8157 /* For disjoint address spaces, converting anything but
8158 a null pointer invokes undefined behaviour. We simply
8159 always return a null pointer here. */
8160 return CONST0_RTX (mode
);
8163 case POINTER_PLUS_EXPR
:
8164 /* Even though the sizetype mode and the pointer's mode can be different
8165 expand is able to handle this correctly and get the correct result out
8166 of the PLUS_EXPR code. */
8167 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8168 if sizetype precision is smaller than pointer precision. */
8169 if (TYPE_PRECISION (sizetype
) < TYPE_PRECISION (type
))
8170 treeop1
= fold_convert_loc (loc
, type
,
8171 fold_convert_loc (loc
, ssizetype
,
8173 /* If sizetype precision is larger than pointer precision, truncate the
8174 offset to have matching modes. */
8175 else if (TYPE_PRECISION (sizetype
) > TYPE_PRECISION (type
))
8176 treeop1
= fold_convert_loc (loc
, type
, treeop1
);
8179 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8180 something else, make sure we add the register to the constant and
8181 then to the other thing. This case can occur during strength
8182 reduction and doing it this way will produce better code if the
8183 frame pointer or argument pointer is eliminated.
8185 fold-const.c will ensure that the constant is always in the inner
8186 PLUS_EXPR, so the only case we need to do anything about is if
8187 sp, ap, or fp is our second argument, in which case we must swap
8188 the innermost first argument and our second argument. */
8190 if (TREE_CODE (treeop0
) == PLUS_EXPR
8191 && TREE_CODE (TREE_OPERAND (treeop0
, 1)) == INTEGER_CST
8192 && TREE_CODE (treeop1
) == VAR_DECL
8193 && (DECL_RTL (treeop1
) == frame_pointer_rtx
8194 || DECL_RTL (treeop1
) == stack_pointer_rtx
8195 || DECL_RTL (treeop1
) == arg_pointer_rtx
))
8200 /* If the result is to be ptr_mode and we are adding an integer to
8201 something, we might be forming a constant. So try to use
8202 plus_constant. If it produces a sum and we can't accept it,
8203 use force_operand. This allows P = &ARR[const] to generate
8204 efficient code on machines where a SYMBOL_REF is not a valid
8207 If this is an EXPAND_SUM call, always return the sum. */
8208 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
8209 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
8211 if (modifier
== EXPAND_STACK_PARM
)
8213 if (TREE_CODE (treeop0
) == INTEGER_CST
8214 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8215 && TREE_CONSTANT (treeop1
))
8219 op1
= expand_expr (treeop1
, subtarget
, VOIDmode
,
8221 /* Use immed_double_const to ensure that the constant is
8222 truncated according to the mode of OP1, then sign extended
8223 to a HOST_WIDE_INT. Using the constant directly can result
8224 in non-canonical RTL in a 64x32 cross compile. */
8226 = immed_double_const (TREE_INT_CST_LOW (treeop0
),
8228 TYPE_MODE (TREE_TYPE (treeop1
)));
8229 op1
= plus_constant (mode
, op1
, INTVAL (constant_part
));
8230 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8231 op1
= force_operand (op1
, target
);
8232 return REDUCE_BIT_FIELD (op1
);
8235 else if (TREE_CODE (treeop1
) == INTEGER_CST
8236 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8237 && TREE_CONSTANT (treeop0
))
8241 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8242 (modifier
== EXPAND_INITIALIZER
8243 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
8244 if (! CONSTANT_P (op0
))
8246 op1
= expand_expr (treeop1
, NULL_RTX
,
8247 VOIDmode
, modifier
);
8248 /* Return a PLUS if modifier says it's OK. */
8249 if (modifier
== EXPAND_SUM
8250 || modifier
== EXPAND_INITIALIZER
)
8251 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
8254 /* Use immed_double_const to ensure that the constant is
8255 truncated according to the mode of OP1, then sign extended
8256 to a HOST_WIDE_INT. Using the constant directly can result
8257 in non-canonical RTL in a 64x32 cross compile. */
8259 = immed_double_const (TREE_INT_CST_LOW (treeop1
),
8261 TYPE_MODE (TREE_TYPE (treeop0
)));
8262 op0
= plus_constant (mode
, op0
, INTVAL (constant_part
));
8263 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8264 op0
= force_operand (op0
, target
);
8265 return REDUCE_BIT_FIELD (op0
);
8269 /* Use TER to expand pointer addition of a negated value
8270 as pointer subtraction. */
8271 if ((POINTER_TYPE_P (TREE_TYPE (treeop0
))
8272 || (TREE_CODE (TREE_TYPE (treeop0
)) == VECTOR_TYPE
8273 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0
)))))
8274 && TREE_CODE (treeop1
) == SSA_NAME
8275 && TYPE_MODE (TREE_TYPE (treeop0
))
8276 == TYPE_MODE (TREE_TYPE (treeop1
)))
8278 gimple def
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
8281 treeop1
= gimple_assign_rhs1 (def
);
8287 /* No sense saving up arithmetic to be done
8288 if it's all in the wrong mode to form part of an address.
8289 And force_operand won't know whether to sign-extend or
8291 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8292 || mode
!= ptr_mode
)
8294 expand_operands (treeop0
, treeop1
,
8295 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8296 if (op0
== const0_rtx
)
8298 if (op1
== const0_rtx
)
8303 expand_operands (treeop0
, treeop1
,
8304 subtarget
, &op0
, &op1
, modifier
);
8305 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8309 /* For initializers, we are allowed to return a MINUS of two
8310 symbolic constants. Here we handle all cases when both operands
8312 /* Handle difference of two symbolic constants,
8313 for the sake of an initializer. */
8314 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8315 && really_constant_p (treeop0
)
8316 && really_constant_p (treeop1
))
8318 expand_operands (treeop0
, treeop1
,
8319 NULL_RTX
, &op0
, &op1
, modifier
);
8321 /* If the last operand is a CONST_INT, use plus_constant of
8322 the negated constant. Else make the MINUS. */
8323 if (CONST_INT_P (op1
))
8324 return REDUCE_BIT_FIELD (plus_constant (mode
, op0
,
8327 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
8330 /* No sense saving up arithmetic to be done
8331 if it's all in the wrong mode to form part of an address.
8332 And force_operand won't know whether to sign-extend or
8334 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8335 || mode
!= ptr_mode
)
8338 expand_operands (treeop0
, treeop1
,
8339 subtarget
, &op0
, &op1
, modifier
);
8341 /* Convert A - const to A + (-const). */
8342 if (CONST_INT_P (op1
))
8344 op1
= negate_rtx (mode
, op1
);
8345 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8350 case WIDEN_MULT_PLUS_EXPR
:
8351 case WIDEN_MULT_MINUS_EXPR
:
8352 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8353 op2
= expand_normal (treeop2
);
8354 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
8358 case WIDEN_MULT_EXPR
:
8359 /* If first operand is constant, swap them.
8360 Thus the following special case checks need only
8361 check the second operand. */
8362 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8369 /* First, check if we have a multiplication of one signed and one
8370 unsigned operand. */
8371 if (TREE_CODE (treeop1
) != INTEGER_CST
8372 && (TYPE_UNSIGNED (TREE_TYPE (treeop0
))
8373 != TYPE_UNSIGNED (TREE_TYPE (treeop1
))))
8375 enum machine_mode innermode
= TYPE_MODE (TREE_TYPE (treeop0
));
8376 this_optab
= usmul_widen_optab
;
8377 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8378 != CODE_FOR_nothing
)
8380 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8381 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8384 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op1
, &op0
,
8389 /* Check for a multiplication with matching signedness. */
8390 else if ((TREE_CODE (treeop1
) == INTEGER_CST
8391 && int_fits_type_p (treeop1
, TREE_TYPE (treeop0
)))
8392 || (TYPE_UNSIGNED (TREE_TYPE (treeop1
))
8393 == TYPE_UNSIGNED (TREE_TYPE (treeop0
))))
8395 tree op0type
= TREE_TYPE (treeop0
);
8396 enum machine_mode innermode
= TYPE_MODE (op0type
);
8397 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8398 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
8399 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
8401 if (TREE_CODE (treeop0
) != INTEGER_CST
)
8403 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8404 != CODE_FOR_nothing
)
8406 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8408 temp
= expand_widening_mult (mode
, op0
, op1
, target
,
8409 unsignedp
, this_optab
);
8410 return REDUCE_BIT_FIELD (temp
);
8412 if (find_widening_optab_handler (other_optab
, mode
, innermode
, 0)
8414 && innermode
== word_mode
)
8417 op0
= expand_normal (treeop0
);
8418 if (TREE_CODE (treeop1
) == INTEGER_CST
)
8419 op1
= convert_modes (innermode
, mode
,
8420 expand_normal (treeop1
), unsignedp
);
8422 op1
= expand_normal (treeop1
);
8423 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
8424 unsignedp
, OPTAB_LIB_WIDEN
);
8425 hipart
= gen_highpart (innermode
, temp
);
8426 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
8430 emit_move_insn (hipart
, htem
);
8431 return REDUCE_BIT_FIELD (temp
);
8435 treeop0
= fold_build1 (CONVERT_EXPR
, type
, treeop0
);
8436 treeop1
= fold_build1 (CONVERT_EXPR
, type
, treeop1
);
8437 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8438 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8442 optab opt
= fma_optab
;
8445 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8447 if (optab_handler (fma_optab
, mode
) == CODE_FOR_nothing
)
8449 tree fn
= mathfn_built_in (TREE_TYPE (treeop0
), BUILT_IN_FMA
);
8452 gcc_assert (fn
!= NULL_TREE
);
8453 call_expr
= build_call_expr (fn
, 3, treeop0
, treeop1
, treeop2
);
8454 return expand_builtin (call_expr
, target
, subtarget
, mode
, false);
8457 def0
= get_def_for_expr (treeop0
, NEGATE_EXPR
);
8458 def2
= get_def_for_expr (treeop2
, NEGATE_EXPR
);
8463 && optab_handler (fnms_optab
, mode
) != CODE_FOR_nothing
)
8466 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8467 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8470 && optab_handler (fnma_optab
, mode
) != CODE_FOR_nothing
)
8473 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8476 && optab_handler (fms_optab
, mode
) != CODE_FOR_nothing
)
8479 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8483 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
, EXPAND_NORMAL
);
8485 op2
= expand_normal (treeop2
);
8486 op1
= expand_normal (treeop1
);
8488 return expand_ternary_op (TYPE_MODE (type
), opt
,
8489 op0
, op1
, op2
, target
, 0);
8493 /* If this is a fixed-point operation, then we cannot use the code
8494 below because "expand_mult" doesn't support sat/no-sat fixed-point
8496 if (ALL_FIXED_POINT_MODE_P (mode
))
8499 /* If first operand is constant, swap them.
8500 Thus the following special case checks need only
8501 check the second operand. */
8502 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8509 /* Attempt to return something suitable for generating an
8510 indexed address, for machines that support that. */
8512 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
8513 && host_integerp (treeop1
, 0))
8515 tree exp1
= treeop1
;
8517 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8521 op0
= force_operand (op0
, NULL_RTX
);
8523 op0
= copy_to_mode_reg (mode
, op0
);
8525 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
8526 gen_int_mode (tree_low_cst (exp1
, 0),
8527 TYPE_MODE (TREE_TYPE (exp1
)))));
8530 if (modifier
== EXPAND_STACK_PARM
)
8533 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8534 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8536 case TRUNC_DIV_EXPR
:
8537 case FLOOR_DIV_EXPR
:
8539 case ROUND_DIV_EXPR
:
8540 case EXACT_DIV_EXPR
:
8541 /* If this is a fixed-point operation, then we cannot use the code
8542 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8544 if (ALL_FIXED_POINT_MODE_P (mode
))
8547 if (modifier
== EXPAND_STACK_PARM
)
8549 /* Possible optimization: compute the dividend with EXPAND_SUM
8550 then if the divisor is constant can optimize the case
8551 where some terms of the dividend have coeffs divisible by it. */
8552 expand_operands (treeop0
, treeop1
,
8553 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8554 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
8557 case MULT_HIGHPART_EXPR
:
8560 case TRUNC_MOD_EXPR
:
8561 case FLOOR_MOD_EXPR
:
8563 case ROUND_MOD_EXPR
:
8564 if (modifier
== EXPAND_STACK_PARM
)
8566 expand_operands (treeop0
, treeop1
,
8567 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8568 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
8570 case FIXED_CONVERT_EXPR
:
8571 op0
= expand_normal (treeop0
);
8572 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8573 target
= gen_reg_rtx (mode
);
8575 if ((TREE_CODE (TREE_TYPE (treeop0
)) == INTEGER_TYPE
8576 && TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8577 || (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
)))
8578 expand_fixed_convert (target
, op0
, 1, TYPE_SATURATING (type
));
8580 expand_fixed_convert (target
, op0
, 0, TYPE_SATURATING (type
));
8583 case FIX_TRUNC_EXPR
:
8584 op0
= expand_normal (treeop0
);
8585 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8586 target
= gen_reg_rtx (mode
);
8587 expand_fix (target
, op0
, unsignedp
);
8591 op0
= expand_normal (treeop0
);
8592 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8593 target
= gen_reg_rtx (mode
);
8594 /* expand_float can't figure out what to do if FROM has VOIDmode.
8595 So give it the correct mode. With -O, cse will optimize this. */
8596 if (GET_MODE (op0
) == VOIDmode
)
8597 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0
)),
8599 expand_float (target
, op0
,
8600 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8604 op0
= expand_expr (treeop0
, subtarget
,
8605 VOIDmode
, EXPAND_NORMAL
);
8606 if (modifier
== EXPAND_STACK_PARM
)
8608 temp
= expand_unop (mode
,
8609 optab_for_tree_code (NEGATE_EXPR
, type
,
8613 return REDUCE_BIT_FIELD (temp
);
8616 op0
= expand_expr (treeop0
, subtarget
,
8617 VOIDmode
, EXPAND_NORMAL
);
8618 if (modifier
== EXPAND_STACK_PARM
)
8621 /* ABS_EXPR is not valid for complex arguments. */
8622 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
8623 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
8625 /* Unsigned abs is simply the operand. Testing here means we don't
8626 risk generating incorrect code below. */
8627 if (TYPE_UNSIGNED (type
))
8630 return expand_abs (mode
, op0
, target
, unsignedp
,
8631 safe_from_p (target
, treeop0
, 1));
8635 target
= original_target
;
8637 || modifier
== EXPAND_STACK_PARM
8638 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
8639 || GET_MODE (target
) != mode
8641 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
8642 target
= gen_reg_rtx (mode
);
8643 expand_operands (treeop0
, treeop1
,
8644 target
, &op0
, &op1
, EXPAND_NORMAL
);
8646 /* First try to do it with a special MIN or MAX instruction.
8647 If that does not win, use a conditional jump to select the proper
8649 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
8650 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
8655 /* At this point, a MEM target is no longer useful; we will get better
8658 if (! REG_P (target
))
8659 target
= gen_reg_rtx (mode
);
8661 /* If op1 was placed in target, swap op0 and op1. */
8662 if (target
!= op0
&& target
== op1
)
8669 /* We generate better code and avoid problems with op1 mentioning
8670 target by forcing op1 into a pseudo if it isn't a constant. */
8671 if (! CONSTANT_P (op1
))
8672 op1
= force_reg (mode
, op1
);
8675 enum rtx_code comparison_code
;
8678 if (code
== MAX_EXPR
)
8679 comparison_code
= unsignedp
? GEU
: GE
;
8681 comparison_code
= unsignedp
? LEU
: LE
;
8683 /* Canonicalize to comparisons against 0. */
8684 if (op1
== const1_rtx
)
8686 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8687 or (a != 0 ? a : 1) for unsigned.
8688 For MIN we are safe converting (a <= 1 ? a : 1)
8689 into (a <= 0 ? a : 1) */
8690 cmpop1
= const0_rtx
;
8691 if (code
== MAX_EXPR
)
8692 comparison_code
= unsignedp
? NE
: GT
;
8694 if (op1
== constm1_rtx
&& !unsignedp
)
8696 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8697 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8698 cmpop1
= const0_rtx
;
8699 if (code
== MIN_EXPR
)
8700 comparison_code
= LT
;
8702 #ifdef HAVE_conditional_move
8703 /* Use a conditional move if possible. */
8704 if (can_conditionally_move_p (mode
))
8708 /* ??? Same problem as in expmed.c: emit_conditional_move
8709 forces a stack adjustment via compare_from_rtx, and we
8710 lose the stack adjustment if the sequence we are about
8711 to create is discarded. */
8712 do_pending_stack_adjust ();
8716 /* Try to emit the conditional move. */
8717 insn
= emit_conditional_move (target
, comparison_code
,
8722 /* If we could do the conditional move, emit the sequence,
8726 rtx seq
= get_insns ();
8732 /* Otherwise discard the sequence and fall back to code with
8738 emit_move_insn (target
, op0
);
8740 temp
= gen_label_rtx ();
8741 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
8742 unsignedp
, mode
, NULL_RTX
, NULL_RTX
, temp
,
8745 emit_move_insn (target
, op1
);
8750 op0
= expand_expr (treeop0
, subtarget
,
8751 VOIDmode
, EXPAND_NORMAL
);
8752 if (modifier
== EXPAND_STACK_PARM
)
8754 /* In case we have to reduce the result to bitfield precision
8755 for unsigned bitfield expand this as XOR with a proper constant
8757 if (reduce_bit_field
&& TYPE_UNSIGNED (type
))
8758 temp
= expand_binop (mode
, xor_optab
, op0
,
8759 immed_double_int_const
8760 (double_int_mask (TYPE_PRECISION (type
)), mode
),
8761 target
, 1, OPTAB_LIB_WIDEN
);
8763 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
8767 /* ??? Can optimize bitwise operations with one arg constant.
8768 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8769 and (a bitwise1 b) bitwise2 b (etc)
8770 but that is probably not worth while. */
8779 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type
))
8780 || (GET_MODE_PRECISION (TYPE_MODE (type
))
8781 == TYPE_PRECISION (type
)));
8786 /* If this is a fixed-point operation, then we cannot use the code
8787 below because "expand_shift" doesn't support sat/no-sat fixed-point
8789 if (ALL_FIXED_POINT_MODE_P (mode
))
8792 if (! safe_from_p (subtarget
, treeop1
, 1))
8794 if (modifier
== EXPAND_STACK_PARM
)
8796 op0
= expand_expr (treeop0
, subtarget
,
8797 VOIDmode
, EXPAND_NORMAL
);
8798 temp
= expand_variable_shift (code
, mode
, op0
, treeop1
, target
,
8800 if (code
== LSHIFT_EXPR
)
8801 temp
= REDUCE_BIT_FIELD (temp
);
8804 /* Could determine the answer when only additive constants differ. Also,
8805 the addition of one can be handled by changing the condition. */
8812 case UNORDERED_EXPR
:
8820 temp
= do_store_flag (ops
,
8821 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
8822 tmode
!= VOIDmode
? tmode
: mode
);
8826 /* Use a compare and a jump for BLKmode comparisons, or for function
8827 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8830 || modifier
== EXPAND_STACK_PARM
8831 || ! safe_from_p (target
, treeop0
, 1)
8832 || ! safe_from_p (target
, treeop1
, 1)
8833 /* Make sure we don't have a hard reg (such as function's return
8834 value) live across basic blocks, if not optimizing. */
8835 || (!optimize
&& REG_P (target
)
8836 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
8837 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
8839 emit_move_insn (target
, const0_rtx
);
8841 op1
= gen_label_rtx ();
8842 jumpifnot_1 (code
, treeop0
, treeop1
, op1
, -1);
8844 if (TYPE_PRECISION (type
) == 1 && !TYPE_UNSIGNED (type
))
8845 emit_move_insn (target
, constm1_rtx
);
8847 emit_move_insn (target
, const1_rtx
);
8853 /* Get the rtx code of the operands. */
8854 op0
= expand_normal (treeop0
);
8855 op1
= expand_normal (treeop1
);
8858 target
= gen_reg_rtx (TYPE_MODE (type
));
8860 /* Move the real (op0) and imaginary (op1) parts to their location. */
8861 write_complex_part (target
, op0
, false);
8862 write_complex_part (target
, op1
, true);
8866 case WIDEN_SUM_EXPR
:
8868 tree oprnd0
= treeop0
;
8869 tree oprnd1
= treeop1
;
8871 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8872 target
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, op1
,
8877 case REDUC_MAX_EXPR
:
8878 case REDUC_MIN_EXPR
:
8879 case REDUC_PLUS_EXPR
:
8881 op0
= expand_normal (treeop0
);
8882 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
8883 temp
= expand_unop (mode
, this_optab
, op0
, target
, unsignedp
);
8888 case VEC_LSHIFT_EXPR
:
8889 case VEC_RSHIFT_EXPR
:
8891 target
= expand_vec_shift_expr (ops
, target
);
8895 case VEC_UNPACK_HI_EXPR
:
8896 case VEC_UNPACK_LO_EXPR
:
8898 op0
= expand_normal (treeop0
);
8899 temp
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, NULL_RTX
,
8905 case VEC_UNPACK_FLOAT_HI_EXPR
:
8906 case VEC_UNPACK_FLOAT_LO_EXPR
:
8908 op0
= expand_normal (treeop0
);
8909 /* The signedness is determined from input operand. */
8910 temp
= expand_widen_pattern_expr
8911 (ops
, op0
, NULL_RTX
, NULL_RTX
,
8912 target
, TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8918 case VEC_WIDEN_MULT_HI_EXPR
:
8919 case VEC_WIDEN_MULT_LO_EXPR
:
8921 tree oprnd0
= treeop0
;
8922 tree oprnd1
= treeop1
;
8924 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8925 target
= expand_widen_pattern_expr (ops
, op0
, op1
, NULL_RTX
,
8927 gcc_assert (target
);
8931 case VEC_WIDEN_LSHIFT_HI_EXPR
:
8932 case VEC_WIDEN_LSHIFT_LO_EXPR
:
8934 tree oprnd0
= treeop0
;
8935 tree oprnd1
= treeop1
;
8937 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8938 target
= expand_widen_pattern_expr (ops
, op0
, op1
, NULL_RTX
,
8940 gcc_assert (target
);
8944 case VEC_PACK_TRUNC_EXPR
:
8945 case VEC_PACK_SAT_EXPR
:
8946 case VEC_PACK_FIX_TRUNC_EXPR
:
8947 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
8951 expand_operands (treeop0
, treeop1
, target
, &op0
, &op1
, EXPAND_NORMAL
);
8952 op2
= expand_normal (treeop2
);
8954 /* Careful here: if the target doesn't support integral vector modes,
8955 a constant selection vector could wind up smooshed into a normal
8956 integral constant. */
8957 if (CONSTANT_P (op2
) && GET_CODE (op2
) != CONST_VECTOR
)
8959 tree sel_type
= TREE_TYPE (treeop2
);
8960 enum machine_mode vmode
8961 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type
)),
8962 TYPE_VECTOR_SUBPARTS (sel_type
));
8963 gcc_assert (GET_MODE_CLASS (vmode
) == MODE_VECTOR_INT
);
8964 op2
= simplify_subreg (vmode
, op2
, TYPE_MODE (sel_type
), 0);
8965 gcc_assert (op2
&& GET_CODE (op2
) == CONST_VECTOR
);
8968 gcc_assert (GET_MODE_CLASS (GET_MODE (op2
)) == MODE_VECTOR_INT
);
8970 temp
= expand_vec_perm (mode
, op0
, op1
, op2
, target
);
8976 tree oprnd0
= treeop0
;
8977 tree oprnd1
= treeop1
;
8978 tree oprnd2
= treeop2
;
8981 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8982 op2
= expand_normal (oprnd2
);
8983 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
8988 case REALIGN_LOAD_EXPR
:
8990 tree oprnd0
= treeop0
;
8991 tree oprnd1
= treeop1
;
8992 tree oprnd2
= treeop2
;
8995 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
8996 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8997 op2
= expand_normal (oprnd2
);
8998 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
9005 /* A COND_EXPR with its type being VOID_TYPE represents a
9006 conditional jump and is handled in
9007 expand_gimple_cond_expr. */
9008 gcc_assert (!VOID_TYPE_P (type
));
9010 /* Note that COND_EXPRs whose type is a structure or union
9011 are required to be constructed to contain assignments of
9012 a temporary variable, so that we can evaluate them here
9013 for side effect only. If type is void, we must do likewise. */
9015 gcc_assert (!TREE_ADDRESSABLE (type
)
9017 && TREE_TYPE (treeop1
) != void_type_node
9018 && TREE_TYPE (treeop2
) != void_type_node
);
9020 temp
= expand_cond_expr_using_cmove (treeop0
, treeop1
, treeop2
);
9024 /* If we are not to produce a result, we have no target. Otherwise,
9025 if a target was specified use it; it will not be used as an
9026 intermediate target unless it is safe. If no target, use a
9029 if (modifier
!= EXPAND_STACK_PARM
9031 && safe_from_p (original_target
, treeop0
, 1)
9032 && GET_MODE (original_target
) == mode
9033 && !MEM_P (original_target
))
9034 temp
= original_target
;
9036 temp
= assign_temp (type
, 0, 1);
9038 do_pending_stack_adjust ();
9040 op0
= gen_label_rtx ();
9041 op1
= gen_label_rtx ();
9042 jumpifnot (treeop0
, op0
, -1);
9043 store_expr (treeop1
, temp
,
9044 modifier
== EXPAND_STACK_PARM
,
9047 emit_jump_insn (gen_jump (op1
));
9050 store_expr (treeop2
, temp
,
9051 modifier
== EXPAND_STACK_PARM
,
9059 target
= expand_vec_cond_expr (type
, treeop0
, treeop1
, treeop2
, target
);
9066 /* Here to do an ordinary binary operator. */
9068 expand_operands (treeop0
, treeop1
,
9069 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9071 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9073 if (modifier
== EXPAND_STACK_PARM
)
9075 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
9076 unsignedp
, OPTAB_LIB_WIDEN
);
9078 /* Bitwise operations do not need bitfield reduction as we expect their
9079 operands being properly truncated. */
9080 if (code
== BIT_XOR_EXPR
9081 || code
== BIT_AND_EXPR
9082 || code
== BIT_IOR_EXPR
)
9084 return REDUCE_BIT_FIELD (temp
);
9086 #undef REDUCE_BIT_FIELD
9089 expand_expr_real_1 (tree exp
, rtx target
, enum machine_mode tmode
,
9090 enum expand_modifier modifier
, rtx
*alt_rtl
)
9092 rtx op0
, op1
, temp
, decl_rtl
;
9095 enum machine_mode mode
;
9096 enum tree_code code
= TREE_CODE (exp
);
9097 rtx subtarget
, original_target
;
9100 bool reduce_bit_field
;
9101 location_t loc
= EXPR_LOCATION (exp
);
9102 struct separate_ops ops
;
9103 tree treeop0
, treeop1
, treeop2
;
9104 tree ssa_name
= NULL_TREE
;
9107 type
= TREE_TYPE (exp
);
9108 mode
= TYPE_MODE (type
);
9109 unsignedp
= TYPE_UNSIGNED (type
);
9111 treeop0
= treeop1
= treeop2
= NULL_TREE
;
9112 if (!VL_EXP_CLASS_P (exp
))
9113 switch (TREE_CODE_LENGTH (code
))
9116 case 3: treeop2
= TREE_OPERAND (exp
, 2);
9117 case 2: treeop1
= TREE_OPERAND (exp
, 1);
9118 case 1: treeop0
= TREE_OPERAND (exp
, 0);
9128 ignore
= (target
== const0_rtx
9129 || ((CONVERT_EXPR_CODE_P (code
)
9130 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
9131 && TREE_CODE (type
) == VOID_TYPE
));
9133 /* An operation in what may be a bit-field type needs the
9134 result to be reduced to the precision of the bit-field type,
9135 which is narrower than that of the type's mode. */
9136 reduce_bit_field
= (!ignore
9137 && INTEGRAL_TYPE_P (type
)
9138 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
9140 /* If we are going to ignore this result, we need only do something
9141 if there is a side-effect somewhere in the expression. If there
9142 is, short-circuit the most common cases here. Note that we must
9143 not call expand_expr with anything but const0_rtx in case this
9144 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9148 if (! TREE_SIDE_EFFECTS (exp
))
9151 /* Ensure we reference a volatile object even if value is ignored, but
9152 don't do this if all we are doing is taking its address. */
9153 if (TREE_THIS_VOLATILE (exp
)
9154 && TREE_CODE (exp
) != FUNCTION_DECL
9155 && mode
!= VOIDmode
&& mode
!= BLKmode
9156 && modifier
!= EXPAND_CONST_ADDRESS
)
9158 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
9164 if (TREE_CODE_CLASS (code
) == tcc_unary
9165 || code
== COMPONENT_REF
|| code
== INDIRECT_REF
)
9166 return expand_expr (treeop0
, const0_rtx
, VOIDmode
,
9169 else if (TREE_CODE_CLASS (code
) == tcc_binary
9170 || TREE_CODE_CLASS (code
) == tcc_comparison
9171 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
9173 expand_expr (treeop0
, const0_rtx
, VOIDmode
, modifier
);
9174 expand_expr (treeop1
, const0_rtx
, VOIDmode
, modifier
);
9177 else if (code
== BIT_FIELD_REF
)
9179 expand_expr (treeop0
, const0_rtx
, VOIDmode
, modifier
);
9180 expand_expr (treeop1
, const0_rtx
, VOIDmode
, modifier
);
9181 expand_expr (treeop2
, const0_rtx
, VOIDmode
, modifier
);
9188 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
9191 /* Use subtarget as the target for operand 0 of a binary operation. */
9192 subtarget
= get_subtarget (target
);
9193 original_target
= target
;
9199 tree function
= decl_function_context (exp
);
9201 temp
= label_rtx (exp
);
9202 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
9204 if (function
!= current_function_decl
9206 LABEL_REF_NONLOCAL_P (temp
) = 1;
9208 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
9213 /* ??? ivopts calls expander, without any preparation from
9214 out-of-ssa. So fake instructions as if this was an access to the
9215 base variable. This unnecessarily allocates a pseudo, see how we can
9216 reuse it, if partition base vars have it set already. */
9217 if (!currently_expanding_to_rtl
)
9218 return expand_expr_real_1 (SSA_NAME_VAR (exp
), target
, tmode
, modifier
,
9221 g
= get_gimple_for_ssa_name (exp
);
9222 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9224 && modifier
== EXPAND_INITIALIZER
9225 && !SSA_NAME_IS_DEFAULT_DEF (exp
)
9226 && (optimize
|| DECL_IGNORED_P (SSA_NAME_VAR (exp
)))
9227 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp
)))
9228 g
= SSA_NAME_DEF_STMT (exp
);
9231 rtx r
= expand_expr_real (gimple_assign_rhs_to_tree (g
), target
,
9232 tmode
, modifier
, NULL
);
9233 if (REG_P (r
) && !REG_EXPR (r
))
9234 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp
), r
);
9239 decl_rtl
= get_rtx_for_ssa_name (ssa_name
);
9240 exp
= SSA_NAME_VAR (ssa_name
);
9241 goto expand_decl_rtl
;
9245 /* If a static var's type was incomplete when the decl was written,
9246 but the type is complete now, lay out the decl now. */
9247 if (DECL_SIZE (exp
) == 0
9248 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
9249 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
9250 layout_decl (exp
, 0);
9252 /* ... fall through ... */
9256 decl_rtl
= DECL_RTL (exp
);
9258 gcc_assert (decl_rtl
);
9259 decl_rtl
= copy_rtx (decl_rtl
);
9260 /* Record writes to register variables. */
9261 if (modifier
== EXPAND_WRITE
9263 && HARD_REGISTER_P (decl_rtl
))
9264 add_to_hard_reg_set (&crtl
->asm_clobbers
,
9265 GET_MODE (decl_rtl
), REGNO (decl_rtl
));
9267 /* Ensure variable marked as used even if it doesn't go through
9268 a parser. If it hasn't be used yet, write out an external
9270 TREE_USED (exp
) = 1;
9272 /* Show we haven't gotten RTL for this yet. */
9275 /* Variables inherited from containing functions should have
9276 been lowered by this point. */
9277 context
= decl_function_context (exp
);
9278 gcc_assert (!context
9279 || context
== current_function_decl
9280 || TREE_STATIC (exp
)
9281 || DECL_EXTERNAL (exp
)
9282 /* ??? C++ creates functions that are not TREE_STATIC. */
9283 || TREE_CODE (exp
) == FUNCTION_DECL
);
9285 /* This is the case of an array whose size is to be determined
9286 from its initializer, while the initializer is still being parsed.
9287 ??? We aren't parsing while expanding anymore. */
9289 if (MEM_P (decl_rtl
) && REG_P (XEXP (decl_rtl
, 0)))
9290 temp
= validize_mem (decl_rtl
);
9292 /* If DECL_RTL is memory, we are in the normal case and the
9293 address is not valid, get the address into a register. */
9295 else if (MEM_P (decl_rtl
) && modifier
!= EXPAND_INITIALIZER
)
9298 *alt_rtl
= decl_rtl
;
9299 decl_rtl
= use_anchored_address (decl_rtl
);
9300 if (modifier
!= EXPAND_CONST_ADDRESS
9301 && modifier
!= EXPAND_SUM
9302 && !memory_address_addr_space_p (DECL_MODE (exp
),
9304 MEM_ADDR_SPACE (decl_rtl
)))
9305 temp
= replace_equiv_address (decl_rtl
,
9306 copy_rtx (XEXP (decl_rtl
, 0)));
9309 /* If we got something, return it. But first, set the alignment
9310 if the address is a register. */
9313 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
9314 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
9319 /* If the mode of DECL_RTL does not match that of the decl,
9320 there are two cases: we are dealing with a BLKmode value
9321 that is returned in a register, or we are dealing with
9322 a promoted value. In the latter case, return a SUBREG
9323 of the wanted mode, but mark it so that we know that it
9324 was already extended. */
9325 if (REG_P (decl_rtl
)
9326 && DECL_MODE (exp
) != BLKmode
9327 && GET_MODE (decl_rtl
) != DECL_MODE (exp
))
9329 enum machine_mode pmode
;
9331 /* Get the signedness to be used for this variable. Ensure we get
9332 the same mode we got when the variable was declared. */
9333 if (code
== SSA_NAME
9334 && (g
= SSA_NAME_DEF_STMT (ssa_name
))
9335 && gimple_code (g
) == GIMPLE_CALL
)
9337 gcc_assert (!gimple_call_internal_p (g
));
9338 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
9339 gimple_call_fntype (g
),
9343 pmode
= promote_decl_mode (exp
, &unsignedp
);
9344 gcc_assert (GET_MODE (decl_rtl
) == pmode
);
9346 temp
= gen_lowpart_SUBREG (mode
, decl_rtl
);
9347 SUBREG_PROMOTED_VAR_P (temp
) = 1;
9348 SUBREG_PROMOTED_UNSIGNED_SET (temp
, unsignedp
);
9355 temp
= immed_double_const (TREE_INT_CST_LOW (exp
),
9356 TREE_INT_CST_HIGH (exp
), mode
);
9362 tree tmp
= NULL_TREE
;
9363 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
9364 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
9365 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FRACT
9366 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UFRACT
9367 || GET_MODE_CLASS (mode
) == MODE_VECTOR_ACCUM
9368 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UACCUM
)
9369 return const_vector_from_tree (exp
);
9370 if (GET_MODE_CLASS (mode
) == MODE_INT
)
9372 tree type_for_mode
= lang_hooks
.types
.type_for_mode (mode
, 1);
9374 tmp
= fold_unary_loc (loc
, VIEW_CONVERT_EXPR
, type_for_mode
, exp
);
9378 VEC(constructor_elt
,gc
) *v
;
9380 v
= VEC_alloc (constructor_elt
, gc
, VECTOR_CST_NELTS (exp
));
9381 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
9382 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, VECTOR_CST_ELT (exp
, i
));
9383 tmp
= build_constructor (type
, v
);
9385 return expand_expr (tmp
, ignore
? const0_rtx
: target
,
9390 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
9393 /* If optimized, generate immediate CONST_DOUBLE
9394 which will be turned into memory by reload if necessary.
9396 We used to force a register so that loop.c could see it. But
9397 this does not allow gen_* patterns to perform optimizations with
9398 the constants. It also produces two insns in cases like "x = 1.0;".
9399 On most machines, floating-point constants are not permitted in
9400 many insns, so we'd end up copying it to a register in any case.
9402 Now, we do the copying in expand_binop, if appropriate. */
9403 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
9404 TYPE_MODE (TREE_TYPE (exp
)));
9407 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp
),
9408 TYPE_MODE (TREE_TYPE (exp
)));
9411 /* Handle evaluating a complex constant in a CONCAT target. */
9412 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
9414 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
9417 rtarg
= XEXP (original_target
, 0);
9418 itarg
= XEXP (original_target
, 1);
9420 /* Move the real and imaginary parts separately. */
9421 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, EXPAND_NORMAL
);
9422 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, EXPAND_NORMAL
);
9425 emit_move_insn (rtarg
, op0
);
9427 emit_move_insn (itarg
, op1
);
9429 return original_target
;
9432 /* ... fall through ... */
9435 temp
= expand_expr_constant (exp
, 1, modifier
);
9437 /* temp contains a constant address.
9438 On RISC machines where a constant address isn't valid,
9439 make some insns to get that address into a register. */
9440 if (modifier
!= EXPAND_CONST_ADDRESS
9441 && modifier
!= EXPAND_INITIALIZER
9442 && modifier
!= EXPAND_SUM
9443 && ! memory_address_addr_space_p (mode
, XEXP (temp
, 0),
9444 MEM_ADDR_SPACE (temp
)))
9445 return replace_equiv_address (temp
,
9446 copy_rtx (XEXP (temp
, 0)));
9452 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
);
9454 if (!SAVE_EXPR_RESOLVED_P (exp
))
9456 /* We can indeed still hit this case, typically via builtin
9457 expanders calling save_expr immediately before expanding
9458 something. Assume this means that we only have to deal
9459 with non-BLKmode values. */
9460 gcc_assert (GET_MODE (ret
) != BLKmode
);
9462 val
= build_decl (EXPR_LOCATION (exp
),
9463 VAR_DECL
, NULL
, TREE_TYPE (exp
));
9464 DECL_ARTIFICIAL (val
) = 1;
9465 DECL_IGNORED_P (val
) = 1;
9467 TREE_OPERAND (exp
, 0) = treeop0
;
9468 SAVE_EXPR_RESOLVED_P (exp
) = 1;
9470 if (!CONSTANT_P (ret
))
9471 ret
= copy_to_reg (ret
);
9472 SET_DECL_RTL (val
, ret
);
9480 /* If we don't need the result, just ensure we evaluate any
9484 unsigned HOST_WIDE_INT idx
;
9487 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
9488 expand_expr (value
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
9493 return expand_constructor (exp
, target
, modifier
, false);
9495 case TARGET_MEM_REF
:
9498 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9499 struct mem_address addr
;
9500 enum insn_code icode
;
9503 get_address_description (exp
, &addr
);
9504 op0
= addr_for_mem_ref (&addr
, as
, true);
9505 op0
= memory_address_addr_space (mode
, op0
, as
);
9506 temp
= gen_rtx_MEM (mode
, op0
);
9507 set_mem_attributes (temp
, exp
, 0);
9508 set_mem_addr_space (temp
, as
);
9509 align
= get_object_or_type_alignment (exp
);
9510 if (modifier
!= EXPAND_WRITE
9512 && align
< GET_MODE_ALIGNMENT (mode
)
9513 /* If the target does not have special handling for unaligned
9514 loads of mode then it can use regular moves for them. */
9515 && ((icode
= optab_handler (movmisalign_optab
, mode
))
9516 != CODE_FOR_nothing
))
9518 struct expand_operand ops
[2];
9520 /* We've already validated the memory, and we're creating a
9521 new pseudo destination. The predicates really can't fail,
9522 nor can the generator. */
9523 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9524 create_fixed_operand (&ops
[1], temp
);
9525 expand_insn (icode
, 2, ops
);
9526 return ops
[0].value
;
9534 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9535 enum machine_mode address_mode
;
9536 tree base
= TREE_OPERAND (exp
, 0);
9538 enum insn_code icode
;
9540 /* Handle expansion of non-aliased memory with non-BLKmode. That
9541 might end up in a register. */
9542 if (mem_ref_refers_to_non_mem_p (exp
))
9544 HOST_WIDE_INT offset
= mem_ref_offset (exp
).low
;
9547 base
= TREE_OPERAND (base
, 0);
9549 && host_integerp (TYPE_SIZE (TREE_TYPE (exp
)), 1)
9550 && (GET_MODE_BITSIZE (DECL_MODE (base
))
9551 == TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp
)))))
9552 return expand_expr (build1 (VIEW_CONVERT_EXPR
,
9553 TREE_TYPE (exp
), base
),
9554 target
, tmode
, modifier
);
9555 bit_offset
= bitsize_int (offset
* BITS_PER_UNIT
);
9556 bftype
= TREE_TYPE (base
);
9557 if (TYPE_MODE (TREE_TYPE (exp
)) != BLKmode
)
9558 bftype
= TREE_TYPE (exp
);
9561 temp
= assign_stack_temp (DECL_MODE (base
),
9562 GET_MODE_SIZE (DECL_MODE (base
)));
9563 store_expr (base
, temp
, 0, false);
9564 temp
= adjust_address (temp
, BLKmode
, offset
);
9565 set_mem_size (temp
, int_size_in_bytes (TREE_TYPE (exp
)));
9568 return expand_expr (build3 (BIT_FIELD_REF
, bftype
,
9570 TYPE_SIZE (TREE_TYPE (exp
)),
9572 target
, tmode
, modifier
);
9574 address_mode
= targetm
.addr_space
.address_mode (as
);
9575 base
= TREE_OPERAND (exp
, 0);
9576 if ((def_stmt
= get_def_for_expr (base
, BIT_AND_EXPR
)))
9578 tree mask
= gimple_assign_rhs2 (def_stmt
);
9579 base
= build2 (BIT_AND_EXPR
, TREE_TYPE (base
),
9580 gimple_assign_rhs1 (def_stmt
), mask
);
9581 TREE_OPERAND (exp
, 0) = base
;
9583 align
= get_object_or_type_alignment (exp
);
9584 op0
= expand_expr (base
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
9585 op0
= memory_address_addr_space (address_mode
, op0
, as
);
9586 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
9589 = immed_double_int_const (mem_ref_offset (exp
), address_mode
);
9590 op0
= simplify_gen_binary (PLUS
, address_mode
, op0
, off
);
9592 op0
= memory_address_addr_space (mode
, op0
, as
);
9593 temp
= gen_rtx_MEM (mode
, op0
);
9594 set_mem_attributes (temp
, exp
, 0);
9595 set_mem_addr_space (temp
, as
);
9596 if (TREE_THIS_VOLATILE (exp
))
9597 MEM_VOLATILE_P (temp
) = 1;
9598 if (modifier
!= EXPAND_WRITE
9600 && align
< GET_MODE_ALIGNMENT (mode
))
9602 if ((icode
= optab_handler (movmisalign_optab
, mode
))
9603 != CODE_FOR_nothing
)
9605 struct expand_operand ops
[2];
9607 /* We've already validated the memory, and we're creating a
9608 new pseudo destination. The predicates really can't fail,
9609 nor can the generator. */
9610 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9611 create_fixed_operand (&ops
[1], temp
);
9612 expand_insn (icode
, 2, ops
);
9613 return ops
[0].value
;
9615 else if (SLOW_UNALIGNED_ACCESS (mode
, align
))
9616 temp
= extract_bit_field (temp
, GET_MODE_BITSIZE (mode
),
9617 0, TYPE_UNSIGNED (TREE_TYPE (exp
)),
9618 true, (modifier
== EXPAND_STACK_PARM
9619 ? NULL_RTX
: target
),
9628 tree array
= treeop0
;
9629 tree index
= treeop1
;
9631 /* Fold an expression like: "foo"[2].
9632 This is not done in fold so it won't happen inside &.
9633 Don't fold if this is for wide characters since it's too
9634 difficult to do correctly and this is a very rare case. */
9636 if (modifier
!= EXPAND_CONST_ADDRESS
9637 && modifier
!= EXPAND_INITIALIZER
9638 && modifier
!= EXPAND_MEMORY
)
9640 tree t
= fold_read_from_constant_string (exp
);
9643 return expand_expr (t
, target
, tmode
, modifier
);
9646 /* If this is a constant index into a constant array,
9647 just get the value from the array. Handle both the cases when
9648 we have an explicit constructor and when our operand is a variable
9649 that was declared const. */
9651 if (modifier
!= EXPAND_CONST_ADDRESS
9652 && modifier
!= EXPAND_INITIALIZER
9653 && modifier
!= EXPAND_MEMORY
9654 && TREE_CODE (array
) == CONSTRUCTOR
9655 && ! TREE_SIDE_EFFECTS (array
)
9656 && TREE_CODE (index
) == INTEGER_CST
)
9658 unsigned HOST_WIDE_INT ix
;
9661 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
9663 if (tree_int_cst_equal (field
, index
))
9665 if (!TREE_SIDE_EFFECTS (value
))
9666 return expand_expr (fold (value
), target
, tmode
, modifier
);
9671 else if (optimize
>= 1
9672 && modifier
!= EXPAND_CONST_ADDRESS
9673 && modifier
!= EXPAND_INITIALIZER
9674 && modifier
!= EXPAND_MEMORY
9675 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
9676 && TREE_CODE (array
) == VAR_DECL
&& DECL_INITIAL (array
)
9677 && TREE_CODE (DECL_INITIAL (array
)) != ERROR_MARK
9678 && const_value_known_p (array
))
9680 if (TREE_CODE (index
) == INTEGER_CST
)
9682 tree init
= DECL_INITIAL (array
);
9684 if (TREE_CODE (init
) == CONSTRUCTOR
)
9686 unsigned HOST_WIDE_INT ix
;
9689 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
9691 if (tree_int_cst_equal (field
, index
))
9693 if (TREE_SIDE_EFFECTS (value
))
9696 if (TREE_CODE (value
) == CONSTRUCTOR
)
9698 /* If VALUE is a CONSTRUCTOR, this
9699 optimization is only useful if
9700 this doesn't store the CONSTRUCTOR
9701 into memory. If it does, it is more
9702 efficient to just load the data from
9703 the array directly. */
9704 rtx ret
= expand_constructor (value
, target
,
9706 if (ret
== NULL_RTX
)
9710 return expand_expr (fold (value
), target
, tmode
,
9714 else if(TREE_CODE (init
) == STRING_CST
)
9716 tree index1
= index
;
9717 tree low_bound
= array_ref_low_bound (exp
);
9718 index1
= fold_convert_loc (loc
, sizetype
,
9721 /* Optimize the special-case of a zero lower bound.
9723 We convert the low_bound to sizetype to avoid some problems
9724 with constant folding. (E.g. suppose the lower bound is 1,
9725 and its mode is QI. Without the conversion,l (ARRAY
9726 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
9727 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
9729 if (! integer_zerop (low_bound
))
9730 index1
= size_diffop_loc (loc
, index1
,
9731 fold_convert_loc (loc
, sizetype
,
9734 if (0 > compare_tree_int (index1
,
9735 TREE_STRING_LENGTH (init
)))
9737 tree type
= TREE_TYPE (TREE_TYPE (init
));
9738 enum machine_mode mode
= TYPE_MODE (type
);
9740 if (GET_MODE_CLASS (mode
) == MODE_INT
9741 && GET_MODE_SIZE (mode
) == 1)
9742 return gen_int_mode (TREE_STRING_POINTER (init
)
9743 [TREE_INT_CST_LOW (index1
)],
9750 goto normal_inner_ref
;
9753 /* If the operand is a CONSTRUCTOR, we can just extract the
9754 appropriate field if it is present. */
9755 if (TREE_CODE (treeop0
) == CONSTRUCTOR
)
9757 unsigned HOST_WIDE_INT idx
;
9760 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0
),
9762 if (field
== treeop1
9763 /* We can normally use the value of the field in the
9764 CONSTRUCTOR. However, if this is a bitfield in
9765 an integral mode that we can fit in a HOST_WIDE_INT,
9766 we must mask only the number of bits in the bitfield,
9767 since this is done implicitly by the constructor. If
9768 the bitfield does not meet either of those conditions,
9769 we can't do this optimization. */
9770 && (! DECL_BIT_FIELD (field
)
9771 || ((GET_MODE_CLASS (DECL_MODE (field
)) == MODE_INT
)
9772 && (GET_MODE_PRECISION (DECL_MODE (field
))
9773 <= HOST_BITS_PER_WIDE_INT
))))
9775 if (DECL_BIT_FIELD (field
)
9776 && modifier
== EXPAND_STACK_PARM
)
9778 op0
= expand_expr (value
, target
, tmode
, modifier
);
9779 if (DECL_BIT_FIELD (field
))
9781 HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (field
));
9782 enum machine_mode imode
= TYPE_MODE (TREE_TYPE (field
));
9784 if (TYPE_UNSIGNED (TREE_TYPE (field
)))
9786 op1
= GEN_INT (((HOST_WIDE_INT
) 1 << bitsize
) - 1);
9787 op0
= expand_and (imode
, op0
, op1
, target
);
9791 int count
= GET_MODE_PRECISION (imode
) - bitsize
;
9793 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
9795 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
9803 goto normal_inner_ref
;
9806 case ARRAY_RANGE_REF
:
9809 enum machine_mode mode1
, mode2
;
9810 HOST_WIDE_INT bitsize
, bitpos
;
9812 int volatilep
= 0, must_force_mem
;
9813 bool packedp
= false;
9814 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
9815 &mode1
, &unsignedp
, &volatilep
, true);
9816 rtx orig_op0
, memloc
;
9817 bool mem_attrs_from_type
= false;
9819 /* If we got back the original object, something is wrong. Perhaps
9820 we are evaluating an expression too early. In any event, don't
9821 infinitely recurse. */
9822 gcc_assert (tem
!= exp
);
9824 if (TYPE_PACKED (TREE_TYPE (TREE_OPERAND (exp
, 0)))
9825 || (TREE_CODE (TREE_OPERAND (exp
, 1)) == FIELD_DECL
9826 && DECL_PACKED (TREE_OPERAND (exp
, 1))))
9829 /* If TEM's type is a union of variable size, pass TARGET to the inner
9830 computation, since it will need a temporary and TARGET is known
9831 to have to do. This occurs in unchecked conversion in Ada. */
9834 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
9835 && COMPLETE_TYPE_P (TREE_TYPE (tem
))
9836 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
9838 && modifier
!= EXPAND_STACK_PARM
9839 ? target
: NULL_RTX
),
9841 (modifier
== EXPAND_INITIALIZER
9842 || modifier
== EXPAND_CONST_ADDRESS
9843 || modifier
== EXPAND_STACK_PARM
)
9844 ? modifier
: EXPAND_NORMAL
);
9847 /* If the bitfield is volatile, we want to access it in the
9848 field's mode, not the computed mode.
9849 If a MEM has VOIDmode (external with incomplete type),
9850 use BLKmode for it instead. */
9853 if (volatilep
&& flag_strict_volatile_bitfields
> 0)
9854 op0
= adjust_address (op0
, mode1
, 0);
9855 else if (GET_MODE (op0
) == VOIDmode
)
9856 op0
= adjust_address (op0
, BLKmode
, 0);
9860 = CONSTANT_P (op0
) ? TYPE_MODE (TREE_TYPE (tem
)) : GET_MODE (op0
);
9862 /* If we have either an offset, a BLKmode result, or a reference
9863 outside the underlying object, we must force it to memory.
9864 Such a case can occur in Ada if we have unchecked conversion
9865 of an expression from a scalar type to an aggregate type or
9866 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
9867 passed a partially uninitialized object or a view-conversion
9868 to a larger size. */
9869 must_force_mem
= (offset
9871 || bitpos
+ bitsize
> GET_MODE_BITSIZE (mode2
));
9873 /* Handle CONCAT first. */
9874 if (GET_CODE (op0
) == CONCAT
&& !must_force_mem
)
9877 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
9880 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
9883 op0
= XEXP (op0
, 0);
9884 mode2
= GET_MODE (op0
);
9886 else if (bitpos
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
9887 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 1)))
9891 op0
= XEXP (op0
, 1);
9893 mode2
= GET_MODE (op0
);
9896 /* Otherwise force into memory. */
9900 /* If this is a constant, put it in a register if it is a legitimate
9901 constant and we don't need a memory reference. */
9902 if (CONSTANT_P (op0
)
9904 && targetm
.legitimate_constant_p (mode2
, op0
)
9906 op0
= force_reg (mode2
, op0
);
9908 /* Otherwise, if this is a constant, try to force it to the constant
9909 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9910 is a legitimate constant. */
9911 else if (CONSTANT_P (op0
) && (memloc
= force_const_mem (mode2
, op0
)))
9912 op0
= validize_mem (memloc
);
9914 /* Otherwise, if this is a constant or the object is not in memory
9915 and need be, put it there. */
9916 else if (CONSTANT_P (op0
) || (!MEM_P (op0
) && must_force_mem
))
9918 tree nt
= build_qualified_type (TREE_TYPE (tem
),
9919 (TYPE_QUALS (TREE_TYPE (tem
))
9920 | TYPE_QUAL_CONST
));
9921 memloc
= assign_temp (nt
, 1, 1);
9922 emit_move_insn (memloc
, op0
);
9924 mem_attrs_from_type
= true;
9929 enum machine_mode address_mode
;
9930 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
9933 gcc_assert (MEM_P (op0
));
9935 address_mode
= get_address_mode (op0
);
9936 if (GET_MODE (offset_rtx
) != address_mode
)
9937 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
9939 if (GET_MODE (op0
) == BLKmode
9940 /* A constant address in OP0 can have VOIDmode, we must
9941 not try to call force_reg in that case. */
9942 && GET_MODE (XEXP (op0
, 0)) != VOIDmode
9944 && (bitpos
% bitsize
) == 0
9945 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
9946 && MEM_ALIGN (op0
) == GET_MODE_ALIGNMENT (mode1
))
9948 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
9952 op0
= offset_address (op0
, offset_rtx
,
9953 highest_pow2_factor (offset
));
9956 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9957 record its alignment as BIGGEST_ALIGNMENT. */
9958 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
9959 && is_aligning_offset (offset
, tem
))
9960 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
9962 /* Don't forget about volatility even if this is a bitfield. */
9963 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
9965 if (op0
== orig_op0
)
9966 op0
= copy_rtx (op0
);
9968 MEM_VOLATILE_P (op0
) = 1;
9971 /* In cases where an aligned union has an unaligned object
9972 as a field, we might be extracting a BLKmode value from
9973 an integer-mode (e.g., SImode) object. Handle this case
9974 by doing the extract into an object as wide as the field
9975 (which we know to be the width of a basic mode), then
9976 storing into memory, and changing the mode to BLKmode. */
9977 if (mode1
== VOIDmode
9978 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
9979 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
9980 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
9981 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
9982 && modifier
!= EXPAND_CONST_ADDRESS
9983 && modifier
!= EXPAND_INITIALIZER
)
9984 /* If the field is volatile, we always want an aligned
9985 access. Do this in following two situations:
9986 1. the access is not already naturally
9987 aligned, otherwise "normal" (non-bitfield) volatile fields
9988 become non-addressable.
9989 2. the bitsize is narrower than the access size. Need
9990 to extract bitfields from the access. */
9991 || (volatilep
&& flag_strict_volatile_bitfields
> 0
9992 && (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0
9993 || (mode1
!= BLKmode
9994 && bitsize
< GET_MODE_SIZE (mode1
) * BITS_PER_UNIT
)))
9995 /* If the field isn't aligned enough to fetch as a memref,
9996 fetch it as a bit field. */
9997 || (mode1
!= BLKmode
9998 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
9999 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
10001 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
10002 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
10003 && ((modifier
== EXPAND_CONST_ADDRESS
10004 || modifier
== EXPAND_INITIALIZER
)
10006 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
10007 || (bitpos
% BITS_PER_UNIT
!= 0)))
10008 /* If the type and the field are a constant size and the
10009 size of the type isn't the same size as the bitfield,
10010 we must use bitfield operations. */
10012 && TYPE_SIZE (TREE_TYPE (exp
))
10013 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
10014 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
10017 enum machine_mode ext_mode
= mode
;
10019 if (ext_mode
== BLKmode
10020 && ! (target
!= 0 && MEM_P (op0
)
10022 && bitpos
% BITS_PER_UNIT
== 0))
10023 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
10025 if (ext_mode
== BLKmode
)
10028 target
= assign_temp (type
, 1, 1);
10033 /* In this case, BITPOS must start at a byte boundary and
10034 TARGET, if specified, must be a MEM. */
10035 gcc_assert (MEM_P (op0
)
10036 && (!target
|| MEM_P (target
))
10037 && !(bitpos
% BITS_PER_UNIT
));
10039 emit_block_move (target
,
10040 adjust_address (op0
, VOIDmode
,
10041 bitpos
/ BITS_PER_UNIT
),
10042 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
10044 (modifier
== EXPAND_STACK_PARM
10045 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10050 op0
= validize_mem (op0
);
10052 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
10053 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10055 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
, packedp
,
10056 (modifier
== EXPAND_STACK_PARM
10057 ? NULL_RTX
: target
),
10058 ext_mode
, ext_mode
);
10060 /* If the result is a record type and BITSIZE is narrower than
10061 the mode of OP0, an integral mode, and this is a big endian
10062 machine, we must put the field into the high-order bits. */
10063 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
10064 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10065 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
10066 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
10067 GET_MODE_BITSIZE (GET_MODE (op0
))
10068 - bitsize
, op0
, 1);
10070 /* If the result type is BLKmode, store the data into a temporary
10071 of the appropriate type, but with the mode corresponding to the
10072 mode for the data we have (op0's mode). It's tempting to make
10073 this a constant type, since we know it's only being stored once,
10074 but that can cause problems if we are taking the address of this
10075 COMPONENT_REF because the MEM of any reference via that address
10076 will have flags corresponding to the type, which will not
10077 necessarily be constant. */
10078 if (mode
== BLKmode
)
10082 new_rtx
= assign_stack_temp_for_type (ext_mode
,
10083 GET_MODE_BITSIZE (ext_mode
),
10085 emit_move_insn (new_rtx
, op0
);
10086 op0
= copy_rtx (new_rtx
);
10087 PUT_MODE (op0
, BLKmode
);
10093 /* If the result is BLKmode, use that to access the object
10095 if (mode
== BLKmode
)
10098 /* Get a reference to just this component. */
10099 if (modifier
== EXPAND_CONST_ADDRESS
10100 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
10101 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10103 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10105 if (op0
== orig_op0
)
10106 op0
= copy_rtx (op0
);
10108 /* If op0 is a temporary because of forcing to memory, pass only the
10109 type to set_mem_attributes so that the original expression is never
10110 marked as ADDRESSABLE through MEM_EXPR of the temporary. */
10111 if (mem_attrs_from_type
)
10112 set_mem_attributes (op0
, type
, 0);
10114 set_mem_attributes (op0
, exp
, 0);
10116 if (REG_P (XEXP (op0
, 0)))
10117 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10119 MEM_VOLATILE_P (op0
) |= volatilep
;
10120 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
10121 || modifier
== EXPAND_CONST_ADDRESS
10122 || modifier
== EXPAND_INITIALIZER
)
10124 else if (target
== 0)
10125 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
10127 convert_move (target
, op0
, unsignedp
);
10132 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
10135 /* All valid uses of __builtin_va_arg_pack () are removed during
10137 if (CALL_EXPR_VA_ARG_PACK (exp
))
10138 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp
);
10140 tree fndecl
= get_callee_fndecl (exp
), attr
;
10143 && (attr
= lookup_attribute ("error",
10144 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10145 error ("%Kcall to %qs declared with attribute error: %s",
10146 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10147 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10149 && (attr
= lookup_attribute ("warning",
10150 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10151 warning_at (tree_nonartificial_location (exp
),
10152 0, "%Kcall to %qs declared with attribute warning: %s",
10153 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10154 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10156 /* Check for a built-in function. */
10157 if (fndecl
&& DECL_BUILT_IN (fndecl
))
10159 gcc_assert (DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_FRONTEND
);
10160 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
10163 return expand_call (exp
, target
, ignore
);
10165 case VIEW_CONVERT_EXPR
:
10168 /* If we are converting to BLKmode, try to avoid an intermediate
10169 temporary by fetching an inner memory reference. */
10170 if (mode
== BLKmode
10171 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
10172 && TYPE_MODE (TREE_TYPE (treeop0
)) != BLKmode
10173 && handled_component_p (treeop0
))
10175 enum machine_mode mode1
;
10176 HOST_WIDE_INT bitsize
, bitpos
;
10181 = get_inner_reference (treeop0
, &bitsize
, &bitpos
,
10182 &offset
, &mode1
, &unsignedp
, &volatilep
,
10186 /* ??? We should work harder and deal with non-zero offsets. */
10188 && (bitpos
% BITS_PER_UNIT
) == 0
10190 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) == 0)
10192 /* See the normal_inner_ref case for the rationale. */
10194 = expand_expr (tem
,
10195 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
10196 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
10198 && modifier
!= EXPAND_STACK_PARM
10199 ? target
: NULL_RTX
),
10201 (modifier
== EXPAND_INITIALIZER
10202 || modifier
== EXPAND_CONST_ADDRESS
10203 || modifier
== EXPAND_STACK_PARM
)
10204 ? modifier
: EXPAND_NORMAL
);
10206 if (MEM_P (orig_op0
))
10210 /* Get a reference to just this component. */
10211 if (modifier
== EXPAND_CONST_ADDRESS
10212 || modifier
== EXPAND_SUM
10213 || modifier
== EXPAND_INITIALIZER
)
10214 op0
= adjust_address_nv (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10216 op0
= adjust_address (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10218 if (op0
== orig_op0
)
10219 op0
= copy_rtx (op0
);
10221 set_mem_attributes (op0
, treeop0
, 0);
10222 if (REG_P (XEXP (op0
, 0)))
10223 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10225 MEM_VOLATILE_P (op0
) |= volatilep
;
10231 op0
= expand_expr (treeop0
,
10232 NULL_RTX
, VOIDmode
, modifier
);
10234 /* If the input and output modes are both the same, we are done. */
10235 if (mode
== GET_MODE (op0
))
10237 /* If neither mode is BLKmode, and both modes are the same size
10238 then we can use gen_lowpart. */
10239 else if (mode
!= BLKmode
&& GET_MODE (op0
) != BLKmode
10240 && (GET_MODE_PRECISION (mode
)
10241 == GET_MODE_PRECISION (GET_MODE (op0
)))
10242 && !COMPLEX_MODE_P (GET_MODE (op0
)))
10244 if (GET_CODE (op0
) == SUBREG
)
10245 op0
= force_reg (GET_MODE (op0
), op0
);
10246 temp
= gen_lowpart_common (mode
, op0
);
10251 if (!REG_P (op0
) && !MEM_P (op0
))
10252 op0
= force_reg (GET_MODE (op0
), op0
);
10253 op0
= gen_lowpart (mode
, op0
);
10256 /* If both types are integral, convert from one mode to the other. */
10257 else if (INTEGRAL_TYPE_P (type
) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0
)))
10258 op0
= convert_modes (mode
, GET_MODE (op0
), op0
,
10259 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
10260 /* As a last resort, spill op0 to memory, and reload it in a
10262 else if (!MEM_P (op0
))
10264 /* If the operand is not a MEM, force it into memory. Since we
10265 are going to be changing the mode of the MEM, don't call
10266 force_const_mem for constants because we don't allow pool
10267 constants to change mode. */
10268 tree inner_type
= TREE_TYPE (treeop0
);
10270 gcc_assert (!TREE_ADDRESSABLE (exp
));
10272 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
10274 = assign_stack_temp_for_type
10275 (TYPE_MODE (inner_type
),
10276 GET_MODE_SIZE (TYPE_MODE (inner_type
)), inner_type
);
10278 emit_move_insn (target
, op0
);
10282 /* At this point, OP0 is in the correct mode. If the output type is
10283 such that the operand is known to be aligned, indicate that it is.
10284 Otherwise, we need only be concerned about alignment for non-BLKmode
10288 enum insn_code icode
;
10290 op0
= copy_rtx (op0
);
10292 if (TYPE_ALIGN_OK (type
))
10293 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
10294 else if (mode
!= BLKmode
10295 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
)
10296 /* If the target does have special handling for unaligned
10297 loads of mode then use them. */
10298 && ((icode
= optab_handler (movmisalign_optab
, mode
))
10299 != CODE_FOR_nothing
))
10303 op0
= adjust_address (op0
, mode
, 0);
10304 /* We've already validated the memory, and we're creating a
10305 new pseudo destination. The predicates really can't
10307 reg
= gen_reg_rtx (mode
);
10309 /* Nor can the insn generator. */
10310 insn
= GEN_FCN (icode
) (reg
, op0
);
10314 else if (STRICT_ALIGNMENT
10316 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
))
10318 tree inner_type
= TREE_TYPE (treeop0
);
10319 HOST_WIDE_INT temp_size
10320 = MAX (int_size_in_bytes (inner_type
),
10321 (HOST_WIDE_INT
) GET_MODE_SIZE (mode
));
10323 = assign_stack_temp_for_type (mode
, temp_size
, type
);
10324 rtx new_with_op0_mode
10325 = adjust_address (new_rtx
, GET_MODE (op0
), 0);
10327 gcc_assert (!TREE_ADDRESSABLE (exp
));
10329 if (GET_MODE (op0
) == BLKmode
)
10330 emit_block_move (new_with_op0_mode
, op0
,
10331 GEN_INT (GET_MODE_SIZE (mode
)),
10332 (modifier
== EXPAND_STACK_PARM
10333 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10335 emit_move_insn (new_with_op0_mode
, op0
);
10340 op0
= adjust_address (op0
, mode
, 0);
10347 tree lhs
= treeop0
;
10348 tree rhs
= treeop1
;
10349 gcc_assert (ignore
);
10351 /* Check for |= or &= of a bitfield of size one into another bitfield
10352 of size 1. In this case, (unless we need the result of the
10353 assignment) we can do this more efficiently with a
10354 test followed by an assignment, if necessary.
10356 ??? At this point, we can't get a BIT_FIELD_REF here. But if
10357 things change so we do, this code should be enhanced to
10359 if (TREE_CODE (lhs
) == COMPONENT_REF
10360 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
10361 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
10362 && TREE_OPERAND (rhs
, 0) == lhs
10363 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
10364 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
10365 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
10367 rtx label
= gen_label_rtx ();
10368 int value
= TREE_CODE (rhs
) == BIT_IOR_EXPR
;
10369 do_jump (TREE_OPERAND (rhs
, 1),
10371 value
? 0 : label
, -1);
10372 expand_assignment (lhs
, build_int_cst (TREE_TYPE (rhs
), value
),
10373 MOVE_NONTEMPORAL (exp
));
10374 do_pending_stack_adjust ();
10375 emit_label (label
);
10379 expand_assignment (lhs
, rhs
, MOVE_NONTEMPORAL (exp
));
10384 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
10386 case REALPART_EXPR
:
10387 op0
= expand_normal (treeop0
);
10388 return read_complex_part (op0
, false);
10390 case IMAGPART_EXPR
:
10391 op0
= expand_normal (treeop0
);
10392 return read_complex_part (op0
, true);
10399 /* Expanded in cfgexpand.c. */
10400 gcc_unreachable ();
10402 case TRY_CATCH_EXPR
:
10404 case EH_FILTER_EXPR
:
10405 case TRY_FINALLY_EXPR
:
10406 /* Lowered by tree-eh.c. */
10407 gcc_unreachable ();
10409 case WITH_CLEANUP_EXPR
:
10410 case CLEANUP_POINT_EXPR
:
10412 case CASE_LABEL_EXPR
:
10417 case COMPOUND_EXPR
:
10418 case PREINCREMENT_EXPR
:
10419 case PREDECREMENT_EXPR
:
10420 case POSTINCREMENT_EXPR
:
10421 case POSTDECREMENT_EXPR
:
10424 case COMPOUND_LITERAL_EXPR
:
10425 /* Lowered by gimplify.c. */
10426 gcc_unreachable ();
10429 /* Function descriptors are not valid except for as
10430 initialization constants, and should not be expanded. */
10431 gcc_unreachable ();
10433 case WITH_SIZE_EXPR
:
10434 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10435 have pulled out the size to use in whatever context it needed. */
10436 return expand_expr_real (treeop0
, original_target
, tmode
,
10437 modifier
, alt_rtl
);
10440 return expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
10444 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10445 signedness of TYPE), possibly returning the result in TARGET. */
10447 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
10449 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
10450 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
10452 /* For constant values, reduce using build_int_cst_type. */
10453 if (CONST_INT_P (exp
))
10455 HOST_WIDE_INT value
= INTVAL (exp
);
10456 tree t
= build_int_cst_type (type
, value
);
10457 return expand_expr (t
, target
, VOIDmode
, EXPAND_NORMAL
);
10459 else if (TYPE_UNSIGNED (type
))
10461 rtx mask
= immed_double_int_const (double_int_mask (prec
),
10463 return expand_and (GET_MODE (exp
), exp
, mask
, target
);
10467 int count
= GET_MODE_PRECISION (GET_MODE (exp
)) - prec
;
10468 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
),
10469 exp
, count
, target
, 0);
10470 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
),
10471 exp
, count
, target
, 0);
10475 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10476 when applied to the address of EXP produces an address known to be
10477 aligned more than BIGGEST_ALIGNMENT. */
10480 is_aligning_offset (const_tree offset
, const_tree exp
)
10482 /* Strip off any conversions. */
10483 while (CONVERT_EXPR_P (offset
))
10484 offset
= TREE_OPERAND (offset
, 0);
10486 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10487 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10488 if (TREE_CODE (offset
) != BIT_AND_EXPR
10489 || !host_integerp (TREE_OPERAND (offset
, 1), 1)
10490 || compare_tree_int (TREE_OPERAND (offset
, 1),
10491 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
10492 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset
, 1), 1) + 1) < 0)
10495 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10496 It must be NEGATE_EXPR. Then strip any more conversions. */
10497 offset
= TREE_OPERAND (offset
, 0);
10498 while (CONVERT_EXPR_P (offset
))
10499 offset
= TREE_OPERAND (offset
, 0);
10501 if (TREE_CODE (offset
) != NEGATE_EXPR
)
10504 offset
= TREE_OPERAND (offset
, 0);
10505 while (CONVERT_EXPR_P (offset
))
10506 offset
= TREE_OPERAND (offset
, 0);
10508 /* This must now be the address of EXP. */
10509 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
10512 /* Return the tree node if an ARG corresponds to a string constant or zero
10513 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10514 in bytes within the string that ARG is accessing. The type of the
10515 offset will be `sizetype'. */
10518 string_constant (tree arg
, tree
*ptr_offset
)
10520 tree array
, offset
, lower_bound
;
10523 if (TREE_CODE (arg
) == ADDR_EXPR
)
10525 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
10527 *ptr_offset
= size_zero_node
;
10528 return TREE_OPERAND (arg
, 0);
10530 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
10532 array
= TREE_OPERAND (arg
, 0);
10533 offset
= size_zero_node
;
10535 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
10537 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10538 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10539 if (TREE_CODE (array
) != STRING_CST
10540 && TREE_CODE (array
) != VAR_DECL
)
10543 /* Check if the array has a nonzero lower bound. */
10544 lower_bound
= array_ref_low_bound (TREE_OPERAND (arg
, 0));
10545 if (!integer_zerop (lower_bound
))
10547 /* If the offset and base aren't both constants, return 0. */
10548 if (TREE_CODE (lower_bound
) != INTEGER_CST
)
10550 if (TREE_CODE (offset
) != INTEGER_CST
)
10552 /* Adjust offset by the lower bound. */
10553 offset
= size_diffop (fold_convert (sizetype
, offset
),
10554 fold_convert (sizetype
, lower_bound
));
10557 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == MEM_REF
)
10559 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10560 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10561 if (TREE_CODE (array
) != ADDR_EXPR
)
10563 array
= TREE_OPERAND (array
, 0);
10564 if (TREE_CODE (array
) != STRING_CST
10565 && TREE_CODE (array
) != VAR_DECL
)
10571 else if (TREE_CODE (arg
) == PLUS_EXPR
|| TREE_CODE (arg
) == POINTER_PLUS_EXPR
)
10573 tree arg0
= TREE_OPERAND (arg
, 0);
10574 tree arg1
= TREE_OPERAND (arg
, 1);
10579 if (TREE_CODE (arg0
) == ADDR_EXPR
10580 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
10581 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
10583 array
= TREE_OPERAND (arg0
, 0);
10586 else if (TREE_CODE (arg1
) == ADDR_EXPR
10587 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
10588 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
10590 array
= TREE_OPERAND (arg1
, 0);
10599 if (TREE_CODE (array
) == STRING_CST
)
10601 *ptr_offset
= fold_convert (sizetype
, offset
);
10604 else if (TREE_CODE (array
) == VAR_DECL
10605 || TREE_CODE (array
) == CONST_DECL
)
10609 /* Variables initialized to string literals can be handled too. */
10610 if (!const_value_known_p (array
)
10611 || !DECL_INITIAL (array
)
10612 || TREE_CODE (DECL_INITIAL (array
)) != STRING_CST
)
10615 /* Avoid const char foo[4] = "abcde"; */
10616 if (DECL_SIZE_UNIT (array
) == NULL_TREE
10617 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
10618 || (length
= TREE_STRING_LENGTH (DECL_INITIAL (array
))) <= 0
10619 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
10622 /* If variable is bigger than the string literal, OFFSET must be constant
10623 and inside of the bounds of the string literal. */
10624 offset
= fold_convert (sizetype
, offset
);
10625 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
10626 && (! host_integerp (offset
, 1)
10627 || compare_tree_int (offset
, length
) >= 0))
10630 *ptr_offset
= offset
;
10631 return DECL_INITIAL (array
);
10637 /* Generate code to calculate OPS, and exploded expression
10638 using a store-flag instruction and return an rtx for the result.
10639 OPS reflects a comparison.
10641 If TARGET is nonzero, store the result there if convenient.
10643 Return zero if there is no suitable set-flag instruction
10644 available on this machine.
10646 Once expand_expr has been called on the arguments of the comparison,
10647 we are committed to doing the store flag, since it is not safe to
10648 re-evaluate the expression. We emit the store-flag insn by calling
10649 emit_store_flag, but only expand the arguments if we have a reason
10650 to believe that emit_store_flag will be successful. If we think that
10651 it will, but it isn't, we have to simulate the store-flag with a
10652 set/jump/set sequence. */
10655 do_store_flag (sepops ops
, rtx target
, enum machine_mode mode
)
10657 enum rtx_code code
;
10658 tree arg0
, arg1
, type
;
10660 enum machine_mode operand_mode
;
10663 rtx subtarget
= target
;
10664 location_t loc
= ops
->location
;
10669 /* Don't crash if the comparison was erroneous. */
10670 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
10673 type
= TREE_TYPE (arg0
);
10674 operand_mode
= TYPE_MODE (type
);
10675 unsignedp
= TYPE_UNSIGNED (type
);
10677 /* We won't bother with BLKmode store-flag operations because it would mean
10678 passing a lot of information to emit_store_flag. */
10679 if (operand_mode
== BLKmode
)
10682 /* We won't bother with store-flag operations involving function pointers
10683 when function pointers must be canonicalized before comparisons. */
10684 #ifdef HAVE_canonicalize_funcptr_for_compare
10685 if (HAVE_canonicalize_funcptr_for_compare
10686 && ((TREE_CODE (TREE_TYPE (arg0
)) == POINTER_TYPE
10687 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0
)))
10689 || (TREE_CODE (TREE_TYPE (arg1
)) == POINTER_TYPE
10690 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1
)))
10691 == FUNCTION_TYPE
))))
10698 /* For vector typed comparisons emit code to generate the desired
10699 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
10700 expander for this. */
10701 if (TREE_CODE (ops
->type
) == VECTOR_TYPE
)
10703 tree ifexp
= build2 (ops
->code
, ops
->type
, arg0
, arg1
);
10704 tree if_true
= constant_boolean_node (true, ops
->type
);
10705 tree if_false
= constant_boolean_node (false, ops
->type
);
10706 return expand_vec_cond_expr (ops
->type
, ifexp
, if_true
, if_false
, target
);
10709 /* For vector typed comparisons emit code to generate the desired
10710 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
10711 expander for this. */
10712 if (TREE_CODE (ops
->type
) == VECTOR_TYPE
)
10714 tree ifexp
= build2 (ops
->code
, ops
->type
, arg0
, arg1
);
10715 tree if_true
= constant_boolean_node (true, ops
->type
);
10716 tree if_false
= constant_boolean_node (false, ops
->type
);
10717 return expand_vec_cond_expr (ops
->type
, ifexp
, if_true
, if_false
, target
);
10720 /* Get the rtx comparison code to use. We know that EXP is a comparison
10721 operation of some type. Some comparisons against 1 and -1 can be
10722 converted to comparisons with zero. Do so here so that the tests
10723 below will be aware that we have a comparison with zero. These
10724 tests will not catch constants in the first operand, but constants
10725 are rarely passed as the first operand. */
10736 if (integer_onep (arg1
))
10737 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
10739 code
= unsignedp
? LTU
: LT
;
10742 if (! unsignedp
&& integer_all_onesp (arg1
))
10743 arg1
= integer_zero_node
, code
= LT
;
10745 code
= unsignedp
? LEU
: LE
;
10748 if (! unsignedp
&& integer_all_onesp (arg1
))
10749 arg1
= integer_zero_node
, code
= GE
;
10751 code
= unsignedp
? GTU
: GT
;
10754 if (integer_onep (arg1
))
10755 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
10757 code
= unsignedp
? GEU
: GE
;
10760 case UNORDERED_EXPR
:
10786 gcc_unreachable ();
10789 /* Put a constant second. */
10790 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
10791 || TREE_CODE (arg0
) == FIXED_CST
)
10793 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
10794 code
= swap_condition (code
);
10797 /* If this is an equality or inequality test of a single bit, we can
10798 do this by shifting the bit being tested to the low-order bit and
10799 masking the result with the constant 1. If the condition was EQ,
10800 we xor it with 1. This does not require an scc insn and is faster
10801 than an scc insn even if we have it.
10803 The code to make this transformation was moved into fold_single_bit_test,
10804 so we just call into the folder and expand its result. */
10806 if ((code
== NE
|| code
== EQ
)
10807 && integer_zerop (arg1
)
10808 && (TYPE_PRECISION (ops
->type
) != 1 || TYPE_UNSIGNED (ops
->type
)))
10810 gimple srcstmt
= get_def_for_expr (arg0
, BIT_AND_EXPR
);
10812 && integer_pow2p (gimple_assign_rhs2 (srcstmt
)))
10814 enum tree_code tcode
= code
== NE
? NE_EXPR
: EQ_EXPR
;
10815 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
10816 tree temp
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg1
),
10817 gimple_assign_rhs1 (srcstmt
),
10818 gimple_assign_rhs2 (srcstmt
));
10819 temp
= fold_single_bit_test (loc
, tcode
, temp
, arg1
, type
);
10821 return expand_expr (temp
, target
, VOIDmode
, EXPAND_NORMAL
);
10825 if (! get_subtarget (target
)
10826 || GET_MODE (subtarget
) != operand_mode
)
10829 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
10832 target
= gen_reg_rtx (mode
);
10834 /* Try a cstore if possible. */
10835 return emit_store_flag_force (target
, code
, op0
, op1
,
10836 operand_mode
, unsignedp
,
10837 (TYPE_PRECISION (ops
->type
) == 1
10838 && !TYPE_UNSIGNED (ops
->type
)) ? -1 : 1);
10842 /* Stubs in case we haven't got a casesi insn. */
10843 #ifndef HAVE_casesi
10844 # define HAVE_casesi 0
10845 # define gen_casesi(a, b, c, d, e) (0)
10846 # define CODE_FOR_casesi CODE_FOR_nothing
10849 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10850 0 otherwise (i.e. if there is no casesi instruction). */
10852 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
10853 rtx table_label ATTRIBUTE_UNUSED
, rtx default_label
,
10854 rtx fallback_label ATTRIBUTE_UNUSED
)
10856 struct expand_operand ops
[5];
10857 enum machine_mode index_mode
= SImode
;
10858 rtx op1
, op2
, index
;
10863 /* Convert the index to SImode. */
10864 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
10866 enum machine_mode omode
= TYPE_MODE (index_type
);
10867 rtx rangertx
= expand_normal (range
);
10869 /* We must handle the endpoints in the original mode. */
10870 index_expr
= build2 (MINUS_EXPR
, index_type
,
10871 index_expr
, minval
);
10872 minval
= integer_zero_node
;
10873 index
= expand_normal (index_expr
);
10875 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
10876 omode
, 1, default_label
);
10877 /* Now we can safely truncate. */
10878 index
= convert_to_mode (index_mode
, index
, 0);
10882 if (TYPE_MODE (index_type
) != index_mode
)
10884 index_type
= lang_hooks
.types
.type_for_mode (index_mode
, 0);
10885 index_expr
= fold_convert (index_type
, index_expr
);
10888 index
= expand_normal (index_expr
);
10891 do_pending_stack_adjust ();
10893 op1
= expand_normal (minval
);
10894 op2
= expand_normal (range
);
10896 create_input_operand (&ops
[0], index
, index_mode
);
10897 create_convert_operand_from_type (&ops
[1], op1
, TREE_TYPE (minval
));
10898 create_convert_operand_from_type (&ops
[2], op2
, TREE_TYPE (range
));
10899 create_fixed_operand (&ops
[3], table_label
);
10900 create_fixed_operand (&ops
[4], (default_label
10902 : fallback_label
));
10903 expand_jump_insn (CODE_FOR_casesi
, 5, ops
);
10907 /* Attempt to generate a tablejump instruction; same concept. */
10908 #ifndef HAVE_tablejump
10909 #define HAVE_tablejump 0
10910 #define gen_tablejump(x, y) (0)
10913 /* Subroutine of the next function.
10915 INDEX is the value being switched on, with the lowest value
10916 in the table already subtracted.
10917 MODE is its expected mode (needed if INDEX is constant).
10918 RANGE is the length of the jump table.
10919 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10921 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10922 index value is out of range. */
10925 do_tablejump (rtx index
, enum machine_mode mode
, rtx range
, rtx table_label
,
10930 if (INTVAL (range
) > cfun
->cfg
->max_jumptable_ents
)
10931 cfun
->cfg
->max_jumptable_ents
= INTVAL (range
);
10933 /* Do an unsigned comparison (in the proper mode) between the index
10934 expression and the value which represents the length of the range.
10935 Since we just finished subtracting the lower bound of the range
10936 from the index expression, this comparison allows us to simultaneously
10937 check that the original index expression value is both greater than
10938 or equal to the minimum value of the range and less than or equal to
10939 the maximum value of the range. */
10942 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
10945 /* If index is in range, it must fit in Pmode.
10946 Convert to Pmode so we can index with it. */
10948 index
= convert_to_mode (Pmode
, index
, 1);
10950 /* Don't let a MEM slip through, because then INDEX that comes
10951 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10952 and break_out_memory_refs will go to work on it and mess it up. */
10953 #ifdef PIC_CASE_VECTOR_ADDRESS
10954 if (flag_pic
&& !REG_P (index
))
10955 index
= copy_to_mode_reg (Pmode
, index
);
10958 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10959 GET_MODE_SIZE, because this indicates how large insns are. The other
10960 uses should all be Pmode, because they are addresses. This code
10961 could fail if addresses and insns are not the same size. */
10962 index
= gen_rtx_PLUS (Pmode
,
10963 gen_rtx_MULT (Pmode
, index
,
10964 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE
))),
10965 gen_rtx_LABEL_REF (Pmode
, table_label
));
10966 #ifdef PIC_CASE_VECTOR_ADDRESS
10968 index
= PIC_CASE_VECTOR_ADDRESS (index
);
10971 index
= memory_address (CASE_VECTOR_MODE
, index
);
10972 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
10973 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
10974 convert_move (temp
, vector
, 0);
10976 emit_jump_insn (gen_tablejump (temp
, table_label
));
10978 /* If we are generating PIC code or if the table is PC-relative, the
10979 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10980 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
10985 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
10986 rtx table_label
, rtx default_label
)
10990 if (! HAVE_tablejump
)
10993 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
10994 fold_convert (index_type
, index_expr
),
10995 fold_convert (index_type
, minval
));
10996 index
= expand_normal (index_expr
);
10997 do_pending_stack_adjust ();
10999 do_tablejump (index
, TYPE_MODE (index_type
),
11000 convert_modes (TYPE_MODE (index_type
),
11001 TYPE_MODE (TREE_TYPE (range
)),
11002 expand_normal (range
),
11003 TYPE_UNSIGNED (TREE_TYPE (range
))),
11004 table_label
, default_label
);
11008 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11010 const_vector_from_tree (tree exp
)
11016 enum machine_mode inner
, mode
;
11018 mode
= TYPE_MODE (TREE_TYPE (exp
));
11020 if (initializer_zerop (exp
))
11021 return CONST0_RTX (mode
);
11023 units
= GET_MODE_NUNITS (mode
);
11024 inner
= GET_MODE_INNER (mode
);
11026 v
= rtvec_alloc (units
);
11028 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
11030 elt
= VECTOR_CST_ELT (exp
, i
);
11032 if (TREE_CODE (elt
) == REAL_CST
)
11033 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
11035 else if (TREE_CODE (elt
) == FIXED_CST
)
11036 RTVEC_ELT (v
, i
) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt
),
11039 RTVEC_ELT (v
, i
) = immed_double_int_const (tree_to_double_int (elt
),
11043 return gen_rtx_CONST_VECTOR (mode
, v
);
11046 /* Build a decl for a personality function given a language prefix. */
11049 build_personality_function (const char *lang
)
11051 const char *unwind_and_version
;
11055 switch (targetm_common
.except_unwind_info (&global_options
))
11060 unwind_and_version
= "_sj0";
11064 unwind_and_version
= "_v0";
11067 gcc_unreachable ();
11070 name
= ACONCAT (("__", lang
, "_personality", unwind_and_version
, NULL
));
11072 type
= build_function_type_list (integer_type_node
, integer_type_node
,
11073 long_long_unsigned_type_node
,
11074 ptr_type_node
, ptr_type_node
, NULL_TREE
);
11075 decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
,
11076 get_identifier (name
), type
);
11077 DECL_ARTIFICIAL (decl
) = 1;
11078 DECL_EXTERNAL (decl
) = 1;
11079 TREE_PUBLIC (decl
) = 1;
11081 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11082 are the flags assigned by targetm.encode_section_info. */
11083 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl
), 0), NULL
);
11088 /* Extracts the personality function of DECL and returns the corresponding
11092 get_personality_function (tree decl
)
11094 tree personality
= DECL_FUNCTION_PERSONALITY (decl
);
11095 enum eh_personality_kind pk
;
11097 pk
= function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl
));
11098 if (pk
== eh_personality_none
)
11102 && pk
== eh_personality_any
)
11103 personality
= lang_hooks
.eh_personality ();
11105 if (pk
== eh_personality_lang
)
11106 gcc_assert (personality
!= NULL_TREE
);
11108 return XEXP (DECL_RTL (personality
), 0);
11111 #include "gt-expr.h"