1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
33 #include "hard-reg-set.h"
34 #include "insn-config.h"
37 static rtx break_out_memory_refs
PARAMS ((rtx
));
38 static void emit_stack_probe
PARAMS ((rtx
));
41 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
44 trunc_int_for_mode (c
, mode
)
46 enum machine_mode mode
;
48 int width
= GET_MODE_BITSIZE (mode
);
50 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
52 return c
& 1 ? STORE_FLAG_VALUE
: 0;
54 /* Sign-extend for the requested mode. */
56 if (width
< HOST_BITS_PER_WIDE_INT
)
58 HOST_WIDE_INT sign
= 1;
68 /* Return an rtx for the sum of X and the integer C.
70 This function should be used via the `plus_constant' macro. */
73 plus_constant_wide (x
, c
)
75 register HOST_WIDE_INT c
;
77 register RTX_CODE code
;
79 register enum machine_mode mode
;
95 return GEN_INT (INTVAL (x
) + c
);
99 unsigned HOST_WIDE_INT l1
= CONST_DOUBLE_LOW (x
);
100 HOST_WIDE_INT h1
= CONST_DOUBLE_HIGH (x
);
101 unsigned HOST_WIDE_INT l2
= c
;
102 HOST_WIDE_INT h2
= c
< 0 ? ~0 : 0;
103 unsigned HOST_WIDE_INT lv
;
106 add_double (l1
, h1
, l2
, h2
, &lv
, &hv
);
108 return immed_double_const (lv
, hv
, VOIDmode
);
112 /* If this is a reference to the constant pool, try replacing it with
113 a reference to a new constant. If the resulting address isn't
114 valid, don't return it because we have no way to validize it. */
115 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
116 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)))
119 = force_const_mem (GET_MODE (x
),
120 plus_constant (get_pool_constant (XEXP (x
, 0)),
122 if (memory_address_p (GET_MODE (tem
), XEXP (tem
, 0)))
128 /* If adding to something entirely constant, set a flag
129 so that we can add a CONST around the result. */
140 /* The interesting case is adding the integer to a sum.
141 Look for constant term in the sum and combine
142 with C. For an integer constant term, we make a combined
143 integer. For a constant term that is not an explicit integer,
144 we cannot really combine, but group them together anyway.
146 Restart or use a recursive call in case the remaining operand is
147 something that we handle specially, such as a SYMBOL_REF.
149 We may not immediately return from the recursive call here, lest
150 all_constant gets lost. */
152 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
154 c
+= INTVAL (XEXP (x
, 1));
156 if (GET_MODE (x
) != VOIDmode
)
157 c
= trunc_int_for_mode (c
, GET_MODE (x
));
162 else if (CONSTANT_P (XEXP (x
, 1)))
164 x
= gen_rtx_PLUS (mode
, XEXP (x
, 0), plus_constant (XEXP (x
, 1), c
));
167 else if (find_constant_term_loc (&y
))
169 /* We need to be careful since X may be shared and we can't
170 modify it in place. */
171 rtx copy
= copy_rtx (x
);
172 rtx
*const_loc
= find_constant_term_loc (©
);
174 *const_loc
= plus_constant (*const_loc
, c
);
185 x
= gen_rtx_PLUS (mode
, x
, GEN_INT (c
));
187 if (GET_CODE (x
) == SYMBOL_REF
|| GET_CODE (x
) == LABEL_REF
)
189 else if (all_constant
)
190 return gen_rtx_CONST (mode
, x
);
195 /* If X is a sum, return a new sum like X but lacking any constant terms.
196 Add all the removed constant terms into *CONSTPTR.
197 X itself is not altered. The result != X if and only if
198 it is not isomorphic to X. */
201 eliminate_constant_term (x
, constptr
)
208 if (GET_CODE (x
) != PLUS
)
211 /* First handle constants appearing at this level explicitly. */
212 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
213 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
), *constptr
,
215 && GET_CODE (tem
) == CONST_INT
)
218 return eliminate_constant_term (XEXP (x
, 0), constptr
);
222 x0
= eliminate_constant_term (XEXP (x
, 0), &tem
);
223 x1
= eliminate_constant_term (XEXP (x
, 1), &tem
);
224 if ((x1
!= XEXP (x
, 1) || x0
!= XEXP (x
, 0))
225 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
),
227 && GET_CODE (tem
) == CONST_INT
)
230 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
236 /* Returns the insn that next references REG after INSN, or 0
237 if REG is clobbered before next referenced or we cannot find
238 an insn that references REG in a straight-line piece of code. */
241 find_next_ref (reg
, insn
)
247 for (insn
= NEXT_INSN (insn
); insn
; insn
= next
)
249 next
= NEXT_INSN (insn
);
250 if (GET_CODE (insn
) == NOTE
)
252 if (GET_CODE (insn
) == CODE_LABEL
253 || GET_CODE (insn
) == BARRIER
)
255 if (GET_CODE (insn
) == INSN
256 || GET_CODE (insn
) == JUMP_INSN
257 || GET_CODE (insn
) == CALL_INSN
)
259 if (reg_set_p (reg
, insn
))
261 if (reg_mentioned_p (reg
, PATTERN (insn
)))
263 if (GET_CODE (insn
) == JUMP_INSN
)
265 if (any_uncondjump_p (insn
))
266 next
= JUMP_LABEL (insn
);
270 if (GET_CODE (insn
) == CALL_INSN
271 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
272 && call_used_regs
[REGNO (reg
)])
281 /* Return an rtx for the size in bytes of the value of EXP. */
289 if (TREE_CODE_CLASS (TREE_CODE (exp
)) == 'd'
290 && DECL_SIZE_UNIT (exp
) != 0)
291 size
= DECL_SIZE_UNIT (exp
);
293 size
= size_in_bytes (TREE_TYPE (exp
));
295 if (TREE_CODE (size
) != INTEGER_CST
296 && contains_placeholder_p (size
))
297 size
= build (WITH_RECORD_EXPR
, sizetype
, size
, exp
);
299 return expand_expr (size
, NULL_RTX
, TYPE_MODE (sizetype
),
300 EXPAND_MEMORY_USE_BAD
);
303 /* Return a copy of X in which all memory references
304 and all constants that involve symbol refs
305 have been replaced with new temporary registers.
306 Also emit code to load the memory locations and constants
307 into those registers.
309 If X contains no such constants or memory references,
310 X itself (not a copy) is returned.
312 If a constant is found in the address that is not a legitimate constant
313 in an insn, it is left alone in the hope that it might be valid in the
316 X may contain no arithmetic except addition, subtraction and multiplication.
317 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
320 break_out_memory_refs (x
)
323 if (GET_CODE (x
) == MEM
324 || (CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
)
325 && GET_MODE (x
) != VOIDmode
))
326 x
= force_reg (GET_MODE (x
), x
);
327 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
328 || GET_CODE (x
) == MULT
)
330 register rtx op0
= break_out_memory_refs (XEXP (x
, 0));
331 register rtx op1
= break_out_memory_refs (XEXP (x
, 1));
333 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
334 x
= gen_rtx_fmt_ee (GET_CODE (x
), Pmode
, op0
, op1
);
340 #ifdef POINTERS_EXTEND_UNSIGNED
342 /* Given X, a memory address in ptr_mode, convert it to an address
343 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
344 the fact that pointers are not allowed to overflow by commuting arithmetic
345 operations over conversions so that address arithmetic insns can be
349 convert_memory_address (to_mode
, x
)
350 enum machine_mode to_mode
;
353 enum machine_mode from_mode
= to_mode
== ptr_mode
? Pmode
: ptr_mode
;
356 /* Here we handle some special cases. If none of them apply, fall through
357 to the default case. */
358 switch (GET_CODE (x
))
365 if (POINTERS_EXTEND_UNSIGNED
>= 0
366 && GET_MODE (SUBREG_REG (x
)) == to_mode
)
367 return SUBREG_REG (x
);
371 if (POINTERS_EXTEND_UNSIGNED
>= 0)
373 temp
= gen_rtx_LABEL_REF (to_mode
, XEXP (x
, 0));
374 LABEL_REF_NONLOCAL_P (temp
) = LABEL_REF_NONLOCAL_P (x
);
380 if (POINTERS_EXTEND_UNSIGNED
>= 0)
382 temp
= gen_rtx_SYMBOL_REF (to_mode
, XSTR (x
, 0));
383 SYMBOL_REF_FLAG (temp
) = SYMBOL_REF_FLAG (x
);
384 CONSTANT_POOL_ADDRESS_P (temp
) = CONSTANT_POOL_ADDRESS_P (x
);
385 STRING_POOL_ADDRESS_P (temp
) = STRING_POOL_ADDRESS_P (x
);
391 if (POINTERS_EXTEND_UNSIGNED
>= 0)
392 return gen_rtx_CONST (to_mode
,
393 convert_memory_address (to_mode
, XEXP (x
, 0)));
398 /* For addition the second operand is a small constant, we can safely
399 permute the conversion and addition operation. We can always safely
400 permute them if we are making the address narrower. In addition,
401 always permute the operations if this is a constant. */
402 if (POINTERS_EXTEND_UNSIGNED
>= 0
403 && (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
)
404 || (GET_CODE (x
) == PLUS
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
405 && (INTVAL (XEXP (x
, 1)) + 20000 < 40000
406 || CONSTANT_P (XEXP (x
, 0))))))
407 return gen_rtx_fmt_ee (GET_CODE (x
), to_mode
,
408 convert_memory_address (to_mode
, XEXP (x
, 0)),
409 convert_memory_address (to_mode
, XEXP (x
, 1)));
416 return convert_modes (to_mode
, from_mode
,
417 x
, POINTERS_EXTEND_UNSIGNED
);
421 /* Given a memory address or facsimile X, construct a new address,
422 currently equivalent, that is stable: future stores won't change it.
424 X must be composed of constants, register and memory references
425 combined with addition, subtraction and multiplication:
426 in other words, just what you can get from expand_expr if sum_ok is 1.
428 Works by making copies of all regs and memory locations used
429 by X and combining them the same way X does.
430 You could also stabilize the reference to this address
431 by copying the address to a register with copy_to_reg;
432 but then you wouldn't get indexed addressing in the reference. */
438 if (GET_CODE (x
) == REG
)
440 if (REGNO (x
) != FRAME_POINTER_REGNUM
441 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
442 && REGNO (x
) != HARD_FRAME_POINTER_REGNUM
447 else if (GET_CODE (x
) == MEM
)
449 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
450 || GET_CODE (x
) == MULT
)
452 register rtx op0
= copy_all_regs (XEXP (x
, 0));
453 register rtx op1
= copy_all_regs (XEXP (x
, 1));
454 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
455 x
= gen_rtx_fmt_ee (GET_CODE (x
), Pmode
, op0
, op1
);
460 /* Return something equivalent to X but valid as a memory address
461 for something of mode MODE. When X is not itself valid, this
462 works by copying X or subexpressions of it into registers. */
465 memory_address (mode
, x
)
466 enum machine_mode mode
;
469 register rtx oldx
= x
;
471 if (GET_CODE (x
) == ADDRESSOF
)
474 #ifdef POINTERS_EXTEND_UNSIGNED
475 if (GET_MODE (x
) == ptr_mode
)
476 x
= convert_memory_address (Pmode
, x
);
479 /* By passing constant addresses thru registers
480 we get a chance to cse them. */
481 if (! cse_not_expected
&& CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
))
482 x
= force_reg (Pmode
, x
);
484 /* Accept a QUEUED that refers to a REG
485 even though that isn't a valid address.
486 On attempting to put this in an insn we will call protect_from_queue
487 which will turn it into a REG, which is valid. */
488 else if (GET_CODE (x
) == QUEUED
489 && GET_CODE (QUEUED_VAR (x
)) == REG
)
492 /* We get better cse by rejecting indirect addressing at this stage.
493 Let the combiner create indirect addresses where appropriate.
494 For now, generate the code so that the subexpressions useful to share
495 are visible. But not if cse won't be done! */
498 if (! cse_not_expected
&& GET_CODE (x
) != REG
)
499 x
= break_out_memory_refs (x
);
501 /* At this point, any valid address is accepted. */
502 GO_IF_LEGITIMATE_ADDRESS (mode
, x
, win
);
504 /* If it was valid before but breaking out memory refs invalidated it,
505 use it the old way. */
506 if (memory_address_p (mode
, oldx
))
509 /* Perform machine-dependent transformations on X
510 in certain cases. This is not necessary since the code
511 below can handle all possible cases, but machine-dependent
512 transformations can make better code. */
513 LEGITIMIZE_ADDRESS (x
, oldx
, mode
, win
);
515 /* PLUS and MULT can appear in special ways
516 as the result of attempts to make an address usable for indexing.
517 Usually they are dealt with by calling force_operand, below.
518 But a sum containing constant terms is special
519 if removing them makes the sum a valid address:
520 then we generate that address in a register
521 and index off of it. We do this because it often makes
522 shorter code, and because the addresses thus generated
523 in registers often become common subexpressions. */
524 if (GET_CODE (x
) == PLUS
)
526 rtx constant_term
= const0_rtx
;
527 rtx y
= eliminate_constant_term (x
, &constant_term
);
528 if (constant_term
== const0_rtx
529 || ! memory_address_p (mode
, y
))
530 x
= force_operand (x
, NULL_RTX
);
533 y
= gen_rtx_PLUS (GET_MODE (x
), copy_to_reg (y
), constant_term
);
534 if (! memory_address_p (mode
, y
))
535 x
= force_operand (x
, NULL_RTX
);
541 else if (GET_CODE (x
) == MULT
|| GET_CODE (x
) == MINUS
)
542 x
= force_operand (x
, NULL_RTX
);
544 /* If we have a register that's an invalid address,
545 it must be a hard reg of the wrong class. Copy it to a pseudo. */
546 else if (GET_CODE (x
) == REG
)
549 /* Last resort: copy the value to a register, since
550 the register is a valid address. */
552 x
= force_reg (Pmode
, x
);
559 if (flag_force_addr
&& ! cse_not_expected
&& GET_CODE (x
) != REG
560 /* Don't copy an addr via a reg if it is one of our stack slots. */
561 && ! (GET_CODE (x
) == PLUS
562 && (XEXP (x
, 0) == virtual_stack_vars_rtx
563 || XEXP (x
, 0) == virtual_incoming_args_rtx
)))
565 if (general_operand (x
, Pmode
))
566 x
= force_reg (Pmode
, x
);
568 x
= force_operand (x
, NULL_RTX
);
574 /* If we didn't change the address, we are done. Otherwise, mark
575 a reg as a pointer if we have REG or REG + CONST_INT. */
578 else if (GET_CODE (x
) == REG
)
579 mark_reg_pointer (x
, BITS_PER_UNIT
);
580 else if (GET_CODE (x
) == PLUS
581 && GET_CODE (XEXP (x
, 0)) == REG
582 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
583 mark_reg_pointer (XEXP (x
, 0), BITS_PER_UNIT
);
585 /* OLDX may have been the address on a temporary. Update the address
586 to indicate that X is now used. */
587 update_temp_slot_address (oldx
, x
);
592 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
595 memory_address_noforce (mode
, x
)
596 enum machine_mode mode
;
599 int ambient_force_addr
= flag_force_addr
;
603 val
= memory_address (mode
, x
);
604 flag_force_addr
= ambient_force_addr
;
608 /* Convert a mem ref into one with a valid memory address.
609 Pass through anything else unchanged. */
615 if (GET_CODE (ref
) != MEM
)
617 if (! (flag_force_addr
&& CONSTANT_ADDRESS_P (XEXP (ref
, 0)))
618 && memory_address_p (GET_MODE (ref
), XEXP (ref
, 0)))
621 /* Don't alter REF itself, since that is probably a stack slot. */
622 return replace_equiv_address (ref
, XEXP (ref
, 0));
625 /* Given REF, either a MEM or a REG, and T, either the type of X or
626 the expression corresponding to REF, set RTX_UNCHANGING_P if
630 maybe_set_unchanging (ref
, t
)
634 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
635 initialization is only executed once, or whose initializer always
636 has the same value. Currently we simplify this to PARM_DECLs in the
637 first case, and decls with TREE_CONSTANT initializers in the second. */
638 if ((TREE_READONLY (t
) && DECL_P (t
)
639 && (TREE_CODE (t
) == PARM_DECL
640 || DECL_INITIAL (t
) == NULL_TREE
641 || TREE_CONSTANT (DECL_INITIAL (t
))))
642 || TREE_CODE_CLASS (TREE_CODE (t
)) == 'c')
643 RTX_UNCHANGING_P (ref
) = 1;
646 /* Given REF, a MEM, and T, either the type of X or the expression
647 corresponding to REF, set the memory attributes. OBJECTP is nonzero
648 if we are making a new object of this type. */
651 set_mem_attributes (ref
, t
, objectp
)
658 /* It can happen that type_for_mode was given a mode for which there
659 is no language-level type. In which case it returns NULL, which
664 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
666 /* Get the alias set from the expression or type (perhaps using a
667 front-end routine) and then copy bits from the type. */
669 /* It is incorrect to set RTX_UNCHANGING_P from TREE_READONLY (type)
670 here, because, in C and C++, the fact that a location is accessed
671 through a const expression does not mean that the value there can
673 set_mem_alias_set (ref
, get_alias_set (t
));
674 MEM_VOLATILE_P (ref
) = TYPE_VOLATILE (type
);
675 MEM_IN_STRUCT_P (ref
) = AGGREGATE_TYPE_P (type
);
677 /* If we are making an object of this type, we know that it is a scalar if
678 the type is not an aggregate. */
679 if (objectp
&& ! AGGREGATE_TYPE_P (type
))
680 MEM_SCALAR_P (ref
) = 1;
682 /* If T is a type, this is all we can do. Otherwise, we may be able
683 to deduce some more information about the expression. */
687 maybe_set_unchanging (ref
, t
);
688 if (TREE_THIS_VOLATILE (t
))
689 MEM_VOLATILE_P (ref
) = 1;
691 /* Now see if we can say more about whether it's an aggregate or
692 scalar. If we already know it's an aggregate, don't bother. */
693 if (MEM_IN_STRUCT_P (ref
))
696 /* Now remove any NOPs: they don't change what the underlying object is.
697 Likewise for SAVE_EXPR. */
698 while (TREE_CODE (t
) == NOP_EXPR
|| TREE_CODE (t
) == CONVERT_EXPR
699 || TREE_CODE (t
) == NON_LVALUE_EXPR
|| TREE_CODE (t
) == SAVE_EXPR
)
700 t
= TREE_OPERAND (t
, 0);
702 /* Since we already know the type isn't an aggregate, if this is a decl,
703 it must be a scalar. Or if it is a reference into an aggregate,
704 this is part of an aggregate. Otherwise we don't know. */
706 MEM_SCALAR_P (ref
) = 1;
707 else if (TREE_CODE (t
) == COMPONENT_REF
|| TREE_CODE (t
) == ARRAY_REF
708 || TREE_CODE (t
) == ARRAY_RANGE_REF
709 || TREE_CODE (t
) == BIT_FIELD_REF
)
710 MEM_IN_STRUCT_P (ref
) = 1;
713 /* Return a modified copy of X with its memory address copied
714 into a temporary register to protect it from side effects.
715 If X is not a MEM, it is returned unchanged (and not copied).
716 Perhaps even if it is a MEM, if there is no need to change it. */
723 if (GET_CODE (x
) != MEM
724 || ! rtx_unstable_p (XEXP (x
, 0)))
728 replace_equiv_address (x
, force_reg (Pmode
, copy_all_regs (XEXP (x
, 0))));
731 /* Copy the value or contents of X to a new temp reg and return that reg. */
737 register rtx temp
= gen_reg_rtx (GET_MODE (x
));
739 /* If not an operand, must be an address with PLUS and MULT so
740 do the computation. */
741 if (! general_operand (x
, VOIDmode
))
742 x
= force_operand (x
, temp
);
745 emit_move_insn (temp
, x
);
750 /* Like copy_to_reg but always give the new register mode Pmode
751 in case X is a constant. */
757 return copy_to_mode_reg (Pmode
, x
);
760 /* Like copy_to_reg but always give the new register mode MODE
761 in case X is a constant. */
764 copy_to_mode_reg (mode
, x
)
765 enum machine_mode mode
;
768 register rtx temp
= gen_reg_rtx (mode
);
770 /* If not an operand, must be an address with PLUS and MULT so
771 do the computation. */
772 if (! general_operand (x
, VOIDmode
))
773 x
= force_operand (x
, temp
);
775 if (GET_MODE (x
) != mode
&& GET_MODE (x
) != VOIDmode
)
778 emit_move_insn (temp
, x
);
782 /* Load X into a register if it is not already one.
783 Use mode MODE for the register.
784 X should be valid for mode MODE, but it may be a constant which
785 is valid for all integer modes; that's why caller must specify MODE.
787 The caller must not alter the value in the register we return,
788 since we mark it as a "constant" register. */
792 enum machine_mode mode
;
795 register rtx temp
, insn
, set
;
797 if (GET_CODE (x
) == REG
)
800 temp
= gen_reg_rtx (mode
);
802 if (! general_operand (x
, mode
))
803 x
= force_operand (x
, NULL_RTX
);
805 insn
= emit_move_insn (temp
, x
);
807 /* Let optimizers know that TEMP's value never changes
808 and that X can be substituted for it. Don't get confused
809 if INSN set something else (such as a SUBREG of TEMP). */
811 && (set
= single_set (insn
)) != 0
812 && SET_DEST (set
) == temp
)
814 rtx note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
819 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_EQUAL
, x
, REG_NOTES (insn
));
824 /* If X is a memory ref, copy its contents to a new temp reg and return
825 that reg. Otherwise, return X. */
833 if (GET_CODE (x
) != MEM
|| GET_MODE (x
) == BLKmode
)
836 temp
= gen_reg_rtx (GET_MODE (x
));
837 emit_move_insn (temp
, x
);
841 /* Copy X to TARGET (if it's nonzero and a reg)
842 or to a new temp reg and return that reg.
843 MODE is the mode to use for X in case it is a constant. */
846 copy_to_suggested_reg (x
, target
, mode
)
848 enum machine_mode mode
;
852 if (target
&& GET_CODE (target
) == REG
)
855 temp
= gen_reg_rtx (mode
);
857 emit_move_insn (temp
, x
);
861 /* Return the mode to use to store a scalar of TYPE and MODE.
862 PUNSIGNEDP points to the signedness of the type and may be adjusted
863 to show what signedness to use on extension operations.
865 FOR_CALL is non-zero if this call is promoting args for a call. */
868 promote_mode (type
, mode
, punsignedp
, for_call
)
870 enum machine_mode mode
;
872 int for_call ATTRIBUTE_UNUSED
;
874 enum tree_code code
= TREE_CODE (type
);
875 int unsignedp
= *punsignedp
;
877 #ifdef PROMOTE_FOR_CALL_ONLY
885 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
886 case CHAR_TYPE
: case REAL_TYPE
: case OFFSET_TYPE
:
887 PROMOTE_MODE (mode
, unsignedp
, type
);
891 #ifdef POINTERS_EXTEND_UNSIGNED
895 unsignedp
= POINTERS_EXTEND_UNSIGNED
;
903 *punsignedp
= unsignedp
;
907 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
908 This pops when ADJUST is positive. ADJUST need not be constant. */
911 adjust_stack (adjust
)
915 adjust
= protect_from_queue (adjust
, 0);
917 if (adjust
== const0_rtx
)
920 /* We expect all variable sized adjustments to be multiple of
921 PREFERRED_STACK_BOUNDARY. */
922 if (GET_CODE (adjust
) == CONST_INT
)
923 stack_pointer_delta
-= INTVAL (adjust
);
925 temp
= expand_binop (Pmode
,
926 #ifdef STACK_GROWS_DOWNWARD
931 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
934 if (temp
!= stack_pointer_rtx
)
935 emit_move_insn (stack_pointer_rtx
, temp
);
938 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
939 This pushes when ADJUST is positive. ADJUST need not be constant. */
942 anti_adjust_stack (adjust
)
946 adjust
= protect_from_queue (adjust
, 0);
948 if (adjust
== const0_rtx
)
951 /* We expect all variable sized adjustments to be multiple of
952 PREFERRED_STACK_BOUNDARY. */
953 if (GET_CODE (adjust
) == CONST_INT
)
954 stack_pointer_delta
+= INTVAL (adjust
);
956 temp
= expand_binop (Pmode
,
957 #ifdef STACK_GROWS_DOWNWARD
962 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
965 if (temp
!= stack_pointer_rtx
)
966 emit_move_insn (stack_pointer_rtx
, temp
);
969 /* Round the size of a block to be pushed up to the boundary required
970 by this machine. SIZE is the desired size, which need not be constant. */
976 int align
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
979 if (GET_CODE (size
) == CONST_INT
)
981 int new = (INTVAL (size
) + align
- 1) / align
* align
;
982 if (INTVAL (size
) != new)
983 size
= GEN_INT (new);
987 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
988 but we know it can't. So add ourselves and then do
990 size
= expand_binop (Pmode
, add_optab
, size
, GEN_INT (align
- 1),
991 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
992 size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
, GEN_INT (align
),
994 size
= expand_mult (Pmode
, size
, GEN_INT (align
), NULL_RTX
, 1);
999 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1000 to a previously-created save area. If no save area has been allocated,
1001 this function will allocate one. If a save area is specified, it
1002 must be of the proper mode.
1004 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
1005 are emitted at the current position. */
1008 emit_stack_save (save_level
, psave
, after
)
1009 enum save_level save_level
;
1014 /* The default is that we use a move insn and save in a Pmode object. */
1015 rtx (*fcn
) PARAMS ((rtx
, rtx
)) = gen_move_insn
;
1016 enum machine_mode mode
= STACK_SAVEAREA_MODE (save_level
);
1018 /* See if this machine has anything special to do for this kind of save. */
1021 #ifdef HAVE_save_stack_block
1023 if (HAVE_save_stack_block
)
1024 fcn
= gen_save_stack_block
;
1027 #ifdef HAVE_save_stack_function
1029 if (HAVE_save_stack_function
)
1030 fcn
= gen_save_stack_function
;
1033 #ifdef HAVE_save_stack_nonlocal
1035 if (HAVE_save_stack_nonlocal
)
1036 fcn
= gen_save_stack_nonlocal
;
1043 /* If there is no save area and we have to allocate one, do so. Otherwise
1044 verify the save area is the proper mode. */
1048 if (mode
!= VOIDmode
)
1050 if (save_level
== SAVE_NONLOCAL
)
1051 *psave
= sa
= assign_stack_local (mode
, GET_MODE_SIZE (mode
), 0);
1053 *psave
= sa
= gen_reg_rtx (mode
);
1058 if (mode
== VOIDmode
|| GET_MODE (sa
) != mode
)
1067 /* We must validize inside the sequence, to ensure that any instructions
1068 created by the validize call also get moved to the right place. */
1070 sa
= validize_mem (sa
);
1071 emit_insn (fcn (sa
, stack_pointer_rtx
));
1072 seq
= gen_sequence ();
1074 emit_insn_after (seq
, after
);
1079 sa
= validize_mem (sa
);
1080 emit_insn (fcn (sa
, stack_pointer_rtx
));
1084 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1085 area made by emit_stack_save. If it is zero, we have nothing to do.
1087 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1088 current position. */
1091 emit_stack_restore (save_level
, sa
, after
)
1092 enum save_level save_level
;
1096 /* The default is that we use a move insn. */
1097 rtx (*fcn
) PARAMS ((rtx
, rtx
)) = gen_move_insn
;
1099 /* See if this machine has anything special to do for this kind of save. */
1102 #ifdef HAVE_restore_stack_block
1104 if (HAVE_restore_stack_block
)
1105 fcn
= gen_restore_stack_block
;
1108 #ifdef HAVE_restore_stack_function
1110 if (HAVE_restore_stack_function
)
1111 fcn
= gen_restore_stack_function
;
1114 #ifdef HAVE_restore_stack_nonlocal
1116 if (HAVE_restore_stack_nonlocal
)
1117 fcn
= gen_restore_stack_nonlocal
;
1125 sa
= validize_mem (sa
);
1132 emit_insn (fcn (stack_pointer_rtx
, sa
));
1133 seq
= gen_sequence ();
1135 emit_insn_after (seq
, after
);
1138 emit_insn (fcn (stack_pointer_rtx
, sa
));
1141 #ifdef SETJMP_VIA_SAVE_AREA
1142 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1143 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1144 platforms, the dynamic stack space used can corrupt the original
1145 frame, thus causing a crash if a longjmp unwinds to it. */
1148 optimize_save_area_alloca (insns
)
1153 for (insn
= insns
; insn
; insn
= NEXT_INSN(insn
))
1157 if (GET_CODE (insn
) != INSN
)
1160 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1162 if (REG_NOTE_KIND (note
) != REG_SAVE_AREA
)
1165 if (!current_function_calls_setjmp
)
1167 rtx pat
= PATTERN (insn
);
1169 /* If we do not see the note in a pattern matching
1170 these precise characteristics, we did something
1171 entirely wrong in allocate_dynamic_stack_space.
1173 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1174 was defined on a machine where stacks grow towards higher
1177 Right now only supported port with stack that grow upward
1178 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1179 if (GET_CODE (pat
) != SET
1180 || SET_DEST (pat
) != stack_pointer_rtx
1181 || GET_CODE (SET_SRC (pat
)) != MINUS
1182 || XEXP (SET_SRC (pat
), 0) != stack_pointer_rtx
)
1185 /* This will now be transformed into a (set REG REG)
1186 so we can just blow away all the other notes. */
1187 XEXP (SET_SRC (pat
), 1) = XEXP (note
, 0);
1188 REG_NOTES (insn
) = NULL_RTX
;
1192 /* setjmp was called, we must remove the REG_SAVE_AREA
1193 note so that later passes do not get confused by its
1195 if (note
== REG_NOTES (insn
))
1197 REG_NOTES (insn
) = XEXP (note
, 1);
1203 for (srch
= REG_NOTES (insn
); srch
; srch
= XEXP (srch
, 1))
1204 if (XEXP (srch
, 1) == note
)
1207 if (srch
== NULL_RTX
)
1210 XEXP (srch
, 1) = XEXP (note
, 1);
1213 /* Once we've seen the note of interest, we need not look at
1214 the rest of them. */
1219 #endif /* SETJMP_VIA_SAVE_AREA */
1221 /* Return an rtx representing the address of an area of memory dynamically
1222 pushed on the stack. This region of memory is always aligned to
1223 a multiple of BIGGEST_ALIGNMENT.
1225 Any required stack pointer alignment is preserved.
1227 SIZE is an rtx representing the size of the area.
1228 TARGET is a place in which the address can be placed.
1230 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1233 allocate_dynamic_stack_space (size
, target
, known_align
)
1238 #ifdef SETJMP_VIA_SAVE_AREA
1239 rtx setjmpless_size
= NULL_RTX
;
1242 /* If we're asking for zero bytes, it doesn't matter what we point
1243 to since we can't dereference it. But return a reasonable
1245 if (size
== const0_rtx
)
1246 return virtual_stack_dynamic_rtx
;
1248 /* Otherwise, show we're calling alloca or equivalent. */
1249 current_function_calls_alloca
= 1;
1251 /* Ensure the size is in the proper mode. */
1252 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1253 size
= convert_to_mode (Pmode
, size
, 1);
1255 /* We can't attempt to minimize alignment necessary, because we don't
1256 know the final value of preferred_stack_boundary yet while executing
1258 cfun
->preferred_stack_boundary
= PREFERRED_STACK_BOUNDARY
;
1260 /* We will need to ensure that the address we return is aligned to
1261 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1262 always know its final value at this point in the compilation (it
1263 might depend on the size of the outgoing parameter lists, for
1264 example), so we must align the value to be returned in that case.
1265 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
1266 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1267 We must also do an alignment operation on the returned value if
1268 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1270 If we have to align, we must leave space in SIZE for the hole
1271 that might result from the alignment operation. */
1273 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1274 #define MUST_ALIGN 1
1276 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1281 = force_operand (plus_constant (size
,
1282 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
- 1),
1285 #ifdef SETJMP_VIA_SAVE_AREA
1286 /* If setjmp restores regs from a save area in the stack frame,
1287 avoid clobbering the reg save area. Note that the offset of
1288 virtual_incoming_args_rtx includes the preallocated stack args space.
1289 It would be no problem to clobber that, but it's on the wrong side
1290 of the old save area. */
1293 = expand_binop (Pmode
, sub_optab
, virtual_stack_dynamic_rtx
,
1294 stack_pointer_rtx
, NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1296 if (!current_function_calls_setjmp
)
1298 int align
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
1300 /* See optimize_save_area_alloca to understand what is being
1303 /* ??? Code below assumes that the save area needs maximal
1304 alignment. This constraint may be too strong. */
1305 if (PREFERRED_STACK_BOUNDARY
!= BIGGEST_ALIGNMENT
)
1308 if (GET_CODE (size
) == CONST_INT
)
1310 HOST_WIDE_INT
new = INTVAL (size
) / align
* align
;
1312 if (INTVAL (size
) != new)
1313 setjmpless_size
= GEN_INT (new);
1315 setjmpless_size
= size
;
1319 /* Since we know overflow is not possible, we avoid using
1320 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1321 setjmpless_size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
,
1322 GEN_INT (align
), NULL_RTX
, 1);
1323 setjmpless_size
= expand_mult (Pmode
, setjmpless_size
,
1324 GEN_INT (align
), NULL_RTX
, 1);
1326 /* Our optimization works based upon being able to perform a simple
1327 transformation of this RTL into a (set REG REG) so make sure things
1328 did in fact end up in a REG. */
1329 if (!register_operand (setjmpless_size
, Pmode
))
1330 setjmpless_size
= force_reg (Pmode
, setjmpless_size
);
1333 size
= expand_binop (Pmode
, add_optab
, size
, dynamic_offset
,
1334 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1336 #endif /* SETJMP_VIA_SAVE_AREA */
1338 /* Round the size to a multiple of the required stack alignment.
1339 Since the stack if presumed to be rounded before this allocation,
1340 this will maintain the required alignment.
1342 If the stack grows downward, we could save an insn by subtracting
1343 SIZE from the stack pointer and then aligning the stack pointer.
1344 The problem with this is that the stack pointer may be unaligned
1345 between the execution of the subtraction and alignment insns and
1346 some machines do not allow this. Even on those that do, some
1347 signal handlers malfunction if a signal should occur between those
1348 insns. Since this is an extremely rare event, we have no reliable
1349 way of knowing which systems have this problem. So we avoid even
1350 momentarily mis-aligning the stack. */
1352 /* If we added a variable amount to SIZE,
1353 we can no longer assume it is aligned. */
1354 #if !defined (SETJMP_VIA_SAVE_AREA)
1355 if (MUST_ALIGN
|| known_align
% PREFERRED_STACK_BOUNDARY
!= 0)
1357 size
= round_push (size
);
1359 do_pending_stack_adjust ();
1361 /* We ought to be called always on the toplevel and stack ought to be aligned
1363 if (stack_pointer_delta
% (PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
))
1366 /* If needed, check that we have the required amount of stack. Take into
1367 account what has already been checked. */
1368 if (flag_stack_check
&& ! STACK_CHECK_BUILTIN
)
1369 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE
+ STACK_CHECK_PROTECT
, size
);
1371 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1372 if (target
== 0 || GET_CODE (target
) != REG
1373 || REGNO (target
) < FIRST_PSEUDO_REGISTER
1374 || GET_MODE (target
) != Pmode
)
1375 target
= gen_reg_rtx (Pmode
);
1377 mark_reg_pointer (target
, known_align
);
1379 /* Perform the required allocation from the stack. Some systems do
1380 this differently than simply incrementing/decrementing from the
1381 stack pointer, such as acquiring the space by calling malloc(). */
1382 #ifdef HAVE_allocate_stack
1383 if (HAVE_allocate_stack
)
1385 enum machine_mode mode
= STACK_SIZE_MODE
;
1386 insn_operand_predicate_fn pred
;
1388 pred
= insn_data
[(int) CODE_FOR_allocate_stack
].operand
[0].predicate
;
1389 if (pred
&& ! ((*pred
) (target
, Pmode
)))
1390 #ifdef POINTERS_EXTEND_UNSIGNED
1391 target
= convert_memory_address (Pmode
, target
);
1393 target
= copy_to_mode_reg (Pmode
, target
);
1396 if (mode
== VOIDmode
)
1399 pred
= insn_data
[(int) CODE_FOR_allocate_stack
].operand
[1].predicate
;
1400 if (pred
&& ! ((*pred
) (size
, mode
)))
1401 size
= copy_to_mode_reg (mode
, size
);
1403 emit_insn (gen_allocate_stack (target
, size
));
1408 #ifndef STACK_GROWS_DOWNWARD
1409 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1412 /* Check stack bounds if necessary. */
1413 if (current_function_limit_stack
)
1416 rtx space_available
= gen_label_rtx ();
1417 #ifdef STACK_GROWS_DOWNWARD
1418 available
= expand_binop (Pmode
, sub_optab
,
1419 stack_pointer_rtx
, stack_limit_rtx
,
1420 NULL_RTX
, 1, OPTAB_WIDEN
);
1422 available
= expand_binop (Pmode
, sub_optab
,
1423 stack_limit_rtx
, stack_pointer_rtx
,
1424 NULL_RTX
, 1, OPTAB_WIDEN
);
1426 emit_cmp_and_jump_insns (available
, size
, GEU
, NULL_RTX
, Pmode
, 1,
1427 0, space_available
);
1430 emit_insn (gen_trap ());
1433 error ("stack limits not supported on this target");
1435 emit_label (space_available
);
1438 anti_adjust_stack (size
);
1439 #ifdef SETJMP_VIA_SAVE_AREA
1440 if (setjmpless_size
!= NULL_RTX
)
1442 rtx note_target
= get_last_insn ();
1444 REG_NOTES (note_target
)
1445 = gen_rtx_EXPR_LIST (REG_SAVE_AREA
, setjmpless_size
,
1446 REG_NOTES (note_target
));
1448 #endif /* SETJMP_VIA_SAVE_AREA */
1450 #ifdef STACK_GROWS_DOWNWARD
1451 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1457 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1458 but we know it can't. So add ourselves and then do
1460 target
= expand_binop (Pmode
, add_optab
, target
,
1461 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
- 1),
1462 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1463 target
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, target
,
1464 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
),
1466 target
= expand_mult (Pmode
, target
,
1467 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
),
1471 /* Some systems require a particular insn to refer to the stack
1472 to make the pages exist. */
1475 emit_insn (gen_probe ());
1478 /* Record the new stack level for nonlocal gotos. */
1479 if (nonlocal_goto_handler_slots
!= 0)
1480 emit_stack_save (SAVE_NONLOCAL
, &nonlocal_goto_stack_level
, NULL_RTX
);
1485 /* A front end may want to override GCC's stack checking by providing a
1486 run-time routine to call to check the stack, so provide a mechanism for
1487 calling that routine. */
1489 static rtx stack_check_libfunc
;
1492 set_stack_check_libfunc (libfunc
)
1495 stack_check_libfunc
= libfunc
;
1498 /* Emit one stack probe at ADDRESS, an address within the stack. */
1501 emit_stack_probe (address
)
1504 rtx memref
= gen_rtx_MEM (word_mode
, address
);
1506 MEM_VOLATILE_P (memref
) = 1;
1508 if (STACK_CHECK_PROBE_LOAD
)
1509 emit_move_insn (gen_reg_rtx (word_mode
), memref
);
1511 emit_move_insn (memref
, const0_rtx
);
1514 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1515 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1516 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1517 subtract from the stack. If SIZE is constant, this is done
1518 with a fixed number of probes. Otherwise, we must make a loop. */
1520 #ifdef STACK_GROWS_DOWNWARD
1521 #define STACK_GROW_OP MINUS
1523 #define STACK_GROW_OP PLUS
1527 probe_stack_range (first
, size
)
1528 HOST_WIDE_INT first
;
1531 /* First see if the front end has set up a function for us to call to
1533 if (stack_check_libfunc
!= 0)
1535 rtx addr
= memory_address (QImode
,
1536 gen_rtx (STACK_GROW_OP
, Pmode
,
1538 plus_constant (size
, first
)));
1540 #ifdef POINTERS_EXTEND_UNSIGNED
1541 if (GET_MODE (addr
) != ptr_mode
)
1542 addr
= convert_memory_address (ptr_mode
, addr
);
1545 emit_library_call (stack_check_libfunc
, 0, VOIDmode
, 1, addr
,
1549 /* Next see if we have an insn to check the stack. Use it if so. */
1550 #ifdef HAVE_check_stack
1551 else if (HAVE_check_stack
)
1553 insn_operand_predicate_fn pred
;
1555 = force_operand (gen_rtx_STACK_GROW_OP (Pmode
,
1557 plus_constant (size
, first
)),
1560 pred
= insn_data
[(int) CODE_FOR_check_stack
].operand
[0].predicate
;
1561 if (pred
&& ! ((*pred
) (last_addr
, Pmode
)))
1562 last_addr
= copy_to_mode_reg (Pmode
, last_addr
);
1564 emit_insn (gen_check_stack (last_addr
));
1568 /* If we have to generate explicit probes, see if we have a constant
1569 small number of them to generate. If so, that's the easy case. */
1570 else if (GET_CODE (size
) == CONST_INT
1571 && INTVAL (size
) < 10 * STACK_CHECK_PROBE_INTERVAL
)
1573 HOST_WIDE_INT offset
;
1575 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1576 for values of N from 1 until it exceeds LAST. If only one
1577 probe is needed, this will not generate any code. Then probe
1579 for (offset
= first
+ STACK_CHECK_PROBE_INTERVAL
;
1580 offset
< INTVAL (size
);
1581 offset
= offset
+ STACK_CHECK_PROBE_INTERVAL
)
1582 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1586 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1588 plus_constant (size
, first
)));
1591 /* In the variable case, do the same as above, but in a loop. We emit loop
1592 notes so that loop optimization can be done. */
1596 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1598 GEN_INT (first
+ STACK_CHECK_PROBE_INTERVAL
)),
1601 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1603 plus_constant (size
, first
)),
1605 rtx incr
= GEN_INT (STACK_CHECK_PROBE_INTERVAL
);
1606 rtx loop_lab
= gen_label_rtx ();
1607 rtx test_lab
= gen_label_rtx ();
1608 rtx end_lab
= gen_label_rtx ();
1611 if (GET_CODE (test_addr
) != REG
1612 || REGNO (test_addr
) < FIRST_PSEUDO_REGISTER
)
1613 test_addr
= force_reg (Pmode
, test_addr
);
1615 emit_note (NULL
, NOTE_INSN_LOOP_BEG
);
1616 emit_jump (test_lab
);
1618 emit_label (loop_lab
);
1619 emit_stack_probe (test_addr
);
1621 emit_note (NULL
, NOTE_INSN_LOOP_CONT
);
1623 #ifdef STACK_GROWS_DOWNWARD
1624 #define CMP_OPCODE GTU
1625 temp
= expand_binop (Pmode
, sub_optab
, test_addr
, incr
, test_addr
,
1628 #define CMP_OPCODE LTU
1629 temp
= expand_binop (Pmode
, add_optab
, test_addr
, incr
, test_addr
,
1633 if (temp
!= test_addr
)
1636 emit_label (test_lab
);
1637 emit_cmp_and_jump_insns (test_addr
, last_addr
, CMP_OPCODE
,
1638 NULL_RTX
, Pmode
, 1, 0, loop_lab
);
1639 emit_jump (end_lab
);
1640 emit_note (NULL
, NOTE_INSN_LOOP_END
);
1641 emit_label (end_lab
);
1643 emit_stack_probe (last_addr
);
1647 /* Return an rtx representing the register or memory location
1648 in which a scalar value of data type VALTYPE
1649 was returned by a function call to function FUNC.
1650 FUNC is a FUNCTION_DECL node if the precise function is known,
1652 OUTGOING is 1 if on a machine with register windows this function
1653 should return the register in which the function will put its result
1657 hard_function_value (valtype
, func
, outgoing
)
1659 tree func ATTRIBUTE_UNUSED
;
1660 int outgoing ATTRIBUTE_UNUSED
;
1664 #ifdef FUNCTION_OUTGOING_VALUE
1666 val
= FUNCTION_OUTGOING_VALUE (valtype
, func
);
1669 val
= FUNCTION_VALUE (valtype
, func
);
1671 if (GET_CODE (val
) == REG
1672 && GET_MODE (val
) == BLKmode
)
1674 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (valtype
);
1675 enum machine_mode tmpmode
;
1677 for (tmpmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1678 tmpmode
!= VOIDmode
;
1679 tmpmode
= GET_MODE_WIDER_MODE (tmpmode
))
1681 /* Have we found a large enough mode? */
1682 if (GET_MODE_SIZE (tmpmode
) >= bytes
)
1686 /* No suitable mode found. */
1687 if (tmpmode
== VOIDmode
)
1690 PUT_MODE (val
, tmpmode
);
1695 /* Return an rtx representing the register or memory location
1696 in which a scalar value of mode MODE was returned by a library call. */
1699 hard_libcall_value (mode
)
1700 enum machine_mode mode
;
1702 return LIBCALL_VALUE (mode
);
1705 /* Look up the tree code for a given rtx code
1706 to provide the arithmetic operation for REAL_ARITHMETIC.
1707 The function returns an int because the caller may not know
1708 what `enum tree_code' means. */
1711 rtx_to_tree_code (code
)
1714 enum tree_code tcode
;
1737 tcode
= LAST_AND_UNUSED_TREE_CODE
;
1740 return ((int) tcode
);