]> gcc.gnu.org Git - gcc.git/blob - gcc/except.c
Daily bump.
[gcc.git] / gcc / except.c
1 /* Implements exception handling.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Mike Stump <mrs@cygnus.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23
24 /* An exception is an event that can be signaled from within a
25 function. This event can then be "caught" or "trapped" by the
26 callers of this function. This potentially allows program flow to
27 be transferred to any arbitrary code associated with a function call
28 several levels up the stack.
29
30 The intended use for this mechanism is for signaling "exceptional
31 events" in an out-of-band fashion, hence its name. The C++ language
32 (and many other OO-styled or functional languages) practically
33 requires such a mechanism, as otherwise it becomes very difficult
34 or even impossible to signal failure conditions in complex
35 situations. The traditional C++ example is when an error occurs in
36 the process of constructing an object; without such a mechanism, it
37 is impossible to signal that the error occurs without adding global
38 state variables and error checks around every object construction.
39
40 The act of causing this event to occur is referred to as "throwing
41 an exception". (Alternate terms include "raising an exception" or
42 "signaling an exception".) The term "throw" is used because control
43 is returned to the callers of the function that is signaling the
44 exception, and thus there is the concept of "throwing" the
45 exception up the call stack.
46
47 [ Add updated documentation on how to use this. ] */
48
49
50 #include "config.h"
51 #include "system.h"
52 #include "rtl.h"
53 #include "tree.h"
54 #include "flags.h"
55 #include "function.h"
56 #include "expr.h"
57 #include "libfuncs.h"
58 #include "insn-config.h"
59 #include "except.h"
60 #include "integrate.h"
61 #include "hard-reg-set.h"
62 #include "basic-block.h"
63 #include "output.h"
64 #include "dwarf2asm.h"
65 #include "dwarf2out.h"
66 #include "dwarf2.h"
67 #include "toplev.h"
68 #include "hashtab.h"
69 #include "intl.h"
70 #include "ggc.h"
71 #include "tm_p.h"
72 #include "target.h"
73 #include "langhooks.h"
74
75 /* Provide defaults for stuff that may not be defined when using
76 sjlj exceptions. */
77 #ifndef EH_RETURN_STACKADJ_RTX
78 #define EH_RETURN_STACKADJ_RTX 0
79 #endif
80 #ifndef EH_RETURN_HANDLER_RTX
81 #define EH_RETURN_HANDLER_RTX 0
82 #endif
83 #ifndef EH_RETURN_DATA_REGNO
84 #define EH_RETURN_DATA_REGNO(N) INVALID_REGNUM
85 #endif
86
87
88 /* Nonzero means enable synchronous exceptions for non-call instructions. */
89 int flag_non_call_exceptions;
90
91 /* Protect cleanup actions with must-not-throw regions, with a call
92 to the given failure handler. */
93 tree (*lang_protect_cleanup_actions) PARAMS ((void));
94
95 /* Return true if type A catches type B. */
96 int (*lang_eh_type_covers) PARAMS ((tree a, tree b));
97
98 /* Map a type to a runtime object to match type. */
99 tree (*lang_eh_runtime_type) PARAMS ((tree));
100
101 /* A hash table of label to region number. */
102
103 struct ehl_map_entry
104 {
105 rtx label;
106 struct eh_region *region;
107 };
108
109 static htab_t exception_handler_label_map;
110
111 static int call_site_base;
112 static unsigned int sjlj_funcdef_number;
113 static htab_t type_to_runtime_map;
114
115 /* Describe the SjLj_Function_Context structure. */
116 static tree sjlj_fc_type_node;
117 static int sjlj_fc_call_site_ofs;
118 static int sjlj_fc_data_ofs;
119 static int sjlj_fc_personality_ofs;
120 static int sjlj_fc_lsda_ofs;
121 static int sjlj_fc_jbuf_ofs;
122 \f
123 /* Describes one exception region. */
124 struct eh_region
125 {
126 /* The immediately surrounding region. */
127 struct eh_region *outer;
128
129 /* The list of immediately contained regions. */
130 struct eh_region *inner;
131 struct eh_region *next_peer;
132
133 /* An identifier for this region. */
134 int region_number;
135
136 /* When a region is deleted, its parents inherit the REG_EH_REGION
137 numbers already assigned. */
138 bitmap aka;
139
140 /* Each region does exactly one thing. */
141 enum eh_region_type
142 {
143 ERT_UNKNOWN = 0,
144 ERT_CLEANUP,
145 ERT_TRY,
146 ERT_CATCH,
147 ERT_ALLOWED_EXCEPTIONS,
148 ERT_MUST_NOT_THROW,
149 ERT_THROW,
150 ERT_FIXUP
151 } type;
152
153 /* Holds the action to perform based on the preceding type. */
154 union {
155 /* A list of catch blocks, a surrounding try block,
156 and the label for continuing after a catch. */
157 struct {
158 struct eh_region *catch;
159 struct eh_region *last_catch;
160 struct eh_region *prev_try;
161 rtx continue_label;
162 } try;
163
164 /* The list through the catch handlers, the list of type objects
165 matched, and the list of associated filters. */
166 struct {
167 struct eh_region *next_catch;
168 struct eh_region *prev_catch;
169 tree type_list;
170 tree filter_list;
171 } catch;
172
173 /* A tree_list of allowed types. */
174 struct {
175 tree type_list;
176 int filter;
177 } allowed;
178
179 /* The type given by a call to "throw foo();", or discovered
180 for a throw. */
181 struct {
182 tree type;
183 } throw;
184
185 /* Retain the cleanup expression even after expansion so that
186 we can match up fixup regions. */
187 struct {
188 tree exp;
189 } cleanup;
190
191 /* The real region (by expression and by pointer) that fixup code
192 should live in. */
193 struct {
194 tree cleanup_exp;
195 struct eh_region *real_region;
196 } fixup;
197 } u;
198
199 /* Entry point for this region's handler before landing pads are built. */
200 rtx label;
201
202 /* Entry point for this region's handler from the runtime eh library. */
203 rtx landing_pad;
204
205 /* Entry point for this region's handler from an inner region. */
206 rtx post_landing_pad;
207
208 /* The RESX insn for handing off control to the next outermost handler,
209 if appropriate. */
210 rtx resume;
211 };
212
213 /* Used to save exception status for each function. */
214 struct eh_status
215 {
216 /* The tree of all regions for this function. */
217 struct eh_region *region_tree;
218
219 /* The same information as an indexable array. */
220 struct eh_region **region_array;
221
222 /* The most recently open region. */
223 struct eh_region *cur_region;
224
225 /* This is the region for which we are processing catch blocks. */
226 struct eh_region *try_region;
227
228 rtx filter;
229 rtx exc_ptr;
230
231 int built_landing_pads;
232 int last_region_number;
233
234 varray_type ttype_data;
235 varray_type ehspec_data;
236 varray_type action_record_data;
237
238 struct call_site_record
239 {
240 rtx landing_pad;
241 int action;
242 } *call_site_data;
243 int call_site_data_used;
244 int call_site_data_size;
245
246 rtx ehr_stackadj;
247 rtx ehr_handler;
248 rtx ehr_label;
249
250 rtx sjlj_fc;
251 rtx sjlj_exit_after;
252 };
253
254 \f
255 static void mark_eh_region PARAMS ((struct eh_region *));
256 static int mark_ehl_map_entry PARAMS ((PTR *, PTR));
257 static void mark_ehl_map PARAMS ((void *));
258
259 static void free_region PARAMS ((struct eh_region *));
260
261 static int t2r_eq PARAMS ((const PTR,
262 const PTR));
263 static hashval_t t2r_hash PARAMS ((const PTR));
264 static int t2r_mark_1 PARAMS ((PTR *, PTR));
265 static void t2r_mark PARAMS ((PTR));
266 static void add_type_for_runtime PARAMS ((tree));
267 static tree lookup_type_for_runtime PARAMS ((tree));
268
269 static struct eh_region *expand_eh_region_end PARAMS ((void));
270
271 static rtx get_exception_filter PARAMS ((struct function *));
272
273 static void collect_eh_region_array PARAMS ((void));
274 static void resolve_fixup_regions PARAMS ((void));
275 static void remove_fixup_regions PARAMS ((void));
276 static void remove_unreachable_regions PARAMS ((rtx));
277 static void convert_from_eh_region_ranges_1 PARAMS ((rtx *, int *, int));
278
279 static struct eh_region *duplicate_eh_region_1 PARAMS ((struct eh_region *,
280 struct inline_remap *));
281 static void duplicate_eh_region_2 PARAMS ((struct eh_region *,
282 struct eh_region **));
283 static int ttypes_filter_eq PARAMS ((const PTR,
284 const PTR));
285 static hashval_t ttypes_filter_hash PARAMS ((const PTR));
286 static int ehspec_filter_eq PARAMS ((const PTR,
287 const PTR));
288 static hashval_t ehspec_filter_hash PARAMS ((const PTR));
289 static int add_ttypes_entry PARAMS ((htab_t, tree));
290 static int add_ehspec_entry PARAMS ((htab_t, htab_t,
291 tree));
292 static void assign_filter_values PARAMS ((void));
293 static void build_post_landing_pads PARAMS ((void));
294 static void connect_post_landing_pads PARAMS ((void));
295 static void dw2_build_landing_pads PARAMS ((void));
296
297 struct sjlj_lp_info;
298 static bool sjlj_find_directly_reachable_regions
299 PARAMS ((struct sjlj_lp_info *));
300 static void sjlj_assign_call_site_values
301 PARAMS ((rtx, struct sjlj_lp_info *));
302 static void sjlj_mark_call_sites
303 PARAMS ((struct sjlj_lp_info *));
304 static void sjlj_emit_function_enter PARAMS ((rtx));
305 static void sjlj_emit_function_exit PARAMS ((void));
306 static void sjlj_emit_dispatch_table
307 PARAMS ((rtx, struct sjlj_lp_info *));
308 static void sjlj_build_landing_pads PARAMS ((void));
309
310 static hashval_t ehl_hash PARAMS ((const PTR));
311 static int ehl_eq PARAMS ((const PTR,
312 const PTR));
313 static void ehl_free PARAMS ((PTR));
314 static void add_ehl_entry PARAMS ((rtx,
315 struct eh_region *));
316 static void remove_exception_handler_label PARAMS ((rtx));
317 static void remove_eh_handler PARAMS ((struct eh_region *));
318 static int for_each_eh_label_1 PARAMS ((PTR *, PTR));
319
320 struct reachable_info;
321
322 /* The return value of reachable_next_level. */
323 enum reachable_code
324 {
325 /* The given exception is not processed by the given region. */
326 RNL_NOT_CAUGHT,
327 /* The given exception may need processing by the given region. */
328 RNL_MAYBE_CAUGHT,
329 /* The given exception is completely processed by the given region. */
330 RNL_CAUGHT,
331 /* The given exception is completely processed by the runtime. */
332 RNL_BLOCKED
333 };
334
335 static int check_handled PARAMS ((tree, tree));
336 static void add_reachable_handler
337 PARAMS ((struct reachable_info *, struct eh_region *,
338 struct eh_region *));
339 static enum reachable_code reachable_next_level
340 PARAMS ((struct eh_region *, tree, struct reachable_info *));
341
342 static int action_record_eq PARAMS ((const PTR,
343 const PTR));
344 static hashval_t action_record_hash PARAMS ((const PTR));
345 static int add_action_record PARAMS ((htab_t, int, int));
346 static int collect_one_action_chain PARAMS ((htab_t,
347 struct eh_region *));
348 static int add_call_site PARAMS ((rtx, int));
349
350 static void push_uleb128 PARAMS ((varray_type *,
351 unsigned int));
352 static void push_sleb128 PARAMS ((varray_type *, int));
353 #ifndef HAVE_AS_LEB128
354 static int dw2_size_of_call_site_table PARAMS ((void));
355 static int sjlj_size_of_call_site_table PARAMS ((void));
356 #endif
357 static void dw2_output_call_site_table PARAMS ((void));
358 static void sjlj_output_call_site_table PARAMS ((void));
359
360 \f
361 /* Routine to see if exception handling is turned on.
362 DO_WARN is non-zero if we want to inform the user that exception
363 handling is turned off.
364
365 This is used to ensure that -fexceptions has been specified if the
366 compiler tries to use any exception-specific functions. */
367
368 int
369 doing_eh (do_warn)
370 int do_warn;
371 {
372 if (! flag_exceptions)
373 {
374 static int warned = 0;
375 if (! warned && do_warn)
376 {
377 error ("exception handling disabled, use -fexceptions to enable");
378 warned = 1;
379 }
380 return 0;
381 }
382 return 1;
383 }
384
385 \f
386 void
387 init_eh ()
388 {
389 ggc_add_root (&exception_handler_label_map, 1, 1, mark_ehl_map);
390
391 if (! flag_exceptions)
392 return;
393
394 type_to_runtime_map = htab_create (31, t2r_hash, t2r_eq, NULL);
395 ggc_add_root (&type_to_runtime_map, 1, sizeof (htab_t), t2r_mark);
396
397 /* Create the SjLj_Function_Context structure. This should match
398 the definition in unwind-sjlj.c. */
399 if (USING_SJLJ_EXCEPTIONS)
400 {
401 tree f_jbuf, f_per, f_lsda, f_prev, f_cs, f_data, tmp;
402
403 sjlj_fc_type_node = (*lang_hooks.types.make_type) (RECORD_TYPE);
404 ggc_add_tree_root (&sjlj_fc_type_node, 1);
405
406 f_prev = build_decl (FIELD_DECL, get_identifier ("__prev"),
407 build_pointer_type (sjlj_fc_type_node));
408 DECL_FIELD_CONTEXT (f_prev) = sjlj_fc_type_node;
409
410 f_cs = build_decl (FIELD_DECL, get_identifier ("__call_site"),
411 integer_type_node);
412 DECL_FIELD_CONTEXT (f_cs) = sjlj_fc_type_node;
413
414 tmp = build_index_type (build_int_2 (4 - 1, 0));
415 tmp = build_array_type ((*lang_hooks.types.type_for_mode) (word_mode, 1),
416 tmp);
417 f_data = build_decl (FIELD_DECL, get_identifier ("__data"), tmp);
418 DECL_FIELD_CONTEXT (f_data) = sjlj_fc_type_node;
419
420 f_per = build_decl (FIELD_DECL, get_identifier ("__personality"),
421 ptr_type_node);
422 DECL_FIELD_CONTEXT (f_per) = sjlj_fc_type_node;
423
424 f_lsda = build_decl (FIELD_DECL, get_identifier ("__lsda"),
425 ptr_type_node);
426 DECL_FIELD_CONTEXT (f_lsda) = sjlj_fc_type_node;
427
428 #ifdef DONT_USE_BUILTIN_SETJMP
429 #ifdef JMP_BUF_SIZE
430 tmp = build_int_2 (JMP_BUF_SIZE - 1, 0);
431 #else
432 /* Should be large enough for most systems, if it is not,
433 JMP_BUF_SIZE should be defined with the proper value. It will
434 also tend to be larger than necessary for most systems, a more
435 optimal port will define JMP_BUF_SIZE. */
436 tmp = build_int_2 (FIRST_PSEUDO_REGISTER + 2 - 1, 0);
437 #endif
438 #else
439 /* This is 2 for builtin_setjmp, plus whatever the target requires
440 via STACK_SAVEAREA_MODE (SAVE_NONLOCAL). */
441 tmp = build_int_2 ((GET_MODE_SIZE (STACK_SAVEAREA_MODE (SAVE_NONLOCAL))
442 / GET_MODE_SIZE (Pmode)) + 2 - 1, 0);
443 #endif
444 tmp = build_index_type (tmp);
445 tmp = build_array_type (ptr_type_node, tmp);
446 f_jbuf = build_decl (FIELD_DECL, get_identifier ("__jbuf"), tmp);
447 #ifdef DONT_USE_BUILTIN_SETJMP
448 /* We don't know what the alignment requirements of the
449 runtime's jmp_buf has. Overestimate. */
450 DECL_ALIGN (f_jbuf) = BIGGEST_ALIGNMENT;
451 DECL_USER_ALIGN (f_jbuf) = 1;
452 #endif
453 DECL_FIELD_CONTEXT (f_jbuf) = sjlj_fc_type_node;
454
455 TYPE_FIELDS (sjlj_fc_type_node) = f_prev;
456 TREE_CHAIN (f_prev) = f_cs;
457 TREE_CHAIN (f_cs) = f_data;
458 TREE_CHAIN (f_data) = f_per;
459 TREE_CHAIN (f_per) = f_lsda;
460 TREE_CHAIN (f_lsda) = f_jbuf;
461
462 layout_type (sjlj_fc_type_node);
463
464 /* Cache the interesting field offsets so that we have
465 easy access from rtl. */
466 sjlj_fc_call_site_ofs
467 = (tree_low_cst (DECL_FIELD_OFFSET (f_cs), 1)
468 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_cs), 1) / BITS_PER_UNIT);
469 sjlj_fc_data_ofs
470 = (tree_low_cst (DECL_FIELD_OFFSET (f_data), 1)
471 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_data), 1) / BITS_PER_UNIT);
472 sjlj_fc_personality_ofs
473 = (tree_low_cst (DECL_FIELD_OFFSET (f_per), 1)
474 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_per), 1) / BITS_PER_UNIT);
475 sjlj_fc_lsda_ofs
476 = (tree_low_cst (DECL_FIELD_OFFSET (f_lsda), 1)
477 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_lsda), 1) / BITS_PER_UNIT);
478 sjlj_fc_jbuf_ofs
479 = (tree_low_cst (DECL_FIELD_OFFSET (f_jbuf), 1)
480 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_jbuf), 1) / BITS_PER_UNIT);
481 }
482 }
483
484 void
485 init_eh_for_function ()
486 {
487 cfun->eh = (struct eh_status *) xcalloc (1, sizeof (struct eh_status));
488 }
489
490 /* Mark EH for GC. */
491
492 static void
493 mark_eh_region (region)
494 struct eh_region *region;
495 {
496 if (! region)
497 return;
498
499 switch (region->type)
500 {
501 case ERT_UNKNOWN:
502 /* This can happen if a nested function is inside the body of a region
503 and we do a GC as part of processing it. */
504 break;
505 case ERT_CLEANUP:
506 ggc_mark_tree (region->u.cleanup.exp);
507 break;
508 case ERT_TRY:
509 ggc_mark_rtx (region->u.try.continue_label);
510 break;
511 case ERT_CATCH:
512 ggc_mark_tree (region->u.catch.type_list);
513 ggc_mark_tree (region->u.catch.filter_list);
514 break;
515 case ERT_ALLOWED_EXCEPTIONS:
516 ggc_mark_tree (region->u.allowed.type_list);
517 break;
518 case ERT_MUST_NOT_THROW:
519 break;
520 case ERT_THROW:
521 ggc_mark_tree (region->u.throw.type);
522 break;
523 case ERT_FIXUP:
524 ggc_mark_tree (region->u.fixup.cleanup_exp);
525 break;
526 default:
527 abort ();
528 }
529
530 ggc_mark_rtx (region->label);
531 ggc_mark_rtx (region->resume);
532 ggc_mark_rtx (region->landing_pad);
533 ggc_mark_rtx (region->post_landing_pad);
534 }
535
536 static int
537 mark_ehl_map_entry (pentry, data)
538 PTR *pentry;
539 PTR data ATTRIBUTE_UNUSED;
540 {
541 struct ehl_map_entry *entry = *(struct ehl_map_entry **) pentry;
542 ggc_mark_rtx (entry->label);
543 return 1;
544 }
545
546 static void
547 mark_ehl_map (pp)
548 void *pp;
549 {
550 htab_t map = *(htab_t *) pp;
551 if (map)
552 htab_traverse (map, mark_ehl_map_entry, NULL);
553 }
554
555 void
556 mark_eh_status (eh)
557 struct eh_status *eh;
558 {
559 int i;
560
561 if (eh == 0)
562 return;
563
564 /* If we've called collect_eh_region_array, use it. Otherwise walk
565 the tree non-recursively. */
566 if (eh->region_array)
567 {
568 for (i = eh->last_region_number; i > 0; --i)
569 {
570 struct eh_region *r = eh->region_array[i];
571 if (r && r->region_number == i)
572 mark_eh_region (r);
573 }
574 }
575 else if (eh->region_tree)
576 {
577 struct eh_region *r = eh->region_tree;
578 while (1)
579 {
580 mark_eh_region (r);
581 if (r->inner)
582 r = r->inner;
583 else if (r->next_peer)
584 r = r->next_peer;
585 else
586 {
587 do {
588 r = r->outer;
589 if (r == NULL)
590 goto tree_done;
591 } while (r->next_peer == NULL);
592 r = r->next_peer;
593 }
594 }
595 tree_done:;
596 }
597
598 ggc_mark_rtx (eh->filter);
599 ggc_mark_rtx (eh->exc_ptr);
600 ggc_mark_tree_varray (eh->ttype_data);
601
602 if (eh->call_site_data)
603 {
604 for (i = eh->call_site_data_used - 1; i >= 0; --i)
605 ggc_mark_rtx (eh->call_site_data[i].landing_pad);
606 }
607
608 ggc_mark_rtx (eh->ehr_stackadj);
609 ggc_mark_rtx (eh->ehr_handler);
610 ggc_mark_rtx (eh->ehr_label);
611
612 ggc_mark_rtx (eh->sjlj_fc);
613 ggc_mark_rtx (eh->sjlj_exit_after);
614 }
615
616 static inline void
617 free_region (r)
618 struct eh_region *r;
619 {
620 /* Note that the aka bitmap is freed by regset_release_memory. But if
621 we ever replace with a non-obstack implementation, this would be
622 the place to do it. */
623 free (r);
624 }
625
626 void
627 free_eh_status (f)
628 struct function *f;
629 {
630 struct eh_status *eh = f->eh;
631
632 if (eh->region_array)
633 {
634 int i;
635 for (i = eh->last_region_number; i > 0; --i)
636 {
637 struct eh_region *r = eh->region_array[i];
638 /* Mind we don't free a region struct more than once. */
639 if (r && r->region_number == i)
640 free_region (r);
641 }
642 free (eh->region_array);
643 }
644 else if (eh->region_tree)
645 {
646 struct eh_region *next, *r = eh->region_tree;
647 while (1)
648 {
649 if (r->inner)
650 r = r->inner;
651 else if (r->next_peer)
652 {
653 next = r->next_peer;
654 free_region (r);
655 r = next;
656 }
657 else
658 {
659 do {
660 next = r->outer;
661 free_region (r);
662 r = next;
663 if (r == NULL)
664 goto tree_done;
665 } while (r->next_peer == NULL);
666 next = r->next_peer;
667 free_region (r);
668 r = next;
669 }
670 }
671 tree_done:;
672 }
673
674 VARRAY_FREE (eh->ttype_data);
675 VARRAY_FREE (eh->ehspec_data);
676 VARRAY_FREE (eh->action_record_data);
677 if (eh->call_site_data)
678 free (eh->call_site_data);
679
680 free (eh);
681 f->eh = NULL;
682
683 if (exception_handler_label_map)
684 {
685 htab_delete (exception_handler_label_map);
686 exception_handler_label_map = NULL;
687 }
688 }
689
690 \f
691 /* Start an exception handling region. All instructions emitted
692 after this point are considered to be part of the region until
693 expand_eh_region_end is invoked. */
694
695 void
696 expand_eh_region_start ()
697 {
698 struct eh_region *new_region;
699 struct eh_region *cur_region;
700 rtx note;
701
702 if (! doing_eh (0))
703 return;
704
705 /* Insert a new blank region as a leaf in the tree. */
706 new_region = (struct eh_region *) xcalloc (1, sizeof (*new_region));
707 cur_region = cfun->eh->cur_region;
708 new_region->outer = cur_region;
709 if (cur_region)
710 {
711 new_region->next_peer = cur_region->inner;
712 cur_region->inner = new_region;
713 }
714 else
715 {
716 new_region->next_peer = cfun->eh->region_tree;
717 cfun->eh->region_tree = new_region;
718 }
719 cfun->eh->cur_region = new_region;
720
721 /* Create a note marking the start of this region. */
722 new_region->region_number = ++cfun->eh->last_region_number;
723 note = emit_note (NULL, NOTE_INSN_EH_REGION_BEG);
724 NOTE_EH_HANDLER (note) = new_region->region_number;
725 }
726
727 /* Common code to end a region. Returns the region just ended. */
728
729 static struct eh_region *
730 expand_eh_region_end ()
731 {
732 struct eh_region *cur_region = cfun->eh->cur_region;
733 rtx note;
734
735 /* Create a note marking the end of this region. */
736 note = emit_note (NULL, NOTE_INSN_EH_REGION_END);
737 NOTE_EH_HANDLER (note) = cur_region->region_number;
738
739 /* Pop. */
740 cfun->eh->cur_region = cur_region->outer;
741
742 return cur_region;
743 }
744
745 /* End an exception handling region for a cleanup. HANDLER is an
746 expression to expand for the cleanup. */
747
748 void
749 expand_eh_region_end_cleanup (handler)
750 tree handler;
751 {
752 struct eh_region *region;
753 tree protect_cleanup_actions;
754 rtx around_label;
755 rtx data_save[2];
756
757 if (! doing_eh (0))
758 return;
759
760 region = expand_eh_region_end ();
761 region->type = ERT_CLEANUP;
762 region->label = gen_label_rtx ();
763 region->u.cleanup.exp = handler;
764
765 around_label = gen_label_rtx ();
766 emit_jump (around_label);
767
768 emit_label (region->label);
769
770 /* Give the language a chance to specify an action to be taken if an
771 exception is thrown that would propagate out of the HANDLER. */
772 protect_cleanup_actions
773 = (lang_protect_cleanup_actions
774 ? (*lang_protect_cleanup_actions) ()
775 : NULL_TREE);
776
777 if (protect_cleanup_actions)
778 expand_eh_region_start ();
779
780 /* In case this cleanup involves an inline destructor with a try block in
781 it, we need to save the EH return data registers around it. */
782 data_save[0] = gen_reg_rtx (Pmode);
783 emit_move_insn (data_save[0], get_exception_pointer (cfun));
784 data_save[1] = gen_reg_rtx (word_mode);
785 emit_move_insn (data_save[1], get_exception_filter (cfun));
786
787 expand_expr (handler, const0_rtx, VOIDmode, 0);
788
789 emit_move_insn (cfun->eh->exc_ptr, data_save[0]);
790 emit_move_insn (cfun->eh->filter, data_save[1]);
791
792 if (protect_cleanup_actions)
793 expand_eh_region_end_must_not_throw (protect_cleanup_actions);
794
795 /* We need any stack adjustment complete before the around_label. */
796 do_pending_stack_adjust ();
797
798 /* We delay the generation of the _Unwind_Resume until we generate
799 landing pads. We emit a marker here so as to get good control
800 flow data in the meantime. */
801 region->resume
802 = emit_jump_insn (gen_rtx_RESX (VOIDmode, region->region_number));
803 emit_barrier ();
804
805 emit_label (around_label);
806 }
807
808 /* End an exception handling region for a try block, and prepares
809 for subsequent calls to expand_start_catch. */
810
811 void
812 expand_start_all_catch ()
813 {
814 struct eh_region *region;
815
816 if (! doing_eh (1))
817 return;
818
819 region = expand_eh_region_end ();
820 region->type = ERT_TRY;
821 region->u.try.prev_try = cfun->eh->try_region;
822 region->u.try.continue_label = gen_label_rtx ();
823
824 cfun->eh->try_region = region;
825
826 emit_jump (region->u.try.continue_label);
827 }
828
829 /* Begin a catch clause. TYPE is the type caught, a list of such types, or
830 null if this is a catch-all clause. Providing a type list enables to
831 associate the catch region with potentially several exception types, which
832 is useful e.g. for Ada. */
833
834 void
835 expand_start_catch (type_or_list)
836 tree type_or_list;
837 {
838 struct eh_region *t, *c, *l;
839 tree type_list;
840
841 if (! doing_eh (0))
842 return;
843
844 type_list = type_or_list;
845
846 if (type_or_list)
847 {
848 /* Ensure to always end up with a type list to normalize further
849 processing, then register each type against the runtime types
850 map. */
851 tree type_node;
852
853 if (TREE_CODE (type_or_list) != TREE_LIST)
854 type_list = tree_cons (NULL_TREE, type_or_list, NULL_TREE);
855
856 type_node = type_list;
857 for (; type_node; type_node = TREE_CHAIN (type_node))
858 add_type_for_runtime (TREE_VALUE (type_node));
859 }
860
861 expand_eh_region_start ();
862
863 t = cfun->eh->try_region;
864 c = cfun->eh->cur_region;
865 c->type = ERT_CATCH;
866 c->u.catch.type_list = type_list;
867 c->label = gen_label_rtx ();
868
869 l = t->u.try.last_catch;
870 c->u.catch.prev_catch = l;
871 if (l)
872 l->u.catch.next_catch = c;
873 else
874 t->u.try.catch = c;
875 t->u.try.last_catch = c;
876
877 emit_label (c->label);
878 }
879
880 /* End a catch clause. Control will resume after the try/catch block. */
881
882 void
883 expand_end_catch ()
884 {
885 struct eh_region *try_region, *catch_region;
886
887 if (! doing_eh (0))
888 return;
889
890 catch_region = expand_eh_region_end ();
891 try_region = cfun->eh->try_region;
892
893 emit_jump (try_region->u.try.continue_label);
894 }
895
896 /* End a sequence of catch handlers for a try block. */
897
898 void
899 expand_end_all_catch ()
900 {
901 struct eh_region *try_region;
902
903 if (! doing_eh (0))
904 return;
905
906 try_region = cfun->eh->try_region;
907 cfun->eh->try_region = try_region->u.try.prev_try;
908
909 emit_label (try_region->u.try.continue_label);
910 }
911
912 /* End an exception region for an exception type filter. ALLOWED is a
913 TREE_LIST of types to be matched by the runtime. FAILURE is an
914 expression to invoke if a mismatch occurs.
915
916 ??? We could use these semantics for calls to rethrow, too; if we can
917 see the surrounding catch clause, we know that the exception we're
918 rethrowing satisfies the "filter" of the catch type. */
919
920 void
921 expand_eh_region_end_allowed (allowed, failure)
922 tree allowed, failure;
923 {
924 struct eh_region *region;
925 rtx around_label;
926
927 if (! doing_eh (0))
928 return;
929
930 region = expand_eh_region_end ();
931 region->type = ERT_ALLOWED_EXCEPTIONS;
932 region->u.allowed.type_list = allowed;
933 region->label = gen_label_rtx ();
934
935 for (; allowed ; allowed = TREE_CHAIN (allowed))
936 add_type_for_runtime (TREE_VALUE (allowed));
937
938 /* We must emit the call to FAILURE here, so that if this function
939 throws a different exception, that it will be processed by the
940 correct region. */
941
942 around_label = gen_label_rtx ();
943 emit_jump (around_label);
944
945 emit_label (region->label);
946 expand_expr (failure, const0_rtx, VOIDmode, EXPAND_NORMAL);
947 /* We must adjust the stack before we reach the AROUND_LABEL because
948 the call to FAILURE does not occur on all paths to the
949 AROUND_LABEL. */
950 do_pending_stack_adjust ();
951
952 emit_label (around_label);
953 }
954
955 /* End an exception region for a must-not-throw filter. FAILURE is an
956 expression invoke if an uncaught exception propagates this far.
957
958 This is conceptually identical to expand_eh_region_end_allowed with
959 an empty allowed list (if you passed "std::terminate" instead of
960 "__cxa_call_unexpected"), but they are represented differently in
961 the C++ LSDA. */
962
963 void
964 expand_eh_region_end_must_not_throw (failure)
965 tree failure;
966 {
967 struct eh_region *region;
968 rtx around_label;
969
970 if (! doing_eh (0))
971 return;
972
973 region = expand_eh_region_end ();
974 region->type = ERT_MUST_NOT_THROW;
975 region->label = gen_label_rtx ();
976
977 /* We must emit the call to FAILURE here, so that if this function
978 throws a different exception, that it will be processed by the
979 correct region. */
980
981 around_label = gen_label_rtx ();
982 emit_jump (around_label);
983
984 emit_label (region->label);
985 expand_expr (failure, const0_rtx, VOIDmode, EXPAND_NORMAL);
986
987 emit_label (around_label);
988 }
989
990 /* End an exception region for a throw. No handling goes on here,
991 but it's the easiest way for the front-end to indicate what type
992 is being thrown. */
993
994 void
995 expand_eh_region_end_throw (type)
996 tree type;
997 {
998 struct eh_region *region;
999
1000 if (! doing_eh (0))
1001 return;
1002
1003 region = expand_eh_region_end ();
1004 region->type = ERT_THROW;
1005 region->u.throw.type = type;
1006 }
1007
1008 /* End a fixup region. Within this region the cleanups for the immediately
1009 enclosing region are _not_ run. This is used for goto cleanup to avoid
1010 destroying an object twice.
1011
1012 This would be an extraordinarily simple prospect, were it not for the
1013 fact that we don't actually know what the immediately enclosing region
1014 is. This surprising fact is because expand_cleanups is currently
1015 generating a sequence that it will insert somewhere else. We collect
1016 the proper notion of "enclosing" in convert_from_eh_region_ranges. */
1017
1018 void
1019 expand_eh_region_end_fixup (handler)
1020 tree handler;
1021 {
1022 struct eh_region *fixup;
1023
1024 if (! doing_eh (0))
1025 return;
1026
1027 fixup = expand_eh_region_end ();
1028 fixup->type = ERT_FIXUP;
1029 fixup->u.fixup.cleanup_exp = handler;
1030 }
1031
1032 /* Return an rtl expression for a pointer to the exception object
1033 within a handler. */
1034
1035 rtx
1036 get_exception_pointer (fun)
1037 struct function *fun;
1038 {
1039 rtx exc_ptr = fun->eh->exc_ptr;
1040 if (fun == cfun && ! exc_ptr)
1041 {
1042 exc_ptr = gen_reg_rtx (Pmode);
1043 fun->eh->exc_ptr = exc_ptr;
1044 }
1045 return exc_ptr;
1046 }
1047
1048 /* Return an rtl expression for the exception dispatch filter
1049 within a handler. */
1050
1051 static rtx
1052 get_exception_filter (fun)
1053 struct function *fun;
1054 {
1055 rtx filter = fun->eh->filter;
1056 if (fun == cfun && ! filter)
1057 {
1058 filter = gen_reg_rtx (word_mode);
1059 fun->eh->filter = filter;
1060 }
1061 return filter;
1062 }
1063 \f
1064 /* This section is for the exception handling specific optimization pass. */
1065
1066 /* Random access the exception region tree. It's just as simple to
1067 collect the regions this way as in expand_eh_region_start, but
1068 without having to realloc memory. */
1069
1070 static void
1071 collect_eh_region_array ()
1072 {
1073 struct eh_region **array, *i;
1074
1075 i = cfun->eh->region_tree;
1076 if (! i)
1077 return;
1078
1079 array = xcalloc (cfun->eh->last_region_number + 1, sizeof (*array));
1080 cfun->eh->region_array = array;
1081
1082 while (1)
1083 {
1084 array[i->region_number] = i;
1085
1086 /* If there are sub-regions, process them. */
1087 if (i->inner)
1088 i = i->inner;
1089 /* If there are peers, process them. */
1090 else if (i->next_peer)
1091 i = i->next_peer;
1092 /* Otherwise, step back up the tree to the next peer. */
1093 else
1094 {
1095 do {
1096 i = i->outer;
1097 if (i == NULL)
1098 return;
1099 } while (i->next_peer == NULL);
1100 i = i->next_peer;
1101 }
1102 }
1103 }
1104
1105 static void
1106 resolve_fixup_regions ()
1107 {
1108 int i, j, n = cfun->eh->last_region_number;
1109
1110 for (i = 1; i <= n; ++i)
1111 {
1112 struct eh_region *fixup = cfun->eh->region_array[i];
1113 struct eh_region *cleanup = 0;
1114
1115 if (! fixup || fixup->type != ERT_FIXUP)
1116 continue;
1117
1118 for (j = 1; j <= n; ++j)
1119 {
1120 cleanup = cfun->eh->region_array[j];
1121 if (cleanup->type == ERT_CLEANUP
1122 && cleanup->u.cleanup.exp == fixup->u.fixup.cleanup_exp)
1123 break;
1124 }
1125 if (j > n)
1126 abort ();
1127
1128 fixup->u.fixup.real_region = cleanup->outer;
1129 }
1130 }
1131
1132 /* Now that we've discovered what region actually encloses a fixup,
1133 we can shuffle pointers and remove them from the tree. */
1134
1135 static void
1136 remove_fixup_regions ()
1137 {
1138 int i;
1139 rtx insn, note;
1140 struct eh_region *fixup;
1141
1142 /* Walk the insn chain and adjust the REG_EH_REGION numbers
1143 for instructions referencing fixup regions. This is only
1144 strictly necessary for fixup regions with no parent, but
1145 doesn't hurt to do it for all regions. */
1146 for (insn = get_insns(); insn ; insn = NEXT_INSN (insn))
1147 if (INSN_P (insn)
1148 && (note = find_reg_note (insn, REG_EH_REGION, NULL))
1149 && INTVAL (XEXP (note, 0)) > 0
1150 && (fixup = cfun->eh->region_array[INTVAL (XEXP (note, 0))])
1151 && fixup->type == ERT_FIXUP)
1152 {
1153 if (fixup->u.fixup.real_region)
1154 XEXP (note, 0) = GEN_INT (fixup->u.fixup.real_region->region_number);
1155 else
1156 remove_note (insn, note);
1157 }
1158
1159 /* Remove the fixup regions from the tree. */
1160 for (i = cfun->eh->last_region_number; i > 0; --i)
1161 {
1162 fixup = cfun->eh->region_array[i];
1163 if (! fixup)
1164 continue;
1165
1166 /* Allow GC to maybe free some memory. */
1167 if (fixup->type == ERT_CLEANUP)
1168 fixup->u.cleanup.exp = NULL_TREE;
1169
1170 if (fixup->type != ERT_FIXUP)
1171 continue;
1172
1173 if (fixup->inner)
1174 {
1175 struct eh_region *parent, *p, **pp;
1176
1177 parent = fixup->u.fixup.real_region;
1178
1179 /* Fix up the children's parent pointers; find the end of
1180 the list. */
1181 for (p = fixup->inner; ; p = p->next_peer)
1182 {
1183 p->outer = parent;
1184 if (! p->next_peer)
1185 break;
1186 }
1187
1188 /* In the tree of cleanups, only outer-inner ordering matters.
1189 So link the children back in anywhere at the correct level. */
1190 if (parent)
1191 pp = &parent->inner;
1192 else
1193 pp = &cfun->eh->region_tree;
1194 p->next_peer = *pp;
1195 *pp = fixup->inner;
1196 fixup->inner = NULL;
1197 }
1198
1199 remove_eh_handler (fixup);
1200 }
1201 }
1202
1203 /* Remove all regions whose labels are not reachable from insns. */
1204
1205 static void
1206 remove_unreachable_regions (insns)
1207 rtx insns;
1208 {
1209 int i, *uid_region_num;
1210 bool *reachable;
1211 struct eh_region *r;
1212 rtx insn;
1213
1214 uid_region_num = xcalloc (get_max_uid (), sizeof(int));
1215 reachable = xcalloc (cfun->eh->last_region_number + 1, sizeof(bool));
1216
1217 for (i = cfun->eh->last_region_number; i > 0; --i)
1218 {
1219 r = cfun->eh->region_array[i];
1220 if (!r || r->region_number != i)
1221 continue;
1222
1223 if (r->resume)
1224 {
1225 if (uid_region_num[INSN_UID (r->resume)])
1226 abort ();
1227 uid_region_num[INSN_UID (r->resume)] = i;
1228 }
1229 if (r->label)
1230 {
1231 if (uid_region_num[INSN_UID (r->label)])
1232 abort ();
1233 uid_region_num[INSN_UID (r->label)] = i;
1234 }
1235 if (r->type == ERT_TRY && r->u.try.continue_label)
1236 {
1237 if (uid_region_num[INSN_UID (r->u.try.continue_label)])
1238 abort ();
1239 uid_region_num[INSN_UID (r->u.try.continue_label)] = i;
1240 }
1241 }
1242
1243 for (insn = insns; insn; insn = NEXT_INSN (insn))
1244 reachable[uid_region_num[INSN_UID (insn)]] = true;
1245
1246 for (i = cfun->eh->last_region_number; i > 0; --i)
1247 {
1248 r = cfun->eh->region_array[i];
1249 if (r && r->region_number == i && !reachable[i])
1250 {
1251 /* Don't remove ERT_THROW regions if their outer region
1252 is reachable. */
1253 if (r->type == ERT_THROW
1254 && r->outer
1255 && reachable[r->outer->region_number])
1256 continue;
1257
1258 remove_eh_handler (r);
1259 }
1260 }
1261
1262 free (reachable);
1263 free (uid_region_num);
1264 }
1265
1266 /* Turn NOTE_INSN_EH_REGION notes into REG_EH_REGION notes for each
1267 can_throw instruction in the region. */
1268
1269 static void
1270 convert_from_eh_region_ranges_1 (pinsns, orig_sp, cur)
1271 rtx *pinsns;
1272 int *orig_sp;
1273 int cur;
1274 {
1275 int *sp = orig_sp;
1276 rtx insn, next;
1277
1278 for (insn = *pinsns; insn ; insn = next)
1279 {
1280 next = NEXT_INSN (insn);
1281 if (GET_CODE (insn) == NOTE)
1282 {
1283 int kind = NOTE_LINE_NUMBER (insn);
1284 if (kind == NOTE_INSN_EH_REGION_BEG
1285 || kind == NOTE_INSN_EH_REGION_END)
1286 {
1287 if (kind == NOTE_INSN_EH_REGION_BEG)
1288 {
1289 struct eh_region *r;
1290
1291 *sp++ = cur;
1292 cur = NOTE_EH_HANDLER (insn);
1293
1294 r = cfun->eh->region_array[cur];
1295 if (r->type == ERT_FIXUP)
1296 {
1297 r = r->u.fixup.real_region;
1298 cur = r ? r->region_number : 0;
1299 }
1300 else if (r->type == ERT_CATCH)
1301 {
1302 r = r->outer;
1303 cur = r ? r->region_number : 0;
1304 }
1305 }
1306 else
1307 cur = *--sp;
1308
1309 /* Removing the first insn of a CALL_PLACEHOLDER sequence
1310 requires extra care to adjust sequence start. */
1311 if (insn == *pinsns)
1312 *pinsns = next;
1313 remove_insn (insn);
1314 continue;
1315 }
1316 }
1317 else if (INSN_P (insn))
1318 {
1319 if (cur > 0
1320 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1321 /* Calls can always potentially throw exceptions, unless
1322 they have a REG_EH_REGION note with a value of 0 or less.
1323 Which should be the only possible kind so far. */
1324 && (GET_CODE (insn) == CALL_INSN
1325 /* If we wanted exceptions for non-call insns, then
1326 any may_trap_p instruction could throw. */
1327 || (flag_non_call_exceptions
1328 && GET_CODE (PATTERN (insn)) != CLOBBER
1329 && GET_CODE (PATTERN (insn)) != USE
1330 && may_trap_p (PATTERN (insn)))))
1331 {
1332 REG_NOTES (insn) = alloc_EXPR_LIST (REG_EH_REGION, GEN_INT (cur),
1333 REG_NOTES (insn));
1334 }
1335
1336 if (GET_CODE (insn) == CALL_INSN
1337 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1338 {
1339 convert_from_eh_region_ranges_1 (&XEXP (PATTERN (insn), 0),
1340 sp, cur);
1341 convert_from_eh_region_ranges_1 (&XEXP (PATTERN (insn), 1),
1342 sp, cur);
1343 convert_from_eh_region_ranges_1 (&XEXP (PATTERN (insn), 2),
1344 sp, cur);
1345 }
1346 }
1347 }
1348
1349 if (sp != orig_sp)
1350 abort ();
1351 }
1352
1353 void
1354 convert_from_eh_region_ranges ()
1355 {
1356 int *stack;
1357 rtx insns;
1358
1359 collect_eh_region_array ();
1360 resolve_fixup_regions ();
1361
1362 stack = xmalloc (sizeof (int) * (cfun->eh->last_region_number + 1));
1363 insns = get_insns ();
1364 convert_from_eh_region_ranges_1 (&insns, stack, 0);
1365 free (stack);
1366
1367 remove_fixup_regions ();
1368 remove_unreachable_regions (insns);
1369 }
1370
1371 static void
1372 add_ehl_entry (label, region)
1373 rtx label;
1374 struct eh_region *region;
1375 {
1376 struct ehl_map_entry **slot, *entry;
1377
1378 LABEL_PRESERVE_P (label) = 1;
1379
1380 entry = (struct ehl_map_entry *) xmalloc (sizeof (*entry));
1381 entry->label = label;
1382 entry->region = region;
1383
1384 slot = (struct ehl_map_entry **)
1385 htab_find_slot (exception_handler_label_map, entry, INSERT);
1386
1387 /* Before landing pad creation, each exception handler has its own
1388 label. After landing pad creation, the exception handlers may
1389 share landing pads. This is ok, since maybe_remove_eh_handler
1390 only requires the 1-1 mapping before landing pad creation. */
1391 if (*slot && !cfun->eh->built_landing_pads)
1392 abort ();
1393
1394 *slot = entry;
1395 }
1396
1397 static void
1398 ehl_free (pentry)
1399 PTR pentry;
1400 {
1401 struct ehl_map_entry *entry = (struct ehl_map_entry *)pentry;
1402 LABEL_PRESERVE_P (entry->label) = 0;
1403 free (entry);
1404 }
1405
1406 void
1407 find_exception_handler_labels ()
1408 {
1409 int i;
1410
1411 if (exception_handler_label_map)
1412 htab_empty (exception_handler_label_map);
1413 else
1414 {
1415 /* ??? The expansion factor here (3/2) must be greater than the htab
1416 occupancy factor (4/3) to avoid unnecessary resizing. */
1417 exception_handler_label_map
1418 = htab_create (cfun->eh->last_region_number * 3 / 2,
1419 ehl_hash, ehl_eq, ehl_free);
1420 }
1421
1422 if (cfun->eh->region_tree == NULL)
1423 return;
1424
1425 for (i = cfun->eh->last_region_number; i > 0; --i)
1426 {
1427 struct eh_region *region = cfun->eh->region_array[i];
1428 rtx lab;
1429
1430 if (! region || region->region_number != i)
1431 continue;
1432 if (cfun->eh->built_landing_pads)
1433 lab = region->landing_pad;
1434 else
1435 lab = region->label;
1436
1437 if (lab)
1438 add_ehl_entry (lab, region);
1439 }
1440
1441 /* For sjlj exceptions, need the return label to remain live until
1442 after landing pad generation. */
1443 if (USING_SJLJ_EXCEPTIONS && ! cfun->eh->built_landing_pads)
1444 add_ehl_entry (return_label, NULL);
1445 }
1446
1447 bool
1448 current_function_has_exception_handlers ()
1449 {
1450 int i;
1451
1452 for (i = cfun->eh->last_region_number; i > 0; --i)
1453 {
1454 struct eh_region *region = cfun->eh->region_array[i];
1455
1456 if (! region || region->region_number != i)
1457 continue;
1458 if (region->type != ERT_THROW)
1459 return true;
1460 }
1461
1462 return false;
1463 }
1464 \f
1465 static struct eh_region *
1466 duplicate_eh_region_1 (o, map)
1467 struct eh_region *o;
1468 struct inline_remap *map;
1469 {
1470 struct eh_region *n
1471 = (struct eh_region *) xcalloc (1, sizeof (struct eh_region));
1472
1473 n->region_number = o->region_number + cfun->eh->last_region_number;
1474 n->type = o->type;
1475
1476 switch (n->type)
1477 {
1478 case ERT_CLEANUP:
1479 case ERT_MUST_NOT_THROW:
1480 break;
1481
1482 case ERT_TRY:
1483 if (o->u.try.continue_label)
1484 n->u.try.continue_label
1485 = get_label_from_map (map,
1486 CODE_LABEL_NUMBER (o->u.try.continue_label));
1487 break;
1488
1489 case ERT_CATCH:
1490 n->u.catch.type_list = o->u.catch.type_list;
1491 break;
1492
1493 case ERT_ALLOWED_EXCEPTIONS:
1494 n->u.allowed.type_list = o->u.allowed.type_list;
1495 break;
1496
1497 case ERT_THROW:
1498 n->u.throw.type = o->u.throw.type;
1499
1500 default:
1501 abort ();
1502 }
1503
1504 if (o->label)
1505 n->label = get_label_from_map (map, CODE_LABEL_NUMBER (o->label));
1506 if (o->resume)
1507 {
1508 n->resume = map->insn_map[INSN_UID (o->resume)];
1509 if (n->resume == NULL)
1510 abort ();
1511 }
1512
1513 return n;
1514 }
1515
1516 static void
1517 duplicate_eh_region_2 (o, n_array)
1518 struct eh_region *o;
1519 struct eh_region **n_array;
1520 {
1521 struct eh_region *n = n_array[o->region_number];
1522
1523 switch (n->type)
1524 {
1525 case ERT_TRY:
1526 n->u.try.catch = n_array[o->u.try.catch->region_number];
1527 n->u.try.last_catch = n_array[o->u.try.last_catch->region_number];
1528 break;
1529
1530 case ERT_CATCH:
1531 if (o->u.catch.next_catch)
1532 n->u.catch.next_catch = n_array[o->u.catch.next_catch->region_number];
1533 if (o->u.catch.prev_catch)
1534 n->u.catch.prev_catch = n_array[o->u.catch.prev_catch->region_number];
1535 break;
1536
1537 default:
1538 break;
1539 }
1540
1541 if (o->outer)
1542 n->outer = n_array[o->outer->region_number];
1543 if (o->inner)
1544 n->inner = n_array[o->inner->region_number];
1545 if (o->next_peer)
1546 n->next_peer = n_array[o->next_peer->region_number];
1547 }
1548
1549 int
1550 duplicate_eh_regions (ifun, map)
1551 struct function *ifun;
1552 struct inline_remap *map;
1553 {
1554 int ifun_last_region_number = ifun->eh->last_region_number;
1555 struct eh_region **n_array, *root, *cur;
1556 int i;
1557
1558 if (ifun_last_region_number == 0)
1559 return 0;
1560
1561 n_array = xcalloc (ifun_last_region_number + 1, sizeof (*n_array));
1562
1563 for (i = 1; i <= ifun_last_region_number; ++i)
1564 {
1565 cur = ifun->eh->region_array[i];
1566 if (!cur || cur->region_number != i)
1567 continue;
1568 n_array[i] = duplicate_eh_region_1 (cur, map);
1569 }
1570 for (i = 1; i <= ifun_last_region_number; ++i)
1571 {
1572 cur = ifun->eh->region_array[i];
1573 if (!cur || cur->region_number != i)
1574 continue;
1575 duplicate_eh_region_2 (cur, n_array);
1576 }
1577
1578 root = n_array[ifun->eh->region_tree->region_number];
1579 cur = cfun->eh->cur_region;
1580 if (cur)
1581 {
1582 struct eh_region *p = cur->inner;
1583 if (p)
1584 {
1585 while (p->next_peer)
1586 p = p->next_peer;
1587 p->next_peer = root;
1588 }
1589 else
1590 cur->inner = root;
1591
1592 for (i = 1; i <= ifun_last_region_number; ++i)
1593 if (n_array[i] && n_array[i]->outer == NULL)
1594 n_array[i]->outer = cur;
1595 }
1596 else
1597 {
1598 struct eh_region *p = cfun->eh->region_tree;
1599 if (p)
1600 {
1601 while (p->next_peer)
1602 p = p->next_peer;
1603 p->next_peer = root;
1604 }
1605 else
1606 cfun->eh->region_tree = root;
1607 }
1608
1609 free (n_array);
1610
1611 i = cfun->eh->last_region_number;
1612 cfun->eh->last_region_number = i + ifun_last_region_number;
1613 return i;
1614 }
1615
1616 \f
1617 static int
1618 t2r_eq (pentry, pdata)
1619 const PTR pentry;
1620 const PTR pdata;
1621 {
1622 tree entry = (tree) pentry;
1623 tree data = (tree) pdata;
1624
1625 return TREE_PURPOSE (entry) == data;
1626 }
1627
1628 static hashval_t
1629 t2r_hash (pentry)
1630 const PTR pentry;
1631 {
1632 tree entry = (tree) pentry;
1633 return TYPE_HASH (TREE_PURPOSE (entry));
1634 }
1635
1636 static int
1637 t2r_mark_1 (slot, data)
1638 PTR *slot;
1639 PTR data ATTRIBUTE_UNUSED;
1640 {
1641 tree contents = (tree) *slot;
1642 ggc_mark_tree (contents);
1643 return 1;
1644 }
1645
1646 static void
1647 t2r_mark (addr)
1648 PTR addr;
1649 {
1650 htab_traverse (*(htab_t *)addr, t2r_mark_1, NULL);
1651 }
1652
1653 static void
1654 add_type_for_runtime (type)
1655 tree type;
1656 {
1657 tree *slot;
1658
1659 slot = (tree *) htab_find_slot_with_hash (type_to_runtime_map, type,
1660 TYPE_HASH (type), INSERT);
1661 if (*slot == NULL)
1662 {
1663 tree runtime = (*lang_eh_runtime_type) (type);
1664 *slot = tree_cons (type, runtime, NULL_TREE);
1665 }
1666 }
1667
1668 static tree
1669 lookup_type_for_runtime (type)
1670 tree type;
1671 {
1672 tree *slot;
1673
1674 slot = (tree *) htab_find_slot_with_hash (type_to_runtime_map, type,
1675 TYPE_HASH (type), NO_INSERT);
1676
1677 /* We should have always inserted the data earlier. */
1678 return TREE_VALUE (*slot);
1679 }
1680
1681 \f
1682 /* Represent an entry in @TTypes for either catch actions
1683 or exception filter actions. */
1684 struct ttypes_filter
1685 {
1686 tree t;
1687 int filter;
1688 };
1689
1690 /* Compare ENTRY (a ttypes_filter entry in the hash table) with DATA
1691 (a tree) for a @TTypes type node we are thinking about adding. */
1692
1693 static int
1694 ttypes_filter_eq (pentry, pdata)
1695 const PTR pentry;
1696 const PTR pdata;
1697 {
1698 const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
1699 tree data = (tree) pdata;
1700
1701 return entry->t == data;
1702 }
1703
1704 static hashval_t
1705 ttypes_filter_hash (pentry)
1706 const PTR pentry;
1707 {
1708 const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
1709 return TYPE_HASH (entry->t);
1710 }
1711
1712 /* Compare ENTRY with DATA (both struct ttypes_filter) for a @TTypes
1713 exception specification list we are thinking about adding. */
1714 /* ??? Currently we use the type lists in the order given. Someone
1715 should put these in some canonical order. */
1716
1717 static int
1718 ehspec_filter_eq (pentry, pdata)
1719 const PTR pentry;
1720 const PTR pdata;
1721 {
1722 const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
1723 const struct ttypes_filter *data = (const struct ttypes_filter *) pdata;
1724
1725 return type_list_equal (entry->t, data->t);
1726 }
1727
1728 /* Hash function for exception specification lists. */
1729
1730 static hashval_t
1731 ehspec_filter_hash (pentry)
1732 const PTR pentry;
1733 {
1734 const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
1735 hashval_t h = 0;
1736 tree list;
1737
1738 for (list = entry->t; list ; list = TREE_CHAIN (list))
1739 h = (h << 5) + (h >> 27) + TYPE_HASH (TREE_VALUE (list));
1740 return h;
1741 }
1742
1743 /* Add TYPE to cfun->eh->ttype_data, using TYPES_HASH to speed
1744 up the search. Return the filter value to be used. */
1745
1746 static int
1747 add_ttypes_entry (ttypes_hash, type)
1748 htab_t ttypes_hash;
1749 tree type;
1750 {
1751 struct ttypes_filter **slot, *n;
1752
1753 slot = (struct ttypes_filter **)
1754 htab_find_slot_with_hash (ttypes_hash, type, TYPE_HASH (type), INSERT);
1755
1756 if ((n = *slot) == NULL)
1757 {
1758 /* Filter value is a 1 based table index. */
1759
1760 n = (struct ttypes_filter *) xmalloc (sizeof (*n));
1761 n->t = type;
1762 n->filter = VARRAY_ACTIVE_SIZE (cfun->eh->ttype_data) + 1;
1763 *slot = n;
1764
1765 VARRAY_PUSH_TREE (cfun->eh->ttype_data, type);
1766 }
1767
1768 return n->filter;
1769 }
1770
1771 /* Add LIST to cfun->eh->ehspec_data, using EHSPEC_HASH and TYPES_HASH
1772 to speed up the search. Return the filter value to be used. */
1773
1774 static int
1775 add_ehspec_entry (ehspec_hash, ttypes_hash, list)
1776 htab_t ehspec_hash;
1777 htab_t ttypes_hash;
1778 tree list;
1779 {
1780 struct ttypes_filter **slot, *n;
1781 struct ttypes_filter dummy;
1782
1783 dummy.t = list;
1784 slot = (struct ttypes_filter **)
1785 htab_find_slot (ehspec_hash, &dummy, INSERT);
1786
1787 if ((n = *slot) == NULL)
1788 {
1789 /* Filter value is a -1 based byte index into a uleb128 buffer. */
1790
1791 n = (struct ttypes_filter *) xmalloc (sizeof (*n));
1792 n->t = list;
1793 n->filter = -(VARRAY_ACTIVE_SIZE (cfun->eh->ehspec_data) + 1);
1794 *slot = n;
1795
1796 /* Look up each type in the list and encode its filter
1797 value as a uleb128. Terminate the list with 0. */
1798 for (; list ; list = TREE_CHAIN (list))
1799 push_uleb128 (&cfun->eh->ehspec_data,
1800 add_ttypes_entry (ttypes_hash, TREE_VALUE (list)));
1801 VARRAY_PUSH_UCHAR (cfun->eh->ehspec_data, 0);
1802 }
1803
1804 return n->filter;
1805 }
1806
1807 /* Generate the action filter values to be used for CATCH and
1808 ALLOWED_EXCEPTIONS regions. When using dwarf2 exception regions,
1809 we use lots of landing pads, and so every type or list can share
1810 the same filter value, which saves table space. */
1811
1812 static void
1813 assign_filter_values ()
1814 {
1815 int i;
1816 htab_t ttypes, ehspec;
1817
1818 VARRAY_TREE_INIT (cfun->eh->ttype_data, 16, "ttype_data");
1819 VARRAY_UCHAR_INIT (cfun->eh->ehspec_data, 64, "ehspec_data");
1820
1821 ttypes = htab_create (31, ttypes_filter_hash, ttypes_filter_eq, free);
1822 ehspec = htab_create (31, ehspec_filter_hash, ehspec_filter_eq, free);
1823
1824 for (i = cfun->eh->last_region_number; i > 0; --i)
1825 {
1826 struct eh_region *r = cfun->eh->region_array[i];
1827
1828 /* Mind we don't process a region more than once. */
1829 if (!r || r->region_number != i)
1830 continue;
1831
1832 switch (r->type)
1833 {
1834 case ERT_CATCH:
1835 /* Whatever type_list is (NULL or true list), we build a list
1836 of filters for the region. */
1837 r->u.catch.filter_list = NULL_TREE;
1838
1839 if (r->u.catch.type_list != NULL)
1840 {
1841 /* Get a filter value for each of the types caught and store
1842 them in the region's dedicated list. */
1843 tree tp_node = r->u.catch.type_list;
1844
1845 for (;tp_node; tp_node = TREE_CHAIN (tp_node))
1846 {
1847 int flt = add_ttypes_entry (ttypes, TREE_VALUE (tp_node));
1848 tree flt_node = build_int_2 (flt, 0);
1849
1850 r->u.catch.filter_list
1851 = tree_cons (NULL_TREE, flt_node, r->u.catch.filter_list);
1852 }
1853 }
1854 else
1855 {
1856 /* Get a filter value for the NULL list also since it will need
1857 an action record anyway. */
1858 int flt = add_ttypes_entry (ttypes, NULL);
1859 tree flt_node = build_int_2 (flt, 0);
1860
1861 r->u.catch.filter_list
1862 = tree_cons (NULL_TREE, flt_node, r->u.catch.filter_list);
1863 }
1864
1865 break;
1866
1867 case ERT_ALLOWED_EXCEPTIONS:
1868 r->u.allowed.filter
1869 = add_ehspec_entry (ehspec, ttypes, r->u.allowed.type_list);
1870 break;
1871
1872 default:
1873 break;
1874 }
1875 }
1876
1877 htab_delete (ttypes);
1878 htab_delete (ehspec);
1879 }
1880
1881 static void
1882 build_post_landing_pads ()
1883 {
1884 int i;
1885
1886 for (i = cfun->eh->last_region_number; i > 0; --i)
1887 {
1888 struct eh_region *region = cfun->eh->region_array[i];
1889 rtx seq;
1890
1891 /* Mind we don't process a region more than once. */
1892 if (!region || region->region_number != i)
1893 continue;
1894
1895 switch (region->type)
1896 {
1897 case ERT_TRY:
1898 /* ??? Collect the set of all non-overlapping catch handlers
1899 all the way up the chain until blocked by a cleanup. */
1900 /* ??? Outer try regions can share landing pads with inner
1901 try regions if the types are completely non-overlapping,
1902 and there are no intervening cleanups. */
1903
1904 region->post_landing_pad = gen_label_rtx ();
1905
1906 start_sequence ();
1907
1908 emit_label (region->post_landing_pad);
1909
1910 /* ??? It is mighty inconvenient to call back into the
1911 switch statement generation code in expand_end_case.
1912 Rapid prototyping sez a sequence of ifs. */
1913 {
1914 struct eh_region *c;
1915 for (c = region->u.try.catch; c ; c = c->u.catch.next_catch)
1916 {
1917 /* ??? _Unwind_ForcedUnwind wants no match here. */
1918 if (c->u.catch.type_list == NULL)
1919 emit_jump (c->label);
1920 else
1921 {
1922 /* Need for one cmp/jump per type caught. Each type
1923 list entry has a matching entry in the filter list
1924 (see assign_filter_values). */
1925 tree tp_node = c->u.catch.type_list;
1926 tree flt_node = c->u.catch.filter_list;
1927
1928 for (; tp_node; )
1929 {
1930 emit_cmp_and_jump_insns
1931 (cfun->eh->filter,
1932 GEN_INT (tree_low_cst (TREE_VALUE (flt_node), 0)),
1933 EQ, NULL_RTX, word_mode, 0, c->label);
1934
1935 tp_node = TREE_CHAIN (tp_node);
1936 flt_node = TREE_CHAIN (flt_node);
1937 }
1938 }
1939 }
1940 }
1941
1942 /* We delay the generation of the _Unwind_Resume until we generate
1943 landing pads. We emit a marker here so as to get good control
1944 flow data in the meantime. */
1945 region->resume
1946 = emit_jump_insn (gen_rtx_RESX (VOIDmode, region->region_number));
1947 emit_barrier ();
1948
1949 seq = get_insns ();
1950 end_sequence ();
1951
1952 emit_insns_before (seq, region->u.try.catch->label);
1953 break;
1954
1955 case ERT_ALLOWED_EXCEPTIONS:
1956 region->post_landing_pad = gen_label_rtx ();
1957
1958 start_sequence ();
1959
1960 emit_label (region->post_landing_pad);
1961
1962 emit_cmp_and_jump_insns (cfun->eh->filter,
1963 GEN_INT (region->u.allowed.filter),
1964 EQ, NULL_RTX, word_mode, 0, region->label);
1965
1966 /* We delay the generation of the _Unwind_Resume until we generate
1967 landing pads. We emit a marker here so as to get good control
1968 flow data in the meantime. */
1969 region->resume
1970 = emit_jump_insn (gen_rtx_RESX (VOIDmode, region->region_number));
1971 emit_barrier ();
1972
1973 seq = get_insns ();
1974 end_sequence ();
1975
1976 emit_insns_before (seq, region->label);
1977 break;
1978
1979 case ERT_CLEANUP:
1980 case ERT_MUST_NOT_THROW:
1981 region->post_landing_pad = region->label;
1982 break;
1983
1984 case ERT_CATCH:
1985 case ERT_THROW:
1986 /* Nothing to do. */
1987 break;
1988
1989 default:
1990 abort ();
1991 }
1992 }
1993 }
1994
1995 /* Replace RESX patterns with jumps to the next handler if any, or calls to
1996 _Unwind_Resume otherwise. */
1997
1998 static void
1999 connect_post_landing_pads ()
2000 {
2001 int i;
2002
2003 for (i = cfun->eh->last_region_number; i > 0; --i)
2004 {
2005 struct eh_region *region = cfun->eh->region_array[i];
2006 struct eh_region *outer;
2007 rtx seq;
2008
2009 /* Mind we don't process a region more than once. */
2010 if (!region || region->region_number != i)
2011 continue;
2012
2013 /* If there is no RESX, or it has been deleted by flow, there's
2014 nothing to fix up. */
2015 if (! region->resume || INSN_DELETED_P (region->resume))
2016 continue;
2017
2018 /* Search for another landing pad in this function. */
2019 for (outer = region->outer; outer ; outer = outer->outer)
2020 if (outer->post_landing_pad)
2021 break;
2022
2023 start_sequence ();
2024
2025 if (outer)
2026 emit_jump (outer->post_landing_pad);
2027 else
2028 emit_library_call (unwind_resume_libfunc, LCT_THROW,
2029 VOIDmode, 1, cfun->eh->exc_ptr, Pmode);
2030
2031 seq = get_insns ();
2032 end_sequence ();
2033 emit_insns_before (seq, region->resume);
2034 delete_insn (region->resume);
2035 }
2036 }
2037
2038 \f
2039 static void
2040 dw2_build_landing_pads ()
2041 {
2042 int i;
2043 unsigned int j;
2044
2045 for (i = cfun->eh->last_region_number; i > 0; --i)
2046 {
2047 struct eh_region *region = cfun->eh->region_array[i];
2048 rtx seq;
2049 bool clobbers_hard_regs = false;
2050
2051 /* Mind we don't process a region more than once. */
2052 if (!region || region->region_number != i)
2053 continue;
2054
2055 if (region->type != ERT_CLEANUP
2056 && region->type != ERT_TRY
2057 && region->type != ERT_ALLOWED_EXCEPTIONS)
2058 continue;
2059
2060 start_sequence ();
2061
2062 region->landing_pad = gen_label_rtx ();
2063 emit_label (region->landing_pad);
2064
2065 #ifdef HAVE_exception_receiver
2066 if (HAVE_exception_receiver)
2067 emit_insn (gen_exception_receiver ());
2068 else
2069 #endif
2070 #ifdef HAVE_nonlocal_goto_receiver
2071 if (HAVE_nonlocal_goto_receiver)
2072 emit_insn (gen_nonlocal_goto_receiver ());
2073 else
2074 #endif
2075 { /* Nothing */ }
2076
2077 /* If the eh_return data registers are call-saved, then we
2078 won't have considered them clobbered from the call that
2079 threw. Kill them now. */
2080 for (j = 0; ; ++j)
2081 {
2082 unsigned r = EH_RETURN_DATA_REGNO (j);
2083 if (r == INVALID_REGNUM)
2084 break;
2085 if (! call_used_regs[r])
2086 {
2087 emit_insn (gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, r)));
2088 clobbers_hard_regs = true;
2089 }
2090 }
2091
2092 if (clobbers_hard_regs)
2093 {
2094 /* @@@ This is a kludge. Not all machine descriptions define a
2095 blockage insn, but we must not allow the code we just generated
2096 to be reordered by scheduling. So emit an ASM_INPUT to act as
2097 blockage insn. */
2098 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
2099 }
2100
2101 emit_move_insn (cfun->eh->exc_ptr,
2102 gen_rtx_REG (Pmode, EH_RETURN_DATA_REGNO (0)));
2103 emit_move_insn (cfun->eh->filter,
2104 gen_rtx_REG (word_mode, EH_RETURN_DATA_REGNO (1)));
2105
2106 seq = get_insns ();
2107 end_sequence ();
2108
2109 emit_insns_before (seq, region->post_landing_pad);
2110 }
2111 }
2112
2113 \f
2114 struct sjlj_lp_info
2115 {
2116 int directly_reachable;
2117 int action_index;
2118 int dispatch_index;
2119 int call_site_index;
2120 };
2121
2122 static bool
2123 sjlj_find_directly_reachable_regions (lp_info)
2124 struct sjlj_lp_info *lp_info;
2125 {
2126 rtx insn;
2127 bool found_one = false;
2128
2129 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
2130 {
2131 struct eh_region *region;
2132 enum reachable_code rc;
2133 tree type_thrown;
2134 rtx note;
2135
2136 if (! INSN_P (insn))
2137 continue;
2138
2139 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2140 if (!note || INTVAL (XEXP (note, 0)) <= 0)
2141 continue;
2142
2143 region = cfun->eh->region_array[INTVAL (XEXP (note, 0))];
2144
2145 type_thrown = NULL_TREE;
2146 if (region->type == ERT_THROW)
2147 {
2148 type_thrown = region->u.throw.type;
2149 region = region->outer;
2150 }
2151
2152 /* Find the first containing region that might handle the exception.
2153 That's the landing pad to which we will transfer control. */
2154 rc = RNL_NOT_CAUGHT;
2155 for (; region; region = region->outer)
2156 {
2157 rc = reachable_next_level (region, type_thrown, 0);
2158 if (rc != RNL_NOT_CAUGHT)
2159 break;
2160 }
2161 if (rc == RNL_MAYBE_CAUGHT || rc == RNL_CAUGHT)
2162 {
2163 lp_info[region->region_number].directly_reachable = 1;
2164 found_one = true;
2165 }
2166 }
2167
2168 return found_one;
2169 }
2170
2171 static void
2172 sjlj_assign_call_site_values (dispatch_label, lp_info)
2173 rtx dispatch_label;
2174 struct sjlj_lp_info *lp_info;
2175 {
2176 htab_t ar_hash;
2177 int i, index;
2178
2179 /* First task: build the action table. */
2180
2181 VARRAY_UCHAR_INIT (cfun->eh->action_record_data, 64, "action_record_data");
2182 ar_hash = htab_create (31, action_record_hash, action_record_eq, free);
2183
2184 for (i = cfun->eh->last_region_number; i > 0; --i)
2185 if (lp_info[i].directly_reachable)
2186 {
2187 struct eh_region *r = cfun->eh->region_array[i];
2188 r->landing_pad = dispatch_label;
2189 lp_info[i].action_index = collect_one_action_chain (ar_hash, r);
2190 if (lp_info[i].action_index != -1)
2191 cfun->uses_eh_lsda = 1;
2192 }
2193
2194 htab_delete (ar_hash);
2195
2196 /* Next: assign dispatch values. In dwarf2 terms, this would be the
2197 landing pad label for the region. For sjlj though, there is one
2198 common landing pad from which we dispatch to the post-landing pads.
2199
2200 A region receives a dispatch index if it is directly reachable
2201 and requires in-function processing. Regions that share post-landing
2202 pads may share dispatch indices. */
2203 /* ??? Post-landing pad sharing doesn't actually happen at the moment
2204 (see build_post_landing_pads) so we don't bother checking for it. */
2205
2206 index = 0;
2207 for (i = cfun->eh->last_region_number; i > 0; --i)
2208 if (lp_info[i].directly_reachable)
2209 lp_info[i].dispatch_index = index++;
2210
2211 /* Finally: assign call-site values. If dwarf2 terms, this would be
2212 the region number assigned by convert_to_eh_region_ranges, but
2213 handles no-action and must-not-throw differently. */
2214
2215 call_site_base = 1;
2216 for (i = cfun->eh->last_region_number; i > 0; --i)
2217 if (lp_info[i].directly_reachable)
2218 {
2219 int action = lp_info[i].action_index;
2220
2221 /* Map must-not-throw to otherwise unused call-site index 0. */
2222 if (action == -2)
2223 index = 0;
2224 /* Map no-action to otherwise unused call-site index -1. */
2225 else if (action == -1)
2226 index = -1;
2227 /* Otherwise, look it up in the table. */
2228 else
2229 index = add_call_site (GEN_INT (lp_info[i].dispatch_index), action);
2230
2231 lp_info[i].call_site_index = index;
2232 }
2233 }
2234
2235 static void
2236 sjlj_mark_call_sites (lp_info)
2237 struct sjlj_lp_info *lp_info;
2238 {
2239 int last_call_site = -2;
2240 rtx insn, mem;
2241
2242 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
2243 {
2244 struct eh_region *region;
2245 int this_call_site;
2246 rtx note, before, p;
2247
2248 /* Reset value tracking at extended basic block boundaries. */
2249 if (GET_CODE (insn) == CODE_LABEL)
2250 last_call_site = -2;
2251
2252 if (! INSN_P (insn))
2253 continue;
2254
2255 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2256 if (!note)
2257 {
2258 /* Calls (and trapping insns) without notes are outside any
2259 exception handling region in this function. Mark them as
2260 no action. */
2261 if (GET_CODE (insn) == CALL_INSN
2262 || (flag_non_call_exceptions
2263 && may_trap_p (PATTERN (insn))))
2264 this_call_site = -1;
2265 else
2266 continue;
2267 }
2268 else
2269 {
2270 /* Calls that are known to not throw need not be marked. */
2271 if (INTVAL (XEXP (note, 0)) <= 0)
2272 continue;
2273
2274 region = cfun->eh->region_array[INTVAL (XEXP (note, 0))];
2275 this_call_site = lp_info[region->region_number].call_site_index;
2276 }
2277
2278 if (this_call_site == last_call_site)
2279 continue;
2280
2281 /* Don't separate a call from it's argument loads. */
2282 before = insn;
2283 if (GET_CODE (insn) == CALL_INSN)
2284 before = find_first_parameter_load (insn, NULL_RTX);
2285
2286 start_sequence ();
2287 mem = adjust_address (cfun->eh->sjlj_fc, TYPE_MODE (integer_type_node),
2288 sjlj_fc_call_site_ofs);
2289 emit_move_insn (mem, GEN_INT (this_call_site));
2290 p = get_insns ();
2291 end_sequence ();
2292
2293 emit_insns_before (p, before);
2294 last_call_site = this_call_site;
2295 }
2296 }
2297
2298 /* Construct the SjLj_Function_Context. */
2299
2300 static void
2301 sjlj_emit_function_enter (dispatch_label)
2302 rtx dispatch_label;
2303 {
2304 rtx fn_begin, fc, mem, seq;
2305
2306 fc = cfun->eh->sjlj_fc;
2307
2308 start_sequence ();
2309
2310 /* We're storing this libcall's address into memory instead of
2311 calling it directly. Thus, we must call assemble_external_libcall
2312 here, as we can not depend on emit_library_call to do it for us. */
2313 assemble_external_libcall (eh_personality_libfunc);
2314 mem = adjust_address (fc, Pmode, sjlj_fc_personality_ofs);
2315 emit_move_insn (mem, eh_personality_libfunc);
2316
2317 mem = adjust_address (fc, Pmode, sjlj_fc_lsda_ofs);
2318 if (cfun->uses_eh_lsda)
2319 {
2320 char buf[20];
2321 ASM_GENERATE_INTERNAL_LABEL (buf, "LLSDA", sjlj_funcdef_number);
2322 emit_move_insn (mem, gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf)));
2323 }
2324 else
2325 emit_move_insn (mem, const0_rtx);
2326
2327 #ifdef DONT_USE_BUILTIN_SETJMP
2328 {
2329 rtx x, note;
2330 x = emit_library_call_value (setjmp_libfunc, NULL_RTX, LCT_RETURNS_TWICE,
2331 TYPE_MODE (integer_type_node), 1,
2332 plus_constant (XEXP (fc, 0),
2333 sjlj_fc_jbuf_ofs), Pmode);
2334
2335 note = emit_note (NULL, NOTE_INSN_EXPECTED_VALUE);
2336 NOTE_EXPECTED_VALUE (note) = gen_rtx_EQ (VOIDmode, x, const0_rtx);
2337
2338 emit_cmp_and_jump_insns (x, const0_rtx, NE, 0,
2339 TYPE_MODE (integer_type_node), 0, dispatch_label);
2340 }
2341 #else
2342 expand_builtin_setjmp_setup (plus_constant (XEXP (fc, 0), sjlj_fc_jbuf_ofs),
2343 dispatch_label);
2344 #endif
2345
2346 emit_library_call (unwind_sjlj_register_libfunc, LCT_NORMAL, VOIDmode,
2347 1, XEXP (fc, 0), Pmode);
2348
2349 seq = get_insns ();
2350 end_sequence ();
2351
2352 /* ??? Instead of doing this at the beginning of the function,
2353 do this in a block that is at loop level 0 and dominates all
2354 can_throw_internal instructions. */
2355
2356 for (fn_begin = get_insns (); ; fn_begin = NEXT_INSN (fn_begin))
2357 if (GET_CODE (fn_begin) == NOTE
2358 && NOTE_LINE_NUMBER (fn_begin) == NOTE_INSN_FUNCTION_BEG)
2359 break;
2360 emit_insns_after (seq, fn_begin);
2361 }
2362
2363 /* Call back from expand_function_end to know where we should put
2364 the call to unwind_sjlj_unregister_libfunc if needed. */
2365
2366 void
2367 sjlj_emit_function_exit_after (after)
2368 rtx after;
2369 {
2370 cfun->eh->sjlj_exit_after = after;
2371 }
2372
2373 static void
2374 sjlj_emit_function_exit ()
2375 {
2376 rtx seq;
2377
2378 start_sequence ();
2379
2380 emit_library_call (unwind_sjlj_unregister_libfunc, LCT_NORMAL, VOIDmode,
2381 1, XEXP (cfun->eh->sjlj_fc, 0), Pmode);
2382
2383 seq = get_insns ();
2384 end_sequence ();
2385
2386 /* ??? Really this can be done in any block at loop level 0 that
2387 post-dominates all can_throw_internal instructions. This is
2388 the last possible moment. */
2389
2390 emit_insns_after (seq, cfun->eh->sjlj_exit_after);
2391 }
2392
2393 static void
2394 sjlj_emit_dispatch_table (dispatch_label, lp_info)
2395 rtx dispatch_label;
2396 struct sjlj_lp_info *lp_info;
2397 {
2398 int i, first_reachable;
2399 rtx mem, dispatch, seq, fc;
2400
2401 fc = cfun->eh->sjlj_fc;
2402
2403 start_sequence ();
2404
2405 emit_label (dispatch_label);
2406
2407 #ifndef DONT_USE_BUILTIN_SETJMP
2408 expand_builtin_setjmp_receiver (dispatch_label);
2409 #endif
2410
2411 /* Load up dispatch index, exc_ptr and filter values from the
2412 function context. */
2413 mem = adjust_address (fc, TYPE_MODE (integer_type_node),
2414 sjlj_fc_call_site_ofs);
2415 dispatch = copy_to_reg (mem);
2416
2417 mem = adjust_address (fc, word_mode, sjlj_fc_data_ofs);
2418 if (word_mode != Pmode)
2419 {
2420 #ifdef POINTERS_EXTEND_UNSIGNED
2421 mem = convert_memory_address (Pmode, mem);
2422 #else
2423 mem = convert_to_mode (Pmode, mem, 0);
2424 #endif
2425 }
2426 emit_move_insn (cfun->eh->exc_ptr, mem);
2427
2428 mem = adjust_address (fc, word_mode, sjlj_fc_data_ofs + UNITS_PER_WORD);
2429 emit_move_insn (cfun->eh->filter, mem);
2430
2431 /* Jump to one of the directly reachable regions. */
2432 /* ??? This really ought to be using a switch statement. */
2433
2434 first_reachable = 0;
2435 for (i = cfun->eh->last_region_number; i > 0; --i)
2436 {
2437 if (! lp_info[i].directly_reachable)
2438 continue;
2439
2440 if (! first_reachable)
2441 {
2442 first_reachable = i;
2443 continue;
2444 }
2445
2446 emit_cmp_and_jump_insns (dispatch, GEN_INT (lp_info[i].dispatch_index),
2447 EQ, NULL_RTX, TYPE_MODE (integer_type_node), 0,
2448 cfun->eh->region_array[i]->post_landing_pad);
2449 }
2450
2451 seq = get_insns ();
2452 end_sequence ();
2453
2454 emit_insns_before (seq, (cfun->eh->region_array[first_reachable]
2455 ->post_landing_pad));
2456 }
2457
2458 static void
2459 sjlj_build_landing_pads ()
2460 {
2461 struct sjlj_lp_info *lp_info;
2462
2463 lp_info = (struct sjlj_lp_info *) xcalloc (cfun->eh->last_region_number + 1,
2464 sizeof (struct sjlj_lp_info));
2465
2466 if (sjlj_find_directly_reachable_regions (lp_info))
2467 {
2468 rtx dispatch_label = gen_label_rtx ();
2469
2470 cfun->eh->sjlj_fc
2471 = assign_stack_local (TYPE_MODE (sjlj_fc_type_node),
2472 int_size_in_bytes (sjlj_fc_type_node),
2473 TYPE_ALIGN (sjlj_fc_type_node));
2474
2475 sjlj_assign_call_site_values (dispatch_label, lp_info);
2476 sjlj_mark_call_sites (lp_info);
2477
2478 sjlj_emit_function_enter (dispatch_label);
2479 sjlj_emit_dispatch_table (dispatch_label, lp_info);
2480 sjlj_emit_function_exit ();
2481 }
2482
2483 free (lp_info);
2484 }
2485
2486 void
2487 finish_eh_generation ()
2488 {
2489 /* Nothing to do if no regions created. */
2490 if (cfun->eh->region_tree == NULL)
2491 return;
2492
2493 /* The object here is to provide find_basic_blocks with detailed
2494 information (via reachable_handlers) on how exception control
2495 flows within the function. In this first pass, we can include
2496 type information garnered from ERT_THROW and ERT_ALLOWED_EXCEPTIONS
2497 regions, and hope that it will be useful in deleting unreachable
2498 handlers. Subsequently, we will generate landing pads which will
2499 connect many of the handlers, and then type information will not
2500 be effective. Still, this is a win over previous implementations. */
2501
2502 rebuild_jump_labels (get_insns ());
2503 find_basic_blocks (get_insns (), max_reg_num (), 0);
2504 cleanup_cfg (CLEANUP_PRE_LOOP | CLEANUP_NO_INSN_DEL);
2505
2506 /* These registers are used by the landing pads. Make sure they
2507 have been generated. */
2508 get_exception_pointer (cfun);
2509 get_exception_filter (cfun);
2510
2511 /* Construct the landing pads. */
2512
2513 assign_filter_values ();
2514 build_post_landing_pads ();
2515 connect_post_landing_pads ();
2516 if (USING_SJLJ_EXCEPTIONS)
2517 sjlj_build_landing_pads ();
2518 else
2519 dw2_build_landing_pads ();
2520
2521 cfun->eh->built_landing_pads = 1;
2522
2523 /* We've totally changed the CFG. Start over. */
2524 find_exception_handler_labels ();
2525 rebuild_jump_labels (get_insns ());
2526 find_basic_blocks (get_insns (), max_reg_num (), 0);
2527 cleanup_cfg (CLEANUP_PRE_LOOP | CLEANUP_NO_INSN_DEL);
2528 }
2529 \f
2530 static hashval_t
2531 ehl_hash (pentry)
2532 const PTR pentry;
2533 {
2534 struct ehl_map_entry *entry = (struct ehl_map_entry *) pentry;
2535
2536 /* 2^32 * ((sqrt(5) - 1) / 2) */
2537 const hashval_t scaled_golden_ratio = 0x9e3779b9;
2538 return CODE_LABEL_NUMBER (entry->label) * scaled_golden_ratio;
2539 }
2540
2541 static int
2542 ehl_eq (pentry, pdata)
2543 const PTR pentry;
2544 const PTR pdata;
2545 {
2546 struct ehl_map_entry *entry = (struct ehl_map_entry *) pentry;
2547 struct ehl_map_entry *data = (struct ehl_map_entry *) pdata;
2548
2549 return entry->label == data->label;
2550 }
2551
2552 /* This section handles removing dead code for flow. */
2553
2554 /* Remove LABEL from exception_handler_label_map. */
2555
2556 static void
2557 remove_exception_handler_label (label)
2558 rtx label;
2559 {
2560 struct ehl_map_entry **slot, tmp;
2561
2562 /* If exception_handler_label_map was not built yet,
2563 there is nothing to do. */
2564 if (exception_handler_label_map == NULL)
2565 return;
2566
2567 tmp.label = label;
2568 slot = (struct ehl_map_entry **)
2569 htab_find_slot (exception_handler_label_map, &tmp, NO_INSERT);
2570 if (! slot)
2571 abort ();
2572
2573 htab_clear_slot (exception_handler_label_map, (void **) slot);
2574 }
2575
2576 /* Splice REGION from the region tree etc. */
2577
2578 static void
2579 remove_eh_handler (region)
2580 struct eh_region *region;
2581 {
2582 struct eh_region **pp, **pp_start, *p, *outer, *inner;
2583 rtx lab;
2584
2585 /* For the benefit of efficiently handling REG_EH_REGION notes,
2586 replace this region in the region array with its containing
2587 region. Note that previous region deletions may result in
2588 multiple copies of this region in the array, so we have a
2589 list of alternate numbers by which we are known. */
2590
2591 outer = region->outer;
2592 cfun->eh->region_array[region->region_number] = outer;
2593 if (region->aka)
2594 {
2595 int i;
2596 EXECUTE_IF_SET_IN_BITMAP (region->aka, 0, i,
2597 { cfun->eh->region_array[i] = outer; });
2598 }
2599
2600 if (outer)
2601 {
2602 if (!outer->aka)
2603 outer->aka = BITMAP_XMALLOC ();
2604 if (region->aka)
2605 bitmap_a_or_b (outer->aka, outer->aka, region->aka);
2606 bitmap_set_bit (outer->aka, region->region_number);
2607 }
2608
2609 if (cfun->eh->built_landing_pads)
2610 lab = region->landing_pad;
2611 else
2612 lab = region->label;
2613 if (lab)
2614 remove_exception_handler_label (lab);
2615
2616 if (outer)
2617 pp_start = &outer->inner;
2618 else
2619 pp_start = &cfun->eh->region_tree;
2620 for (pp = pp_start, p = *pp; p != region; pp = &p->next_peer, p = *pp)
2621 continue;
2622 *pp = region->next_peer;
2623
2624 inner = region->inner;
2625 if (inner)
2626 {
2627 for (p = inner; p->next_peer ; p = p->next_peer)
2628 p->outer = outer;
2629 p->outer = outer;
2630
2631 p->next_peer = *pp_start;
2632 *pp_start = inner;
2633 }
2634
2635 if (region->type == ERT_CATCH)
2636 {
2637 struct eh_region *try, *next, *prev;
2638
2639 for (try = region->next_peer;
2640 try->type == ERT_CATCH;
2641 try = try->next_peer)
2642 continue;
2643 if (try->type != ERT_TRY)
2644 abort ();
2645
2646 next = region->u.catch.next_catch;
2647 prev = region->u.catch.prev_catch;
2648
2649 if (next)
2650 next->u.catch.prev_catch = prev;
2651 else
2652 try->u.try.last_catch = prev;
2653 if (prev)
2654 prev->u.catch.next_catch = next;
2655 else
2656 {
2657 try->u.try.catch = next;
2658 if (! next)
2659 remove_eh_handler (try);
2660 }
2661 }
2662
2663 free_region (region);
2664 }
2665
2666 /* LABEL heads a basic block that is about to be deleted. If this
2667 label corresponds to an exception region, we may be able to
2668 delete the region. */
2669
2670 void
2671 maybe_remove_eh_handler (label)
2672 rtx label;
2673 {
2674 struct ehl_map_entry **slot, tmp;
2675 struct eh_region *region;
2676
2677 /* ??? After generating landing pads, it's not so simple to determine
2678 if the region data is completely unused. One must examine the
2679 landing pad and the post landing pad, and whether an inner try block
2680 is referencing the catch handlers directly. */
2681 if (cfun->eh->built_landing_pads)
2682 return;
2683
2684 tmp.label = label;
2685 slot = (struct ehl_map_entry **)
2686 htab_find_slot (exception_handler_label_map, &tmp, NO_INSERT);
2687 if (! slot)
2688 return;
2689 region = (*slot)->region;
2690 if (! region)
2691 return;
2692
2693 /* Flow will want to remove MUST_NOT_THROW regions as unreachable
2694 because there is no path to the fallback call to terminate.
2695 But the region continues to affect call-site data until there
2696 are no more contained calls, which we don't see here. */
2697 if (region->type == ERT_MUST_NOT_THROW)
2698 {
2699 htab_clear_slot (exception_handler_label_map, (void **) slot);
2700 region->label = NULL_RTX;
2701 }
2702 else
2703 remove_eh_handler (region);
2704 }
2705
2706 /* Invokes CALLBACK for every exception handler label. Only used by old
2707 loop hackery; should not be used by new code. */
2708
2709 void
2710 for_each_eh_label (callback)
2711 void (*callback) PARAMS ((rtx));
2712 {
2713 htab_traverse (exception_handler_label_map, for_each_eh_label_1,
2714 (void *)callback);
2715 }
2716
2717 static int
2718 for_each_eh_label_1 (pentry, data)
2719 PTR *pentry;
2720 PTR data;
2721 {
2722 struct ehl_map_entry *entry = *(struct ehl_map_entry **)pentry;
2723 void (*callback) PARAMS ((rtx)) = (void (*) PARAMS ((rtx))) data;
2724
2725 (*callback) (entry->label);
2726 return 1;
2727 }
2728 \f
2729 /* This section describes CFG exception edges for flow. */
2730
2731 /* For communicating between calls to reachable_next_level. */
2732 struct reachable_info
2733 {
2734 tree types_caught;
2735 tree types_allowed;
2736 rtx handlers;
2737 };
2738
2739 /* A subroutine of reachable_next_level. Return true if TYPE, or a
2740 base class of TYPE, is in HANDLED. */
2741
2742 static int
2743 check_handled (handled, type)
2744 tree handled, type;
2745 {
2746 tree t;
2747
2748 /* We can check for exact matches without front-end help. */
2749 if (! lang_eh_type_covers)
2750 {
2751 for (t = handled; t ; t = TREE_CHAIN (t))
2752 if (TREE_VALUE (t) == type)
2753 return 1;
2754 }
2755 else
2756 {
2757 for (t = handled; t ; t = TREE_CHAIN (t))
2758 if ((*lang_eh_type_covers) (TREE_VALUE (t), type))
2759 return 1;
2760 }
2761
2762 return 0;
2763 }
2764
2765 /* A subroutine of reachable_next_level. If we are collecting a list
2766 of handlers, add one. After landing pad generation, reference
2767 it instead of the handlers themselves. Further, the handlers are
2768 all wired together, so by referencing one, we've got them all.
2769 Before landing pad generation we reference each handler individually.
2770
2771 LP_REGION contains the landing pad; REGION is the handler. */
2772
2773 static void
2774 add_reachable_handler (info, lp_region, region)
2775 struct reachable_info *info;
2776 struct eh_region *lp_region;
2777 struct eh_region *region;
2778 {
2779 if (! info)
2780 return;
2781
2782 if (cfun->eh->built_landing_pads)
2783 {
2784 if (! info->handlers)
2785 info->handlers = alloc_INSN_LIST (lp_region->landing_pad, NULL_RTX);
2786 }
2787 else
2788 info->handlers = alloc_INSN_LIST (region->label, info->handlers);
2789 }
2790
2791 /* Process one level of exception regions for reachability.
2792 If TYPE_THROWN is non-null, then it is the *exact* type being
2793 propagated. If INFO is non-null, then collect handler labels
2794 and caught/allowed type information between invocations. */
2795
2796 static enum reachable_code
2797 reachable_next_level (region, type_thrown, info)
2798 struct eh_region *region;
2799 tree type_thrown;
2800 struct reachable_info *info;
2801 {
2802 switch (region->type)
2803 {
2804 case ERT_CLEANUP:
2805 /* Before landing-pad generation, we model control flow
2806 directly to the individual handlers. In this way we can
2807 see that catch handler types may shadow one another. */
2808 add_reachable_handler (info, region, region);
2809 return RNL_MAYBE_CAUGHT;
2810
2811 case ERT_TRY:
2812 {
2813 struct eh_region *c;
2814 enum reachable_code ret = RNL_NOT_CAUGHT;
2815
2816 for (c = region->u.try.catch; c ; c = c->u.catch.next_catch)
2817 {
2818 /* A catch-all handler ends the search. */
2819 /* ??? _Unwind_ForcedUnwind will want outer cleanups
2820 to be run as well. */
2821 if (c->u.catch.type_list == NULL)
2822 {
2823 add_reachable_handler (info, region, c);
2824 return RNL_CAUGHT;
2825 }
2826
2827 if (type_thrown)
2828 {
2829 /* If we have at least one type match, end the search. */
2830 tree tp_node = c->u.catch.type_list;
2831
2832 for (; tp_node; tp_node = TREE_CHAIN (tp_node))
2833 {
2834 tree type = TREE_VALUE (tp_node);
2835
2836 if (type == type_thrown
2837 || (lang_eh_type_covers
2838 && (*lang_eh_type_covers) (type, type_thrown)))
2839 {
2840 add_reachable_handler (info, region, c);
2841 return RNL_CAUGHT;
2842 }
2843 }
2844
2845 /* If we have definitive information of a match failure,
2846 the catch won't trigger. */
2847 if (lang_eh_type_covers)
2848 return RNL_NOT_CAUGHT;
2849 }
2850
2851 /* At this point, we either don't know what type is thrown or
2852 don't have front-end assistance to help deciding if it is
2853 covered by one of the types in the list for this region.
2854
2855 We'd then like to add this region to the list of reachable
2856 handlers since it is indeed potentially reachable based on the
2857 information we have.
2858
2859 Actually, this handler is for sure not reachable if all the
2860 types it matches have already been caught. That is, it is only
2861 potentially reachable if at least one of the types it catches
2862 has not been previously caught. */
2863
2864 if (! info)
2865 ret = RNL_MAYBE_CAUGHT;
2866 else
2867 {
2868 tree tp_node = c->u.catch.type_list;
2869 bool maybe_reachable = false;
2870
2871 /* Compute the potential reachability of this handler and
2872 update the list of types caught at the same time. */
2873 for (; tp_node; tp_node = TREE_CHAIN (tp_node))
2874 {
2875 tree type = TREE_VALUE (tp_node);
2876
2877 if (! check_handled (info->types_caught, type))
2878 {
2879 info->types_caught
2880 = tree_cons (NULL, type, info->types_caught);
2881
2882 maybe_reachable = true;
2883 }
2884 }
2885
2886 if (maybe_reachable)
2887 {
2888 add_reachable_handler (info, region, c);
2889
2890 /* ??? If the catch type is a base class of every allowed
2891 type, then we know we can stop the search. */
2892 ret = RNL_MAYBE_CAUGHT;
2893 }
2894 }
2895 }
2896
2897 return ret;
2898 }
2899
2900 case ERT_ALLOWED_EXCEPTIONS:
2901 /* An empty list of types definitely ends the search. */
2902 if (region->u.allowed.type_list == NULL_TREE)
2903 {
2904 add_reachable_handler (info, region, region);
2905 return RNL_CAUGHT;
2906 }
2907
2908 /* Collect a list of lists of allowed types for use in detecting
2909 when a catch may be transformed into a catch-all. */
2910 if (info)
2911 info->types_allowed = tree_cons (NULL_TREE,
2912 region->u.allowed.type_list,
2913 info->types_allowed);
2914
2915 /* If we have definitive information about the type hierarchy,
2916 then we can tell if the thrown type will pass through the
2917 filter. */
2918 if (type_thrown && lang_eh_type_covers)
2919 {
2920 if (check_handled (region->u.allowed.type_list, type_thrown))
2921 return RNL_NOT_CAUGHT;
2922 else
2923 {
2924 add_reachable_handler (info, region, region);
2925 return RNL_CAUGHT;
2926 }
2927 }
2928
2929 add_reachable_handler (info, region, region);
2930 return RNL_MAYBE_CAUGHT;
2931
2932 case ERT_CATCH:
2933 /* Catch regions are handled by their controling try region. */
2934 return RNL_NOT_CAUGHT;
2935
2936 case ERT_MUST_NOT_THROW:
2937 /* Here we end our search, since no exceptions may propagate.
2938 If we've touched down at some landing pad previous, then the
2939 explicit function call we generated may be used. Otherwise
2940 the call is made by the runtime. */
2941 if (info && info->handlers)
2942 {
2943 add_reachable_handler (info, region, region);
2944 return RNL_CAUGHT;
2945 }
2946 else
2947 return RNL_BLOCKED;
2948
2949 case ERT_THROW:
2950 case ERT_FIXUP:
2951 case ERT_UNKNOWN:
2952 /* Shouldn't see these here. */
2953 break;
2954 }
2955
2956 abort ();
2957 }
2958
2959 /* Retrieve a list of labels of exception handlers which can be
2960 reached by a given insn. */
2961
2962 rtx
2963 reachable_handlers (insn)
2964 rtx insn;
2965 {
2966 struct reachable_info info;
2967 struct eh_region *region;
2968 tree type_thrown;
2969 int region_number;
2970
2971 if (GET_CODE (insn) == JUMP_INSN
2972 && GET_CODE (PATTERN (insn)) == RESX)
2973 region_number = XINT (PATTERN (insn), 0);
2974 else
2975 {
2976 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2977 if (!note || INTVAL (XEXP (note, 0)) <= 0)
2978 return NULL;
2979 region_number = INTVAL (XEXP (note, 0));
2980 }
2981
2982 memset (&info, 0, sizeof (info));
2983
2984 region = cfun->eh->region_array[region_number];
2985
2986 type_thrown = NULL_TREE;
2987 if (GET_CODE (insn) == JUMP_INSN
2988 && GET_CODE (PATTERN (insn)) == RESX)
2989 {
2990 /* A RESX leaves a region instead of entering it. Thus the
2991 region itself may have been deleted out from under us. */
2992 if (region == NULL)
2993 return NULL;
2994 region = region->outer;
2995 }
2996 else if (region->type == ERT_THROW)
2997 {
2998 type_thrown = region->u.throw.type;
2999 region = region->outer;
3000 }
3001
3002 for (; region; region = region->outer)
3003 if (reachable_next_level (region, type_thrown, &info) >= RNL_CAUGHT)
3004 break;
3005
3006 return info.handlers;
3007 }
3008
3009 /* Determine if the given INSN can throw an exception that is caught
3010 within the function. */
3011
3012 bool
3013 can_throw_internal (insn)
3014 rtx insn;
3015 {
3016 struct eh_region *region;
3017 tree type_thrown;
3018 rtx note;
3019
3020 if (! INSN_P (insn))
3021 return false;
3022
3023 if (GET_CODE (insn) == INSN
3024 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3025 insn = XVECEXP (PATTERN (insn), 0, 0);
3026
3027 if (GET_CODE (insn) == CALL_INSN
3028 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
3029 {
3030 int i;
3031 for (i = 0; i < 3; ++i)
3032 {
3033 rtx sub = XEXP (PATTERN (insn), i);
3034 for (; sub ; sub = NEXT_INSN (sub))
3035 if (can_throw_internal (sub))
3036 return true;
3037 }
3038 return false;
3039 }
3040
3041 /* Every insn that might throw has an EH_REGION note. */
3042 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3043 if (!note || INTVAL (XEXP (note, 0)) <= 0)
3044 return false;
3045
3046 region = cfun->eh->region_array[INTVAL (XEXP (note, 0))];
3047
3048 type_thrown = NULL_TREE;
3049 if (region->type == ERT_THROW)
3050 {
3051 type_thrown = region->u.throw.type;
3052 region = region->outer;
3053 }
3054
3055 /* If this exception is ignored by each and every containing region,
3056 then control passes straight out. The runtime may handle some
3057 regions, which also do not require processing internally. */
3058 for (; region; region = region->outer)
3059 {
3060 enum reachable_code how = reachable_next_level (region, type_thrown, 0);
3061 if (how == RNL_BLOCKED)
3062 return false;
3063 if (how != RNL_NOT_CAUGHT)
3064 return true;
3065 }
3066
3067 return false;
3068 }
3069
3070 /* Determine if the given INSN can throw an exception that is
3071 visible outside the function. */
3072
3073 bool
3074 can_throw_external (insn)
3075 rtx insn;
3076 {
3077 struct eh_region *region;
3078 tree type_thrown;
3079 rtx note;
3080
3081 if (! INSN_P (insn))
3082 return false;
3083
3084 if (GET_CODE (insn) == INSN
3085 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3086 insn = XVECEXP (PATTERN (insn), 0, 0);
3087
3088 if (GET_CODE (insn) == CALL_INSN
3089 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
3090 {
3091 int i;
3092 for (i = 0; i < 3; ++i)
3093 {
3094 rtx sub = XEXP (PATTERN (insn), i);
3095 for (; sub ; sub = NEXT_INSN (sub))
3096 if (can_throw_external (sub))
3097 return true;
3098 }
3099 return false;
3100 }
3101
3102 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3103 if (!note)
3104 {
3105 /* Calls (and trapping insns) without notes are outside any
3106 exception handling region in this function. We have to
3107 assume it might throw. Given that the front end and middle
3108 ends mark known NOTHROW functions, this isn't so wildly
3109 inaccurate. */
3110 return (GET_CODE (insn) == CALL_INSN
3111 || (flag_non_call_exceptions
3112 && may_trap_p (PATTERN (insn))));
3113 }
3114 if (INTVAL (XEXP (note, 0)) <= 0)
3115 return false;
3116
3117 region = cfun->eh->region_array[INTVAL (XEXP (note, 0))];
3118
3119 type_thrown = NULL_TREE;
3120 if (region->type == ERT_THROW)
3121 {
3122 type_thrown = region->u.throw.type;
3123 region = region->outer;
3124 }
3125
3126 /* If the exception is caught or blocked by any containing region,
3127 then it is not seen by any calling function. */
3128 for (; region ; region = region->outer)
3129 if (reachable_next_level (region, type_thrown, NULL) >= RNL_CAUGHT)
3130 return false;
3131
3132 return true;
3133 }
3134
3135 /* True if nothing in this function can throw outside this function. */
3136
3137 bool
3138 nothrow_function_p ()
3139 {
3140 rtx insn;
3141
3142 if (! flag_exceptions)
3143 return true;
3144
3145 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3146 if (can_throw_external (insn))
3147 return false;
3148 for (insn = current_function_epilogue_delay_list; insn;
3149 insn = XEXP (insn, 1))
3150 if (can_throw_external (insn))
3151 return false;
3152
3153 return true;
3154 }
3155
3156 \f
3157 /* Various hooks for unwind library. */
3158
3159 /* Do any necessary initialization to access arbitrary stack frames.
3160 On the SPARC, this means flushing the register windows. */
3161
3162 void
3163 expand_builtin_unwind_init ()
3164 {
3165 /* Set this so all the registers get saved in our frame; we need to be
3166 able to copy the saved values for any registers from frames we unwind. */
3167 current_function_has_nonlocal_label = 1;
3168
3169 #ifdef SETUP_FRAME_ADDRESSES
3170 SETUP_FRAME_ADDRESSES ();
3171 #endif
3172 }
3173
3174 rtx
3175 expand_builtin_eh_return_data_regno (arglist)
3176 tree arglist;
3177 {
3178 tree which = TREE_VALUE (arglist);
3179 unsigned HOST_WIDE_INT iwhich;
3180
3181 if (TREE_CODE (which) != INTEGER_CST)
3182 {
3183 error ("argument of `__builtin_eh_return_regno' must be constant");
3184 return constm1_rtx;
3185 }
3186
3187 iwhich = tree_low_cst (which, 1);
3188 iwhich = EH_RETURN_DATA_REGNO (iwhich);
3189 if (iwhich == INVALID_REGNUM)
3190 return constm1_rtx;
3191
3192 #ifdef DWARF_FRAME_REGNUM
3193 iwhich = DWARF_FRAME_REGNUM (iwhich);
3194 #else
3195 iwhich = DBX_REGISTER_NUMBER (iwhich);
3196 #endif
3197
3198 return GEN_INT (iwhich);
3199 }
3200
3201 /* Given a value extracted from the return address register or stack slot,
3202 return the actual address encoded in that value. */
3203
3204 rtx
3205 expand_builtin_extract_return_addr (addr_tree)
3206 tree addr_tree;
3207 {
3208 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
3209
3210 /* First mask out any unwanted bits. */
3211 #ifdef MASK_RETURN_ADDR
3212 expand_and (Pmode, addr, MASK_RETURN_ADDR, addr);
3213 #endif
3214
3215 /* Then adjust to find the real return address. */
3216 #if defined (RETURN_ADDR_OFFSET)
3217 addr = plus_constant (addr, RETURN_ADDR_OFFSET);
3218 #endif
3219
3220 return addr;
3221 }
3222
3223 /* Given an actual address in addr_tree, do any necessary encoding
3224 and return the value to be stored in the return address register or
3225 stack slot so the epilogue will return to that address. */
3226
3227 rtx
3228 expand_builtin_frob_return_addr (addr_tree)
3229 tree addr_tree;
3230 {
3231 rtx addr = expand_expr (addr_tree, NULL_RTX, ptr_mode, 0);
3232
3233 #ifdef POINTERS_EXTEND_UNSIGNED
3234 if (GET_MODE (addr) != Pmode)
3235 addr = convert_memory_address (Pmode, addr);
3236 #endif
3237
3238 #ifdef RETURN_ADDR_OFFSET
3239 addr = force_reg (Pmode, addr);
3240 addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
3241 #endif
3242
3243 return addr;
3244 }
3245
3246 /* Set up the epilogue with the magic bits we'll need to return to the
3247 exception handler. */
3248
3249 void
3250 expand_builtin_eh_return (stackadj_tree, handler_tree)
3251 tree stackadj_tree, handler_tree;
3252 {
3253 rtx stackadj, handler;
3254
3255 stackadj = expand_expr (stackadj_tree, cfun->eh->ehr_stackadj, VOIDmode, 0);
3256 handler = expand_expr (handler_tree, cfun->eh->ehr_handler, VOIDmode, 0);
3257
3258 #ifdef POINTERS_EXTEND_UNSIGNED
3259 if (GET_MODE (stackadj) != Pmode)
3260 stackadj = convert_memory_address (Pmode, stackadj);
3261
3262 if (GET_MODE (handler) != Pmode)
3263 handler = convert_memory_address (Pmode, handler);
3264 #endif
3265
3266 if (! cfun->eh->ehr_label)
3267 {
3268 cfun->eh->ehr_stackadj = copy_to_reg (stackadj);
3269 cfun->eh->ehr_handler = copy_to_reg (handler);
3270 cfun->eh->ehr_label = gen_label_rtx ();
3271 }
3272 else
3273 {
3274 if (stackadj != cfun->eh->ehr_stackadj)
3275 emit_move_insn (cfun->eh->ehr_stackadj, stackadj);
3276 if (handler != cfun->eh->ehr_handler)
3277 emit_move_insn (cfun->eh->ehr_handler, handler);
3278 }
3279
3280 emit_jump (cfun->eh->ehr_label);
3281 }
3282
3283 void
3284 expand_eh_return ()
3285 {
3286 rtx sa, ra, around_label;
3287
3288 if (! cfun->eh->ehr_label)
3289 return;
3290
3291 sa = EH_RETURN_STACKADJ_RTX;
3292 if (! sa)
3293 {
3294 error ("__builtin_eh_return not supported on this target");
3295 return;
3296 }
3297
3298 current_function_calls_eh_return = 1;
3299
3300 around_label = gen_label_rtx ();
3301 emit_move_insn (sa, const0_rtx);
3302 emit_jump (around_label);
3303
3304 emit_label (cfun->eh->ehr_label);
3305 clobber_return_register ();
3306
3307 #ifdef HAVE_eh_return
3308 if (HAVE_eh_return)
3309 emit_insn (gen_eh_return (cfun->eh->ehr_stackadj, cfun->eh->ehr_handler));
3310 else
3311 #endif
3312 {
3313 ra = EH_RETURN_HANDLER_RTX;
3314 if (! ra)
3315 {
3316 error ("__builtin_eh_return not supported on this target");
3317 ra = gen_reg_rtx (Pmode);
3318 }
3319
3320 emit_move_insn (sa, cfun->eh->ehr_stackadj);
3321 emit_move_insn (ra, cfun->eh->ehr_handler);
3322 }
3323
3324 emit_label (around_label);
3325 }
3326 \f
3327 /* In the following functions, we represent entries in the action table
3328 as 1-based indices. Special cases are:
3329
3330 0: null action record, non-null landing pad; implies cleanups
3331 -1: null action record, null landing pad; implies no action
3332 -2: no call-site entry; implies must_not_throw
3333 -3: we have yet to process outer regions
3334
3335 Further, no special cases apply to the "next" field of the record.
3336 For next, 0 means end of list. */
3337
3338 struct action_record
3339 {
3340 int offset;
3341 int filter;
3342 int next;
3343 };
3344
3345 static int
3346 action_record_eq (pentry, pdata)
3347 const PTR pentry;
3348 const PTR pdata;
3349 {
3350 const struct action_record *entry = (const struct action_record *) pentry;
3351 const struct action_record *data = (const struct action_record *) pdata;
3352 return entry->filter == data->filter && entry->next == data->next;
3353 }
3354
3355 static hashval_t
3356 action_record_hash (pentry)
3357 const PTR pentry;
3358 {
3359 const struct action_record *entry = (const struct action_record *) pentry;
3360 return entry->next * 1009 + entry->filter;
3361 }
3362
3363 static int
3364 add_action_record (ar_hash, filter, next)
3365 htab_t ar_hash;
3366 int filter, next;
3367 {
3368 struct action_record **slot, *new, tmp;
3369
3370 tmp.filter = filter;
3371 tmp.next = next;
3372 slot = (struct action_record **) htab_find_slot (ar_hash, &tmp, INSERT);
3373
3374 if ((new = *slot) == NULL)
3375 {
3376 new = (struct action_record *) xmalloc (sizeof (*new));
3377 new->offset = VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data) + 1;
3378 new->filter = filter;
3379 new->next = next;
3380 *slot = new;
3381
3382 /* The filter value goes in untouched. The link to the next
3383 record is a "self-relative" byte offset, or zero to indicate
3384 that there is no next record. So convert the absolute 1 based
3385 indices we've been carrying around into a displacement. */
3386
3387 push_sleb128 (&cfun->eh->action_record_data, filter);
3388 if (next)
3389 next -= VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data) + 1;
3390 push_sleb128 (&cfun->eh->action_record_data, next);
3391 }
3392
3393 return new->offset;
3394 }
3395
3396 static int
3397 collect_one_action_chain (ar_hash, region)
3398 htab_t ar_hash;
3399 struct eh_region *region;
3400 {
3401 struct eh_region *c;
3402 int next;
3403
3404 /* If we've reached the top of the region chain, then we have
3405 no actions, and require no landing pad. */
3406 if (region == NULL)
3407 return -1;
3408
3409 switch (region->type)
3410 {
3411 case ERT_CLEANUP:
3412 /* A cleanup adds a zero filter to the beginning of the chain, but
3413 there are special cases to look out for. If there are *only*
3414 cleanups along a path, then it compresses to a zero action.
3415 Further, if there are multiple cleanups along a path, we only
3416 need to represent one of them, as that is enough to trigger
3417 entry to the landing pad at runtime. */
3418 next = collect_one_action_chain (ar_hash, region->outer);
3419 if (next <= 0)
3420 return 0;
3421 for (c = region->outer; c ; c = c->outer)
3422 if (c->type == ERT_CLEANUP)
3423 return next;
3424 return add_action_record (ar_hash, 0, next);
3425
3426 case ERT_TRY:
3427 /* Process the associated catch regions in reverse order.
3428 If there's a catch-all handler, then we don't need to
3429 search outer regions. Use a magic -3 value to record
3430 that we haven't done the outer search. */
3431 next = -3;
3432 for (c = region->u.try.last_catch; c ; c = c->u.catch.prev_catch)
3433 {
3434 if (c->u.catch.type_list == NULL)
3435 {
3436 /* Retrieve the filter from the head of the filter list
3437 where we have stored it (see assign_filter_values). */
3438 int filter
3439 = TREE_INT_CST_LOW (TREE_VALUE (c->u.catch.filter_list));
3440
3441 next = add_action_record (ar_hash, filter, 0);
3442 }
3443 else
3444 {
3445 /* Once the outer search is done, trigger an action record for
3446 each filter we have. */
3447 tree flt_node;
3448
3449 if (next == -3)
3450 {
3451 next = collect_one_action_chain (ar_hash, region->outer);
3452
3453 /* If there is no next action, terminate the chain. */
3454 if (next == -1)
3455 next = 0;
3456 /* If all outer actions are cleanups or must_not_throw,
3457 we'll have no action record for it, since we had wanted
3458 to encode these states in the call-site record directly.
3459 Add a cleanup action to the chain to catch these. */
3460 else if (next <= 0)
3461 next = add_action_record (ar_hash, 0, 0);
3462 }
3463
3464 flt_node = c->u.catch.filter_list;
3465 for (; flt_node; flt_node = TREE_CHAIN (flt_node))
3466 {
3467 int filter = TREE_INT_CST_LOW (TREE_VALUE (flt_node));
3468 next = add_action_record (ar_hash, filter, next);
3469 }
3470 }
3471 }
3472 return next;
3473
3474 case ERT_ALLOWED_EXCEPTIONS:
3475 /* An exception specification adds its filter to the
3476 beginning of the chain. */
3477 next = collect_one_action_chain (ar_hash, region->outer);
3478 return add_action_record (ar_hash, region->u.allowed.filter,
3479 next < 0 ? 0 : next);
3480
3481 case ERT_MUST_NOT_THROW:
3482 /* A must-not-throw region with no inner handlers or cleanups
3483 requires no call-site entry. Note that this differs from
3484 the no handler or cleanup case in that we do require an lsda
3485 to be generated. Return a magic -2 value to record this. */
3486 return -2;
3487
3488 case ERT_CATCH:
3489 case ERT_THROW:
3490 /* CATCH regions are handled in TRY above. THROW regions are
3491 for optimization information only and produce no output. */
3492 return collect_one_action_chain (ar_hash, region->outer);
3493
3494 default:
3495 abort ();
3496 }
3497 }
3498
3499 static int
3500 add_call_site (landing_pad, action)
3501 rtx landing_pad;
3502 int action;
3503 {
3504 struct call_site_record *data = cfun->eh->call_site_data;
3505 int used = cfun->eh->call_site_data_used;
3506 int size = cfun->eh->call_site_data_size;
3507
3508 if (used >= size)
3509 {
3510 size = (size ? size * 2 : 64);
3511 data = (struct call_site_record *)
3512 xrealloc (data, sizeof (*data) * size);
3513 cfun->eh->call_site_data = data;
3514 cfun->eh->call_site_data_size = size;
3515 }
3516
3517 data[used].landing_pad = landing_pad;
3518 data[used].action = action;
3519
3520 cfun->eh->call_site_data_used = used + 1;
3521
3522 return used + call_site_base;
3523 }
3524
3525 /* Turn REG_EH_REGION notes back into NOTE_INSN_EH_REGION notes.
3526 The new note numbers will not refer to region numbers, but
3527 instead to call site entries. */
3528
3529 void
3530 convert_to_eh_region_ranges ()
3531 {
3532 rtx insn, iter, note;
3533 htab_t ar_hash;
3534 int last_action = -3;
3535 rtx last_action_insn = NULL_RTX;
3536 rtx last_landing_pad = NULL_RTX;
3537 rtx first_no_action_insn = NULL_RTX;
3538 int call_site = 0;
3539
3540 if (USING_SJLJ_EXCEPTIONS || cfun->eh->region_tree == NULL)
3541 return;
3542
3543 VARRAY_UCHAR_INIT (cfun->eh->action_record_data, 64, "action_record_data");
3544
3545 ar_hash = htab_create (31, action_record_hash, action_record_eq, free);
3546
3547 for (iter = get_insns (); iter ; iter = NEXT_INSN (iter))
3548 if (INSN_P (iter))
3549 {
3550 struct eh_region *region;
3551 int this_action;
3552 rtx this_landing_pad;
3553
3554 insn = iter;
3555 if (GET_CODE (insn) == INSN
3556 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3557 insn = XVECEXP (PATTERN (insn), 0, 0);
3558
3559 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3560 if (!note)
3561 {
3562 if (! (GET_CODE (insn) == CALL_INSN
3563 || (flag_non_call_exceptions
3564 && may_trap_p (PATTERN (insn)))))
3565 continue;
3566 this_action = -1;
3567 region = NULL;
3568 }
3569 else
3570 {
3571 if (INTVAL (XEXP (note, 0)) <= 0)
3572 continue;
3573 region = cfun->eh->region_array[INTVAL (XEXP (note, 0))];
3574 this_action = collect_one_action_chain (ar_hash, region);
3575 }
3576
3577 /* Existence of catch handlers, or must-not-throw regions
3578 implies that an lsda is needed (even if empty). */
3579 if (this_action != -1)
3580 cfun->uses_eh_lsda = 1;
3581
3582 /* Delay creation of region notes for no-action regions
3583 until we're sure that an lsda will be required. */
3584 else if (last_action == -3)
3585 {
3586 first_no_action_insn = iter;
3587 last_action = -1;
3588 }
3589
3590 /* Cleanups and handlers may share action chains but not
3591 landing pads. Collect the landing pad for this region. */
3592 if (this_action >= 0)
3593 {
3594 struct eh_region *o;
3595 for (o = region; ! o->landing_pad ; o = o->outer)
3596 continue;
3597 this_landing_pad = o->landing_pad;
3598 }
3599 else
3600 this_landing_pad = NULL_RTX;
3601
3602 /* Differing actions or landing pads implies a change in call-site
3603 info, which implies some EH_REGION note should be emitted. */
3604 if (last_action != this_action
3605 || last_landing_pad != this_landing_pad)
3606 {
3607 /* If we'd not seen a previous action (-3) or the previous
3608 action was must-not-throw (-2), then we do not need an
3609 end note. */
3610 if (last_action >= -1)
3611 {
3612 /* If we delayed the creation of the begin, do it now. */
3613 if (first_no_action_insn)
3614 {
3615 call_site = add_call_site (NULL_RTX, 0);
3616 note = emit_note_before (NOTE_INSN_EH_REGION_BEG,
3617 first_no_action_insn);
3618 NOTE_EH_HANDLER (note) = call_site;
3619 first_no_action_insn = NULL_RTX;
3620 }
3621
3622 note = emit_note_after (NOTE_INSN_EH_REGION_END,
3623 last_action_insn);
3624 NOTE_EH_HANDLER (note) = call_site;
3625 }
3626
3627 /* If the new action is must-not-throw, then no region notes
3628 are created. */
3629 if (this_action >= -1)
3630 {
3631 call_site = add_call_site (this_landing_pad,
3632 this_action < 0 ? 0 : this_action);
3633 note = emit_note_before (NOTE_INSN_EH_REGION_BEG, iter);
3634 NOTE_EH_HANDLER (note) = call_site;
3635 }
3636
3637 last_action = this_action;
3638 last_landing_pad = this_landing_pad;
3639 }
3640 last_action_insn = iter;
3641 }
3642
3643 if (last_action >= -1 && ! first_no_action_insn)
3644 {
3645 note = emit_note_after (NOTE_INSN_EH_REGION_END, last_action_insn);
3646 NOTE_EH_HANDLER (note) = call_site;
3647 }
3648
3649 htab_delete (ar_hash);
3650 }
3651
3652 \f
3653 static void
3654 push_uleb128 (data_area, value)
3655 varray_type *data_area;
3656 unsigned int value;
3657 {
3658 do
3659 {
3660 unsigned char byte = value & 0x7f;
3661 value >>= 7;
3662 if (value)
3663 byte |= 0x80;
3664 VARRAY_PUSH_UCHAR (*data_area, byte);
3665 }
3666 while (value);
3667 }
3668
3669 static void
3670 push_sleb128 (data_area, value)
3671 varray_type *data_area;
3672 int value;
3673 {
3674 unsigned char byte;
3675 int more;
3676
3677 do
3678 {
3679 byte = value & 0x7f;
3680 value >>= 7;
3681 more = ! ((value == 0 && (byte & 0x40) == 0)
3682 || (value == -1 && (byte & 0x40) != 0));
3683 if (more)
3684 byte |= 0x80;
3685 VARRAY_PUSH_UCHAR (*data_area, byte);
3686 }
3687 while (more);
3688 }
3689
3690 \f
3691 #ifndef HAVE_AS_LEB128
3692 static int
3693 dw2_size_of_call_site_table ()
3694 {
3695 int n = cfun->eh->call_site_data_used;
3696 int size = n * (4 + 4 + 4);
3697 int i;
3698
3699 for (i = 0; i < n; ++i)
3700 {
3701 struct call_site_record *cs = &cfun->eh->call_site_data[i];
3702 size += size_of_uleb128 (cs->action);
3703 }
3704
3705 return size;
3706 }
3707
3708 static int
3709 sjlj_size_of_call_site_table ()
3710 {
3711 int n = cfun->eh->call_site_data_used;
3712 int size = 0;
3713 int i;
3714
3715 for (i = 0; i < n; ++i)
3716 {
3717 struct call_site_record *cs = &cfun->eh->call_site_data[i];
3718 size += size_of_uleb128 (INTVAL (cs->landing_pad));
3719 size += size_of_uleb128 (cs->action);
3720 }
3721
3722 return size;
3723 }
3724 #endif
3725
3726 static void
3727 dw2_output_call_site_table ()
3728 {
3729 const char *const function_start_lab
3730 = IDENTIFIER_POINTER (current_function_func_begin_label);
3731 int n = cfun->eh->call_site_data_used;
3732 int i;
3733
3734 for (i = 0; i < n; ++i)
3735 {
3736 struct call_site_record *cs = &cfun->eh->call_site_data[i];
3737 char reg_start_lab[32];
3738 char reg_end_lab[32];
3739 char landing_pad_lab[32];
3740
3741 ASM_GENERATE_INTERNAL_LABEL (reg_start_lab, "LEHB", call_site_base + i);
3742 ASM_GENERATE_INTERNAL_LABEL (reg_end_lab, "LEHE", call_site_base + i);
3743
3744 if (cs->landing_pad)
3745 ASM_GENERATE_INTERNAL_LABEL (landing_pad_lab, "L",
3746 CODE_LABEL_NUMBER (cs->landing_pad));
3747
3748 /* ??? Perhaps use insn length scaling if the assembler supports
3749 generic arithmetic. */
3750 /* ??? Perhaps use attr_length to choose data1 or data2 instead of
3751 data4 if the function is small enough. */
3752 #ifdef HAVE_AS_LEB128
3753 dw2_asm_output_delta_uleb128 (reg_start_lab, function_start_lab,
3754 "region %d start", i);
3755 dw2_asm_output_delta_uleb128 (reg_end_lab, reg_start_lab,
3756 "length");
3757 if (cs->landing_pad)
3758 dw2_asm_output_delta_uleb128 (landing_pad_lab, function_start_lab,
3759 "landing pad");
3760 else
3761 dw2_asm_output_data_uleb128 (0, "landing pad");
3762 #else
3763 dw2_asm_output_delta (4, reg_start_lab, function_start_lab,
3764 "region %d start", i);
3765 dw2_asm_output_delta (4, reg_end_lab, reg_start_lab, "length");
3766 if (cs->landing_pad)
3767 dw2_asm_output_delta (4, landing_pad_lab, function_start_lab,
3768 "landing pad");
3769 else
3770 dw2_asm_output_data (4, 0, "landing pad");
3771 #endif
3772 dw2_asm_output_data_uleb128 (cs->action, "action");
3773 }
3774
3775 call_site_base += n;
3776 }
3777
3778 static void
3779 sjlj_output_call_site_table ()
3780 {
3781 int n = cfun->eh->call_site_data_used;
3782 int i;
3783
3784 for (i = 0; i < n; ++i)
3785 {
3786 struct call_site_record *cs = &cfun->eh->call_site_data[i];
3787
3788 dw2_asm_output_data_uleb128 (INTVAL (cs->landing_pad),
3789 "region %d landing pad", i);
3790 dw2_asm_output_data_uleb128 (cs->action, "action");
3791 }
3792
3793 call_site_base += n;
3794 }
3795
3796 void
3797 output_function_exception_table ()
3798 {
3799 int tt_format, cs_format, lp_format, i, n;
3800 #ifdef HAVE_AS_LEB128
3801 char ttype_label[32];
3802 char cs_after_size_label[32];
3803 char cs_end_label[32];
3804 #else
3805 int call_site_len;
3806 #endif
3807 int have_tt_data;
3808 int funcdef_number;
3809 int tt_format_size = 0;
3810
3811 /* Not all functions need anything. */
3812 if (! cfun->uses_eh_lsda)
3813 return;
3814
3815 funcdef_number = (USING_SJLJ_EXCEPTIONS
3816 ? sjlj_funcdef_number
3817 : current_funcdef_number);
3818
3819 #ifdef IA64_UNWIND_INFO
3820 fputs ("\t.personality\t", asm_out_file);
3821 output_addr_const (asm_out_file, eh_personality_libfunc);
3822 fputs ("\n\t.handlerdata\n", asm_out_file);
3823 /* Note that varasm still thinks we're in the function's code section.
3824 The ".endp" directive that will immediately follow will take us back. */
3825 #else
3826 (*targetm.asm_out.exception_section) ();
3827 #endif
3828
3829 have_tt_data = (VARRAY_ACTIVE_SIZE (cfun->eh->ttype_data) > 0
3830 || VARRAY_ACTIVE_SIZE (cfun->eh->ehspec_data) > 0);
3831
3832 /* Indicate the format of the @TType entries. */
3833 if (! have_tt_data)
3834 tt_format = DW_EH_PE_omit;
3835 else
3836 {
3837 tt_format = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/1);
3838 #ifdef HAVE_AS_LEB128
3839 ASM_GENERATE_INTERNAL_LABEL (ttype_label, "LLSDATT", funcdef_number);
3840 #endif
3841 tt_format_size = size_of_encoded_value (tt_format);
3842
3843 assemble_align (tt_format_size * BITS_PER_UNIT);
3844 }
3845
3846 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LLSDA", funcdef_number);
3847
3848 /* The LSDA header. */
3849
3850 /* Indicate the format of the landing pad start pointer. An omitted
3851 field implies @LPStart == @Start. */
3852 /* Currently we always put @LPStart == @Start. This field would
3853 be most useful in moving the landing pads completely out of
3854 line to another section, but it could also be used to minimize
3855 the size of uleb128 landing pad offsets. */
3856 lp_format = DW_EH_PE_omit;
3857 dw2_asm_output_data (1, lp_format, "@LPStart format (%s)",
3858 eh_data_format_name (lp_format));
3859
3860 /* @LPStart pointer would go here. */
3861
3862 dw2_asm_output_data (1, tt_format, "@TType format (%s)",
3863 eh_data_format_name (tt_format));
3864
3865 #ifndef HAVE_AS_LEB128
3866 if (USING_SJLJ_EXCEPTIONS)
3867 call_site_len = sjlj_size_of_call_site_table ();
3868 else
3869 call_site_len = dw2_size_of_call_site_table ();
3870 #endif
3871
3872 /* A pc-relative 4-byte displacement to the @TType data. */
3873 if (have_tt_data)
3874 {
3875 #ifdef HAVE_AS_LEB128
3876 char ttype_after_disp_label[32];
3877 ASM_GENERATE_INTERNAL_LABEL (ttype_after_disp_label, "LLSDATTD",
3878 funcdef_number);
3879 dw2_asm_output_delta_uleb128 (ttype_label, ttype_after_disp_label,
3880 "@TType base offset");
3881 ASM_OUTPUT_LABEL (asm_out_file, ttype_after_disp_label);
3882 #else
3883 /* Ug. Alignment queers things. */
3884 unsigned int before_disp, after_disp, last_disp, disp;
3885
3886 before_disp = 1 + 1;
3887 after_disp = (1 + size_of_uleb128 (call_site_len)
3888 + call_site_len
3889 + VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data)
3890 + (VARRAY_ACTIVE_SIZE (cfun->eh->ttype_data)
3891 * tt_format_size));
3892
3893 disp = after_disp;
3894 do
3895 {
3896 unsigned int disp_size, pad;
3897
3898 last_disp = disp;
3899 disp_size = size_of_uleb128 (disp);
3900 pad = before_disp + disp_size + after_disp;
3901 if (pad % tt_format_size)
3902 pad = tt_format_size - (pad % tt_format_size);
3903 else
3904 pad = 0;
3905 disp = after_disp + pad;
3906 }
3907 while (disp != last_disp);
3908
3909 dw2_asm_output_data_uleb128 (disp, "@TType base offset");
3910 #endif
3911 }
3912
3913 /* Indicate the format of the call-site offsets. */
3914 #ifdef HAVE_AS_LEB128
3915 cs_format = DW_EH_PE_uleb128;
3916 #else
3917 cs_format = DW_EH_PE_udata4;
3918 #endif
3919 dw2_asm_output_data (1, cs_format, "call-site format (%s)",
3920 eh_data_format_name (cs_format));
3921
3922 #ifdef HAVE_AS_LEB128
3923 ASM_GENERATE_INTERNAL_LABEL (cs_after_size_label, "LLSDACSB",
3924 funcdef_number);
3925 ASM_GENERATE_INTERNAL_LABEL (cs_end_label, "LLSDACSE",
3926 funcdef_number);
3927 dw2_asm_output_delta_uleb128 (cs_end_label, cs_after_size_label,
3928 "Call-site table length");
3929 ASM_OUTPUT_LABEL (asm_out_file, cs_after_size_label);
3930 if (USING_SJLJ_EXCEPTIONS)
3931 sjlj_output_call_site_table ();
3932 else
3933 dw2_output_call_site_table ();
3934 ASM_OUTPUT_LABEL (asm_out_file, cs_end_label);
3935 #else
3936 dw2_asm_output_data_uleb128 (call_site_len,"Call-site table length");
3937 if (USING_SJLJ_EXCEPTIONS)
3938 sjlj_output_call_site_table ();
3939 else
3940 dw2_output_call_site_table ();
3941 #endif
3942
3943 /* ??? Decode and interpret the data for flag_debug_asm. */
3944 n = VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data);
3945 for (i = 0; i < n; ++i)
3946 dw2_asm_output_data (1, VARRAY_UCHAR (cfun->eh->action_record_data, i),
3947 (i ? NULL : "Action record table"));
3948
3949 if (have_tt_data)
3950 assemble_align (tt_format_size * BITS_PER_UNIT);
3951
3952 i = VARRAY_ACTIVE_SIZE (cfun->eh->ttype_data);
3953 while (i-- > 0)
3954 {
3955 tree type = VARRAY_TREE (cfun->eh->ttype_data, i);
3956 rtx value;
3957
3958 if (type == NULL_TREE)
3959 type = integer_zero_node;
3960 else
3961 type = lookup_type_for_runtime (type);
3962
3963 value = expand_expr (type, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
3964 if (tt_format == DW_EH_PE_absptr || tt_format == DW_EH_PE_aligned)
3965 assemble_integer (value, tt_format_size,
3966 tt_format_size * BITS_PER_UNIT, 1);
3967 else
3968 dw2_asm_output_encoded_addr_rtx (tt_format, value, NULL);
3969 }
3970
3971 #ifdef HAVE_AS_LEB128
3972 if (have_tt_data)
3973 ASM_OUTPUT_LABEL (asm_out_file, ttype_label);
3974 #endif
3975
3976 /* ??? Decode and interpret the data for flag_debug_asm. */
3977 n = VARRAY_ACTIVE_SIZE (cfun->eh->ehspec_data);
3978 for (i = 0; i < n; ++i)
3979 dw2_asm_output_data (1, VARRAY_UCHAR (cfun->eh->ehspec_data, i),
3980 (i ? NULL : "Exception specification table"));
3981
3982 function_section (current_function_decl);
3983
3984 if (USING_SJLJ_EXCEPTIONS)
3985 sjlj_funcdef_number += 1;
3986 }
This page took 0.207566 seconds and 5 git commands to generate.