]> gcc.gnu.org Git - gcc.git/blob - gcc/emit-rtl.c
emit-rtl.c (set_new_first_and_last_label_num): Remove function.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "tm.h"
42 #include "toplev.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "tm_p.h"
46 #include "flags.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "real.h"
55 #include "bitmap.h"
56 #include "basic-block.h"
57 #include "ggc.h"
58 #include "debug.h"
59 #include "langhooks.h"
60
61 /* Commonly used modes. */
62
63 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
64 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
65 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
66 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
67
68
69 /* This is *not* reset after each function. It gives each CODE_LABEL
70 in the entire compilation a unique label number. */
71
72 static GTY(()) int label_num = 1;
73
74 /* Highest label number in current function.
75 Zero means use the value of label_num instead.
76 This is nonzero only when belatedly compiling an inline function. */
77
78 static int last_label_num;
79
80 /* Value label_num had when set_new_last_label_num was called.
81 If label_num has not changed since then, last_label_num is valid. */
82
83 static int base_label_num;
84
85 /* Nonzero means do not generate NOTEs for source line numbers. */
86
87 static int no_line_numbers;
88
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
93
94 rtx global_rtl[GR_MAX];
95
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
101
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
105
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
107
108 rtx const_true_rtx;
109
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconst3;
114 REAL_VALUE_TYPE dconst10;
115 REAL_VALUE_TYPE dconstm1;
116 REAL_VALUE_TYPE dconstm2;
117 REAL_VALUE_TYPE dconsthalf;
118 REAL_VALUE_TYPE dconstthird;
119 REAL_VALUE_TYPE dconstpi;
120 REAL_VALUE_TYPE dconste;
121
122 /* All references to the following fixed hard registers go through
123 these unique rtl objects. On machines where the frame-pointer and
124 arg-pointer are the same register, they use the same unique object.
125
126 After register allocation, other rtl objects which used to be pseudo-regs
127 may be clobbered to refer to the frame-pointer register.
128 But references that were originally to the frame-pointer can be
129 distinguished from the others because they contain frame_pointer_rtx.
130
131 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
132 tricky: until register elimination has taken place hard_frame_pointer_rtx
133 should be used if it is being set, and frame_pointer_rtx otherwise. After
134 register elimination hard_frame_pointer_rtx should always be used.
135 On machines where the two registers are same (most) then these are the
136 same.
137
138 In an inline procedure, the stack and frame pointer rtxs may not be
139 used for anything else. */
140 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
141 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
142 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
143
144 /* This is used to implement __builtin_return_address for some machines.
145 See for instance the MIPS port. */
146 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
147
148 /* We make one copy of (const_int C) where C is in
149 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
150 to save space during the compilation and simplify comparisons of
151 integers. */
152
153 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
154
155 /* A hash table storing CONST_INTs whose absolute value is greater
156 than MAX_SAVED_CONST_INT. */
157
158 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
159 htab_t const_int_htab;
160
161 /* A hash table storing memory attribute structures. */
162 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
163 htab_t mem_attrs_htab;
164
165 /* A hash table storing register attribute structures. */
166 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
167 htab_t reg_attrs_htab;
168
169 /* A hash table storing all CONST_DOUBLEs. */
170 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
171 htab_t const_double_htab;
172
173 #define first_insn (cfun->emit->x_first_insn)
174 #define last_insn (cfun->emit->x_last_insn)
175 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
176 #define last_location (cfun->emit->x_last_location)
177 #define first_label_num (cfun->emit->x_first_label_num)
178
179 static rtx make_jump_insn_raw (rtx);
180 static rtx make_call_insn_raw (rtx);
181 static rtx find_line_note (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void unshare_all_decls (tree);
184 static void reset_used_decls (tree);
185 static void mark_label_nuses (rtx);
186 static hashval_t const_int_htab_hash (const void *);
187 static int const_int_htab_eq (const void *, const void *);
188 static hashval_t const_double_htab_hash (const void *);
189 static int const_double_htab_eq (const void *, const void *);
190 static rtx lookup_const_double (rtx);
191 static hashval_t mem_attrs_htab_hash (const void *);
192 static int mem_attrs_htab_eq (const void *, const void *);
193 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
194 enum machine_mode);
195 static hashval_t reg_attrs_htab_hash (const void *);
196 static int reg_attrs_htab_eq (const void *, const void *);
197 static reg_attrs *get_reg_attrs (tree, int);
198 static tree component_ref_for_mem_expr (tree);
199 static rtx gen_const_vector_0 (enum machine_mode);
200 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
201 static void copy_rtx_if_shared_1 (rtx *orig);
202
203 /* Probability of the conditional branch currently proceeded by try_split.
204 Set to -1 otherwise. */
205 int split_branch_probability = -1;
206 \f
207 /* Returns a hash code for X (which is a really a CONST_INT). */
208
209 static hashval_t
210 const_int_htab_hash (const void *x)
211 {
212 return (hashval_t) INTVAL ((rtx) x);
213 }
214
215 /* Returns nonzero if the value represented by X (which is really a
216 CONST_INT) is the same as that given by Y (which is really a
217 HOST_WIDE_INT *). */
218
219 static int
220 const_int_htab_eq (const void *x, const void *y)
221 {
222 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
223 }
224
225 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
226 static hashval_t
227 const_double_htab_hash (const void *x)
228 {
229 rtx value = (rtx) x;
230 hashval_t h;
231
232 if (GET_MODE (value) == VOIDmode)
233 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
234 else
235 {
236 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
237 /* MODE is used in the comparison, so it should be in the hash. */
238 h ^= GET_MODE (value);
239 }
240 return h;
241 }
242
243 /* Returns nonzero if the value represented by X (really a ...)
244 is the same as that represented by Y (really a ...) */
245 static int
246 const_double_htab_eq (const void *x, const void *y)
247 {
248 rtx a = (rtx)x, b = (rtx)y;
249
250 if (GET_MODE (a) != GET_MODE (b))
251 return 0;
252 if (GET_MODE (a) == VOIDmode)
253 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
254 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
255 else
256 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
257 CONST_DOUBLE_REAL_VALUE (b));
258 }
259
260 /* Returns a hash code for X (which is a really a mem_attrs *). */
261
262 static hashval_t
263 mem_attrs_htab_hash (const void *x)
264 {
265 mem_attrs *p = (mem_attrs *) x;
266
267 return (p->alias ^ (p->align * 1000)
268 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
269 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
270 ^ (size_t) p->expr);
271 }
272
273 /* Returns nonzero if the value represented by X (which is really a
274 mem_attrs *) is the same as that given by Y (which is also really a
275 mem_attrs *). */
276
277 static int
278 mem_attrs_htab_eq (const void *x, const void *y)
279 {
280 mem_attrs *p = (mem_attrs *) x;
281 mem_attrs *q = (mem_attrs *) y;
282
283 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
284 && p->size == q->size && p->align == q->align);
285 }
286
287 /* Allocate a new mem_attrs structure and insert it into the hash table if
288 one identical to it is not already in the table. We are doing this for
289 MEM of mode MODE. */
290
291 static mem_attrs *
292 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
293 unsigned int align, enum machine_mode mode)
294 {
295 mem_attrs attrs;
296 void **slot;
297
298 /* If everything is the default, we can just return zero.
299 This must match what the corresponding MEM_* macros return when the
300 field is not present. */
301 if (alias == 0 && expr == 0 && offset == 0
302 && (size == 0
303 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
304 && (STRICT_ALIGNMENT && mode != BLKmode
305 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
306 return 0;
307
308 attrs.alias = alias;
309 attrs.expr = expr;
310 attrs.offset = offset;
311 attrs.size = size;
312 attrs.align = align;
313
314 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
315 if (*slot == 0)
316 {
317 *slot = ggc_alloc (sizeof (mem_attrs));
318 memcpy (*slot, &attrs, sizeof (mem_attrs));
319 }
320
321 return *slot;
322 }
323
324 /* Returns a hash code for X (which is a really a reg_attrs *). */
325
326 static hashval_t
327 reg_attrs_htab_hash (const void *x)
328 {
329 reg_attrs *p = (reg_attrs *) x;
330
331 return ((p->offset * 1000) ^ (long) p->decl);
332 }
333
334 /* Returns nonzero if the value represented by X (which is really a
335 reg_attrs *) is the same as that given by Y (which is also really a
336 reg_attrs *). */
337
338 static int
339 reg_attrs_htab_eq (const void *x, const void *y)
340 {
341 reg_attrs *p = (reg_attrs *) x;
342 reg_attrs *q = (reg_attrs *) y;
343
344 return (p->decl == q->decl && p->offset == q->offset);
345 }
346 /* Allocate a new reg_attrs structure and insert it into the hash table if
347 one identical to it is not already in the table. We are doing this for
348 MEM of mode MODE. */
349
350 static reg_attrs *
351 get_reg_attrs (tree decl, int offset)
352 {
353 reg_attrs attrs;
354 void **slot;
355
356 /* If everything is the default, we can just return zero. */
357 if (decl == 0 && offset == 0)
358 return 0;
359
360 attrs.decl = decl;
361 attrs.offset = offset;
362
363 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
364 if (*slot == 0)
365 {
366 *slot = ggc_alloc (sizeof (reg_attrs));
367 memcpy (*slot, &attrs, sizeof (reg_attrs));
368 }
369
370 return *slot;
371 }
372
373 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
374 don't attempt to share with the various global pieces of rtl (such as
375 frame_pointer_rtx). */
376
377 rtx
378 gen_raw_REG (enum machine_mode mode, int regno)
379 {
380 rtx x = gen_rtx_raw_REG (mode, regno);
381 ORIGINAL_REGNO (x) = regno;
382 return x;
383 }
384
385 /* There are some RTL codes that require special attention; the generation
386 functions do the raw handling. If you add to this list, modify
387 special_rtx in gengenrtl.c as well. */
388
389 rtx
390 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
391 {
392 void **slot;
393
394 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
395 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
396
397 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
398 if (const_true_rtx && arg == STORE_FLAG_VALUE)
399 return const_true_rtx;
400 #endif
401
402 /* Look up the CONST_INT in the hash table. */
403 slot = htab_find_slot_with_hash (const_int_htab, &arg,
404 (hashval_t) arg, INSERT);
405 if (*slot == 0)
406 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
407
408 return (rtx) *slot;
409 }
410
411 rtx
412 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
413 {
414 return GEN_INT (trunc_int_for_mode (c, mode));
415 }
416
417 /* CONST_DOUBLEs might be created from pairs of integers, or from
418 REAL_VALUE_TYPEs. Also, their length is known only at run time,
419 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
420
421 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
422 hash table. If so, return its counterpart; otherwise add it
423 to the hash table and return it. */
424 static rtx
425 lookup_const_double (rtx real)
426 {
427 void **slot = htab_find_slot (const_double_htab, real, INSERT);
428 if (*slot == 0)
429 *slot = real;
430
431 return (rtx) *slot;
432 }
433
434 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
435 VALUE in mode MODE. */
436 rtx
437 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
438 {
439 rtx real = rtx_alloc (CONST_DOUBLE);
440 PUT_MODE (real, mode);
441
442 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
443
444 return lookup_const_double (real);
445 }
446
447 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
448 of ints: I0 is the low-order word and I1 is the high-order word.
449 Do not use this routine for non-integer modes; convert to
450 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
451
452 rtx
453 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
454 {
455 rtx value;
456 unsigned int i;
457
458 if (mode != VOIDmode)
459 {
460 int width;
461 if (GET_MODE_CLASS (mode) != MODE_INT
462 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
463 /* We can get a 0 for an error mark. */
464 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
465 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
466 abort ();
467
468 /* We clear out all bits that don't belong in MODE, unless they and
469 our sign bit are all one. So we get either a reasonable negative
470 value or a reasonable unsigned value for this mode. */
471 width = GET_MODE_BITSIZE (mode);
472 if (width < HOST_BITS_PER_WIDE_INT
473 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
474 != ((HOST_WIDE_INT) (-1) << (width - 1))))
475 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
476 else if (width == HOST_BITS_PER_WIDE_INT
477 && ! (i1 == ~0 && i0 < 0))
478 i1 = 0;
479 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
480 /* We cannot represent this value as a constant. */
481 abort ();
482
483 /* If this would be an entire word for the target, but is not for
484 the host, then sign-extend on the host so that the number will
485 look the same way on the host that it would on the target.
486
487 For example, when building a 64 bit alpha hosted 32 bit sparc
488 targeted compiler, then we want the 32 bit unsigned value -1 to be
489 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
490 The latter confuses the sparc backend. */
491
492 if (width < HOST_BITS_PER_WIDE_INT
493 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
494 i0 |= ((HOST_WIDE_INT) (-1) << width);
495
496 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
497 CONST_INT.
498
499 ??? Strictly speaking, this is wrong if we create a CONST_INT for
500 a large unsigned constant with the size of MODE being
501 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
502 in a wider mode. In that case we will mis-interpret it as a
503 negative number.
504
505 Unfortunately, the only alternative is to make a CONST_DOUBLE for
506 any constant in any mode if it is an unsigned constant larger
507 than the maximum signed integer in an int on the host. However,
508 doing this will break everyone that always expects to see a
509 CONST_INT for SImode and smaller.
510
511 We have always been making CONST_INTs in this case, so nothing
512 new is being broken. */
513
514 if (width <= HOST_BITS_PER_WIDE_INT)
515 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
516 }
517
518 /* If this integer fits in one word, return a CONST_INT. */
519 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
520 return GEN_INT (i0);
521
522 /* We use VOIDmode for integers. */
523 value = rtx_alloc (CONST_DOUBLE);
524 PUT_MODE (value, VOIDmode);
525
526 CONST_DOUBLE_LOW (value) = i0;
527 CONST_DOUBLE_HIGH (value) = i1;
528
529 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
530 XWINT (value, i) = 0;
531
532 return lookup_const_double (value);
533 }
534
535 rtx
536 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
537 {
538 /* In case the MD file explicitly references the frame pointer, have
539 all such references point to the same frame pointer. This is
540 used during frame pointer elimination to distinguish the explicit
541 references to these registers from pseudos that happened to be
542 assigned to them.
543
544 If we have eliminated the frame pointer or arg pointer, we will
545 be using it as a normal register, for example as a spill
546 register. In such cases, we might be accessing it in a mode that
547 is not Pmode and therefore cannot use the pre-allocated rtx.
548
549 Also don't do this when we are making new REGs in reload, since
550 we don't want to get confused with the real pointers. */
551
552 if (mode == Pmode && !reload_in_progress)
553 {
554 if (regno == FRAME_POINTER_REGNUM
555 && (!reload_completed || frame_pointer_needed))
556 return frame_pointer_rtx;
557 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
558 if (regno == HARD_FRAME_POINTER_REGNUM
559 && (!reload_completed || frame_pointer_needed))
560 return hard_frame_pointer_rtx;
561 #endif
562 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
563 if (regno == ARG_POINTER_REGNUM)
564 return arg_pointer_rtx;
565 #endif
566 #ifdef RETURN_ADDRESS_POINTER_REGNUM
567 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
568 return return_address_pointer_rtx;
569 #endif
570 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
571 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
572 return pic_offset_table_rtx;
573 if (regno == STACK_POINTER_REGNUM)
574 return stack_pointer_rtx;
575 }
576
577 #if 0
578 /* If the per-function register table has been set up, try to re-use
579 an existing entry in that table to avoid useless generation of RTL.
580
581 This code is disabled for now until we can fix the various backends
582 which depend on having non-shared hard registers in some cases. Long
583 term we want to re-enable this code as it can significantly cut down
584 on the amount of useless RTL that gets generated.
585
586 We'll also need to fix some code that runs after reload that wants to
587 set ORIGINAL_REGNO. */
588
589 if (cfun
590 && cfun->emit
591 && regno_reg_rtx
592 && regno < FIRST_PSEUDO_REGISTER
593 && reg_raw_mode[regno] == mode)
594 return regno_reg_rtx[regno];
595 #endif
596
597 return gen_raw_REG (mode, regno);
598 }
599
600 rtx
601 gen_rtx_MEM (enum machine_mode mode, rtx addr)
602 {
603 rtx rt = gen_rtx_raw_MEM (mode, addr);
604
605 /* This field is not cleared by the mere allocation of the rtx, so
606 we clear it here. */
607 MEM_ATTRS (rt) = 0;
608
609 return rt;
610 }
611
612 rtx
613 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
614 {
615 /* This is the most common failure type.
616 Catch it early so we can see who does it. */
617 if ((offset % GET_MODE_SIZE (mode)) != 0)
618 abort ();
619
620 /* This check isn't usable right now because combine will
621 throw arbitrary crap like a CALL into a SUBREG in
622 gen_lowpart_for_combine so we must just eat it. */
623 #if 0
624 /* Check for this too. */
625 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
626 abort ();
627 #endif
628 return gen_rtx_raw_SUBREG (mode, reg, offset);
629 }
630
631 /* Generate a SUBREG representing the least-significant part of REG if MODE
632 is smaller than mode of REG, otherwise paradoxical SUBREG. */
633
634 rtx
635 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
636 {
637 enum machine_mode inmode;
638
639 inmode = GET_MODE (reg);
640 if (inmode == VOIDmode)
641 inmode = mode;
642 return gen_rtx_SUBREG (mode, reg,
643 subreg_lowpart_offset (mode, inmode));
644 }
645 \f
646 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
647 **
648 ** This routine generates an RTX of the size specified by
649 ** <code>, which is an RTX code. The RTX structure is initialized
650 ** from the arguments <element1> through <elementn>, which are
651 ** interpreted according to the specific RTX type's format. The
652 ** special machine mode associated with the rtx (if any) is specified
653 ** in <mode>.
654 **
655 ** gen_rtx can be invoked in a way which resembles the lisp-like
656 ** rtx it will generate. For example, the following rtx structure:
657 **
658 ** (plus:QI (mem:QI (reg:SI 1))
659 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
660 **
661 ** ...would be generated by the following C code:
662 **
663 ** gen_rtx (PLUS, QImode,
664 ** gen_rtx (MEM, QImode,
665 ** gen_rtx (REG, SImode, 1)),
666 ** gen_rtx (MEM, QImode,
667 ** gen_rtx (PLUS, SImode,
668 ** gen_rtx (REG, SImode, 2),
669 ** gen_rtx (REG, SImode, 3)))),
670 */
671
672 /*VARARGS2*/
673 rtx
674 gen_rtx (enum rtx_code code, enum machine_mode mode, ...)
675 {
676 int i; /* Array indices... */
677 const char *fmt; /* Current rtx's format... */
678 rtx rt_val; /* RTX to return to caller... */
679 va_list p;
680
681 va_start (p, mode);
682
683 switch (code)
684 {
685 case CONST_INT:
686 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
687 break;
688
689 case CONST_DOUBLE:
690 {
691 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
692 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
693
694 rt_val = immed_double_const (arg0, arg1, mode);
695 }
696 break;
697
698 case REG:
699 rt_val = gen_rtx_REG (mode, va_arg (p, int));
700 break;
701
702 case MEM:
703 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
704 break;
705
706 default:
707 rt_val = rtx_alloc (code); /* Allocate the storage space. */
708 rt_val->mode = mode; /* Store the machine mode... */
709
710 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
711 for (i = 0; i < GET_RTX_LENGTH (code); i++)
712 {
713 switch (*fmt++)
714 {
715 case '0': /* Field with unknown use. Zero it. */
716 X0EXP (rt_val, i) = NULL_RTX;
717 break;
718
719 case 'i': /* An integer? */
720 XINT (rt_val, i) = va_arg (p, int);
721 break;
722
723 case 'w': /* A wide integer? */
724 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
725 break;
726
727 case 's': /* A string? */
728 XSTR (rt_val, i) = va_arg (p, char *);
729 break;
730
731 case 'e': /* An expression? */
732 case 'u': /* An insn? Same except when printing. */
733 XEXP (rt_val, i) = va_arg (p, rtx);
734 break;
735
736 case 'E': /* An RTX vector? */
737 XVEC (rt_val, i) = va_arg (p, rtvec);
738 break;
739
740 case 'b': /* A bitmap? */
741 XBITMAP (rt_val, i) = va_arg (p, bitmap);
742 break;
743
744 case 't': /* A tree? */
745 XTREE (rt_val, i) = va_arg (p, tree);
746 break;
747
748 default:
749 abort ();
750 }
751 }
752 break;
753 }
754
755 va_end (p);
756 return rt_val;
757 }
758
759 /* gen_rtvec (n, [rt1, ..., rtn])
760 **
761 ** This routine creates an rtvec and stores within it the
762 ** pointers to rtx's which are its arguments.
763 */
764
765 /*VARARGS1*/
766 rtvec
767 gen_rtvec (int n, ...)
768 {
769 int i, save_n;
770 rtx *vector;
771 va_list p;
772
773 va_start (p, n);
774
775 if (n == 0)
776 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
777
778 vector = alloca (n * sizeof (rtx));
779
780 for (i = 0; i < n; i++)
781 vector[i] = va_arg (p, rtx);
782
783 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
784 save_n = n;
785 va_end (p);
786
787 return gen_rtvec_v (save_n, vector);
788 }
789
790 rtvec
791 gen_rtvec_v (int n, rtx *argp)
792 {
793 int i;
794 rtvec rt_val;
795
796 if (n == 0)
797 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
798
799 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
800
801 for (i = 0; i < n; i++)
802 rt_val->elem[i] = *argp++;
803
804 return rt_val;
805 }
806 \f
807 /* Generate a REG rtx for a new pseudo register of mode MODE.
808 This pseudo is assigned the next sequential register number. */
809
810 rtx
811 gen_reg_rtx (enum machine_mode mode)
812 {
813 struct function *f = cfun;
814 rtx val;
815
816 /* Don't let anything called after initial flow analysis create new
817 registers. */
818 if (no_new_pseudos)
819 abort ();
820
821 if (generating_concat_p
822 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
823 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
824 {
825 /* For complex modes, don't make a single pseudo.
826 Instead, make a CONCAT of two pseudos.
827 This allows noncontiguous allocation of the real and imaginary parts,
828 which makes much better code. Besides, allocating DCmode
829 pseudos overstrains reload on some machines like the 386. */
830 rtx realpart, imagpart;
831 enum machine_mode partmode = GET_MODE_INNER (mode);
832
833 realpart = gen_reg_rtx (partmode);
834 imagpart = gen_reg_rtx (partmode);
835 return gen_rtx_CONCAT (mode, realpart, imagpart);
836 }
837
838 /* Make sure regno_pointer_align, and regno_reg_rtx are large
839 enough to have an element for this pseudo reg number. */
840
841 if (reg_rtx_no == f->emit->regno_pointer_align_length)
842 {
843 int old_size = f->emit->regno_pointer_align_length;
844 char *new;
845 rtx *new1;
846
847 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
848 memset (new + old_size, 0, old_size);
849 f->emit->regno_pointer_align = (unsigned char *) new;
850
851 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
852 old_size * 2 * sizeof (rtx));
853 memset (new1 + old_size, 0, old_size * sizeof (rtx));
854 regno_reg_rtx = new1;
855
856 f->emit->regno_pointer_align_length = old_size * 2;
857 }
858
859 val = gen_raw_REG (mode, reg_rtx_no);
860 regno_reg_rtx[reg_rtx_no++] = val;
861 return val;
862 }
863
864 /* Generate a register with same attributes as REG,
865 but offsetted by OFFSET. */
866
867 rtx
868 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
869 {
870 rtx new = gen_rtx_REG (mode, regno);
871 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
872 REG_OFFSET (reg) + offset);
873 return new;
874 }
875
876 /* Set the decl for MEM to DECL. */
877
878 void
879 set_reg_attrs_from_mem (rtx reg, rtx mem)
880 {
881 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
882 REG_ATTRS (reg)
883 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
884 }
885
886 /* Set the register attributes for registers contained in PARM_RTX.
887 Use needed values from memory attributes of MEM. */
888
889 void
890 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
891 {
892 if (GET_CODE (parm_rtx) == REG)
893 set_reg_attrs_from_mem (parm_rtx, mem);
894 else if (GET_CODE (parm_rtx) == PARALLEL)
895 {
896 /* Check for a NULL entry in the first slot, used to indicate that the
897 parameter goes both on the stack and in registers. */
898 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
899 for (; i < XVECLEN (parm_rtx, 0); i++)
900 {
901 rtx x = XVECEXP (parm_rtx, 0, i);
902 if (GET_CODE (XEXP (x, 0)) == REG)
903 REG_ATTRS (XEXP (x, 0))
904 = get_reg_attrs (MEM_EXPR (mem),
905 INTVAL (XEXP (x, 1)));
906 }
907 }
908 }
909
910 /* Assign the RTX X to declaration T. */
911 void
912 set_decl_rtl (tree t, rtx x)
913 {
914 DECL_CHECK (t)->decl.rtl = x;
915
916 if (!x)
917 return;
918 /* For register, we maintain the reverse information too. */
919 if (GET_CODE (x) == REG)
920 REG_ATTRS (x) = get_reg_attrs (t, 0);
921 else if (GET_CODE (x) == SUBREG)
922 REG_ATTRS (SUBREG_REG (x))
923 = get_reg_attrs (t, -SUBREG_BYTE (x));
924 if (GET_CODE (x) == CONCAT)
925 {
926 if (REG_P (XEXP (x, 0)))
927 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
928 if (REG_P (XEXP (x, 1)))
929 REG_ATTRS (XEXP (x, 1))
930 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
931 }
932 if (GET_CODE (x) == PARALLEL)
933 {
934 int i;
935 for (i = 0; i < XVECLEN (x, 0); i++)
936 {
937 rtx y = XVECEXP (x, 0, i);
938 if (REG_P (XEXP (y, 0)))
939 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
940 }
941 }
942 }
943
944 /* Identify REG (which may be a CONCAT) as a user register. */
945
946 void
947 mark_user_reg (rtx reg)
948 {
949 if (GET_CODE (reg) == CONCAT)
950 {
951 REG_USERVAR_P (XEXP (reg, 0)) = 1;
952 REG_USERVAR_P (XEXP (reg, 1)) = 1;
953 }
954 else if (GET_CODE (reg) == REG)
955 REG_USERVAR_P (reg) = 1;
956 else
957 abort ();
958 }
959
960 /* Identify REG as a probable pointer register and show its alignment
961 as ALIGN, if nonzero. */
962
963 void
964 mark_reg_pointer (rtx reg, int align)
965 {
966 if (! REG_POINTER (reg))
967 {
968 REG_POINTER (reg) = 1;
969
970 if (align)
971 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
972 }
973 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
974 /* We can no-longer be sure just how aligned this pointer is */
975 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
976 }
977
978 /* Return 1 plus largest pseudo reg number used in the current function. */
979
980 int
981 max_reg_num (void)
982 {
983 return reg_rtx_no;
984 }
985
986 /* Return 1 + the largest label number used so far in the current function. */
987
988 int
989 max_label_num (void)
990 {
991 if (last_label_num && label_num == base_label_num)
992 return last_label_num;
993 return label_num;
994 }
995
996 /* Return first label number used in this function (if any were used). */
997
998 int
999 get_first_label_num (void)
1000 {
1001 return first_label_num;
1002 }
1003 \f
1004 /* Return the final regno of X, which is a SUBREG of a hard
1005 register. */
1006 int
1007 subreg_hard_regno (rtx x, int check_mode)
1008 {
1009 enum machine_mode mode = GET_MODE (x);
1010 unsigned int byte_offset, base_regno, final_regno;
1011 rtx reg = SUBREG_REG (x);
1012
1013 /* This is where we attempt to catch illegal subregs
1014 created by the compiler. */
1015 if (GET_CODE (x) != SUBREG
1016 || GET_CODE (reg) != REG)
1017 abort ();
1018 base_regno = REGNO (reg);
1019 if (base_regno >= FIRST_PSEUDO_REGISTER)
1020 abort ();
1021 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
1022 abort ();
1023 #ifdef ENABLE_CHECKING
1024 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1025 SUBREG_BYTE (x), mode))
1026 abort ();
1027 #endif
1028 /* Catch non-congruent offsets too. */
1029 byte_offset = SUBREG_BYTE (x);
1030 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
1031 abort ();
1032
1033 final_regno = subreg_regno (x);
1034
1035 return final_regno;
1036 }
1037
1038 /* Return a value representing some low-order bits of X, where the number
1039 of low-order bits is given by MODE. Note that no conversion is done
1040 between floating-point and fixed-point values, rather, the bit
1041 representation is returned.
1042
1043 This function handles the cases in common between gen_lowpart, below,
1044 and two variants in cse.c and combine.c. These are the cases that can
1045 be safely handled at all points in the compilation.
1046
1047 If this is not a case we can handle, return 0. */
1048
1049 rtx
1050 gen_lowpart_common (enum machine_mode mode, rtx x)
1051 {
1052 int msize = GET_MODE_SIZE (mode);
1053 int xsize = GET_MODE_SIZE (GET_MODE (x));
1054 int offset = 0;
1055
1056 if (GET_MODE (x) == mode)
1057 return x;
1058
1059 /* MODE must occupy no more words than the mode of X. */
1060 if (GET_MODE (x) != VOIDmode
1061 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1062 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1063 return 0;
1064
1065 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1066 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1067 && GET_MODE (x) != VOIDmode && msize > xsize)
1068 return 0;
1069
1070 offset = subreg_lowpart_offset (mode, GET_MODE (x));
1071
1072 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1073 && (GET_MODE_CLASS (mode) == MODE_INT
1074 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1075 {
1076 /* If we are getting the low-order part of something that has been
1077 sign- or zero-extended, we can either just use the object being
1078 extended or make a narrower extension. If we want an even smaller
1079 piece than the size of the object being extended, call ourselves
1080 recursively.
1081
1082 This case is used mostly by combine and cse. */
1083
1084 if (GET_MODE (XEXP (x, 0)) == mode)
1085 return XEXP (x, 0);
1086 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1087 return gen_lowpart_common (mode, XEXP (x, 0));
1088 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
1089 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1090 }
1091 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
1092 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR)
1093 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
1094 else if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
1095 return simplify_gen_subreg (mode, x, int_mode_for_mode (mode), offset);
1096 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
1097 from the low-order part of the constant. */
1098 else if ((GET_MODE_CLASS (mode) == MODE_INT
1099 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1100 && GET_MODE (x) == VOIDmode
1101 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1102 {
1103 /* If MODE is twice the host word size, X is already the desired
1104 representation. Otherwise, if MODE is wider than a word, we can't
1105 do this. If MODE is exactly a word, return just one CONST_INT. */
1106
1107 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1108 return x;
1109 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1110 return 0;
1111 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1112 return (GET_CODE (x) == CONST_INT ? x
1113 : GEN_INT (CONST_DOUBLE_LOW (x)));
1114 else
1115 {
1116 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
1117 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
1118 : CONST_DOUBLE_LOW (x));
1119
1120 /* Sign extend to HOST_WIDE_INT. */
1121 val = trunc_int_for_mode (val, mode);
1122
1123 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
1124 : GEN_INT (val));
1125 }
1126 }
1127
1128 /* The floating-point emulator can handle all conversions between
1129 FP and integer operands. This simplifies reload because it
1130 doesn't have to deal with constructs like (subreg:DI
1131 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
1132 /* Single-precision floats are always 32-bits and double-precision
1133 floats are always 64-bits. */
1134
1135 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1136 && GET_MODE_BITSIZE (mode) == 32
1137 && GET_CODE (x) == CONST_INT)
1138 {
1139 REAL_VALUE_TYPE r;
1140 long i = INTVAL (x);
1141
1142 real_from_target (&r, &i, mode);
1143 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1144 }
1145 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1146 && GET_MODE_BITSIZE (mode) == 64
1147 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
1148 && GET_MODE (x) == VOIDmode)
1149 {
1150 REAL_VALUE_TYPE r;
1151 HOST_WIDE_INT low, high;
1152 long i[2];
1153
1154 if (GET_CODE (x) == CONST_INT)
1155 {
1156 low = INTVAL (x);
1157 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1158 }
1159 else
1160 {
1161 low = CONST_DOUBLE_LOW (x);
1162 high = CONST_DOUBLE_HIGH (x);
1163 }
1164
1165 if (HOST_BITS_PER_WIDE_INT > 32)
1166 high = low >> 31 >> 1;
1167
1168 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1169 target machine. */
1170 if (WORDS_BIG_ENDIAN)
1171 i[0] = high, i[1] = low;
1172 else
1173 i[0] = low, i[1] = high;
1174
1175 real_from_target (&r, i, mode);
1176 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1177 }
1178 else if ((GET_MODE_CLASS (mode) == MODE_INT
1179 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1180 && GET_CODE (x) == CONST_DOUBLE
1181 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1182 {
1183 REAL_VALUE_TYPE r;
1184 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1185 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1186
1187 /* Convert 'r' into an array of four 32-bit words in target word
1188 order. */
1189 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1190 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1191 {
1192 case 32:
1193 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1194 i[1] = 0;
1195 i[2] = 0;
1196 i[3 - 3 * endian] = 0;
1197 break;
1198 case 64:
1199 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1200 i[2 - 2 * endian] = 0;
1201 i[3 - 2 * endian] = 0;
1202 break;
1203 case 96:
1204 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1205 i[3 - 3 * endian] = 0;
1206 break;
1207 case 128:
1208 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1209 break;
1210 default:
1211 abort ();
1212 }
1213 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1214 and return it. */
1215 #if HOST_BITS_PER_WIDE_INT == 32
1216 return immed_double_const (i[3 * endian], i[1 + endian], mode);
1217 #else
1218 if (HOST_BITS_PER_WIDE_INT != 64)
1219 abort ();
1220
1221 return immed_double_const ((((unsigned long) i[3 * endian])
1222 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1223 (((unsigned long) i[2 - endian])
1224 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
1225 mode);
1226 #endif
1227 }
1228 /* If MODE is a condition code and X is a CONST_INT, the value of X
1229 must already have been "recognized" by the back-end, and we can
1230 assume that it is valid for this mode. */
1231 else if (GET_MODE_CLASS (mode) == MODE_CC
1232 && GET_CODE (x) == CONST_INT)
1233 return x;
1234
1235 /* Otherwise, we can't do this. */
1236 return 0;
1237 }
1238 \f
1239 /* Return the constant real or imaginary part (which has mode MODE)
1240 of a complex value X. The IMAGPART_P argument determines whether
1241 the real or complex component should be returned. This function
1242 returns NULL_RTX if the component isn't a constant. */
1243
1244 static rtx
1245 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1246 {
1247 tree decl, part;
1248
1249 if (GET_CODE (x) == MEM
1250 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1251 {
1252 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1253 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1254 {
1255 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1256 if (TREE_CODE (part) == REAL_CST
1257 || TREE_CODE (part) == INTEGER_CST)
1258 return expand_expr (part, NULL_RTX, mode, 0);
1259 }
1260 }
1261 return NULL_RTX;
1262 }
1263
1264 /* Return the real part (which has mode MODE) of a complex value X.
1265 This always comes at the low address in memory. */
1266
1267 rtx
1268 gen_realpart (enum machine_mode mode, rtx x)
1269 {
1270 rtx part;
1271
1272 /* Handle complex constants. */
1273 part = gen_complex_constant_part (mode, x, 0);
1274 if (part != NULL_RTX)
1275 return part;
1276
1277 if (WORDS_BIG_ENDIAN
1278 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1279 && REG_P (x)
1280 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1281 internal_error
1282 ("can't access real part of complex value in hard register");
1283 else if (WORDS_BIG_ENDIAN)
1284 return gen_highpart (mode, x);
1285 else
1286 return gen_lowpart (mode, x);
1287 }
1288
1289 /* Return the imaginary part (which has mode MODE) of a complex value X.
1290 This always comes at the high address in memory. */
1291
1292 rtx
1293 gen_imagpart (enum machine_mode mode, rtx x)
1294 {
1295 rtx part;
1296
1297 /* Handle complex constants. */
1298 part = gen_complex_constant_part (mode, x, 1);
1299 if (part != NULL_RTX)
1300 return part;
1301
1302 if (WORDS_BIG_ENDIAN)
1303 return gen_lowpart (mode, x);
1304 else if (! WORDS_BIG_ENDIAN
1305 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1306 && REG_P (x)
1307 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1308 internal_error
1309 ("can't access imaginary part of complex value in hard register");
1310 else
1311 return gen_highpart (mode, x);
1312 }
1313
1314 /* Return 1 iff X, assumed to be a SUBREG,
1315 refers to the real part of the complex value in its containing reg.
1316 Complex values are always stored with the real part in the first word,
1317 regardless of WORDS_BIG_ENDIAN. */
1318
1319 int
1320 subreg_realpart_p (rtx x)
1321 {
1322 if (GET_CODE (x) != SUBREG)
1323 abort ();
1324
1325 return ((unsigned int) SUBREG_BYTE (x)
1326 < (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1327 }
1328 \f
1329 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1330 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1331 least-significant part of X.
1332 MODE specifies how big a part of X to return;
1333 it usually should not be larger than a word.
1334 If X is a MEM whose address is a QUEUED, the value may be so also. */
1335
1336 rtx
1337 gen_lowpart (enum machine_mode mode, rtx x)
1338 {
1339 rtx result = gen_lowpart_common (mode, x);
1340
1341 if (result)
1342 return result;
1343 else if (GET_CODE (x) == REG)
1344 {
1345 /* Must be a hard reg that's not valid in MODE. */
1346 result = gen_lowpart_common (mode, copy_to_reg (x));
1347 if (result == 0)
1348 abort ();
1349 return result;
1350 }
1351 else if (GET_CODE (x) == MEM)
1352 {
1353 /* The only additional case we can do is MEM. */
1354 int offset = 0;
1355
1356 /* The following exposes the use of "x" to CSE. */
1357 if (GET_MODE_SIZE (GET_MODE (x)) <= UNITS_PER_WORD
1358 && SCALAR_INT_MODE_P (GET_MODE (x))
1359 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1360 GET_MODE_BITSIZE (GET_MODE (x)))
1361 && ! no_new_pseudos)
1362 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1363
1364 if (WORDS_BIG_ENDIAN)
1365 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1366 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1367
1368 if (BYTES_BIG_ENDIAN)
1369 /* Adjust the address so that the address-after-the-data
1370 is unchanged. */
1371 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1372 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1373
1374 return adjust_address (x, mode, offset);
1375 }
1376 else if (GET_CODE (x) == ADDRESSOF)
1377 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1378 else
1379 abort ();
1380 }
1381
1382 /* Like `gen_lowpart', but refer to the most significant part.
1383 This is used to access the imaginary part of a complex number. */
1384
1385 rtx
1386 gen_highpart (enum machine_mode mode, rtx x)
1387 {
1388 unsigned int msize = GET_MODE_SIZE (mode);
1389 rtx result;
1390
1391 /* This case loses if X is a subreg. To catch bugs early,
1392 complain if an invalid MODE is used even in other cases. */
1393 if (msize > UNITS_PER_WORD
1394 && msize != (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)))
1395 abort ();
1396
1397 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1398 subreg_highpart_offset (mode, GET_MODE (x)));
1399
1400 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1401 the target if we have a MEM. gen_highpart must return a valid operand,
1402 emitting code if necessary to do so. */
1403 if (result != NULL_RTX && GET_CODE (result) == MEM)
1404 result = validize_mem (result);
1405
1406 if (!result)
1407 abort ();
1408 return result;
1409 }
1410
1411 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1412 be VOIDmode constant. */
1413 rtx
1414 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1415 {
1416 if (GET_MODE (exp) != VOIDmode)
1417 {
1418 if (GET_MODE (exp) != innermode)
1419 abort ();
1420 return gen_highpart (outermode, exp);
1421 }
1422 return simplify_gen_subreg (outermode, exp, innermode,
1423 subreg_highpart_offset (outermode, innermode));
1424 }
1425
1426 /* Return offset in bytes to get OUTERMODE low part
1427 of the value in mode INNERMODE stored in memory in target format. */
1428
1429 unsigned int
1430 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1431 {
1432 unsigned int offset = 0;
1433 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1434
1435 if (difference > 0)
1436 {
1437 if (WORDS_BIG_ENDIAN)
1438 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1439 if (BYTES_BIG_ENDIAN)
1440 offset += difference % UNITS_PER_WORD;
1441 }
1442
1443 return offset;
1444 }
1445
1446 /* Return offset in bytes to get OUTERMODE high part
1447 of the value in mode INNERMODE stored in memory in target format. */
1448 unsigned int
1449 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1450 {
1451 unsigned int offset = 0;
1452 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1453
1454 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1455 abort ();
1456
1457 if (difference > 0)
1458 {
1459 if (! WORDS_BIG_ENDIAN)
1460 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1461 if (! BYTES_BIG_ENDIAN)
1462 offset += difference % UNITS_PER_WORD;
1463 }
1464
1465 return offset;
1466 }
1467
1468 /* Return 1 iff X, assumed to be a SUBREG,
1469 refers to the least significant part of its containing reg.
1470 If X is not a SUBREG, always return 1 (it is its own low part!). */
1471
1472 int
1473 subreg_lowpart_p (rtx x)
1474 {
1475 if (GET_CODE (x) != SUBREG)
1476 return 1;
1477 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1478 return 0;
1479
1480 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1481 == SUBREG_BYTE (x));
1482 }
1483 \f
1484
1485 /* Helper routine for all the constant cases of operand_subword.
1486 Some places invoke this directly. */
1487
1488 rtx
1489 constant_subword (rtx op, int offset, enum machine_mode mode)
1490 {
1491 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1492 HOST_WIDE_INT val;
1493
1494 /* If OP is already an integer word, return it. */
1495 if (GET_MODE_CLASS (mode) == MODE_INT
1496 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1497 return op;
1498
1499 /* The output is some bits, the width of the target machine's word.
1500 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1501 host can't. */
1502 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1503 && GET_MODE_CLASS (mode) == MODE_FLOAT
1504 && GET_MODE_BITSIZE (mode) == 64
1505 && GET_CODE (op) == CONST_DOUBLE)
1506 {
1507 long k[2];
1508 REAL_VALUE_TYPE rv;
1509
1510 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1511 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1512
1513 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1514 which the words are written depends on the word endianness.
1515 ??? This is a potential portability problem and should
1516 be fixed at some point.
1517
1518 We must exercise caution with the sign bit. By definition there
1519 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1520 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1521 So we explicitly mask and sign-extend as necessary. */
1522 if (BITS_PER_WORD == 32)
1523 {
1524 val = k[offset];
1525 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1526 return GEN_INT (val);
1527 }
1528 #if HOST_BITS_PER_WIDE_INT >= 64
1529 else if (BITS_PER_WORD >= 64 && offset == 0)
1530 {
1531 val = k[! WORDS_BIG_ENDIAN];
1532 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1533 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1534 return GEN_INT (val);
1535 }
1536 #endif
1537 else if (BITS_PER_WORD == 16)
1538 {
1539 val = k[offset >> 1];
1540 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1541 val >>= 16;
1542 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1543 return GEN_INT (val);
1544 }
1545 else
1546 abort ();
1547 }
1548 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1549 && GET_MODE_CLASS (mode) == MODE_FLOAT
1550 && GET_MODE_BITSIZE (mode) > 64
1551 && GET_CODE (op) == CONST_DOUBLE)
1552 {
1553 long k[4];
1554 REAL_VALUE_TYPE rv;
1555
1556 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1557 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1558
1559 if (BITS_PER_WORD == 32)
1560 {
1561 val = k[offset];
1562 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1563 return GEN_INT (val);
1564 }
1565 #if HOST_BITS_PER_WIDE_INT >= 64
1566 else if (BITS_PER_WORD >= 64 && offset <= 1)
1567 {
1568 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1569 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1570 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1571 return GEN_INT (val);
1572 }
1573 #endif
1574 else
1575 abort ();
1576 }
1577
1578 /* Single word float is a little harder, since single- and double-word
1579 values often do not have the same high-order bits. We have already
1580 verified that we want the only defined word of the single-word value. */
1581 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1582 && GET_MODE_BITSIZE (mode) == 32
1583 && GET_CODE (op) == CONST_DOUBLE)
1584 {
1585 long l;
1586 REAL_VALUE_TYPE rv;
1587
1588 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1589 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1590
1591 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1592 val = l;
1593 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1594
1595 if (BITS_PER_WORD == 16)
1596 {
1597 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1598 val >>= 16;
1599 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1600 }
1601
1602 return GEN_INT (val);
1603 }
1604
1605 /* The only remaining cases that we can handle are integers.
1606 Convert to proper endianness now since these cases need it.
1607 At this point, offset == 0 means the low-order word.
1608
1609 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1610 in general. However, if OP is (const_int 0), we can just return
1611 it for any word. */
1612
1613 if (op == const0_rtx)
1614 return op;
1615
1616 if (GET_MODE_CLASS (mode) != MODE_INT
1617 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1618 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1619 return 0;
1620
1621 if (WORDS_BIG_ENDIAN)
1622 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1623
1624 /* Find out which word on the host machine this value is in and get
1625 it from the constant. */
1626 val = (offset / size_ratio == 0
1627 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1628 : (GET_CODE (op) == CONST_INT
1629 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1630
1631 /* Get the value we want into the low bits of val. */
1632 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1633 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1634
1635 val = trunc_int_for_mode (val, word_mode);
1636
1637 return GEN_INT (val);
1638 }
1639
1640 /* Return subword OFFSET of operand OP.
1641 The word number, OFFSET, is interpreted as the word number starting
1642 at the low-order address. OFFSET 0 is the low-order word if not
1643 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1644
1645 If we cannot extract the required word, we return zero. Otherwise,
1646 an rtx corresponding to the requested word will be returned.
1647
1648 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1649 reload has completed, a valid address will always be returned. After
1650 reload, if a valid address cannot be returned, we return zero.
1651
1652 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1653 it is the responsibility of the caller.
1654
1655 MODE is the mode of OP in case it is a CONST_INT.
1656
1657 ??? This is still rather broken for some cases. The problem for the
1658 moment is that all callers of this thing provide no 'goal mode' to
1659 tell us to work with. This exists because all callers were written
1660 in a word based SUBREG world.
1661 Now use of this function can be deprecated by simplify_subreg in most
1662 cases.
1663 */
1664
1665 rtx
1666 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1667 {
1668 if (mode == VOIDmode)
1669 mode = GET_MODE (op);
1670
1671 if (mode == VOIDmode)
1672 abort ();
1673
1674 /* If OP is narrower than a word, fail. */
1675 if (mode != BLKmode
1676 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1677 return 0;
1678
1679 /* If we want a word outside OP, return zero. */
1680 if (mode != BLKmode
1681 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1682 return const0_rtx;
1683
1684 /* Form a new MEM at the requested address. */
1685 if (GET_CODE (op) == MEM)
1686 {
1687 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1688
1689 if (! validate_address)
1690 return new;
1691
1692 else if (reload_completed)
1693 {
1694 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1695 return 0;
1696 }
1697 else
1698 return replace_equiv_address (new, XEXP (new, 0));
1699 }
1700
1701 /* Rest can be handled by simplify_subreg. */
1702 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1703 }
1704
1705 /* Similar to `operand_subword', but never return 0. If we can't extract
1706 the required subword, put OP into a register and try again. If that fails,
1707 abort. We always validate the address in this case.
1708
1709 MODE is the mode of OP, in case it is CONST_INT. */
1710
1711 rtx
1712 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1713 {
1714 rtx result = operand_subword (op, offset, 1, mode);
1715
1716 if (result)
1717 return result;
1718
1719 if (mode != BLKmode && mode != VOIDmode)
1720 {
1721 /* If this is a register which can not be accessed by words, copy it
1722 to a pseudo register. */
1723 if (GET_CODE (op) == REG)
1724 op = copy_to_reg (op);
1725 else
1726 op = force_reg (mode, op);
1727 }
1728
1729 result = operand_subword (op, offset, 1, mode);
1730 if (result == 0)
1731 abort ();
1732
1733 return result;
1734 }
1735 \f
1736 /* Given a compare instruction, swap the operands.
1737 A test instruction is changed into a compare of 0 against the operand. */
1738
1739 void
1740 reverse_comparison (rtx insn)
1741 {
1742 rtx body = PATTERN (insn);
1743 rtx comp;
1744
1745 if (GET_CODE (body) == SET)
1746 comp = SET_SRC (body);
1747 else
1748 comp = SET_SRC (XVECEXP (body, 0, 0));
1749
1750 if (GET_CODE (comp) == COMPARE)
1751 {
1752 rtx op0 = XEXP (comp, 0);
1753 rtx op1 = XEXP (comp, 1);
1754 XEXP (comp, 0) = op1;
1755 XEXP (comp, 1) = op0;
1756 }
1757 else
1758 {
1759 rtx new = gen_rtx_COMPARE (VOIDmode,
1760 CONST0_RTX (GET_MODE (comp)), comp);
1761 if (GET_CODE (body) == SET)
1762 SET_SRC (body) = new;
1763 else
1764 SET_SRC (XVECEXP (body, 0, 0)) = new;
1765 }
1766 }
1767 \f
1768 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1769 or (2) a component ref of something variable. Represent the later with
1770 a NULL expression. */
1771
1772 static tree
1773 component_ref_for_mem_expr (tree ref)
1774 {
1775 tree inner = TREE_OPERAND (ref, 0);
1776
1777 if (TREE_CODE (inner) == COMPONENT_REF)
1778 inner = component_ref_for_mem_expr (inner);
1779 else
1780 {
1781 tree placeholder_ptr = 0;
1782
1783 /* Now remove any conversions: they don't change what the underlying
1784 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1785 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1786 || TREE_CODE (inner) == NON_LVALUE_EXPR
1787 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1788 || TREE_CODE (inner) == SAVE_EXPR
1789 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1790 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1791 inner = find_placeholder (inner, &placeholder_ptr);
1792 else
1793 inner = TREE_OPERAND (inner, 0);
1794
1795 if (! DECL_P (inner))
1796 inner = NULL_TREE;
1797 }
1798
1799 if (inner == TREE_OPERAND (ref, 0))
1800 return ref;
1801 else
1802 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1803 TREE_OPERAND (ref, 1));
1804 }
1805
1806 /* Given REF, a MEM, and T, either the type of X or the expression
1807 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1808 if we are making a new object of this type. BITPOS is nonzero if
1809 there is an offset outstanding on T that will be applied later. */
1810
1811 void
1812 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1813 HOST_WIDE_INT bitpos)
1814 {
1815 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1816 tree expr = MEM_EXPR (ref);
1817 rtx offset = MEM_OFFSET (ref);
1818 rtx size = MEM_SIZE (ref);
1819 unsigned int align = MEM_ALIGN (ref);
1820 HOST_WIDE_INT apply_bitpos = 0;
1821 tree type;
1822
1823 /* It can happen that type_for_mode was given a mode for which there
1824 is no language-level type. In which case it returns NULL, which
1825 we can see here. */
1826 if (t == NULL_TREE)
1827 return;
1828
1829 type = TYPE_P (t) ? t : TREE_TYPE (t);
1830 if (type == error_mark_node)
1831 return;
1832
1833 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1834 wrong answer, as it assumes that DECL_RTL already has the right alias
1835 info. Callers should not set DECL_RTL until after the call to
1836 set_mem_attributes. */
1837 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1838 abort ();
1839
1840 /* Get the alias set from the expression or type (perhaps using a
1841 front-end routine) and use it. */
1842 alias = get_alias_set (t);
1843
1844 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1845 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1846 RTX_UNCHANGING_P (ref)
1847 |= ((lang_hooks.honor_readonly
1848 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1849 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1850
1851 /* If we are making an object of this type, or if this is a DECL, we know
1852 that it is a scalar if the type is not an aggregate. */
1853 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1854 MEM_SCALAR_P (ref) = 1;
1855
1856 /* We can set the alignment from the type if we are making an object,
1857 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1858 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1859 align = MAX (align, TYPE_ALIGN (type));
1860
1861 /* If the size is known, we can set that. */
1862 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1863 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1864
1865 /* If T is not a type, we may be able to deduce some more information about
1866 the expression. */
1867 if (! TYPE_P (t))
1868 {
1869 maybe_set_unchanging (ref, t);
1870 if (TREE_THIS_VOLATILE (t))
1871 MEM_VOLATILE_P (ref) = 1;
1872
1873 /* Now remove any conversions: they don't change what the underlying
1874 object is. Likewise for SAVE_EXPR. */
1875 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1876 || TREE_CODE (t) == NON_LVALUE_EXPR
1877 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1878 || TREE_CODE (t) == SAVE_EXPR)
1879 t = TREE_OPERAND (t, 0);
1880
1881 /* If this expression can't be addressed (e.g., it contains a reference
1882 to a non-addressable field), show we don't change its alias set. */
1883 if (! can_address_p (t))
1884 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1885
1886 /* If this is a decl, set the attributes of the MEM from it. */
1887 if (DECL_P (t))
1888 {
1889 expr = t;
1890 offset = const0_rtx;
1891 apply_bitpos = bitpos;
1892 size = (DECL_SIZE_UNIT (t)
1893 && host_integerp (DECL_SIZE_UNIT (t), 1)
1894 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1895 align = DECL_ALIGN (t);
1896 }
1897
1898 /* If this is a constant, we know the alignment. */
1899 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1900 {
1901 align = TYPE_ALIGN (type);
1902 #ifdef CONSTANT_ALIGNMENT
1903 align = CONSTANT_ALIGNMENT (t, align);
1904 #endif
1905 }
1906
1907 /* If this is a field reference and not a bit-field, record it. */
1908 /* ??? There is some information that can be gleened from bit-fields,
1909 such as the word offset in the structure that might be modified.
1910 But skip it for now. */
1911 else if (TREE_CODE (t) == COMPONENT_REF
1912 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1913 {
1914 expr = component_ref_for_mem_expr (t);
1915 offset = const0_rtx;
1916 apply_bitpos = bitpos;
1917 /* ??? Any reason the field size would be different than
1918 the size we got from the type? */
1919 }
1920
1921 /* If this is an array reference, look for an outer field reference. */
1922 else if (TREE_CODE (t) == ARRAY_REF)
1923 {
1924 tree off_tree = size_zero_node;
1925 /* We can't modify t, because we use it at the end of the
1926 function. */
1927 tree t2 = t;
1928
1929 do
1930 {
1931 tree index = TREE_OPERAND (t2, 1);
1932 tree array = TREE_OPERAND (t2, 0);
1933 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1934 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1935 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1936
1937 /* We assume all arrays have sizes that are a multiple of a byte.
1938 First subtract the lower bound, if any, in the type of the
1939 index, then convert to sizetype and multiply by the size of the
1940 array element. */
1941 if (low_bound != 0 && ! integer_zerop (low_bound))
1942 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1943 index, low_bound));
1944
1945 /* If the index has a self-referential type, pass it to a
1946 WITH_RECORD_EXPR; if the component size is, pass our
1947 component to one. */
1948 if (CONTAINS_PLACEHOLDER_P (index))
1949 index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, t2);
1950 if (CONTAINS_PLACEHOLDER_P (unit_size))
1951 unit_size = build (WITH_RECORD_EXPR, sizetype,
1952 unit_size, array);
1953
1954 off_tree
1955 = fold (build (PLUS_EXPR, sizetype,
1956 fold (build (MULT_EXPR, sizetype,
1957 index,
1958 unit_size)),
1959 off_tree));
1960 t2 = TREE_OPERAND (t2, 0);
1961 }
1962 while (TREE_CODE (t2) == ARRAY_REF);
1963
1964 if (DECL_P (t2))
1965 {
1966 expr = t2;
1967 offset = NULL;
1968 if (host_integerp (off_tree, 1))
1969 {
1970 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1971 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1972 align = DECL_ALIGN (t2);
1973 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1974 align = aoff;
1975 offset = GEN_INT (ioff);
1976 apply_bitpos = bitpos;
1977 }
1978 }
1979 else if (TREE_CODE (t2) == COMPONENT_REF)
1980 {
1981 expr = component_ref_for_mem_expr (t2);
1982 if (host_integerp (off_tree, 1))
1983 {
1984 offset = GEN_INT (tree_low_cst (off_tree, 1));
1985 apply_bitpos = bitpos;
1986 }
1987 /* ??? Any reason the field size would be different than
1988 the size we got from the type? */
1989 }
1990 else if (flag_argument_noalias > 1
1991 && TREE_CODE (t2) == INDIRECT_REF
1992 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1993 {
1994 expr = t2;
1995 offset = NULL;
1996 }
1997 }
1998
1999 /* If this is a Fortran indirect argument reference, record the
2000 parameter decl. */
2001 else if (flag_argument_noalias > 1
2002 && TREE_CODE (t) == INDIRECT_REF
2003 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
2004 {
2005 expr = t;
2006 offset = NULL;
2007 }
2008 }
2009
2010 /* If we modified OFFSET based on T, then subtract the outstanding
2011 bit position offset. Similarly, increase the size of the accessed
2012 object to contain the negative offset. */
2013 if (apply_bitpos)
2014 {
2015 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
2016 if (size)
2017 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
2018 }
2019
2020 /* Now set the attributes we computed above. */
2021 MEM_ATTRS (ref)
2022 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
2023
2024 /* If this is already known to be a scalar or aggregate, we are done. */
2025 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
2026 return;
2027
2028 /* If it is a reference into an aggregate, this is part of an aggregate.
2029 Otherwise we don't know. */
2030 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
2031 || TREE_CODE (t) == ARRAY_RANGE_REF
2032 || TREE_CODE (t) == BIT_FIELD_REF)
2033 MEM_IN_STRUCT_P (ref) = 1;
2034 }
2035
2036 void
2037 set_mem_attributes (rtx ref, tree t, int objectp)
2038 {
2039 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2040 }
2041
2042 /* Set the decl for MEM to DECL. */
2043
2044 void
2045 set_mem_attrs_from_reg (rtx mem, rtx reg)
2046 {
2047 MEM_ATTRS (mem)
2048 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
2049 GEN_INT (REG_OFFSET (reg)),
2050 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2051 }
2052
2053 /* Set the alias set of MEM to SET. */
2054
2055 void
2056 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
2057 {
2058 #ifdef ENABLE_CHECKING
2059 /* If the new and old alias sets don't conflict, something is wrong. */
2060 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
2061 abort ();
2062 #endif
2063
2064 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
2065 MEM_SIZE (mem), MEM_ALIGN (mem),
2066 GET_MODE (mem));
2067 }
2068
2069 /* Set the alignment of MEM to ALIGN bits. */
2070
2071 void
2072 set_mem_align (rtx mem, unsigned int align)
2073 {
2074 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2075 MEM_OFFSET (mem), MEM_SIZE (mem), align,
2076 GET_MODE (mem));
2077 }
2078
2079 /* Set the expr for MEM to EXPR. */
2080
2081 void
2082 set_mem_expr (rtx mem, tree expr)
2083 {
2084 MEM_ATTRS (mem)
2085 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
2086 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2087 }
2088
2089 /* Set the offset of MEM to OFFSET. */
2090
2091 void
2092 set_mem_offset (rtx mem, rtx offset)
2093 {
2094 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2095 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
2096 GET_MODE (mem));
2097 }
2098
2099 /* Set the size of MEM to SIZE. */
2100
2101 void
2102 set_mem_size (rtx mem, rtx size)
2103 {
2104 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2105 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
2106 GET_MODE (mem));
2107 }
2108 \f
2109 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2110 and its address changed to ADDR. (VOIDmode means don't change the mode.
2111 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2112 returned memory location is required to be valid. The memory
2113 attributes are not changed. */
2114
2115 static rtx
2116 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
2117 {
2118 rtx new;
2119
2120 if (GET_CODE (memref) != MEM)
2121 abort ();
2122 if (mode == VOIDmode)
2123 mode = GET_MODE (memref);
2124 if (addr == 0)
2125 addr = XEXP (memref, 0);
2126
2127 if (validate)
2128 {
2129 if (reload_in_progress || reload_completed)
2130 {
2131 if (! memory_address_p (mode, addr))
2132 abort ();
2133 }
2134 else
2135 addr = memory_address (mode, addr);
2136 }
2137
2138 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2139 return memref;
2140
2141 new = gen_rtx_MEM (mode, addr);
2142 MEM_COPY_ATTRIBUTES (new, memref);
2143 return new;
2144 }
2145
2146 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2147 way we are changing MEMREF, so we only preserve the alias set. */
2148
2149 rtx
2150 change_address (rtx memref, enum machine_mode mode, rtx addr)
2151 {
2152 rtx new = change_address_1 (memref, mode, addr, 1);
2153 enum machine_mode mmode = GET_MODE (new);
2154
2155 MEM_ATTRS (new)
2156 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
2157 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
2158 (mmode == BLKmode ? BITS_PER_UNIT
2159 : GET_MODE_ALIGNMENT (mmode)),
2160 mmode);
2161
2162 return new;
2163 }
2164
2165 /* Return a memory reference like MEMREF, but with its mode changed
2166 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2167 nonzero, the memory address is forced to be valid.
2168 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2169 and caller is responsible for adjusting MEMREF base register. */
2170
2171 rtx
2172 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2173 int validate, int adjust)
2174 {
2175 rtx addr = XEXP (memref, 0);
2176 rtx new;
2177 rtx memoffset = MEM_OFFSET (memref);
2178 rtx size = 0;
2179 unsigned int memalign = MEM_ALIGN (memref);
2180
2181 /* ??? Prefer to create garbage instead of creating shared rtl.
2182 This may happen even if offset is nonzero -- consider
2183 (plus (plus reg reg) const_int) -- so do this always. */
2184 addr = copy_rtx (addr);
2185
2186 if (adjust)
2187 {
2188 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2189 object, we can merge it into the LO_SUM. */
2190 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2191 && offset >= 0
2192 && (unsigned HOST_WIDE_INT) offset
2193 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2194 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2195 plus_constant (XEXP (addr, 1), offset));
2196 else
2197 addr = plus_constant (addr, offset);
2198 }
2199
2200 new = change_address_1 (memref, mode, addr, validate);
2201
2202 /* Compute the new values of the memory attributes due to this adjustment.
2203 We add the offsets and update the alignment. */
2204 if (memoffset)
2205 memoffset = GEN_INT (offset + INTVAL (memoffset));
2206
2207 /* Compute the new alignment by taking the MIN of the alignment and the
2208 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2209 if zero. */
2210 if (offset != 0)
2211 memalign
2212 = MIN (memalign,
2213 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2214
2215 /* We can compute the size in a number of ways. */
2216 if (GET_MODE (new) != BLKmode)
2217 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
2218 else if (MEM_SIZE (memref))
2219 size = plus_constant (MEM_SIZE (memref), -offset);
2220
2221 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2222 memoffset, size, memalign, GET_MODE (new));
2223
2224 /* At some point, we should validate that this offset is within the object,
2225 if all the appropriate values are known. */
2226 return new;
2227 }
2228
2229 /* Return a memory reference like MEMREF, but with its mode changed
2230 to MODE and its address changed to ADDR, which is assumed to be
2231 MEMREF offseted by OFFSET bytes. If VALIDATE is
2232 nonzero, the memory address is forced to be valid. */
2233
2234 rtx
2235 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2236 HOST_WIDE_INT offset, int validate)
2237 {
2238 memref = change_address_1 (memref, VOIDmode, addr, validate);
2239 return adjust_address_1 (memref, mode, offset, validate, 0);
2240 }
2241
2242 /* Return a memory reference like MEMREF, but whose address is changed by
2243 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2244 known to be in OFFSET (possibly 1). */
2245
2246 rtx
2247 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2248 {
2249 rtx new, addr = XEXP (memref, 0);
2250
2251 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2252
2253 /* At this point we don't know _why_ the address is invalid. It
2254 could have secondary memory references, multiplies or anything.
2255
2256 However, if we did go and rearrange things, we can wind up not
2257 being able to recognize the magic around pic_offset_table_rtx.
2258 This stuff is fragile, and is yet another example of why it is
2259 bad to expose PIC machinery too early. */
2260 if (! memory_address_p (GET_MODE (memref), new)
2261 && GET_CODE (addr) == PLUS
2262 && XEXP (addr, 0) == pic_offset_table_rtx)
2263 {
2264 addr = force_reg (GET_MODE (addr), addr);
2265 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2266 }
2267
2268 update_temp_slot_address (XEXP (memref, 0), new);
2269 new = change_address_1 (memref, VOIDmode, new, 1);
2270
2271 /* Update the alignment to reflect the offset. Reset the offset, which
2272 we don't know. */
2273 MEM_ATTRS (new)
2274 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2275 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2276 GET_MODE (new));
2277 return new;
2278 }
2279
2280 /* Return a memory reference like MEMREF, but with its address changed to
2281 ADDR. The caller is asserting that the actual piece of memory pointed
2282 to is the same, just the form of the address is being changed, such as
2283 by putting something into a register. */
2284
2285 rtx
2286 replace_equiv_address (rtx memref, rtx addr)
2287 {
2288 /* change_address_1 copies the memory attribute structure without change
2289 and that's exactly what we want here. */
2290 update_temp_slot_address (XEXP (memref, 0), addr);
2291 return change_address_1 (memref, VOIDmode, addr, 1);
2292 }
2293
2294 /* Likewise, but the reference is not required to be valid. */
2295
2296 rtx
2297 replace_equiv_address_nv (rtx memref, rtx addr)
2298 {
2299 return change_address_1 (memref, VOIDmode, addr, 0);
2300 }
2301
2302 /* Return a memory reference like MEMREF, but with its mode widened to
2303 MODE and offset by OFFSET. This would be used by targets that e.g.
2304 cannot issue QImode memory operations and have to use SImode memory
2305 operations plus masking logic. */
2306
2307 rtx
2308 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2309 {
2310 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2311 tree expr = MEM_EXPR (new);
2312 rtx memoffset = MEM_OFFSET (new);
2313 unsigned int size = GET_MODE_SIZE (mode);
2314
2315 /* If we don't know what offset we were at within the expression, then
2316 we can't know if we've overstepped the bounds. */
2317 if (! memoffset)
2318 expr = NULL_TREE;
2319
2320 while (expr)
2321 {
2322 if (TREE_CODE (expr) == COMPONENT_REF)
2323 {
2324 tree field = TREE_OPERAND (expr, 1);
2325
2326 if (! DECL_SIZE_UNIT (field))
2327 {
2328 expr = NULL_TREE;
2329 break;
2330 }
2331
2332 /* Is the field at least as large as the access? If so, ok,
2333 otherwise strip back to the containing structure. */
2334 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2335 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2336 && INTVAL (memoffset) >= 0)
2337 break;
2338
2339 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2340 {
2341 expr = NULL_TREE;
2342 break;
2343 }
2344
2345 expr = TREE_OPERAND (expr, 0);
2346 memoffset = (GEN_INT (INTVAL (memoffset)
2347 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2348 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2349 / BITS_PER_UNIT)));
2350 }
2351 /* Similarly for the decl. */
2352 else if (DECL_P (expr)
2353 && DECL_SIZE_UNIT (expr)
2354 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2355 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2356 && (! memoffset || INTVAL (memoffset) >= 0))
2357 break;
2358 else
2359 {
2360 /* The widened memory access overflows the expression, which means
2361 that it could alias another expression. Zap it. */
2362 expr = NULL_TREE;
2363 break;
2364 }
2365 }
2366
2367 if (! expr)
2368 memoffset = NULL_RTX;
2369
2370 /* The widened memory may alias other stuff, so zap the alias set. */
2371 /* ??? Maybe use get_alias_set on any remaining expression. */
2372
2373 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2374 MEM_ALIGN (new), mode);
2375
2376 return new;
2377 }
2378 \f
2379 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2380
2381 rtx
2382 gen_label_rtx (void)
2383 {
2384 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2385 NULL, label_num++, NULL);
2386 }
2387 \f
2388 /* For procedure integration. */
2389
2390 /* Install new pointers to the first and last insns in the chain.
2391 Also, set cur_insn_uid to one higher than the last in use.
2392 Used for an inline-procedure after copying the insn chain. */
2393
2394 void
2395 set_new_first_and_last_insn (rtx first, rtx last)
2396 {
2397 rtx insn;
2398
2399 first_insn = first;
2400 last_insn = last;
2401 cur_insn_uid = 0;
2402
2403 for (insn = first; insn; insn = NEXT_INSN (insn))
2404 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2405
2406 cur_insn_uid++;
2407 }
2408
2409 /* Set the last label number found in the current function.
2410 This is used when belatedly compiling an inline function. */
2411
2412 void
2413 set_new_last_label_num (int last)
2414 {
2415 base_label_num = label_num;
2416 last_label_num = last;
2417 }
2418 \f
2419 /* Restore all variables describing the current status from the structure *P.
2420 This is used after a nested function. */
2421
2422 void
2423 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2424 {
2425 last_label_num = 0;
2426 }
2427 \f
2428 /* Go through all the RTL insn bodies and copy any invalid shared
2429 structure. This routine should only be called once. */
2430
2431 void
2432 unshare_all_rtl (tree fndecl, rtx insn)
2433 {
2434 tree decl;
2435
2436 /* Make sure that virtual parameters are not shared. */
2437 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2438 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2439
2440 /* Make sure that virtual stack slots are not shared. */
2441 unshare_all_decls (DECL_INITIAL (fndecl));
2442
2443 /* Unshare just about everything else. */
2444 unshare_all_rtl_in_chain (insn);
2445
2446 /* Make sure the addresses of stack slots found outside the insn chain
2447 (such as, in DECL_RTL of a variable) are not shared
2448 with the insn chain.
2449
2450 This special care is necessary when the stack slot MEM does not
2451 actually appear in the insn chain. If it does appear, its address
2452 is unshared from all else at that point. */
2453 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2454 }
2455
2456 /* Go through all the RTL insn bodies and copy any invalid shared
2457 structure, again. This is a fairly expensive thing to do so it
2458 should be done sparingly. */
2459
2460 void
2461 unshare_all_rtl_again (rtx insn)
2462 {
2463 rtx p;
2464 tree decl;
2465
2466 for (p = insn; p; p = NEXT_INSN (p))
2467 if (INSN_P (p))
2468 {
2469 reset_used_flags (PATTERN (p));
2470 reset_used_flags (REG_NOTES (p));
2471 reset_used_flags (LOG_LINKS (p));
2472 }
2473
2474 /* Make sure that virtual stack slots are not shared. */
2475 reset_used_decls (DECL_INITIAL (cfun->decl));
2476
2477 /* Make sure that virtual parameters are not shared. */
2478 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2479 reset_used_flags (DECL_RTL (decl));
2480
2481 reset_used_flags (stack_slot_list);
2482
2483 unshare_all_rtl (cfun->decl, insn);
2484 }
2485
2486 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2487 Recursively does the same for subexpressions. */
2488
2489 static void
2490 verify_rtx_sharing (rtx orig, rtx insn)
2491 {
2492 rtx x = orig;
2493 int i;
2494 enum rtx_code code;
2495 const char *format_ptr;
2496
2497 if (x == 0)
2498 return;
2499
2500 code = GET_CODE (x);
2501
2502 /* These types may be freely shared. */
2503
2504 switch (code)
2505 {
2506 case REG:
2507 case QUEUED:
2508 case CONST_INT:
2509 case CONST_DOUBLE:
2510 case CONST_VECTOR:
2511 case SYMBOL_REF:
2512 case LABEL_REF:
2513 case CODE_LABEL:
2514 case PC:
2515 case CC0:
2516 case SCRATCH:
2517 /* SCRATCH must be shared because they represent distinct values. */
2518 return;
2519
2520 case CONST:
2521 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2522 a LABEL_REF, it isn't sharable. */
2523 if (GET_CODE (XEXP (x, 0)) == PLUS
2524 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2525 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2526 return;
2527 break;
2528
2529 case MEM:
2530 /* A MEM is allowed to be shared if its address is constant. */
2531 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2532 || reload_completed || reload_in_progress)
2533 return;
2534
2535 break;
2536
2537 default:
2538 break;
2539 }
2540
2541 /* This rtx may not be shared. If it has already been seen,
2542 replace it with a copy of itself. */
2543
2544 if (RTX_FLAG (x, used))
2545 {
2546 error ("Invalid rtl sharing found in the insn");
2547 debug_rtx (insn);
2548 error ("Shared rtx");
2549 debug_rtx (x);
2550 abort ();
2551 }
2552 RTX_FLAG (x, used) = 1;
2553
2554 /* Now scan the subexpressions recursively. */
2555
2556 format_ptr = GET_RTX_FORMAT (code);
2557
2558 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2559 {
2560 switch (*format_ptr++)
2561 {
2562 case 'e':
2563 verify_rtx_sharing (XEXP (x, i), insn);
2564 break;
2565
2566 case 'E':
2567 if (XVEC (x, i) != NULL)
2568 {
2569 int j;
2570 int len = XVECLEN (x, i);
2571
2572 for (j = 0; j < len; j++)
2573 {
2574 /* We allow sharing of ASM_OPERANDS inside single instruction. */
2575 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2576 && GET_CODE (SET_SRC (XVECEXP (x, i, j))) == ASM_OPERANDS)
2577 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2578 else
2579 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2580 }
2581 }
2582 break;
2583 }
2584 }
2585 return;
2586 }
2587
2588 /* Go through all the RTL insn bodies and check that there is no unexpected
2589 sharing in between the subexpressions. */
2590
2591 void
2592 verify_rtl_sharing (void)
2593 {
2594 rtx p;
2595
2596 for (p = get_insns (); p; p = NEXT_INSN (p))
2597 if (INSN_P (p))
2598 {
2599 reset_used_flags (PATTERN (p));
2600 reset_used_flags (REG_NOTES (p));
2601 reset_used_flags (LOG_LINKS (p));
2602 }
2603
2604 for (p = get_insns (); p; p = NEXT_INSN (p))
2605 if (INSN_P (p))
2606 {
2607 verify_rtx_sharing (PATTERN (p), p);
2608 verify_rtx_sharing (REG_NOTES (p), p);
2609 verify_rtx_sharing (LOG_LINKS (p), p);
2610 }
2611 }
2612
2613 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2614 Assumes the mark bits are cleared at entry. */
2615
2616 void
2617 unshare_all_rtl_in_chain (rtx insn)
2618 {
2619 for (; insn; insn = NEXT_INSN (insn))
2620 if (INSN_P (insn))
2621 {
2622 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2623 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2624 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2625 }
2626 }
2627
2628 /* Go through all virtual stack slots of a function and copy any
2629 shared structure. */
2630 static void
2631 unshare_all_decls (tree blk)
2632 {
2633 tree t;
2634
2635 /* Copy shared decls. */
2636 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2637 if (DECL_RTL_SET_P (t))
2638 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2639
2640 /* Now process sub-blocks. */
2641 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2642 unshare_all_decls (t);
2643 }
2644
2645 /* Go through all virtual stack slots of a function and mark them as
2646 not shared. */
2647 static void
2648 reset_used_decls (tree blk)
2649 {
2650 tree t;
2651
2652 /* Mark decls. */
2653 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2654 if (DECL_RTL_SET_P (t))
2655 reset_used_flags (DECL_RTL (t));
2656
2657 /* Now process sub-blocks. */
2658 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2659 reset_used_decls (t);
2660 }
2661
2662 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2663 placed in the result directly, rather than being copied. MAY_SHARE is
2664 either a MEM of an EXPR_LIST of MEMs. */
2665
2666 rtx
2667 copy_most_rtx (rtx orig, rtx may_share)
2668 {
2669 rtx copy;
2670 int i, j;
2671 RTX_CODE code;
2672 const char *format_ptr;
2673
2674 if (orig == may_share
2675 || (GET_CODE (may_share) == EXPR_LIST
2676 && in_expr_list_p (may_share, orig)))
2677 return orig;
2678
2679 code = GET_CODE (orig);
2680
2681 switch (code)
2682 {
2683 case REG:
2684 case QUEUED:
2685 case CONST_INT:
2686 case CONST_DOUBLE:
2687 case CONST_VECTOR:
2688 case SYMBOL_REF:
2689 case CODE_LABEL:
2690 case PC:
2691 case CC0:
2692 return orig;
2693 default:
2694 break;
2695 }
2696
2697 copy = rtx_alloc (code);
2698 PUT_MODE (copy, GET_MODE (orig));
2699 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2700 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2701 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2702 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2703 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2704
2705 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2706
2707 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2708 {
2709 switch (*format_ptr++)
2710 {
2711 case 'e':
2712 XEXP (copy, i) = XEXP (orig, i);
2713 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2714 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2715 break;
2716
2717 case 'u':
2718 XEXP (copy, i) = XEXP (orig, i);
2719 break;
2720
2721 case 'E':
2722 case 'V':
2723 XVEC (copy, i) = XVEC (orig, i);
2724 if (XVEC (orig, i) != NULL)
2725 {
2726 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2727 for (j = 0; j < XVECLEN (copy, i); j++)
2728 XVECEXP (copy, i, j)
2729 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2730 }
2731 break;
2732
2733 case 'w':
2734 XWINT (copy, i) = XWINT (orig, i);
2735 break;
2736
2737 case 'n':
2738 case 'i':
2739 XINT (copy, i) = XINT (orig, i);
2740 break;
2741
2742 case 't':
2743 XTREE (copy, i) = XTREE (orig, i);
2744 break;
2745
2746 case 's':
2747 case 'S':
2748 XSTR (copy, i) = XSTR (orig, i);
2749 break;
2750
2751 case '0':
2752 X0ANY (copy, i) = X0ANY (orig, i);
2753 break;
2754
2755 default:
2756 abort ();
2757 }
2758 }
2759 return copy;
2760 }
2761
2762 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2763 Recursively does the same for subexpressions. */
2764
2765 rtx
2766 copy_rtx_if_shared (rtx orig)
2767 {
2768 copy_rtx_if_shared_1 (&orig);
2769 return orig;
2770 }
2771
2772 static void
2773 copy_rtx_if_shared_1 (rtx *orig1)
2774 {
2775 rtx x;
2776 int i;
2777 enum rtx_code code;
2778 rtx *last_ptr;
2779 const char *format_ptr;
2780 int copied = 0;
2781 int length;
2782
2783 /* Repeat is used to turn tail-recursion into iteration. */
2784 repeat:
2785 x = *orig1;
2786
2787 if (x == 0)
2788 return;
2789
2790 code = GET_CODE (x);
2791
2792 /* These types may be freely shared. */
2793
2794 switch (code)
2795 {
2796 case REG:
2797 case QUEUED:
2798 case CONST_INT:
2799 case CONST_DOUBLE:
2800 case CONST_VECTOR:
2801 case SYMBOL_REF:
2802 case LABEL_REF:
2803 case CODE_LABEL:
2804 case PC:
2805 case CC0:
2806 case SCRATCH:
2807 /* SCRATCH must be shared because they represent distinct values. */
2808 return;
2809
2810 case CONST:
2811 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2812 a LABEL_REF, it isn't sharable. */
2813 if (GET_CODE (XEXP (x, 0)) == PLUS
2814 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2815 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2816 return;
2817 break;
2818
2819 case INSN:
2820 case JUMP_INSN:
2821 case CALL_INSN:
2822 case NOTE:
2823 case BARRIER:
2824 /* The chain of insns is not being copied. */
2825 return;
2826
2827 default:
2828 break;
2829 }
2830
2831 /* This rtx may not be shared. If it has already been seen,
2832 replace it with a copy of itself. */
2833
2834 if (RTX_FLAG (x, used))
2835 {
2836 rtx copy;
2837
2838 copy = rtx_alloc (code);
2839 memcpy (copy, x, RTX_SIZE (code));
2840 x = copy;
2841 copied = 1;
2842 }
2843 RTX_FLAG (x, used) = 1;
2844
2845 /* Now scan the subexpressions recursively.
2846 We can store any replaced subexpressions directly into X
2847 since we know X is not shared! Any vectors in X
2848 must be copied if X was copied. */
2849
2850 format_ptr = GET_RTX_FORMAT (code);
2851 length = GET_RTX_LENGTH (code);
2852 last_ptr = NULL;
2853
2854 for (i = 0; i < length; i++)
2855 {
2856 switch (*format_ptr++)
2857 {
2858 case 'e':
2859 if (last_ptr)
2860 copy_rtx_if_shared_1 (last_ptr);
2861 last_ptr = &XEXP (x, i);
2862 break;
2863
2864 case 'E':
2865 if (XVEC (x, i) != NULL)
2866 {
2867 int j;
2868 int len = XVECLEN (x, i);
2869
2870 /* Copy the vector iff I copied the rtx and the length is nonzero. */
2871 if (copied && len > 0)
2872 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2873
2874 /* Call recsusively on all inside the vector. */
2875 for (j = 0; j < len; j++)
2876 {
2877 if (last_ptr)
2878 copy_rtx_if_shared_1 (last_ptr);
2879 last_ptr = &XVECEXP (x, i, j);
2880 }
2881 }
2882 break;
2883 }
2884 }
2885 *orig1 = x;
2886 if (last_ptr)
2887 {
2888 orig1 = last_ptr;
2889 goto repeat;
2890 }
2891 return;
2892 }
2893
2894 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2895 to look for shared sub-parts. */
2896
2897 void
2898 reset_used_flags (rtx x)
2899 {
2900 int i, j;
2901 enum rtx_code code;
2902 const char *format_ptr;
2903 int length;
2904
2905 /* Repeat is used to turn tail-recursion into iteration. */
2906 repeat:
2907 if (x == 0)
2908 return;
2909
2910 code = GET_CODE (x);
2911
2912 /* These types may be freely shared so we needn't do any resetting
2913 for them. */
2914
2915 switch (code)
2916 {
2917 case REG:
2918 case QUEUED:
2919 case CONST_INT:
2920 case CONST_DOUBLE:
2921 case CONST_VECTOR:
2922 case SYMBOL_REF:
2923 case CODE_LABEL:
2924 case PC:
2925 case CC0:
2926 return;
2927
2928 case INSN:
2929 case JUMP_INSN:
2930 case CALL_INSN:
2931 case NOTE:
2932 case LABEL_REF:
2933 case BARRIER:
2934 /* The chain of insns is not being copied. */
2935 return;
2936
2937 default:
2938 break;
2939 }
2940
2941 RTX_FLAG (x, used) = 0;
2942
2943 format_ptr = GET_RTX_FORMAT (code);
2944 length = GET_RTX_LENGTH (code);
2945
2946 for (i = 0; i < length; i++)
2947 {
2948 switch (*format_ptr++)
2949 {
2950 case 'e':
2951 if (i == length-1)
2952 {
2953 x = XEXP (x, i);
2954 goto repeat;
2955 }
2956 reset_used_flags (XEXP (x, i));
2957 break;
2958
2959 case 'E':
2960 for (j = 0; j < XVECLEN (x, i); j++)
2961 reset_used_flags (XVECEXP (x, i, j));
2962 break;
2963 }
2964 }
2965 }
2966
2967 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2968 to look for shared sub-parts. */
2969
2970 void
2971 set_used_flags (rtx x)
2972 {
2973 int i, j;
2974 enum rtx_code code;
2975 const char *format_ptr;
2976
2977 if (x == 0)
2978 return;
2979
2980 code = GET_CODE (x);
2981
2982 /* These types may be freely shared so we needn't do any resetting
2983 for them. */
2984
2985 switch (code)
2986 {
2987 case REG:
2988 case QUEUED:
2989 case CONST_INT:
2990 case CONST_DOUBLE:
2991 case CONST_VECTOR:
2992 case SYMBOL_REF:
2993 case CODE_LABEL:
2994 case PC:
2995 case CC0:
2996 return;
2997
2998 case INSN:
2999 case JUMP_INSN:
3000 case CALL_INSN:
3001 case NOTE:
3002 case LABEL_REF:
3003 case BARRIER:
3004 /* The chain of insns is not being copied. */
3005 return;
3006
3007 default:
3008 break;
3009 }
3010
3011 RTX_FLAG (x, used) = 1;
3012
3013 format_ptr = GET_RTX_FORMAT (code);
3014 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3015 {
3016 switch (*format_ptr++)
3017 {
3018 case 'e':
3019 set_used_flags (XEXP (x, i));
3020 break;
3021
3022 case 'E':
3023 for (j = 0; j < XVECLEN (x, i); j++)
3024 set_used_flags (XVECEXP (x, i, j));
3025 break;
3026 }
3027 }
3028 }
3029 \f
3030 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3031 Return X or the rtx for the pseudo reg the value of X was copied into.
3032 OTHER must be valid as a SET_DEST. */
3033
3034 rtx
3035 make_safe_from (rtx x, rtx other)
3036 {
3037 while (1)
3038 switch (GET_CODE (other))
3039 {
3040 case SUBREG:
3041 other = SUBREG_REG (other);
3042 break;
3043 case STRICT_LOW_PART:
3044 case SIGN_EXTEND:
3045 case ZERO_EXTEND:
3046 other = XEXP (other, 0);
3047 break;
3048 default:
3049 goto done;
3050 }
3051 done:
3052 if ((GET_CODE (other) == MEM
3053 && ! CONSTANT_P (x)
3054 && GET_CODE (x) != REG
3055 && GET_CODE (x) != SUBREG)
3056 || (GET_CODE (other) == REG
3057 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3058 || reg_mentioned_p (other, x))))
3059 {
3060 rtx temp = gen_reg_rtx (GET_MODE (x));
3061 emit_move_insn (temp, x);
3062 return temp;
3063 }
3064 return x;
3065 }
3066 \f
3067 /* Emission of insns (adding them to the doubly-linked list). */
3068
3069 /* Return the first insn of the current sequence or current function. */
3070
3071 rtx
3072 get_insns (void)
3073 {
3074 return first_insn;
3075 }
3076
3077 /* Specify a new insn as the first in the chain. */
3078
3079 void
3080 set_first_insn (rtx insn)
3081 {
3082 if (PREV_INSN (insn) != 0)
3083 abort ();
3084 first_insn = insn;
3085 }
3086
3087 /* Return the last insn emitted in current sequence or current function. */
3088
3089 rtx
3090 get_last_insn (void)
3091 {
3092 return last_insn;
3093 }
3094
3095 /* Specify a new insn as the last in the chain. */
3096
3097 void
3098 set_last_insn (rtx insn)
3099 {
3100 if (NEXT_INSN (insn) != 0)
3101 abort ();
3102 last_insn = insn;
3103 }
3104
3105 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3106
3107 rtx
3108 get_last_insn_anywhere (void)
3109 {
3110 struct sequence_stack *stack;
3111 if (last_insn)
3112 return last_insn;
3113 for (stack = seq_stack; stack; stack = stack->next)
3114 if (stack->last != 0)
3115 return stack->last;
3116 return 0;
3117 }
3118
3119 /* Return the first nonnote insn emitted in current sequence or current
3120 function. This routine looks inside SEQUENCEs. */
3121
3122 rtx
3123 get_first_nonnote_insn (void)
3124 {
3125 rtx insn = first_insn;
3126
3127 while (insn)
3128 {
3129 insn = next_insn (insn);
3130 if (insn == 0 || GET_CODE (insn) != NOTE)
3131 break;
3132 }
3133
3134 return insn;
3135 }
3136
3137 /* Return the last nonnote insn emitted in current sequence or current
3138 function. This routine looks inside SEQUENCEs. */
3139
3140 rtx
3141 get_last_nonnote_insn (void)
3142 {
3143 rtx insn = last_insn;
3144
3145 while (insn)
3146 {
3147 insn = previous_insn (insn);
3148 if (insn == 0 || GET_CODE (insn) != NOTE)
3149 break;
3150 }
3151
3152 return insn;
3153 }
3154
3155 /* Return a number larger than any instruction's uid in this function. */
3156
3157 int
3158 get_max_uid (void)
3159 {
3160 return cur_insn_uid;
3161 }
3162
3163 /* Renumber instructions so that no instruction UIDs are wasted. */
3164
3165 void
3166 renumber_insns (FILE *stream)
3167 {
3168 rtx insn;
3169
3170 /* If we're not supposed to renumber instructions, don't. */
3171 if (!flag_renumber_insns)
3172 return;
3173
3174 /* If there aren't that many instructions, then it's not really
3175 worth renumbering them. */
3176 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
3177 return;
3178
3179 cur_insn_uid = 1;
3180
3181 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3182 {
3183 if (stream)
3184 fprintf (stream, "Renumbering insn %d to %d\n",
3185 INSN_UID (insn), cur_insn_uid);
3186 INSN_UID (insn) = cur_insn_uid++;
3187 }
3188 }
3189 \f
3190 /* Return the next insn. If it is a SEQUENCE, return the first insn
3191 of the sequence. */
3192
3193 rtx
3194 next_insn (rtx insn)
3195 {
3196 if (insn)
3197 {
3198 insn = NEXT_INSN (insn);
3199 if (insn && GET_CODE (insn) == INSN
3200 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3201 insn = XVECEXP (PATTERN (insn), 0, 0);
3202 }
3203
3204 return insn;
3205 }
3206
3207 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3208 of the sequence. */
3209
3210 rtx
3211 previous_insn (rtx insn)
3212 {
3213 if (insn)
3214 {
3215 insn = PREV_INSN (insn);
3216 if (insn && GET_CODE (insn) == INSN
3217 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3218 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3219 }
3220
3221 return insn;
3222 }
3223
3224 /* Return the next insn after INSN that is not a NOTE. This routine does not
3225 look inside SEQUENCEs. */
3226
3227 rtx
3228 next_nonnote_insn (rtx insn)
3229 {
3230 while (insn)
3231 {
3232 insn = NEXT_INSN (insn);
3233 if (insn == 0 || GET_CODE (insn) != NOTE)
3234 break;
3235 }
3236
3237 return insn;
3238 }
3239
3240 /* Return the previous insn before INSN that is not a NOTE. This routine does
3241 not look inside SEQUENCEs. */
3242
3243 rtx
3244 prev_nonnote_insn (rtx insn)
3245 {
3246 while (insn)
3247 {
3248 insn = PREV_INSN (insn);
3249 if (insn == 0 || GET_CODE (insn) != NOTE)
3250 break;
3251 }
3252
3253 return insn;
3254 }
3255
3256 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3257 or 0, if there is none. This routine does not look inside
3258 SEQUENCEs. */
3259
3260 rtx
3261 next_real_insn (rtx insn)
3262 {
3263 while (insn)
3264 {
3265 insn = NEXT_INSN (insn);
3266 if (insn == 0 || GET_CODE (insn) == INSN
3267 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
3268 break;
3269 }
3270
3271 return insn;
3272 }
3273
3274 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3275 or 0, if there is none. This routine does not look inside
3276 SEQUENCEs. */
3277
3278 rtx
3279 prev_real_insn (rtx insn)
3280 {
3281 while (insn)
3282 {
3283 insn = PREV_INSN (insn);
3284 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
3285 || GET_CODE (insn) == JUMP_INSN)
3286 break;
3287 }
3288
3289 return insn;
3290 }
3291
3292 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3293 This routine does not look inside SEQUENCEs. */
3294
3295 rtx
3296 last_call_insn (void)
3297 {
3298 rtx insn;
3299
3300 for (insn = get_last_insn ();
3301 insn && GET_CODE (insn) != CALL_INSN;
3302 insn = PREV_INSN (insn))
3303 ;
3304
3305 return insn;
3306 }
3307
3308 /* Find the next insn after INSN that really does something. This routine
3309 does not look inside SEQUENCEs. Until reload has completed, this is the
3310 same as next_real_insn. */
3311
3312 int
3313 active_insn_p (rtx insn)
3314 {
3315 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3316 || (GET_CODE (insn) == INSN
3317 && (! reload_completed
3318 || (GET_CODE (PATTERN (insn)) != USE
3319 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3320 }
3321
3322 rtx
3323 next_active_insn (rtx insn)
3324 {
3325 while (insn)
3326 {
3327 insn = NEXT_INSN (insn);
3328 if (insn == 0 || active_insn_p (insn))
3329 break;
3330 }
3331
3332 return insn;
3333 }
3334
3335 /* Find the last insn before INSN that really does something. This routine
3336 does not look inside SEQUENCEs. Until reload has completed, this is the
3337 same as prev_real_insn. */
3338
3339 rtx
3340 prev_active_insn (rtx insn)
3341 {
3342 while (insn)
3343 {
3344 insn = PREV_INSN (insn);
3345 if (insn == 0 || active_insn_p (insn))
3346 break;
3347 }
3348
3349 return insn;
3350 }
3351
3352 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3353
3354 rtx
3355 next_label (rtx insn)
3356 {
3357 while (insn)
3358 {
3359 insn = NEXT_INSN (insn);
3360 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3361 break;
3362 }
3363
3364 return insn;
3365 }
3366
3367 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3368
3369 rtx
3370 prev_label (rtx insn)
3371 {
3372 while (insn)
3373 {
3374 insn = PREV_INSN (insn);
3375 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3376 break;
3377 }
3378
3379 return insn;
3380 }
3381 \f
3382 #ifdef HAVE_cc0
3383 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3384 and REG_CC_USER notes so we can find it. */
3385
3386 void
3387 link_cc0_insns (rtx insn)
3388 {
3389 rtx user = next_nonnote_insn (insn);
3390
3391 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3392 user = XVECEXP (PATTERN (user), 0, 0);
3393
3394 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3395 REG_NOTES (user));
3396 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3397 }
3398
3399 /* Return the next insn that uses CC0 after INSN, which is assumed to
3400 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3401 applied to the result of this function should yield INSN).
3402
3403 Normally, this is simply the next insn. However, if a REG_CC_USER note
3404 is present, it contains the insn that uses CC0.
3405
3406 Return 0 if we can't find the insn. */
3407
3408 rtx
3409 next_cc0_user (rtx insn)
3410 {
3411 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3412
3413 if (note)
3414 return XEXP (note, 0);
3415
3416 insn = next_nonnote_insn (insn);
3417 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3418 insn = XVECEXP (PATTERN (insn), 0, 0);
3419
3420 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3421 return insn;
3422
3423 return 0;
3424 }
3425
3426 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3427 note, it is the previous insn. */
3428
3429 rtx
3430 prev_cc0_setter (rtx insn)
3431 {
3432 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3433
3434 if (note)
3435 return XEXP (note, 0);
3436
3437 insn = prev_nonnote_insn (insn);
3438 if (! sets_cc0_p (PATTERN (insn)))
3439 abort ();
3440
3441 return insn;
3442 }
3443 #endif
3444
3445 /* Increment the label uses for all labels present in rtx. */
3446
3447 static void
3448 mark_label_nuses (rtx x)
3449 {
3450 enum rtx_code code;
3451 int i, j;
3452 const char *fmt;
3453
3454 code = GET_CODE (x);
3455 if (code == LABEL_REF)
3456 LABEL_NUSES (XEXP (x, 0))++;
3457
3458 fmt = GET_RTX_FORMAT (code);
3459 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3460 {
3461 if (fmt[i] == 'e')
3462 mark_label_nuses (XEXP (x, i));
3463 else if (fmt[i] == 'E')
3464 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3465 mark_label_nuses (XVECEXP (x, i, j));
3466 }
3467 }
3468
3469 \f
3470 /* Try splitting insns that can be split for better scheduling.
3471 PAT is the pattern which might split.
3472 TRIAL is the insn providing PAT.
3473 LAST is nonzero if we should return the last insn of the sequence produced.
3474
3475 If this routine succeeds in splitting, it returns the first or last
3476 replacement insn depending on the value of LAST. Otherwise, it
3477 returns TRIAL. If the insn to be returned can be split, it will be. */
3478
3479 rtx
3480 try_split (rtx pat, rtx trial, int last)
3481 {
3482 rtx before = PREV_INSN (trial);
3483 rtx after = NEXT_INSN (trial);
3484 int has_barrier = 0;
3485 rtx tem;
3486 rtx note, seq;
3487 int probability;
3488 rtx insn_last, insn;
3489 int njumps = 0;
3490
3491 if (any_condjump_p (trial)
3492 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3493 split_branch_probability = INTVAL (XEXP (note, 0));
3494 probability = split_branch_probability;
3495
3496 seq = split_insns (pat, trial);
3497
3498 split_branch_probability = -1;
3499
3500 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3501 We may need to handle this specially. */
3502 if (after && GET_CODE (after) == BARRIER)
3503 {
3504 has_barrier = 1;
3505 after = NEXT_INSN (after);
3506 }
3507
3508 if (!seq)
3509 return trial;
3510
3511 /* Avoid infinite loop if any insn of the result matches
3512 the original pattern. */
3513 insn_last = seq;
3514 while (1)
3515 {
3516 if (INSN_P (insn_last)
3517 && rtx_equal_p (PATTERN (insn_last), pat))
3518 return trial;
3519 if (!NEXT_INSN (insn_last))
3520 break;
3521 insn_last = NEXT_INSN (insn_last);
3522 }
3523
3524 /* Mark labels. */
3525 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3526 {
3527 if (GET_CODE (insn) == JUMP_INSN)
3528 {
3529 mark_jump_label (PATTERN (insn), insn, 0);
3530 njumps++;
3531 if (probability != -1
3532 && any_condjump_p (insn)
3533 && !find_reg_note (insn, REG_BR_PROB, 0))
3534 {
3535 /* We can preserve the REG_BR_PROB notes only if exactly
3536 one jump is created, otherwise the machine description
3537 is responsible for this step using
3538 split_branch_probability variable. */
3539 if (njumps != 1)
3540 abort ();
3541 REG_NOTES (insn)
3542 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3543 GEN_INT (probability),
3544 REG_NOTES (insn));
3545 }
3546 }
3547 }
3548
3549 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3550 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3551 if (GET_CODE (trial) == CALL_INSN)
3552 {
3553 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3554 if (GET_CODE (insn) == CALL_INSN)
3555 {
3556 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3557 while (*p)
3558 p = &XEXP (*p, 1);
3559 *p = CALL_INSN_FUNCTION_USAGE (trial);
3560 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3561 }
3562 }
3563
3564 /* Copy notes, particularly those related to the CFG. */
3565 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3566 {
3567 switch (REG_NOTE_KIND (note))
3568 {
3569 case REG_EH_REGION:
3570 insn = insn_last;
3571 while (insn != NULL_RTX)
3572 {
3573 if (GET_CODE (insn) == CALL_INSN
3574 || (flag_non_call_exceptions
3575 && may_trap_p (PATTERN (insn))))
3576 REG_NOTES (insn)
3577 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3578 XEXP (note, 0),
3579 REG_NOTES (insn));
3580 insn = PREV_INSN (insn);
3581 }
3582 break;
3583
3584 case REG_NORETURN:
3585 case REG_SETJMP:
3586 case REG_ALWAYS_RETURN:
3587 insn = insn_last;
3588 while (insn != NULL_RTX)
3589 {
3590 if (GET_CODE (insn) == CALL_INSN)
3591 REG_NOTES (insn)
3592 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3593 XEXP (note, 0),
3594 REG_NOTES (insn));
3595 insn = PREV_INSN (insn);
3596 }
3597 break;
3598
3599 case REG_NON_LOCAL_GOTO:
3600 insn = insn_last;
3601 while (insn != NULL_RTX)
3602 {
3603 if (GET_CODE (insn) == JUMP_INSN)
3604 REG_NOTES (insn)
3605 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3606 XEXP (note, 0),
3607 REG_NOTES (insn));
3608 insn = PREV_INSN (insn);
3609 }
3610 break;
3611
3612 default:
3613 break;
3614 }
3615 }
3616
3617 /* If there are LABELS inside the split insns increment the
3618 usage count so we don't delete the label. */
3619 if (GET_CODE (trial) == INSN)
3620 {
3621 insn = insn_last;
3622 while (insn != NULL_RTX)
3623 {
3624 if (GET_CODE (insn) == INSN)
3625 mark_label_nuses (PATTERN (insn));
3626
3627 insn = PREV_INSN (insn);
3628 }
3629 }
3630
3631 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3632
3633 delete_insn (trial);
3634 if (has_barrier)
3635 emit_barrier_after (tem);
3636
3637 /* Recursively call try_split for each new insn created; by the
3638 time control returns here that insn will be fully split, so
3639 set LAST and continue from the insn after the one returned.
3640 We can't use next_active_insn here since AFTER may be a note.
3641 Ignore deleted insns, which can be occur if not optimizing. */
3642 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3643 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3644 tem = try_split (PATTERN (tem), tem, 1);
3645
3646 /* Return either the first or the last insn, depending on which was
3647 requested. */
3648 return last
3649 ? (after ? PREV_INSN (after) : last_insn)
3650 : NEXT_INSN (before);
3651 }
3652 \f
3653 /* Make and return an INSN rtx, initializing all its slots.
3654 Store PATTERN in the pattern slots. */
3655
3656 rtx
3657 make_insn_raw (rtx pattern)
3658 {
3659 rtx insn;
3660
3661 insn = rtx_alloc (INSN);
3662
3663 INSN_UID (insn) = cur_insn_uid++;
3664 PATTERN (insn) = pattern;
3665 INSN_CODE (insn) = -1;
3666 LOG_LINKS (insn) = NULL;
3667 REG_NOTES (insn) = NULL;
3668 INSN_LOCATOR (insn) = 0;
3669 BLOCK_FOR_INSN (insn) = NULL;
3670
3671 #ifdef ENABLE_RTL_CHECKING
3672 if (insn
3673 && INSN_P (insn)
3674 && (returnjump_p (insn)
3675 || (GET_CODE (insn) == SET
3676 && SET_DEST (insn) == pc_rtx)))
3677 {
3678 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3679 debug_rtx (insn);
3680 }
3681 #endif
3682
3683 return insn;
3684 }
3685
3686 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3687
3688 static rtx
3689 make_jump_insn_raw (rtx pattern)
3690 {
3691 rtx insn;
3692
3693 insn = rtx_alloc (JUMP_INSN);
3694 INSN_UID (insn) = cur_insn_uid++;
3695
3696 PATTERN (insn) = pattern;
3697 INSN_CODE (insn) = -1;
3698 LOG_LINKS (insn) = NULL;
3699 REG_NOTES (insn) = NULL;
3700 JUMP_LABEL (insn) = NULL;
3701 INSN_LOCATOR (insn) = 0;
3702 BLOCK_FOR_INSN (insn) = NULL;
3703
3704 return insn;
3705 }
3706
3707 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3708
3709 static rtx
3710 make_call_insn_raw (rtx pattern)
3711 {
3712 rtx insn;
3713
3714 insn = rtx_alloc (CALL_INSN);
3715 INSN_UID (insn) = cur_insn_uid++;
3716
3717 PATTERN (insn) = pattern;
3718 INSN_CODE (insn) = -1;
3719 LOG_LINKS (insn) = NULL;
3720 REG_NOTES (insn) = NULL;
3721 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3722 INSN_LOCATOR (insn) = 0;
3723 BLOCK_FOR_INSN (insn) = NULL;
3724
3725 return insn;
3726 }
3727 \f
3728 /* Add INSN to the end of the doubly-linked list.
3729 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3730
3731 void
3732 add_insn (rtx insn)
3733 {
3734 PREV_INSN (insn) = last_insn;
3735 NEXT_INSN (insn) = 0;
3736
3737 if (NULL != last_insn)
3738 NEXT_INSN (last_insn) = insn;
3739
3740 if (NULL == first_insn)
3741 first_insn = insn;
3742
3743 last_insn = insn;
3744 }
3745
3746 /* Add INSN into the doubly-linked list after insn AFTER. This and
3747 the next should be the only functions called to insert an insn once
3748 delay slots have been filled since only they know how to update a
3749 SEQUENCE. */
3750
3751 void
3752 add_insn_after (rtx insn, rtx after)
3753 {
3754 rtx next = NEXT_INSN (after);
3755 basic_block bb;
3756
3757 if (optimize && INSN_DELETED_P (after))
3758 abort ();
3759
3760 NEXT_INSN (insn) = next;
3761 PREV_INSN (insn) = after;
3762
3763 if (next)
3764 {
3765 PREV_INSN (next) = insn;
3766 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3767 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3768 }
3769 else if (last_insn == after)
3770 last_insn = insn;
3771 else
3772 {
3773 struct sequence_stack *stack = seq_stack;
3774 /* Scan all pending sequences too. */
3775 for (; stack; stack = stack->next)
3776 if (after == stack->last)
3777 {
3778 stack->last = insn;
3779 break;
3780 }
3781
3782 if (stack == 0)
3783 abort ();
3784 }
3785
3786 if (GET_CODE (after) != BARRIER
3787 && GET_CODE (insn) != BARRIER
3788 && (bb = BLOCK_FOR_INSN (after)))
3789 {
3790 set_block_for_insn (insn, bb);
3791 if (INSN_P (insn))
3792 bb->flags |= BB_DIRTY;
3793 /* Should not happen as first in the BB is always
3794 either NOTE or LABEL. */
3795 if (BB_END (bb) == after
3796 /* Avoid clobbering of structure when creating new BB. */
3797 && GET_CODE (insn) != BARRIER
3798 && (GET_CODE (insn) != NOTE
3799 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3800 BB_END (bb) = insn;
3801 }
3802
3803 NEXT_INSN (after) = insn;
3804 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3805 {
3806 rtx sequence = PATTERN (after);
3807 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3808 }
3809 }
3810
3811 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3812 the previous should be the only functions called to insert an insn once
3813 delay slots have been filled since only they know how to update a
3814 SEQUENCE. */
3815
3816 void
3817 add_insn_before (rtx insn, rtx before)
3818 {
3819 rtx prev = PREV_INSN (before);
3820 basic_block bb;
3821
3822 if (optimize && INSN_DELETED_P (before))
3823 abort ();
3824
3825 PREV_INSN (insn) = prev;
3826 NEXT_INSN (insn) = before;
3827
3828 if (prev)
3829 {
3830 NEXT_INSN (prev) = insn;
3831 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3832 {
3833 rtx sequence = PATTERN (prev);
3834 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3835 }
3836 }
3837 else if (first_insn == before)
3838 first_insn = insn;
3839 else
3840 {
3841 struct sequence_stack *stack = seq_stack;
3842 /* Scan all pending sequences too. */
3843 for (; stack; stack = stack->next)
3844 if (before == stack->first)
3845 {
3846 stack->first = insn;
3847 break;
3848 }
3849
3850 if (stack == 0)
3851 abort ();
3852 }
3853
3854 if (GET_CODE (before) != BARRIER
3855 && GET_CODE (insn) != BARRIER
3856 && (bb = BLOCK_FOR_INSN (before)))
3857 {
3858 set_block_for_insn (insn, bb);
3859 if (INSN_P (insn))
3860 bb->flags |= BB_DIRTY;
3861 /* Should not happen as first in the BB is always
3862 either NOTE or LABEl. */
3863 if (BB_HEAD (bb) == insn
3864 /* Avoid clobbering of structure when creating new BB. */
3865 && GET_CODE (insn) != BARRIER
3866 && (GET_CODE (insn) != NOTE
3867 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3868 abort ();
3869 }
3870
3871 PREV_INSN (before) = insn;
3872 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3873 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3874 }
3875
3876 /* Remove an insn from its doubly-linked list. This function knows how
3877 to handle sequences. */
3878 void
3879 remove_insn (rtx insn)
3880 {
3881 rtx next = NEXT_INSN (insn);
3882 rtx prev = PREV_INSN (insn);
3883 basic_block bb;
3884
3885 if (prev)
3886 {
3887 NEXT_INSN (prev) = next;
3888 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3889 {
3890 rtx sequence = PATTERN (prev);
3891 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3892 }
3893 }
3894 else if (first_insn == insn)
3895 first_insn = next;
3896 else
3897 {
3898 struct sequence_stack *stack = seq_stack;
3899 /* Scan all pending sequences too. */
3900 for (; stack; stack = stack->next)
3901 if (insn == stack->first)
3902 {
3903 stack->first = next;
3904 break;
3905 }
3906
3907 if (stack == 0)
3908 abort ();
3909 }
3910
3911 if (next)
3912 {
3913 PREV_INSN (next) = prev;
3914 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3915 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3916 }
3917 else if (last_insn == insn)
3918 last_insn = prev;
3919 else
3920 {
3921 struct sequence_stack *stack = seq_stack;
3922 /* Scan all pending sequences too. */
3923 for (; stack; stack = stack->next)
3924 if (insn == stack->last)
3925 {
3926 stack->last = prev;
3927 break;
3928 }
3929
3930 if (stack == 0)
3931 abort ();
3932 }
3933 if (GET_CODE (insn) != BARRIER
3934 && (bb = BLOCK_FOR_INSN (insn)))
3935 {
3936 if (INSN_P (insn))
3937 bb->flags |= BB_DIRTY;
3938 if (BB_HEAD (bb) == insn)
3939 {
3940 /* Never ever delete the basic block note without deleting whole
3941 basic block. */
3942 if (GET_CODE (insn) == NOTE)
3943 abort ();
3944 BB_HEAD (bb) = next;
3945 }
3946 if (BB_END (bb) == insn)
3947 BB_END (bb) = prev;
3948 }
3949 }
3950
3951 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3952
3953 void
3954 add_function_usage_to (rtx call_insn, rtx call_fusage)
3955 {
3956 if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3957 abort ();
3958
3959 /* Put the register usage information on the CALL. If there is already
3960 some usage information, put ours at the end. */
3961 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3962 {
3963 rtx link;
3964
3965 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3966 link = XEXP (link, 1))
3967 ;
3968
3969 XEXP (link, 1) = call_fusage;
3970 }
3971 else
3972 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3973 }
3974
3975 /* Delete all insns made since FROM.
3976 FROM becomes the new last instruction. */
3977
3978 void
3979 delete_insns_since (rtx from)
3980 {
3981 if (from == 0)
3982 first_insn = 0;
3983 else
3984 NEXT_INSN (from) = 0;
3985 last_insn = from;
3986 }
3987
3988 /* This function is deprecated, please use sequences instead.
3989
3990 Move a consecutive bunch of insns to a different place in the chain.
3991 The insns to be moved are those between FROM and TO.
3992 They are moved to a new position after the insn AFTER.
3993 AFTER must not be FROM or TO or any insn in between.
3994
3995 This function does not know about SEQUENCEs and hence should not be
3996 called after delay-slot filling has been done. */
3997
3998 void
3999 reorder_insns_nobb (rtx from, rtx to, rtx after)
4000 {
4001 /* Splice this bunch out of where it is now. */
4002 if (PREV_INSN (from))
4003 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4004 if (NEXT_INSN (to))
4005 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4006 if (last_insn == to)
4007 last_insn = PREV_INSN (from);
4008 if (first_insn == from)
4009 first_insn = NEXT_INSN (to);
4010
4011 /* Make the new neighbors point to it and it to them. */
4012 if (NEXT_INSN (after))
4013 PREV_INSN (NEXT_INSN (after)) = to;
4014
4015 NEXT_INSN (to) = NEXT_INSN (after);
4016 PREV_INSN (from) = after;
4017 NEXT_INSN (after) = from;
4018 if (after == last_insn)
4019 last_insn = to;
4020 }
4021
4022 /* Same as function above, but take care to update BB boundaries. */
4023 void
4024 reorder_insns (rtx from, rtx to, rtx after)
4025 {
4026 rtx prev = PREV_INSN (from);
4027 basic_block bb, bb2;
4028
4029 reorder_insns_nobb (from, to, after);
4030
4031 if (GET_CODE (after) != BARRIER
4032 && (bb = BLOCK_FOR_INSN (after)))
4033 {
4034 rtx x;
4035 bb->flags |= BB_DIRTY;
4036
4037 if (GET_CODE (from) != BARRIER
4038 && (bb2 = BLOCK_FOR_INSN (from)))
4039 {
4040 if (BB_END (bb2) == to)
4041 BB_END (bb2) = prev;
4042 bb2->flags |= BB_DIRTY;
4043 }
4044
4045 if (BB_END (bb) == after)
4046 BB_END (bb) = to;
4047
4048 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4049 set_block_for_insn (x, bb);
4050 }
4051 }
4052
4053 /* Return the line note insn preceding INSN. */
4054
4055 static rtx
4056 find_line_note (rtx insn)
4057 {
4058 if (no_line_numbers)
4059 return 0;
4060
4061 for (; insn; insn = PREV_INSN (insn))
4062 if (GET_CODE (insn) == NOTE
4063 && NOTE_LINE_NUMBER (insn) >= 0)
4064 break;
4065
4066 return insn;
4067 }
4068
4069 /* Like reorder_insns, but inserts line notes to preserve the line numbers
4070 of the moved insns when debugging. This may insert a note between AFTER
4071 and FROM, and another one after TO. */
4072
4073 void
4074 reorder_insns_with_line_notes (rtx from, rtx to, rtx after)
4075 {
4076 rtx from_line = find_line_note (from);
4077 rtx after_line = find_line_note (after);
4078
4079 reorder_insns (from, to, after);
4080
4081 if (from_line == after_line)
4082 return;
4083
4084 if (from_line)
4085 emit_note_copy_after (from_line, after);
4086 if (after_line)
4087 emit_note_copy_after (after_line, to);
4088 }
4089
4090 /* Remove unnecessary notes from the instruction stream. */
4091
4092 void
4093 remove_unnecessary_notes (void)
4094 {
4095 rtx block_stack = NULL_RTX;
4096 rtx eh_stack = NULL_RTX;
4097 rtx insn;
4098 rtx next;
4099 rtx tmp;
4100
4101 /* We must not remove the first instruction in the function because
4102 the compiler depends on the first instruction being a note. */
4103 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
4104 {
4105 /* Remember what's next. */
4106 next = NEXT_INSN (insn);
4107
4108 /* We're only interested in notes. */
4109 if (GET_CODE (insn) != NOTE)
4110 continue;
4111
4112 switch (NOTE_LINE_NUMBER (insn))
4113 {
4114 case NOTE_INSN_DELETED:
4115 case NOTE_INSN_LOOP_END_TOP_COND:
4116 remove_insn (insn);
4117 break;
4118
4119 case NOTE_INSN_EH_REGION_BEG:
4120 eh_stack = alloc_INSN_LIST (insn, eh_stack);
4121 break;
4122
4123 case NOTE_INSN_EH_REGION_END:
4124 /* Too many end notes. */
4125 if (eh_stack == NULL_RTX)
4126 abort ();
4127 /* Mismatched nesting. */
4128 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
4129 abort ();
4130 tmp = eh_stack;
4131 eh_stack = XEXP (eh_stack, 1);
4132 free_INSN_LIST_node (tmp);
4133 break;
4134
4135 case NOTE_INSN_BLOCK_BEG:
4136 /* By now, all notes indicating lexical blocks should have
4137 NOTE_BLOCK filled in. */
4138 if (NOTE_BLOCK (insn) == NULL_TREE)
4139 abort ();
4140 block_stack = alloc_INSN_LIST (insn, block_stack);
4141 break;
4142
4143 case NOTE_INSN_BLOCK_END:
4144 /* Too many end notes. */
4145 if (block_stack == NULL_RTX)
4146 abort ();
4147 /* Mismatched nesting. */
4148 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
4149 abort ();
4150 tmp = block_stack;
4151 block_stack = XEXP (block_stack, 1);
4152 free_INSN_LIST_node (tmp);
4153
4154 /* Scan back to see if there are any non-note instructions
4155 between INSN and the beginning of this block. If not,
4156 then there is no PC range in the generated code that will
4157 actually be in this block, so there's no point in
4158 remembering the existence of the block. */
4159 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
4160 {
4161 /* This block contains a real instruction. Note that we
4162 don't include labels; if the only thing in the block
4163 is a label, then there are still no PC values that
4164 lie within the block. */
4165 if (INSN_P (tmp))
4166 break;
4167
4168 /* We're only interested in NOTEs. */
4169 if (GET_CODE (tmp) != NOTE)
4170 continue;
4171
4172 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
4173 {
4174 /* We just verified that this BLOCK matches us with
4175 the block_stack check above. Never delete the
4176 BLOCK for the outermost scope of the function; we
4177 can refer to names from that scope even if the
4178 block notes are messed up. */
4179 if (! is_body_block (NOTE_BLOCK (insn))
4180 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
4181 {
4182 remove_insn (tmp);
4183 remove_insn (insn);
4184 }
4185 break;
4186 }
4187 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
4188 /* There's a nested block. We need to leave the
4189 current block in place since otherwise the debugger
4190 wouldn't be able to show symbols from our block in
4191 the nested block. */
4192 break;
4193 }
4194 }
4195 }
4196
4197 /* Too many begin notes. */
4198 if (block_stack || eh_stack)
4199 abort ();
4200 }
4201
4202 \f
4203 /* Emit insn(s) of given code and pattern
4204 at a specified place within the doubly-linked list.
4205
4206 All of the emit_foo global entry points accept an object
4207 X which is either an insn list or a PATTERN of a single
4208 instruction.
4209
4210 There are thus a few canonical ways to generate code and
4211 emit it at a specific place in the instruction stream. For
4212 example, consider the instruction named SPOT and the fact that
4213 we would like to emit some instructions before SPOT. We might
4214 do it like this:
4215
4216 start_sequence ();
4217 ... emit the new instructions ...
4218 insns_head = get_insns ();
4219 end_sequence ();
4220
4221 emit_insn_before (insns_head, SPOT);
4222
4223 It used to be common to generate SEQUENCE rtl instead, but that
4224 is a relic of the past which no longer occurs. The reason is that
4225 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4226 generated would almost certainly die right after it was created. */
4227
4228 /* Make X be output before the instruction BEFORE. */
4229
4230 rtx
4231 emit_insn_before (rtx x, rtx before)
4232 {
4233 rtx last = before;
4234 rtx insn;
4235
4236 #ifdef ENABLE_RTL_CHECKING
4237 if (before == NULL_RTX)
4238 abort ();
4239 #endif
4240
4241 if (x == NULL_RTX)
4242 return last;
4243
4244 switch (GET_CODE (x))
4245 {
4246 case INSN:
4247 case JUMP_INSN:
4248 case CALL_INSN:
4249 case CODE_LABEL:
4250 case BARRIER:
4251 case NOTE:
4252 insn = x;
4253 while (insn)
4254 {
4255 rtx next = NEXT_INSN (insn);
4256 add_insn_before (insn, before);
4257 last = insn;
4258 insn = next;
4259 }
4260 break;
4261
4262 #ifdef ENABLE_RTL_CHECKING
4263 case SEQUENCE:
4264 abort ();
4265 break;
4266 #endif
4267
4268 default:
4269 last = make_insn_raw (x);
4270 add_insn_before (last, before);
4271 break;
4272 }
4273
4274 return last;
4275 }
4276
4277 /* Make an instruction with body X and code JUMP_INSN
4278 and output it before the instruction BEFORE. */
4279
4280 rtx
4281 emit_jump_insn_before (rtx x, rtx before)
4282 {
4283 rtx insn, last = NULL_RTX;
4284
4285 #ifdef ENABLE_RTL_CHECKING
4286 if (before == NULL_RTX)
4287 abort ();
4288 #endif
4289
4290 switch (GET_CODE (x))
4291 {
4292 case INSN:
4293 case JUMP_INSN:
4294 case CALL_INSN:
4295 case CODE_LABEL:
4296 case BARRIER:
4297 case NOTE:
4298 insn = x;
4299 while (insn)
4300 {
4301 rtx next = NEXT_INSN (insn);
4302 add_insn_before (insn, before);
4303 last = insn;
4304 insn = next;
4305 }
4306 break;
4307
4308 #ifdef ENABLE_RTL_CHECKING
4309 case SEQUENCE:
4310 abort ();
4311 break;
4312 #endif
4313
4314 default:
4315 last = make_jump_insn_raw (x);
4316 add_insn_before (last, before);
4317 break;
4318 }
4319
4320 return last;
4321 }
4322
4323 /* Make an instruction with body X and code CALL_INSN
4324 and output it before the instruction BEFORE. */
4325
4326 rtx
4327 emit_call_insn_before (rtx x, rtx before)
4328 {
4329 rtx last = NULL_RTX, insn;
4330
4331 #ifdef ENABLE_RTL_CHECKING
4332 if (before == NULL_RTX)
4333 abort ();
4334 #endif
4335
4336 switch (GET_CODE (x))
4337 {
4338 case INSN:
4339 case JUMP_INSN:
4340 case CALL_INSN:
4341 case CODE_LABEL:
4342 case BARRIER:
4343 case NOTE:
4344 insn = x;
4345 while (insn)
4346 {
4347 rtx next = NEXT_INSN (insn);
4348 add_insn_before (insn, before);
4349 last = insn;
4350 insn = next;
4351 }
4352 break;
4353
4354 #ifdef ENABLE_RTL_CHECKING
4355 case SEQUENCE:
4356 abort ();
4357 break;
4358 #endif
4359
4360 default:
4361 last = make_call_insn_raw (x);
4362 add_insn_before (last, before);
4363 break;
4364 }
4365
4366 return last;
4367 }
4368
4369 /* Make an insn of code BARRIER
4370 and output it before the insn BEFORE. */
4371
4372 rtx
4373 emit_barrier_before (rtx before)
4374 {
4375 rtx insn = rtx_alloc (BARRIER);
4376
4377 INSN_UID (insn) = cur_insn_uid++;
4378
4379 add_insn_before (insn, before);
4380 return insn;
4381 }
4382
4383 /* Emit the label LABEL before the insn BEFORE. */
4384
4385 rtx
4386 emit_label_before (rtx label, rtx before)
4387 {
4388 /* This can be called twice for the same label as a result of the
4389 confusion that follows a syntax error! So make it harmless. */
4390 if (INSN_UID (label) == 0)
4391 {
4392 INSN_UID (label) = cur_insn_uid++;
4393 add_insn_before (label, before);
4394 }
4395
4396 return label;
4397 }
4398
4399 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4400
4401 rtx
4402 emit_note_before (int subtype, rtx before)
4403 {
4404 rtx note = rtx_alloc (NOTE);
4405 INSN_UID (note) = cur_insn_uid++;
4406 NOTE_SOURCE_FILE (note) = 0;
4407 NOTE_LINE_NUMBER (note) = subtype;
4408 BLOCK_FOR_INSN (note) = NULL;
4409
4410 add_insn_before (note, before);
4411 return note;
4412 }
4413 \f
4414 /* Helper for emit_insn_after, handles lists of instructions
4415 efficiently. */
4416
4417 static rtx emit_insn_after_1 (rtx, rtx);
4418
4419 static rtx
4420 emit_insn_after_1 (rtx first, rtx after)
4421 {
4422 rtx last;
4423 rtx after_after;
4424 basic_block bb;
4425
4426 if (GET_CODE (after) != BARRIER
4427 && (bb = BLOCK_FOR_INSN (after)))
4428 {
4429 bb->flags |= BB_DIRTY;
4430 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4431 if (GET_CODE (last) != BARRIER)
4432 set_block_for_insn (last, bb);
4433 if (GET_CODE (last) != BARRIER)
4434 set_block_for_insn (last, bb);
4435 if (BB_END (bb) == after)
4436 BB_END (bb) = last;
4437 }
4438 else
4439 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4440 continue;
4441
4442 after_after = NEXT_INSN (after);
4443
4444 NEXT_INSN (after) = first;
4445 PREV_INSN (first) = after;
4446 NEXT_INSN (last) = after_after;
4447 if (after_after)
4448 PREV_INSN (after_after) = last;
4449
4450 if (after == last_insn)
4451 last_insn = last;
4452 return last;
4453 }
4454
4455 /* Make X be output after the insn AFTER. */
4456
4457 rtx
4458 emit_insn_after (rtx x, rtx after)
4459 {
4460 rtx last = after;
4461
4462 #ifdef ENABLE_RTL_CHECKING
4463 if (after == NULL_RTX)
4464 abort ();
4465 #endif
4466
4467 if (x == NULL_RTX)
4468 return last;
4469
4470 switch (GET_CODE (x))
4471 {
4472 case INSN:
4473 case JUMP_INSN:
4474 case CALL_INSN:
4475 case CODE_LABEL:
4476 case BARRIER:
4477 case NOTE:
4478 last = emit_insn_after_1 (x, after);
4479 break;
4480
4481 #ifdef ENABLE_RTL_CHECKING
4482 case SEQUENCE:
4483 abort ();
4484 break;
4485 #endif
4486
4487 default:
4488 last = make_insn_raw (x);
4489 add_insn_after (last, after);
4490 break;
4491 }
4492
4493 return last;
4494 }
4495
4496 /* Similar to emit_insn_after, except that line notes are to be inserted so
4497 as to act as if this insn were at FROM. */
4498
4499 void
4500 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4501 {
4502 rtx from_line = find_line_note (from);
4503 rtx after_line = find_line_note (after);
4504 rtx insn = emit_insn_after (x, after);
4505
4506 if (from_line)
4507 emit_note_copy_after (from_line, after);
4508
4509 if (after_line)
4510 emit_note_copy_after (after_line, insn);
4511 }
4512
4513 /* Make an insn of code JUMP_INSN with body X
4514 and output it after the insn AFTER. */
4515
4516 rtx
4517 emit_jump_insn_after (rtx x, rtx after)
4518 {
4519 rtx last;
4520
4521 #ifdef ENABLE_RTL_CHECKING
4522 if (after == NULL_RTX)
4523 abort ();
4524 #endif
4525
4526 switch (GET_CODE (x))
4527 {
4528 case INSN:
4529 case JUMP_INSN:
4530 case CALL_INSN:
4531 case CODE_LABEL:
4532 case BARRIER:
4533 case NOTE:
4534 last = emit_insn_after_1 (x, after);
4535 break;
4536
4537 #ifdef ENABLE_RTL_CHECKING
4538 case SEQUENCE:
4539 abort ();
4540 break;
4541 #endif
4542
4543 default:
4544 last = make_jump_insn_raw (x);
4545 add_insn_after (last, after);
4546 break;
4547 }
4548
4549 return last;
4550 }
4551
4552 /* Make an instruction with body X and code CALL_INSN
4553 and output it after the instruction AFTER. */
4554
4555 rtx
4556 emit_call_insn_after (rtx x, rtx after)
4557 {
4558 rtx last;
4559
4560 #ifdef ENABLE_RTL_CHECKING
4561 if (after == NULL_RTX)
4562 abort ();
4563 #endif
4564
4565 switch (GET_CODE (x))
4566 {
4567 case INSN:
4568 case JUMP_INSN:
4569 case CALL_INSN:
4570 case CODE_LABEL:
4571 case BARRIER:
4572 case NOTE:
4573 last = emit_insn_after_1 (x, after);
4574 break;
4575
4576 #ifdef ENABLE_RTL_CHECKING
4577 case SEQUENCE:
4578 abort ();
4579 break;
4580 #endif
4581
4582 default:
4583 last = make_call_insn_raw (x);
4584 add_insn_after (last, after);
4585 break;
4586 }
4587
4588 return last;
4589 }
4590
4591 /* Make an insn of code BARRIER
4592 and output it after the insn AFTER. */
4593
4594 rtx
4595 emit_barrier_after (rtx after)
4596 {
4597 rtx insn = rtx_alloc (BARRIER);
4598
4599 INSN_UID (insn) = cur_insn_uid++;
4600
4601 add_insn_after (insn, after);
4602 return insn;
4603 }
4604
4605 /* Emit the label LABEL after the insn AFTER. */
4606
4607 rtx
4608 emit_label_after (rtx label, rtx after)
4609 {
4610 /* This can be called twice for the same label
4611 as a result of the confusion that follows a syntax error!
4612 So make it harmless. */
4613 if (INSN_UID (label) == 0)
4614 {
4615 INSN_UID (label) = cur_insn_uid++;
4616 add_insn_after (label, after);
4617 }
4618
4619 return label;
4620 }
4621
4622 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4623
4624 rtx
4625 emit_note_after (int subtype, rtx after)
4626 {
4627 rtx note = rtx_alloc (NOTE);
4628 INSN_UID (note) = cur_insn_uid++;
4629 NOTE_SOURCE_FILE (note) = 0;
4630 NOTE_LINE_NUMBER (note) = subtype;
4631 BLOCK_FOR_INSN (note) = NULL;
4632 add_insn_after (note, after);
4633 return note;
4634 }
4635
4636 /* Emit a copy of note ORIG after the insn AFTER. */
4637
4638 rtx
4639 emit_note_copy_after (rtx orig, rtx after)
4640 {
4641 rtx note;
4642
4643 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4644 {
4645 cur_insn_uid++;
4646 return 0;
4647 }
4648
4649 note = rtx_alloc (NOTE);
4650 INSN_UID (note) = cur_insn_uid++;
4651 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4652 NOTE_DATA (note) = NOTE_DATA (orig);
4653 BLOCK_FOR_INSN (note) = NULL;
4654 add_insn_after (note, after);
4655 return note;
4656 }
4657 \f
4658 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4659 rtx
4660 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4661 {
4662 rtx last = emit_insn_after (pattern, after);
4663
4664 after = NEXT_INSN (after);
4665 while (1)
4666 {
4667 if (active_insn_p (after))
4668 INSN_LOCATOR (after) = loc;
4669 if (after == last)
4670 break;
4671 after = NEXT_INSN (after);
4672 }
4673 return last;
4674 }
4675
4676 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4677 rtx
4678 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4679 {
4680 rtx last = emit_jump_insn_after (pattern, after);
4681
4682 after = NEXT_INSN (after);
4683 while (1)
4684 {
4685 if (active_insn_p (after))
4686 INSN_LOCATOR (after) = loc;
4687 if (after == last)
4688 break;
4689 after = NEXT_INSN (after);
4690 }
4691 return last;
4692 }
4693
4694 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4695 rtx
4696 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4697 {
4698 rtx last = emit_call_insn_after (pattern, after);
4699
4700 after = NEXT_INSN (after);
4701 while (1)
4702 {
4703 if (active_insn_p (after))
4704 INSN_LOCATOR (after) = loc;
4705 if (after == last)
4706 break;
4707 after = NEXT_INSN (after);
4708 }
4709 return last;
4710 }
4711
4712 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4713 rtx
4714 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4715 {
4716 rtx first = PREV_INSN (before);
4717 rtx last = emit_insn_before (pattern, before);
4718
4719 first = NEXT_INSN (first);
4720 while (1)
4721 {
4722 if (active_insn_p (first))
4723 INSN_LOCATOR (first) = loc;
4724 if (first == last)
4725 break;
4726 first = NEXT_INSN (first);
4727 }
4728 return last;
4729 }
4730 \f
4731 /* Take X and emit it at the end of the doubly-linked
4732 INSN list.
4733
4734 Returns the last insn emitted. */
4735
4736 rtx
4737 emit_insn (rtx x)
4738 {
4739 rtx last = last_insn;
4740 rtx insn;
4741
4742 if (x == NULL_RTX)
4743 return last;
4744
4745 switch (GET_CODE (x))
4746 {
4747 case INSN:
4748 case JUMP_INSN:
4749 case CALL_INSN:
4750 case CODE_LABEL:
4751 case BARRIER:
4752 case NOTE:
4753 insn = x;
4754 while (insn)
4755 {
4756 rtx next = NEXT_INSN (insn);
4757 add_insn (insn);
4758 last = insn;
4759 insn = next;
4760 }
4761 break;
4762
4763 #ifdef ENABLE_RTL_CHECKING
4764 case SEQUENCE:
4765 abort ();
4766 break;
4767 #endif
4768
4769 default:
4770 last = make_insn_raw (x);
4771 add_insn (last);
4772 break;
4773 }
4774
4775 return last;
4776 }
4777
4778 /* Make an insn of code JUMP_INSN with pattern X
4779 and add it to the end of the doubly-linked list. */
4780
4781 rtx
4782 emit_jump_insn (rtx x)
4783 {
4784 rtx last = NULL_RTX, insn;
4785
4786 switch (GET_CODE (x))
4787 {
4788 case INSN:
4789 case JUMP_INSN:
4790 case CALL_INSN:
4791 case CODE_LABEL:
4792 case BARRIER:
4793 case NOTE:
4794 insn = x;
4795 while (insn)
4796 {
4797 rtx next = NEXT_INSN (insn);
4798 add_insn (insn);
4799 last = insn;
4800 insn = next;
4801 }
4802 break;
4803
4804 #ifdef ENABLE_RTL_CHECKING
4805 case SEQUENCE:
4806 abort ();
4807 break;
4808 #endif
4809
4810 default:
4811 last = make_jump_insn_raw (x);
4812 add_insn (last);
4813 break;
4814 }
4815
4816 return last;
4817 }
4818
4819 /* Make an insn of code CALL_INSN with pattern X
4820 and add it to the end of the doubly-linked list. */
4821
4822 rtx
4823 emit_call_insn (rtx x)
4824 {
4825 rtx insn;
4826
4827 switch (GET_CODE (x))
4828 {
4829 case INSN:
4830 case JUMP_INSN:
4831 case CALL_INSN:
4832 case CODE_LABEL:
4833 case BARRIER:
4834 case NOTE:
4835 insn = emit_insn (x);
4836 break;
4837
4838 #ifdef ENABLE_RTL_CHECKING
4839 case SEQUENCE:
4840 abort ();
4841 break;
4842 #endif
4843
4844 default:
4845 insn = make_call_insn_raw (x);
4846 add_insn (insn);
4847 break;
4848 }
4849
4850 return insn;
4851 }
4852
4853 /* Add the label LABEL to the end of the doubly-linked list. */
4854
4855 rtx
4856 emit_label (rtx label)
4857 {
4858 /* This can be called twice for the same label
4859 as a result of the confusion that follows a syntax error!
4860 So make it harmless. */
4861 if (INSN_UID (label) == 0)
4862 {
4863 INSN_UID (label) = cur_insn_uid++;
4864 add_insn (label);
4865 }
4866 return label;
4867 }
4868
4869 /* Make an insn of code BARRIER
4870 and add it to the end of the doubly-linked list. */
4871
4872 rtx
4873 emit_barrier (void)
4874 {
4875 rtx barrier = rtx_alloc (BARRIER);
4876 INSN_UID (barrier) = cur_insn_uid++;
4877 add_insn (barrier);
4878 return barrier;
4879 }
4880
4881 /* Make line numbering NOTE insn for LOCATION add it to the end
4882 of the doubly-linked list, but only if line-numbers are desired for
4883 debugging info and it doesn't match the previous one. */
4884
4885 rtx
4886 emit_line_note (location_t location)
4887 {
4888 rtx note;
4889
4890 set_file_and_line_for_stmt (location);
4891
4892 if (location.file && last_location.file
4893 && !strcmp (location.file, last_location.file)
4894 && location.line == last_location.line)
4895 return NULL_RTX;
4896 last_location = location;
4897
4898 if (no_line_numbers)
4899 {
4900 cur_insn_uid++;
4901 return NULL_RTX;
4902 }
4903
4904 note = emit_note (location.line);
4905 NOTE_SOURCE_FILE (note) = location.file;
4906
4907 return note;
4908 }
4909
4910 /* Emit a copy of note ORIG. */
4911
4912 rtx
4913 emit_note_copy (rtx orig)
4914 {
4915 rtx note;
4916
4917 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4918 {
4919 cur_insn_uid++;
4920 return NULL_RTX;
4921 }
4922
4923 note = rtx_alloc (NOTE);
4924
4925 INSN_UID (note) = cur_insn_uid++;
4926 NOTE_DATA (note) = NOTE_DATA (orig);
4927 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4928 BLOCK_FOR_INSN (note) = NULL;
4929 add_insn (note);
4930
4931 return note;
4932 }
4933
4934 /* Make an insn of code NOTE or type NOTE_NO
4935 and add it to the end of the doubly-linked list. */
4936
4937 rtx
4938 emit_note (int note_no)
4939 {
4940 rtx note;
4941
4942 note = rtx_alloc (NOTE);
4943 INSN_UID (note) = cur_insn_uid++;
4944 NOTE_LINE_NUMBER (note) = note_no;
4945 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4946 BLOCK_FOR_INSN (note) = NULL;
4947 add_insn (note);
4948 return note;
4949 }
4950
4951 /* Cause next statement to emit a line note even if the line number
4952 has not changed. */
4953
4954 void
4955 force_next_line_note (void)
4956 {
4957 last_location.line = -1;
4958 }
4959
4960 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4961 note of this type already exists, remove it first. */
4962
4963 rtx
4964 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4965 {
4966 rtx note = find_reg_note (insn, kind, NULL_RTX);
4967
4968 switch (kind)
4969 {
4970 case REG_EQUAL:
4971 case REG_EQUIV:
4972 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4973 has multiple sets (some callers assume single_set
4974 means the insn only has one set, when in fact it
4975 means the insn only has one * useful * set). */
4976 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4977 {
4978 if (note)
4979 abort ();
4980 return NULL_RTX;
4981 }
4982
4983 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4984 It serves no useful purpose and breaks eliminate_regs. */
4985 if (GET_CODE (datum) == ASM_OPERANDS)
4986 return NULL_RTX;
4987 break;
4988
4989 default:
4990 break;
4991 }
4992
4993 if (note)
4994 {
4995 XEXP (note, 0) = datum;
4996 return note;
4997 }
4998
4999 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
5000 return REG_NOTES (insn);
5001 }
5002 \f
5003 /* Return an indication of which type of insn should have X as a body.
5004 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5005
5006 enum rtx_code
5007 classify_insn (rtx x)
5008 {
5009 if (GET_CODE (x) == CODE_LABEL)
5010 return CODE_LABEL;
5011 if (GET_CODE (x) == CALL)
5012 return CALL_INSN;
5013 if (GET_CODE (x) == RETURN)
5014 return JUMP_INSN;
5015 if (GET_CODE (x) == SET)
5016 {
5017 if (SET_DEST (x) == pc_rtx)
5018 return JUMP_INSN;
5019 else if (GET_CODE (SET_SRC (x)) == CALL)
5020 return CALL_INSN;
5021 else
5022 return INSN;
5023 }
5024 if (GET_CODE (x) == PARALLEL)
5025 {
5026 int j;
5027 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5028 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5029 return CALL_INSN;
5030 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5031 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5032 return JUMP_INSN;
5033 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5034 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5035 return CALL_INSN;
5036 }
5037 return INSN;
5038 }
5039
5040 /* Emit the rtl pattern X as an appropriate kind of insn.
5041 If X is a label, it is simply added into the insn chain. */
5042
5043 rtx
5044 emit (rtx x)
5045 {
5046 enum rtx_code code = classify_insn (x);
5047
5048 if (code == CODE_LABEL)
5049 return emit_label (x);
5050 else if (code == INSN)
5051 return emit_insn (x);
5052 else if (code == JUMP_INSN)
5053 {
5054 rtx insn = emit_jump_insn (x);
5055 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5056 return emit_barrier ();
5057 return insn;
5058 }
5059 else if (code == CALL_INSN)
5060 return emit_call_insn (x);
5061 else
5062 abort ();
5063 }
5064 \f
5065 /* Space for free sequence stack entries. */
5066 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
5067
5068 /* Begin emitting insns to a sequence which can be packaged in an
5069 RTL_EXPR. If this sequence will contain something that might cause
5070 the compiler to pop arguments to function calls (because those
5071 pops have previously been deferred; see INHIBIT_DEFER_POP for more
5072 details), use do_pending_stack_adjust before calling this function.
5073 That will ensure that the deferred pops are not accidentally
5074 emitted in the middle of this sequence. */
5075
5076 void
5077 start_sequence (void)
5078 {
5079 struct sequence_stack *tem;
5080
5081 if (free_sequence_stack != NULL)
5082 {
5083 tem = free_sequence_stack;
5084 free_sequence_stack = tem->next;
5085 }
5086 else
5087 tem = ggc_alloc (sizeof (struct sequence_stack));
5088
5089 tem->next = seq_stack;
5090 tem->first = first_insn;
5091 tem->last = last_insn;
5092 tem->sequence_rtl_expr = seq_rtl_expr;
5093
5094 seq_stack = tem;
5095
5096 first_insn = 0;
5097 last_insn = 0;
5098 }
5099
5100 /* Similarly, but indicate that this sequence will be placed in T, an
5101 RTL_EXPR. See the documentation for start_sequence for more
5102 information about how to use this function. */
5103
5104 void
5105 start_sequence_for_rtl_expr (tree t)
5106 {
5107 start_sequence ();
5108
5109 seq_rtl_expr = t;
5110 }
5111
5112 /* Set up the insn chain starting with FIRST as the current sequence,
5113 saving the previously current one. See the documentation for
5114 start_sequence for more information about how to use this function. */
5115
5116 void
5117 push_to_sequence (rtx first)
5118 {
5119 rtx last;
5120
5121 start_sequence ();
5122
5123 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5124
5125 first_insn = first;
5126 last_insn = last;
5127 }
5128
5129 /* Set up the insn chain from a chain stort in FIRST to LAST. */
5130
5131 void
5132 push_to_full_sequence (rtx first, rtx last)
5133 {
5134 start_sequence ();
5135 first_insn = first;
5136 last_insn = last;
5137 /* We really should have the end of the insn chain here. */
5138 if (last && NEXT_INSN (last))
5139 abort ();
5140 }
5141
5142 /* Set up the outer-level insn chain
5143 as the current sequence, saving the previously current one. */
5144
5145 void
5146 push_topmost_sequence (void)
5147 {
5148 struct sequence_stack *stack, *top = NULL;
5149
5150 start_sequence ();
5151
5152 for (stack = seq_stack; stack; stack = stack->next)
5153 top = stack;
5154
5155 first_insn = top->first;
5156 last_insn = top->last;
5157 seq_rtl_expr = top->sequence_rtl_expr;
5158 }
5159
5160 /* After emitting to the outer-level insn chain, update the outer-level
5161 insn chain, and restore the previous saved state. */
5162
5163 void
5164 pop_topmost_sequence (void)
5165 {
5166 struct sequence_stack *stack, *top = NULL;
5167
5168 for (stack = seq_stack; stack; stack = stack->next)
5169 top = stack;
5170
5171 top->first = first_insn;
5172 top->last = last_insn;
5173 /* ??? Why don't we save seq_rtl_expr here? */
5174
5175 end_sequence ();
5176 }
5177
5178 /* After emitting to a sequence, restore previous saved state.
5179
5180 To get the contents of the sequence just made, you must call
5181 `get_insns' *before* calling here.
5182
5183 If the compiler might have deferred popping arguments while
5184 generating this sequence, and this sequence will not be immediately
5185 inserted into the instruction stream, use do_pending_stack_adjust
5186 before calling get_insns. That will ensure that the deferred
5187 pops are inserted into this sequence, and not into some random
5188 location in the instruction stream. See INHIBIT_DEFER_POP for more
5189 information about deferred popping of arguments. */
5190
5191 void
5192 end_sequence (void)
5193 {
5194 struct sequence_stack *tem = seq_stack;
5195
5196 first_insn = tem->first;
5197 last_insn = tem->last;
5198 seq_rtl_expr = tem->sequence_rtl_expr;
5199 seq_stack = tem->next;
5200
5201 memset (tem, 0, sizeof (*tem));
5202 tem->next = free_sequence_stack;
5203 free_sequence_stack = tem;
5204 }
5205
5206 /* This works like end_sequence, but records the old sequence in FIRST
5207 and LAST. */
5208
5209 void
5210 end_full_sequence (rtx *first, rtx *last)
5211 {
5212 *first = first_insn;
5213 *last = last_insn;
5214 end_sequence ();
5215 }
5216
5217 /* Return 1 if currently emitting into a sequence. */
5218
5219 int
5220 in_sequence_p (void)
5221 {
5222 return seq_stack != 0;
5223 }
5224 \f
5225 /* Put the various virtual registers into REGNO_REG_RTX. */
5226
5227 void
5228 init_virtual_regs (struct emit_status *es)
5229 {
5230 rtx *ptr = es->x_regno_reg_rtx;
5231 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5232 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5233 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5234 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5235 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5236 }
5237
5238 \f
5239 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5240 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5241 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5242 static int copy_insn_n_scratches;
5243
5244 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5245 copied an ASM_OPERANDS.
5246 In that case, it is the original input-operand vector. */
5247 static rtvec orig_asm_operands_vector;
5248
5249 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5250 copied an ASM_OPERANDS.
5251 In that case, it is the copied input-operand vector. */
5252 static rtvec copy_asm_operands_vector;
5253
5254 /* Likewise for the constraints vector. */
5255 static rtvec orig_asm_constraints_vector;
5256 static rtvec copy_asm_constraints_vector;
5257
5258 /* Recursively create a new copy of an rtx for copy_insn.
5259 This function differs from copy_rtx in that it handles SCRATCHes and
5260 ASM_OPERANDs properly.
5261 Normally, this function is not used directly; use copy_insn as front end.
5262 However, you could first copy an insn pattern with copy_insn and then use
5263 this function afterwards to properly copy any REG_NOTEs containing
5264 SCRATCHes. */
5265
5266 rtx
5267 copy_insn_1 (rtx orig)
5268 {
5269 rtx copy;
5270 int i, j;
5271 RTX_CODE code;
5272 const char *format_ptr;
5273
5274 code = GET_CODE (orig);
5275
5276 switch (code)
5277 {
5278 case REG:
5279 case QUEUED:
5280 case CONST_INT:
5281 case CONST_DOUBLE:
5282 case CONST_VECTOR:
5283 case SYMBOL_REF:
5284 case CODE_LABEL:
5285 case PC:
5286 case CC0:
5287 case ADDRESSOF:
5288 return orig;
5289
5290 case SCRATCH:
5291 for (i = 0; i < copy_insn_n_scratches; i++)
5292 if (copy_insn_scratch_in[i] == orig)
5293 return copy_insn_scratch_out[i];
5294 break;
5295
5296 case CONST:
5297 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5298 a LABEL_REF, it isn't sharable. */
5299 if (GET_CODE (XEXP (orig, 0)) == PLUS
5300 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5301 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5302 return orig;
5303 break;
5304
5305 /* A MEM with a constant address is not sharable. The problem is that
5306 the constant address may need to be reloaded. If the mem is shared,
5307 then reloading one copy of this mem will cause all copies to appear
5308 to have been reloaded. */
5309
5310 default:
5311 break;
5312 }
5313
5314 copy = rtx_alloc (code);
5315
5316 /* Copy the various flags, and other information. We assume that
5317 all fields need copying, and then clear the fields that should
5318 not be copied. That is the sensible default behavior, and forces
5319 us to explicitly document why we are *not* copying a flag. */
5320 memcpy (copy, orig, RTX_HDR_SIZE);
5321
5322 /* We do not copy the USED flag, which is used as a mark bit during
5323 walks over the RTL. */
5324 RTX_FLAG (copy, used) = 0;
5325
5326 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5327 if (GET_RTX_CLASS (code) == 'i')
5328 {
5329 RTX_FLAG (copy, jump) = 0;
5330 RTX_FLAG (copy, call) = 0;
5331 RTX_FLAG (copy, frame_related) = 0;
5332 }
5333
5334 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5335
5336 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5337 {
5338 copy->u.fld[i] = orig->u.fld[i];
5339 switch (*format_ptr++)
5340 {
5341 case 'e':
5342 if (XEXP (orig, i) != NULL)
5343 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5344 break;
5345
5346 case 'E':
5347 case 'V':
5348 if (XVEC (orig, i) == orig_asm_constraints_vector)
5349 XVEC (copy, i) = copy_asm_constraints_vector;
5350 else if (XVEC (orig, i) == orig_asm_operands_vector)
5351 XVEC (copy, i) = copy_asm_operands_vector;
5352 else if (XVEC (orig, i) != NULL)
5353 {
5354 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5355 for (j = 0; j < XVECLEN (copy, i); j++)
5356 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5357 }
5358 break;
5359
5360 case 't':
5361 case 'w':
5362 case 'i':
5363 case 's':
5364 case 'S':
5365 case 'u':
5366 case '0':
5367 /* These are left unchanged. */
5368 break;
5369
5370 default:
5371 abort ();
5372 }
5373 }
5374
5375 if (code == SCRATCH)
5376 {
5377 i = copy_insn_n_scratches++;
5378 if (i >= MAX_RECOG_OPERANDS)
5379 abort ();
5380 copy_insn_scratch_in[i] = orig;
5381 copy_insn_scratch_out[i] = copy;
5382 }
5383 else if (code == ASM_OPERANDS)
5384 {
5385 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5386 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5387 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5388 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5389 }
5390
5391 return copy;
5392 }
5393
5394 /* Create a new copy of an rtx.
5395 This function differs from copy_rtx in that it handles SCRATCHes and
5396 ASM_OPERANDs properly.
5397 INSN doesn't really have to be a full INSN; it could be just the
5398 pattern. */
5399 rtx
5400 copy_insn (rtx insn)
5401 {
5402 copy_insn_n_scratches = 0;
5403 orig_asm_operands_vector = 0;
5404 orig_asm_constraints_vector = 0;
5405 copy_asm_operands_vector = 0;
5406 copy_asm_constraints_vector = 0;
5407 return copy_insn_1 (insn);
5408 }
5409
5410 /* Initialize data structures and variables in this file
5411 before generating rtl for each function. */
5412
5413 void
5414 init_emit (void)
5415 {
5416 struct function *f = cfun;
5417
5418 f->emit = ggc_alloc (sizeof (struct emit_status));
5419 first_insn = NULL;
5420 last_insn = NULL;
5421 seq_rtl_expr = NULL;
5422 cur_insn_uid = 1;
5423 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5424 last_location.line = 0;
5425 last_location.file = 0;
5426 first_label_num = label_num;
5427 last_label_num = 0;
5428 seq_stack = NULL;
5429
5430 /* Init the tables that describe all the pseudo regs. */
5431
5432 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5433
5434 f->emit->regno_pointer_align
5435 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5436 * sizeof (unsigned char));
5437
5438 regno_reg_rtx
5439 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5440
5441 /* Put copies of all the hard registers into regno_reg_rtx. */
5442 memcpy (regno_reg_rtx,
5443 static_regno_reg_rtx,
5444 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5445
5446 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5447 init_virtual_regs (f->emit);
5448
5449 /* Indicate that the virtual registers and stack locations are
5450 all pointers. */
5451 REG_POINTER (stack_pointer_rtx) = 1;
5452 REG_POINTER (frame_pointer_rtx) = 1;
5453 REG_POINTER (hard_frame_pointer_rtx) = 1;
5454 REG_POINTER (arg_pointer_rtx) = 1;
5455
5456 REG_POINTER (virtual_incoming_args_rtx) = 1;
5457 REG_POINTER (virtual_stack_vars_rtx) = 1;
5458 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5459 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5460 REG_POINTER (virtual_cfa_rtx) = 1;
5461
5462 #ifdef STACK_BOUNDARY
5463 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5464 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5465 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5466 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5467
5468 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5469 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5470 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5471 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5472 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5473 #endif
5474
5475 #ifdef INIT_EXPANDERS
5476 INIT_EXPANDERS;
5477 #endif
5478 }
5479
5480 /* Generate the constant 0. */
5481
5482 static rtx
5483 gen_const_vector_0 (enum machine_mode mode)
5484 {
5485 rtx tem;
5486 rtvec v;
5487 int units, i;
5488 enum machine_mode inner;
5489
5490 units = GET_MODE_NUNITS (mode);
5491 inner = GET_MODE_INNER (mode);
5492
5493 v = rtvec_alloc (units);
5494
5495 /* We need to call this function after we to set CONST0_RTX first. */
5496 if (!CONST0_RTX (inner))
5497 abort ();
5498
5499 for (i = 0; i < units; ++i)
5500 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5501
5502 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5503 return tem;
5504 }
5505
5506 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5507 all elements are zero. */
5508 rtx
5509 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5510 {
5511 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5512 int i;
5513
5514 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5515 if (RTVEC_ELT (v, i) != inner_zero)
5516 return gen_rtx_raw_CONST_VECTOR (mode, v);
5517 return CONST0_RTX (mode);
5518 }
5519
5520 /* Create some permanent unique rtl objects shared between all functions.
5521 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5522
5523 void
5524 init_emit_once (int line_numbers)
5525 {
5526 int i;
5527 enum machine_mode mode;
5528 enum machine_mode double_mode;
5529
5530 /* We need reg_raw_mode, so initialize the modes now. */
5531 init_reg_modes_once ();
5532
5533 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5534 tables. */
5535 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5536 const_int_htab_eq, NULL);
5537
5538 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5539 const_double_htab_eq, NULL);
5540
5541 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5542 mem_attrs_htab_eq, NULL);
5543 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5544 reg_attrs_htab_eq, NULL);
5545
5546 no_line_numbers = ! line_numbers;
5547
5548 /* Compute the word and byte modes. */
5549
5550 byte_mode = VOIDmode;
5551 word_mode = VOIDmode;
5552 double_mode = VOIDmode;
5553
5554 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5555 mode = GET_MODE_WIDER_MODE (mode))
5556 {
5557 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5558 && byte_mode == VOIDmode)
5559 byte_mode = mode;
5560
5561 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5562 && word_mode == VOIDmode)
5563 word_mode = mode;
5564 }
5565
5566 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5567 mode = GET_MODE_WIDER_MODE (mode))
5568 {
5569 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5570 && double_mode == VOIDmode)
5571 double_mode = mode;
5572 }
5573
5574 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5575
5576 /* Assign register numbers to the globally defined register rtx.
5577 This must be done at runtime because the register number field
5578 is in a union and some compilers can't initialize unions. */
5579
5580 pc_rtx = gen_rtx (PC, VOIDmode);
5581 cc0_rtx = gen_rtx (CC0, VOIDmode);
5582 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5583 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5584 if (hard_frame_pointer_rtx == 0)
5585 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5586 HARD_FRAME_POINTER_REGNUM);
5587 if (arg_pointer_rtx == 0)
5588 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5589 virtual_incoming_args_rtx =
5590 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5591 virtual_stack_vars_rtx =
5592 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5593 virtual_stack_dynamic_rtx =
5594 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5595 virtual_outgoing_args_rtx =
5596 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5597 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5598
5599 /* Initialize RTL for commonly used hard registers. These are
5600 copied into regno_reg_rtx as we begin to compile each function. */
5601 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5602 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5603
5604 #ifdef INIT_EXPANDERS
5605 /* This is to initialize {init|mark|free}_machine_status before the first
5606 call to push_function_context_to. This is needed by the Chill front
5607 end which calls push_function_context_to before the first call to
5608 init_function_start. */
5609 INIT_EXPANDERS;
5610 #endif
5611
5612 /* Create the unique rtx's for certain rtx codes and operand values. */
5613
5614 /* Don't use gen_rtx here since gen_rtx in this case
5615 tries to use these variables. */
5616 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5617 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5618 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5619
5620 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5621 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5622 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5623 else
5624 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5625
5626 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5627 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5628 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5629 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5630 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5631 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5632 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5633
5634 dconsthalf = dconst1;
5635 dconsthalf.exp--;
5636
5637 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5638
5639 /* Initialize mathematical constants for constant folding builtins.
5640 These constants need to be given to at least 160 bits precision. */
5641 real_from_string (&dconstpi,
5642 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5643 real_from_string (&dconste,
5644 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5645
5646 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5647 {
5648 REAL_VALUE_TYPE *r =
5649 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5650
5651 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5652 mode = GET_MODE_WIDER_MODE (mode))
5653 const_tiny_rtx[i][(int) mode] =
5654 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5655
5656 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5657
5658 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5659 mode = GET_MODE_WIDER_MODE (mode))
5660 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5661
5662 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5663 mode != VOIDmode;
5664 mode = GET_MODE_WIDER_MODE (mode))
5665 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5666 }
5667
5668 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5669 mode != VOIDmode;
5670 mode = GET_MODE_WIDER_MODE (mode))
5671 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5672
5673 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5674 mode != VOIDmode;
5675 mode = GET_MODE_WIDER_MODE (mode))
5676 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5677
5678 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5679 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5680 const_tiny_rtx[0][i] = const0_rtx;
5681
5682 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5683 if (STORE_FLAG_VALUE == 1)
5684 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5685
5686 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5687 return_address_pointer_rtx
5688 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5689 #endif
5690
5691 #ifdef STATIC_CHAIN_REGNUM
5692 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5693
5694 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5695 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5696 static_chain_incoming_rtx
5697 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5698 else
5699 #endif
5700 static_chain_incoming_rtx = static_chain_rtx;
5701 #endif
5702
5703 #ifdef STATIC_CHAIN
5704 static_chain_rtx = STATIC_CHAIN;
5705
5706 #ifdef STATIC_CHAIN_INCOMING
5707 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5708 #else
5709 static_chain_incoming_rtx = static_chain_rtx;
5710 #endif
5711 #endif
5712
5713 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5714 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5715 }
5716 \f
5717 /* Query and clear/ restore no_line_numbers. This is used by the
5718 switch / case handling in stmt.c to give proper line numbers in
5719 warnings about unreachable code. */
5720
5721 int
5722 force_line_numbers (void)
5723 {
5724 int old = no_line_numbers;
5725
5726 no_line_numbers = 0;
5727 if (old)
5728 force_next_line_note ();
5729 return old;
5730 }
5731
5732 void
5733 restore_line_number_status (int old_value)
5734 {
5735 no_line_numbers = old_value;
5736 }
5737
5738 /* Produce exact duplicate of insn INSN after AFTER.
5739 Care updating of libcall regions if present. */
5740
5741 rtx
5742 emit_copy_of_insn_after (rtx insn, rtx after)
5743 {
5744 rtx new;
5745 rtx note1, note2, link;
5746
5747 switch (GET_CODE (insn))
5748 {
5749 case INSN:
5750 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5751 break;
5752
5753 case JUMP_INSN:
5754 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5755 break;
5756
5757 case CALL_INSN:
5758 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5759 if (CALL_INSN_FUNCTION_USAGE (insn))
5760 CALL_INSN_FUNCTION_USAGE (new)
5761 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5762 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5763 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5764 break;
5765
5766 default:
5767 abort ();
5768 }
5769
5770 /* Update LABEL_NUSES. */
5771 mark_jump_label (PATTERN (new), new, 0);
5772
5773 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5774
5775 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5776 make them. */
5777 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5778 if (REG_NOTE_KIND (link) != REG_LABEL)
5779 {
5780 if (GET_CODE (link) == EXPR_LIST)
5781 REG_NOTES (new)
5782 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5783 XEXP (link, 0),
5784 REG_NOTES (new)));
5785 else
5786 REG_NOTES (new)
5787 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5788 XEXP (link, 0),
5789 REG_NOTES (new)));
5790 }
5791
5792 /* Fix the libcall sequences. */
5793 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5794 {
5795 rtx p = new;
5796 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5797 p = PREV_INSN (p);
5798 XEXP (note1, 0) = p;
5799 XEXP (note2, 0) = new;
5800 }
5801 INSN_CODE (new) = INSN_CODE (insn);
5802 return new;
5803 }
5804
5805 #include "gt-emit-rtl.h"
This page took 0.346762 seconds and 6 git commands to generate.