]> gcc.gnu.org Git - gcc.git/blob - gcc/emit-rtl.c
function.h (struct function): Rename to x_stack_check_probe_note.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58 #include "tree-pass.h"
59
60 /* Commonly used modes. */
61
62 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
63 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
64 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
65 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
66
67
68 /* This is *not* reset after each function. It gives each CODE_LABEL
69 in the entire compilation a unique label number. */
70
71 static GTY(()) int label_num = 1;
72
73 /* Nonzero means do not generate NOTEs for source line numbers. */
74
75 static int no_line_numbers;
76
77 /* Commonly used rtx's, so that we only need space for one copy.
78 These are initialized once for the entire compilation.
79 All of these are unique; no other rtx-object will be equal to any
80 of these. */
81
82 rtx global_rtl[GR_MAX];
83
84 /* Commonly used RTL for hard registers. These objects are not necessarily
85 unique, so we allocate them separately from global_rtl. They are
86 initialized once per compilation unit, then copied into regno_reg_rtx
87 at the beginning of each function. */
88 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
89
90 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
91 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
92 record a copy of const[012]_rtx. */
93
94 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
95
96 rtx const_true_rtx;
97
98 REAL_VALUE_TYPE dconst0;
99 REAL_VALUE_TYPE dconst1;
100 REAL_VALUE_TYPE dconst2;
101 REAL_VALUE_TYPE dconst3;
102 REAL_VALUE_TYPE dconst10;
103 REAL_VALUE_TYPE dconstm1;
104 REAL_VALUE_TYPE dconstm2;
105 REAL_VALUE_TYPE dconsthalf;
106 REAL_VALUE_TYPE dconstthird;
107 REAL_VALUE_TYPE dconstpi;
108 REAL_VALUE_TYPE dconste;
109
110 /* All references to the following fixed hard registers go through
111 these unique rtl objects. On machines where the frame-pointer and
112 arg-pointer are the same register, they use the same unique object.
113
114 After register allocation, other rtl objects which used to be pseudo-regs
115 may be clobbered to refer to the frame-pointer register.
116 But references that were originally to the frame-pointer can be
117 distinguished from the others because they contain frame_pointer_rtx.
118
119 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
120 tricky: until register elimination has taken place hard_frame_pointer_rtx
121 should be used if it is being set, and frame_pointer_rtx otherwise. After
122 register elimination hard_frame_pointer_rtx should always be used.
123 On machines where the two registers are same (most) then these are the
124 same.
125
126 In an inline procedure, the stack and frame pointer rtxs may not be
127 used for anything else. */
128 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
129 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
130 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
131
132 /* This is used to implement __builtin_return_address for some machines.
133 See for instance the MIPS port. */
134 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
135
136 /* We make one copy of (const_int C) where C is in
137 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
138 to save space during the compilation and simplify comparisons of
139 integers. */
140
141 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
142
143 /* A hash table storing CONST_INTs whose absolute value is greater
144 than MAX_SAVED_CONST_INT. */
145
146 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
147 htab_t const_int_htab;
148
149 /* A hash table storing memory attribute structures. */
150 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
151 htab_t mem_attrs_htab;
152
153 /* A hash table storing register attribute structures. */
154 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
155 htab_t reg_attrs_htab;
156
157 /* A hash table storing all CONST_DOUBLEs. */
158 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
159 htab_t const_double_htab;
160
161 #define first_insn (cfun->emit->x_first_insn)
162 #define last_insn (cfun->emit->x_last_insn)
163 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
164 #define last_location (cfun->emit->x_last_location)
165 #define first_label_num (cfun->emit->x_first_label_num)
166
167 static rtx make_call_insn_raw (rtx);
168 static rtx find_line_note (rtx);
169 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
170 static void unshare_all_decls (tree);
171 static void reset_used_decls (tree);
172 static void mark_label_nuses (rtx);
173 static hashval_t const_int_htab_hash (const void *);
174 static int const_int_htab_eq (const void *, const void *);
175 static hashval_t const_double_htab_hash (const void *);
176 static int const_double_htab_eq (const void *, const void *);
177 static rtx lookup_const_double (rtx);
178 static hashval_t mem_attrs_htab_hash (const void *);
179 static int mem_attrs_htab_eq (const void *, const void *);
180 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
181 enum machine_mode);
182 static hashval_t reg_attrs_htab_hash (const void *);
183 static int reg_attrs_htab_eq (const void *, const void *);
184 static reg_attrs *get_reg_attrs (tree, int);
185 static tree component_ref_for_mem_expr (tree);
186 static rtx gen_const_vector (enum machine_mode, int);
187 static void copy_rtx_if_shared_1 (rtx *orig);
188
189 /* Probability of the conditional branch currently proceeded by try_split.
190 Set to -1 otherwise. */
191 int split_branch_probability = -1;
192 \f
193 /* Returns a hash code for X (which is a really a CONST_INT). */
194
195 static hashval_t
196 const_int_htab_hash (const void *x)
197 {
198 return (hashval_t) INTVAL ((rtx) x);
199 }
200
201 /* Returns nonzero if the value represented by X (which is really a
202 CONST_INT) is the same as that given by Y (which is really a
203 HOST_WIDE_INT *). */
204
205 static int
206 const_int_htab_eq (const void *x, const void *y)
207 {
208 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
209 }
210
211 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
212 static hashval_t
213 const_double_htab_hash (const void *x)
214 {
215 rtx value = (rtx) x;
216 hashval_t h;
217
218 if (GET_MODE (value) == VOIDmode)
219 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
220 else
221 {
222 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
223 /* MODE is used in the comparison, so it should be in the hash. */
224 h ^= GET_MODE (value);
225 }
226 return h;
227 }
228
229 /* Returns nonzero if the value represented by X (really a ...)
230 is the same as that represented by Y (really a ...) */
231 static int
232 const_double_htab_eq (const void *x, const void *y)
233 {
234 rtx a = (rtx)x, b = (rtx)y;
235
236 if (GET_MODE (a) != GET_MODE (b))
237 return 0;
238 if (GET_MODE (a) == VOIDmode)
239 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
240 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
241 else
242 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
243 CONST_DOUBLE_REAL_VALUE (b));
244 }
245
246 /* Returns a hash code for X (which is a really a mem_attrs *). */
247
248 static hashval_t
249 mem_attrs_htab_hash (const void *x)
250 {
251 mem_attrs *p = (mem_attrs *) x;
252
253 return (p->alias ^ (p->align * 1000)
254 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
255 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
256 ^ (size_t) iterative_hash_expr (p->expr, 0));
257 }
258
259 /* Returns nonzero if the value represented by X (which is really a
260 mem_attrs *) is the same as that given by Y (which is also really a
261 mem_attrs *). */
262
263 static int
264 mem_attrs_htab_eq (const void *x, const void *y)
265 {
266 mem_attrs *p = (mem_attrs *) x;
267 mem_attrs *q = (mem_attrs *) y;
268
269 return (p->alias == q->alias && p->offset == q->offset
270 && p->size == q->size && p->align == q->align
271 && (p->expr == q->expr
272 || (p->expr != NULL_TREE && q->expr != NULL_TREE
273 && operand_equal_p (p->expr, q->expr, 0))));
274 }
275
276 /* Allocate a new mem_attrs structure and insert it into the hash table if
277 one identical to it is not already in the table. We are doing this for
278 MEM of mode MODE. */
279
280 static mem_attrs *
281 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
282 unsigned int align, enum machine_mode mode)
283 {
284 mem_attrs attrs;
285 void **slot;
286
287 /* If everything is the default, we can just return zero.
288 This must match what the corresponding MEM_* macros return when the
289 field is not present. */
290 if (alias == 0 && expr == 0 && offset == 0
291 && (size == 0
292 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
293 && (STRICT_ALIGNMENT && mode != BLKmode
294 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
295 return 0;
296
297 attrs.alias = alias;
298 attrs.expr = expr;
299 attrs.offset = offset;
300 attrs.size = size;
301 attrs.align = align;
302
303 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
304 if (*slot == 0)
305 {
306 *slot = ggc_alloc (sizeof (mem_attrs));
307 memcpy (*slot, &attrs, sizeof (mem_attrs));
308 }
309
310 return *slot;
311 }
312
313 /* Returns a hash code for X (which is a really a reg_attrs *). */
314
315 static hashval_t
316 reg_attrs_htab_hash (const void *x)
317 {
318 reg_attrs *p = (reg_attrs *) x;
319
320 return ((p->offset * 1000) ^ (long) p->decl);
321 }
322
323 /* Returns nonzero if the value represented by X (which is really a
324 reg_attrs *) is the same as that given by Y (which is also really a
325 reg_attrs *). */
326
327 static int
328 reg_attrs_htab_eq (const void *x, const void *y)
329 {
330 reg_attrs *p = (reg_attrs *) x;
331 reg_attrs *q = (reg_attrs *) y;
332
333 return (p->decl == q->decl && p->offset == q->offset);
334 }
335 /* Allocate a new reg_attrs structure and insert it into the hash table if
336 one identical to it is not already in the table. We are doing this for
337 MEM of mode MODE. */
338
339 static reg_attrs *
340 get_reg_attrs (tree decl, int offset)
341 {
342 reg_attrs attrs;
343 void **slot;
344
345 /* If everything is the default, we can just return zero. */
346 if (decl == 0 && offset == 0)
347 return 0;
348
349 attrs.decl = decl;
350 attrs.offset = offset;
351
352 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
353 if (*slot == 0)
354 {
355 *slot = ggc_alloc (sizeof (reg_attrs));
356 memcpy (*slot, &attrs, sizeof (reg_attrs));
357 }
358
359 return *slot;
360 }
361
362 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
363 don't attempt to share with the various global pieces of rtl (such as
364 frame_pointer_rtx). */
365
366 rtx
367 gen_raw_REG (enum machine_mode mode, int regno)
368 {
369 rtx x = gen_rtx_raw_REG (mode, regno);
370 ORIGINAL_REGNO (x) = regno;
371 return x;
372 }
373
374 /* There are some RTL codes that require special attention; the generation
375 functions do the raw handling. If you add to this list, modify
376 special_rtx in gengenrtl.c as well. */
377
378 rtx
379 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
380 {
381 void **slot;
382
383 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
384 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
385
386 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
387 if (const_true_rtx && arg == STORE_FLAG_VALUE)
388 return const_true_rtx;
389 #endif
390
391 /* Look up the CONST_INT in the hash table. */
392 slot = htab_find_slot_with_hash (const_int_htab, &arg,
393 (hashval_t) arg, INSERT);
394 if (*slot == 0)
395 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
396
397 return (rtx) *slot;
398 }
399
400 rtx
401 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
402 {
403 return GEN_INT (trunc_int_for_mode (c, mode));
404 }
405
406 /* CONST_DOUBLEs might be created from pairs of integers, or from
407 REAL_VALUE_TYPEs. Also, their length is known only at run time,
408 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
409
410 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
411 hash table. If so, return its counterpart; otherwise add it
412 to the hash table and return it. */
413 static rtx
414 lookup_const_double (rtx real)
415 {
416 void **slot = htab_find_slot (const_double_htab, real, INSERT);
417 if (*slot == 0)
418 *slot = real;
419
420 return (rtx) *slot;
421 }
422
423 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
424 VALUE in mode MODE. */
425 rtx
426 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
427 {
428 rtx real = rtx_alloc (CONST_DOUBLE);
429 PUT_MODE (real, mode);
430
431 real->u.rv = value;
432
433 return lookup_const_double (real);
434 }
435
436 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
437 of ints: I0 is the low-order word and I1 is the high-order word.
438 Do not use this routine for non-integer modes; convert to
439 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
440
441 rtx
442 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
443 {
444 rtx value;
445 unsigned int i;
446
447 /* There are the following cases (note that there are no modes with
448 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
449
450 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
451 gen_int_mode.
452 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
453 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
454 from copies of the sign bit, and sign of i0 and i1 are the same), then
455 we return a CONST_INT for i0.
456 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
457 if (mode != VOIDmode)
458 {
459 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
460 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
461 /* We can get a 0 for an error mark. */
462 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
463 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
464
465 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
466 return gen_int_mode (i0, mode);
467
468 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
469 }
470
471 /* If this integer fits in one word, return a CONST_INT. */
472 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
473 return GEN_INT (i0);
474
475 /* We use VOIDmode for integers. */
476 value = rtx_alloc (CONST_DOUBLE);
477 PUT_MODE (value, VOIDmode);
478
479 CONST_DOUBLE_LOW (value) = i0;
480 CONST_DOUBLE_HIGH (value) = i1;
481
482 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
483 XWINT (value, i) = 0;
484
485 return lookup_const_double (value);
486 }
487
488 rtx
489 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
490 {
491 /* In case the MD file explicitly references the frame pointer, have
492 all such references point to the same frame pointer. This is
493 used during frame pointer elimination to distinguish the explicit
494 references to these registers from pseudos that happened to be
495 assigned to them.
496
497 If we have eliminated the frame pointer or arg pointer, we will
498 be using it as a normal register, for example as a spill
499 register. In such cases, we might be accessing it in a mode that
500 is not Pmode and therefore cannot use the pre-allocated rtx.
501
502 Also don't do this when we are making new REGs in reload, since
503 we don't want to get confused with the real pointers. */
504
505 if (mode == Pmode && !reload_in_progress)
506 {
507 if (regno == FRAME_POINTER_REGNUM
508 && (!reload_completed || frame_pointer_needed))
509 return frame_pointer_rtx;
510 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
511 if (regno == HARD_FRAME_POINTER_REGNUM
512 && (!reload_completed || frame_pointer_needed))
513 return hard_frame_pointer_rtx;
514 #endif
515 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
516 if (regno == ARG_POINTER_REGNUM)
517 return arg_pointer_rtx;
518 #endif
519 #ifdef RETURN_ADDRESS_POINTER_REGNUM
520 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
521 return return_address_pointer_rtx;
522 #endif
523 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
524 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
525 return pic_offset_table_rtx;
526 if (regno == STACK_POINTER_REGNUM)
527 return stack_pointer_rtx;
528 }
529
530 #if 0
531 /* If the per-function register table has been set up, try to re-use
532 an existing entry in that table to avoid useless generation of RTL.
533
534 This code is disabled for now until we can fix the various backends
535 which depend on having non-shared hard registers in some cases. Long
536 term we want to re-enable this code as it can significantly cut down
537 on the amount of useless RTL that gets generated.
538
539 We'll also need to fix some code that runs after reload that wants to
540 set ORIGINAL_REGNO. */
541
542 if (cfun
543 && cfun->emit
544 && regno_reg_rtx
545 && regno < FIRST_PSEUDO_REGISTER
546 && reg_raw_mode[regno] == mode)
547 return regno_reg_rtx[regno];
548 #endif
549
550 return gen_raw_REG (mode, regno);
551 }
552
553 rtx
554 gen_rtx_MEM (enum machine_mode mode, rtx addr)
555 {
556 rtx rt = gen_rtx_raw_MEM (mode, addr);
557
558 /* This field is not cleared by the mere allocation of the rtx, so
559 we clear it here. */
560 MEM_ATTRS (rt) = 0;
561
562 return rt;
563 }
564
565 /* Generate a memory referring to non-trapping constant memory. */
566
567 rtx
568 gen_const_mem (enum machine_mode mode, rtx addr)
569 {
570 rtx mem = gen_rtx_MEM (mode, addr);
571 MEM_READONLY_P (mem) = 1;
572 MEM_NOTRAP_P (mem) = 1;
573 return mem;
574 }
575
576 /* Generate a MEM referring to fixed portions of the frame, e.g., register
577 save areas. */
578
579 rtx
580 gen_frame_mem (enum machine_mode mode, rtx addr)
581 {
582 rtx mem = gen_rtx_MEM (mode, addr);
583 MEM_NOTRAP_P (mem) = 1;
584 set_mem_alias_set (mem, get_frame_alias_set ());
585 return mem;
586 }
587
588 /* Generate a MEM referring to a temporary use of the stack, not part
589 of the fixed stack frame. For example, something which is pushed
590 by a target splitter. */
591 rtx
592 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
593 {
594 rtx mem = gen_rtx_MEM (mode, addr);
595 MEM_NOTRAP_P (mem) = 1;
596 if (!current_function_calls_alloca)
597 set_mem_alias_set (mem, get_frame_alias_set ());
598 return mem;
599 }
600
601 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
602 this construct would be valid, and false otherwise. */
603
604 bool
605 validate_subreg (enum machine_mode omode, enum machine_mode imode,
606 rtx reg, unsigned int offset)
607 {
608 unsigned int isize = GET_MODE_SIZE (imode);
609 unsigned int osize = GET_MODE_SIZE (omode);
610
611 /* All subregs must be aligned. */
612 if (offset % osize != 0)
613 return false;
614
615 /* The subreg offset cannot be outside the inner object. */
616 if (offset >= isize)
617 return false;
618
619 /* ??? This should not be here. Temporarily continue to allow word_mode
620 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
621 Generally, backends are doing something sketchy but it'll take time to
622 fix them all. */
623 if (omode == word_mode)
624 ;
625 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
626 is the culprit here, and not the backends. */
627 else if (osize >= UNITS_PER_WORD && isize >= osize)
628 ;
629 /* Allow component subregs of complex and vector. Though given the below
630 extraction rules, it's not always clear what that means. */
631 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
632 && GET_MODE_INNER (imode) == omode)
633 ;
634 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
635 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
636 represent this. It's questionable if this ought to be represented at
637 all -- why can't this all be hidden in post-reload splitters that make
638 arbitrarily mode changes to the registers themselves. */
639 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
640 ;
641 /* Subregs involving floating point modes are not allowed to
642 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
643 (subreg:SI (reg:DF) 0) isn't. */
644 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
645 {
646 if (isize != osize)
647 return false;
648 }
649
650 /* Paradoxical subregs must have offset zero. */
651 if (osize > isize)
652 return offset == 0;
653
654 /* This is a normal subreg. Verify that the offset is representable. */
655
656 /* For hard registers, we already have most of these rules collected in
657 subreg_offset_representable_p. */
658 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
659 {
660 unsigned int regno = REGNO (reg);
661
662 #ifdef CANNOT_CHANGE_MODE_CLASS
663 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
664 && GET_MODE_INNER (imode) == omode)
665 ;
666 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
667 return false;
668 #endif
669
670 return subreg_offset_representable_p (regno, imode, offset, omode);
671 }
672
673 /* For pseudo registers, we want most of the same checks. Namely:
674 If the register no larger than a word, the subreg must be lowpart.
675 If the register is larger than a word, the subreg must be the lowpart
676 of a subword. A subreg does *not* perform arbitrary bit extraction.
677 Given that we've already checked mode/offset alignment, we only have
678 to check subword subregs here. */
679 if (osize < UNITS_PER_WORD)
680 {
681 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
682 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
683 if (offset % UNITS_PER_WORD != low_off)
684 return false;
685 }
686 return true;
687 }
688
689 rtx
690 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
691 {
692 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
693 return gen_rtx_raw_SUBREG (mode, reg, offset);
694 }
695
696 /* Generate a SUBREG representing the least-significant part of REG if MODE
697 is smaller than mode of REG, otherwise paradoxical SUBREG. */
698
699 rtx
700 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
701 {
702 enum machine_mode inmode;
703
704 inmode = GET_MODE (reg);
705 if (inmode == VOIDmode)
706 inmode = mode;
707 return gen_rtx_SUBREG (mode, reg,
708 subreg_lowpart_offset (mode, inmode));
709 }
710 \f
711 /* gen_rtvec (n, [rt1, ..., rtn])
712 **
713 ** This routine creates an rtvec and stores within it the
714 ** pointers to rtx's which are its arguments.
715 */
716
717 /*VARARGS1*/
718 rtvec
719 gen_rtvec (int n, ...)
720 {
721 int i, save_n;
722 rtx *vector;
723 va_list p;
724
725 va_start (p, n);
726
727 if (n == 0)
728 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
729
730 vector = alloca (n * sizeof (rtx));
731
732 for (i = 0; i < n; i++)
733 vector[i] = va_arg (p, rtx);
734
735 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
736 save_n = n;
737 va_end (p);
738
739 return gen_rtvec_v (save_n, vector);
740 }
741
742 rtvec
743 gen_rtvec_v (int n, rtx *argp)
744 {
745 int i;
746 rtvec rt_val;
747
748 if (n == 0)
749 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
750
751 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
752
753 for (i = 0; i < n; i++)
754 rt_val->elem[i] = *argp++;
755
756 return rt_val;
757 }
758 \f
759 /* Generate a REG rtx for a new pseudo register of mode MODE.
760 This pseudo is assigned the next sequential register number. */
761
762 rtx
763 gen_reg_rtx (enum machine_mode mode)
764 {
765 struct function *f = cfun;
766 rtx val;
767
768 /* Don't let anything called after initial flow analysis create new
769 registers. */
770 gcc_assert (!no_new_pseudos);
771
772 if (generating_concat_p
773 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
774 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
775 {
776 /* For complex modes, don't make a single pseudo.
777 Instead, make a CONCAT of two pseudos.
778 This allows noncontiguous allocation of the real and imaginary parts,
779 which makes much better code. Besides, allocating DCmode
780 pseudos overstrains reload on some machines like the 386. */
781 rtx realpart, imagpart;
782 enum machine_mode partmode = GET_MODE_INNER (mode);
783
784 realpart = gen_reg_rtx (partmode);
785 imagpart = gen_reg_rtx (partmode);
786 return gen_rtx_CONCAT (mode, realpart, imagpart);
787 }
788
789 /* Make sure regno_pointer_align, and regno_reg_rtx are large
790 enough to have an element for this pseudo reg number. */
791
792 if (reg_rtx_no == f->emit->regno_pointer_align_length)
793 {
794 int old_size = f->emit->regno_pointer_align_length;
795 char *new;
796 rtx *new1;
797
798 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
799 memset (new + old_size, 0, old_size);
800 f->emit->regno_pointer_align = (unsigned char *) new;
801
802 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
803 old_size * 2 * sizeof (rtx));
804 memset (new1 + old_size, 0, old_size * sizeof (rtx));
805 regno_reg_rtx = new1;
806
807 f->emit->regno_pointer_align_length = old_size * 2;
808 }
809
810 val = gen_raw_REG (mode, reg_rtx_no);
811 regno_reg_rtx[reg_rtx_no++] = val;
812 return val;
813 }
814
815 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
816 Do the big endian correction if needed. */
817
818 rtx
819 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
820 {
821 rtx new = gen_rtx_REG (mode, regno);
822 tree decl;
823 HOST_WIDE_INT var_size;
824
825 /* PR middle-end/14084
826 The problem appears when a variable is stored in a larger register
827 and later it is used in the original mode or some mode in between
828 or some part of variable is accessed.
829
830 On little endian machines there is no problem because
831 the REG_OFFSET of the start of the variable is the same when
832 accessed in any mode (it is 0).
833
834 However, this is not true on big endian machines.
835 The offset of the start of the variable is different when accessed
836 in different modes.
837 When we are taking a part of the REG we have to change the OFFSET
838 from offset WRT size of mode of REG to offset WRT size of variable.
839
840 If we would not do the big endian correction the resulting REG_OFFSET
841 would be larger than the size of the DECL.
842
843 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
844
845 REG.mode MODE DECL size old offset new offset description
846 DI SI 4 4 0 int32 in SImode
847 DI SI 1 4 0 char in SImode
848 DI QI 1 7 0 char in QImode
849 DI QI 4 5 1 1st element in QImode
850 of char[4]
851 DI HI 4 6 2 1st element in HImode
852 of int16[2]
853
854 If the size of DECL is equal or greater than the size of REG
855 we can't do this correction because the register holds the
856 whole variable or a part of the variable and thus the REG_OFFSET
857 is already correct. */
858
859 decl = REG_EXPR (reg);
860 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
861 && decl != NULL
862 && offset > 0
863 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
864 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
865 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
866 {
867 int offset_le;
868
869 /* Convert machine endian to little endian WRT size of mode of REG. */
870 if (WORDS_BIG_ENDIAN)
871 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
872 / UNITS_PER_WORD) * UNITS_PER_WORD;
873 else
874 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
875
876 if (BYTES_BIG_ENDIAN)
877 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
878 % UNITS_PER_WORD);
879 else
880 offset_le += offset % UNITS_PER_WORD;
881
882 if (offset_le >= var_size)
883 {
884 /* MODE is wider than the variable so the new reg will cover
885 the whole variable so the resulting OFFSET should be 0. */
886 offset = 0;
887 }
888 else
889 {
890 /* Convert little endian to machine endian WRT size of variable. */
891 if (WORDS_BIG_ENDIAN)
892 offset = ((var_size - 1 - offset_le)
893 / UNITS_PER_WORD) * UNITS_PER_WORD;
894 else
895 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
896
897 if (BYTES_BIG_ENDIAN)
898 offset += ((var_size - 1 - offset_le)
899 % UNITS_PER_WORD);
900 else
901 offset += offset_le % UNITS_PER_WORD;
902 }
903 }
904
905 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
906 REG_OFFSET (reg) + offset);
907 return new;
908 }
909
910 /* Set the decl for MEM to DECL. */
911
912 void
913 set_reg_attrs_from_mem (rtx reg, rtx mem)
914 {
915 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
916 REG_ATTRS (reg)
917 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
918 }
919
920 /* Set the register attributes for registers contained in PARM_RTX.
921 Use needed values from memory attributes of MEM. */
922
923 void
924 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
925 {
926 if (REG_P (parm_rtx))
927 set_reg_attrs_from_mem (parm_rtx, mem);
928 else if (GET_CODE (parm_rtx) == PARALLEL)
929 {
930 /* Check for a NULL entry in the first slot, used to indicate that the
931 parameter goes both on the stack and in registers. */
932 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
933 for (; i < XVECLEN (parm_rtx, 0); i++)
934 {
935 rtx x = XVECEXP (parm_rtx, 0, i);
936 if (REG_P (XEXP (x, 0)))
937 REG_ATTRS (XEXP (x, 0))
938 = get_reg_attrs (MEM_EXPR (mem),
939 INTVAL (XEXP (x, 1)));
940 }
941 }
942 }
943
944 /* Assign the RTX X to declaration T. */
945 void
946 set_decl_rtl (tree t, rtx x)
947 {
948 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
949
950 if (!x)
951 return;
952 /* For register, we maintain the reverse information too. */
953 if (REG_P (x))
954 REG_ATTRS (x) = get_reg_attrs (t, 0);
955 else if (GET_CODE (x) == SUBREG)
956 REG_ATTRS (SUBREG_REG (x))
957 = get_reg_attrs (t, -SUBREG_BYTE (x));
958 if (GET_CODE (x) == CONCAT)
959 {
960 if (REG_P (XEXP (x, 0)))
961 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
962 if (REG_P (XEXP (x, 1)))
963 REG_ATTRS (XEXP (x, 1))
964 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
965 }
966 if (GET_CODE (x) == PARALLEL)
967 {
968 int i;
969 for (i = 0; i < XVECLEN (x, 0); i++)
970 {
971 rtx y = XVECEXP (x, 0, i);
972 if (REG_P (XEXP (y, 0)))
973 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
974 }
975 }
976 }
977
978 /* Assign the RTX X to parameter declaration T. */
979 void
980 set_decl_incoming_rtl (tree t, rtx x)
981 {
982 DECL_INCOMING_RTL (t) = x;
983
984 if (!x)
985 return;
986 /* For register, we maintain the reverse information too. */
987 if (REG_P (x))
988 REG_ATTRS (x) = get_reg_attrs (t, 0);
989 else if (GET_CODE (x) == SUBREG)
990 REG_ATTRS (SUBREG_REG (x))
991 = get_reg_attrs (t, -SUBREG_BYTE (x));
992 if (GET_CODE (x) == CONCAT)
993 {
994 if (REG_P (XEXP (x, 0)))
995 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
996 if (REG_P (XEXP (x, 1)))
997 REG_ATTRS (XEXP (x, 1))
998 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
999 }
1000 if (GET_CODE (x) == PARALLEL)
1001 {
1002 int i, start;
1003
1004 /* Check for a NULL entry, used to indicate that the parameter goes
1005 both on the stack and in registers. */
1006 if (XEXP (XVECEXP (x, 0, 0), 0))
1007 start = 0;
1008 else
1009 start = 1;
1010
1011 for (i = start; i < XVECLEN (x, 0); i++)
1012 {
1013 rtx y = XVECEXP (x, 0, i);
1014 if (REG_P (XEXP (y, 0)))
1015 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1016 }
1017 }
1018 }
1019
1020 /* Identify REG (which may be a CONCAT) as a user register. */
1021
1022 void
1023 mark_user_reg (rtx reg)
1024 {
1025 if (GET_CODE (reg) == CONCAT)
1026 {
1027 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1028 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1029 }
1030 else
1031 {
1032 gcc_assert (REG_P (reg));
1033 REG_USERVAR_P (reg) = 1;
1034 }
1035 }
1036
1037 /* Identify REG as a probable pointer register and show its alignment
1038 as ALIGN, if nonzero. */
1039
1040 void
1041 mark_reg_pointer (rtx reg, int align)
1042 {
1043 if (! REG_POINTER (reg))
1044 {
1045 REG_POINTER (reg) = 1;
1046
1047 if (align)
1048 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1049 }
1050 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1051 /* We can no-longer be sure just how aligned this pointer is. */
1052 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1053 }
1054
1055 /* Return 1 plus largest pseudo reg number used in the current function. */
1056
1057 int
1058 max_reg_num (void)
1059 {
1060 return reg_rtx_no;
1061 }
1062
1063 /* Return 1 + the largest label number used so far in the current function. */
1064
1065 int
1066 max_label_num (void)
1067 {
1068 return label_num;
1069 }
1070
1071 /* Return first label number used in this function (if any were used). */
1072
1073 int
1074 get_first_label_num (void)
1075 {
1076 return first_label_num;
1077 }
1078
1079 /* If the rtx for label was created during the expansion of a nested
1080 function, then first_label_num won't include this label number.
1081 Fix this now so that array indicies work later. */
1082
1083 void
1084 maybe_set_first_label_num (rtx x)
1085 {
1086 if (CODE_LABEL_NUMBER (x) < first_label_num)
1087 first_label_num = CODE_LABEL_NUMBER (x);
1088 }
1089 \f
1090 /* Return a value representing some low-order bits of X, where the number
1091 of low-order bits is given by MODE. Note that no conversion is done
1092 between floating-point and fixed-point values, rather, the bit
1093 representation is returned.
1094
1095 This function handles the cases in common between gen_lowpart, below,
1096 and two variants in cse.c and combine.c. These are the cases that can
1097 be safely handled at all points in the compilation.
1098
1099 If this is not a case we can handle, return 0. */
1100
1101 rtx
1102 gen_lowpart_common (enum machine_mode mode, rtx x)
1103 {
1104 int msize = GET_MODE_SIZE (mode);
1105 int xsize;
1106 int offset = 0;
1107 enum machine_mode innermode;
1108
1109 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1110 so we have to make one up. Yuk. */
1111 innermode = GET_MODE (x);
1112 if (GET_CODE (x) == CONST_INT
1113 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1114 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1115 else if (innermode == VOIDmode)
1116 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1117
1118 xsize = GET_MODE_SIZE (innermode);
1119
1120 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1121
1122 if (innermode == mode)
1123 return x;
1124
1125 /* MODE must occupy no more words than the mode of X. */
1126 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1127 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1128 return 0;
1129
1130 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1131 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1132 return 0;
1133
1134 offset = subreg_lowpart_offset (mode, innermode);
1135
1136 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1137 && (GET_MODE_CLASS (mode) == MODE_INT
1138 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1139 {
1140 /* If we are getting the low-order part of something that has been
1141 sign- or zero-extended, we can either just use the object being
1142 extended or make a narrower extension. If we want an even smaller
1143 piece than the size of the object being extended, call ourselves
1144 recursively.
1145
1146 This case is used mostly by combine and cse. */
1147
1148 if (GET_MODE (XEXP (x, 0)) == mode)
1149 return XEXP (x, 0);
1150 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1151 return gen_lowpart_common (mode, XEXP (x, 0));
1152 else if (msize < xsize)
1153 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1154 }
1155 else if (GET_CODE (x) == SUBREG || REG_P (x)
1156 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1157 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1158 return simplify_gen_subreg (mode, x, innermode, offset);
1159
1160 /* Otherwise, we can't do this. */
1161 return 0;
1162 }
1163 \f
1164 rtx
1165 gen_highpart (enum machine_mode mode, rtx x)
1166 {
1167 unsigned int msize = GET_MODE_SIZE (mode);
1168 rtx result;
1169
1170 /* This case loses if X is a subreg. To catch bugs early,
1171 complain if an invalid MODE is used even in other cases. */
1172 gcc_assert (msize <= UNITS_PER_WORD
1173 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1174
1175 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1176 subreg_highpart_offset (mode, GET_MODE (x)));
1177 gcc_assert (result);
1178
1179 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1180 the target if we have a MEM. gen_highpart must return a valid operand,
1181 emitting code if necessary to do so. */
1182 if (MEM_P (result))
1183 {
1184 result = validize_mem (result);
1185 gcc_assert (result);
1186 }
1187
1188 return result;
1189 }
1190
1191 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1192 be VOIDmode constant. */
1193 rtx
1194 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1195 {
1196 if (GET_MODE (exp) != VOIDmode)
1197 {
1198 gcc_assert (GET_MODE (exp) == innermode);
1199 return gen_highpart (outermode, exp);
1200 }
1201 return simplify_gen_subreg (outermode, exp, innermode,
1202 subreg_highpart_offset (outermode, innermode));
1203 }
1204
1205 /* Return offset in bytes to get OUTERMODE low part
1206 of the value in mode INNERMODE stored in memory in target format. */
1207
1208 unsigned int
1209 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1210 {
1211 unsigned int offset = 0;
1212 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1213
1214 if (difference > 0)
1215 {
1216 if (WORDS_BIG_ENDIAN)
1217 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1218 if (BYTES_BIG_ENDIAN)
1219 offset += difference % UNITS_PER_WORD;
1220 }
1221
1222 return offset;
1223 }
1224
1225 /* Return offset in bytes to get OUTERMODE high part
1226 of the value in mode INNERMODE stored in memory in target format. */
1227 unsigned int
1228 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1229 {
1230 unsigned int offset = 0;
1231 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1232
1233 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1234
1235 if (difference > 0)
1236 {
1237 if (! WORDS_BIG_ENDIAN)
1238 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1239 if (! BYTES_BIG_ENDIAN)
1240 offset += difference % UNITS_PER_WORD;
1241 }
1242
1243 return offset;
1244 }
1245
1246 /* Return 1 iff X, assumed to be a SUBREG,
1247 refers to the least significant part of its containing reg.
1248 If X is not a SUBREG, always return 1 (it is its own low part!). */
1249
1250 int
1251 subreg_lowpart_p (rtx x)
1252 {
1253 if (GET_CODE (x) != SUBREG)
1254 return 1;
1255 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1256 return 0;
1257
1258 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1259 == SUBREG_BYTE (x));
1260 }
1261 \f
1262 /* Return subword OFFSET of operand OP.
1263 The word number, OFFSET, is interpreted as the word number starting
1264 at the low-order address. OFFSET 0 is the low-order word if not
1265 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1266
1267 If we cannot extract the required word, we return zero. Otherwise,
1268 an rtx corresponding to the requested word will be returned.
1269
1270 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1271 reload has completed, a valid address will always be returned. After
1272 reload, if a valid address cannot be returned, we return zero.
1273
1274 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1275 it is the responsibility of the caller.
1276
1277 MODE is the mode of OP in case it is a CONST_INT.
1278
1279 ??? This is still rather broken for some cases. The problem for the
1280 moment is that all callers of this thing provide no 'goal mode' to
1281 tell us to work with. This exists because all callers were written
1282 in a word based SUBREG world.
1283 Now use of this function can be deprecated by simplify_subreg in most
1284 cases.
1285 */
1286
1287 rtx
1288 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1289 {
1290 if (mode == VOIDmode)
1291 mode = GET_MODE (op);
1292
1293 gcc_assert (mode != VOIDmode);
1294
1295 /* If OP is narrower than a word, fail. */
1296 if (mode != BLKmode
1297 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1298 return 0;
1299
1300 /* If we want a word outside OP, return zero. */
1301 if (mode != BLKmode
1302 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1303 return const0_rtx;
1304
1305 /* Form a new MEM at the requested address. */
1306 if (MEM_P (op))
1307 {
1308 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1309
1310 if (! validate_address)
1311 return new;
1312
1313 else if (reload_completed)
1314 {
1315 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1316 return 0;
1317 }
1318 else
1319 return replace_equiv_address (new, XEXP (new, 0));
1320 }
1321
1322 /* Rest can be handled by simplify_subreg. */
1323 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1324 }
1325
1326 /* Similar to `operand_subword', but never return 0. If we can't
1327 extract the required subword, put OP into a register and try again.
1328 The second attempt must succeed. We always validate the address in
1329 this case.
1330
1331 MODE is the mode of OP, in case it is CONST_INT. */
1332
1333 rtx
1334 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1335 {
1336 rtx result = operand_subword (op, offset, 1, mode);
1337
1338 if (result)
1339 return result;
1340
1341 if (mode != BLKmode && mode != VOIDmode)
1342 {
1343 /* If this is a register which can not be accessed by words, copy it
1344 to a pseudo register. */
1345 if (REG_P (op))
1346 op = copy_to_reg (op);
1347 else
1348 op = force_reg (mode, op);
1349 }
1350
1351 result = operand_subword (op, offset, 1, mode);
1352 gcc_assert (result);
1353
1354 return result;
1355 }
1356 \f
1357 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1358 or (2) a component ref of something variable. Represent the later with
1359 a NULL expression. */
1360
1361 static tree
1362 component_ref_for_mem_expr (tree ref)
1363 {
1364 tree inner = TREE_OPERAND (ref, 0);
1365
1366 if (TREE_CODE (inner) == COMPONENT_REF)
1367 inner = component_ref_for_mem_expr (inner);
1368 else
1369 {
1370 /* Now remove any conversions: they don't change what the underlying
1371 object is. Likewise for SAVE_EXPR. */
1372 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1373 || TREE_CODE (inner) == NON_LVALUE_EXPR
1374 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1375 || TREE_CODE (inner) == SAVE_EXPR)
1376 inner = TREE_OPERAND (inner, 0);
1377
1378 if (! DECL_P (inner))
1379 inner = NULL_TREE;
1380 }
1381
1382 if (inner == TREE_OPERAND (ref, 0))
1383 return ref;
1384 else
1385 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1386 TREE_OPERAND (ref, 1), NULL_TREE);
1387 }
1388
1389 /* Returns 1 if both MEM_EXPR can be considered equal
1390 and 0 otherwise. */
1391
1392 int
1393 mem_expr_equal_p (tree expr1, tree expr2)
1394 {
1395 if (expr1 == expr2)
1396 return 1;
1397
1398 if (! expr1 || ! expr2)
1399 return 0;
1400
1401 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1402 return 0;
1403
1404 if (TREE_CODE (expr1) == COMPONENT_REF)
1405 return
1406 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1407 TREE_OPERAND (expr2, 0))
1408 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1409 TREE_OPERAND (expr2, 1));
1410
1411 if (INDIRECT_REF_P (expr1))
1412 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1413 TREE_OPERAND (expr2, 0));
1414
1415 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1416 have been resolved here. */
1417 gcc_assert (DECL_P (expr1));
1418
1419 /* Decls with different pointers can't be equal. */
1420 return 0;
1421 }
1422
1423 /* Given REF, a MEM, and T, either the type of X or the expression
1424 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1425 if we are making a new object of this type. BITPOS is nonzero if
1426 there is an offset outstanding on T that will be applied later. */
1427
1428 void
1429 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1430 HOST_WIDE_INT bitpos)
1431 {
1432 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1433 tree expr = MEM_EXPR (ref);
1434 rtx offset = MEM_OFFSET (ref);
1435 rtx size = MEM_SIZE (ref);
1436 unsigned int align = MEM_ALIGN (ref);
1437 HOST_WIDE_INT apply_bitpos = 0;
1438 tree type;
1439
1440 /* It can happen that type_for_mode was given a mode for which there
1441 is no language-level type. In which case it returns NULL, which
1442 we can see here. */
1443 if (t == NULL_TREE)
1444 return;
1445
1446 type = TYPE_P (t) ? t : TREE_TYPE (t);
1447 if (type == error_mark_node)
1448 return;
1449
1450 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1451 wrong answer, as it assumes that DECL_RTL already has the right alias
1452 info. Callers should not set DECL_RTL until after the call to
1453 set_mem_attributes. */
1454 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1455
1456 /* Get the alias set from the expression or type (perhaps using a
1457 front-end routine) and use it. */
1458 alias = get_alias_set (t);
1459
1460 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1461 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1462 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1463
1464 /* If we are making an object of this type, or if this is a DECL, we know
1465 that it is a scalar if the type is not an aggregate. */
1466 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1467 MEM_SCALAR_P (ref) = 1;
1468
1469 /* We can set the alignment from the type if we are making an object,
1470 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1471 if (objectp || TREE_CODE (t) == INDIRECT_REF
1472 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1473 || TYPE_ALIGN_OK (type))
1474 align = MAX (align, TYPE_ALIGN (type));
1475 else
1476 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1477 {
1478 if (integer_zerop (TREE_OPERAND (t, 1)))
1479 /* We don't know anything about the alignment. */
1480 align = BITS_PER_UNIT;
1481 else
1482 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1483 }
1484
1485 /* If the size is known, we can set that. */
1486 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1487 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1488
1489 /* If T is not a type, we may be able to deduce some more information about
1490 the expression. */
1491 if (! TYPE_P (t))
1492 {
1493 tree base;
1494
1495 if (TREE_THIS_VOLATILE (t))
1496 MEM_VOLATILE_P (ref) = 1;
1497
1498 /* Now remove any conversions: they don't change what the underlying
1499 object is. Likewise for SAVE_EXPR. */
1500 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1501 || TREE_CODE (t) == NON_LVALUE_EXPR
1502 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1503 || TREE_CODE (t) == SAVE_EXPR)
1504 t = TREE_OPERAND (t, 0);
1505
1506 /* We may look through structure-like accesses for the purposes of
1507 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1508 base = t;
1509 while (TREE_CODE (base) == COMPONENT_REF
1510 || TREE_CODE (base) == REALPART_EXPR
1511 || TREE_CODE (base) == IMAGPART_EXPR
1512 || TREE_CODE (base) == BIT_FIELD_REF)
1513 base = TREE_OPERAND (base, 0);
1514
1515 if (DECL_P (base))
1516 {
1517 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1518 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1519 else
1520 MEM_NOTRAP_P (ref) = 1;
1521 }
1522 else
1523 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1524
1525 base = get_base_address (base);
1526 if (base && DECL_P (base)
1527 && TREE_READONLY (base)
1528 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1529 {
1530 tree base_type = TREE_TYPE (base);
1531 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1532 || DECL_ARTIFICIAL (base));
1533 MEM_READONLY_P (ref) = 1;
1534 }
1535
1536 /* If this expression uses it's parent's alias set, mark it such
1537 that we won't change it. */
1538 if (component_uses_parent_alias_set (t))
1539 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1540
1541 /* If this is a decl, set the attributes of the MEM from it. */
1542 if (DECL_P (t))
1543 {
1544 expr = t;
1545 offset = const0_rtx;
1546 apply_bitpos = bitpos;
1547 size = (DECL_SIZE_UNIT (t)
1548 && host_integerp (DECL_SIZE_UNIT (t), 1)
1549 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1550 align = DECL_ALIGN (t);
1551 }
1552
1553 /* If this is a constant, we know the alignment. */
1554 else if (CONSTANT_CLASS_P (t))
1555 {
1556 align = TYPE_ALIGN (type);
1557 #ifdef CONSTANT_ALIGNMENT
1558 align = CONSTANT_ALIGNMENT (t, align);
1559 #endif
1560 }
1561
1562 /* If this is a field reference and not a bit-field, record it. */
1563 /* ??? There is some information that can be gleened from bit-fields,
1564 such as the word offset in the structure that might be modified.
1565 But skip it for now. */
1566 else if (TREE_CODE (t) == COMPONENT_REF
1567 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1568 {
1569 expr = component_ref_for_mem_expr (t);
1570 offset = const0_rtx;
1571 apply_bitpos = bitpos;
1572 /* ??? Any reason the field size would be different than
1573 the size we got from the type? */
1574 }
1575
1576 /* If this is an array reference, look for an outer field reference. */
1577 else if (TREE_CODE (t) == ARRAY_REF)
1578 {
1579 tree off_tree = size_zero_node;
1580 /* We can't modify t, because we use it at the end of the
1581 function. */
1582 tree t2 = t;
1583
1584 do
1585 {
1586 tree index = TREE_OPERAND (t2, 1);
1587 tree low_bound = array_ref_low_bound (t2);
1588 tree unit_size = array_ref_element_size (t2);
1589
1590 /* We assume all arrays have sizes that are a multiple of a byte.
1591 First subtract the lower bound, if any, in the type of the
1592 index, then convert to sizetype and multiply by the size of
1593 the array element. */
1594 if (! integer_zerop (low_bound))
1595 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1596 index, low_bound);
1597
1598 off_tree = size_binop (PLUS_EXPR,
1599 size_binop (MULT_EXPR, convert (sizetype,
1600 index),
1601 unit_size),
1602 off_tree);
1603 t2 = TREE_OPERAND (t2, 0);
1604 }
1605 while (TREE_CODE (t2) == ARRAY_REF);
1606
1607 if (DECL_P (t2))
1608 {
1609 expr = t2;
1610 offset = NULL;
1611 if (host_integerp (off_tree, 1))
1612 {
1613 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1614 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1615 align = DECL_ALIGN (t2);
1616 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1617 align = aoff;
1618 offset = GEN_INT (ioff);
1619 apply_bitpos = bitpos;
1620 }
1621 }
1622 else if (TREE_CODE (t2) == COMPONENT_REF)
1623 {
1624 expr = component_ref_for_mem_expr (t2);
1625 if (host_integerp (off_tree, 1))
1626 {
1627 offset = GEN_INT (tree_low_cst (off_tree, 1));
1628 apply_bitpos = bitpos;
1629 }
1630 /* ??? Any reason the field size would be different than
1631 the size we got from the type? */
1632 }
1633 else if (flag_argument_noalias > 1
1634 && (INDIRECT_REF_P (t2))
1635 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1636 {
1637 expr = t2;
1638 offset = NULL;
1639 }
1640 }
1641
1642 /* If this is a Fortran indirect argument reference, record the
1643 parameter decl. */
1644 else if (flag_argument_noalias > 1
1645 && (INDIRECT_REF_P (t))
1646 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1647 {
1648 expr = t;
1649 offset = NULL;
1650 }
1651 }
1652
1653 /* If we modified OFFSET based on T, then subtract the outstanding
1654 bit position offset. Similarly, increase the size of the accessed
1655 object to contain the negative offset. */
1656 if (apply_bitpos)
1657 {
1658 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1659 if (size)
1660 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1661 }
1662
1663 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1664 {
1665 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1666 we're overlapping. */
1667 offset = NULL;
1668 expr = NULL;
1669 }
1670
1671 /* Now set the attributes we computed above. */
1672 MEM_ATTRS (ref)
1673 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1674
1675 /* If this is already known to be a scalar or aggregate, we are done. */
1676 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1677 return;
1678
1679 /* If it is a reference into an aggregate, this is part of an aggregate.
1680 Otherwise we don't know. */
1681 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1682 || TREE_CODE (t) == ARRAY_RANGE_REF
1683 || TREE_CODE (t) == BIT_FIELD_REF)
1684 MEM_IN_STRUCT_P (ref) = 1;
1685 }
1686
1687 void
1688 set_mem_attributes (rtx ref, tree t, int objectp)
1689 {
1690 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1691 }
1692
1693 /* Set the decl for MEM to DECL. */
1694
1695 void
1696 set_mem_attrs_from_reg (rtx mem, rtx reg)
1697 {
1698 MEM_ATTRS (mem)
1699 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1700 GEN_INT (REG_OFFSET (reg)),
1701 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1702 }
1703
1704 /* Set the alias set of MEM to SET. */
1705
1706 void
1707 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1708 {
1709 #ifdef ENABLE_CHECKING
1710 /* If the new and old alias sets don't conflict, something is wrong. */
1711 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1712 #endif
1713
1714 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1715 MEM_SIZE (mem), MEM_ALIGN (mem),
1716 GET_MODE (mem));
1717 }
1718
1719 /* Set the alignment of MEM to ALIGN bits. */
1720
1721 void
1722 set_mem_align (rtx mem, unsigned int align)
1723 {
1724 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1725 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1726 GET_MODE (mem));
1727 }
1728
1729 /* Set the expr for MEM to EXPR. */
1730
1731 void
1732 set_mem_expr (rtx mem, tree expr)
1733 {
1734 MEM_ATTRS (mem)
1735 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1736 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1737 }
1738
1739 /* Set the offset of MEM to OFFSET. */
1740
1741 void
1742 set_mem_offset (rtx mem, rtx offset)
1743 {
1744 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1745 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1746 GET_MODE (mem));
1747 }
1748
1749 /* Set the size of MEM to SIZE. */
1750
1751 void
1752 set_mem_size (rtx mem, rtx size)
1753 {
1754 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1755 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1756 GET_MODE (mem));
1757 }
1758 \f
1759 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1760 and its address changed to ADDR. (VOIDmode means don't change the mode.
1761 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1762 returned memory location is required to be valid. The memory
1763 attributes are not changed. */
1764
1765 static rtx
1766 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1767 {
1768 rtx new;
1769
1770 gcc_assert (MEM_P (memref));
1771 if (mode == VOIDmode)
1772 mode = GET_MODE (memref);
1773 if (addr == 0)
1774 addr = XEXP (memref, 0);
1775 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1776 && (!validate || memory_address_p (mode, addr)))
1777 return memref;
1778
1779 if (validate)
1780 {
1781 if (reload_in_progress || reload_completed)
1782 gcc_assert (memory_address_p (mode, addr));
1783 else
1784 addr = memory_address (mode, addr);
1785 }
1786
1787 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1788 return memref;
1789
1790 new = gen_rtx_MEM (mode, addr);
1791 MEM_COPY_ATTRIBUTES (new, memref);
1792 return new;
1793 }
1794
1795 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1796 way we are changing MEMREF, so we only preserve the alias set. */
1797
1798 rtx
1799 change_address (rtx memref, enum machine_mode mode, rtx addr)
1800 {
1801 rtx new = change_address_1 (memref, mode, addr, 1), size;
1802 enum machine_mode mmode = GET_MODE (new);
1803 unsigned int align;
1804
1805 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1806 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1807
1808 /* If there are no changes, just return the original memory reference. */
1809 if (new == memref)
1810 {
1811 if (MEM_ATTRS (memref) == 0
1812 || (MEM_EXPR (memref) == NULL
1813 && MEM_OFFSET (memref) == NULL
1814 && MEM_SIZE (memref) == size
1815 && MEM_ALIGN (memref) == align))
1816 return new;
1817
1818 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1819 MEM_COPY_ATTRIBUTES (new, memref);
1820 }
1821
1822 MEM_ATTRS (new)
1823 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1824
1825 return new;
1826 }
1827
1828 /* Return a memory reference like MEMREF, but with its mode changed
1829 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1830 nonzero, the memory address is forced to be valid.
1831 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1832 and caller is responsible for adjusting MEMREF base register. */
1833
1834 rtx
1835 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1836 int validate, int adjust)
1837 {
1838 rtx addr = XEXP (memref, 0);
1839 rtx new;
1840 rtx memoffset = MEM_OFFSET (memref);
1841 rtx size = 0;
1842 unsigned int memalign = MEM_ALIGN (memref);
1843
1844 /* If there are no changes, just return the original memory reference. */
1845 if (mode == GET_MODE (memref) && !offset
1846 && (!validate || memory_address_p (mode, addr)))
1847 return memref;
1848
1849 /* ??? Prefer to create garbage instead of creating shared rtl.
1850 This may happen even if offset is nonzero -- consider
1851 (plus (plus reg reg) const_int) -- so do this always. */
1852 addr = copy_rtx (addr);
1853
1854 if (adjust)
1855 {
1856 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1857 object, we can merge it into the LO_SUM. */
1858 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1859 && offset >= 0
1860 && (unsigned HOST_WIDE_INT) offset
1861 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1862 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1863 plus_constant (XEXP (addr, 1), offset));
1864 else
1865 addr = plus_constant (addr, offset);
1866 }
1867
1868 new = change_address_1 (memref, mode, addr, validate);
1869
1870 /* Compute the new values of the memory attributes due to this adjustment.
1871 We add the offsets and update the alignment. */
1872 if (memoffset)
1873 memoffset = GEN_INT (offset + INTVAL (memoffset));
1874
1875 /* Compute the new alignment by taking the MIN of the alignment and the
1876 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1877 if zero. */
1878 if (offset != 0)
1879 memalign
1880 = MIN (memalign,
1881 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1882
1883 /* We can compute the size in a number of ways. */
1884 if (GET_MODE (new) != BLKmode)
1885 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1886 else if (MEM_SIZE (memref))
1887 size = plus_constant (MEM_SIZE (memref), -offset);
1888
1889 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1890 memoffset, size, memalign, GET_MODE (new));
1891
1892 /* At some point, we should validate that this offset is within the object,
1893 if all the appropriate values are known. */
1894 return new;
1895 }
1896
1897 /* Return a memory reference like MEMREF, but with its mode changed
1898 to MODE and its address changed to ADDR, which is assumed to be
1899 MEMREF offseted by OFFSET bytes. If VALIDATE is
1900 nonzero, the memory address is forced to be valid. */
1901
1902 rtx
1903 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1904 HOST_WIDE_INT offset, int validate)
1905 {
1906 memref = change_address_1 (memref, VOIDmode, addr, validate);
1907 return adjust_address_1 (memref, mode, offset, validate, 0);
1908 }
1909
1910 /* Return a memory reference like MEMREF, but whose address is changed by
1911 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1912 known to be in OFFSET (possibly 1). */
1913
1914 rtx
1915 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1916 {
1917 rtx new, addr = XEXP (memref, 0);
1918
1919 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1920
1921 /* At this point we don't know _why_ the address is invalid. It
1922 could have secondary memory references, multiplies or anything.
1923
1924 However, if we did go and rearrange things, we can wind up not
1925 being able to recognize the magic around pic_offset_table_rtx.
1926 This stuff is fragile, and is yet another example of why it is
1927 bad to expose PIC machinery too early. */
1928 if (! memory_address_p (GET_MODE (memref), new)
1929 && GET_CODE (addr) == PLUS
1930 && XEXP (addr, 0) == pic_offset_table_rtx)
1931 {
1932 addr = force_reg (GET_MODE (addr), addr);
1933 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1934 }
1935
1936 update_temp_slot_address (XEXP (memref, 0), new);
1937 new = change_address_1 (memref, VOIDmode, new, 1);
1938
1939 /* If there are no changes, just return the original memory reference. */
1940 if (new == memref)
1941 return new;
1942
1943 /* Update the alignment to reflect the offset. Reset the offset, which
1944 we don't know. */
1945 MEM_ATTRS (new)
1946 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1947 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1948 GET_MODE (new));
1949 return new;
1950 }
1951
1952 /* Return a memory reference like MEMREF, but with its address changed to
1953 ADDR. The caller is asserting that the actual piece of memory pointed
1954 to is the same, just the form of the address is being changed, such as
1955 by putting something into a register. */
1956
1957 rtx
1958 replace_equiv_address (rtx memref, rtx addr)
1959 {
1960 /* change_address_1 copies the memory attribute structure without change
1961 and that's exactly what we want here. */
1962 update_temp_slot_address (XEXP (memref, 0), addr);
1963 return change_address_1 (memref, VOIDmode, addr, 1);
1964 }
1965
1966 /* Likewise, but the reference is not required to be valid. */
1967
1968 rtx
1969 replace_equiv_address_nv (rtx memref, rtx addr)
1970 {
1971 return change_address_1 (memref, VOIDmode, addr, 0);
1972 }
1973
1974 /* Return a memory reference like MEMREF, but with its mode widened to
1975 MODE and offset by OFFSET. This would be used by targets that e.g.
1976 cannot issue QImode memory operations and have to use SImode memory
1977 operations plus masking logic. */
1978
1979 rtx
1980 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
1981 {
1982 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
1983 tree expr = MEM_EXPR (new);
1984 rtx memoffset = MEM_OFFSET (new);
1985 unsigned int size = GET_MODE_SIZE (mode);
1986
1987 /* If there are no changes, just return the original memory reference. */
1988 if (new == memref)
1989 return new;
1990
1991 /* If we don't know what offset we were at within the expression, then
1992 we can't know if we've overstepped the bounds. */
1993 if (! memoffset)
1994 expr = NULL_TREE;
1995
1996 while (expr)
1997 {
1998 if (TREE_CODE (expr) == COMPONENT_REF)
1999 {
2000 tree field = TREE_OPERAND (expr, 1);
2001 tree offset = component_ref_field_offset (expr);
2002
2003 if (! DECL_SIZE_UNIT (field))
2004 {
2005 expr = NULL_TREE;
2006 break;
2007 }
2008
2009 /* Is the field at least as large as the access? If so, ok,
2010 otherwise strip back to the containing structure. */
2011 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2012 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2013 && INTVAL (memoffset) >= 0)
2014 break;
2015
2016 if (! host_integerp (offset, 1))
2017 {
2018 expr = NULL_TREE;
2019 break;
2020 }
2021
2022 expr = TREE_OPERAND (expr, 0);
2023 memoffset
2024 = (GEN_INT (INTVAL (memoffset)
2025 + tree_low_cst (offset, 1)
2026 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2027 / BITS_PER_UNIT)));
2028 }
2029 /* Similarly for the decl. */
2030 else if (DECL_P (expr)
2031 && DECL_SIZE_UNIT (expr)
2032 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2033 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2034 && (! memoffset || INTVAL (memoffset) >= 0))
2035 break;
2036 else
2037 {
2038 /* The widened memory access overflows the expression, which means
2039 that it could alias another expression. Zap it. */
2040 expr = NULL_TREE;
2041 break;
2042 }
2043 }
2044
2045 if (! expr)
2046 memoffset = NULL_RTX;
2047
2048 /* The widened memory may alias other stuff, so zap the alias set. */
2049 /* ??? Maybe use get_alias_set on any remaining expression. */
2050
2051 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2052 MEM_ALIGN (new), mode);
2053
2054 return new;
2055 }
2056 \f
2057 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2058
2059 rtx
2060 gen_label_rtx (void)
2061 {
2062 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2063 NULL, label_num++, NULL);
2064 }
2065 \f
2066 /* For procedure integration. */
2067
2068 /* Install new pointers to the first and last insns in the chain.
2069 Also, set cur_insn_uid to one higher than the last in use.
2070 Used for an inline-procedure after copying the insn chain. */
2071
2072 void
2073 set_new_first_and_last_insn (rtx first, rtx last)
2074 {
2075 rtx insn;
2076
2077 first_insn = first;
2078 last_insn = last;
2079 cur_insn_uid = 0;
2080
2081 for (insn = first; insn; insn = NEXT_INSN (insn))
2082 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2083
2084 cur_insn_uid++;
2085 }
2086 \f
2087 /* Go through all the RTL insn bodies and copy any invalid shared
2088 structure. This routine should only be called once. */
2089
2090 static void
2091 unshare_all_rtl_1 (tree fndecl, rtx insn)
2092 {
2093 tree decl;
2094
2095 /* Make sure that virtual parameters are not shared. */
2096 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2097 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2098
2099 /* Make sure that virtual stack slots are not shared. */
2100 unshare_all_decls (DECL_INITIAL (fndecl));
2101
2102 /* Unshare just about everything else. */
2103 unshare_all_rtl_in_chain (insn);
2104
2105 /* Make sure the addresses of stack slots found outside the insn chain
2106 (such as, in DECL_RTL of a variable) are not shared
2107 with the insn chain.
2108
2109 This special care is necessary when the stack slot MEM does not
2110 actually appear in the insn chain. If it does appear, its address
2111 is unshared from all else at that point. */
2112 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2113 }
2114
2115 /* Go through all the RTL insn bodies and copy any invalid shared
2116 structure, again. This is a fairly expensive thing to do so it
2117 should be done sparingly. */
2118
2119 void
2120 unshare_all_rtl_again (rtx insn)
2121 {
2122 rtx p;
2123 tree decl;
2124
2125 for (p = insn; p; p = NEXT_INSN (p))
2126 if (INSN_P (p))
2127 {
2128 reset_used_flags (PATTERN (p));
2129 reset_used_flags (REG_NOTES (p));
2130 reset_used_flags (LOG_LINKS (p));
2131 }
2132
2133 /* Make sure that virtual stack slots are not shared. */
2134 reset_used_decls (DECL_INITIAL (cfun->decl));
2135
2136 /* Make sure that virtual parameters are not shared. */
2137 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2138 reset_used_flags (DECL_RTL (decl));
2139
2140 reset_used_flags (stack_slot_list);
2141
2142 unshare_all_rtl_1 (cfun->decl, insn);
2143 }
2144
2145 unsigned int
2146 unshare_all_rtl (void)
2147 {
2148 unshare_all_rtl_1 (current_function_decl, get_insns ());
2149 return 0;
2150 }
2151
2152 struct tree_opt_pass pass_unshare_all_rtl =
2153 {
2154 "unshare", /* name */
2155 NULL, /* gate */
2156 unshare_all_rtl, /* execute */
2157 NULL, /* sub */
2158 NULL, /* next */
2159 0, /* static_pass_number */
2160 0, /* tv_id */
2161 0, /* properties_required */
2162 0, /* properties_provided */
2163 0, /* properties_destroyed */
2164 0, /* todo_flags_start */
2165 TODO_dump_func, /* todo_flags_finish */
2166 0 /* letter */
2167 };
2168
2169
2170 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2171 Recursively does the same for subexpressions. */
2172
2173 static void
2174 verify_rtx_sharing (rtx orig, rtx insn)
2175 {
2176 rtx x = orig;
2177 int i;
2178 enum rtx_code code;
2179 const char *format_ptr;
2180
2181 if (x == 0)
2182 return;
2183
2184 code = GET_CODE (x);
2185
2186 /* These types may be freely shared. */
2187
2188 switch (code)
2189 {
2190 case REG:
2191 case CONST_INT:
2192 case CONST_DOUBLE:
2193 case CONST_VECTOR:
2194 case SYMBOL_REF:
2195 case LABEL_REF:
2196 case CODE_LABEL:
2197 case PC:
2198 case CC0:
2199 case SCRATCH:
2200 return;
2201 /* SCRATCH must be shared because they represent distinct values. */
2202 case CLOBBER:
2203 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2204 return;
2205 break;
2206
2207 case CONST:
2208 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2209 a LABEL_REF, it isn't sharable. */
2210 if (GET_CODE (XEXP (x, 0)) == PLUS
2211 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2212 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2213 return;
2214 break;
2215
2216 case MEM:
2217 /* A MEM is allowed to be shared if its address is constant. */
2218 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2219 || reload_completed || reload_in_progress)
2220 return;
2221
2222 break;
2223
2224 default:
2225 break;
2226 }
2227
2228 /* This rtx may not be shared. If it has already been seen,
2229 replace it with a copy of itself. */
2230 #ifdef ENABLE_CHECKING
2231 if (RTX_FLAG (x, used))
2232 {
2233 error ("invalid rtl sharing found in the insn");
2234 debug_rtx (insn);
2235 error ("shared rtx");
2236 debug_rtx (x);
2237 internal_error ("internal consistency failure");
2238 }
2239 #endif
2240 gcc_assert (!RTX_FLAG (x, used));
2241
2242 RTX_FLAG (x, used) = 1;
2243
2244 /* Now scan the subexpressions recursively. */
2245
2246 format_ptr = GET_RTX_FORMAT (code);
2247
2248 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2249 {
2250 switch (*format_ptr++)
2251 {
2252 case 'e':
2253 verify_rtx_sharing (XEXP (x, i), insn);
2254 break;
2255
2256 case 'E':
2257 if (XVEC (x, i) != NULL)
2258 {
2259 int j;
2260 int len = XVECLEN (x, i);
2261
2262 for (j = 0; j < len; j++)
2263 {
2264 /* We allow sharing of ASM_OPERANDS inside single
2265 instruction. */
2266 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2267 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2268 == ASM_OPERANDS))
2269 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2270 else
2271 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2272 }
2273 }
2274 break;
2275 }
2276 }
2277 return;
2278 }
2279
2280 /* Go through all the RTL insn bodies and check that there is no unexpected
2281 sharing in between the subexpressions. */
2282
2283 void
2284 verify_rtl_sharing (void)
2285 {
2286 rtx p;
2287
2288 for (p = get_insns (); p; p = NEXT_INSN (p))
2289 if (INSN_P (p))
2290 {
2291 reset_used_flags (PATTERN (p));
2292 reset_used_flags (REG_NOTES (p));
2293 reset_used_flags (LOG_LINKS (p));
2294 }
2295
2296 for (p = get_insns (); p; p = NEXT_INSN (p))
2297 if (INSN_P (p))
2298 {
2299 verify_rtx_sharing (PATTERN (p), p);
2300 verify_rtx_sharing (REG_NOTES (p), p);
2301 verify_rtx_sharing (LOG_LINKS (p), p);
2302 }
2303 }
2304
2305 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2306 Assumes the mark bits are cleared at entry. */
2307
2308 void
2309 unshare_all_rtl_in_chain (rtx insn)
2310 {
2311 for (; insn; insn = NEXT_INSN (insn))
2312 if (INSN_P (insn))
2313 {
2314 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2315 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2316 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2317 }
2318 }
2319
2320 /* Go through all virtual stack slots of a function and copy any
2321 shared structure. */
2322 static void
2323 unshare_all_decls (tree blk)
2324 {
2325 tree t;
2326
2327 /* Copy shared decls. */
2328 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2329 if (DECL_RTL_SET_P (t))
2330 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2331
2332 /* Now process sub-blocks. */
2333 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2334 unshare_all_decls (t);
2335 }
2336
2337 /* Go through all virtual stack slots of a function and mark them as
2338 not shared. */
2339 static void
2340 reset_used_decls (tree blk)
2341 {
2342 tree t;
2343
2344 /* Mark decls. */
2345 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2346 if (DECL_RTL_SET_P (t))
2347 reset_used_flags (DECL_RTL (t));
2348
2349 /* Now process sub-blocks. */
2350 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2351 reset_used_decls (t);
2352 }
2353
2354 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2355 Recursively does the same for subexpressions. Uses
2356 copy_rtx_if_shared_1 to reduce stack space. */
2357
2358 rtx
2359 copy_rtx_if_shared (rtx orig)
2360 {
2361 copy_rtx_if_shared_1 (&orig);
2362 return orig;
2363 }
2364
2365 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2366 use. Recursively does the same for subexpressions. */
2367
2368 static void
2369 copy_rtx_if_shared_1 (rtx *orig1)
2370 {
2371 rtx x;
2372 int i;
2373 enum rtx_code code;
2374 rtx *last_ptr;
2375 const char *format_ptr;
2376 int copied = 0;
2377 int length;
2378
2379 /* Repeat is used to turn tail-recursion into iteration. */
2380 repeat:
2381 x = *orig1;
2382
2383 if (x == 0)
2384 return;
2385
2386 code = GET_CODE (x);
2387
2388 /* These types may be freely shared. */
2389
2390 switch (code)
2391 {
2392 case REG:
2393 case CONST_INT:
2394 case CONST_DOUBLE:
2395 case CONST_VECTOR:
2396 case SYMBOL_REF:
2397 case LABEL_REF:
2398 case CODE_LABEL:
2399 case PC:
2400 case CC0:
2401 case SCRATCH:
2402 /* SCRATCH must be shared because they represent distinct values. */
2403 return;
2404 case CLOBBER:
2405 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2406 return;
2407 break;
2408
2409 case CONST:
2410 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2411 a LABEL_REF, it isn't sharable. */
2412 if (GET_CODE (XEXP (x, 0)) == PLUS
2413 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2414 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2415 return;
2416 break;
2417
2418 case INSN:
2419 case JUMP_INSN:
2420 case CALL_INSN:
2421 case NOTE:
2422 case BARRIER:
2423 /* The chain of insns is not being copied. */
2424 return;
2425
2426 default:
2427 break;
2428 }
2429
2430 /* This rtx may not be shared. If it has already been seen,
2431 replace it with a copy of itself. */
2432
2433 if (RTX_FLAG (x, used))
2434 {
2435 x = shallow_copy_rtx (x);
2436 copied = 1;
2437 }
2438 RTX_FLAG (x, used) = 1;
2439
2440 /* Now scan the subexpressions recursively.
2441 We can store any replaced subexpressions directly into X
2442 since we know X is not shared! Any vectors in X
2443 must be copied if X was copied. */
2444
2445 format_ptr = GET_RTX_FORMAT (code);
2446 length = GET_RTX_LENGTH (code);
2447 last_ptr = NULL;
2448
2449 for (i = 0; i < length; i++)
2450 {
2451 switch (*format_ptr++)
2452 {
2453 case 'e':
2454 if (last_ptr)
2455 copy_rtx_if_shared_1 (last_ptr);
2456 last_ptr = &XEXP (x, i);
2457 break;
2458
2459 case 'E':
2460 if (XVEC (x, i) != NULL)
2461 {
2462 int j;
2463 int len = XVECLEN (x, i);
2464
2465 /* Copy the vector iff I copied the rtx and the length
2466 is nonzero. */
2467 if (copied && len > 0)
2468 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2469
2470 /* Call recursively on all inside the vector. */
2471 for (j = 0; j < len; j++)
2472 {
2473 if (last_ptr)
2474 copy_rtx_if_shared_1 (last_ptr);
2475 last_ptr = &XVECEXP (x, i, j);
2476 }
2477 }
2478 break;
2479 }
2480 }
2481 *orig1 = x;
2482 if (last_ptr)
2483 {
2484 orig1 = last_ptr;
2485 goto repeat;
2486 }
2487 return;
2488 }
2489
2490 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2491 to look for shared sub-parts. */
2492
2493 void
2494 reset_used_flags (rtx x)
2495 {
2496 int i, j;
2497 enum rtx_code code;
2498 const char *format_ptr;
2499 int length;
2500
2501 /* Repeat is used to turn tail-recursion into iteration. */
2502 repeat:
2503 if (x == 0)
2504 return;
2505
2506 code = GET_CODE (x);
2507
2508 /* These types may be freely shared so we needn't do any resetting
2509 for them. */
2510
2511 switch (code)
2512 {
2513 case REG:
2514 case CONST_INT:
2515 case CONST_DOUBLE:
2516 case CONST_VECTOR:
2517 case SYMBOL_REF:
2518 case CODE_LABEL:
2519 case PC:
2520 case CC0:
2521 return;
2522
2523 case INSN:
2524 case JUMP_INSN:
2525 case CALL_INSN:
2526 case NOTE:
2527 case LABEL_REF:
2528 case BARRIER:
2529 /* The chain of insns is not being copied. */
2530 return;
2531
2532 default:
2533 break;
2534 }
2535
2536 RTX_FLAG (x, used) = 0;
2537
2538 format_ptr = GET_RTX_FORMAT (code);
2539 length = GET_RTX_LENGTH (code);
2540
2541 for (i = 0; i < length; i++)
2542 {
2543 switch (*format_ptr++)
2544 {
2545 case 'e':
2546 if (i == length-1)
2547 {
2548 x = XEXP (x, i);
2549 goto repeat;
2550 }
2551 reset_used_flags (XEXP (x, i));
2552 break;
2553
2554 case 'E':
2555 for (j = 0; j < XVECLEN (x, i); j++)
2556 reset_used_flags (XVECEXP (x, i, j));
2557 break;
2558 }
2559 }
2560 }
2561
2562 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2563 to look for shared sub-parts. */
2564
2565 void
2566 set_used_flags (rtx x)
2567 {
2568 int i, j;
2569 enum rtx_code code;
2570 const char *format_ptr;
2571
2572 if (x == 0)
2573 return;
2574
2575 code = GET_CODE (x);
2576
2577 /* These types may be freely shared so we needn't do any resetting
2578 for them. */
2579
2580 switch (code)
2581 {
2582 case REG:
2583 case CONST_INT:
2584 case CONST_DOUBLE:
2585 case CONST_VECTOR:
2586 case SYMBOL_REF:
2587 case CODE_LABEL:
2588 case PC:
2589 case CC0:
2590 return;
2591
2592 case INSN:
2593 case JUMP_INSN:
2594 case CALL_INSN:
2595 case NOTE:
2596 case LABEL_REF:
2597 case BARRIER:
2598 /* The chain of insns is not being copied. */
2599 return;
2600
2601 default:
2602 break;
2603 }
2604
2605 RTX_FLAG (x, used) = 1;
2606
2607 format_ptr = GET_RTX_FORMAT (code);
2608 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2609 {
2610 switch (*format_ptr++)
2611 {
2612 case 'e':
2613 set_used_flags (XEXP (x, i));
2614 break;
2615
2616 case 'E':
2617 for (j = 0; j < XVECLEN (x, i); j++)
2618 set_used_flags (XVECEXP (x, i, j));
2619 break;
2620 }
2621 }
2622 }
2623 \f
2624 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2625 Return X or the rtx for the pseudo reg the value of X was copied into.
2626 OTHER must be valid as a SET_DEST. */
2627
2628 rtx
2629 make_safe_from (rtx x, rtx other)
2630 {
2631 while (1)
2632 switch (GET_CODE (other))
2633 {
2634 case SUBREG:
2635 other = SUBREG_REG (other);
2636 break;
2637 case STRICT_LOW_PART:
2638 case SIGN_EXTEND:
2639 case ZERO_EXTEND:
2640 other = XEXP (other, 0);
2641 break;
2642 default:
2643 goto done;
2644 }
2645 done:
2646 if ((MEM_P (other)
2647 && ! CONSTANT_P (x)
2648 && !REG_P (x)
2649 && GET_CODE (x) != SUBREG)
2650 || (REG_P (other)
2651 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2652 || reg_mentioned_p (other, x))))
2653 {
2654 rtx temp = gen_reg_rtx (GET_MODE (x));
2655 emit_move_insn (temp, x);
2656 return temp;
2657 }
2658 return x;
2659 }
2660 \f
2661 /* Emission of insns (adding them to the doubly-linked list). */
2662
2663 /* Return the first insn of the current sequence or current function. */
2664
2665 rtx
2666 get_insns (void)
2667 {
2668 return first_insn;
2669 }
2670
2671 /* Specify a new insn as the first in the chain. */
2672
2673 void
2674 set_first_insn (rtx insn)
2675 {
2676 gcc_assert (!PREV_INSN (insn));
2677 first_insn = insn;
2678 }
2679
2680 /* Return the last insn emitted in current sequence or current function. */
2681
2682 rtx
2683 get_last_insn (void)
2684 {
2685 return last_insn;
2686 }
2687
2688 /* Specify a new insn as the last in the chain. */
2689
2690 void
2691 set_last_insn (rtx insn)
2692 {
2693 gcc_assert (!NEXT_INSN (insn));
2694 last_insn = insn;
2695 }
2696
2697 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2698
2699 rtx
2700 get_last_insn_anywhere (void)
2701 {
2702 struct sequence_stack *stack;
2703 if (last_insn)
2704 return last_insn;
2705 for (stack = seq_stack; stack; stack = stack->next)
2706 if (stack->last != 0)
2707 return stack->last;
2708 return 0;
2709 }
2710
2711 /* Return the first nonnote insn emitted in current sequence or current
2712 function. This routine looks inside SEQUENCEs. */
2713
2714 rtx
2715 get_first_nonnote_insn (void)
2716 {
2717 rtx insn = first_insn;
2718
2719 if (insn)
2720 {
2721 if (NOTE_P (insn))
2722 for (insn = next_insn (insn);
2723 insn && NOTE_P (insn);
2724 insn = next_insn (insn))
2725 continue;
2726 else
2727 {
2728 if (NONJUMP_INSN_P (insn)
2729 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2730 insn = XVECEXP (PATTERN (insn), 0, 0);
2731 }
2732 }
2733
2734 return insn;
2735 }
2736
2737 /* Return the last nonnote insn emitted in current sequence or current
2738 function. This routine looks inside SEQUENCEs. */
2739
2740 rtx
2741 get_last_nonnote_insn (void)
2742 {
2743 rtx insn = last_insn;
2744
2745 if (insn)
2746 {
2747 if (NOTE_P (insn))
2748 for (insn = previous_insn (insn);
2749 insn && NOTE_P (insn);
2750 insn = previous_insn (insn))
2751 continue;
2752 else
2753 {
2754 if (NONJUMP_INSN_P (insn)
2755 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2756 insn = XVECEXP (PATTERN (insn), 0,
2757 XVECLEN (PATTERN (insn), 0) - 1);
2758 }
2759 }
2760
2761 return insn;
2762 }
2763
2764 /* Return a number larger than any instruction's uid in this function. */
2765
2766 int
2767 get_max_uid (void)
2768 {
2769 return cur_insn_uid;
2770 }
2771
2772 /* Renumber instructions so that no instruction UIDs are wasted. */
2773
2774 void
2775 renumber_insns (void)
2776 {
2777 rtx insn;
2778
2779 /* If we're not supposed to renumber instructions, don't. */
2780 if (!flag_renumber_insns)
2781 return;
2782
2783 /* If there aren't that many instructions, then it's not really
2784 worth renumbering them. */
2785 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2786 return;
2787
2788 cur_insn_uid = 1;
2789
2790 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2791 {
2792 if (dump_file)
2793 fprintf (dump_file, "Renumbering insn %d to %d\n",
2794 INSN_UID (insn), cur_insn_uid);
2795 INSN_UID (insn) = cur_insn_uid++;
2796 }
2797 }
2798 \f
2799 /* Return the next insn. If it is a SEQUENCE, return the first insn
2800 of the sequence. */
2801
2802 rtx
2803 next_insn (rtx insn)
2804 {
2805 if (insn)
2806 {
2807 insn = NEXT_INSN (insn);
2808 if (insn && NONJUMP_INSN_P (insn)
2809 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2810 insn = XVECEXP (PATTERN (insn), 0, 0);
2811 }
2812
2813 return insn;
2814 }
2815
2816 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2817 of the sequence. */
2818
2819 rtx
2820 previous_insn (rtx insn)
2821 {
2822 if (insn)
2823 {
2824 insn = PREV_INSN (insn);
2825 if (insn && NONJUMP_INSN_P (insn)
2826 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2827 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2828 }
2829
2830 return insn;
2831 }
2832
2833 /* Return the next insn after INSN that is not a NOTE. This routine does not
2834 look inside SEQUENCEs. */
2835
2836 rtx
2837 next_nonnote_insn (rtx insn)
2838 {
2839 while (insn)
2840 {
2841 insn = NEXT_INSN (insn);
2842 if (insn == 0 || !NOTE_P (insn))
2843 break;
2844 }
2845
2846 return insn;
2847 }
2848
2849 /* Return the previous insn before INSN that is not a NOTE. This routine does
2850 not look inside SEQUENCEs. */
2851
2852 rtx
2853 prev_nonnote_insn (rtx insn)
2854 {
2855 while (insn)
2856 {
2857 insn = PREV_INSN (insn);
2858 if (insn == 0 || !NOTE_P (insn))
2859 break;
2860 }
2861
2862 return insn;
2863 }
2864
2865 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2866 or 0, if there is none. This routine does not look inside
2867 SEQUENCEs. */
2868
2869 rtx
2870 next_real_insn (rtx insn)
2871 {
2872 while (insn)
2873 {
2874 insn = NEXT_INSN (insn);
2875 if (insn == 0 || INSN_P (insn))
2876 break;
2877 }
2878
2879 return insn;
2880 }
2881
2882 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2883 or 0, if there is none. This routine does not look inside
2884 SEQUENCEs. */
2885
2886 rtx
2887 prev_real_insn (rtx insn)
2888 {
2889 while (insn)
2890 {
2891 insn = PREV_INSN (insn);
2892 if (insn == 0 || INSN_P (insn))
2893 break;
2894 }
2895
2896 return insn;
2897 }
2898
2899 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2900 This routine does not look inside SEQUENCEs. */
2901
2902 rtx
2903 last_call_insn (void)
2904 {
2905 rtx insn;
2906
2907 for (insn = get_last_insn ();
2908 insn && !CALL_P (insn);
2909 insn = PREV_INSN (insn))
2910 ;
2911
2912 return insn;
2913 }
2914
2915 /* Find the next insn after INSN that really does something. This routine
2916 does not look inside SEQUENCEs. Until reload has completed, this is the
2917 same as next_real_insn. */
2918
2919 int
2920 active_insn_p (rtx insn)
2921 {
2922 return (CALL_P (insn) || JUMP_P (insn)
2923 || (NONJUMP_INSN_P (insn)
2924 && (! reload_completed
2925 || (GET_CODE (PATTERN (insn)) != USE
2926 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2927 }
2928
2929 rtx
2930 next_active_insn (rtx insn)
2931 {
2932 while (insn)
2933 {
2934 insn = NEXT_INSN (insn);
2935 if (insn == 0 || active_insn_p (insn))
2936 break;
2937 }
2938
2939 return insn;
2940 }
2941
2942 /* Find the last insn before INSN that really does something. This routine
2943 does not look inside SEQUENCEs. Until reload has completed, this is the
2944 same as prev_real_insn. */
2945
2946 rtx
2947 prev_active_insn (rtx insn)
2948 {
2949 while (insn)
2950 {
2951 insn = PREV_INSN (insn);
2952 if (insn == 0 || active_insn_p (insn))
2953 break;
2954 }
2955
2956 return insn;
2957 }
2958
2959 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2960
2961 rtx
2962 next_label (rtx insn)
2963 {
2964 while (insn)
2965 {
2966 insn = NEXT_INSN (insn);
2967 if (insn == 0 || LABEL_P (insn))
2968 break;
2969 }
2970
2971 return insn;
2972 }
2973
2974 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2975
2976 rtx
2977 prev_label (rtx insn)
2978 {
2979 while (insn)
2980 {
2981 insn = PREV_INSN (insn);
2982 if (insn == 0 || LABEL_P (insn))
2983 break;
2984 }
2985
2986 return insn;
2987 }
2988
2989 /* Return the last label to mark the same position as LABEL. Return null
2990 if LABEL itself is null. */
2991
2992 rtx
2993 skip_consecutive_labels (rtx label)
2994 {
2995 rtx insn;
2996
2997 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
2998 if (LABEL_P (insn))
2999 label = insn;
3000
3001 return label;
3002 }
3003 \f
3004 #ifdef HAVE_cc0
3005 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3006 and REG_CC_USER notes so we can find it. */
3007
3008 void
3009 link_cc0_insns (rtx insn)
3010 {
3011 rtx user = next_nonnote_insn (insn);
3012
3013 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3014 user = XVECEXP (PATTERN (user), 0, 0);
3015
3016 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3017 REG_NOTES (user));
3018 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3019 }
3020
3021 /* Return the next insn that uses CC0 after INSN, which is assumed to
3022 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3023 applied to the result of this function should yield INSN).
3024
3025 Normally, this is simply the next insn. However, if a REG_CC_USER note
3026 is present, it contains the insn that uses CC0.
3027
3028 Return 0 if we can't find the insn. */
3029
3030 rtx
3031 next_cc0_user (rtx insn)
3032 {
3033 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3034
3035 if (note)
3036 return XEXP (note, 0);
3037
3038 insn = next_nonnote_insn (insn);
3039 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3040 insn = XVECEXP (PATTERN (insn), 0, 0);
3041
3042 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3043 return insn;
3044
3045 return 0;
3046 }
3047
3048 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3049 note, it is the previous insn. */
3050
3051 rtx
3052 prev_cc0_setter (rtx insn)
3053 {
3054 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3055
3056 if (note)
3057 return XEXP (note, 0);
3058
3059 insn = prev_nonnote_insn (insn);
3060 gcc_assert (sets_cc0_p (PATTERN (insn)));
3061
3062 return insn;
3063 }
3064 #endif
3065
3066 /* Increment the label uses for all labels present in rtx. */
3067
3068 static void
3069 mark_label_nuses (rtx x)
3070 {
3071 enum rtx_code code;
3072 int i, j;
3073 const char *fmt;
3074
3075 code = GET_CODE (x);
3076 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3077 LABEL_NUSES (XEXP (x, 0))++;
3078
3079 fmt = GET_RTX_FORMAT (code);
3080 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3081 {
3082 if (fmt[i] == 'e')
3083 mark_label_nuses (XEXP (x, i));
3084 else if (fmt[i] == 'E')
3085 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3086 mark_label_nuses (XVECEXP (x, i, j));
3087 }
3088 }
3089
3090 \f
3091 /* Try splitting insns that can be split for better scheduling.
3092 PAT is the pattern which might split.
3093 TRIAL is the insn providing PAT.
3094 LAST is nonzero if we should return the last insn of the sequence produced.
3095
3096 If this routine succeeds in splitting, it returns the first or last
3097 replacement insn depending on the value of LAST. Otherwise, it
3098 returns TRIAL. If the insn to be returned can be split, it will be. */
3099
3100 rtx
3101 try_split (rtx pat, rtx trial, int last)
3102 {
3103 rtx before = PREV_INSN (trial);
3104 rtx after = NEXT_INSN (trial);
3105 int has_barrier = 0;
3106 rtx tem;
3107 rtx note, seq;
3108 int probability;
3109 rtx insn_last, insn;
3110 int njumps = 0;
3111
3112 if (any_condjump_p (trial)
3113 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3114 split_branch_probability = INTVAL (XEXP (note, 0));
3115 probability = split_branch_probability;
3116
3117 seq = split_insns (pat, trial);
3118
3119 split_branch_probability = -1;
3120
3121 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3122 We may need to handle this specially. */
3123 if (after && BARRIER_P (after))
3124 {
3125 has_barrier = 1;
3126 after = NEXT_INSN (after);
3127 }
3128
3129 if (!seq)
3130 return trial;
3131
3132 /* Avoid infinite loop if any insn of the result matches
3133 the original pattern. */
3134 insn_last = seq;
3135 while (1)
3136 {
3137 if (INSN_P (insn_last)
3138 && rtx_equal_p (PATTERN (insn_last), pat))
3139 return trial;
3140 if (!NEXT_INSN (insn_last))
3141 break;
3142 insn_last = NEXT_INSN (insn_last);
3143 }
3144
3145 /* Mark labels. */
3146 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3147 {
3148 if (JUMP_P (insn))
3149 {
3150 mark_jump_label (PATTERN (insn), insn, 0);
3151 njumps++;
3152 if (probability != -1
3153 && any_condjump_p (insn)
3154 && !find_reg_note (insn, REG_BR_PROB, 0))
3155 {
3156 /* We can preserve the REG_BR_PROB notes only if exactly
3157 one jump is created, otherwise the machine description
3158 is responsible for this step using
3159 split_branch_probability variable. */
3160 gcc_assert (njumps == 1);
3161 REG_NOTES (insn)
3162 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3163 GEN_INT (probability),
3164 REG_NOTES (insn));
3165 }
3166 }
3167 }
3168
3169 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3170 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3171 if (CALL_P (trial))
3172 {
3173 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3174 if (CALL_P (insn))
3175 {
3176 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3177 while (*p)
3178 p = &XEXP (*p, 1);
3179 *p = CALL_INSN_FUNCTION_USAGE (trial);
3180 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3181 }
3182 }
3183
3184 /* Copy notes, particularly those related to the CFG. */
3185 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3186 {
3187 switch (REG_NOTE_KIND (note))
3188 {
3189 case REG_EH_REGION:
3190 insn = insn_last;
3191 while (insn != NULL_RTX)
3192 {
3193 if (CALL_P (insn)
3194 || (flag_non_call_exceptions && INSN_P (insn)
3195 && may_trap_p (PATTERN (insn))))
3196 REG_NOTES (insn)
3197 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3198 XEXP (note, 0),
3199 REG_NOTES (insn));
3200 insn = PREV_INSN (insn);
3201 }
3202 break;
3203
3204 case REG_NORETURN:
3205 case REG_SETJMP:
3206 insn = insn_last;
3207 while (insn != NULL_RTX)
3208 {
3209 if (CALL_P (insn))
3210 REG_NOTES (insn)
3211 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3212 XEXP (note, 0),
3213 REG_NOTES (insn));
3214 insn = PREV_INSN (insn);
3215 }
3216 break;
3217
3218 case REG_NON_LOCAL_GOTO:
3219 insn = insn_last;
3220 while (insn != NULL_RTX)
3221 {
3222 if (JUMP_P (insn))
3223 REG_NOTES (insn)
3224 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3225 XEXP (note, 0),
3226 REG_NOTES (insn));
3227 insn = PREV_INSN (insn);
3228 }
3229 break;
3230
3231 default:
3232 break;
3233 }
3234 }
3235
3236 /* If there are LABELS inside the split insns increment the
3237 usage count so we don't delete the label. */
3238 if (NONJUMP_INSN_P (trial))
3239 {
3240 insn = insn_last;
3241 while (insn != NULL_RTX)
3242 {
3243 if (NONJUMP_INSN_P (insn))
3244 mark_label_nuses (PATTERN (insn));
3245
3246 insn = PREV_INSN (insn);
3247 }
3248 }
3249
3250 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3251
3252 delete_insn (trial);
3253 if (has_barrier)
3254 emit_barrier_after (tem);
3255
3256 /* Recursively call try_split for each new insn created; by the
3257 time control returns here that insn will be fully split, so
3258 set LAST and continue from the insn after the one returned.
3259 We can't use next_active_insn here since AFTER may be a note.
3260 Ignore deleted insns, which can be occur if not optimizing. */
3261 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3262 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3263 tem = try_split (PATTERN (tem), tem, 1);
3264
3265 /* Return either the first or the last insn, depending on which was
3266 requested. */
3267 return last
3268 ? (after ? PREV_INSN (after) : last_insn)
3269 : NEXT_INSN (before);
3270 }
3271 \f
3272 /* Make and return an INSN rtx, initializing all its slots.
3273 Store PATTERN in the pattern slots. */
3274
3275 rtx
3276 make_insn_raw (rtx pattern)
3277 {
3278 rtx insn;
3279
3280 insn = rtx_alloc (INSN);
3281
3282 INSN_UID (insn) = cur_insn_uid++;
3283 PATTERN (insn) = pattern;
3284 INSN_CODE (insn) = -1;
3285 LOG_LINKS (insn) = NULL;
3286 REG_NOTES (insn) = NULL;
3287 INSN_LOCATOR (insn) = 0;
3288 BLOCK_FOR_INSN (insn) = NULL;
3289
3290 #ifdef ENABLE_RTL_CHECKING
3291 if (insn
3292 && INSN_P (insn)
3293 && (returnjump_p (insn)
3294 || (GET_CODE (insn) == SET
3295 && SET_DEST (insn) == pc_rtx)))
3296 {
3297 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3298 debug_rtx (insn);
3299 }
3300 #endif
3301
3302 return insn;
3303 }
3304
3305 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3306
3307 rtx
3308 make_jump_insn_raw (rtx pattern)
3309 {
3310 rtx insn;
3311
3312 insn = rtx_alloc (JUMP_INSN);
3313 INSN_UID (insn) = cur_insn_uid++;
3314
3315 PATTERN (insn) = pattern;
3316 INSN_CODE (insn) = -1;
3317 LOG_LINKS (insn) = NULL;
3318 REG_NOTES (insn) = NULL;
3319 JUMP_LABEL (insn) = NULL;
3320 INSN_LOCATOR (insn) = 0;
3321 BLOCK_FOR_INSN (insn) = NULL;
3322
3323 return insn;
3324 }
3325
3326 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3327
3328 static rtx
3329 make_call_insn_raw (rtx pattern)
3330 {
3331 rtx insn;
3332
3333 insn = rtx_alloc (CALL_INSN);
3334 INSN_UID (insn) = cur_insn_uid++;
3335
3336 PATTERN (insn) = pattern;
3337 INSN_CODE (insn) = -1;
3338 LOG_LINKS (insn) = NULL;
3339 REG_NOTES (insn) = NULL;
3340 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3341 INSN_LOCATOR (insn) = 0;
3342 BLOCK_FOR_INSN (insn) = NULL;
3343
3344 return insn;
3345 }
3346 \f
3347 /* Add INSN to the end of the doubly-linked list.
3348 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3349
3350 void
3351 add_insn (rtx insn)
3352 {
3353 PREV_INSN (insn) = last_insn;
3354 NEXT_INSN (insn) = 0;
3355
3356 if (NULL != last_insn)
3357 NEXT_INSN (last_insn) = insn;
3358
3359 if (NULL == first_insn)
3360 first_insn = insn;
3361
3362 last_insn = insn;
3363 }
3364
3365 /* Add INSN into the doubly-linked list after insn AFTER. This and
3366 the next should be the only functions called to insert an insn once
3367 delay slots have been filled since only they know how to update a
3368 SEQUENCE. */
3369
3370 void
3371 add_insn_after (rtx insn, rtx after)
3372 {
3373 rtx next = NEXT_INSN (after);
3374 basic_block bb;
3375
3376 gcc_assert (!optimize || !INSN_DELETED_P (after));
3377
3378 NEXT_INSN (insn) = next;
3379 PREV_INSN (insn) = after;
3380
3381 if (next)
3382 {
3383 PREV_INSN (next) = insn;
3384 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3385 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3386 }
3387 else if (last_insn == after)
3388 last_insn = insn;
3389 else
3390 {
3391 struct sequence_stack *stack = seq_stack;
3392 /* Scan all pending sequences too. */
3393 for (; stack; stack = stack->next)
3394 if (after == stack->last)
3395 {
3396 stack->last = insn;
3397 break;
3398 }
3399
3400 gcc_assert (stack);
3401 }
3402
3403 if (!BARRIER_P (after)
3404 && !BARRIER_P (insn)
3405 && (bb = BLOCK_FOR_INSN (after)))
3406 {
3407 set_block_for_insn (insn, bb);
3408 if (INSN_P (insn))
3409 bb->flags |= BB_DIRTY;
3410 /* Should not happen as first in the BB is always
3411 either NOTE or LABEL. */
3412 if (BB_END (bb) == after
3413 /* Avoid clobbering of structure when creating new BB. */
3414 && !BARRIER_P (insn)
3415 && (!NOTE_P (insn)
3416 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3417 BB_END (bb) = insn;
3418 }
3419
3420 NEXT_INSN (after) = insn;
3421 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3422 {
3423 rtx sequence = PATTERN (after);
3424 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3425 }
3426 }
3427
3428 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3429 the previous should be the only functions called to insert an insn once
3430 delay slots have been filled since only they know how to update a
3431 SEQUENCE. */
3432
3433 void
3434 add_insn_before (rtx insn, rtx before)
3435 {
3436 rtx prev = PREV_INSN (before);
3437 basic_block bb;
3438
3439 gcc_assert (!optimize || !INSN_DELETED_P (before));
3440
3441 PREV_INSN (insn) = prev;
3442 NEXT_INSN (insn) = before;
3443
3444 if (prev)
3445 {
3446 NEXT_INSN (prev) = insn;
3447 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3448 {
3449 rtx sequence = PATTERN (prev);
3450 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3451 }
3452 }
3453 else if (first_insn == before)
3454 first_insn = insn;
3455 else
3456 {
3457 struct sequence_stack *stack = seq_stack;
3458 /* Scan all pending sequences too. */
3459 for (; stack; stack = stack->next)
3460 if (before == stack->first)
3461 {
3462 stack->first = insn;
3463 break;
3464 }
3465
3466 gcc_assert (stack);
3467 }
3468
3469 if (!BARRIER_P (before)
3470 && !BARRIER_P (insn)
3471 && (bb = BLOCK_FOR_INSN (before)))
3472 {
3473 set_block_for_insn (insn, bb);
3474 if (INSN_P (insn))
3475 bb->flags |= BB_DIRTY;
3476 /* Should not happen as first in the BB is always either NOTE or
3477 LABEL. */
3478 gcc_assert (BB_HEAD (bb) != insn
3479 /* Avoid clobbering of structure when creating new BB. */
3480 || BARRIER_P (insn)
3481 || (NOTE_P (insn)
3482 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK));
3483 }
3484
3485 PREV_INSN (before) = insn;
3486 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3487 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3488 }
3489
3490 /* Remove an insn from its doubly-linked list. This function knows how
3491 to handle sequences. */
3492 void
3493 remove_insn (rtx insn)
3494 {
3495 rtx next = NEXT_INSN (insn);
3496 rtx prev = PREV_INSN (insn);
3497 basic_block bb;
3498
3499 if (prev)
3500 {
3501 NEXT_INSN (prev) = next;
3502 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3503 {
3504 rtx sequence = PATTERN (prev);
3505 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3506 }
3507 }
3508 else if (first_insn == insn)
3509 first_insn = next;
3510 else
3511 {
3512 struct sequence_stack *stack = seq_stack;
3513 /* Scan all pending sequences too. */
3514 for (; stack; stack = stack->next)
3515 if (insn == stack->first)
3516 {
3517 stack->first = next;
3518 break;
3519 }
3520
3521 gcc_assert (stack);
3522 }
3523
3524 if (next)
3525 {
3526 PREV_INSN (next) = prev;
3527 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3528 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3529 }
3530 else if (last_insn == insn)
3531 last_insn = prev;
3532 else
3533 {
3534 struct sequence_stack *stack = seq_stack;
3535 /* Scan all pending sequences too. */
3536 for (; stack; stack = stack->next)
3537 if (insn == stack->last)
3538 {
3539 stack->last = prev;
3540 break;
3541 }
3542
3543 gcc_assert (stack);
3544 }
3545 if (!BARRIER_P (insn)
3546 && (bb = BLOCK_FOR_INSN (insn)))
3547 {
3548 if (INSN_P (insn))
3549 bb->flags |= BB_DIRTY;
3550 if (BB_HEAD (bb) == insn)
3551 {
3552 /* Never ever delete the basic block note without deleting whole
3553 basic block. */
3554 gcc_assert (!NOTE_P (insn));
3555 BB_HEAD (bb) = next;
3556 }
3557 if (BB_END (bb) == insn)
3558 BB_END (bb) = prev;
3559 }
3560 }
3561
3562 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3563
3564 void
3565 add_function_usage_to (rtx call_insn, rtx call_fusage)
3566 {
3567 gcc_assert (call_insn && CALL_P (call_insn));
3568
3569 /* Put the register usage information on the CALL. If there is already
3570 some usage information, put ours at the end. */
3571 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3572 {
3573 rtx link;
3574
3575 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3576 link = XEXP (link, 1))
3577 ;
3578
3579 XEXP (link, 1) = call_fusage;
3580 }
3581 else
3582 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3583 }
3584
3585 /* Delete all insns made since FROM.
3586 FROM becomes the new last instruction. */
3587
3588 void
3589 delete_insns_since (rtx from)
3590 {
3591 if (from == 0)
3592 first_insn = 0;
3593 else
3594 NEXT_INSN (from) = 0;
3595 last_insn = from;
3596 }
3597
3598 /* This function is deprecated, please use sequences instead.
3599
3600 Move a consecutive bunch of insns to a different place in the chain.
3601 The insns to be moved are those between FROM and TO.
3602 They are moved to a new position after the insn AFTER.
3603 AFTER must not be FROM or TO or any insn in between.
3604
3605 This function does not know about SEQUENCEs and hence should not be
3606 called after delay-slot filling has been done. */
3607
3608 void
3609 reorder_insns_nobb (rtx from, rtx to, rtx after)
3610 {
3611 /* Splice this bunch out of where it is now. */
3612 if (PREV_INSN (from))
3613 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3614 if (NEXT_INSN (to))
3615 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3616 if (last_insn == to)
3617 last_insn = PREV_INSN (from);
3618 if (first_insn == from)
3619 first_insn = NEXT_INSN (to);
3620
3621 /* Make the new neighbors point to it and it to them. */
3622 if (NEXT_INSN (after))
3623 PREV_INSN (NEXT_INSN (after)) = to;
3624
3625 NEXT_INSN (to) = NEXT_INSN (after);
3626 PREV_INSN (from) = after;
3627 NEXT_INSN (after) = from;
3628 if (after == last_insn)
3629 last_insn = to;
3630 }
3631
3632 /* Same as function above, but take care to update BB boundaries. */
3633 void
3634 reorder_insns (rtx from, rtx to, rtx after)
3635 {
3636 rtx prev = PREV_INSN (from);
3637 basic_block bb, bb2;
3638
3639 reorder_insns_nobb (from, to, after);
3640
3641 if (!BARRIER_P (after)
3642 && (bb = BLOCK_FOR_INSN (after)))
3643 {
3644 rtx x;
3645 bb->flags |= BB_DIRTY;
3646
3647 if (!BARRIER_P (from)
3648 && (bb2 = BLOCK_FOR_INSN (from)))
3649 {
3650 if (BB_END (bb2) == to)
3651 BB_END (bb2) = prev;
3652 bb2->flags |= BB_DIRTY;
3653 }
3654
3655 if (BB_END (bb) == after)
3656 BB_END (bb) = to;
3657
3658 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3659 if (!BARRIER_P (x))
3660 set_block_for_insn (x, bb);
3661 }
3662 }
3663
3664 /* Return the line note insn preceding INSN. */
3665
3666 static rtx
3667 find_line_note (rtx insn)
3668 {
3669 if (no_line_numbers)
3670 return 0;
3671
3672 for (; insn; insn = PREV_INSN (insn))
3673 if (NOTE_P (insn)
3674 && NOTE_LINE_NUMBER (insn) >= 0)
3675 break;
3676
3677 return insn;
3678 }
3679
3680 \f
3681 /* Emit insn(s) of given code and pattern
3682 at a specified place within the doubly-linked list.
3683
3684 All of the emit_foo global entry points accept an object
3685 X which is either an insn list or a PATTERN of a single
3686 instruction.
3687
3688 There are thus a few canonical ways to generate code and
3689 emit it at a specific place in the instruction stream. For
3690 example, consider the instruction named SPOT and the fact that
3691 we would like to emit some instructions before SPOT. We might
3692 do it like this:
3693
3694 start_sequence ();
3695 ... emit the new instructions ...
3696 insns_head = get_insns ();
3697 end_sequence ();
3698
3699 emit_insn_before (insns_head, SPOT);
3700
3701 It used to be common to generate SEQUENCE rtl instead, but that
3702 is a relic of the past which no longer occurs. The reason is that
3703 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3704 generated would almost certainly die right after it was created. */
3705
3706 /* Make X be output before the instruction BEFORE. */
3707
3708 rtx
3709 emit_insn_before_noloc (rtx x, rtx before)
3710 {
3711 rtx last = before;
3712 rtx insn;
3713
3714 gcc_assert (before);
3715
3716 if (x == NULL_RTX)
3717 return last;
3718
3719 switch (GET_CODE (x))
3720 {
3721 case INSN:
3722 case JUMP_INSN:
3723 case CALL_INSN:
3724 case CODE_LABEL:
3725 case BARRIER:
3726 case NOTE:
3727 insn = x;
3728 while (insn)
3729 {
3730 rtx next = NEXT_INSN (insn);
3731 add_insn_before (insn, before);
3732 last = insn;
3733 insn = next;
3734 }
3735 break;
3736
3737 #ifdef ENABLE_RTL_CHECKING
3738 case SEQUENCE:
3739 gcc_unreachable ();
3740 break;
3741 #endif
3742
3743 default:
3744 last = make_insn_raw (x);
3745 add_insn_before (last, before);
3746 break;
3747 }
3748
3749 return last;
3750 }
3751
3752 /* Make an instruction with body X and code JUMP_INSN
3753 and output it before the instruction BEFORE. */
3754
3755 rtx
3756 emit_jump_insn_before_noloc (rtx x, rtx before)
3757 {
3758 rtx insn, last = NULL_RTX;
3759
3760 gcc_assert (before);
3761
3762 switch (GET_CODE (x))
3763 {
3764 case INSN:
3765 case JUMP_INSN:
3766 case CALL_INSN:
3767 case CODE_LABEL:
3768 case BARRIER:
3769 case NOTE:
3770 insn = x;
3771 while (insn)
3772 {
3773 rtx next = NEXT_INSN (insn);
3774 add_insn_before (insn, before);
3775 last = insn;
3776 insn = next;
3777 }
3778 break;
3779
3780 #ifdef ENABLE_RTL_CHECKING
3781 case SEQUENCE:
3782 gcc_unreachable ();
3783 break;
3784 #endif
3785
3786 default:
3787 last = make_jump_insn_raw (x);
3788 add_insn_before (last, before);
3789 break;
3790 }
3791
3792 return last;
3793 }
3794
3795 /* Make an instruction with body X and code CALL_INSN
3796 and output it before the instruction BEFORE. */
3797
3798 rtx
3799 emit_call_insn_before_noloc (rtx x, rtx before)
3800 {
3801 rtx last = NULL_RTX, insn;
3802
3803 gcc_assert (before);
3804
3805 switch (GET_CODE (x))
3806 {
3807 case INSN:
3808 case JUMP_INSN:
3809 case CALL_INSN:
3810 case CODE_LABEL:
3811 case BARRIER:
3812 case NOTE:
3813 insn = x;
3814 while (insn)
3815 {
3816 rtx next = NEXT_INSN (insn);
3817 add_insn_before (insn, before);
3818 last = insn;
3819 insn = next;
3820 }
3821 break;
3822
3823 #ifdef ENABLE_RTL_CHECKING
3824 case SEQUENCE:
3825 gcc_unreachable ();
3826 break;
3827 #endif
3828
3829 default:
3830 last = make_call_insn_raw (x);
3831 add_insn_before (last, before);
3832 break;
3833 }
3834
3835 return last;
3836 }
3837
3838 /* Make an insn of code BARRIER
3839 and output it before the insn BEFORE. */
3840
3841 rtx
3842 emit_barrier_before (rtx before)
3843 {
3844 rtx insn = rtx_alloc (BARRIER);
3845
3846 INSN_UID (insn) = cur_insn_uid++;
3847
3848 add_insn_before (insn, before);
3849 return insn;
3850 }
3851
3852 /* Emit the label LABEL before the insn BEFORE. */
3853
3854 rtx
3855 emit_label_before (rtx label, rtx before)
3856 {
3857 /* This can be called twice for the same label as a result of the
3858 confusion that follows a syntax error! So make it harmless. */
3859 if (INSN_UID (label) == 0)
3860 {
3861 INSN_UID (label) = cur_insn_uid++;
3862 add_insn_before (label, before);
3863 }
3864
3865 return label;
3866 }
3867
3868 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3869
3870 rtx
3871 emit_note_before (int subtype, rtx before)
3872 {
3873 rtx note = rtx_alloc (NOTE);
3874 INSN_UID (note) = cur_insn_uid++;
3875 #ifndef USE_MAPPED_LOCATION
3876 NOTE_SOURCE_FILE (note) = 0;
3877 #endif
3878 NOTE_LINE_NUMBER (note) = subtype;
3879 BLOCK_FOR_INSN (note) = NULL;
3880
3881 add_insn_before (note, before);
3882 return note;
3883 }
3884 \f
3885 /* Helper for emit_insn_after, handles lists of instructions
3886 efficiently. */
3887
3888 static rtx emit_insn_after_1 (rtx, rtx);
3889
3890 static rtx
3891 emit_insn_after_1 (rtx first, rtx after)
3892 {
3893 rtx last;
3894 rtx after_after;
3895 basic_block bb;
3896
3897 if (!BARRIER_P (after)
3898 && (bb = BLOCK_FOR_INSN (after)))
3899 {
3900 bb->flags |= BB_DIRTY;
3901 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3902 if (!BARRIER_P (last))
3903 set_block_for_insn (last, bb);
3904 if (!BARRIER_P (last))
3905 set_block_for_insn (last, bb);
3906 if (BB_END (bb) == after)
3907 BB_END (bb) = last;
3908 }
3909 else
3910 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3911 continue;
3912
3913 after_after = NEXT_INSN (after);
3914
3915 NEXT_INSN (after) = first;
3916 PREV_INSN (first) = after;
3917 NEXT_INSN (last) = after_after;
3918 if (after_after)
3919 PREV_INSN (after_after) = last;
3920
3921 if (after == last_insn)
3922 last_insn = last;
3923 return last;
3924 }
3925
3926 /* Make X be output after the insn AFTER. */
3927
3928 rtx
3929 emit_insn_after_noloc (rtx x, rtx after)
3930 {
3931 rtx last = after;
3932
3933 gcc_assert (after);
3934
3935 if (x == NULL_RTX)
3936 return last;
3937
3938 switch (GET_CODE (x))
3939 {
3940 case INSN:
3941 case JUMP_INSN:
3942 case CALL_INSN:
3943 case CODE_LABEL:
3944 case BARRIER:
3945 case NOTE:
3946 last = emit_insn_after_1 (x, after);
3947 break;
3948
3949 #ifdef ENABLE_RTL_CHECKING
3950 case SEQUENCE:
3951 gcc_unreachable ();
3952 break;
3953 #endif
3954
3955 default:
3956 last = make_insn_raw (x);
3957 add_insn_after (last, after);
3958 break;
3959 }
3960
3961 return last;
3962 }
3963
3964 /* Similar to emit_insn_after, except that line notes are to be inserted so
3965 as to act as if this insn were at FROM. */
3966
3967 void
3968 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
3969 {
3970 rtx from_line = find_line_note (from);
3971 rtx after_line = find_line_note (after);
3972 rtx insn = emit_insn_after (x, after);
3973
3974 if (from_line)
3975 emit_note_copy_after (from_line, after);
3976
3977 if (after_line)
3978 emit_note_copy_after (after_line, insn);
3979 }
3980
3981 /* Make an insn of code JUMP_INSN with body X
3982 and output it after the insn AFTER. */
3983
3984 rtx
3985 emit_jump_insn_after_noloc (rtx x, rtx after)
3986 {
3987 rtx last;
3988
3989 gcc_assert (after);
3990
3991 switch (GET_CODE (x))
3992 {
3993 case INSN:
3994 case JUMP_INSN:
3995 case CALL_INSN:
3996 case CODE_LABEL:
3997 case BARRIER:
3998 case NOTE:
3999 last = emit_insn_after_1 (x, after);
4000 break;
4001
4002 #ifdef ENABLE_RTL_CHECKING
4003 case SEQUENCE:
4004 gcc_unreachable ();
4005 break;
4006 #endif
4007
4008 default:
4009 last = make_jump_insn_raw (x);
4010 add_insn_after (last, after);
4011 break;
4012 }
4013
4014 return last;
4015 }
4016
4017 /* Make an instruction with body X and code CALL_INSN
4018 and output it after the instruction AFTER. */
4019
4020 rtx
4021 emit_call_insn_after_noloc (rtx x, rtx after)
4022 {
4023 rtx last;
4024
4025 gcc_assert (after);
4026
4027 switch (GET_CODE (x))
4028 {
4029 case INSN:
4030 case JUMP_INSN:
4031 case CALL_INSN:
4032 case CODE_LABEL:
4033 case BARRIER:
4034 case NOTE:
4035 last = emit_insn_after_1 (x, after);
4036 break;
4037
4038 #ifdef ENABLE_RTL_CHECKING
4039 case SEQUENCE:
4040 gcc_unreachable ();
4041 break;
4042 #endif
4043
4044 default:
4045 last = make_call_insn_raw (x);
4046 add_insn_after (last, after);
4047 break;
4048 }
4049
4050 return last;
4051 }
4052
4053 /* Make an insn of code BARRIER
4054 and output it after the insn AFTER. */
4055
4056 rtx
4057 emit_barrier_after (rtx after)
4058 {
4059 rtx insn = rtx_alloc (BARRIER);
4060
4061 INSN_UID (insn) = cur_insn_uid++;
4062
4063 add_insn_after (insn, after);
4064 return insn;
4065 }
4066
4067 /* Emit the label LABEL after the insn AFTER. */
4068
4069 rtx
4070 emit_label_after (rtx label, rtx after)
4071 {
4072 /* This can be called twice for the same label
4073 as a result of the confusion that follows a syntax error!
4074 So make it harmless. */
4075 if (INSN_UID (label) == 0)
4076 {
4077 INSN_UID (label) = cur_insn_uid++;
4078 add_insn_after (label, after);
4079 }
4080
4081 return label;
4082 }
4083
4084 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4085
4086 rtx
4087 emit_note_after (int subtype, rtx after)
4088 {
4089 rtx note = rtx_alloc (NOTE);
4090 INSN_UID (note) = cur_insn_uid++;
4091 #ifndef USE_MAPPED_LOCATION
4092 NOTE_SOURCE_FILE (note) = 0;
4093 #endif
4094 NOTE_LINE_NUMBER (note) = subtype;
4095 BLOCK_FOR_INSN (note) = NULL;
4096 add_insn_after (note, after);
4097 return note;
4098 }
4099
4100 /* Emit a copy of note ORIG after the insn AFTER. */
4101
4102 rtx
4103 emit_note_copy_after (rtx orig, rtx after)
4104 {
4105 rtx note;
4106
4107 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4108 {
4109 cur_insn_uid++;
4110 return 0;
4111 }
4112
4113 note = rtx_alloc (NOTE);
4114 INSN_UID (note) = cur_insn_uid++;
4115 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4116 NOTE_DATA (note) = NOTE_DATA (orig);
4117 BLOCK_FOR_INSN (note) = NULL;
4118 add_insn_after (note, after);
4119 return note;
4120 }
4121 \f
4122 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4123 rtx
4124 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4125 {
4126 rtx last = emit_insn_after_noloc (pattern, after);
4127
4128 if (pattern == NULL_RTX || !loc)
4129 return last;
4130
4131 after = NEXT_INSN (after);
4132 while (1)
4133 {
4134 if (active_insn_p (after) && !INSN_LOCATOR (after))
4135 INSN_LOCATOR (after) = loc;
4136 if (after == last)
4137 break;
4138 after = NEXT_INSN (after);
4139 }
4140 return last;
4141 }
4142
4143 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4144 rtx
4145 emit_insn_after (rtx pattern, rtx after)
4146 {
4147 if (INSN_P (after))
4148 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4149 else
4150 return emit_insn_after_noloc (pattern, after);
4151 }
4152
4153 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4154 rtx
4155 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4156 {
4157 rtx last = emit_jump_insn_after_noloc (pattern, after);
4158
4159 if (pattern == NULL_RTX || !loc)
4160 return last;
4161
4162 after = NEXT_INSN (after);
4163 while (1)
4164 {
4165 if (active_insn_p (after) && !INSN_LOCATOR (after))
4166 INSN_LOCATOR (after) = loc;
4167 if (after == last)
4168 break;
4169 after = NEXT_INSN (after);
4170 }
4171 return last;
4172 }
4173
4174 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4175 rtx
4176 emit_jump_insn_after (rtx pattern, rtx after)
4177 {
4178 if (INSN_P (after))
4179 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4180 else
4181 return emit_jump_insn_after_noloc (pattern, after);
4182 }
4183
4184 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4185 rtx
4186 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4187 {
4188 rtx last = emit_call_insn_after_noloc (pattern, after);
4189
4190 if (pattern == NULL_RTX || !loc)
4191 return last;
4192
4193 after = NEXT_INSN (after);
4194 while (1)
4195 {
4196 if (active_insn_p (after) && !INSN_LOCATOR (after))
4197 INSN_LOCATOR (after) = loc;
4198 if (after == last)
4199 break;
4200 after = NEXT_INSN (after);
4201 }
4202 return last;
4203 }
4204
4205 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4206 rtx
4207 emit_call_insn_after (rtx pattern, rtx after)
4208 {
4209 if (INSN_P (after))
4210 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4211 else
4212 return emit_call_insn_after_noloc (pattern, after);
4213 }
4214
4215 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4216 rtx
4217 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4218 {
4219 rtx first = PREV_INSN (before);
4220 rtx last = emit_insn_before_noloc (pattern, before);
4221
4222 if (pattern == NULL_RTX || !loc)
4223 return last;
4224
4225 first = NEXT_INSN (first);
4226 while (1)
4227 {
4228 if (active_insn_p (first) && !INSN_LOCATOR (first))
4229 INSN_LOCATOR (first) = loc;
4230 if (first == last)
4231 break;
4232 first = NEXT_INSN (first);
4233 }
4234 return last;
4235 }
4236
4237 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4238 rtx
4239 emit_insn_before (rtx pattern, rtx before)
4240 {
4241 if (INSN_P (before))
4242 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4243 else
4244 return emit_insn_before_noloc (pattern, before);
4245 }
4246
4247 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4248 rtx
4249 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4250 {
4251 rtx first = PREV_INSN (before);
4252 rtx last = emit_jump_insn_before_noloc (pattern, before);
4253
4254 if (pattern == NULL_RTX)
4255 return last;
4256
4257 first = NEXT_INSN (first);
4258 while (1)
4259 {
4260 if (active_insn_p (first) && !INSN_LOCATOR (first))
4261 INSN_LOCATOR (first) = loc;
4262 if (first == last)
4263 break;
4264 first = NEXT_INSN (first);
4265 }
4266 return last;
4267 }
4268
4269 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4270 rtx
4271 emit_jump_insn_before (rtx pattern, rtx before)
4272 {
4273 if (INSN_P (before))
4274 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4275 else
4276 return emit_jump_insn_before_noloc (pattern, before);
4277 }
4278
4279 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4280 rtx
4281 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4282 {
4283 rtx first = PREV_INSN (before);
4284 rtx last = emit_call_insn_before_noloc (pattern, before);
4285
4286 if (pattern == NULL_RTX)
4287 return last;
4288
4289 first = NEXT_INSN (first);
4290 while (1)
4291 {
4292 if (active_insn_p (first) && !INSN_LOCATOR (first))
4293 INSN_LOCATOR (first) = loc;
4294 if (first == last)
4295 break;
4296 first = NEXT_INSN (first);
4297 }
4298 return last;
4299 }
4300
4301 /* like emit_call_insn_before_noloc,
4302 but set insn_locator according to before. */
4303 rtx
4304 emit_call_insn_before (rtx pattern, rtx before)
4305 {
4306 if (INSN_P (before))
4307 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4308 else
4309 return emit_call_insn_before_noloc (pattern, before);
4310 }
4311 \f
4312 /* Take X and emit it at the end of the doubly-linked
4313 INSN list.
4314
4315 Returns the last insn emitted. */
4316
4317 rtx
4318 emit_insn (rtx x)
4319 {
4320 rtx last = last_insn;
4321 rtx insn;
4322
4323 if (x == NULL_RTX)
4324 return last;
4325
4326 switch (GET_CODE (x))
4327 {
4328 case INSN:
4329 case JUMP_INSN:
4330 case CALL_INSN:
4331 case CODE_LABEL:
4332 case BARRIER:
4333 case NOTE:
4334 insn = x;
4335 while (insn)
4336 {
4337 rtx next = NEXT_INSN (insn);
4338 add_insn (insn);
4339 last = insn;
4340 insn = next;
4341 }
4342 break;
4343
4344 #ifdef ENABLE_RTL_CHECKING
4345 case SEQUENCE:
4346 gcc_unreachable ();
4347 break;
4348 #endif
4349
4350 default:
4351 last = make_insn_raw (x);
4352 add_insn (last);
4353 break;
4354 }
4355
4356 return last;
4357 }
4358
4359 /* Make an insn of code JUMP_INSN with pattern X
4360 and add it to the end of the doubly-linked list. */
4361
4362 rtx
4363 emit_jump_insn (rtx x)
4364 {
4365 rtx last = NULL_RTX, insn;
4366
4367 switch (GET_CODE (x))
4368 {
4369 case INSN:
4370 case JUMP_INSN:
4371 case CALL_INSN:
4372 case CODE_LABEL:
4373 case BARRIER:
4374 case NOTE:
4375 insn = x;
4376 while (insn)
4377 {
4378 rtx next = NEXT_INSN (insn);
4379 add_insn (insn);
4380 last = insn;
4381 insn = next;
4382 }
4383 break;
4384
4385 #ifdef ENABLE_RTL_CHECKING
4386 case SEQUENCE:
4387 gcc_unreachable ();
4388 break;
4389 #endif
4390
4391 default:
4392 last = make_jump_insn_raw (x);
4393 add_insn (last);
4394 break;
4395 }
4396
4397 return last;
4398 }
4399
4400 /* Make an insn of code CALL_INSN with pattern X
4401 and add it to the end of the doubly-linked list. */
4402
4403 rtx
4404 emit_call_insn (rtx x)
4405 {
4406 rtx insn;
4407
4408 switch (GET_CODE (x))
4409 {
4410 case INSN:
4411 case JUMP_INSN:
4412 case CALL_INSN:
4413 case CODE_LABEL:
4414 case BARRIER:
4415 case NOTE:
4416 insn = emit_insn (x);
4417 break;
4418
4419 #ifdef ENABLE_RTL_CHECKING
4420 case SEQUENCE:
4421 gcc_unreachable ();
4422 break;
4423 #endif
4424
4425 default:
4426 insn = make_call_insn_raw (x);
4427 add_insn (insn);
4428 break;
4429 }
4430
4431 return insn;
4432 }
4433
4434 /* Add the label LABEL to the end of the doubly-linked list. */
4435
4436 rtx
4437 emit_label (rtx label)
4438 {
4439 /* This can be called twice for the same label
4440 as a result of the confusion that follows a syntax error!
4441 So make it harmless. */
4442 if (INSN_UID (label) == 0)
4443 {
4444 INSN_UID (label) = cur_insn_uid++;
4445 add_insn (label);
4446 }
4447 return label;
4448 }
4449
4450 /* Make an insn of code BARRIER
4451 and add it to the end of the doubly-linked list. */
4452
4453 rtx
4454 emit_barrier (void)
4455 {
4456 rtx barrier = rtx_alloc (BARRIER);
4457 INSN_UID (barrier) = cur_insn_uid++;
4458 add_insn (barrier);
4459 return barrier;
4460 }
4461
4462 /* Make line numbering NOTE insn for LOCATION add it to the end
4463 of the doubly-linked list, but only if line-numbers are desired for
4464 debugging info and it doesn't match the previous one. */
4465
4466 rtx
4467 emit_line_note (location_t location)
4468 {
4469 rtx note;
4470
4471 #ifdef USE_MAPPED_LOCATION
4472 if (location == last_location)
4473 return NULL_RTX;
4474 #else
4475 if (location.file && last_location.file
4476 && !strcmp (location.file, last_location.file)
4477 && location.line == last_location.line)
4478 return NULL_RTX;
4479 #endif
4480 last_location = location;
4481
4482 if (no_line_numbers)
4483 {
4484 cur_insn_uid++;
4485 return NULL_RTX;
4486 }
4487
4488 #ifdef USE_MAPPED_LOCATION
4489 note = emit_note ((int) location);
4490 #else
4491 note = emit_note (location.line);
4492 NOTE_SOURCE_FILE (note) = location.file;
4493 #endif
4494
4495 return note;
4496 }
4497
4498 /* Emit a copy of note ORIG. */
4499
4500 rtx
4501 emit_note_copy (rtx orig)
4502 {
4503 rtx note;
4504
4505 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4506 {
4507 cur_insn_uid++;
4508 return NULL_RTX;
4509 }
4510
4511 note = rtx_alloc (NOTE);
4512
4513 INSN_UID (note) = cur_insn_uid++;
4514 NOTE_DATA (note) = NOTE_DATA (orig);
4515 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4516 BLOCK_FOR_INSN (note) = NULL;
4517 add_insn (note);
4518
4519 return note;
4520 }
4521
4522 /* Make an insn of code NOTE or type NOTE_NO
4523 and add it to the end of the doubly-linked list. */
4524
4525 rtx
4526 emit_note (int note_no)
4527 {
4528 rtx note;
4529
4530 note = rtx_alloc (NOTE);
4531 INSN_UID (note) = cur_insn_uid++;
4532 NOTE_LINE_NUMBER (note) = note_no;
4533 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4534 BLOCK_FOR_INSN (note) = NULL;
4535 add_insn (note);
4536 return note;
4537 }
4538
4539 /* Cause next statement to emit a line note even if the line number
4540 has not changed. */
4541
4542 void
4543 force_next_line_note (void)
4544 {
4545 #ifdef USE_MAPPED_LOCATION
4546 last_location = -1;
4547 #else
4548 last_location.line = -1;
4549 #endif
4550 }
4551
4552 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4553 note of this type already exists, remove it first. */
4554
4555 rtx
4556 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4557 {
4558 rtx note = find_reg_note (insn, kind, NULL_RTX);
4559
4560 switch (kind)
4561 {
4562 case REG_EQUAL:
4563 case REG_EQUIV:
4564 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4565 has multiple sets (some callers assume single_set
4566 means the insn only has one set, when in fact it
4567 means the insn only has one * useful * set). */
4568 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4569 {
4570 gcc_assert (!note);
4571 return NULL_RTX;
4572 }
4573
4574 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4575 It serves no useful purpose and breaks eliminate_regs. */
4576 if (GET_CODE (datum) == ASM_OPERANDS)
4577 return NULL_RTX;
4578 break;
4579
4580 default:
4581 break;
4582 }
4583
4584 if (note)
4585 {
4586 XEXP (note, 0) = datum;
4587 return note;
4588 }
4589
4590 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4591 return REG_NOTES (insn);
4592 }
4593 \f
4594 /* Return an indication of which type of insn should have X as a body.
4595 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4596
4597 static enum rtx_code
4598 classify_insn (rtx x)
4599 {
4600 if (LABEL_P (x))
4601 return CODE_LABEL;
4602 if (GET_CODE (x) == CALL)
4603 return CALL_INSN;
4604 if (GET_CODE (x) == RETURN)
4605 return JUMP_INSN;
4606 if (GET_CODE (x) == SET)
4607 {
4608 if (SET_DEST (x) == pc_rtx)
4609 return JUMP_INSN;
4610 else if (GET_CODE (SET_SRC (x)) == CALL)
4611 return CALL_INSN;
4612 else
4613 return INSN;
4614 }
4615 if (GET_CODE (x) == PARALLEL)
4616 {
4617 int j;
4618 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4619 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4620 return CALL_INSN;
4621 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4622 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4623 return JUMP_INSN;
4624 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4625 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4626 return CALL_INSN;
4627 }
4628 return INSN;
4629 }
4630
4631 /* Emit the rtl pattern X as an appropriate kind of insn.
4632 If X is a label, it is simply added into the insn chain. */
4633
4634 rtx
4635 emit (rtx x)
4636 {
4637 enum rtx_code code = classify_insn (x);
4638
4639 switch (code)
4640 {
4641 case CODE_LABEL:
4642 return emit_label (x);
4643 case INSN:
4644 return emit_insn (x);
4645 case JUMP_INSN:
4646 {
4647 rtx insn = emit_jump_insn (x);
4648 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4649 return emit_barrier ();
4650 return insn;
4651 }
4652 case CALL_INSN:
4653 return emit_call_insn (x);
4654 default:
4655 gcc_unreachable ();
4656 }
4657 }
4658 \f
4659 /* Space for free sequence stack entries. */
4660 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4661
4662 /* Begin emitting insns to a sequence. If this sequence will contain
4663 something that might cause the compiler to pop arguments to function
4664 calls (because those pops have previously been deferred; see
4665 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4666 before calling this function. That will ensure that the deferred
4667 pops are not accidentally emitted in the middle of this sequence. */
4668
4669 void
4670 start_sequence (void)
4671 {
4672 struct sequence_stack *tem;
4673
4674 if (free_sequence_stack != NULL)
4675 {
4676 tem = free_sequence_stack;
4677 free_sequence_stack = tem->next;
4678 }
4679 else
4680 tem = ggc_alloc (sizeof (struct sequence_stack));
4681
4682 tem->next = seq_stack;
4683 tem->first = first_insn;
4684 tem->last = last_insn;
4685
4686 seq_stack = tem;
4687
4688 first_insn = 0;
4689 last_insn = 0;
4690 }
4691
4692 /* Set up the insn chain starting with FIRST as the current sequence,
4693 saving the previously current one. See the documentation for
4694 start_sequence for more information about how to use this function. */
4695
4696 void
4697 push_to_sequence (rtx first)
4698 {
4699 rtx last;
4700
4701 start_sequence ();
4702
4703 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4704
4705 first_insn = first;
4706 last_insn = last;
4707 }
4708
4709 /* Set up the outer-level insn chain
4710 as the current sequence, saving the previously current one. */
4711
4712 void
4713 push_topmost_sequence (void)
4714 {
4715 struct sequence_stack *stack, *top = NULL;
4716
4717 start_sequence ();
4718
4719 for (stack = seq_stack; stack; stack = stack->next)
4720 top = stack;
4721
4722 first_insn = top->first;
4723 last_insn = top->last;
4724 }
4725
4726 /* After emitting to the outer-level insn chain, update the outer-level
4727 insn chain, and restore the previous saved state. */
4728
4729 void
4730 pop_topmost_sequence (void)
4731 {
4732 struct sequence_stack *stack, *top = NULL;
4733
4734 for (stack = seq_stack; stack; stack = stack->next)
4735 top = stack;
4736
4737 top->first = first_insn;
4738 top->last = last_insn;
4739
4740 end_sequence ();
4741 }
4742
4743 /* After emitting to a sequence, restore previous saved state.
4744
4745 To get the contents of the sequence just made, you must call
4746 `get_insns' *before* calling here.
4747
4748 If the compiler might have deferred popping arguments while
4749 generating this sequence, and this sequence will not be immediately
4750 inserted into the instruction stream, use do_pending_stack_adjust
4751 before calling get_insns. That will ensure that the deferred
4752 pops are inserted into this sequence, and not into some random
4753 location in the instruction stream. See INHIBIT_DEFER_POP for more
4754 information about deferred popping of arguments. */
4755
4756 void
4757 end_sequence (void)
4758 {
4759 struct sequence_stack *tem = seq_stack;
4760
4761 first_insn = tem->first;
4762 last_insn = tem->last;
4763 seq_stack = tem->next;
4764
4765 memset (tem, 0, sizeof (*tem));
4766 tem->next = free_sequence_stack;
4767 free_sequence_stack = tem;
4768 }
4769
4770 /* Return 1 if currently emitting into a sequence. */
4771
4772 int
4773 in_sequence_p (void)
4774 {
4775 return seq_stack != 0;
4776 }
4777 \f
4778 /* Put the various virtual registers into REGNO_REG_RTX. */
4779
4780 static void
4781 init_virtual_regs (struct emit_status *es)
4782 {
4783 rtx *ptr = es->x_regno_reg_rtx;
4784 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4785 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4786 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4787 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4788 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4789 }
4790
4791 \f
4792 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4793 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4794 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4795 static int copy_insn_n_scratches;
4796
4797 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4798 copied an ASM_OPERANDS.
4799 In that case, it is the original input-operand vector. */
4800 static rtvec orig_asm_operands_vector;
4801
4802 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4803 copied an ASM_OPERANDS.
4804 In that case, it is the copied input-operand vector. */
4805 static rtvec copy_asm_operands_vector;
4806
4807 /* Likewise for the constraints vector. */
4808 static rtvec orig_asm_constraints_vector;
4809 static rtvec copy_asm_constraints_vector;
4810
4811 /* Recursively create a new copy of an rtx for copy_insn.
4812 This function differs from copy_rtx in that it handles SCRATCHes and
4813 ASM_OPERANDs properly.
4814 Normally, this function is not used directly; use copy_insn as front end.
4815 However, you could first copy an insn pattern with copy_insn and then use
4816 this function afterwards to properly copy any REG_NOTEs containing
4817 SCRATCHes. */
4818
4819 rtx
4820 copy_insn_1 (rtx orig)
4821 {
4822 rtx copy;
4823 int i, j;
4824 RTX_CODE code;
4825 const char *format_ptr;
4826
4827 code = GET_CODE (orig);
4828
4829 switch (code)
4830 {
4831 case REG:
4832 case CONST_INT:
4833 case CONST_DOUBLE:
4834 case CONST_VECTOR:
4835 case SYMBOL_REF:
4836 case CODE_LABEL:
4837 case PC:
4838 case CC0:
4839 return orig;
4840 case CLOBBER:
4841 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4842 return orig;
4843 break;
4844
4845 case SCRATCH:
4846 for (i = 0; i < copy_insn_n_scratches; i++)
4847 if (copy_insn_scratch_in[i] == orig)
4848 return copy_insn_scratch_out[i];
4849 break;
4850
4851 case CONST:
4852 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4853 a LABEL_REF, it isn't sharable. */
4854 if (GET_CODE (XEXP (orig, 0)) == PLUS
4855 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4856 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4857 return orig;
4858 break;
4859
4860 /* A MEM with a constant address is not sharable. The problem is that
4861 the constant address may need to be reloaded. If the mem is shared,
4862 then reloading one copy of this mem will cause all copies to appear
4863 to have been reloaded. */
4864
4865 default:
4866 break;
4867 }
4868
4869 /* Copy the various flags, fields, and other information. We assume
4870 that all fields need copying, and then clear the fields that should
4871 not be copied. That is the sensible default behavior, and forces
4872 us to explicitly document why we are *not* copying a flag. */
4873 copy = shallow_copy_rtx (orig);
4874
4875 /* We do not copy the USED flag, which is used as a mark bit during
4876 walks over the RTL. */
4877 RTX_FLAG (copy, used) = 0;
4878
4879 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4880 if (INSN_P (orig))
4881 {
4882 RTX_FLAG (copy, jump) = 0;
4883 RTX_FLAG (copy, call) = 0;
4884 RTX_FLAG (copy, frame_related) = 0;
4885 }
4886
4887 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4888
4889 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4890 switch (*format_ptr++)
4891 {
4892 case 'e':
4893 if (XEXP (orig, i) != NULL)
4894 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4895 break;
4896
4897 case 'E':
4898 case 'V':
4899 if (XVEC (orig, i) == orig_asm_constraints_vector)
4900 XVEC (copy, i) = copy_asm_constraints_vector;
4901 else if (XVEC (orig, i) == orig_asm_operands_vector)
4902 XVEC (copy, i) = copy_asm_operands_vector;
4903 else if (XVEC (orig, i) != NULL)
4904 {
4905 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4906 for (j = 0; j < XVECLEN (copy, i); j++)
4907 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4908 }
4909 break;
4910
4911 case 't':
4912 case 'w':
4913 case 'i':
4914 case 's':
4915 case 'S':
4916 case 'u':
4917 case '0':
4918 /* These are left unchanged. */
4919 break;
4920
4921 default:
4922 gcc_unreachable ();
4923 }
4924
4925 if (code == SCRATCH)
4926 {
4927 i = copy_insn_n_scratches++;
4928 gcc_assert (i < MAX_RECOG_OPERANDS);
4929 copy_insn_scratch_in[i] = orig;
4930 copy_insn_scratch_out[i] = copy;
4931 }
4932 else if (code == ASM_OPERANDS)
4933 {
4934 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4935 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4936 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4937 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
4938 }
4939
4940 return copy;
4941 }
4942
4943 /* Create a new copy of an rtx.
4944 This function differs from copy_rtx in that it handles SCRATCHes and
4945 ASM_OPERANDs properly.
4946 INSN doesn't really have to be a full INSN; it could be just the
4947 pattern. */
4948 rtx
4949 copy_insn (rtx insn)
4950 {
4951 copy_insn_n_scratches = 0;
4952 orig_asm_operands_vector = 0;
4953 orig_asm_constraints_vector = 0;
4954 copy_asm_operands_vector = 0;
4955 copy_asm_constraints_vector = 0;
4956 return copy_insn_1 (insn);
4957 }
4958
4959 /* Initialize data structures and variables in this file
4960 before generating rtl for each function. */
4961
4962 void
4963 init_emit (void)
4964 {
4965 struct function *f = cfun;
4966
4967 f->emit = ggc_alloc (sizeof (struct emit_status));
4968 first_insn = NULL;
4969 last_insn = NULL;
4970 cur_insn_uid = 1;
4971 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
4972 last_location = UNKNOWN_LOCATION;
4973 first_label_num = label_num;
4974 seq_stack = NULL;
4975
4976 /* Init the tables that describe all the pseudo regs. */
4977
4978 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
4979
4980 f->emit->regno_pointer_align
4981 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
4982 * sizeof (unsigned char));
4983
4984 regno_reg_rtx
4985 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
4986
4987 /* Put copies of all the hard registers into regno_reg_rtx. */
4988 memcpy (regno_reg_rtx,
4989 static_regno_reg_rtx,
4990 FIRST_PSEUDO_REGISTER * sizeof (rtx));
4991
4992 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
4993 init_virtual_regs (f->emit);
4994
4995 /* Indicate that the virtual registers and stack locations are
4996 all pointers. */
4997 REG_POINTER (stack_pointer_rtx) = 1;
4998 REG_POINTER (frame_pointer_rtx) = 1;
4999 REG_POINTER (hard_frame_pointer_rtx) = 1;
5000 REG_POINTER (arg_pointer_rtx) = 1;
5001
5002 REG_POINTER (virtual_incoming_args_rtx) = 1;
5003 REG_POINTER (virtual_stack_vars_rtx) = 1;
5004 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5005 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5006 REG_POINTER (virtual_cfa_rtx) = 1;
5007
5008 #ifdef STACK_BOUNDARY
5009 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5010 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5011 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5012 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5013
5014 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5015 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5016 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5017 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5018 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5019 #endif
5020
5021 #ifdef INIT_EXPANDERS
5022 INIT_EXPANDERS;
5023 #endif
5024 }
5025
5026 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5027
5028 static rtx
5029 gen_const_vector (enum machine_mode mode, int constant)
5030 {
5031 rtx tem;
5032 rtvec v;
5033 int units, i;
5034 enum machine_mode inner;
5035
5036 units = GET_MODE_NUNITS (mode);
5037 inner = GET_MODE_INNER (mode);
5038
5039 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5040
5041 v = rtvec_alloc (units);
5042
5043 /* We need to call this function after we set the scalar const_tiny_rtx
5044 entries. */
5045 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5046
5047 for (i = 0; i < units; ++i)
5048 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5049
5050 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5051 return tem;
5052 }
5053
5054 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5055 all elements are zero, and the one vector when all elements are one. */
5056 rtx
5057 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5058 {
5059 enum machine_mode inner = GET_MODE_INNER (mode);
5060 int nunits = GET_MODE_NUNITS (mode);
5061 rtx x;
5062 int i;
5063
5064 /* Check to see if all of the elements have the same value. */
5065 x = RTVEC_ELT (v, nunits - 1);
5066 for (i = nunits - 2; i >= 0; i--)
5067 if (RTVEC_ELT (v, i) != x)
5068 break;
5069
5070 /* If the values are all the same, check to see if we can use one of the
5071 standard constant vectors. */
5072 if (i == -1)
5073 {
5074 if (x == CONST0_RTX (inner))
5075 return CONST0_RTX (mode);
5076 else if (x == CONST1_RTX (inner))
5077 return CONST1_RTX (mode);
5078 }
5079
5080 return gen_rtx_raw_CONST_VECTOR (mode, v);
5081 }
5082
5083 /* Create some permanent unique rtl objects shared between all functions.
5084 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5085
5086 void
5087 init_emit_once (int line_numbers)
5088 {
5089 int i;
5090 enum machine_mode mode;
5091 enum machine_mode double_mode;
5092
5093 /* We need reg_raw_mode, so initialize the modes now. */
5094 init_reg_modes_once ();
5095
5096 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5097 tables. */
5098 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5099 const_int_htab_eq, NULL);
5100
5101 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5102 const_double_htab_eq, NULL);
5103
5104 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5105 mem_attrs_htab_eq, NULL);
5106 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5107 reg_attrs_htab_eq, NULL);
5108
5109 no_line_numbers = ! line_numbers;
5110
5111 /* Compute the word and byte modes. */
5112
5113 byte_mode = VOIDmode;
5114 word_mode = VOIDmode;
5115 double_mode = VOIDmode;
5116
5117 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5118 mode != VOIDmode;
5119 mode = GET_MODE_WIDER_MODE (mode))
5120 {
5121 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5122 && byte_mode == VOIDmode)
5123 byte_mode = mode;
5124
5125 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5126 && word_mode == VOIDmode)
5127 word_mode = mode;
5128 }
5129
5130 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5131 mode != VOIDmode;
5132 mode = GET_MODE_WIDER_MODE (mode))
5133 {
5134 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5135 && double_mode == VOIDmode)
5136 double_mode = mode;
5137 }
5138
5139 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5140
5141 /* Assign register numbers to the globally defined register rtx.
5142 This must be done at runtime because the register number field
5143 is in a union and some compilers can't initialize unions. */
5144
5145 pc_rtx = gen_rtx_PC (VOIDmode);
5146 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5147 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5148 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5149 if (hard_frame_pointer_rtx == 0)
5150 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5151 HARD_FRAME_POINTER_REGNUM);
5152 if (arg_pointer_rtx == 0)
5153 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5154 virtual_incoming_args_rtx =
5155 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5156 virtual_stack_vars_rtx =
5157 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5158 virtual_stack_dynamic_rtx =
5159 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5160 virtual_outgoing_args_rtx =
5161 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5162 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5163
5164 /* Initialize RTL for commonly used hard registers. These are
5165 copied into regno_reg_rtx as we begin to compile each function. */
5166 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5167 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5168
5169 #ifdef INIT_EXPANDERS
5170 /* This is to initialize {init|mark|free}_machine_status before the first
5171 call to push_function_context_to. This is needed by the Chill front
5172 end which calls push_function_context_to before the first call to
5173 init_function_start. */
5174 INIT_EXPANDERS;
5175 #endif
5176
5177 /* Create the unique rtx's for certain rtx codes and operand values. */
5178
5179 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5180 tries to use these variables. */
5181 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5182 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5183 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5184
5185 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5186 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5187 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5188 else
5189 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5190
5191 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5192 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5193 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5194 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5195 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5196 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5197 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5198
5199 dconsthalf = dconst1;
5200 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5201
5202 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5203
5204 /* Initialize mathematical constants for constant folding builtins.
5205 These constants need to be given to at least 160 bits precision. */
5206 real_from_string (&dconstpi,
5207 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5208 real_from_string (&dconste,
5209 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5210
5211 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5212 {
5213 REAL_VALUE_TYPE *r =
5214 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5215
5216 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5217 mode != VOIDmode;
5218 mode = GET_MODE_WIDER_MODE (mode))
5219 const_tiny_rtx[i][(int) mode] =
5220 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5221
5222 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5223 mode != VOIDmode;
5224 mode = GET_MODE_WIDER_MODE (mode))
5225 const_tiny_rtx[i][(int) mode] =
5226 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5227
5228 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5229
5230 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5231 mode != VOIDmode;
5232 mode = GET_MODE_WIDER_MODE (mode))
5233 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5234
5235 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5236 mode != VOIDmode;
5237 mode = GET_MODE_WIDER_MODE (mode))
5238 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5239 }
5240
5241 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5242 mode != VOIDmode;
5243 mode = GET_MODE_WIDER_MODE (mode))
5244 {
5245 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5246 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5247 }
5248
5249 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5250 mode != VOIDmode;
5251 mode = GET_MODE_WIDER_MODE (mode))
5252 {
5253 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5254 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5255 }
5256
5257 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5258 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5259 const_tiny_rtx[0][i] = const0_rtx;
5260
5261 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5262 if (STORE_FLAG_VALUE == 1)
5263 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5264
5265 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5266 return_address_pointer_rtx
5267 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5268 #endif
5269
5270 #ifdef STATIC_CHAIN_REGNUM
5271 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5272
5273 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5274 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5275 static_chain_incoming_rtx
5276 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5277 else
5278 #endif
5279 static_chain_incoming_rtx = static_chain_rtx;
5280 #endif
5281
5282 #ifdef STATIC_CHAIN
5283 static_chain_rtx = STATIC_CHAIN;
5284
5285 #ifdef STATIC_CHAIN_INCOMING
5286 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5287 #else
5288 static_chain_incoming_rtx = static_chain_rtx;
5289 #endif
5290 #endif
5291
5292 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5293 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5294 }
5295 \f
5296 /* Produce exact duplicate of insn INSN after AFTER.
5297 Care updating of libcall regions if present. */
5298
5299 rtx
5300 emit_copy_of_insn_after (rtx insn, rtx after)
5301 {
5302 rtx new;
5303 rtx note1, note2, link;
5304
5305 switch (GET_CODE (insn))
5306 {
5307 case INSN:
5308 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5309 break;
5310
5311 case JUMP_INSN:
5312 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5313 break;
5314
5315 case CALL_INSN:
5316 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5317 if (CALL_INSN_FUNCTION_USAGE (insn))
5318 CALL_INSN_FUNCTION_USAGE (new)
5319 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5320 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5321 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5322 break;
5323
5324 default:
5325 gcc_unreachable ();
5326 }
5327
5328 /* Update LABEL_NUSES. */
5329 mark_jump_label (PATTERN (new), new, 0);
5330
5331 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5332
5333 /* If the old insn is frame related, then so is the new one. This is
5334 primarily needed for IA-64 unwind info which marks epilogue insns,
5335 which may be duplicated by the basic block reordering code. */
5336 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5337
5338 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5339 make them. */
5340 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5341 if (REG_NOTE_KIND (link) != REG_LABEL)
5342 {
5343 if (GET_CODE (link) == EXPR_LIST)
5344 REG_NOTES (new)
5345 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5346 XEXP (link, 0),
5347 REG_NOTES (new)));
5348 else
5349 REG_NOTES (new)
5350 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5351 XEXP (link, 0),
5352 REG_NOTES (new)));
5353 }
5354
5355 /* Fix the libcall sequences. */
5356 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5357 {
5358 rtx p = new;
5359 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5360 p = PREV_INSN (p);
5361 XEXP (note1, 0) = p;
5362 XEXP (note2, 0) = new;
5363 }
5364 INSN_CODE (new) = INSN_CODE (insn);
5365 return new;
5366 }
5367
5368 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5369 rtx
5370 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5371 {
5372 if (hard_reg_clobbers[mode][regno])
5373 return hard_reg_clobbers[mode][regno];
5374 else
5375 return (hard_reg_clobbers[mode][regno] =
5376 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5377 }
5378
5379 #include "gt-emit-rtl.h"
This page took 0.265087 seconds and 6 git commands to generate.