]> gcc.gnu.org Git - gcc.git/blob - gcc/emit-rtl.c
Makefile.in (TREE_H): Add treestruct.def.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58 #include "tree-pass.h"
59
60 /* Commonly used modes. */
61
62 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
63 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
64 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
65 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
66
67
68 /* This is *not* reset after each function. It gives each CODE_LABEL
69 in the entire compilation a unique label number. */
70
71 static GTY(()) int label_num = 1;
72
73 /* Nonzero means do not generate NOTEs for source line numbers. */
74
75 static int no_line_numbers;
76
77 /* Commonly used rtx's, so that we only need space for one copy.
78 These are initialized once for the entire compilation.
79 All of these are unique; no other rtx-object will be equal to any
80 of these. */
81
82 rtx global_rtl[GR_MAX];
83
84 /* Commonly used RTL for hard registers. These objects are not necessarily
85 unique, so we allocate them separately from global_rtl. They are
86 initialized once per compilation unit, then copied into regno_reg_rtx
87 at the beginning of each function. */
88 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
89
90 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
91 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
92 record a copy of const[012]_rtx. */
93
94 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
95
96 rtx const_true_rtx;
97
98 REAL_VALUE_TYPE dconst0;
99 REAL_VALUE_TYPE dconst1;
100 REAL_VALUE_TYPE dconst2;
101 REAL_VALUE_TYPE dconst3;
102 REAL_VALUE_TYPE dconst10;
103 REAL_VALUE_TYPE dconstm1;
104 REAL_VALUE_TYPE dconstm2;
105 REAL_VALUE_TYPE dconsthalf;
106 REAL_VALUE_TYPE dconstthird;
107 REAL_VALUE_TYPE dconstpi;
108 REAL_VALUE_TYPE dconste;
109
110 /* All references to the following fixed hard registers go through
111 these unique rtl objects. On machines where the frame-pointer and
112 arg-pointer are the same register, they use the same unique object.
113
114 After register allocation, other rtl objects which used to be pseudo-regs
115 may be clobbered to refer to the frame-pointer register.
116 But references that were originally to the frame-pointer can be
117 distinguished from the others because they contain frame_pointer_rtx.
118
119 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
120 tricky: until register elimination has taken place hard_frame_pointer_rtx
121 should be used if it is being set, and frame_pointer_rtx otherwise. After
122 register elimination hard_frame_pointer_rtx should always be used.
123 On machines where the two registers are same (most) then these are the
124 same.
125
126 In an inline procedure, the stack and frame pointer rtxs may not be
127 used for anything else. */
128 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
129 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
130 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
131
132 /* This is used to implement __builtin_return_address for some machines.
133 See for instance the MIPS port. */
134 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
135
136 /* We make one copy of (const_int C) where C is in
137 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
138 to save space during the compilation and simplify comparisons of
139 integers. */
140
141 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
142
143 /* A hash table storing CONST_INTs whose absolute value is greater
144 than MAX_SAVED_CONST_INT. */
145
146 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
147 htab_t const_int_htab;
148
149 /* A hash table storing memory attribute structures. */
150 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
151 htab_t mem_attrs_htab;
152
153 /* A hash table storing register attribute structures. */
154 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
155 htab_t reg_attrs_htab;
156
157 /* A hash table storing all CONST_DOUBLEs. */
158 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
159 htab_t const_double_htab;
160
161 #define first_insn (cfun->emit->x_first_insn)
162 #define last_insn (cfun->emit->x_last_insn)
163 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
164 #define last_location (cfun->emit->x_last_location)
165 #define first_label_num (cfun->emit->x_first_label_num)
166
167 static rtx make_jump_insn_raw (rtx);
168 static rtx make_call_insn_raw (rtx);
169 static rtx find_line_note (rtx);
170 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
171 static void unshare_all_decls (tree);
172 static void reset_used_decls (tree);
173 static void mark_label_nuses (rtx);
174 static hashval_t const_int_htab_hash (const void *);
175 static int const_int_htab_eq (const void *, const void *);
176 static hashval_t const_double_htab_hash (const void *);
177 static int const_double_htab_eq (const void *, const void *);
178 static rtx lookup_const_double (rtx);
179 static hashval_t mem_attrs_htab_hash (const void *);
180 static int mem_attrs_htab_eq (const void *, const void *);
181 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
182 enum machine_mode);
183 static hashval_t reg_attrs_htab_hash (const void *);
184 static int reg_attrs_htab_eq (const void *, const void *);
185 static reg_attrs *get_reg_attrs (tree, int);
186 static tree component_ref_for_mem_expr (tree);
187 static rtx gen_const_vector (enum machine_mode, int);
188 static void copy_rtx_if_shared_1 (rtx *orig);
189
190 /* Probability of the conditional branch currently proceeded by try_split.
191 Set to -1 otherwise. */
192 int split_branch_probability = -1;
193 \f
194 /* Returns a hash code for X (which is a really a CONST_INT). */
195
196 static hashval_t
197 const_int_htab_hash (const void *x)
198 {
199 return (hashval_t) INTVAL ((rtx) x);
200 }
201
202 /* Returns nonzero if the value represented by X (which is really a
203 CONST_INT) is the same as that given by Y (which is really a
204 HOST_WIDE_INT *). */
205
206 static int
207 const_int_htab_eq (const void *x, const void *y)
208 {
209 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
210 }
211
212 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
213 static hashval_t
214 const_double_htab_hash (const void *x)
215 {
216 rtx value = (rtx) x;
217 hashval_t h;
218
219 if (GET_MODE (value) == VOIDmode)
220 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
221 else
222 {
223 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
224 /* MODE is used in the comparison, so it should be in the hash. */
225 h ^= GET_MODE (value);
226 }
227 return h;
228 }
229
230 /* Returns nonzero if the value represented by X (really a ...)
231 is the same as that represented by Y (really a ...) */
232 static int
233 const_double_htab_eq (const void *x, const void *y)
234 {
235 rtx a = (rtx)x, b = (rtx)y;
236
237 if (GET_MODE (a) != GET_MODE (b))
238 return 0;
239 if (GET_MODE (a) == VOIDmode)
240 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
241 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
242 else
243 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
244 CONST_DOUBLE_REAL_VALUE (b));
245 }
246
247 /* Returns a hash code for X (which is a really a mem_attrs *). */
248
249 static hashval_t
250 mem_attrs_htab_hash (const void *x)
251 {
252 mem_attrs *p = (mem_attrs *) x;
253
254 return (p->alias ^ (p->align * 1000)
255 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
256 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
257 ^ (size_t) p->expr);
258 }
259
260 /* Returns nonzero if the value represented by X (which is really a
261 mem_attrs *) is the same as that given by Y (which is also really a
262 mem_attrs *). */
263
264 static int
265 mem_attrs_htab_eq (const void *x, const void *y)
266 {
267 mem_attrs *p = (mem_attrs *) x;
268 mem_attrs *q = (mem_attrs *) y;
269
270 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
271 && p->size == q->size && p->align == q->align);
272 }
273
274 /* Allocate a new mem_attrs structure and insert it into the hash table if
275 one identical to it is not already in the table. We are doing this for
276 MEM of mode MODE. */
277
278 static mem_attrs *
279 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
280 unsigned int align, enum machine_mode mode)
281 {
282 mem_attrs attrs;
283 void **slot;
284
285 /* If everything is the default, we can just return zero.
286 This must match what the corresponding MEM_* macros return when the
287 field is not present. */
288 if (alias == 0 && expr == 0 && offset == 0
289 && (size == 0
290 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
291 && (STRICT_ALIGNMENT && mode != BLKmode
292 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
293 return 0;
294
295 attrs.alias = alias;
296 attrs.expr = expr;
297 attrs.offset = offset;
298 attrs.size = size;
299 attrs.align = align;
300
301 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
302 if (*slot == 0)
303 {
304 *slot = ggc_alloc (sizeof (mem_attrs));
305 memcpy (*slot, &attrs, sizeof (mem_attrs));
306 }
307
308 return *slot;
309 }
310
311 /* Returns a hash code for X (which is a really a reg_attrs *). */
312
313 static hashval_t
314 reg_attrs_htab_hash (const void *x)
315 {
316 reg_attrs *p = (reg_attrs *) x;
317
318 return ((p->offset * 1000) ^ (long) p->decl);
319 }
320
321 /* Returns nonzero if the value represented by X (which is really a
322 reg_attrs *) is the same as that given by Y (which is also really a
323 reg_attrs *). */
324
325 static int
326 reg_attrs_htab_eq (const void *x, const void *y)
327 {
328 reg_attrs *p = (reg_attrs *) x;
329 reg_attrs *q = (reg_attrs *) y;
330
331 return (p->decl == q->decl && p->offset == q->offset);
332 }
333 /* Allocate a new reg_attrs structure and insert it into the hash table if
334 one identical to it is not already in the table. We are doing this for
335 MEM of mode MODE. */
336
337 static reg_attrs *
338 get_reg_attrs (tree decl, int offset)
339 {
340 reg_attrs attrs;
341 void **slot;
342
343 /* If everything is the default, we can just return zero. */
344 if (decl == 0 && offset == 0)
345 return 0;
346
347 attrs.decl = decl;
348 attrs.offset = offset;
349
350 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
351 if (*slot == 0)
352 {
353 *slot = ggc_alloc (sizeof (reg_attrs));
354 memcpy (*slot, &attrs, sizeof (reg_attrs));
355 }
356
357 return *slot;
358 }
359
360 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
361 don't attempt to share with the various global pieces of rtl (such as
362 frame_pointer_rtx). */
363
364 rtx
365 gen_raw_REG (enum machine_mode mode, int regno)
366 {
367 rtx x = gen_rtx_raw_REG (mode, regno);
368 ORIGINAL_REGNO (x) = regno;
369 return x;
370 }
371
372 /* There are some RTL codes that require special attention; the generation
373 functions do the raw handling. If you add to this list, modify
374 special_rtx in gengenrtl.c as well. */
375
376 rtx
377 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
378 {
379 void **slot;
380
381 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
382 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
383
384 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
385 if (const_true_rtx && arg == STORE_FLAG_VALUE)
386 return const_true_rtx;
387 #endif
388
389 /* Look up the CONST_INT in the hash table. */
390 slot = htab_find_slot_with_hash (const_int_htab, &arg,
391 (hashval_t) arg, INSERT);
392 if (*slot == 0)
393 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
394
395 return (rtx) *slot;
396 }
397
398 rtx
399 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
400 {
401 return GEN_INT (trunc_int_for_mode (c, mode));
402 }
403
404 /* CONST_DOUBLEs might be created from pairs of integers, or from
405 REAL_VALUE_TYPEs. Also, their length is known only at run time,
406 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
407
408 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
409 hash table. If so, return its counterpart; otherwise add it
410 to the hash table and return it. */
411 static rtx
412 lookup_const_double (rtx real)
413 {
414 void **slot = htab_find_slot (const_double_htab, real, INSERT);
415 if (*slot == 0)
416 *slot = real;
417
418 return (rtx) *slot;
419 }
420
421 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
422 VALUE in mode MODE. */
423 rtx
424 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
425 {
426 rtx real = rtx_alloc (CONST_DOUBLE);
427 PUT_MODE (real, mode);
428
429 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
430
431 return lookup_const_double (real);
432 }
433
434 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
435 of ints: I0 is the low-order word and I1 is the high-order word.
436 Do not use this routine for non-integer modes; convert to
437 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
438
439 rtx
440 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
441 {
442 rtx value;
443 unsigned int i;
444
445 if (mode != VOIDmode)
446 {
447 int width;
448
449 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
450 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
451 /* We can get a 0 for an error mark. */
452 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
453 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
454
455 /* We clear out all bits that don't belong in MODE, unless they and
456 our sign bit are all one. So we get either a reasonable negative
457 value or a reasonable unsigned value for this mode. */
458 width = GET_MODE_BITSIZE (mode);
459 if (width < HOST_BITS_PER_WIDE_INT
460 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
461 != ((HOST_WIDE_INT) (-1) << (width - 1))))
462 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
463 else if (width == HOST_BITS_PER_WIDE_INT
464 && ! (i1 == ~0 && i0 < 0))
465 i1 = 0;
466 else
467 /* We should be able to represent this value as a constant. */
468 gcc_assert (width <= 2 * HOST_BITS_PER_WIDE_INT);
469
470 /* If this would be an entire word for the target, but is not for
471 the host, then sign-extend on the host so that the number will
472 look the same way on the host that it would on the target.
473
474 For example, when building a 64 bit alpha hosted 32 bit sparc
475 targeted compiler, then we want the 32 bit unsigned value -1 to be
476 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
477 The latter confuses the sparc backend. */
478
479 if (width < HOST_BITS_PER_WIDE_INT
480 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
481 i0 |= ((HOST_WIDE_INT) (-1) << width);
482
483 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
484 CONST_INT.
485
486 ??? Strictly speaking, this is wrong if we create a CONST_INT for
487 a large unsigned constant with the size of MODE being
488 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
489 in a wider mode. In that case we will mis-interpret it as a
490 negative number.
491
492 Unfortunately, the only alternative is to make a CONST_DOUBLE for
493 any constant in any mode if it is an unsigned constant larger
494 than the maximum signed integer in an int on the host. However,
495 doing this will break everyone that always expects to see a
496 CONST_INT for SImode and smaller.
497
498 We have always been making CONST_INTs in this case, so nothing
499 new is being broken. */
500
501 if (width <= HOST_BITS_PER_WIDE_INT)
502 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
503 }
504
505 /* If this integer fits in one word, return a CONST_INT. */
506 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
507 return GEN_INT (i0);
508
509 /* We use VOIDmode for integers. */
510 value = rtx_alloc (CONST_DOUBLE);
511 PUT_MODE (value, VOIDmode);
512
513 CONST_DOUBLE_LOW (value) = i0;
514 CONST_DOUBLE_HIGH (value) = i1;
515
516 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
517 XWINT (value, i) = 0;
518
519 return lookup_const_double (value);
520 }
521
522 rtx
523 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
524 {
525 /* In case the MD file explicitly references the frame pointer, have
526 all such references point to the same frame pointer. This is
527 used during frame pointer elimination to distinguish the explicit
528 references to these registers from pseudos that happened to be
529 assigned to them.
530
531 If we have eliminated the frame pointer or arg pointer, we will
532 be using it as a normal register, for example as a spill
533 register. In such cases, we might be accessing it in a mode that
534 is not Pmode and therefore cannot use the pre-allocated rtx.
535
536 Also don't do this when we are making new REGs in reload, since
537 we don't want to get confused with the real pointers. */
538
539 if (mode == Pmode && !reload_in_progress)
540 {
541 if (regno == FRAME_POINTER_REGNUM
542 && (!reload_completed || frame_pointer_needed))
543 return frame_pointer_rtx;
544 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
545 if (regno == HARD_FRAME_POINTER_REGNUM
546 && (!reload_completed || frame_pointer_needed))
547 return hard_frame_pointer_rtx;
548 #endif
549 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
550 if (regno == ARG_POINTER_REGNUM)
551 return arg_pointer_rtx;
552 #endif
553 #ifdef RETURN_ADDRESS_POINTER_REGNUM
554 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
555 return return_address_pointer_rtx;
556 #endif
557 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
558 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
559 return pic_offset_table_rtx;
560 if (regno == STACK_POINTER_REGNUM)
561 return stack_pointer_rtx;
562 }
563
564 #if 0
565 /* If the per-function register table has been set up, try to re-use
566 an existing entry in that table to avoid useless generation of RTL.
567
568 This code is disabled for now until we can fix the various backends
569 which depend on having non-shared hard registers in some cases. Long
570 term we want to re-enable this code as it can significantly cut down
571 on the amount of useless RTL that gets generated.
572
573 We'll also need to fix some code that runs after reload that wants to
574 set ORIGINAL_REGNO. */
575
576 if (cfun
577 && cfun->emit
578 && regno_reg_rtx
579 && regno < FIRST_PSEUDO_REGISTER
580 && reg_raw_mode[regno] == mode)
581 return regno_reg_rtx[regno];
582 #endif
583
584 return gen_raw_REG (mode, regno);
585 }
586
587 rtx
588 gen_rtx_MEM (enum machine_mode mode, rtx addr)
589 {
590 rtx rt = gen_rtx_raw_MEM (mode, addr);
591
592 /* This field is not cleared by the mere allocation of the rtx, so
593 we clear it here. */
594 MEM_ATTRS (rt) = 0;
595
596 return rt;
597 }
598
599 /* Generate a memory referring to non-trapping constant memory. */
600
601 rtx
602 gen_const_mem (enum machine_mode mode, rtx addr)
603 {
604 rtx mem = gen_rtx_MEM (mode, addr);
605 MEM_READONLY_P (mem) = 1;
606 MEM_NOTRAP_P (mem) = 1;
607 return mem;
608 }
609
610 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
611 this construct would be valid, and false otherwise. */
612
613 bool
614 validate_subreg (enum machine_mode omode, enum machine_mode imode,
615 rtx reg, unsigned int offset)
616 {
617 unsigned int isize = GET_MODE_SIZE (imode);
618 unsigned int osize = GET_MODE_SIZE (omode);
619
620 /* All subregs must be aligned. */
621 if (offset % osize != 0)
622 return false;
623
624 /* The subreg offset cannot be outside the inner object. */
625 if (offset >= isize)
626 return false;
627
628 /* ??? This should not be here. Temporarily continue to allow word_mode
629 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
630 Generally, backends are doing something sketchy but it'll take time to
631 fix them all. */
632 if (omode == word_mode)
633 ;
634 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
635 is the culprit here, and not the backends. */
636 else if (osize >= UNITS_PER_WORD && isize >= osize)
637 ;
638 /* Allow component subregs of complex and vector. Though given the below
639 extraction rules, it's not always clear what that means. */
640 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
641 && GET_MODE_INNER (imode) == omode)
642 ;
643 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
644 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
645 represent this. It's questionable if this ought to be represented at
646 all -- why can't this all be hidden in post-reload splitters that make
647 arbitrarily mode changes to the registers themselves. */
648 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
649 ;
650 /* Subregs involving floating point modes are not allowed to
651 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
652 (subreg:SI (reg:DF) 0) isn't. */
653 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
654 {
655 if (isize != osize)
656 return false;
657 }
658
659 /* Paradoxical subregs must have offset zero. */
660 if (osize > isize)
661 return offset == 0;
662
663 /* This is a normal subreg. Verify that the offset is representable. */
664
665 /* For hard registers, we already have most of these rules collected in
666 subreg_offset_representable_p. */
667 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
668 {
669 unsigned int regno = REGNO (reg);
670
671 #ifdef CANNOT_CHANGE_MODE_CLASS
672 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
673 && GET_MODE_INNER (imode) == omode)
674 ;
675 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
676 return false;
677 #endif
678
679 return subreg_offset_representable_p (regno, imode, offset, omode);
680 }
681
682 /* For pseudo registers, we want most of the same checks. Namely:
683 If the register no larger than a word, the subreg must be lowpart.
684 If the register is larger than a word, the subreg must be the lowpart
685 of a subword. A subreg does *not* perform arbitrary bit extraction.
686 Given that we've already checked mode/offset alignment, we only have
687 to check subword subregs here. */
688 if (osize < UNITS_PER_WORD)
689 {
690 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
691 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
692 if (offset % UNITS_PER_WORD != low_off)
693 return false;
694 }
695 return true;
696 }
697
698 rtx
699 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
700 {
701 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
702 return gen_rtx_raw_SUBREG (mode, reg, offset);
703 }
704
705 /* Generate a SUBREG representing the least-significant part of REG if MODE
706 is smaller than mode of REG, otherwise paradoxical SUBREG. */
707
708 rtx
709 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
710 {
711 enum machine_mode inmode;
712
713 inmode = GET_MODE (reg);
714 if (inmode == VOIDmode)
715 inmode = mode;
716 return gen_rtx_SUBREG (mode, reg,
717 subreg_lowpart_offset (mode, inmode));
718 }
719 \f
720 /* gen_rtvec (n, [rt1, ..., rtn])
721 **
722 ** This routine creates an rtvec and stores within it the
723 ** pointers to rtx's which are its arguments.
724 */
725
726 /*VARARGS1*/
727 rtvec
728 gen_rtvec (int n, ...)
729 {
730 int i, save_n;
731 rtx *vector;
732 va_list p;
733
734 va_start (p, n);
735
736 if (n == 0)
737 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
738
739 vector = alloca (n * sizeof (rtx));
740
741 for (i = 0; i < n; i++)
742 vector[i] = va_arg (p, rtx);
743
744 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
745 save_n = n;
746 va_end (p);
747
748 return gen_rtvec_v (save_n, vector);
749 }
750
751 rtvec
752 gen_rtvec_v (int n, rtx *argp)
753 {
754 int i;
755 rtvec rt_val;
756
757 if (n == 0)
758 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
759
760 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
761
762 for (i = 0; i < n; i++)
763 rt_val->elem[i] = *argp++;
764
765 return rt_val;
766 }
767 \f
768 /* Generate a REG rtx for a new pseudo register of mode MODE.
769 This pseudo is assigned the next sequential register number. */
770
771 rtx
772 gen_reg_rtx (enum machine_mode mode)
773 {
774 struct function *f = cfun;
775 rtx val;
776
777 /* Don't let anything called after initial flow analysis create new
778 registers. */
779 gcc_assert (!no_new_pseudos);
780
781 if (generating_concat_p
782 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
783 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
784 {
785 /* For complex modes, don't make a single pseudo.
786 Instead, make a CONCAT of two pseudos.
787 This allows noncontiguous allocation of the real and imaginary parts,
788 which makes much better code. Besides, allocating DCmode
789 pseudos overstrains reload on some machines like the 386. */
790 rtx realpart, imagpart;
791 enum machine_mode partmode = GET_MODE_INNER (mode);
792
793 realpart = gen_reg_rtx (partmode);
794 imagpart = gen_reg_rtx (partmode);
795 return gen_rtx_CONCAT (mode, realpart, imagpart);
796 }
797
798 /* Make sure regno_pointer_align, and regno_reg_rtx are large
799 enough to have an element for this pseudo reg number. */
800
801 if (reg_rtx_no == f->emit->regno_pointer_align_length)
802 {
803 int old_size = f->emit->regno_pointer_align_length;
804 char *new;
805 rtx *new1;
806
807 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
808 memset (new + old_size, 0, old_size);
809 f->emit->regno_pointer_align = (unsigned char *) new;
810
811 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
812 old_size * 2 * sizeof (rtx));
813 memset (new1 + old_size, 0, old_size * sizeof (rtx));
814 regno_reg_rtx = new1;
815
816 f->emit->regno_pointer_align_length = old_size * 2;
817 }
818
819 val = gen_raw_REG (mode, reg_rtx_no);
820 regno_reg_rtx[reg_rtx_no++] = val;
821 return val;
822 }
823
824 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
825 Do the big endian correction if needed. */
826
827 rtx
828 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
829 {
830 rtx new = gen_rtx_REG (mode, regno);
831 tree decl;
832 HOST_WIDE_INT var_size;
833
834 /* PR middle-end/14084
835 The problem appears when a variable is stored in a larger register
836 and later it is used in the original mode or some mode in between
837 or some part of variable is accessed.
838
839 On little endian machines there is no problem because
840 the REG_OFFSET of the start of the variable is the same when
841 accessed in any mode (it is 0).
842
843 However, this is not true on big endian machines.
844 The offset of the start of the variable is different when accessed
845 in different modes.
846 When we are taking a part of the REG we have to change the OFFSET
847 from offset WRT size of mode of REG to offset WRT size of variable.
848
849 If we would not do the big endian correction the resulting REG_OFFSET
850 would be larger than the size of the DECL.
851
852 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
853
854 REG.mode MODE DECL size old offset new offset description
855 DI SI 4 4 0 int32 in SImode
856 DI SI 1 4 0 char in SImode
857 DI QI 1 7 0 char in QImode
858 DI QI 4 5 1 1st element in QImode
859 of char[4]
860 DI HI 4 6 2 1st element in HImode
861 of int16[2]
862
863 If the size of DECL is equal or greater than the size of REG
864 we can't do this correction because the register holds the
865 whole variable or a part of the variable and thus the REG_OFFSET
866 is already correct. */
867
868 decl = REG_EXPR (reg);
869 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
870 && decl != NULL
871 && offset > 0
872 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
873 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
874 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
875 {
876 int offset_le;
877
878 /* Convert machine endian to little endian WRT size of mode of REG. */
879 if (WORDS_BIG_ENDIAN)
880 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
881 / UNITS_PER_WORD) * UNITS_PER_WORD;
882 else
883 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
884
885 if (BYTES_BIG_ENDIAN)
886 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
887 % UNITS_PER_WORD);
888 else
889 offset_le += offset % UNITS_PER_WORD;
890
891 if (offset_le >= var_size)
892 {
893 /* MODE is wider than the variable so the new reg will cover
894 the whole variable so the resulting OFFSET should be 0. */
895 offset = 0;
896 }
897 else
898 {
899 /* Convert little endian to machine endian WRT size of variable. */
900 if (WORDS_BIG_ENDIAN)
901 offset = ((var_size - 1 - offset_le)
902 / UNITS_PER_WORD) * UNITS_PER_WORD;
903 else
904 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
905
906 if (BYTES_BIG_ENDIAN)
907 offset += ((var_size - 1 - offset_le)
908 % UNITS_PER_WORD);
909 else
910 offset += offset_le % UNITS_PER_WORD;
911 }
912 }
913
914 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
915 REG_OFFSET (reg) + offset);
916 return new;
917 }
918
919 /* Set the decl for MEM to DECL. */
920
921 void
922 set_reg_attrs_from_mem (rtx reg, rtx mem)
923 {
924 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
925 REG_ATTRS (reg)
926 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
927 }
928
929 /* Set the register attributes for registers contained in PARM_RTX.
930 Use needed values from memory attributes of MEM. */
931
932 void
933 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
934 {
935 if (REG_P (parm_rtx))
936 set_reg_attrs_from_mem (parm_rtx, mem);
937 else if (GET_CODE (parm_rtx) == PARALLEL)
938 {
939 /* Check for a NULL entry in the first slot, used to indicate that the
940 parameter goes both on the stack and in registers. */
941 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
942 for (; i < XVECLEN (parm_rtx, 0); i++)
943 {
944 rtx x = XVECEXP (parm_rtx, 0, i);
945 if (REG_P (XEXP (x, 0)))
946 REG_ATTRS (XEXP (x, 0))
947 = get_reg_attrs (MEM_EXPR (mem),
948 INTVAL (XEXP (x, 1)));
949 }
950 }
951 }
952
953 /* Assign the RTX X to declaration T. */
954 void
955 set_decl_rtl (tree t, rtx x)
956 {
957 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
958
959 if (!x)
960 return;
961 /* For register, we maintain the reverse information too. */
962 if (REG_P (x))
963 REG_ATTRS (x) = get_reg_attrs (t, 0);
964 else if (GET_CODE (x) == SUBREG)
965 REG_ATTRS (SUBREG_REG (x))
966 = get_reg_attrs (t, -SUBREG_BYTE (x));
967 if (GET_CODE (x) == CONCAT)
968 {
969 if (REG_P (XEXP (x, 0)))
970 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
971 if (REG_P (XEXP (x, 1)))
972 REG_ATTRS (XEXP (x, 1))
973 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
974 }
975 if (GET_CODE (x) == PARALLEL)
976 {
977 int i;
978 for (i = 0; i < XVECLEN (x, 0); i++)
979 {
980 rtx y = XVECEXP (x, 0, i);
981 if (REG_P (XEXP (y, 0)))
982 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
983 }
984 }
985 }
986
987 /* Assign the RTX X to parameter declaration T. */
988 void
989 set_decl_incoming_rtl (tree t, rtx x)
990 {
991 DECL_INCOMING_RTL (t) = x;
992
993 if (!x)
994 return;
995 /* For register, we maintain the reverse information too. */
996 if (REG_P (x))
997 REG_ATTRS (x) = get_reg_attrs (t, 0);
998 else if (GET_CODE (x) == SUBREG)
999 REG_ATTRS (SUBREG_REG (x))
1000 = get_reg_attrs (t, -SUBREG_BYTE (x));
1001 if (GET_CODE (x) == CONCAT)
1002 {
1003 if (REG_P (XEXP (x, 0)))
1004 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1005 if (REG_P (XEXP (x, 1)))
1006 REG_ATTRS (XEXP (x, 1))
1007 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1008 }
1009 if (GET_CODE (x) == PARALLEL)
1010 {
1011 int i, start;
1012
1013 /* Check for a NULL entry, used to indicate that the parameter goes
1014 both on the stack and in registers. */
1015 if (XEXP (XVECEXP (x, 0, 0), 0))
1016 start = 0;
1017 else
1018 start = 1;
1019
1020 for (i = start; i < XVECLEN (x, 0); i++)
1021 {
1022 rtx y = XVECEXP (x, 0, i);
1023 if (REG_P (XEXP (y, 0)))
1024 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1025 }
1026 }
1027 }
1028
1029 /* Identify REG (which may be a CONCAT) as a user register. */
1030
1031 void
1032 mark_user_reg (rtx reg)
1033 {
1034 if (GET_CODE (reg) == CONCAT)
1035 {
1036 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1037 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1038 }
1039 else
1040 {
1041 gcc_assert (REG_P (reg));
1042 REG_USERVAR_P (reg) = 1;
1043 }
1044 }
1045
1046 /* Identify REG as a probable pointer register and show its alignment
1047 as ALIGN, if nonzero. */
1048
1049 void
1050 mark_reg_pointer (rtx reg, int align)
1051 {
1052 if (! REG_POINTER (reg))
1053 {
1054 REG_POINTER (reg) = 1;
1055
1056 if (align)
1057 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1058 }
1059 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1060 /* We can no-longer be sure just how aligned this pointer is. */
1061 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1062 }
1063
1064 /* Return 1 plus largest pseudo reg number used in the current function. */
1065
1066 int
1067 max_reg_num (void)
1068 {
1069 return reg_rtx_no;
1070 }
1071
1072 /* Return 1 + the largest label number used so far in the current function. */
1073
1074 int
1075 max_label_num (void)
1076 {
1077 return label_num;
1078 }
1079
1080 /* Return first label number used in this function (if any were used). */
1081
1082 int
1083 get_first_label_num (void)
1084 {
1085 return first_label_num;
1086 }
1087
1088 /* If the rtx for label was created during the expansion of a nested
1089 function, then first_label_num won't include this label number.
1090 Fix this now so that array indicies work later. */
1091
1092 void
1093 maybe_set_first_label_num (rtx x)
1094 {
1095 if (CODE_LABEL_NUMBER (x) < first_label_num)
1096 first_label_num = CODE_LABEL_NUMBER (x);
1097 }
1098 \f
1099 /* Return a value representing some low-order bits of X, where the number
1100 of low-order bits is given by MODE. Note that no conversion is done
1101 between floating-point and fixed-point values, rather, the bit
1102 representation is returned.
1103
1104 This function handles the cases in common between gen_lowpart, below,
1105 and two variants in cse.c and combine.c. These are the cases that can
1106 be safely handled at all points in the compilation.
1107
1108 If this is not a case we can handle, return 0. */
1109
1110 rtx
1111 gen_lowpart_common (enum machine_mode mode, rtx x)
1112 {
1113 int msize = GET_MODE_SIZE (mode);
1114 int xsize;
1115 int offset = 0;
1116 enum machine_mode innermode;
1117
1118 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1119 so we have to make one up. Yuk. */
1120 innermode = GET_MODE (x);
1121 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
1122 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1123 else if (innermode == VOIDmode)
1124 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1125
1126 xsize = GET_MODE_SIZE (innermode);
1127
1128 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1129
1130 if (innermode == mode)
1131 return x;
1132
1133 /* MODE must occupy no more words than the mode of X. */
1134 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1135 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1136 return 0;
1137
1138 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1139 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1140 return 0;
1141
1142 offset = subreg_lowpart_offset (mode, innermode);
1143
1144 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1145 && (GET_MODE_CLASS (mode) == MODE_INT
1146 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1147 {
1148 /* If we are getting the low-order part of something that has been
1149 sign- or zero-extended, we can either just use the object being
1150 extended or make a narrower extension. If we want an even smaller
1151 piece than the size of the object being extended, call ourselves
1152 recursively.
1153
1154 This case is used mostly by combine and cse. */
1155
1156 if (GET_MODE (XEXP (x, 0)) == mode)
1157 return XEXP (x, 0);
1158 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1159 return gen_lowpart_common (mode, XEXP (x, 0));
1160 else if (msize < xsize)
1161 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1162 }
1163 else if (GET_CODE (x) == SUBREG || REG_P (x)
1164 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1165 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1166 return simplify_gen_subreg (mode, x, innermode, offset);
1167
1168 /* Otherwise, we can't do this. */
1169 return 0;
1170 }
1171 \f
1172 rtx
1173 gen_highpart (enum machine_mode mode, rtx x)
1174 {
1175 unsigned int msize = GET_MODE_SIZE (mode);
1176 rtx result;
1177
1178 /* This case loses if X is a subreg. To catch bugs early,
1179 complain if an invalid MODE is used even in other cases. */
1180 gcc_assert (msize <= UNITS_PER_WORD
1181 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1182
1183 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1184 subreg_highpart_offset (mode, GET_MODE (x)));
1185 gcc_assert (result);
1186
1187 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1188 the target if we have a MEM. gen_highpart must return a valid operand,
1189 emitting code if necessary to do so. */
1190 if (MEM_P (result))
1191 {
1192 result = validize_mem (result);
1193 gcc_assert (result);
1194 }
1195
1196 return result;
1197 }
1198
1199 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1200 be VOIDmode constant. */
1201 rtx
1202 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1203 {
1204 if (GET_MODE (exp) != VOIDmode)
1205 {
1206 gcc_assert (GET_MODE (exp) == innermode);
1207 return gen_highpart (outermode, exp);
1208 }
1209 return simplify_gen_subreg (outermode, exp, innermode,
1210 subreg_highpart_offset (outermode, innermode));
1211 }
1212
1213 /* Return offset in bytes to get OUTERMODE low part
1214 of the value in mode INNERMODE stored in memory in target format. */
1215
1216 unsigned int
1217 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1218 {
1219 unsigned int offset = 0;
1220 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1221
1222 if (difference > 0)
1223 {
1224 if (WORDS_BIG_ENDIAN)
1225 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1226 if (BYTES_BIG_ENDIAN)
1227 offset += difference % UNITS_PER_WORD;
1228 }
1229
1230 return offset;
1231 }
1232
1233 /* Return offset in bytes to get OUTERMODE high part
1234 of the value in mode INNERMODE stored in memory in target format. */
1235 unsigned int
1236 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1237 {
1238 unsigned int offset = 0;
1239 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1240
1241 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1242
1243 if (difference > 0)
1244 {
1245 if (! WORDS_BIG_ENDIAN)
1246 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1247 if (! BYTES_BIG_ENDIAN)
1248 offset += difference % UNITS_PER_WORD;
1249 }
1250
1251 return offset;
1252 }
1253
1254 /* Return 1 iff X, assumed to be a SUBREG,
1255 refers to the least significant part of its containing reg.
1256 If X is not a SUBREG, always return 1 (it is its own low part!). */
1257
1258 int
1259 subreg_lowpart_p (rtx x)
1260 {
1261 if (GET_CODE (x) != SUBREG)
1262 return 1;
1263 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1264 return 0;
1265
1266 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1267 == SUBREG_BYTE (x));
1268 }
1269 \f
1270 /* Return subword OFFSET of operand OP.
1271 The word number, OFFSET, is interpreted as the word number starting
1272 at the low-order address. OFFSET 0 is the low-order word if not
1273 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1274
1275 If we cannot extract the required word, we return zero. Otherwise,
1276 an rtx corresponding to the requested word will be returned.
1277
1278 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1279 reload has completed, a valid address will always be returned. After
1280 reload, if a valid address cannot be returned, we return zero.
1281
1282 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1283 it is the responsibility of the caller.
1284
1285 MODE is the mode of OP in case it is a CONST_INT.
1286
1287 ??? This is still rather broken for some cases. The problem for the
1288 moment is that all callers of this thing provide no 'goal mode' to
1289 tell us to work with. This exists because all callers were written
1290 in a word based SUBREG world.
1291 Now use of this function can be deprecated by simplify_subreg in most
1292 cases.
1293 */
1294
1295 rtx
1296 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1297 {
1298 if (mode == VOIDmode)
1299 mode = GET_MODE (op);
1300
1301 gcc_assert (mode != VOIDmode);
1302
1303 /* If OP is narrower than a word, fail. */
1304 if (mode != BLKmode
1305 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1306 return 0;
1307
1308 /* If we want a word outside OP, return zero. */
1309 if (mode != BLKmode
1310 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1311 return const0_rtx;
1312
1313 /* Form a new MEM at the requested address. */
1314 if (MEM_P (op))
1315 {
1316 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1317
1318 if (! validate_address)
1319 return new;
1320
1321 else if (reload_completed)
1322 {
1323 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1324 return 0;
1325 }
1326 else
1327 return replace_equiv_address (new, XEXP (new, 0));
1328 }
1329
1330 /* Rest can be handled by simplify_subreg. */
1331 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1332 }
1333
1334 /* Similar to `operand_subword', but never return 0. If we can't
1335 extract the required subword, put OP into a register and try again.
1336 The second attempt must succeed. We always validate the address in
1337 this case.
1338
1339 MODE is the mode of OP, in case it is CONST_INT. */
1340
1341 rtx
1342 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1343 {
1344 rtx result = operand_subword (op, offset, 1, mode);
1345
1346 if (result)
1347 return result;
1348
1349 if (mode != BLKmode && mode != VOIDmode)
1350 {
1351 /* If this is a register which can not be accessed by words, copy it
1352 to a pseudo register. */
1353 if (REG_P (op))
1354 op = copy_to_reg (op);
1355 else
1356 op = force_reg (mode, op);
1357 }
1358
1359 result = operand_subword (op, offset, 1, mode);
1360 gcc_assert (result);
1361
1362 return result;
1363 }
1364 \f
1365 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1366 or (2) a component ref of something variable. Represent the later with
1367 a NULL expression. */
1368
1369 static tree
1370 component_ref_for_mem_expr (tree ref)
1371 {
1372 tree inner = TREE_OPERAND (ref, 0);
1373
1374 if (TREE_CODE (inner) == COMPONENT_REF)
1375 inner = component_ref_for_mem_expr (inner);
1376 else
1377 {
1378 /* Now remove any conversions: they don't change what the underlying
1379 object is. Likewise for SAVE_EXPR. */
1380 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1381 || TREE_CODE (inner) == NON_LVALUE_EXPR
1382 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1383 || TREE_CODE (inner) == SAVE_EXPR)
1384 inner = TREE_OPERAND (inner, 0);
1385
1386 if (! DECL_P (inner))
1387 inner = NULL_TREE;
1388 }
1389
1390 if (inner == TREE_OPERAND (ref, 0))
1391 return ref;
1392 else
1393 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1394 TREE_OPERAND (ref, 1), NULL_TREE);
1395 }
1396
1397 /* Returns 1 if both MEM_EXPR can be considered equal
1398 and 0 otherwise. */
1399
1400 int
1401 mem_expr_equal_p (tree expr1, tree expr2)
1402 {
1403 if (expr1 == expr2)
1404 return 1;
1405
1406 if (! expr1 || ! expr2)
1407 return 0;
1408
1409 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1410 return 0;
1411
1412 if (TREE_CODE (expr1) == COMPONENT_REF)
1413 return
1414 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1415 TREE_OPERAND (expr2, 0))
1416 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1417 TREE_OPERAND (expr2, 1));
1418
1419 if (INDIRECT_REF_P (expr1))
1420 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1421 TREE_OPERAND (expr2, 0));
1422
1423 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1424 have been resolved here. */
1425 gcc_assert (DECL_P (expr1));
1426
1427 /* Decls with different pointers can't be equal. */
1428 return 0;
1429 }
1430
1431 /* Given REF, a MEM, and T, either the type of X or the expression
1432 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1433 if we are making a new object of this type. BITPOS is nonzero if
1434 there is an offset outstanding on T that will be applied later. */
1435
1436 void
1437 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1438 HOST_WIDE_INT bitpos)
1439 {
1440 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1441 tree expr = MEM_EXPR (ref);
1442 rtx offset = MEM_OFFSET (ref);
1443 rtx size = MEM_SIZE (ref);
1444 unsigned int align = MEM_ALIGN (ref);
1445 HOST_WIDE_INT apply_bitpos = 0;
1446 tree type;
1447
1448 /* It can happen that type_for_mode was given a mode for which there
1449 is no language-level type. In which case it returns NULL, which
1450 we can see here. */
1451 if (t == NULL_TREE)
1452 return;
1453
1454 type = TYPE_P (t) ? t : TREE_TYPE (t);
1455 if (type == error_mark_node)
1456 return;
1457
1458 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1459 wrong answer, as it assumes that DECL_RTL already has the right alias
1460 info. Callers should not set DECL_RTL until after the call to
1461 set_mem_attributes. */
1462 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1463
1464 /* Get the alias set from the expression or type (perhaps using a
1465 front-end routine) and use it. */
1466 alias = get_alias_set (t);
1467
1468 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1469 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1470 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1471 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (t);
1472
1473 /* If we are making an object of this type, or if this is a DECL, we know
1474 that it is a scalar if the type is not an aggregate. */
1475 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1476 MEM_SCALAR_P (ref) = 1;
1477
1478 /* We can set the alignment from the type if we are making an object,
1479 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1480 if (objectp || TREE_CODE (t) == INDIRECT_REF
1481 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1482 || TYPE_ALIGN_OK (type))
1483 align = MAX (align, TYPE_ALIGN (type));
1484 else
1485 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1486 {
1487 if (integer_zerop (TREE_OPERAND (t, 1)))
1488 /* We don't know anything about the alignment. */
1489 align = BITS_PER_UNIT;
1490 else
1491 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1492 }
1493
1494 /* If the size is known, we can set that. */
1495 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1496 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1497
1498 /* If T is not a type, we may be able to deduce some more information about
1499 the expression. */
1500 if (! TYPE_P (t))
1501 {
1502 tree base = get_base_address (t);
1503 if (base && DECL_P (base)
1504 && TREE_READONLY (base)
1505 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1506 {
1507 tree base_type = TREE_TYPE (base);
1508 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1509 || DECL_ARTIFICIAL (base));
1510 MEM_READONLY_P (ref) = 1;
1511 }
1512
1513 if (TREE_THIS_VOLATILE (t))
1514 MEM_VOLATILE_P (ref) = 1;
1515
1516 /* Now remove any conversions: they don't change what the underlying
1517 object is. Likewise for SAVE_EXPR. */
1518 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1519 || TREE_CODE (t) == NON_LVALUE_EXPR
1520 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1521 || TREE_CODE (t) == SAVE_EXPR)
1522 t = TREE_OPERAND (t, 0);
1523
1524 /* If this expression uses it's parent's alias set, mark it such
1525 that we won't change it. */
1526 if (component_uses_parent_alias_set (t))
1527 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1528
1529 /* If this is a decl, set the attributes of the MEM from it. */
1530 if (DECL_P (t))
1531 {
1532 expr = t;
1533 offset = const0_rtx;
1534 apply_bitpos = bitpos;
1535 size = (DECL_SIZE_UNIT (t)
1536 && host_integerp (DECL_SIZE_UNIT (t), 1)
1537 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1538 align = DECL_ALIGN (t);
1539 }
1540
1541 /* If this is a constant, we know the alignment. */
1542 else if (CONSTANT_CLASS_P (t))
1543 {
1544 align = TYPE_ALIGN (type);
1545 #ifdef CONSTANT_ALIGNMENT
1546 align = CONSTANT_ALIGNMENT (t, align);
1547 #endif
1548 }
1549
1550 /* If this is a field reference and not a bit-field, record it. */
1551 /* ??? There is some information that can be gleened from bit-fields,
1552 such as the word offset in the structure that might be modified.
1553 But skip it for now. */
1554 else if (TREE_CODE (t) == COMPONENT_REF
1555 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1556 {
1557 expr = component_ref_for_mem_expr (t);
1558 offset = const0_rtx;
1559 apply_bitpos = bitpos;
1560 /* ??? Any reason the field size would be different than
1561 the size we got from the type? */
1562 }
1563
1564 /* If this is an array reference, look for an outer field reference. */
1565 else if (TREE_CODE (t) == ARRAY_REF)
1566 {
1567 tree off_tree = size_zero_node;
1568 /* We can't modify t, because we use it at the end of the
1569 function. */
1570 tree t2 = t;
1571
1572 do
1573 {
1574 tree index = TREE_OPERAND (t2, 1);
1575 tree low_bound = array_ref_low_bound (t2);
1576 tree unit_size = array_ref_element_size (t2);
1577
1578 /* We assume all arrays have sizes that are a multiple of a byte.
1579 First subtract the lower bound, if any, in the type of the
1580 index, then convert to sizetype and multiply by the size of
1581 the array element. */
1582 if (! integer_zerop (low_bound))
1583 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1584 index, low_bound);
1585
1586 off_tree = size_binop (PLUS_EXPR,
1587 size_binop (MULT_EXPR, convert (sizetype,
1588 index),
1589 unit_size),
1590 off_tree);
1591 t2 = TREE_OPERAND (t2, 0);
1592 }
1593 while (TREE_CODE (t2) == ARRAY_REF);
1594
1595 if (DECL_P (t2))
1596 {
1597 expr = t2;
1598 offset = NULL;
1599 if (host_integerp (off_tree, 1))
1600 {
1601 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1602 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1603 align = DECL_ALIGN (t2);
1604 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1605 align = aoff;
1606 offset = GEN_INT (ioff);
1607 apply_bitpos = bitpos;
1608 }
1609 }
1610 else if (TREE_CODE (t2) == COMPONENT_REF)
1611 {
1612 expr = component_ref_for_mem_expr (t2);
1613 if (host_integerp (off_tree, 1))
1614 {
1615 offset = GEN_INT (tree_low_cst (off_tree, 1));
1616 apply_bitpos = bitpos;
1617 }
1618 /* ??? Any reason the field size would be different than
1619 the size we got from the type? */
1620 }
1621 else if (flag_argument_noalias > 1
1622 && (INDIRECT_REF_P (t2))
1623 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1624 {
1625 expr = t2;
1626 offset = NULL;
1627 }
1628 }
1629
1630 /* If this is a Fortran indirect argument reference, record the
1631 parameter decl. */
1632 else if (flag_argument_noalias > 1
1633 && (INDIRECT_REF_P (t))
1634 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1635 {
1636 expr = t;
1637 offset = NULL;
1638 }
1639 }
1640
1641 /* If we modified OFFSET based on T, then subtract the outstanding
1642 bit position offset. Similarly, increase the size of the accessed
1643 object to contain the negative offset. */
1644 if (apply_bitpos)
1645 {
1646 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1647 if (size)
1648 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1649 }
1650
1651 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1652 {
1653 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1654 we're overlapping. */
1655 offset = NULL;
1656 expr = NULL;
1657 }
1658
1659 /* Now set the attributes we computed above. */
1660 MEM_ATTRS (ref)
1661 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1662
1663 /* If this is already known to be a scalar or aggregate, we are done. */
1664 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1665 return;
1666
1667 /* If it is a reference into an aggregate, this is part of an aggregate.
1668 Otherwise we don't know. */
1669 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1670 || TREE_CODE (t) == ARRAY_RANGE_REF
1671 || TREE_CODE (t) == BIT_FIELD_REF)
1672 MEM_IN_STRUCT_P (ref) = 1;
1673 }
1674
1675 void
1676 set_mem_attributes (rtx ref, tree t, int objectp)
1677 {
1678 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1679 }
1680
1681 /* Set the decl for MEM to DECL. */
1682
1683 void
1684 set_mem_attrs_from_reg (rtx mem, rtx reg)
1685 {
1686 MEM_ATTRS (mem)
1687 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1688 GEN_INT (REG_OFFSET (reg)),
1689 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1690 }
1691
1692 /* Set the alias set of MEM to SET. */
1693
1694 void
1695 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1696 {
1697 #ifdef ENABLE_CHECKING
1698 /* If the new and old alias sets don't conflict, something is wrong. */
1699 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1700 #endif
1701
1702 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1703 MEM_SIZE (mem), MEM_ALIGN (mem),
1704 GET_MODE (mem));
1705 }
1706
1707 /* Set the alignment of MEM to ALIGN bits. */
1708
1709 void
1710 set_mem_align (rtx mem, unsigned int align)
1711 {
1712 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1713 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1714 GET_MODE (mem));
1715 }
1716
1717 /* Set the expr for MEM to EXPR. */
1718
1719 void
1720 set_mem_expr (rtx mem, tree expr)
1721 {
1722 MEM_ATTRS (mem)
1723 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1724 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1725 }
1726
1727 /* Set the offset of MEM to OFFSET. */
1728
1729 void
1730 set_mem_offset (rtx mem, rtx offset)
1731 {
1732 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1733 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1734 GET_MODE (mem));
1735 }
1736
1737 /* Set the size of MEM to SIZE. */
1738
1739 void
1740 set_mem_size (rtx mem, rtx size)
1741 {
1742 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1743 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1744 GET_MODE (mem));
1745 }
1746 \f
1747 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1748 and its address changed to ADDR. (VOIDmode means don't change the mode.
1749 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1750 returned memory location is required to be valid. The memory
1751 attributes are not changed. */
1752
1753 static rtx
1754 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1755 {
1756 rtx new;
1757
1758 gcc_assert (MEM_P (memref));
1759 if (mode == VOIDmode)
1760 mode = GET_MODE (memref);
1761 if (addr == 0)
1762 addr = XEXP (memref, 0);
1763 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1764 && (!validate || memory_address_p (mode, addr)))
1765 return memref;
1766
1767 if (validate)
1768 {
1769 if (reload_in_progress || reload_completed)
1770 gcc_assert (memory_address_p (mode, addr));
1771 else
1772 addr = memory_address (mode, addr);
1773 }
1774
1775 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1776 return memref;
1777
1778 new = gen_rtx_MEM (mode, addr);
1779 MEM_COPY_ATTRIBUTES (new, memref);
1780 return new;
1781 }
1782
1783 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1784 way we are changing MEMREF, so we only preserve the alias set. */
1785
1786 rtx
1787 change_address (rtx memref, enum machine_mode mode, rtx addr)
1788 {
1789 rtx new = change_address_1 (memref, mode, addr, 1), size;
1790 enum machine_mode mmode = GET_MODE (new);
1791 unsigned int align;
1792
1793 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1794 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1795
1796 /* If there are no changes, just return the original memory reference. */
1797 if (new == memref)
1798 {
1799 if (MEM_ATTRS (memref) == 0
1800 || (MEM_EXPR (memref) == NULL
1801 && MEM_OFFSET (memref) == NULL
1802 && MEM_SIZE (memref) == size
1803 && MEM_ALIGN (memref) == align))
1804 return new;
1805
1806 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1807 MEM_COPY_ATTRIBUTES (new, memref);
1808 }
1809
1810 MEM_ATTRS (new)
1811 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1812
1813 return new;
1814 }
1815
1816 /* Return a memory reference like MEMREF, but with its mode changed
1817 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1818 nonzero, the memory address is forced to be valid.
1819 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1820 and caller is responsible for adjusting MEMREF base register. */
1821
1822 rtx
1823 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1824 int validate, int adjust)
1825 {
1826 rtx addr = XEXP (memref, 0);
1827 rtx new;
1828 rtx memoffset = MEM_OFFSET (memref);
1829 rtx size = 0;
1830 unsigned int memalign = MEM_ALIGN (memref);
1831
1832 /* If there are no changes, just return the original memory reference. */
1833 if (mode == GET_MODE (memref) && !offset
1834 && (!validate || memory_address_p (mode, addr)))
1835 return memref;
1836
1837 /* ??? Prefer to create garbage instead of creating shared rtl.
1838 This may happen even if offset is nonzero -- consider
1839 (plus (plus reg reg) const_int) -- so do this always. */
1840 addr = copy_rtx (addr);
1841
1842 if (adjust)
1843 {
1844 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1845 object, we can merge it into the LO_SUM. */
1846 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1847 && offset >= 0
1848 && (unsigned HOST_WIDE_INT) offset
1849 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1850 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1851 plus_constant (XEXP (addr, 1), offset));
1852 else
1853 addr = plus_constant (addr, offset);
1854 }
1855
1856 new = change_address_1 (memref, mode, addr, validate);
1857
1858 /* Compute the new values of the memory attributes due to this adjustment.
1859 We add the offsets and update the alignment. */
1860 if (memoffset)
1861 memoffset = GEN_INT (offset + INTVAL (memoffset));
1862
1863 /* Compute the new alignment by taking the MIN of the alignment and the
1864 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1865 if zero. */
1866 if (offset != 0)
1867 memalign
1868 = MIN (memalign,
1869 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1870
1871 /* We can compute the size in a number of ways. */
1872 if (GET_MODE (new) != BLKmode)
1873 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1874 else if (MEM_SIZE (memref))
1875 size = plus_constant (MEM_SIZE (memref), -offset);
1876
1877 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1878 memoffset, size, memalign, GET_MODE (new));
1879
1880 /* At some point, we should validate that this offset is within the object,
1881 if all the appropriate values are known. */
1882 return new;
1883 }
1884
1885 /* Return a memory reference like MEMREF, but with its mode changed
1886 to MODE and its address changed to ADDR, which is assumed to be
1887 MEMREF offseted by OFFSET bytes. If VALIDATE is
1888 nonzero, the memory address is forced to be valid. */
1889
1890 rtx
1891 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1892 HOST_WIDE_INT offset, int validate)
1893 {
1894 memref = change_address_1 (memref, VOIDmode, addr, validate);
1895 return adjust_address_1 (memref, mode, offset, validate, 0);
1896 }
1897
1898 /* Return a memory reference like MEMREF, but whose address is changed by
1899 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1900 known to be in OFFSET (possibly 1). */
1901
1902 rtx
1903 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1904 {
1905 rtx new, addr = XEXP (memref, 0);
1906
1907 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1908
1909 /* At this point we don't know _why_ the address is invalid. It
1910 could have secondary memory references, multiplies or anything.
1911
1912 However, if we did go and rearrange things, we can wind up not
1913 being able to recognize the magic around pic_offset_table_rtx.
1914 This stuff is fragile, and is yet another example of why it is
1915 bad to expose PIC machinery too early. */
1916 if (! memory_address_p (GET_MODE (memref), new)
1917 && GET_CODE (addr) == PLUS
1918 && XEXP (addr, 0) == pic_offset_table_rtx)
1919 {
1920 addr = force_reg (GET_MODE (addr), addr);
1921 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1922 }
1923
1924 update_temp_slot_address (XEXP (memref, 0), new);
1925 new = change_address_1 (memref, VOIDmode, new, 1);
1926
1927 /* If there are no changes, just return the original memory reference. */
1928 if (new == memref)
1929 return new;
1930
1931 /* Update the alignment to reflect the offset. Reset the offset, which
1932 we don't know. */
1933 MEM_ATTRS (new)
1934 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1935 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1936 GET_MODE (new));
1937 return new;
1938 }
1939
1940 /* Return a memory reference like MEMREF, but with its address changed to
1941 ADDR. The caller is asserting that the actual piece of memory pointed
1942 to is the same, just the form of the address is being changed, such as
1943 by putting something into a register. */
1944
1945 rtx
1946 replace_equiv_address (rtx memref, rtx addr)
1947 {
1948 /* change_address_1 copies the memory attribute structure without change
1949 and that's exactly what we want here. */
1950 update_temp_slot_address (XEXP (memref, 0), addr);
1951 return change_address_1 (memref, VOIDmode, addr, 1);
1952 }
1953
1954 /* Likewise, but the reference is not required to be valid. */
1955
1956 rtx
1957 replace_equiv_address_nv (rtx memref, rtx addr)
1958 {
1959 return change_address_1 (memref, VOIDmode, addr, 0);
1960 }
1961
1962 /* Return a memory reference like MEMREF, but with its mode widened to
1963 MODE and offset by OFFSET. This would be used by targets that e.g.
1964 cannot issue QImode memory operations and have to use SImode memory
1965 operations plus masking logic. */
1966
1967 rtx
1968 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
1969 {
1970 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
1971 tree expr = MEM_EXPR (new);
1972 rtx memoffset = MEM_OFFSET (new);
1973 unsigned int size = GET_MODE_SIZE (mode);
1974
1975 /* If there are no changes, just return the original memory reference. */
1976 if (new == memref)
1977 return new;
1978
1979 /* If we don't know what offset we were at within the expression, then
1980 we can't know if we've overstepped the bounds. */
1981 if (! memoffset)
1982 expr = NULL_TREE;
1983
1984 while (expr)
1985 {
1986 if (TREE_CODE (expr) == COMPONENT_REF)
1987 {
1988 tree field = TREE_OPERAND (expr, 1);
1989 tree offset = component_ref_field_offset (expr);
1990
1991 if (! DECL_SIZE_UNIT (field))
1992 {
1993 expr = NULL_TREE;
1994 break;
1995 }
1996
1997 /* Is the field at least as large as the access? If so, ok,
1998 otherwise strip back to the containing structure. */
1999 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2000 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2001 && INTVAL (memoffset) >= 0)
2002 break;
2003
2004 if (! host_integerp (offset, 1))
2005 {
2006 expr = NULL_TREE;
2007 break;
2008 }
2009
2010 expr = TREE_OPERAND (expr, 0);
2011 memoffset
2012 = (GEN_INT (INTVAL (memoffset)
2013 + tree_low_cst (offset, 1)
2014 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2015 / BITS_PER_UNIT)));
2016 }
2017 /* Similarly for the decl. */
2018 else if (DECL_P (expr)
2019 && DECL_SIZE_UNIT (expr)
2020 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2021 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2022 && (! memoffset || INTVAL (memoffset) >= 0))
2023 break;
2024 else
2025 {
2026 /* The widened memory access overflows the expression, which means
2027 that it could alias another expression. Zap it. */
2028 expr = NULL_TREE;
2029 break;
2030 }
2031 }
2032
2033 if (! expr)
2034 memoffset = NULL_RTX;
2035
2036 /* The widened memory may alias other stuff, so zap the alias set. */
2037 /* ??? Maybe use get_alias_set on any remaining expression. */
2038
2039 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2040 MEM_ALIGN (new), mode);
2041
2042 return new;
2043 }
2044 \f
2045 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2046
2047 rtx
2048 gen_label_rtx (void)
2049 {
2050 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2051 NULL, label_num++, NULL);
2052 }
2053 \f
2054 /* For procedure integration. */
2055
2056 /* Install new pointers to the first and last insns in the chain.
2057 Also, set cur_insn_uid to one higher than the last in use.
2058 Used for an inline-procedure after copying the insn chain. */
2059
2060 void
2061 set_new_first_and_last_insn (rtx first, rtx last)
2062 {
2063 rtx insn;
2064
2065 first_insn = first;
2066 last_insn = last;
2067 cur_insn_uid = 0;
2068
2069 for (insn = first; insn; insn = NEXT_INSN (insn))
2070 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2071
2072 cur_insn_uid++;
2073 }
2074 \f
2075 /* Go through all the RTL insn bodies and copy any invalid shared
2076 structure. This routine should only be called once. */
2077
2078 static void
2079 unshare_all_rtl_1 (tree fndecl, rtx insn)
2080 {
2081 tree decl;
2082
2083 /* Make sure that virtual parameters are not shared. */
2084 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2085 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2086
2087 /* Make sure that virtual stack slots are not shared. */
2088 unshare_all_decls (DECL_INITIAL (fndecl));
2089
2090 /* Unshare just about everything else. */
2091 unshare_all_rtl_in_chain (insn);
2092
2093 /* Make sure the addresses of stack slots found outside the insn chain
2094 (such as, in DECL_RTL of a variable) are not shared
2095 with the insn chain.
2096
2097 This special care is necessary when the stack slot MEM does not
2098 actually appear in the insn chain. If it does appear, its address
2099 is unshared from all else at that point. */
2100 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2101 }
2102
2103 /* Go through all the RTL insn bodies and copy any invalid shared
2104 structure, again. This is a fairly expensive thing to do so it
2105 should be done sparingly. */
2106
2107 void
2108 unshare_all_rtl_again (rtx insn)
2109 {
2110 rtx p;
2111 tree decl;
2112
2113 for (p = insn; p; p = NEXT_INSN (p))
2114 if (INSN_P (p))
2115 {
2116 reset_used_flags (PATTERN (p));
2117 reset_used_flags (REG_NOTES (p));
2118 reset_used_flags (LOG_LINKS (p));
2119 }
2120
2121 /* Make sure that virtual stack slots are not shared. */
2122 reset_used_decls (DECL_INITIAL (cfun->decl));
2123
2124 /* Make sure that virtual parameters are not shared. */
2125 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2126 reset_used_flags (DECL_RTL (decl));
2127
2128 reset_used_flags (stack_slot_list);
2129
2130 unshare_all_rtl_1 (cfun->decl, insn);
2131 }
2132
2133 void
2134 unshare_all_rtl (void)
2135 {
2136 unshare_all_rtl_1 (current_function_decl, get_insns ());
2137 }
2138
2139 struct tree_opt_pass pass_unshare_all_rtl =
2140 {
2141 NULL, /* name */
2142 NULL, /* gate */
2143 unshare_all_rtl, /* execute */
2144 NULL, /* sub */
2145 NULL, /* next */
2146 0, /* static_pass_number */
2147 0, /* tv_id */
2148 0, /* properties_required */
2149 0, /* properties_provided */
2150 0, /* properties_destroyed */
2151 0, /* todo_flags_start */
2152 0, /* todo_flags_finish */
2153 0 /* letter */
2154 };
2155
2156
2157 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2158 Recursively does the same for subexpressions. */
2159
2160 static void
2161 verify_rtx_sharing (rtx orig, rtx insn)
2162 {
2163 rtx x = orig;
2164 int i;
2165 enum rtx_code code;
2166 const char *format_ptr;
2167
2168 if (x == 0)
2169 return;
2170
2171 code = GET_CODE (x);
2172
2173 /* These types may be freely shared. */
2174
2175 switch (code)
2176 {
2177 case REG:
2178 case CONST_INT:
2179 case CONST_DOUBLE:
2180 case CONST_VECTOR:
2181 case SYMBOL_REF:
2182 case LABEL_REF:
2183 case CODE_LABEL:
2184 case PC:
2185 case CC0:
2186 case SCRATCH:
2187 return;
2188 /* SCRATCH must be shared because they represent distinct values. */
2189 case CLOBBER:
2190 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2191 return;
2192 break;
2193
2194 case CONST:
2195 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2196 a LABEL_REF, it isn't sharable. */
2197 if (GET_CODE (XEXP (x, 0)) == PLUS
2198 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2199 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2200 return;
2201 break;
2202
2203 case MEM:
2204 /* A MEM is allowed to be shared if its address is constant. */
2205 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2206 || reload_completed || reload_in_progress)
2207 return;
2208
2209 break;
2210
2211 default:
2212 break;
2213 }
2214
2215 /* This rtx may not be shared. If it has already been seen,
2216 replace it with a copy of itself. */
2217 #ifdef ENABLE_CHECKING
2218 if (RTX_FLAG (x, used))
2219 {
2220 error ("invalid rtl sharing found in the insn");
2221 debug_rtx (insn);
2222 error ("shared rtx");
2223 debug_rtx (x);
2224 internal_error ("internal consistency failure");
2225 }
2226 #endif
2227 gcc_assert (!RTX_FLAG (x, used));
2228
2229 RTX_FLAG (x, used) = 1;
2230
2231 /* Now scan the subexpressions recursively. */
2232
2233 format_ptr = GET_RTX_FORMAT (code);
2234
2235 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2236 {
2237 switch (*format_ptr++)
2238 {
2239 case 'e':
2240 verify_rtx_sharing (XEXP (x, i), insn);
2241 break;
2242
2243 case 'E':
2244 if (XVEC (x, i) != NULL)
2245 {
2246 int j;
2247 int len = XVECLEN (x, i);
2248
2249 for (j = 0; j < len; j++)
2250 {
2251 /* We allow sharing of ASM_OPERANDS inside single
2252 instruction. */
2253 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2254 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2255 == ASM_OPERANDS))
2256 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2257 else
2258 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2259 }
2260 }
2261 break;
2262 }
2263 }
2264 return;
2265 }
2266
2267 /* Go through all the RTL insn bodies and check that there is no unexpected
2268 sharing in between the subexpressions. */
2269
2270 void
2271 verify_rtl_sharing (void)
2272 {
2273 rtx p;
2274
2275 for (p = get_insns (); p; p = NEXT_INSN (p))
2276 if (INSN_P (p))
2277 {
2278 reset_used_flags (PATTERN (p));
2279 reset_used_flags (REG_NOTES (p));
2280 reset_used_flags (LOG_LINKS (p));
2281 }
2282
2283 for (p = get_insns (); p; p = NEXT_INSN (p))
2284 if (INSN_P (p))
2285 {
2286 verify_rtx_sharing (PATTERN (p), p);
2287 verify_rtx_sharing (REG_NOTES (p), p);
2288 verify_rtx_sharing (LOG_LINKS (p), p);
2289 }
2290 }
2291
2292 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2293 Assumes the mark bits are cleared at entry. */
2294
2295 void
2296 unshare_all_rtl_in_chain (rtx insn)
2297 {
2298 for (; insn; insn = NEXT_INSN (insn))
2299 if (INSN_P (insn))
2300 {
2301 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2302 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2303 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2304 }
2305 }
2306
2307 /* Go through all virtual stack slots of a function and copy any
2308 shared structure. */
2309 static void
2310 unshare_all_decls (tree blk)
2311 {
2312 tree t;
2313
2314 /* Copy shared decls. */
2315 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2316 if (DECL_RTL_SET_P (t))
2317 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2318
2319 /* Now process sub-blocks. */
2320 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2321 unshare_all_decls (t);
2322 }
2323
2324 /* Go through all virtual stack slots of a function and mark them as
2325 not shared. */
2326 static void
2327 reset_used_decls (tree blk)
2328 {
2329 tree t;
2330
2331 /* Mark decls. */
2332 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2333 if (DECL_RTL_SET_P (t))
2334 reset_used_flags (DECL_RTL (t));
2335
2336 /* Now process sub-blocks. */
2337 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2338 reset_used_decls (t);
2339 }
2340
2341 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2342 Recursively does the same for subexpressions. Uses
2343 copy_rtx_if_shared_1 to reduce stack space. */
2344
2345 rtx
2346 copy_rtx_if_shared (rtx orig)
2347 {
2348 copy_rtx_if_shared_1 (&orig);
2349 return orig;
2350 }
2351
2352 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2353 use. Recursively does the same for subexpressions. */
2354
2355 static void
2356 copy_rtx_if_shared_1 (rtx *orig1)
2357 {
2358 rtx x;
2359 int i;
2360 enum rtx_code code;
2361 rtx *last_ptr;
2362 const char *format_ptr;
2363 int copied = 0;
2364 int length;
2365
2366 /* Repeat is used to turn tail-recursion into iteration. */
2367 repeat:
2368 x = *orig1;
2369
2370 if (x == 0)
2371 return;
2372
2373 code = GET_CODE (x);
2374
2375 /* These types may be freely shared. */
2376
2377 switch (code)
2378 {
2379 case REG:
2380 case CONST_INT:
2381 case CONST_DOUBLE:
2382 case CONST_VECTOR:
2383 case SYMBOL_REF:
2384 case LABEL_REF:
2385 case CODE_LABEL:
2386 case PC:
2387 case CC0:
2388 case SCRATCH:
2389 /* SCRATCH must be shared because they represent distinct values. */
2390 return;
2391 case CLOBBER:
2392 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2393 return;
2394 break;
2395
2396 case CONST:
2397 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2398 a LABEL_REF, it isn't sharable. */
2399 if (GET_CODE (XEXP (x, 0)) == PLUS
2400 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2401 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2402 return;
2403 break;
2404
2405 case INSN:
2406 case JUMP_INSN:
2407 case CALL_INSN:
2408 case NOTE:
2409 case BARRIER:
2410 /* The chain of insns is not being copied. */
2411 return;
2412
2413 default:
2414 break;
2415 }
2416
2417 /* This rtx may not be shared. If it has already been seen,
2418 replace it with a copy of itself. */
2419
2420 if (RTX_FLAG (x, used))
2421 {
2422 rtx copy;
2423
2424 copy = rtx_alloc (code);
2425 memcpy (copy, x, RTX_SIZE (code));
2426 x = copy;
2427 copied = 1;
2428 }
2429 RTX_FLAG (x, used) = 1;
2430
2431 /* Now scan the subexpressions recursively.
2432 We can store any replaced subexpressions directly into X
2433 since we know X is not shared! Any vectors in X
2434 must be copied if X was copied. */
2435
2436 format_ptr = GET_RTX_FORMAT (code);
2437 length = GET_RTX_LENGTH (code);
2438 last_ptr = NULL;
2439
2440 for (i = 0; i < length; i++)
2441 {
2442 switch (*format_ptr++)
2443 {
2444 case 'e':
2445 if (last_ptr)
2446 copy_rtx_if_shared_1 (last_ptr);
2447 last_ptr = &XEXP (x, i);
2448 break;
2449
2450 case 'E':
2451 if (XVEC (x, i) != NULL)
2452 {
2453 int j;
2454 int len = XVECLEN (x, i);
2455
2456 /* Copy the vector iff I copied the rtx and the length
2457 is nonzero. */
2458 if (copied && len > 0)
2459 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2460
2461 /* Call recursively on all inside the vector. */
2462 for (j = 0; j < len; j++)
2463 {
2464 if (last_ptr)
2465 copy_rtx_if_shared_1 (last_ptr);
2466 last_ptr = &XVECEXP (x, i, j);
2467 }
2468 }
2469 break;
2470 }
2471 }
2472 *orig1 = x;
2473 if (last_ptr)
2474 {
2475 orig1 = last_ptr;
2476 goto repeat;
2477 }
2478 return;
2479 }
2480
2481 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2482 to look for shared sub-parts. */
2483
2484 void
2485 reset_used_flags (rtx x)
2486 {
2487 int i, j;
2488 enum rtx_code code;
2489 const char *format_ptr;
2490 int length;
2491
2492 /* Repeat is used to turn tail-recursion into iteration. */
2493 repeat:
2494 if (x == 0)
2495 return;
2496
2497 code = GET_CODE (x);
2498
2499 /* These types may be freely shared so we needn't do any resetting
2500 for them. */
2501
2502 switch (code)
2503 {
2504 case REG:
2505 case CONST_INT:
2506 case CONST_DOUBLE:
2507 case CONST_VECTOR:
2508 case SYMBOL_REF:
2509 case CODE_LABEL:
2510 case PC:
2511 case CC0:
2512 return;
2513
2514 case INSN:
2515 case JUMP_INSN:
2516 case CALL_INSN:
2517 case NOTE:
2518 case LABEL_REF:
2519 case BARRIER:
2520 /* The chain of insns is not being copied. */
2521 return;
2522
2523 default:
2524 break;
2525 }
2526
2527 RTX_FLAG (x, used) = 0;
2528
2529 format_ptr = GET_RTX_FORMAT (code);
2530 length = GET_RTX_LENGTH (code);
2531
2532 for (i = 0; i < length; i++)
2533 {
2534 switch (*format_ptr++)
2535 {
2536 case 'e':
2537 if (i == length-1)
2538 {
2539 x = XEXP (x, i);
2540 goto repeat;
2541 }
2542 reset_used_flags (XEXP (x, i));
2543 break;
2544
2545 case 'E':
2546 for (j = 0; j < XVECLEN (x, i); j++)
2547 reset_used_flags (XVECEXP (x, i, j));
2548 break;
2549 }
2550 }
2551 }
2552
2553 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2554 to look for shared sub-parts. */
2555
2556 void
2557 set_used_flags (rtx x)
2558 {
2559 int i, j;
2560 enum rtx_code code;
2561 const char *format_ptr;
2562
2563 if (x == 0)
2564 return;
2565
2566 code = GET_CODE (x);
2567
2568 /* These types may be freely shared so we needn't do any resetting
2569 for them. */
2570
2571 switch (code)
2572 {
2573 case REG:
2574 case CONST_INT:
2575 case CONST_DOUBLE:
2576 case CONST_VECTOR:
2577 case SYMBOL_REF:
2578 case CODE_LABEL:
2579 case PC:
2580 case CC0:
2581 return;
2582
2583 case INSN:
2584 case JUMP_INSN:
2585 case CALL_INSN:
2586 case NOTE:
2587 case LABEL_REF:
2588 case BARRIER:
2589 /* The chain of insns is not being copied. */
2590 return;
2591
2592 default:
2593 break;
2594 }
2595
2596 RTX_FLAG (x, used) = 1;
2597
2598 format_ptr = GET_RTX_FORMAT (code);
2599 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2600 {
2601 switch (*format_ptr++)
2602 {
2603 case 'e':
2604 set_used_flags (XEXP (x, i));
2605 break;
2606
2607 case 'E':
2608 for (j = 0; j < XVECLEN (x, i); j++)
2609 set_used_flags (XVECEXP (x, i, j));
2610 break;
2611 }
2612 }
2613 }
2614 \f
2615 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2616 Return X or the rtx for the pseudo reg the value of X was copied into.
2617 OTHER must be valid as a SET_DEST. */
2618
2619 rtx
2620 make_safe_from (rtx x, rtx other)
2621 {
2622 while (1)
2623 switch (GET_CODE (other))
2624 {
2625 case SUBREG:
2626 other = SUBREG_REG (other);
2627 break;
2628 case STRICT_LOW_PART:
2629 case SIGN_EXTEND:
2630 case ZERO_EXTEND:
2631 other = XEXP (other, 0);
2632 break;
2633 default:
2634 goto done;
2635 }
2636 done:
2637 if ((MEM_P (other)
2638 && ! CONSTANT_P (x)
2639 && !REG_P (x)
2640 && GET_CODE (x) != SUBREG)
2641 || (REG_P (other)
2642 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2643 || reg_mentioned_p (other, x))))
2644 {
2645 rtx temp = gen_reg_rtx (GET_MODE (x));
2646 emit_move_insn (temp, x);
2647 return temp;
2648 }
2649 return x;
2650 }
2651 \f
2652 /* Emission of insns (adding them to the doubly-linked list). */
2653
2654 /* Return the first insn of the current sequence or current function. */
2655
2656 rtx
2657 get_insns (void)
2658 {
2659 return first_insn;
2660 }
2661
2662 /* Specify a new insn as the first in the chain. */
2663
2664 void
2665 set_first_insn (rtx insn)
2666 {
2667 gcc_assert (!PREV_INSN (insn));
2668 first_insn = insn;
2669 }
2670
2671 /* Return the last insn emitted in current sequence or current function. */
2672
2673 rtx
2674 get_last_insn (void)
2675 {
2676 return last_insn;
2677 }
2678
2679 /* Specify a new insn as the last in the chain. */
2680
2681 void
2682 set_last_insn (rtx insn)
2683 {
2684 gcc_assert (!NEXT_INSN (insn));
2685 last_insn = insn;
2686 }
2687
2688 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2689
2690 rtx
2691 get_last_insn_anywhere (void)
2692 {
2693 struct sequence_stack *stack;
2694 if (last_insn)
2695 return last_insn;
2696 for (stack = seq_stack; stack; stack = stack->next)
2697 if (stack->last != 0)
2698 return stack->last;
2699 return 0;
2700 }
2701
2702 /* Return the first nonnote insn emitted in current sequence or current
2703 function. This routine looks inside SEQUENCEs. */
2704
2705 rtx
2706 get_first_nonnote_insn (void)
2707 {
2708 rtx insn = first_insn;
2709
2710 if (insn)
2711 {
2712 if (NOTE_P (insn))
2713 for (insn = next_insn (insn);
2714 insn && NOTE_P (insn);
2715 insn = next_insn (insn))
2716 continue;
2717 else
2718 {
2719 if (NONJUMP_INSN_P (insn)
2720 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2721 insn = XVECEXP (PATTERN (insn), 0, 0);
2722 }
2723 }
2724
2725 return insn;
2726 }
2727
2728 /* Return the last nonnote insn emitted in current sequence or current
2729 function. This routine looks inside SEQUENCEs. */
2730
2731 rtx
2732 get_last_nonnote_insn (void)
2733 {
2734 rtx insn = last_insn;
2735
2736 if (insn)
2737 {
2738 if (NOTE_P (insn))
2739 for (insn = previous_insn (insn);
2740 insn && NOTE_P (insn);
2741 insn = previous_insn (insn))
2742 continue;
2743 else
2744 {
2745 if (NONJUMP_INSN_P (insn)
2746 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2747 insn = XVECEXP (PATTERN (insn), 0,
2748 XVECLEN (PATTERN (insn), 0) - 1);
2749 }
2750 }
2751
2752 return insn;
2753 }
2754
2755 /* Return a number larger than any instruction's uid in this function. */
2756
2757 int
2758 get_max_uid (void)
2759 {
2760 return cur_insn_uid;
2761 }
2762
2763 /* Renumber instructions so that no instruction UIDs are wasted. */
2764
2765 void
2766 renumber_insns (FILE *stream)
2767 {
2768 rtx insn;
2769
2770 /* If we're not supposed to renumber instructions, don't. */
2771 if (!flag_renumber_insns)
2772 return;
2773
2774 /* If there aren't that many instructions, then it's not really
2775 worth renumbering them. */
2776 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2777 return;
2778
2779 cur_insn_uid = 1;
2780
2781 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2782 {
2783 if (stream)
2784 fprintf (stream, "Renumbering insn %d to %d\n",
2785 INSN_UID (insn), cur_insn_uid);
2786 INSN_UID (insn) = cur_insn_uid++;
2787 }
2788 }
2789 \f
2790 /* Return the next insn. If it is a SEQUENCE, return the first insn
2791 of the sequence. */
2792
2793 rtx
2794 next_insn (rtx insn)
2795 {
2796 if (insn)
2797 {
2798 insn = NEXT_INSN (insn);
2799 if (insn && NONJUMP_INSN_P (insn)
2800 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2801 insn = XVECEXP (PATTERN (insn), 0, 0);
2802 }
2803
2804 return insn;
2805 }
2806
2807 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2808 of the sequence. */
2809
2810 rtx
2811 previous_insn (rtx insn)
2812 {
2813 if (insn)
2814 {
2815 insn = PREV_INSN (insn);
2816 if (insn && NONJUMP_INSN_P (insn)
2817 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2818 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2819 }
2820
2821 return insn;
2822 }
2823
2824 /* Return the next insn after INSN that is not a NOTE. This routine does not
2825 look inside SEQUENCEs. */
2826
2827 rtx
2828 next_nonnote_insn (rtx insn)
2829 {
2830 while (insn)
2831 {
2832 insn = NEXT_INSN (insn);
2833 if (insn == 0 || !NOTE_P (insn))
2834 break;
2835 }
2836
2837 return insn;
2838 }
2839
2840 /* Return the previous insn before INSN that is not a NOTE. This routine does
2841 not look inside SEQUENCEs. */
2842
2843 rtx
2844 prev_nonnote_insn (rtx insn)
2845 {
2846 while (insn)
2847 {
2848 insn = PREV_INSN (insn);
2849 if (insn == 0 || !NOTE_P (insn))
2850 break;
2851 }
2852
2853 return insn;
2854 }
2855
2856 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2857 or 0, if there is none. This routine does not look inside
2858 SEQUENCEs. */
2859
2860 rtx
2861 next_real_insn (rtx insn)
2862 {
2863 while (insn)
2864 {
2865 insn = NEXT_INSN (insn);
2866 if (insn == 0 || INSN_P (insn))
2867 break;
2868 }
2869
2870 return insn;
2871 }
2872
2873 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2874 or 0, if there is none. This routine does not look inside
2875 SEQUENCEs. */
2876
2877 rtx
2878 prev_real_insn (rtx insn)
2879 {
2880 while (insn)
2881 {
2882 insn = PREV_INSN (insn);
2883 if (insn == 0 || INSN_P (insn))
2884 break;
2885 }
2886
2887 return insn;
2888 }
2889
2890 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2891 This routine does not look inside SEQUENCEs. */
2892
2893 rtx
2894 last_call_insn (void)
2895 {
2896 rtx insn;
2897
2898 for (insn = get_last_insn ();
2899 insn && !CALL_P (insn);
2900 insn = PREV_INSN (insn))
2901 ;
2902
2903 return insn;
2904 }
2905
2906 /* Find the next insn after INSN that really does something. This routine
2907 does not look inside SEQUENCEs. Until reload has completed, this is the
2908 same as next_real_insn. */
2909
2910 int
2911 active_insn_p (rtx insn)
2912 {
2913 return (CALL_P (insn) || JUMP_P (insn)
2914 || (NONJUMP_INSN_P (insn)
2915 && (! reload_completed
2916 || (GET_CODE (PATTERN (insn)) != USE
2917 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2918 }
2919
2920 rtx
2921 next_active_insn (rtx insn)
2922 {
2923 while (insn)
2924 {
2925 insn = NEXT_INSN (insn);
2926 if (insn == 0 || active_insn_p (insn))
2927 break;
2928 }
2929
2930 return insn;
2931 }
2932
2933 /* Find the last insn before INSN that really does something. This routine
2934 does not look inside SEQUENCEs. Until reload has completed, this is the
2935 same as prev_real_insn. */
2936
2937 rtx
2938 prev_active_insn (rtx insn)
2939 {
2940 while (insn)
2941 {
2942 insn = PREV_INSN (insn);
2943 if (insn == 0 || active_insn_p (insn))
2944 break;
2945 }
2946
2947 return insn;
2948 }
2949
2950 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2951
2952 rtx
2953 next_label (rtx insn)
2954 {
2955 while (insn)
2956 {
2957 insn = NEXT_INSN (insn);
2958 if (insn == 0 || LABEL_P (insn))
2959 break;
2960 }
2961
2962 return insn;
2963 }
2964
2965 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2966
2967 rtx
2968 prev_label (rtx insn)
2969 {
2970 while (insn)
2971 {
2972 insn = PREV_INSN (insn);
2973 if (insn == 0 || LABEL_P (insn))
2974 break;
2975 }
2976
2977 return insn;
2978 }
2979
2980 /* Return the last label to mark the same position as LABEL. Return null
2981 if LABEL itself is null. */
2982
2983 rtx
2984 skip_consecutive_labels (rtx label)
2985 {
2986 rtx insn;
2987
2988 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
2989 if (LABEL_P (insn))
2990 label = insn;
2991
2992 return label;
2993 }
2994 \f
2995 #ifdef HAVE_cc0
2996 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2997 and REG_CC_USER notes so we can find it. */
2998
2999 void
3000 link_cc0_insns (rtx insn)
3001 {
3002 rtx user = next_nonnote_insn (insn);
3003
3004 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3005 user = XVECEXP (PATTERN (user), 0, 0);
3006
3007 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3008 REG_NOTES (user));
3009 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3010 }
3011
3012 /* Return the next insn that uses CC0 after INSN, which is assumed to
3013 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3014 applied to the result of this function should yield INSN).
3015
3016 Normally, this is simply the next insn. However, if a REG_CC_USER note
3017 is present, it contains the insn that uses CC0.
3018
3019 Return 0 if we can't find the insn. */
3020
3021 rtx
3022 next_cc0_user (rtx insn)
3023 {
3024 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3025
3026 if (note)
3027 return XEXP (note, 0);
3028
3029 insn = next_nonnote_insn (insn);
3030 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3031 insn = XVECEXP (PATTERN (insn), 0, 0);
3032
3033 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3034 return insn;
3035
3036 return 0;
3037 }
3038
3039 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3040 note, it is the previous insn. */
3041
3042 rtx
3043 prev_cc0_setter (rtx insn)
3044 {
3045 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3046
3047 if (note)
3048 return XEXP (note, 0);
3049
3050 insn = prev_nonnote_insn (insn);
3051 gcc_assert (sets_cc0_p (PATTERN (insn)));
3052
3053 return insn;
3054 }
3055 #endif
3056
3057 /* Increment the label uses for all labels present in rtx. */
3058
3059 static void
3060 mark_label_nuses (rtx x)
3061 {
3062 enum rtx_code code;
3063 int i, j;
3064 const char *fmt;
3065
3066 code = GET_CODE (x);
3067 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3068 LABEL_NUSES (XEXP (x, 0))++;
3069
3070 fmt = GET_RTX_FORMAT (code);
3071 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3072 {
3073 if (fmt[i] == 'e')
3074 mark_label_nuses (XEXP (x, i));
3075 else if (fmt[i] == 'E')
3076 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3077 mark_label_nuses (XVECEXP (x, i, j));
3078 }
3079 }
3080
3081 \f
3082 /* Try splitting insns that can be split for better scheduling.
3083 PAT is the pattern which might split.
3084 TRIAL is the insn providing PAT.
3085 LAST is nonzero if we should return the last insn of the sequence produced.
3086
3087 If this routine succeeds in splitting, it returns the first or last
3088 replacement insn depending on the value of LAST. Otherwise, it
3089 returns TRIAL. If the insn to be returned can be split, it will be. */
3090
3091 rtx
3092 try_split (rtx pat, rtx trial, int last)
3093 {
3094 rtx before = PREV_INSN (trial);
3095 rtx after = NEXT_INSN (trial);
3096 int has_barrier = 0;
3097 rtx tem;
3098 rtx note, seq;
3099 int probability;
3100 rtx insn_last, insn;
3101 int njumps = 0;
3102
3103 if (any_condjump_p (trial)
3104 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3105 split_branch_probability = INTVAL (XEXP (note, 0));
3106 probability = split_branch_probability;
3107
3108 seq = split_insns (pat, trial);
3109
3110 split_branch_probability = -1;
3111
3112 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3113 We may need to handle this specially. */
3114 if (after && BARRIER_P (after))
3115 {
3116 has_barrier = 1;
3117 after = NEXT_INSN (after);
3118 }
3119
3120 if (!seq)
3121 return trial;
3122
3123 /* Avoid infinite loop if any insn of the result matches
3124 the original pattern. */
3125 insn_last = seq;
3126 while (1)
3127 {
3128 if (INSN_P (insn_last)
3129 && rtx_equal_p (PATTERN (insn_last), pat))
3130 return trial;
3131 if (!NEXT_INSN (insn_last))
3132 break;
3133 insn_last = NEXT_INSN (insn_last);
3134 }
3135
3136 /* Mark labels. */
3137 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3138 {
3139 if (JUMP_P (insn))
3140 {
3141 mark_jump_label (PATTERN (insn), insn, 0);
3142 njumps++;
3143 if (probability != -1
3144 && any_condjump_p (insn)
3145 && !find_reg_note (insn, REG_BR_PROB, 0))
3146 {
3147 /* We can preserve the REG_BR_PROB notes only if exactly
3148 one jump is created, otherwise the machine description
3149 is responsible for this step using
3150 split_branch_probability variable. */
3151 gcc_assert (njumps == 1);
3152 REG_NOTES (insn)
3153 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3154 GEN_INT (probability),
3155 REG_NOTES (insn));
3156 }
3157 }
3158 }
3159
3160 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3161 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3162 if (CALL_P (trial))
3163 {
3164 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3165 if (CALL_P (insn))
3166 {
3167 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3168 while (*p)
3169 p = &XEXP (*p, 1);
3170 *p = CALL_INSN_FUNCTION_USAGE (trial);
3171 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3172 }
3173 }
3174
3175 /* Copy notes, particularly those related to the CFG. */
3176 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3177 {
3178 switch (REG_NOTE_KIND (note))
3179 {
3180 case REG_EH_REGION:
3181 insn = insn_last;
3182 while (insn != NULL_RTX)
3183 {
3184 if (CALL_P (insn)
3185 || (flag_non_call_exceptions && INSN_P (insn)
3186 && may_trap_p (PATTERN (insn))))
3187 REG_NOTES (insn)
3188 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3189 XEXP (note, 0),
3190 REG_NOTES (insn));
3191 insn = PREV_INSN (insn);
3192 }
3193 break;
3194
3195 case REG_NORETURN:
3196 case REG_SETJMP:
3197 insn = insn_last;
3198 while (insn != NULL_RTX)
3199 {
3200 if (CALL_P (insn))
3201 REG_NOTES (insn)
3202 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3203 XEXP (note, 0),
3204 REG_NOTES (insn));
3205 insn = PREV_INSN (insn);
3206 }
3207 break;
3208
3209 case REG_NON_LOCAL_GOTO:
3210 insn = insn_last;
3211 while (insn != NULL_RTX)
3212 {
3213 if (JUMP_P (insn))
3214 REG_NOTES (insn)
3215 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3216 XEXP (note, 0),
3217 REG_NOTES (insn));
3218 insn = PREV_INSN (insn);
3219 }
3220 break;
3221
3222 default:
3223 break;
3224 }
3225 }
3226
3227 /* If there are LABELS inside the split insns increment the
3228 usage count so we don't delete the label. */
3229 if (NONJUMP_INSN_P (trial))
3230 {
3231 insn = insn_last;
3232 while (insn != NULL_RTX)
3233 {
3234 if (NONJUMP_INSN_P (insn))
3235 mark_label_nuses (PATTERN (insn));
3236
3237 insn = PREV_INSN (insn);
3238 }
3239 }
3240
3241 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3242
3243 delete_insn (trial);
3244 if (has_barrier)
3245 emit_barrier_after (tem);
3246
3247 /* Recursively call try_split for each new insn created; by the
3248 time control returns here that insn will be fully split, so
3249 set LAST and continue from the insn after the one returned.
3250 We can't use next_active_insn here since AFTER may be a note.
3251 Ignore deleted insns, which can be occur if not optimizing. */
3252 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3253 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3254 tem = try_split (PATTERN (tem), tem, 1);
3255
3256 /* Return either the first or the last insn, depending on which was
3257 requested. */
3258 return last
3259 ? (after ? PREV_INSN (after) : last_insn)
3260 : NEXT_INSN (before);
3261 }
3262 \f
3263 /* Make and return an INSN rtx, initializing all its slots.
3264 Store PATTERN in the pattern slots. */
3265
3266 rtx
3267 make_insn_raw (rtx pattern)
3268 {
3269 rtx insn;
3270
3271 insn = rtx_alloc (INSN);
3272
3273 INSN_UID (insn) = cur_insn_uid++;
3274 PATTERN (insn) = pattern;
3275 INSN_CODE (insn) = -1;
3276 LOG_LINKS (insn) = NULL;
3277 REG_NOTES (insn) = NULL;
3278 INSN_LOCATOR (insn) = 0;
3279 BLOCK_FOR_INSN (insn) = NULL;
3280
3281 #ifdef ENABLE_RTL_CHECKING
3282 if (insn
3283 && INSN_P (insn)
3284 && (returnjump_p (insn)
3285 || (GET_CODE (insn) == SET
3286 && SET_DEST (insn) == pc_rtx)))
3287 {
3288 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3289 debug_rtx (insn);
3290 }
3291 #endif
3292
3293 return insn;
3294 }
3295
3296 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3297
3298 static rtx
3299 make_jump_insn_raw (rtx pattern)
3300 {
3301 rtx insn;
3302
3303 insn = rtx_alloc (JUMP_INSN);
3304 INSN_UID (insn) = cur_insn_uid++;
3305
3306 PATTERN (insn) = pattern;
3307 INSN_CODE (insn) = -1;
3308 LOG_LINKS (insn) = NULL;
3309 REG_NOTES (insn) = NULL;
3310 JUMP_LABEL (insn) = NULL;
3311 INSN_LOCATOR (insn) = 0;
3312 BLOCK_FOR_INSN (insn) = NULL;
3313
3314 return insn;
3315 }
3316
3317 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3318
3319 static rtx
3320 make_call_insn_raw (rtx pattern)
3321 {
3322 rtx insn;
3323
3324 insn = rtx_alloc (CALL_INSN);
3325 INSN_UID (insn) = cur_insn_uid++;
3326
3327 PATTERN (insn) = pattern;
3328 INSN_CODE (insn) = -1;
3329 LOG_LINKS (insn) = NULL;
3330 REG_NOTES (insn) = NULL;
3331 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3332 INSN_LOCATOR (insn) = 0;
3333 BLOCK_FOR_INSN (insn) = NULL;
3334
3335 return insn;
3336 }
3337 \f
3338 /* Add INSN to the end of the doubly-linked list.
3339 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3340
3341 void
3342 add_insn (rtx insn)
3343 {
3344 PREV_INSN (insn) = last_insn;
3345 NEXT_INSN (insn) = 0;
3346
3347 if (NULL != last_insn)
3348 NEXT_INSN (last_insn) = insn;
3349
3350 if (NULL == first_insn)
3351 first_insn = insn;
3352
3353 last_insn = insn;
3354 }
3355
3356 /* Add INSN into the doubly-linked list after insn AFTER. This and
3357 the next should be the only functions called to insert an insn once
3358 delay slots have been filled since only they know how to update a
3359 SEQUENCE. */
3360
3361 void
3362 add_insn_after (rtx insn, rtx after)
3363 {
3364 rtx next = NEXT_INSN (after);
3365 basic_block bb;
3366
3367 gcc_assert (!optimize || !INSN_DELETED_P (after));
3368
3369 NEXT_INSN (insn) = next;
3370 PREV_INSN (insn) = after;
3371
3372 if (next)
3373 {
3374 PREV_INSN (next) = insn;
3375 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3376 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3377 }
3378 else if (last_insn == after)
3379 last_insn = insn;
3380 else
3381 {
3382 struct sequence_stack *stack = seq_stack;
3383 /* Scan all pending sequences too. */
3384 for (; stack; stack = stack->next)
3385 if (after == stack->last)
3386 {
3387 stack->last = insn;
3388 break;
3389 }
3390
3391 gcc_assert (stack);
3392 }
3393
3394 if (!BARRIER_P (after)
3395 && !BARRIER_P (insn)
3396 && (bb = BLOCK_FOR_INSN (after)))
3397 {
3398 set_block_for_insn (insn, bb);
3399 if (INSN_P (insn))
3400 bb->flags |= BB_DIRTY;
3401 /* Should not happen as first in the BB is always
3402 either NOTE or LABEL. */
3403 if (BB_END (bb) == after
3404 /* Avoid clobbering of structure when creating new BB. */
3405 && !BARRIER_P (insn)
3406 && (!NOTE_P (insn)
3407 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3408 BB_END (bb) = insn;
3409 }
3410
3411 NEXT_INSN (after) = insn;
3412 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3413 {
3414 rtx sequence = PATTERN (after);
3415 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3416 }
3417 }
3418
3419 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3420 the previous should be the only functions called to insert an insn once
3421 delay slots have been filled since only they know how to update a
3422 SEQUENCE. */
3423
3424 void
3425 add_insn_before (rtx insn, rtx before)
3426 {
3427 rtx prev = PREV_INSN (before);
3428 basic_block bb;
3429
3430 gcc_assert (!optimize || !INSN_DELETED_P (before));
3431
3432 PREV_INSN (insn) = prev;
3433 NEXT_INSN (insn) = before;
3434
3435 if (prev)
3436 {
3437 NEXT_INSN (prev) = insn;
3438 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3439 {
3440 rtx sequence = PATTERN (prev);
3441 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3442 }
3443 }
3444 else if (first_insn == before)
3445 first_insn = insn;
3446 else
3447 {
3448 struct sequence_stack *stack = seq_stack;
3449 /* Scan all pending sequences too. */
3450 for (; stack; stack = stack->next)
3451 if (before == stack->first)
3452 {
3453 stack->first = insn;
3454 break;
3455 }
3456
3457 gcc_assert (stack);
3458 }
3459
3460 if (!BARRIER_P (before)
3461 && !BARRIER_P (insn)
3462 && (bb = BLOCK_FOR_INSN (before)))
3463 {
3464 set_block_for_insn (insn, bb);
3465 if (INSN_P (insn))
3466 bb->flags |= BB_DIRTY;
3467 /* Should not happen as first in the BB is always either NOTE or
3468 LABEL. */
3469 gcc_assert (BB_HEAD (bb) != insn
3470 /* Avoid clobbering of structure when creating new BB. */
3471 || BARRIER_P (insn)
3472 || (NOTE_P (insn)
3473 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK));
3474 }
3475
3476 PREV_INSN (before) = insn;
3477 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3478 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3479 }
3480
3481 /* Remove an insn from its doubly-linked list. This function knows how
3482 to handle sequences. */
3483 void
3484 remove_insn (rtx insn)
3485 {
3486 rtx next = NEXT_INSN (insn);
3487 rtx prev = PREV_INSN (insn);
3488 basic_block bb;
3489
3490 if (prev)
3491 {
3492 NEXT_INSN (prev) = next;
3493 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3494 {
3495 rtx sequence = PATTERN (prev);
3496 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3497 }
3498 }
3499 else if (first_insn == insn)
3500 first_insn = next;
3501 else
3502 {
3503 struct sequence_stack *stack = seq_stack;
3504 /* Scan all pending sequences too. */
3505 for (; stack; stack = stack->next)
3506 if (insn == stack->first)
3507 {
3508 stack->first = next;
3509 break;
3510 }
3511
3512 gcc_assert (stack);
3513 }
3514
3515 if (next)
3516 {
3517 PREV_INSN (next) = prev;
3518 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3519 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3520 }
3521 else if (last_insn == insn)
3522 last_insn = prev;
3523 else
3524 {
3525 struct sequence_stack *stack = seq_stack;
3526 /* Scan all pending sequences too. */
3527 for (; stack; stack = stack->next)
3528 if (insn == stack->last)
3529 {
3530 stack->last = prev;
3531 break;
3532 }
3533
3534 gcc_assert (stack);
3535 }
3536 if (!BARRIER_P (insn)
3537 && (bb = BLOCK_FOR_INSN (insn)))
3538 {
3539 if (INSN_P (insn))
3540 bb->flags |= BB_DIRTY;
3541 if (BB_HEAD (bb) == insn)
3542 {
3543 /* Never ever delete the basic block note without deleting whole
3544 basic block. */
3545 gcc_assert (!NOTE_P (insn));
3546 BB_HEAD (bb) = next;
3547 }
3548 if (BB_END (bb) == insn)
3549 BB_END (bb) = prev;
3550 }
3551 }
3552
3553 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3554
3555 void
3556 add_function_usage_to (rtx call_insn, rtx call_fusage)
3557 {
3558 gcc_assert (call_insn && CALL_P (call_insn));
3559
3560 /* Put the register usage information on the CALL. If there is already
3561 some usage information, put ours at the end. */
3562 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3563 {
3564 rtx link;
3565
3566 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3567 link = XEXP (link, 1))
3568 ;
3569
3570 XEXP (link, 1) = call_fusage;
3571 }
3572 else
3573 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3574 }
3575
3576 /* Delete all insns made since FROM.
3577 FROM becomes the new last instruction. */
3578
3579 void
3580 delete_insns_since (rtx from)
3581 {
3582 if (from == 0)
3583 first_insn = 0;
3584 else
3585 NEXT_INSN (from) = 0;
3586 last_insn = from;
3587 }
3588
3589 /* This function is deprecated, please use sequences instead.
3590
3591 Move a consecutive bunch of insns to a different place in the chain.
3592 The insns to be moved are those between FROM and TO.
3593 They are moved to a new position after the insn AFTER.
3594 AFTER must not be FROM or TO or any insn in between.
3595
3596 This function does not know about SEQUENCEs and hence should not be
3597 called after delay-slot filling has been done. */
3598
3599 void
3600 reorder_insns_nobb (rtx from, rtx to, rtx after)
3601 {
3602 /* Splice this bunch out of where it is now. */
3603 if (PREV_INSN (from))
3604 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3605 if (NEXT_INSN (to))
3606 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3607 if (last_insn == to)
3608 last_insn = PREV_INSN (from);
3609 if (first_insn == from)
3610 first_insn = NEXT_INSN (to);
3611
3612 /* Make the new neighbors point to it and it to them. */
3613 if (NEXT_INSN (after))
3614 PREV_INSN (NEXT_INSN (after)) = to;
3615
3616 NEXT_INSN (to) = NEXT_INSN (after);
3617 PREV_INSN (from) = after;
3618 NEXT_INSN (after) = from;
3619 if (after == last_insn)
3620 last_insn = to;
3621 }
3622
3623 /* Same as function above, but take care to update BB boundaries. */
3624 void
3625 reorder_insns (rtx from, rtx to, rtx after)
3626 {
3627 rtx prev = PREV_INSN (from);
3628 basic_block bb, bb2;
3629
3630 reorder_insns_nobb (from, to, after);
3631
3632 if (!BARRIER_P (after)
3633 && (bb = BLOCK_FOR_INSN (after)))
3634 {
3635 rtx x;
3636 bb->flags |= BB_DIRTY;
3637
3638 if (!BARRIER_P (from)
3639 && (bb2 = BLOCK_FOR_INSN (from)))
3640 {
3641 if (BB_END (bb2) == to)
3642 BB_END (bb2) = prev;
3643 bb2->flags |= BB_DIRTY;
3644 }
3645
3646 if (BB_END (bb) == after)
3647 BB_END (bb) = to;
3648
3649 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3650 if (!BARRIER_P (x))
3651 set_block_for_insn (x, bb);
3652 }
3653 }
3654
3655 /* Return the line note insn preceding INSN. */
3656
3657 static rtx
3658 find_line_note (rtx insn)
3659 {
3660 if (no_line_numbers)
3661 return 0;
3662
3663 for (; insn; insn = PREV_INSN (insn))
3664 if (NOTE_P (insn)
3665 && NOTE_LINE_NUMBER (insn) >= 0)
3666 break;
3667
3668 return insn;
3669 }
3670
3671 /* Remove unnecessary notes from the instruction stream. */
3672
3673 void
3674 remove_unnecessary_notes (void)
3675 {
3676 rtx eh_stack = NULL_RTX;
3677 rtx insn;
3678 rtx next;
3679 rtx tmp;
3680
3681 /* We must not remove the first instruction in the function because
3682 the compiler depends on the first instruction being a note. */
3683 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3684 {
3685 /* Remember what's next. */
3686 next = NEXT_INSN (insn);
3687
3688 /* We're only interested in notes. */
3689 if (!NOTE_P (insn))
3690 continue;
3691
3692 switch (NOTE_LINE_NUMBER (insn))
3693 {
3694 case NOTE_INSN_DELETED:
3695 remove_insn (insn);
3696 break;
3697
3698 case NOTE_INSN_EH_REGION_BEG:
3699 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3700 break;
3701
3702 case NOTE_INSN_EH_REGION_END:
3703 /* Too many end notes. */
3704 gcc_assert (eh_stack);
3705 /* Mismatched nesting. */
3706 gcc_assert (NOTE_EH_HANDLER (XEXP (eh_stack, 0))
3707 == NOTE_EH_HANDLER (insn));
3708 tmp = eh_stack;
3709 eh_stack = XEXP (eh_stack, 1);
3710 free_INSN_LIST_node (tmp);
3711 break;
3712
3713 case NOTE_INSN_BLOCK_BEG:
3714 case NOTE_INSN_BLOCK_END:
3715 /* BLOCK_END and BLOCK_BEG notes only exist in the `final' pass. */
3716 gcc_unreachable ();
3717
3718 default:
3719 break;
3720 }
3721 }
3722
3723 /* Too many EH_REGION_BEG notes. */
3724 gcc_assert (!eh_stack);
3725 }
3726
3727 struct tree_opt_pass pass_remove_unnecessary_notes =
3728 {
3729 NULL, /* name */
3730 NULL, /* gate */
3731 remove_unnecessary_notes, /* execute */
3732 NULL, /* sub */
3733 NULL, /* next */
3734 0, /* static_pass_number */
3735 0, /* tv_id */
3736 0, /* properties_required */
3737 0, /* properties_provided */
3738 0, /* properties_destroyed */
3739 0, /* todo_flags_start */
3740 0, /* todo_flags_finish */
3741 0 /* letter */
3742 };
3743
3744 \f
3745 /* Emit insn(s) of given code and pattern
3746 at a specified place within the doubly-linked list.
3747
3748 All of the emit_foo global entry points accept an object
3749 X which is either an insn list or a PATTERN of a single
3750 instruction.
3751
3752 There are thus a few canonical ways to generate code and
3753 emit it at a specific place in the instruction stream. For
3754 example, consider the instruction named SPOT and the fact that
3755 we would like to emit some instructions before SPOT. We might
3756 do it like this:
3757
3758 start_sequence ();
3759 ... emit the new instructions ...
3760 insns_head = get_insns ();
3761 end_sequence ();
3762
3763 emit_insn_before (insns_head, SPOT);
3764
3765 It used to be common to generate SEQUENCE rtl instead, but that
3766 is a relic of the past which no longer occurs. The reason is that
3767 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3768 generated would almost certainly die right after it was created. */
3769
3770 /* Make X be output before the instruction BEFORE. */
3771
3772 rtx
3773 emit_insn_before_noloc (rtx x, rtx before)
3774 {
3775 rtx last = before;
3776 rtx insn;
3777
3778 gcc_assert (before);
3779
3780 if (x == NULL_RTX)
3781 return last;
3782
3783 switch (GET_CODE (x))
3784 {
3785 case INSN:
3786 case JUMP_INSN:
3787 case CALL_INSN:
3788 case CODE_LABEL:
3789 case BARRIER:
3790 case NOTE:
3791 insn = x;
3792 while (insn)
3793 {
3794 rtx next = NEXT_INSN (insn);
3795 add_insn_before (insn, before);
3796 last = insn;
3797 insn = next;
3798 }
3799 break;
3800
3801 #ifdef ENABLE_RTL_CHECKING
3802 case SEQUENCE:
3803 gcc_unreachable ();
3804 break;
3805 #endif
3806
3807 default:
3808 last = make_insn_raw (x);
3809 add_insn_before (last, before);
3810 break;
3811 }
3812
3813 return last;
3814 }
3815
3816 /* Make an instruction with body X and code JUMP_INSN
3817 and output it before the instruction BEFORE. */
3818
3819 rtx
3820 emit_jump_insn_before_noloc (rtx x, rtx before)
3821 {
3822 rtx insn, last = NULL_RTX;
3823
3824 gcc_assert (before);
3825
3826 switch (GET_CODE (x))
3827 {
3828 case INSN:
3829 case JUMP_INSN:
3830 case CALL_INSN:
3831 case CODE_LABEL:
3832 case BARRIER:
3833 case NOTE:
3834 insn = x;
3835 while (insn)
3836 {
3837 rtx next = NEXT_INSN (insn);
3838 add_insn_before (insn, before);
3839 last = insn;
3840 insn = next;
3841 }
3842 break;
3843
3844 #ifdef ENABLE_RTL_CHECKING
3845 case SEQUENCE:
3846 gcc_unreachable ();
3847 break;
3848 #endif
3849
3850 default:
3851 last = make_jump_insn_raw (x);
3852 add_insn_before (last, before);
3853 break;
3854 }
3855
3856 return last;
3857 }
3858
3859 /* Make an instruction with body X and code CALL_INSN
3860 and output it before the instruction BEFORE. */
3861
3862 rtx
3863 emit_call_insn_before_noloc (rtx x, rtx before)
3864 {
3865 rtx last = NULL_RTX, insn;
3866
3867 gcc_assert (before);
3868
3869 switch (GET_CODE (x))
3870 {
3871 case INSN:
3872 case JUMP_INSN:
3873 case CALL_INSN:
3874 case CODE_LABEL:
3875 case BARRIER:
3876 case NOTE:
3877 insn = x;
3878 while (insn)
3879 {
3880 rtx next = NEXT_INSN (insn);
3881 add_insn_before (insn, before);
3882 last = insn;
3883 insn = next;
3884 }
3885 break;
3886
3887 #ifdef ENABLE_RTL_CHECKING
3888 case SEQUENCE:
3889 gcc_unreachable ();
3890 break;
3891 #endif
3892
3893 default:
3894 last = make_call_insn_raw (x);
3895 add_insn_before (last, before);
3896 break;
3897 }
3898
3899 return last;
3900 }
3901
3902 /* Make an insn of code BARRIER
3903 and output it before the insn BEFORE. */
3904
3905 rtx
3906 emit_barrier_before (rtx before)
3907 {
3908 rtx insn = rtx_alloc (BARRIER);
3909
3910 INSN_UID (insn) = cur_insn_uid++;
3911
3912 add_insn_before (insn, before);
3913 return insn;
3914 }
3915
3916 /* Emit the label LABEL before the insn BEFORE. */
3917
3918 rtx
3919 emit_label_before (rtx label, rtx before)
3920 {
3921 /* This can be called twice for the same label as a result of the
3922 confusion that follows a syntax error! So make it harmless. */
3923 if (INSN_UID (label) == 0)
3924 {
3925 INSN_UID (label) = cur_insn_uid++;
3926 add_insn_before (label, before);
3927 }
3928
3929 return label;
3930 }
3931
3932 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3933
3934 rtx
3935 emit_note_before (int subtype, rtx before)
3936 {
3937 rtx note = rtx_alloc (NOTE);
3938 INSN_UID (note) = cur_insn_uid++;
3939 #ifndef USE_MAPPED_LOCATION
3940 NOTE_SOURCE_FILE (note) = 0;
3941 #endif
3942 NOTE_LINE_NUMBER (note) = subtype;
3943 BLOCK_FOR_INSN (note) = NULL;
3944
3945 add_insn_before (note, before);
3946 return note;
3947 }
3948 \f
3949 /* Helper for emit_insn_after, handles lists of instructions
3950 efficiently. */
3951
3952 static rtx emit_insn_after_1 (rtx, rtx);
3953
3954 static rtx
3955 emit_insn_after_1 (rtx first, rtx after)
3956 {
3957 rtx last;
3958 rtx after_after;
3959 basic_block bb;
3960
3961 if (!BARRIER_P (after)
3962 && (bb = BLOCK_FOR_INSN (after)))
3963 {
3964 bb->flags |= BB_DIRTY;
3965 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3966 if (!BARRIER_P (last))
3967 set_block_for_insn (last, bb);
3968 if (!BARRIER_P (last))
3969 set_block_for_insn (last, bb);
3970 if (BB_END (bb) == after)
3971 BB_END (bb) = last;
3972 }
3973 else
3974 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3975 continue;
3976
3977 after_after = NEXT_INSN (after);
3978
3979 NEXT_INSN (after) = first;
3980 PREV_INSN (first) = after;
3981 NEXT_INSN (last) = after_after;
3982 if (after_after)
3983 PREV_INSN (after_after) = last;
3984
3985 if (after == last_insn)
3986 last_insn = last;
3987 return last;
3988 }
3989
3990 /* Make X be output after the insn AFTER. */
3991
3992 rtx
3993 emit_insn_after_noloc (rtx x, rtx after)
3994 {
3995 rtx last = after;
3996
3997 gcc_assert (after);
3998
3999 if (x == NULL_RTX)
4000 return last;
4001
4002 switch (GET_CODE (x))
4003 {
4004 case INSN:
4005 case JUMP_INSN:
4006 case CALL_INSN:
4007 case CODE_LABEL:
4008 case BARRIER:
4009 case NOTE:
4010 last = emit_insn_after_1 (x, after);
4011 break;
4012
4013 #ifdef ENABLE_RTL_CHECKING
4014 case SEQUENCE:
4015 gcc_unreachable ();
4016 break;
4017 #endif
4018
4019 default:
4020 last = make_insn_raw (x);
4021 add_insn_after (last, after);
4022 break;
4023 }
4024
4025 return last;
4026 }
4027
4028 /* Similar to emit_insn_after, except that line notes are to be inserted so
4029 as to act as if this insn were at FROM. */
4030
4031 void
4032 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4033 {
4034 rtx from_line = find_line_note (from);
4035 rtx after_line = find_line_note (after);
4036 rtx insn = emit_insn_after (x, after);
4037
4038 if (from_line)
4039 emit_note_copy_after (from_line, after);
4040
4041 if (after_line)
4042 emit_note_copy_after (after_line, insn);
4043 }
4044
4045 /* Make an insn of code JUMP_INSN with body X
4046 and output it after the insn AFTER. */
4047
4048 rtx
4049 emit_jump_insn_after_noloc (rtx x, rtx after)
4050 {
4051 rtx last;
4052
4053 gcc_assert (after);
4054
4055 switch (GET_CODE (x))
4056 {
4057 case INSN:
4058 case JUMP_INSN:
4059 case CALL_INSN:
4060 case CODE_LABEL:
4061 case BARRIER:
4062 case NOTE:
4063 last = emit_insn_after_1 (x, after);
4064 break;
4065
4066 #ifdef ENABLE_RTL_CHECKING
4067 case SEQUENCE:
4068 gcc_unreachable ();
4069 break;
4070 #endif
4071
4072 default:
4073 last = make_jump_insn_raw (x);
4074 add_insn_after (last, after);
4075 break;
4076 }
4077
4078 return last;
4079 }
4080
4081 /* Make an instruction with body X and code CALL_INSN
4082 and output it after the instruction AFTER. */
4083
4084 rtx
4085 emit_call_insn_after_noloc (rtx x, rtx after)
4086 {
4087 rtx last;
4088
4089 gcc_assert (after);
4090
4091 switch (GET_CODE (x))
4092 {
4093 case INSN:
4094 case JUMP_INSN:
4095 case CALL_INSN:
4096 case CODE_LABEL:
4097 case BARRIER:
4098 case NOTE:
4099 last = emit_insn_after_1 (x, after);
4100 break;
4101
4102 #ifdef ENABLE_RTL_CHECKING
4103 case SEQUENCE:
4104 gcc_unreachable ();
4105 break;
4106 #endif
4107
4108 default:
4109 last = make_call_insn_raw (x);
4110 add_insn_after (last, after);
4111 break;
4112 }
4113
4114 return last;
4115 }
4116
4117 /* Make an insn of code BARRIER
4118 and output it after the insn AFTER. */
4119
4120 rtx
4121 emit_barrier_after (rtx after)
4122 {
4123 rtx insn = rtx_alloc (BARRIER);
4124
4125 INSN_UID (insn) = cur_insn_uid++;
4126
4127 add_insn_after (insn, after);
4128 return insn;
4129 }
4130
4131 /* Emit the label LABEL after the insn AFTER. */
4132
4133 rtx
4134 emit_label_after (rtx label, rtx after)
4135 {
4136 /* This can be called twice for the same label
4137 as a result of the confusion that follows a syntax error!
4138 So make it harmless. */
4139 if (INSN_UID (label) == 0)
4140 {
4141 INSN_UID (label) = cur_insn_uid++;
4142 add_insn_after (label, after);
4143 }
4144
4145 return label;
4146 }
4147
4148 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4149
4150 rtx
4151 emit_note_after (int subtype, rtx after)
4152 {
4153 rtx note = rtx_alloc (NOTE);
4154 INSN_UID (note) = cur_insn_uid++;
4155 #ifndef USE_MAPPED_LOCATION
4156 NOTE_SOURCE_FILE (note) = 0;
4157 #endif
4158 NOTE_LINE_NUMBER (note) = subtype;
4159 BLOCK_FOR_INSN (note) = NULL;
4160 add_insn_after (note, after);
4161 return note;
4162 }
4163
4164 /* Emit a copy of note ORIG after the insn AFTER. */
4165
4166 rtx
4167 emit_note_copy_after (rtx orig, rtx after)
4168 {
4169 rtx note;
4170
4171 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4172 {
4173 cur_insn_uid++;
4174 return 0;
4175 }
4176
4177 note = rtx_alloc (NOTE);
4178 INSN_UID (note) = cur_insn_uid++;
4179 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4180 NOTE_DATA (note) = NOTE_DATA (orig);
4181 BLOCK_FOR_INSN (note) = NULL;
4182 add_insn_after (note, after);
4183 return note;
4184 }
4185 \f
4186 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4187 rtx
4188 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4189 {
4190 rtx last = emit_insn_after_noloc (pattern, after);
4191
4192 if (pattern == NULL_RTX || !loc)
4193 return last;
4194
4195 after = NEXT_INSN (after);
4196 while (1)
4197 {
4198 if (active_insn_p (after) && !INSN_LOCATOR (after))
4199 INSN_LOCATOR (after) = loc;
4200 if (after == last)
4201 break;
4202 after = NEXT_INSN (after);
4203 }
4204 return last;
4205 }
4206
4207 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4208 rtx
4209 emit_insn_after (rtx pattern, rtx after)
4210 {
4211 if (INSN_P (after))
4212 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4213 else
4214 return emit_insn_after_noloc (pattern, after);
4215 }
4216
4217 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4218 rtx
4219 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4220 {
4221 rtx last = emit_jump_insn_after_noloc (pattern, after);
4222
4223 if (pattern == NULL_RTX || !loc)
4224 return last;
4225
4226 after = NEXT_INSN (after);
4227 while (1)
4228 {
4229 if (active_insn_p (after) && !INSN_LOCATOR (after))
4230 INSN_LOCATOR (after) = loc;
4231 if (after == last)
4232 break;
4233 after = NEXT_INSN (after);
4234 }
4235 return last;
4236 }
4237
4238 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4239 rtx
4240 emit_jump_insn_after (rtx pattern, rtx after)
4241 {
4242 if (INSN_P (after))
4243 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4244 else
4245 return emit_jump_insn_after_noloc (pattern, after);
4246 }
4247
4248 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4249 rtx
4250 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4251 {
4252 rtx last = emit_call_insn_after_noloc (pattern, after);
4253
4254 if (pattern == NULL_RTX || !loc)
4255 return last;
4256
4257 after = NEXT_INSN (after);
4258 while (1)
4259 {
4260 if (active_insn_p (after) && !INSN_LOCATOR (after))
4261 INSN_LOCATOR (after) = loc;
4262 if (after == last)
4263 break;
4264 after = NEXT_INSN (after);
4265 }
4266 return last;
4267 }
4268
4269 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4270 rtx
4271 emit_call_insn_after (rtx pattern, rtx after)
4272 {
4273 if (INSN_P (after))
4274 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4275 else
4276 return emit_call_insn_after_noloc (pattern, after);
4277 }
4278
4279 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4280 rtx
4281 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4282 {
4283 rtx first = PREV_INSN (before);
4284 rtx last = emit_insn_before_noloc (pattern, before);
4285
4286 if (pattern == NULL_RTX || !loc)
4287 return last;
4288
4289 first = NEXT_INSN (first);
4290 while (1)
4291 {
4292 if (active_insn_p (first) && !INSN_LOCATOR (first))
4293 INSN_LOCATOR (first) = loc;
4294 if (first == last)
4295 break;
4296 first = NEXT_INSN (first);
4297 }
4298 return last;
4299 }
4300
4301 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4302 rtx
4303 emit_insn_before (rtx pattern, rtx before)
4304 {
4305 if (INSN_P (before))
4306 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4307 else
4308 return emit_insn_before_noloc (pattern, before);
4309 }
4310
4311 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4312 rtx
4313 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4314 {
4315 rtx first = PREV_INSN (before);
4316 rtx last = emit_jump_insn_before_noloc (pattern, before);
4317
4318 if (pattern == NULL_RTX)
4319 return last;
4320
4321 first = NEXT_INSN (first);
4322 while (1)
4323 {
4324 if (active_insn_p (first) && !INSN_LOCATOR (first))
4325 INSN_LOCATOR (first) = loc;
4326 if (first == last)
4327 break;
4328 first = NEXT_INSN (first);
4329 }
4330 return last;
4331 }
4332
4333 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4334 rtx
4335 emit_jump_insn_before (rtx pattern, rtx before)
4336 {
4337 if (INSN_P (before))
4338 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4339 else
4340 return emit_jump_insn_before_noloc (pattern, before);
4341 }
4342
4343 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4344 rtx
4345 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4346 {
4347 rtx first = PREV_INSN (before);
4348 rtx last = emit_call_insn_before_noloc (pattern, before);
4349
4350 if (pattern == NULL_RTX)
4351 return last;
4352
4353 first = NEXT_INSN (first);
4354 while (1)
4355 {
4356 if (active_insn_p (first) && !INSN_LOCATOR (first))
4357 INSN_LOCATOR (first) = loc;
4358 if (first == last)
4359 break;
4360 first = NEXT_INSN (first);
4361 }
4362 return last;
4363 }
4364
4365 /* like emit_call_insn_before_noloc,
4366 but set insn_locator according to before. */
4367 rtx
4368 emit_call_insn_before (rtx pattern, rtx before)
4369 {
4370 if (INSN_P (before))
4371 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4372 else
4373 return emit_call_insn_before_noloc (pattern, before);
4374 }
4375 \f
4376 /* Take X and emit it at the end of the doubly-linked
4377 INSN list.
4378
4379 Returns the last insn emitted. */
4380
4381 rtx
4382 emit_insn (rtx x)
4383 {
4384 rtx last = last_insn;
4385 rtx insn;
4386
4387 if (x == NULL_RTX)
4388 return last;
4389
4390 switch (GET_CODE (x))
4391 {
4392 case INSN:
4393 case JUMP_INSN:
4394 case CALL_INSN:
4395 case CODE_LABEL:
4396 case BARRIER:
4397 case NOTE:
4398 insn = x;
4399 while (insn)
4400 {
4401 rtx next = NEXT_INSN (insn);
4402 add_insn (insn);
4403 last = insn;
4404 insn = next;
4405 }
4406 break;
4407
4408 #ifdef ENABLE_RTL_CHECKING
4409 case SEQUENCE:
4410 gcc_unreachable ();
4411 break;
4412 #endif
4413
4414 default:
4415 last = make_insn_raw (x);
4416 add_insn (last);
4417 break;
4418 }
4419
4420 return last;
4421 }
4422
4423 /* Make an insn of code JUMP_INSN with pattern X
4424 and add it to the end of the doubly-linked list. */
4425
4426 rtx
4427 emit_jump_insn (rtx x)
4428 {
4429 rtx last = NULL_RTX, insn;
4430
4431 switch (GET_CODE (x))
4432 {
4433 case INSN:
4434 case JUMP_INSN:
4435 case CALL_INSN:
4436 case CODE_LABEL:
4437 case BARRIER:
4438 case NOTE:
4439 insn = x;
4440 while (insn)
4441 {
4442 rtx next = NEXT_INSN (insn);
4443 add_insn (insn);
4444 last = insn;
4445 insn = next;
4446 }
4447 break;
4448
4449 #ifdef ENABLE_RTL_CHECKING
4450 case SEQUENCE:
4451 gcc_unreachable ();
4452 break;
4453 #endif
4454
4455 default:
4456 last = make_jump_insn_raw (x);
4457 add_insn (last);
4458 break;
4459 }
4460
4461 return last;
4462 }
4463
4464 /* Make an insn of code CALL_INSN with pattern X
4465 and add it to the end of the doubly-linked list. */
4466
4467 rtx
4468 emit_call_insn (rtx x)
4469 {
4470 rtx insn;
4471
4472 switch (GET_CODE (x))
4473 {
4474 case INSN:
4475 case JUMP_INSN:
4476 case CALL_INSN:
4477 case CODE_LABEL:
4478 case BARRIER:
4479 case NOTE:
4480 insn = emit_insn (x);
4481 break;
4482
4483 #ifdef ENABLE_RTL_CHECKING
4484 case SEQUENCE:
4485 gcc_unreachable ();
4486 break;
4487 #endif
4488
4489 default:
4490 insn = make_call_insn_raw (x);
4491 add_insn (insn);
4492 break;
4493 }
4494
4495 return insn;
4496 }
4497
4498 /* Add the label LABEL to the end of the doubly-linked list. */
4499
4500 rtx
4501 emit_label (rtx label)
4502 {
4503 /* This can be called twice for the same label
4504 as a result of the confusion that follows a syntax error!
4505 So make it harmless. */
4506 if (INSN_UID (label) == 0)
4507 {
4508 INSN_UID (label) = cur_insn_uid++;
4509 add_insn (label);
4510 }
4511 return label;
4512 }
4513
4514 /* Make an insn of code BARRIER
4515 and add it to the end of the doubly-linked list. */
4516
4517 rtx
4518 emit_barrier (void)
4519 {
4520 rtx barrier = rtx_alloc (BARRIER);
4521 INSN_UID (barrier) = cur_insn_uid++;
4522 add_insn (barrier);
4523 return barrier;
4524 }
4525
4526 /* Make line numbering NOTE insn for LOCATION add it to the end
4527 of the doubly-linked list, but only if line-numbers are desired for
4528 debugging info and it doesn't match the previous one. */
4529
4530 rtx
4531 emit_line_note (location_t location)
4532 {
4533 rtx note;
4534
4535 #ifdef USE_MAPPED_LOCATION
4536 if (location == last_location)
4537 return NULL_RTX;
4538 #else
4539 if (location.file && last_location.file
4540 && !strcmp (location.file, last_location.file)
4541 && location.line == last_location.line)
4542 return NULL_RTX;
4543 #endif
4544 last_location = location;
4545
4546 if (no_line_numbers)
4547 {
4548 cur_insn_uid++;
4549 return NULL_RTX;
4550 }
4551
4552 #ifdef USE_MAPPED_LOCATION
4553 note = emit_note ((int) location);
4554 #else
4555 note = emit_note (location.line);
4556 NOTE_SOURCE_FILE (note) = location.file;
4557 #endif
4558
4559 return note;
4560 }
4561
4562 /* Emit a copy of note ORIG. */
4563
4564 rtx
4565 emit_note_copy (rtx orig)
4566 {
4567 rtx note;
4568
4569 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4570 {
4571 cur_insn_uid++;
4572 return NULL_RTX;
4573 }
4574
4575 note = rtx_alloc (NOTE);
4576
4577 INSN_UID (note) = cur_insn_uid++;
4578 NOTE_DATA (note) = NOTE_DATA (orig);
4579 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4580 BLOCK_FOR_INSN (note) = NULL;
4581 add_insn (note);
4582
4583 return note;
4584 }
4585
4586 /* Make an insn of code NOTE or type NOTE_NO
4587 and add it to the end of the doubly-linked list. */
4588
4589 rtx
4590 emit_note (int note_no)
4591 {
4592 rtx note;
4593
4594 note = rtx_alloc (NOTE);
4595 INSN_UID (note) = cur_insn_uid++;
4596 NOTE_LINE_NUMBER (note) = note_no;
4597 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4598 BLOCK_FOR_INSN (note) = NULL;
4599 add_insn (note);
4600 return note;
4601 }
4602
4603 /* Cause next statement to emit a line note even if the line number
4604 has not changed. */
4605
4606 void
4607 force_next_line_note (void)
4608 {
4609 #ifdef USE_MAPPED_LOCATION
4610 last_location = -1;
4611 #else
4612 last_location.line = -1;
4613 #endif
4614 }
4615
4616 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4617 note of this type already exists, remove it first. */
4618
4619 rtx
4620 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4621 {
4622 rtx note = find_reg_note (insn, kind, NULL_RTX);
4623
4624 switch (kind)
4625 {
4626 case REG_EQUAL:
4627 case REG_EQUIV:
4628 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4629 has multiple sets (some callers assume single_set
4630 means the insn only has one set, when in fact it
4631 means the insn only has one * useful * set). */
4632 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4633 {
4634 gcc_assert (!note);
4635 return NULL_RTX;
4636 }
4637
4638 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4639 It serves no useful purpose and breaks eliminate_regs. */
4640 if (GET_CODE (datum) == ASM_OPERANDS)
4641 return NULL_RTX;
4642 break;
4643
4644 default:
4645 break;
4646 }
4647
4648 if (note)
4649 {
4650 XEXP (note, 0) = datum;
4651 return note;
4652 }
4653
4654 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4655 return REG_NOTES (insn);
4656 }
4657 \f
4658 /* Return an indication of which type of insn should have X as a body.
4659 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4660
4661 static enum rtx_code
4662 classify_insn (rtx x)
4663 {
4664 if (LABEL_P (x))
4665 return CODE_LABEL;
4666 if (GET_CODE (x) == CALL)
4667 return CALL_INSN;
4668 if (GET_CODE (x) == RETURN)
4669 return JUMP_INSN;
4670 if (GET_CODE (x) == SET)
4671 {
4672 if (SET_DEST (x) == pc_rtx)
4673 return JUMP_INSN;
4674 else if (GET_CODE (SET_SRC (x)) == CALL)
4675 return CALL_INSN;
4676 else
4677 return INSN;
4678 }
4679 if (GET_CODE (x) == PARALLEL)
4680 {
4681 int j;
4682 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4683 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4684 return CALL_INSN;
4685 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4686 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4687 return JUMP_INSN;
4688 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4689 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4690 return CALL_INSN;
4691 }
4692 return INSN;
4693 }
4694
4695 /* Emit the rtl pattern X as an appropriate kind of insn.
4696 If X is a label, it is simply added into the insn chain. */
4697
4698 rtx
4699 emit (rtx x)
4700 {
4701 enum rtx_code code = classify_insn (x);
4702
4703 switch (code)
4704 {
4705 case CODE_LABEL:
4706 return emit_label (x);
4707 case INSN:
4708 return emit_insn (x);
4709 case JUMP_INSN:
4710 {
4711 rtx insn = emit_jump_insn (x);
4712 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4713 return emit_barrier ();
4714 return insn;
4715 }
4716 case CALL_INSN:
4717 return emit_call_insn (x);
4718 default:
4719 gcc_unreachable ();
4720 }
4721 }
4722 \f
4723 /* Space for free sequence stack entries. */
4724 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4725
4726 /* Begin emitting insns to a sequence. If this sequence will contain
4727 something that might cause the compiler to pop arguments to function
4728 calls (because those pops have previously been deferred; see
4729 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4730 before calling this function. That will ensure that the deferred
4731 pops are not accidentally emitted in the middle of this sequence. */
4732
4733 void
4734 start_sequence (void)
4735 {
4736 struct sequence_stack *tem;
4737
4738 if (free_sequence_stack != NULL)
4739 {
4740 tem = free_sequence_stack;
4741 free_sequence_stack = tem->next;
4742 }
4743 else
4744 tem = ggc_alloc (sizeof (struct sequence_stack));
4745
4746 tem->next = seq_stack;
4747 tem->first = first_insn;
4748 tem->last = last_insn;
4749
4750 seq_stack = tem;
4751
4752 first_insn = 0;
4753 last_insn = 0;
4754 }
4755
4756 /* Set up the insn chain starting with FIRST as the current sequence,
4757 saving the previously current one. See the documentation for
4758 start_sequence for more information about how to use this function. */
4759
4760 void
4761 push_to_sequence (rtx first)
4762 {
4763 rtx last;
4764
4765 start_sequence ();
4766
4767 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4768
4769 first_insn = first;
4770 last_insn = last;
4771 }
4772
4773 /* Set up the outer-level insn chain
4774 as the current sequence, saving the previously current one. */
4775
4776 void
4777 push_topmost_sequence (void)
4778 {
4779 struct sequence_stack *stack, *top = NULL;
4780
4781 start_sequence ();
4782
4783 for (stack = seq_stack; stack; stack = stack->next)
4784 top = stack;
4785
4786 first_insn = top->first;
4787 last_insn = top->last;
4788 }
4789
4790 /* After emitting to the outer-level insn chain, update the outer-level
4791 insn chain, and restore the previous saved state. */
4792
4793 void
4794 pop_topmost_sequence (void)
4795 {
4796 struct sequence_stack *stack, *top = NULL;
4797
4798 for (stack = seq_stack; stack; stack = stack->next)
4799 top = stack;
4800
4801 top->first = first_insn;
4802 top->last = last_insn;
4803
4804 end_sequence ();
4805 }
4806
4807 /* After emitting to a sequence, restore previous saved state.
4808
4809 To get the contents of the sequence just made, you must call
4810 `get_insns' *before* calling here.
4811
4812 If the compiler might have deferred popping arguments while
4813 generating this sequence, and this sequence will not be immediately
4814 inserted into the instruction stream, use do_pending_stack_adjust
4815 before calling get_insns. That will ensure that the deferred
4816 pops are inserted into this sequence, and not into some random
4817 location in the instruction stream. See INHIBIT_DEFER_POP for more
4818 information about deferred popping of arguments. */
4819
4820 void
4821 end_sequence (void)
4822 {
4823 struct sequence_stack *tem = seq_stack;
4824
4825 first_insn = tem->first;
4826 last_insn = tem->last;
4827 seq_stack = tem->next;
4828
4829 memset (tem, 0, sizeof (*tem));
4830 tem->next = free_sequence_stack;
4831 free_sequence_stack = tem;
4832 }
4833
4834 /* Return 1 if currently emitting into a sequence. */
4835
4836 int
4837 in_sequence_p (void)
4838 {
4839 return seq_stack != 0;
4840 }
4841 \f
4842 /* Put the various virtual registers into REGNO_REG_RTX. */
4843
4844 void
4845 init_virtual_regs (struct emit_status *es)
4846 {
4847 rtx *ptr = es->x_regno_reg_rtx;
4848 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4849 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4850 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4851 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4852 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4853 }
4854
4855 \f
4856 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4857 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4858 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4859 static int copy_insn_n_scratches;
4860
4861 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4862 copied an ASM_OPERANDS.
4863 In that case, it is the original input-operand vector. */
4864 static rtvec orig_asm_operands_vector;
4865
4866 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4867 copied an ASM_OPERANDS.
4868 In that case, it is the copied input-operand vector. */
4869 static rtvec copy_asm_operands_vector;
4870
4871 /* Likewise for the constraints vector. */
4872 static rtvec orig_asm_constraints_vector;
4873 static rtvec copy_asm_constraints_vector;
4874
4875 /* Recursively create a new copy of an rtx for copy_insn.
4876 This function differs from copy_rtx in that it handles SCRATCHes and
4877 ASM_OPERANDs properly.
4878 Normally, this function is not used directly; use copy_insn as front end.
4879 However, you could first copy an insn pattern with copy_insn and then use
4880 this function afterwards to properly copy any REG_NOTEs containing
4881 SCRATCHes. */
4882
4883 rtx
4884 copy_insn_1 (rtx orig)
4885 {
4886 rtx copy;
4887 int i, j;
4888 RTX_CODE code;
4889 const char *format_ptr;
4890
4891 code = GET_CODE (orig);
4892
4893 switch (code)
4894 {
4895 case REG:
4896 case CONST_INT:
4897 case CONST_DOUBLE:
4898 case CONST_VECTOR:
4899 case SYMBOL_REF:
4900 case CODE_LABEL:
4901 case PC:
4902 case CC0:
4903 return orig;
4904 case CLOBBER:
4905 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4906 return orig;
4907 break;
4908
4909 case SCRATCH:
4910 for (i = 0; i < copy_insn_n_scratches; i++)
4911 if (copy_insn_scratch_in[i] == orig)
4912 return copy_insn_scratch_out[i];
4913 break;
4914
4915 case CONST:
4916 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4917 a LABEL_REF, it isn't sharable. */
4918 if (GET_CODE (XEXP (orig, 0)) == PLUS
4919 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4920 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4921 return orig;
4922 break;
4923
4924 /* A MEM with a constant address is not sharable. The problem is that
4925 the constant address may need to be reloaded. If the mem is shared,
4926 then reloading one copy of this mem will cause all copies to appear
4927 to have been reloaded. */
4928
4929 default:
4930 break;
4931 }
4932
4933 copy = rtx_alloc (code);
4934
4935 /* Copy the various flags, and other information. We assume that
4936 all fields need copying, and then clear the fields that should
4937 not be copied. That is the sensible default behavior, and forces
4938 us to explicitly document why we are *not* copying a flag. */
4939 memcpy (copy, orig, RTX_HDR_SIZE);
4940
4941 /* We do not copy the USED flag, which is used as a mark bit during
4942 walks over the RTL. */
4943 RTX_FLAG (copy, used) = 0;
4944
4945 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4946 if (INSN_P (orig))
4947 {
4948 RTX_FLAG (copy, jump) = 0;
4949 RTX_FLAG (copy, call) = 0;
4950 RTX_FLAG (copy, frame_related) = 0;
4951 }
4952
4953 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4954
4955 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4956 {
4957 copy->u.fld[i] = orig->u.fld[i];
4958 switch (*format_ptr++)
4959 {
4960 case 'e':
4961 if (XEXP (orig, i) != NULL)
4962 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4963 break;
4964
4965 case 'E':
4966 case 'V':
4967 if (XVEC (orig, i) == orig_asm_constraints_vector)
4968 XVEC (copy, i) = copy_asm_constraints_vector;
4969 else if (XVEC (orig, i) == orig_asm_operands_vector)
4970 XVEC (copy, i) = copy_asm_operands_vector;
4971 else if (XVEC (orig, i) != NULL)
4972 {
4973 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4974 for (j = 0; j < XVECLEN (copy, i); j++)
4975 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4976 }
4977 break;
4978
4979 case 't':
4980 case 'w':
4981 case 'i':
4982 case 's':
4983 case 'S':
4984 case 'u':
4985 case '0':
4986 /* These are left unchanged. */
4987 break;
4988
4989 default:
4990 gcc_unreachable ();
4991 }
4992 }
4993
4994 if (code == SCRATCH)
4995 {
4996 i = copy_insn_n_scratches++;
4997 gcc_assert (i < MAX_RECOG_OPERANDS);
4998 copy_insn_scratch_in[i] = orig;
4999 copy_insn_scratch_out[i] = copy;
5000 }
5001 else if (code == ASM_OPERANDS)
5002 {
5003 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5004 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5005 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5006 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5007 }
5008
5009 return copy;
5010 }
5011
5012 /* Create a new copy of an rtx.
5013 This function differs from copy_rtx in that it handles SCRATCHes and
5014 ASM_OPERANDs properly.
5015 INSN doesn't really have to be a full INSN; it could be just the
5016 pattern. */
5017 rtx
5018 copy_insn (rtx insn)
5019 {
5020 copy_insn_n_scratches = 0;
5021 orig_asm_operands_vector = 0;
5022 orig_asm_constraints_vector = 0;
5023 copy_asm_operands_vector = 0;
5024 copy_asm_constraints_vector = 0;
5025 return copy_insn_1 (insn);
5026 }
5027
5028 /* Initialize data structures and variables in this file
5029 before generating rtl for each function. */
5030
5031 void
5032 init_emit (void)
5033 {
5034 struct function *f = cfun;
5035
5036 f->emit = ggc_alloc (sizeof (struct emit_status));
5037 first_insn = NULL;
5038 last_insn = NULL;
5039 cur_insn_uid = 1;
5040 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5041 last_location = UNKNOWN_LOCATION;
5042 first_label_num = label_num;
5043 seq_stack = NULL;
5044
5045 /* Init the tables that describe all the pseudo regs. */
5046
5047 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5048
5049 f->emit->regno_pointer_align
5050 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5051 * sizeof (unsigned char));
5052
5053 regno_reg_rtx
5054 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5055
5056 /* Put copies of all the hard registers into regno_reg_rtx. */
5057 memcpy (regno_reg_rtx,
5058 static_regno_reg_rtx,
5059 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5060
5061 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5062 init_virtual_regs (f->emit);
5063
5064 /* Indicate that the virtual registers and stack locations are
5065 all pointers. */
5066 REG_POINTER (stack_pointer_rtx) = 1;
5067 REG_POINTER (frame_pointer_rtx) = 1;
5068 REG_POINTER (hard_frame_pointer_rtx) = 1;
5069 REG_POINTER (arg_pointer_rtx) = 1;
5070
5071 REG_POINTER (virtual_incoming_args_rtx) = 1;
5072 REG_POINTER (virtual_stack_vars_rtx) = 1;
5073 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5074 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5075 REG_POINTER (virtual_cfa_rtx) = 1;
5076
5077 #ifdef STACK_BOUNDARY
5078 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5079 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5080 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5081 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5082
5083 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5084 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5085 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5086 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5087 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5088 #endif
5089
5090 #ifdef INIT_EXPANDERS
5091 INIT_EXPANDERS;
5092 #endif
5093 }
5094
5095 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5096
5097 static rtx
5098 gen_const_vector (enum machine_mode mode, int constant)
5099 {
5100 rtx tem;
5101 rtvec v;
5102 int units, i;
5103 enum machine_mode inner;
5104
5105 units = GET_MODE_NUNITS (mode);
5106 inner = GET_MODE_INNER (mode);
5107
5108 v = rtvec_alloc (units);
5109
5110 /* We need to call this function after we set the scalar const_tiny_rtx
5111 entries. */
5112 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5113
5114 for (i = 0; i < units; ++i)
5115 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5116
5117 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5118 return tem;
5119 }
5120
5121 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5122 all elements are zero, and the one vector when all elements are one. */
5123 rtx
5124 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5125 {
5126 enum machine_mode inner = GET_MODE_INNER (mode);
5127 int nunits = GET_MODE_NUNITS (mode);
5128 rtx x;
5129 int i;
5130
5131 /* Check to see if all of the elements have the same value. */
5132 x = RTVEC_ELT (v, nunits - 1);
5133 for (i = nunits - 2; i >= 0; i--)
5134 if (RTVEC_ELT (v, i) != x)
5135 break;
5136
5137 /* If the values are all the same, check to see if we can use one of the
5138 standard constant vectors. */
5139 if (i == -1)
5140 {
5141 if (x == CONST0_RTX (inner))
5142 return CONST0_RTX (mode);
5143 else if (x == CONST1_RTX (inner))
5144 return CONST1_RTX (mode);
5145 }
5146
5147 return gen_rtx_raw_CONST_VECTOR (mode, v);
5148 }
5149
5150 /* Create some permanent unique rtl objects shared between all functions.
5151 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5152
5153 void
5154 init_emit_once (int line_numbers)
5155 {
5156 int i;
5157 enum machine_mode mode;
5158 enum machine_mode double_mode;
5159
5160 /* We need reg_raw_mode, so initialize the modes now. */
5161 init_reg_modes_once ();
5162
5163 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5164 tables. */
5165 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5166 const_int_htab_eq, NULL);
5167
5168 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5169 const_double_htab_eq, NULL);
5170
5171 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5172 mem_attrs_htab_eq, NULL);
5173 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5174 reg_attrs_htab_eq, NULL);
5175
5176 no_line_numbers = ! line_numbers;
5177
5178 /* Compute the word and byte modes. */
5179
5180 byte_mode = VOIDmode;
5181 word_mode = VOIDmode;
5182 double_mode = VOIDmode;
5183
5184 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5185 mode = GET_MODE_WIDER_MODE (mode))
5186 {
5187 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5188 && byte_mode == VOIDmode)
5189 byte_mode = mode;
5190
5191 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5192 && word_mode == VOIDmode)
5193 word_mode = mode;
5194 }
5195
5196 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5197 mode = GET_MODE_WIDER_MODE (mode))
5198 {
5199 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5200 && double_mode == VOIDmode)
5201 double_mode = mode;
5202 }
5203
5204 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5205
5206 /* Assign register numbers to the globally defined register rtx.
5207 This must be done at runtime because the register number field
5208 is in a union and some compilers can't initialize unions. */
5209
5210 pc_rtx = gen_rtx_PC (VOIDmode);
5211 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5212 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5213 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5214 if (hard_frame_pointer_rtx == 0)
5215 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5216 HARD_FRAME_POINTER_REGNUM);
5217 if (arg_pointer_rtx == 0)
5218 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5219 virtual_incoming_args_rtx =
5220 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5221 virtual_stack_vars_rtx =
5222 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5223 virtual_stack_dynamic_rtx =
5224 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5225 virtual_outgoing_args_rtx =
5226 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5227 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5228
5229 /* Initialize RTL for commonly used hard registers. These are
5230 copied into regno_reg_rtx as we begin to compile each function. */
5231 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5232 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5233
5234 #ifdef INIT_EXPANDERS
5235 /* This is to initialize {init|mark|free}_machine_status before the first
5236 call to push_function_context_to. This is needed by the Chill front
5237 end which calls push_function_context_to before the first call to
5238 init_function_start. */
5239 INIT_EXPANDERS;
5240 #endif
5241
5242 /* Create the unique rtx's for certain rtx codes and operand values. */
5243
5244 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5245 tries to use these variables. */
5246 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5247 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5248 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5249
5250 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5251 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5252 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5253 else
5254 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5255
5256 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5257 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5258 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5259 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5260 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5261 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5262 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5263
5264 dconsthalf = dconst1;
5265 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5266
5267 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5268
5269 /* Initialize mathematical constants for constant folding builtins.
5270 These constants need to be given to at least 160 bits precision. */
5271 real_from_string (&dconstpi,
5272 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5273 real_from_string (&dconste,
5274 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5275
5276 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5277 {
5278 REAL_VALUE_TYPE *r =
5279 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5280
5281 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5282 mode = GET_MODE_WIDER_MODE (mode))
5283 const_tiny_rtx[i][(int) mode] =
5284 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5285
5286 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5287
5288 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5289 mode = GET_MODE_WIDER_MODE (mode))
5290 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5291
5292 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5293 mode != VOIDmode;
5294 mode = GET_MODE_WIDER_MODE (mode))
5295 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5296 }
5297
5298 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5299 mode != VOIDmode;
5300 mode = GET_MODE_WIDER_MODE (mode))
5301 {
5302 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5303 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5304 }
5305
5306 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5307 mode != VOIDmode;
5308 mode = GET_MODE_WIDER_MODE (mode))
5309 {
5310 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5311 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5312 }
5313
5314 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5315 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5316 const_tiny_rtx[0][i] = const0_rtx;
5317
5318 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5319 if (STORE_FLAG_VALUE == 1)
5320 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5321
5322 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5323 return_address_pointer_rtx
5324 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5325 #endif
5326
5327 #ifdef STATIC_CHAIN_REGNUM
5328 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5329
5330 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5331 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5332 static_chain_incoming_rtx
5333 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5334 else
5335 #endif
5336 static_chain_incoming_rtx = static_chain_rtx;
5337 #endif
5338
5339 #ifdef STATIC_CHAIN
5340 static_chain_rtx = STATIC_CHAIN;
5341
5342 #ifdef STATIC_CHAIN_INCOMING
5343 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5344 #else
5345 static_chain_incoming_rtx = static_chain_rtx;
5346 #endif
5347 #endif
5348
5349 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5350 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5351 }
5352 \f
5353 /* Produce exact duplicate of insn INSN after AFTER.
5354 Care updating of libcall regions if present. */
5355
5356 rtx
5357 emit_copy_of_insn_after (rtx insn, rtx after)
5358 {
5359 rtx new;
5360 rtx note1, note2, link;
5361
5362 switch (GET_CODE (insn))
5363 {
5364 case INSN:
5365 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5366 break;
5367
5368 case JUMP_INSN:
5369 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5370 break;
5371
5372 case CALL_INSN:
5373 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5374 if (CALL_INSN_FUNCTION_USAGE (insn))
5375 CALL_INSN_FUNCTION_USAGE (new)
5376 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5377 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5378 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5379 break;
5380
5381 default:
5382 gcc_unreachable ();
5383 }
5384
5385 /* Update LABEL_NUSES. */
5386 mark_jump_label (PATTERN (new), new, 0);
5387
5388 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5389
5390 /* If the old insn is frame related, then so is the new one. This is
5391 primarily needed for IA-64 unwind info which marks epilogue insns,
5392 which may be duplicated by the basic block reordering code. */
5393 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5394
5395 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5396 make them. */
5397 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5398 if (REG_NOTE_KIND (link) != REG_LABEL)
5399 {
5400 if (GET_CODE (link) == EXPR_LIST)
5401 REG_NOTES (new)
5402 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5403 XEXP (link, 0),
5404 REG_NOTES (new)));
5405 else
5406 REG_NOTES (new)
5407 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5408 XEXP (link, 0),
5409 REG_NOTES (new)));
5410 }
5411
5412 /* Fix the libcall sequences. */
5413 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5414 {
5415 rtx p = new;
5416 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5417 p = PREV_INSN (p);
5418 XEXP (note1, 0) = p;
5419 XEXP (note2, 0) = new;
5420 }
5421 INSN_CODE (new) = INSN_CODE (insn);
5422 return new;
5423 }
5424
5425 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5426 rtx
5427 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5428 {
5429 if (hard_reg_clobbers[mode][regno])
5430 return hard_reg_clobbers[mode][regno];
5431 else
5432 return (hard_reg_clobbers[mode][regno] =
5433 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5434 }
5435
5436 #include "gt-emit-rtl.h"
This page took 0.275968 seconds and 6 git commands to generate.