]> gcc.gnu.org Git - gcc.git/blob - gcc/emit-rtl.c
dwarf2out.c (new_cfi, [...]): Fix -Wc++-compat and/or -Wcast-qual warnings.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "fixed-value.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60 #include "df.h"
61
62 /* Commonly used modes. */
63
64 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
65 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
66 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
67 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
68
69 /* Datastructures maintained for currently processed function in RTL form. */
70
71 struct rtl_data x_rtl;
72
73 /* Indexed by pseudo register number, gives the rtx for that pseudo.
74 Allocated in parallel with regno_pointer_align.
75 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
76 with length attribute nested in top level structures. */
77
78 rtx * regno_reg_rtx;
79
80 /* This is *not* reset after each function. It gives each CODE_LABEL
81 in the entire compilation a unique label number. */
82
83 static GTY(()) int label_num = 1;
84
85 /* Nonzero means do not generate NOTEs for source line numbers. */
86
87 static int no_line_numbers;
88
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
93
94 rtx global_rtl[GR_MAX];
95
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
101
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
105
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
107
108 rtx const_true_rtx;
109
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconstm1;
114 REAL_VALUE_TYPE dconsthalf;
115
116 /* Record fixed-point constant 0 and 1. */
117 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
118 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
119
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
123
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
128
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
134 same.
135
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
141
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
145
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
149 integers. */
150
151 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
152
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
155
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
157 htab_t const_int_htab;
158
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
161 htab_t mem_attrs_htab;
162
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
165 htab_t reg_attrs_htab;
166
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_double_htab;
170
171 /* A hash table storing all CONST_FIXEDs. */
172 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
173 htab_t const_fixed_htab;
174
175 #define first_insn (crtl->emit.x_first_insn)
176 #define last_insn (crtl->emit.x_last_insn)
177 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
178 #define last_location (crtl->emit.x_last_location)
179 #define first_label_num (crtl->emit.x_first_label_num)
180
181 static rtx make_call_insn_raw (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void set_used_decls (tree);
184 static void mark_label_nuses (rtx);
185 static hashval_t const_int_htab_hash (const void *);
186 static int const_int_htab_eq (const void *, const void *);
187 static hashval_t const_double_htab_hash (const void *);
188 static int const_double_htab_eq (const void *, const void *);
189 static rtx lookup_const_double (rtx);
190 static hashval_t const_fixed_htab_hash (const void *);
191 static int const_fixed_htab_eq (const void *, const void *);
192 static rtx lookup_const_fixed (rtx);
193 static hashval_t mem_attrs_htab_hash (const void *);
194 static int mem_attrs_htab_eq (const void *, const void *);
195 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
196 enum machine_mode);
197 static hashval_t reg_attrs_htab_hash (const void *);
198 static int reg_attrs_htab_eq (const void *, const void *);
199 static reg_attrs *get_reg_attrs (tree, int);
200 static tree component_ref_for_mem_expr (tree);
201 static rtx gen_const_vector (enum machine_mode, int);
202 static void copy_rtx_if_shared_1 (rtx *orig);
203
204 /* Probability of the conditional branch currently proceeded by try_split.
205 Set to -1 otherwise. */
206 int split_branch_probability = -1;
207 \f
208 /* Returns a hash code for X (which is a really a CONST_INT). */
209
210 static hashval_t
211 const_int_htab_hash (const void *x)
212 {
213 return (hashval_t) INTVAL ((const_rtx) x);
214 }
215
216 /* Returns nonzero if the value represented by X (which is really a
217 CONST_INT) is the same as that given by Y (which is really a
218 HOST_WIDE_INT *). */
219
220 static int
221 const_int_htab_eq (const void *x, const void *y)
222 {
223 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
224 }
225
226 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
227 static hashval_t
228 const_double_htab_hash (const void *x)
229 {
230 const_rtx const value = (const_rtx) x;
231 hashval_t h;
232
233 if (GET_MODE (value) == VOIDmode)
234 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
235 else
236 {
237 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
238 /* MODE is used in the comparison, so it should be in the hash. */
239 h ^= GET_MODE (value);
240 }
241 return h;
242 }
243
244 /* Returns nonzero if the value represented by X (really a ...)
245 is the same as that represented by Y (really a ...) */
246 static int
247 const_double_htab_eq (const void *x, const void *y)
248 {
249 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
250
251 if (GET_MODE (a) != GET_MODE (b))
252 return 0;
253 if (GET_MODE (a) == VOIDmode)
254 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
255 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
256 else
257 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
258 CONST_DOUBLE_REAL_VALUE (b));
259 }
260
261 /* Returns a hash code for X (which is really a CONST_FIXED). */
262
263 static hashval_t
264 const_fixed_htab_hash (const void *x)
265 {
266 const_rtx const value = (const_rtx) x;
267 hashval_t h;
268
269 h = fixed_hash (CONST_FIXED_VALUE (value));
270 /* MODE is used in the comparison, so it should be in the hash. */
271 h ^= GET_MODE (value);
272 return h;
273 }
274
275 /* Returns nonzero if the value represented by X (really a ...)
276 is the same as that represented by Y (really a ...). */
277
278 static int
279 const_fixed_htab_eq (const void *x, const void *y)
280 {
281 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
282
283 if (GET_MODE (a) != GET_MODE (b))
284 return 0;
285 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
286 }
287
288 /* Returns a hash code for X (which is a really a mem_attrs *). */
289
290 static hashval_t
291 mem_attrs_htab_hash (const void *x)
292 {
293 const mem_attrs *const p = (const mem_attrs *) x;
294
295 return (p->alias ^ (p->align * 1000)
296 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
297 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
298 ^ (size_t) iterative_hash_expr (p->expr, 0));
299 }
300
301 /* Returns nonzero if the value represented by X (which is really a
302 mem_attrs *) is the same as that given by Y (which is also really a
303 mem_attrs *). */
304
305 static int
306 mem_attrs_htab_eq (const void *x, const void *y)
307 {
308 const mem_attrs *const p = (const mem_attrs *) x;
309 const mem_attrs *const q = (const mem_attrs *) y;
310
311 return (p->alias == q->alias && p->offset == q->offset
312 && p->size == q->size && p->align == q->align
313 && (p->expr == q->expr
314 || (p->expr != NULL_TREE && q->expr != NULL_TREE
315 && operand_equal_p (p->expr, q->expr, 0))));
316 }
317
318 /* Allocate a new mem_attrs structure and insert it into the hash table if
319 one identical to it is not already in the table. We are doing this for
320 MEM of mode MODE. */
321
322 static mem_attrs *
323 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
324 unsigned int align, enum machine_mode mode)
325 {
326 mem_attrs attrs;
327 void **slot;
328
329 /* If everything is the default, we can just return zero.
330 This must match what the corresponding MEM_* macros return when the
331 field is not present. */
332 if (alias == 0 && expr == 0 && offset == 0
333 && (size == 0
334 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
335 && (STRICT_ALIGNMENT && mode != BLKmode
336 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
337 return 0;
338
339 attrs.alias = alias;
340 attrs.expr = expr;
341 attrs.offset = offset;
342 attrs.size = size;
343 attrs.align = align;
344
345 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
346 if (*slot == 0)
347 {
348 *slot = ggc_alloc (sizeof (mem_attrs));
349 memcpy (*slot, &attrs, sizeof (mem_attrs));
350 }
351
352 return (mem_attrs *) *slot;
353 }
354
355 /* Returns a hash code for X (which is a really a reg_attrs *). */
356
357 static hashval_t
358 reg_attrs_htab_hash (const void *x)
359 {
360 const reg_attrs *const p = (const reg_attrs *) x;
361
362 return ((p->offset * 1000) ^ (long) p->decl);
363 }
364
365 /* Returns nonzero if the value represented by X (which is really a
366 reg_attrs *) is the same as that given by Y (which is also really a
367 reg_attrs *). */
368
369 static int
370 reg_attrs_htab_eq (const void *x, const void *y)
371 {
372 const reg_attrs *const p = (const reg_attrs *) x;
373 const reg_attrs *const q = (const reg_attrs *) y;
374
375 return (p->decl == q->decl && p->offset == q->offset);
376 }
377 /* Allocate a new reg_attrs structure and insert it into the hash table if
378 one identical to it is not already in the table. We are doing this for
379 MEM of mode MODE. */
380
381 static reg_attrs *
382 get_reg_attrs (tree decl, int offset)
383 {
384 reg_attrs attrs;
385 void **slot;
386
387 /* If everything is the default, we can just return zero. */
388 if (decl == 0 && offset == 0)
389 return 0;
390
391 attrs.decl = decl;
392 attrs.offset = offset;
393
394 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
395 if (*slot == 0)
396 {
397 *slot = ggc_alloc (sizeof (reg_attrs));
398 memcpy (*slot, &attrs, sizeof (reg_attrs));
399 }
400
401 return (reg_attrs *) *slot;
402 }
403
404
405 #if !HAVE_blockage
406 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
407 across this insn. */
408
409 rtx
410 gen_blockage (void)
411 {
412 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
413 MEM_VOLATILE_P (x) = true;
414 return x;
415 }
416 #endif
417
418
419 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
420 don't attempt to share with the various global pieces of rtl (such as
421 frame_pointer_rtx). */
422
423 rtx
424 gen_raw_REG (enum machine_mode mode, int regno)
425 {
426 rtx x = gen_rtx_raw_REG (mode, regno);
427 ORIGINAL_REGNO (x) = regno;
428 return x;
429 }
430
431 /* There are some RTL codes that require special attention; the generation
432 functions do the raw handling. If you add to this list, modify
433 special_rtx in gengenrtl.c as well. */
434
435 rtx
436 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
437 {
438 void **slot;
439
440 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
441 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
442
443 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
444 if (const_true_rtx && arg == STORE_FLAG_VALUE)
445 return const_true_rtx;
446 #endif
447
448 /* Look up the CONST_INT in the hash table. */
449 slot = htab_find_slot_with_hash (const_int_htab, &arg,
450 (hashval_t) arg, INSERT);
451 if (*slot == 0)
452 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
453
454 return (rtx) *slot;
455 }
456
457 rtx
458 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
459 {
460 return GEN_INT (trunc_int_for_mode (c, mode));
461 }
462
463 /* CONST_DOUBLEs might be created from pairs of integers, or from
464 REAL_VALUE_TYPEs. Also, their length is known only at run time,
465 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
466
467 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
468 hash table. If so, return its counterpart; otherwise add it
469 to the hash table and return it. */
470 static rtx
471 lookup_const_double (rtx real)
472 {
473 void **slot = htab_find_slot (const_double_htab, real, INSERT);
474 if (*slot == 0)
475 *slot = real;
476
477 return (rtx) *slot;
478 }
479
480 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
481 VALUE in mode MODE. */
482 rtx
483 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
484 {
485 rtx real = rtx_alloc (CONST_DOUBLE);
486 PUT_MODE (real, mode);
487
488 real->u.rv = value;
489
490 return lookup_const_double (real);
491 }
492
493 /* Determine whether FIXED, a CONST_FIXED, already exists in the
494 hash table. If so, return its counterpart; otherwise add it
495 to the hash table and return it. */
496
497 static rtx
498 lookup_const_fixed (rtx fixed)
499 {
500 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
501 if (*slot == 0)
502 *slot = fixed;
503
504 return (rtx) *slot;
505 }
506
507 /* Return a CONST_FIXED rtx for a fixed-point value specified by
508 VALUE in mode MODE. */
509
510 rtx
511 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
512 {
513 rtx fixed = rtx_alloc (CONST_FIXED);
514 PUT_MODE (fixed, mode);
515
516 fixed->u.fv = value;
517
518 return lookup_const_fixed (fixed);
519 }
520
521 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
522 of ints: I0 is the low-order word and I1 is the high-order word.
523 Do not use this routine for non-integer modes; convert to
524 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
525
526 rtx
527 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
528 {
529 rtx value;
530 unsigned int i;
531
532 /* There are the following cases (note that there are no modes with
533 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
534
535 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
536 gen_int_mode.
537 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
538 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
539 from copies of the sign bit, and sign of i0 and i1 are the same), then
540 we return a CONST_INT for i0.
541 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
542 if (mode != VOIDmode)
543 {
544 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
545 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
546 /* We can get a 0 for an error mark. */
547 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
548 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
549
550 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
551 return gen_int_mode (i0, mode);
552
553 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
554 }
555
556 /* If this integer fits in one word, return a CONST_INT. */
557 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
558 return GEN_INT (i0);
559
560 /* We use VOIDmode for integers. */
561 value = rtx_alloc (CONST_DOUBLE);
562 PUT_MODE (value, VOIDmode);
563
564 CONST_DOUBLE_LOW (value) = i0;
565 CONST_DOUBLE_HIGH (value) = i1;
566
567 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
568 XWINT (value, i) = 0;
569
570 return lookup_const_double (value);
571 }
572
573 rtx
574 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
575 {
576 /* In case the MD file explicitly references the frame pointer, have
577 all such references point to the same frame pointer. This is
578 used during frame pointer elimination to distinguish the explicit
579 references to these registers from pseudos that happened to be
580 assigned to them.
581
582 If we have eliminated the frame pointer or arg pointer, we will
583 be using it as a normal register, for example as a spill
584 register. In such cases, we might be accessing it in a mode that
585 is not Pmode and therefore cannot use the pre-allocated rtx.
586
587 Also don't do this when we are making new REGs in reload, since
588 we don't want to get confused with the real pointers. */
589
590 if (mode == Pmode && !reload_in_progress)
591 {
592 if (regno == FRAME_POINTER_REGNUM
593 && (!reload_completed || frame_pointer_needed))
594 return frame_pointer_rtx;
595 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
596 if (regno == HARD_FRAME_POINTER_REGNUM
597 && (!reload_completed || frame_pointer_needed))
598 return hard_frame_pointer_rtx;
599 #endif
600 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
601 if (regno == ARG_POINTER_REGNUM)
602 return arg_pointer_rtx;
603 #endif
604 #ifdef RETURN_ADDRESS_POINTER_REGNUM
605 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
606 return return_address_pointer_rtx;
607 #endif
608 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
609 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
610 return pic_offset_table_rtx;
611 if (regno == STACK_POINTER_REGNUM)
612 return stack_pointer_rtx;
613 }
614
615 #if 0
616 /* If the per-function register table has been set up, try to re-use
617 an existing entry in that table to avoid useless generation of RTL.
618
619 This code is disabled for now until we can fix the various backends
620 which depend on having non-shared hard registers in some cases. Long
621 term we want to re-enable this code as it can significantly cut down
622 on the amount of useless RTL that gets generated.
623
624 We'll also need to fix some code that runs after reload that wants to
625 set ORIGINAL_REGNO. */
626
627 if (cfun
628 && cfun->emit
629 && regno_reg_rtx
630 && regno < FIRST_PSEUDO_REGISTER
631 && reg_raw_mode[regno] == mode)
632 return regno_reg_rtx[regno];
633 #endif
634
635 return gen_raw_REG (mode, regno);
636 }
637
638 rtx
639 gen_rtx_MEM (enum machine_mode mode, rtx addr)
640 {
641 rtx rt = gen_rtx_raw_MEM (mode, addr);
642
643 /* This field is not cleared by the mere allocation of the rtx, so
644 we clear it here. */
645 MEM_ATTRS (rt) = 0;
646
647 return rt;
648 }
649
650 /* Generate a memory referring to non-trapping constant memory. */
651
652 rtx
653 gen_const_mem (enum machine_mode mode, rtx addr)
654 {
655 rtx mem = gen_rtx_MEM (mode, addr);
656 MEM_READONLY_P (mem) = 1;
657 MEM_NOTRAP_P (mem) = 1;
658 return mem;
659 }
660
661 /* Generate a MEM referring to fixed portions of the frame, e.g., register
662 save areas. */
663
664 rtx
665 gen_frame_mem (enum machine_mode mode, rtx addr)
666 {
667 rtx mem = gen_rtx_MEM (mode, addr);
668 MEM_NOTRAP_P (mem) = 1;
669 set_mem_alias_set (mem, get_frame_alias_set ());
670 return mem;
671 }
672
673 /* Generate a MEM referring to a temporary use of the stack, not part
674 of the fixed stack frame. For example, something which is pushed
675 by a target splitter. */
676 rtx
677 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
678 {
679 rtx mem = gen_rtx_MEM (mode, addr);
680 MEM_NOTRAP_P (mem) = 1;
681 if (!cfun->calls_alloca)
682 set_mem_alias_set (mem, get_frame_alias_set ());
683 return mem;
684 }
685
686 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
687 this construct would be valid, and false otherwise. */
688
689 bool
690 validate_subreg (enum machine_mode omode, enum machine_mode imode,
691 const_rtx reg, unsigned int offset)
692 {
693 unsigned int isize = GET_MODE_SIZE (imode);
694 unsigned int osize = GET_MODE_SIZE (omode);
695
696 /* All subregs must be aligned. */
697 if (offset % osize != 0)
698 return false;
699
700 /* The subreg offset cannot be outside the inner object. */
701 if (offset >= isize)
702 return false;
703
704 /* ??? This should not be here. Temporarily continue to allow word_mode
705 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
706 Generally, backends are doing something sketchy but it'll take time to
707 fix them all. */
708 if (omode == word_mode)
709 ;
710 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
711 is the culprit here, and not the backends. */
712 else if (osize >= UNITS_PER_WORD && isize >= osize)
713 ;
714 /* Allow component subregs of complex and vector. Though given the below
715 extraction rules, it's not always clear what that means. */
716 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
717 && GET_MODE_INNER (imode) == omode)
718 ;
719 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
720 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
721 represent this. It's questionable if this ought to be represented at
722 all -- why can't this all be hidden in post-reload splitters that make
723 arbitrarily mode changes to the registers themselves. */
724 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
725 ;
726 /* Subregs involving floating point modes are not allowed to
727 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
728 (subreg:SI (reg:DF) 0) isn't. */
729 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
730 {
731 if (isize != osize)
732 return false;
733 }
734
735 /* Paradoxical subregs must have offset zero. */
736 if (osize > isize)
737 return offset == 0;
738
739 /* This is a normal subreg. Verify that the offset is representable. */
740
741 /* For hard registers, we already have most of these rules collected in
742 subreg_offset_representable_p. */
743 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
744 {
745 unsigned int regno = REGNO (reg);
746
747 #ifdef CANNOT_CHANGE_MODE_CLASS
748 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
749 && GET_MODE_INNER (imode) == omode)
750 ;
751 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
752 return false;
753 #endif
754
755 return subreg_offset_representable_p (regno, imode, offset, omode);
756 }
757
758 /* For pseudo registers, we want most of the same checks. Namely:
759 If the register no larger than a word, the subreg must be lowpart.
760 If the register is larger than a word, the subreg must be the lowpart
761 of a subword. A subreg does *not* perform arbitrary bit extraction.
762 Given that we've already checked mode/offset alignment, we only have
763 to check subword subregs here. */
764 if (osize < UNITS_PER_WORD)
765 {
766 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
767 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
768 if (offset % UNITS_PER_WORD != low_off)
769 return false;
770 }
771 return true;
772 }
773
774 rtx
775 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
776 {
777 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
778 return gen_rtx_raw_SUBREG (mode, reg, offset);
779 }
780
781 /* Generate a SUBREG representing the least-significant part of REG if MODE
782 is smaller than mode of REG, otherwise paradoxical SUBREG. */
783
784 rtx
785 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
786 {
787 enum machine_mode inmode;
788
789 inmode = GET_MODE (reg);
790 if (inmode == VOIDmode)
791 inmode = mode;
792 return gen_rtx_SUBREG (mode, reg,
793 subreg_lowpart_offset (mode, inmode));
794 }
795 \f
796 /* gen_rtvec (n, [rt1, ..., rtn])
797 **
798 ** This routine creates an rtvec and stores within it the
799 ** pointers to rtx's which are its arguments.
800 */
801
802 /*VARARGS1*/
803 rtvec
804 gen_rtvec (int n, ...)
805 {
806 int i, save_n;
807 rtx *vector;
808 va_list p;
809
810 va_start (p, n);
811
812 if (n == 0)
813 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
814
815 vector = XALLOCAVEC (rtx, n);
816
817 for (i = 0; i < n; i++)
818 vector[i] = va_arg (p, rtx);
819
820 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
821 save_n = n;
822 va_end (p);
823
824 return gen_rtvec_v (save_n, vector);
825 }
826
827 rtvec
828 gen_rtvec_v (int n, rtx *argp)
829 {
830 int i;
831 rtvec rt_val;
832
833 if (n == 0)
834 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
835
836 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
837
838 for (i = 0; i < n; i++)
839 rt_val->elem[i] = *argp++;
840
841 return rt_val;
842 }
843 \f
844 /* Return the number of bytes between the start of an OUTER_MODE
845 in-memory value and the start of an INNER_MODE in-memory value,
846 given that the former is a lowpart of the latter. It may be a
847 paradoxical lowpart, in which case the offset will be negative
848 on big-endian targets. */
849
850 int
851 byte_lowpart_offset (enum machine_mode outer_mode,
852 enum machine_mode inner_mode)
853 {
854 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
855 return subreg_lowpart_offset (outer_mode, inner_mode);
856 else
857 return -subreg_lowpart_offset (inner_mode, outer_mode);
858 }
859 \f
860 /* Generate a REG rtx for a new pseudo register of mode MODE.
861 This pseudo is assigned the next sequential register number. */
862
863 rtx
864 gen_reg_rtx (enum machine_mode mode)
865 {
866 rtx val;
867
868 gcc_assert (can_create_pseudo_p ());
869
870 if (generating_concat_p
871 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
872 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
873 {
874 /* For complex modes, don't make a single pseudo.
875 Instead, make a CONCAT of two pseudos.
876 This allows noncontiguous allocation of the real and imaginary parts,
877 which makes much better code. Besides, allocating DCmode
878 pseudos overstrains reload on some machines like the 386. */
879 rtx realpart, imagpart;
880 enum machine_mode partmode = GET_MODE_INNER (mode);
881
882 realpart = gen_reg_rtx (partmode);
883 imagpart = gen_reg_rtx (partmode);
884 return gen_rtx_CONCAT (mode, realpart, imagpart);
885 }
886
887 /* Make sure regno_pointer_align, and regno_reg_rtx are large
888 enough to have an element for this pseudo reg number. */
889
890 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
891 {
892 int old_size = crtl->emit.regno_pointer_align_length;
893 char *new;
894 rtx *new1;
895
896 new = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
897 memset (new + old_size, 0, old_size);
898 crtl->emit.regno_pointer_align = (unsigned char *) new;
899
900 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
901 memset (new1 + old_size, 0, old_size * sizeof (rtx));
902 regno_reg_rtx = new1;
903
904 crtl->emit.regno_pointer_align_length = old_size * 2;
905 }
906
907 val = gen_raw_REG (mode, reg_rtx_no);
908 regno_reg_rtx[reg_rtx_no++] = val;
909 return val;
910 }
911
912 /* Update NEW with the same attributes as REG, but with OFFSET added
913 to the REG_OFFSET. */
914
915 static void
916 update_reg_offset (rtx new, rtx reg, int offset)
917 {
918 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
919 REG_OFFSET (reg) + offset);
920 }
921
922 /* Generate a register with same attributes as REG, but with OFFSET
923 added to the REG_OFFSET. */
924
925 rtx
926 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
927 int offset)
928 {
929 rtx new = gen_rtx_REG (mode, regno);
930
931 update_reg_offset (new, reg, offset);
932 return new;
933 }
934
935 /* Generate a new pseudo-register with the same attributes as REG, but
936 with OFFSET added to the REG_OFFSET. */
937
938 rtx
939 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
940 {
941 rtx new = gen_reg_rtx (mode);
942
943 update_reg_offset (new, reg, offset);
944 return new;
945 }
946
947 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
948 new register is a (possibly paradoxical) lowpart of the old one. */
949
950 void
951 adjust_reg_mode (rtx reg, enum machine_mode mode)
952 {
953 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
954 PUT_MODE (reg, mode);
955 }
956
957 /* Copy REG's attributes from X, if X has any attributes. If REG and X
958 have different modes, REG is a (possibly paradoxical) lowpart of X. */
959
960 void
961 set_reg_attrs_from_value (rtx reg, rtx x)
962 {
963 int offset;
964
965 /* Hard registers can be reused for multiple purposes within the same
966 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
967 on them is wrong. */
968 if (HARD_REGISTER_P (reg))
969 return;
970
971 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
972 if (MEM_P (x))
973 {
974 if (MEM_OFFSET (x) && GET_CODE (MEM_OFFSET (x)) == CONST_INT)
975 REG_ATTRS (reg)
976 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
977 if (MEM_POINTER (x))
978 mark_reg_pointer (reg, MEM_ALIGN (x));
979 }
980 else if (REG_P (x))
981 {
982 if (REG_ATTRS (x))
983 update_reg_offset (reg, x, offset);
984 if (REG_POINTER (x))
985 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
986 }
987 }
988
989 /* Generate a REG rtx for a new pseudo register, copying the mode
990 and attributes from X. */
991
992 rtx
993 gen_reg_rtx_and_attrs (rtx x)
994 {
995 rtx reg = gen_reg_rtx (GET_MODE (x));
996 set_reg_attrs_from_value (reg, x);
997 return reg;
998 }
999
1000 /* Set the register attributes for registers contained in PARM_RTX.
1001 Use needed values from memory attributes of MEM. */
1002
1003 void
1004 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1005 {
1006 if (REG_P (parm_rtx))
1007 set_reg_attrs_from_value (parm_rtx, mem);
1008 else if (GET_CODE (parm_rtx) == PARALLEL)
1009 {
1010 /* Check for a NULL entry in the first slot, used to indicate that the
1011 parameter goes both on the stack and in registers. */
1012 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1013 for (; i < XVECLEN (parm_rtx, 0); i++)
1014 {
1015 rtx x = XVECEXP (parm_rtx, 0, i);
1016 if (REG_P (XEXP (x, 0)))
1017 REG_ATTRS (XEXP (x, 0))
1018 = get_reg_attrs (MEM_EXPR (mem),
1019 INTVAL (XEXP (x, 1)));
1020 }
1021 }
1022 }
1023
1024 /* Set the REG_ATTRS for registers in value X, given that X represents
1025 decl T. */
1026
1027 static void
1028 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1029 {
1030 if (GET_CODE (x) == SUBREG)
1031 {
1032 gcc_assert (subreg_lowpart_p (x));
1033 x = SUBREG_REG (x);
1034 }
1035 if (REG_P (x))
1036 REG_ATTRS (x)
1037 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1038 DECL_MODE (t)));
1039 if (GET_CODE (x) == CONCAT)
1040 {
1041 if (REG_P (XEXP (x, 0)))
1042 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1043 if (REG_P (XEXP (x, 1)))
1044 REG_ATTRS (XEXP (x, 1))
1045 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1046 }
1047 if (GET_CODE (x) == PARALLEL)
1048 {
1049 int i, start;
1050
1051 /* Check for a NULL entry, used to indicate that the parameter goes
1052 both on the stack and in registers. */
1053 if (XEXP (XVECEXP (x, 0, 0), 0))
1054 start = 0;
1055 else
1056 start = 1;
1057
1058 for (i = start; i < XVECLEN (x, 0); i++)
1059 {
1060 rtx y = XVECEXP (x, 0, i);
1061 if (REG_P (XEXP (y, 0)))
1062 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1063 }
1064 }
1065 }
1066
1067 /* Assign the RTX X to declaration T. */
1068
1069 void
1070 set_decl_rtl (tree t, rtx x)
1071 {
1072 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1073 if (x)
1074 set_reg_attrs_for_decl_rtl (t, x);
1075 }
1076
1077 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1078 if the ABI requires the parameter to be passed by reference. */
1079
1080 void
1081 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1082 {
1083 DECL_INCOMING_RTL (t) = x;
1084 if (x && !by_reference_p)
1085 set_reg_attrs_for_decl_rtl (t, x);
1086 }
1087
1088 /* Identify REG (which may be a CONCAT) as a user register. */
1089
1090 void
1091 mark_user_reg (rtx reg)
1092 {
1093 if (GET_CODE (reg) == CONCAT)
1094 {
1095 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1096 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1097 }
1098 else
1099 {
1100 gcc_assert (REG_P (reg));
1101 REG_USERVAR_P (reg) = 1;
1102 }
1103 }
1104
1105 /* Identify REG as a probable pointer register and show its alignment
1106 as ALIGN, if nonzero. */
1107
1108 void
1109 mark_reg_pointer (rtx reg, int align)
1110 {
1111 if (! REG_POINTER (reg))
1112 {
1113 REG_POINTER (reg) = 1;
1114
1115 if (align)
1116 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1117 }
1118 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1119 /* We can no-longer be sure just how aligned this pointer is. */
1120 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1121 }
1122
1123 /* Return 1 plus largest pseudo reg number used in the current function. */
1124
1125 int
1126 max_reg_num (void)
1127 {
1128 return reg_rtx_no;
1129 }
1130
1131 /* Return 1 + the largest label number used so far in the current function. */
1132
1133 int
1134 max_label_num (void)
1135 {
1136 return label_num;
1137 }
1138
1139 /* Return first label number used in this function (if any were used). */
1140
1141 int
1142 get_first_label_num (void)
1143 {
1144 return first_label_num;
1145 }
1146
1147 /* If the rtx for label was created during the expansion of a nested
1148 function, then first_label_num won't include this label number.
1149 Fix this now so that array indices work later. */
1150
1151 void
1152 maybe_set_first_label_num (rtx x)
1153 {
1154 if (CODE_LABEL_NUMBER (x) < first_label_num)
1155 first_label_num = CODE_LABEL_NUMBER (x);
1156 }
1157 \f
1158 /* Return a value representing some low-order bits of X, where the number
1159 of low-order bits is given by MODE. Note that no conversion is done
1160 between floating-point and fixed-point values, rather, the bit
1161 representation is returned.
1162
1163 This function handles the cases in common between gen_lowpart, below,
1164 and two variants in cse.c and combine.c. These are the cases that can
1165 be safely handled at all points in the compilation.
1166
1167 If this is not a case we can handle, return 0. */
1168
1169 rtx
1170 gen_lowpart_common (enum machine_mode mode, rtx x)
1171 {
1172 int msize = GET_MODE_SIZE (mode);
1173 int xsize;
1174 int offset = 0;
1175 enum machine_mode innermode;
1176
1177 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1178 so we have to make one up. Yuk. */
1179 innermode = GET_MODE (x);
1180 if (GET_CODE (x) == CONST_INT
1181 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1182 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1183 else if (innermode == VOIDmode)
1184 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1185
1186 xsize = GET_MODE_SIZE (innermode);
1187
1188 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1189
1190 if (innermode == mode)
1191 return x;
1192
1193 /* MODE must occupy no more words than the mode of X. */
1194 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1195 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1196 return 0;
1197
1198 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1199 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1200 return 0;
1201
1202 offset = subreg_lowpart_offset (mode, innermode);
1203
1204 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1205 && (GET_MODE_CLASS (mode) == MODE_INT
1206 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1207 {
1208 /* If we are getting the low-order part of something that has been
1209 sign- or zero-extended, we can either just use the object being
1210 extended or make a narrower extension. If we want an even smaller
1211 piece than the size of the object being extended, call ourselves
1212 recursively.
1213
1214 This case is used mostly by combine and cse. */
1215
1216 if (GET_MODE (XEXP (x, 0)) == mode)
1217 return XEXP (x, 0);
1218 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1219 return gen_lowpart_common (mode, XEXP (x, 0));
1220 else if (msize < xsize)
1221 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1222 }
1223 else if (GET_CODE (x) == SUBREG || REG_P (x)
1224 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1225 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1226 return simplify_gen_subreg (mode, x, innermode, offset);
1227
1228 /* Otherwise, we can't do this. */
1229 return 0;
1230 }
1231 \f
1232 rtx
1233 gen_highpart (enum machine_mode mode, rtx x)
1234 {
1235 unsigned int msize = GET_MODE_SIZE (mode);
1236 rtx result;
1237
1238 /* This case loses if X is a subreg. To catch bugs early,
1239 complain if an invalid MODE is used even in other cases. */
1240 gcc_assert (msize <= UNITS_PER_WORD
1241 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1242
1243 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1244 subreg_highpart_offset (mode, GET_MODE (x)));
1245 gcc_assert (result);
1246
1247 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1248 the target if we have a MEM. gen_highpart must return a valid operand,
1249 emitting code if necessary to do so. */
1250 if (MEM_P (result))
1251 {
1252 result = validize_mem (result);
1253 gcc_assert (result);
1254 }
1255
1256 return result;
1257 }
1258
1259 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1260 be VOIDmode constant. */
1261 rtx
1262 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1263 {
1264 if (GET_MODE (exp) != VOIDmode)
1265 {
1266 gcc_assert (GET_MODE (exp) == innermode);
1267 return gen_highpart (outermode, exp);
1268 }
1269 return simplify_gen_subreg (outermode, exp, innermode,
1270 subreg_highpart_offset (outermode, innermode));
1271 }
1272
1273 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1274
1275 unsigned int
1276 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1277 {
1278 unsigned int offset = 0;
1279 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1280
1281 if (difference > 0)
1282 {
1283 if (WORDS_BIG_ENDIAN)
1284 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1285 if (BYTES_BIG_ENDIAN)
1286 offset += difference % UNITS_PER_WORD;
1287 }
1288
1289 return offset;
1290 }
1291
1292 /* Return offset in bytes to get OUTERMODE high part
1293 of the value in mode INNERMODE stored in memory in target format. */
1294 unsigned int
1295 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1296 {
1297 unsigned int offset = 0;
1298 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1299
1300 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1301
1302 if (difference > 0)
1303 {
1304 if (! WORDS_BIG_ENDIAN)
1305 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1306 if (! BYTES_BIG_ENDIAN)
1307 offset += difference % UNITS_PER_WORD;
1308 }
1309
1310 return offset;
1311 }
1312
1313 /* Return 1 iff X, assumed to be a SUBREG,
1314 refers to the least significant part of its containing reg.
1315 If X is not a SUBREG, always return 1 (it is its own low part!). */
1316
1317 int
1318 subreg_lowpart_p (const_rtx x)
1319 {
1320 if (GET_CODE (x) != SUBREG)
1321 return 1;
1322 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1323 return 0;
1324
1325 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1326 == SUBREG_BYTE (x));
1327 }
1328 \f
1329 /* Return subword OFFSET of operand OP.
1330 The word number, OFFSET, is interpreted as the word number starting
1331 at the low-order address. OFFSET 0 is the low-order word if not
1332 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1333
1334 If we cannot extract the required word, we return zero. Otherwise,
1335 an rtx corresponding to the requested word will be returned.
1336
1337 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1338 reload has completed, a valid address will always be returned. After
1339 reload, if a valid address cannot be returned, we return zero.
1340
1341 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1342 it is the responsibility of the caller.
1343
1344 MODE is the mode of OP in case it is a CONST_INT.
1345
1346 ??? This is still rather broken for some cases. The problem for the
1347 moment is that all callers of this thing provide no 'goal mode' to
1348 tell us to work with. This exists because all callers were written
1349 in a word based SUBREG world.
1350 Now use of this function can be deprecated by simplify_subreg in most
1351 cases.
1352 */
1353
1354 rtx
1355 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1356 {
1357 if (mode == VOIDmode)
1358 mode = GET_MODE (op);
1359
1360 gcc_assert (mode != VOIDmode);
1361
1362 /* If OP is narrower than a word, fail. */
1363 if (mode != BLKmode
1364 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1365 return 0;
1366
1367 /* If we want a word outside OP, return zero. */
1368 if (mode != BLKmode
1369 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1370 return const0_rtx;
1371
1372 /* Form a new MEM at the requested address. */
1373 if (MEM_P (op))
1374 {
1375 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1376
1377 if (! validate_address)
1378 return new;
1379
1380 else if (reload_completed)
1381 {
1382 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1383 return 0;
1384 }
1385 else
1386 return replace_equiv_address (new, XEXP (new, 0));
1387 }
1388
1389 /* Rest can be handled by simplify_subreg. */
1390 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1391 }
1392
1393 /* Similar to `operand_subword', but never return 0. If we can't
1394 extract the required subword, put OP into a register and try again.
1395 The second attempt must succeed. We always validate the address in
1396 this case.
1397
1398 MODE is the mode of OP, in case it is CONST_INT. */
1399
1400 rtx
1401 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1402 {
1403 rtx result = operand_subword (op, offset, 1, mode);
1404
1405 if (result)
1406 return result;
1407
1408 if (mode != BLKmode && mode != VOIDmode)
1409 {
1410 /* If this is a register which can not be accessed by words, copy it
1411 to a pseudo register. */
1412 if (REG_P (op))
1413 op = copy_to_reg (op);
1414 else
1415 op = force_reg (mode, op);
1416 }
1417
1418 result = operand_subword (op, offset, 1, mode);
1419 gcc_assert (result);
1420
1421 return result;
1422 }
1423 \f
1424 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1425 or (2) a component ref of something variable. Represent the later with
1426 a NULL expression. */
1427
1428 static tree
1429 component_ref_for_mem_expr (tree ref)
1430 {
1431 tree inner = TREE_OPERAND (ref, 0);
1432
1433 if (TREE_CODE (inner) == COMPONENT_REF)
1434 inner = component_ref_for_mem_expr (inner);
1435 else
1436 {
1437 /* Now remove any conversions: they don't change what the underlying
1438 object is. Likewise for SAVE_EXPR. */
1439 while (CONVERT_EXPR_P (inner)
1440 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1441 || TREE_CODE (inner) == SAVE_EXPR)
1442 inner = TREE_OPERAND (inner, 0);
1443
1444 if (! DECL_P (inner))
1445 inner = NULL_TREE;
1446 }
1447
1448 if (inner == TREE_OPERAND (ref, 0))
1449 return ref;
1450 else
1451 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1452 TREE_OPERAND (ref, 1), NULL_TREE);
1453 }
1454
1455 /* Returns 1 if both MEM_EXPR can be considered equal
1456 and 0 otherwise. */
1457
1458 int
1459 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1460 {
1461 if (expr1 == expr2)
1462 return 1;
1463
1464 if (! expr1 || ! expr2)
1465 return 0;
1466
1467 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1468 return 0;
1469
1470 if (TREE_CODE (expr1) == COMPONENT_REF)
1471 return
1472 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1473 TREE_OPERAND (expr2, 0))
1474 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1475 TREE_OPERAND (expr2, 1));
1476
1477 if (INDIRECT_REF_P (expr1))
1478 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1479 TREE_OPERAND (expr2, 0));
1480
1481 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1482 have been resolved here. */
1483 gcc_assert (DECL_P (expr1));
1484
1485 /* Decls with different pointers can't be equal. */
1486 return 0;
1487 }
1488
1489 /* Given REF, a MEM, and T, either the type of X or the expression
1490 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1491 if we are making a new object of this type. BITPOS is nonzero if
1492 there is an offset outstanding on T that will be applied later. */
1493
1494 void
1495 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1496 HOST_WIDE_INT bitpos)
1497 {
1498 alias_set_type alias = MEM_ALIAS_SET (ref);
1499 tree expr = MEM_EXPR (ref);
1500 rtx offset = MEM_OFFSET (ref);
1501 rtx size = MEM_SIZE (ref);
1502 unsigned int align = MEM_ALIGN (ref);
1503 HOST_WIDE_INT apply_bitpos = 0;
1504 tree type;
1505
1506 /* It can happen that type_for_mode was given a mode for which there
1507 is no language-level type. In which case it returns NULL, which
1508 we can see here. */
1509 if (t == NULL_TREE)
1510 return;
1511
1512 type = TYPE_P (t) ? t : TREE_TYPE (t);
1513 if (type == error_mark_node)
1514 return;
1515
1516 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1517 wrong answer, as it assumes that DECL_RTL already has the right alias
1518 info. Callers should not set DECL_RTL until after the call to
1519 set_mem_attributes. */
1520 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1521
1522 /* Get the alias set from the expression or type (perhaps using a
1523 front-end routine) and use it. */
1524 alias = get_alias_set (t);
1525
1526 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1527 MEM_IN_STRUCT_P (ref)
1528 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1529 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1530
1531 /* If we are making an object of this type, or if this is a DECL, we know
1532 that it is a scalar if the type is not an aggregate. */
1533 if ((objectp || DECL_P (t))
1534 && ! AGGREGATE_TYPE_P (type)
1535 && TREE_CODE (type) != COMPLEX_TYPE)
1536 MEM_SCALAR_P (ref) = 1;
1537
1538 /* We can set the alignment from the type if we are making an object,
1539 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1540 if (objectp || TREE_CODE (t) == INDIRECT_REF
1541 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1542 || TYPE_ALIGN_OK (type))
1543 align = MAX (align, TYPE_ALIGN (type));
1544 else
1545 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1546 {
1547 if (integer_zerop (TREE_OPERAND (t, 1)))
1548 /* We don't know anything about the alignment. */
1549 align = BITS_PER_UNIT;
1550 else
1551 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1552 }
1553
1554 /* If the size is known, we can set that. */
1555 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1556 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1557
1558 /* If T is not a type, we may be able to deduce some more information about
1559 the expression. */
1560 if (! TYPE_P (t))
1561 {
1562 tree base;
1563
1564 if (TREE_THIS_VOLATILE (t))
1565 MEM_VOLATILE_P (ref) = 1;
1566
1567 /* Now remove any conversions: they don't change what the underlying
1568 object is. Likewise for SAVE_EXPR. */
1569 while (CONVERT_EXPR_P (t)
1570 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1571 || TREE_CODE (t) == SAVE_EXPR)
1572 t = TREE_OPERAND (t, 0);
1573
1574 /* We may look through structure-like accesses for the purposes of
1575 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1576 base = t;
1577 while (TREE_CODE (base) == COMPONENT_REF
1578 || TREE_CODE (base) == REALPART_EXPR
1579 || TREE_CODE (base) == IMAGPART_EXPR
1580 || TREE_CODE (base) == BIT_FIELD_REF)
1581 base = TREE_OPERAND (base, 0);
1582
1583 if (DECL_P (base))
1584 {
1585 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1586 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1587 else
1588 MEM_NOTRAP_P (ref) = 1;
1589 }
1590 else
1591 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1592
1593 base = get_base_address (base);
1594 if (base && DECL_P (base)
1595 && TREE_READONLY (base)
1596 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1597 {
1598 tree base_type = TREE_TYPE (base);
1599 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1600 || DECL_ARTIFICIAL (base));
1601 MEM_READONLY_P (ref) = 1;
1602 }
1603
1604 /* If this expression uses it's parent's alias set, mark it such
1605 that we won't change it. */
1606 if (component_uses_parent_alias_set (t))
1607 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1608
1609 /* If this is a decl, set the attributes of the MEM from it. */
1610 if (DECL_P (t))
1611 {
1612 expr = t;
1613 offset = const0_rtx;
1614 apply_bitpos = bitpos;
1615 size = (DECL_SIZE_UNIT (t)
1616 && host_integerp (DECL_SIZE_UNIT (t), 1)
1617 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1618 align = DECL_ALIGN (t);
1619 }
1620
1621 /* If this is a constant, we know the alignment. */
1622 else if (CONSTANT_CLASS_P (t))
1623 {
1624 align = TYPE_ALIGN (type);
1625 #ifdef CONSTANT_ALIGNMENT
1626 align = CONSTANT_ALIGNMENT (t, align);
1627 #endif
1628 }
1629
1630 /* If this is a field reference and not a bit-field, record it. */
1631 /* ??? There is some information that can be gleaned from bit-fields,
1632 such as the word offset in the structure that might be modified.
1633 But skip it for now. */
1634 else if (TREE_CODE (t) == COMPONENT_REF
1635 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1636 {
1637 expr = component_ref_for_mem_expr (t);
1638 offset = const0_rtx;
1639 apply_bitpos = bitpos;
1640 /* ??? Any reason the field size would be different than
1641 the size we got from the type? */
1642 }
1643
1644 /* If this is an array reference, look for an outer field reference. */
1645 else if (TREE_CODE (t) == ARRAY_REF)
1646 {
1647 tree off_tree = size_zero_node;
1648 /* We can't modify t, because we use it at the end of the
1649 function. */
1650 tree t2 = t;
1651
1652 do
1653 {
1654 tree index = TREE_OPERAND (t2, 1);
1655 tree low_bound = array_ref_low_bound (t2);
1656 tree unit_size = array_ref_element_size (t2);
1657
1658 /* We assume all arrays have sizes that are a multiple of a byte.
1659 First subtract the lower bound, if any, in the type of the
1660 index, then convert to sizetype and multiply by the size of
1661 the array element. */
1662 if (! integer_zerop (low_bound))
1663 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1664 index, low_bound);
1665
1666 off_tree = size_binop (PLUS_EXPR,
1667 size_binop (MULT_EXPR,
1668 fold_convert (sizetype,
1669 index),
1670 unit_size),
1671 off_tree);
1672 t2 = TREE_OPERAND (t2, 0);
1673 }
1674 while (TREE_CODE (t2) == ARRAY_REF);
1675
1676 if (DECL_P (t2))
1677 {
1678 expr = t2;
1679 offset = NULL;
1680 if (host_integerp (off_tree, 1))
1681 {
1682 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1683 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1684 align = DECL_ALIGN (t2);
1685 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1686 align = aoff;
1687 offset = GEN_INT (ioff);
1688 apply_bitpos = bitpos;
1689 }
1690 }
1691 else if (TREE_CODE (t2) == COMPONENT_REF)
1692 {
1693 expr = component_ref_for_mem_expr (t2);
1694 if (host_integerp (off_tree, 1))
1695 {
1696 offset = GEN_INT (tree_low_cst (off_tree, 1));
1697 apply_bitpos = bitpos;
1698 }
1699 /* ??? Any reason the field size would be different than
1700 the size we got from the type? */
1701 }
1702 else if (flag_argument_noalias > 1
1703 && (INDIRECT_REF_P (t2))
1704 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1705 {
1706 expr = t2;
1707 offset = NULL;
1708 }
1709 }
1710
1711 /* If this is a Fortran indirect argument reference, record the
1712 parameter decl. */
1713 else if (flag_argument_noalias > 1
1714 && (INDIRECT_REF_P (t))
1715 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1716 {
1717 expr = t;
1718 offset = NULL;
1719 }
1720 }
1721
1722 /* If we modified OFFSET based on T, then subtract the outstanding
1723 bit position offset. Similarly, increase the size of the accessed
1724 object to contain the negative offset. */
1725 if (apply_bitpos)
1726 {
1727 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1728 if (size)
1729 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1730 }
1731
1732 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1733 {
1734 /* Force EXPR and OFFSET to NULL, since we don't know exactly what
1735 we're overlapping. */
1736 offset = NULL;
1737 expr = NULL;
1738 }
1739
1740 /* Now set the attributes we computed above. */
1741 MEM_ATTRS (ref)
1742 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1743
1744 /* If this is already known to be a scalar or aggregate, we are done. */
1745 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1746 return;
1747
1748 /* If it is a reference into an aggregate, this is part of an aggregate.
1749 Otherwise we don't know. */
1750 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1751 || TREE_CODE (t) == ARRAY_RANGE_REF
1752 || TREE_CODE (t) == BIT_FIELD_REF)
1753 MEM_IN_STRUCT_P (ref) = 1;
1754 }
1755
1756 void
1757 set_mem_attributes (rtx ref, tree t, int objectp)
1758 {
1759 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1760 }
1761
1762 /* Set MEM to the decl that REG refers to. */
1763
1764 void
1765 set_mem_attrs_from_reg (rtx mem, rtx reg)
1766 {
1767 MEM_ATTRS (mem)
1768 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1769 GEN_INT (REG_OFFSET (reg)),
1770 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1771 }
1772
1773 /* Set the alias set of MEM to SET. */
1774
1775 void
1776 set_mem_alias_set (rtx mem, alias_set_type set)
1777 {
1778 #ifdef ENABLE_CHECKING
1779 /* If the new and old alias sets don't conflict, something is wrong. */
1780 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1781 #endif
1782
1783 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1784 MEM_SIZE (mem), MEM_ALIGN (mem),
1785 GET_MODE (mem));
1786 }
1787
1788 /* Set the alignment of MEM to ALIGN bits. */
1789
1790 void
1791 set_mem_align (rtx mem, unsigned int align)
1792 {
1793 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1794 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1795 GET_MODE (mem));
1796 }
1797
1798 /* Set the expr for MEM to EXPR. */
1799
1800 void
1801 set_mem_expr (rtx mem, tree expr)
1802 {
1803 MEM_ATTRS (mem)
1804 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1805 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1806 }
1807
1808 /* Set the offset of MEM to OFFSET. */
1809
1810 void
1811 set_mem_offset (rtx mem, rtx offset)
1812 {
1813 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1814 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1815 GET_MODE (mem));
1816 }
1817
1818 /* Set the size of MEM to SIZE. */
1819
1820 void
1821 set_mem_size (rtx mem, rtx size)
1822 {
1823 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1824 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1825 GET_MODE (mem));
1826 }
1827 \f
1828 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1829 and its address changed to ADDR. (VOIDmode means don't change the mode.
1830 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1831 returned memory location is required to be valid. The memory
1832 attributes are not changed. */
1833
1834 static rtx
1835 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1836 {
1837 rtx new;
1838
1839 gcc_assert (MEM_P (memref));
1840 if (mode == VOIDmode)
1841 mode = GET_MODE (memref);
1842 if (addr == 0)
1843 addr = XEXP (memref, 0);
1844 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1845 && (!validate || memory_address_p (mode, addr)))
1846 return memref;
1847
1848 if (validate)
1849 {
1850 if (reload_in_progress || reload_completed)
1851 gcc_assert (memory_address_p (mode, addr));
1852 else
1853 addr = memory_address (mode, addr);
1854 }
1855
1856 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1857 return memref;
1858
1859 new = gen_rtx_MEM (mode, addr);
1860 MEM_COPY_ATTRIBUTES (new, memref);
1861 return new;
1862 }
1863
1864 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1865 way we are changing MEMREF, so we only preserve the alias set. */
1866
1867 rtx
1868 change_address (rtx memref, enum machine_mode mode, rtx addr)
1869 {
1870 rtx new = change_address_1 (memref, mode, addr, 1), size;
1871 enum machine_mode mmode = GET_MODE (new);
1872 unsigned int align;
1873
1874 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1875 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1876
1877 /* If there are no changes, just return the original memory reference. */
1878 if (new == memref)
1879 {
1880 if (MEM_ATTRS (memref) == 0
1881 || (MEM_EXPR (memref) == NULL
1882 && MEM_OFFSET (memref) == NULL
1883 && MEM_SIZE (memref) == size
1884 && MEM_ALIGN (memref) == align))
1885 return new;
1886
1887 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1888 MEM_COPY_ATTRIBUTES (new, memref);
1889 }
1890
1891 MEM_ATTRS (new)
1892 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1893
1894 return new;
1895 }
1896
1897 /* Return a memory reference like MEMREF, but with its mode changed
1898 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1899 nonzero, the memory address is forced to be valid.
1900 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1901 and caller is responsible for adjusting MEMREF base register. */
1902
1903 rtx
1904 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1905 int validate, int adjust)
1906 {
1907 rtx addr = XEXP (memref, 0);
1908 rtx new;
1909 rtx memoffset = MEM_OFFSET (memref);
1910 rtx size = 0;
1911 unsigned int memalign = MEM_ALIGN (memref);
1912
1913 /* If there are no changes, just return the original memory reference. */
1914 if (mode == GET_MODE (memref) && !offset
1915 && (!validate || memory_address_p (mode, addr)))
1916 return memref;
1917
1918 /* ??? Prefer to create garbage instead of creating shared rtl.
1919 This may happen even if offset is nonzero -- consider
1920 (plus (plus reg reg) const_int) -- so do this always. */
1921 addr = copy_rtx (addr);
1922
1923 if (adjust)
1924 {
1925 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1926 object, we can merge it into the LO_SUM. */
1927 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1928 && offset >= 0
1929 && (unsigned HOST_WIDE_INT) offset
1930 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1931 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1932 plus_constant (XEXP (addr, 1), offset));
1933 else
1934 addr = plus_constant (addr, offset);
1935 }
1936
1937 new = change_address_1 (memref, mode, addr, validate);
1938
1939 /* Compute the new values of the memory attributes due to this adjustment.
1940 We add the offsets and update the alignment. */
1941 if (memoffset)
1942 memoffset = GEN_INT (offset + INTVAL (memoffset));
1943
1944 /* Compute the new alignment by taking the MIN of the alignment and the
1945 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1946 if zero. */
1947 if (offset != 0)
1948 memalign
1949 = MIN (memalign,
1950 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1951
1952 /* We can compute the size in a number of ways. */
1953 if (GET_MODE (new) != BLKmode)
1954 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1955 else if (MEM_SIZE (memref))
1956 size = plus_constant (MEM_SIZE (memref), -offset);
1957
1958 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1959 memoffset, size, memalign, GET_MODE (new));
1960
1961 /* At some point, we should validate that this offset is within the object,
1962 if all the appropriate values are known. */
1963 return new;
1964 }
1965
1966 /* Return a memory reference like MEMREF, but with its mode changed
1967 to MODE and its address changed to ADDR, which is assumed to be
1968 MEMREF offset by OFFSET bytes. If VALIDATE is
1969 nonzero, the memory address is forced to be valid. */
1970
1971 rtx
1972 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1973 HOST_WIDE_INT offset, int validate)
1974 {
1975 memref = change_address_1 (memref, VOIDmode, addr, validate);
1976 return adjust_address_1 (memref, mode, offset, validate, 0);
1977 }
1978
1979 /* Return a memory reference like MEMREF, but whose address is changed by
1980 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1981 known to be in OFFSET (possibly 1). */
1982
1983 rtx
1984 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1985 {
1986 rtx new, addr = XEXP (memref, 0);
1987
1988 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1989
1990 /* At this point we don't know _why_ the address is invalid. It
1991 could have secondary memory references, multiplies or anything.
1992
1993 However, if we did go and rearrange things, we can wind up not
1994 being able to recognize the magic around pic_offset_table_rtx.
1995 This stuff is fragile, and is yet another example of why it is
1996 bad to expose PIC machinery too early. */
1997 if (! memory_address_p (GET_MODE (memref), new)
1998 && GET_CODE (addr) == PLUS
1999 && XEXP (addr, 0) == pic_offset_table_rtx)
2000 {
2001 addr = force_reg (GET_MODE (addr), addr);
2002 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2003 }
2004
2005 update_temp_slot_address (XEXP (memref, 0), new);
2006 new = change_address_1 (memref, VOIDmode, new, 1);
2007
2008 /* If there are no changes, just return the original memory reference. */
2009 if (new == memref)
2010 return new;
2011
2012 /* Update the alignment to reflect the offset. Reset the offset, which
2013 we don't know. */
2014 MEM_ATTRS (new)
2015 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2016 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2017 GET_MODE (new));
2018 return new;
2019 }
2020
2021 /* Return a memory reference like MEMREF, but with its address changed to
2022 ADDR. The caller is asserting that the actual piece of memory pointed
2023 to is the same, just the form of the address is being changed, such as
2024 by putting something into a register. */
2025
2026 rtx
2027 replace_equiv_address (rtx memref, rtx addr)
2028 {
2029 /* change_address_1 copies the memory attribute structure without change
2030 and that's exactly what we want here. */
2031 update_temp_slot_address (XEXP (memref, 0), addr);
2032 return change_address_1 (memref, VOIDmode, addr, 1);
2033 }
2034
2035 /* Likewise, but the reference is not required to be valid. */
2036
2037 rtx
2038 replace_equiv_address_nv (rtx memref, rtx addr)
2039 {
2040 return change_address_1 (memref, VOIDmode, addr, 0);
2041 }
2042
2043 /* Return a memory reference like MEMREF, but with its mode widened to
2044 MODE and offset by OFFSET. This would be used by targets that e.g.
2045 cannot issue QImode memory operations and have to use SImode memory
2046 operations plus masking logic. */
2047
2048 rtx
2049 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2050 {
2051 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2052 tree expr = MEM_EXPR (new);
2053 rtx memoffset = MEM_OFFSET (new);
2054 unsigned int size = GET_MODE_SIZE (mode);
2055
2056 /* If there are no changes, just return the original memory reference. */
2057 if (new == memref)
2058 return new;
2059
2060 /* If we don't know what offset we were at within the expression, then
2061 we can't know if we've overstepped the bounds. */
2062 if (! memoffset)
2063 expr = NULL_TREE;
2064
2065 while (expr)
2066 {
2067 if (TREE_CODE (expr) == COMPONENT_REF)
2068 {
2069 tree field = TREE_OPERAND (expr, 1);
2070 tree offset = component_ref_field_offset (expr);
2071
2072 if (! DECL_SIZE_UNIT (field))
2073 {
2074 expr = NULL_TREE;
2075 break;
2076 }
2077
2078 /* Is the field at least as large as the access? If so, ok,
2079 otherwise strip back to the containing structure. */
2080 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2081 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2082 && INTVAL (memoffset) >= 0)
2083 break;
2084
2085 if (! host_integerp (offset, 1))
2086 {
2087 expr = NULL_TREE;
2088 break;
2089 }
2090
2091 expr = TREE_OPERAND (expr, 0);
2092 memoffset
2093 = (GEN_INT (INTVAL (memoffset)
2094 + tree_low_cst (offset, 1)
2095 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2096 / BITS_PER_UNIT)));
2097 }
2098 /* Similarly for the decl. */
2099 else if (DECL_P (expr)
2100 && DECL_SIZE_UNIT (expr)
2101 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2102 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2103 && (! memoffset || INTVAL (memoffset) >= 0))
2104 break;
2105 else
2106 {
2107 /* The widened memory access overflows the expression, which means
2108 that it could alias another expression. Zap it. */
2109 expr = NULL_TREE;
2110 break;
2111 }
2112 }
2113
2114 if (! expr)
2115 memoffset = NULL_RTX;
2116
2117 /* The widened memory may alias other stuff, so zap the alias set. */
2118 /* ??? Maybe use get_alias_set on any remaining expression. */
2119
2120 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2121 MEM_ALIGN (new), mode);
2122
2123 return new;
2124 }
2125 \f
2126 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2127
2128 rtx
2129 gen_label_rtx (void)
2130 {
2131 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2132 NULL, label_num++, NULL);
2133 }
2134 \f
2135 /* For procedure integration. */
2136
2137 /* Install new pointers to the first and last insns in the chain.
2138 Also, set cur_insn_uid to one higher than the last in use.
2139 Used for an inline-procedure after copying the insn chain. */
2140
2141 void
2142 set_new_first_and_last_insn (rtx first, rtx last)
2143 {
2144 rtx insn;
2145
2146 first_insn = first;
2147 last_insn = last;
2148 cur_insn_uid = 0;
2149
2150 for (insn = first; insn; insn = NEXT_INSN (insn))
2151 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2152
2153 cur_insn_uid++;
2154 }
2155 \f
2156 /* Go through all the RTL insn bodies and copy any invalid shared
2157 structure. This routine should only be called once. */
2158
2159 static void
2160 unshare_all_rtl_1 (rtx insn)
2161 {
2162 /* Unshare just about everything else. */
2163 unshare_all_rtl_in_chain (insn);
2164
2165 /* Make sure the addresses of stack slots found outside the insn chain
2166 (such as, in DECL_RTL of a variable) are not shared
2167 with the insn chain.
2168
2169 This special care is necessary when the stack slot MEM does not
2170 actually appear in the insn chain. If it does appear, its address
2171 is unshared from all else at that point. */
2172 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2173 }
2174
2175 /* Go through all the RTL insn bodies and copy any invalid shared
2176 structure, again. This is a fairly expensive thing to do so it
2177 should be done sparingly. */
2178
2179 void
2180 unshare_all_rtl_again (rtx insn)
2181 {
2182 rtx p;
2183 tree decl;
2184
2185 for (p = insn; p; p = NEXT_INSN (p))
2186 if (INSN_P (p))
2187 {
2188 reset_used_flags (PATTERN (p));
2189 reset_used_flags (REG_NOTES (p));
2190 }
2191
2192 /* Make sure that virtual stack slots are not shared. */
2193 set_used_decls (DECL_INITIAL (cfun->decl));
2194
2195 /* Make sure that virtual parameters are not shared. */
2196 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2197 set_used_flags (DECL_RTL (decl));
2198
2199 reset_used_flags (stack_slot_list);
2200
2201 unshare_all_rtl_1 (insn);
2202 }
2203
2204 unsigned int
2205 unshare_all_rtl (void)
2206 {
2207 unshare_all_rtl_1 (get_insns ());
2208 return 0;
2209 }
2210
2211 struct rtl_opt_pass pass_unshare_all_rtl =
2212 {
2213 {
2214 RTL_PASS,
2215 "unshare", /* name */
2216 NULL, /* gate */
2217 unshare_all_rtl, /* execute */
2218 NULL, /* sub */
2219 NULL, /* next */
2220 0, /* static_pass_number */
2221 0, /* tv_id */
2222 0, /* properties_required */
2223 0, /* properties_provided */
2224 0, /* properties_destroyed */
2225 0, /* todo_flags_start */
2226 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2227 }
2228 };
2229
2230
2231 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2232 Recursively does the same for subexpressions. */
2233
2234 static void
2235 verify_rtx_sharing (rtx orig, rtx insn)
2236 {
2237 rtx x = orig;
2238 int i;
2239 enum rtx_code code;
2240 const char *format_ptr;
2241
2242 if (x == 0)
2243 return;
2244
2245 code = GET_CODE (x);
2246
2247 /* These types may be freely shared. */
2248
2249 switch (code)
2250 {
2251 case REG:
2252 case CONST_INT:
2253 case CONST_DOUBLE:
2254 case CONST_FIXED:
2255 case CONST_VECTOR:
2256 case SYMBOL_REF:
2257 case LABEL_REF:
2258 case CODE_LABEL:
2259 case PC:
2260 case CC0:
2261 case SCRATCH:
2262 return;
2263 /* SCRATCH must be shared because they represent distinct values. */
2264 case CLOBBER:
2265 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2266 return;
2267 break;
2268
2269 case CONST:
2270 if (shared_const_p (orig))
2271 return;
2272 break;
2273
2274 case MEM:
2275 /* A MEM is allowed to be shared if its address is constant. */
2276 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2277 || reload_completed || reload_in_progress)
2278 return;
2279
2280 break;
2281
2282 default:
2283 break;
2284 }
2285
2286 /* This rtx may not be shared. If it has already been seen,
2287 replace it with a copy of itself. */
2288 #ifdef ENABLE_CHECKING
2289 if (RTX_FLAG (x, used))
2290 {
2291 error ("invalid rtl sharing found in the insn");
2292 debug_rtx (insn);
2293 error ("shared rtx");
2294 debug_rtx (x);
2295 internal_error ("internal consistency failure");
2296 }
2297 #endif
2298 gcc_assert (!RTX_FLAG (x, used));
2299
2300 RTX_FLAG (x, used) = 1;
2301
2302 /* Now scan the subexpressions recursively. */
2303
2304 format_ptr = GET_RTX_FORMAT (code);
2305
2306 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2307 {
2308 switch (*format_ptr++)
2309 {
2310 case 'e':
2311 verify_rtx_sharing (XEXP (x, i), insn);
2312 break;
2313
2314 case 'E':
2315 if (XVEC (x, i) != NULL)
2316 {
2317 int j;
2318 int len = XVECLEN (x, i);
2319
2320 for (j = 0; j < len; j++)
2321 {
2322 /* We allow sharing of ASM_OPERANDS inside single
2323 instruction. */
2324 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2325 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2326 == ASM_OPERANDS))
2327 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2328 else
2329 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2330 }
2331 }
2332 break;
2333 }
2334 }
2335 return;
2336 }
2337
2338 /* Go through all the RTL insn bodies and check that there is no unexpected
2339 sharing in between the subexpressions. */
2340
2341 void
2342 verify_rtl_sharing (void)
2343 {
2344 rtx p;
2345
2346 for (p = get_insns (); p; p = NEXT_INSN (p))
2347 if (INSN_P (p))
2348 {
2349 reset_used_flags (PATTERN (p));
2350 reset_used_flags (REG_NOTES (p));
2351 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2352 {
2353 int i;
2354 rtx q, sequence = PATTERN (p);
2355
2356 for (i = 0; i < XVECLEN (sequence, 0); i++)
2357 {
2358 q = XVECEXP (sequence, 0, i);
2359 gcc_assert (INSN_P (q));
2360 reset_used_flags (PATTERN (q));
2361 reset_used_flags (REG_NOTES (q));
2362 }
2363 }
2364 }
2365
2366 for (p = get_insns (); p; p = NEXT_INSN (p))
2367 if (INSN_P (p))
2368 {
2369 verify_rtx_sharing (PATTERN (p), p);
2370 verify_rtx_sharing (REG_NOTES (p), p);
2371 }
2372 }
2373
2374 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2375 Assumes the mark bits are cleared at entry. */
2376
2377 void
2378 unshare_all_rtl_in_chain (rtx insn)
2379 {
2380 for (; insn; insn = NEXT_INSN (insn))
2381 if (INSN_P (insn))
2382 {
2383 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2384 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2385 }
2386 }
2387
2388 /* Go through all virtual stack slots of a function and mark them as
2389 shared. We never replace the DECL_RTLs themselves with a copy,
2390 but expressions mentioned into a DECL_RTL cannot be shared with
2391 expressions in the instruction stream.
2392
2393 Note that reload may convert pseudo registers into memories in-place.
2394 Pseudo registers are always shared, but MEMs never are. Thus if we
2395 reset the used flags on MEMs in the instruction stream, we must set
2396 them again on MEMs that appear in DECL_RTLs. */
2397
2398 static void
2399 set_used_decls (tree blk)
2400 {
2401 tree t;
2402
2403 /* Mark decls. */
2404 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2405 if (DECL_RTL_SET_P (t))
2406 set_used_flags (DECL_RTL (t));
2407
2408 /* Now process sub-blocks. */
2409 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2410 set_used_decls (t);
2411 }
2412
2413 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2414 Recursively does the same for subexpressions. Uses
2415 copy_rtx_if_shared_1 to reduce stack space. */
2416
2417 rtx
2418 copy_rtx_if_shared (rtx orig)
2419 {
2420 copy_rtx_if_shared_1 (&orig);
2421 return orig;
2422 }
2423
2424 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2425 use. Recursively does the same for subexpressions. */
2426
2427 static void
2428 copy_rtx_if_shared_1 (rtx *orig1)
2429 {
2430 rtx x;
2431 int i;
2432 enum rtx_code code;
2433 rtx *last_ptr;
2434 const char *format_ptr;
2435 int copied = 0;
2436 int length;
2437
2438 /* Repeat is used to turn tail-recursion into iteration. */
2439 repeat:
2440 x = *orig1;
2441
2442 if (x == 0)
2443 return;
2444
2445 code = GET_CODE (x);
2446
2447 /* These types may be freely shared. */
2448
2449 switch (code)
2450 {
2451 case REG:
2452 case CONST_INT:
2453 case CONST_DOUBLE:
2454 case CONST_FIXED:
2455 case CONST_VECTOR:
2456 case SYMBOL_REF:
2457 case LABEL_REF:
2458 case CODE_LABEL:
2459 case PC:
2460 case CC0:
2461 case SCRATCH:
2462 /* SCRATCH must be shared because they represent distinct values. */
2463 return;
2464 case CLOBBER:
2465 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2466 return;
2467 break;
2468
2469 case CONST:
2470 if (shared_const_p (x))
2471 return;
2472 break;
2473
2474 case INSN:
2475 case JUMP_INSN:
2476 case CALL_INSN:
2477 case NOTE:
2478 case BARRIER:
2479 /* The chain of insns is not being copied. */
2480 return;
2481
2482 default:
2483 break;
2484 }
2485
2486 /* This rtx may not be shared. If it has already been seen,
2487 replace it with a copy of itself. */
2488
2489 if (RTX_FLAG (x, used))
2490 {
2491 x = shallow_copy_rtx (x);
2492 copied = 1;
2493 }
2494 RTX_FLAG (x, used) = 1;
2495
2496 /* Now scan the subexpressions recursively.
2497 We can store any replaced subexpressions directly into X
2498 since we know X is not shared! Any vectors in X
2499 must be copied if X was copied. */
2500
2501 format_ptr = GET_RTX_FORMAT (code);
2502 length = GET_RTX_LENGTH (code);
2503 last_ptr = NULL;
2504
2505 for (i = 0; i < length; i++)
2506 {
2507 switch (*format_ptr++)
2508 {
2509 case 'e':
2510 if (last_ptr)
2511 copy_rtx_if_shared_1 (last_ptr);
2512 last_ptr = &XEXP (x, i);
2513 break;
2514
2515 case 'E':
2516 if (XVEC (x, i) != NULL)
2517 {
2518 int j;
2519 int len = XVECLEN (x, i);
2520
2521 /* Copy the vector iff I copied the rtx and the length
2522 is nonzero. */
2523 if (copied && len > 0)
2524 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2525
2526 /* Call recursively on all inside the vector. */
2527 for (j = 0; j < len; j++)
2528 {
2529 if (last_ptr)
2530 copy_rtx_if_shared_1 (last_ptr);
2531 last_ptr = &XVECEXP (x, i, j);
2532 }
2533 }
2534 break;
2535 }
2536 }
2537 *orig1 = x;
2538 if (last_ptr)
2539 {
2540 orig1 = last_ptr;
2541 goto repeat;
2542 }
2543 return;
2544 }
2545
2546 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2547 to look for shared sub-parts. */
2548
2549 void
2550 reset_used_flags (rtx x)
2551 {
2552 int i, j;
2553 enum rtx_code code;
2554 const char *format_ptr;
2555 int length;
2556
2557 /* Repeat is used to turn tail-recursion into iteration. */
2558 repeat:
2559 if (x == 0)
2560 return;
2561
2562 code = GET_CODE (x);
2563
2564 /* These types may be freely shared so we needn't do any resetting
2565 for them. */
2566
2567 switch (code)
2568 {
2569 case REG:
2570 case CONST_INT:
2571 case CONST_DOUBLE:
2572 case CONST_FIXED:
2573 case CONST_VECTOR:
2574 case SYMBOL_REF:
2575 case CODE_LABEL:
2576 case PC:
2577 case CC0:
2578 return;
2579
2580 case INSN:
2581 case JUMP_INSN:
2582 case CALL_INSN:
2583 case NOTE:
2584 case LABEL_REF:
2585 case BARRIER:
2586 /* The chain of insns is not being copied. */
2587 return;
2588
2589 default:
2590 break;
2591 }
2592
2593 RTX_FLAG (x, used) = 0;
2594
2595 format_ptr = GET_RTX_FORMAT (code);
2596 length = GET_RTX_LENGTH (code);
2597
2598 for (i = 0; i < length; i++)
2599 {
2600 switch (*format_ptr++)
2601 {
2602 case 'e':
2603 if (i == length-1)
2604 {
2605 x = XEXP (x, i);
2606 goto repeat;
2607 }
2608 reset_used_flags (XEXP (x, i));
2609 break;
2610
2611 case 'E':
2612 for (j = 0; j < XVECLEN (x, i); j++)
2613 reset_used_flags (XVECEXP (x, i, j));
2614 break;
2615 }
2616 }
2617 }
2618
2619 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2620 to look for shared sub-parts. */
2621
2622 void
2623 set_used_flags (rtx x)
2624 {
2625 int i, j;
2626 enum rtx_code code;
2627 const char *format_ptr;
2628
2629 if (x == 0)
2630 return;
2631
2632 code = GET_CODE (x);
2633
2634 /* These types may be freely shared so we needn't do any resetting
2635 for them. */
2636
2637 switch (code)
2638 {
2639 case REG:
2640 case CONST_INT:
2641 case CONST_DOUBLE:
2642 case CONST_FIXED:
2643 case CONST_VECTOR:
2644 case SYMBOL_REF:
2645 case CODE_LABEL:
2646 case PC:
2647 case CC0:
2648 return;
2649
2650 case INSN:
2651 case JUMP_INSN:
2652 case CALL_INSN:
2653 case NOTE:
2654 case LABEL_REF:
2655 case BARRIER:
2656 /* The chain of insns is not being copied. */
2657 return;
2658
2659 default:
2660 break;
2661 }
2662
2663 RTX_FLAG (x, used) = 1;
2664
2665 format_ptr = GET_RTX_FORMAT (code);
2666 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2667 {
2668 switch (*format_ptr++)
2669 {
2670 case 'e':
2671 set_used_flags (XEXP (x, i));
2672 break;
2673
2674 case 'E':
2675 for (j = 0; j < XVECLEN (x, i); j++)
2676 set_used_flags (XVECEXP (x, i, j));
2677 break;
2678 }
2679 }
2680 }
2681 \f
2682 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2683 Return X or the rtx for the pseudo reg the value of X was copied into.
2684 OTHER must be valid as a SET_DEST. */
2685
2686 rtx
2687 make_safe_from (rtx x, rtx other)
2688 {
2689 while (1)
2690 switch (GET_CODE (other))
2691 {
2692 case SUBREG:
2693 other = SUBREG_REG (other);
2694 break;
2695 case STRICT_LOW_PART:
2696 case SIGN_EXTEND:
2697 case ZERO_EXTEND:
2698 other = XEXP (other, 0);
2699 break;
2700 default:
2701 goto done;
2702 }
2703 done:
2704 if ((MEM_P (other)
2705 && ! CONSTANT_P (x)
2706 && !REG_P (x)
2707 && GET_CODE (x) != SUBREG)
2708 || (REG_P (other)
2709 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2710 || reg_mentioned_p (other, x))))
2711 {
2712 rtx temp = gen_reg_rtx (GET_MODE (x));
2713 emit_move_insn (temp, x);
2714 return temp;
2715 }
2716 return x;
2717 }
2718 \f
2719 /* Emission of insns (adding them to the doubly-linked list). */
2720
2721 /* Return the first insn of the current sequence or current function. */
2722
2723 rtx
2724 get_insns (void)
2725 {
2726 return first_insn;
2727 }
2728
2729 /* Specify a new insn as the first in the chain. */
2730
2731 void
2732 set_first_insn (rtx insn)
2733 {
2734 gcc_assert (!PREV_INSN (insn));
2735 first_insn = insn;
2736 }
2737
2738 /* Return the last insn emitted in current sequence or current function. */
2739
2740 rtx
2741 get_last_insn (void)
2742 {
2743 return last_insn;
2744 }
2745
2746 /* Specify a new insn as the last in the chain. */
2747
2748 void
2749 set_last_insn (rtx insn)
2750 {
2751 gcc_assert (!NEXT_INSN (insn));
2752 last_insn = insn;
2753 }
2754
2755 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2756
2757 rtx
2758 get_last_insn_anywhere (void)
2759 {
2760 struct sequence_stack *stack;
2761 if (last_insn)
2762 return last_insn;
2763 for (stack = seq_stack; stack; stack = stack->next)
2764 if (stack->last != 0)
2765 return stack->last;
2766 return 0;
2767 }
2768
2769 /* Return the first nonnote insn emitted in current sequence or current
2770 function. This routine looks inside SEQUENCEs. */
2771
2772 rtx
2773 get_first_nonnote_insn (void)
2774 {
2775 rtx insn = first_insn;
2776
2777 if (insn)
2778 {
2779 if (NOTE_P (insn))
2780 for (insn = next_insn (insn);
2781 insn && NOTE_P (insn);
2782 insn = next_insn (insn))
2783 continue;
2784 else
2785 {
2786 if (NONJUMP_INSN_P (insn)
2787 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2788 insn = XVECEXP (PATTERN (insn), 0, 0);
2789 }
2790 }
2791
2792 return insn;
2793 }
2794
2795 /* Return the last nonnote insn emitted in current sequence or current
2796 function. This routine looks inside SEQUENCEs. */
2797
2798 rtx
2799 get_last_nonnote_insn (void)
2800 {
2801 rtx insn = last_insn;
2802
2803 if (insn)
2804 {
2805 if (NOTE_P (insn))
2806 for (insn = previous_insn (insn);
2807 insn && NOTE_P (insn);
2808 insn = previous_insn (insn))
2809 continue;
2810 else
2811 {
2812 if (NONJUMP_INSN_P (insn)
2813 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2814 insn = XVECEXP (PATTERN (insn), 0,
2815 XVECLEN (PATTERN (insn), 0) - 1);
2816 }
2817 }
2818
2819 return insn;
2820 }
2821
2822 /* Return a number larger than any instruction's uid in this function. */
2823
2824 int
2825 get_max_uid (void)
2826 {
2827 return cur_insn_uid;
2828 }
2829 \f
2830 /* Return the next insn. If it is a SEQUENCE, return the first insn
2831 of the sequence. */
2832
2833 rtx
2834 next_insn (rtx insn)
2835 {
2836 if (insn)
2837 {
2838 insn = NEXT_INSN (insn);
2839 if (insn && NONJUMP_INSN_P (insn)
2840 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2841 insn = XVECEXP (PATTERN (insn), 0, 0);
2842 }
2843
2844 return insn;
2845 }
2846
2847 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2848 of the sequence. */
2849
2850 rtx
2851 previous_insn (rtx insn)
2852 {
2853 if (insn)
2854 {
2855 insn = PREV_INSN (insn);
2856 if (insn && NONJUMP_INSN_P (insn)
2857 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2858 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2859 }
2860
2861 return insn;
2862 }
2863
2864 /* Return the next insn after INSN that is not a NOTE. This routine does not
2865 look inside SEQUENCEs. */
2866
2867 rtx
2868 next_nonnote_insn (rtx insn)
2869 {
2870 while (insn)
2871 {
2872 insn = NEXT_INSN (insn);
2873 if (insn == 0 || !NOTE_P (insn))
2874 break;
2875 }
2876
2877 return insn;
2878 }
2879
2880 /* Return the previous insn before INSN that is not a NOTE. This routine does
2881 not look inside SEQUENCEs. */
2882
2883 rtx
2884 prev_nonnote_insn (rtx insn)
2885 {
2886 while (insn)
2887 {
2888 insn = PREV_INSN (insn);
2889 if (insn == 0 || !NOTE_P (insn))
2890 break;
2891 }
2892
2893 return insn;
2894 }
2895
2896 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2897 or 0, if there is none. This routine does not look inside
2898 SEQUENCEs. */
2899
2900 rtx
2901 next_real_insn (rtx insn)
2902 {
2903 while (insn)
2904 {
2905 insn = NEXT_INSN (insn);
2906 if (insn == 0 || INSN_P (insn))
2907 break;
2908 }
2909
2910 return insn;
2911 }
2912
2913 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2914 or 0, if there is none. This routine does not look inside
2915 SEQUENCEs. */
2916
2917 rtx
2918 prev_real_insn (rtx insn)
2919 {
2920 while (insn)
2921 {
2922 insn = PREV_INSN (insn);
2923 if (insn == 0 || INSN_P (insn))
2924 break;
2925 }
2926
2927 return insn;
2928 }
2929
2930 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2931 This routine does not look inside SEQUENCEs. */
2932
2933 rtx
2934 last_call_insn (void)
2935 {
2936 rtx insn;
2937
2938 for (insn = get_last_insn ();
2939 insn && !CALL_P (insn);
2940 insn = PREV_INSN (insn))
2941 ;
2942
2943 return insn;
2944 }
2945
2946 /* Find the next insn after INSN that really does something. This routine
2947 does not look inside SEQUENCEs. Until reload has completed, this is the
2948 same as next_real_insn. */
2949
2950 int
2951 active_insn_p (const_rtx insn)
2952 {
2953 return (CALL_P (insn) || JUMP_P (insn)
2954 || (NONJUMP_INSN_P (insn)
2955 && (! reload_completed
2956 || (GET_CODE (PATTERN (insn)) != USE
2957 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2958 }
2959
2960 rtx
2961 next_active_insn (rtx insn)
2962 {
2963 while (insn)
2964 {
2965 insn = NEXT_INSN (insn);
2966 if (insn == 0 || active_insn_p (insn))
2967 break;
2968 }
2969
2970 return insn;
2971 }
2972
2973 /* Find the last insn before INSN that really does something. This routine
2974 does not look inside SEQUENCEs. Until reload has completed, this is the
2975 same as prev_real_insn. */
2976
2977 rtx
2978 prev_active_insn (rtx insn)
2979 {
2980 while (insn)
2981 {
2982 insn = PREV_INSN (insn);
2983 if (insn == 0 || active_insn_p (insn))
2984 break;
2985 }
2986
2987 return insn;
2988 }
2989
2990 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2991
2992 rtx
2993 next_label (rtx insn)
2994 {
2995 while (insn)
2996 {
2997 insn = NEXT_INSN (insn);
2998 if (insn == 0 || LABEL_P (insn))
2999 break;
3000 }
3001
3002 return insn;
3003 }
3004
3005 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3006
3007 rtx
3008 prev_label (rtx insn)
3009 {
3010 while (insn)
3011 {
3012 insn = PREV_INSN (insn);
3013 if (insn == 0 || LABEL_P (insn))
3014 break;
3015 }
3016
3017 return insn;
3018 }
3019
3020 /* Return the last label to mark the same position as LABEL. Return null
3021 if LABEL itself is null. */
3022
3023 rtx
3024 skip_consecutive_labels (rtx label)
3025 {
3026 rtx insn;
3027
3028 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3029 if (LABEL_P (insn))
3030 label = insn;
3031
3032 return label;
3033 }
3034 \f
3035 #ifdef HAVE_cc0
3036 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3037 and REG_CC_USER notes so we can find it. */
3038
3039 void
3040 link_cc0_insns (rtx insn)
3041 {
3042 rtx user = next_nonnote_insn (insn);
3043
3044 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3045 user = XVECEXP (PATTERN (user), 0, 0);
3046
3047 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3048 REG_NOTES (user));
3049 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3050 }
3051
3052 /* Return the next insn that uses CC0 after INSN, which is assumed to
3053 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3054 applied to the result of this function should yield INSN).
3055
3056 Normally, this is simply the next insn. However, if a REG_CC_USER note
3057 is present, it contains the insn that uses CC0.
3058
3059 Return 0 if we can't find the insn. */
3060
3061 rtx
3062 next_cc0_user (rtx insn)
3063 {
3064 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3065
3066 if (note)
3067 return XEXP (note, 0);
3068
3069 insn = next_nonnote_insn (insn);
3070 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3071 insn = XVECEXP (PATTERN (insn), 0, 0);
3072
3073 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3074 return insn;
3075
3076 return 0;
3077 }
3078
3079 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3080 note, it is the previous insn. */
3081
3082 rtx
3083 prev_cc0_setter (rtx insn)
3084 {
3085 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3086
3087 if (note)
3088 return XEXP (note, 0);
3089
3090 insn = prev_nonnote_insn (insn);
3091 gcc_assert (sets_cc0_p (PATTERN (insn)));
3092
3093 return insn;
3094 }
3095 #endif
3096
3097 #ifdef AUTO_INC_DEC
3098 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3099
3100 static int
3101 find_auto_inc (rtx *xp, void *data)
3102 {
3103 rtx x = *xp;
3104 rtx reg = data;
3105
3106 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3107 return 0;
3108
3109 switch (GET_CODE (x))
3110 {
3111 case PRE_DEC:
3112 case PRE_INC:
3113 case POST_DEC:
3114 case POST_INC:
3115 case PRE_MODIFY:
3116 case POST_MODIFY:
3117 if (rtx_equal_p (reg, XEXP (x, 0)))
3118 return 1;
3119 break;
3120
3121 default:
3122 gcc_unreachable ();
3123 }
3124 return -1;
3125 }
3126 #endif
3127
3128 /* Increment the label uses for all labels present in rtx. */
3129
3130 static void
3131 mark_label_nuses (rtx x)
3132 {
3133 enum rtx_code code;
3134 int i, j;
3135 const char *fmt;
3136
3137 code = GET_CODE (x);
3138 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3139 LABEL_NUSES (XEXP (x, 0))++;
3140
3141 fmt = GET_RTX_FORMAT (code);
3142 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3143 {
3144 if (fmt[i] == 'e')
3145 mark_label_nuses (XEXP (x, i));
3146 else if (fmt[i] == 'E')
3147 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3148 mark_label_nuses (XVECEXP (x, i, j));
3149 }
3150 }
3151
3152 \f
3153 /* Try splitting insns that can be split for better scheduling.
3154 PAT is the pattern which might split.
3155 TRIAL is the insn providing PAT.
3156 LAST is nonzero if we should return the last insn of the sequence produced.
3157
3158 If this routine succeeds in splitting, it returns the first or last
3159 replacement insn depending on the value of LAST. Otherwise, it
3160 returns TRIAL. If the insn to be returned can be split, it will be. */
3161
3162 rtx
3163 try_split (rtx pat, rtx trial, int last)
3164 {
3165 rtx before = PREV_INSN (trial);
3166 rtx after = NEXT_INSN (trial);
3167 int has_barrier = 0;
3168 rtx note, seq, tem;
3169 int probability;
3170 rtx insn_last, insn;
3171 int njumps = 0;
3172
3173 if (any_condjump_p (trial)
3174 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3175 split_branch_probability = INTVAL (XEXP (note, 0));
3176 probability = split_branch_probability;
3177
3178 seq = split_insns (pat, trial);
3179
3180 split_branch_probability = -1;
3181
3182 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3183 We may need to handle this specially. */
3184 if (after && BARRIER_P (after))
3185 {
3186 has_barrier = 1;
3187 after = NEXT_INSN (after);
3188 }
3189
3190 if (!seq)
3191 return trial;
3192
3193 /* Avoid infinite loop if any insn of the result matches
3194 the original pattern. */
3195 insn_last = seq;
3196 while (1)
3197 {
3198 if (INSN_P (insn_last)
3199 && rtx_equal_p (PATTERN (insn_last), pat))
3200 return trial;
3201 if (!NEXT_INSN (insn_last))
3202 break;
3203 insn_last = NEXT_INSN (insn_last);
3204 }
3205
3206 /* We will be adding the new sequence to the function. The splitters
3207 may have introduced invalid RTL sharing, so unshare the sequence now. */
3208 unshare_all_rtl_in_chain (seq);
3209
3210 /* Mark labels. */
3211 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3212 {
3213 if (JUMP_P (insn))
3214 {
3215 mark_jump_label (PATTERN (insn), insn, 0);
3216 njumps++;
3217 if (probability != -1
3218 && any_condjump_p (insn)
3219 && !find_reg_note (insn, REG_BR_PROB, 0))
3220 {
3221 /* We can preserve the REG_BR_PROB notes only if exactly
3222 one jump is created, otherwise the machine description
3223 is responsible for this step using
3224 split_branch_probability variable. */
3225 gcc_assert (njumps == 1);
3226 REG_NOTES (insn)
3227 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3228 GEN_INT (probability),
3229 REG_NOTES (insn));
3230 }
3231 }
3232 }
3233
3234 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3235 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3236 if (CALL_P (trial))
3237 {
3238 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3239 if (CALL_P (insn))
3240 {
3241 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3242 while (*p)
3243 p = &XEXP (*p, 1);
3244 *p = CALL_INSN_FUNCTION_USAGE (trial);
3245 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3246 }
3247 }
3248
3249 /* Copy notes, particularly those related to the CFG. */
3250 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3251 {
3252 switch (REG_NOTE_KIND (note))
3253 {
3254 case REG_EH_REGION:
3255 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3256 {
3257 if (CALL_P (insn)
3258 || (flag_non_call_exceptions && INSN_P (insn)
3259 && may_trap_p (PATTERN (insn))))
3260 REG_NOTES (insn)
3261 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3262 XEXP (note, 0),
3263 REG_NOTES (insn));
3264 }
3265 break;
3266
3267 case REG_NORETURN:
3268 case REG_SETJMP:
3269 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3270 {
3271 if (CALL_P (insn))
3272 REG_NOTES (insn)
3273 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3274 XEXP (note, 0),
3275 REG_NOTES (insn));
3276 }
3277 break;
3278
3279 case REG_NON_LOCAL_GOTO:
3280 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3281 {
3282 if (JUMP_P (insn))
3283 REG_NOTES (insn)
3284 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3285 XEXP (note, 0),
3286 REG_NOTES (insn));
3287 }
3288 break;
3289
3290 #ifdef AUTO_INC_DEC
3291 case REG_INC:
3292 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3293 {
3294 rtx reg = XEXP (note, 0);
3295 if (!FIND_REG_INC_NOTE (insn, reg)
3296 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3297 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_INC, reg,
3298 REG_NOTES (insn));
3299 }
3300 break;
3301 #endif
3302
3303 default:
3304 break;
3305 }
3306 }
3307
3308 /* If there are LABELS inside the split insns increment the
3309 usage count so we don't delete the label. */
3310 if (INSN_P (trial))
3311 {
3312 insn = insn_last;
3313 while (insn != NULL_RTX)
3314 {
3315 /* JUMP_P insns have already been "marked" above. */
3316 if (NONJUMP_INSN_P (insn))
3317 mark_label_nuses (PATTERN (insn));
3318
3319 insn = PREV_INSN (insn);
3320 }
3321 }
3322
3323 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3324
3325 delete_insn (trial);
3326 if (has_barrier)
3327 emit_barrier_after (tem);
3328
3329 /* Recursively call try_split for each new insn created; by the
3330 time control returns here that insn will be fully split, so
3331 set LAST and continue from the insn after the one returned.
3332 We can't use next_active_insn here since AFTER may be a note.
3333 Ignore deleted insns, which can be occur if not optimizing. */
3334 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3335 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3336 tem = try_split (PATTERN (tem), tem, 1);
3337
3338 /* Return either the first or the last insn, depending on which was
3339 requested. */
3340 return last
3341 ? (after ? PREV_INSN (after) : last_insn)
3342 : NEXT_INSN (before);
3343 }
3344 \f
3345 /* Make and return an INSN rtx, initializing all its slots.
3346 Store PATTERN in the pattern slots. */
3347
3348 rtx
3349 make_insn_raw (rtx pattern)
3350 {
3351 rtx insn;
3352
3353 insn = rtx_alloc (INSN);
3354
3355 INSN_UID (insn) = cur_insn_uid++;
3356 PATTERN (insn) = pattern;
3357 INSN_CODE (insn) = -1;
3358 REG_NOTES (insn) = NULL;
3359 INSN_LOCATOR (insn) = curr_insn_locator ();
3360 BLOCK_FOR_INSN (insn) = NULL;
3361
3362 #ifdef ENABLE_RTL_CHECKING
3363 if (insn
3364 && INSN_P (insn)
3365 && (returnjump_p (insn)
3366 || (GET_CODE (insn) == SET
3367 && SET_DEST (insn) == pc_rtx)))
3368 {
3369 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3370 debug_rtx (insn);
3371 }
3372 #endif
3373
3374 return insn;
3375 }
3376
3377 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3378
3379 rtx
3380 make_jump_insn_raw (rtx pattern)
3381 {
3382 rtx insn;
3383
3384 insn = rtx_alloc (JUMP_INSN);
3385 INSN_UID (insn) = cur_insn_uid++;
3386
3387 PATTERN (insn) = pattern;
3388 INSN_CODE (insn) = -1;
3389 REG_NOTES (insn) = NULL;
3390 JUMP_LABEL (insn) = NULL;
3391 INSN_LOCATOR (insn) = curr_insn_locator ();
3392 BLOCK_FOR_INSN (insn) = NULL;
3393
3394 return insn;
3395 }
3396
3397 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3398
3399 static rtx
3400 make_call_insn_raw (rtx pattern)
3401 {
3402 rtx insn;
3403
3404 insn = rtx_alloc (CALL_INSN);
3405 INSN_UID (insn) = cur_insn_uid++;
3406
3407 PATTERN (insn) = pattern;
3408 INSN_CODE (insn) = -1;
3409 REG_NOTES (insn) = NULL;
3410 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3411 INSN_LOCATOR (insn) = curr_insn_locator ();
3412 BLOCK_FOR_INSN (insn) = NULL;
3413
3414 return insn;
3415 }
3416 \f
3417 /* Add INSN to the end of the doubly-linked list.
3418 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3419
3420 void
3421 add_insn (rtx insn)
3422 {
3423 PREV_INSN (insn) = last_insn;
3424 NEXT_INSN (insn) = 0;
3425
3426 if (NULL != last_insn)
3427 NEXT_INSN (last_insn) = insn;
3428
3429 if (NULL == first_insn)
3430 first_insn = insn;
3431
3432 last_insn = insn;
3433 }
3434
3435 /* Add INSN into the doubly-linked list after insn AFTER. This and
3436 the next should be the only functions called to insert an insn once
3437 delay slots have been filled since only they know how to update a
3438 SEQUENCE. */
3439
3440 void
3441 add_insn_after (rtx insn, rtx after, basic_block bb)
3442 {
3443 rtx next = NEXT_INSN (after);
3444
3445 gcc_assert (!optimize || !INSN_DELETED_P (after));
3446
3447 NEXT_INSN (insn) = next;
3448 PREV_INSN (insn) = after;
3449
3450 if (next)
3451 {
3452 PREV_INSN (next) = insn;
3453 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3454 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3455 }
3456 else if (last_insn == after)
3457 last_insn = insn;
3458 else
3459 {
3460 struct sequence_stack *stack = seq_stack;
3461 /* Scan all pending sequences too. */
3462 for (; stack; stack = stack->next)
3463 if (after == stack->last)
3464 {
3465 stack->last = insn;
3466 break;
3467 }
3468
3469 gcc_assert (stack);
3470 }
3471
3472 if (!BARRIER_P (after)
3473 && !BARRIER_P (insn)
3474 && (bb = BLOCK_FOR_INSN (after)))
3475 {
3476 set_block_for_insn (insn, bb);
3477 if (INSN_P (insn))
3478 df_insn_rescan (insn);
3479 /* Should not happen as first in the BB is always
3480 either NOTE or LABEL. */
3481 if (BB_END (bb) == after
3482 /* Avoid clobbering of structure when creating new BB. */
3483 && !BARRIER_P (insn)
3484 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3485 BB_END (bb) = insn;
3486 }
3487
3488 NEXT_INSN (after) = insn;
3489 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3490 {
3491 rtx sequence = PATTERN (after);
3492 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3493 }
3494 }
3495
3496 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3497 the previous should be the only functions called to insert an insn
3498 once delay slots have been filled since only they know how to
3499 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3500 bb from before. */
3501
3502 void
3503 add_insn_before (rtx insn, rtx before, basic_block bb)
3504 {
3505 rtx prev = PREV_INSN (before);
3506
3507 gcc_assert (!optimize || !INSN_DELETED_P (before));
3508
3509 PREV_INSN (insn) = prev;
3510 NEXT_INSN (insn) = before;
3511
3512 if (prev)
3513 {
3514 NEXT_INSN (prev) = insn;
3515 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3516 {
3517 rtx sequence = PATTERN (prev);
3518 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3519 }
3520 }
3521 else if (first_insn == before)
3522 first_insn = insn;
3523 else
3524 {
3525 struct sequence_stack *stack = seq_stack;
3526 /* Scan all pending sequences too. */
3527 for (; stack; stack = stack->next)
3528 if (before == stack->first)
3529 {
3530 stack->first = insn;
3531 break;
3532 }
3533
3534 gcc_assert (stack);
3535 }
3536
3537 if (!bb
3538 && !BARRIER_P (before)
3539 && !BARRIER_P (insn))
3540 bb = BLOCK_FOR_INSN (before);
3541
3542 if (bb)
3543 {
3544 set_block_for_insn (insn, bb);
3545 if (INSN_P (insn))
3546 df_insn_rescan (insn);
3547 /* Should not happen as first in the BB is always either NOTE or
3548 LABEL. */
3549 gcc_assert (BB_HEAD (bb) != insn
3550 /* Avoid clobbering of structure when creating new BB. */
3551 || BARRIER_P (insn)
3552 || NOTE_INSN_BASIC_BLOCK_P (insn));
3553 }
3554
3555 PREV_INSN (before) = insn;
3556 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3557 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3558 }
3559
3560
3561 /* Replace insn with an deleted instruction note. */
3562
3563 void set_insn_deleted (rtx insn)
3564 {
3565 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3566 PUT_CODE (insn, NOTE);
3567 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3568 }
3569
3570
3571 /* Remove an insn from its doubly-linked list. This function knows how
3572 to handle sequences. */
3573 void
3574 remove_insn (rtx insn)
3575 {
3576 rtx next = NEXT_INSN (insn);
3577 rtx prev = PREV_INSN (insn);
3578 basic_block bb;
3579
3580 /* Later in the code, the block will be marked dirty. */
3581 df_insn_delete (NULL, INSN_UID (insn));
3582
3583 if (prev)
3584 {
3585 NEXT_INSN (prev) = next;
3586 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3587 {
3588 rtx sequence = PATTERN (prev);
3589 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3590 }
3591 }
3592 else if (first_insn == insn)
3593 first_insn = next;
3594 else
3595 {
3596 struct sequence_stack *stack = seq_stack;
3597 /* Scan all pending sequences too. */
3598 for (; stack; stack = stack->next)
3599 if (insn == stack->first)
3600 {
3601 stack->first = next;
3602 break;
3603 }
3604
3605 gcc_assert (stack);
3606 }
3607
3608 if (next)
3609 {
3610 PREV_INSN (next) = prev;
3611 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3612 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3613 }
3614 else if (last_insn == insn)
3615 last_insn = prev;
3616 else
3617 {
3618 struct sequence_stack *stack = seq_stack;
3619 /* Scan all pending sequences too. */
3620 for (; stack; stack = stack->next)
3621 if (insn == stack->last)
3622 {
3623 stack->last = prev;
3624 break;
3625 }
3626
3627 gcc_assert (stack);
3628 }
3629 if (!BARRIER_P (insn)
3630 && (bb = BLOCK_FOR_INSN (insn)))
3631 {
3632 if (INSN_P (insn))
3633 df_set_bb_dirty (bb);
3634 if (BB_HEAD (bb) == insn)
3635 {
3636 /* Never ever delete the basic block note without deleting whole
3637 basic block. */
3638 gcc_assert (!NOTE_P (insn));
3639 BB_HEAD (bb) = next;
3640 }
3641 if (BB_END (bb) == insn)
3642 BB_END (bb) = prev;
3643 }
3644 }
3645
3646 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3647
3648 void
3649 add_function_usage_to (rtx call_insn, rtx call_fusage)
3650 {
3651 gcc_assert (call_insn && CALL_P (call_insn));
3652
3653 /* Put the register usage information on the CALL. If there is already
3654 some usage information, put ours at the end. */
3655 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3656 {
3657 rtx link;
3658
3659 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3660 link = XEXP (link, 1))
3661 ;
3662
3663 XEXP (link, 1) = call_fusage;
3664 }
3665 else
3666 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3667 }
3668
3669 /* Delete all insns made since FROM.
3670 FROM becomes the new last instruction. */
3671
3672 void
3673 delete_insns_since (rtx from)
3674 {
3675 if (from == 0)
3676 first_insn = 0;
3677 else
3678 NEXT_INSN (from) = 0;
3679 last_insn = from;
3680 }
3681
3682 /* This function is deprecated, please use sequences instead.
3683
3684 Move a consecutive bunch of insns to a different place in the chain.
3685 The insns to be moved are those between FROM and TO.
3686 They are moved to a new position after the insn AFTER.
3687 AFTER must not be FROM or TO or any insn in between.
3688
3689 This function does not know about SEQUENCEs and hence should not be
3690 called after delay-slot filling has been done. */
3691
3692 void
3693 reorder_insns_nobb (rtx from, rtx to, rtx after)
3694 {
3695 /* Splice this bunch out of where it is now. */
3696 if (PREV_INSN (from))
3697 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3698 if (NEXT_INSN (to))
3699 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3700 if (last_insn == to)
3701 last_insn = PREV_INSN (from);
3702 if (first_insn == from)
3703 first_insn = NEXT_INSN (to);
3704
3705 /* Make the new neighbors point to it and it to them. */
3706 if (NEXT_INSN (after))
3707 PREV_INSN (NEXT_INSN (after)) = to;
3708
3709 NEXT_INSN (to) = NEXT_INSN (after);
3710 PREV_INSN (from) = after;
3711 NEXT_INSN (after) = from;
3712 if (after == last_insn)
3713 last_insn = to;
3714 }
3715
3716 /* Same as function above, but take care to update BB boundaries. */
3717 void
3718 reorder_insns (rtx from, rtx to, rtx after)
3719 {
3720 rtx prev = PREV_INSN (from);
3721 basic_block bb, bb2;
3722
3723 reorder_insns_nobb (from, to, after);
3724
3725 if (!BARRIER_P (after)
3726 && (bb = BLOCK_FOR_INSN (after)))
3727 {
3728 rtx x;
3729 df_set_bb_dirty (bb);
3730
3731 if (!BARRIER_P (from)
3732 && (bb2 = BLOCK_FOR_INSN (from)))
3733 {
3734 if (BB_END (bb2) == to)
3735 BB_END (bb2) = prev;
3736 df_set_bb_dirty (bb2);
3737 }
3738
3739 if (BB_END (bb) == after)
3740 BB_END (bb) = to;
3741
3742 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3743 if (!BARRIER_P (x))
3744 df_insn_change_bb (x, bb);
3745 }
3746 }
3747
3748 \f
3749 /* Emit insn(s) of given code and pattern
3750 at a specified place within the doubly-linked list.
3751
3752 All of the emit_foo global entry points accept an object
3753 X which is either an insn list or a PATTERN of a single
3754 instruction.
3755
3756 There are thus a few canonical ways to generate code and
3757 emit it at a specific place in the instruction stream. For
3758 example, consider the instruction named SPOT and the fact that
3759 we would like to emit some instructions before SPOT. We might
3760 do it like this:
3761
3762 start_sequence ();
3763 ... emit the new instructions ...
3764 insns_head = get_insns ();
3765 end_sequence ();
3766
3767 emit_insn_before (insns_head, SPOT);
3768
3769 It used to be common to generate SEQUENCE rtl instead, but that
3770 is a relic of the past which no longer occurs. The reason is that
3771 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3772 generated would almost certainly die right after it was created. */
3773
3774 /* Make X be output before the instruction BEFORE. */
3775
3776 rtx
3777 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
3778 {
3779 rtx last = before;
3780 rtx insn;
3781
3782 gcc_assert (before);
3783
3784 if (x == NULL_RTX)
3785 return last;
3786
3787 switch (GET_CODE (x))
3788 {
3789 case INSN:
3790 case JUMP_INSN:
3791 case CALL_INSN:
3792 case CODE_LABEL:
3793 case BARRIER:
3794 case NOTE:
3795 insn = x;
3796 while (insn)
3797 {
3798 rtx next = NEXT_INSN (insn);
3799 add_insn_before (insn, before, bb);
3800 last = insn;
3801 insn = next;
3802 }
3803 break;
3804
3805 #ifdef ENABLE_RTL_CHECKING
3806 case SEQUENCE:
3807 gcc_unreachable ();
3808 break;
3809 #endif
3810
3811 default:
3812 last = make_insn_raw (x);
3813 add_insn_before (last, before, bb);
3814 break;
3815 }
3816
3817 return last;
3818 }
3819
3820 /* Make an instruction with body X and code JUMP_INSN
3821 and output it before the instruction BEFORE. */
3822
3823 rtx
3824 emit_jump_insn_before_noloc (rtx x, rtx before)
3825 {
3826 rtx insn, last = NULL_RTX;
3827
3828 gcc_assert (before);
3829
3830 switch (GET_CODE (x))
3831 {
3832 case INSN:
3833 case JUMP_INSN:
3834 case CALL_INSN:
3835 case CODE_LABEL:
3836 case BARRIER:
3837 case NOTE:
3838 insn = x;
3839 while (insn)
3840 {
3841 rtx next = NEXT_INSN (insn);
3842 add_insn_before (insn, before, NULL);
3843 last = insn;
3844 insn = next;
3845 }
3846 break;
3847
3848 #ifdef ENABLE_RTL_CHECKING
3849 case SEQUENCE:
3850 gcc_unreachable ();
3851 break;
3852 #endif
3853
3854 default:
3855 last = make_jump_insn_raw (x);
3856 add_insn_before (last, before, NULL);
3857 break;
3858 }
3859
3860 return last;
3861 }
3862
3863 /* Make an instruction with body X and code CALL_INSN
3864 and output it before the instruction BEFORE. */
3865
3866 rtx
3867 emit_call_insn_before_noloc (rtx x, rtx before)
3868 {
3869 rtx last = NULL_RTX, insn;
3870
3871 gcc_assert (before);
3872
3873 switch (GET_CODE (x))
3874 {
3875 case INSN:
3876 case JUMP_INSN:
3877 case CALL_INSN:
3878 case CODE_LABEL:
3879 case BARRIER:
3880 case NOTE:
3881 insn = x;
3882 while (insn)
3883 {
3884 rtx next = NEXT_INSN (insn);
3885 add_insn_before (insn, before, NULL);
3886 last = insn;
3887 insn = next;
3888 }
3889 break;
3890
3891 #ifdef ENABLE_RTL_CHECKING
3892 case SEQUENCE:
3893 gcc_unreachable ();
3894 break;
3895 #endif
3896
3897 default:
3898 last = make_call_insn_raw (x);
3899 add_insn_before (last, before, NULL);
3900 break;
3901 }
3902
3903 return last;
3904 }
3905
3906 /* Make an insn of code BARRIER
3907 and output it before the insn BEFORE. */
3908
3909 rtx
3910 emit_barrier_before (rtx before)
3911 {
3912 rtx insn = rtx_alloc (BARRIER);
3913
3914 INSN_UID (insn) = cur_insn_uid++;
3915
3916 add_insn_before (insn, before, NULL);
3917 return insn;
3918 }
3919
3920 /* Emit the label LABEL before the insn BEFORE. */
3921
3922 rtx
3923 emit_label_before (rtx label, rtx before)
3924 {
3925 /* This can be called twice for the same label as a result of the
3926 confusion that follows a syntax error! So make it harmless. */
3927 if (INSN_UID (label) == 0)
3928 {
3929 INSN_UID (label) = cur_insn_uid++;
3930 add_insn_before (label, before, NULL);
3931 }
3932
3933 return label;
3934 }
3935
3936 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3937
3938 rtx
3939 emit_note_before (enum insn_note subtype, rtx before)
3940 {
3941 rtx note = rtx_alloc (NOTE);
3942 INSN_UID (note) = cur_insn_uid++;
3943 NOTE_KIND (note) = subtype;
3944 BLOCK_FOR_INSN (note) = NULL;
3945 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3946
3947 add_insn_before (note, before, NULL);
3948 return note;
3949 }
3950 \f
3951 /* Helper for emit_insn_after, handles lists of instructions
3952 efficiently. */
3953
3954 static rtx
3955 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
3956 {
3957 rtx last;
3958 rtx after_after;
3959 if (!bb && !BARRIER_P (after))
3960 bb = BLOCK_FOR_INSN (after);
3961
3962 if (bb)
3963 {
3964 df_set_bb_dirty (bb);
3965 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3966 if (!BARRIER_P (last))
3967 {
3968 set_block_for_insn (last, bb);
3969 df_insn_rescan (last);
3970 }
3971 if (!BARRIER_P (last))
3972 {
3973 set_block_for_insn (last, bb);
3974 df_insn_rescan (last);
3975 }
3976 if (BB_END (bb) == after)
3977 BB_END (bb) = last;
3978 }
3979 else
3980 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3981 continue;
3982
3983 after_after = NEXT_INSN (after);
3984
3985 NEXT_INSN (after) = first;
3986 PREV_INSN (first) = after;
3987 NEXT_INSN (last) = after_after;
3988 if (after_after)
3989 PREV_INSN (after_after) = last;
3990
3991 if (after == last_insn)
3992 last_insn = last;
3993 return last;
3994 }
3995
3996 /* Make X be output after the insn AFTER and set the BB of insn. If
3997 BB is NULL, an attempt is made to infer the BB from AFTER. */
3998
3999 rtx
4000 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4001 {
4002 rtx last = after;
4003
4004 gcc_assert (after);
4005
4006 if (x == NULL_RTX)
4007 return last;
4008
4009 switch (GET_CODE (x))
4010 {
4011 case INSN:
4012 case JUMP_INSN:
4013 case CALL_INSN:
4014 case CODE_LABEL:
4015 case BARRIER:
4016 case NOTE:
4017 last = emit_insn_after_1 (x, after, bb);
4018 break;
4019
4020 #ifdef ENABLE_RTL_CHECKING
4021 case SEQUENCE:
4022 gcc_unreachable ();
4023 break;
4024 #endif
4025
4026 default:
4027 last = make_insn_raw (x);
4028 add_insn_after (last, after, bb);
4029 break;
4030 }
4031
4032 return last;
4033 }
4034
4035
4036 /* Make an insn of code JUMP_INSN with body X
4037 and output it after the insn AFTER. */
4038
4039 rtx
4040 emit_jump_insn_after_noloc (rtx x, rtx after)
4041 {
4042 rtx last;
4043
4044 gcc_assert (after);
4045
4046 switch (GET_CODE (x))
4047 {
4048 case INSN:
4049 case JUMP_INSN:
4050 case CALL_INSN:
4051 case CODE_LABEL:
4052 case BARRIER:
4053 case NOTE:
4054 last = emit_insn_after_1 (x, after, NULL);
4055 break;
4056
4057 #ifdef ENABLE_RTL_CHECKING
4058 case SEQUENCE:
4059 gcc_unreachable ();
4060 break;
4061 #endif
4062
4063 default:
4064 last = make_jump_insn_raw (x);
4065 add_insn_after (last, after, NULL);
4066 break;
4067 }
4068
4069 return last;
4070 }
4071
4072 /* Make an instruction with body X and code CALL_INSN
4073 and output it after the instruction AFTER. */
4074
4075 rtx
4076 emit_call_insn_after_noloc (rtx x, rtx after)
4077 {
4078 rtx last;
4079
4080 gcc_assert (after);
4081
4082 switch (GET_CODE (x))
4083 {
4084 case INSN:
4085 case JUMP_INSN:
4086 case CALL_INSN:
4087 case CODE_LABEL:
4088 case BARRIER:
4089 case NOTE:
4090 last = emit_insn_after_1 (x, after, NULL);
4091 break;
4092
4093 #ifdef ENABLE_RTL_CHECKING
4094 case SEQUENCE:
4095 gcc_unreachable ();
4096 break;
4097 #endif
4098
4099 default:
4100 last = make_call_insn_raw (x);
4101 add_insn_after (last, after, NULL);
4102 break;
4103 }
4104
4105 return last;
4106 }
4107
4108 /* Make an insn of code BARRIER
4109 and output it after the insn AFTER. */
4110
4111 rtx
4112 emit_barrier_after (rtx after)
4113 {
4114 rtx insn = rtx_alloc (BARRIER);
4115
4116 INSN_UID (insn) = cur_insn_uid++;
4117
4118 add_insn_after (insn, after, NULL);
4119 return insn;
4120 }
4121
4122 /* Emit the label LABEL after the insn AFTER. */
4123
4124 rtx
4125 emit_label_after (rtx label, rtx after)
4126 {
4127 /* This can be called twice for the same label
4128 as a result of the confusion that follows a syntax error!
4129 So make it harmless. */
4130 if (INSN_UID (label) == 0)
4131 {
4132 INSN_UID (label) = cur_insn_uid++;
4133 add_insn_after (label, after, NULL);
4134 }
4135
4136 return label;
4137 }
4138
4139 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4140
4141 rtx
4142 emit_note_after (enum insn_note subtype, rtx after)
4143 {
4144 rtx note = rtx_alloc (NOTE);
4145 INSN_UID (note) = cur_insn_uid++;
4146 NOTE_KIND (note) = subtype;
4147 BLOCK_FOR_INSN (note) = NULL;
4148 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4149 add_insn_after (note, after, NULL);
4150 return note;
4151 }
4152 \f
4153 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4154 rtx
4155 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4156 {
4157 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4158
4159 if (pattern == NULL_RTX || !loc)
4160 return last;
4161
4162 after = NEXT_INSN (after);
4163 while (1)
4164 {
4165 if (active_insn_p (after) && !INSN_LOCATOR (after))
4166 INSN_LOCATOR (after) = loc;
4167 if (after == last)
4168 break;
4169 after = NEXT_INSN (after);
4170 }
4171 return last;
4172 }
4173
4174 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4175 rtx
4176 emit_insn_after (rtx pattern, rtx after)
4177 {
4178 if (INSN_P (after))
4179 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4180 else
4181 return emit_insn_after_noloc (pattern, after, NULL);
4182 }
4183
4184 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4185 rtx
4186 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4187 {
4188 rtx last = emit_jump_insn_after_noloc (pattern, after);
4189
4190 if (pattern == NULL_RTX || !loc)
4191 return last;
4192
4193 after = NEXT_INSN (after);
4194 while (1)
4195 {
4196 if (active_insn_p (after) && !INSN_LOCATOR (after))
4197 INSN_LOCATOR (after) = loc;
4198 if (after == last)
4199 break;
4200 after = NEXT_INSN (after);
4201 }
4202 return last;
4203 }
4204
4205 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4206 rtx
4207 emit_jump_insn_after (rtx pattern, rtx after)
4208 {
4209 if (INSN_P (after))
4210 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4211 else
4212 return emit_jump_insn_after_noloc (pattern, after);
4213 }
4214
4215 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4216 rtx
4217 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4218 {
4219 rtx last = emit_call_insn_after_noloc (pattern, after);
4220
4221 if (pattern == NULL_RTX || !loc)
4222 return last;
4223
4224 after = NEXT_INSN (after);
4225 while (1)
4226 {
4227 if (active_insn_p (after) && !INSN_LOCATOR (after))
4228 INSN_LOCATOR (after) = loc;
4229 if (after == last)
4230 break;
4231 after = NEXT_INSN (after);
4232 }
4233 return last;
4234 }
4235
4236 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4237 rtx
4238 emit_call_insn_after (rtx pattern, rtx after)
4239 {
4240 if (INSN_P (after))
4241 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4242 else
4243 return emit_call_insn_after_noloc (pattern, after);
4244 }
4245
4246 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4247 rtx
4248 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4249 {
4250 rtx first = PREV_INSN (before);
4251 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4252
4253 if (pattern == NULL_RTX || !loc)
4254 return last;
4255
4256 if (!first)
4257 first = get_insns ();
4258 else
4259 first = NEXT_INSN (first);
4260 while (1)
4261 {
4262 if (active_insn_p (first) && !INSN_LOCATOR (first))
4263 INSN_LOCATOR (first) = loc;
4264 if (first == last)
4265 break;
4266 first = NEXT_INSN (first);
4267 }
4268 return last;
4269 }
4270
4271 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4272 rtx
4273 emit_insn_before (rtx pattern, rtx before)
4274 {
4275 if (INSN_P (before))
4276 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4277 else
4278 return emit_insn_before_noloc (pattern, before, NULL);
4279 }
4280
4281 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4282 rtx
4283 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4284 {
4285 rtx first = PREV_INSN (before);
4286 rtx last = emit_jump_insn_before_noloc (pattern, before);
4287
4288 if (pattern == NULL_RTX)
4289 return last;
4290
4291 first = NEXT_INSN (first);
4292 while (1)
4293 {
4294 if (active_insn_p (first) && !INSN_LOCATOR (first))
4295 INSN_LOCATOR (first) = loc;
4296 if (first == last)
4297 break;
4298 first = NEXT_INSN (first);
4299 }
4300 return last;
4301 }
4302
4303 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4304 rtx
4305 emit_jump_insn_before (rtx pattern, rtx before)
4306 {
4307 if (INSN_P (before))
4308 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4309 else
4310 return emit_jump_insn_before_noloc (pattern, before);
4311 }
4312
4313 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4314 rtx
4315 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4316 {
4317 rtx first = PREV_INSN (before);
4318 rtx last = emit_call_insn_before_noloc (pattern, before);
4319
4320 if (pattern == NULL_RTX)
4321 return last;
4322
4323 first = NEXT_INSN (first);
4324 while (1)
4325 {
4326 if (active_insn_p (first) && !INSN_LOCATOR (first))
4327 INSN_LOCATOR (first) = loc;
4328 if (first == last)
4329 break;
4330 first = NEXT_INSN (first);
4331 }
4332 return last;
4333 }
4334
4335 /* like emit_call_insn_before_noloc,
4336 but set insn_locator according to before. */
4337 rtx
4338 emit_call_insn_before (rtx pattern, rtx before)
4339 {
4340 if (INSN_P (before))
4341 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4342 else
4343 return emit_call_insn_before_noloc (pattern, before);
4344 }
4345 \f
4346 /* Take X and emit it at the end of the doubly-linked
4347 INSN list.
4348
4349 Returns the last insn emitted. */
4350
4351 rtx
4352 emit_insn (rtx x)
4353 {
4354 rtx last = last_insn;
4355 rtx insn;
4356
4357 if (x == NULL_RTX)
4358 return last;
4359
4360 switch (GET_CODE (x))
4361 {
4362 case INSN:
4363 case JUMP_INSN:
4364 case CALL_INSN:
4365 case CODE_LABEL:
4366 case BARRIER:
4367 case NOTE:
4368 insn = x;
4369 while (insn)
4370 {
4371 rtx next = NEXT_INSN (insn);
4372 add_insn (insn);
4373 last = insn;
4374 insn = next;
4375 }
4376 break;
4377
4378 #ifdef ENABLE_RTL_CHECKING
4379 case SEQUENCE:
4380 gcc_unreachable ();
4381 break;
4382 #endif
4383
4384 default:
4385 last = make_insn_raw (x);
4386 add_insn (last);
4387 break;
4388 }
4389
4390 return last;
4391 }
4392
4393 /* Make an insn of code JUMP_INSN with pattern X
4394 and add it to the end of the doubly-linked list. */
4395
4396 rtx
4397 emit_jump_insn (rtx x)
4398 {
4399 rtx last = NULL_RTX, insn;
4400
4401 switch (GET_CODE (x))
4402 {
4403 case INSN:
4404 case JUMP_INSN:
4405 case CALL_INSN:
4406 case CODE_LABEL:
4407 case BARRIER:
4408 case NOTE:
4409 insn = x;
4410 while (insn)
4411 {
4412 rtx next = NEXT_INSN (insn);
4413 add_insn (insn);
4414 last = insn;
4415 insn = next;
4416 }
4417 break;
4418
4419 #ifdef ENABLE_RTL_CHECKING
4420 case SEQUENCE:
4421 gcc_unreachable ();
4422 break;
4423 #endif
4424
4425 default:
4426 last = make_jump_insn_raw (x);
4427 add_insn (last);
4428 break;
4429 }
4430
4431 return last;
4432 }
4433
4434 /* Make an insn of code CALL_INSN with pattern X
4435 and add it to the end of the doubly-linked list. */
4436
4437 rtx
4438 emit_call_insn (rtx x)
4439 {
4440 rtx insn;
4441
4442 switch (GET_CODE (x))
4443 {
4444 case INSN:
4445 case JUMP_INSN:
4446 case CALL_INSN:
4447 case CODE_LABEL:
4448 case BARRIER:
4449 case NOTE:
4450 insn = emit_insn (x);
4451 break;
4452
4453 #ifdef ENABLE_RTL_CHECKING
4454 case SEQUENCE:
4455 gcc_unreachable ();
4456 break;
4457 #endif
4458
4459 default:
4460 insn = make_call_insn_raw (x);
4461 add_insn (insn);
4462 break;
4463 }
4464
4465 return insn;
4466 }
4467
4468 /* Add the label LABEL to the end of the doubly-linked list. */
4469
4470 rtx
4471 emit_label (rtx label)
4472 {
4473 /* This can be called twice for the same label
4474 as a result of the confusion that follows a syntax error!
4475 So make it harmless. */
4476 if (INSN_UID (label) == 0)
4477 {
4478 INSN_UID (label) = cur_insn_uid++;
4479 add_insn (label);
4480 }
4481 return label;
4482 }
4483
4484 /* Make an insn of code BARRIER
4485 and add it to the end of the doubly-linked list. */
4486
4487 rtx
4488 emit_barrier (void)
4489 {
4490 rtx barrier = rtx_alloc (BARRIER);
4491 INSN_UID (barrier) = cur_insn_uid++;
4492 add_insn (barrier);
4493 return barrier;
4494 }
4495
4496 /* Emit a copy of note ORIG. */
4497
4498 rtx
4499 emit_note_copy (rtx orig)
4500 {
4501 rtx note;
4502
4503 note = rtx_alloc (NOTE);
4504
4505 INSN_UID (note) = cur_insn_uid++;
4506 NOTE_DATA (note) = NOTE_DATA (orig);
4507 NOTE_KIND (note) = NOTE_KIND (orig);
4508 BLOCK_FOR_INSN (note) = NULL;
4509 add_insn (note);
4510
4511 return note;
4512 }
4513
4514 /* Make an insn of code NOTE or type NOTE_NO
4515 and add it to the end of the doubly-linked list. */
4516
4517 rtx
4518 emit_note (enum insn_note kind)
4519 {
4520 rtx note;
4521
4522 note = rtx_alloc (NOTE);
4523 INSN_UID (note) = cur_insn_uid++;
4524 NOTE_KIND (note) = kind;
4525 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4526 BLOCK_FOR_INSN (note) = NULL;
4527 add_insn (note);
4528 return note;
4529 }
4530
4531 /* Emit a clobber of lvalue X. */
4532
4533 rtx
4534 emit_clobber (rtx x)
4535 {
4536 /* CONCATs should not appear in the insn stream. */
4537 if (GET_CODE (x) == CONCAT)
4538 {
4539 emit_clobber (XEXP (x, 0));
4540 return emit_clobber (XEXP (x, 1));
4541 }
4542 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4543 }
4544
4545 /* Return a sequence of insns to clobber lvalue X. */
4546
4547 rtx
4548 gen_clobber (rtx x)
4549 {
4550 rtx seq;
4551
4552 start_sequence ();
4553 emit_clobber (x);
4554 seq = get_insns ();
4555 end_sequence ();
4556 return seq;
4557 }
4558
4559 /* Emit a use of rvalue X. */
4560
4561 rtx
4562 emit_use (rtx x)
4563 {
4564 /* CONCATs should not appear in the insn stream. */
4565 if (GET_CODE (x) == CONCAT)
4566 {
4567 emit_use (XEXP (x, 0));
4568 return emit_use (XEXP (x, 1));
4569 }
4570 return emit_insn (gen_rtx_USE (VOIDmode, x));
4571 }
4572
4573 /* Return a sequence of insns to use rvalue X. */
4574
4575 rtx
4576 gen_use (rtx x)
4577 {
4578 rtx seq;
4579
4580 start_sequence ();
4581 emit_use (x);
4582 seq = get_insns ();
4583 end_sequence ();
4584 return seq;
4585 }
4586
4587 /* Cause next statement to emit a line note even if the line number
4588 has not changed. */
4589
4590 void
4591 force_next_line_note (void)
4592 {
4593 last_location = -1;
4594 }
4595
4596 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4597 note of this type already exists, remove it first. */
4598
4599 rtx
4600 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4601 {
4602 rtx note = find_reg_note (insn, kind, NULL_RTX);
4603 rtx new_note = NULL;
4604
4605 switch (kind)
4606 {
4607 case REG_EQUAL:
4608 case REG_EQUIV:
4609 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4610 has multiple sets (some callers assume single_set
4611 means the insn only has one set, when in fact it
4612 means the insn only has one * useful * set). */
4613 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4614 {
4615 gcc_assert (!note);
4616 return NULL_RTX;
4617 }
4618
4619 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4620 It serves no useful purpose and breaks eliminate_regs. */
4621 if (GET_CODE (datum) == ASM_OPERANDS)
4622 return NULL_RTX;
4623
4624 if (note)
4625 {
4626 XEXP (note, 0) = datum;
4627 df_notes_rescan (insn);
4628 return note;
4629 }
4630 break;
4631
4632 default:
4633 if (note)
4634 {
4635 XEXP (note, 0) = datum;
4636 return note;
4637 }
4638 break;
4639 }
4640
4641 new_note = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4642 REG_NOTES (insn) = new_note;
4643
4644 switch (kind)
4645 {
4646 case REG_EQUAL:
4647 case REG_EQUIV:
4648 df_notes_rescan (insn);
4649 break;
4650 default:
4651 break;
4652 }
4653
4654 return REG_NOTES (insn);
4655 }
4656 \f
4657 /* Return an indication of which type of insn should have X as a body.
4658 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4659
4660 static enum rtx_code
4661 classify_insn (rtx x)
4662 {
4663 if (LABEL_P (x))
4664 return CODE_LABEL;
4665 if (GET_CODE (x) == CALL)
4666 return CALL_INSN;
4667 if (GET_CODE (x) == RETURN)
4668 return JUMP_INSN;
4669 if (GET_CODE (x) == SET)
4670 {
4671 if (SET_DEST (x) == pc_rtx)
4672 return JUMP_INSN;
4673 else if (GET_CODE (SET_SRC (x)) == CALL)
4674 return CALL_INSN;
4675 else
4676 return INSN;
4677 }
4678 if (GET_CODE (x) == PARALLEL)
4679 {
4680 int j;
4681 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4682 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4683 return CALL_INSN;
4684 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4685 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4686 return JUMP_INSN;
4687 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4688 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4689 return CALL_INSN;
4690 }
4691 return INSN;
4692 }
4693
4694 /* Emit the rtl pattern X as an appropriate kind of insn.
4695 If X is a label, it is simply added into the insn chain. */
4696
4697 rtx
4698 emit (rtx x)
4699 {
4700 enum rtx_code code = classify_insn (x);
4701
4702 switch (code)
4703 {
4704 case CODE_LABEL:
4705 return emit_label (x);
4706 case INSN:
4707 return emit_insn (x);
4708 case JUMP_INSN:
4709 {
4710 rtx insn = emit_jump_insn (x);
4711 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4712 return emit_barrier ();
4713 return insn;
4714 }
4715 case CALL_INSN:
4716 return emit_call_insn (x);
4717 default:
4718 gcc_unreachable ();
4719 }
4720 }
4721 \f
4722 /* Space for free sequence stack entries. */
4723 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4724
4725 /* Begin emitting insns to a sequence. If this sequence will contain
4726 something that might cause the compiler to pop arguments to function
4727 calls (because those pops have previously been deferred; see
4728 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4729 before calling this function. That will ensure that the deferred
4730 pops are not accidentally emitted in the middle of this sequence. */
4731
4732 void
4733 start_sequence (void)
4734 {
4735 struct sequence_stack *tem;
4736
4737 if (free_sequence_stack != NULL)
4738 {
4739 tem = free_sequence_stack;
4740 free_sequence_stack = tem->next;
4741 }
4742 else
4743 tem = GGC_NEW (struct sequence_stack);
4744
4745 tem->next = seq_stack;
4746 tem->first = first_insn;
4747 tem->last = last_insn;
4748
4749 seq_stack = tem;
4750
4751 first_insn = 0;
4752 last_insn = 0;
4753 }
4754
4755 /* Set up the insn chain starting with FIRST as the current sequence,
4756 saving the previously current one. See the documentation for
4757 start_sequence for more information about how to use this function. */
4758
4759 void
4760 push_to_sequence (rtx first)
4761 {
4762 rtx last;
4763
4764 start_sequence ();
4765
4766 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4767
4768 first_insn = first;
4769 last_insn = last;
4770 }
4771
4772 /* Like push_to_sequence, but take the last insn as an argument to avoid
4773 looping through the list. */
4774
4775 void
4776 push_to_sequence2 (rtx first, rtx last)
4777 {
4778 start_sequence ();
4779
4780 first_insn = first;
4781 last_insn = last;
4782 }
4783
4784 /* Set up the outer-level insn chain
4785 as the current sequence, saving the previously current one. */
4786
4787 void
4788 push_topmost_sequence (void)
4789 {
4790 struct sequence_stack *stack, *top = NULL;
4791
4792 start_sequence ();
4793
4794 for (stack = seq_stack; stack; stack = stack->next)
4795 top = stack;
4796
4797 first_insn = top->first;
4798 last_insn = top->last;
4799 }
4800
4801 /* After emitting to the outer-level insn chain, update the outer-level
4802 insn chain, and restore the previous saved state. */
4803
4804 void
4805 pop_topmost_sequence (void)
4806 {
4807 struct sequence_stack *stack, *top = NULL;
4808
4809 for (stack = seq_stack; stack; stack = stack->next)
4810 top = stack;
4811
4812 top->first = first_insn;
4813 top->last = last_insn;
4814
4815 end_sequence ();
4816 }
4817
4818 /* After emitting to a sequence, restore previous saved state.
4819
4820 To get the contents of the sequence just made, you must call
4821 `get_insns' *before* calling here.
4822
4823 If the compiler might have deferred popping arguments while
4824 generating this sequence, and this sequence will not be immediately
4825 inserted into the instruction stream, use do_pending_stack_adjust
4826 before calling get_insns. That will ensure that the deferred
4827 pops are inserted into this sequence, and not into some random
4828 location in the instruction stream. See INHIBIT_DEFER_POP for more
4829 information about deferred popping of arguments. */
4830
4831 void
4832 end_sequence (void)
4833 {
4834 struct sequence_stack *tem = seq_stack;
4835
4836 first_insn = tem->first;
4837 last_insn = tem->last;
4838 seq_stack = tem->next;
4839
4840 memset (tem, 0, sizeof (*tem));
4841 tem->next = free_sequence_stack;
4842 free_sequence_stack = tem;
4843 }
4844
4845 /* Return 1 if currently emitting into a sequence. */
4846
4847 int
4848 in_sequence_p (void)
4849 {
4850 return seq_stack != 0;
4851 }
4852 \f
4853 /* Put the various virtual registers into REGNO_REG_RTX. */
4854
4855 static void
4856 init_virtual_regs (void)
4857 {
4858 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4859 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4860 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4861 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4862 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4863 }
4864
4865 \f
4866 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4867 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4868 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4869 static int copy_insn_n_scratches;
4870
4871 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4872 copied an ASM_OPERANDS.
4873 In that case, it is the original input-operand vector. */
4874 static rtvec orig_asm_operands_vector;
4875
4876 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4877 copied an ASM_OPERANDS.
4878 In that case, it is the copied input-operand vector. */
4879 static rtvec copy_asm_operands_vector;
4880
4881 /* Likewise for the constraints vector. */
4882 static rtvec orig_asm_constraints_vector;
4883 static rtvec copy_asm_constraints_vector;
4884
4885 /* Recursively create a new copy of an rtx for copy_insn.
4886 This function differs from copy_rtx in that it handles SCRATCHes and
4887 ASM_OPERANDs properly.
4888 Normally, this function is not used directly; use copy_insn as front end.
4889 However, you could first copy an insn pattern with copy_insn and then use
4890 this function afterwards to properly copy any REG_NOTEs containing
4891 SCRATCHes. */
4892
4893 rtx
4894 copy_insn_1 (rtx orig)
4895 {
4896 rtx copy;
4897 int i, j;
4898 RTX_CODE code;
4899 const char *format_ptr;
4900
4901 code = GET_CODE (orig);
4902
4903 switch (code)
4904 {
4905 case REG:
4906 case CONST_INT:
4907 case CONST_DOUBLE:
4908 case CONST_FIXED:
4909 case CONST_VECTOR:
4910 case SYMBOL_REF:
4911 case CODE_LABEL:
4912 case PC:
4913 case CC0:
4914 return orig;
4915 case CLOBBER:
4916 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4917 return orig;
4918 break;
4919
4920 case SCRATCH:
4921 for (i = 0; i < copy_insn_n_scratches; i++)
4922 if (copy_insn_scratch_in[i] == orig)
4923 return copy_insn_scratch_out[i];
4924 break;
4925
4926 case CONST:
4927 if (shared_const_p (orig))
4928 return orig;
4929 break;
4930
4931 /* A MEM with a constant address is not sharable. The problem is that
4932 the constant address may need to be reloaded. If the mem is shared,
4933 then reloading one copy of this mem will cause all copies to appear
4934 to have been reloaded. */
4935
4936 default:
4937 break;
4938 }
4939
4940 /* Copy the various flags, fields, and other information. We assume
4941 that all fields need copying, and then clear the fields that should
4942 not be copied. That is the sensible default behavior, and forces
4943 us to explicitly document why we are *not* copying a flag. */
4944 copy = shallow_copy_rtx (orig);
4945
4946 /* We do not copy the USED flag, which is used as a mark bit during
4947 walks over the RTL. */
4948 RTX_FLAG (copy, used) = 0;
4949
4950 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4951 if (INSN_P (orig))
4952 {
4953 RTX_FLAG (copy, jump) = 0;
4954 RTX_FLAG (copy, call) = 0;
4955 RTX_FLAG (copy, frame_related) = 0;
4956 }
4957
4958 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4959
4960 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4961 switch (*format_ptr++)
4962 {
4963 case 'e':
4964 if (XEXP (orig, i) != NULL)
4965 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4966 break;
4967
4968 case 'E':
4969 case 'V':
4970 if (XVEC (orig, i) == orig_asm_constraints_vector)
4971 XVEC (copy, i) = copy_asm_constraints_vector;
4972 else if (XVEC (orig, i) == orig_asm_operands_vector)
4973 XVEC (copy, i) = copy_asm_operands_vector;
4974 else if (XVEC (orig, i) != NULL)
4975 {
4976 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4977 for (j = 0; j < XVECLEN (copy, i); j++)
4978 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4979 }
4980 break;
4981
4982 case 't':
4983 case 'w':
4984 case 'i':
4985 case 's':
4986 case 'S':
4987 case 'u':
4988 case '0':
4989 /* These are left unchanged. */
4990 break;
4991
4992 default:
4993 gcc_unreachable ();
4994 }
4995
4996 if (code == SCRATCH)
4997 {
4998 i = copy_insn_n_scratches++;
4999 gcc_assert (i < MAX_RECOG_OPERANDS);
5000 copy_insn_scratch_in[i] = orig;
5001 copy_insn_scratch_out[i] = copy;
5002 }
5003 else if (code == ASM_OPERANDS)
5004 {
5005 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5006 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5007 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5008 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5009 }
5010
5011 return copy;
5012 }
5013
5014 /* Create a new copy of an rtx.
5015 This function differs from copy_rtx in that it handles SCRATCHes and
5016 ASM_OPERANDs properly.
5017 INSN doesn't really have to be a full INSN; it could be just the
5018 pattern. */
5019 rtx
5020 copy_insn (rtx insn)
5021 {
5022 copy_insn_n_scratches = 0;
5023 orig_asm_operands_vector = 0;
5024 orig_asm_constraints_vector = 0;
5025 copy_asm_operands_vector = 0;
5026 copy_asm_constraints_vector = 0;
5027 return copy_insn_1 (insn);
5028 }
5029
5030 /* Initialize data structures and variables in this file
5031 before generating rtl for each function. */
5032
5033 void
5034 init_emit (void)
5035 {
5036 first_insn = NULL;
5037 last_insn = NULL;
5038 cur_insn_uid = 1;
5039 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5040 last_location = UNKNOWN_LOCATION;
5041 first_label_num = label_num;
5042 seq_stack = NULL;
5043
5044 /* Init the tables that describe all the pseudo regs. */
5045
5046 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5047
5048 crtl->emit.regno_pointer_align
5049 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5050
5051 regno_reg_rtx
5052 = GGC_NEWVEC (rtx, crtl->emit.regno_pointer_align_length);
5053
5054 /* Put copies of all the hard registers into regno_reg_rtx. */
5055 memcpy (regno_reg_rtx,
5056 static_regno_reg_rtx,
5057 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5058
5059 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5060 init_virtual_regs ();
5061
5062 /* Indicate that the virtual registers and stack locations are
5063 all pointers. */
5064 REG_POINTER (stack_pointer_rtx) = 1;
5065 REG_POINTER (frame_pointer_rtx) = 1;
5066 REG_POINTER (hard_frame_pointer_rtx) = 1;
5067 REG_POINTER (arg_pointer_rtx) = 1;
5068
5069 REG_POINTER (virtual_incoming_args_rtx) = 1;
5070 REG_POINTER (virtual_stack_vars_rtx) = 1;
5071 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5072 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5073 REG_POINTER (virtual_cfa_rtx) = 1;
5074
5075 #ifdef STACK_BOUNDARY
5076 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5077 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5078 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5079 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5080
5081 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5082 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5083 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5084 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5085 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5086 #endif
5087
5088 #ifdef INIT_EXPANDERS
5089 INIT_EXPANDERS;
5090 #endif
5091 }
5092
5093 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5094
5095 static rtx
5096 gen_const_vector (enum machine_mode mode, int constant)
5097 {
5098 rtx tem;
5099 rtvec v;
5100 int units, i;
5101 enum machine_mode inner;
5102
5103 units = GET_MODE_NUNITS (mode);
5104 inner = GET_MODE_INNER (mode);
5105
5106 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5107
5108 v = rtvec_alloc (units);
5109
5110 /* We need to call this function after we set the scalar const_tiny_rtx
5111 entries. */
5112 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5113
5114 for (i = 0; i < units; ++i)
5115 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5116
5117 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5118 return tem;
5119 }
5120
5121 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5122 all elements are zero, and the one vector when all elements are one. */
5123 rtx
5124 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5125 {
5126 enum machine_mode inner = GET_MODE_INNER (mode);
5127 int nunits = GET_MODE_NUNITS (mode);
5128 rtx x;
5129 int i;
5130
5131 /* Check to see if all of the elements have the same value. */
5132 x = RTVEC_ELT (v, nunits - 1);
5133 for (i = nunits - 2; i >= 0; i--)
5134 if (RTVEC_ELT (v, i) != x)
5135 break;
5136
5137 /* If the values are all the same, check to see if we can use one of the
5138 standard constant vectors. */
5139 if (i == -1)
5140 {
5141 if (x == CONST0_RTX (inner))
5142 return CONST0_RTX (mode);
5143 else if (x == CONST1_RTX (inner))
5144 return CONST1_RTX (mode);
5145 }
5146
5147 return gen_rtx_raw_CONST_VECTOR (mode, v);
5148 }
5149
5150 /* Initialise global register information required by all functions. */
5151
5152 void
5153 init_emit_regs (void)
5154 {
5155 int i;
5156
5157 /* Reset register attributes */
5158 htab_empty (reg_attrs_htab);
5159
5160 /* We need reg_raw_mode, so initialize the modes now. */
5161 init_reg_modes_target ();
5162
5163 /* Assign register numbers to the globally defined register rtx. */
5164 pc_rtx = gen_rtx_PC (VOIDmode);
5165 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5166 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5167 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5168 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5169 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5170 virtual_incoming_args_rtx =
5171 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5172 virtual_stack_vars_rtx =
5173 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5174 virtual_stack_dynamic_rtx =
5175 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5176 virtual_outgoing_args_rtx =
5177 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5178 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5179
5180 /* Initialize RTL for commonly used hard registers. These are
5181 copied into regno_reg_rtx as we begin to compile each function. */
5182 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5183 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5184
5185 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5186 return_address_pointer_rtx
5187 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5188 #endif
5189
5190 #ifdef STATIC_CHAIN_REGNUM
5191 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5192
5193 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5194 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5195 static_chain_incoming_rtx
5196 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5197 else
5198 #endif
5199 static_chain_incoming_rtx = static_chain_rtx;
5200 #endif
5201
5202 #ifdef STATIC_CHAIN
5203 static_chain_rtx = STATIC_CHAIN;
5204
5205 #ifdef STATIC_CHAIN_INCOMING
5206 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5207 #else
5208 static_chain_incoming_rtx = static_chain_rtx;
5209 #endif
5210 #endif
5211
5212 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5213 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5214 else
5215 pic_offset_table_rtx = NULL_RTX;
5216 }
5217
5218 /* Create some permanent unique rtl objects shared between all functions.
5219 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5220
5221 void
5222 init_emit_once (int line_numbers)
5223 {
5224 int i;
5225 enum machine_mode mode;
5226 enum machine_mode double_mode;
5227
5228 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5229 hash tables. */
5230 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5231 const_int_htab_eq, NULL);
5232
5233 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5234 const_double_htab_eq, NULL);
5235
5236 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5237 const_fixed_htab_eq, NULL);
5238
5239 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5240 mem_attrs_htab_eq, NULL);
5241 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5242 reg_attrs_htab_eq, NULL);
5243
5244 no_line_numbers = ! line_numbers;
5245
5246 /* Compute the word and byte modes. */
5247
5248 byte_mode = VOIDmode;
5249 word_mode = VOIDmode;
5250 double_mode = VOIDmode;
5251
5252 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5253 mode != VOIDmode;
5254 mode = GET_MODE_WIDER_MODE (mode))
5255 {
5256 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5257 && byte_mode == VOIDmode)
5258 byte_mode = mode;
5259
5260 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5261 && word_mode == VOIDmode)
5262 word_mode = mode;
5263 }
5264
5265 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5266 mode != VOIDmode;
5267 mode = GET_MODE_WIDER_MODE (mode))
5268 {
5269 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5270 && double_mode == VOIDmode)
5271 double_mode = mode;
5272 }
5273
5274 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5275
5276 #ifdef INIT_EXPANDERS
5277 /* This is to initialize {init|mark|free}_machine_status before the first
5278 call to push_function_context_to. This is needed by the Chill front
5279 end which calls push_function_context_to before the first call to
5280 init_function_start. */
5281 INIT_EXPANDERS;
5282 #endif
5283
5284 /* Create the unique rtx's for certain rtx codes and operand values. */
5285
5286 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5287 tries to use these variables. */
5288 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5289 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5290 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5291
5292 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5293 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5294 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5295 else
5296 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5297
5298 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5299 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5300 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5301
5302 dconstm1 = dconst1;
5303 dconstm1.sign = 1;
5304
5305 dconsthalf = dconst1;
5306 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5307
5308 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5309 {
5310 const REAL_VALUE_TYPE *const r =
5311 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5312
5313 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5314 mode != VOIDmode;
5315 mode = GET_MODE_WIDER_MODE (mode))
5316 const_tiny_rtx[i][(int) mode] =
5317 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5318
5319 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5320 mode != VOIDmode;
5321 mode = GET_MODE_WIDER_MODE (mode))
5322 const_tiny_rtx[i][(int) mode] =
5323 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5324
5325 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5326
5327 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5328 mode != VOIDmode;
5329 mode = GET_MODE_WIDER_MODE (mode))
5330 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5331
5332 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5333 mode != VOIDmode;
5334 mode = GET_MODE_WIDER_MODE (mode))
5335 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5336 }
5337
5338 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5339 mode != VOIDmode;
5340 mode = GET_MODE_WIDER_MODE (mode))
5341 {
5342 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5343 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5344 }
5345
5346 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5347 mode != VOIDmode;
5348 mode = GET_MODE_WIDER_MODE (mode))
5349 {
5350 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5351 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5352 }
5353
5354 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5355 mode != VOIDmode;
5356 mode = GET_MODE_WIDER_MODE (mode))
5357 {
5358 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5359 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5360 }
5361
5362 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5363 mode != VOIDmode;
5364 mode = GET_MODE_WIDER_MODE (mode))
5365 {
5366 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5367 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5368 }
5369
5370 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5371 mode != VOIDmode;
5372 mode = GET_MODE_WIDER_MODE (mode))
5373 {
5374 FCONST0(mode).data.high = 0;
5375 FCONST0(mode).data.low = 0;
5376 FCONST0(mode).mode = mode;
5377 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5378 FCONST0 (mode), mode);
5379 }
5380
5381 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5382 mode != VOIDmode;
5383 mode = GET_MODE_WIDER_MODE (mode))
5384 {
5385 FCONST0(mode).data.high = 0;
5386 FCONST0(mode).data.low = 0;
5387 FCONST0(mode).mode = mode;
5388 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5389 FCONST0 (mode), mode);
5390 }
5391
5392 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5393 mode != VOIDmode;
5394 mode = GET_MODE_WIDER_MODE (mode))
5395 {
5396 FCONST0(mode).data.high = 0;
5397 FCONST0(mode).data.low = 0;
5398 FCONST0(mode).mode = mode;
5399 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5400 FCONST0 (mode), mode);
5401
5402 /* We store the value 1. */
5403 FCONST1(mode).data.high = 0;
5404 FCONST1(mode).data.low = 0;
5405 FCONST1(mode).mode = mode;
5406 lshift_double (1, 0, GET_MODE_FBIT (mode),
5407 2 * HOST_BITS_PER_WIDE_INT,
5408 &FCONST1(mode).data.low,
5409 &FCONST1(mode).data.high,
5410 SIGNED_FIXED_POINT_MODE_P (mode));
5411 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5412 FCONST1 (mode), mode);
5413 }
5414
5415 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5416 mode != VOIDmode;
5417 mode = GET_MODE_WIDER_MODE (mode))
5418 {
5419 FCONST0(mode).data.high = 0;
5420 FCONST0(mode).data.low = 0;
5421 FCONST0(mode).mode = mode;
5422 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5423 FCONST0 (mode), mode);
5424
5425 /* We store the value 1. */
5426 FCONST1(mode).data.high = 0;
5427 FCONST1(mode).data.low = 0;
5428 FCONST1(mode).mode = mode;
5429 lshift_double (1, 0, GET_MODE_FBIT (mode),
5430 2 * HOST_BITS_PER_WIDE_INT,
5431 &FCONST1(mode).data.low,
5432 &FCONST1(mode).data.high,
5433 SIGNED_FIXED_POINT_MODE_P (mode));
5434 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5435 FCONST1 (mode), mode);
5436 }
5437
5438 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5439 mode != VOIDmode;
5440 mode = GET_MODE_WIDER_MODE (mode))
5441 {
5442 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5443 }
5444
5445 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5446 mode != VOIDmode;
5447 mode = GET_MODE_WIDER_MODE (mode))
5448 {
5449 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5450 }
5451
5452 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5453 mode != VOIDmode;
5454 mode = GET_MODE_WIDER_MODE (mode))
5455 {
5456 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5457 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5458 }
5459
5460 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5461 mode != VOIDmode;
5462 mode = GET_MODE_WIDER_MODE (mode))
5463 {
5464 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5465 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5466 }
5467
5468 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5469 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5470 const_tiny_rtx[0][i] = const0_rtx;
5471
5472 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5473 if (STORE_FLAG_VALUE == 1)
5474 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5475 }
5476 \f
5477 /* Produce exact duplicate of insn INSN after AFTER.
5478 Care updating of libcall regions if present. */
5479
5480 rtx
5481 emit_copy_of_insn_after (rtx insn, rtx after)
5482 {
5483 rtx new, link;
5484
5485 switch (GET_CODE (insn))
5486 {
5487 case INSN:
5488 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5489 break;
5490
5491 case JUMP_INSN:
5492 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5493 break;
5494
5495 case CALL_INSN:
5496 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5497 if (CALL_INSN_FUNCTION_USAGE (insn))
5498 CALL_INSN_FUNCTION_USAGE (new)
5499 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5500 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5501 RTL_CONST_CALL_P (new) = RTL_CONST_CALL_P (insn);
5502 RTL_PURE_CALL_P (new) = RTL_PURE_CALL_P (insn);
5503 RTL_LOOPING_CONST_OR_PURE_CALL_P (new)
5504 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5505 break;
5506
5507 default:
5508 gcc_unreachable ();
5509 }
5510
5511 /* Update LABEL_NUSES. */
5512 mark_jump_label (PATTERN (new), new, 0);
5513
5514 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5515
5516 /* If the old insn is frame related, then so is the new one. This is
5517 primarily needed for IA-64 unwind info which marks epilogue insns,
5518 which may be duplicated by the basic block reordering code. */
5519 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5520
5521 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5522 will make them. REG_LABEL_TARGETs are created there too, but are
5523 supposed to be sticky, so we copy them. */
5524 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5525 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5526 {
5527 if (GET_CODE (link) == EXPR_LIST)
5528 REG_NOTES (new)
5529 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5530 copy_insn_1 (XEXP (link, 0)), REG_NOTES (new));
5531 else
5532 REG_NOTES (new)
5533 = gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5534 XEXP (link, 0), REG_NOTES (new));
5535 }
5536
5537 INSN_CODE (new) = INSN_CODE (insn);
5538 return new;
5539 }
5540
5541 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5542 rtx
5543 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5544 {
5545 if (hard_reg_clobbers[mode][regno])
5546 return hard_reg_clobbers[mode][regno];
5547 else
5548 return (hard_reg_clobbers[mode][regno] =
5549 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5550 }
5551
5552 #include "gt-emit-rtl.h"
This page took 0.273087 seconds and 6 git commands to generate.