]> gcc.gnu.org Git - gcc.git/blob - gcc/emit-rtl.c
Daily bump.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "fixed-value.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60 #include "df.h"
61
62 /* Commonly used modes. */
63
64 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
65 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
66 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
67 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
68
69 /* Datastructures maintained for currently processed function in RTL form. */
70
71 struct rtl_data x_rtl;
72
73 /* Indexed by pseudo register number, gives the rtx for that pseudo.
74 Allocated in parallel with regno_pointer_align.
75 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
76 with length attribute nested in top level structures. */
77
78 rtx * regno_reg_rtx;
79
80 /* This is *not* reset after each function. It gives each CODE_LABEL
81 in the entire compilation a unique label number. */
82
83 static GTY(()) int label_num = 1;
84
85 /* Nonzero means do not generate NOTEs for source line numbers. */
86
87 static int no_line_numbers;
88
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
93
94 rtx global_rtl[GR_MAX];
95
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
101
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
105
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
107
108 rtx const_true_rtx;
109
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconstm1;
114 REAL_VALUE_TYPE dconsthalf;
115
116 /* Record fixed-point constant 0 and 1. */
117 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
118 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
119
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
123
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
128
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
134 same.
135
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
141
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
145
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
149 integers. */
150
151 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
152
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
155
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
157 htab_t const_int_htab;
158
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
161 htab_t mem_attrs_htab;
162
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
165 htab_t reg_attrs_htab;
166
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_double_htab;
170
171 /* A hash table storing all CONST_FIXEDs. */
172 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
173 htab_t const_fixed_htab;
174
175 #define first_insn (crtl->emit.x_first_insn)
176 #define last_insn (crtl->emit.x_last_insn)
177 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
178 #define last_location (crtl->emit.x_last_location)
179 #define first_label_num (crtl->emit.x_first_label_num)
180
181 static rtx make_call_insn_raw (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void set_used_decls (tree);
184 static void mark_label_nuses (rtx);
185 static hashval_t const_int_htab_hash (const void *);
186 static int const_int_htab_eq (const void *, const void *);
187 static hashval_t const_double_htab_hash (const void *);
188 static int const_double_htab_eq (const void *, const void *);
189 static rtx lookup_const_double (rtx);
190 static hashval_t const_fixed_htab_hash (const void *);
191 static int const_fixed_htab_eq (const void *, const void *);
192 static rtx lookup_const_fixed (rtx);
193 static hashval_t mem_attrs_htab_hash (const void *);
194 static int mem_attrs_htab_eq (const void *, const void *);
195 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
196 enum machine_mode);
197 static hashval_t reg_attrs_htab_hash (const void *);
198 static int reg_attrs_htab_eq (const void *, const void *);
199 static reg_attrs *get_reg_attrs (tree, int);
200 static tree component_ref_for_mem_expr (tree);
201 static rtx gen_const_vector (enum machine_mode, int);
202 static void copy_rtx_if_shared_1 (rtx *orig);
203
204 /* Probability of the conditional branch currently proceeded by try_split.
205 Set to -1 otherwise. */
206 int split_branch_probability = -1;
207 \f
208 /* Returns a hash code for X (which is a really a CONST_INT). */
209
210 static hashval_t
211 const_int_htab_hash (const void *x)
212 {
213 return (hashval_t) INTVAL ((const_rtx) x);
214 }
215
216 /* Returns nonzero if the value represented by X (which is really a
217 CONST_INT) is the same as that given by Y (which is really a
218 HOST_WIDE_INT *). */
219
220 static int
221 const_int_htab_eq (const void *x, const void *y)
222 {
223 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
224 }
225
226 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
227 static hashval_t
228 const_double_htab_hash (const void *x)
229 {
230 const_rtx const value = (const_rtx) x;
231 hashval_t h;
232
233 if (GET_MODE (value) == VOIDmode)
234 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
235 else
236 {
237 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
238 /* MODE is used in the comparison, so it should be in the hash. */
239 h ^= GET_MODE (value);
240 }
241 return h;
242 }
243
244 /* Returns nonzero if the value represented by X (really a ...)
245 is the same as that represented by Y (really a ...) */
246 static int
247 const_double_htab_eq (const void *x, const void *y)
248 {
249 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
250
251 if (GET_MODE (a) != GET_MODE (b))
252 return 0;
253 if (GET_MODE (a) == VOIDmode)
254 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
255 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
256 else
257 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
258 CONST_DOUBLE_REAL_VALUE (b));
259 }
260
261 /* Returns a hash code for X (which is really a CONST_FIXED). */
262
263 static hashval_t
264 const_fixed_htab_hash (const void *x)
265 {
266 const_rtx const value = (const_rtx) x;
267 hashval_t h;
268
269 h = fixed_hash (CONST_FIXED_VALUE (value));
270 /* MODE is used in the comparison, so it should be in the hash. */
271 h ^= GET_MODE (value);
272 return h;
273 }
274
275 /* Returns nonzero if the value represented by X (really a ...)
276 is the same as that represented by Y (really a ...). */
277
278 static int
279 const_fixed_htab_eq (const void *x, const void *y)
280 {
281 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
282
283 if (GET_MODE (a) != GET_MODE (b))
284 return 0;
285 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
286 }
287
288 /* Returns a hash code for X (which is a really a mem_attrs *). */
289
290 static hashval_t
291 mem_attrs_htab_hash (const void *x)
292 {
293 const mem_attrs *const p = (const mem_attrs *) x;
294
295 return (p->alias ^ (p->align * 1000)
296 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
297 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
298 ^ (size_t) iterative_hash_expr (p->expr, 0));
299 }
300
301 /* Returns nonzero if the value represented by X (which is really a
302 mem_attrs *) is the same as that given by Y (which is also really a
303 mem_attrs *). */
304
305 static int
306 mem_attrs_htab_eq (const void *x, const void *y)
307 {
308 const mem_attrs *const p = (const mem_attrs *) x;
309 const mem_attrs *const q = (const mem_attrs *) y;
310
311 return (p->alias == q->alias && p->offset == q->offset
312 && p->size == q->size && p->align == q->align
313 && (p->expr == q->expr
314 || (p->expr != NULL_TREE && q->expr != NULL_TREE
315 && operand_equal_p (p->expr, q->expr, 0))));
316 }
317
318 /* Allocate a new mem_attrs structure and insert it into the hash table if
319 one identical to it is not already in the table. We are doing this for
320 MEM of mode MODE. */
321
322 static mem_attrs *
323 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
324 unsigned int align, enum machine_mode mode)
325 {
326 mem_attrs attrs;
327 void **slot;
328
329 /* If everything is the default, we can just return zero.
330 This must match what the corresponding MEM_* macros return when the
331 field is not present. */
332 if (alias == 0 && expr == 0 && offset == 0
333 && (size == 0
334 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
335 && (STRICT_ALIGNMENT && mode != BLKmode
336 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
337 return 0;
338
339 attrs.alias = alias;
340 attrs.expr = expr;
341 attrs.offset = offset;
342 attrs.size = size;
343 attrs.align = align;
344
345 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
346 if (*slot == 0)
347 {
348 *slot = ggc_alloc (sizeof (mem_attrs));
349 memcpy (*slot, &attrs, sizeof (mem_attrs));
350 }
351
352 return (mem_attrs *) *slot;
353 }
354
355 /* Returns a hash code for X (which is a really a reg_attrs *). */
356
357 static hashval_t
358 reg_attrs_htab_hash (const void *x)
359 {
360 const reg_attrs *const p = (const reg_attrs *) x;
361
362 return ((p->offset * 1000) ^ (long) p->decl);
363 }
364
365 /* Returns nonzero if the value represented by X (which is really a
366 reg_attrs *) is the same as that given by Y (which is also really a
367 reg_attrs *). */
368
369 static int
370 reg_attrs_htab_eq (const void *x, const void *y)
371 {
372 const reg_attrs *const p = (const reg_attrs *) x;
373 const reg_attrs *const q = (const reg_attrs *) y;
374
375 return (p->decl == q->decl && p->offset == q->offset);
376 }
377 /* Allocate a new reg_attrs structure and insert it into the hash table if
378 one identical to it is not already in the table. We are doing this for
379 MEM of mode MODE. */
380
381 static reg_attrs *
382 get_reg_attrs (tree decl, int offset)
383 {
384 reg_attrs attrs;
385 void **slot;
386
387 /* If everything is the default, we can just return zero. */
388 if (decl == 0 && offset == 0)
389 return 0;
390
391 attrs.decl = decl;
392 attrs.offset = offset;
393
394 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
395 if (*slot == 0)
396 {
397 *slot = ggc_alloc (sizeof (reg_attrs));
398 memcpy (*slot, &attrs, sizeof (reg_attrs));
399 }
400
401 return (reg_attrs *) *slot;
402 }
403
404
405 #if !HAVE_blockage
406 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
407 across this insn. */
408
409 rtx
410 gen_blockage (void)
411 {
412 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
413 MEM_VOLATILE_P (x) = true;
414 return x;
415 }
416 #endif
417
418
419 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
420 don't attempt to share with the various global pieces of rtl (such as
421 frame_pointer_rtx). */
422
423 rtx
424 gen_raw_REG (enum machine_mode mode, int regno)
425 {
426 rtx x = gen_rtx_raw_REG (mode, regno);
427 ORIGINAL_REGNO (x) = regno;
428 return x;
429 }
430
431 /* There are some RTL codes that require special attention; the generation
432 functions do the raw handling. If you add to this list, modify
433 special_rtx in gengenrtl.c as well. */
434
435 rtx
436 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
437 {
438 void **slot;
439
440 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
441 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
442
443 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
444 if (const_true_rtx && arg == STORE_FLAG_VALUE)
445 return const_true_rtx;
446 #endif
447
448 /* Look up the CONST_INT in the hash table. */
449 slot = htab_find_slot_with_hash (const_int_htab, &arg,
450 (hashval_t) arg, INSERT);
451 if (*slot == 0)
452 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
453
454 return (rtx) *slot;
455 }
456
457 rtx
458 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
459 {
460 return GEN_INT (trunc_int_for_mode (c, mode));
461 }
462
463 /* CONST_DOUBLEs might be created from pairs of integers, or from
464 REAL_VALUE_TYPEs. Also, their length is known only at run time,
465 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
466
467 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
468 hash table. If so, return its counterpart; otherwise add it
469 to the hash table and return it. */
470 static rtx
471 lookup_const_double (rtx real)
472 {
473 void **slot = htab_find_slot (const_double_htab, real, INSERT);
474 if (*slot == 0)
475 *slot = real;
476
477 return (rtx) *slot;
478 }
479
480 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
481 VALUE in mode MODE. */
482 rtx
483 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
484 {
485 rtx real = rtx_alloc (CONST_DOUBLE);
486 PUT_MODE (real, mode);
487
488 real->u.rv = value;
489
490 return lookup_const_double (real);
491 }
492
493 /* Determine whether FIXED, a CONST_FIXED, already exists in the
494 hash table. If so, return its counterpart; otherwise add it
495 to the hash table and return it. */
496
497 static rtx
498 lookup_const_fixed (rtx fixed)
499 {
500 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
501 if (*slot == 0)
502 *slot = fixed;
503
504 return (rtx) *slot;
505 }
506
507 /* Return a CONST_FIXED rtx for a fixed-point value specified by
508 VALUE in mode MODE. */
509
510 rtx
511 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
512 {
513 rtx fixed = rtx_alloc (CONST_FIXED);
514 PUT_MODE (fixed, mode);
515
516 fixed->u.fv = value;
517
518 return lookup_const_fixed (fixed);
519 }
520
521 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
522 of ints: I0 is the low-order word and I1 is the high-order word.
523 Do not use this routine for non-integer modes; convert to
524 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
525
526 rtx
527 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
528 {
529 rtx value;
530 unsigned int i;
531
532 /* There are the following cases (note that there are no modes with
533 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
534
535 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
536 gen_int_mode.
537 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
538 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
539 from copies of the sign bit, and sign of i0 and i1 are the same), then
540 we return a CONST_INT for i0.
541 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
542 if (mode != VOIDmode)
543 {
544 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
545 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
546 /* We can get a 0 for an error mark. */
547 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
548 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
549
550 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
551 return gen_int_mode (i0, mode);
552
553 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
554 }
555
556 /* If this integer fits in one word, return a CONST_INT. */
557 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
558 return GEN_INT (i0);
559
560 /* We use VOIDmode for integers. */
561 value = rtx_alloc (CONST_DOUBLE);
562 PUT_MODE (value, VOIDmode);
563
564 CONST_DOUBLE_LOW (value) = i0;
565 CONST_DOUBLE_HIGH (value) = i1;
566
567 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
568 XWINT (value, i) = 0;
569
570 return lookup_const_double (value);
571 }
572
573 rtx
574 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
575 {
576 /* In case the MD file explicitly references the frame pointer, have
577 all such references point to the same frame pointer. This is
578 used during frame pointer elimination to distinguish the explicit
579 references to these registers from pseudos that happened to be
580 assigned to them.
581
582 If we have eliminated the frame pointer or arg pointer, we will
583 be using it as a normal register, for example as a spill
584 register. In such cases, we might be accessing it in a mode that
585 is not Pmode and therefore cannot use the pre-allocated rtx.
586
587 Also don't do this when we are making new REGs in reload, since
588 we don't want to get confused with the real pointers. */
589
590 if (mode == Pmode && !reload_in_progress)
591 {
592 if (regno == FRAME_POINTER_REGNUM
593 && (!reload_completed || frame_pointer_needed))
594 return frame_pointer_rtx;
595 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
596 if (regno == HARD_FRAME_POINTER_REGNUM
597 && (!reload_completed || frame_pointer_needed))
598 return hard_frame_pointer_rtx;
599 #endif
600 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
601 if (regno == ARG_POINTER_REGNUM)
602 return arg_pointer_rtx;
603 #endif
604 #ifdef RETURN_ADDRESS_POINTER_REGNUM
605 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
606 return return_address_pointer_rtx;
607 #endif
608 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
609 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
610 return pic_offset_table_rtx;
611 if (regno == STACK_POINTER_REGNUM)
612 return stack_pointer_rtx;
613 }
614
615 #if 0
616 /* If the per-function register table has been set up, try to re-use
617 an existing entry in that table to avoid useless generation of RTL.
618
619 This code is disabled for now until we can fix the various backends
620 which depend on having non-shared hard registers in some cases. Long
621 term we want to re-enable this code as it can significantly cut down
622 on the amount of useless RTL that gets generated.
623
624 We'll also need to fix some code that runs after reload that wants to
625 set ORIGINAL_REGNO. */
626
627 if (cfun
628 && cfun->emit
629 && regno_reg_rtx
630 && regno < FIRST_PSEUDO_REGISTER
631 && reg_raw_mode[regno] == mode)
632 return regno_reg_rtx[regno];
633 #endif
634
635 return gen_raw_REG (mode, regno);
636 }
637
638 rtx
639 gen_rtx_MEM (enum machine_mode mode, rtx addr)
640 {
641 rtx rt = gen_rtx_raw_MEM (mode, addr);
642
643 /* This field is not cleared by the mere allocation of the rtx, so
644 we clear it here. */
645 MEM_ATTRS (rt) = 0;
646
647 return rt;
648 }
649
650 /* Generate a memory referring to non-trapping constant memory. */
651
652 rtx
653 gen_const_mem (enum machine_mode mode, rtx addr)
654 {
655 rtx mem = gen_rtx_MEM (mode, addr);
656 MEM_READONLY_P (mem) = 1;
657 MEM_NOTRAP_P (mem) = 1;
658 return mem;
659 }
660
661 /* Generate a MEM referring to fixed portions of the frame, e.g., register
662 save areas. */
663
664 rtx
665 gen_frame_mem (enum machine_mode mode, rtx addr)
666 {
667 rtx mem = gen_rtx_MEM (mode, addr);
668 MEM_NOTRAP_P (mem) = 1;
669 set_mem_alias_set (mem, get_frame_alias_set ());
670 return mem;
671 }
672
673 /* Generate a MEM referring to a temporary use of the stack, not part
674 of the fixed stack frame. For example, something which is pushed
675 by a target splitter. */
676 rtx
677 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
678 {
679 rtx mem = gen_rtx_MEM (mode, addr);
680 MEM_NOTRAP_P (mem) = 1;
681 if (!cfun->calls_alloca)
682 set_mem_alias_set (mem, get_frame_alias_set ());
683 return mem;
684 }
685
686 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
687 this construct would be valid, and false otherwise. */
688
689 bool
690 validate_subreg (enum machine_mode omode, enum machine_mode imode,
691 const_rtx reg, unsigned int offset)
692 {
693 unsigned int isize = GET_MODE_SIZE (imode);
694 unsigned int osize = GET_MODE_SIZE (omode);
695
696 /* All subregs must be aligned. */
697 if (offset % osize != 0)
698 return false;
699
700 /* The subreg offset cannot be outside the inner object. */
701 if (offset >= isize)
702 return false;
703
704 /* ??? This should not be here. Temporarily continue to allow word_mode
705 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
706 Generally, backends are doing something sketchy but it'll take time to
707 fix them all. */
708 if (omode == word_mode)
709 ;
710 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
711 is the culprit here, and not the backends. */
712 else if (osize >= UNITS_PER_WORD && isize >= osize)
713 ;
714 /* Allow component subregs of complex and vector. Though given the below
715 extraction rules, it's not always clear what that means. */
716 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
717 && GET_MODE_INNER (imode) == omode)
718 ;
719 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
720 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
721 represent this. It's questionable if this ought to be represented at
722 all -- why can't this all be hidden in post-reload splitters that make
723 arbitrarily mode changes to the registers themselves. */
724 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
725 ;
726 /* Subregs involving floating point modes are not allowed to
727 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
728 (subreg:SI (reg:DF) 0) isn't. */
729 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
730 {
731 if (isize != osize)
732 return false;
733 }
734
735 /* Paradoxical subregs must have offset zero. */
736 if (osize > isize)
737 return offset == 0;
738
739 /* This is a normal subreg. Verify that the offset is representable. */
740
741 /* For hard registers, we already have most of these rules collected in
742 subreg_offset_representable_p. */
743 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
744 {
745 unsigned int regno = REGNO (reg);
746
747 #ifdef CANNOT_CHANGE_MODE_CLASS
748 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
749 && GET_MODE_INNER (imode) == omode)
750 ;
751 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
752 return false;
753 #endif
754
755 return subreg_offset_representable_p (regno, imode, offset, omode);
756 }
757
758 /* For pseudo registers, we want most of the same checks. Namely:
759 If the register no larger than a word, the subreg must be lowpart.
760 If the register is larger than a word, the subreg must be the lowpart
761 of a subword. A subreg does *not* perform arbitrary bit extraction.
762 Given that we've already checked mode/offset alignment, we only have
763 to check subword subregs here. */
764 if (osize < UNITS_PER_WORD)
765 {
766 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
767 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
768 if (offset % UNITS_PER_WORD != low_off)
769 return false;
770 }
771 return true;
772 }
773
774 rtx
775 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
776 {
777 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
778 return gen_rtx_raw_SUBREG (mode, reg, offset);
779 }
780
781 /* Generate a SUBREG representing the least-significant part of REG if MODE
782 is smaller than mode of REG, otherwise paradoxical SUBREG. */
783
784 rtx
785 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
786 {
787 enum machine_mode inmode;
788
789 inmode = GET_MODE (reg);
790 if (inmode == VOIDmode)
791 inmode = mode;
792 return gen_rtx_SUBREG (mode, reg,
793 subreg_lowpart_offset (mode, inmode));
794 }
795 \f
796
797 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
798
799 rtvec
800 gen_rtvec (int n, ...)
801 {
802 int i;
803 rtvec rt_val;
804 va_list p;
805
806 va_start (p, n);
807
808 /* Don't allocate an empty rtvec... */
809 if (n == 0)
810 return NULL_RTVEC;
811
812 rt_val = rtvec_alloc (n);
813
814 for (i = 0; i < n; i++)
815 rt_val->elem[i] = va_arg (p, rtx);
816
817 va_end (p);
818 return rt_val;
819 }
820
821 rtvec
822 gen_rtvec_v (int n, rtx *argp)
823 {
824 int i;
825 rtvec rt_val;
826
827 /* Don't allocate an empty rtvec... */
828 if (n == 0)
829 return NULL_RTVEC;
830
831 rt_val = rtvec_alloc (n);
832
833 for (i = 0; i < n; i++)
834 rt_val->elem[i] = *argp++;
835
836 return rt_val;
837 }
838 \f
839 /* Return the number of bytes between the start of an OUTER_MODE
840 in-memory value and the start of an INNER_MODE in-memory value,
841 given that the former is a lowpart of the latter. It may be a
842 paradoxical lowpart, in which case the offset will be negative
843 on big-endian targets. */
844
845 int
846 byte_lowpart_offset (enum machine_mode outer_mode,
847 enum machine_mode inner_mode)
848 {
849 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
850 return subreg_lowpart_offset (outer_mode, inner_mode);
851 else
852 return -subreg_lowpart_offset (inner_mode, outer_mode);
853 }
854 \f
855 /* Generate a REG rtx for a new pseudo register of mode MODE.
856 This pseudo is assigned the next sequential register number. */
857
858 rtx
859 gen_reg_rtx (enum machine_mode mode)
860 {
861 rtx val;
862 unsigned int align = GET_MODE_ALIGNMENT (mode);
863
864 gcc_assert (can_create_pseudo_p ());
865
866 /* If a virtual register with bigger mode alignment is generated,
867 increase stack alignment estimation because it might be spilled
868 to stack later. */
869 if (SUPPORTS_STACK_ALIGNMENT
870 && crtl->stack_alignment_estimated < align
871 && !crtl->stack_realign_processed)
872 crtl->stack_alignment_estimated = align;
873
874 if (generating_concat_p
875 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
876 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
877 {
878 /* For complex modes, don't make a single pseudo.
879 Instead, make a CONCAT of two pseudos.
880 This allows noncontiguous allocation of the real and imaginary parts,
881 which makes much better code. Besides, allocating DCmode
882 pseudos overstrains reload on some machines like the 386. */
883 rtx realpart, imagpart;
884 enum machine_mode partmode = GET_MODE_INNER (mode);
885
886 realpart = gen_reg_rtx (partmode);
887 imagpart = gen_reg_rtx (partmode);
888 return gen_rtx_CONCAT (mode, realpart, imagpart);
889 }
890
891 /* Make sure regno_pointer_align, and regno_reg_rtx are large
892 enough to have an element for this pseudo reg number. */
893
894 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
895 {
896 int old_size = crtl->emit.regno_pointer_align_length;
897 char *tmp;
898 rtx *new1;
899
900 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
901 memset (tmp + old_size, 0, old_size);
902 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
903
904 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
905 memset (new1 + old_size, 0, old_size * sizeof (rtx));
906 regno_reg_rtx = new1;
907
908 crtl->emit.regno_pointer_align_length = old_size * 2;
909 }
910
911 val = gen_raw_REG (mode, reg_rtx_no);
912 regno_reg_rtx[reg_rtx_no++] = val;
913 return val;
914 }
915
916 /* Update NEW with the same attributes as REG, but with OFFSET added
917 to the REG_OFFSET. */
918
919 static void
920 update_reg_offset (rtx new_rtx, rtx reg, int offset)
921 {
922 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
923 REG_OFFSET (reg) + offset);
924 }
925
926 /* Generate a register with same attributes as REG, but with OFFSET
927 added to the REG_OFFSET. */
928
929 rtx
930 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
931 int offset)
932 {
933 rtx new_rtx = gen_rtx_REG (mode, regno);
934
935 update_reg_offset (new_rtx, reg, offset);
936 return new_rtx;
937 }
938
939 /* Generate a new pseudo-register with the same attributes as REG, but
940 with OFFSET added to the REG_OFFSET. */
941
942 rtx
943 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
944 {
945 rtx new_rtx = gen_reg_rtx (mode);
946
947 update_reg_offset (new_rtx, reg, offset);
948 return new_rtx;
949 }
950
951 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
952 new register is a (possibly paradoxical) lowpart of the old one. */
953
954 void
955 adjust_reg_mode (rtx reg, enum machine_mode mode)
956 {
957 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
958 PUT_MODE (reg, mode);
959 }
960
961 /* Copy REG's attributes from X, if X has any attributes. If REG and X
962 have different modes, REG is a (possibly paradoxical) lowpart of X. */
963
964 void
965 set_reg_attrs_from_value (rtx reg, rtx x)
966 {
967 int offset;
968
969 /* Hard registers can be reused for multiple purposes within the same
970 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
971 on them is wrong. */
972 if (HARD_REGISTER_P (reg))
973 return;
974
975 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
976 if (MEM_P (x))
977 {
978 if (MEM_OFFSET (x) && GET_CODE (MEM_OFFSET (x)) == CONST_INT)
979 REG_ATTRS (reg)
980 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
981 if (MEM_POINTER (x))
982 mark_reg_pointer (reg, 0);
983 }
984 else if (REG_P (x))
985 {
986 if (REG_ATTRS (x))
987 update_reg_offset (reg, x, offset);
988 if (REG_POINTER (x))
989 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
990 }
991 }
992
993 /* Generate a REG rtx for a new pseudo register, copying the mode
994 and attributes from X. */
995
996 rtx
997 gen_reg_rtx_and_attrs (rtx x)
998 {
999 rtx reg = gen_reg_rtx (GET_MODE (x));
1000 set_reg_attrs_from_value (reg, x);
1001 return reg;
1002 }
1003
1004 /* Set the register attributes for registers contained in PARM_RTX.
1005 Use needed values from memory attributes of MEM. */
1006
1007 void
1008 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1009 {
1010 if (REG_P (parm_rtx))
1011 set_reg_attrs_from_value (parm_rtx, mem);
1012 else if (GET_CODE (parm_rtx) == PARALLEL)
1013 {
1014 /* Check for a NULL entry in the first slot, used to indicate that the
1015 parameter goes both on the stack and in registers. */
1016 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1017 for (; i < XVECLEN (parm_rtx, 0); i++)
1018 {
1019 rtx x = XVECEXP (parm_rtx, 0, i);
1020 if (REG_P (XEXP (x, 0)))
1021 REG_ATTRS (XEXP (x, 0))
1022 = get_reg_attrs (MEM_EXPR (mem),
1023 INTVAL (XEXP (x, 1)));
1024 }
1025 }
1026 }
1027
1028 /* Set the REG_ATTRS for registers in value X, given that X represents
1029 decl T. */
1030
1031 static void
1032 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1033 {
1034 if (GET_CODE (x) == SUBREG)
1035 {
1036 gcc_assert (subreg_lowpart_p (x));
1037 x = SUBREG_REG (x);
1038 }
1039 if (REG_P (x))
1040 REG_ATTRS (x)
1041 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1042 DECL_MODE (t)));
1043 if (GET_CODE (x) == CONCAT)
1044 {
1045 if (REG_P (XEXP (x, 0)))
1046 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1047 if (REG_P (XEXP (x, 1)))
1048 REG_ATTRS (XEXP (x, 1))
1049 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1050 }
1051 if (GET_CODE (x) == PARALLEL)
1052 {
1053 int i, start;
1054
1055 /* Check for a NULL entry, used to indicate that the parameter goes
1056 both on the stack and in registers. */
1057 if (XEXP (XVECEXP (x, 0, 0), 0))
1058 start = 0;
1059 else
1060 start = 1;
1061
1062 for (i = start; i < XVECLEN (x, 0); i++)
1063 {
1064 rtx y = XVECEXP (x, 0, i);
1065 if (REG_P (XEXP (y, 0)))
1066 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1067 }
1068 }
1069 }
1070
1071 /* Assign the RTX X to declaration T. */
1072
1073 void
1074 set_decl_rtl (tree t, rtx x)
1075 {
1076 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1077 if (x)
1078 set_reg_attrs_for_decl_rtl (t, x);
1079 }
1080
1081 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1082 if the ABI requires the parameter to be passed by reference. */
1083
1084 void
1085 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1086 {
1087 DECL_INCOMING_RTL (t) = x;
1088 if (x && !by_reference_p)
1089 set_reg_attrs_for_decl_rtl (t, x);
1090 }
1091
1092 /* Identify REG (which may be a CONCAT) as a user register. */
1093
1094 void
1095 mark_user_reg (rtx reg)
1096 {
1097 if (GET_CODE (reg) == CONCAT)
1098 {
1099 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1100 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1101 }
1102 else
1103 {
1104 gcc_assert (REG_P (reg));
1105 REG_USERVAR_P (reg) = 1;
1106 }
1107 }
1108
1109 /* Identify REG as a probable pointer register and show its alignment
1110 as ALIGN, if nonzero. */
1111
1112 void
1113 mark_reg_pointer (rtx reg, int align)
1114 {
1115 if (! REG_POINTER (reg))
1116 {
1117 REG_POINTER (reg) = 1;
1118
1119 if (align)
1120 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1121 }
1122 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1123 /* We can no-longer be sure just how aligned this pointer is. */
1124 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1125 }
1126
1127 /* Return 1 plus largest pseudo reg number used in the current function. */
1128
1129 int
1130 max_reg_num (void)
1131 {
1132 return reg_rtx_no;
1133 }
1134
1135 /* Return 1 + the largest label number used so far in the current function. */
1136
1137 int
1138 max_label_num (void)
1139 {
1140 return label_num;
1141 }
1142
1143 /* Return first label number used in this function (if any were used). */
1144
1145 int
1146 get_first_label_num (void)
1147 {
1148 return first_label_num;
1149 }
1150
1151 /* If the rtx for label was created during the expansion of a nested
1152 function, then first_label_num won't include this label number.
1153 Fix this now so that array indices work later. */
1154
1155 void
1156 maybe_set_first_label_num (rtx x)
1157 {
1158 if (CODE_LABEL_NUMBER (x) < first_label_num)
1159 first_label_num = CODE_LABEL_NUMBER (x);
1160 }
1161 \f
1162 /* Return a value representing some low-order bits of X, where the number
1163 of low-order bits is given by MODE. Note that no conversion is done
1164 between floating-point and fixed-point values, rather, the bit
1165 representation is returned.
1166
1167 This function handles the cases in common between gen_lowpart, below,
1168 and two variants in cse.c and combine.c. These are the cases that can
1169 be safely handled at all points in the compilation.
1170
1171 If this is not a case we can handle, return 0. */
1172
1173 rtx
1174 gen_lowpart_common (enum machine_mode mode, rtx x)
1175 {
1176 int msize = GET_MODE_SIZE (mode);
1177 int xsize;
1178 int offset = 0;
1179 enum machine_mode innermode;
1180
1181 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1182 so we have to make one up. Yuk. */
1183 innermode = GET_MODE (x);
1184 if (GET_CODE (x) == CONST_INT
1185 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1186 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1187 else if (innermode == VOIDmode)
1188 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1189
1190 xsize = GET_MODE_SIZE (innermode);
1191
1192 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1193
1194 if (innermode == mode)
1195 return x;
1196
1197 /* MODE must occupy no more words than the mode of X. */
1198 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1199 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1200 return 0;
1201
1202 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1203 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1204 return 0;
1205
1206 offset = subreg_lowpart_offset (mode, innermode);
1207
1208 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1209 && (GET_MODE_CLASS (mode) == MODE_INT
1210 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1211 {
1212 /* If we are getting the low-order part of something that has been
1213 sign- or zero-extended, we can either just use the object being
1214 extended or make a narrower extension. If we want an even smaller
1215 piece than the size of the object being extended, call ourselves
1216 recursively.
1217
1218 This case is used mostly by combine and cse. */
1219
1220 if (GET_MODE (XEXP (x, 0)) == mode)
1221 return XEXP (x, 0);
1222 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1223 return gen_lowpart_common (mode, XEXP (x, 0));
1224 else if (msize < xsize)
1225 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1226 }
1227 else if (GET_CODE (x) == SUBREG || REG_P (x)
1228 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1229 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1230 return simplify_gen_subreg (mode, x, innermode, offset);
1231
1232 /* Otherwise, we can't do this. */
1233 return 0;
1234 }
1235 \f
1236 rtx
1237 gen_highpart (enum machine_mode mode, rtx x)
1238 {
1239 unsigned int msize = GET_MODE_SIZE (mode);
1240 rtx result;
1241
1242 /* This case loses if X is a subreg. To catch bugs early,
1243 complain if an invalid MODE is used even in other cases. */
1244 gcc_assert (msize <= UNITS_PER_WORD
1245 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1246
1247 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1248 subreg_highpart_offset (mode, GET_MODE (x)));
1249 gcc_assert (result);
1250
1251 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1252 the target if we have a MEM. gen_highpart must return a valid operand,
1253 emitting code if necessary to do so. */
1254 if (MEM_P (result))
1255 {
1256 result = validize_mem (result);
1257 gcc_assert (result);
1258 }
1259
1260 return result;
1261 }
1262
1263 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1264 be VOIDmode constant. */
1265 rtx
1266 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1267 {
1268 if (GET_MODE (exp) != VOIDmode)
1269 {
1270 gcc_assert (GET_MODE (exp) == innermode);
1271 return gen_highpart (outermode, exp);
1272 }
1273 return simplify_gen_subreg (outermode, exp, innermode,
1274 subreg_highpart_offset (outermode, innermode));
1275 }
1276
1277 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1278
1279 unsigned int
1280 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1281 {
1282 unsigned int offset = 0;
1283 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1284
1285 if (difference > 0)
1286 {
1287 if (WORDS_BIG_ENDIAN)
1288 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1289 if (BYTES_BIG_ENDIAN)
1290 offset += difference % UNITS_PER_WORD;
1291 }
1292
1293 return offset;
1294 }
1295
1296 /* Return offset in bytes to get OUTERMODE high part
1297 of the value in mode INNERMODE stored in memory in target format. */
1298 unsigned int
1299 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1300 {
1301 unsigned int offset = 0;
1302 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1303
1304 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1305
1306 if (difference > 0)
1307 {
1308 if (! WORDS_BIG_ENDIAN)
1309 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1310 if (! BYTES_BIG_ENDIAN)
1311 offset += difference % UNITS_PER_WORD;
1312 }
1313
1314 return offset;
1315 }
1316
1317 /* Return 1 iff X, assumed to be a SUBREG,
1318 refers to the least significant part of its containing reg.
1319 If X is not a SUBREG, always return 1 (it is its own low part!). */
1320
1321 int
1322 subreg_lowpart_p (const_rtx x)
1323 {
1324 if (GET_CODE (x) != SUBREG)
1325 return 1;
1326 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1327 return 0;
1328
1329 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1330 == SUBREG_BYTE (x));
1331 }
1332 \f
1333 /* Return subword OFFSET of operand OP.
1334 The word number, OFFSET, is interpreted as the word number starting
1335 at the low-order address. OFFSET 0 is the low-order word if not
1336 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1337
1338 If we cannot extract the required word, we return zero. Otherwise,
1339 an rtx corresponding to the requested word will be returned.
1340
1341 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1342 reload has completed, a valid address will always be returned. After
1343 reload, if a valid address cannot be returned, we return zero.
1344
1345 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1346 it is the responsibility of the caller.
1347
1348 MODE is the mode of OP in case it is a CONST_INT.
1349
1350 ??? This is still rather broken for some cases. The problem for the
1351 moment is that all callers of this thing provide no 'goal mode' to
1352 tell us to work with. This exists because all callers were written
1353 in a word based SUBREG world.
1354 Now use of this function can be deprecated by simplify_subreg in most
1355 cases.
1356 */
1357
1358 rtx
1359 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1360 {
1361 if (mode == VOIDmode)
1362 mode = GET_MODE (op);
1363
1364 gcc_assert (mode != VOIDmode);
1365
1366 /* If OP is narrower than a word, fail. */
1367 if (mode != BLKmode
1368 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1369 return 0;
1370
1371 /* If we want a word outside OP, return zero. */
1372 if (mode != BLKmode
1373 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1374 return const0_rtx;
1375
1376 /* Form a new MEM at the requested address. */
1377 if (MEM_P (op))
1378 {
1379 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1380
1381 if (! validate_address)
1382 return new_rtx;
1383
1384 else if (reload_completed)
1385 {
1386 if (! strict_memory_address_p (word_mode, XEXP (new_rtx, 0)))
1387 return 0;
1388 }
1389 else
1390 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1391 }
1392
1393 /* Rest can be handled by simplify_subreg. */
1394 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1395 }
1396
1397 /* Similar to `operand_subword', but never return 0. If we can't
1398 extract the required subword, put OP into a register and try again.
1399 The second attempt must succeed. We always validate the address in
1400 this case.
1401
1402 MODE is the mode of OP, in case it is CONST_INT. */
1403
1404 rtx
1405 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1406 {
1407 rtx result = operand_subword (op, offset, 1, mode);
1408
1409 if (result)
1410 return result;
1411
1412 if (mode != BLKmode && mode != VOIDmode)
1413 {
1414 /* If this is a register which can not be accessed by words, copy it
1415 to a pseudo register. */
1416 if (REG_P (op))
1417 op = copy_to_reg (op);
1418 else
1419 op = force_reg (mode, op);
1420 }
1421
1422 result = operand_subword (op, offset, 1, mode);
1423 gcc_assert (result);
1424
1425 return result;
1426 }
1427 \f
1428 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1429 or (2) a component ref of something variable. Represent the later with
1430 a NULL expression. */
1431
1432 static tree
1433 component_ref_for_mem_expr (tree ref)
1434 {
1435 tree inner = TREE_OPERAND (ref, 0);
1436
1437 if (TREE_CODE (inner) == COMPONENT_REF)
1438 inner = component_ref_for_mem_expr (inner);
1439 else
1440 {
1441 /* Now remove any conversions: they don't change what the underlying
1442 object is. Likewise for SAVE_EXPR. */
1443 while (CONVERT_EXPR_P (inner)
1444 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1445 || TREE_CODE (inner) == SAVE_EXPR)
1446 inner = TREE_OPERAND (inner, 0);
1447
1448 if (! DECL_P (inner))
1449 inner = NULL_TREE;
1450 }
1451
1452 if (inner == TREE_OPERAND (ref, 0))
1453 return ref;
1454 else
1455 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1456 TREE_OPERAND (ref, 1), NULL_TREE);
1457 }
1458
1459 /* Returns 1 if both MEM_EXPR can be considered equal
1460 and 0 otherwise. */
1461
1462 int
1463 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1464 {
1465 if (expr1 == expr2)
1466 return 1;
1467
1468 if (! expr1 || ! expr2)
1469 return 0;
1470
1471 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1472 return 0;
1473
1474 if (TREE_CODE (expr1) == COMPONENT_REF)
1475 return
1476 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1477 TREE_OPERAND (expr2, 0))
1478 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1479 TREE_OPERAND (expr2, 1));
1480
1481 if (INDIRECT_REF_P (expr1))
1482 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1483 TREE_OPERAND (expr2, 0));
1484
1485 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1486 have been resolved here. */
1487 gcc_assert (DECL_P (expr1));
1488
1489 /* Decls with different pointers can't be equal. */
1490 return 0;
1491 }
1492
1493 /* Given REF (a MEM) and T, either the type of X or the expression
1494 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1495 if we are making a new object of this type. BITPOS is nonzero if
1496 there is an offset outstanding on T that will be applied later. */
1497
1498 void
1499 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1500 HOST_WIDE_INT bitpos)
1501 {
1502 alias_set_type alias = MEM_ALIAS_SET (ref);
1503 tree expr = MEM_EXPR (ref);
1504 rtx offset = MEM_OFFSET (ref);
1505 rtx size = MEM_SIZE (ref);
1506 unsigned int align = MEM_ALIGN (ref);
1507 HOST_WIDE_INT apply_bitpos = 0;
1508 tree type;
1509
1510 /* It can happen that type_for_mode was given a mode for which there
1511 is no language-level type. In which case it returns NULL, which
1512 we can see here. */
1513 if (t == NULL_TREE)
1514 return;
1515
1516 type = TYPE_P (t) ? t : TREE_TYPE (t);
1517 if (type == error_mark_node)
1518 return;
1519
1520 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1521 wrong answer, as it assumes that DECL_RTL already has the right alias
1522 info. Callers should not set DECL_RTL until after the call to
1523 set_mem_attributes. */
1524 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1525
1526 /* Get the alias set from the expression or type (perhaps using a
1527 front-end routine) and use it. */
1528 alias = get_alias_set (t);
1529
1530 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1531 MEM_IN_STRUCT_P (ref)
1532 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1533 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1534
1535 /* If we are making an object of this type, or if this is a DECL, we know
1536 that it is a scalar if the type is not an aggregate. */
1537 if ((objectp || DECL_P (t))
1538 && ! AGGREGATE_TYPE_P (type)
1539 && TREE_CODE (type) != COMPLEX_TYPE)
1540 MEM_SCALAR_P (ref) = 1;
1541
1542 /* We can set the alignment from the type if we are making an object,
1543 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1544 if (objectp || TREE_CODE (t) == INDIRECT_REF
1545 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1546 || TYPE_ALIGN_OK (type))
1547 align = MAX (align, TYPE_ALIGN (type));
1548 else
1549 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1550 {
1551 if (integer_zerop (TREE_OPERAND (t, 1)))
1552 /* We don't know anything about the alignment. */
1553 align = BITS_PER_UNIT;
1554 else
1555 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1556 }
1557
1558 /* If the size is known, we can set that. */
1559 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1560 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1561
1562 /* If T is not a type, we may be able to deduce some more information about
1563 the expression. */
1564 if (! TYPE_P (t))
1565 {
1566 tree base;
1567 bool align_computed = false;
1568
1569 if (TREE_THIS_VOLATILE (t))
1570 MEM_VOLATILE_P (ref) = 1;
1571
1572 /* Now remove any conversions: they don't change what the underlying
1573 object is. Likewise for SAVE_EXPR. */
1574 while (CONVERT_EXPR_P (t)
1575 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1576 || TREE_CODE (t) == SAVE_EXPR)
1577 t = TREE_OPERAND (t, 0);
1578
1579 /* We may look through structure-like accesses for the purposes of
1580 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1581 base = t;
1582 while (TREE_CODE (base) == COMPONENT_REF
1583 || TREE_CODE (base) == REALPART_EXPR
1584 || TREE_CODE (base) == IMAGPART_EXPR
1585 || TREE_CODE (base) == BIT_FIELD_REF)
1586 base = TREE_OPERAND (base, 0);
1587
1588 if (DECL_P (base))
1589 {
1590 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1591 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1592 else
1593 MEM_NOTRAP_P (ref) = 1;
1594 }
1595 else
1596 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1597
1598 base = get_base_address (base);
1599 if (base && DECL_P (base)
1600 && TREE_READONLY (base)
1601 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1602 {
1603 tree base_type = TREE_TYPE (base);
1604 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1605 || DECL_ARTIFICIAL (base));
1606 MEM_READONLY_P (ref) = 1;
1607 }
1608
1609 /* If this expression uses it's parent's alias set, mark it such
1610 that we won't change it. */
1611 if (component_uses_parent_alias_set (t))
1612 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1613
1614 /* If this is a decl, set the attributes of the MEM from it. */
1615 if (DECL_P (t))
1616 {
1617 expr = t;
1618 offset = const0_rtx;
1619 apply_bitpos = bitpos;
1620 size = (DECL_SIZE_UNIT (t)
1621 && host_integerp (DECL_SIZE_UNIT (t), 1)
1622 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1623 align = DECL_ALIGN (t);
1624 align_computed = true;
1625 }
1626
1627 /* If this is a constant, we know the alignment. */
1628 else if (CONSTANT_CLASS_P (t))
1629 {
1630 align = TYPE_ALIGN (type);
1631 #ifdef CONSTANT_ALIGNMENT
1632 align = CONSTANT_ALIGNMENT (t, align);
1633 #endif
1634 align_computed = true;
1635 }
1636
1637 /* If this is a field reference and not a bit-field, record it. */
1638 /* ??? There is some information that can be gleaned from bit-fields,
1639 such as the word offset in the structure that might be modified.
1640 But skip it for now. */
1641 else if (TREE_CODE (t) == COMPONENT_REF
1642 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1643 {
1644 expr = component_ref_for_mem_expr (t);
1645 offset = const0_rtx;
1646 apply_bitpos = bitpos;
1647 /* ??? Any reason the field size would be different than
1648 the size we got from the type? */
1649 }
1650
1651 /* If this is an array reference, look for an outer field reference. */
1652 else if (TREE_CODE (t) == ARRAY_REF)
1653 {
1654 tree off_tree = size_zero_node;
1655 /* We can't modify t, because we use it at the end of the
1656 function. */
1657 tree t2 = t;
1658
1659 do
1660 {
1661 tree index = TREE_OPERAND (t2, 1);
1662 tree low_bound = array_ref_low_bound (t2);
1663 tree unit_size = array_ref_element_size (t2);
1664
1665 /* We assume all arrays have sizes that are a multiple of a byte.
1666 First subtract the lower bound, if any, in the type of the
1667 index, then convert to sizetype and multiply by the size of
1668 the array element. */
1669 if (! integer_zerop (low_bound))
1670 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1671 index, low_bound);
1672
1673 off_tree = size_binop (PLUS_EXPR,
1674 size_binop (MULT_EXPR,
1675 fold_convert (sizetype,
1676 index),
1677 unit_size),
1678 off_tree);
1679 t2 = TREE_OPERAND (t2, 0);
1680 }
1681 while (TREE_CODE (t2) == ARRAY_REF);
1682
1683 if (DECL_P (t2))
1684 {
1685 expr = t2;
1686 offset = NULL;
1687 if (host_integerp (off_tree, 1))
1688 {
1689 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1690 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1691 align = DECL_ALIGN (t2);
1692 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1693 align = aoff;
1694 align_computed = true;
1695 offset = GEN_INT (ioff);
1696 apply_bitpos = bitpos;
1697 }
1698 }
1699 else if (TREE_CODE (t2) == COMPONENT_REF)
1700 {
1701 expr = component_ref_for_mem_expr (t2);
1702 if (host_integerp (off_tree, 1))
1703 {
1704 offset = GEN_INT (tree_low_cst (off_tree, 1));
1705 apply_bitpos = bitpos;
1706 }
1707 /* ??? Any reason the field size would be different than
1708 the size we got from the type? */
1709 }
1710 else if (flag_argument_noalias > 1
1711 && (INDIRECT_REF_P (t2))
1712 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1713 {
1714 expr = t2;
1715 offset = NULL;
1716 }
1717 }
1718
1719 /* If this is a Fortran indirect argument reference, record the
1720 parameter decl. */
1721 else if (flag_argument_noalias > 1
1722 && (INDIRECT_REF_P (t))
1723 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1724 {
1725 expr = t;
1726 offset = NULL;
1727 }
1728
1729 if (!align_computed && !INDIRECT_REF_P (t))
1730 {
1731 unsigned int obj_align
1732 = get_object_alignment (t, align, BIGGEST_ALIGNMENT);
1733 align = MAX (align, obj_align);
1734 }
1735 }
1736
1737 /* If we modified OFFSET based on T, then subtract the outstanding
1738 bit position offset. Similarly, increase the size of the accessed
1739 object to contain the negative offset. */
1740 if (apply_bitpos)
1741 {
1742 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1743 if (size)
1744 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1745 }
1746
1747 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1748 {
1749 /* Force EXPR and OFFSET to NULL, since we don't know exactly what
1750 we're overlapping. */
1751 offset = NULL;
1752 expr = NULL;
1753 }
1754
1755 /* Now set the attributes we computed above. */
1756 MEM_ATTRS (ref)
1757 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1758
1759 /* If this is already known to be a scalar or aggregate, we are done. */
1760 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1761 return;
1762
1763 /* If it is a reference into an aggregate, this is part of an aggregate.
1764 Otherwise we don't know. */
1765 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1766 || TREE_CODE (t) == ARRAY_RANGE_REF
1767 || TREE_CODE (t) == BIT_FIELD_REF)
1768 MEM_IN_STRUCT_P (ref) = 1;
1769 }
1770
1771 void
1772 set_mem_attributes (rtx ref, tree t, int objectp)
1773 {
1774 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1775 }
1776
1777 /* Set MEM to the decl that REG refers to. */
1778
1779 void
1780 set_mem_attrs_from_reg (rtx mem, rtx reg)
1781 {
1782 MEM_ATTRS (mem)
1783 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1784 GEN_INT (REG_OFFSET (reg)),
1785 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1786 }
1787
1788 /* Set the alias set of MEM to SET. */
1789
1790 void
1791 set_mem_alias_set (rtx mem, alias_set_type set)
1792 {
1793 #ifdef ENABLE_CHECKING
1794 /* If the new and old alias sets don't conflict, something is wrong. */
1795 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1796 #endif
1797
1798 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1799 MEM_SIZE (mem), MEM_ALIGN (mem),
1800 GET_MODE (mem));
1801 }
1802
1803 /* Set the alignment of MEM to ALIGN bits. */
1804
1805 void
1806 set_mem_align (rtx mem, unsigned int align)
1807 {
1808 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1809 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1810 GET_MODE (mem));
1811 }
1812
1813 /* Set the expr for MEM to EXPR. */
1814
1815 void
1816 set_mem_expr (rtx mem, tree expr)
1817 {
1818 MEM_ATTRS (mem)
1819 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1820 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1821 }
1822
1823 /* Set the offset of MEM to OFFSET. */
1824
1825 void
1826 set_mem_offset (rtx mem, rtx offset)
1827 {
1828 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1829 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1830 GET_MODE (mem));
1831 }
1832
1833 /* Set the size of MEM to SIZE. */
1834
1835 void
1836 set_mem_size (rtx mem, rtx size)
1837 {
1838 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1839 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1840 GET_MODE (mem));
1841 }
1842 \f
1843 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1844 and its address changed to ADDR. (VOIDmode means don't change the mode.
1845 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1846 returned memory location is required to be valid. The memory
1847 attributes are not changed. */
1848
1849 static rtx
1850 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1851 {
1852 rtx new_rtx;
1853
1854 gcc_assert (MEM_P (memref));
1855 if (mode == VOIDmode)
1856 mode = GET_MODE (memref);
1857 if (addr == 0)
1858 addr = XEXP (memref, 0);
1859 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1860 && (!validate || memory_address_p (mode, addr)))
1861 return memref;
1862
1863 if (validate)
1864 {
1865 if (reload_in_progress || reload_completed)
1866 gcc_assert (memory_address_p (mode, addr));
1867 else
1868 addr = memory_address (mode, addr);
1869 }
1870
1871 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1872 return memref;
1873
1874 new_rtx = gen_rtx_MEM (mode, addr);
1875 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1876 return new_rtx;
1877 }
1878
1879 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1880 way we are changing MEMREF, so we only preserve the alias set. */
1881
1882 rtx
1883 change_address (rtx memref, enum machine_mode mode, rtx addr)
1884 {
1885 rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1886 enum machine_mode mmode = GET_MODE (new_rtx);
1887 unsigned int align;
1888
1889 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1890 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1891
1892 /* If there are no changes, just return the original memory reference. */
1893 if (new_rtx == memref)
1894 {
1895 if (MEM_ATTRS (memref) == 0
1896 || (MEM_EXPR (memref) == NULL
1897 && MEM_OFFSET (memref) == NULL
1898 && MEM_SIZE (memref) == size
1899 && MEM_ALIGN (memref) == align))
1900 return new_rtx;
1901
1902 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1903 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1904 }
1905
1906 MEM_ATTRS (new_rtx)
1907 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1908
1909 return new_rtx;
1910 }
1911
1912 /* Return a memory reference like MEMREF, but with its mode changed
1913 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1914 nonzero, the memory address is forced to be valid.
1915 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1916 and caller is responsible for adjusting MEMREF base register. */
1917
1918 rtx
1919 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1920 int validate, int adjust)
1921 {
1922 rtx addr = XEXP (memref, 0);
1923 rtx new_rtx;
1924 rtx memoffset = MEM_OFFSET (memref);
1925 rtx size = 0;
1926 unsigned int memalign = MEM_ALIGN (memref);
1927
1928 /* If there are no changes, just return the original memory reference. */
1929 if (mode == GET_MODE (memref) && !offset
1930 && (!validate || memory_address_p (mode, addr)))
1931 return memref;
1932
1933 /* ??? Prefer to create garbage instead of creating shared rtl.
1934 This may happen even if offset is nonzero -- consider
1935 (plus (plus reg reg) const_int) -- so do this always. */
1936 addr = copy_rtx (addr);
1937
1938 if (adjust)
1939 {
1940 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1941 object, we can merge it into the LO_SUM. */
1942 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1943 && offset >= 0
1944 && (unsigned HOST_WIDE_INT) offset
1945 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1946 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1947 plus_constant (XEXP (addr, 1), offset));
1948 else
1949 addr = plus_constant (addr, offset);
1950 }
1951
1952 new_rtx = change_address_1 (memref, mode, addr, validate);
1953
1954 /* Compute the new values of the memory attributes due to this adjustment.
1955 We add the offsets and update the alignment. */
1956 if (memoffset)
1957 memoffset = GEN_INT (offset + INTVAL (memoffset));
1958
1959 /* Compute the new alignment by taking the MIN of the alignment and the
1960 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1961 if zero. */
1962 if (offset != 0)
1963 memalign
1964 = MIN (memalign,
1965 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1966
1967 /* We can compute the size in a number of ways. */
1968 if (GET_MODE (new_rtx) != BLKmode)
1969 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
1970 else if (MEM_SIZE (memref))
1971 size = plus_constant (MEM_SIZE (memref), -offset);
1972
1973 MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1974 memoffset, size, memalign, GET_MODE (new_rtx));
1975
1976 /* At some point, we should validate that this offset is within the object,
1977 if all the appropriate values are known. */
1978 return new_rtx;
1979 }
1980
1981 /* Return a memory reference like MEMREF, but with its mode changed
1982 to MODE and its address changed to ADDR, which is assumed to be
1983 MEMREF offset by OFFSET bytes. If VALIDATE is
1984 nonzero, the memory address is forced to be valid. */
1985
1986 rtx
1987 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1988 HOST_WIDE_INT offset, int validate)
1989 {
1990 memref = change_address_1 (memref, VOIDmode, addr, validate);
1991 return adjust_address_1 (memref, mode, offset, validate, 0);
1992 }
1993
1994 /* Return a memory reference like MEMREF, but whose address is changed by
1995 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1996 known to be in OFFSET (possibly 1). */
1997
1998 rtx
1999 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2000 {
2001 rtx new_rtx, addr = XEXP (memref, 0);
2002
2003 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
2004
2005 /* At this point we don't know _why_ the address is invalid. It
2006 could have secondary memory references, multiplies or anything.
2007
2008 However, if we did go and rearrange things, we can wind up not
2009 being able to recognize the magic around pic_offset_table_rtx.
2010 This stuff is fragile, and is yet another example of why it is
2011 bad to expose PIC machinery too early. */
2012 if (! memory_address_p (GET_MODE (memref), new_rtx)
2013 && GET_CODE (addr) == PLUS
2014 && XEXP (addr, 0) == pic_offset_table_rtx)
2015 {
2016 addr = force_reg (GET_MODE (addr), addr);
2017 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
2018 }
2019
2020 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2021 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2022
2023 /* If there are no changes, just return the original memory reference. */
2024 if (new_rtx == memref)
2025 return new_rtx;
2026
2027 /* Update the alignment to reflect the offset. Reset the offset, which
2028 we don't know. */
2029 MEM_ATTRS (new_rtx)
2030 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2031 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2032 GET_MODE (new_rtx));
2033 return new_rtx;
2034 }
2035
2036 /* Return a memory reference like MEMREF, but with its address changed to
2037 ADDR. The caller is asserting that the actual piece of memory pointed
2038 to is the same, just the form of the address is being changed, such as
2039 by putting something into a register. */
2040
2041 rtx
2042 replace_equiv_address (rtx memref, rtx addr)
2043 {
2044 /* change_address_1 copies the memory attribute structure without change
2045 and that's exactly what we want here. */
2046 update_temp_slot_address (XEXP (memref, 0), addr);
2047 return change_address_1 (memref, VOIDmode, addr, 1);
2048 }
2049
2050 /* Likewise, but the reference is not required to be valid. */
2051
2052 rtx
2053 replace_equiv_address_nv (rtx memref, rtx addr)
2054 {
2055 return change_address_1 (memref, VOIDmode, addr, 0);
2056 }
2057
2058 /* Return a memory reference like MEMREF, but with its mode widened to
2059 MODE and offset by OFFSET. This would be used by targets that e.g.
2060 cannot issue QImode memory operations and have to use SImode memory
2061 operations plus masking logic. */
2062
2063 rtx
2064 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2065 {
2066 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2067 tree expr = MEM_EXPR (new_rtx);
2068 rtx memoffset = MEM_OFFSET (new_rtx);
2069 unsigned int size = GET_MODE_SIZE (mode);
2070
2071 /* If there are no changes, just return the original memory reference. */
2072 if (new_rtx == memref)
2073 return new_rtx;
2074
2075 /* If we don't know what offset we were at within the expression, then
2076 we can't know if we've overstepped the bounds. */
2077 if (! memoffset)
2078 expr = NULL_TREE;
2079
2080 while (expr)
2081 {
2082 if (TREE_CODE (expr) == COMPONENT_REF)
2083 {
2084 tree field = TREE_OPERAND (expr, 1);
2085 tree offset = component_ref_field_offset (expr);
2086
2087 if (! DECL_SIZE_UNIT (field))
2088 {
2089 expr = NULL_TREE;
2090 break;
2091 }
2092
2093 /* Is the field at least as large as the access? If so, ok,
2094 otherwise strip back to the containing structure. */
2095 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2096 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2097 && INTVAL (memoffset) >= 0)
2098 break;
2099
2100 if (! host_integerp (offset, 1))
2101 {
2102 expr = NULL_TREE;
2103 break;
2104 }
2105
2106 expr = TREE_OPERAND (expr, 0);
2107 memoffset
2108 = (GEN_INT (INTVAL (memoffset)
2109 + tree_low_cst (offset, 1)
2110 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2111 / BITS_PER_UNIT)));
2112 }
2113 /* Similarly for the decl. */
2114 else if (DECL_P (expr)
2115 && DECL_SIZE_UNIT (expr)
2116 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2117 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2118 && (! memoffset || INTVAL (memoffset) >= 0))
2119 break;
2120 else
2121 {
2122 /* The widened memory access overflows the expression, which means
2123 that it could alias another expression. Zap it. */
2124 expr = NULL_TREE;
2125 break;
2126 }
2127 }
2128
2129 if (! expr)
2130 memoffset = NULL_RTX;
2131
2132 /* The widened memory may alias other stuff, so zap the alias set. */
2133 /* ??? Maybe use get_alias_set on any remaining expression. */
2134
2135 MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2136 MEM_ALIGN (new_rtx), mode);
2137
2138 return new_rtx;
2139 }
2140 \f
2141 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2142 static GTY(()) tree spill_slot_decl;
2143
2144 tree
2145 get_spill_slot_decl (bool force_build_p)
2146 {
2147 tree d = spill_slot_decl;
2148 rtx rd;
2149
2150 if (d || !force_build_p)
2151 return d;
2152
2153 d = build_decl (VAR_DECL, get_identifier ("%sfp"), void_type_node);
2154 DECL_ARTIFICIAL (d) = 1;
2155 DECL_IGNORED_P (d) = 1;
2156 TREE_USED (d) = 1;
2157 TREE_THIS_NOTRAP (d) = 1;
2158 spill_slot_decl = d;
2159
2160 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2161 MEM_NOTRAP_P (rd) = 1;
2162 MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
2163 NULL_RTX, 0, BLKmode);
2164 SET_DECL_RTL (d, rd);
2165
2166 return d;
2167 }
2168
2169 /* Given MEM, a result from assign_stack_local, fill in the memory
2170 attributes as appropriate for a register allocator spill slot.
2171 These slots are not aliasable by other memory. We arrange for
2172 them all to use a single MEM_EXPR, so that the aliasing code can
2173 work properly in the case of shared spill slots. */
2174
2175 void
2176 set_mem_attrs_for_spill (rtx mem)
2177 {
2178 alias_set_type alias;
2179 rtx addr, offset;
2180 tree expr;
2181
2182 expr = get_spill_slot_decl (true);
2183 alias = MEM_ALIAS_SET (DECL_RTL (expr));
2184
2185 /* We expect the incoming memory to be of the form:
2186 (mem:MODE (plus (reg sfp) (const_int offset)))
2187 with perhaps the plus missing for offset = 0. */
2188 addr = XEXP (mem, 0);
2189 offset = const0_rtx;
2190 if (GET_CODE (addr) == PLUS
2191 && GET_CODE (XEXP (addr, 1)) == CONST_INT)
2192 offset = XEXP (addr, 1);
2193
2194 MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2195 MEM_SIZE (mem), MEM_ALIGN (mem),
2196 GET_MODE (mem));
2197 MEM_NOTRAP_P (mem) = 1;
2198 }
2199 \f
2200 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2201
2202 rtx
2203 gen_label_rtx (void)
2204 {
2205 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2206 NULL, label_num++, NULL);
2207 }
2208 \f
2209 /* For procedure integration. */
2210
2211 /* Install new pointers to the first and last insns in the chain.
2212 Also, set cur_insn_uid to one higher than the last in use.
2213 Used for an inline-procedure after copying the insn chain. */
2214
2215 void
2216 set_new_first_and_last_insn (rtx first, rtx last)
2217 {
2218 rtx insn;
2219
2220 first_insn = first;
2221 last_insn = last;
2222 cur_insn_uid = 0;
2223
2224 for (insn = first; insn; insn = NEXT_INSN (insn))
2225 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2226
2227 cur_insn_uid++;
2228 }
2229 \f
2230 /* Go through all the RTL insn bodies and copy any invalid shared
2231 structure. This routine should only be called once. */
2232
2233 static void
2234 unshare_all_rtl_1 (rtx insn)
2235 {
2236 /* Unshare just about everything else. */
2237 unshare_all_rtl_in_chain (insn);
2238
2239 /* Make sure the addresses of stack slots found outside the insn chain
2240 (such as, in DECL_RTL of a variable) are not shared
2241 with the insn chain.
2242
2243 This special care is necessary when the stack slot MEM does not
2244 actually appear in the insn chain. If it does appear, its address
2245 is unshared from all else at that point. */
2246 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2247 }
2248
2249 /* Go through all the RTL insn bodies and copy any invalid shared
2250 structure, again. This is a fairly expensive thing to do so it
2251 should be done sparingly. */
2252
2253 void
2254 unshare_all_rtl_again (rtx insn)
2255 {
2256 rtx p;
2257 tree decl;
2258
2259 for (p = insn; p; p = NEXT_INSN (p))
2260 if (INSN_P (p))
2261 {
2262 reset_used_flags (PATTERN (p));
2263 reset_used_flags (REG_NOTES (p));
2264 }
2265
2266 /* Make sure that virtual stack slots are not shared. */
2267 set_used_decls (DECL_INITIAL (cfun->decl));
2268
2269 /* Make sure that virtual parameters are not shared. */
2270 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2271 set_used_flags (DECL_RTL (decl));
2272
2273 reset_used_flags (stack_slot_list);
2274
2275 unshare_all_rtl_1 (insn);
2276 }
2277
2278 unsigned int
2279 unshare_all_rtl (void)
2280 {
2281 unshare_all_rtl_1 (get_insns ());
2282 return 0;
2283 }
2284
2285 struct rtl_opt_pass pass_unshare_all_rtl =
2286 {
2287 {
2288 RTL_PASS,
2289 "unshare", /* name */
2290 NULL, /* gate */
2291 unshare_all_rtl, /* execute */
2292 NULL, /* sub */
2293 NULL, /* next */
2294 0, /* static_pass_number */
2295 0, /* tv_id */
2296 0, /* properties_required */
2297 0, /* properties_provided */
2298 0, /* properties_destroyed */
2299 0, /* todo_flags_start */
2300 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2301 }
2302 };
2303
2304
2305 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2306 Recursively does the same for subexpressions. */
2307
2308 static void
2309 verify_rtx_sharing (rtx orig, rtx insn)
2310 {
2311 rtx x = orig;
2312 int i;
2313 enum rtx_code code;
2314 const char *format_ptr;
2315
2316 if (x == 0)
2317 return;
2318
2319 code = GET_CODE (x);
2320
2321 /* These types may be freely shared. */
2322
2323 switch (code)
2324 {
2325 case REG:
2326 case CONST_INT:
2327 case CONST_DOUBLE:
2328 case CONST_FIXED:
2329 case CONST_VECTOR:
2330 case SYMBOL_REF:
2331 case LABEL_REF:
2332 case CODE_LABEL:
2333 case PC:
2334 case CC0:
2335 case SCRATCH:
2336 return;
2337 /* SCRATCH must be shared because they represent distinct values. */
2338 case CLOBBER:
2339 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2340 return;
2341 break;
2342
2343 case CONST:
2344 if (shared_const_p (orig))
2345 return;
2346 break;
2347
2348 case MEM:
2349 /* A MEM is allowed to be shared if its address is constant. */
2350 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2351 || reload_completed || reload_in_progress)
2352 return;
2353
2354 break;
2355
2356 default:
2357 break;
2358 }
2359
2360 /* This rtx may not be shared. If it has already been seen,
2361 replace it with a copy of itself. */
2362 #ifdef ENABLE_CHECKING
2363 if (RTX_FLAG (x, used))
2364 {
2365 error ("invalid rtl sharing found in the insn");
2366 debug_rtx (insn);
2367 error ("shared rtx");
2368 debug_rtx (x);
2369 internal_error ("internal consistency failure");
2370 }
2371 #endif
2372 gcc_assert (!RTX_FLAG (x, used));
2373
2374 RTX_FLAG (x, used) = 1;
2375
2376 /* Now scan the subexpressions recursively. */
2377
2378 format_ptr = GET_RTX_FORMAT (code);
2379
2380 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2381 {
2382 switch (*format_ptr++)
2383 {
2384 case 'e':
2385 verify_rtx_sharing (XEXP (x, i), insn);
2386 break;
2387
2388 case 'E':
2389 if (XVEC (x, i) != NULL)
2390 {
2391 int j;
2392 int len = XVECLEN (x, i);
2393
2394 for (j = 0; j < len; j++)
2395 {
2396 /* We allow sharing of ASM_OPERANDS inside single
2397 instruction. */
2398 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2399 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2400 == ASM_OPERANDS))
2401 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2402 else
2403 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2404 }
2405 }
2406 break;
2407 }
2408 }
2409 return;
2410 }
2411
2412 /* Go through all the RTL insn bodies and check that there is no unexpected
2413 sharing in between the subexpressions. */
2414
2415 void
2416 verify_rtl_sharing (void)
2417 {
2418 rtx p;
2419
2420 for (p = get_insns (); p; p = NEXT_INSN (p))
2421 if (INSN_P (p))
2422 {
2423 reset_used_flags (PATTERN (p));
2424 reset_used_flags (REG_NOTES (p));
2425 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2426 {
2427 int i;
2428 rtx q, sequence = PATTERN (p);
2429
2430 for (i = 0; i < XVECLEN (sequence, 0); i++)
2431 {
2432 q = XVECEXP (sequence, 0, i);
2433 gcc_assert (INSN_P (q));
2434 reset_used_flags (PATTERN (q));
2435 reset_used_flags (REG_NOTES (q));
2436 }
2437 }
2438 }
2439
2440 for (p = get_insns (); p; p = NEXT_INSN (p))
2441 if (INSN_P (p))
2442 {
2443 verify_rtx_sharing (PATTERN (p), p);
2444 verify_rtx_sharing (REG_NOTES (p), p);
2445 }
2446 }
2447
2448 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2449 Assumes the mark bits are cleared at entry. */
2450
2451 void
2452 unshare_all_rtl_in_chain (rtx insn)
2453 {
2454 for (; insn; insn = NEXT_INSN (insn))
2455 if (INSN_P (insn))
2456 {
2457 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2458 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2459 }
2460 }
2461
2462 /* Go through all virtual stack slots of a function and mark them as
2463 shared. We never replace the DECL_RTLs themselves with a copy,
2464 but expressions mentioned into a DECL_RTL cannot be shared with
2465 expressions in the instruction stream.
2466
2467 Note that reload may convert pseudo registers into memories in-place.
2468 Pseudo registers are always shared, but MEMs never are. Thus if we
2469 reset the used flags on MEMs in the instruction stream, we must set
2470 them again on MEMs that appear in DECL_RTLs. */
2471
2472 static void
2473 set_used_decls (tree blk)
2474 {
2475 tree t;
2476
2477 /* Mark decls. */
2478 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2479 if (DECL_RTL_SET_P (t))
2480 set_used_flags (DECL_RTL (t));
2481
2482 /* Now process sub-blocks. */
2483 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2484 set_used_decls (t);
2485 }
2486
2487 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2488 Recursively does the same for subexpressions. Uses
2489 copy_rtx_if_shared_1 to reduce stack space. */
2490
2491 rtx
2492 copy_rtx_if_shared (rtx orig)
2493 {
2494 copy_rtx_if_shared_1 (&orig);
2495 return orig;
2496 }
2497
2498 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2499 use. Recursively does the same for subexpressions. */
2500
2501 static void
2502 copy_rtx_if_shared_1 (rtx *orig1)
2503 {
2504 rtx x;
2505 int i;
2506 enum rtx_code code;
2507 rtx *last_ptr;
2508 const char *format_ptr;
2509 int copied = 0;
2510 int length;
2511
2512 /* Repeat is used to turn tail-recursion into iteration. */
2513 repeat:
2514 x = *orig1;
2515
2516 if (x == 0)
2517 return;
2518
2519 code = GET_CODE (x);
2520
2521 /* These types may be freely shared. */
2522
2523 switch (code)
2524 {
2525 case REG:
2526 case CONST_INT:
2527 case CONST_DOUBLE:
2528 case CONST_FIXED:
2529 case CONST_VECTOR:
2530 case SYMBOL_REF:
2531 case LABEL_REF:
2532 case CODE_LABEL:
2533 case PC:
2534 case CC0:
2535 case SCRATCH:
2536 /* SCRATCH must be shared because they represent distinct values. */
2537 return;
2538 case CLOBBER:
2539 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2540 return;
2541 break;
2542
2543 case CONST:
2544 if (shared_const_p (x))
2545 return;
2546 break;
2547
2548 case INSN:
2549 case JUMP_INSN:
2550 case CALL_INSN:
2551 case NOTE:
2552 case BARRIER:
2553 /* The chain of insns is not being copied. */
2554 return;
2555
2556 default:
2557 break;
2558 }
2559
2560 /* This rtx may not be shared. If it has already been seen,
2561 replace it with a copy of itself. */
2562
2563 if (RTX_FLAG (x, used))
2564 {
2565 x = shallow_copy_rtx (x);
2566 copied = 1;
2567 }
2568 RTX_FLAG (x, used) = 1;
2569
2570 /* Now scan the subexpressions recursively.
2571 We can store any replaced subexpressions directly into X
2572 since we know X is not shared! Any vectors in X
2573 must be copied if X was copied. */
2574
2575 format_ptr = GET_RTX_FORMAT (code);
2576 length = GET_RTX_LENGTH (code);
2577 last_ptr = NULL;
2578
2579 for (i = 0; i < length; i++)
2580 {
2581 switch (*format_ptr++)
2582 {
2583 case 'e':
2584 if (last_ptr)
2585 copy_rtx_if_shared_1 (last_ptr);
2586 last_ptr = &XEXP (x, i);
2587 break;
2588
2589 case 'E':
2590 if (XVEC (x, i) != NULL)
2591 {
2592 int j;
2593 int len = XVECLEN (x, i);
2594
2595 /* Copy the vector iff I copied the rtx and the length
2596 is nonzero. */
2597 if (copied && len > 0)
2598 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2599
2600 /* Call recursively on all inside the vector. */
2601 for (j = 0; j < len; j++)
2602 {
2603 if (last_ptr)
2604 copy_rtx_if_shared_1 (last_ptr);
2605 last_ptr = &XVECEXP (x, i, j);
2606 }
2607 }
2608 break;
2609 }
2610 }
2611 *orig1 = x;
2612 if (last_ptr)
2613 {
2614 orig1 = last_ptr;
2615 goto repeat;
2616 }
2617 return;
2618 }
2619
2620 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2621 to look for shared sub-parts. */
2622
2623 void
2624 reset_used_flags (rtx x)
2625 {
2626 int i, j;
2627 enum rtx_code code;
2628 const char *format_ptr;
2629 int length;
2630
2631 /* Repeat is used to turn tail-recursion into iteration. */
2632 repeat:
2633 if (x == 0)
2634 return;
2635
2636 code = GET_CODE (x);
2637
2638 /* These types may be freely shared so we needn't do any resetting
2639 for them. */
2640
2641 switch (code)
2642 {
2643 case REG:
2644 case CONST_INT:
2645 case CONST_DOUBLE:
2646 case CONST_FIXED:
2647 case CONST_VECTOR:
2648 case SYMBOL_REF:
2649 case CODE_LABEL:
2650 case PC:
2651 case CC0:
2652 return;
2653
2654 case INSN:
2655 case JUMP_INSN:
2656 case CALL_INSN:
2657 case NOTE:
2658 case LABEL_REF:
2659 case BARRIER:
2660 /* The chain of insns is not being copied. */
2661 return;
2662
2663 default:
2664 break;
2665 }
2666
2667 RTX_FLAG (x, used) = 0;
2668
2669 format_ptr = GET_RTX_FORMAT (code);
2670 length = GET_RTX_LENGTH (code);
2671
2672 for (i = 0; i < length; i++)
2673 {
2674 switch (*format_ptr++)
2675 {
2676 case 'e':
2677 if (i == length-1)
2678 {
2679 x = XEXP (x, i);
2680 goto repeat;
2681 }
2682 reset_used_flags (XEXP (x, i));
2683 break;
2684
2685 case 'E':
2686 for (j = 0; j < XVECLEN (x, i); j++)
2687 reset_used_flags (XVECEXP (x, i, j));
2688 break;
2689 }
2690 }
2691 }
2692
2693 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2694 to look for shared sub-parts. */
2695
2696 void
2697 set_used_flags (rtx x)
2698 {
2699 int i, j;
2700 enum rtx_code code;
2701 const char *format_ptr;
2702
2703 if (x == 0)
2704 return;
2705
2706 code = GET_CODE (x);
2707
2708 /* These types may be freely shared so we needn't do any resetting
2709 for them. */
2710
2711 switch (code)
2712 {
2713 case REG:
2714 case CONST_INT:
2715 case CONST_DOUBLE:
2716 case CONST_FIXED:
2717 case CONST_VECTOR:
2718 case SYMBOL_REF:
2719 case CODE_LABEL:
2720 case PC:
2721 case CC0:
2722 return;
2723
2724 case INSN:
2725 case JUMP_INSN:
2726 case CALL_INSN:
2727 case NOTE:
2728 case LABEL_REF:
2729 case BARRIER:
2730 /* The chain of insns is not being copied. */
2731 return;
2732
2733 default:
2734 break;
2735 }
2736
2737 RTX_FLAG (x, used) = 1;
2738
2739 format_ptr = GET_RTX_FORMAT (code);
2740 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2741 {
2742 switch (*format_ptr++)
2743 {
2744 case 'e':
2745 set_used_flags (XEXP (x, i));
2746 break;
2747
2748 case 'E':
2749 for (j = 0; j < XVECLEN (x, i); j++)
2750 set_used_flags (XVECEXP (x, i, j));
2751 break;
2752 }
2753 }
2754 }
2755 \f
2756 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2757 Return X or the rtx for the pseudo reg the value of X was copied into.
2758 OTHER must be valid as a SET_DEST. */
2759
2760 rtx
2761 make_safe_from (rtx x, rtx other)
2762 {
2763 while (1)
2764 switch (GET_CODE (other))
2765 {
2766 case SUBREG:
2767 other = SUBREG_REG (other);
2768 break;
2769 case STRICT_LOW_PART:
2770 case SIGN_EXTEND:
2771 case ZERO_EXTEND:
2772 other = XEXP (other, 0);
2773 break;
2774 default:
2775 goto done;
2776 }
2777 done:
2778 if ((MEM_P (other)
2779 && ! CONSTANT_P (x)
2780 && !REG_P (x)
2781 && GET_CODE (x) != SUBREG)
2782 || (REG_P (other)
2783 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2784 || reg_mentioned_p (other, x))))
2785 {
2786 rtx temp = gen_reg_rtx (GET_MODE (x));
2787 emit_move_insn (temp, x);
2788 return temp;
2789 }
2790 return x;
2791 }
2792 \f
2793 /* Emission of insns (adding them to the doubly-linked list). */
2794
2795 /* Return the first insn of the current sequence or current function. */
2796
2797 rtx
2798 get_insns (void)
2799 {
2800 return first_insn;
2801 }
2802
2803 /* Specify a new insn as the first in the chain. */
2804
2805 void
2806 set_first_insn (rtx insn)
2807 {
2808 gcc_assert (!PREV_INSN (insn));
2809 first_insn = insn;
2810 }
2811
2812 /* Return the last insn emitted in current sequence or current function. */
2813
2814 rtx
2815 get_last_insn (void)
2816 {
2817 return last_insn;
2818 }
2819
2820 /* Specify a new insn as the last in the chain. */
2821
2822 void
2823 set_last_insn (rtx insn)
2824 {
2825 gcc_assert (!NEXT_INSN (insn));
2826 last_insn = insn;
2827 }
2828
2829 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2830
2831 rtx
2832 get_last_insn_anywhere (void)
2833 {
2834 struct sequence_stack *stack;
2835 if (last_insn)
2836 return last_insn;
2837 for (stack = seq_stack; stack; stack = stack->next)
2838 if (stack->last != 0)
2839 return stack->last;
2840 return 0;
2841 }
2842
2843 /* Return the first nonnote insn emitted in current sequence or current
2844 function. This routine looks inside SEQUENCEs. */
2845
2846 rtx
2847 get_first_nonnote_insn (void)
2848 {
2849 rtx insn = first_insn;
2850
2851 if (insn)
2852 {
2853 if (NOTE_P (insn))
2854 for (insn = next_insn (insn);
2855 insn && NOTE_P (insn);
2856 insn = next_insn (insn))
2857 continue;
2858 else
2859 {
2860 if (NONJUMP_INSN_P (insn)
2861 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2862 insn = XVECEXP (PATTERN (insn), 0, 0);
2863 }
2864 }
2865
2866 return insn;
2867 }
2868
2869 /* Return the last nonnote insn emitted in current sequence or current
2870 function. This routine looks inside SEQUENCEs. */
2871
2872 rtx
2873 get_last_nonnote_insn (void)
2874 {
2875 rtx insn = last_insn;
2876
2877 if (insn)
2878 {
2879 if (NOTE_P (insn))
2880 for (insn = previous_insn (insn);
2881 insn && NOTE_P (insn);
2882 insn = previous_insn (insn))
2883 continue;
2884 else
2885 {
2886 if (NONJUMP_INSN_P (insn)
2887 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2888 insn = XVECEXP (PATTERN (insn), 0,
2889 XVECLEN (PATTERN (insn), 0) - 1);
2890 }
2891 }
2892
2893 return insn;
2894 }
2895
2896 /* Return a number larger than any instruction's uid in this function. */
2897
2898 int
2899 get_max_uid (void)
2900 {
2901 return cur_insn_uid;
2902 }
2903 \f
2904 /* Return the next insn. If it is a SEQUENCE, return the first insn
2905 of the sequence. */
2906
2907 rtx
2908 next_insn (rtx insn)
2909 {
2910 if (insn)
2911 {
2912 insn = NEXT_INSN (insn);
2913 if (insn && NONJUMP_INSN_P (insn)
2914 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2915 insn = XVECEXP (PATTERN (insn), 0, 0);
2916 }
2917
2918 return insn;
2919 }
2920
2921 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2922 of the sequence. */
2923
2924 rtx
2925 previous_insn (rtx insn)
2926 {
2927 if (insn)
2928 {
2929 insn = PREV_INSN (insn);
2930 if (insn && NONJUMP_INSN_P (insn)
2931 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2932 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2933 }
2934
2935 return insn;
2936 }
2937
2938 /* Return the next insn after INSN that is not a NOTE. This routine does not
2939 look inside SEQUENCEs. */
2940
2941 rtx
2942 next_nonnote_insn (rtx insn)
2943 {
2944 while (insn)
2945 {
2946 insn = NEXT_INSN (insn);
2947 if (insn == 0 || !NOTE_P (insn))
2948 break;
2949 }
2950
2951 return insn;
2952 }
2953
2954 /* Return the previous insn before INSN that is not a NOTE. This routine does
2955 not look inside SEQUENCEs. */
2956
2957 rtx
2958 prev_nonnote_insn (rtx insn)
2959 {
2960 while (insn)
2961 {
2962 insn = PREV_INSN (insn);
2963 if (insn == 0 || !NOTE_P (insn))
2964 break;
2965 }
2966
2967 return insn;
2968 }
2969
2970 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2971 or 0, if there is none. This routine does not look inside
2972 SEQUENCEs. */
2973
2974 rtx
2975 next_real_insn (rtx insn)
2976 {
2977 while (insn)
2978 {
2979 insn = NEXT_INSN (insn);
2980 if (insn == 0 || INSN_P (insn))
2981 break;
2982 }
2983
2984 return insn;
2985 }
2986
2987 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2988 or 0, if there is none. This routine does not look inside
2989 SEQUENCEs. */
2990
2991 rtx
2992 prev_real_insn (rtx insn)
2993 {
2994 while (insn)
2995 {
2996 insn = PREV_INSN (insn);
2997 if (insn == 0 || INSN_P (insn))
2998 break;
2999 }
3000
3001 return insn;
3002 }
3003
3004 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3005 This routine does not look inside SEQUENCEs. */
3006
3007 rtx
3008 last_call_insn (void)
3009 {
3010 rtx insn;
3011
3012 for (insn = get_last_insn ();
3013 insn && !CALL_P (insn);
3014 insn = PREV_INSN (insn))
3015 ;
3016
3017 return insn;
3018 }
3019
3020 /* Find the next insn after INSN that really does something. This routine
3021 does not look inside SEQUENCEs. Until reload has completed, this is the
3022 same as next_real_insn. */
3023
3024 int
3025 active_insn_p (const_rtx insn)
3026 {
3027 return (CALL_P (insn) || JUMP_P (insn)
3028 || (NONJUMP_INSN_P (insn)
3029 && (! reload_completed
3030 || (GET_CODE (PATTERN (insn)) != USE
3031 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3032 }
3033
3034 rtx
3035 next_active_insn (rtx insn)
3036 {
3037 while (insn)
3038 {
3039 insn = NEXT_INSN (insn);
3040 if (insn == 0 || active_insn_p (insn))
3041 break;
3042 }
3043
3044 return insn;
3045 }
3046
3047 /* Find the last insn before INSN that really does something. This routine
3048 does not look inside SEQUENCEs. Until reload has completed, this is the
3049 same as prev_real_insn. */
3050
3051 rtx
3052 prev_active_insn (rtx insn)
3053 {
3054 while (insn)
3055 {
3056 insn = PREV_INSN (insn);
3057 if (insn == 0 || active_insn_p (insn))
3058 break;
3059 }
3060
3061 return insn;
3062 }
3063
3064 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3065
3066 rtx
3067 next_label (rtx insn)
3068 {
3069 while (insn)
3070 {
3071 insn = NEXT_INSN (insn);
3072 if (insn == 0 || LABEL_P (insn))
3073 break;
3074 }
3075
3076 return insn;
3077 }
3078
3079 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3080
3081 rtx
3082 prev_label (rtx insn)
3083 {
3084 while (insn)
3085 {
3086 insn = PREV_INSN (insn);
3087 if (insn == 0 || LABEL_P (insn))
3088 break;
3089 }
3090
3091 return insn;
3092 }
3093
3094 /* Return the last label to mark the same position as LABEL. Return null
3095 if LABEL itself is null. */
3096
3097 rtx
3098 skip_consecutive_labels (rtx label)
3099 {
3100 rtx insn;
3101
3102 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3103 if (LABEL_P (insn))
3104 label = insn;
3105
3106 return label;
3107 }
3108 \f
3109 #ifdef HAVE_cc0
3110 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3111 and REG_CC_USER notes so we can find it. */
3112
3113 void
3114 link_cc0_insns (rtx insn)
3115 {
3116 rtx user = next_nonnote_insn (insn);
3117
3118 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3119 user = XVECEXP (PATTERN (user), 0, 0);
3120
3121 add_reg_note (user, REG_CC_SETTER, insn);
3122 add_reg_note (insn, REG_CC_USER, user);
3123 }
3124
3125 /* Return the next insn that uses CC0 after INSN, which is assumed to
3126 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3127 applied to the result of this function should yield INSN).
3128
3129 Normally, this is simply the next insn. However, if a REG_CC_USER note
3130 is present, it contains the insn that uses CC0.
3131
3132 Return 0 if we can't find the insn. */
3133
3134 rtx
3135 next_cc0_user (rtx insn)
3136 {
3137 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3138
3139 if (note)
3140 return XEXP (note, 0);
3141
3142 insn = next_nonnote_insn (insn);
3143 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3144 insn = XVECEXP (PATTERN (insn), 0, 0);
3145
3146 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3147 return insn;
3148
3149 return 0;
3150 }
3151
3152 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3153 note, it is the previous insn. */
3154
3155 rtx
3156 prev_cc0_setter (rtx insn)
3157 {
3158 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3159
3160 if (note)
3161 return XEXP (note, 0);
3162
3163 insn = prev_nonnote_insn (insn);
3164 gcc_assert (sets_cc0_p (PATTERN (insn)));
3165
3166 return insn;
3167 }
3168 #endif
3169
3170 #ifdef AUTO_INC_DEC
3171 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3172
3173 static int
3174 find_auto_inc (rtx *xp, void *data)
3175 {
3176 rtx x = *xp;
3177 rtx reg = (rtx) data;
3178
3179 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3180 return 0;
3181
3182 switch (GET_CODE (x))
3183 {
3184 case PRE_DEC:
3185 case PRE_INC:
3186 case POST_DEC:
3187 case POST_INC:
3188 case PRE_MODIFY:
3189 case POST_MODIFY:
3190 if (rtx_equal_p (reg, XEXP (x, 0)))
3191 return 1;
3192 break;
3193
3194 default:
3195 gcc_unreachable ();
3196 }
3197 return -1;
3198 }
3199 #endif
3200
3201 /* Increment the label uses for all labels present in rtx. */
3202
3203 static void
3204 mark_label_nuses (rtx x)
3205 {
3206 enum rtx_code code;
3207 int i, j;
3208 const char *fmt;
3209
3210 code = GET_CODE (x);
3211 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3212 LABEL_NUSES (XEXP (x, 0))++;
3213
3214 fmt = GET_RTX_FORMAT (code);
3215 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3216 {
3217 if (fmt[i] == 'e')
3218 mark_label_nuses (XEXP (x, i));
3219 else if (fmt[i] == 'E')
3220 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3221 mark_label_nuses (XVECEXP (x, i, j));
3222 }
3223 }
3224
3225 \f
3226 /* Try splitting insns that can be split for better scheduling.
3227 PAT is the pattern which might split.
3228 TRIAL is the insn providing PAT.
3229 LAST is nonzero if we should return the last insn of the sequence produced.
3230
3231 If this routine succeeds in splitting, it returns the first or last
3232 replacement insn depending on the value of LAST. Otherwise, it
3233 returns TRIAL. If the insn to be returned can be split, it will be. */
3234
3235 rtx
3236 try_split (rtx pat, rtx trial, int last)
3237 {
3238 rtx before = PREV_INSN (trial);
3239 rtx after = NEXT_INSN (trial);
3240 int has_barrier = 0;
3241 rtx note, seq, tem;
3242 int probability;
3243 rtx insn_last, insn;
3244 int njumps = 0;
3245
3246 if (any_condjump_p (trial)
3247 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3248 split_branch_probability = INTVAL (XEXP (note, 0));
3249 probability = split_branch_probability;
3250
3251 seq = split_insns (pat, trial);
3252
3253 split_branch_probability = -1;
3254
3255 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3256 We may need to handle this specially. */
3257 if (after && BARRIER_P (after))
3258 {
3259 has_barrier = 1;
3260 after = NEXT_INSN (after);
3261 }
3262
3263 if (!seq)
3264 return trial;
3265
3266 /* Avoid infinite loop if any insn of the result matches
3267 the original pattern. */
3268 insn_last = seq;
3269 while (1)
3270 {
3271 if (INSN_P (insn_last)
3272 && rtx_equal_p (PATTERN (insn_last), pat))
3273 return trial;
3274 if (!NEXT_INSN (insn_last))
3275 break;
3276 insn_last = NEXT_INSN (insn_last);
3277 }
3278
3279 /* We will be adding the new sequence to the function. The splitters
3280 may have introduced invalid RTL sharing, so unshare the sequence now. */
3281 unshare_all_rtl_in_chain (seq);
3282
3283 /* Mark labels. */
3284 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3285 {
3286 if (JUMP_P (insn))
3287 {
3288 mark_jump_label (PATTERN (insn), insn, 0);
3289 njumps++;
3290 if (probability != -1
3291 && any_condjump_p (insn)
3292 && !find_reg_note (insn, REG_BR_PROB, 0))
3293 {
3294 /* We can preserve the REG_BR_PROB notes only if exactly
3295 one jump is created, otherwise the machine description
3296 is responsible for this step using
3297 split_branch_probability variable. */
3298 gcc_assert (njumps == 1);
3299 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3300 }
3301 }
3302 }
3303
3304 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3305 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3306 if (CALL_P (trial))
3307 {
3308 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3309 if (CALL_P (insn))
3310 {
3311 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3312 while (*p)
3313 p = &XEXP (*p, 1);
3314 *p = CALL_INSN_FUNCTION_USAGE (trial);
3315 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3316 }
3317 }
3318
3319 /* Copy notes, particularly those related to the CFG. */
3320 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3321 {
3322 switch (REG_NOTE_KIND (note))
3323 {
3324 case REG_EH_REGION:
3325 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3326 {
3327 if (CALL_P (insn)
3328 || (flag_non_call_exceptions && INSN_P (insn)
3329 && may_trap_p (PATTERN (insn))))
3330 add_reg_note (insn, REG_EH_REGION, XEXP (note, 0));
3331 }
3332 break;
3333
3334 case REG_NORETURN:
3335 case REG_SETJMP:
3336 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3337 {
3338 if (CALL_P (insn))
3339 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3340 }
3341 break;
3342
3343 case REG_NON_LOCAL_GOTO:
3344 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3345 {
3346 if (JUMP_P (insn))
3347 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3348 }
3349 break;
3350
3351 #ifdef AUTO_INC_DEC
3352 case REG_INC:
3353 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3354 {
3355 rtx reg = XEXP (note, 0);
3356 if (!FIND_REG_INC_NOTE (insn, reg)
3357 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3358 add_reg_note (insn, REG_INC, reg);
3359 }
3360 break;
3361 #endif
3362
3363 default:
3364 break;
3365 }
3366 }
3367
3368 /* If there are LABELS inside the split insns increment the
3369 usage count so we don't delete the label. */
3370 if (INSN_P (trial))
3371 {
3372 insn = insn_last;
3373 while (insn != NULL_RTX)
3374 {
3375 /* JUMP_P insns have already been "marked" above. */
3376 if (NONJUMP_INSN_P (insn))
3377 mark_label_nuses (PATTERN (insn));
3378
3379 insn = PREV_INSN (insn);
3380 }
3381 }
3382
3383 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3384
3385 delete_insn (trial);
3386 if (has_barrier)
3387 emit_barrier_after (tem);
3388
3389 /* Recursively call try_split for each new insn created; by the
3390 time control returns here that insn will be fully split, so
3391 set LAST and continue from the insn after the one returned.
3392 We can't use next_active_insn here since AFTER may be a note.
3393 Ignore deleted insns, which can be occur if not optimizing. */
3394 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3395 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3396 tem = try_split (PATTERN (tem), tem, 1);
3397
3398 /* Return either the first or the last insn, depending on which was
3399 requested. */
3400 return last
3401 ? (after ? PREV_INSN (after) : last_insn)
3402 : NEXT_INSN (before);
3403 }
3404 \f
3405 /* Make and return an INSN rtx, initializing all its slots.
3406 Store PATTERN in the pattern slots. */
3407
3408 rtx
3409 make_insn_raw (rtx pattern)
3410 {
3411 rtx insn;
3412
3413 insn = rtx_alloc (INSN);
3414
3415 INSN_UID (insn) = cur_insn_uid++;
3416 PATTERN (insn) = pattern;
3417 INSN_CODE (insn) = -1;
3418 REG_NOTES (insn) = NULL;
3419 INSN_LOCATOR (insn) = curr_insn_locator ();
3420 BLOCK_FOR_INSN (insn) = NULL;
3421
3422 #ifdef ENABLE_RTL_CHECKING
3423 if (insn
3424 && INSN_P (insn)
3425 && (returnjump_p (insn)
3426 || (GET_CODE (insn) == SET
3427 && SET_DEST (insn) == pc_rtx)))
3428 {
3429 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3430 debug_rtx (insn);
3431 }
3432 #endif
3433
3434 return insn;
3435 }
3436
3437 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3438
3439 rtx
3440 make_jump_insn_raw (rtx pattern)
3441 {
3442 rtx insn;
3443
3444 insn = rtx_alloc (JUMP_INSN);
3445 INSN_UID (insn) = cur_insn_uid++;
3446
3447 PATTERN (insn) = pattern;
3448 INSN_CODE (insn) = -1;
3449 REG_NOTES (insn) = NULL;
3450 JUMP_LABEL (insn) = NULL;
3451 INSN_LOCATOR (insn) = curr_insn_locator ();
3452 BLOCK_FOR_INSN (insn) = NULL;
3453
3454 return insn;
3455 }
3456
3457 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3458
3459 static rtx
3460 make_call_insn_raw (rtx pattern)
3461 {
3462 rtx insn;
3463
3464 insn = rtx_alloc (CALL_INSN);
3465 INSN_UID (insn) = cur_insn_uid++;
3466
3467 PATTERN (insn) = pattern;
3468 INSN_CODE (insn) = -1;
3469 REG_NOTES (insn) = NULL;
3470 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3471 INSN_LOCATOR (insn) = curr_insn_locator ();
3472 BLOCK_FOR_INSN (insn) = NULL;
3473
3474 return insn;
3475 }
3476 \f
3477 /* Add INSN to the end of the doubly-linked list.
3478 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3479
3480 void
3481 add_insn (rtx insn)
3482 {
3483 PREV_INSN (insn) = last_insn;
3484 NEXT_INSN (insn) = 0;
3485
3486 if (NULL != last_insn)
3487 NEXT_INSN (last_insn) = insn;
3488
3489 if (NULL == first_insn)
3490 first_insn = insn;
3491
3492 last_insn = insn;
3493 }
3494
3495 /* Add INSN into the doubly-linked list after insn AFTER. This and
3496 the next should be the only functions called to insert an insn once
3497 delay slots have been filled since only they know how to update a
3498 SEQUENCE. */
3499
3500 void
3501 add_insn_after (rtx insn, rtx after, basic_block bb)
3502 {
3503 rtx next = NEXT_INSN (after);
3504
3505 gcc_assert (!optimize || !INSN_DELETED_P (after));
3506
3507 NEXT_INSN (insn) = next;
3508 PREV_INSN (insn) = after;
3509
3510 if (next)
3511 {
3512 PREV_INSN (next) = insn;
3513 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3514 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3515 }
3516 else if (last_insn == after)
3517 last_insn = insn;
3518 else
3519 {
3520 struct sequence_stack *stack = seq_stack;
3521 /* Scan all pending sequences too. */
3522 for (; stack; stack = stack->next)
3523 if (after == stack->last)
3524 {
3525 stack->last = insn;
3526 break;
3527 }
3528
3529 gcc_assert (stack);
3530 }
3531
3532 if (!BARRIER_P (after)
3533 && !BARRIER_P (insn)
3534 && (bb = BLOCK_FOR_INSN (after)))
3535 {
3536 set_block_for_insn (insn, bb);
3537 if (INSN_P (insn))
3538 df_insn_rescan (insn);
3539 /* Should not happen as first in the BB is always
3540 either NOTE or LABEL. */
3541 if (BB_END (bb) == after
3542 /* Avoid clobbering of structure when creating new BB. */
3543 && !BARRIER_P (insn)
3544 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3545 BB_END (bb) = insn;
3546 }
3547
3548 NEXT_INSN (after) = insn;
3549 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3550 {
3551 rtx sequence = PATTERN (after);
3552 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3553 }
3554 }
3555
3556 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3557 the previous should be the only functions called to insert an insn
3558 once delay slots have been filled since only they know how to
3559 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3560 bb from before. */
3561
3562 void
3563 add_insn_before (rtx insn, rtx before, basic_block bb)
3564 {
3565 rtx prev = PREV_INSN (before);
3566
3567 gcc_assert (!optimize || !INSN_DELETED_P (before));
3568
3569 PREV_INSN (insn) = prev;
3570 NEXT_INSN (insn) = before;
3571
3572 if (prev)
3573 {
3574 NEXT_INSN (prev) = insn;
3575 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3576 {
3577 rtx sequence = PATTERN (prev);
3578 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3579 }
3580 }
3581 else if (first_insn == before)
3582 first_insn = insn;
3583 else
3584 {
3585 struct sequence_stack *stack = seq_stack;
3586 /* Scan all pending sequences too. */
3587 for (; stack; stack = stack->next)
3588 if (before == stack->first)
3589 {
3590 stack->first = insn;
3591 break;
3592 }
3593
3594 gcc_assert (stack);
3595 }
3596
3597 if (!bb
3598 && !BARRIER_P (before)
3599 && !BARRIER_P (insn))
3600 bb = BLOCK_FOR_INSN (before);
3601
3602 if (bb)
3603 {
3604 set_block_for_insn (insn, bb);
3605 if (INSN_P (insn))
3606 df_insn_rescan (insn);
3607 /* Should not happen as first in the BB is always either NOTE or
3608 LABEL. */
3609 gcc_assert (BB_HEAD (bb) != insn
3610 /* Avoid clobbering of structure when creating new BB. */
3611 || BARRIER_P (insn)
3612 || NOTE_INSN_BASIC_BLOCK_P (insn));
3613 }
3614
3615 PREV_INSN (before) = insn;
3616 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3617 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3618 }
3619
3620
3621 /* Replace insn with an deleted instruction note. */
3622
3623 void set_insn_deleted (rtx insn)
3624 {
3625 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3626 PUT_CODE (insn, NOTE);
3627 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3628 }
3629
3630
3631 /* Remove an insn from its doubly-linked list. This function knows how
3632 to handle sequences. */
3633 void
3634 remove_insn (rtx insn)
3635 {
3636 rtx next = NEXT_INSN (insn);
3637 rtx prev = PREV_INSN (insn);
3638 basic_block bb;
3639
3640 /* Later in the code, the block will be marked dirty. */
3641 df_insn_delete (NULL, INSN_UID (insn));
3642
3643 if (prev)
3644 {
3645 NEXT_INSN (prev) = next;
3646 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3647 {
3648 rtx sequence = PATTERN (prev);
3649 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3650 }
3651 }
3652 else if (first_insn == insn)
3653 first_insn = next;
3654 else
3655 {
3656 struct sequence_stack *stack = seq_stack;
3657 /* Scan all pending sequences too. */
3658 for (; stack; stack = stack->next)
3659 if (insn == stack->first)
3660 {
3661 stack->first = next;
3662 break;
3663 }
3664
3665 gcc_assert (stack);
3666 }
3667
3668 if (next)
3669 {
3670 PREV_INSN (next) = prev;
3671 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3672 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3673 }
3674 else if (last_insn == insn)
3675 last_insn = prev;
3676 else
3677 {
3678 struct sequence_stack *stack = seq_stack;
3679 /* Scan all pending sequences too. */
3680 for (; stack; stack = stack->next)
3681 if (insn == stack->last)
3682 {
3683 stack->last = prev;
3684 break;
3685 }
3686
3687 gcc_assert (stack);
3688 }
3689 if (!BARRIER_P (insn)
3690 && (bb = BLOCK_FOR_INSN (insn)))
3691 {
3692 if (INSN_P (insn))
3693 df_set_bb_dirty (bb);
3694 if (BB_HEAD (bb) == insn)
3695 {
3696 /* Never ever delete the basic block note without deleting whole
3697 basic block. */
3698 gcc_assert (!NOTE_P (insn));
3699 BB_HEAD (bb) = next;
3700 }
3701 if (BB_END (bb) == insn)
3702 BB_END (bb) = prev;
3703 }
3704 }
3705
3706 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3707
3708 void
3709 add_function_usage_to (rtx call_insn, rtx call_fusage)
3710 {
3711 gcc_assert (call_insn && CALL_P (call_insn));
3712
3713 /* Put the register usage information on the CALL. If there is already
3714 some usage information, put ours at the end. */
3715 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3716 {
3717 rtx link;
3718
3719 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3720 link = XEXP (link, 1))
3721 ;
3722
3723 XEXP (link, 1) = call_fusage;
3724 }
3725 else
3726 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3727 }
3728
3729 /* Delete all insns made since FROM.
3730 FROM becomes the new last instruction. */
3731
3732 void
3733 delete_insns_since (rtx from)
3734 {
3735 if (from == 0)
3736 first_insn = 0;
3737 else
3738 NEXT_INSN (from) = 0;
3739 last_insn = from;
3740 }
3741
3742 /* This function is deprecated, please use sequences instead.
3743
3744 Move a consecutive bunch of insns to a different place in the chain.
3745 The insns to be moved are those between FROM and TO.
3746 They are moved to a new position after the insn AFTER.
3747 AFTER must not be FROM or TO or any insn in between.
3748
3749 This function does not know about SEQUENCEs and hence should not be
3750 called after delay-slot filling has been done. */
3751
3752 void
3753 reorder_insns_nobb (rtx from, rtx to, rtx after)
3754 {
3755 /* Splice this bunch out of where it is now. */
3756 if (PREV_INSN (from))
3757 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3758 if (NEXT_INSN (to))
3759 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3760 if (last_insn == to)
3761 last_insn = PREV_INSN (from);
3762 if (first_insn == from)
3763 first_insn = NEXT_INSN (to);
3764
3765 /* Make the new neighbors point to it and it to them. */
3766 if (NEXT_INSN (after))
3767 PREV_INSN (NEXT_INSN (after)) = to;
3768
3769 NEXT_INSN (to) = NEXT_INSN (after);
3770 PREV_INSN (from) = after;
3771 NEXT_INSN (after) = from;
3772 if (after == last_insn)
3773 last_insn = to;
3774 }
3775
3776 /* Same as function above, but take care to update BB boundaries. */
3777 void
3778 reorder_insns (rtx from, rtx to, rtx after)
3779 {
3780 rtx prev = PREV_INSN (from);
3781 basic_block bb, bb2;
3782
3783 reorder_insns_nobb (from, to, after);
3784
3785 if (!BARRIER_P (after)
3786 && (bb = BLOCK_FOR_INSN (after)))
3787 {
3788 rtx x;
3789 df_set_bb_dirty (bb);
3790
3791 if (!BARRIER_P (from)
3792 && (bb2 = BLOCK_FOR_INSN (from)))
3793 {
3794 if (BB_END (bb2) == to)
3795 BB_END (bb2) = prev;
3796 df_set_bb_dirty (bb2);
3797 }
3798
3799 if (BB_END (bb) == after)
3800 BB_END (bb) = to;
3801
3802 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3803 if (!BARRIER_P (x))
3804 df_insn_change_bb (x, bb);
3805 }
3806 }
3807
3808 \f
3809 /* Emit insn(s) of given code and pattern
3810 at a specified place within the doubly-linked list.
3811
3812 All of the emit_foo global entry points accept an object
3813 X which is either an insn list or a PATTERN of a single
3814 instruction.
3815
3816 There are thus a few canonical ways to generate code and
3817 emit it at a specific place in the instruction stream. For
3818 example, consider the instruction named SPOT and the fact that
3819 we would like to emit some instructions before SPOT. We might
3820 do it like this:
3821
3822 start_sequence ();
3823 ... emit the new instructions ...
3824 insns_head = get_insns ();
3825 end_sequence ();
3826
3827 emit_insn_before (insns_head, SPOT);
3828
3829 It used to be common to generate SEQUENCE rtl instead, but that
3830 is a relic of the past which no longer occurs. The reason is that
3831 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3832 generated would almost certainly die right after it was created. */
3833
3834 /* Make X be output before the instruction BEFORE. */
3835
3836 rtx
3837 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
3838 {
3839 rtx last = before;
3840 rtx insn;
3841
3842 gcc_assert (before);
3843
3844 if (x == NULL_RTX)
3845 return last;
3846
3847 switch (GET_CODE (x))
3848 {
3849 case INSN:
3850 case JUMP_INSN:
3851 case CALL_INSN:
3852 case CODE_LABEL:
3853 case BARRIER:
3854 case NOTE:
3855 insn = x;
3856 while (insn)
3857 {
3858 rtx next = NEXT_INSN (insn);
3859 add_insn_before (insn, before, bb);
3860 last = insn;
3861 insn = next;
3862 }
3863 break;
3864
3865 #ifdef ENABLE_RTL_CHECKING
3866 case SEQUENCE:
3867 gcc_unreachable ();
3868 break;
3869 #endif
3870
3871 default:
3872 last = make_insn_raw (x);
3873 add_insn_before (last, before, bb);
3874 break;
3875 }
3876
3877 return last;
3878 }
3879
3880 /* Make an instruction with body X and code JUMP_INSN
3881 and output it before the instruction BEFORE. */
3882
3883 rtx
3884 emit_jump_insn_before_noloc (rtx x, rtx before)
3885 {
3886 rtx insn, last = NULL_RTX;
3887
3888 gcc_assert (before);
3889
3890 switch (GET_CODE (x))
3891 {
3892 case INSN:
3893 case JUMP_INSN:
3894 case CALL_INSN:
3895 case CODE_LABEL:
3896 case BARRIER:
3897 case NOTE:
3898 insn = x;
3899 while (insn)
3900 {
3901 rtx next = NEXT_INSN (insn);
3902 add_insn_before (insn, before, NULL);
3903 last = insn;
3904 insn = next;
3905 }
3906 break;
3907
3908 #ifdef ENABLE_RTL_CHECKING
3909 case SEQUENCE:
3910 gcc_unreachable ();
3911 break;
3912 #endif
3913
3914 default:
3915 last = make_jump_insn_raw (x);
3916 add_insn_before (last, before, NULL);
3917 break;
3918 }
3919
3920 return last;
3921 }
3922
3923 /* Make an instruction with body X and code CALL_INSN
3924 and output it before the instruction BEFORE. */
3925
3926 rtx
3927 emit_call_insn_before_noloc (rtx x, rtx before)
3928 {
3929 rtx last = NULL_RTX, insn;
3930
3931 gcc_assert (before);
3932
3933 switch (GET_CODE (x))
3934 {
3935 case INSN:
3936 case JUMP_INSN:
3937 case CALL_INSN:
3938 case CODE_LABEL:
3939 case BARRIER:
3940 case NOTE:
3941 insn = x;
3942 while (insn)
3943 {
3944 rtx next = NEXT_INSN (insn);
3945 add_insn_before (insn, before, NULL);
3946 last = insn;
3947 insn = next;
3948 }
3949 break;
3950
3951 #ifdef ENABLE_RTL_CHECKING
3952 case SEQUENCE:
3953 gcc_unreachable ();
3954 break;
3955 #endif
3956
3957 default:
3958 last = make_call_insn_raw (x);
3959 add_insn_before (last, before, NULL);
3960 break;
3961 }
3962
3963 return last;
3964 }
3965
3966 /* Make an insn of code BARRIER
3967 and output it before the insn BEFORE. */
3968
3969 rtx
3970 emit_barrier_before (rtx before)
3971 {
3972 rtx insn = rtx_alloc (BARRIER);
3973
3974 INSN_UID (insn) = cur_insn_uid++;
3975
3976 add_insn_before (insn, before, NULL);
3977 return insn;
3978 }
3979
3980 /* Emit the label LABEL before the insn BEFORE. */
3981
3982 rtx
3983 emit_label_before (rtx label, rtx before)
3984 {
3985 /* This can be called twice for the same label as a result of the
3986 confusion that follows a syntax error! So make it harmless. */
3987 if (INSN_UID (label) == 0)
3988 {
3989 INSN_UID (label) = cur_insn_uid++;
3990 add_insn_before (label, before, NULL);
3991 }
3992
3993 return label;
3994 }
3995
3996 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3997
3998 rtx
3999 emit_note_before (enum insn_note subtype, rtx before)
4000 {
4001 rtx note = rtx_alloc (NOTE);
4002 INSN_UID (note) = cur_insn_uid++;
4003 NOTE_KIND (note) = subtype;
4004 BLOCK_FOR_INSN (note) = NULL;
4005 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4006
4007 add_insn_before (note, before, NULL);
4008 return note;
4009 }
4010 \f
4011 /* Helper for emit_insn_after, handles lists of instructions
4012 efficiently. */
4013
4014 static rtx
4015 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4016 {
4017 rtx last;
4018 rtx after_after;
4019 if (!bb && !BARRIER_P (after))
4020 bb = BLOCK_FOR_INSN (after);
4021
4022 if (bb)
4023 {
4024 df_set_bb_dirty (bb);
4025 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4026 if (!BARRIER_P (last))
4027 {
4028 set_block_for_insn (last, bb);
4029 df_insn_rescan (last);
4030 }
4031 if (!BARRIER_P (last))
4032 {
4033 set_block_for_insn (last, bb);
4034 df_insn_rescan (last);
4035 }
4036 if (BB_END (bb) == after)
4037 BB_END (bb) = last;
4038 }
4039 else
4040 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4041 continue;
4042
4043 after_after = NEXT_INSN (after);
4044
4045 NEXT_INSN (after) = first;
4046 PREV_INSN (first) = after;
4047 NEXT_INSN (last) = after_after;
4048 if (after_after)
4049 PREV_INSN (after_after) = last;
4050
4051 if (after == last_insn)
4052 last_insn = last;
4053
4054 return last;
4055 }
4056
4057 /* Make X be output after the insn AFTER and set the BB of insn. If
4058 BB is NULL, an attempt is made to infer the BB from AFTER. */
4059
4060 rtx
4061 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4062 {
4063 rtx last = after;
4064
4065 gcc_assert (after);
4066
4067 if (x == NULL_RTX)
4068 return last;
4069
4070 switch (GET_CODE (x))
4071 {
4072 case INSN:
4073 case JUMP_INSN:
4074 case CALL_INSN:
4075 case CODE_LABEL:
4076 case BARRIER:
4077 case NOTE:
4078 last = emit_insn_after_1 (x, after, bb);
4079 break;
4080
4081 #ifdef ENABLE_RTL_CHECKING
4082 case SEQUENCE:
4083 gcc_unreachable ();
4084 break;
4085 #endif
4086
4087 default:
4088 last = make_insn_raw (x);
4089 add_insn_after (last, after, bb);
4090 break;
4091 }
4092
4093 return last;
4094 }
4095
4096
4097 /* Make an insn of code JUMP_INSN with body X
4098 and output it after the insn AFTER. */
4099
4100 rtx
4101 emit_jump_insn_after_noloc (rtx x, rtx after)
4102 {
4103 rtx last;
4104
4105 gcc_assert (after);
4106
4107 switch (GET_CODE (x))
4108 {
4109 case INSN:
4110 case JUMP_INSN:
4111 case CALL_INSN:
4112 case CODE_LABEL:
4113 case BARRIER:
4114 case NOTE:
4115 last = emit_insn_after_1 (x, after, NULL);
4116 break;
4117
4118 #ifdef ENABLE_RTL_CHECKING
4119 case SEQUENCE:
4120 gcc_unreachable ();
4121 break;
4122 #endif
4123
4124 default:
4125 last = make_jump_insn_raw (x);
4126 add_insn_after (last, after, NULL);
4127 break;
4128 }
4129
4130 return last;
4131 }
4132
4133 /* Make an instruction with body X and code CALL_INSN
4134 and output it after the instruction AFTER. */
4135
4136 rtx
4137 emit_call_insn_after_noloc (rtx x, rtx after)
4138 {
4139 rtx last;
4140
4141 gcc_assert (after);
4142
4143 switch (GET_CODE (x))
4144 {
4145 case INSN:
4146 case JUMP_INSN:
4147 case CALL_INSN:
4148 case CODE_LABEL:
4149 case BARRIER:
4150 case NOTE:
4151 last = emit_insn_after_1 (x, after, NULL);
4152 break;
4153
4154 #ifdef ENABLE_RTL_CHECKING
4155 case SEQUENCE:
4156 gcc_unreachable ();
4157 break;
4158 #endif
4159
4160 default:
4161 last = make_call_insn_raw (x);
4162 add_insn_after (last, after, NULL);
4163 break;
4164 }
4165
4166 return last;
4167 }
4168
4169 /* Make an insn of code BARRIER
4170 and output it after the insn AFTER. */
4171
4172 rtx
4173 emit_barrier_after (rtx after)
4174 {
4175 rtx insn = rtx_alloc (BARRIER);
4176
4177 INSN_UID (insn) = cur_insn_uid++;
4178
4179 add_insn_after (insn, after, NULL);
4180 return insn;
4181 }
4182
4183 /* Emit the label LABEL after the insn AFTER. */
4184
4185 rtx
4186 emit_label_after (rtx label, rtx after)
4187 {
4188 /* This can be called twice for the same label
4189 as a result of the confusion that follows a syntax error!
4190 So make it harmless. */
4191 if (INSN_UID (label) == 0)
4192 {
4193 INSN_UID (label) = cur_insn_uid++;
4194 add_insn_after (label, after, NULL);
4195 }
4196
4197 return label;
4198 }
4199
4200 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4201
4202 rtx
4203 emit_note_after (enum insn_note subtype, rtx after)
4204 {
4205 rtx note = rtx_alloc (NOTE);
4206 INSN_UID (note) = cur_insn_uid++;
4207 NOTE_KIND (note) = subtype;
4208 BLOCK_FOR_INSN (note) = NULL;
4209 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4210 add_insn_after (note, after, NULL);
4211 return note;
4212 }
4213 \f
4214 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4215 rtx
4216 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4217 {
4218 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4219
4220 if (pattern == NULL_RTX || !loc)
4221 return last;
4222
4223 after = NEXT_INSN (after);
4224 while (1)
4225 {
4226 if (active_insn_p (after) && !INSN_LOCATOR (after))
4227 INSN_LOCATOR (after) = loc;
4228 if (after == last)
4229 break;
4230 after = NEXT_INSN (after);
4231 }
4232 return last;
4233 }
4234
4235 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4236 rtx
4237 emit_insn_after (rtx pattern, rtx after)
4238 {
4239 if (INSN_P (after))
4240 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4241 else
4242 return emit_insn_after_noloc (pattern, after, NULL);
4243 }
4244
4245 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4246 rtx
4247 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4248 {
4249 rtx last = emit_jump_insn_after_noloc (pattern, after);
4250
4251 if (pattern == NULL_RTX || !loc)
4252 return last;
4253
4254 after = NEXT_INSN (after);
4255 while (1)
4256 {
4257 if (active_insn_p (after) && !INSN_LOCATOR (after))
4258 INSN_LOCATOR (after) = loc;
4259 if (after == last)
4260 break;
4261 after = NEXT_INSN (after);
4262 }
4263 return last;
4264 }
4265
4266 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4267 rtx
4268 emit_jump_insn_after (rtx pattern, rtx after)
4269 {
4270 if (INSN_P (after))
4271 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4272 else
4273 return emit_jump_insn_after_noloc (pattern, after);
4274 }
4275
4276 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4277 rtx
4278 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4279 {
4280 rtx last = emit_call_insn_after_noloc (pattern, after);
4281
4282 if (pattern == NULL_RTX || !loc)
4283 return last;
4284
4285 after = NEXT_INSN (after);
4286 while (1)
4287 {
4288 if (active_insn_p (after) && !INSN_LOCATOR (after))
4289 INSN_LOCATOR (after) = loc;
4290 if (after == last)
4291 break;
4292 after = NEXT_INSN (after);
4293 }
4294 return last;
4295 }
4296
4297 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4298 rtx
4299 emit_call_insn_after (rtx pattern, rtx after)
4300 {
4301 if (INSN_P (after))
4302 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4303 else
4304 return emit_call_insn_after_noloc (pattern, after);
4305 }
4306
4307 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4308 rtx
4309 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4310 {
4311 rtx first = PREV_INSN (before);
4312 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4313
4314 if (pattern == NULL_RTX || !loc)
4315 return last;
4316
4317 if (!first)
4318 first = get_insns ();
4319 else
4320 first = NEXT_INSN (first);
4321 while (1)
4322 {
4323 if (active_insn_p (first) && !INSN_LOCATOR (first))
4324 INSN_LOCATOR (first) = loc;
4325 if (first == last)
4326 break;
4327 first = NEXT_INSN (first);
4328 }
4329 return last;
4330 }
4331
4332 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4333 rtx
4334 emit_insn_before (rtx pattern, rtx before)
4335 {
4336 if (INSN_P (before))
4337 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4338 else
4339 return emit_insn_before_noloc (pattern, before, NULL);
4340 }
4341
4342 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4343 rtx
4344 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4345 {
4346 rtx first = PREV_INSN (before);
4347 rtx last = emit_jump_insn_before_noloc (pattern, before);
4348
4349 if (pattern == NULL_RTX)
4350 return last;
4351
4352 first = NEXT_INSN (first);
4353 while (1)
4354 {
4355 if (active_insn_p (first) && !INSN_LOCATOR (first))
4356 INSN_LOCATOR (first) = loc;
4357 if (first == last)
4358 break;
4359 first = NEXT_INSN (first);
4360 }
4361 return last;
4362 }
4363
4364 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4365 rtx
4366 emit_jump_insn_before (rtx pattern, rtx before)
4367 {
4368 if (INSN_P (before))
4369 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4370 else
4371 return emit_jump_insn_before_noloc (pattern, before);
4372 }
4373
4374 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4375 rtx
4376 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4377 {
4378 rtx first = PREV_INSN (before);
4379 rtx last = emit_call_insn_before_noloc (pattern, before);
4380
4381 if (pattern == NULL_RTX)
4382 return last;
4383
4384 first = NEXT_INSN (first);
4385 while (1)
4386 {
4387 if (active_insn_p (first) && !INSN_LOCATOR (first))
4388 INSN_LOCATOR (first) = loc;
4389 if (first == last)
4390 break;
4391 first = NEXT_INSN (first);
4392 }
4393 return last;
4394 }
4395
4396 /* like emit_call_insn_before_noloc,
4397 but set insn_locator according to before. */
4398 rtx
4399 emit_call_insn_before (rtx pattern, rtx before)
4400 {
4401 if (INSN_P (before))
4402 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4403 else
4404 return emit_call_insn_before_noloc (pattern, before);
4405 }
4406 \f
4407 /* Take X and emit it at the end of the doubly-linked
4408 INSN list.
4409
4410 Returns the last insn emitted. */
4411
4412 rtx
4413 emit_insn (rtx x)
4414 {
4415 rtx last = last_insn;
4416 rtx insn;
4417
4418 if (x == NULL_RTX)
4419 return last;
4420
4421 switch (GET_CODE (x))
4422 {
4423 case INSN:
4424 case JUMP_INSN:
4425 case CALL_INSN:
4426 case CODE_LABEL:
4427 case BARRIER:
4428 case NOTE:
4429 insn = x;
4430 while (insn)
4431 {
4432 rtx next = NEXT_INSN (insn);
4433 add_insn (insn);
4434 last = insn;
4435 insn = next;
4436 }
4437 break;
4438
4439 #ifdef ENABLE_RTL_CHECKING
4440 case SEQUENCE:
4441 gcc_unreachable ();
4442 break;
4443 #endif
4444
4445 default:
4446 last = make_insn_raw (x);
4447 add_insn (last);
4448 break;
4449 }
4450
4451 return last;
4452 }
4453
4454 /* Make an insn of code JUMP_INSN with pattern X
4455 and add it to the end of the doubly-linked list. */
4456
4457 rtx
4458 emit_jump_insn (rtx x)
4459 {
4460 rtx last = NULL_RTX, insn;
4461
4462 switch (GET_CODE (x))
4463 {
4464 case INSN:
4465 case JUMP_INSN:
4466 case CALL_INSN:
4467 case CODE_LABEL:
4468 case BARRIER:
4469 case NOTE:
4470 insn = x;
4471 while (insn)
4472 {
4473 rtx next = NEXT_INSN (insn);
4474 add_insn (insn);
4475 last = insn;
4476 insn = next;
4477 }
4478 break;
4479
4480 #ifdef ENABLE_RTL_CHECKING
4481 case SEQUENCE:
4482 gcc_unreachable ();
4483 break;
4484 #endif
4485
4486 default:
4487 last = make_jump_insn_raw (x);
4488 add_insn (last);
4489 break;
4490 }
4491
4492 return last;
4493 }
4494
4495 /* Make an insn of code CALL_INSN with pattern X
4496 and add it to the end of the doubly-linked list. */
4497
4498 rtx
4499 emit_call_insn (rtx x)
4500 {
4501 rtx insn;
4502
4503 switch (GET_CODE (x))
4504 {
4505 case INSN:
4506 case JUMP_INSN:
4507 case CALL_INSN:
4508 case CODE_LABEL:
4509 case BARRIER:
4510 case NOTE:
4511 insn = emit_insn (x);
4512 break;
4513
4514 #ifdef ENABLE_RTL_CHECKING
4515 case SEQUENCE:
4516 gcc_unreachable ();
4517 break;
4518 #endif
4519
4520 default:
4521 insn = make_call_insn_raw (x);
4522 add_insn (insn);
4523 break;
4524 }
4525
4526 return insn;
4527 }
4528
4529 /* Add the label LABEL to the end of the doubly-linked list. */
4530
4531 rtx
4532 emit_label (rtx label)
4533 {
4534 /* This can be called twice for the same label
4535 as a result of the confusion that follows a syntax error!
4536 So make it harmless. */
4537 if (INSN_UID (label) == 0)
4538 {
4539 INSN_UID (label) = cur_insn_uid++;
4540 add_insn (label);
4541 }
4542 return label;
4543 }
4544
4545 /* Make an insn of code BARRIER
4546 and add it to the end of the doubly-linked list. */
4547
4548 rtx
4549 emit_barrier (void)
4550 {
4551 rtx barrier = rtx_alloc (BARRIER);
4552 INSN_UID (barrier) = cur_insn_uid++;
4553 add_insn (barrier);
4554 return barrier;
4555 }
4556
4557 /* Emit a copy of note ORIG. */
4558
4559 rtx
4560 emit_note_copy (rtx orig)
4561 {
4562 rtx note;
4563
4564 note = rtx_alloc (NOTE);
4565
4566 INSN_UID (note) = cur_insn_uid++;
4567 NOTE_DATA (note) = NOTE_DATA (orig);
4568 NOTE_KIND (note) = NOTE_KIND (orig);
4569 BLOCK_FOR_INSN (note) = NULL;
4570 add_insn (note);
4571
4572 return note;
4573 }
4574
4575 /* Make an insn of code NOTE or type NOTE_NO
4576 and add it to the end of the doubly-linked list. */
4577
4578 rtx
4579 emit_note (enum insn_note kind)
4580 {
4581 rtx note;
4582
4583 note = rtx_alloc (NOTE);
4584 INSN_UID (note) = cur_insn_uid++;
4585 NOTE_KIND (note) = kind;
4586 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4587 BLOCK_FOR_INSN (note) = NULL;
4588 add_insn (note);
4589 return note;
4590 }
4591
4592 /* Emit a clobber of lvalue X. */
4593
4594 rtx
4595 emit_clobber (rtx x)
4596 {
4597 /* CONCATs should not appear in the insn stream. */
4598 if (GET_CODE (x) == CONCAT)
4599 {
4600 emit_clobber (XEXP (x, 0));
4601 return emit_clobber (XEXP (x, 1));
4602 }
4603 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4604 }
4605
4606 /* Return a sequence of insns to clobber lvalue X. */
4607
4608 rtx
4609 gen_clobber (rtx x)
4610 {
4611 rtx seq;
4612
4613 start_sequence ();
4614 emit_clobber (x);
4615 seq = get_insns ();
4616 end_sequence ();
4617 return seq;
4618 }
4619
4620 /* Emit a use of rvalue X. */
4621
4622 rtx
4623 emit_use (rtx x)
4624 {
4625 /* CONCATs should not appear in the insn stream. */
4626 if (GET_CODE (x) == CONCAT)
4627 {
4628 emit_use (XEXP (x, 0));
4629 return emit_use (XEXP (x, 1));
4630 }
4631 return emit_insn (gen_rtx_USE (VOIDmode, x));
4632 }
4633
4634 /* Return a sequence of insns to use rvalue X. */
4635
4636 rtx
4637 gen_use (rtx x)
4638 {
4639 rtx seq;
4640
4641 start_sequence ();
4642 emit_use (x);
4643 seq = get_insns ();
4644 end_sequence ();
4645 return seq;
4646 }
4647
4648 /* Cause next statement to emit a line note even if the line number
4649 has not changed. */
4650
4651 void
4652 force_next_line_note (void)
4653 {
4654 last_location = -1;
4655 }
4656
4657 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4658 note of this type already exists, remove it first. */
4659
4660 rtx
4661 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4662 {
4663 rtx note = find_reg_note (insn, kind, NULL_RTX);
4664
4665 switch (kind)
4666 {
4667 case REG_EQUAL:
4668 case REG_EQUIV:
4669 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4670 has multiple sets (some callers assume single_set
4671 means the insn only has one set, when in fact it
4672 means the insn only has one * useful * set). */
4673 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4674 {
4675 gcc_assert (!note);
4676 return NULL_RTX;
4677 }
4678
4679 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4680 It serves no useful purpose and breaks eliminate_regs. */
4681 if (GET_CODE (datum) == ASM_OPERANDS)
4682 return NULL_RTX;
4683
4684 if (note)
4685 {
4686 XEXP (note, 0) = datum;
4687 df_notes_rescan (insn);
4688 return note;
4689 }
4690 break;
4691
4692 default:
4693 if (note)
4694 {
4695 XEXP (note, 0) = datum;
4696 return note;
4697 }
4698 break;
4699 }
4700
4701 add_reg_note (insn, kind, datum);
4702
4703 switch (kind)
4704 {
4705 case REG_EQUAL:
4706 case REG_EQUIV:
4707 df_notes_rescan (insn);
4708 break;
4709 default:
4710 break;
4711 }
4712
4713 return REG_NOTES (insn);
4714 }
4715 \f
4716 /* Return an indication of which type of insn should have X as a body.
4717 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4718
4719 static enum rtx_code
4720 classify_insn (rtx x)
4721 {
4722 if (LABEL_P (x))
4723 return CODE_LABEL;
4724 if (GET_CODE (x) == CALL)
4725 return CALL_INSN;
4726 if (GET_CODE (x) == RETURN)
4727 return JUMP_INSN;
4728 if (GET_CODE (x) == SET)
4729 {
4730 if (SET_DEST (x) == pc_rtx)
4731 return JUMP_INSN;
4732 else if (GET_CODE (SET_SRC (x)) == CALL)
4733 return CALL_INSN;
4734 else
4735 return INSN;
4736 }
4737 if (GET_CODE (x) == PARALLEL)
4738 {
4739 int j;
4740 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4741 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4742 return CALL_INSN;
4743 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4744 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4745 return JUMP_INSN;
4746 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4747 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4748 return CALL_INSN;
4749 }
4750 return INSN;
4751 }
4752
4753 /* Emit the rtl pattern X as an appropriate kind of insn.
4754 If X is a label, it is simply added into the insn chain. */
4755
4756 rtx
4757 emit (rtx x)
4758 {
4759 enum rtx_code code = classify_insn (x);
4760
4761 switch (code)
4762 {
4763 case CODE_LABEL:
4764 return emit_label (x);
4765 case INSN:
4766 return emit_insn (x);
4767 case JUMP_INSN:
4768 {
4769 rtx insn = emit_jump_insn (x);
4770 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4771 return emit_barrier ();
4772 return insn;
4773 }
4774 case CALL_INSN:
4775 return emit_call_insn (x);
4776 default:
4777 gcc_unreachable ();
4778 }
4779 }
4780 \f
4781 /* Space for free sequence stack entries. */
4782 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4783
4784 /* Begin emitting insns to a sequence. If this sequence will contain
4785 something that might cause the compiler to pop arguments to function
4786 calls (because those pops have previously been deferred; see
4787 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4788 before calling this function. That will ensure that the deferred
4789 pops are not accidentally emitted in the middle of this sequence. */
4790
4791 void
4792 start_sequence (void)
4793 {
4794 struct sequence_stack *tem;
4795
4796 if (free_sequence_stack != NULL)
4797 {
4798 tem = free_sequence_stack;
4799 free_sequence_stack = tem->next;
4800 }
4801 else
4802 tem = GGC_NEW (struct sequence_stack);
4803
4804 tem->next = seq_stack;
4805 tem->first = first_insn;
4806 tem->last = last_insn;
4807
4808 seq_stack = tem;
4809
4810 first_insn = 0;
4811 last_insn = 0;
4812 }
4813
4814 /* Set up the insn chain starting with FIRST as the current sequence,
4815 saving the previously current one. See the documentation for
4816 start_sequence for more information about how to use this function. */
4817
4818 void
4819 push_to_sequence (rtx first)
4820 {
4821 rtx last;
4822
4823 start_sequence ();
4824
4825 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4826
4827 first_insn = first;
4828 last_insn = last;
4829 }
4830
4831 /* Like push_to_sequence, but take the last insn as an argument to avoid
4832 looping through the list. */
4833
4834 void
4835 push_to_sequence2 (rtx first, rtx last)
4836 {
4837 start_sequence ();
4838
4839 first_insn = first;
4840 last_insn = last;
4841 }
4842
4843 /* Set up the outer-level insn chain
4844 as the current sequence, saving the previously current one. */
4845
4846 void
4847 push_topmost_sequence (void)
4848 {
4849 struct sequence_stack *stack, *top = NULL;
4850
4851 start_sequence ();
4852
4853 for (stack = seq_stack; stack; stack = stack->next)
4854 top = stack;
4855
4856 first_insn = top->first;
4857 last_insn = top->last;
4858 }
4859
4860 /* After emitting to the outer-level insn chain, update the outer-level
4861 insn chain, and restore the previous saved state. */
4862
4863 void
4864 pop_topmost_sequence (void)
4865 {
4866 struct sequence_stack *stack, *top = NULL;
4867
4868 for (stack = seq_stack; stack; stack = stack->next)
4869 top = stack;
4870
4871 top->first = first_insn;
4872 top->last = last_insn;
4873
4874 end_sequence ();
4875 }
4876
4877 /* After emitting to a sequence, restore previous saved state.
4878
4879 To get the contents of the sequence just made, you must call
4880 `get_insns' *before* calling here.
4881
4882 If the compiler might have deferred popping arguments while
4883 generating this sequence, and this sequence will not be immediately
4884 inserted into the instruction stream, use do_pending_stack_adjust
4885 before calling get_insns. That will ensure that the deferred
4886 pops are inserted into this sequence, and not into some random
4887 location in the instruction stream. See INHIBIT_DEFER_POP for more
4888 information about deferred popping of arguments. */
4889
4890 void
4891 end_sequence (void)
4892 {
4893 struct sequence_stack *tem = seq_stack;
4894
4895 first_insn = tem->first;
4896 last_insn = tem->last;
4897 seq_stack = tem->next;
4898
4899 memset (tem, 0, sizeof (*tem));
4900 tem->next = free_sequence_stack;
4901 free_sequence_stack = tem;
4902 }
4903
4904 /* Return 1 if currently emitting into a sequence. */
4905
4906 int
4907 in_sequence_p (void)
4908 {
4909 return seq_stack != 0;
4910 }
4911 \f
4912 /* Put the various virtual registers into REGNO_REG_RTX. */
4913
4914 static void
4915 init_virtual_regs (void)
4916 {
4917 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4918 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4919 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4920 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4921 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4922 }
4923
4924 \f
4925 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4926 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4927 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4928 static int copy_insn_n_scratches;
4929
4930 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4931 copied an ASM_OPERANDS.
4932 In that case, it is the original input-operand vector. */
4933 static rtvec orig_asm_operands_vector;
4934
4935 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4936 copied an ASM_OPERANDS.
4937 In that case, it is the copied input-operand vector. */
4938 static rtvec copy_asm_operands_vector;
4939
4940 /* Likewise for the constraints vector. */
4941 static rtvec orig_asm_constraints_vector;
4942 static rtvec copy_asm_constraints_vector;
4943
4944 /* Recursively create a new copy of an rtx for copy_insn.
4945 This function differs from copy_rtx in that it handles SCRATCHes and
4946 ASM_OPERANDs properly.
4947 Normally, this function is not used directly; use copy_insn as front end.
4948 However, you could first copy an insn pattern with copy_insn and then use
4949 this function afterwards to properly copy any REG_NOTEs containing
4950 SCRATCHes. */
4951
4952 rtx
4953 copy_insn_1 (rtx orig)
4954 {
4955 rtx copy;
4956 int i, j;
4957 RTX_CODE code;
4958 const char *format_ptr;
4959
4960 code = GET_CODE (orig);
4961
4962 switch (code)
4963 {
4964 case REG:
4965 case CONST_INT:
4966 case CONST_DOUBLE:
4967 case CONST_FIXED:
4968 case CONST_VECTOR:
4969 case SYMBOL_REF:
4970 case CODE_LABEL:
4971 case PC:
4972 case CC0:
4973 return orig;
4974 case CLOBBER:
4975 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4976 return orig;
4977 break;
4978
4979 case SCRATCH:
4980 for (i = 0; i < copy_insn_n_scratches; i++)
4981 if (copy_insn_scratch_in[i] == orig)
4982 return copy_insn_scratch_out[i];
4983 break;
4984
4985 case CONST:
4986 if (shared_const_p (orig))
4987 return orig;
4988 break;
4989
4990 /* A MEM with a constant address is not sharable. The problem is that
4991 the constant address may need to be reloaded. If the mem is shared,
4992 then reloading one copy of this mem will cause all copies to appear
4993 to have been reloaded. */
4994
4995 default:
4996 break;
4997 }
4998
4999 /* Copy the various flags, fields, and other information. We assume
5000 that all fields need copying, and then clear the fields that should
5001 not be copied. That is the sensible default behavior, and forces
5002 us to explicitly document why we are *not* copying a flag. */
5003 copy = shallow_copy_rtx (orig);
5004
5005 /* We do not copy the USED flag, which is used as a mark bit during
5006 walks over the RTL. */
5007 RTX_FLAG (copy, used) = 0;
5008
5009 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5010 if (INSN_P (orig))
5011 {
5012 RTX_FLAG (copy, jump) = 0;
5013 RTX_FLAG (copy, call) = 0;
5014 RTX_FLAG (copy, frame_related) = 0;
5015 }
5016
5017 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5018
5019 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5020 switch (*format_ptr++)
5021 {
5022 case 'e':
5023 if (XEXP (orig, i) != NULL)
5024 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5025 break;
5026
5027 case 'E':
5028 case 'V':
5029 if (XVEC (orig, i) == orig_asm_constraints_vector)
5030 XVEC (copy, i) = copy_asm_constraints_vector;
5031 else if (XVEC (orig, i) == orig_asm_operands_vector)
5032 XVEC (copy, i) = copy_asm_operands_vector;
5033 else if (XVEC (orig, i) != NULL)
5034 {
5035 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5036 for (j = 0; j < XVECLEN (copy, i); j++)
5037 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5038 }
5039 break;
5040
5041 case 't':
5042 case 'w':
5043 case 'i':
5044 case 's':
5045 case 'S':
5046 case 'u':
5047 case '0':
5048 /* These are left unchanged. */
5049 break;
5050
5051 default:
5052 gcc_unreachable ();
5053 }
5054
5055 if (code == SCRATCH)
5056 {
5057 i = copy_insn_n_scratches++;
5058 gcc_assert (i < MAX_RECOG_OPERANDS);
5059 copy_insn_scratch_in[i] = orig;
5060 copy_insn_scratch_out[i] = copy;
5061 }
5062 else if (code == ASM_OPERANDS)
5063 {
5064 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5065 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5066 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5067 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5068 }
5069
5070 return copy;
5071 }
5072
5073 /* Create a new copy of an rtx.
5074 This function differs from copy_rtx in that it handles SCRATCHes and
5075 ASM_OPERANDs properly.
5076 INSN doesn't really have to be a full INSN; it could be just the
5077 pattern. */
5078 rtx
5079 copy_insn (rtx insn)
5080 {
5081 copy_insn_n_scratches = 0;
5082 orig_asm_operands_vector = 0;
5083 orig_asm_constraints_vector = 0;
5084 copy_asm_operands_vector = 0;
5085 copy_asm_constraints_vector = 0;
5086 return copy_insn_1 (insn);
5087 }
5088
5089 /* Initialize data structures and variables in this file
5090 before generating rtl for each function. */
5091
5092 void
5093 init_emit (void)
5094 {
5095 first_insn = NULL;
5096 last_insn = NULL;
5097 cur_insn_uid = 1;
5098 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5099 last_location = UNKNOWN_LOCATION;
5100 first_label_num = label_num;
5101 seq_stack = NULL;
5102
5103 /* Init the tables that describe all the pseudo regs. */
5104
5105 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5106
5107 crtl->emit.regno_pointer_align
5108 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5109
5110 regno_reg_rtx
5111 = GGC_NEWVEC (rtx, crtl->emit.regno_pointer_align_length);
5112
5113 /* Put copies of all the hard registers into regno_reg_rtx. */
5114 memcpy (regno_reg_rtx,
5115 static_regno_reg_rtx,
5116 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5117
5118 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5119 init_virtual_regs ();
5120
5121 /* Indicate that the virtual registers and stack locations are
5122 all pointers. */
5123 REG_POINTER (stack_pointer_rtx) = 1;
5124 REG_POINTER (frame_pointer_rtx) = 1;
5125 REG_POINTER (hard_frame_pointer_rtx) = 1;
5126 REG_POINTER (arg_pointer_rtx) = 1;
5127
5128 REG_POINTER (virtual_incoming_args_rtx) = 1;
5129 REG_POINTER (virtual_stack_vars_rtx) = 1;
5130 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5131 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5132 REG_POINTER (virtual_cfa_rtx) = 1;
5133
5134 #ifdef STACK_BOUNDARY
5135 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5136 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5137 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5138 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5139
5140 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5141 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5142 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5143 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5144 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5145 #endif
5146
5147 #ifdef INIT_EXPANDERS
5148 INIT_EXPANDERS;
5149 #endif
5150 }
5151
5152 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5153
5154 static rtx
5155 gen_const_vector (enum machine_mode mode, int constant)
5156 {
5157 rtx tem;
5158 rtvec v;
5159 int units, i;
5160 enum machine_mode inner;
5161
5162 units = GET_MODE_NUNITS (mode);
5163 inner = GET_MODE_INNER (mode);
5164
5165 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5166
5167 v = rtvec_alloc (units);
5168
5169 /* We need to call this function after we set the scalar const_tiny_rtx
5170 entries. */
5171 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5172
5173 for (i = 0; i < units; ++i)
5174 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5175
5176 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5177 return tem;
5178 }
5179
5180 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5181 all elements are zero, and the one vector when all elements are one. */
5182 rtx
5183 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5184 {
5185 enum machine_mode inner = GET_MODE_INNER (mode);
5186 int nunits = GET_MODE_NUNITS (mode);
5187 rtx x;
5188 int i;
5189
5190 /* Check to see if all of the elements have the same value. */
5191 x = RTVEC_ELT (v, nunits - 1);
5192 for (i = nunits - 2; i >= 0; i--)
5193 if (RTVEC_ELT (v, i) != x)
5194 break;
5195
5196 /* If the values are all the same, check to see if we can use one of the
5197 standard constant vectors. */
5198 if (i == -1)
5199 {
5200 if (x == CONST0_RTX (inner))
5201 return CONST0_RTX (mode);
5202 else if (x == CONST1_RTX (inner))
5203 return CONST1_RTX (mode);
5204 }
5205
5206 return gen_rtx_raw_CONST_VECTOR (mode, v);
5207 }
5208
5209 /* Initialise global register information required by all functions. */
5210
5211 void
5212 init_emit_regs (void)
5213 {
5214 int i;
5215
5216 /* Reset register attributes */
5217 htab_empty (reg_attrs_htab);
5218
5219 /* We need reg_raw_mode, so initialize the modes now. */
5220 init_reg_modes_target ();
5221
5222 /* Assign register numbers to the globally defined register rtx. */
5223 pc_rtx = gen_rtx_PC (VOIDmode);
5224 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5225 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5226 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5227 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5228 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5229 virtual_incoming_args_rtx =
5230 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5231 virtual_stack_vars_rtx =
5232 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5233 virtual_stack_dynamic_rtx =
5234 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5235 virtual_outgoing_args_rtx =
5236 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5237 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5238
5239 /* Initialize RTL for commonly used hard registers. These are
5240 copied into regno_reg_rtx as we begin to compile each function. */
5241 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5242 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5243
5244 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5245 return_address_pointer_rtx
5246 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5247 #endif
5248
5249 #ifdef STATIC_CHAIN_REGNUM
5250 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5251
5252 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5253 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5254 static_chain_incoming_rtx
5255 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5256 else
5257 #endif
5258 static_chain_incoming_rtx = static_chain_rtx;
5259 #endif
5260
5261 #ifdef STATIC_CHAIN
5262 static_chain_rtx = STATIC_CHAIN;
5263
5264 #ifdef STATIC_CHAIN_INCOMING
5265 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5266 #else
5267 static_chain_incoming_rtx = static_chain_rtx;
5268 #endif
5269 #endif
5270
5271 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5272 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5273 else
5274 pic_offset_table_rtx = NULL_RTX;
5275 }
5276
5277 /* Create some permanent unique rtl objects shared between all functions.
5278 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5279
5280 void
5281 init_emit_once (int line_numbers)
5282 {
5283 int i;
5284 enum machine_mode mode;
5285 enum machine_mode double_mode;
5286
5287 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5288 hash tables. */
5289 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5290 const_int_htab_eq, NULL);
5291
5292 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5293 const_double_htab_eq, NULL);
5294
5295 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5296 const_fixed_htab_eq, NULL);
5297
5298 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5299 mem_attrs_htab_eq, NULL);
5300 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5301 reg_attrs_htab_eq, NULL);
5302
5303 no_line_numbers = ! line_numbers;
5304
5305 /* Compute the word and byte modes. */
5306
5307 byte_mode = VOIDmode;
5308 word_mode = VOIDmode;
5309 double_mode = VOIDmode;
5310
5311 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5312 mode != VOIDmode;
5313 mode = GET_MODE_WIDER_MODE (mode))
5314 {
5315 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5316 && byte_mode == VOIDmode)
5317 byte_mode = mode;
5318
5319 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5320 && word_mode == VOIDmode)
5321 word_mode = mode;
5322 }
5323
5324 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5325 mode != VOIDmode;
5326 mode = GET_MODE_WIDER_MODE (mode))
5327 {
5328 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5329 && double_mode == VOIDmode)
5330 double_mode = mode;
5331 }
5332
5333 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5334
5335 #ifdef INIT_EXPANDERS
5336 /* This is to initialize {init|mark|free}_machine_status before the first
5337 call to push_function_context_to. This is needed by the Chill front
5338 end which calls push_function_context_to before the first call to
5339 init_function_start. */
5340 INIT_EXPANDERS;
5341 #endif
5342
5343 /* Create the unique rtx's for certain rtx codes and operand values. */
5344
5345 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5346 tries to use these variables. */
5347 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5348 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5349 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5350
5351 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5352 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5353 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5354 else
5355 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5356
5357 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5358 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5359 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5360
5361 dconstm1 = dconst1;
5362 dconstm1.sign = 1;
5363
5364 dconsthalf = dconst1;
5365 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5366
5367 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5368 {
5369 const REAL_VALUE_TYPE *const r =
5370 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5371
5372 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5373 mode != VOIDmode;
5374 mode = GET_MODE_WIDER_MODE (mode))
5375 const_tiny_rtx[i][(int) mode] =
5376 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5377
5378 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5379 mode != VOIDmode;
5380 mode = GET_MODE_WIDER_MODE (mode))
5381 const_tiny_rtx[i][(int) mode] =
5382 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5383
5384 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5385
5386 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5387 mode != VOIDmode;
5388 mode = GET_MODE_WIDER_MODE (mode))
5389 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5390
5391 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5392 mode != VOIDmode;
5393 mode = GET_MODE_WIDER_MODE (mode))
5394 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5395 }
5396
5397 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5398 mode != VOIDmode;
5399 mode = GET_MODE_WIDER_MODE (mode))
5400 {
5401 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5402 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5403 }
5404
5405 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5406 mode != VOIDmode;
5407 mode = GET_MODE_WIDER_MODE (mode))
5408 {
5409 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5410 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5411 }
5412
5413 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5414 mode != VOIDmode;
5415 mode = GET_MODE_WIDER_MODE (mode))
5416 {
5417 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5418 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5419 }
5420
5421 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5422 mode != VOIDmode;
5423 mode = GET_MODE_WIDER_MODE (mode))
5424 {
5425 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5426 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5427 }
5428
5429 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5430 mode != VOIDmode;
5431 mode = GET_MODE_WIDER_MODE (mode))
5432 {
5433 FCONST0(mode).data.high = 0;
5434 FCONST0(mode).data.low = 0;
5435 FCONST0(mode).mode = mode;
5436 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5437 FCONST0 (mode), mode);
5438 }
5439
5440 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5441 mode != VOIDmode;
5442 mode = GET_MODE_WIDER_MODE (mode))
5443 {
5444 FCONST0(mode).data.high = 0;
5445 FCONST0(mode).data.low = 0;
5446 FCONST0(mode).mode = mode;
5447 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5448 FCONST0 (mode), mode);
5449 }
5450
5451 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5452 mode != VOIDmode;
5453 mode = GET_MODE_WIDER_MODE (mode))
5454 {
5455 FCONST0(mode).data.high = 0;
5456 FCONST0(mode).data.low = 0;
5457 FCONST0(mode).mode = mode;
5458 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5459 FCONST0 (mode), mode);
5460
5461 /* We store the value 1. */
5462 FCONST1(mode).data.high = 0;
5463 FCONST1(mode).data.low = 0;
5464 FCONST1(mode).mode = mode;
5465 lshift_double (1, 0, GET_MODE_FBIT (mode),
5466 2 * HOST_BITS_PER_WIDE_INT,
5467 &FCONST1(mode).data.low,
5468 &FCONST1(mode).data.high,
5469 SIGNED_FIXED_POINT_MODE_P (mode));
5470 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5471 FCONST1 (mode), mode);
5472 }
5473
5474 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5475 mode != VOIDmode;
5476 mode = GET_MODE_WIDER_MODE (mode))
5477 {
5478 FCONST0(mode).data.high = 0;
5479 FCONST0(mode).data.low = 0;
5480 FCONST0(mode).mode = mode;
5481 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5482 FCONST0 (mode), mode);
5483
5484 /* We store the value 1. */
5485 FCONST1(mode).data.high = 0;
5486 FCONST1(mode).data.low = 0;
5487 FCONST1(mode).mode = mode;
5488 lshift_double (1, 0, GET_MODE_FBIT (mode),
5489 2 * HOST_BITS_PER_WIDE_INT,
5490 &FCONST1(mode).data.low,
5491 &FCONST1(mode).data.high,
5492 SIGNED_FIXED_POINT_MODE_P (mode));
5493 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5494 FCONST1 (mode), mode);
5495 }
5496
5497 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5498 mode != VOIDmode;
5499 mode = GET_MODE_WIDER_MODE (mode))
5500 {
5501 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5502 }
5503
5504 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5505 mode != VOIDmode;
5506 mode = GET_MODE_WIDER_MODE (mode))
5507 {
5508 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5509 }
5510
5511 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5512 mode != VOIDmode;
5513 mode = GET_MODE_WIDER_MODE (mode))
5514 {
5515 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5516 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5517 }
5518
5519 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5520 mode != VOIDmode;
5521 mode = GET_MODE_WIDER_MODE (mode))
5522 {
5523 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5524 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5525 }
5526
5527 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5528 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5529 const_tiny_rtx[0][i] = const0_rtx;
5530
5531 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5532 if (STORE_FLAG_VALUE == 1)
5533 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5534 }
5535 \f
5536 /* Produce exact duplicate of insn INSN after AFTER.
5537 Care updating of libcall regions if present. */
5538
5539 rtx
5540 emit_copy_of_insn_after (rtx insn, rtx after)
5541 {
5542 rtx new_rtx, link;
5543
5544 switch (GET_CODE (insn))
5545 {
5546 case INSN:
5547 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5548 break;
5549
5550 case JUMP_INSN:
5551 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5552 break;
5553
5554 case CALL_INSN:
5555 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5556 if (CALL_INSN_FUNCTION_USAGE (insn))
5557 CALL_INSN_FUNCTION_USAGE (new_rtx)
5558 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5559 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5560 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5561 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5562 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5563 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5564 break;
5565
5566 default:
5567 gcc_unreachable ();
5568 }
5569
5570 /* Update LABEL_NUSES. */
5571 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5572
5573 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
5574
5575 /* If the old insn is frame related, then so is the new one. This is
5576 primarily needed for IA-64 unwind info which marks epilogue insns,
5577 which may be duplicated by the basic block reordering code. */
5578 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5579
5580 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5581 will make them. REG_LABEL_TARGETs are created there too, but are
5582 supposed to be sticky, so we copy them. */
5583 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5584 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5585 {
5586 if (GET_CODE (link) == EXPR_LIST)
5587 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5588 copy_insn_1 (XEXP (link, 0)));
5589 else
5590 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5591 }
5592
5593 INSN_CODE (new_rtx) = INSN_CODE (insn);
5594 return new_rtx;
5595 }
5596
5597 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5598 rtx
5599 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5600 {
5601 if (hard_reg_clobbers[mode][regno])
5602 return hard_reg_clobbers[mode][regno];
5603 else
5604 return (hard_reg_clobbers[mode][regno] =
5605 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5606 }
5607
5608 #include "gt-emit-rtl.h"
This page took 0.281845 seconds and 5 git commands to generate.