]> gcc.gnu.org Git - gcc.git/blob - gcc/emit-rtl.c
alias.c (can_address_p): Compnonents are not addressable if the containing type has...
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "obstack.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58
59 /* Commonly used modes. */
60
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
65
66
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70 static int label_num = 1;
71
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
75
76 static int last_label_num;
77
78 /* Value label_num had when set_new_first_and_last_label_number was called.
79 If label_num has not changed since then, last_label_num is valid. */
80
81 static int base_label_num;
82
83 /* Nonzero means do not generate NOTEs for source line numbers. */
84
85 static int no_line_numbers;
86
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these except perhaps the floating-point CONST_DOUBLEs
90 are unique; no other rtx-object will be equal to any of these. */
91
92 rtx global_rtl[GR_MAX];
93
94 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx. */
97
98 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
99
100 rtx const_true_rtx;
101
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
106
107 /* All references to the following fixed hard registers go through
108 these unique rtl objects. On machines where the frame-pointer and
109 arg-pointer are the same register, they use the same unique object.
110
111 After register allocation, other rtl objects which used to be pseudo-regs
112 may be clobbered to refer to the frame-pointer register.
113 But references that were originally to the frame-pointer can be
114 distinguished from the others because they contain frame_pointer_rtx.
115
116 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
117 tricky: until register elimination has taken place hard_frame_pointer_rtx
118 should be used if it is being set, and frame_pointer_rtx otherwise. After
119 register elimination hard_frame_pointer_rtx should always be used.
120 On machines where the two registers are same (most) then these are the
121 same.
122
123 In an inline procedure, the stack and frame pointer rtxs may not be
124 used for anything else. */
125 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
126 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
127 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
128 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
129 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
130
131 /* This is used to implement __builtin_return_address for some machines.
132 See for instance the MIPS port. */
133 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
134
135 /* We make one copy of (const_int C) where C is in
136 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
137 to save space during the compilation and simplify comparisons of
138 integers. */
139
140 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
141
142 /* A hash table storing CONST_INTs whose absolute value is greater
143 than MAX_SAVED_CONST_INT. */
144
145 static htab_t const_int_htab;
146
147 /* A hash table storing memory attribute structures. */
148 static htab_t mem_attrs_htab;
149
150 /* start_sequence and gen_sequence can make a lot of rtx expressions which are
151 shortly thrown away. We use two mechanisms to prevent this waste:
152
153 For sizes up to 5 elements, we keep a SEQUENCE and its associated
154 rtvec for use by gen_sequence. One entry for each size is
155 sufficient because most cases are calls to gen_sequence followed by
156 immediately emitting the SEQUENCE. Reuse is safe since emitting a
157 sequence is destructive on the insn in it anyway and hence can't be
158 redone.
159
160 We do not bother to save this cached data over nested function calls.
161 Instead, we just reinitialize them. */
162
163 #define SEQUENCE_RESULT_SIZE 5
164
165 static rtx sequence_result[SEQUENCE_RESULT_SIZE];
166
167 /* During RTL generation, we also keep a list of free INSN rtl codes. */
168 static rtx free_insn;
169
170 #define first_insn (cfun->emit->x_first_insn)
171 #define last_insn (cfun->emit->x_last_insn)
172 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
173 #define last_linenum (cfun->emit->x_last_linenum)
174 #define last_filename (cfun->emit->x_last_filename)
175 #define first_label_num (cfun->emit->x_first_label_num)
176
177 static rtx make_jump_insn_raw PARAMS ((rtx));
178 static rtx make_call_insn_raw PARAMS ((rtx));
179 static rtx find_line_note PARAMS ((rtx));
180 static void mark_sequence_stack PARAMS ((struct sequence_stack *));
181 static rtx change_address_1 PARAMS ((rtx, enum machine_mode, rtx,
182 int));
183 static void unshare_all_rtl_1 PARAMS ((rtx));
184 static void unshare_all_decls PARAMS ((tree));
185 static void reset_used_decls PARAMS ((tree));
186 static void mark_label_nuses PARAMS ((rtx));
187 static hashval_t const_int_htab_hash PARAMS ((const void *));
188 static int const_int_htab_eq PARAMS ((const void *,
189 const void *));
190 static hashval_t mem_attrs_htab_hash PARAMS ((const void *));
191 static int mem_attrs_htab_eq PARAMS ((const void *,
192 const void *));
193 static void mem_attrs_mark PARAMS ((const void *));
194 static mem_attrs *get_mem_attrs PARAMS ((HOST_WIDE_INT, tree, rtx,
195 rtx, unsigned int));
196
197 /* Probability of the conditional branch currently proceeded by try_split.
198 Set to -1 otherwise. */
199 int split_branch_probability = -1;
200 \f
201 /* Returns a hash code for X (which is a really a CONST_INT). */
202
203 static hashval_t
204 const_int_htab_hash (x)
205 const void *x;
206 {
207 return (hashval_t) INTVAL ((const struct rtx_def *) x);
208 }
209
210 /* Returns non-zero if the value represented by X (which is really a
211 CONST_INT) is the same as that given by Y (which is really a
212 HOST_WIDE_INT *). */
213
214 static int
215 const_int_htab_eq (x, y)
216 const void *x;
217 const void *y;
218 {
219 return (INTVAL ((const struct rtx_def *) x) == *((const HOST_WIDE_INT *) y));
220 }
221
222 /* Returns a hash code for X (which is a really a mem_attrs *). */
223
224 static hashval_t
225 mem_attrs_htab_hash (x)
226 const void *x;
227 {
228 mem_attrs *p = (mem_attrs *) x;
229
230 return (p->alias ^ (p->align * 1000)
231 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
232 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
233 ^ (long) p->decl);
234 }
235
236 /* Returns non-zero if the value represented by X (which is really a
237 mem_attrs *) is the same as that given by Y (which is also really a
238 mem_attrs *). */
239
240 static int
241 mem_attrs_htab_eq (x, y)
242 const void *x;
243 const void *y;
244 {
245 mem_attrs *p = (mem_attrs *) x;
246 mem_attrs *q = (mem_attrs *) y;
247
248 return (p->alias == q->alias && p->decl == q->decl && p->offset == q->offset
249 && p->size == q->size && p->align == q->align);
250 }
251
252 /* This routine is called when we determine that we need a mem_attrs entry.
253 It marks the associated decl and RTL as being used, if present. */
254
255 static void
256 mem_attrs_mark (x)
257 const void *x;
258 {
259 mem_attrs *p = (mem_attrs *) x;
260
261 if (p->decl)
262 ggc_mark_tree (p->decl);
263
264 if (p->offset)
265 ggc_mark_rtx (p->offset);
266
267 if (p->size)
268 ggc_mark_rtx (p->size);
269 }
270
271 /* Allocate a new mem_attrs structure and insert it into the hash table if
272 one identical to it is not already in the table. */
273
274 static mem_attrs *
275 get_mem_attrs (alias, decl, offset, size, align)
276 HOST_WIDE_INT alias;
277 tree decl;
278 rtx offset;
279 rtx size;
280 unsigned int align;
281 {
282 mem_attrs attrs;
283 void **slot;
284
285 attrs.alias = alias;
286 attrs.decl = decl;
287 attrs.offset = offset;
288 attrs.size = size;
289 attrs.align = align;
290
291 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
292 if (*slot == 0)
293 {
294 *slot = ggc_alloc (sizeof (mem_attrs));
295 memcpy (*slot, &attrs, sizeof (mem_attrs));
296 }
297
298 return *slot;
299 }
300
301 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
302 don't attempt to share with the various global pieces of rtl (such as
303 frame_pointer_rtx). */
304
305 rtx
306 gen_raw_REG (mode, regno)
307 enum machine_mode mode;
308 int regno;
309 {
310 rtx x = gen_rtx_raw_REG (mode, regno);
311 ORIGINAL_REGNO (x) = regno;
312 return x;
313 }
314
315 /* There are some RTL codes that require special attention; the generation
316 functions do the raw handling. If you add to this list, modify
317 special_rtx in gengenrtl.c as well. */
318
319 rtx
320 gen_rtx_CONST_INT (mode, arg)
321 enum machine_mode mode ATTRIBUTE_UNUSED;
322 HOST_WIDE_INT arg;
323 {
324 void **slot;
325
326 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
327 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
328
329 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
330 if (const_true_rtx && arg == STORE_FLAG_VALUE)
331 return const_true_rtx;
332 #endif
333
334 /* Look up the CONST_INT in the hash table. */
335 slot = htab_find_slot_with_hash (const_int_htab, &arg,
336 (hashval_t) arg, INSERT);
337 if (*slot == 0)
338 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
339
340 return (rtx) *slot;
341 }
342
343 /* CONST_DOUBLEs needs special handling because their length is known
344 only at run-time. */
345
346 rtx
347 gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2)
348 enum machine_mode mode;
349 rtx arg0;
350 HOST_WIDE_INT arg1, arg2;
351 {
352 rtx r = rtx_alloc (CONST_DOUBLE);
353 int i;
354
355 PUT_MODE (r, mode);
356 XEXP (r, 0) = arg0;
357 X0EXP (r, 1) = NULL_RTX;
358 XWINT (r, 2) = arg1;
359 XWINT (r, 3) = arg2;
360
361 for (i = GET_RTX_LENGTH (CONST_DOUBLE) - 1; i > 3; --i)
362 XWINT (r, i) = 0;
363
364 return r;
365 }
366
367 rtx
368 gen_rtx_REG (mode, regno)
369 enum machine_mode mode;
370 int regno;
371 {
372 /* In case the MD file explicitly references the frame pointer, have
373 all such references point to the same frame pointer. This is
374 used during frame pointer elimination to distinguish the explicit
375 references to these registers from pseudos that happened to be
376 assigned to them.
377
378 If we have eliminated the frame pointer or arg pointer, we will
379 be using it as a normal register, for example as a spill
380 register. In such cases, we might be accessing it in a mode that
381 is not Pmode and therefore cannot use the pre-allocated rtx.
382
383 Also don't do this when we are making new REGs in reload, since
384 we don't want to get confused with the real pointers. */
385
386 if (mode == Pmode && !reload_in_progress)
387 {
388 if (regno == FRAME_POINTER_REGNUM)
389 return frame_pointer_rtx;
390 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
391 if (regno == HARD_FRAME_POINTER_REGNUM)
392 return hard_frame_pointer_rtx;
393 #endif
394 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
395 if (regno == ARG_POINTER_REGNUM)
396 return arg_pointer_rtx;
397 #endif
398 #ifdef RETURN_ADDRESS_POINTER_REGNUM
399 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
400 return return_address_pointer_rtx;
401 #endif
402 if (regno == STACK_POINTER_REGNUM)
403 return stack_pointer_rtx;
404 }
405
406 return gen_raw_REG (mode, regno);
407 }
408
409 rtx
410 gen_rtx_MEM (mode, addr)
411 enum machine_mode mode;
412 rtx addr;
413 {
414 rtx rt = gen_rtx_raw_MEM (mode, addr);
415
416 /* This field is not cleared by the mere allocation of the rtx, so
417 we clear it here. */
418 MEM_ATTRS (rt) = 0;
419
420 return rt;
421 }
422
423 rtx
424 gen_rtx_SUBREG (mode, reg, offset)
425 enum machine_mode mode;
426 rtx reg;
427 int offset;
428 {
429 /* This is the most common failure type.
430 Catch it early so we can see who does it. */
431 if ((offset % GET_MODE_SIZE (mode)) != 0)
432 abort ();
433
434 /* This check isn't usable right now because combine will
435 throw arbitrary crap like a CALL into a SUBREG in
436 gen_lowpart_for_combine so we must just eat it. */
437 #if 0
438 /* Check for this too. */
439 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
440 abort ();
441 #endif
442 return gen_rtx_fmt_ei (SUBREG, mode, reg, offset);
443 }
444
445 /* Generate a SUBREG representing the least-significant part of REG if MODE
446 is smaller than mode of REG, otherwise paradoxical SUBREG. */
447
448 rtx
449 gen_lowpart_SUBREG (mode, reg)
450 enum machine_mode mode;
451 rtx reg;
452 {
453 enum machine_mode inmode;
454
455 inmode = GET_MODE (reg);
456 if (inmode == VOIDmode)
457 inmode = mode;
458 return gen_rtx_SUBREG (mode, reg,
459 subreg_lowpart_offset (mode, inmode));
460 }
461 \f
462 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
463 **
464 ** This routine generates an RTX of the size specified by
465 ** <code>, which is an RTX code. The RTX structure is initialized
466 ** from the arguments <element1> through <elementn>, which are
467 ** interpreted according to the specific RTX type's format. The
468 ** special machine mode associated with the rtx (if any) is specified
469 ** in <mode>.
470 **
471 ** gen_rtx can be invoked in a way which resembles the lisp-like
472 ** rtx it will generate. For example, the following rtx structure:
473 **
474 ** (plus:QI (mem:QI (reg:SI 1))
475 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
476 **
477 ** ...would be generated by the following C code:
478 **
479 ** gen_rtx (PLUS, QImode,
480 ** gen_rtx (MEM, QImode,
481 ** gen_rtx (REG, SImode, 1)),
482 ** gen_rtx (MEM, QImode,
483 ** gen_rtx (PLUS, SImode,
484 ** gen_rtx (REG, SImode, 2),
485 ** gen_rtx (REG, SImode, 3)))),
486 */
487
488 /*VARARGS2*/
489 rtx
490 gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
491 {
492 int i; /* Array indices... */
493 const char *fmt; /* Current rtx's format... */
494 rtx rt_val; /* RTX to return to caller... */
495
496 VA_OPEN (p, mode);
497 VA_FIXEDARG (p, enum rtx_code, code);
498 VA_FIXEDARG (p, enum machine_mode, mode);
499
500 switch (code)
501 {
502 case CONST_INT:
503 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
504 break;
505
506 case CONST_DOUBLE:
507 {
508 rtx arg0 = va_arg (p, rtx);
509 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
510 HOST_WIDE_INT arg2 = va_arg (p, HOST_WIDE_INT);
511 rt_val = gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2);
512 }
513 break;
514
515 case REG:
516 rt_val = gen_rtx_REG (mode, va_arg (p, int));
517 break;
518
519 case MEM:
520 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
521 break;
522
523 default:
524 rt_val = rtx_alloc (code); /* Allocate the storage space. */
525 rt_val->mode = mode; /* Store the machine mode... */
526
527 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
528 for (i = 0; i < GET_RTX_LENGTH (code); i++)
529 {
530 switch (*fmt++)
531 {
532 case '0': /* Unused field. */
533 break;
534
535 case 'i': /* An integer? */
536 XINT (rt_val, i) = va_arg (p, int);
537 break;
538
539 case 'w': /* A wide integer? */
540 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
541 break;
542
543 case 's': /* A string? */
544 XSTR (rt_val, i) = va_arg (p, char *);
545 break;
546
547 case 'e': /* An expression? */
548 case 'u': /* An insn? Same except when printing. */
549 XEXP (rt_val, i) = va_arg (p, rtx);
550 break;
551
552 case 'E': /* An RTX vector? */
553 XVEC (rt_val, i) = va_arg (p, rtvec);
554 break;
555
556 case 'b': /* A bitmap? */
557 XBITMAP (rt_val, i) = va_arg (p, bitmap);
558 break;
559
560 case 't': /* A tree? */
561 XTREE (rt_val, i) = va_arg (p, tree);
562 break;
563
564 default:
565 abort ();
566 }
567 }
568 break;
569 }
570
571 VA_CLOSE (p);
572 return rt_val;
573 }
574
575 /* gen_rtvec (n, [rt1, ..., rtn])
576 **
577 ** This routine creates an rtvec and stores within it the
578 ** pointers to rtx's which are its arguments.
579 */
580
581 /*VARARGS1*/
582 rtvec
583 gen_rtvec VPARAMS ((int n, ...))
584 {
585 int i, save_n;
586 rtx *vector;
587
588 VA_OPEN (p, n);
589 VA_FIXEDARG (p, int, n);
590
591 if (n == 0)
592 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
593
594 vector = (rtx *) alloca (n * sizeof (rtx));
595
596 for (i = 0; i < n; i++)
597 vector[i] = va_arg (p, rtx);
598
599 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
600 save_n = n;
601 VA_CLOSE (p);
602
603 return gen_rtvec_v (save_n, vector);
604 }
605
606 rtvec
607 gen_rtvec_v (n, argp)
608 int n;
609 rtx *argp;
610 {
611 int i;
612 rtvec rt_val;
613
614 if (n == 0)
615 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
616
617 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
618
619 for (i = 0; i < n; i++)
620 rt_val->elem[i] = *argp++;
621
622 return rt_val;
623 }
624 \f
625 /* Generate a REG rtx for a new pseudo register of mode MODE.
626 This pseudo is assigned the next sequential register number. */
627
628 rtx
629 gen_reg_rtx (mode)
630 enum machine_mode mode;
631 {
632 struct function *f = cfun;
633 rtx val;
634
635 /* Don't let anything called after initial flow analysis create new
636 registers. */
637 if (no_new_pseudos)
638 abort ();
639
640 if (generating_concat_p
641 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
642 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
643 {
644 /* For complex modes, don't make a single pseudo.
645 Instead, make a CONCAT of two pseudos.
646 This allows noncontiguous allocation of the real and imaginary parts,
647 which makes much better code. Besides, allocating DCmode
648 pseudos overstrains reload on some machines like the 386. */
649 rtx realpart, imagpart;
650 int size = GET_MODE_UNIT_SIZE (mode);
651 enum machine_mode partmode
652 = mode_for_size (size * BITS_PER_UNIT,
653 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
654 ? MODE_FLOAT : MODE_INT),
655 0);
656
657 realpart = gen_reg_rtx (partmode);
658 imagpart = gen_reg_rtx (partmode);
659 return gen_rtx_CONCAT (mode, realpart, imagpart);
660 }
661
662 /* Make sure regno_pointer_align, regno_decl, and regno_reg_rtx are large
663 enough to have an element for this pseudo reg number. */
664
665 if (reg_rtx_no == f->emit->regno_pointer_align_length)
666 {
667 int old_size = f->emit->regno_pointer_align_length;
668 char *new;
669 rtx *new1;
670 tree *new2;
671
672 new = xrealloc (f->emit->regno_pointer_align, old_size * 2);
673 memset (new + old_size, 0, old_size);
674 f->emit->regno_pointer_align = (unsigned char *) new;
675
676 new1 = (rtx *) xrealloc (f->emit->x_regno_reg_rtx,
677 old_size * 2 * sizeof (rtx));
678 memset (new1 + old_size, 0, old_size * sizeof (rtx));
679 regno_reg_rtx = new1;
680
681 new2 = (tree *) xrealloc (f->emit->regno_decl,
682 old_size * 2 * sizeof (tree));
683 memset (new2 + old_size, 0, old_size * sizeof (tree));
684 f->emit->regno_decl = new2;
685
686 f->emit->regno_pointer_align_length = old_size * 2;
687 }
688
689 val = gen_raw_REG (mode, reg_rtx_no);
690 regno_reg_rtx[reg_rtx_no++] = val;
691 return val;
692 }
693
694 /* Identify REG (which may be a CONCAT) as a user register. */
695
696 void
697 mark_user_reg (reg)
698 rtx reg;
699 {
700 if (GET_CODE (reg) == CONCAT)
701 {
702 REG_USERVAR_P (XEXP (reg, 0)) = 1;
703 REG_USERVAR_P (XEXP (reg, 1)) = 1;
704 }
705 else if (GET_CODE (reg) == REG)
706 REG_USERVAR_P (reg) = 1;
707 else
708 abort ();
709 }
710
711 /* Identify REG as a probable pointer register and show its alignment
712 as ALIGN, if nonzero. */
713
714 void
715 mark_reg_pointer (reg, align)
716 rtx reg;
717 int align;
718 {
719 if (! REG_POINTER (reg))
720 {
721 REG_POINTER (reg) = 1;
722
723 if (align)
724 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
725 }
726 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
727 /* We can no-longer be sure just how aligned this pointer is */
728 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
729 }
730
731 /* Return 1 plus largest pseudo reg number used in the current function. */
732
733 int
734 max_reg_num ()
735 {
736 return reg_rtx_no;
737 }
738
739 /* Return 1 + the largest label number used so far in the current function. */
740
741 int
742 max_label_num ()
743 {
744 if (last_label_num && label_num == base_label_num)
745 return last_label_num;
746 return label_num;
747 }
748
749 /* Return first label number used in this function (if any were used). */
750
751 int
752 get_first_label_num ()
753 {
754 return first_label_num;
755 }
756 \f
757 /* Return the final regno of X, which is a SUBREG of a hard
758 register. */
759 int
760 subreg_hard_regno (x, check_mode)
761 rtx x;
762 int check_mode;
763 {
764 enum machine_mode mode = GET_MODE (x);
765 unsigned int byte_offset, base_regno, final_regno;
766 rtx reg = SUBREG_REG (x);
767
768 /* This is where we attempt to catch illegal subregs
769 created by the compiler. */
770 if (GET_CODE (x) != SUBREG
771 || GET_CODE (reg) != REG)
772 abort ();
773 base_regno = REGNO (reg);
774 if (base_regno >= FIRST_PSEUDO_REGISTER)
775 abort ();
776 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
777 abort ();
778
779 /* Catch non-congruent offsets too. */
780 byte_offset = SUBREG_BYTE (x);
781 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
782 abort ();
783
784 final_regno = subreg_regno (x);
785
786 return final_regno;
787 }
788
789 /* Return a value representing some low-order bits of X, where the number
790 of low-order bits is given by MODE. Note that no conversion is done
791 between floating-point and fixed-point values, rather, the bit
792 representation is returned.
793
794 This function handles the cases in common between gen_lowpart, below,
795 and two variants in cse.c and combine.c. These are the cases that can
796 be safely handled at all points in the compilation.
797
798 If this is not a case we can handle, return 0. */
799
800 rtx
801 gen_lowpart_common (mode, x)
802 enum machine_mode mode;
803 rtx x;
804 {
805 int msize = GET_MODE_SIZE (mode);
806 int xsize = GET_MODE_SIZE (GET_MODE (x));
807 int offset = 0;
808
809 if (GET_MODE (x) == mode)
810 return x;
811
812 /* MODE must occupy no more words than the mode of X. */
813 if (GET_MODE (x) != VOIDmode
814 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
815 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
816 return 0;
817
818 offset = subreg_lowpart_offset (mode, GET_MODE (x));
819
820 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
821 && (GET_MODE_CLASS (mode) == MODE_INT
822 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
823 {
824 /* If we are getting the low-order part of something that has been
825 sign- or zero-extended, we can either just use the object being
826 extended or make a narrower extension. If we want an even smaller
827 piece than the size of the object being extended, call ourselves
828 recursively.
829
830 This case is used mostly by combine and cse. */
831
832 if (GET_MODE (XEXP (x, 0)) == mode)
833 return XEXP (x, 0);
834 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
835 return gen_lowpart_common (mode, XEXP (x, 0));
836 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
837 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
838 }
839 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
840 || GET_CODE (x) == CONCAT)
841 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
842 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
843 from the low-order part of the constant. */
844 else if ((GET_MODE_CLASS (mode) == MODE_INT
845 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
846 && GET_MODE (x) == VOIDmode
847 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
848 {
849 /* If MODE is twice the host word size, X is already the desired
850 representation. Otherwise, if MODE is wider than a word, we can't
851 do this. If MODE is exactly a word, return just one CONST_INT. */
852
853 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
854 return x;
855 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
856 return 0;
857 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
858 return (GET_CODE (x) == CONST_INT ? x
859 : GEN_INT (CONST_DOUBLE_LOW (x)));
860 else
861 {
862 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
863 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
864 : CONST_DOUBLE_LOW (x));
865
866 /* Sign extend to HOST_WIDE_INT. */
867 val = trunc_int_for_mode (val, mode);
868
869 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
870 : GEN_INT (val));
871 }
872 }
873
874 #ifndef REAL_ARITHMETIC
875 /* If X is an integral constant but we want it in floating-point, it
876 must be the case that we have a union of an integer and a floating-point
877 value. If the machine-parameters allow it, simulate that union here
878 and return the result. The two-word and single-word cases are
879 different. */
880
881 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
882 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
883 || flag_pretend_float)
884 && GET_MODE_CLASS (mode) == MODE_FLOAT
885 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
886 && GET_CODE (x) == CONST_INT
887 && sizeof (float) * HOST_BITS_PER_CHAR == HOST_BITS_PER_WIDE_INT)
888 {
889 union {HOST_WIDE_INT i; float d; } u;
890
891 u.i = INTVAL (x);
892 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
893 }
894 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
895 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
896 || flag_pretend_float)
897 && GET_MODE_CLASS (mode) == MODE_FLOAT
898 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
899 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
900 && GET_MODE (x) == VOIDmode
901 && (sizeof (double) * HOST_BITS_PER_CHAR
902 == 2 * HOST_BITS_PER_WIDE_INT))
903 {
904 union {HOST_WIDE_INT i[2]; double d; } u;
905 HOST_WIDE_INT low, high;
906
907 if (GET_CODE (x) == CONST_INT)
908 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
909 else
910 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
911
912 #ifdef HOST_WORDS_BIG_ENDIAN
913 u.i[0] = high, u.i[1] = low;
914 #else
915 u.i[0] = low, u.i[1] = high;
916 #endif
917
918 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
919 }
920
921 /* Similarly, if this is converting a floating-point value into a
922 single-word integer. Only do this is the host and target parameters are
923 compatible. */
924
925 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
926 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
927 || flag_pretend_float)
928 && (GET_MODE_CLASS (mode) == MODE_INT
929 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
930 && GET_CODE (x) == CONST_DOUBLE
931 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
932 && GET_MODE_BITSIZE (mode) == BITS_PER_WORD)
933 return constant_subword (x, (offset / UNITS_PER_WORD), GET_MODE (x));
934
935 /* Similarly, if this is converting a floating-point value into a
936 two-word integer, we can do this one word at a time and make an
937 integer. Only do this is the host and target parameters are
938 compatible. */
939
940 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
941 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
942 || flag_pretend_float)
943 && (GET_MODE_CLASS (mode) == MODE_INT
944 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
945 && GET_CODE (x) == CONST_DOUBLE
946 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
947 && GET_MODE_BITSIZE (mode) == 2 * BITS_PER_WORD)
948 {
949 rtx lowpart, highpart;
950
951 lowpart = constant_subword (x,
952 (offset / UNITS_PER_WORD) + WORDS_BIG_ENDIAN,
953 GET_MODE (x));
954 highpart = constant_subword (x,
955 (offset / UNITS_PER_WORD) + (! WORDS_BIG_ENDIAN),
956 GET_MODE (x));
957 if (lowpart && GET_CODE (lowpart) == CONST_INT
958 && highpart && GET_CODE (highpart) == CONST_INT)
959 return immed_double_const (INTVAL (lowpart), INTVAL (highpart), mode);
960 }
961 #else /* ifndef REAL_ARITHMETIC */
962
963 /* When we have a FP emulator, we can handle all conversions between
964 FP and integer operands. This simplifies reload because it
965 doesn't have to deal with constructs like (subreg:DI
966 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
967 /* Single-precision floats are always 32-bits and double-precision
968 floats are always 64-bits. */
969
970 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
971 && GET_MODE_BITSIZE (mode) == 32
972 && GET_CODE (x) == CONST_INT)
973 {
974 REAL_VALUE_TYPE r;
975 HOST_WIDE_INT i;
976
977 i = INTVAL (x);
978 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
979 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
980 }
981 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
982 && GET_MODE_BITSIZE (mode) == 64
983 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
984 && GET_MODE (x) == VOIDmode)
985 {
986 REAL_VALUE_TYPE r;
987 HOST_WIDE_INT i[2];
988 HOST_WIDE_INT low, high;
989
990 if (GET_CODE (x) == CONST_INT)
991 {
992 low = INTVAL (x);
993 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
994 }
995 else
996 {
997 low = CONST_DOUBLE_LOW (x);
998 high = CONST_DOUBLE_HIGH (x);
999 }
1000
1001 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1002 target machine. */
1003 if (WORDS_BIG_ENDIAN)
1004 i[0] = high, i[1] = low;
1005 else
1006 i[0] = low, i[1] = high;
1007
1008 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
1009 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1010 }
1011 else if ((GET_MODE_CLASS (mode) == MODE_INT
1012 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1013 && GET_CODE (x) == CONST_DOUBLE
1014 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1015 {
1016 REAL_VALUE_TYPE r;
1017 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1018 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1019
1020 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1021 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1022 {
1023 case 32:
1024 REAL_VALUE_TO_TARGET_SINGLE (r, i[endian]);
1025 i[1 - endian] = 0;
1026 break;
1027 case 64:
1028 REAL_VALUE_TO_TARGET_DOUBLE (r, i);
1029 break;
1030 case 96:
1031 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1032 i[3-3*endian] = 0;
1033 break;
1034 case 128:
1035 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1036 break;
1037 default:
1038 abort ();
1039 }
1040
1041 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1042 and return it. */
1043 #if HOST_BITS_PER_WIDE_INT == 32
1044 return immed_double_const (i[endian], i[1 - endian], mode);
1045 #else
1046 {
1047 int c;
1048
1049 if (HOST_BITS_PER_WIDE_INT != 64)
1050 abort ();
1051
1052 for (c = 0; c < 4; c++)
1053 i[c] &= ~ (0L);
1054
1055 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1056 {
1057 case 32:
1058 case 64:
1059 return immed_double_const (((unsigned long) i[endian]) |
1060 (((HOST_WIDE_INT) i[1-endian]) << 32),
1061 0, mode);
1062 case 96:
1063 case 128:
1064 return immed_double_const (((unsigned long) i[endian*3]) |
1065 (((HOST_WIDE_INT) i[1+endian]) << 32),
1066 ((unsigned long) i[2-endian]) |
1067 (((HOST_WIDE_INT) i[3-endian*3]) << 32),
1068 mode);
1069 default:
1070 abort ();
1071 }
1072 }
1073 #endif
1074 }
1075 #endif /* ifndef REAL_ARITHMETIC */
1076
1077 /* Otherwise, we can't do this. */
1078 return 0;
1079 }
1080 \f
1081 /* Return the real part (which has mode MODE) of a complex value X.
1082 This always comes at the low address in memory. */
1083
1084 rtx
1085 gen_realpart (mode, x)
1086 enum machine_mode mode;
1087 rtx x;
1088 {
1089 if (WORDS_BIG_ENDIAN
1090 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1091 && REG_P (x)
1092 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1093 internal_error
1094 ("Can't access real part of complex value in hard register");
1095 else if (WORDS_BIG_ENDIAN)
1096 return gen_highpart (mode, x);
1097 else
1098 return gen_lowpart (mode, x);
1099 }
1100
1101 /* Return the imaginary part (which has mode MODE) of a complex value X.
1102 This always comes at the high address in memory. */
1103
1104 rtx
1105 gen_imagpart (mode, x)
1106 enum machine_mode mode;
1107 rtx x;
1108 {
1109 if (WORDS_BIG_ENDIAN)
1110 return gen_lowpart (mode, x);
1111 else if (! WORDS_BIG_ENDIAN
1112 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1113 && REG_P (x)
1114 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1115 internal_error
1116 ("can't access imaginary part of complex value in hard register");
1117 else
1118 return gen_highpart (mode, x);
1119 }
1120
1121 /* Return 1 iff X, assumed to be a SUBREG,
1122 refers to the real part of the complex value in its containing reg.
1123 Complex values are always stored with the real part in the first word,
1124 regardless of WORDS_BIG_ENDIAN. */
1125
1126 int
1127 subreg_realpart_p (x)
1128 rtx x;
1129 {
1130 if (GET_CODE (x) != SUBREG)
1131 abort ();
1132
1133 return ((unsigned int) SUBREG_BYTE (x)
1134 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1135 }
1136 \f
1137 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1138 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1139 least-significant part of X.
1140 MODE specifies how big a part of X to return;
1141 it usually should not be larger than a word.
1142 If X is a MEM whose address is a QUEUED, the value may be so also. */
1143
1144 rtx
1145 gen_lowpart (mode, x)
1146 enum machine_mode mode;
1147 rtx x;
1148 {
1149 rtx result = gen_lowpart_common (mode, x);
1150
1151 if (result)
1152 return result;
1153 else if (GET_CODE (x) == REG)
1154 {
1155 /* Must be a hard reg that's not valid in MODE. */
1156 result = gen_lowpart_common (mode, copy_to_reg (x));
1157 if (result == 0)
1158 abort ();
1159 return result;
1160 }
1161 else if (GET_CODE (x) == MEM)
1162 {
1163 /* The only additional case we can do is MEM. */
1164 int offset = 0;
1165 if (WORDS_BIG_ENDIAN)
1166 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1167 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1168
1169 if (BYTES_BIG_ENDIAN)
1170 /* Adjust the address so that the address-after-the-data
1171 is unchanged. */
1172 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1173 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1174
1175 return adjust_address (x, mode, offset);
1176 }
1177 else if (GET_CODE (x) == ADDRESSOF)
1178 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1179 else
1180 abort ();
1181 }
1182
1183 /* Like `gen_lowpart', but refer to the most significant part.
1184 This is used to access the imaginary part of a complex number. */
1185
1186 rtx
1187 gen_highpart (mode, x)
1188 enum machine_mode mode;
1189 rtx x;
1190 {
1191 unsigned int msize = GET_MODE_SIZE (mode);
1192 rtx result;
1193
1194 /* This case loses if X is a subreg. To catch bugs early,
1195 complain if an invalid MODE is used even in other cases. */
1196 if (msize > UNITS_PER_WORD
1197 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1198 abort ();
1199
1200 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1201 subreg_highpart_offset (mode, GET_MODE (x)));
1202
1203 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1204 the target if we have a MEM. gen_highpart must return a valid operand,
1205 emitting code if necessary to do so. */
1206 if (GET_CODE (result) == MEM)
1207 result = validize_mem (result);
1208
1209 if (!result)
1210 abort ();
1211 return result;
1212 }
1213
1214 /* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1215 be VOIDmode constant. */
1216 rtx
1217 gen_highpart_mode (outermode, innermode, exp)
1218 enum machine_mode outermode, innermode;
1219 rtx exp;
1220 {
1221 if (GET_MODE (exp) != VOIDmode)
1222 {
1223 if (GET_MODE (exp) != innermode)
1224 abort ();
1225 return gen_highpart (outermode, exp);
1226 }
1227 return simplify_gen_subreg (outermode, exp, innermode,
1228 subreg_highpart_offset (outermode, innermode));
1229 }
1230 /* Return offset in bytes to get OUTERMODE low part
1231 of the value in mode INNERMODE stored in memory in target format. */
1232
1233 unsigned int
1234 subreg_lowpart_offset (outermode, innermode)
1235 enum machine_mode outermode, innermode;
1236 {
1237 unsigned int offset = 0;
1238 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1239
1240 if (difference > 0)
1241 {
1242 if (WORDS_BIG_ENDIAN)
1243 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1244 if (BYTES_BIG_ENDIAN)
1245 offset += difference % UNITS_PER_WORD;
1246 }
1247
1248 return offset;
1249 }
1250
1251 /* Return offset in bytes to get OUTERMODE high part
1252 of the value in mode INNERMODE stored in memory in target format. */
1253 unsigned int
1254 subreg_highpart_offset (outermode, innermode)
1255 enum machine_mode outermode, innermode;
1256 {
1257 unsigned int offset = 0;
1258 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1259
1260 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1261 abort ();
1262
1263 if (difference > 0)
1264 {
1265 if (! WORDS_BIG_ENDIAN)
1266 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1267 if (! BYTES_BIG_ENDIAN)
1268 offset += difference % UNITS_PER_WORD;
1269 }
1270
1271 return offset;
1272 }
1273
1274 /* Return 1 iff X, assumed to be a SUBREG,
1275 refers to the least significant part of its containing reg.
1276 If X is not a SUBREG, always return 1 (it is its own low part!). */
1277
1278 int
1279 subreg_lowpart_p (x)
1280 rtx x;
1281 {
1282 if (GET_CODE (x) != SUBREG)
1283 return 1;
1284 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1285 return 0;
1286
1287 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1288 == SUBREG_BYTE (x));
1289 }
1290 \f
1291
1292 /* Helper routine for all the constant cases of operand_subword.
1293 Some places invoke this directly. */
1294
1295 rtx
1296 constant_subword (op, offset, mode)
1297 rtx op;
1298 int offset;
1299 enum machine_mode mode;
1300 {
1301 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1302 HOST_WIDE_INT val;
1303
1304 /* If OP is already an integer word, return it. */
1305 if (GET_MODE_CLASS (mode) == MODE_INT
1306 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1307 return op;
1308
1309 #ifdef REAL_ARITHMETIC
1310 /* The output is some bits, the width of the target machine's word.
1311 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1312 host can't. */
1313 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1314 && GET_MODE_CLASS (mode) == MODE_FLOAT
1315 && GET_MODE_BITSIZE (mode) == 64
1316 && GET_CODE (op) == CONST_DOUBLE)
1317 {
1318 long k[2];
1319 REAL_VALUE_TYPE rv;
1320
1321 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1322 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1323
1324 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1325 which the words are written depends on the word endianness.
1326 ??? This is a potential portability problem and should
1327 be fixed at some point.
1328
1329 We must excercise caution with the sign bit. By definition there
1330 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1331 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1332 So we explicitly mask and sign-extend as necessary. */
1333 if (BITS_PER_WORD == 32)
1334 {
1335 val = k[offset];
1336 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1337 return GEN_INT (val);
1338 }
1339 #if HOST_BITS_PER_WIDE_INT >= 64
1340 else if (BITS_PER_WORD >= 64 && offset == 0)
1341 {
1342 val = k[! WORDS_BIG_ENDIAN];
1343 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1344 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1345 return GEN_INT (val);
1346 }
1347 #endif
1348 else if (BITS_PER_WORD == 16)
1349 {
1350 val = k[offset >> 1];
1351 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1352 val >>= 16;
1353 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1354 return GEN_INT (val);
1355 }
1356 else
1357 abort ();
1358 }
1359 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1360 && GET_MODE_CLASS (mode) == MODE_FLOAT
1361 && GET_MODE_BITSIZE (mode) > 64
1362 && GET_CODE (op) == CONST_DOUBLE)
1363 {
1364 long k[4];
1365 REAL_VALUE_TYPE rv;
1366
1367 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1368 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1369
1370 if (BITS_PER_WORD == 32)
1371 {
1372 val = k[offset];
1373 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1374 return GEN_INT (val);
1375 }
1376 #if HOST_BITS_PER_WIDE_INT >= 64
1377 else if (BITS_PER_WORD >= 64 && offset <= 1)
1378 {
1379 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1380 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1381 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1382 return GEN_INT (val);
1383 }
1384 #endif
1385 else
1386 abort ();
1387 }
1388 #else /* no REAL_ARITHMETIC */
1389 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1390 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1391 || flag_pretend_float)
1392 && GET_MODE_CLASS (mode) == MODE_FLOAT
1393 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1394 && GET_CODE (op) == CONST_DOUBLE)
1395 {
1396 /* The constant is stored in the host's word-ordering,
1397 but we want to access it in the target's word-ordering. Some
1398 compilers don't like a conditional inside macro args, so we have two
1399 copies of the return. */
1400 #ifdef HOST_WORDS_BIG_ENDIAN
1401 return GEN_INT (offset == WORDS_BIG_ENDIAN
1402 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1403 #else
1404 return GEN_INT (offset != WORDS_BIG_ENDIAN
1405 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1406 #endif
1407 }
1408 #endif /* no REAL_ARITHMETIC */
1409
1410 /* Single word float is a little harder, since single- and double-word
1411 values often do not have the same high-order bits. We have already
1412 verified that we want the only defined word of the single-word value. */
1413 #ifdef REAL_ARITHMETIC
1414 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1415 && GET_MODE_BITSIZE (mode) == 32
1416 && GET_CODE (op) == CONST_DOUBLE)
1417 {
1418 long l;
1419 REAL_VALUE_TYPE rv;
1420
1421 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1422 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1423
1424 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1425 val = l;
1426 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1427
1428 if (BITS_PER_WORD == 16)
1429 {
1430 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1431 val >>= 16;
1432 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1433 }
1434
1435 return GEN_INT (val);
1436 }
1437 #else
1438 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1439 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1440 || flag_pretend_float)
1441 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
1442 && GET_MODE_CLASS (mode) == MODE_FLOAT
1443 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1444 && GET_CODE (op) == CONST_DOUBLE)
1445 {
1446 double d;
1447 union {float f; HOST_WIDE_INT i; } u;
1448
1449 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1450
1451 u.f = d;
1452 return GEN_INT (u.i);
1453 }
1454 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1455 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1456 || flag_pretend_float)
1457 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1458 && GET_MODE_CLASS (mode) == MODE_FLOAT
1459 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1460 && GET_CODE (op) == CONST_DOUBLE)
1461 {
1462 double d;
1463 union {double d; HOST_WIDE_INT i; } u;
1464
1465 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1466
1467 u.d = d;
1468 return GEN_INT (u.i);
1469 }
1470 #endif /* no REAL_ARITHMETIC */
1471
1472 /* The only remaining cases that we can handle are integers.
1473 Convert to proper endianness now since these cases need it.
1474 At this point, offset == 0 means the low-order word.
1475
1476 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1477 in general. However, if OP is (const_int 0), we can just return
1478 it for any word. */
1479
1480 if (op == const0_rtx)
1481 return op;
1482
1483 if (GET_MODE_CLASS (mode) != MODE_INT
1484 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1485 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1486 return 0;
1487
1488 if (WORDS_BIG_ENDIAN)
1489 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1490
1491 /* Find out which word on the host machine this value is in and get
1492 it from the constant. */
1493 val = (offset / size_ratio == 0
1494 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1495 : (GET_CODE (op) == CONST_INT
1496 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1497
1498 /* Get the value we want into the low bits of val. */
1499 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1500 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1501
1502 val = trunc_int_for_mode (val, word_mode);
1503
1504 return GEN_INT (val);
1505 }
1506
1507 /* Return subword OFFSET of operand OP.
1508 The word number, OFFSET, is interpreted as the word number starting
1509 at the low-order address. OFFSET 0 is the low-order word if not
1510 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1511
1512 If we cannot extract the required word, we return zero. Otherwise,
1513 an rtx corresponding to the requested word will be returned.
1514
1515 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1516 reload has completed, a valid address will always be returned. After
1517 reload, if a valid address cannot be returned, we return zero.
1518
1519 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1520 it is the responsibility of the caller.
1521
1522 MODE is the mode of OP in case it is a CONST_INT.
1523
1524 ??? This is still rather broken for some cases. The problem for the
1525 moment is that all callers of this thing provide no 'goal mode' to
1526 tell us to work with. This exists because all callers were written
1527 in a word based SUBREG world.
1528 Now use of this function can be deprecated by simplify_subreg in most
1529 cases.
1530 */
1531
1532 rtx
1533 operand_subword (op, offset, validate_address, mode)
1534 rtx op;
1535 unsigned int offset;
1536 int validate_address;
1537 enum machine_mode mode;
1538 {
1539 if (mode == VOIDmode)
1540 mode = GET_MODE (op);
1541
1542 if (mode == VOIDmode)
1543 abort ();
1544
1545 /* If OP is narrower than a word, fail. */
1546 if (mode != BLKmode
1547 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1548 return 0;
1549
1550 /* If we want a word outside OP, return zero. */
1551 if (mode != BLKmode
1552 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1553 return const0_rtx;
1554
1555 /* Form a new MEM at the requested address. */
1556 if (GET_CODE (op) == MEM)
1557 {
1558 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1559
1560 if (! validate_address)
1561 return new;
1562
1563 else if (reload_completed)
1564 {
1565 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1566 return 0;
1567 }
1568 else
1569 return replace_equiv_address (new, XEXP (new, 0));
1570 }
1571
1572 /* Rest can be handled by simplify_subreg. */
1573 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1574 }
1575
1576 /* Similar to `operand_subword', but never return 0. If we can't extract
1577 the required subword, put OP into a register and try again. If that fails,
1578 abort. We always validate the address in this case.
1579
1580 MODE is the mode of OP, in case it is CONST_INT. */
1581
1582 rtx
1583 operand_subword_force (op, offset, mode)
1584 rtx op;
1585 unsigned int offset;
1586 enum machine_mode mode;
1587 {
1588 rtx result = operand_subword (op, offset, 1, mode);
1589
1590 if (result)
1591 return result;
1592
1593 if (mode != BLKmode && mode != VOIDmode)
1594 {
1595 /* If this is a register which can not be accessed by words, copy it
1596 to a pseudo register. */
1597 if (GET_CODE (op) == REG)
1598 op = copy_to_reg (op);
1599 else
1600 op = force_reg (mode, op);
1601 }
1602
1603 result = operand_subword (op, offset, 1, mode);
1604 if (result == 0)
1605 abort ();
1606
1607 return result;
1608 }
1609 \f
1610 /* Given a compare instruction, swap the operands.
1611 A test instruction is changed into a compare of 0 against the operand. */
1612
1613 void
1614 reverse_comparison (insn)
1615 rtx insn;
1616 {
1617 rtx body = PATTERN (insn);
1618 rtx comp;
1619
1620 if (GET_CODE (body) == SET)
1621 comp = SET_SRC (body);
1622 else
1623 comp = SET_SRC (XVECEXP (body, 0, 0));
1624
1625 if (GET_CODE (comp) == COMPARE)
1626 {
1627 rtx op0 = XEXP (comp, 0);
1628 rtx op1 = XEXP (comp, 1);
1629 XEXP (comp, 0) = op1;
1630 XEXP (comp, 1) = op0;
1631 }
1632 else
1633 {
1634 rtx new = gen_rtx_COMPARE (VOIDmode,
1635 CONST0_RTX (GET_MODE (comp)), comp);
1636 if (GET_CODE (body) == SET)
1637 SET_SRC (body) = new;
1638 else
1639 SET_SRC (XVECEXP (body, 0, 0)) = new;
1640 }
1641 }
1642 \f
1643
1644 /* Given REF, a MEM, and T, either the type of X or the expression
1645 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1646 if we are making a new object of this type. */
1647
1648 void
1649 set_mem_attributes (ref, t, objectp)
1650 rtx ref;
1651 tree t;
1652 int objectp;
1653 {
1654 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1655 tree decl = MEM_DECL (ref);
1656 rtx offset = MEM_OFFSET (ref);
1657 rtx size = MEM_SIZE (ref);
1658 unsigned int align = MEM_ALIGN (ref);
1659 tree type;
1660
1661 /* It can happen that type_for_mode was given a mode for which there
1662 is no language-level type. In which case it returns NULL, which
1663 we can see here. */
1664 if (t == NULL_TREE)
1665 return;
1666
1667 type = TYPE_P (t) ? t : TREE_TYPE (t);
1668
1669 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1670 wrong answer, as it assumes that DECL_RTL already has the right alias
1671 info. Callers should not set DECL_RTL until after the call to
1672 set_mem_attributes. */
1673 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1674 abort ();
1675
1676 /* Get the alias set from the expression or type (perhaps using a
1677 front-end routine) and use it. */
1678 alias = get_alias_set (t);
1679
1680 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1681 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1682 RTX_UNCHANGING_P (ref)
1683 |= (lang_hooks.honor_readonly
1684 && (TYPE_READONLY (type) || TREE_READONLY (t)));
1685
1686 /* If we are making an object of this type, or if this is a DECL, we know
1687 that it is a scalar if the type is not an aggregate. */
1688 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1689 MEM_SCALAR_P (ref) = 1;
1690
1691 /* If the size is known, we can set that. */
1692 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1693 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1694
1695 /* If T is not a type. Otherwise, we may be able to deduce some more
1696 information about the expression. */
1697 if (TYPE_P (t))
1698 {
1699 maybe_set_unchanging (ref, t);
1700 if (TREE_THIS_VOLATILE (t))
1701 MEM_VOLATILE_P (ref) = 1;
1702
1703 /* Now remove any NOPs: they don't change what the underlying object is.
1704 Likewise for SAVE_EXPR. */
1705 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1706 || TREE_CODE (t) == NON_LVALUE_EXPR || TREE_CODE (t) == SAVE_EXPR)
1707 t = TREE_OPERAND (t, 0);
1708
1709 /* If this is a decl, set the attributes of the MEM from it. */
1710 if (DECL_P (t))
1711 {
1712 decl = t;
1713 offset = GEN_INT (0);
1714 size = (DECL_SIZE_UNIT (t)
1715 && host_integerp (DECL_SIZE_UNIT (t), 1)
1716 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1717 align = DECL_ALIGN (t);
1718 }
1719
1720 /* If this is an INDIRECT_REF, we know its alignment. */
1721 else if (TREE_CODE (t) == INDIRECT_REF)
1722 align = TYPE_ALIGN (type);
1723 }
1724
1725 /* Now set the attributes we computed above. */
1726 MEM_ATTRS (ref) = get_mem_attrs (alias, decl, offset, size, align);
1727
1728 /* If this is already known to be a scalar or aggregate, we are done. */
1729 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1730 return;
1731
1732 /* If it is a reference into an aggregate, this is part of an aggregate.
1733 Otherwise we don't know. */
1734 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1735 || TREE_CODE (t) == ARRAY_RANGE_REF
1736 || TREE_CODE (t) == BIT_FIELD_REF)
1737 MEM_IN_STRUCT_P (ref) = 1;
1738 }
1739
1740 /* Set the alias set of MEM to SET. */
1741
1742 void
1743 set_mem_alias_set (mem, set)
1744 rtx mem;
1745 HOST_WIDE_INT set;
1746 {
1747 #ifdef ENABLE_CHECKING
1748 /* If the new and old alias sets don't conflict, something is wrong. */
1749 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1750 abort ();
1751 #endif
1752
1753 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_DECL (mem), MEM_OFFSET (mem),
1754 MEM_SIZE (mem), MEM_ALIGN (mem));
1755 }
1756
1757 /* Set the alignment of MEM to ALIGN bits. */
1758
1759 void
1760 set_mem_align (mem, align)
1761 rtx mem;
1762 unsigned int align;
1763 {
1764 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_DECL (mem),
1765 MEM_OFFSET (mem), MEM_SIZE (mem), align);
1766 }
1767 \f
1768 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1769 and its address changed to ADDR. (VOIDmode means don't change the mode.
1770 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1771 returned memory location is required to be valid. The memory
1772 attributes are not changed. */
1773
1774 static rtx
1775 change_address_1 (memref, mode, addr, validate)
1776 rtx memref;
1777 enum machine_mode mode;
1778 rtx addr;
1779 int validate;
1780 {
1781 rtx new;
1782
1783 if (GET_CODE (memref) != MEM)
1784 abort ();
1785 if (mode == VOIDmode)
1786 mode = GET_MODE (memref);
1787 if (addr == 0)
1788 addr = XEXP (memref, 0);
1789
1790 if (validate)
1791 {
1792 if (reload_in_progress || reload_completed)
1793 {
1794 if (! memory_address_p (mode, addr))
1795 abort ();
1796 }
1797 else
1798 addr = memory_address (mode, addr);
1799 }
1800
1801 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1802 return memref;
1803
1804 new = gen_rtx_MEM (mode, addr);
1805 MEM_COPY_ATTRIBUTES (new, memref);
1806 return new;
1807 }
1808
1809 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1810 way we are changing MEMREF, so we only preserve the alias set. */
1811
1812 rtx
1813 change_address (memref, mode, addr)
1814 rtx memref;
1815 enum machine_mode mode;
1816 rtx addr;
1817 {
1818 rtx new = change_address_1 (memref, mode, addr, 1);
1819 enum machine_mode mmode = GET_MODE (new);
1820
1821 MEM_ATTRS (new)
1822 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
1823 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
1824 (mmode == BLKmode ? 1
1825 : GET_MODE_ALIGNMENT (mmode) / BITS_PER_UNIT));
1826
1827 return new;
1828 }
1829
1830 /* Return a memory reference like MEMREF, but with its mode changed
1831 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1832 nonzero, the memory address is forced to be valid. */
1833
1834 rtx
1835 adjust_address_1 (memref, mode, offset, validate)
1836 rtx memref;
1837 enum machine_mode mode;
1838 HOST_WIDE_INT offset;
1839 int validate;
1840 {
1841 rtx addr = XEXP (memref, 0);
1842 rtx new;
1843 rtx memoffset = MEM_OFFSET (memref);
1844 unsigned int memalign = MEM_ALIGN (memref);
1845
1846 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1847 object, we can merge it into the LO_SUM. */
1848 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1849 && offset >= 0
1850 && (unsigned HOST_WIDE_INT) offset
1851 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1852 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1853 plus_constant (XEXP (addr, 1), offset));
1854 else if (offset == 0)
1855 /* ??? Prefer to create garbage instead of creating shared rtl. */
1856 addr = copy_rtx (addr);
1857 else
1858 addr = plus_constant (addr, offset);
1859
1860 new = change_address_1 (memref, mode, addr, validate);
1861
1862 /* Compute the new values of the memory attributes due to this adjustment.
1863 We add the offsets and update the alignment. */
1864 if (memoffset)
1865 memoffset = GEN_INT (offset + INTVAL (memoffset));
1866
1867 /* Compute the new alignment by taking the MIN of the alignment and the
1868 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1869 if zero. */
1870 if (offset != 0)
1871 memalign = MIN (memalign, (offset & -offset) * BITS_PER_UNIT);
1872
1873 MEM_ATTRS (new)
1874 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_DECL (memref), memoffset,
1875 mode == BLKmode
1876 ? 0 : GEN_INT (GET_MODE_SIZE (mode)), memalign);
1877
1878 /* At some point, we should validate that this offset is within the object,
1879 if all the appropriate values are known. */
1880 return new;
1881 }
1882
1883 /* Return a memory reference like MEMREF, but whose address is changed by
1884 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1885 known to be in OFFSET (possibly 1). */
1886
1887 rtx
1888 offset_address (memref, offset, pow2)
1889 rtx memref;
1890 rtx offset;
1891 HOST_WIDE_INT pow2;
1892 {
1893 rtx new = change_address_1 (memref, VOIDmode,
1894 gen_rtx_PLUS (Pmode, XEXP (memref, 0),
1895 force_reg (Pmode, offset)), 1);
1896
1897 /* Update the alignment to reflect the offset. Reset the offset, which
1898 we don't know. */
1899 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_DECL (memref),
1900 0, 0, MIN (MEM_ALIGN (memref),
1901 pow2 * BITS_PER_UNIT));
1902 return new;
1903 }
1904
1905 /* Return a memory reference like MEMREF, but with its address changed to
1906 ADDR. The caller is asserting that the actual piece of memory pointed
1907 to is the same, just the form of the address is being changed, such as
1908 by putting something into a register. */
1909
1910 rtx
1911 replace_equiv_address (memref, addr)
1912 rtx memref;
1913 rtx addr;
1914 {
1915 /* change_address_1 copies the memory attribute structure without change
1916 and that's exactly what we want here. */
1917 return change_address_1 (memref, VOIDmode, addr, 1);
1918 }
1919
1920 /* Likewise, but the reference is not required to be valid. */
1921
1922 rtx
1923 replace_equiv_address_nv (memref, addr)
1924 rtx memref;
1925 rtx addr;
1926 {
1927 return change_address_1 (memref, VOIDmode, addr, 0);
1928 }
1929 \f
1930 /* Return a newly created CODE_LABEL rtx with a unique label number. */
1931
1932 rtx
1933 gen_label_rtx ()
1934 {
1935 rtx label;
1936
1937 label = gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX,
1938 NULL_RTX, label_num++, NULL, NULL);
1939
1940 LABEL_NUSES (label) = 0;
1941 LABEL_ALTERNATE_NAME (label) = NULL;
1942 return label;
1943 }
1944 \f
1945 /* For procedure integration. */
1946
1947 /* Install new pointers to the first and last insns in the chain.
1948 Also, set cur_insn_uid to one higher than the last in use.
1949 Used for an inline-procedure after copying the insn chain. */
1950
1951 void
1952 set_new_first_and_last_insn (first, last)
1953 rtx first, last;
1954 {
1955 rtx insn;
1956
1957 first_insn = first;
1958 last_insn = last;
1959 cur_insn_uid = 0;
1960
1961 for (insn = first; insn; insn = NEXT_INSN (insn))
1962 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
1963
1964 cur_insn_uid++;
1965 }
1966
1967 /* Set the range of label numbers found in the current function.
1968 This is used when belatedly compiling an inline function. */
1969
1970 void
1971 set_new_first_and_last_label_num (first, last)
1972 int first, last;
1973 {
1974 base_label_num = label_num;
1975 first_label_num = first;
1976 last_label_num = last;
1977 }
1978
1979 /* Set the last label number found in the current function.
1980 This is used when belatedly compiling an inline function. */
1981
1982 void
1983 set_new_last_label_num (last)
1984 int last;
1985 {
1986 base_label_num = label_num;
1987 last_label_num = last;
1988 }
1989 \f
1990 /* Restore all variables describing the current status from the structure *P.
1991 This is used after a nested function. */
1992
1993 void
1994 restore_emit_status (p)
1995 struct function *p ATTRIBUTE_UNUSED;
1996 {
1997 last_label_num = 0;
1998 clear_emit_caches ();
1999 }
2000
2001 /* Clear out all parts of the state in F that can safely be discarded
2002 after the function has been compiled, to let garbage collection
2003 reclaim the memory. */
2004
2005 void
2006 free_emit_status (f)
2007 struct function *f;
2008 {
2009 free (f->emit->x_regno_reg_rtx);
2010 free (f->emit->regno_pointer_align);
2011 free (f->emit->regno_decl);
2012 free (f->emit);
2013 f->emit = NULL;
2014 }
2015 \f
2016 /* Go through all the RTL insn bodies and copy any invalid shared
2017 structure. This routine should only be called once. */
2018
2019 void
2020 unshare_all_rtl (fndecl, insn)
2021 tree fndecl;
2022 rtx insn;
2023 {
2024 tree decl;
2025
2026 /* Make sure that virtual parameters are not shared. */
2027 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2028 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2029
2030 /* Make sure that virtual stack slots are not shared. */
2031 unshare_all_decls (DECL_INITIAL (fndecl));
2032
2033 /* Unshare just about everything else. */
2034 unshare_all_rtl_1 (insn);
2035
2036 /* Make sure the addresses of stack slots found outside the insn chain
2037 (such as, in DECL_RTL of a variable) are not shared
2038 with the insn chain.
2039
2040 This special care is necessary when the stack slot MEM does not
2041 actually appear in the insn chain. If it does appear, its address
2042 is unshared from all else at that point. */
2043 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2044 }
2045
2046 /* Go through all the RTL insn bodies and copy any invalid shared
2047 structure, again. This is a fairly expensive thing to do so it
2048 should be done sparingly. */
2049
2050 void
2051 unshare_all_rtl_again (insn)
2052 rtx insn;
2053 {
2054 rtx p;
2055 tree decl;
2056
2057 for (p = insn; p; p = NEXT_INSN (p))
2058 if (INSN_P (p))
2059 {
2060 reset_used_flags (PATTERN (p));
2061 reset_used_flags (REG_NOTES (p));
2062 reset_used_flags (LOG_LINKS (p));
2063 }
2064
2065 /* Make sure that virtual stack slots are not shared. */
2066 reset_used_decls (DECL_INITIAL (cfun->decl));
2067
2068 /* Make sure that virtual parameters are not shared. */
2069 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2070 reset_used_flags (DECL_RTL (decl));
2071
2072 reset_used_flags (stack_slot_list);
2073
2074 unshare_all_rtl (cfun->decl, insn);
2075 }
2076
2077 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2078 Assumes the mark bits are cleared at entry. */
2079
2080 static void
2081 unshare_all_rtl_1 (insn)
2082 rtx insn;
2083 {
2084 for (; insn; insn = NEXT_INSN (insn))
2085 if (INSN_P (insn))
2086 {
2087 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2088 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2089 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2090 }
2091 }
2092
2093 /* Go through all virtual stack slots of a function and copy any
2094 shared structure. */
2095 static void
2096 unshare_all_decls (blk)
2097 tree blk;
2098 {
2099 tree t;
2100
2101 /* Copy shared decls. */
2102 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2103 if (DECL_RTL_SET_P (t))
2104 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2105
2106 /* Now process sub-blocks. */
2107 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2108 unshare_all_decls (t);
2109 }
2110
2111 /* Go through all virtual stack slots of a function and mark them as
2112 not shared. */
2113 static void
2114 reset_used_decls (blk)
2115 tree blk;
2116 {
2117 tree t;
2118
2119 /* Mark decls. */
2120 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2121 if (DECL_RTL_SET_P (t))
2122 reset_used_flags (DECL_RTL (t));
2123
2124 /* Now process sub-blocks. */
2125 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2126 reset_used_decls (t);
2127 }
2128
2129 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2130 Recursively does the same for subexpressions. */
2131
2132 rtx
2133 copy_rtx_if_shared (orig)
2134 rtx orig;
2135 {
2136 rtx x = orig;
2137 int i;
2138 enum rtx_code code;
2139 const char *format_ptr;
2140 int copied = 0;
2141
2142 if (x == 0)
2143 return 0;
2144
2145 code = GET_CODE (x);
2146
2147 /* These types may be freely shared. */
2148
2149 switch (code)
2150 {
2151 case REG:
2152 case QUEUED:
2153 case CONST_INT:
2154 case CONST_DOUBLE:
2155 case SYMBOL_REF:
2156 case CODE_LABEL:
2157 case PC:
2158 case CC0:
2159 case SCRATCH:
2160 /* SCRATCH must be shared because they represent distinct values. */
2161 return x;
2162
2163 case CONST:
2164 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2165 a LABEL_REF, it isn't sharable. */
2166 if (GET_CODE (XEXP (x, 0)) == PLUS
2167 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2168 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2169 return x;
2170 break;
2171
2172 case INSN:
2173 case JUMP_INSN:
2174 case CALL_INSN:
2175 case NOTE:
2176 case BARRIER:
2177 /* The chain of insns is not being copied. */
2178 return x;
2179
2180 case MEM:
2181 /* A MEM is allowed to be shared if its address is constant.
2182
2183 We used to allow sharing of MEMs which referenced
2184 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2185 that can lose. instantiate_virtual_regs will not unshare
2186 the MEMs, and combine may change the structure of the address
2187 because it looks safe and profitable in one context, but
2188 in some other context it creates unrecognizable RTL. */
2189 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
2190 return x;
2191
2192 break;
2193
2194 default:
2195 break;
2196 }
2197
2198 /* This rtx may not be shared. If it has already been seen,
2199 replace it with a copy of itself. */
2200
2201 if (x->used)
2202 {
2203 rtx copy;
2204
2205 copy = rtx_alloc (code);
2206 memcpy (copy, x,
2207 (sizeof (*copy) - sizeof (copy->fld)
2208 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
2209 x = copy;
2210 copied = 1;
2211 }
2212 x->used = 1;
2213
2214 /* Now scan the subexpressions recursively.
2215 We can store any replaced subexpressions directly into X
2216 since we know X is not shared! Any vectors in X
2217 must be copied if X was copied. */
2218
2219 format_ptr = GET_RTX_FORMAT (code);
2220
2221 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2222 {
2223 switch (*format_ptr++)
2224 {
2225 case 'e':
2226 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2227 break;
2228
2229 case 'E':
2230 if (XVEC (x, i) != NULL)
2231 {
2232 int j;
2233 int len = XVECLEN (x, i);
2234
2235 if (copied && len > 0)
2236 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2237 for (j = 0; j < len; j++)
2238 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
2239 }
2240 break;
2241 }
2242 }
2243 return x;
2244 }
2245
2246 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2247 to look for shared sub-parts. */
2248
2249 void
2250 reset_used_flags (x)
2251 rtx x;
2252 {
2253 int i, j;
2254 enum rtx_code code;
2255 const char *format_ptr;
2256
2257 if (x == 0)
2258 return;
2259
2260 code = GET_CODE (x);
2261
2262 /* These types may be freely shared so we needn't do any resetting
2263 for them. */
2264
2265 switch (code)
2266 {
2267 case REG:
2268 case QUEUED:
2269 case CONST_INT:
2270 case CONST_DOUBLE:
2271 case SYMBOL_REF:
2272 case CODE_LABEL:
2273 case PC:
2274 case CC0:
2275 return;
2276
2277 case INSN:
2278 case JUMP_INSN:
2279 case CALL_INSN:
2280 case NOTE:
2281 case LABEL_REF:
2282 case BARRIER:
2283 /* The chain of insns is not being copied. */
2284 return;
2285
2286 default:
2287 break;
2288 }
2289
2290 x->used = 0;
2291
2292 format_ptr = GET_RTX_FORMAT (code);
2293 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2294 {
2295 switch (*format_ptr++)
2296 {
2297 case 'e':
2298 reset_used_flags (XEXP (x, i));
2299 break;
2300
2301 case 'E':
2302 for (j = 0; j < XVECLEN (x, i); j++)
2303 reset_used_flags (XVECEXP (x, i, j));
2304 break;
2305 }
2306 }
2307 }
2308 \f
2309 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2310 Return X or the rtx for the pseudo reg the value of X was copied into.
2311 OTHER must be valid as a SET_DEST. */
2312
2313 rtx
2314 make_safe_from (x, other)
2315 rtx x, other;
2316 {
2317 while (1)
2318 switch (GET_CODE (other))
2319 {
2320 case SUBREG:
2321 other = SUBREG_REG (other);
2322 break;
2323 case STRICT_LOW_PART:
2324 case SIGN_EXTEND:
2325 case ZERO_EXTEND:
2326 other = XEXP (other, 0);
2327 break;
2328 default:
2329 goto done;
2330 }
2331 done:
2332 if ((GET_CODE (other) == MEM
2333 && ! CONSTANT_P (x)
2334 && GET_CODE (x) != REG
2335 && GET_CODE (x) != SUBREG)
2336 || (GET_CODE (other) == REG
2337 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2338 || reg_mentioned_p (other, x))))
2339 {
2340 rtx temp = gen_reg_rtx (GET_MODE (x));
2341 emit_move_insn (temp, x);
2342 return temp;
2343 }
2344 return x;
2345 }
2346 \f
2347 /* Emission of insns (adding them to the doubly-linked list). */
2348
2349 /* Return the first insn of the current sequence or current function. */
2350
2351 rtx
2352 get_insns ()
2353 {
2354 return first_insn;
2355 }
2356
2357 /* Return the last insn emitted in current sequence or current function. */
2358
2359 rtx
2360 get_last_insn ()
2361 {
2362 return last_insn;
2363 }
2364
2365 /* Specify a new insn as the last in the chain. */
2366
2367 void
2368 set_last_insn (insn)
2369 rtx insn;
2370 {
2371 if (NEXT_INSN (insn) != 0)
2372 abort ();
2373 last_insn = insn;
2374 }
2375
2376 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2377
2378 rtx
2379 get_last_insn_anywhere ()
2380 {
2381 struct sequence_stack *stack;
2382 if (last_insn)
2383 return last_insn;
2384 for (stack = seq_stack; stack; stack = stack->next)
2385 if (stack->last != 0)
2386 return stack->last;
2387 return 0;
2388 }
2389
2390 /* Return a number larger than any instruction's uid in this function. */
2391
2392 int
2393 get_max_uid ()
2394 {
2395 return cur_insn_uid;
2396 }
2397
2398 /* Renumber instructions so that no instruction UIDs are wasted. */
2399
2400 void
2401 renumber_insns (stream)
2402 FILE *stream;
2403 {
2404 rtx insn;
2405
2406 /* If we're not supposed to renumber instructions, don't. */
2407 if (!flag_renumber_insns)
2408 return;
2409
2410 /* If there aren't that many instructions, then it's not really
2411 worth renumbering them. */
2412 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2413 return;
2414
2415 cur_insn_uid = 1;
2416
2417 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2418 {
2419 if (stream)
2420 fprintf (stream, "Renumbering insn %d to %d\n",
2421 INSN_UID (insn), cur_insn_uid);
2422 INSN_UID (insn) = cur_insn_uid++;
2423 }
2424 }
2425 \f
2426 /* Return the next insn. If it is a SEQUENCE, return the first insn
2427 of the sequence. */
2428
2429 rtx
2430 next_insn (insn)
2431 rtx insn;
2432 {
2433 if (insn)
2434 {
2435 insn = NEXT_INSN (insn);
2436 if (insn && GET_CODE (insn) == INSN
2437 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2438 insn = XVECEXP (PATTERN (insn), 0, 0);
2439 }
2440
2441 return insn;
2442 }
2443
2444 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2445 of the sequence. */
2446
2447 rtx
2448 previous_insn (insn)
2449 rtx insn;
2450 {
2451 if (insn)
2452 {
2453 insn = PREV_INSN (insn);
2454 if (insn && GET_CODE (insn) == INSN
2455 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2456 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2457 }
2458
2459 return insn;
2460 }
2461
2462 /* Return the next insn after INSN that is not a NOTE. This routine does not
2463 look inside SEQUENCEs. */
2464
2465 rtx
2466 next_nonnote_insn (insn)
2467 rtx insn;
2468 {
2469 while (insn)
2470 {
2471 insn = NEXT_INSN (insn);
2472 if (insn == 0 || GET_CODE (insn) != NOTE)
2473 break;
2474 }
2475
2476 return insn;
2477 }
2478
2479 /* Return the previous insn before INSN that is not a NOTE. This routine does
2480 not look inside SEQUENCEs. */
2481
2482 rtx
2483 prev_nonnote_insn (insn)
2484 rtx insn;
2485 {
2486 while (insn)
2487 {
2488 insn = PREV_INSN (insn);
2489 if (insn == 0 || GET_CODE (insn) != NOTE)
2490 break;
2491 }
2492
2493 return insn;
2494 }
2495
2496 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2497 or 0, if there is none. This routine does not look inside
2498 SEQUENCEs. */
2499
2500 rtx
2501 next_real_insn (insn)
2502 rtx insn;
2503 {
2504 while (insn)
2505 {
2506 insn = NEXT_INSN (insn);
2507 if (insn == 0 || GET_CODE (insn) == INSN
2508 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2509 break;
2510 }
2511
2512 return insn;
2513 }
2514
2515 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2516 or 0, if there is none. This routine does not look inside
2517 SEQUENCEs. */
2518
2519 rtx
2520 prev_real_insn (insn)
2521 rtx insn;
2522 {
2523 while (insn)
2524 {
2525 insn = PREV_INSN (insn);
2526 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2527 || GET_CODE (insn) == JUMP_INSN)
2528 break;
2529 }
2530
2531 return insn;
2532 }
2533
2534 /* Find the next insn after INSN that really does something. This routine
2535 does not look inside SEQUENCEs. Until reload has completed, this is the
2536 same as next_real_insn. */
2537
2538 int
2539 active_insn_p (insn)
2540 rtx insn;
2541 {
2542 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2543 || (GET_CODE (insn) == INSN
2544 && (! reload_completed
2545 || (GET_CODE (PATTERN (insn)) != USE
2546 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2547 }
2548
2549 rtx
2550 next_active_insn (insn)
2551 rtx insn;
2552 {
2553 while (insn)
2554 {
2555 insn = NEXT_INSN (insn);
2556 if (insn == 0 || active_insn_p (insn))
2557 break;
2558 }
2559
2560 return insn;
2561 }
2562
2563 /* Find the last insn before INSN that really does something. This routine
2564 does not look inside SEQUENCEs. Until reload has completed, this is the
2565 same as prev_real_insn. */
2566
2567 rtx
2568 prev_active_insn (insn)
2569 rtx insn;
2570 {
2571 while (insn)
2572 {
2573 insn = PREV_INSN (insn);
2574 if (insn == 0 || active_insn_p (insn))
2575 break;
2576 }
2577
2578 return insn;
2579 }
2580
2581 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2582
2583 rtx
2584 next_label (insn)
2585 rtx insn;
2586 {
2587 while (insn)
2588 {
2589 insn = NEXT_INSN (insn);
2590 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2591 break;
2592 }
2593
2594 return insn;
2595 }
2596
2597 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2598
2599 rtx
2600 prev_label (insn)
2601 rtx insn;
2602 {
2603 while (insn)
2604 {
2605 insn = PREV_INSN (insn);
2606 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2607 break;
2608 }
2609
2610 return insn;
2611 }
2612 \f
2613 #ifdef HAVE_cc0
2614 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2615 and REG_CC_USER notes so we can find it. */
2616
2617 void
2618 link_cc0_insns (insn)
2619 rtx insn;
2620 {
2621 rtx user = next_nonnote_insn (insn);
2622
2623 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
2624 user = XVECEXP (PATTERN (user), 0, 0);
2625
2626 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
2627 REG_NOTES (user));
2628 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
2629 }
2630
2631 /* Return the next insn that uses CC0 after INSN, which is assumed to
2632 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2633 applied to the result of this function should yield INSN).
2634
2635 Normally, this is simply the next insn. However, if a REG_CC_USER note
2636 is present, it contains the insn that uses CC0.
2637
2638 Return 0 if we can't find the insn. */
2639
2640 rtx
2641 next_cc0_user (insn)
2642 rtx insn;
2643 {
2644 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
2645
2646 if (note)
2647 return XEXP (note, 0);
2648
2649 insn = next_nonnote_insn (insn);
2650 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
2651 insn = XVECEXP (PATTERN (insn), 0, 0);
2652
2653 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
2654 return insn;
2655
2656 return 0;
2657 }
2658
2659 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2660 note, it is the previous insn. */
2661
2662 rtx
2663 prev_cc0_setter (insn)
2664 rtx insn;
2665 {
2666 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2667
2668 if (note)
2669 return XEXP (note, 0);
2670
2671 insn = prev_nonnote_insn (insn);
2672 if (! sets_cc0_p (PATTERN (insn)))
2673 abort ();
2674
2675 return insn;
2676 }
2677 #endif
2678
2679 /* Increment the label uses for all labels present in rtx. */
2680
2681 static void
2682 mark_label_nuses(x)
2683 rtx x;
2684 {
2685 enum rtx_code code;
2686 int i, j;
2687 const char *fmt;
2688
2689 code = GET_CODE (x);
2690 if (code == LABEL_REF)
2691 LABEL_NUSES (XEXP (x, 0))++;
2692
2693 fmt = GET_RTX_FORMAT (code);
2694 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2695 {
2696 if (fmt[i] == 'e')
2697 mark_label_nuses (XEXP (x, i));
2698 else if (fmt[i] == 'E')
2699 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2700 mark_label_nuses (XVECEXP (x, i, j));
2701 }
2702 }
2703
2704 \f
2705 /* Try splitting insns that can be split for better scheduling.
2706 PAT is the pattern which might split.
2707 TRIAL is the insn providing PAT.
2708 LAST is non-zero if we should return the last insn of the sequence produced.
2709
2710 If this routine succeeds in splitting, it returns the first or last
2711 replacement insn depending on the value of LAST. Otherwise, it
2712 returns TRIAL. If the insn to be returned can be split, it will be. */
2713
2714 rtx
2715 try_split (pat, trial, last)
2716 rtx pat, trial;
2717 int last;
2718 {
2719 rtx before = PREV_INSN (trial);
2720 rtx after = NEXT_INSN (trial);
2721 int has_barrier = 0;
2722 rtx tem;
2723 rtx note, seq;
2724 int probability;
2725
2726 if (any_condjump_p (trial)
2727 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
2728 split_branch_probability = INTVAL (XEXP (note, 0));
2729 probability = split_branch_probability;
2730
2731 seq = split_insns (pat, trial);
2732
2733 split_branch_probability = -1;
2734
2735 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2736 We may need to handle this specially. */
2737 if (after && GET_CODE (after) == BARRIER)
2738 {
2739 has_barrier = 1;
2740 after = NEXT_INSN (after);
2741 }
2742
2743 if (seq)
2744 {
2745 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2746 The latter case will normally arise only when being done so that
2747 it, in turn, will be split (SFmode on the 29k is an example). */
2748 if (GET_CODE (seq) == SEQUENCE)
2749 {
2750 int i, njumps = 0;
2751
2752 /* Avoid infinite loop if any insn of the result matches
2753 the original pattern. */
2754 for (i = 0; i < XVECLEN (seq, 0); i++)
2755 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN
2756 && rtx_equal_p (PATTERN (XVECEXP (seq, 0, i)), pat))
2757 return trial;
2758
2759 /* Mark labels. */
2760 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2761 if (GET_CODE (XVECEXP (seq, 0, i)) == JUMP_INSN)
2762 {
2763 rtx insn = XVECEXP (seq, 0, i);
2764 mark_jump_label (PATTERN (insn),
2765 XVECEXP (seq, 0, i), 0);
2766 njumps++;
2767 if (probability != -1
2768 && any_condjump_p (insn)
2769 && !find_reg_note (insn, REG_BR_PROB, 0))
2770 {
2771 /* We can preserve the REG_BR_PROB notes only if exactly
2772 one jump is created, otherwise the machinde description
2773 is responsible for this step using
2774 split_branch_probability variable. */
2775 if (njumps != 1)
2776 abort ();
2777 REG_NOTES (insn)
2778 = gen_rtx_EXPR_LIST (REG_BR_PROB,
2779 GEN_INT (probability),
2780 REG_NOTES (insn));
2781 }
2782 }
2783
2784 /* If we are splitting a CALL_INSN, look for the CALL_INSN
2785 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
2786 if (GET_CODE (trial) == CALL_INSN)
2787 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2788 if (GET_CODE (XVECEXP (seq, 0, i)) == CALL_INSN)
2789 CALL_INSN_FUNCTION_USAGE (XVECEXP (seq, 0, i))
2790 = CALL_INSN_FUNCTION_USAGE (trial);
2791
2792 /* Copy notes, particularly those related to the CFG. */
2793 for (note = REG_NOTES (trial); note ; note = XEXP (note, 1))
2794 {
2795 switch (REG_NOTE_KIND (note))
2796 {
2797 case REG_EH_REGION:
2798 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2799 {
2800 rtx insn = XVECEXP (seq, 0, i);
2801 if (GET_CODE (insn) == CALL_INSN
2802 || (flag_non_call_exceptions
2803 && may_trap_p (PATTERN (insn))))
2804 REG_NOTES (insn)
2805 = gen_rtx_EXPR_LIST (REG_EH_REGION,
2806 XEXP (note, 0),
2807 REG_NOTES (insn));
2808 }
2809 break;
2810
2811 case REG_NORETURN:
2812 case REG_SETJMP:
2813 case REG_ALWAYS_RETURN:
2814 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2815 {
2816 rtx insn = XVECEXP (seq, 0, i);
2817 if (GET_CODE (insn) == CALL_INSN)
2818 REG_NOTES (insn)
2819 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
2820 XEXP (note, 0),
2821 REG_NOTES (insn));
2822 }
2823 break;
2824
2825 case REG_NON_LOCAL_GOTO:
2826 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2827 {
2828 rtx insn = XVECEXP (seq, 0, i);
2829 if (GET_CODE (insn) == JUMP_INSN)
2830 REG_NOTES (insn)
2831 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
2832 XEXP (note, 0),
2833 REG_NOTES (insn));
2834 }
2835 break;
2836
2837 default:
2838 break;
2839 }
2840 }
2841
2842 /* If there are LABELS inside the split insns increment the
2843 usage count so we don't delete the label. */
2844 if (GET_CODE (trial) == INSN)
2845 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2846 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN)
2847 mark_label_nuses (PATTERN (XVECEXP (seq, 0, i)));
2848
2849 tem = emit_insn_after (seq, trial);
2850
2851 delete_related_insns (trial);
2852 if (has_barrier)
2853 emit_barrier_after (tem);
2854
2855 /* Recursively call try_split for each new insn created; by the
2856 time control returns here that insn will be fully split, so
2857 set LAST and continue from the insn after the one returned.
2858 We can't use next_active_insn here since AFTER may be a note.
2859 Ignore deleted insns, which can be occur if not optimizing. */
2860 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
2861 if (! INSN_DELETED_P (tem) && INSN_P (tem))
2862 tem = try_split (PATTERN (tem), tem, 1);
2863 }
2864 /* Avoid infinite loop if the result matches the original pattern. */
2865 else if (rtx_equal_p (seq, pat))
2866 return trial;
2867 else
2868 {
2869 PATTERN (trial) = seq;
2870 INSN_CODE (trial) = -1;
2871 try_split (seq, trial, last);
2872 }
2873
2874 /* Return either the first or the last insn, depending on which was
2875 requested. */
2876 return last
2877 ? (after ? PREV_INSN (after) : last_insn)
2878 : NEXT_INSN (before);
2879 }
2880
2881 return trial;
2882 }
2883 \f
2884 /* Make and return an INSN rtx, initializing all its slots.
2885 Store PATTERN in the pattern slots. */
2886
2887 rtx
2888 make_insn_raw (pattern)
2889 rtx pattern;
2890 {
2891 rtx insn;
2892
2893 insn = rtx_alloc (INSN);
2894
2895 INSN_UID (insn) = cur_insn_uid++;
2896 PATTERN (insn) = pattern;
2897 INSN_CODE (insn) = -1;
2898 LOG_LINKS (insn) = NULL;
2899 REG_NOTES (insn) = NULL;
2900
2901 #ifdef ENABLE_RTL_CHECKING
2902 if (insn
2903 && INSN_P (insn)
2904 && (returnjump_p (insn)
2905 || (GET_CODE (insn) == SET
2906 && SET_DEST (insn) == pc_rtx)))
2907 {
2908 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
2909 debug_rtx (insn);
2910 }
2911 #endif
2912
2913 return insn;
2914 }
2915
2916 /* Like `make_insn' but make a JUMP_INSN instead of an insn. */
2917
2918 static rtx
2919 make_jump_insn_raw (pattern)
2920 rtx pattern;
2921 {
2922 rtx insn;
2923
2924 insn = rtx_alloc (JUMP_INSN);
2925 INSN_UID (insn) = cur_insn_uid++;
2926
2927 PATTERN (insn) = pattern;
2928 INSN_CODE (insn) = -1;
2929 LOG_LINKS (insn) = NULL;
2930 REG_NOTES (insn) = NULL;
2931 JUMP_LABEL (insn) = NULL;
2932
2933 return insn;
2934 }
2935
2936 /* Like `make_insn' but make a CALL_INSN instead of an insn. */
2937
2938 static rtx
2939 make_call_insn_raw (pattern)
2940 rtx pattern;
2941 {
2942 rtx insn;
2943
2944 insn = rtx_alloc (CALL_INSN);
2945 INSN_UID (insn) = cur_insn_uid++;
2946
2947 PATTERN (insn) = pattern;
2948 INSN_CODE (insn) = -1;
2949 LOG_LINKS (insn) = NULL;
2950 REG_NOTES (insn) = NULL;
2951 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
2952
2953 return insn;
2954 }
2955 \f
2956 /* Add INSN to the end of the doubly-linked list.
2957 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
2958
2959 void
2960 add_insn (insn)
2961 rtx insn;
2962 {
2963 PREV_INSN (insn) = last_insn;
2964 NEXT_INSN (insn) = 0;
2965
2966 if (NULL != last_insn)
2967 NEXT_INSN (last_insn) = insn;
2968
2969 if (NULL == first_insn)
2970 first_insn = insn;
2971
2972 last_insn = insn;
2973 }
2974
2975 /* Add INSN into the doubly-linked list after insn AFTER. This and
2976 the next should be the only functions called to insert an insn once
2977 delay slots have been filled since only they know how to update a
2978 SEQUENCE. */
2979
2980 void
2981 add_insn_after (insn, after)
2982 rtx insn, after;
2983 {
2984 rtx next = NEXT_INSN (after);
2985 basic_block bb;
2986
2987 if (optimize && INSN_DELETED_P (after))
2988 abort ();
2989
2990 NEXT_INSN (insn) = next;
2991 PREV_INSN (insn) = after;
2992
2993 if (next)
2994 {
2995 PREV_INSN (next) = insn;
2996 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2997 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
2998 }
2999 else if (last_insn == after)
3000 last_insn = insn;
3001 else
3002 {
3003 struct sequence_stack *stack = seq_stack;
3004 /* Scan all pending sequences too. */
3005 for (; stack; stack = stack->next)
3006 if (after == stack->last)
3007 {
3008 stack->last = insn;
3009 break;
3010 }
3011
3012 if (stack == 0)
3013 abort ();
3014 }
3015
3016 if (basic_block_for_insn
3017 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3018 && (bb = BLOCK_FOR_INSN (after)))
3019 {
3020 set_block_for_insn (insn, bb);
3021 /* Should not happen as first in the BB is always
3022 eigther NOTE or LABEL. */
3023 if (bb->end == after
3024 /* Avoid clobbering of structure when creating new BB. */
3025 && GET_CODE (insn) != BARRIER
3026 && (GET_CODE (insn) != NOTE
3027 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3028 bb->end = insn;
3029 }
3030
3031 NEXT_INSN (after) = insn;
3032 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3033 {
3034 rtx sequence = PATTERN (after);
3035 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3036 }
3037 }
3038
3039 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3040 the previous should be the only functions called to insert an insn once
3041 delay slots have been filled since only they know how to update a
3042 SEQUENCE. */
3043
3044 void
3045 add_insn_before (insn, before)
3046 rtx insn, before;
3047 {
3048 rtx prev = PREV_INSN (before);
3049 basic_block bb;
3050
3051 if (optimize && INSN_DELETED_P (before))
3052 abort ();
3053
3054 PREV_INSN (insn) = prev;
3055 NEXT_INSN (insn) = before;
3056
3057 if (prev)
3058 {
3059 NEXT_INSN (prev) = insn;
3060 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3061 {
3062 rtx sequence = PATTERN (prev);
3063 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3064 }
3065 }
3066 else if (first_insn == before)
3067 first_insn = insn;
3068 else
3069 {
3070 struct sequence_stack *stack = seq_stack;
3071 /* Scan all pending sequences too. */
3072 for (; stack; stack = stack->next)
3073 if (before == stack->first)
3074 {
3075 stack->first = insn;
3076 break;
3077 }
3078
3079 if (stack == 0)
3080 abort ();
3081 }
3082
3083 if (basic_block_for_insn
3084 && (unsigned int)INSN_UID (before) < basic_block_for_insn->num_elements
3085 && (bb = BLOCK_FOR_INSN (before)))
3086 {
3087 set_block_for_insn (insn, bb);
3088 /* Should not happen as first in the BB is always
3089 eigther NOTE or LABEl. */
3090 if (bb->head == insn
3091 /* Avoid clobbering of structure when creating new BB. */
3092 && GET_CODE (insn) != BARRIER
3093 && (GET_CODE (insn) != NOTE
3094 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3095 abort ();
3096 }
3097
3098 PREV_INSN (before) = insn;
3099 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3100 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3101 }
3102
3103 /* Remove an insn from its doubly-linked list. This function knows how
3104 to handle sequences. */
3105 void
3106 remove_insn (insn)
3107 rtx insn;
3108 {
3109 rtx next = NEXT_INSN (insn);
3110 rtx prev = PREV_INSN (insn);
3111 basic_block bb;
3112
3113 if (prev)
3114 {
3115 NEXT_INSN (prev) = next;
3116 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3117 {
3118 rtx sequence = PATTERN (prev);
3119 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3120 }
3121 }
3122 else if (first_insn == insn)
3123 first_insn = next;
3124 else
3125 {
3126 struct sequence_stack *stack = seq_stack;
3127 /* Scan all pending sequences too. */
3128 for (; stack; stack = stack->next)
3129 if (insn == stack->first)
3130 {
3131 stack->first = next;
3132 break;
3133 }
3134
3135 if (stack == 0)
3136 abort ();
3137 }
3138
3139 if (next)
3140 {
3141 PREV_INSN (next) = prev;
3142 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3143 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3144 }
3145 else if (last_insn == insn)
3146 last_insn = prev;
3147 else
3148 {
3149 struct sequence_stack *stack = seq_stack;
3150 /* Scan all pending sequences too. */
3151 for (; stack; stack = stack->next)
3152 if (insn == stack->last)
3153 {
3154 stack->last = prev;
3155 break;
3156 }
3157
3158 if (stack == 0)
3159 abort ();
3160 }
3161 if (basic_block_for_insn
3162 && (unsigned int)INSN_UID (insn) < basic_block_for_insn->num_elements
3163 && (bb = BLOCK_FOR_INSN (insn)))
3164 {
3165 if (bb->head == insn)
3166 {
3167 /* Never ever delete the basic block note without deleting whole basic
3168 block. */
3169 if (GET_CODE (insn) == NOTE)
3170 abort ();
3171 bb->head = next;
3172 }
3173 if (bb->end == insn)
3174 bb->end = prev;
3175 }
3176 }
3177
3178 /* Delete all insns made since FROM.
3179 FROM becomes the new last instruction. */
3180
3181 void
3182 delete_insns_since (from)
3183 rtx from;
3184 {
3185 if (from == 0)
3186 first_insn = 0;
3187 else
3188 NEXT_INSN (from) = 0;
3189 last_insn = from;
3190 }
3191
3192 /* This function is deprecated, please use sequences instead.
3193
3194 Move a consecutive bunch of insns to a different place in the chain.
3195 The insns to be moved are those between FROM and TO.
3196 They are moved to a new position after the insn AFTER.
3197 AFTER must not be FROM or TO or any insn in between.
3198
3199 This function does not know about SEQUENCEs and hence should not be
3200 called after delay-slot filling has been done. */
3201
3202 void
3203 reorder_insns_nobb (from, to, after)
3204 rtx from, to, after;
3205 {
3206 /* Splice this bunch out of where it is now. */
3207 if (PREV_INSN (from))
3208 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3209 if (NEXT_INSN (to))
3210 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3211 if (last_insn == to)
3212 last_insn = PREV_INSN (from);
3213 if (first_insn == from)
3214 first_insn = NEXT_INSN (to);
3215
3216 /* Make the new neighbors point to it and it to them. */
3217 if (NEXT_INSN (after))
3218 PREV_INSN (NEXT_INSN (after)) = to;
3219
3220 NEXT_INSN (to) = NEXT_INSN (after);
3221 PREV_INSN (from) = after;
3222 NEXT_INSN (after) = from;
3223 if (after == last_insn)
3224 last_insn = to;
3225 }
3226
3227 /* Same as function above, but take care to update BB boundaries. */
3228 void
3229 reorder_insns (from, to, after)
3230 rtx from, to, after;
3231 {
3232 rtx prev = PREV_INSN (from);
3233 basic_block bb, bb2;
3234
3235 reorder_insns_nobb (from, to, after);
3236
3237 if (basic_block_for_insn
3238 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3239 && (bb = BLOCK_FOR_INSN (after)))
3240 {
3241 rtx x;
3242
3243 if (basic_block_for_insn
3244 && (unsigned int)INSN_UID (from) < basic_block_for_insn->num_elements
3245 && (bb2 = BLOCK_FOR_INSN (from)))
3246 {
3247 if (bb2->end == to)
3248 bb2->end = prev;
3249 }
3250
3251 if (bb->end == after)
3252 bb->end = to;
3253
3254 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3255 set_block_for_insn (x, bb);
3256 }
3257 }
3258
3259 /* Return the line note insn preceding INSN. */
3260
3261 static rtx
3262 find_line_note (insn)
3263 rtx insn;
3264 {
3265 if (no_line_numbers)
3266 return 0;
3267
3268 for (; insn; insn = PREV_INSN (insn))
3269 if (GET_CODE (insn) == NOTE
3270 && NOTE_LINE_NUMBER (insn) >= 0)
3271 break;
3272
3273 return insn;
3274 }
3275
3276 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3277 of the moved insns when debugging. This may insert a note between AFTER
3278 and FROM, and another one after TO. */
3279
3280 void
3281 reorder_insns_with_line_notes (from, to, after)
3282 rtx from, to, after;
3283 {
3284 rtx from_line = find_line_note (from);
3285 rtx after_line = find_line_note (after);
3286
3287 reorder_insns (from, to, after);
3288
3289 if (from_line == after_line)
3290 return;
3291
3292 if (from_line)
3293 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3294 NOTE_LINE_NUMBER (from_line),
3295 after);
3296 if (after_line)
3297 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3298 NOTE_LINE_NUMBER (after_line),
3299 to);
3300 }
3301
3302 /* Remove unnecessary notes from the instruction stream. */
3303
3304 void
3305 remove_unnecessary_notes ()
3306 {
3307 rtx block_stack = NULL_RTX;
3308 rtx eh_stack = NULL_RTX;
3309 rtx insn;
3310 rtx next;
3311 rtx tmp;
3312
3313 /* We must not remove the first instruction in the function because
3314 the compiler depends on the first instruction being a note. */
3315 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3316 {
3317 /* Remember what's next. */
3318 next = NEXT_INSN (insn);
3319
3320 /* We're only interested in notes. */
3321 if (GET_CODE (insn) != NOTE)
3322 continue;
3323
3324 switch (NOTE_LINE_NUMBER (insn))
3325 {
3326 case NOTE_INSN_DELETED:
3327 remove_insn (insn);
3328 break;
3329
3330 case NOTE_INSN_EH_REGION_BEG:
3331 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3332 break;
3333
3334 case NOTE_INSN_EH_REGION_END:
3335 /* Too many end notes. */
3336 if (eh_stack == NULL_RTX)
3337 abort ();
3338 /* Mismatched nesting. */
3339 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3340 abort ();
3341 tmp = eh_stack;
3342 eh_stack = XEXP (eh_stack, 1);
3343 free_INSN_LIST_node (tmp);
3344 break;
3345
3346 case NOTE_INSN_BLOCK_BEG:
3347 /* By now, all notes indicating lexical blocks should have
3348 NOTE_BLOCK filled in. */
3349 if (NOTE_BLOCK (insn) == NULL_TREE)
3350 abort ();
3351 block_stack = alloc_INSN_LIST (insn, block_stack);
3352 break;
3353
3354 case NOTE_INSN_BLOCK_END:
3355 /* Too many end notes. */
3356 if (block_stack == NULL_RTX)
3357 abort ();
3358 /* Mismatched nesting. */
3359 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3360 abort ();
3361 tmp = block_stack;
3362 block_stack = XEXP (block_stack, 1);
3363 free_INSN_LIST_node (tmp);
3364
3365 /* Scan back to see if there are any non-note instructions
3366 between INSN and the beginning of this block. If not,
3367 then there is no PC range in the generated code that will
3368 actually be in this block, so there's no point in
3369 remembering the existence of the block. */
3370 for (tmp = PREV_INSN (insn); tmp ; tmp = PREV_INSN (tmp))
3371 {
3372 /* This block contains a real instruction. Note that we
3373 don't include labels; if the only thing in the block
3374 is a label, then there are still no PC values that
3375 lie within the block. */
3376 if (INSN_P (tmp))
3377 break;
3378
3379 /* We're only interested in NOTEs. */
3380 if (GET_CODE (tmp) != NOTE)
3381 continue;
3382
3383 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3384 {
3385 /* We just verified that this BLOCK matches us with
3386 the block_stack check above. Never delete the
3387 BLOCK for the outermost scope of the function; we
3388 can refer to names from that scope even if the
3389 block notes are messed up. */
3390 if (! is_body_block (NOTE_BLOCK (insn))
3391 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3392 {
3393 remove_insn (tmp);
3394 remove_insn (insn);
3395 }
3396 break;
3397 }
3398 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3399 /* There's a nested block. We need to leave the
3400 current block in place since otherwise the debugger
3401 wouldn't be able to show symbols from our block in
3402 the nested block. */
3403 break;
3404 }
3405 }
3406 }
3407
3408 /* Too many begin notes. */
3409 if (block_stack || eh_stack)
3410 abort ();
3411 }
3412
3413 \f
3414 /* Emit an insn of given code and pattern
3415 at a specified place within the doubly-linked list. */
3416
3417 /* Make an instruction with body PATTERN
3418 and output it before the instruction BEFORE. */
3419
3420 rtx
3421 emit_insn_before (pattern, before)
3422 rtx pattern, before;
3423 {
3424 rtx insn = before;
3425
3426 if (GET_CODE (pattern) == SEQUENCE)
3427 {
3428 int i;
3429
3430 for (i = 0; i < XVECLEN (pattern, 0); i++)
3431 {
3432 insn = XVECEXP (pattern, 0, i);
3433 add_insn_before (insn, before);
3434 }
3435 }
3436 else
3437 {
3438 insn = make_insn_raw (pattern);
3439 add_insn_before (insn, before);
3440 }
3441
3442 return insn;
3443 }
3444
3445 /* Make an instruction with body PATTERN and code JUMP_INSN
3446 and output it before the instruction BEFORE. */
3447
3448 rtx
3449 emit_jump_insn_before (pattern, before)
3450 rtx pattern, before;
3451 {
3452 rtx insn;
3453
3454 if (GET_CODE (pattern) == SEQUENCE)
3455 insn = emit_insn_before (pattern, before);
3456 else
3457 {
3458 insn = make_jump_insn_raw (pattern);
3459 add_insn_before (insn, before);
3460 }
3461
3462 return insn;
3463 }
3464
3465 /* Make an instruction with body PATTERN and code CALL_INSN
3466 and output it before the instruction BEFORE. */
3467
3468 rtx
3469 emit_call_insn_before (pattern, before)
3470 rtx pattern, before;
3471 {
3472 rtx insn;
3473
3474 if (GET_CODE (pattern) == SEQUENCE)
3475 insn = emit_insn_before (pattern, before);
3476 else
3477 {
3478 insn = make_call_insn_raw (pattern);
3479 add_insn_before (insn, before);
3480 PUT_CODE (insn, CALL_INSN);
3481 }
3482
3483 return insn;
3484 }
3485
3486 /* Make an insn of code BARRIER
3487 and output it before the insn BEFORE. */
3488
3489 rtx
3490 emit_barrier_before (before)
3491 rtx before;
3492 {
3493 rtx insn = rtx_alloc (BARRIER);
3494
3495 INSN_UID (insn) = cur_insn_uid++;
3496
3497 add_insn_before (insn, before);
3498 return insn;
3499 }
3500
3501 /* Emit the label LABEL before the insn BEFORE. */
3502
3503 rtx
3504 emit_label_before (label, before)
3505 rtx label, before;
3506 {
3507 /* This can be called twice for the same label as a result of the
3508 confusion that follows a syntax error! So make it harmless. */
3509 if (INSN_UID (label) == 0)
3510 {
3511 INSN_UID (label) = cur_insn_uid++;
3512 add_insn_before (label, before);
3513 }
3514
3515 return label;
3516 }
3517
3518 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3519
3520 rtx
3521 emit_note_before (subtype, before)
3522 int subtype;
3523 rtx before;
3524 {
3525 rtx note = rtx_alloc (NOTE);
3526 INSN_UID (note) = cur_insn_uid++;
3527 NOTE_SOURCE_FILE (note) = 0;
3528 NOTE_LINE_NUMBER (note) = subtype;
3529
3530 add_insn_before (note, before);
3531 return note;
3532 }
3533 \f
3534 /* Make an insn of code INSN with body PATTERN
3535 and output it after the insn AFTER. */
3536
3537 rtx
3538 emit_insn_after (pattern, after)
3539 rtx pattern, after;
3540 {
3541 rtx insn = after;
3542
3543 if (GET_CODE (pattern) == SEQUENCE)
3544 {
3545 int i;
3546
3547 for (i = 0; i < XVECLEN (pattern, 0); i++)
3548 {
3549 insn = XVECEXP (pattern, 0, i);
3550 add_insn_after (insn, after);
3551 after = insn;
3552 }
3553 }
3554 else
3555 {
3556 insn = make_insn_raw (pattern);
3557 add_insn_after (insn, after);
3558 }
3559
3560 return insn;
3561 }
3562
3563 /* Similar to emit_insn_after, except that line notes are to be inserted so
3564 as to act as if this insn were at FROM. */
3565
3566 void
3567 emit_insn_after_with_line_notes (pattern, after, from)
3568 rtx pattern, after, from;
3569 {
3570 rtx from_line = find_line_note (from);
3571 rtx after_line = find_line_note (after);
3572 rtx insn = emit_insn_after (pattern, after);
3573
3574 if (from_line)
3575 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3576 NOTE_LINE_NUMBER (from_line),
3577 after);
3578
3579 if (after_line)
3580 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3581 NOTE_LINE_NUMBER (after_line),
3582 insn);
3583 }
3584
3585 /* Make an insn of code JUMP_INSN with body PATTERN
3586 and output it after the insn AFTER. */
3587
3588 rtx
3589 emit_jump_insn_after (pattern, after)
3590 rtx pattern, after;
3591 {
3592 rtx insn;
3593
3594 if (GET_CODE (pattern) == SEQUENCE)
3595 insn = emit_insn_after (pattern, after);
3596 else
3597 {
3598 insn = make_jump_insn_raw (pattern);
3599 add_insn_after (insn, after);
3600 }
3601
3602 return insn;
3603 }
3604
3605 /* Make an insn of code BARRIER
3606 and output it after the insn AFTER. */
3607
3608 rtx
3609 emit_barrier_after (after)
3610 rtx after;
3611 {
3612 rtx insn = rtx_alloc (BARRIER);
3613
3614 INSN_UID (insn) = cur_insn_uid++;
3615
3616 add_insn_after (insn, after);
3617 return insn;
3618 }
3619
3620 /* Emit the label LABEL after the insn AFTER. */
3621
3622 rtx
3623 emit_label_after (label, after)
3624 rtx label, after;
3625 {
3626 /* This can be called twice for the same label
3627 as a result of the confusion that follows a syntax error!
3628 So make it harmless. */
3629 if (INSN_UID (label) == 0)
3630 {
3631 INSN_UID (label) = cur_insn_uid++;
3632 add_insn_after (label, after);
3633 }
3634
3635 return label;
3636 }
3637
3638 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
3639
3640 rtx
3641 emit_note_after (subtype, after)
3642 int subtype;
3643 rtx after;
3644 {
3645 rtx note = rtx_alloc (NOTE);
3646 INSN_UID (note) = cur_insn_uid++;
3647 NOTE_SOURCE_FILE (note) = 0;
3648 NOTE_LINE_NUMBER (note) = subtype;
3649 add_insn_after (note, after);
3650 return note;
3651 }
3652
3653 /* Emit a line note for FILE and LINE after the insn AFTER. */
3654
3655 rtx
3656 emit_line_note_after (file, line, after)
3657 const char *file;
3658 int line;
3659 rtx after;
3660 {
3661 rtx note;
3662
3663 if (no_line_numbers && line > 0)
3664 {
3665 cur_insn_uid++;
3666 return 0;
3667 }
3668
3669 note = rtx_alloc (NOTE);
3670 INSN_UID (note) = cur_insn_uid++;
3671 NOTE_SOURCE_FILE (note) = file;
3672 NOTE_LINE_NUMBER (note) = line;
3673 add_insn_after (note, after);
3674 return note;
3675 }
3676 \f
3677 /* Make an insn of code INSN with pattern PATTERN
3678 and add it to the end of the doubly-linked list.
3679 If PATTERN is a SEQUENCE, take the elements of it
3680 and emit an insn for each element.
3681
3682 Returns the last insn emitted. */
3683
3684 rtx
3685 emit_insn (pattern)
3686 rtx pattern;
3687 {
3688 rtx insn = last_insn;
3689
3690 if (GET_CODE (pattern) == SEQUENCE)
3691 {
3692 int i;
3693
3694 for (i = 0; i < XVECLEN (pattern, 0); i++)
3695 {
3696 insn = XVECEXP (pattern, 0, i);
3697 add_insn (insn);
3698 }
3699 }
3700 else
3701 {
3702 insn = make_insn_raw (pattern);
3703 add_insn (insn);
3704 }
3705
3706 return insn;
3707 }
3708
3709 /* Emit the insns in a chain starting with INSN.
3710 Return the last insn emitted. */
3711
3712 rtx
3713 emit_insns (insn)
3714 rtx insn;
3715 {
3716 rtx last = 0;
3717
3718 while (insn)
3719 {
3720 rtx next = NEXT_INSN (insn);
3721 add_insn (insn);
3722 last = insn;
3723 insn = next;
3724 }
3725
3726 return last;
3727 }
3728
3729 /* Emit the insns in a chain starting with INSN and place them in front of
3730 the insn BEFORE. Return the last insn emitted. */
3731
3732 rtx
3733 emit_insns_before (insn, before)
3734 rtx insn;
3735 rtx before;
3736 {
3737 rtx last = 0;
3738
3739 while (insn)
3740 {
3741 rtx next = NEXT_INSN (insn);
3742 add_insn_before (insn, before);
3743 last = insn;
3744 insn = next;
3745 }
3746
3747 return last;
3748 }
3749
3750 /* Emit the insns in a chain starting with FIRST and place them in back of
3751 the insn AFTER. Return the last insn emitted. */
3752
3753 rtx
3754 emit_insns_after (first, after)
3755 rtx first;
3756 rtx after;
3757 {
3758 rtx last;
3759 rtx after_after;
3760 basic_block bb;
3761
3762 if (!after)
3763 abort ();
3764
3765 if (!first)
3766 return after;
3767
3768 if (basic_block_for_insn
3769 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3770 && (bb = BLOCK_FOR_INSN (after)))
3771 {
3772 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3773 set_block_for_insn (last, bb);
3774 set_block_for_insn (last, bb);
3775 if (bb->end == after)
3776 bb->end = last;
3777 }
3778 else
3779 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3780 continue;
3781
3782 after_after = NEXT_INSN (after);
3783
3784 NEXT_INSN (after) = first;
3785 PREV_INSN (first) = after;
3786 NEXT_INSN (last) = after_after;
3787 if (after_after)
3788 PREV_INSN (after_after) = last;
3789
3790 if (after == last_insn)
3791 last_insn = last;
3792 return last;
3793 }
3794
3795 /* Make an insn of code JUMP_INSN with pattern PATTERN
3796 and add it to the end of the doubly-linked list. */
3797
3798 rtx
3799 emit_jump_insn (pattern)
3800 rtx pattern;
3801 {
3802 if (GET_CODE (pattern) == SEQUENCE)
3803 return emit_insn (pattern);
3804 else
3805 {
3806 rtx insn = make_jump_insn_raw (pattern);
3807 add_insn (insn);
3808 return insn;
3809 }
3810 }
3811
3812 /* Make an insn of code CALL_INSN with pattern PATTERN
3813 and add it to the end of the doubly-linked list. */
3814
3815 rtx
3816 emit_call_insn (pattern)
3817 rtx pattern;
3818 {
3819 if (GET_CODE (pattern) == SEQUENCE)
3820 return emit_insn (pattern);
3821 else
3822 {
3823 rtx insn = make_call_insn_raw (pattern);
3824 add_insn (insn);
3825 PUT_CODE (insn, CALL_INSN);
3826 return insn;
3827 }
3828 }
3829
3830 /* Add the label LABEL to the end of the doubly-linked list. */
3831
3832 rtx
3833 emit_label (label)
3834 rtx label;
3835 {
3836 /* This can be called twice for the same label
3837 as a result of the confusion that follows a syntax error!
3838 So make it harmless. */
3839 if (INSN_UID (label) == 0)
3840 {
3841 INSN_UID (label) = cur_insn_uid++;
3842 add_insn (label);
3843 }
3844 return label;
3845 }
3846
3847 /* Make an insn of code BARRIER
3848 and add it to the end of the doubly-linked list. */
3849
3850 rtx
3851 emit_barrier ()
3852 {
3853 rtx barrier = rtx_alloc (BARRIER);
3854 INSN_UID (barrier) = cur_insn_uid++;
3855 add_insn (barrier);
3856 return barrier;
3857 }
3858
3859 /* Make an insn of code NOTE
3860 with data-fields specified by FILE and LINE
3861 and add it to the end of the doubly-linked list,
3862 but only if line-numbers are desired for debugging info. */
3863
3864 rtx
3865 emit_line_note (file, line)
3866 const char *file;
3867 int line;
3868 {
3869 set_file_and_line_for_stmt (file, line);
3870
3871 #if 0
3872 if (no_line_numbers)
3873 return 0;
3874 #endif
3875
3876 return emit_note (file, line);
3877 }
3878
3879 /* Make an insn of code NOTE
3880 with data-fields specified by FILE and LINE
3881 and add it to the end of the doubly-linked list.
3882 If it is a line-number NOTE, omit it if it matches the previous one. */
3883
3884 rtx
3885 emit_note (file, line)
3886 const char *file;
3887 int line;
3888 {
3889 rtx note;
3890
3891 if (line > 0)
3892 {
3893 if (file && last_filename && !strcmp (file, last_filename)
3894 && line == last_linenum)
3895 return 0;
3896 last_filename = file;
3897 last_linenum = line;
3898 }
3899
3900 if (no_line_numbers && line > 0)
3901 {
3902 cur_insn_uid++;
3903 return 0;
3904 }
3905
3906 note = rtx_alloc (NOTE);
3907 INSN_UID (note) = cur_insn_uid++;
3908 NOTE_SOURCE_FILE (note) = file;
3909 NOTE_LINE_NUMBER (note) = line;
3910 add_insn (note);
3911 return note;
3912 }
3913
3914 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
3915
3916 rtx
3917 emit_line_note_force (file, line)
3918 const char *file;
3919 int line;
3920 {
3921 last_linenum = -1;
3922 return emit_line_note (file, line);
3923 }
3924
3925 /* Cause next statement to emit a line note even if the line number
3926 has not changed. This is used at the beginning of a function. */
3927
3928 void
3929 force_next_line_note ()
3930 {
3931 last_linenum = -1;
3932 }
3933
3934 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
3935 note of this type already exists, remove it first. */
3936
3937 void
3938 set_unique_reg_note (insn, kind, datum)
3939 rtx insn;
3940 enum reg_note kind;
3941 rtx datum;
3942 {
3943 rtx note = find_reg_note (insn, kind, NULL_RTX);
3944
3945 /* First remove the note if there already is one. */
3946 if (note)
3947 remove_note (insn, note);
3948
3949 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
3950 }
3951 \f
3952 /* Return an indication of which type of insn should have X as a body.
3953 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
3954
3955 enum rtx_code
3956 classify_insn (x)
3957 rtx x;
3958 {
3959 if (GET_CODE (x) == CODE_LABEL)
3960 return CODE_LABEL;
3961 if (GET_CODE (x) == CALL)
3962 return CALL_INSN;
3963 if (GET_CODE (x) == RETURN)
3964 return JUMP_INSN;
3965 if (GET_CODE (x) == SET)
3966 {
3967 if (SET_DEST (x) == pc_rtx)
3968 return JUMP_INSN;
3969 else if (GET_CODE (SET_SRC (x)) == CALL)
3970 return CALL_INSN;
3971 else
3972 return INSN;
3973 }
3974 if (GET_CODE (x) == PARALLEL)
3975 {
3976 int j;
3977 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
3978 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
3979 return CALL_INSN;
3980 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3981 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
3982 return JUMP_INSN;
3983 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3984 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
3985 return CALL_INSN;
3986 }
3987 return INSN;
3988 }
3989
3990 /* Emit the rtl pattern X as an appropriate kind of insn.
3991 If X is a label, it is simply added into the insn chain. */
3992
3993 rtx
3994 emit (x)
3995 rtx x;
3996 {
3997 enum rtx_code code = classify_insn (x);
3998
3999 if (code == CODE_LABEL)
4000 return emit_label (x);
4001 else if (code == INSN)
4002 return emit_insn (x);
4003 else if (code == JUMP_INSN)
4004 {
4005 rtx insn = emit_jump_insn (x);
4006 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4007 return emit_barrier ();
4008 return insn;
4009 }
4010 else if (code == CALL_INSN)
4011 return emit_call_insn (x);
4012 else
4013 abort ();
4014 }
4015 \f
4016 /* Begin emitting insns to a sequence which can be packaged in an
4017 RTL_EXPR. If this sequence will contain something that might cause
4018 the compiler to pop arguments to function calls (because those
4019 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4020 details), use do_pending_stack_adjust before calling this function.
4021 That will ensure that the deferred pops are not accidentally
4022 emitted in the middle of this sequence. */
4023
4024 void
4025 start_sequence ()
4026 {
4027 struct sequence_stack *tem;
4028
4029 tem = (struct sequence_stack *) xmalloc (sizeof (struct sequence_stack));
4030
4031 tem->next = seq_stack;
4032 tem->first = first_insn;
4033 tem->last = last_insn;
4034 tem->sequence_rtl_expr = seq_rtl_expr;
4035
4036 seq_stack = tem;
4037
4038 first_insn = 0;
4039 last_insn = 0;
4040 }
4041
4042 /* Similarly, but indicate that this sequence will be placed in T, an
4043 RTL_EXPR. See the documentation for start_sequence for more
4044 information about how to use this function. */
4045
4046 void
4047 start_sequence_for_rtl_expr (t)
4048 tree t;
4049 {
4050 start_sequence ();
4051
4052 seq_rtl_expr = t;
4053 }
4054
4055 /* Set up the insn chain starting with FIRST as the current sequence,
4056 saving the previously current one. See the documentation for
4057 start_sequence for more information about how to use this function. */
4058
4059 void
4060 push_to_sequence (first)
4061 rtx first;
4062 {
4063 rtx last;
4064
4065 start_sequence ();
4066
4067 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4068
4069 first_insn = first;
4070 last_insn = last;
4071 }
4072
4073 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4074
4075 void
4076 push_to_full_sequence (first, last)
4077 rtx first, last;
4078 {
4079 start_sequence ();
4080 first_insn = first;
4081 last_insn = last;
4082 /* We really should have the end of the insn chain here. */
4083 if (last && NEXT_INSN (last))
4084 abort ();
4085 }
4086
4087 /* Set up the outer-level insn chain
4088 as the current sequence, saving the previously current one. */
4089
4090 void
4091 push_topmost_sequence ()
4092 {
4093 struct sequence_stack *stack, *top = NULL;
4094
4095 start_sequence ();
4096
4097 for (stack = seq_stack; stack; stack = stack->next)
4098 top = stack;
4099
4100 first_insn = top->first;
4101 last_insn = top->last;
4102 seq_rtl_expr = top->sequence_rtl_expr;
4103 }
4104
4105 /* After emitting to the outer-level insn chain, update the outer-level
4106 insn chain, and restore the previous saved state. */
4107
4108 void
4109 pop_topmost_sequence ()
4110 {
4111 struct sequence_stack *stack, *top = NULL;
4112
4113 for (stack = seq_stack; stack; stack = stack->next)
4114 top = stack;
4115
4116 top->first = first_insn;
4117 top->last = last_insn;
4118 /* ??? Why don't we save seq_rtl_expr here? */
4119
4120 end_sequence ();
4121 }
4122
4123 /* After emitting to a sequence, restore previous saved state.
4124
4125 To get the contents of the sequence just made, you must call
4126 `gen_sequence' *before* calling here.
4127
4128 If the compiler might have deferred popping arguments while
4129 generating this sequence, and this sequence will not be immediately
4130 inserted into the instruction stream, use do_pending_stack_adjust
4131 before calling gen_sequence. That will ensure that the deferred
4132 pops are inserted into this sequence, and not into some random
4133 location in the instruction stream. See INHIBIT_DEFER_POP for more
4134 information about deferred popping of arguments. */
4135
4136 void
4137 end_sequence ()
4138 {
4139 struct sequence_stack *tem = seq_stack;
4140
4141 first_insn = tem->first;
4142 last_insn = tem->last;
4143 seq_rtl_expr = tem->sequence_rtl_expr;
4144 seq_stack = tem->next;
4145
4146 free (tem);
4147 }
4148
4149 /* This works like end_sequence, but records the old sequence in FIRST
4150 and LAST. */
4151
4152 void
4153 end_full_sequence (first, last)
4154 rtx *first, *last;
4155 {
4156 *first = first_insn;
4157 *last = last_insn;
4158 end_sequence();
4159 }
4160
4161 /* Return 1 if currently emitting into a sequence. */
4162
4163 int
4164 in_sequence_p ()
4165 {
4166 return seq_stack != 0;
4167 }
4168
4169 /* Generate a SEQUENCE rtx containing the insns already emitted
4170 to the current sequence.
4171
4172 This is how the gen_... function from a DEFINE_EXPAND
4173 constructs the SEQUENCE that it returns. */
4174
4175 rtx
4176 gen_sequence ()
4177 {
4178 rtx result;
4179 rtx tem;
4180 int i;
4181 int len;
4182
4183 /* Count the insns in the chain. */
4184 len = 0;
4185 for (tem = first_insn; tem; tem = NEXT_INSN (tem))
4186 len++;
4187
4188 /* If only one insn, return it rather than a SEQUENCE.
4189 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
4190 the case of an empty list.)
4191 We only return the pattern of an insn if its code is INSN and it
4192 has no notes. This ensures that no information gets lost. */
4193 if (len == 1
4194 && ! RTX_FRAME_RELATED_P (first_insn)
4195 && GET_CODE (first_insn) == INSN
4196 /* Don't throw away any reg notes. */
4197 && REG_NOTES (first_insn) == 0)
4198 return PATTERN (first_insn);
4199
4200 result = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (len));
4201
4202 for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
4203 XVECEXP (result, 0, i) = tem;
4204
4205 return result;
4206 }
4207 \f
4208 /* Put the various virtual registers into REGNO_REG_RTX. */
4209
4210 void
4211 init_virtual_regs (es)
4212 struct emit_status *es;
4213 {
4214 rtx *ptr = es->x_regno_reg_rtx;
4215 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4216 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4217 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4218 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4219 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4220 }
4221
4222 void
4223 clear_emit_caches ()
4224 {
4225 int i;
4226
4227 /* Clear the start_sequence/gen_sequence cache. */
4228 for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
4229 sequence_result[i] = 0;
4230 free_insn = 0;
4231 }
4232 \f
4233 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4234 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4235 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4236 static int copy_insn_n_scratches;
4237
4238 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4239 copied an ASM_OPERANDS.
4240 In that case, it is the original input-operand vector. */
4241 static rtvec orig_asm_operands_vector;
4242
4243 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4244 copied an ASM_OPERANDS.
4245 In that case, it is the copied input-operand vector. */
4246 static rtvec copy_asm_operands_vector;
4247
4248 /* Likewise for the constraints vector. */
4249 static rtvec orig_asm_constraints_vector;
4250 static rtvec copy_asm_constraints_vector;
4251
4252 /* Recursively create a new copy of an rtx for copy_insn.
4253 This function differs from copy_rtx in that it handles SCRATCHes and
4254 ASM_OPERANDs properly.
4255 Normally, this function is not used directly; use copy_insn as front end.
4256 However, you could first copy an insn pattern with copy_insn and then use
4257 this function afterwards to properly copy any REG_NOTEs containing
4258 SCRATCHes. */
4259
4260 rtx
4261 copy_insn_1 (orig)
4262 rtx orig;
4263 {
4264 rtx copy;
4265 int i, j;
4266 RTX_CODE code;
4267 const char *format_ptr;
4268
4269 code = GET_CODE (orig);
4270
4271 switch (code)
4272 {
4273 case REG:
4274 case QUEUED:
4275 case CONST_INT:
4276 case CONST_DOUBLE:
4277 case SYMBOL_REF:
4278 case CODE_LABEL:
4279 case PC:
4280 case CC0:
4281 case ADDRESSOF:
4282 return orig;
4283
4284 case SCRATCH:
4285 for (i = 0; i < copy_insn_n_scratches; i++)
4286 if (copy_insn_scratch_in[i] == orig)
4287 return copy_insn_scratch_out[i];
4288 break;
4289
4290 case CONST:
4291 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4292 a LABEL_REF, it isn't sharable. */
4293 if (GET_CODE (XEXP (orig, 0)) == PLUS
4294 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4295 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4296 return orig;
4297 break;
4298
4299 /* A MEM with a constant address is not sharable. The problem is that
4300 the constant address may need to be reloaded. If the mem is shared,
4301 then reloading one copy of this mem will cause all copies to appear
4302 to have been reloaded. */
4303
4304 default:
4305 break;
4306 }
4307
4308 copy = rtx_alloc (code);
4309
4310 /* Copy the various flags, and other information. We assume that
4311 all fields need copying, and then clear the fields that should
4312 not be copied. That is the sensible default behavior, and forces
4313 us to explicitly document why we are *not* copying a flag. */
4314 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
4315
4316 /* We do not copy the USED flag, which is used as a mark bit during
4317 walks over the RTL. */
4318 copy->used = 0;
4319
4320 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4321 if (GET_RTX_CLASS (code) == 'i')
4322 {
4323 copy->jump = 0;
4324 copy->call = 0;
4325 copy->frame_related = 0;
4326 }
4327
4328 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4329
4330 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4331 {
4332 copy->fld[i] = orig->fld[i];
4333 switch (*format_ptr++)
4334 {
4335 case 'e':
4336 if (XEXP (orig, i) != NULL)
4337 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4338 break;
4339
4340 case 'E':
4341 case 'V':
4342 if (XVEC (orig, i) == orig_asm_constraints_vector)
4343 XVEC (copy, i) = copy_asm_constraints_vector;
4344 else if (XVEC (orig, i) == orig_asm_operands_vector)
4345 XVEC (copy, i) = copy_asm_operands_vector;
4346 else if (XVEC (orig, i) != NULL)
4347 {
4348 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4349 for (j = 0; j < XVECLEN (copy, i); j++)
4350 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4351 }
4352 break;
4353
4354 case 't':
4355 case 'w':
4356 case 'i':
4357 case 's':
4358 case 'S':
4359 case 'u':
4360 case '0':
4361 /* These are left unchanged. */
4362 break;
4363
4364 default:
4365 abort ();
4366 }
4367 }
4368
4369 if (code == SCRATCH)
4370 {
4371 i = copy_insn_n_scratches++;
4372 if (i >= MAX_RECOG_OPERANDS)
4373 abort ();
4374 copy_insn_scratch_in[i] = orig;
4375 copy_insn_scratch_out[i] = copy;
4376 }
4377 else if (code == ASM_OPERANDS)
4378 {
4379 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4380 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4381 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4382 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
4383 }
4384
4385 return copy;
4386 }
4387
4388 /* Create a new copy of an rtx.
4389 This function differs from copy_rtx in that it handles SCRATCHes and
4390 ASM_OPERANDs properly.
4391 INSN doesn't really have to be a full INSN; it could be just the
4392 pattern. */
4393 rtx
4394 copy_insn (insn)
4395 rtx insn;
4396 {
4397 copy_insn_n_scratches = 0;
4398 orig_asm_operands_vector = 0;
4399 orig_asm_constraints_vector = 0;
4400 copy_asm_operands_vector = 0;
4401 copy_asm_constraints_vector = 0;
4402 return copy_insn_1 (insn);
4403 }
4404
4405 /* Initialize data structures and variables in this file
4406 before generating rtl for each function. */
4407
4408 void
4409 init_emit ()
4410 {
4411 struct function *f = cfun;
4412
4413 f->emit = (struct emit_status *) xmalloc (sizeof (struct emit_status));
4414 first_insn = NULL;
4415 last_insn = NULL;
4416 seq_rtl_expr = NULL;
4417 cur_insn_uid = 1;
4418 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
4419 last_linenum = 0;
4420 last_filename = 0;
4421 first_label_num = label_num;
4422 last_label_num = 0;
4423 seq_stack = NULL;
4424
4425 clear_emit_caches ();
4426
4427 /* Init the tables that describe all the pseudo regs. */
4428
4429 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
4430
4431 f->emit->regno_pointer_align
4432 = (unsigned char *) xcalloc (f->emit->regno_pointer_align_length,
4433 sizeof (unsigned char));
4434
4435 regno_reg_rtx
4436 = (rtx *) xcalloc (f->emit->regno_pointer_align_length, sizeof (rtx));
4437
4438 f->emit->regno_decl
4439 = (tree *) xcalloc (f->emit->regno_pointer_align_length, sizeof (tree));
4440
4441 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
4442 init_virtual_regs (f->emit);
4443
4444 /* Indicate that the virtual registers and stack locations are
4445 all pointers. */
4446 REG_POINTER (stack_pointer_rtx) = 1;
4447 REG_POINTER (frame_pointer_rtx) = 1;
4448 REG_POINTER (hard_frame_pointer_rtx) = 1;
4449 REG_POINTER (arg_pointer_rtx) = 1;
4450
4451 REG_POINTER (virtual_incoming_args_rtx) = 1;
4452 REG_POINTER (virtual_stack_vars_rtx) = 1;
4453 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
4454 REG_POINTER (virtual_outgoing_args_rtx) = 1;
4455 REG_POINTER (virtual_cfa_rtx) = 1;
4456
4457 #ifdef STACK_BOUNDARY
4458 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
4459 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4460 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4461 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
4462
4463 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
4464 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
4465 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
4466 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
4467 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
4468 #endif
4469
4470 #ifdef INIT_EXPANDERS
4471 INIT_EXPANDERS;
4472 #endif
4473 }
4474
4475 /* Mark SS for GC. */
4476
4477 static void
4478 mark_sequence_stack (ss)
4479 struct sequence_stack *ss;
4480 {
4481 while (ss)
4482 {
4483 ggc_mark_rtx (ss->first);
4484 ggc_mark_tree (ss->sequence_rtl_expr);
4485 ss = ss->next;
4486 }
4487 }
4488
4489 /* Mark ES for GC. */
4490
4491 void
4492 mark_emit_status (es)
4493 struct emit_status *es;
4494 {
4495 rtx *r;
4496 tree *t;
4497 int i;
4498
4499 if (es == 0)
4500 return;
4501
4502 for (i = es->regno_pointer_align_length, r = es->x_regno_reg_rtx,
4503 t = es->regno_decl;
4504 i > 0; --i, ++r, ++t)
4505 {
4506 ggc_mark_rtx (*r);
4507 ggc_mark_tree (*t);
4508 }
4509
4510 mark_sequence_stack (es->sequence_stack);
4511 ggc_mark_tree (es->sequence_rtl_expr);
4512 ggc_mark_rtx (es->x_first_insn);
4513 }
4514
4515 /* Create some permanent unique rtl objects shared between all functions.
4516 LINE_NUMBERS is nonzero if line numbers are to be generated. */
4517
4518 void
4519 init_emit_once (line_numbers)
4520 int line_numbers;
4521 {
4522 int i;
4523 enum machine_mode mode;
4524 enum machine_mode double_mode;
4525
4526 /* Initialize the CONST_INT and memory attribute hash tables. */
4527 const_int_htab = htab_create (37, const_int_htab_hash,
4528 const_int_htab_eq, NULL);
4529 ggc_add_deletable_htab (const_int_htab, 0, 0);
4530
4531 mem_attrs_htab = htab_create (37, mem_attrs_htab_hash,
4532 mem_attrs_htab_eq, NULL);
4533 ggc_add_deletable_htab (mem_attrs_htab, 0, mem_attrs_mark);
4534
4535 no_line_numbers = ! line_numbers;
4536
4537 /* Compute the word and byte modes. */
4538
4539 byte_mode = VOIDmode;
4540 word_mode = VOIDmode;
4541 double_mode = VOIDmode;
4542
4543 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4544 mode = GET_MODE_WIDER_MODE (mode))
4545 {
4546 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
4547 && byte_mode == VOIDmode)
4548 byte_mode = mode;
4549
4550 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
4551 && word_mode == VOIDmode)
4552 word_mode = mode;
4553 }
4554
4555 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4556 mode = GET_MODE_WIDER_MODE (mode))
4557 {
4558 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
4559 && double_mode == VOIDmode)
4560 double_mode = mode;
4561 }
4562
4563 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
4564
4565 /* Assign register numbers to the globally defined register rtx.
4566 This must be done at runtime because the register number field
4567 is in a union and some compilers can't initialize unions. */
4568
4569 pc_rtx = gen_rtx (PC, VOIDmode);
4570 cc0_rtx = gen_rtx (CC0, VOIDmode);
4571 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
4572 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
4573 if (hard_frame_pointer_rtx == 0)
4574 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
4575 HARD_FRAME_POINTER_REGNUM);
4576 if (arg_pointer_rtx == 0)
4577 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
4578 virtual_incoming_args_rtx =
4579 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
4580 virtual_stack_vars_rtx =
4581 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
4582 virtual_stack_dynamic_rtx =
4583 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
4584 virtual_outgoing_args_rtx =
4585 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
4586 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
4587
4588 /* These rtx must be roots if GC is enabled. */
4589 ggc_add_rtx_root (global_rtl, GR_MAX);
4590
4591 #ifdef INIT_EXPANDERS
4592 /* This is to initialize {init|mark|free}_machine_status before the first
4593 call to push_function_context_to. This is needed by the Chill front
4594 end which calls push_function_context_to before the first cal to
4595 init_function_start. */
4596 INIT_EXPANDERS;
4597 #endif
4598
4599 /* Create the unique rtx's for certain rtx codes and operand values. */
4600
4601 /* Don't use gen_rtx here since gen_rtx in this case
4602 tries to use these variables. */
4603 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
4604 const_int_rtx[i + MAX_SAVED_CONST_INT] =
4605 gen_rtx_raw_CONST_INT (VOIDmode, i);
4606 ggc_add_rtx_root (const_int_rtx, 2 * MAX_SAVED_CONST_INT + 1);
4607
4608 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
4609 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
4610 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
4611 else
4612 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
4613
4614 dconst0 = REAL_VALUE_ATOF ("0", double_mode);
4615 dconst1 = REAL_VALUE_ATOF ("1", double_mode);
4616 dconst2 = REAL_VALUE_ATOF ("2", double_mode);
4617 dconstm1 = REAL_VALUE_ATOF ("-1", double_mode);
4618
4619 for (i = 0; i <= 2; i++)
4620 {
4621 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4622 mode = GET_MODE_WIDER_MODE (mode))
4623 {
4624 rtx tem = rtx_alloc (CONST_DOUBLE);
4625 union real_extract u;
4626
4627 /* Zero any holes in a structure. */
4628 memset ((char *) &u, 0, sizeof u);
4629 u.d = i == 0 ? dconst0 : i == 1 ? dconst1 : dconst2;
4630
4631 /* Avoid trailing garbage in the rtx. */
4632 if (sizeof (u) < sizeof (HOST_WIDE_INT))
4633 CONST_DOUBLE_LOW (tem) = 0;
4634 if (sizeof (u) < 2 * sizeof (HOST_WIDE_INT))
4635 CONST_DOUBLE_HIGH (tem) = 0;
4636
4637 memcpy (&CONST_DOUBLE_LOW (tem), &u, sizeof u);
4638 CONST_DOUBLE_MEM (tem) = cc0_rtx;
4639 CONST_DOUBLE_CHAIN (tem) = NULL_RTX;
4640 PUT_MODE (tem, mode);
4641
4642 const_tiny_rtx[i][(int) mode] = tem;
4643 }
4644
4645 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
4646
4647 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4648 mode = GET_MODE_WIDER_MODE (mode))
4649 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4650
4651 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
4652 mode != VOIDmode;
4653 mode = GET_MODE_WIDER_MODE (mode))
4654 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4655 }
4656
4657 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
4658 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
4659 const_tiny_rtx[0][i] = const0_rtx;
4660
4661 const_tiny_rtx[0][(int) BImode] = const0_rtx;
4662 if (STORE_FLAG_VALUE == 1)
4663 const_tiny_rtx[1][(int) BImode] = const1_rtx;
4664
4665 /* For bounded pointers, `&const_tiny_rtx[0][0]' is not the same as
4666 `(rtx *) const_tiny_rtx'. The former has bounds that only cover
4667 `const_tiny_rtx[0]', whereas the latter has bounds that cover all. */
4668 ggc_add_rtx_root ((rtx *) const_tiny_rtx, sizeof const_tiny_rtx / sizeof (rtx));
4669 ggc_add_rtx_root (&const_true_rtx, 1);
4670
4671 #ifdef RETURN_ADDRESS_POINTER_REGNUM
4672 return_address_pointer_rtx
4673 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
4674 #endif
4675
4676 #ifdef STRUCT_VALUE
4677 struct_value_rtx = STRUCT_VALUE;
4678 #else
4679 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
4680 #endif
4681
4682 #ifdef STRUCT_VALUE_INCOMING
4683 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
4684 #else
4685 #ifdef STRUCT_VALUE_INCOMING_REGNUM
4686 struct_value_incoming_rtx
4687 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
4688 #else
4689 struct_value_incoming_rtx = struct_value_rtx;
4690 #endif
4691 #endif
4692
4693 #ifdef STATIC_CHAIN_REGNUM
4694 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
4695
4696 #ifdef STATIC_CHAIN_INCOMING_REGNUM
4697 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
4698 static_chain_incoming_rtx
4699 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
4700 else
4701 #endif
4702 static_chain_incoming_rtx = static_chain_rtx;
4703 #endif
4704
4705 #ifdef STATIC_CHAIN
4706 static_chain_rtx = STATIC_CHAIN;
4707
4708 #ifdef STATIC_CHAIN_INCOMING
4709 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
4710 #else
4711 static_chain_incoming_rtx = static_chain_rtx;
4712 #endif
4713 #endif
4714
4715 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
4716 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
4717
4718 ggc_add_rtx_root (&pic_offset_table_rtx, 1);
4719 ggc_add_rtx_root (&struct_value_rtx, 1);
4720 ggc_add_rtx_root (&struct_value_incoming_rtx, 1);
4721 ggc_add_rtx_root (&static_chain_rtx, 1);
4722 ggc_add_rtx_root (&static_chain_incoming_rtx, 1);
4723 ggc_add_rtx_root (&return_address_pointer_rtx, 1);
4724 }
4725 \f
4726 /* Query and clear/ restore no_line_numbers. This is used by the
4727 switch / case handling in stmt.c to give proper line numbers in
4728 warnings about unreachable code. */
4729
4730 int
4731 force_line_numbers ()
4732 {
4733 int old = no_line_numbers;
4734
4735 no_line_numbers = 0;
4736 if (old)
4737 force_next_line_note ();
4738 return old;
4739 }
4740
4741 void
4742 restore_line_number_status (old_value)
4743 int old_value;
4744 {
4745 no_line_numbers = old_value;
4746 }
This page took 0.237438 seconds and 5 git commands to generate.