]> gcc.gnu.org Git - gcc.git/blob - gcc/emit-rtl.c
alpha.h (TARGET_SWITCHES): Turn on MASK_EXPLICIT_RELOCS if the assembler supports it.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "obstack.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59
60 /* Commonly used modes. */
61
62 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
63 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
64 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
65 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
66
67
68 /* This is *not* reset after each function. It gives each CODE_LABEL
69 in the entire compilation a unique label number. */
70
71 static int label_num = 1;
72
73 /* Highest label number in current function.
74 Zero means use the value of label_num instead.
75 This is nonzero only when belatedly compiling an inline function. */
76
77 static int last_label_num;
78
79 /* Value label_num had when set_new_first_and_last_label_number was called.
80 If label_num has not changed since then, last_label_num is valid. */
81
82 static int base_label_num;
83
84 /* Nonzero means do not generate NOTEs for source line numbers. */
85
86 static int no_line_numbers;
87
88 /* Commonly used rtx's, so that we only need space for one copy.
89 These are initialized once for the entire compilation.
90 All of these except perhaps the floating-point CONST_DOUBLEs
91 are unique; no other rtx-object will be equal to any of these. */
92
93 rtx global_rtl[GR_MAX];
94
95 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
96 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
97 record a copy of const[012]_rtx. */
98
99 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
100
101 rtx const_true_rtx;
102
103 REAL_VALUE_TYPE dconst0;
104 REAL_VALUE_TYPE dconst1;
105 REAL_VALUE_TYPE dconst2;
106 REAL_VALUE_TYPE dconstm1;
107
108 /* All references to the following fixed hard registers go through
109 these unique rtl objects. On machines where the frame-pointer and
110 arg-pointer are the same register, they use the same unique object.
111
112 After register allocation, other rtl objects which used to be pseudo-regs
113 may be clobbered to refer to the frame-pointer register.
114 But references that were originally to the frame-pointer can be
115 distinguished from the others because they contain frame_pointer_rtx.
116
117 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
118 tricky: until register elimination has taken place hard_frame_pointer_rtx
119 should be used if it is being set, and frame_pointer_rtx otherwise. After
120 register elimination hard_frame_pointer_rtx should always be used.
121 On machines where the two registers are same (most) then these are the
122 same.
123
124 In an inline procedure, the stack and frame pointer rtxs may not be
125 used for anything else. */
126 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
127 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
128 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
129 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
130 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
131
132 /* This is used to implement __builtin_return_address for some machines.
133 See for instance the MIPS port. */
134 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
135
136 /* We make one copy of (const_int C) where C is in
137 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
138 to save space during the compilation and simplify comparisons of
139 integers. */
140
141 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
142
143 /* A hash table storing CONST_INTs whose absolute value is greater
144 than MAX_SAVED_CONST_INT. */
145
146 static htab_t const_int_htab;
147
148 /* A hash table storing memory attribute structures. */
149 static htab_t mem_attrs_htab;
150
151 /* start_sequence and gen_sequence can make a lot of rtx expressions which are
152 shortly thrown away. We use two mechanisms to prevent this waste:
153
154 For sizes up to 5 elements, we keep a SEQUENCE and its associated
155 rtvec for use by gen_sequence. One entry for each size is
156 sufficient because most cases are calls to gen_sequence followed by
157 immediately emitting the SEQUENCE. Reuse is safe since emitting a
158 sequence is destructive on the insn in it anyway and hence can't be
159 redone.
160
161 We do not bother to save this cached data over nested function calls.
162 Instead, we just reinitialize them. */
163
164 #define SEQUENCE_RESULT_SIZE 5
165
166 static rtx sequence_result[SEQUENCE_RESULT_SIZE];
167
168 /* During RTL generation, we also keep a list of free INSN rtl codes. */
169 static rtx free_insn;
170
171 #define first_insn (cfun->emit->x_first_insn)
172 #define last_insn (cfun->emit->x_last_insn)
173 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
174 #define last_linenum (cfun->emit->x_last_linenum)
175 #define last_filename (cfun->emit->x_last_filename)
176 #define first_label_num (cfun->emit->x_first_label_num)
177
178 static rtx make_jump_insn_raw PARAMS ((rtx));
179 static rtx make_call_insn_raw PARAMS ((rtx));
180 static rtx find_line_note PARAMS ((rtx));
181 static void mark_sequence_stack PARAMS ((struct sequence_stack *));
182 static rtx change_address_1 PARAMS ((rtx, enum machine_mode, rtx,
183 int));
184 static void unshare_all_rtl_1 PARAMS ((rtx));
185 static void unshare_all_decls PARAMS ((tree));
186 static void reset_used_decls PARAMS ((tree));
187 static void mark_label_nuses PARAMS ((rtx));
188 static hashval_t const_int_htab_hash PARAMS ((const void *));
189 static int const_int_htab_eq PARAMS ((const void *,
190 const void *));
191 static hashval_t mem_attrs_htab_hash PARAMS ((const void *));
192 static int mem_attrs_htab_eq PARAMS ((const void *,
193 const void *));
194 static void mem_attrs_mark PARAMS ((const void *));
195 static mem_attrs *get_mem_attrs PARAMS ((HOST_WIDE_INT, tree, rtx,
196 rtx, unsigned int,
197 enum machine_mode));
198 static tree component_ref_for_mem_expr PARAMS ((tree));
199
200 /* Probability of the conditional branch currently proceeded by try_split.
201 Set to -1 otherwise. */
202 int split_branch_probability = -1;
203 \f
204 /* Returns a hash code for X (which is a really a CONST_INT). */
205
206 static hashval_t
207 const_int_htab_hash (x)
208 const void *x;
209 {
210 return (hashval_t) INTVAL ((const struct rtx_def *) x);
211 }
212
213 /* Returns non-zero if the value represented by X (which is really a
214 CONST_INT) is the same as that given by Y (which is really a
215 HOST_WIDE_INT *). */
216
217 static int
218 const_int_htab_eq (x, y)
219 const void *x;
220 const void *y;
221 {
222 return (INTVAL ((const struct rtx_def *) x) == *((const HOST_WIDE_INT *) y));
223 }
224
225 /* Returns a hash code for X (which is a really a mem_attrs *). */
226
227 static hashval_t
228 mem_attrs_htab_hash (x)
229 const void *x;
230 {
231 mem_attrs *p = (mem_attrs *) x;
232
233 return (p->alias ^ (p->align * 1000)
234 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
235 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
236 ^ (size_t) p->expr);
237 }
238
239 /* Returns non-zero if the value represented by X (which is really a
240 mem_attrs *) is the same as that given by Y (which is also really a
241 mem_attrs *). */
242
243 static int
244 mem_attrs_htab_eq (x, y)
245 const void *x;
246 const void *y;
247 {
248 mem_attrs *p = (mem_attrs *) x;
249 mem_attrs *q = (mem_attrs *) y;
250
251 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
252 && p->size == q->size && p->align == q->align);
253 }
254
255 /* This routine is called when we determine that we need a mem_attrs entry.
256 It marks the associated decl and RTL as being used, if present. */
257
258 static void
259 mem_attrs_mark (x)
260 const void *x;
261 {
262 mem_attrs *p = (mem_attrs *) x;
263
264 if (p->expr)
265 ggc_mark_tree (p->expr);
266
267 if (p->offset)
268 ggc_mark_rtx (p->offset);
269
270 if (p->size)
271 ggc_mark_rtx (p->size);
272 }
273
274 /* Allocate a new mem_attrs structure and insert it into the hash table if
275 one identical to it is not already in the table. We are doing this for
276 MEM of mode MODE. */
277
278 static mem_attrs *
279 get_mem_attrs (alias, expr, offset, size, align, mode)
280 HOST_WIDE_INT alias;
281 tree expr;
282 rtx offset;
283 rtx size;
284 unsigned int align;
285 enum machine_mode mode;
286 {
287 mem_attrs attrs;
288 void **slot;
289
290 /* If everything is the default, we can just return zero. */
291 if (alias == 0 && expr == 0 && offset == 0
292 && (size == 0
293 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
294 && (align == BITS_PER_UNIT
295 || (mode != BLKmode && align == GET_MODE_ALIGNMENT (mode))))
296 return 0;
297
298 attrs.alias = alias;
299 attrs.expr = expr;
300 attrs.offset = offset;
301 attrs.size = size;
302 attrs.align = align;
303
304 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
305 if (*slot == 0)
306 {
307 *slot = ggc_alloc (sizeof (mem_attrs));
308 memcpy (*slot, &attrs, sizeof (mem_attrs));
309 }
310
311 return *slot;
312 }
313
314 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
315 don't attempt to share with the various global pieces of rtl (such as
316 frame_pointer_rtx). */
317
318 rtx
319 gen_raw_REG (mode, regno)
320 enum machine_mode mode;
321 int regno;
322 {
323 rtx x = gen_rtx_raw_REG (mode, regno);
324 ORIGINAL_REGNO (x) = regno;
325 return x;
326 }
327
328 /* There are some RTL codes that require special attention; the generation
329 functions do the raw handling. If you add to this list, modify
330 special_rtx in gengenrtl.c as well. */
331
332 rtx
333 gen_rtx_CONST_INT (mode, arg)
334 enum machine_mode mode ATTRIBUTE_UNUSED;
335 HOST_WIDE_INT arg;
336 {
337 void **slot;
338
339 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
340 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
341
342 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
343 if (const_true_rtx && arg == STORE_FLAG_VALUE)
344 return const_true_rtx;
345 #endif
346
347 /* Look up the CONST_INT in the hash table. */
348 slot = htab_find_slot_with_hash (const_int_htab, &arg,
349 (hashval_t) arg, INSERT);
350 if (*slot == 0)
351 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
352
353 return (rtx) *slot;
354 }
355
356 /* CONST_DOUBLEs needs special handling because their length is known
357 only at run-time. */
358
359 rtx
360 gen_rtx_CONST_DOUBLE (mode, arg0, arg1)
361 enum machine_mode mode;
362 HOST_WIDE_INT arg0, arg1;
363 {
364 rtx r = rtx_alloc (CONST_DOUBLE);
365 int i;
366
367 PUT_MODE (r, mode);
368 X0EXP (r, 0) = NULL_RTX;
369 XWINT (r, 1) = arg0;
370 XWINT (r, 2) = arg1;
371
372 for (i = GET_RTX_LENGTH (CONST_DOUBLE) - 1; i > 2; --i)
373 XWINT (r, i) = 0;
374
375 return r;
376 }
377
378 rtx
379 gen_rtx_REG (mode, regno)
380 enum machine_mode mode;
381 int regno;
382 {
383 /* In case the MD file explicitly references the frame pointer, have
384 all such references point to the same frame pointer. This is
385 used during frame pointer elimination to distinguish the explicit
386 references to these registers from pseudos that happened to be
387 assigned to them.
388
389 If we have eliminated the frame pointer or arg pointer, we will
390 be using it as a normal register, for example as a spill
391 register. In such cases, we might be accessing it in a mode that
392 is not Pmode and therefore cannot use the pre-allocated rtx.
393
394 Also don't do this when we are making new REGs in reload, since
395 we don't want to get confused with the real pointers. */
396
397 if (mode == Pmode && !reload_in_progress)
398 {
399 if (regno == FRAME_POINTER_REGNUM)
400 return frame_pointer_rtx;
401 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
402 if (regno == HARD_FRAME_POINTER_REGNUM)
403 return hard_frame_pointer_rtx;
404 #endif
405 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
406 if (regno == ARG_POINTER_REGNUM)
407 return arg_pointer_rtx;
408 #endif
409 #ifdef RETURN_ADDRESS_POINTER_REGNUM
410 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
411 return return_address_pointer_rtx;
412 #endif
413 if (regno == STACK_POINTER_REGNUM)
414 return stack_pointer_rtx;
415 }
416
417 return gen_raw_REG (mode, regno);
418 }
419
420 rtx
421 gen_rtx_MEM (mode, addr)
422 enum machine_mode mode;
423 rtx addr;
424 {
425 rtx rt = gen_rtx_raw_MEM (mode, addr);
426
427 /* This field is not cleared by the mere allocation of the rtx, so
428 we clear it here. */
429 MEM_ATTRS (rt) = 0;
430
431 return rt;
432 }
433
434 rtx
435 gen_rtx_SUBREG (mode, reg, offset)
436 enum machine_mode mode;
437 rtx reg;
438 int offset;
439 {
440 /* This is the most common failure type.
441 Catch it early so we can see who does it. */
442 if ((offset % GET_MODE_SIZE (mode)) != 0)
443 abort ();
444
445 /* This check isn't usable right now because combine will
446 throw arbitrary crap like a CALL into a SUBREG in
447 gen_lowpart_for_combine so we must just eat it. */
448 #if 0
449 /* Check for this too. */
450 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
451 abort ();
452 #endif
453 return gen_rtx_fmt_ei (SUBREG, mode, reg, offset);
454 }
455
456 /* Generate a SUBREG representing the least-significant part of REG if MODE
457 is smaller than mode of REG, otherwise paradoxical SUBREG. */
458
459 rtx
460 gen_lowpart_SUBREG (mode, reg)
461 enum machine_mode mode;
462 rtx reg;
463 {
464 enum machine_mode inmode;
465
466 inmode = GET_MODE (reg);
467 if (inmode == VOIDmode)
468 inmode = mode;
469 return gen_rtx_SUBREG (mode, reg,
470 subreg_lowpart_offset (mode, inmode));
471 }
472 \f
473 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
474 **
475 ** This routine generates an RTX of the size specified by
476 ** <code>, which is an RTX code. The RTX structure is initialized
477 ** from the arguments <element1> through <elementn>, which are
478 ** interpreted according to the specific RTX type's format. The
479 ** special machine mode associated with the rtx (if any) is specified
480 ** in <mode>.
481 **
482 ** gen_rtx can be invoked in a way which resembles the lisp-like
483 ** rtx it will generate. For example, the following rtx structure:
484 **
485 ** (plus:QI (mem:QI (reg:SI 1))
486 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
487 **
488 ** ...would be generated by the following C code:
489 **
490 ** gen_rtx (PLUS, QImode,
491 ** gen_rtx (MEM, QImode,
492 ** gen_rtx (REG, SImode, 1)),
493 ** gen_rtx (MEM, QImode,
494 ** gen_rtx (PLUS, SImode,
495 ** gen_rtx (REG, SImode, 2),
496 ** gen_rtx (REG, SImode, 3)))),
497 */
498
499 /*VARARGS2*/
500 rtx
501 gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
502 {
503 int i; /* Array indices... */
504 const char *fmt; /* Current rtx's format... */
505 rtx rt_val; /* RTX to return to caller... */
506
507 VA_OPEN (p, mode);
508 VA_FIXEDARG (p, enum rtx_code, code);
509 VA_FIXEDARG (p, enum machine_mode, mode);
510
511 switch (code)
512 {
513 case CONST_INT:
514 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
515 break;
516
517 case CONST_DOUBLE:
518 {
519 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
520 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
521
522 rt_val = gen_rtx_CONST_DOUBLE (mode, arg0, arg1);
523 }
524 break;
525
526 case REG:
527 rt_val = gen_rtx_REG (mode, va_arg (p, int));
528 break;
529
530 case MEM:
531 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
532 break;
533
534 default:
535 rt_val = rtx_alloc (code); /* Allocate the storage space. */
536 rt_val->mode = mode; /* Store the machine mode... */
537
538 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
539 for (i = 0; i < GET_RTX_LENGTH (code); i++)
540 {
541 switch (*fmt++)
542 {
543 case '0': /* Unused field. */
544 break;
545
546 case 'i': /* An integer? */
547 XINT (rt_val, i) = va_arg (p, int);
548 break;
549
550 case 'w': /* A wide integer? */
551 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
552 break;
553
554 case 's': /* A string? */
555 XSTR (rt_val, i) = va_arg (p, char *);
556 break;
557
558 case 'e': /* An expression? */
559 case 'u': /* An insn? Same except when printing. */
560 XEXP (rt_val, i) = va_arg (p, rtx);
561 break;
562
563 case 'E': /* An RTX vector? */
564 XVEC (rt_val, i) = va_arg (p, rtvec);
565 break;
566
567 case 'b': /* A bitmap? */
568 XBITMAP (rt_val, i) = va_arg (p, bitmap);
569 break;
570
571 case 't': /* A tree? */
572 XTREE (rt_val, i) = va_arg (p, tree);
573 break;
574
575 default:
576 abort ();
577 }
578 }
579 break;
580 }
581
582 VA_CLOSE (p);
583 return rt_val;
584 }
585
586 /* gen_rtvec (n, [rt1, ..., rtn])
587 **
588 ** This routine creates an rtvec and stores within it the
589 ** pointers to rtx's which are its arguments.
590 */
591
592 /*VARARGS1*/
593 rtvec
594 gen_rtvec VPARAMS ((int n, ...))
595 {
596 int i, save_n;
597 rtx *vector;
598
599 VA_OPEN (p, n);
600 VA_FIXEDARG (p, int, n);
601
602 if (n == 0)
603 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
604
605 vector = (rtx *) alloca (n * sizeof (rtx));
606
607 for (i = 0; i < n; i++)
608 vector[i] = va_arg (p, rtx);
609
610 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
611 save_n = n;
612 VA_CLOSE (p);
613
614 return gen_rtvec_v (save_n, vector);
615 }
616
617 rtvec
618 gen_rtvec_v (n, argp)
619 int n;
620 rtx *argp;
621 {
622 int i;
623 rtvec rt_val;
624
625 if (n == 0)
626 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
627
628 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
629
630 for (i = 0; i < n; i++)
631 rt_val->elem[i] = *argp++;
632
633 return rt_val;
634 }
635 \f
636 /* Generate a REG rtx for a new pseudo register of mode MODE.
637 This pseudo is assigned the next sequential register number. */
638
639 rtx
640 gen_reg_rtx (mode)
641 enum machine_mode mode;
642 {
643 struct function *f = cfun;
644 rtx val;
645
646 /* Don't let anything called after initial flow analysis create new
647 registers. */
648 if (no_new_pseudos)
649 abort ();
650
651 if (generating_concat_p
652 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
653 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
654 {
655 /* For complex modes, don't make a single pseudo.
656 Instead, make a CONCAT of two pseudos.
657 This allows noncontiguous allocation of the real and imaginary parts,
658 which makes much better code. Besides, allocating DCmode
659 pseudos overstrains reload on some machines like the 386. */
660 rtx realpart, imagpart;
661 int size = GET_MODE_UNIT_SIZE (mode);
662 enum machine_mode partmode
663 = mode_for_size (size * BITS_PER_UNIT,
664 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
665 ? MODE_FLOAT : MODE_INT),
666 0);
667
668 realpart = gen_reg_rtx (partmode);
669 imagpart = gen_reg_rtx (partmode);
670 return gen_rtx_CONCAT (mode, realpart, imagpart);
671 }
672
673 /* Make sure regno_pointer_align, regno_decl, and regno_reg_rtx are large
674 enough to have an element for this pseudo reg number. */
675
676 if (reg_rtx_no == f->emit->regno_pointer_align_length)
677 {
678 int old_size = f->emit->regno_pointer_align_length;
679 char *new;
680 rtx *new1;
681 tree *new2;
682
683 new = xrealloc (f->emit->regno_pointer_align, old_size * 2);
684 memset (new + old_size, 0, old_size);
685 f->emit->regno_pointer_align = (unsigned char *) new;
686
687 new1 = (rtx *) xrealloc (f->emit->x_regno_reg_rtx,
688 old_size * 2 * sizeof (rtx));
689 memset (new1 + old_size, 0, old_size * sizeof (rtx));
690 regno_reg_rtx = new1;
691
692 new2 = (tree *) xrealloc (f->emit->regno_decl,
693 old_size * 2 * sizeof (tree));
694 memset (new2 + old_size, 0, old_size * sizeof (tree));
695 f->emit->regno_decl = new2;
696
697 f->emit->regno_pointer_align_length = old_size * 2;
698 }
699
700 val = gen_raw_REG (mode, reg_rtx_no);
701 regno_reg_rtx[reg_rtx_no++] = val;
702 return val;
703 }
704
705 /* Identify REG (which may be a CONCAT) as a user register. */
706
707 void
708 mark_user_reg (reg)
709 rtx reg;
710 {
711 if (GET_CODE (reg) == CONCAT)
712 {
713 REG_USERVAR_P (XEXP (reg, 0)) = 1;
714 REG_USERVAR_P (XEXP (reg, 1)) = 1;
715 }
716 else if (GET_CODE (reg) == REG)
717 REG_USERVAR_P (reg) = 1;
718 else
719 abort ();
720 }
721
722 /* Identify REG as a probable pointer register and show its alignment
723 as ALIGN, if nonzero. */
724
725 void
726 mark_reg_pointer (reg, align)
727 rtx reg;
728 int align;
729 {
730 if (! REG_POINTER (reg))
731 {
732 REG_POINTER (reg) = 1;
733
734 if (align)
735 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
736 }
737 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
738 /* We can no-longer be sure just how aligned this pointer is */
739 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
740 }
741
742 /* Return 1 plus largest pseudo reg number used in the current function. */
743
744 int
745 max_reg_num ()
746 {
747 return reg_rtx_no;
748 }
749
750 /* Return 1 + the largest label number used so far in the current function. */
751
752 int
753 max_label_num ()
754 {
755 if (last_label_num && label_num == base_label_num)
756 return last_label_num;
757 return label_num;
758 }
759
760 /* Return first label number used in this function (if any were used). */
761
762 int
763 get_first_label_num ()
764 {
765 return first_label_num;
766 }
767 \f
768 /* Return the final regno of X, which is a SUBREG of a hard
769 register. */
770 int
771 subreg_hard_regno (x, check_mode)
772 rtx x;
773 int check_mode;
774 {
775 enum machine_mode mode = GET_MODE (x);
776 unsigned int byte_offset, base_regno, final_regno;
777 rtx reg = SUBREG_REG (x);
778
779 /* This is where we attempt to catch illegal subregs
780 created by the compiler. */
781 if (GET_CODE (x) != SUBREG
782 || GET_CODE (reg) != REG)
783 abort ();
784 base_regno = REGNO (reg);
785 if (base_regno >= FIRST_PSEUDO_REGISTER)
786 abort ();
787 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
788 abort ();
789
790 /* Catch non-congruent offsets too. */
791 byte_offset = SUBREG_BYTE (x);
792 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
793 abort ();
794
795 final_regno = subreg_regno (x);
796
797 return final_regno;
798 }
799
800 /* Return a value representing some low-order bits of X, where the number
801 of low-order bits is given by MODE. Note that no conversion is done
802 between floating-point and fixed-point values, rather, the bit
803 representation is returned.
804
805 This function handles the cases in common between gen_lowpart, below,
806 and two variants in cse.c and combine.c. These are the cases that can
807 be safely handled at all points in the compilation.
808
809 If this is not a case we can handle, return 0. */
810
811 rtx
812 gen_lowpart_common (mode, x)
813 enum machine_mode mode;
814 rtx x;
815 {
816 int msize = GET_MODE_SIZE (mode);
817 int xsize = GET_MODE_SIZE (GET_MODE (x));
818 int offset = 0;
819
820 if (GET_MODE (x) == mode)
821 return x;
822
823 /* MODE must occupy no more words than the mode of X. */
824 if (GET_MODE (x) != VOIDmode
825 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
826 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
827 return 0;
828
829 offset = subreg_lowpart_offset (mode, GET_MODE (x));
830
831 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
832 && (GET_MODE_CLASS (mode) == MODE_INT
833 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
834 {
835 /* If we are getting the low-order part of something that has been
836 sign- or zero-extended, we can either just use the object being
837 extended or make a narrower extension. If we want an even smaller
838 piece than the size of the object being extended, call ourselves
839 recursively.
840
841 This case is used mostly by combine and cse. */
842
843 if (GET_MODE (XEXP (x, 0)) == mode)
844 return XEXP (x, 0);
845 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
846 return gen_lowpart_common (mode, XEXP (x, 0));
847 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
848 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
849 }
850 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
851 || GET_CODE (x) == CONCAT)
852 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
853 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
854 from the low-order part of the constant. */
855 else if ((GET_MODE_CLASS (mode) == MODE_INT
856 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
857 && GET_MODE (x) == VOIDmode
858 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
859 {
860 /* If MODE is twice the host word size, X is already the desired
861 representation. Otherwise, if MODE is wider than a word, we can't
862 do this. If MODE is exactly a word, return just one CONST_INT. */
863
864 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
865 return x;
866 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
867 return 0;
868 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
869 return (GET_CODE (x) == CONST_INT ? x
870 : GEN_INT (CONST_DOUBLE_LOW (x)));
871 else
872 {
873 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
874 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
875 : CONST_DOUBLE_LOW (x));
876
877 /* Sign extend to HOST_WIDE_INT. */
878 val = trunc_int_for_mode (val, mode);
879
880 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
881 : GEN_INT (val));
882 }
883 }
884
885 #ifndef REAL_ARITHMETIC
886 /* If X is an integral constant but we want it in floating-point, it
887 must be the case that we have a union of an integer and a floating-point
888 value. If the machine-parameters allow it, simulate that union here
889 and return the result. The two-word and single-word cases are
890 different. */
891
892 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
893 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
894 || flag_pretend_float)
895 && GET_MODE_CLASS (mode) == MODE_FLOAT
896 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
897 && GET_CODE (x) == CONST_INT
898 && sizeof (float) * HOST_BITS_PER_CHAR == HOST_BITS_PER_WIDE_INT)
899 {
900 union {HOST_WIDE_INT i; float d; } u;
901
902 u.i = INTVAL (x);
903 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
904 }
905 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
907 || flag_pretend_float)
908 && GET_MODE_CLASS (mode) == MODE_FLOAT
909 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
910 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
911 && GET_MODE (x) == VOIDmode
912 && (sizeof (double) * HOST_BITS_PER_CHAR
913 == 2 * HOST_BITS_PER_WIDE_INT))
914 {
915 union {HOST_WIDE_INT i[2]; double d; } u;
916 HOST_WIDE_INT low, high;
917
918 if (GET_CODE (x) == CONST_INT)
919 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
920 else
921 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
922
923 #ifdef HOST_WORDS_BIG_ENDIAN
924 u.i[0] = high, u.i[1] = low;
925 #else
926 u.i[0] = low, u.i[1] = high;
927 #endif
928
929 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
930 }
931
932 /* Similarly, if this is converting a floating-point value into a
933 single-word integer. Only do this is the host and target parameters are
934 compatible. */
935
936 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
937 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
938 || flag_pretend_float)
939 && (GET_MODE_CLASS (mode) == MODE_INT
940 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
941 && GET_CODE (x) == CONST_DOUBLE
942 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
943 && GET_MODE_BITSIZE (mode) == BITS_PER_WORD)
944 return constant_subword (x, (offset / UNITS_PER_WORD), GET_MODE (x));
945
946 /* Similarly, if this is converting a floating-point value into a
947 two-word integer, we can do this one word at a time and make an
948 integer. Only do this is the host and target parameters are
949 compatible. */
950
951 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
952 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
953 || flag_pretend_float)
954 && (GET_MODE_CLASS (mode) == MODE_INT
955 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
956 && GET_CODE (x) == CONST_DOUBLE
957 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
958 && GET_MODE_BITSIZE (mode) == 2 * BITS_PER_WORD)
959 {
960 rtx lowpart, highpart;
961
962 lowpart = constant_subword (x,
963 (offset / UNITS_PER_WORD) + WORDS_BIG_ENDIAN,
964 GET_MODE (x));
965 highpart = constant_subword (x,
966 (offset / UNITS_PER_WORD) + (! WORDS_BIG_ENDIAN),
967 GET_MODE (x));
968 if (lowpart && GET_CODE (lowpart) == CONST_INT
969 && highpart && GET_CODE (highpart) == CONST_INT)
970 return immed_double_const (INTVAL (lowpart), INTVAL (highpart), mode);
971 }
972 #else /* ifndef REAL_ARITHMETIC */
973
974 /* When we have a FP emulator, we can handle all conversions between
975 FP and integer operands. This simplifies reload because it
976 doesn't have to deal with constructs like (subreg:DI
977 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
978 /* Single-precision floats are always 32-bits and double-precision
979 floats are always 64-bits. */
980
981 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
982 && GET_MODE_BITSIZE (mode) == 32
983 && GET_CODE (x) == CONST_INT)
984 {
985 REAL_VALUE_TYPE r;
986 HOST_WIDE_INT i;
987
988 i = INTVAL (x);
989 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
990 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
991 }
992 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
993 && GET_MODE_BITSIZE (mode) == 64
994 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
995 && GET_MODE (x) == VOIDmode)
996 {
997 REAL_VALUE_TYPE r;
998 HOST_WIDE_INT i[2];
999 HOST_WIDE_INT low, high;
1000
1001 if (GET_CODE (x) == CONST_INT)
1002 {
1003 low = INTVAL (x);
1004 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1005 }
1006 else
1007 {
1008 low = CONST_DOUBLE_LOW (x);
1009 high = CONST_DOUBLE_HIGH (x);
1010 }
1011
1012 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1013 target machine. */
1014 if (WORDS_BIG_ENDIAN)
1015 i[0] = high, i[1] = low;
1016 else
1017 i[0] = low, i[1] = high;
1018
1019 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
1020 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1021 }
1022 else if ((GET_MODE_CLASS (mode) == MODE_INT
1023 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1024 && GET_CODE (x) == CONST_DOUBLE
1025 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1026 {
1027 REAL_VALUE_TYPE r;
1028 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1029 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1030
1031 /* Convert 'r' into an array of four 32-bit words in target word
1032 order. */
1033 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1034 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1035 {
1036 case 32:
1037 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1038 i[1] = 0;
1039 i[2] = 0;
1040 i[3 - 3 * endian] = 0;
1041 break;
1042 case 64:
1043 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1044 i[2 - 2 * endian] = 0;
1045 i[3 - 2 * endian] = 0;
1046 break;
1047 case 96:
1048 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1049 i[3 - 3 * endian] = 0;
1050 break;
1051 case 128:
1052 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1053 break;
1054 default:
1055 abort ();
1056 }
1057 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1058 and return it. */
1059 #if HOST_BITS_PER_WIDE_INT == 32
1060 return immed_double_const (i[3 * endian], i[1 + endian], mode);
1061 #else
1062 if (HOST_BITS_PER_WIDE_INT != 64)
1063 abort ();
1064
1065 return immed_double_const ((((unsigned long) i[3 * endian])
1066 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1067 (((unsigned long) i[2 - endian])
1068 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
1069 mode);
1070 #endif
1071 }
1072 #endif /* ifndef REAL_ARITHMETIC */
1073
1074 /* Otherwise, we can't do this. */
1075 return 0;
1076 }
1077 \f
1078 /* Return the real part (which has mode MODE) of a complex value X.
1079 This always comes at the low address in memory. */
1080
1081 rtx
1082 gen_realpart (mode, x)
1083 enum machine_mode mode;
1084 rtx x;
1085 {
1086 if (WORDS_BIG_ENDIAN
1087 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1088 && REG_P (x)
1089 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1090 internal_error
1091 ("can't access real part of complex value in hard register");
1092 else if (WORDS_BIG_ENDIAN)
1093 return gen_highpart (mode, x);
1094 else
1095 return gen_lowpart (mode, x);
1096 }
1097
1098 /* Return the imaginary part (which has mode MODE) of a complex value X.
1099 This always comes at the high address in memory. */
1100
1101 rtx
1102 gen_imagpart (mode, x)
1103 enum machine_mode mode;
1104 rtx x;
1105 {
1106 if (WORDS_BIG_ENDIAN)
1107 return gen_lowpart (mode, x);
1108 else if (! WORDS_BIG_ENDIAN
1109 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1110 && REG_P (x)
1111 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1112 internal_error
1113 ("can't access imaginary part of complex value in hard register");
1114 else
1115 return gen_highpart (mode, x);
1116 }
1117
1118 /* Return 1 iff X, assumed to be a SUBREG,
1119 refers to the real part of the complex value in its containing reg.
1120 Complex values are always stored with the real part in the first word,
1121 regardless of WORDS_BIG_ENDIAN. */
1122
1123 int
1124 subreg_realpart_p (x)
1125 rtx x;
1126 {
1127 if (GET_CODE (x) != SUBREG)
1128 abort ();
1129
1130 return ((unsigned int) SUBREG_BYTE (x)
1131 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1132 }
1133 \f
1134 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1135 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1136 least-significant part of X.
1137 MODE specifies how big a part of X to return;
1138 it usually should not be larger than a word.
1139 If X is a MEM whose address is a QUEUED, the value may be so also. */
1140
1141 rtx
1142 gen_lowpart (mode, x)
1143 enum machine_mode mode;
1144 rtx x;
1145 {
1146 rtx result = gen_lowpart_common (mode, x);
1147
1148 if (result)
1149 return result;
1150 else if (GET_CODE (x) == REG)
1151 {
1152 /* Must be a hard reg that's not valid in MODE. */
1153 result = gen_lowpart_common (mode, copy_to_reg (x));
1154 if (result == 0)
1155 abort ();
1156 return result;
1157 }
1158 else if (GET_CODE (x) == MEM)
1159 {
1160 /* The only additional case we can do is MEM. */
1161 int offset = 0;
1162 if (WORDS_BIG_ENDIAN)
1163 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1164 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1165
1166 if (BYTES_BIG_ENDIAN)
1167 /* Adjust the address so that the address-after-the-data
1168 is unchanged. */
1169 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1170 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1171
1172 return adjust_address (x, mode, offset);
1173 }
1174 else if (GET_CODE (x) == ADDRESSOF)
1175 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1176 else
1177 abort ();
1178 }
1179
1180 /* Like `gen_lowpart', but refer to the most significant part.
1181 This is used to access the imaginary part of a complex number. */
1182
1183 rtx
1184 gen_highpart (mode, x)
1185 enum machine_mode mode;
1186 rtx x;
1187 {
1188 unsigned int msize = GET_MODE_SIZE (mode);
1189 rtx result;
1190
1191 /* This case loses if X is a subreg. To catch bugs early,
1192 complain if an invalid MODE is used even in other cases. */
1193 if (msize > UNITS_PER_WORD
1194 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1195 abort ();
1196
1197 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1198 subreg_highpart_offset (mode, GET_MODE (x)));
1199
1200 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1201 the target if we have a MEM. gen_highpart must return a valid operand,
1202 emitting code if necessary to do so. */
1203 if (GET_CODE (result) == MEM)
1204 result = validize_mem (result);
1205
1206 if (!result)
1207 abort ();
1208 return result;
1209 }
1210
1211 /* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1212 be VOIDmode constant. */
1213 rtx
1214 gen_highpart_mode (outermode, innermode, exp)
1215 enum machine_mode outermode, innermode;
1216 rtx exp;
1217 {
1218 if (GET_MODE (exp) != VOIDmode)
1219 {
1220 if (GET_MODE (exp) != innermode)
1221 abort ();
1222 return gen_highpart (outermode, exp);
1223 }
1224 return simplify_gen_subreg (outermode, exp, innermode,
1225 subreg_highpart_offset (outermode, innermode));
1226 }
1227 /* Return offset in bytes to get OUTERMODE low part
1228 of the value in mode INNERMODE stored in memory in target format. */
1229
1230 unsigned int
1231 subreg_lowpart_offset (outermode, innermode)
1232 enum machine_mode outermode, innermode;
1233 {
1234 unsigned int offset = 0;
1235 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1236
1237 if (difference > 0)
1238 {
1239 if (WORDS_BIG_ENDIAN)
1240 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1241 if (BYTES_BIG_ENDIAN)
1242 offset += difference % UNITS_PER_WORD;
1243 }
1244
1245 return offset;
1246 }
1247
1248 /* Return offset in bytes to get OUTERMODE high part
1249 of the value in mode INNERMODE stored in memory in target format. */
1250 unsigned int
1251 subreg_highpart_offset (outermode, innermode)
1252 enum machine_mode outermode, innermode;
1253 {
1254 unsigned int offset = 0;
1255 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1256
1257 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1258 abort ();
1259
1260 if (difference > 0)
1261 {
1262 if (! WORDS_BIG_ENDIAN)
1263 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1264 if (! BYTES_BIG_ENDIAN)
1265 offset += difference % UNITS_PER_WORD;
1266 }
1267
1268 return offset;
1269 }
1270
1271 /* Return 1 iff X, assumed to be a SUBREG,
1272 refers to the least significant part of its containing reg.
1273 If X is not a SUBREG, always return 1 (it is its own low part!). */
1274
1275 int
1276 subreg_lowpart_p (x)
1277 rtx x;
1278 {
1279 if (GET_CODE (x) != SUBREG)
1280 return 1;
1281 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1282 return 0;
1283
1284 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1285 == SUBREG_BYTE (x));
1286 }
1287 \f
1288
1289 /* Helper routine for all the constant cases of operand_subword.
1290 Some places invoke this directly. */
1291
1292 rtx
1293 constant_subword (op, offset, mode)
1294 rtx op;
1295 int offset;
1296 enum machine_mode mode;
1297 {
1298 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1299 HOST_WIDE_INT val;
1300
1301 /* If OP is already an integer word, return it. */
1302 if (GET_MODE_CLASS (mode) == MODE_INT
1303 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1304 return op;
1305
1306 #ifdef REAL_ARITHMETIC
1307 /* The output is some bits, the width of the target machine's word.
1308 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1309 host can't. */
1310 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1311 && GET_MODE_CLASS (mode) == MODE_FLOAT
1312 && GET_MODE_BITSIZE (mode) == 64
1313 && GET_CODE (op) == CONST_DOUBLE)
1314 {
1315 long k[2];
1316 REAL_VALUE_TYPE rv;
1317
1318 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1319 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1320
1321 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1322 which the words are written depends on the word endianness.
1323 ??? This is a potential portability problem and should
1324 be fixed at some point.
1325
1326 We must exercise caution with the sign bit. By definition there
1327 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1328 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1329 So we explicitly mask and sign-extend as necessary. */
1330 if (BITS_PER_WORD == 32)
1331 {
1332 val = k[offset];
1333 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1334 return GEN_INT (val);
1335 }
1336 #if HOST_BITS_PER_WIDE_INT >= 64
1337 else if (BITS_PER_WORD >= 64 && offset == 0)
1338 {
1339 val = k[! WORDS_BIG_ENDIAN];
1340 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1341 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1342 return GEN_INT (val);
1343 }
1344 #endif
1345 else if (BITS_PER_WORD == 16)
1346 {
1347 val = k[offset >> 1];
1348 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1349 val >>= 16;
1350 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1351 return GEN_INT (val);
1352 }
1353 else
1354 abort ();
1355 }
1356 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1357 && GET_MODE_CLASS (mode) == MODE_FLOAT
1358 && GET_MODE_BITSIZE (mode) > 64
1359 && GET_CODE (op) == CONST_DOUBLE)
1360 {
1361 long k[4];
1362 REAL_VALUE_TYPE rv;
1363
1364 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1365 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1366
1367 if (BITS_PER_WORD == 32)
1368 {
1369 val = k[offset];
1370 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1371 return GEN_INT (val);
1372 }
1373 #if HOST_BITS_PER_WIDE_INT >= 64
1374 else if (BITS_PER_WORD >= 64 && offset <= 1)
1375 {
1376 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1377 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1378 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1379 return GEN_INT (val);
1380 }
1381 #endif
1382 else
1383 abort ();
1384 }
1385 #else /* no REAL_ARITHMETIC */
1386 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1387 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1388 || flag_pretend_float)
1389 && GET_MODE_CLASS (mode) == MODE_FLOAT
1390 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1391 && GET_CODE (op) == CONST_DOUBLE)
1392 {
1393 /* The constant is stored in the host's word-ordering,
1394 but we want to access it in the target's word-ordering. Some
1395 compilers don't like a conditional inside macro args, so we have two
1396 copies of the return. */
1397 #ifdef HOST_WORDS_BIG_ENDIAN
1398 return GEN_INT (offset == WORDS_BIG_ENDIAN
1399 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1400 #else
1401 return GEN_INT (offset != WORDS_BIG_ENDIAN
1402 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1403 #endif
1404 }
1405 #endif /* no REAL_ARITHMETIC */
1406
1407 /* Single word float is a little harder, since single- and double-word
1408 values often do not have the same high-order bits. We have already
1409 verified that we want the only defined word of the single-word value. */
1410 #ifdef REAL_ARITHMETIC
1411 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1412 && GET_MODE_BITSIZE (mode) == 32
1413 && GET_CODE (op) == CONST_DOUBLE)
1414 {
1415 long l;
1416 REAL_VALUE_TYPE rv;
1417
1418 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1419 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1420
1421 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1422 val = l;
1423 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1424
1425 if (BITS_PER_WORD == 16)
1426 {
1427 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1428 val >>= 16;
1429 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1430 }
1431
1432 return GEN_INT (val);
1433 }
1434 #else
1435 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1436 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1437 || flag_pretend_float)
1438 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
1439 && GET_MODE_CLASS (mode) == MODE_FLOAT
1440 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1441 && GET_CODE (op) == CONST_DOUBLE)
1442 {
1443 double d;
1444 union {float f; HOST_WIDE_INT i; } u;
1445
1446 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1447
1448 u.f = d;
1449 return GEN_INT (u.i);
1450 }
1451 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1452 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1453 || flag_pretend_float)
1454 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1455 && GET_MODE_CLASS (mode) == MODE_FLOAT
1456 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1457 && GET_CODE (op) == CONST_DOUBLE)
1458 {
1459 double d;
1460 union {double d; HOST_WIDE_INT i; } u;
1461
1462 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1463
1464 u.d = d;
1465 return GEN_INT (u.i);
1466 }
1467 #endif /* no REAL_ARITHMETIC */
1468
1469 /* The only remaining cases that we can handle are integers.
1470 Convert to proper endianness now since these cases need it.
1471 At this point, offset == 0 means the low-order word.
1472
1473 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1474 in general. However, if OP is (const_int 0), we can just return
1475 it for any word. */
1476
1477 if (op == const0_rtx)
1478 return op;
1479
1480 if (GET_MODE_CLASS (mode) != MODE_INT
1481 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1482 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1483 return 0;
1484
1485 if (WORDS_BIG_ENDIAN)
1486 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1487
1488 /* Find out which word on the host machine this value is in and get
1489 it from the constant. */
1490 val = (offset / size_ratio == 0
1491 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1492 : (GET_CODE (op) == CONST_INT
1493 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1494
1495 /* Get the value we want into the low bits of val. */
1496 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1497 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1498
1499 val = trunc_int_for_mode (val, word_mode);
1500
1501 return GEN_INT (val);
1502 }
1503
1504 /* Return subword OFFSET of operand OP.
1505 The word number, OFFSET, is interpreted as the word number starting
1506 at the low-order address. OFFSET 0 is the low-order word if not
1507 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1508
1509 If we cannot extract the required word, we return zero. Otherwise,
1510 an rtx corresponding to the requested word will be returned.
1511
1512 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1513 reload has completed, a valid address will always be returned. After
1514 reload, if a valid address cannot be returned, we return zero.
1515
1516 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1517 it is the responsibility of the caller.
1518
1519 MODE is the mode of OP in case it is a CONST_INT.
1520
1521 ??? This is still rather broken for some cases. The problem for the
1522 moment is that all callers of this thing provide no 'goal mode' to
1523 tell us to work with. This exists because all callers were written
1524 in a word based SUBREG world.
1525 Now use of this function can be deprecated by simplify_subreg in most
1526 cases.
1527 */
1528
1529 rtx
1530 operand_subword (op, offset, validate_address, mode)
1531 rtx op;
1532 unsigned int offset;
1533 int validate_address;
1534 enum machine_mode mode;
1535 {
1536 if (mode == VOIDmode)
1537 mode = GET_MODE (op);
1538
1539 if (mode == VOIDmode)
1540 abort ();
1541
1542 /* If OP is narrower than a word, fail. */
1543 if (mode != BLKmode
1544 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1545 return 0;
1546
1547 /* If we want a word outside OP, return zero. */
1548 if (mode != BLKmode
1549 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1550 return const0_rtx;
1551
1552 /* Form a new MEM at the requested address. */
1553 if (GET_CODE (op) == MEM)
1554 {
1555 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1556
1557 if (! validate_address)
1558 return new;
1559
1560 else if (reload_completed)
1561 {
1562 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1563 return 0;
1564 }
1565 else
1566 return replace_equiv_address (new, XEXP (new, 0));
1567 }
1568
1569 /* Rest can be handled by simplify_subreg. */
1570 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1571 }
1572
1573 /* Similar to `operand_subword', but never return 0. If we can't extract
1574 the required subword, put OP into a register and try again. If that fails,
1575 abort. We always validate the address in this case.
1576
1577 MODE is the mode of OP, in case it is CONST_INT. */
1578
1579 rtx
1580 operand_subword_force (op, offset, mode)
1581 rtx op;
1582 unsigned int offset;
1583 enum machine_mode mode;
1584 {
1585 rtx result = operand_subword (op, offset, 1, mode);
1586
1587 if (result)
1588 return result;
1589
1590 if (mode != BLKmode && mode != VOIDmode)
1591 {
1592 /* If this is a register which can not be accessed by words, copy it
1593 to a pseudo register. */
1594 if (GET_CODE (op) == REG)
1595 op = copy_to_reg (op);
1596 else
1597 op = force_reg (mode, op);
1598 }
1599
1600 result = operand_subword (op, offset, 1, mode);
1601 if (result == 0)
1602 abort ();
1603
1604 return result;
1605 }
1606 \f
1607 /* Given a compare instruction, swap the operands.
1608 A test instruction is changed into a compare of 0 against the operand. */
1609
1610 void
1611 reverse_comparison (insn)
1612 rtx insn;
1613 {
1614 rtx body = PATTERN (insn);
1615 rtx comp;
1616
1617 if (GET_CODE (body) == SET)
1618 comp = SET_SRC (body);
1619 else
1620 comp = SET_SRC (XVECEXP (body, 0, 0));
1621
1622 if (GET_CODE (comp) == COMPARE)
1623 {
1624 rtx op0 = XEXP (comp, 0);
1625 rtx op1 = XEXP (comp, 1);
1626 XEXP (comp, 0) = op1;
1627 XEXP (comp, 1) = op0;
1628 }
1629 else
1630 {
1631 rtx new = gen_rtx_COMPARE (VOIDmode,
1632 CONST0_RTX (GET_MODE (comp)), comp);
1633 if (GET_CODE (body) == SET)
1634 SET_SRC (body) = new;
1635 else
1636 SET_SRC (XVECEXP (body, 0, 0)) = new;
1637 }
1638 }
1639 \f
1640 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1641 or (2) a component ref of something variable. Represent the later with
1642 a NULL expression. */
1643
1644 static tree
1645 component_ref_for_mem_expr (ref)
1646 tree ref;
1647 {
1648 tree inner = TREE_OPERAND (ref, 0);
1649
1650 if (TREE_CODE (inner) == COMPONENT_REF)
1651 inner = component_ref_for_mem_expr (inner);
1652 else
1653 {
1654 tree placeholder_ptr = 0;
1655
1656 /* Now remove any conversions: they don't change what the underlying
1657 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1658 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1659 || TREE_CODE (inner) == NON_LVALUE_EXPR
1660 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1661 || TREE_CODE (inner) == SAVE_EXPR
1662 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1663 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1664 inner = find_placeholder (inner, &placeholder_ptr);
1665 else
1666 inner = TREE_OPERAND (inner, 0);
1667
1668 if (! DECL_P (inner))
1669 inner = NULL_TREE;
1670 }
1671
1672 if (inner == TREE_OPERAND (ref, 0))
1673 return ref;
1674 else
1675 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1676 TREE_OPERAND (ref, 1));
1677 }
1678
1679 /* Given REF, a MEM, and T, either the type of X or the expression
1680 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1681 if we are making a new object of this type. */
1682
1683 void
1684 set_mem_attributes (ref, t, objectp)
1685 rtx ref;
1686 tree t;
1687 int objectp;
1688 {
1689 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1690 tree expr = MEM_EXPR (ref);
1691 rtx offset = MEM_OFFSET (ref);
1692 rtx size = MEM_SIZE (ref);
1693 unsigned int align = MEM_ALIGN (ref);
1694 tree type;
1695
1696 /* It can happen that type_for_mode was given a mode for which there
1697 is no language-level type. In which case it returns NULL, which
1698 we can see here. */
1699 if (t == NULL_TREE)
1700 return;
1701
1702 type = TYPE_P (t) ? t : TREE_TYPE (t);
1703
1704 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1705 wrong answer, as it assumes that DECL_RTL already has the right alias
1706 info. Callers should not set DECL_RTL until after the call to
1707 set_mem_attributes. */
1708 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1709 abort ();
1710
1711 /* Get the alias set from the expression or type (perhaps using a
1712 front-end routine) and use it. */
1713 alias = get_alias_set (t);
1714
1715 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1716 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1717 RTX_UNCHANGING_P (ref)
1718 |= ((lang_hooks.honor_readonly
1719 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1720 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1721
1722 /* If we are making an object of this type, or if this is a DECL, we know
1723 that it is a scalar if the type is not an aggregate. */
1724 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1725 MEM_SCALAR_P (ref) = 1;
1726
1727 /* We can set the alignment from the type if we are making an object,
1728 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1729 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1730 align = MAX (align, TYPE_ALIGN (type));
1731
1732 /* If the size is known, we can set that. */
1733 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1734 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1735
1736 /* If T is not a type, we may be able to deduce some more information about
1737 the expression. */
1738 if (! TYPE_P (t))
1739 {
1740 maybe_set_unchanging (ref, t);
1741 if (TREE_THIS_VOLATILE (t))
1742 MEM_VOLATILE_P (ref) = 1;
1743
1744 /* Now remove any conversions: they don't change what the underlying
1745 object is. Likewise for SAVE_EXPR. */
1746 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1747 || TREE_CODE (t) == NON_LVALUE_EXPR
1748 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1749 || TREE_CODE (t) == SAVE_EXPR)
1750 t = TREE_OPERAND (t, 0);
1751
1752 /* If this expression can't be addressed (e.g., it contains a reference
1753 to a non-addressable field), show we don't change its alias set. */
1754 if (! can_address_p (t))
1755 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1756
1757 /* If this is a decl, set the attributes of the MEM from it. */
1758 if (DECL_P (t))
1759 {
1760 expr = t;
1761 offset = const0_rtx;
1762 size = (DECL_SIZE_UNIT (t)
1763 && host_integerp (DECL_SIZE_UNIT (t), 1)
1764 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1765 align = DECL_ALIGN (t);
1766 }
1767
1768 /* If this is a constant, we know the alignment. */
1769 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1770 {
1771 align = TYPE_ALIGN (type);
1772 #ifdef CONSTANT_ALIGNMENT
1773 align = CONSTANT_ALIGNMENT (t, align);
1774 #endif
1775 }
1776
1777 /* If this is a field reference and not a bit-field, record it. */
1778 /* ??? There is some information that can be gleened from bit-fields,
1779 such as the word offset in the structure that might be modified.
1780 But skip it for now. */
1781 else if (TREE_CODE (t) == COMPONENT_REF
1782 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1783 {
1784 expr = component_ref_for_mem_expr (t);
1785 offset = const0_rtx;
1786 /* ??? Any reason the field size would be different than
1787 the size we got from the type? */
1788 }
1789
1790 /* If this is an array reference, look for an outer field reference. */
1791 else if (TREE_CODE (t) == ARRAY_REF)
1792 {
1793 tree off_tree = size_zero_node;
1794
1795 do
1796 {
1797 off_tree
1798 = fold (build (PLUS_EXPR, sizetype,
1799 fold (build (MULT_EXPR, sizetype,
1800 TREE_OPERAND (t, 1),
1801 TYPE_SIZE_UNIT (TREE_TYPE (t)))),
1802 off_tree));
1803 t = TREE_OPERAND (t, 0);
1804 }
1805 while (TREE_CODE (t) == ARRAY_REF);
1806
1807 if (TREE_CODE (t) == COMPONENT_REF)
1808 {
1809 expr = component_ref_for_mem_expr (t);
1810 if (host_integerp (off_tree, 1))
1811 offset = GEN_INT (tree_low_cst (off_tree, 1));
1812 /* ??? Any reason the field size would be different than
1813 the size we got from the type? */
1814 }
1815 }
1816 }
1817
1818 /* Now set the attributes we computed above. */
1819 MEM_ATTRS (ref)
1820 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1821
1822 /* If this is already known to be a scalar or aggregate, we are done. */
1823 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1824 return;
1825
1826 /* If it is a reference into an aggregate, this is part of an aggregate.
1827 Otherwise we don't know. */
1828 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1829 || TREE_CODE (t) == ARRAY_RANGE_REF
1830 || TREE_CODE (t) == BIT_FIELD_REF)
1831 MEM_IN_STRUCT_P (ref) = 1;
1832 }
1833
1834 /* Set the alias set of MEM to SET. */
1835
1836 void
1837 set_mem_alias_set (mem, set)
1838 rtx mem;
1839 HOST_WIDE_INT set;
1840 {
1841 #ifdef ENABLE_CHECKING
1842 /* If the new and old alias sets don't conflict, something is wrong. */
1843 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1844 abort ();
1845 #endif
1846
1847 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1848 MEM_SIZE (mem), MEM_ALIGN (mem),
1849 GET_MODE (mem));
1850 }
1851
1852 /* Set the alignment of MEM to ALIGN bits. */
1853
1854 void
1855 set_mem_align (mem, align)
1856 rtx mem;
1857 unsigned int align;
1858 {
1859 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1860 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1861 GET_MODE (mem));
1862 }
1863
1864 /* Set the expr for MEM to EXPR. */
1865
1866 void
1867 set_mem_expr (mem, expr)
1868 rtx mem;
1869 tree expr;
1870 {
1871 MEM_ATTRS (mem)
1872 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1873 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1874 }
1875
1876 /* Set the offset of MEM to OFFSET. */
1877
1878 void
1879 set_mem_offset (mem, offset)
1880 rtx mem, offset;
1881 {
1882 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1883 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1884 GET_MODE (mem));
1885 }
1886 \f
1887 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1888 and its address changed to ADDR. (VOIDmode means don't change the mode.
1889 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1890 returned memory location is required to be valid. The memory
1891 attributes are not changed. */
1892
1893 static rtx
1894 change_address_1 (memref, mode, addr, validate)
1895 rtx memref;
1896 enum machine_mode mode;
1897 rtx addr;
1898 int validate;
1899 {
1900 rtx new;
1901
1902 if (GET_CODE (memref) != MEM)
1903 abort ();
1904 if (mode == VOIDmode)
1905 mode = GET_MODE (memref);
1906 if (addr == 0)
1907 addr = XEXP (memref, 0);
1908
1909 if (validate)
1910 {
1911 if (reload_in_progress || reload_completed)
1912 {
1913 if (! memory_address_p (mode, addr))
1914 abort ();
1915 }
1916 else
1917 addr = memory_address (mode, addr);
1918 }
1919
1920 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1921 return memref;
1922
1923 new = gen_rtx_MEM (mode, addr);
1924 MEM_COPY_ATTRIBUTES (new, memref);
1925 return new;
1926 }
1927
1928 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1929 way we are changing MEMREF, so we only preserve the alias set. */
1930
1931 rtx
1932 change_address (memref, mode, addr)
1933 rtx memref;
1934 enum machine_mode mode;
1935 rtx addr;
1936 {
1937 rtx new = change_address_1 (memref, mode, addr, 1);
1938 enum machine_mode mmode = GET_MODE (new);
1939
1940 MEM_ATTRS (new)
1941 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
1942 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
1943 (mmode == BLKmode ? BITS_PER_UNIT
1944 : GET_MODE_ALIGNMENT (mmode)),
1945 mmode);
1946
1947 return new;
1948 }
1949
1950 /* Return a memory reference like MEMREF, but with its mode changed
1951 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1952 nonzero, the memory address is forced to be valid.
1953 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1954 and caller is responsible for adjusting MEMREF base register. */
1955
1956 rtx
1957 adjust_address_1 (memref, mode, offset, validate, adjust)
1958 rtx memref;
1959 enum machine_mode mode;
1960 HOST_WIDE_INT offset;
1961 int validate, adjust;
1962 {
1963 rtx addr = XEXP (memref, 0);
1964 rtx new;
1965 rtx memoffset = MEM_OFFSET (memref);
1966 rtx size = 0;
1967 unsigned int memalign = MEM_ALIGN (memref);
1968
1969 /* ??? Prefer to create garbage instead of creating shared rtl.
1970 This may happen even if offset is non-zero -- consider
1971 (plus (plus reg reg) const_int) -- so do this always. */
1972 addr = copy_rtx (addr);
1973
1974 if (adjust)
1975 {
1976 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1977 object, we can merge it into the LO_SUM. */
1978 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1979 && offset >= 0
1980 && (unsigned HOST_WIDE_INT) offset
1981 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1982 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1983 plus_constant (XEXP (addr, 1), offset));
1984 else
1985 addr = plus_constant (addr, offset);
1986 }
1987
1988 new = change_address_1 (memref, mode, addr, validate);
1989
1990 /* Compute the new values of the memory attributes due to this adjustment.
1991 We add the offsets and update the alignment. */
1992 if (memoffset)
1993 memoffset = GEN_INT (offset + INTVAL (memoffset));
1994
1995 /* Compute the new alignment by taking the MIN of the alignment and the
1996 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1997 if zero. */
1998 if (offset != 0)
1999 memalign = MIN (memalign, (offset & -offset) * BITS_PER_UNIT);
2000
2001 /* We can compute the size in a number of ways. */
2002 if (GET_MODE (new) != BLKmode)
2003 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
2004 else if (MEM_SIZE (memref))
2005 size = plus_constant (MEM_SIZE (memref), -offset);
2006
2007 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2008 memoffset, size, memalign, GET_MODE (new));
2009
2010 /* At some point, we should validate that this offset is within the object,
2011 if all the appropriate values are known. */
2012 return new;
2013 }
2014
2015 /* Return a memory reference like MEMREF, but with its mode changed
2016 to MODE and its address changed to ADDR, which is assumed to be
2017 MEMREF offseted by OFFSET bytes. If VALIDATE is
2018 nonzero, the memory address is forced to be valid. */
2019
2020 rtx
2021 adjust_automodify_address_1 (memref, mode, addr, offset, validate)
2022 rtx memref;
2023 enum machine_mode mode;
2024 rtx addr;
2025 HOST_WIDE_INT offset;
2026 int validate;
2027 {
2028 memref = change_address_1 (memref, VOIDmode, addr, validate);
2029 return adjust_address_1 (memref, mode, offset, validate, 0);
2030 }
2031
2032 /* Return a memory reference like MEMREF, but whose address is changed by
2033 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2034 known to be in OFFSET (possibly 1). */
2035
2036 rtx
2037 offset_address (memref, offset, pow2)
2038 rtx memref;
2039 rtx offset;
2040 HOST_WIDE_INT pow2;
2041 {
2042 rtx new = change_address_1 (memref, VOIDmode,
2043 gen_rtx_PLUS (Pmode, XEXP (memref, 0),
2044 force_reg (Pmode, offset)), 1);
2045
2046 /* Update the alignment to reflect the offset. Reset the offset, which
2047 we don't know. */
2048 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2049 0, 0, MIN (MEM_ALIGN (memref),
2050 pow2 * BITS_PER_UNIT),
2051 GET_MODE (new));
2052 return new;
2053 }
2054
2055 /* Return a memory reference like MEMREF, but with its address changed to
2056 ADDR. The caller is asserting that the actual piece of memory pointed
2057 to is the same, just the form of the address is being changed, such as
2058 by putting something into a register. */
2059
2060 rtx
2061 replace_equiv_address (memref, addr)
2062 rtx memref;
2063 rtx addr;
2064 {
2065 /* change_address_1 copies the memory attribute structure without change
2066 and that's exactly what we want here. */
2067 update_temp_slot_address (XEXP (memref, 0), addr);
2068 return change_address_1 (memref, VOIDmode, addr, 1);
2069 }
2070
2071 /* Likewise, but the reference is not required to be valid. */
2072
2073 rtx
2074 replace_equiv_address_nv (memref, addr)
2075 rtx memref;
2076 rtx addr;
2077 {
2078 return change_address_1 (memref, VOIDmode, addr, 0);
2079 }
2080
2081 /* Return a memory reference like MEMREF, but with its mode widened to
2082 MODE and offset by OFFSET. This would be used by targets that e.g.
2083 cannot issue QImode memory operations and have to use SImode memory
2084 operations plus masking logic. */
2085
2086 rtx
2087 widen_memory_access (memref, mode, offset)
2088 rtx memref;
2089 enum machine_mode mode;
2090 HOST_WIDE_INT offset;
2091 {
2092 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2093 tree expr = MEM_EXPR (new);
2094 rtx memoffset = MEM_OFFSET (new);
2095 unsigned int size = GET_MODE_SIZE (mode);
2096
2097 /* If we don't know what offset we were at within the expression, then
2098 we can't know if we've overstepped the bounds. */
2099 if (! memoffset && offset != 0)
2100 expr = NULL_TREE;
2101
2102 while (expr)
2103 {
2104 if (TREE_CODE (expr) == COMPONENT_REF)
2105 {
2106 tree field = TREE_OPERAND (expr, 1);
2107
2108 if (! DECL_SIZE_UNIT (field))
2109 {
2110 expr = NULL_TREE;
2111 break;
2112 }
2113
2114 /* Is the field at least as large as the access? If so, ok,
2115 otherwise strip back to the containing structure. */
2116 if (compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2117 && INTVAL (memoffset) >= 0)
2118 break;
2119
2120 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2121 {
2122 expr = NULL_TREE;
2123 break;
2124 }
2125
2126 expr = TREE_OPERAND (expr, 0);
2127 memoffset = (GEN_INT (INTVAL (memoffset)
2128 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2129 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2130 / BITS_PER_UNIT)));
2131 }
2132 /* Similarly for the decl. */
2133 else if (DECL_P (expr)
2134 && DECL_SIZE_UNIT (expr)
2135 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2136 && (! memoffset || INTVAL (memoffset) >= 0))
2137 break;
2138 else
2139 {
2140 /* The widened memory access overflows the expression, which means
2141 that it could alias another expression. Zap it. */
2142 expr = NULL_TREE;
2143 break;
2144 }
2145 }
2146
2147 if (! expr)
2148 memoffset = NULL_RTX;
2149
2150 /* The widened memory may alias other stuff, so zap the alias set. */
2151 /* ??? Maybe use get_alias_set on any remaining expression. */
2152
2153 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2154 MEM_ALIGN (new), mode);
2155
2156 return new;
2157 }
2158 \f
2159 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2160
2161 rtx
2162 gen_label_rtx ()
2163 {
2164 rtx label;
2165
2166 label = gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX,
2167 NULL_RTX, label_num++, NULL, NULL);
2168
2169 LABEL_NUSES (label) = 0;
2170 LABEL_ALTERNATE_NAME (label) = NULL;
2171 return label;
2172 }
2173 \f
2174 /* For procedure integration. */
2175
2176 /* Install new pointers to the first and last insns in the chain.
2177 Also, set cur_insn_uid to one higher than the last in use.
2178 Used for an inline-procedure after copying the insn chain. */
2179
2180 void
2181 set_new_first_and_last_insn (first, last)
2182 rtx first, last;
2183 {
2184 rtx insn;
2185
2186 first_insn = first;
2187 last_insn = last;
2188 cur_insn_uid = 0;
2189
2190 for (insn = first; insn; insn = NEXT_INSN (insn))
2191 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2192
2193 cur_insn_uid++;
2194 }
2195
2196 /* Set the range of label numbers found in the current function.
2197 This is used when belatedly compiling an inline function. */
2198
2199 void
2200 set_new_first_and_last_label_num (first, last)
2201 int first, last;
2202 {
2203 base_label_num = label_num;
2204 first_label_num = first;
2205 last_label_num = last;
2206 }
2207
2208 /* Set the last label number found in the current function.
2209 This is used when belatedly compiling an inline function. */
2210
2211 void
2212 set_new_last_label_num (last)
2213 int last;
2214 {
2215 base_label_num = label_num;
2216 last_label_num = last;
2217 }
2218 \f
2219 /* Restore all variables describing the current status from the structure *P.
2220 This is used after a nested function. */
2221
2222 void
2223 restore_emit_status (p)
2224 struct function *p ATTRIBUTE_UNUSED;
2225 {
2226 last_label_num = 0;
2227 clear_emit_caches ();
2228 }
2229
2230 /* Clear out all parts of the state in F that can safely be discarded
2231 after the function has been compiled, to let garbage collection
2232 reclaim the memory. */
2233
2234 void
2235 free_emit_status (f)
2236 struct function *f;
2237 {
2238 free (f->emit->x_regno_reg_rtx);
2239 free (f->emit->regno_pointer_align);
2240 free (f->emit->regno_decl);
2241 free (f->emit);
2242 f->emit = NULL;
2243 }
2244 \f
2245 /* Go through all the RTL insn bodies and copy any invalid shared
2246 structure. This routine should only be called once. */
2247
2248 void
2249 unshare_all_rtl (fndecl, insn)
2250 tree fndecl;
2251 rtx insn;
2252 {
2253 tree decl;
2254
2255 /* Make sure that virtual parameters are not shared. */
2256 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2257 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2258
2259 /* Make sure that virtual stack slots are not shared. */
2260 unshare_all_decls (DECL_INITIAL (fndecl));
2261
2262 /* Unshare just about everything else. */
2263 unshare_all_rtl_1 (insn);
2264
2265 /* Make sure the addresses of stack slots found outside the insn chain
2266 (such as, in DECL_RTL of a variable) are not shared
2267 with the insn chain.
2268
2269 This special care is necessary when the stack slot MEM does not
2270 actually appear in the insn chain. If it does appear, its address
2271 is unshared from all else at that point. */
2272 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2273 }
2274
2275 /* Go through all the RTL insn bodies and copy any invalid shared
2276 structure, again. This is a fairly expensive thing to do so it
2277 should be done sparingly. */
2278
2279 void
2280 unshare_all_rtl_again (insn)
2281 rtx insn;
2282 {
2283 rtx p;
2284 tree decl;
2285
2286 for (p = insn; p; p = NEXT_INSN (p))
2287 if (INSN_P (p))
2288 {
2289 reset_used_flags (PATTERN (p));
2290 reset_used_flags (REG_NOTES (p));
2291 reset_used_flags (LOG_LINKS (p));
2292 }
2293
2294 /* Make sure that virtual stack slots are not shared. */
2295 reset_used_decls (DECL_INITIAL (cfun->decl));
2296
2297 /* Make sure that virtual parameters are not shared. */
2298 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2299 reset_used_flags (DECL_RTL (decl));
2300
2301 reset_used_flags (stack_slot_list);
2302
2303 unshare_all_rtl (cfun->decl, insn);
2304 }
2305
2306 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2307 Assumes the mark bits are cleared at entry. */
2308
2309 static void
2310 unshare_all_rtl_1 (insn)
2311 rtx insn;
2312 {
2313 for (; insn; insn = NEXT_INSN (insn))
2314 if (INSN_P (insn))
2315 {
2316 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2317 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2318 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2319 }
2320 }
2321
2322 /* Go through all virtual stack slots of a function and copy any
2323 shared structure. */
2324 static void
2325 unshare_all_decls (blk)
2326 tree blk;
2327 {
2328 tree t;
2329
2330 /* Copy shared decls. */
2331 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2332 if (DECL_RTL_SET_P (t))
2333 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2334
2335 /* Now process sub-blocks. */
2336 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2337 unshare_all_decls (t);
2338 }
2339
2340 /* Go through all virtual stack slots of a function and mark them as
2341 not shared. */
2342 static void
2343 reset_used_decls (blk)
2344 tree blk;
2345 {
2346 tree t;
2347
2348 /* Mark decls. */
2349 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2350 if (DECL_RTL_SET_P (t))
2351 reset_used_flags (DECL_RTL (t));
2352
2353 /* Now process sub-blocks. */
2354 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2355 reset_used_decls (t);
2356 }
2357
2358 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2359 Recursively does the same for subexpressions. */
2360
2361 rtx
2362 copy_rtx_if_shared (orig)
2363 rtx orig;
2364 {
2365 rtx x = orig;
2366 int i;
2367 enum rtx_code code;
2368 const char *format_ptr;
2369 int copied = 0;
2370
2371 if (x == 0)
2372 return 0;
2373
2374 code = GET_CODE (x);
2375
2376 /* These types may be freely shared. */
2377
2378 switch (code)
2379 {
2380 case REG:
2381 case QUEUED:
2382 case CONST_INT:
2383 case CONST_DOUBLE:
2384 case SYMBOL_REF:
2385 case CODE_LABEL:
2386 case PC:
2387 case CC0:
2388 case SCRATCH:
2389 /* SCRATCH must be shared because they represent distinct values. */
2390 return x;
2391
2392 case CONST:
2393 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2394 a LABEL_REF, it isn't sharable. */
2395 if (GET_CODE (XEXP (x, 0)) == PLUS
2396 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2397 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2398 return x;
2399 break;
2400
2401 case INSN:
2402 case JUMP_INSN:
2403 case CALL_INSN:
2404 case NOTE:
2405 case BARRIER:
2406 /* The chain of insns is not being copied. */
2407 return x;
2408
2409 case MEM:
2410 /* A MEM is allowed to be shared if its address is constant.
2411
2412 We used to allow sharing of MEMs which referenced
2413 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2414 that can lose. instantiate_virtual_regs will not unshare
2415 the MEMs, and combine may change the structure of the address
2416 because it looks safe and profitable in one context, but
2417 in some other context it creates unrecognizable RTL. */
2418 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
2419 return x;
2420
2421 break;
2422
2423 default:
2424 break;
2425 }
2426
2427 /* This rtx may not be shared. If it has already been seen,
2428 replace it with a copy of itself. */
2429
2430 if (x->used)
2431 {
2432 rtx copy;
2433
2434 copy = rtx_alloc (code);
2435 memcpy (copy, x,
2436 (sizeof (*copy) - sizeof (copy->fld)
2437 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
2438 x = copy;
2439 copied = 1;
2440 }
2441 x->used = 1;
2442
2443 /* Now scan the subexpressions recursively.
2444 We can store any replaced subexpressions directly into X
2445 since we know X is not shared! Any vectors in X
2446 must be copied if X was copied. */
2447
2448 format_ptr = GET_RTX_FORMAT (code);
2449
2450 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2451 {
2452 switch (*format_ptr++)
2453 {
2454 case 'e':
2455 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2456 break;
2457
2458 case 'E':
2459 if (XVEC (x, i) != NULL)
2460 {
2461 int j;
2462 int len = XVECLEN (x, i);
2463
2464 if (copied && len > 0)
2465 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2466 for (j = 0; j < len; j++)
2467 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
2468 }
2469 break;
2470 }
2471 }
2472 return x;
2473 }
2474
2475 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2476 to look for shared sub-parts. */
2477
2478 void
2479 reset_used_flags (x)
2480 rtx x;
2481 {
2482 int i, j;
2483 enum rtx_code code;
2484 const char *format_ptr;
2485
2486 if (x == 0)
2487 return;
2488
2489 code = GET_CODE (x);
2490
2491 /* These types may be freely shared so we needn't do any resetting
2492 for them. */
2493
2494 switch (code)
2495 {
2496 case REG:
2497 case QUEUED:
2498 case CONST_INT:
2499 case CONST_DOUBLE:
2500 case SYMBOL_REF:
2501 case CODE_LABEL:
2502 case PC:
2503 case CC0:
2504 return;
2505
2506 case INSN:
2507 case JUMP_INSN:
2508 case CALL_INSN:
2509 case NOTE:
2510 case LABEL_REF:
2511 case BARRIER:
2512 /* The chain of insns is not being copied. */
2513 return;
2514
2515 default:
2516 break;
2517 }
2518
2519 x->used = 0;
2520
2521 format_ptr = GET_RTX_FORMAT (code);
2522 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2523 {
2524 switch (*format_ptr++)
2525 {
2526 case 'e':
2527 reset_used_flags (XEXP (x, i));
2528 break;
2529
2530 case 'E':
2531 for (j = 0; j < XVECLEN (x, i); j++)
2532 reset_used_flags (XVECEXP (x, i, j));
2533 break;
2534 }
2535 }
2536 }
2537 \f
2538 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2539 Return X or the rtx for the pseudo reg the value of X was copied into.
2540 OTHER must be valid as a SET_DEST. */
2541
2542 rtx
2543 make_safe_from (x, other)
2544 rtx x, other;
2545 {
2546 while (1)
2547 switch (GET_CODE (other))
2548 {
2549 case SUBREG:
2550 other = SUBREG_REG (other);
2551 break;
2552 case STRICT_LOW_PART:
2553 case SIGN_EXTEND:
2554 case ZERO_EXTEND:
2555 other = XEXP (other, 0);
2556 break;
2557 default:
2558 goto done;
2559 }
2560 done:
2561 if ((GET_CODE (other) == MEM
2562 && ! CONSTANT_P (x)
2563 && GET_CODE (x) != REG
2564 && GET_CODE (x) != SUBREG)
2565 || (GET_CODE (other) == REG
2566 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2567 || reg_mentioned_p (other, x))))
2568 {
2569 rtx temp = gen_reg_rtx (GET_MODE (x));
2570 emit_move_insn (temp, x);
2571 return temp;
2572 }
2573 return x;
2574 }
2575 \f
2576 /* Emission of insns (adding them to the doubly-linked list). */
2577
2578 /* Return the first insn of the current sequence or current function. */
2579
2580 rtx
2581 get_insns ()
2582 {
2583 return first_insn;
2584 }
2585
2586 /* Return the last insn emitted in current sequence or current function. */
2587
2588 rtx
2589 get_last_insn ()
2590 {
2591 return last_insn;
2592 }
2593
2594 /* Specify a new insn as the last in the chain. */
2595
2596 void
2597 set_last_insn (insn)
2598 rtx insn;
2599 {
2600 if (NEXT_INSN (insn) != 0)
2601 abort ();
2602 last_insn = insn;
2603 }
2604
2605 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2606
2607 rtx
2608 get_last_insn_anywhere ()
2609 {
2610 struct sequence_stack *stack;
2611 if (last_insn)
2612 return last_insn;
2613 for (stack = seq_stack; stack; stack = stack->next)
2614 if (stack->last != 0)
2615 return stack->last;
2616 return 0;
2617 }
2618
2619 /* Return a number larger than any instruction's uid in this function. */
2620
2621 int
2622 get_max_uid ()
2623 {
2624 return cur_insn_uid;
2625 }
2626
2627 /* Renumber instructions so that no instruction UIDs are wasted. */
2628
2629 void
2630 renumber_insns (stream)
2631 FILE *stream;
2632 {
2633 rtx insn;
2634
2635 /* If we're not supposed to renumber instructions, don't. */
2636 if (!flag_renumber_insns)
2637 return;
2638
2639 /* If there aren't that many instructions, then it's not really
2640 worth renumbering them. */
2641 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2642 return;
2643
2644 cur_insn_uid = 1;
2645
2646 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2647 {
2648 if (stream)
2649 fprintf (stream, "Renumbering insn %d to %d\n",
2650 INSN_UID (insn), cur_insn_uid);
2651 INSN_UID (insn) = cur_insn_uid++;
2652 }
2653 }
2654 \f
2655 /* Return the next insn. If it is a SEQUENCE, return the first insn
2656 of the sequence. */
2657
2658 rtx
2659 next_insn (insn)
2660 rtx insn;
2661 {
2662 if (insn)
2663 {
2664 insn = NEXT_INSN (insn);
2665 if (insn && GET_CODE (insn) == INSN
2666 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2667 insn = XVECEXP (PATTERN (insn), 0, 0);
2668 }
2669
2670 return insn;
2671 }
2672
2673 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2674 of the sequence. */
2675
2676 rtx
2677 previous_insn (insn)
2678 rtx insn;
2679 {
2680 if (insn)
2681 {
2682 insn = PREV_INSN (insn);
2683 if (insn && GET_CODE (insn) == INSN
2684 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2685 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2686 }
2687
2688 return insn;
2689 }
2690
2691 /* Return the next insn after INSN that is not a NOTE. This routine does not
2692 look inside SEQUENCEs. */
2693
2694 rtx
2695 next_nonnote_insn (insn)
2696 rtx insn;
2697 {
2698 while (insn)
2699 {
2700 insn = NEXT_INSN (insn);
2701 if (insn == 0 || GET_CODE (insn) != NOTE)
2702 break;
2703 }
2704
2705 return insn;
2706 }
2707
2708 /* Return the previous insn before INSN that is not a NOTE. This routine does
2709 not look inside SEQUENCEs. */
2710
2711 rtx
2712 prev_nonnote_insn (insn)
2713 rtx insn;
2714 {
2715 while (insn)
2716 {
2717 insn = PREV_INSN (insn);
2718 if (insn == 0 || GET_CODE (insn) != NOTE)
2719 break;
2720 }
2721
2722 return insn;
2723 }
2724
2725 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2726 or 0, if there is none. This routine does not look inside
2727 SEQUENCEs. */
2728
2729 rtx
2730 next_real_insn (insn)
2731 rtx insn;
2732 {
2733 while (insn)
2734 {
2735 insn = NEXT_INSN (insn);
2736 if (insn == 0 || GET_CODE (insn) == INSN
2737 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2738 break;
2739 }
2740
2741 return insn;
2742 }
2743
2744 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2745 or 0, if there is none. This routine does not look inside
2746 SEQUENCEs. */
2747
2748 rtx
2749 prev_real_insn (insn)
2750 rtx insn;
2751 {
2752 while (insn)
2753 {
2754 insn = PREV_INSN (insn);
2755 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2756 || GET_CODE (insn) == JUMP_INSN)
2757 break;
2758 }
2759
2760 return insn;
2761 }
2762
2763 /* Find the next insn after INSN that really does something. This routine
2764 does not look inside SEQUENCEs. Until reload has completed, this is the
2765 same as next_real_insn. */
2766
2767 int
2768 active_insn_p (insn)
2769 rtx insn;
2770 {
2771 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2772 || (GET_CODE (insn) == INSN
2773 && (! reload_completed
2774 || (GET_CODE (PATTERN (insn)) != USE
2775 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2776 }
2777
2778 rtx
2779 next_active_insn (insn)
2780 rtx insn;
2781 {
2782 while (insn)
2783 {
2784 insn = NEXT_INSN (insn);
2785 if (insn == 0 || active_insn_p (insn))
2786 break;
2787 }
2788
2789 return insn;
2790 }
2791
2792 /* Find the last insn before INSN that really does something. This routine
2793 does not look inside SEQUENCEs. Until reload has completed, this is the
2794 same as prev_real_insn. */
2795
2796 rtx
2797 prev_active_insn (insn)
2798 rtx insn;
2799 {
2800 while (insn)
2801 {
2802 insn = PREV_INSN (insn);
2803 if (insn == 0 || active_insn_p (insn))
2804 break;
2805 }
2806
2807 return insn;
2808 }
2809
2810 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2811
2812 rtx
2813 next_label (insn)
2814 rtx insn;
2815 {
2816 while (insn)
2817 {
2818 insn = NEXT_INSN (insn);
2819 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2820 break;
2821 }
2822
2823 return insn;
2824 }
2825
2826 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2827
2828 rtx
2829 prev_label (insn)
2830 rtx insn;
2831 {
2832 while (insn)
2833 {
2834 insn = PREV_INSN (insn);
2835 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2836 break;
2837 }
2838
2839 return insn;
2840 }
2841 \f
2842 #ifdef HAVE_cc0
2843 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2844 and REG_CC_USER notes so we can find it. */
2845
2846 void
2847 link_cc0_insns (insn)
2848 rtx insn;
2849 {
2850 rtx user = next_nonnote_insn (insn);
2851
2852 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
2853 user = XVECEXP (PATTERN (user), 0, 0);
2854
2855 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
2856 REG_NOTES (user));
2857 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
2858 }
2859
2860 /* Return the next insn that uses CC0 after INSN, which is assumed to
2861 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2862 applied to the result of this function should yield INSN).
2863
2864 Normally, this is simply the next insn. However, if a REG_CC_USER note
2865 is present, it contains the insn that uses CC0.
2866
2867 Return 0 if we can't find the insn. */
2868
2869 rtx
2870 next_cc0_user (insn)
2871 rtx insn;
2872 {
2873 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
2874
2875 if (note)
2876 return XEXP (note, 0);
2877
2878 insn = next_nonnote_insn (insn);
2879 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
2880 insn = XVECEXP (PATTERN (insn), 0, 0);
2881
2882 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
2883 return insn;
2884
2885 return 0;
2886 }
2887
2888 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2889 note, it is the previous insn. */
2890
2891 rtx
2892 prev_cc0_setter (insn)
2893 rtx insn;
2894 {
2895 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2896
2897 if (note)
2898 return XEXP (note, 0);
2899
2900 insn = prev_nonnote_insn (insn);
2901 if (! sets_cc0_p (PATTERN (insn)))
2902 abort ();
2903
2904 return insn;
2905 }
2906 #endif
2907
2908 /* Increment the label uses for all labels present in rtx. */
2909
2910 static void
2911 mark_label_nuses(x)
2912 rtx x;
2913 {
2914 enum rtx_code code;
2915 int i, j;
2916 const char *fmt;
2917
2918 code = GET_CODE (x);
2919 if (code == LABEL_REF)
2920 LABEL_NUSES (XEXP (x, 0))++;
2921
2922 fmt = GET_RTX_FORMAT (code);
2923 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2924 {
2925 if (fmt[i] == 'e')
2926 mark_label_nuses (XEXP (x, i));
2927 else if (fmt[i] == 'E')
2928 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2929 mark_label_nuses (XVECEXP (x, i, j));
2930 }
2931 }
2932
2933 \f
2934 /* Try splitting insns that can be split for better scheduling.
2935 PAT is the pattern which might split.
2936 TRIAL is the insn providing PAT.
2937 LAST is non-zero if we should return the last insn of the sequence produced.
2938
2939 If this routine succeeds in splitting, it returns the first or last
2940 replacement insn depending on the value of LAST. Otherwise, it
2941 returns TRIAL. If the insn to be returned can be split, it will be. */
2942
2943 rtx
2944 try_split (pat, trial, last)
2945 rtx pat, trial;
2946 int last;
2947 {
2948 rtx before = PREV_INSN (trial);
2949 rtx after = NEXT_INSN (trial);
2950 int has_barrier = 0;
2951 rtx tem;
2952 rtx note, seq;
2953 int probability;
2954
2955 if (any_condjump_p (trial)
2956 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
2957 split_branch_probability = INTVAL (XEXP (note, 0));
2958 probability = split_branch_probability;
2959
2960 seq = split_insns (pat, trial);
2961
2962 split_branch_probability = -1;
2963
2964 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2965 We may need to handle this specially. */
2966 if (after && GET_CODE (after) == BARRIER)
2967 {
2968 has_barrier = 1;
2969 after = NEXT_INSN (after);
2970 }
2971
2972 if (seq)
2973 {
2974 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2975 The latter case will normally arise only when being done so that
2976 it, in turn, will be split (SFmode on the 29k is an example). */
2977 if (GET_CODE (seq) == SEQUENCE)
2978 {
2979 int i, njumps = 0;
2980
2981 /* Avoid infinite loop if any insn of the result matches
2982 the original pattern. */
2983 for (i = 0; i < XVECLEN (seq, 0); i++)
2984 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN
2985 && rtx_equal_p (PATTERN (XVECEXP (seq, 0, i)), pat))
2986 return trial;
2987
2988 /* Mark labels. */
2989 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2990 if (GET_CODE (XVECEXP (seq, 0, i)) == JUMP_INSN)
2991 {
2992 rtx insn = XVECEXP (seq, 0, i);
2993 mark_jump_label (PATTERN (insn),
2994 XVECEXP (seq, 0, i), 0);
2995 njumps++;
2996 if (probability != -1
2997 && any_condjump_p (insn)
2998 && !find_reg_note (insn, REG_BR_PROB, 0))
2999 {
3000 /* We can preserve the REG_BR_PROB notes only if exactly
3001 one jump is created, otherwise the machine description
3002 is responsible for this step using
3003 split_branch_probability variable. */
3004 if (njumps != 1)
3005 abort ();
3006 REG_NOTES (insn)
3007 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3008 GEN_INT (probability),
3009 REG_NOTES (insn));
3010 }
3011 }
3012
3013 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3014 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3015 if (GET_CODE (trial) == CALL_INSN)
3016 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
3017 if (GET_CODE (XVECEXP (seq, 0, i)) == CALL_INSN)
3018 CALL_INSN_FUNCTION_USAGE (XVECEXP (seq, 0, i))
3019 = CALL_INSN_FUNCTION_USAGE (trial);
3020
3021 /* Copy notes, particularly those related to the CFG. */
3022 for (note = REG_NOTES (trial); note ; note = XEXP (note, 1))
3023 {
3024 switch (REG_NOTE_KIND (note))
3025 {
3026 case REG_EH_REGION:
3027 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
3028 {
3029 rtx insn = XVECEXP (seq, 0, i);
3030 if (GET_CODE (insn) == CALL_INSN
3031 || (flag_non_call_exceptions
3032 && may_trap_p (PATTERN (insn))))
3033 REG_NOTES (insn)
3034 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3035 XEXP (note, 0),
3036 REG_NOTES (insn));
3037 }
3038 break;
3039
3040 case REG_NORETURN:
3041 case REG_SETJMP:
3042 case REG_ALWAYS_RETURN:
3043 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
3044 {
3045 rtx insn = XVECEXP (seq, 0, i);
3046 if (GET_CODE (insn) == CALL_INSN)
3047 REG_NOTES (insn)
3048 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3049 XEXP (note, 0),
3050 REG_NOTES (insn));
3051 }
3052 break;
3053
3054 case REG_NON_LOCAL_GOTO:
3055 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
3056 {
3057 rtx insn = XVECEXP (seq, 0, i);
3058 if (GET_CODE (insn) == JUMP_INSN)
3059 REG_NOTES (insn)
3060 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3061 XEXP (note, 0),
3062 REG_NOTES (insn));
3063 }
3064 break;
3065
3066 default:
3067 break;
3068 }
3069 }
3070
3071 /* If there are LABELS inside the split insns increment the
3072 usage count so we don't delete the label. */
3073 if (GET_CODE (trial) == INSN)
3074 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
3075 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN)
3076 mark_label_nuses (PATTERN (XVECEXP (seq, 0, i)));
3077
3078 tem = emit_insn_after (seq, trial);
3079
3080 delete_related_insns (trial);
3081 if (has_barrier)
3082 emit_barrier_after (tem);
3083
3084 /* Recursively call try_split for each new insn created; by the
3085 time control returns here that insn will be fully split, so
3086 set LAST and continue from the insn after the one returned.
3087 We can't use next_active_insn here since AFTER may be a note.
3088 Ignore deleted insns, which can be occur if not optimizing. */
3089 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3090 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3091 tem = try_split (PATTERN (tem), tem, 1);
3092 }
3093 /* Avoid infinite loop if the result matches the original pattern. */
3094 else if (rtx_equal_p (seq, pat))
3095 return trial;
3096 else
3097 {
3098 PATTERN (trial) = seq;
3099 INSN_CODE (trial) = -1;
3100 try_split (seq, trial, last);
3101 }
3102
3103 /* Return either the first or the last insn, depending on which was
3104 requested. */
3105 return last
3106 ? (after ? PREV_INSN (after) : last_insn)
3107 : NEXT_INSN (before);
3108 }
3109
3110 return trial;
3111 }
3112 \f
3113 /* Make and return an INSN rtx, initializing all its slots.
3114 Store PATTERN in the pattern slots. */
3115
3116 rtx
3117 make_insn_raw (pattern)
3118 rtx pattern;
3119 {
3120 rtx insn;
3121
3122 insn = rtx_alloc (INSN);
3123
3124 INSN_UID (insn) = cur_insn_uid++;
3125 PATTERN (insn) = pattern;
3126 INSN_CODE (insn) = -1;
3127 LOG_LINKS (insn) = NULL;
3128 REG_NOTES (insn) = NULL;
3129
3130 #ifdef ENABLE_RTL_CHECKING
3131 if (insn
3132 && INSN_P (insn)
3133 && (returnjump_p (insn)
3134 || (GET_CODE (insn) == SET
3135 && SET_DEST (insn) == pc_rtx)))
3136 {
3137 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3138 debug_rtx (insn);
3139 }
3140 #endif
3141
3142 return insn;
3143 }
3144
3145 /* Like `make_insn' but make a JUMP_INSN instead of an insn. */
3146
3147 static rtx
3148 make_jump_insn_raw (pattern)
3149 rtx pattern;
3150 {
3151 rtx insn;
3152
3153 insn = rtx_alloc (JUMP_INSN);
3154 INSN_UID (insn) = cur_insn_uid++;
3155
3156 PATTERN (insn) = pattern;
3157 INSN_CODE (insn) = -1;
3158 LOG_LINKS (insn) = NULL;
3159 REG_NOTES (insn) = NULL;
3160 JUMP_LABEL (insn) = NULL;
3161
3162 return insn;
3163 }
3164
3165 /* Like `make_insn' but make a CALL_INSN instead of an insn. */
3166
3167 static rtx
3168 make_call_insn_raw (pattern)
3169 rtx pattern;
3170 {
3171 rtx insn;
3172
3173 insn = rtx_alloc (CALL_INSN);
3174 INSN_UID (insn) = cur_insn_uid++;
3175
3176 PATTERN (insn) = pattern;
3177 INSN_CODE (insn) = -1;
3178 LOG_LINKS (insn) = NULL;
3179 REG_NOTES (insn) = NULL;
3180 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3181
3182 return insn;
3183 }
3184 \f
3185 /* Add INSN to the end of the doubly-linked list.
3186 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3187
3188 void
3189 add_insn (insn)
3190 rtx insn;
3191 {
3192 PREV_INSN (insn) = last_insn;
3193 NEXT_INSN (insn) = 0;
3194
3195 if (NULL != last_insn)
3196 NEXT_INSN (last_insn) = insn;
3197
3198 if (NULL == first_insn)
3199 first_insn = insn;
3200
3201 last_insn = insn;
3202 }
3203
3204 /* Add INSN into the doubly-linked list after insn AFTER. This and
3205 the next should be the only functions called to insert an insn once
3206 delay slots have been filled since only they know how to update a
3207 SEQUENCE. */
3208
3209 void
3210 add_insn_after (insn, after)
3211 rtx insn, after;
3212 {
3213 rtx next = NEXT_INSN (after);
3214 basic_block bb;
3215
3216 if (optimize && INSN_DELETED_P (after))
3217 abort ();
3218
3219 NEXT_INSN (insn) = next;
3220 PREV_INSN (insn) = after;
3221
3222 if (next)
3223 {
3224 PREV_INSN (next) = insn;
3225 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3226 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3227 }
3228 else if (last_insn == after)
3229 last_insn = insn;
3230 else
3231 {
3232 struct sequence_stack *stack = seq_stack;
3233 /* Scan all pending sequences too. */
3234 for (; stack; stack = stack->next)
3235 if (after == stack->last)
3236 {
3237 stack->last = insn;
3238 break;
3239 }
3240
3241 if (stack == 0)
3242 abort ();
3243 }
3244
3245 if (basic_block_for_insn
3246 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3247 && (bb = BLOCK_FOR_INSN (after)))
3248 {
3249 set_block_for_insn (insn, bb);
3250 /* Should not happen as first in the BB is always
3251 either NOTE or LABEL. */
3252 if (bb->end == after
3253 /* Avoid clobbering of structure when creating new BB. */
3254 && GET_CODE (insn) != BARRIER
3255 && (GET_CODE (insn) != NOTE
3256 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3257 bb->end = insn;
3258 }
3259
3260 NEXT_INSN (after) = insn;
3261 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3262 {
3263 rtx sequence = PATTERN (after);
3264 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3265 }
3266 }
3267
3268 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3269 the previous should be the only functions called to insert an insn once
3270 delay slots have been filled since only they know how to update a
3271 SEQUENCE. */
3272
3273 void
3274 add_insn_before (insn, before)
3275 rtx insn, before;
3276 {
3277 rtx prev = PREV_INSN (before);
3278 basic_block bb;
3279
3280 if (optimize && INSN_DELETED_P (before))
3281 abort ();
3282
3283 PREV_INSN (insn) = prev;
3284 NEXT_INSN (insn) = before;
3285
3286 if (prev)
3287 {
3288 NEXT_INSN (prev) = insn;
3289 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3290 {
3291 rtx sequence = PATTERN (prev);
3292 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3293 }
3294 }
3295 else if (first_insn == before)
3296 first_insn = insn;
3297 else
3298 {
3299 struct sequence_stack *stack = seq_stack;
3300 /* Scan all pending sequences too. */
3301 for (; stack; stack = stack->next)
3302 if (before == stack->first)
3303 {
3304 stack->first = insn;
3305 break;
3306 }
3307
3308 if (stack == 0)
3309 abort ();
3310 }
3311
3312 if (basic_block_for_insn
3313 && (unsigned int)INSN_UID (before) < basic_block_for_insn->num_elements
3314 && (bb = BLOCK_FOR_INSN (before)))
3315 {
3316 set_block_for_insn (insn, bb);
3317 /* Should not happen as first in the BB is always
3318 either NOTE or LABEl. */
3319 if (bb->head == insn
3320 /* Avoid clobbering of structure when creating new BB. */
3321 && GET_CODE (insn) != BARRIER
3322 && (GET_CODE (insn) != NOTE
3323 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3324 abort ();
3325 }
3326
3327 PREV_INSN (before) = insn;
3328 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3329 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3330 }
3331
3332 /* Remove an insn from its doubly-linked list. This function knows how
3333 to handle sequences. */
3334 void
3335 remove_insn (insn)
3336 rtx insn;
3337 {
3338 rtx next = NEXT_INSN (insn);
3339 rtx prev = PREV_INSN (insn);
3340 basic_block bb;
3341
3342 if (prev)
3343 {
3344 NEXT_INSN (prev) = next;
3345 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3346 {
3347 rtx sequence = PATTERN (prev);
3348 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3349 }
3350 }
3351 else if (first_insn == insn)
3352 first_insn = next;
3353 else
3354 {
3355 struct sequence_stack *stack = seq_stack;
3356 /* Scan all pending sequences too. */
3357 for (; stack; stack = stack->next)
3358 if (insn == stack->first)
3359 {
3360 stack->first = next;
3361 break;
3362 }
3363
3364 if (stack == 0)
3365 abort ();
3366 }
3367
3368 if (next)
3369 {
3370 PREV_INSN (next) = prev;
3371 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3372 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3373 }
3374 else if (last_insn == insn)
3375 last_insn = prev;
3376 else
3377 {
3378 struct sequence_stack *stack = seq_stack;
3379 /* Scan all pending sequences too. */
3380 for (; stack; stack = stack->next)
3381 if (insn == stack->last)
3382 {
3383 stack->last = prev;
3384 break;
3385 }
3386
3387 if (stack == 0)
3388 abort ();
3389 }
3390 if (basic_block_for_insn
3391 && (unsigned int)INSN_UID (insn) < basic_block_for_insn->num_elements
3392 && (bb = BLOCK_FOR_INSN (insn)))
3393 {
3394 if (bb->head == insn)
3395 {
3396 /* Never ever delete the basic block note without deleting whole basic
3397 block. */
3398 if (GET_CODE (insn) == NOTE)
3399 abort ();
3400 bb->head = next;
3401 }
3402 if (bb->end == insn)
3403 bb->end = prev;
3404 }
3405 }
3406
3407 /* Delete all insns made since FROM.
3408 FROM becomes the new last instruction. */
3409
3410 void
3411 delete_insns_since (from)
3412 rtx from;
3413 {
3414 if (from == 0)
3415 first_insn = 0;
3416 else
3417 NEXT_INSN (from) = 0;
3418 last_insn = from;
3419 }
3420
3421 /* This function is deprecated, please use sequences instead.
3422
3423 Move a consecutive bunch of insns to a different place in the chain.
3424 The insns to be moved are those between FROM and TO.
3425 They are moved to a new position after the insn AFTER.
3426 AFTER must not be FROM or TO or any insn in between.
3427
3428 This function does not know about SEQUENCEs and hence should not be
3429 called after delay-slot filling has been done. */
3430
3431 void
3432 reorder_insns_nobb (from, to, after)
3433 rtx from, to, after;
3434 {
3435 /* Splice this bunch out of where it is now. */
3436 if (PREV_INSN (from))
3437 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3438 if (NEXT_INSN (to))
3439 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3440 if (last_insn == to)
3441 last_insn = PREV_INSN (from);
3442 if (first_insn == from)
3443 first_insn = NEXT_INSN (to);
3444
3445 /* Make the new neighbors point to it and it to them. */
3446 if (NEXT_INSN (after))
3447 PREV_INSN (NEXT_INSN (after)) = to;
3448
3449 NEXT_INSN (to) = NEXT_INSN (after);
3450 PREV_INSN (from) = after;
3451 NEXT_INSN (after) = from;
3452 if (after == last_insn)
3453 last_insn = to;
3454 }
3455
3456 /* Same as function above, but take care to update BB boundaries. */
3457 void
3458 reorder_insns (from, to, after)
3459 rtx from, to, after;
3460 {
3461 rtx prev = PREV_INSN (from);
3462 basic_block bb, bb2;
3463
3464 reorder_insns_nobb (from, to, after);
3465
3466 if (basic_block_for_insn
3467 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3468 && (bb = BLOCK_FOR_INSN (after)))
3469 {
3470 rtx x;
3471
3472 if (basic_block_for_insn
3473 && (unsigned int)INSN_UID (from) < basic_block_for_insn->num_elements
3474 && (bb2 = BLOCK_FOR_INSN (from)))
3475 {
3476 if (bb2->end == to)
3477 bb2->end = prev;
3478 }
3479
3480 if (bb->end == after)
3481 bb->end = to;
3482
3483 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3484 set_block_for_insn (x, bb);
3485 }
3486 }
3487
3488 /* Return the line note insn preceding INSN. */
3489
3490 static rtx
3491 find_line_note (insn)
3492 rtx insn;
3493 {
3494 if (no_line_numbers)
3495 return 0;
3496
3497 for (; insn; insn = PREV_INSN (insn))
3498 if (GET_CODE (insn) == NOTE
3499 && NOTE_LINE_NUMBER (insn) >= 0)
3500 break;
3501
3502 return insn;
3503 }
3504
3505 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3506 of the moved insns when debugging. This may insert a note between AFTER
3507 and FROM, and another one after TO. */
3508
3509 void
3510 reorder_insns_with_line_notes (from, to, after)
3511 rtx from, to, after;
3512 {
3513 rtx from_line = find_line_note (from);
3514 rtx after_line = find_line_note (after);
3515
3516 reorder_insns (from, to, after);
3517
3518 if (from_line == after_line)
3519 return;
3520
3521 if (from_line)
3522 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3523 NOTE_LINE_NUMBER (from_line),
3524 after);
3525 if (after_line)
3526 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3527 NOTE_LINE_NUMBER (after_line),
3528 to);
3529 }
3530
3531 /* Remove unnecessary notes from the instruction stream. */
3532
3533 void
3534 remove_unnecessary_notes ()
3535 {
3536 rtx block_stack = NULL_RTX;
3537 rtx eh_stack = NULL_RTX;
3538 rtx insn;
3539 rtx next;
3540 rtx tmp;
3541
3542 /* We must not remove the first instruction in the function because
3543 the compiler depends on the first instruction being a note. */
3544 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3545 {
3546 /* Remember what's next. */
3547 next = NEXT_INSN (insn);
3548
3549 /* We're only interested in notes. */
3550 if (GET_CODE (insn) != NOTE)
3551 continue;
3552
3553 switch (NOTE_LINE_NUMBER (insn))
3554 {
3555 case NOTE_INSN_DELETED:
3556 remove_insn (insn);
3557 break;
3558
3559 case NOTE_INSN_EH_REGION_BEG:
3560 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3561 break;
3562
3563 case NOTE_INSN_EH_REGION_END:
3564 /* Too many end notes. */
3565 if (eh_stack == NULL_RTX)
3566 abort ();
3567 /* Mismatched nesting. */
3568 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3569 abort ();
3570 tmp = eh_stack;
3571 eh_stack = XEXP (eh_stack, 1);
3572 free_INSN_LIST_node (tmp);
3573 break;
3574
3575 case NOTE_INSN_BLOCK_BEG:
3576 /* By now, all notes indicating lexical blocks should have
3577 NOTE_BLOCK filled in. */
3578 if (NOTE_BLOCK (insn) == NULL_TREE)
3579 abort ();
3580 block_stack = alloc_INSN_LIST (insn, block_stack);
3581 break;
3582
3583 case NOTE_INSN_BLOCK_END:
3584 /* Too many end notes. */
3585 if (block_stack == NULL_RTX)
3586 abort ();
3587 /* Mismatched nesting. */
3588 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3589 abort ();
3590 tmp = block_stack;
3591 block_stack = XEXP (block_stack, 1);
3592 free_INSN_LIST_node (tmp);
3593
3594 /* Scan back to see if there are any non-note instructions
3595 between INSN and the beginning of this block. If not,
3596 then there is no PC range in the generated code that will
3597 actually be in this block, so there's no point in
3598 remembering the existence of the block. */
3599 for (tmp = PREV_INSN (insn); tmp ; tmp = PREV_INSN (tmp))
3600 {
3601 /* This block contains a real instruction. Note that we
3602 don't include labels; if the only thing in the block
3603 is a label, then there are still no PC values that
3604 lie within the block. */
3605 if (INSN_P (tmp))
3606 break;
3607
3608 /* We're only interested in NOTEs. */
3609 if (GET_CODE (tmp) != NOTE)
3610 continue;
3611
3612 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3613 {
3614 /* We just verified that this BLOCK matches us with
3615 the block_stack check above. Never delete the
3616 BLOCK for the outermost scope of the function; we
3617 can refer to names from that scope even if the
3618 block notes are messed up. */
3619 if (! is_body_block (NOTE_BLOCK (insn))
3620 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3621 {
3622 remove_insn (tmp);
3623 remove_insn (insn);
3624 }
3625 break;
3626 }
3627 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3628 /* There's a nested block. We need to leave the
3629 current block in place since otherwise the debugger
3630 wouldn't be able to show symbols from our block in
3631 the nested block. */
3632 break;
3633 }
3634 }
3635 }
3636
3637 /* Too many begin notes. */
3638 if (block_stack || eh_stack)
3639 abort ();
3640 }
3641
3642 \f
3643 /* Emit an insn of given code and pattern
3644 at a specified place within the doubly-linked list. */
3645
3646 /* Make an instruction with body PATTERN
3647 and output it before the instruction BEFORE. */
3648
3649 rtx
3650 emit_insn_before (pattern, before)
3651 rtx pattern, before;
3652 {
3653 rtx insn = before;
3654
3655 if (GET_CODE (pattern) == SEQUENCE)
3656 {
3657 int i;
3658
3659 for (i = 0; i < XVECLEN (pattern, 0); i++)
3660 {
3661 insn = XVECEXP (pattern, 0, i);
3662 add_insn_before (insn, before);
3663 }
3664 }
3665 else
3666 {
3667 insn = make_insn_raw (pattern);
3668 add_insn_before (insn, before);
3669 }
3670
3671 return insn;
3672 }
3673
3674 /* Make an instruction with body PATTERN and code JUMP_INSN
3675 and output it before the instruction BEFORE. */
3676
3677 rtx
3678 emit_jump_insn_before (pattern, before)
3679 rtx pattern, before;
3680 {
3681 rtx insn;
3682
3683 if (GET_CODE (pattern) == SEQUENCE)
3684 insn = emit_insn_before (pattern, before);
3685 else
3686 {
3687 insn = make_jump_insn_raw (pattern);
3688 add_insn_before (insn, before);
3689 }
3690
3691 return insn;
3692 }
3693
3694 /* Make an instruction with body PATTERN and code CALL_INSN
3695 and output it before the instruction BEFORE. */
3696
3697 rtx
3698 emit_call_insn_before (pattern, before)
3699 rtx pattern, before;
3700 {
3701 rtx insn;
3702
3703 if (GET_CODE (pattern) == SEQUENCE)
3704 insn = emit_insn_before (pattern, before);
3705 else
3706 {
3707 insn = make_call_insn_raw (pattern);
3708 add_insn_before (insn, before);
3709 PUT_CODE (insn, CALL_INSN);
3710 }
3711
3712 return insn;
3713 }
3714
3715 /* Make an insn of code BARRIER
3716 and output it before the insn BEFORE. */
3717
3718 rtx
3719 emit_barrier_before (before)
3720 rtx before;
3721 {
3722 rtx insn = rtx_alloc (BARRIER);
3723
3724 INSN_UID (insn) = cur_insn_uid++;
3725
3726 add_insn_before (insn, before);
3727 return insn;
3728 }
3729
3730 /* Emit the label LABEL before the insn BEFORE. */
3731
3732 rtx
3733 emit_label_before (label, before)
3734 rtx label, before;
3735 {
3736 /* This can be called twice for the same label as a result of the
3737 confusion that follows a syntax error! So make it harmless. */
3738 if (INSN_UID (label) == 0)
3739 {
3740 INSN_UID (label) = cur_insn_uid++;
3741 add_insn_before (label, before);
3742 }
3743
3744 return label;
3745 }
3746
3747 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3748
3749 rtx
3750 emit_note_before (subtype, before)
3751 int subtype;
3752 rtx before;
3753 {
3754 rtx note = rtx_alloc (NOTE);
3755 INSN_UID (note) = cur_insn_uid++;
3756 NOTE_SOURCE_FILE (note) = 0;
3757 NOTE_LINE_NUMBER (note) = subtype;
3758
3759 add_insn_before (note, before);
3760 return note;
3761 }
3762 \f
3763 /* Make an insn of code INSN with body PATTERN
3764 and output it after the insn AFTER. */
3765
3766 rtx
3767 emit_insn_after (pattern, after)
3768 rtx pattern, after;
3769 {
3770 rtx insn = after;
3771
3772 if (GET_CODE (pattern) == SEQUENCE)
3773 {
3774 int i;
3775
3776 for (i = 0; i < XVECLEN (pattern, 0); i++)
3777 {
3778 insn = XVECEXP (pattern, 0, i);
3779 add_insn_after (insn, after);
3780 after = insn;
3781 }
3782 }
3783 else
3784 {
3785 insn = make_insn_raw (pattern);
3786 add_insn_after (insn, after);
3787 }
3788
3789 return insn;
3790 }
3791
3792 /* Similar to emit_insn_after, except that line notes are to be inserted so
3793 as to act as if this insn were at FROM. */
3794
3795 void
3796 emit_insn_after_with_line_notes (pattern, after, from)
3797 rtx pattern, after, from;
3798 {
3799 rtx from_line = find_line_note (from);
3800 rtx after_line = find_line_note (after);
3801 rtx insn = emit_insn_after (pattern, after);
3802
3803 if (from_line)
3804 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3805 NOTE_LINE_NUMBER (from_line),
3806 after);
3807
3808 if (after_line)
3809 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3810 NOTE_LINE_NUMBER (after_line),
3811 insn);
3812 }
3813
3814 /* Make an insn of code JUMP_INSN with body PATTERN
3815 and output it after the insn AFTER. */
3816
3817 rtx
3818 emit_jump_insn_after (pattern, after)
3819 rtx pattern, after;
3820 {
3821 rtx insn;
3822
3823 if (GET_CODE (pattern) == SEQUENCE)
3824 insn = emit_insn_after (pattern, after);
3825 else
3826 {
3827 insn = make_jump_insn_raw (pattern);
3828 add_insn_after (insn, after);
3829 }
3830
3831 return insn;
3832 }
3833
3834 /* Make an insn of code BARRIER
3835 and output it after the insn AFTER. */
3836
3837 rtx
3838 emit_barrier_after (after)
3839 rtx after;
3840 {
3841 rtx insn = rtx_alloc (BARRIER);
3842
3843 INSN_UID (insn) = cur_insn_uid++;
3844
3845 add_insn_after (insn, after);
3846 return insn;
3847 }
3848
3849 /* Emit the label LABEL after the insn AFTER. */
3850
3851 rtx
3852 emit_label_after (label, after)
3853 rtx label, after;
3854 {
3855 /* This can be called twice for the same label
3856 as a result of the confusion that follows a syntax error!
3857 So make it harmless. */
3858 if (INSN_UID (label) == 0)
3859 {
3860 INSN_UID (label) = cur_insn_uid++;
3861 add_insn_after (label, after);
3862 }
3863
3864 return label;
3865 }
3866
3867 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
3868
3869 rtx
3870 emit_note_after (subtype, after)
3871 int subtype;
3872 rtx after;
3873 {
3874 rtx note = rtx_alloc (NOTE);
3875 INSN_UID (note) = cur_insn_uid++;
3876 NOTE_SOURCE_FILE (note) = 0;
3877 NOTE_LINE_NUMBER (note) = subtype;
3878 add_insn_after (note, after);
3879 return note;
3880 }
3881
3882 /* Emit a line note for FILE and LINE after the insn AFTER. */
3883
3884 rtx
3885 emit_line_note_after (file, line, after)
3886 const char *file;
3887 int line;
3888 rtx after;
3889 {
3890 rtx note;
3891
3892 if (no_line_numbers && line > 0)
3893 {
3894 cur_insn_uid++;
3895 return 0;
3896 }
3897
3898 note = rtx_alloc (NOTE);
3899 INSN_UID (note) = cur_insn_uid++;
3900 NOTE_SOURCE_FILE (note) = file;
3901 NOTE_LINE_NUMBER (note) = line;
3902 add_insn_after (note, after);
3903 return note;
3904 }
3905 \f
3906 /* Make an insn of code INSN with pattern PATTERN
3907 and add it to the end of the doubly-linked list.
3908 If PATTERN is a SEQUENCE, take the elements of it
3909 and emit an insn for each element.
3910
3911 Returns the last insn emitted. */
3912
3913 rtx
3914 emit_insn (pattern)
3915 rtx pattern;
3916 {
3917 rtx insn = last_insn;
3918
3919 if (GET_CODE (pattern) == SEQUENCE)
3920 {
3921 int i;
3922
3923 for (i = 0; i < XVECLEN (pattern, 0); i++)
3924 {
3925 insn = XVECEXP (pattern, 0, i);
3926 add_insn (insn);
3927 }
3928 }
3929 else
3930 {
3931 insn = make_insn_raw (pattern);
3932 add_insn (insn);
3933 }
3934
3935 return insn;
3936 }
3937
3938 /* Emit the insns in a chain starting with INSN.
3939 Return the last insn emitted. */
3940
3941 rtx
3942 emit_insns (insn)
3943 rtx insn;
3944 {
3945 rtx last = 0;
3946
3947 while (insn)
3948 {
3949 rtx next = NEXT_INSN (insn);
3950 add_insn (insn);
3951 last = insn;
3952 insn = next;
3953 }
3954
3955 return last;
3956 }
3957
3958 /* Emit the insns in a chain starting with INSN and place them in front of
3959 the insn BEFORE. Return the last insn emitted. */
3960
3961 rtx
3962 emit_insns_before (insn, before)
3963 rtx insn;
3964 rtx before;
3965 {
3966 rtx last = 0;
3967
3968 while (insn)
3969 {
3970 rtx next = NEXT_INSN (insn);
3971 add_insn_before (insn, before);
3972 last = insn;
3973 insn = next;
3974 }
3975
3976 return last;
3977 }
3978
3979 /* Emit the insns in a chain starting with FIRST and place them in back of
3980 the insn AFTER. Return the last insn emitted. */
3981
3982 rtx
3983 emit_insns_after (first, after)
3984 rtx first;
3985 rtx after;
3986 {
3987 rtx last;
3988 rtx after_after;
3989 basic_block bb;
3990
3991 if (!after)
3992 abort ();
3993
3994 if (!first)
3995 return after;
3996
3997 if (basic_block_for_insn
3998 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3999 && (bb = BLOCK_FOR_INSN (after)))
4000 {
4001 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4002 set_block_for_insn (last, bb);
4003 set_block_for_insn (last, bb);
4004 if (bb->end == after)
4005 bb->end = last;
4006 }
4007 else
4008 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4009 continue;
4010
4011 after_after = NEXT_INSN (after);
4012
4013 NEXT_INSN (after) = first;
4014 PREV_INSN (first) = after;
4015 NEXT_INSN (last) = after_after;
4016 if (after_after)
4017 PREV_INSN (after_after) = last;
4018
4019 if (after == last_insn)
4020 last_insn = last;
4021 return last;
4022 }
4023
4024 /* Make an insn of code JUMP_INSN with pattern PATTERN
4025 and add it to the end of the doubly-linked list. */
4026
4027 rtx
4028 emit_jump_insn (pattern)
4029 rtx pattern;
4030 {
4031 if (GET_CODE (pattern) == SEQUENCE)
4032 return emit_insn (pattern);
4033 else
4034 {
4035 rtx insn = make_jump_insn_raw (pattern);
4036 add_insn (insn);
4037 return insn;
4038 }
4039 }
4040
4041 /* Make an insn of code CALL_INSN with pattern PATTERN
4042 and add it to the end of the doubly-linked list. */
4043
4044 rtx
4045 emit_call_insn (pattern)
4046 rtx pattern;
4047 {
4048 if (GET_CODE (pattern) == SEQUENCE)
4049 return emit_insn (pattern);
4050 else
4051 {
4052 rtx insn = make_call_insn_raw (pattern);
4053 add_insn (insn);
4054 PUT_CODE (insn, CALL_INSN);
4055 return insn;
4056 }
4057 }
4058
4059 /* Add the label LABEL to the end of the doubly-linked list. */
4060
4061 rtx
4062 emit_label (label)
4063 rtx label;
4064 {
4065 /* This can be called twice for the same label
4066 as a result of the confusion that follows a syntax error!
4067 So make it harmless. */
4068 if (INSN_UID (label) == 0)
4069 {
4070 INSN_UID (label) = cur_insn_uid++;
4071 add_insn (label);
4072 }
4073 return label;
4074 }
4075
4076 /* Make an insn of code BARRIER
4077 and add it to the end of the doubly-linked list. */
4078
4079 rtx
4080 emit_barrier ()
4081 {
4082 rtx barrier = rtx_alloc (BARRIER);
4083 INSN_UID (barrier) = cur_insn_uid++;
4084 add_insn (barrier);
4085 return barrier;
4086 }
4087
4088 /* Make an insn of code NOTE
4089 with data-fields specified by FILE and LINE
4090 and add it to the end of the doubly-linked list,
4091 but only if line-numbers are desired for debugging info. */
4092
4093 rtx
4094 emit_line_note (file, line)
4095 const char *file;
4096 int line;
4097 {
4098 set_file_and_line_for_stmt (file, line);
4099
4100 #if 0
4101 if (no_line_numbers)
4102 return 0;
4103 #endif
4104
4105 return emit_note (file, line);
4106 }
4107
4108 /* Make an insn of code NOTE
4109 with data-fields specified by FILE and LINE
4110 and add it to the end of the doubly-linked list.
4111 If it is a line-number NOTE, omit it if it matches the previous one. */
4112
4113 rtx
4114 emit_note (file, line)
4115 const char *file;
4116 int line;
4117 {
4118 rtx note;
4119
4120 if (line > 0)
4121 {
4122 if (file && last_filename && !strcmp (file, last_filename)
4123 && line == last_linenum)
4124 return 0;
4125 last_filename = file;
4126 last_linenum = line;
4127 }
4128
4129 if (no_line_numbers && line > 0)
4130 {
4131 cur_insn_uid++;
4132 return 0;
4133 }
4134
4135 note = rtx_alloc (NOTE);
4136 INSN_UID (note) = cur_insn_uid++;
4137 NOTE_SOURCE_FILE (note) = file;
4138 NOTE_LINE_NUMBER (note) = line;
4139 add_insn (note);
4140 return note;
4141 }
4142
4143 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
4144
4145 rtx
4146 emit_line_note_force (file, line)
4147 const char *file;
4148 int line;
4149 {
4150 last_linenum = -1;
4151 return emit_line_note (file, line);
4152 }
4153
4154 /* Cause next statement to emit a line note even if the line number
4155 has not changed. This is used at the beginning of a function. */
4156
4157 void
4158 force_next_line_note ()
4159 {
4160 last_linenum = -1;
4161 }
4162
4163 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4164 note of this type already exists, remove it first. */
4165
4166 rtx
4167 set_unique_reg_note (insn, kind, datum)
4168 rtx insn;
4169 enum reg_note kind;
4170 rtx datum;
4171 {
4172 rtx note = find_reg_note (insn, kind, NULL_RTX);
4173
4174 switch (kind)
4175 {
4176 case REG_EQUAL:
4177 case REG_EQUIV:
4178 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4179 has multiple sets (some callers assume single_set
4180 means the insn only has one set, when in fact it
4181 means the insn only has one * useful * set). */
4182 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4183 {
4184 if (note)
4185 abort ();
4186 return NULL_RTX;
4187 }
4188
4189 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4190 It serves no useful purpose and breaks eliminate_regs. */
4191 if (GET_CODE (datum) == ASM_OPERANDS)
4192 return NULL_RTX;
4193 break;
4194
4195 default:
4196 break;
4197 }
4198
4199 if (note)
4200 {
4201 XEXP (note, 0) = datum;
4202 return note;
4203 }
4204
4205 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4206 return REG_NOTES (insn);
4207 }
4208 \f
4209 /* Return an indication of which type of insn should have X as a body.
4210 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4211
4212 enum rtx_code
4213 classify_insn (x)
4214 rtx x;
4215 {
4216 if (GET_CODE (x) == CODE_LABEL)
4217 return CODE_LABEL;
4218 if (GET_CODE (x) == CALL)
4219 return CALL_INSN;
4220 if (GET_CODE (x) == RETURN)
4221 return JUMP_INSN;
4222 if (GET_CODE (x) == SET)
4223 {
4224 if (SET_DEST (x) == pc_rtx)
4225 return JUMP_INSN;
4226 else if (GET_CODE (SET_SRC (x)) == CALL)
4227 return CALL_INSN;
4228 else
4229 return INSN;
4230 }
4231 if (GET_CODE (x) == PARALLEL)
4232 {
4233 int j;
4234 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4235 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4236 return CALL_INSN;
4237 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4238 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4239 return JUMP_INSN;
4240 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4241 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4242 return CALL_INSN;
4243 }
4244 return INSN;
4245 }
4246
4247 /* Emit the rtl pattern X as an appropriate kind of insn.
4248 If X is a label, it is simply added into the insn chain. */
4249
4250 rtx
4251 emit (x)
4252 rtx x;
4253 {
4254 enum rtx_code code = classify_insn (x);
4255
4256 if (code == CODE_LABEL)
4257 return emit_label (x);
4258 else if (code == INSN)
4259 return emit_insn (x);
4260 else if (code == JUMP_INSN)
4261 {
4262 rtx insn = emit_jump_insn (x);
4263 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4264 return emit_barrier ();
4265 return insn;
4266 }
4267 else if (code == CALL_INSN)
4268 return emit_call_insn (x);
4269 else
4270 abort ();
4271 }
4272 \f
4273 /* Begin emitting insns to a sequence which can be packaged in an
4274 RTL_EXPR. If this sequence will contain something that might cause
4275 the compiler to pop arguments to function calls (because those
4276 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4277 details), use do_pending_stack_adjust before calling this function.
4278 That will ensure that the deferred pops are not accidentally
4279 emitted in the middle of this sequence. */
4280
4281 void
4282 start_sequence ()
4283 {
4284 struct sequence_stack *tem;
4285
4286 tem = (struct sequence_stack *) xmalloc (sizeof (struct sequence_stack));
4287
4288 tem->next = seq_stack;
4289 tem->first = first_insn;
4290 tem->last = last_insn;
4291 tem->sequence_rtl_expr = seq_rtl_expr;
4292
4293 seq_stack = tem;
4294
4295 first_insn = 0;
4296 last_insn = 0;
4297 }
4298
4299 /* Similarly, but indicate that this sequence will be placed in T, an
4300 RTL_EXPR. See the documentation for start_sequence for more
4301 information about how to use this function. */
4302
4303 void
4304 start_sequence_for_rtl_expr (t)
4305 tree t;
4306 {
4307 start_sequence ();
4308
4309 seq_rtl_expr = t;
4310 }
4311
4312 /* Set up the insn chain starting with FIRST as the current sequence,
4313 saving the previously current one. See the documentation for
4314 start_sequence for more information about how to use this function. */
4315
4316 void
4317 push_to_sequence (first)
4318 rtx first;
4319 {
4320 rtx last;
4321
4322 start_sequence ();
4323
4324 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4325
4326 first_insn = first;
4327 last_insn = last;
4328 }
4329
4330 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4331
4332 void
4333 push_to_full_sequence (first, last)
4334 rtx first, last;
4335 {
4336 start_sequence ();
4337 first_insn = first;
4338 last_insn = last;
4339 /* We really should have the end of the insn chain here. */
4340 if (last && NEXT_INSN (last))
4341 abort ();
4342 }
4343
4344 /* Set up the outer-level insn chain
4345 as the current sequence, saving the previously current one. */
4346
4347 void
4348 push_topmost_sequence ()
4349 {
4350 struct sequence_stack *stack, *top = NULL;
4351
4352 start_sequence ();
4353
4354 for (stack = seq_stack; stack; stack = stack->next)
4355 top = stack;
4356
4357 first_insn = top->first;
4358 last_insn = top->last;
4359 seq_rtl_expr = top->sequence_rtl_expr;
4360 }
4361
4362 /* After emitting to the outer-level insn chain, update the outer-level
4363 insn chain, and restore the previous saved state. */
4364
4365 void
4366 pop_topmost_sequence ()
4367 {
4368 struct sequence_stack *stack, *top = NULL;
4369
4370 for (stack = seq_stack; stack; stack = stack->next)
4371 top = stack;
4372
4373 top->first = first_insn;
4374 top->last = last_insn;
4375 /* ??? Why don't we save seq_rtl_expr here? */
4376
4377 end_sequence ();
4378 }
4379
4380 /* After emitting to a sequence, restore previous saved state.
4381
4382 To get the contents of the sequence just made, you must call
4383 `gen_sequence' *before* calling here.
4384
4385 If the compiler might have deferred popping arguments while
4386 generating this sequence, and this sequence will not be immediately
4387 inserted into the instruction stream, use do_pending_stack_adjust
4388 before calling gen_sequence. That will ensure that the deferred
4389 pops are inserted into this sequence, and not into some random
4390 location in the instruction stream. See INHIBIT_DEFER_POP for more
4391 information about deferred popping of arguments. */
4392
4393 void
4394 end_sequence ()
4395 {
4396 struct sequence_stack *tem = seq_stack;
4397
4398 first_insn = tem->first;
4399 last_insn = tem->last;
4400 seq_rtl_expr = tem->sequence_rtl_expr;
4401 seq_stack = tem->next;
4402
4403 free (tem);
4404 }
4405
4406 /* This works like end_sequence, but records the old sequence in FIRST
4407 and LAST. */
4408
4409 void
4410 end_full_sequence (first, last)
4411 rtx *first, *last;
4412 {
4413 *first = first_insn;
4414 *last = last_insn;
4415 end_sequence();
4416 }
4417
4418 /* Return 1 if currently emitting into a sequence. */
4419
4420 int
4421 in_sequence_p ()
4422 {
4423 return seq_stack != 0;
4424 }
4425
4426 /* Generate a SEQUENCE rtx containing the insns already emitted
4427 to the current sequence.
4428
4429 This is how the gen_... function from a DEFINE_EXPAND
4430 constructs the SEQUENCE that it returns. */
4431
4432 rtx
4433 gen_sequence ()
4434 {
4435 rtx result;
4436 rtx tem;
4437 int i;
4438 int len;
4439
4440 /* Count the insns in the chain. */
4441 len = 0;
4442 for (tem = first_insn; tem; tem = NEXT_INSN (tem))
4443 len++;
4444
4445 /* If only one insn, return it rather than a SEQUENCE.
4446 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
4447 the case of an empty list.)
4448 We only return the pattern of an insn if its code is INSN and it
4449 has no notes. This ensures that no information gets lost. */
4450 if (len == 1
4451 && ! RTX_FRAME_RELATED_P (first_insn)
4452 && GET_CODE (first_insn) == INSN
4453 /* Don't throw away any reg notes. */
4454 && REG_NOTES (first_insn) == 0)
4455 return PATTERN (first_insn);
4456
4457 result = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (len));
4458
4459 for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
4460 XVECEXP (result, 0, i) = tem;
4461
4462 return result;
4463 }
4464 \f
4465 /* Put the various virtual registers into REGNO_REG_RTX. */
4466
4467 void
4468 init_virtual_regs (es)
4469 struct emit_status *es;
4470 {
4471 rtx *ptr = es->x_regno_reg_rtx;
4472 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4473 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4474 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4475 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4476 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4477 }
4478
4479 void
4480 clear_emit_caches ()
4481 {
4482 int i;
4483
4484 /* Clear the start_sequence/gen_sequence cache. */
4485 for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
4486 sequence_result[i] = 0;
4487 free_insn = 0;
4488 }
4489 \f
4490 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4491 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4492 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4493 static int copy_insn_n_scratches;
4494
4495 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4496 copied an ASM_OPERANDS.
4497 In that case, it is the original input-operand vector. */
4498 static rtvec orig_asm_operands_vector;
4499
4500 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4501 copied an ASM_OPERANDS.
4502 In that case, it is the copied input-operand vector. */
4503 static rtvec copy_asm_operands_vector;
4504
4505 /* Likewise for the constraints vector. */
4506 static rtvec orig_asm_constraints_vector;
4507 static rtvec copy_asm_constraints_vector;
4508
4509 /* Recursively create a new copy of an rtx for copy_insn.
4510 This function differs from copy_rtx in that it handles SCRATCHes and
4511 ASM_OPERANDs properly.
4512 Normally, this function is not used directly; use copy_insn as front end.
4513 However, you could first copy an insn pattern with copy_insn and then use
4514 this function afterwards to properly copy any REG_NOTEs containing
4515 SCRATCHes. */
4516
4517 rtx
4518 copy_insn_1 (orig)
4519 rtx orig;
4520 {
4521 rtx copy;
4522 int i, j;
4523 RTX_CODE code;
4524 const char *format_ptr;
4525
4526 code = GET_CODE (orig);
4527
4528 switch (code)
4529 {
4530 case REG:
4531 case QUEUED:
4532 case CONST_INT:
4533 case CONST_DOUBLE:
4534 case SYMBOL_REF:
4535 case CODE_LABEL:
4536 case PC:
4537 case CC0:
4538 case ADDRESSOF:
4539 return orig;
4540
4541 case SCRATCH:
4542 for (i = 0; i < copy_insn_n_scratches; i++)
4543 if (copy_insn_scratch_in[i] == orig)
4544 return copy_insn_scratch_out[i];
4545 break;
4546
4547 case CONST:
4548 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4549 a LABEL_REF, it isn't sharable. */
4550 if (GET_CODE (XEXP (orig, 0)) == PLUS
4551 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4552 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4553 return orig;
4554 break;
4555
4556 /* A MEM with a constant address is not sharable. The problem is that
4557 the constant address may need to be reloaded. If the mem is shared,
4558 then reloading one copy of this mem will cause all copies to appear
4559 to have been reloaded. */
4560
4561 default:
4562 break;
4563 }
4564
4565 copy = rtx_alloc (code);
4566
4567 /* Copy the various flags, and other information. We assume that
4568 all fields need copying, and then clear the fields that should
4569 not be copied. That is the sensible default behavior, and forces
4570 us to explicitly document why we are *not* copying a flag. */
4571 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
4572
4573 /* We do not copy the USED flag, which is used as a mark bit during
4574 walks over the RTL. */
4575 copy->used = 0;
4576
4577 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4578 if (GET_RTX_CLASS (code) == 'i')
4579 {
4580 copy->jump = 0;
4581 copy->call = 0;
4582 copy->frame_related = 0;
4583 }
4584
4585 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4586
4587 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4588 {
4589 copy->fld[i] = orig->fld[i];
4590 switch (*format_ptr++)
4591 {
4592 case 'e':
4593 if (XEXP (orig, i) != NULL)
4594 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4595 break;
4596
4597 case 'E':
4598 case 'V':
4599 if (XVEC (orig, i) == orig_asm_constraints_vector)
4600 XVEC (copy, i) = copy_asm_constraints_vector;
4601 else if (XVEC (orig, i) == orig_asm_operands_vector)
4602 XVEC (copy, i) = copy_asm_operands_vector;
4603 else if (XVEC (orig, i) != NULL)
4604 {
4605 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4606 for (j = 0; j < XVECLEN (copy, i); j++)
4607 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4608 }
4609 break;
4610
4611 case 't':
4612 case 'w':
4613 case 'i':
4614 case 's':
4615 case 'S':
4616 case 'u':
4617 case '0':
4618 /* These are left unchanged. */
4619 break;
4620
4621 default:
4622 abort ();
4623 }
4624 }
4625
4626 if (code == SCRATCH)
4627 {
4628 i = copy_insn_n_scratches++;
4629 if (i >= MAX_RECOG_OPERANDS)
4630 abort ();
4631 copy_insn_scratch_in[i] = orig;
4632 copy_insn_scratch_out[i] = copy;
4633 }
4634 else if (code == ASM_OPERANDS)
4635 {
4636 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4637 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4638 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4639 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
4640 }
4641
4642 return copy;
4643 }
4644
4645 /* Create a new copy of an rtx.
4646 This function differs from copy_rtx in that it handles SCRATCHes and
4647 ASM_OPERANDs properly.
4648 INSN doesn't really have to be a full INSN; it could be just the
4649 pattern. */
4650 rtx
4651 copy_insn (insn)
4652 rtx insn;
4653 {
4654 copy_insn_n_scratches = 0;
4655 orig_asm_operands_vector = 0;
4656 orig_asm_constraints_vector = 0;
4657 copy_asm_operands_vector = 0;
4658 copy_asm_constraints_vector = 0;
4659 return copy_insn_1 (insn);
4660 }
4661
4662 /* Initialize data structures and variables in this file
4663 before generating rtl for each function. */
4664
4665 void
4666 init_emit ()
4667 {
4668 struct function *f = cfun;
4669
4670 f->emit = (struct emit_status *) xmalloc (sizeof (struct emit_status));
4671 first_insn = NULL;
4672 last_insn = NULL;
4673 seq_rtl_expr = NULL;
4674 cur_insn_uid = 1;
4675 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
4676 last_linenum = 0;
4677 last_filename = 0;
4678 first_label_num = label_num;
4679 last_label_num = 0;
4680 seq_stack = NULL;
4681
4682 clear_emit_caches ();
4683
4684 /* Init the tables that describe all the pseudo regs. */
4685
4686 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
4687
4688 f->emit->regno_pointer_align
4689 = (unsigned char *) xcalloc (f->emit->regno_pointer_align_length,
4690 sizeof (unsigned char));
4691
4692 regno_reg_rtx
4693 = (rtx *) xcalloc (f->emit->regno_pointer_align_length, sizeof (rtx));
4694
4695 f->emit->regno_decl
4696 = (tree *) xcalloc (f->emit->regno_pointer_align_length, sizeof (tree));
4697
4698 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
4699 init_virtual_regs (f->emit);
4700
4701 /* Indicate that the virtual registers and stack locations are
4702 all pointers. */
4703 REG_POINTER (stack_pointer_rtx) = 1;
4704 REG_POINTER (frame_pointer_rtx) = 1;
4705 REG_POINTER (hard_frame_pointer_rtx) = 1;
4706 REG_POINTER (arg_pointer_rtx) = 1;
4707
4708 REG_POINTER (virtual_incoming_args_rtx) = 1;
4709 REG_POINTER (virtual_stack_vars_rtx) = 1;
4710 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
4711 REG_POINTER (virtual_outgoing_args_rtx) = 1;
4712 REG_POINTER (virtual_cfa_rtx) = 1;
4713
4714 #ifdef STACK_BOUNDARY
4715 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
4716 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4717 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4718 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
4719
4720 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
4721 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
4722 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
4723 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
4724 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
4725 #endif
4726
4727 #ifdef INIT_EXPANDERS
4728 INIT_EXPANDERS;
4729 #endif
4730 }
4731
4732 /* Mark SS for GC. */
4733
4734 static void
4735 mark_sequence_stack (ss)
4736 struct sequence_stack *ss;
4737 {
4738 while (ss)
4739 {
4740 ggc_mark_rtx (ss->first);
4741 ggc_mark_tree (ss->sequence_rtl_expr);
4742 ss = ss->next;
4743 }
4744 }
4745
4746 /* Mark ES for GC. */
4747
4748 void
4749 mark_emit_status (es)
4750 struct emit_status *es;
4751 {
4752 rtx *r;
4753 tree *t;
4754 int i;
4755
4756 if (es == 0)
4757 return;
4758
4759 for (i = es->regno_pointer_align_length, r = es->x_regno_reg_rtx,
4760 t = es->regno_decl;
4761 i > 0; --i, ++r, ++t)
4762 {
4763 ggc_mark_rtx (*r);
4764 ggc_mark_tree (*t);
4765 }
4766
4767 mark_sequence_stack (es->sequence_stack);
4768 ggc_mark_tree (es->sequence_rtl_expr);
4769 ggc_mark_rtx (es->x_first_insn);
4770 }
4771
4772 /* Create some permanent unique rtl objects shared between all functions.
4773 LINE_NUMBERS is nonzero if line numbers are to be generated. */
4774
4775 void
4776 init_emit_once (line_numbers)
4777 int line_numbers;
4778 {
4779 int i;
4780 enum machine_mode mode;
4781 enum machine_mode double_mode;
4782
4783 /* Initialize the CONST_INT and memory attribute hash tables. */
4784 const_int_htab = htab_create (37, const_int_htab_hash,
4785 const_int_htab_eq, NULL);
4786 ggc_add_deletable_htab (const_int_htab, 0, 0);
4787
4788 mem_attrs_htab = htab_create (37, mem_attrs_htab_hash,
4789 mem_attrs_htab_eq, NULL);
4790 ggc_add_deletable_htab (mem_attrs_htab, 0, mem_attrs_mark);
4791
4792 no_line_numbers = ! line_numbers;
4793
4794 /* Compute the word and byte modes. */
4795
4796 byte_mode = VOIDmode;
4797 word_mode = VOIDmode;
4798 double_mode = VOIDmode;
4799
4800 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4801 mode = GET_MODE_WIDER_MODE (mode))
4802 {
4803 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
4804 && byte_mode == VOIDmode)
4805 byte_mode = mode;
4806
4807 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
4808 && word_mode == VOIDmode)
4809 word_mode = mode;
4810 }
4811
4812 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4813 mode = GET_MODE_WIDER_MODE (mode))
4814 {
4815 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
4816 && double_mode == VOIDmode)
4817 double_mode = mode;
4818 }
4819
4820 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
4821
4822 /* Assign register numbers to the globally defined register rtx.
4823 This must be done at runtime because the register number field
4824 is in a union and some compilers can't initialize unions. */
4825
4826 pc_rtx = gen_rtx (PC, VOIDmode);
4827 cc0_rtx = gen_rtx (CC0, VOIDmode);
4828 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
4829 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
4830 if (hard_frame_pointer_rtx == 0)
4831 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
4832 HARD_FRAME_POINTER_REGNUM);
4833 if (arg_pointer_rtx == 0)
4834 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
4835 virtual_incoming_args_rtx =
4836 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
4837 virtual_stack_vars_rtx =
4838 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
4839 virtual_stack_dynamic_rtx =
4840 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
4841 virtual_outgoing_args_rtx =
4842 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
4843 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
4844
4845 /* These rtx must be roots if GC is enabled. */
4846 ggc_add_rtx_root (global_rtl, GR_MAX);
4847
4848 #ifdef INIT_EXPANDERS
4849 /* This is to initialize {init|mark|free}_machine_status before the first
4850 call to push_function_context_to. This is needed by the Chill front
4851 end which calls push_function_context_to before the first call to
4852 init_function_start. */
4853 INIT_EXPANDERS;
4854 #endif
4855
4856 /* Create the unique rtx's for certain rtx codes and operand values. */
4857
4858 /* Don't use gen_rtx here since gen_rtx in this case
4859 tries to use these variables. */
4860 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
4861 const_int_rtx[i + MAX_SAVED_CONST_INT] =
4862 gen_rtx_raw_CONST_INT (VOIDmode, i);
4863 ggc_add_rtx_root (const_int_rtx, 2 * MAX_SAVED_CONST_INT + 1);
4864
4865 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
4866 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
4867 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
4868 else
4869 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
4870
4871 dconst0 = REAL_VALUE_ATOF ("0", double_mode);
4872 dconst1 = REAL_VALUE_ATOF ("1", double_mode);
4873 dconst2 = REAL_VALUE_ATOF ("2", double_mode);
4874 dconstm1 = REAL_VALUE_ATOF ("-1", double_mode);
4875
4876 for (i = 0; i <= 2; i++)
4877 {
4878 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4879 mode = GET_MODE_WIDER_MODE (mode))
4880 {
4881 rtx tem = rtx_alloc (CONST_DOUBLE);
4882 union real_extract u;
4883
4884 /* Zero any holes in a structure. */
4885 memset ((char *) &u, 0, sizeof u);
4886 u.d = i == 0 ? dconst0 : i == 1 ? dconst1 : dconst2;
4887
4888 /* Avoid trailing garbage in the rtx. */
4889 if (sizeof (u) < sizeof (HOST_WIDE_INT))
4890 CONST_DOUBLE_LOW (tem) = 0;
4891 if (sizeof (u) < 2 * sizeof (HOST_WIDE_INT))
4892 CONST_DOUBLE_HIGH (tem) = 0;
4893
4894 memcpy (&CONST_DOUBLE_LOW (tem), &u, sizeof u);
4895 CONST_DOUBLE_CHAIN (tem) = NULL_RTX;
4896 PUT_MODE (tem, mode);
4897
4898 const_tiny_rtx[i][(int) mode] = tem;
4899 }
4900
4901 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
4902
4903 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4904 mode = GET_MODE_WIDER_MODE (mode))
4905 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4906
4907 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
4908 mode != VOIDmode;
4909 mode = GET_MODE_WIDER_MODE (mode))
4910 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4911 }
4912
4913 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
4914 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
4915 const_tiny_rtx[0][i] = const0_rtx;
4916
4917 const_tiny_rtx[0][(int) BImode] = const0_rtx;
4918 if (STORE_FLAG_VALUE == 1)
4919 const_tiny_rtx[1][(int) BImode] = const1_rtx;
4920
4921 /* For bounded pointers, `&const_tiny_rtx[0][0]' is not the same as
4922 `(rtx *) const_tiny_rtx'. The former has bounds that only cover
4923 `const_tiny_rtx[0]', whereas the latter has bounds that cover all. */
4924 ggc_add_rtx_root ((rtx *) const_tiny_rtx, sizeof const_tiny_rtx / sizeof (rtx));
4925 ggc_add_rtx_root (&const_true_rtx, 1);
4926
4927 #ifdef RETURN_ADDRESS_POINTER_REGNUM
4928 return_address_pointer_rtx
4929 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
4930 #endif
4931
4932 #ifdef STRUCT_VALUE
4933 struct_value_rtx = STRUCT_VALUE;
4934 #else
4935 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
4936 #endif
4937
4938 #ifdef STRUCT_VALUE_INCOMING
4939 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
4940 #else
4941 #ifdef STRUCT_VALUE_INCOMING_REGNUM
4942 struct_value_incoming_rtx
4943 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
4944 #else
4945 struct_value_incoming_rtx = struct_value_rtx;
4946 #endif
4947 #endif
4948
4949 #ifdef STATIC_CHAIN_REGNUM
4950 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
4951
4952 #ifdef STATIC_CHAIN_INCOMING_REGNUM
4953 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
4954 static_chain_incoming_rtx
4955 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
4956 else
4957 #endif
4958 static_chain_incoming_rtx = static_chain_rtx;
4959 #endif
4960
4961 #ifdef STATIC_CHAIN
4962 static_chain_rtx = STATIC_CHAIN;
4963
4964 #ifdef STATIC_CHAIN_INCOMING
4965 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
4966 #else
4967 static_chain_incoming_rtx = static_chain_rtx;
4968 #endif
4969 #endif
4970
4971 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
4972 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
4973
4974 ggc_add_rtx_root (&pic_offset_table_rtx, 1);
4975 ggc_add_rtx_root (&struct_value_rtx, 1);
4976 ggc_add_rtx_root (&struct_value_incoming_rtx, 1);
4977 ggc_add_rtx_root (&static_chain_rtx, 1);
4978 ggc_add_rtx_root (&static_chain_incoming_rtx, 1);
4979 ggc_add_rtx_root (&return_address_pointer_rtx, 1);
4980 }
4981 \f
4982 /* Query and clear/ restore no_line_numbers. This is used by the
4983 switch / case handling in stmt.c to give proper line numbers in
4984 warnings about unreachable code. */
4985
4986 int
4987 force_line_numbers ()
4988 {
4989 int old = no_line_numbers;
4990
4991 no_line_numbers = 0;
4992 if (old)
4993 force_next_line_note ();
4994 return old;
4995 }
4996
4997 void
4998 restore_line_number_status (old_value)
4999 int old_value;
5000 {
5001 no_line_numbers = old_value;
5002 }
This page took 0.282116 seconds and 5 git commands to generate.