]> gcc.gnu.org Git - gcc.git/blob - gcc/emit-rtl.c
0bba4a27f446e0309378b6c07d72cc9b2e672225
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "obstack.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59
60 /* Commonly used modes. */
61
62 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
63 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
64 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
65 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
66
67
68 /* This is *not* reset after each function. It gives each CODE_LABEL
69 in the entire compilation a unique label number. */
70
71 static int label_num = 1;
72
73 /* Highest label number in current function.
74 Zero means use the value of label_num instead.
75 This is nonzero only when belatedly compiling an inline function. */
76
77 static int last_label_num;
78
79 /* Value label_num had when set_new_first_and_last_label_number was called.
80 If label_num has not changed since then, last_label_num is valid. */
81
82 static int base_label_num;
83
84 /* Nonzero means do not generate NOTEs for source line numbers. */
85
86 static int no_line_numbers;
87
88 /* Commonly used rtx's, so that we only need space for one copy.
89 These are initialized once for the entire compilation.
90 All of these are unique; no other rtx-object will be equal to any
91 of these. */
92
93 rtx global_rtl[GR_MAX];
94
95 /* Commonly used RTL for hard registers. These objects are not necessarily
96 unique, so we allocate them separately from global_rtl. They are
97 initialized once per compilation unit, then copied into regno_reg_rtx
98 at the beginning of each function. */
99 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
100
101 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
102 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
103 record a copy of const[012]_rtx. */
104
105 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
106
107 rtx const_true_rtx;
108
109 REAL_VALUE_TYPE dconst0;
110 REAL_VALUE_TYPE dconst1;
111 REAL_VALUE_TYPE dconst2;
112 REAL_VALUE_TYPE dconstm1;
113
114 /* All references to the following fixed hard registers go through
115 these unique rtl objects. On machines where the frame-pointer and
116 arg-pointer are the same register, they use the same unique object.
117
118 After register allocation, other rtl objects which used to be pseudo-regs
119 may be clobbered to refer to the frame-pointer register.
120 But references that were originally to the frame-pointer can be
121 distinguished from the others because they contain frame_pointer_rtx.
122
123 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
124 tricky: until register elimination has taken place hard_frame_pointer_rtx
125 should be used if it is being set, and frame_pointer_rtx otherwise. After
126 register elimination hard_frame_pointer_rtx should always be used.
127 On machines where the two registers are same (most) then these are the
128 same.
129
130 In an inline procedure, the stack and frame pointer rtxs may not be
131 used for anything else. */
132 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
133 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
134 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
135 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
136 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
137
138 /* This is used to implement __builtin_return_address for some machines.
139 See for instance the MIPS port. */
140 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
141
142 /* We make one copy of (const_int C) where C is in
143 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
144 to save space during the compilation and simplify comparisons of
145 integers. */
146
147 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
148
149 /* A hash table storing CONST_INTs whose absolute value is greater
150 than MAX_SAVED_CONST_INT. */
151
152 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
153 htab_t const_int_htab;
154
155 /* A hash table storing memory attribute structures. */
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
157 htab_t mem_attrs_htab;
158
159 /* A hash table storing all CONST_DOUBLEs. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
161 htab_t const_double_htab;
162
163 #define first_insn (cfun->emit->x_first_insn)
164 #define last_insn (cfun->emit->x_last_insn)
165 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
166 #define last_linenum (cfun->emit->x_last_linenum)
167 #define last_filename (cfun->emit->x_last_filename)
168 #define first_label_num (cfun->emit->x_first_label_num)
169
170 static rtx make_jump_insn_raw PARAMS ((rtx));
171 static rtx make_call_insn_raw PARAMS ((rtx));
172 static rtx find_line_note PARAMS ((rtx));
173 static rtx change_address_1 PARAMS ((rtx, enum machine_mode, rtx,
174 int));
175 static void unshare_all_rtl_1 PARAMS ((rtx));
176 static void unshare_all_decls PARAMS ((tree));
177 static void reset_used_decls PARAMS ((tree));
178 static void mark_label_nuses PARAMS ((rtx));
179 static hashval_t const_int_htab_hash PARAMS ((const void *));
180 static int const_int_htab_eq PARAMS ((const void *,
181 const void *));
182 static hashval_t const_double_htab_hash PARAMS ((const void *));
183 static int const_double_htab_eq PARAMS ((const void *,
184 const void *));
185 static rtx lookup_const_double PARAMS ((rtx));
186 static hashval_t mem_attrs_htab_hash PARAMS ((const void *));
187 static int mem_attrs_htab_eq PARAMS ((const void *,
188 const void *));
189 static mem_attrs *get_mem_attrs PARAMS ((HOST_WIDE_INT, tree, rtx,
190 rtx, unsigned int,
191 enum machine_mode));
192 static tree component_ref_for_mem_expr PARAMS ((tree));
193 static rtx gen_const_vector_0 PARAMS ((enum machine_mode));
194
195 /* Probability of the conditional branch currently proceeded by try_split.
196 Set to -1 otherwise. */
197 int split_branch_probability = -1;
198 \f
199 /* Returns a hash code for X (which is a really a CONST_INT). */
200
201 static hashval_t
202 const_int_htab_hash (x)
203 const void *x;
204 {
205 return (hashval_t) INTVAL ((struct rtx_def *) x);
206 }
207
208 /* Returns non-zero if the value represented by X (which is really a
209 CONST_INT) is the same as that given by Y (which is really a
210 HOST_WIDE_INT *). */
211
212 static int
213 const_int_htab_eq (x, y)
214 const void *x;
215 const void *y;
216 {
217 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
218 }
219
220 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
221 static hashval_t
222 const_double_htab_hash (x)
223 const void *x;
224 {
225 hashval_t h = 0;
226 size_t i;
227 rtx value = (rtx) x;
228
229 for (i = 0; i < sizeof(CONST_DOUBLE_FORMAT)-1; i++)
230 h ^= XWINT (value, i);
231 return h;
232 }
233
234 /* Returns non-zero if the value represented by X (really a ...)
235 is the same as that represented by Y (really a ...) */
236 static int
237 const_double_htab_eq (x, y)
238 const void *x;
239 const void *y;
240 {
241 rtx a = (rtx)x, b = (rtx)y;
242 size_t i;
243
244 if (GET_MODE (a) != GET_MODE (b))
245 return 0;
246 for (i = 0; i < sizeof(CONST_DOUBLE_FORMAT)-1; i++)
247 if (XWINT (a, i) != XWINT (b, i))
248 return 0;
249
250 return 1;
251 }
252
253 /* Returns a hash code for X (which is a really a mem_attrs *). */
254
255 static hashval_t
256 mem_attrs_htab_hash (x)
257 const void *x;
258 {
259 mem_attrs *p = (mem_attrs *) x;
260
261 return (p->alias ^ (p->align * 1000)
262 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
263 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
264 ^ (size_t) p->expr);
265 }
266
267 /* Returns non-zero if the value represented by X (which is really a
268 mem_attrs *) is the same as that given by Y (which is also really a
269 mem_attrs *). */
270
271 static int
272 mem_attrs_htab_eq (x, y)
273 const void *x;
274 const void *y;
275 {
276 mem_attrs *p = (mem_attrs *) x;
277 mem_attrs *q = (mem_attrs *) y;
278
279 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
280 && p->size == q->size && p->align == q->align);
281 }
282
283 /* Allocate a new mem_attrs structure and insert it into the hash table if
284 one identical to it is not already in the table. We are doing this for
285 MEM of mode MODE. */
286
287 static mem_attrs *
288 get_mem_attrs (alias, expr, offset, size, align, mode)
289 HOST_WIDE_INT alias;
290 tree expr;
291 rtx offset;
292 rtx size;
293 unsigned int align;
294 enum machine_mode mode;
295 {
296 mem_attrs attrs;
297 void **slot;
298
299 /* If everything is the default, we can just return zero. */
300 if (alias == 0 && expr == 0 && offset == 0
301 && (size == 0
302 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
303 && (align == BITS_PER_UNIT
304 || (STRICT_ALIGNMENT
305 && mode != BLKmode && align == GET_MODE_ALIGNMENT (mode))))
306 return 0;
307
308 attrs.alias = alias;
309 attrs.expr = expr;
310 attrs.offset = offset;
311 attrs.size = size;
312 attrs.align = align;
313
314 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
315 if (*slot == 0)
316 {
317 *slot = ggc_alloc (sizeof (mem_attrs));
318 memcpy (*slot, &attrs, sizeof (mem_attrs));
319 }
320
321 return *slot;
322 }
323
324 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
325 don't attempt to share with the various global pieces of rtl (such as
326 frame_pointer_rtx). */
327
328 rtx
329 gen_raw_REG (mode, regno)
330 enum machine_mode mode;
331 int regno;
332 {
333 rtx x = gen_rtx_raw_REG (mode, regno);
334 ORIGINAL_REGNO (x) = regno;
335 return x;
336 }
337
338 /* There are some RTL codes that require special attention; the generation
339 functions do the raw handling. If you add to this list, modify
340 special_rtx in gengenrtl.c as well. */
341
342 rtx
343 gen_rtx_CONST_INT (mode, arg)
344 enum machine_mode mode ATTRIBUTE_UNUSED;
345 HOST_WIDE_INT arg;
346 {
347 void **slot;
348
349 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
350 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
351
352 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
353 if (const_true_rtx && arg == STORE_FLAG_VALUE)
354 return const_true_rtx;
355 #endif
356
357 /* Look up the CONST_INT in the hash table. */
358 slot = htab_find_slot_with_hash (const_int_htab, &arg,
359 (hashval_t) arg, INSERT);
360 if (*slot == 0)
361 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
362
363 return (rtx) *slot;
364 }
365
366 rtx
367 gen_int_mode (c, mode)
368 HOST_WIDE_INT c;
369 enum machine_mode mode;
370 {
371 return GEN_INT (trunc_int_for_mode (c, mode));
372 }
373
374 /* CONST_DOUBLEs might be created from pairs of integers, or from
375 REAL_VALUE_TYPEs. Also, their length is known only at run time,
376 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
377
378 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
379 hash table. If so, return its counterpart; otherwise add it
380 to the hash table and return it. */
381 static rtx
382 lookup_const_double (real)
383 rtx real;
384 {
385 void **slot = htab_find_slot (const_double_htab, real, INSERT);
386 if (*slot == 0)
387 *slot = real;
388
389 return (rtx) *slot;
390 }
391
392 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
393 VALUE in mode MODE. */
394 rtx
395 const_double_from_real_value (value, mode)
396 REAL_VALUE_TYPE value;
397 enum machine_mode mode;
398 {
399 rtx real = rtx_alloc (CONST_DOUBLE);
400 PUT_MODE (real, mode);
401
402 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
403
404 return lookup_const_double (real);
405 }
406
407 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
408 of ints: I0 is the low-order word and I1 is the high-order word.
409 Do not use this routine for non-integer modes; convert to
410 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
411
412 rtx
413 immed_double_const (i0, i1, mode)
414 HOST_WIDE_INT i0, i1;
415 enum machine_mode mode;
416 {
417 rtx value;
418 unsigned int i;
419
420 if (mode != VOIDmode)
421 {
422 int width;
423 if (GET_MODE_CLASS (mode) != MODE_INT
424 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
425 /* We can get a 0 for an error mark. */
426 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
427 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
428 abort ();
429
430 /* We clear out all bits that don't belong in MODE, unless they and
431 our sign bit are all one. So we get either a reasonable negative
432 value or a reasonable unsigned value for this mode. */
433 width = GET_MODE_BITSIZE (mode);
434 if (width < HOST_BITS_PER_WIDE_INT
435 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
436 != ((HOST_WIDE_INT) (-1) << (width - 1))))
437 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
438 else if (width == HOST_BITS_PER_WIDE_INT
439 && ! (i1 == ~0 && i0 < 0))
440 i1 = 0;
441 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
442 /* We cannot represent this value as a constant. */
443 abort ();
444
445 /* If this would be an entire word for the target, but is not for
446 the host, then sign-extend on the host so that the number will
447 look the same way on the host that it would on the target.
448
449 For example, when building a 64 bit alpha hosted 32 bit sparc
450 targeted compiler, then we want the 32 bit unsigned value -1 to be
451 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
452 The latter confuses the sparc backend. */
453
454 if (width < HOST_BITS_PER_WIDE_INT
455 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
456 i0 |= ((HOST_WIDE_INT) (-1) << width);
457
458 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
459 CONST_INT.
460
461 ??? Strictly speaking, this is wrong if we create a CONST_INT for
462 a large unsigned constant with the size of MODE being
463 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
464 in a wider mode. In that case we will mis-interpret it as a
465 negative number.
466
467 Unfortunately, the only alternative is to make a CONST_DOUBLE for
468 any constant in any mode if it is an unsigned constant larger
469 than the maximum signed integer in an int on the host. However,
470 doing this will break everyone that always expects to see a
471 CONST_INT for SImode and smaller.
472
473 We have always been making CONST_INTs in this case, so nothing
474 new is being broken. */
475
476 if (width <= HOST_BITS_PER_WIDE_INT)
477 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
478 }
479
480 /* If this integer fits in one word, return a CONST_INT. */
481 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
482 return GEN_INT (i0);
483
484 /* We use VOIDmode for integers. */
485 value = rtx_alloc (CONST_DOUBLE);
486 PUT_MODE (value, VOIDmode);
487
488 CONST_DOUBLE_LOW (value) = i0;
489 CONST_DOUBLE_HIGH (value) = i1;
490
491 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
492 XWINT (value, i) = 0;
493
494 return lookup_const_double (value);
495 }
496
497 rtx
498 gen_rtx_REG (mode, regno)
499 enum machine_mode mode;
500 unsigned int regno;
501 {
502 /* In case the MD file explicitly references the frame pointer, have
503 all such references point to the same frame pointer. This is
504 used during frame pointer elimination to distinguish the explicit
505 references to these registers from pseudos that happened to be
506 assigned to them.
507
508 If we have eliminated the frame pointer or arg pointer, we will
509 be using it as a normal register, for example as a spill
510 register. In such cases, we might be accessing it in a mode that
511 is not Pmode and therefore cannot use the pre-allocated rtx.
512
513 Also don't do this when we are making new REGs in reload, since
514 we don't want to get confused with the real pointers. */
515
516 if (mode == Pmode && !reload_in_progress)
517 {
518 if (regno == FRAME_POINTER_REGNUM)
519 return frame_pointer_rtx;
520 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
521 if (regno == HARD_FRAME_POINTER_REGNUM)
522 return hard_frame_pointer_rtx;
523 #endif
524 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
525 if (regno == ARG_POINTER_REGNUM)
526 return arg_pointer_rtx;
527 #endif
528 #ifdef RETURN_ADDRESS_POINTER_REGNUM
529 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
530 return return_address_pointer_rtx;
531 #endif
532 if (regno == PIC_OFFSET_TABLE_REGNUM
533 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
534 return pic_offset_table_rtx;
535 if (regno == STACK_POINTER_REGNUM)
536 return stack_pointer_rtx;
537 }
538
539 #if 0
540 /* If the per-function register table has been set up, try to re-use
541 an existing entry in that table to avoid useless generation of RTL.
542
543 This code is disabled for now until we can fix the various backends
544 which depend on having non-shared hard registers in some cases. Long
545 term we want to re-enable this code as it can significantly cut down
546 on the amount of useless RTL that gets generated. */
547 if (cfun
548 && cfun->emit
549 && regno_reg_rtx
550 && regno < FIRST_PSEUDO_REGISTER
551 && reg_raw_mode[regno] == mode)
552 return regno_reg_rtx[regno];
553 #endif
554
555 return gen_raw_REG (mode, regno);
556 }
557
558 rtx
559 gen_rtx_MEM (mode, addr)
560 enum machine_mode mode;
561 rtx addr;
562 {
563 rtx rt = gen_rtx_raw_MEM (mode, addr);
564
565 /* This field is not cleared by the mere allocation of the rtx, so
566 we clear it here. */
567 MEM_ATTRS (rt) = 0;
568
569 return rt;
570 }
571
572 rtx
573 gen_rtx_SUBREG (mode, reg, offset)
574 enum machine_mode mode;
575 rtx reg;
576 int offset;
577 {
578 /* This is the most common failure type.
579 Catch it early so we can see who does it. */
580 if ((offset % GET_MODE_SIZE (mode)) != 0)
581 abort ();
582
583 /* This check isn't usable right now because combine will
584 throw arbitrary crap like a CALL into a SUBREG in
585 gen_lowpart_for_combine so we must just eat it. */
586 #if 0
587 /* Check for this too. */
588 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
589 abort ();
590 #endif
591 return gen_rtx_raw_SUBREG (mode, reg, offset);
592 }
593
594 /* Generate a SUBREG representing the least-significant part of REG if MODE
595 is smaller than mode of REG, otherwise paradoxical SUBREG. */
596
597 rtx
598 gen_lowpart_SUBREG (mode, reg)
599 enum machine_mode mode;
600 rtx reg;
601 {
602 enum machine_mode inmode;
603
604 inmode = GET_MODE (reg);
605 if (inmode == VOIDmode)
606 inmode = mode;
607 return gen_rtx_SUBREG (mode, reg,
608 subreg_lowpart_offset (mode, inmode));
609 }
610 \f
611 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
612 **
613 ** This routine generates an RTX of the size specified by
614 ** <code>, which is an RTX code. The RTX structure is initialized
615 ** from the arguments <element1> through <elementn>, which are
616 ** interpreted according to the specific RTX type's format. The
617 ** special machine mode associated with the rtx (if any) is specified
618 ** in <mode>.
619 **
620 ** gen_rtx can be invoked in a way which resembles the lisp-like
621 ** rtx it will generate. For example, the following rtx structure:
622 **
623 ** (plus:QI (mem:QI (reg:SI 1))
624 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
625 **
626 ** ...would be generated by the following C code:
627 **
628 ** gen_rtx (PLUS, QImode,
629 ** gen_rtx (MEM, QImode,
630 ** gen_rtx (REG, SImode, 1)),
631 ** gen_rtx (MEM, QImode,
632 ** gen_rtx (PLUS, SImode,
633 ** gen_rtx (REG, SImode, 2),
634 ** gen_rtx (REG, SImode, 3)))),
635 */
636
637 /*VARARGS2*/
638 rtx
639 gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
640 {
641 int i; /* Array indices... */
642 const char *fmt; /* Current rtx's format... */
643 rtx rt_val; /* RTX to return to caller... */
644
645 VA_OPEN (p, mode);
646 VA_FIXEDARG (p, enum rtx_code, code);
647 VA_FIXEDARG (p, enum machine_mode, mode);
648
649 switch (code)
650 {
651 case CONST_INT:
652 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
653 break;
654
655 case CONST_DOUBLE:
656 {
657 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
658 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
659
660 rt_val = immed_double_const (arg0, arg1, mode);
661 }
662 break;
663
664 case REG:
665 rt_val = gen_rtx_REG (mode, va_arg (p, int));
666 break;
667
668 case MEM:
669 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
670 break;
671
672 default:
673 rt_val = rtx_alloc (code); /* Allocate the storage space. */
674 rt_val->mode = mode; /* Store the machine mode... */
675
676 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
677 for (i = 0; i < GET_RTX_LENGTH (code); i++)
678 {
679 switch (*fmt++)
680 {
681 case '0': /* Unused field. */
682 break;
683
684 case 'i': /* An integer? */
685 XINT (rt_val, i) = va_arg (p, int);
686 break;
687
688 case 'w': /* A wide integer? */
689 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
690 break;
691
692 case 's': /* A string? */
693 XSTR (rt_val, i) = va_arg (p, char *);
694 break;
695
696 case 'e': /* An expression? */
697 case 'u': /* An insn? Same except when printing. */
698 XEXP (rt_val, i) = va_arg (p, rtx);
699 break;
700
701 case 'E': /* An RTX vector? */
702 XVEC (rt_val, i) = va_arg (p, rtvec);
703 break;
704
705 case 'b': /* A bitmap? */
706 XBITMAP (rt_val, i) = va_arg (p, bitmap);
707 break;
708
709 case 't': /* A tree? */
710 XTREE (rt_val, i) = va_arg (p, tree);
711 break;
712
713 default:
714 abort ();
715 }
716 }
717 break;
718 }
719
720 VA_CLOSE (p);
721 return rt_val;
722 }
723
724 /* gen_rtvec (n, [rt1, ..., rtn])
725 **
726 ** This routine creates an rtvec and stores within it the
727 ** pointers to rtx's which are its arguments.
728 */
729
730 /*VARARGS1*/
731 rtvec
732 gen_rtvec VPARAMS ((int n, ...))
733 {
734 int i, save_n;
735 rtx *vector;
736
737 VA_OPEN (p, n);
738 VA_FIXEDARG (p, int, n);
739
740 if (n == 0)
741 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
742
743 vector = (rtx *) alloca (n * sizeof (rtx));
744
745 for (i = 0; i < n; i++)
746 vector[i] = va_arg (p, rtx);
747
748 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
749 save_n = n;
750 VA_CLOSE (p);
751
752 return gen_rtvec_v (save_n, vector);
753 }
754
755 rtvec
756 gen_rtvec_v (n, argp)
757 int n;
758 rtx *argp;
759 {
760 int i;
761 rtvec rt_val;
762
763 if (n == 0)
764 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
765
766 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
767
768 for (i = 0; i < n; i++)
769 rt_val->elem[i] = *argp++;
770
771 return rt_val;
772 }
773 \f
774 /* Generate a REG rtx for a new pseudo register of mode MODE.
775 This pseudo is assigned the next sequential register number. */
776
777 rtx
778 gen_reg_rtx (mode)
779 enum machine_mode mode;
780 {
781 struct function *f = cfun;
782 rtx val;
783
784 /* Don't let anything called after initial flow analysis create new
785 registers. */
786 if (no_new_pseudos)
787 abort ();
788
789 if (generating_concat_p
790 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
791 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
792 {
793 /* For complex modes, don't make a single pseudo.
794 Instead, make a CONCAT of two pseudos.
795 This allows noncontiguous allocation of the real and imaginary parts,
796 which makes much better code. Besides, allocating DCmode
797 pseudos overstrains reload on some machines like the 386. */
798 rtx realpart, imagpart;
799 int size = GET_MODE_UNIT_SIZE (mode);
800 enum machine_mode partmode
801 = mode_for_size (size * BITS_PER_UNIT,
802 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
803 ? MODE_FLOAT : MODE_INT),
804 0);
805
806 realpart = gen_reg_rtx (partmode);
807 imagpart = gen_reg_rtx (partmode);
808 return gen_rtx_CONCAT (mode, realpart, imagpart);
809 }
810
811 /* Make sure regno_pointer_align, regno_decl, and regno_reg_rtx are large
812 enough to have an element for this pseudo reg number. */
813
814 if (reg_rtx_no == f->emit->regno_pointer_align_length)
815 {
816 int old_size = f->emit->regno_pointer_align_length;
817 char *new;
818 rtx *new1;
819 tree *new2;
820
821 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
822 memset (new + old_size, 0, old_size);
823 f->emit->regno_pointer_align = (unsigned char *) new;
824
825 new1 = (rtx *) ggc_realloc (f->emit->x_regno_reg_rtx,
826 old_size * 2 * sizeof (rtx));
827 memset (new1 + old_size, 0, old_size * sizeof (rtx));
828 regno_reg_rtx = new1;
829
830 new2 = (tree *) ggc_realloc (f->emit->regno_decl,
831 old_size * 2 * sizeof (tree));
832 memset (new2 + old_size, 0, old_size * sizeof (tree));
833 f->emit->regno_decl = new2;
834
835 f->emit->regno_pointer_align_length = old_size * 2;
836 }
837
838 val = gen_raw_REG (mode, reg_rtx_no);
839 regno_reg_rtx[reg_rtx_no++] = val;
840 return val;
841 }
842
843 /* Identify REG (which may be a CONCAT) as a user register. */
844
845 void
846 mark_user_reg (reg)
847 rtx reg;
848 {
849 if (GET_CODE (reg) == CONCAT)
850 {
851 REG_USERVAR_P (XEXP (reg, 0)) = 1;
852 REG_USERVAR_P (XEXP (reg, 1)) = 1;
853 }
854 else if (GET_CODE (reg) == REG)
855 REG_USERVAR_P (reg) = 1;
856 else
857 abort ();
858 }
859
860 /* Identify REG as a probable pointer register and show its alignment
861 as ALIGN, if nonzero. */
862
863 void
864 mark_reg_pointer (reg, align)
865 rtx reg;
866 int align;
867 {
868 if (! REG_POINTER (reg))
869 {
870 REG_POINTER (reg) = 1;
871
872 if (align)
873 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
874 }
875 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
876 /* We can no-longer be sure just how aligned this pointer is */
877 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
878 }
879
880 /* Return 1 plus largest pseudo reg number used in the current function. */
881
882 int
883 max_reg_num ()
884 {
885 return reg_rtx_no;
886 }
887
888 /* Return 1 + the largest label number used so far in the current function. */
889
890 int
891 max_label_num ()
892 {
893 if (last_label_num && label_num == base_label_num)
894 return last_label_num;
895 return label_num;
896 }
897
898 /* Return first label number used in this function (if any were used). */
899
900 int
901 get_first_label_num ()
902 {
903 return first_label_num;
904 }
905 \f
906 /* Return the final regno of X, which is a SUBREG of a hard
907 register. */
908 int
909 subreg_hard_regno (x, check_mode)
910 rtx x;
911 int check_mode;
912 {
913 enum machine_mode mode = GET_MODE (x);
914 unsigned int byte_offset, base_regno, final_regno;
915 rtx reg = SUBREG_REG (x);
916
917 /* This is where we attempt to catch illegal subregs
918 created by the compiler. */
919 if (GET_CODE (x) != SUBREG
920 || GET_CODE (reg) != REG)
921 abort ();
922 base_regno = REGNO (reg);
923 if (base_regno >= FIRST_PSEUDO_REGISTER)
924 abort ();
925 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
926 abort ();
927
928 /* Catch non-congruent offsets too. */
929 byte_offset = SUBREG_BYTE (x);
930 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
931 abort ();
932
933 final_regno = subreg_regno (x);
934
935 return final_regno;
936 }
937
938 /* Return a value representing some low-order bits of X, where the number
939 of low-order bits is given by MODE. Note that no conversion is done
940 between floating-point and fixed-point values, rather, the bit
941 representation is returned.
942
943 This function handles the cases in common between gen_lowpart, below,
944 and two variants in cse.c and combine.c. These are the cases that can
945 be safely handled at all points in the compilation.
946
947 If this is not a case we can handle, return 0. */
948
949 rtx
950 gen_lowpart_common (mode, x)
951 enum machine_mode mode;
952 rtx x;
953 {
954 int msize = GET_MODE_SIZE (mode);
955 int xsize = GET_MODE_SIZE (GET_MODE (x));
956 int offset = 0;
957
958 if (GET_MODE (x) == mode)
959 return x;
960
961 /* MODE must occupy no more words than the mode of X. */
962 if (GET_MODE (x) != VOIDmode
963 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
964 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
965 return 0;
966
967 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
968 if (GET_MODE_CLASS (mode) == MODE_FLOAT
969 && GET_MODE (x) != VOIDmode && msize > xsize)
970 return 0;
971
972 offset = subreg_lowpart_offset (mode, GET_MODE (x));
973
974 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
975 && (GET_MODE_CLASS (mode) == MODE_INT
976 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
977 {
978 /* If we are getting the low-order part of something that has been
979 sign- or zero-extended, we can either just use the object being
980 extended or make a narrower extension. If we want an even smaller
981 piece than the size of the object being extended, call ourselves
982 recursively.
983
984 This case is used mostly by combine and cse. */
985
986 if (GET_MODE (XEXP (x, 0)) == mode)
987 return XEXP (x, 0);
988 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
989 return gen_lowpart_common (mode, XEXP (x, 0));
990 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
991 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
992 }
993 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
994 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR)
995 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
996 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
997 from the low-order part of the constant. */
998 else if ((GET_MODE_CLASS (mode) == MODE_INT
999 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1000 && GET_MODE (x) == VOIDmode
1001 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1002 {
1003 /* If MODE is twice the host word size, X is already the desired
1004 representation. Otherwise, if MODE is wider than a word, we can't
1005 do this. If MODE is exactly a word, return just one CONST_INT. */
1006
1007 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1008 return x;
1009 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1010 return 0;
1011 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1012 return (GET_CODE (x) == CONST_INT ? x
1013 : GEN_INT (CONST_DOUBLE_LOW (x)));
1014 else
1015 {
1016 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
1017 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
1018 : CONST_DOUBLE_LOW (x));
1019
1020 /* Sign extend to HOST_WIDE_INT. */
1021 val = trunc_int_for_mode (val, mode);
1022
1023 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
1024 : GEN_INT (val));
1025 }
1026 }
1027
1028 /* The floating-point emulator can handle all conversions between
1029 FP and integer operands. This simplifies reload because it
1030 doesn't have to deal with constructs like (subreg:DI
1031 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
1032 /* Single-precision floats are always 32-bits and double-precision
1033 floats are always 64-bits. */
1034
1035 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1036 && GET_MODE_BITSIZE (mode) == 32
1037 && GET_CODE (x) == CONST_INT)
1038 {
1039 REAL_VALUE_TYPE r;
1040 HOST_WIDE_INT i;
1041
1042 i = INTVAL (x);
1043 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
1044 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1045 }
1046 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1047 && GET_MODE_BITSIZE (mode) == 64
1048 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
1049 && GET_MODE (x) == VOIDmode)
1050 {
1051 REAL_VALUE_TYPE r;
1052 HOST_WIDE_INT i[2];
1053 HOST_WIDE_INT low, high;
1054
1055 if (GET_CODE (x) == CONST_INT)
1056 {
1057 low = INTVAL (x);
1058 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1059 }
1060 else
1061 {
1062 low = CONST_DOUBLE_LOW (x);
1063 high = CONST_DOUBLE_HIGH (x);
1064 }
1065
1066 #if HOST_BITS_PER_WIDE_INT == 32
1067 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1068 target machine. */
1069 if (WORDS_BIG_ENDIAN)
1070 i[0] = high, i[1] = low;
1071 else
1072 i[0] = low, i[1] = high;
1073 #else
1074 i[0] = low;
1075 #endif
1076
1077 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
1078 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1079 }
1080 else if ((GET_MODE_CLASS (mode) == MODE_INT
1081 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1082 && GET_CODE (x) == CONST_DOUBLE
1083 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1084 {
1085 REAL_VALUE_TYPE r;
1086 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1087 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1088
1089 /* Convert 'r' into an array of four 32-bit words in target word
1090 order. */
1091 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1092 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1093 {
1094 case 32:
1095 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1096 i[1] = 0;
1097 i[2] = 0;
1098 i[3 - 3 * endian] = 0;
1099 break;
1100 case 64:
1101 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1102 i[2 - 2 * endian] = 0;
1103 i[3 - 2 * endian] = 0;
1104 break;
1105 case 96:
1106 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1107 i[3 - 3 * endian] = 0;
1108 break;
1109 case 128:
1110 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1111 break;
1112 default:
1113 abort ();
1114 }
1115 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1116 and return it. */
1117 #if HOST_BITS_PER_WIDE_INT == 32
1118 return immed_double_const (i[3 * endian], i[1 + endian], mode);
1119 #else
1120 if (HOST_BITS_PER_WIDE_INT != 64)
1121 abort ();
1122
1123 return immed_double_const ((((unsigned long) i[3 * endian])
1124 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1125 (((unsigned long) i[2 - endian])
1126 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
1127 mode);
1128 #endif
1129 }
1130
1131 /* Otherwise, we can't do this. */
1132 return 0;
1133 }
1134 \f
1135 /* Return the real part (which has mode MODE) of a complex value X.
1136 This always comes at the low address in memory. */
1137
1138 rtx
1139 gen_realpart (mode, x)
1140 enum machine_mode mode;
1141 rtx x;
1142 {
1143 if (WORDS_BIG_ENDIAN
1144 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1145 && REG_P (x)
1146 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1147 internal_error
1148 ("can't access real part of complex value in hard register");
1149 else if (WORDS_BIG_ENDIAN)
1150 return gen_highpart (mode, x);
1151 else
1152 return gen_lowpart (mode, x);
1153 }
1154
1155 /* Return the imaginary part (which has mode MODE) of a complex value X.
1156 This always comes at the high address in memory. */
1157
1158 rtx
1159 gen_imagpart (mode, x)
1160 enum machine_mode mode;
1161 rtx x;
1162 {
1163 if (WORDS_BIG_ENDIAN)
1164 return gen_lowpart (mode, x);
1165 else if (! WORDS_BIG_ENDIAN
1166 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1167 && REG_P (x)
1168 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1169 internal_error
1170 ("can't access imaginary part of complex value in hard register");
1171 else
1172 return gen_highpart (mode, x);
1173 }
1174
1175 /* Return 1 iff X, assumed to be a SUBREG,
1176 refers to the real part of the complex value in its containing reg.
1177 Complex values are always stored with the real part in the first word,
1178 regardless of WORDS_BIG_ENDIAN. */
1179
1180 int
1181 subreg_realpart_p (x)
1182 rtx x;
1183 {
1184 if (GET_CODE (x) != SUBREG)
1185 abort ();
1186
1187 return ((unsigned int) SUBREG_BYTE (x)
1188 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1189 }
1190 \f
1191 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1192 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1193 least-significant part of X.
1194 MODE specifies how big a part of X to return;
1195 it usually should not be larger than a word.
1196 If X is a MEM whose address is a QUEUED, the value may be so also. */
1197
1198 rtx
1199 gen_lowpart (mode, x)
1200 enum machine_mode mode;
1201 rtx x;
1202 {
1203 rtx result = gen_lowpart_common (mode, x);
1204
1205 if (result)
1206 return result;
1207 else if (GET_CODE (x) == REG)
1208 {
1209 /* Must be a hard reg that's not valid in MODE. */
1210 result = gen_lowpart_common (mode, copy_to_reg (x));
1211 if (result == 0)
1212 abort ();
1213 return result;
1214 }
1215 else if (GET_CODE (x) == MEM)
1216 {
1217 /* The only additional case we can do is MEM. */
1218 int offset = 0;
1219 if (WORDS_BIG_ENDIAN)
1220 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1221 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1222
1223 if (BYTES_BIG_ENDIAN)
1224 /* Adjust the address so that the address-after-the-data
1225 is unchanged. */
1226 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1227 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1228
1229 return adjust_address (x, mode, offset);
1230 }
1231 else if (GET_CODE (x) == ADDRESSOF)
1232 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1233 else
1234 abort ();
1235 }
1236
1237 /* Like `gen_lowpart', but refer to the most significant part.
1238 This is used to access the imaginary part of a complex number. */
1239
1240 rtx
1241 gen_highpart (mode, x)
1242 enum machine_mode mode;
1243 rtx x;
1244 {
1245 unsigned int msize = GET_MODE_SIZE (mode);
1246 rtx result;
1247
1248 /* This case loses if X is a subreg. To catch bugs early,
1249 complain if an invalid MODE is used even in other cases. */
1250 if (msize > UNITS_PER_WORD
1251 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1252 abort ();
1253
1254 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1255 subreg_highpart_offset (mode, GET_MODE (x)));
1256
1257 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1258 the target if we have a MEM. gen_highpart must return a valid operand,
1259 emitting code if necessary to do so. */
1260 if (result != NULL_RTX && GET_CODE (result) == MEM)
1261 result = validize_mem (result);
1262
1263 if (!result)
1264 abort ();
1265 return result;
1266 }
1267
1268 /* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1269 be VOIDmode constant. */
1270 rtx
1271 gen_highpart_mode (outermode, innermode, exp)
1272 enum machine_mode outermode, innermode;
1273 rtx exp;
1274 {
1275 if (GET_MODE (exp) != VOIDmode)
1276 {
1277 if (GET_MODE (exp) != innermode)
1278 abort ();
1279 return gen_highpart (outermode, exp);
1280 }
1281 return simplify_gen_subreg (outermode, exp, innermode,
1282 subreg_highpart_offset (outermode, innermode));
1283 }
1284
1285 /* Return offset in bytes to get OUTERMODE low part
1286 of the value in mode INNERMODE stored in memory in target format. */
1287
1288 unsigned int
1289 subreg_lowpart_offset (outermode, innermode)
1290 enum machine_mode outermode, innermode;
1291 {
1292 unsigned int offset = 0;
1293 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1294
1295 if (difference > 0)
1296 {
1297 if (WORDS_BIG_ENDIAN)
1298 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1299 if (BYTES_BIG_ENDIAN)
1300 offset += difference % UNITS_PER_WORD;
1301 }
1302
1303 return offset;
1304 }
1305
1306 /* Return offset in bytes to get OUTERMODE high part
1307 of the value in mode INNERMODE stored in memory in target format. */
1308 unsigned int
1309 subreg_highpart_offset (outermode, innermode)
1310 enum machine_mode outermode, innermode;
1311 {
1312 unsigned int offset = 0;
1313 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1314
1315 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1316 abort ();
1317
1318 if (difference > 0)
1319 {
1320 if (! WORDS_BIG_ENDIAN)
1321 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1322 if (! BYTES_BIG_ENDIAN)
1323 offset += difference % UNITS_PER_WORD;
1324 }
1325
1326 return offset;
1327 }
1328
1329 /* Return 1 iff X, assumed to be a SUBREG,
1330 refers to the least significant part of its containing reg.
1331 If X is not a SUBREG, always return 1 (it is its own low part!). */
1332
1333 int
1334 subreg_lowpart_p (x)
1335 rtx x;
1336 {
1337 if (GET_CODE (x) != SUBREG)
1338 return 1;
1339 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1340 return 0;
1341
1342 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1343 == SUBREG_BYTE (x));
1344 }
1345 \f
1346
1347 /* Helper routine for all the constant cases of operand_subword.
1348 Some places invoke this directly. */
1349
1350 rtx
1351 constant_subword (op, offset, mode)
1352 rtx op;
1353 int offset;
1354 enum machine_mode mode;
1355 {
1356 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1357 HOST_WIDE_INT val;
1358
1359 /* If OP is already an integer word, return it. */
1360 if (GET_MODE_CLASS (mode) == MODE_INT
1361 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1362 return op;
1363
1364 /* The output is some bits, the width of the target machine's word.
1365 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1366 host can't. */
1367 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1368 && GET_MODE_CLASS (mode) == MODE_FLOAT
1369 && GET_MODE_BITSIZE (mode) == 64
1370 && GET_CODE (op) == CONST_DOUBLE)
1371 {
1372 long k[2];
1373 REAL_VALUE_TYPE rv;
1374
1375 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1376 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1377
1378 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1379 which the words are written depends on the word endianness.
1380 ??? This is a potential portability problem and should
1381 be fixed at some point.
1382
1383 We must exercise caution with the sign bit. By definition there
1384 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1385 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1386 So we explicitly mask and sign-extend as necessary. */
1387 if (BITS_PER_WORD == 32)
1388 {
1389 val = k[offset];
1390 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1391 return GEN_INT (val);
1392 }
1393 #if HOST_BITS_PER_WIDE_INT >= 64
1394 else if (BITS_PER_WORD >= 64 && offset == 0)
1395 {
1396 val = k[! WORDS_BIG_ENDIAN];
1397 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1398 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1399 return GEN_INT (val);
1400 }
1401 #endif
1402 else if (BITS_PER_WORD == 16)
1403 {
1404 val = k[offset >> 1];
1405 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1406 val >>= 16;
1407 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1408 return GEN_INT (val);
1409 }
1410 else
1411 abort ();
1412 }
1413 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1414 && GET_MODE_CLASS (mode) == MODE_FLOAT
1415 && GET_MODE_BITSIZE (mode) > 64
1416 && GET_CODE (op) == CONST_DOUBLE)
1417 {
1418 long k[4];
1419 REAL_VALUE_TYPE rv;
1420
1421 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1422 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1423
1424 if (BITS_PER_WORD == 32)
1425 {
1426 val = k[offset];
1427 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1428 return GEN_INT (val);
1429 }
1430 #if HOST_BITS_PER_WIDE_INT >= 64
1431 else if (BITS_PER_WORD >= 64 && offset <= 1)
1432 {
1433 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1434 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1435 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1436 return GEN_INT (val);
1437 }
1438 #endif
1439 else
1440 abort ();
1441 }
1442
1443 /* Single word float is a little harder, since single- and double-word
1444 values often do not have the same high-order bits. We have already
1445 verified that we want the only defined word of the single-word value. */
1446 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1447 && GET_MODE_BITSIZE (mode) == 32
1448 && GET_CODE (op) == CONST_DOUBLE)
1449 {
1450 long l;
1451 REAL_VALUE_TYPE rv;
1452
1453 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1454 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1455
1456 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1457 val = l;
1458 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1459
1460 if (BITS_PER_WORD == 16)
1461 {
1462 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1463 val >>= 16;
1464 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1465 }
1466
1467 return GEN_INT (val);
1468 }
1469
1470 /* The only remaining cases that we can handle are integers.
1471 Convert to proper endianness now since these cases need it.
1472 At this point, offset == 0 means the low-order word.
1473
1474 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1475 in general. However, if OP is (const_int 0), we can just return
1476 it for any word. */
1477
1478 if (op == const0_rtx)
1479 return op;
1480
1481 if (GET_MODE_CLASS (mode) != MODE_INT
1482 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1483 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1484 return 0;
1485
1486 if (WORDS_BIG_ENDIAN)
1487 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1488
1489 /* Find out which word on the host machine this value is in and get
1490 it from the constant. */
1491 val = (offset / size_ratio == 0
1492 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1493 : (GET_CODE (op) == CONST_INT
1494 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1495
1496 /* Get the value we want into the low bits of val. */
1497 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1498 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1499
1500 val = trunc_int_for_mode (val, word_mode);
1501
1502 return GEN_INT (val);
1503 }
1504
1505 /* Return subword OFFSET of operand OP.
1506 The word number, OFFSET, is interpreted as the word number starting
1507 at the low-order address. OFFSET 0 is the low-order word if not
1508 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1509
1510 If we cannot extract the required word, we return zero. Otherwise,
1511 an rtx corresponding to the requested word will be returned.
1512
1513 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1514 reload has completed, a valid address will always be returned. After
1515 reload, if a valid address cannot be returned, we return zero.
1516
1517 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1518 it is the responsibility of the caller.
1519
1520 MODE is the mode of OP in case it is a CONST_INT.
1521
1522 ??? This is still rather broken for some cases. The problem for the
1523 moment is that all callers of this thing provide no 'goal mode' to
1524 tell us to work with. This exists because all callers were written
1525 in a word based SUBREG world.
1526 Now use of this function can be deprecated by simplify_subreg in most
1527 cases.
1528 */
1529
1530 rtx
1531 operand_subword (op, offset, validate_address, mode)
1532 rtx op;
1533 unsigned int offset;
1534 int validate_address;
1535 enum machine_mode mode;
1536 {
1537 if (mode == VOIDmode)
1538 mode = GET_MODE (op);
1539
1540 if (mode == VOIDmode)
1541 abort ();
1542
1543 /* If OP is narrower than a word, fail. */
1544 if (mode != BLKmode
1545 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1546 return 0;
1547
1548 /* If we want a word outside OP, return zero. */
1549 if (mode != BLKmode
1550 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1551 return const0_rtx;
1552
1553 /* Form a new MEM at the requested address. */
1554 if (GET_CODE (op) == MEM)
1555 {
1556 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1557
1558 if (! validate_address)
1559 return new;
1560
1561 else if (reload_completed)
1562 {
1563 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1564 return 0;
1565 }
1566 else
1567 return replace_equiv_address (new, XEXP (new, 0));
1568 }
1569
1570 /* Rest can be handled by simplify_subreg. */
1571 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1572 }
1573
1574 /* Similar to `operand_subword', but never return 0. If we can't extract
1575 the required subword, put OP into a register and try again. If that fails,
1576 abort. We always validate the address in this case.
1577
1578 MODE is the mode of OP, in case it is CONST_INT. */
1579
1580 rtx
1581 operand_subword_force (op, offset, mode)
1582 rtx op;
1583 unsigned int offset;
1584 enum machine_mode mode;
1585 {
1586 rtx result = operand_subword (op, offset, 1, mode);
1587
1588 if (result)
1589 return result;
1590
1591 if (mode != BLKmode && mode != VOIDmode)
1592 {
1593 /* If this is a register which can not be accessed by words, copy it
1594 to a pseudo register. */
1595 if (GET_CODE (op) == REG)
1596 op = copy_to_reg (op);
1597 else
1598 op = force_reg (mode, op);
1599 }
1600
1601 result = operand_subword (op, offset, 1, mode);
1602 if (result == 0)
1603 abort ();
1604
1605 return result;
1606 }
1607 \f
1608 /* Given a compare instruction, swap the operands.
1609 A test instruction is changed into a compare of 0 against the operand. */
1610
1611 void
1612 reverse_comparison (insn)
1613 rtx insn;
1614 {
1615 rtx body = PATTERN (insn);
1616 rtx comp;
1617
1618 if (GET_CODE (body) == SET)
1619 comp = SET_SRC (body);
1620 else
1621 comp = SET_SRC (XVECEXP (body, 0, 0));
1622
1623 if (GET_CODE (comp) == COMPARE)
1624 {
1625 rtx op0 = XEXP (comp, 0);
1626 rtx op1 = XEXP (comp, 1);
1627 XEXP (comp, 0) = op1;
1628 XEXP (comp, 1) = op0;
1629 }
1630 else
1631 {
1632 rtx new = gen_rtx_COMPARE (VOIDmode,
1633 CONST0_RTX (GET_MODE (comp)), comp);
1634 if (GET_CODE (body) == SET)
1635 SET_SRC (body) = new;
1636 else
1637 SET_SRC (XVECEXP (body, 0, 0)) = new;
1638 }
1639 }
1640 \f
1641 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1642 or (2) a component ref of something variable. Represent the later with
1643 a NULL expression. */
1644
1645 static tree
1646 component_ref_for_mem_expr (ref)
1647 tree ref;
1648 {
1649 tree inner = TREE_OPERAND (ref, 0);
1650
1651 if (TREE_CODE (inner) == COMPONENT_REF)
1652 inner = component_ref_for_mem_expr (inner);
1653 else
1654 {
1655 tree placeholder_ptr = 0;
1656
1657 /* Now remove any conversions: they don't change what the underlying
1658 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1659 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1660 || TREE_CODE (inner) == NON_LVALUE_EXPR
1661 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1662 || TREE_CODE (inner) == SAVE_EXPR
1663 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1664 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1665 inner = find_placeholder (inner, &placeholder_ptr);
1666 else
1667 inner = TREE_OPERAND (inner, 0);
1668
1669 if (! DECL_P (inner))
1670 inner = NULL_TREE;
1671 }
1672
1673 if (inner == TREE_OPERAND (ref, 0))
1674 return ref;
1675 else
1676 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1677 TREE_OPERAND (ref, 1));
1678 }
1679
1680 /* Given REF, a MEM, and T, either the type of X or the expression
1681 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1682 if we are making a new object of this type. BITPOS is nonzero if
1683 there is an offset outstanding on T that will be applied later. */
1684
1685 void
1686 set_mem_attributes_minus_bitpos (ref, t, objectp, bitpos)
1687 rtx ref;
1688 tree t;
1689 int objectp;
1690 HOST_WIDE_INT bitpos;
1691 {
1692 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1693 tree expr = MEM_EXPR (ref);
1694 rtx offset = MEM_OFFSET (ref);
1695 rtx size = MEM_SIZE (ref);
1696 unsigned int align = MEM_ALIGN (ref);
1697 HOST_WIDE_INT apply_bitpos = 0;
1698 tree type;
1699
1700 /* It can happen that type_for_mode was given a mode for which there
1701 is no language-level type. In which case it returns NULL, which
1702 we can see here. */
1703 if (t == NULL_TREE)
1704 return;
1705
1706 type = TYPE_P (t) ? t : TREE_TYPE (t);
1707
1708 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1709 wrong answer, as it assumes that DECL_RTL already has the right alias
1710 info. Callers should not set DECL_RTL until after the call to
1711 set_mem_attributes. */
1712 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1713 abort ();
1714
1715 /* Get the alias set from the expression or type (perhaps using a
1716 front-end routine) and use it. */
1717 alias = get_alias_set (t);
1718
1719 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1720 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1721 RTX_UNCHANGING_P (ref)
1722 |= ((lang_hooks.honor_readonly
1723 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1724 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1725
1726 /* If we are making an object of this type, or if this is a DECL, we know
1727 that it is a scalar if the type is not an aggregate. */
1728 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1729 MEM_SCALAR_P (ref) = 1;
1730
1731 /* We can set the alignment from the type if we are making an object,
1732 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1733 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1734 align = MAX (align, TYPE_ALIGN (type));
1735
1736 /* If the size is known, we can set that. */
1737 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1738 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1739
1740 /* If T is not a type, we may be able to deduce some more information about
1741 the expression. */
1742 if (! TYPE_P (t))
1743 {
1744 maybe_set_unchanging (ref, t);
1745 if (TREE_THIS_VOLATILE (t))
1746 MEM_VOLATILE_P (ref) = 1;
1747
1748 /* Now remove any conversions: they don't change what the underlying
1749 object is. Likewise for SAVE_EXPR. */
1750 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1751 || TREE_CODE (t) == NON_LVALUE_EXPR
1752 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1753 || TREE_CODE (t) == SAVE_EXPR)
1754 t = TREE_OPERAND (t, 0);
1755
1756 /* If this expression can't be addressed (e.g., it contains a reference
1757 to a non-addressable field), show we don't change its alias set. */
1758 if (! can_address_p (t))
1759 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1760
1761 /* If this is a decl, set the attributes of the MEM from it. */
1762 if (DECL_P (t))
1763 {
1764 expr = t;
1765 offset = const0_rtx;
1766 apply_bitpos = bitpos;
1767 size = (DECL_SIZE_UNIT (t)
1768 && host_integerp (DECL_SIZE_UNIT (t), 1)
1769 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1770 align = DECL_ALIGN (t);
1771 }
1772
1773 /* If this is a constant, we know the alignment. */
1774 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1775 {
1776 align = TYPE_ALIGN (type);
1777 #ifdef CONSTANT_ALIGNMENT
1778 align = CONSTANT_ALIGNMENT (t, align);
1779 #endif
1780 }
1781
1782 /* If this is a field reference and not a bit-field, record it. */
1783 /* ??? There is some information that can be gleened from bit-fields,
1784 such as the word offset in the structure that might be modified.
1785 But skip it for now. */
1786 else if (TREE_CODE (t) == COMPONENT_REF
1787 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1788 {
1789 expr = component_ref_for_mem_expr (t);
1790 offset = const0_rtx;
1791 apply_bitpos = bitpos;
1792 /* ??? Any reason the field size would be different than
1793 the size we got from the type? */
1794 }
1795
1796 /* If this is an array reference, look for an outer field reference. */
1797 else if (TREE_CODE (t) == ARRAY_REF)
1798 {
1799 tree off_tree = size_zero_node;
1800
1801 do
1802 {
1803 off_tree
1804 = fold (build (PLUS_EXPR, sizetype,
1805 fold (build (MULT_EXPR, sizetype,
1806 TREE_OPERAND (t, 1),
1807 TYPE_SIZE_UNIT (TREE_TYPE (t)))),
1808 off_tree));
1809 t = TREE_OPERAND (t, 0);
1810 }
1811 while (TREE_CODE (t) == ARRAY_REF);
1812
1813 if (DECL_P (t))
1814 {
1815 expr = t;
1816 offset = NULL;
1817 if (host_integerp (off_tree, 1))
1818 {
1819 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1820 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1821 align = DECL_ALIGN (t);
1822 if (aoff && aoff < align)
1823 align = aoff;
1824 offset = GEN_INT (ioff);
1825 apply_bitpos = bitpos;
1826 }
1827 }
1828 else if (TREE_CODE (t) == COMPONENT_REF)
1829 {
1830 expr = component_ref_for_mem_expr (t);
1831 if (host_integerp (off_tree, 1))
1832 {
1833 offset = GEN_INT (tree_low_cst (off_tree, 1));
1834 apply_bitpos = bitpos;
1835 }
1836 /* ??? Any reason the field size would be different than
1837 the size we got from the type? */
1838 }
1839 else if (flag_argument_noalias > 1
1840 && TREE_CODE (t) == INDIRECT_REF
1841 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1842 {
1843 expr = t;
1844 offset = NULL;
1845 }
1846 }
1847
1848 /* If this is a Fortran indirect argument reference, record the
1849 parameter decl. */
1850 else if (flag_argument_noalias > 1
1851 && TREE_CODE (t) == INDIRECT_REF
1852 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1853 {
1854 expr = t;
1855 offset = NULL;
1856 }
1857 }
1858
1859 /* If we modified OFFSET based on T, then subtract the outstanding
1860 bit position offset. */
1861 if (apply_bitpos)
1862 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1863
1864 /* Now set the attributes we computed above. */
1865 MEM_ATTRS (ref)
1866 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1867
1868 /* If this is already known to be a scalar or aggregate, we are done. */
1869 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1870 return;
1871
1872 /* If it is a reference into an aggregate, this is part of an aggregate.
1873 Otherwise we don't know. */
1874 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1875 || TREE_CODE (t) == ARRAY_RANGE_REF
1876 || TREE_CODE (t) == BIT_FIELD_REF)
1877 MEM_IN_STRUCT_P (ref) = 1;
1878 }
1879
1880 void
1881 set_mem_attributes (ref, t, objectp)
1882 rtx ref;
1883 tree t;
1884 int objectp;
1885 {
1886 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1887 }
1888
1889 /* Set the alias set of MEM to SET. */
1890
1891 void
1892 set_mem_alias_set (mem, set)
1893 rtx mem;
1894 HOST_WIDE_INT set;
1895 {
1896 #ifdef ENABLE_CHECKING
1897 /* If the new and old alias sets don't conflict, something is wrong. */
1898 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1899 abort ();
1900 #endif
1901
1902 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1903 MEM_SIZE (mem), MEM_ALIGN (mem),
1904 GET_MODE (mem));
1905 }
1906
1907 /* Set the alignment of MEM to ALIGN bits. */
1908
1909 void
1910 set_mem_align (mem, align)
1911 rtx mem;
1912 unsigned int align;
1913 {
1914 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1915 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1916 GET_MODE (mem));
1917 }
1918
1919 /* Set the expr for MEM to EXPR. */
1920
1921 void
1922 set_mem_expr (mem, expr)
1923 rtx mem;
1924 tree expr;
1925 {
1926 MEM_ATTRS (mem)
1927 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1928 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1929 }
1930
1931 /* Set the offset of MEM to OFFSET. */
1932
1933 void
1934 set_mem_offset (mem, offset)
1935 rtx mem, offset;
1936 {
1937 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1938 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1939 GET_MODE (mem));
1940 }
1941 \f
1942 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1943 and its address changed to ADDR. (VOIDmode means don't change the mode.
1944 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1945 returned memory location is required to be valid. The memory
1946 attributes are not changed. */
1947
1948 static rtx
1949 change_address_1 (memref, mode, addr, validate)
1950 rtx memref;
1951 enum machine_mode mode;
1952 rtx addr;
1953 int validate;
1954 {
1955 rtx new;
1956
1957 if (GET_CODE (memref) != MEM)
1958 abort ();
1959 if (mode == VOIDmode)
1960 mode = GET_MODE (memref);
1961 if (addr == 0)
1962 addr = XEXP (memref, 0);
1963
1964 if (validate)
1965 {
1966 if (reload_in_progress || reload_completed)
1967 {
1968 if (! memory_address_p (mode, addr))
1969 abort ();
1970 }
1971 else
1972 addr = memory_address (mode, addr);
1973 }
1974
1975 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1976 return memref;
1977
1978 new = gen_rtx_MEM (mode, addr);
1979 MEM_COPY_ATTRIBUTES (new, memref);
1980 return new;
1981 }
1982
1983 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1984 way we are changing MEMREF, so we only preserve the alias set. */
1985
1986 rtx
1987 change_address (memref, mode, addr)
1988 rtx memref;
1989 enum machine_mode mode;
1990 rtx addr;
1991 {
1992 rtx new = change_address_1 (memref, mode, addr, 1);
1993 enum machine_mode mmode = GET_MODE (new);
1994
1995 MEM_ATTRS (new)
1996 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
1997 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
1998 (mmode == BLKmode ? BITS_PER_UNIT
1999 : GET_MODE_ALIGNMENT (mmode)),
2000 mmode);
2001
2002 return new;
2003 }
2004
2005 /* Return a memory reference like MEMREF, but with its mode changed
2006 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2007 nonzero, the memory address is forced to be valid.
2008 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2009 and caller is responsible for adjusting MEMREF base register. */
2010
2011 rtx
2012 adjust_address_1 (memref, mode, offset, validate, adjust)
2013 rtx memref;
2014 enum machine_mode mode;
2015 HOST_WIDE_INT offset;
2016 int validate, adjust;
2017 {
2018 rtx addr = XEXP (memref, 0);
2019 rtx new;
2020 rtx memoffset = MEM_OFFSET (memref);
2021 rtx size = 0;
2022 unsigned int memalign = MEM_ALIGN (memref);
2023
2024 /* ??? Prefer to create garbage instead of creating shared rtl.
2025 This may happen even if offset is non-zero -- consider
2026 (plus (plus reg reg) const_int) -- so do this always. */
2027 addr = copy_rtx (addr);
2028
2029 if (adjust)
2030 {
2031 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2032 object, we can merge it into the LO_SUM. */
2033 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2034 && offset >= 0
2035 && (unsigned HOST_WIDE_INT) offset
2036 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2037 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2038 plus_constant (XEXP (addr, 1), offset));
2039 else
2040 addr = plus_constant (addr, offset);
2041 }
2042
2043 new = change_address_1 (memref, mode, addr, validate);
2044
2045 /* Compute the new values of the memory attributes due to this adjustment.
2046 We add the offsets and update the alignment. */
2047 if (memoffset)
2048 memoffset = GEN_INT (offset + INTVAL (memoffset));
2049
2050 /* Compute the new alignment by taking the MIN of the alignment and the
2051 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2052 if zero. */
2053 if (offset != 0)
2054 memalign
2055 = MIN (memalign,
2056 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2057
2058 /* We can compute the size in a number of ways. */
2059 if (GET_MODE (new) != BLKmode)
2060 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
2061 else if (MEM_SIZE (memref))
2062 size = plus_constant (MEM_SIZE (memref), -offset);
2063
2064 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2065 memoffset, size, memalign, GET_MODE (new));
2066
2067 /* At some point, we should validate that this offset is within the object,
2068 if all the appropriate values are known. */
2069 return new;
2070 }
2071
2072 /* Return a memory reference like MEMREF, but with its mode changed
2073 to MODE and its address changed to ADDR, which is assumed to be
2074 MEMREF offseted by OFFSET bytes. If VALIDATE is
2075 nonzero, the memory address is forced to be valid. */
2076
2077 rtx
2078 adjust_automodify_address_1 (memref, mode, addr, offset, validate)
2079 rtx memref;
2080 enum machine_mode mode;
2081 rtx addr;
2082 HOST_WIDE_INT offset;
2083 int validate;
2084 {
2085 memref = change_address_1 (memref, VOIDmode, addr, validate);
2086 return adjust_address_1 (memref, mode, offset, validate, 0);
2087 }
2088
2089 /* Return a memory reference like MEMREF, but whose address is changed by
2090 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2091 known to be in OFFSET (possibly 1). */
2092
2093 rtx
2094 offset_address (memref, offset, pow2)
2095 rtx memref;
2096 rtx offset;
2097 HOST_WIDE_INT pow2;
2098 {
2099 rtx new, addr = XEXP (memref, 0);
2100
2101 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2102
2103 /* At this point we don't know _why_ the address is invalid. It
2104 could have secondary memory refereces, multiplies or anything.
2105
2106 However, if we did go and rearrange things, we can wind up not
2107 being able to recognize the magic around pic_offset_table_rtx.
2108 This stuff is fragile, and is yet another example of why it is
2109 bad to expose PIC machinery too early. */
2110 if (! memory_address_p (GET_MODE (memref), new)
2111 && GET_CODE (addr) == PLUS
2112 && XEXP (addr, 0) == pic_offset_table_rtx)
2113 {
2114 addr = force_reg (GET_MODE (addr), addr);
2115 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2116 }
2117
2118 update_temp_slot_address (XEXP (memref, 0), new);
2119 new = change_address_1 (memref, VOIDmode, new, 1);
2120
2121 /* Update the alignment to reflect the offset. Reset the offset, which
2122 we don't know. */
2123 MEM_ATTRS (new)
2124 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2125 MIN (MEM_ALIGN (memref),
2126 (unsigned HOST_WIDE_INT) pow2 * BITS_PER_UNIT),
2127 GET_MODE (new));
2128 return new;
2129 }
2130
2131 /* Return a memory reference like MEMREF, but with its address changed to
2132 ADDR. The caller is asserting that the actual piece of memory pointed
2133 to is the same, just the form of the address is being changed, such as
2134 by putting something into a register. */
2135
2136 rtx
2137 replace_equiv_address (memref, addr)
2138 rtx memref;
2139 rtx addr;
2140 {
2141 /* change_address_1 copies the memory attribute structure without change
2142 and that's exactly what we want here. */
2143 update_temp_slot_address (XEXP (memref, 0), addr);
2144 return change_address_1 (memref, VOIDmode, addr, 1);
2145 }
2146
2147 /* Likewise, but the reference is not required to be valid. */
2148
2149 rtx
2150 replace_equiv_address_nv (memref, addr)
2151 rtx memref;
2152 rtx addr;
2153 {
2154 return change_address_1 (memref, VOIDmode, addr, 0);
2155 }
2156
2157 /* Return a memory reference like MEMREF, but with its mode widened to
2158 MODE and offset by OFFSET. This would be used by targets that e.g.
2159 cannot issue QImode memory operations and have to use SImode memory
2160 operations plus masking logic. */
2161
2162 rtx
2163 widen_memory_access (memref, mode, offset)
2164 rtx memref;
2165 enum machine_mode mode;
2166 HOST_WIDE_INT offset;
2167 {
2168 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2169 tree expr = MEM_EXPR (new);
2170 rtx memoffset = MEM_OFFSET (new);
2171 unsigned int size = GET_MODE_SIZE (mode);
2172
2173 /* If we don't know what offset we were at within the expression, then
2174 we can't know if we've overstepped the bounds. */
2175 if (! memoffset)
2176 expr = NULL_TREE;
2177
2178 while (expr)
2179 {
2180 if (TREE_CODE (expr) == COMPONENT_REF)
2181 {
2182 tree field = TREE_OPERAND (expr, 1);
2183
2184 if (! DECL_SIZE_UNIT (field))
2185 {
2186 expr = NULL_TREE;
2187 break;
2188 }
2189
2190 /* Is the field at least as large as the access? If so, ok,
2191 otherwise strip back to the containing structure. */
2192 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2193 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2194 && INTVAL (memoffset) >= 0)
2195 break;
2196
2197 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2198 {
2199 expr = NULL_TREE;
2200 break;
2201 }
2202
2203 expr = TREE_OPERAND (expr, 0);
2204 memoffset = (GEN_INT (INTVAL (memoffset)
2205 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2206 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2207 / BITS_PER_UNIT)));
2208 }
2209 /* Similarly for the decl. */
2210 else if (DECL_P (expr)
2211 && DECL_SIZE_UNIT (expr)
2212 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2213 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2214 && (! memoffset || INTVAL (memoffset) >= 0))
2215 break;
2216 else
2217 {
2218 /* The widened memory access overflows the expression, which means
2219 that it could alias another expression. Zap it. */
2220 expr = NULL_TREE;
2221 break;
2222 }
2223 }
2224
2225 if (! expr)
2226 memoffset = NULL_RTX;
2227
2228 /* The widened memory may alias other stuff, so zap the alias set. */
2229 /* ??? Maybe use get_alias_set on any remaining expression. */
2230
2231 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2232 MEM_ALIGN (new), mode);
2233
2234 return new;
2235 }
2236 \f
2237 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2238
2239 rtx
2240 gen_label_rtx ()
2241 {
2242 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2243 NULL, label_num++, NULL);
2244 }
2245 \f
2246 /* For procedure integration. */
2247
2248 /* Install new pointers to the first and last insns in the chain.
2249 Also, set cur_insn_uid to one higher than the last in use.
2250 Used for an inline-procedure after copying the insn chain. */
2251
2252 void
2253 set_new_first_and_last_insn (first, last)
2254 rtx first, last;
2255 {
2256 rtx insn;
2257
2258 first_insn = first;
2259 last_insn = last;
2260 cur_insn_uid = 0;
2261
2262 for (insn = first; insn; insn = NEXT_INSN (insn))
2263 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2264
2265 cur_insn_uid++;
2266 }
2267
2268 /* Set the range of label numbers found in the current function.
2269 This is used when belatedly compiling an inline function. */
2270
2271 void
2272 set_new_first_and_last_label_num (first, last)
2273 int first, last;
2274 {
2275 base_label_num = label_num;
2276 first_label_num = first;
2277 last_label_num = last;
2278 }
2279
2280 /* Set the last label number found in the current function.
2281 This is used when belatedly compiling an inline function. */
2282
2283 void
2284 set_new_last_label_num (last)
2285 int last;
2286 {
2287 base_label_num = label_num;
2288 last_label_num = last;
2289 }
2290 \f
2291 /* Restore all variables describing the current status from the structure *P.
2292 This is used after a nested function. */
2293
2294 void
2295 restore_emit_status (p)
2296 struct function *p ATTRIBUTE_UNUSED;
2297 {
2298 last_label_num = 0;
2299 }
2300 \f
2301 /* Go through all the RTL insn bodies and copy any invalid shared
2302 structure. This routine should only be called once. */
2303
2304 void
2305 unshare_all_rtl (fndecl, insn)
2306 tree fndecl;
2307 rtx insn;
2308 {
2309 tree decl;
2310
2311 /* Make sure that virtual parameters are not shared. */
2312 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2313 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2314
2315 /* Make sure that virtual stack slots are not shared. */
2316 unshare_all_decls (DECL_INITIAL (fndecl));
2317
2318 /* Unshare just about everything else. */
2319 unshare_all_rtl_1 (insn);
2320
2321 /* Make sure the addresses of stack slots found outside the insn chain
2322 (such as, in DECL_RTL of a variable) are not shared
2323 with the insn chain.
2324
2325 This special care is necessary when the stack slot MEM does not
2326 actually appear in the insn chain. If it does appear, its address
2327 is unshared from all else at that point. */
2328 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2329 }
2330
2331 /* Go through all the RTL insn bodies and copy any invalid shared
2332 structure, again. This is a fairly expensive thing to do so it
2333 should be done sparingly. */
2334
2335 void
2336 unshare_all_rtl_again (insn)
2337 rtx insn;
2338 {
2339 rtx p;
2340 tree decl;
2341
2342 for (p = insn; p; p = NEXT_INSN (p))
2343 if (INSN_P (p))
2344 {
2345 reset_used_flags (PATTERN (p));
2346 reset_used_flags (REG_NOTES (p));
2347 reset_used_flags (LOG_LINKS (p));
2348 }
2349
2350 /* Make sure that virtual stack slots are not shared. */
2351 reset_used_decls (DECL_INITIAL (cfun->decl));
2352
2353 /* Make sure that virtual parameters are not shared. */
2354 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2355 reset_used_flags (DECL_RTL (decl));
2356
2357 reset_used_flags (stack_slot_list);
2358
2359 unshare_all_rtl (cfun->decl, insn);
2360 }
2361
2362 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2363 Assumes the mark bits are cleared at entry. */
2364
2365 static void
2366 unshare_all_rtl_1 (insn)
2367 rtx insn;
2368 {
2369 for (; insn; insn = NEXT_INSN (insn))
2370 if (INSN_P (insn))
2371 {
2372 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2373 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2374 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2375 }
2376 }
2377
2378 /* Go through all virtual stack slots of a function and copy any
2379 shared structure. */
2380 static void
2381 unshare_all_decls (blk)
2382 tree blk;
2383 {
2384 tree t;
2385
2386 /* Copy shared decls. */
2387 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2388 if (DECL_RTL_SET_P (t))
2389 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2390
2391 /* Now process sub-blocks. */
2392 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2393 unshare_all_decls (t);
2394 }
2395
2396 /* Go through all virtual stack slots of a function and mark them as
2397 not shared. */
2398 static void
2399 reset_used_decls (blk)
2400 tree blk;
2401 {
2402 tree t;
2403
2404 /* Mark decls. */
2405 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2406 if (DECL_RTL_SET_P (t))
2407 reset_used_flags (DECL_RTL (t));
2408
2409 /* Now process sub-blocks. */
2410 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2411 reset_used_decls (t);
2412 }
2413
2414 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2415 placed in the result directly, rather than being copied. MAY_SHARE is
2416 either a MEM of an EXPR_LIST of MEMs. */
2417
2418 rtx
2419 copy_most_rtx (orig, may_share)
2420 rtx orig;
2421 rtx may_share;
2422 {
2423 rtx copy;
2424 int i, j;
2425 RTX_CODE code;
2426 const char *format_ptr;
2427
2428 if (orig == may_share
2429 || (GET_CODE (may_share) == EXPR_LIST
2430 && in_expr_list_p (may_share, orig)))
2431 return orig;
2432
2433 code = GET_CODE (orig);
2434
2435 switch (code)
2436 {
2437 case REG:
2438 case QUEUED:
2439 case CONST_INT:
2440 case CONST_DOUBLE:
2441 case CONST_VECTOR:
2442 case SYMBOL_REF:
2443 case CODE_LABEL:
2444 case PC:
2445 case CC0:
2446 return orig;
2447 default:
2448 break;
2449 }
2450
2451 copy = rtx_alloc (code);
2452 PUT_MODE (copy, GET_MODE (orig));
2453 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2454 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2455 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2456 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2457 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2458
2459 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2460
2461 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2462 {
2463 switch (*format_ptr++)
2464 {
2465 case 'e':
2466 XEXP (copy, i) = XEXP (orig, i);
2467 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2468 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2469 break;
2470
2471 case 'u':
2472 XEXP (copy, i) = XEXP (orig, i);
2473 break;
2474
2475 case 'E':
2476 case 'V':
2477 XVEC (copy, i) = XVEC (orig, i);
2478 if (XVEC (orig, i) != NULL)
2479 {
2480 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2481 for (j = 0; j < XVECLEN (copy, i); j++)
2482 XVECEXP (copy, i, j)
2483 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2484 }
2485 break;
2486
2487 case 'w':
2488 XWINT (copy, i) = XWINT (orig, i);
2489 break;
2490
2491 case 'n':
2492 case 'i':
2493 XINT (copy, i) = XINT (orig, i);
2494 break;
2495
2496 case 't':
2497 XTREE (copy, i) = XTREE (orig, i);
2498 break;
2499
2500 case 's':
2501 case 'S':
2502 XSTR (copy, i) = XSTR (orig, i);
2503 break;
2504
2505 case '0':
2506 /* Copy this through the wide int field; that's safest. */
2507 X0WINT (copy, i) = X0WINT (orig, i);
2508 break;
2509
2510 default:
2511 abort ();
2512 }
2513 }
2514 return copy;
2515 }
2516
2517 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2518 Recursively does the same for subexpressions. */
2519
2520 rtx
2521 copy_rtx_if_shared (orig)
2522 rtx orig;
2523 {
2524 rtx x = orig;
2525 int i;
2526 enum rtx_code code;
2527 const char *format_ptr;
2528 int copied = 0;
2529
2530 if (x == 0)
2531 return 0;
2532
2533 code = GET_CODE (x);
2534
2535 /* These types may be freely shared. */
2536
2537 switch (code)
2538 {
2539 case REG:
2540 case QUEUED:
2541 case CONST_INT:
2542 case CONST_DOUBLE:
2543 case CONST_VECTOR:
2544 case SYMBOL_REF:
2545 case CODE_LABEL:
2546 case PC:
2547 case CC0:
2548 case SCRATCH:
2549 /* SCRATCH must be shared because they represent distinct values. */
2550 return x;
2551
2552 case CONST:
2553 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2554 a LABEL_REF, it isn't sharable. */
2555 if (GET_CODE (XEXP (x, 0)) == PLUS
2556 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2557 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2558 return x;
2559 break;
2560
2561 case INSN:
2562 case JUMP_INSN:
2563 case CALL_INSN:
2564 case NOTE:
2565 case BARRIER:
2566 /* The chain of insns is not being copied. */
2567 return x;
2568
2569 case MEM:
2570 /* A MEM is allowed to be shared if its address is constant.
2571
2572 We used to allow sharing of MEMs which referenced
2573 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2574 that can lose. instantiate_virtual_regs will not unshare
2575 the MEMs, and combine may change the structure of the address
2576 because it looks safe and profitable in one context, but
2577 in some other context it creates unrecognizable RTL. */
2578 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
2579 return x;
2580
2581 break;
2582
2583 default:
2584 break;
2585 }
2586
2587 /* This rtx may not be shared. If it has already been seen,
2588 replace it with a copy of itself. */
2589
2590 if (RTX_FLAG (x, used))
2591 {
2592 rtx copy;
2593
2594 copy = rtx_alloc (code);
2595 memcpy (copy, x,
2596 (sizeof (*copy) - sizeof (copy->fld)
2597 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
2598 x = copy;
2599 copied = 1;
2600 }
2601 RTX_FLAG (x, used) = 1;
2602
2603 /* Now scan the subexpressions recursively.
2604 We can store any replaced subexpressions directly into X
2605 since we know X is not shared! Any vectors in X
2606 must be copied if X was copied. */
2607
2608 format_ptr = GET_RTX_FORMAT (code);
2609
2610 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2611 {
2612 switch (*format_ptr++)
2613 {
2614 case 'e':
2615 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2616 break;
2617
2618 case 'E':
2619 if (XVEC (x, i) != NULL)
2620 {
2621 int j;
2622 int len = XVECLEN (x, i);
2623
2624 if (copied && len > 0)
2625 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2626 for (j = 0; j < len; j++)
2627 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
2628 }
2629 break;
2630 }
2631 }
2632 return x;
2633 }
2634
2635 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2636 to look for shared sub-parts. */
2637
2638 void
2639 reset_used_flags (x)
2640 rtx x;
2641 {
2642 int i, j;
2643 enum rtx_code code;
2644 const char *format_ptr;
2645
2646 if (x == 0)
2647 return;
2648
2649 code = GET_CODE (x);
2650
2651 /* These types may be freely shared so we needn't do any resetting
2652 for them. */
2653
2654 switch (code)
2655 {
2656 case REG:
2657 case QUEUED:
2658 case CONST_INT:
2659 case CONST_DOUBLE:
2660 case CONST_VECTOR:
2661 case SYMBOL_REF:
2662 case CODE_LABEL:
2663 case PC:
2664 case CC0:
2665 return;
2666
2667 case INSN:
2668 case JUMP_INSN:
2669 case CALL_INSN:
2670 case NOTE:
2671 case LABEL_REF:
2672 case BARRIER:
2673 /* The chain of insns is not being copied. */
2674 return;
2675
2676 default:
2677 break;
2678 }
2679
2680 RTX_FLAG (x, used) = 0;
2681
2682 format_ptr = GET_RTX_FORMAT (code);
2683 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2684 {
2685 switch (*format_ptr++)
2686 {
2687 case 'e':
2688 reset_used_flags (XEXP (x, i));
2689 break;
2690
2691 case 'E':
2692 for (j = 0; j < XVECLEN (x, i); j++)
2693 reset_used_flags (XVECEXP (x, i, j));
2694 break;
2695 }
2696 }
2697 }
2698 \f
2699 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2700 Return X or the rtx for the pseudo reg the value of X was copied into.
2701 OTHER must be valid as a SET_DEST. */
2702
2703 rtx
2704 make_safe_from (x, other)
2705 rtx x, other;
2706 {
2707 while (1)
2708 switch (GET_CODE (other))
2709 {
2710 case SUBREG:
2711 other = SUBREG_REG (other);
2712 break;
2713 case STRICT_LOW_PART:
2714 case SIGN_EXTEND:
2715 case ZERO_EXTEND:
2716 other = XEXP (other, 0);
2717 break;
2718 default:
2719 goto done;
2720 }
2721 done:
2722 if ((GET_CODE (other) == MEM
2723 && ! CONSTANT_P (x)
2724 && GET_CODE (x) != REG
2725 && GET_CODE (x) != SUBREG)
2726 || (GET_CODE (other) == REG
2727 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2728 || reg_mentioned_p (other, x))))
2729 {
2730 rtx temp = gen_reg_rtx (GET_MODE (x));
2731 emit_move_insn (temp, x);
2732 return temp;
2733 }
2734 return x;
2735 }
2736 \f
2737 /* Emission of insns (adding them to the doubly-linked list). */
2738
2739 /* Return the first insn of the current sequence or current function. */
2740
2741 rtx
2742 get_insns ()
2743 {
2744 return first_insn;
2745 }
2746
2747 /* Specify a new insn as the first in the chain. */
2748
2749 void
2750 set_first_insn (insn)
2751 rtx insn;
2752 {
2753 if (PREV_INSN (insn) != 0)
2754 abort ();
2755 first_insn = insn;
2756 }
2757
2758 /* Return the last insn emitted in current sequence or current function. */
2759
2760 rtx
2761 get_last_insn ()
2762 {
2763 return last_insn;
2764 }
2765
2766 /* Specify a new insn as the last in the chain. */
2767
2768 void
2769 set_last_insn (insn)
2770 rtx insn;
2771 {
2772 if (NEXT_INSN (insn) != 0)
2773 abort ();
2774 last_insn = insn;
2775 }
2776
2777 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2778
2779 rtx
2780 get_last_insn_anywhere ()
2781 {
2782 struct sequence_stack *stack;
2783 if (last_insn)
2784 return last_insn;
2785 for (stack = seq_stack; stack; stack = stack->next)
2786 if (stack->last != 0)
2787 return stack->last;
2788 return 0;
2789 }
2790
2791 /* Return the first nonnote insn emitted in current sequence or current
2792 function. This routine looks inside SEQUENCEs. */
2793
2794 rtx
2795 get_first_nonnote_insn ()
2796 {
2797 rtx insn = first_insn;
2798
2799 while (insn)
2800 {
2801 insn = next_insn (insn);
2802 if (insn == 0 || GET_CODE (insn) != NOTE)
2803 break;
2804 }
2805
2806 return insn;
2807 }
2808
2809 /* Return the last nonnote insn emitted in current sequence or current
2810 function. This routine looks inside SEQUENCEs. */
2811
2812 rtx
2813 get_last_nonnote_insn ()
2814 {
2815 rtx insn = last_insn;
2816
2817 while (insn)
2818 {
2819 insn = previous_insn (insn);
2820 if (insn == 0 || GET_CODE (insn) != NOTE)
2821 break;
2822 }
2823
2824 return insn;
2825 }
2826
2827 /* Return a number larger than any instruction's uid in this function. */
2828
2829 int
2830 get_max_uid ()
2831 {
2832 return cur_insn_uid;
2833 }
2834
2835 /* Renumber instructions so that no instruction UIDs are wasted. */
2836
2837 void
2838 renumber_insns (stream)
2839 FILE *stream;
2840 {
2841 rtx insn;
2842
2843 /* If we're not supposed to renumber instructions, don't. */
2844 if (!flag_renumber_insns)
2845 return;
2846
2847 /* If there aren't that many instructions, then it's not really
2848 worth renumbering them. */
2849 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2850 return;
2851
2852 cur_insn_uid = 1;
2853
2854 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2855 {
2856 if (stream)
2857 fprintf (stream, "Renumbering insn %d to %d\n",
2858 INSN_UID (insn), cur_insn_uid);
2859 INSN_UID (insn) = cur_insn_uid++;
2860 }
2861 }
2862 \f
2863 /* Return the next insn. If it is a SEQUENCE, return the first insn
2864 of the sequence. */
2865
2866 rtx
2867 next_insn (insn)
2868 rtx insn;
2869 {
2870 if (insn)
2871 {
2872 insn = NEXT_INSN (insn);
2873 if (insn && GET_CODE (insn) == INSN
2874 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2875 insn = XVECEXP (PATTERN (insn), 0, 0);
2876 }
2877
2878 return insn;
2879 }
2880
2881 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2882 of the sequence. */
2883
2884 rtx
2885 previous_insn (insn)
2886 rtx insn;
2887 {
2888 if (insn)
2889 {
2890 insn = PREV_INSN (insn);
2891 if (insn && GET_CODE (insn) == INSN
2892 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2893 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2894 }
2895
2896 return insn;
2897 }
2898
2899 /* Return the next insn after INSN that is not a NOTE. This routine does not
2900 look inside SEQUENCEs. */
2901
2902 rtx
2903 next_nonnote_insn (insn)
2904 rtx insn;
2905 {
2906 while (insn)
2907 {
2908 insn = NEXT_INSN (insn);
2909 if (insn == 0 || GET_CODE (insn) != NOTE)
2910 break;
2911 }
2912
2913 return insn;
2914 }
2915
2916 /* Return the previous insn before INSN that is not a NOTE. This routine does
2917 not look inside SEQUENCEs. */
2918
2919 rtx
2920 prev_nonnote_insn (insn)
2921 rtx insn;
2922 {
2923 while (insn)
2924 {
2925 insn = PREV_INSN (insn);
2926 if (insn == 0 || GET_CODE (insn) != NOTE)
2927 break;
2928 }
2929
2930 return insn;
2931 }
2932
2933 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2934 or 0, if there is none. This routine does not look inside
2935 SEQUENCEs. */
2936
2937 rtx
2938 next_real_insn (insn)
2939 rtx insn;
2940 {
2941 while (insn)
2942 {
2943 insn = NEXT_INSN (insn);
2944 if (insn == 0 || GET_CODE (insn) == INSN
2945 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2946 break;
2947 }
2948
2949 return insn;
2950 }
2951
2952 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2953 or 0, if there is none. This routine does not look inside
2954 SEQUENCEs. */
2955
2956 rtx
2957 prev_real_insn (insn)
2958 rtx insn;
2959 {
2960 while (insn)
2961 {
2962 insn = PREV_INSN (insn);
2963 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2964 || GET_CODE (insn) == JUMP_INSN)
2965 break;
2966 }
2967
2968 return insn;
2969 }
2970
2971 /* Find the next insn after INSN that really does something. This routine
2972 does not look inside SEQUENCEs. Until reload has completed, this is the
2973 same as next_real_insn. */
2974
2975 int
2976 active_insn_p (insn)
2977 rtx insn;
2978 {
2979 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2980 || (GET_CODE (insn) == INSN
2981 && (! reload_completed
2982 || (GET_CODE (PATTERN (insn)) != USE
2983 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2984 }
2985
2986 rtx
2987 next_active_insn (insn)
2988 rtx insn;
2989 {
2990 while (insn)
2991 {
2992 insn = NEXT_INSN (insn);
2993 if (insn == 0 || active_insn_p (insn))
2994 break;
2995 }
2996
2997 return insn;
2998 }
2999
3000 /* Find the last insn before INSN that really does something. This routine
3001 does not look inside SEQUENCEs. Until reload has completed, this is the
3002 same as prev_real_insn. */
3003
3004 rtx
3005 prev_active_insn (insn)
3006 rtx insn;
3007 {
3008 while (insn)
3009 {
3010 insn = PREV_INSN (insn);
3011 if (insn == 0 || active_insn_p (insn))
3012 break;
3013 }
3014
3015 return insn;
3016 }
3017
3018 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3019
3020 rtx
3021 next_label (insn)
3022 rtx insn;
3023 {
3024 while (insn)
3025 {
3026 insn = NEXT_INSN (insn);
3027 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3028 break;
3029 }
3030
3031 return insn;
3032 }
3033
3034 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3035
3036 rtx
3037 prev_label (insn)
3038 rtx insn;
3039 {
3040 while (insn)
3041 {
3042 insn = PREV_INSN (insn);
3043 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3044 break;
3045 }
3046
3047 return insn;
3048 }
3049 \f
3050 #ifdef HAVE_cc0
3051 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3052 and REG_CC_USER notes so we can find it. */
3053
3054 void
3055 link_cc0_insns (insn)
3056 rtx insn;
3057 {
3058 rtx user = next_nonnote_insn (insn);
3059
3060 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3061 user = XVECEXP (PATTERN (user), 0, 0);
3062
3063 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3064 REG_NOTES (user));
3065 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3066 }
3067
3068 /* Return the next insn that uses CC0 after INSN, which is assumed to
3069 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3070 applied to the result of this function should yield INSN).
3071
3072 Normally, this is simply the next insn. However, if a REG_CC_USER note
3073 is present, it contains the insn that uses CC0.
3074
3075 Return 0 if we can't find the insn. */
3076
3077 rtx
3078 next_cc0_user (insn)
3079 rtx insn;
3080 {
3081 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3082
3083 if (note)
3084 return XEXP (note, 0);
3085
3086 insn = next_nonnote_insn (insn);
3087 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3088 insn = XVECEXP (PATTERN (insn), 0, 0);
3089
3090 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3091 return insn;
3092
3093 return 0;
3094 }
3095
3096 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3097 note, it is the previous insn. */
3098
3099 rtx
3100 prev_cc0_setter (insn)
3101 rtx insn;
3102 {
3103 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3104
3105 if (note)
3106 return XEXP (note, 0);
3107
3108 insn = prev_nonnote_insn (insn);
3109 if (! sets_cc0_p (PATTERN (insn)))
3110 abort ();
3111
3112 return insn;
3113 }
3114 #endif
3115
3116 /* Increment the label uses for all labels present in rtx. */
3117
3118 static void
3119 mark_label_nuses (x)
3120 rtx x;
3121 {
3122 enum rtx_code code;
3123 int i, j;
3124 const char *fmt;
3125
3126 code = GET_CODE (x);
3127 if (code == LABEL_REF)
3128 LABEL_NUSES (XEXP (x, 0))++;
3129
3130 fmt = GET_RTX_FORMAT (code);
3131 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3132 {
3133 if (fmt[i] == 'e')
3134 mark_label_nuses (XEXP (x, i));
3135 else if (fmt[i] == 'E')
3136 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3137 mark_label_nuses (XVECEXP (x, i, j));
3138 }
3139 }
3140
3141 \f
3142 /* Try splitting insns that can be split for better scheduling.
3143 PAT is the pattern which might split.
3144 TRIAL is the insn providing PAT.
3145 LAST is non-zero if we should return the last insn of the sequence produced.
3146
3147 If this routine succeeds in splitting, it returns the first or last
3148 replacement insn depending on the value of LAST. Otherwise, it
3149 returns TRIAL. If the insn to be returned can be split, it will be. */
3150
3151 rtx
3152 try_split (pat, trial, last)
3153 rtx pat, trial;
3154 int last;
3155 {
3156 rtx before = PREV_INSN (trial);
3157 rtx after = NEXT_INSN (trial);
3158 int has_barrier = 0;
3159 rtx tem;
3160 rtx note, seq;
3161 int probability;
3162
3163 if (any_condjump_p (trial)
3164 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3165 split_branch_probability = INTVAL (XEXP (note, 0));
3166 probability = split_branch_probability;
3167
3168 seq = split_insns (pat, trial);
3169
3170 split_branch_probability = -1;
3171
3172 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3173 We may need to handle this specially. */
3174 if (after && GET_CODE (after) == BARRIER)
3175 {
3176 has_barrier = 1;
3177 after = NEXT_INSN (after);
3178 }
3179
3180 if (seq)
3181 {
3182 /* Sometimes there will be only one insn in that list, this case will
3183 normally arise only when we want it in turn to be split (SFmode on
3184 the 29k is an example). */
3185 if (NEXT_INSN (seq) != NULL_RTX)
3186 {
3187 rtx insn_last, insn;
3188 int njumps = 0;
3189
3190 /* Avoid infinite loop if any insn of the result matches
3191 the original pattern. */
3192 insn_last = seq;
3193 while (1)
3194 {
3195 if (INSN_P (insn_last)
3196 && rtx_equal_p (PATTERN (insn_last), pat))
3197 return trial;
3198 if (NEXT_INSN (insn_last) == NULL_RTX)
3199 break;
3200 insn_last = NEXT_INSN (insn_last);
3201 }
3202
3203 /* Mark labels. */
3204 insn = insn_last;
3205 while (insn != NULL_RTX)
3206 {
3207 if (GET_CODE (insn) == JUMP_INSN)
3208 {
3209 mark_jump_label (PATTERN (insn), insn, 0);
3210 njumps++;
3211 if (probability != -1
3212 && any_condjump_p (insn)
3213 && !find_reg_note (insn, REG_BR_PROB, 0))
3214 {
3215 /* We can preserve the REG_BR_PROB notes only if exactly
3216 one jump is created, otherwise the machine description
3217 is responsible for this step using
3218 split_branch_probability variable. */
3219 if (njumps != 1)
3220 abort ();
3221 REG_NOTES (insn)
3222 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3223 GEN_INT (probability),
3224 REG_NOTES (insn));
3225 }
3226 }
3227
3228 insn = PREV_INSN (insn);
3229 }
3230
3231 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3232 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3233 if (GET_CODE (trial) == CALL_INSN)
3234 {
3235 insn = insn_last;
3236 while (insn != NULL_RTX)
3237 {
3238 if (GET_CODE (insn) == CALL_INSN)
3239 CALL_INSN_FUNCTION_USAGE (insn)
3240 = CALL_INSN_FUNCTION_USAGE (trial);
3241
3242 insn = PREV_INSN (insn);
3243 }
3244 }
3245
3246 /* Copy notes, particularly those related to the CFG. */
3247 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3248 {
3249 switch (REG_NOTE_KIND (note))
3250 {
3251 case REG_EH_REGION:
3252 insn = insn_last;
3253 while (insn != NULL_RTX)
3254 {
3255 if (GET_CODE (insn) == CALL_INSN
3256 || (flag_non_call_exceptions
3257 && may_trap_p (PATTERN (insn))))
3258 REG_NOTES (insn)
3259 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3260 XEXP (note, 0),
3261 REG_NOTES (insn));
3262 insn = PREV_INSN (insn);
3263 }
3264 break;
3265
3266 case REG_NORETURN:
3267 case REG_SETJMP:
3268 case REG_ALWAYS_RETURN:
3269 insn = insn_last;
3270 while (insn != NULL_RTX)
3271 {
3272 if (GET_CODE (insn) == CALL_INSN)
3273 REG_NOTES (insn)
3274 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3275 XEXP (note, 0),
3276 REG_NOTES (insn));
3277 insn = PREV_INSN (insn);
3278 }
3279 break;
3280
3281 case REG_NON_LOCAL_GOTO:
3282 insn = insn_last;
3283 while (insn != NULL_RTX)
3284 {
3285 if (GET_CODE (insn) == JUMP_INSN)
3286 REG_NOTES (insn)
3287 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3288 XEXP (note, 0),
3289 REG_NOTES (insn));
3290 insn = PREV_INSN (insn);
3291 }
3292 break;
3293
3294 default:
3295 break;
3296 }
3297 }
3298
3299 /* If there are LABELS inside the split insns increment the
3300 usage count so we don't delete the label. */
3301 if (GET_CODE (trial) == INSN)
3302 {
3303 insn = insn_last;
3304 while (insn != NULL_RTX)
3305 {
3306 if (GET_CODE (insn) == INSN)
3307 mark_label_nuses (PATTERN (insn));
3308
3309 insn = PREV_INSN (insn);
3310 }
3311 }
3312
3313 tem = emit_insn_after_scope (seq, trial, INSN_SCOPE (trial));
3314
3315 delete_insn (trial);
3316 if (has_barrier)
3317 emit_barrier_after (tem);
3318
3319 /* Recursively call try_split for each new insn created; by the
3320 time control returns here that insn will be fully split, so
3321 set LAST and continue from the insn after the one returned.
3322 We can't use next_active_insn here since AFTER may be a note.
3323 Ignore deleted insns, which can be occur if not optimizing. */
3324 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3325 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3326 tem = try_split (PATTERN (tem), tem, 1);
3327 }
3328 /* Avoid infinite loop if the result matches the original pattern. */
3329 else if (rtx_equal_p (PATTERN (seq), pat))
3330 return trial;
3331 else
3332 {
3333 PATTERN (trial) = PATTERN (seq);
3334 INSN_CODE (trial) = -1;
3335 try_split (PATTERN (trial), trial, last);
3336 }
3337
3338 /* Return either the first or the last insn, depending on which was
3339 requested. */
3340 return last
3341 ? (after ? PREV_INSN (after) : last_insn)
3342 : NEXT_INSN (before);
3343 }
3344
3345 return trial;
3346 }
3347 \f
3348 /* Make and return an INSN rtx, initializing all its slots.
3349 Store PATTERN in the pattern slots. */
3350
3351 rtx
3352 make_insn_raw (pattern)
3353 rtx pattern;
3354 {
3355 rtx insn;
3356
3357 insn = rtx_alloc (INSN);
3358
3359 INSN_UID (insn) = cur_insn_uid++;
3360 PATTERN (insn) = pattern;
3361 INSN_CODE (insn) = -1;
3362 LOG_LINKS (insn) = NULL;
3363 REG_NOTES (insn) = NULL;
3364 INSN_SCOPE (insn) = NULL;
3365 BLOCK_FOR_INSN (insn) = NULL;
3366
3367 #ifdef ENABLE_RTL_CHECKING
3368 if (insn
3369 && INSN_P (insn)
3370 && (returnjump_p (insn)
3371 || (GET_CODE (insn) == SET
3372 && SET_DEST (insn) == pc_rtx)))
3373 {
3374 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3375 debug_rtx (insn);
3376 }
3377 #endif
3378
3379 return insn;
3380 }
3381
3382 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3383
3384 static rtx
3385 make_jump_insn_raw (pattern)
3386 rtx pattern;
3387 {
3388 rtx insn;
3389
3390 insn = rtx_alloc (JUMP_INSN);
3391 INSN_UID (insn) = cur_insn_uid++;
3392
3393 PATTERN (insn) = pattern;
3394 INSN_CODE (insn) = -1;
3395 LOG_LINKS (insn) = NULL;
3396 REG_NOTES (insn) = NULL;
3397 JUMP_LABEL (insn) = NULL;
3398 INSN_SCOPE (insn) = NULL;
3399 BLOCK_FOR_INSN (insn) = NULL;
3400
3401 return insn;
3402 }
3403
3404 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3405
3406 static rtx
3407 make_call_insn_raw (pattern)
3408 rtx pattern;
3409 {
3410 rtx insn;
3411
3412 insn = rtx_alloc (CALL_INSN);
3413 INSN_UID (insn) = cur_insn_uid++;
3414
3415 PATTERN (insn) = pattern;
3416 INSN_CODE (insn) = -1;
3417 LOG_LINKS (insn) = NULL;
3418 REG_NOTES (insn) = NULL;
3419 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3420 INSN_SCOPE (insn) = NULL;
3421 BLOCK_FOR_INSN (insn) = NULL;
3422
3423 return insn;
3424 }
3425 \f
3426 /* Add INSN to the end of the doubly-linked list.
3427 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3428
3429 void
3430 add_insn (insn)
3431 rtx insn;
3432 {
3433 PREV_INSN (insn) = last_insn;
3434 NEXT_INSN (insn) = 0;
3435
3436 if (NULL != last_insn)
3437 NEXT_INSN (last_insn) = insn;
3438
3439 if (NULL == first_insn)
3440 first_insn = insn;
3441
3442 last_insn = insn;
3443 }
3444
3445 /* Add INSN into the doubly-linked list after insn AFTER. This and
3446 the next should be the only functions called to insert an insn once
3447 delay slots have been filled since only they know how to update a
3448 SEQUENCE. */
3449
3450 void
3451 add_insn_after (insn, after)
3452 rtx insn, after;
3453 {
3454 rtx next = NEXT_INSN (after);
3455 basic_block bb;
3456
3457 if (optimize && INSN_DELETED_P (after))
3458 abort ();
3459
3460 NEXT_INSN (insn) = next;
3461 PREV_INSN (insn) = after;
3462
3463 if (next)
3464 {
3465 PREV_INSN (next) = insn;
3466 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3467 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3468 }
3469 else if (last_insn == after)
3470 last_insn = insn;
3471 else
3472 {
3473 struct sequence_stack *stack = seq_stack;
3474 /* Scan all pending sequences too. */
3475 for (; stack; stack = stack->next)
3476 if (after == stack->last)
3477 {
3478 stack->last = insn;
3479 break;
3480 }
3481
3482 if (stack == 0)
3483 abort ();
3484 }
3485
3486 if (GET_CODE (after) != BARRIER
3487 && GET_CODE (insn) != BARRIER
3488 && (bb = BLOCK_FOR_INSN (after)))
3489 {
3490 set_block_for_insn (insn, bb);
3491 if (INSN_P (insn))
3492 bb->flags |= BB_DIRTY;
3493 /* Should not happen as first in the BB is always
3494 either NOTE or LABEL. */
3495 if (bb->end == after
3496 /* Avoid clobbering of structure when creating new BB. */
3497 && GET_CODE (insn) != BARRIER
3498 && (GET_CODE (insn) != NOTE
3499 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3500 bb->end = insn;
3501 }
3502
3503 NEXT_INSN (after) = insn;
3504 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3505 {
3506 rtx sequence = PATTERN (after);
3507 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3508 }
3509 }
3510
3511 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3512 the previous should be the only functions called to insert an insn once
3513 delay slots have been filled since only they know how to update a
3514 SEQUENCE. */
3515
3516 void
3517 add_insn_before (insn, before)
3518 rtx insn, before;
3519 {
3520 rtx prev = PREV_INSN (before);
3521 basic_block bb;
3522
3523 if (optimize && INSN_DELETED_P (before))
3524 abort ();
3525
3526 PREV_INSN (insn) = prev;
3527 NEXT_INSN (insn) = before;
3528
3529 if (prev)
3530 {
3531 NEXT_INSN (prev) = insn;
3532 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3533 {
3534 rtx sequence = PATTERN (prev);
3535 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3536 }
3537 }
3538 else if (first_insn == before)
3539 first_insn = insn;
3540 else
3541 {
3542 struct sequence_stack *stack = seq_stack;
3543 /* Scan all pending sequences too. */
3544 for (; stack; stack = stack->next)
3545 if (before == stack->first)
3546 {
3547 stack->first = insn;
3548 break;
3549 }
3550
3551 if (stack == 0)
3552 abort ();
3553 }
3554
3555 if (GET_CODE (before) != BARRIER
3556 && GET_CODE (insn) != BARRIER
3557 && (bb = BLOCK_FOR_INSN (before)))
3558 {
3559 set_block_for_insn (insn, bb);
3560 if (INSN_P (insn))
3561 bb->flags |= BB_DIRTY;
3562 /* Should not happen as first in the BB is always
3563 either NOTE or LABEl. */
3564 if (bb->head == insn
3565 /* Avoid clobbering of structure when creating new BB. */
3566 && GET_CODE (insn) != BARRIER
3567 && (GET_CODE (insn) != NOTE
3568 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3569 abort ();
3570 }
3571
3572 PREV_INSN (before) = insn;
3573 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3574 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3575 }
3576
3577 /* Remove an insn from its doubly-linked list. This function knows how
3578 to handle sequences. */
3579 void
3580 remove_insn (insn)
3581 rtx insn;
3582 {
3583 rtx next = NEXT_INSN (insn);
3584 rtx prev = PREV_INSN (insn);
3585 basic_block bb;
3586
3587 if (prev)
3588 {
3589 NEXT_INSN (prev) = next;
3590 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3591 {
3592 rtx sequence = PATTERN (prev);
3593 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3594 }
3595 }
3596 else if (first_insn == insn)
3597 first_insn = next;
3598 else
3599 {
3600 struct sequence_stack *stack = seq_stack;
3601 /* Scan all pending sequences too. */
3602 for (; stack; stack = stack->next)
3603 if (insn == stack->first)
3604 {
3605 stack->first = next;
3606 break;
3607 }
3608
3609 if (stack == 0)
3610 abort ();
3611 }
3612
3613 if (next)
3614 {
3615 PREV_INSN (next) = prev;
3616 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3617 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3618 }
3619 else if (last_insn == insn)
3620 last_insn = prev;
3621 else
3622 {
3623 struct sequence_stack *stack = seq_stack;
3624 /* Scan all pending sequences too. */
3625 for (; stack; stack = stack->next)
3626 if (insn == stack->last)
3627 {
3628 stack->last = prev;
3629 break;
3630 }
3631
3632 if (stack == 0)
3633 abort ();
3634 }
3635 if (GET_CODE (insn) != BARRIER
3636 && (bb = BLOCK_FOR_INSN (insn)))
3637 {
3638 if (INSN_P (insn))
3639 bb->flags |= BB_DIRTY;
3640 if (bb->head == insn)
3641 {
3642 /* Never ever delete the basic block note without deleting whole
3643 basic block. */
3644 if (GET_CODE (insn) == NOTE)
3645 abort ();
3646 bb->head = next;
3647 }
3648 if (bb->end == insn)
3649 bb->end = prev;
3650 }
3651 }
3652
3653 /* Delete all insns made since FROM.
3654 FROM becomes the new last instruction. */
3655
3656 void
3657 delete_insns_since (from)
3658 rtx from;
3659 {
3660 if (from == 0)
3661 first_insn = 0;
3662 else
3663 NEXT_INSN (from) = 0;
3664 last_insn = from;
3665 }
3666
3667 /* This function is deprecated, please use sequences instead.
3668
3669 Move a consecutive bunch of insns to a different place in the chain.
3670 The insns to be moved are those between FROM and TO.
3671 They are moved to a new position after the insn AFTER.
3672 AFTER must not be FROM or TO or any insn in between.
3673
3674 This function does not know about SEQUENCEs and hence should not be
3675 called after delay-slot filling has been done. */
3676
3677 void
3678 reorder_insns_nobb (from, to, after)
3679 rtx from, to, after;
3680 {
3681 /* Splice this bunch out of where it is now. */
3682 if (PREV_INSN (from))
3683 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3684 if (NEXT_INSN (to))
3685 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3686 if (last_insn == to)
3687 last_insn = PREV_INSN (from);
3688 if (first_insn == from)
3689 first_insn = NEXT_INSN (to);
3690
3691 /* Make the new neighbors point to it and it to them. */
3692 if (NEXT_INSN (after))
3693 PREV_INSN (NEXT_INSN (after)) = to;
3694
3695 NEXT_INSN (to) = NEXT_INSN (after);
3696 PREV_INSN (from) = after;
3697 NEXT_INSN (after) = from;
3698 if (after == last_insn)
3699 last_insn = to;
3700 }
3701
3702 /* Same as function above, but take care to update BB boundaries. */
3703 void
3704 reorder_insns (from, to, after)
3705 rtx from, to, after;
3706 {
3707 rtx prev = PREV_INSN (from);
3708 basic_block bb, bb2;
3709
3710 reorder_insns_nobb (from, to, after);
3711
3712 if (GET_CODE (after) != BARRIER
3713 && (bb = BLOCK_FOR_INSN (after)))
3714 {
3715 rtx x;
3716 bb->flags |= BB_DIRTY;
3717
3718 if (GET_CODE (from) != BARRIER
3719 && (bb2 = BLOCK_FOR_INSN (from)))
3720 {
3721 if (bb2->end == to)
3722 bb2->end = prev;
3723 bb2->flags |= BB_DIRTY;
3724 }
3725
3726 if (bb->end == after)
3727 bb->end = to;
3728
3729 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3730 set_block_for_insn (x, bb);
3731 }
3732 }
3733
3734 /* Return the line note insn preceding INSN. */
3735
3736 static rtx
3737 find_line_note (insn)
3738 rtx insn;
3739 {
3740 if (no_line_numbers)
3741 return 0;
3742
3743 for (; insn; insn = PREV_INSN (insn))
3744 if (GET_CODE (insn) == NOTE
3745 && NOTE_LINE_NUMBER (insn) >= 0)
3746 break;
3747
3748 return insn;
3749 }
3750
3751 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3752 of the moved insns when debugging. This may insert a note between AFTER
3753 and FROM, and another one after TO. */
3754
3755 void
3756 reorder_insns_with_line_notes (from, to, after)
3757 rtx from, to, after;
3758 {
3759 rtx from_line = find_line_note (from);
3760 rtx after_line = find_line_note (after);
3761
3762 reorder_insns (from, to, after);
3763
3764 if (from_line == after_line)
3765 return;
3766
3767 if (from_line)
3768 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3769 NOTE_LINE_NUMBER (from_line),
3770 after);
3771 if (after_line)
3772 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3773 NOTE_LINE_NUMBER (after_line),
3774 to);
3775 }
3776
3777 /* Remove unnecessary notes from the instruction stream. */
3778
3779 void
3780 remove_unnecessary_notes ()
3781 {
3782 rtx block_stack = NULL_RTX;
3783 rtx eh_stack = NULL_RTX;
3784 rtx insn;
3785 rtx next;
3786 rtx tmp;
3787
3788 /* We must not remove the first instruction in the function because
3789 the compiler depends on the first instruction being a note. */
3790 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3791 {
3792 /* Remember what's next. */
3793 next = NEXT_INSN (insn);
3794
3795 /* We're only interested in notes. */
3796 if (GET_CODE (insn) != NOTE)
3797 continue;
3798
3799 switch (NOTE_LINE_NUMBER (insn))
3800 {
3801 case NOTE_INSN_DELETED:
3802 case NOTE_INSN_LOOP_END_TOP_COND:
3803 remove_insn (insn);
3804 break;
3805
3806 case NOTE_INSN_EH_REGION_BEG:
3807 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3808 break;
3809
3810 case NOTE_INSN_EH_REGION_END:
3811 /* Too many end notes. */
3812 if (eh_stack == NULL_RTX)
3813 abort ();
3814 /* Mismatched nesting. */
3815 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3816 abort ();
3817 tmp = eh_stack;
3818 eh_stack = XEXP (eh_stack, 1);
3819 free_INSN_LIST_node (tmp);
3820 break;
3821
3822 case NOTE_INSN_BLOCK_BEG:
3823 /* By now, all notes indicating lexical blocks should have
3824 NOTE_BLOCK filled in. */
3825 if (NOTE_BLOCK (insn) == NULL_TREE)
3826 abort ();
3827 block_stack = alloc_INSN_LIST (insn, block_stack);
3828 break;
3829
3830 case NOTE_INSN_BLOCK_END:
3831 /* Too many end notes. */
3832 if (block_stack == NULL_RTX)
3833 abort ();
3834 /* Mismatched nesting. */
3835 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3836 abort ();
3837 tmp = block_stack;
3838 block_stack = XEXP (block_stack, 1);
3839 free_INSN_LIST_node (tmp);
3840
3841 /* Scan back to see if there are any non-note instructions
3842 between INSN and the beginning of this block. If not,
3843 then there is no PC range in the generated code that will
3844 actually be in this block, so there's no point in
3845 remembering the existence of the block. */
3846 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3847 {
3848 /* This block contains a real instruction. Note that we
3849 don't include labels; if the only thing in the block
3850 is a label, then there are still no PC values that
3851 lie within the block. */
3852 if (INSN_P (tmp))
3853 break;
3854
3855 /* We're only interested in NOTEs. */
3856 if (GET_CODE (tmp) != NOTE)
3857 continue;
3858
3859 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3860 {
3861 /* We just verified that this BLOCK matches us with
3862 the block_stack check above. Never delete the
3863 BLOCK for the outermost scope of the function; we
3864 can refer to names from that scope even if the
3865 block notes are messed up. */
3866 if (! is_body_block (NOTE_BLOCK (insn))
3867 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3868 {
3869 remove_insn (tmp);
3870 remove_insn (insn);
3871 }
3872 break;
3873 }
3874 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3875 /* There's a nested block. We need to leave the
3876 current block in place since otherwise the debugger
3877 wouldn't be able to show symbols from our block in
3878 the nested block. */
3879 break;
3880 }
3881 }
3882 }
3883
3884 /* Too many begin notes. */
3885 if (block_stack || eh_stack)
3886 abort ();
3887 }
3888
3889 \f
3890 /* Emit insn(s) of given code and pattern
3891 at a specified place within the doubly-linked list.
3892
3893 All of the emit_foo global entry points accept an object
3894 X which is either an insn list or a PATTERN of a single
3895 instruction.
3896
3897 There are thus a few canonical ways to generate code and
3898 emit it at a specific place in the instruction stream. For
3899 example, consider the instruction named SPOT and the fact that
3900 we would like to emit some instructions before SPOT. We might
3901 do it like this:
3902
3903 start_sequence ();
3904 ... emit the new instructions ...
3905 insns_head = get_insns ();
3906 end_sequence ();
3907
3908 emit_insn_before (insns_head, SPOT);
3909
3910 It used to be common to generate SEQUENCE rtl instead, but that
3911 is a relic of the past which no longer occurs. The reason is that
3912 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3913 generated would almost certainly die right after it was created. */
3914
3915 /* Make X be output before the instruction BEFORE. */
3916
3917 rtx
3918 emit_insn_before (x, before)
3919 rtx x, before;
3920 {
3921 rtx last = before;
3922 rtx insn;
3923
3924 #ifdef ENABLE_RTL_CHECKING
3925 if (before == NULL_RTX)
3926 abort ();
3927 #endif
3928
3929 if (x == NULL_RTX)
3930 return last;
3931
3932 switch (GET_CODE (x))
3933 {
3934 case INSN:
3935 case JUMP_INSN:
3936 case CALL_INSN:
3937 case CODE_LABEL:
3938 case BARRIER:
3939 case NOTE:
3940 insn = x;
3941 while (insn)
3942 {
3943 rtx next = NEXT_INSN (insn);
3944 add_insn_before (insn, before);
3945 last = insn;
3946 insn = next;
3947 }
3948 break;
3949
3950 #ifdef ENABLE_RTL_CHECKING
3951 case SEQUENCE:
3952 abort ();
3953 break;
3954 #endif
3955
3956 default:
3957 last = make_insn_raw (x);
3958 add_insn_before (last, before);
3959 break;
3960 }
3961
3962 return last;
3963 }
3964
3965 /* Make an instruction with body X and code JUMP_INSN
3966 and output it before the instruction BEFORE. */
3967
3968 rtx
3969 emit_jump_insn_before (x, before)
3970 rtx x, before;
3971 {
3972 rtx insn, last;
3973
3974 #ifdef ENABLE_RTL_CHECKING
3975 if (before == NULL_RTX)
3976 abort ();
3977 #endif
3978
3979 switch (GET_CODE (x))
3980 {
3981 case INSN:
3982 case JUMP_INSN:
3983 case CALL_INSN:
3984 case CODE_LABEL:
3985 case BARRIER:
3986 case NOTE:
3987 insn = x;
3988 while (insn)
3989 {
3990 rtx next = NEXT_INSN (insn);
3991 add_insn_before (insn, before);
3992 last = insn;
3993 insn = next;
3994 }
3995 break;
3996
3997 #ifdef ENABLE_RTL_CHECKING
3998 case SEQUENCE:
3999 abort ();
4000 break;
4001 #endif
4002
4003 default:
4004 last = make_jump_insn_raw (x);
4005 add_insn_before (last, before);
4006 break;
4007 }
4008
4009 return last;
4010 }
4011
4012 /* Make an instruction with body X and code CALL_INSN
4013 and output it before the instruction BEFORE. */
4014
4015 rtx
4016 emit_call_insn_before (x, before)
4017 rtx x, before;
4018 {
4019 rtx last, insn;
4020
4021 #ifdef ENABLE_RTL_CHECKING
4022 if (before == NULL_RTX)
4023 abort ();
4024 #endif
4025
4026 switch (GET_CODE (x))
4027 {
4028 case INSN:
4029 case JUMP_INSN:
4030 case CALL_INSN:
4031 case CODE_LABEL:
4032 case BARRIER:
4033 case NOTE:
4034 insn = x;
4035 while (insn)
4036 {
4037 rtx next = NEXT_INSN (insn);
4038 add_insn_before (insn, before);
4039 last = insn;
4040 insn = next;
4041 }
4042 break;
4043
4044 #ifdef ENABLE_RTL_CHECKING
4045 case SEQUENCE:
4046 abort ();
4047 break;
4048 #endif
4049
4050 default:
4051 last = make_call_insn_raw (x);
4052 add_insn_before (last, before);
4053 break;
4054 }
4055
4056 return last;
4057 }
4058
4059 /* Make an insn of code BARRIER
4060 and output it before the insn BEFORE. */
4061
4062 rtx
4063 emit_barrier_before (before)
4064 rtx before;
4065 {
4066 rtx insn = rtx_alloc (BARRIER);
4067
4068 INSN_UID (insn) = cur_insn_uid++;
4069
4070 add_insn_before (insn, before);
4071 return insn;
4072 }
4073
4074 /* Emit the label LABEL before the insn BEFORE. */
4075
4076 rtx
4077 emit_label_before (label, before)
4078 rtx label, before;
4079 {
4080 /* This can be called twice for the same label as a result of the
4081 confusion that follows a syntax error! So make it harmless. */
4082 if (INSN_UID (label) == 0)
4083 {
4084 INSN_UID (label) = cur_insn_uid++;
4085 add_insn_before (label, before);
4086 }
4087
4088 return label;
4089 }
4090
4091 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4092
4093 rtx
4094 emit_note_before (subtype, before)
4095 int subtype;
4096 rtx before;
4097 {
4098 rtx note = rtx_alloc (NOTE);
4099 INSN_UID (note) = cur_insn_uid++;
4100 NOTE_SOURCE_FILE (note) = 0;
4101 NOTE_LINE_NUMBER (note) = subtype;
4102 BLOCK_FOR_INSN (note) = NULL;
4103
4104 add_insn_before (note, before);
4105 return note;
4106 }
4107 \f
4108 /* Helper for emit_insn_after, handles lists of instructions
4109 efficiently. */
4110
4111 static rtx emit_insn_after_1 PARAMS ((rtx, rtx));
4112
4113 static rtx
4114 emit_insn_after_1 (first, after)
4115 rtx first, after;
4116 {
4117 rtx last;
4118 rtx after_after;
4119 basic_block bb;
4120
4121 if (GET_CODE (after) != BARRIER
4122 && (bb = BLOCK_FOR_INSN (after)))
4123 {
4124 bb->flags |= BB_DIRTY;
4125 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4126 if (GET_CODE (last) != BARRIER)
4127 set_block_for_insn (last, bb);
4128 if (GET_CODE (last) != BARRIER)
4129 set_block_for_insn (last, bb);
4130 if (bb->end == after)
4131 bb->end = last;
4132 }
4133 else
4134 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4135 continue;
4136
4137 after_after = NEXT_INSN (after);
4138
4139 NEXT_INSN (after) = first;
4140 PREV_INSN (first) = after;
4141 NEXT_INSN (last) = after_after;
4142 if (after_after)
4143 PREV_INSN (after_after) = last;
4144
4145 if (after == last_insn)
4146 last_insn = last;
4147 return last;
4148 }
4149
4150 /* Make X be output after the insn AFTER. */
4151
4152 rtx
4153 emit_insn_after (x, after)
4154 rtx x, after;
4155 {
4156 rtx last = after;
4157
4158 #ifdef ENABLE_RTL_CHECKING
4159 if (after == NULL_RTX)
4160 abort ();
4161 #endif
4162
4163 if (x == NULL_RTX)
4164 return last;
4165
4166 switch (GET_CODE (x))
4167 {
4168 case INSN:
4169 case JUMP_INSN:
4170 case CALL_INSN:
4171 case CODE_LABEL:
4172 case BARRIER:
4173 case NOTE:
4174 last = emit_insn_after_1 (x, after);
4175 break;
4176
4177 #ifdef ENABLE_RTL_CHECKING
4178 case SEQUENCE:
4179 abort ();
4180 break;
4181 #endif
4182
4183 default:
4184 last = make_insn_raw (x);
4185 add_insn_after (last, after);
4186 break;
4187 }
4188
4189 return last;
4190 }
4191
4192 /* Similar to emit_insn_after, except that line notes are to be inserted so
4193 as to act as if this insn were at FROM. */
4194
4195 void
4196 emit_insn_after_with_line_notes (x, after, from)
4197 rtx x, after, from;
4198 {
4199 rtx from_line = find_line_note (from);
4200 rtx after_line = find_line_note (after);
4201 rtx insn = emit_insn_after (x, after);
4202
4203 if (from_line)
4204 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
4205 NOTE_LINE_NUMBER (from_line),
4206 after);
4207
4208 if (after_line)
4209 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
4210 NOTE_LINE_NUMBER (after_line),
4211 insn);
4212 }
4213
4214 /* Make an insn of code JUMP_INSN with body X
4215 and output it after the insn AFTER. */
4216
4217 rtx
4218 emit_jump_insn_after (x, after)
4219 rtx x, after;
4220 {
4221 rtx last;
4222
4223 #ifdef ENABLE_RTL_CHECKING
4224 if (after == NULL_RTX)
4225 abort ();
4226 #endif
4227
4228 switch (GET_CODE (x))
4229 {
4230 case INSN:
4231 case JUMP_INSN:
4232 case CALL_INSN:
4233 case CODE_LABEL:
4234 case BARRIER:
4235 case NOTE:
4236 last = emit_insn_after_1 (x, after);
4237 break;
4238
4239 #ifdef ENABLE_RTL_CHECKING
4240 case SEQUENCE:
4241 abort ();
4242 break;
4243 #endif
4244
4245 default:
4246 last = make_jump_insn_raw (x);
4247 add_insn_after (last, after);
4248 break;
4249 }
4250
4251 return last;
4252 }
4253
4254 /* Make an instruction with body X and code CALL_INSN
4255 and output it after the instruction AFTER. */
4256
4257 rtx
4258 emit_call_insn_after (x, after)
4259 rtx x, after;
4260 {
4261 rtx last;
4262
4263 #ifdef ENABLE_RTL_CHECKING
4264 if (after == NULL_RTX)
4265 abort ();
4266 #endif
4267
4268 switch (GET_CODE (x))
4269 {
4270 case INSN:
4271 case JUMP_INSN:
4272 case CALL_INSN:
4273 case CODE_LABEL:
4274 case BARRIER:
4275 case NOTE:
4276 last = emit_insn_after_1 (x, after);
4277 break;
4278
4279 #ifdef ENABLE_RTL_CHECKING
4280 case SEQUENCE:
4281 abort ();
4282 break;
4283 #endif
4284
4285 default:
4286 last = make_call_insn_raw (x);
4287 add_insn_after (last, after);
4288 break;
4289 }
4290
4291 return last;
4292 }
4293
4294 /* Make an insn of code BARRIER
4295 and output it after the insn AFTER. */
4296
4297 rtx
4298 emit_barrier_after (after)
4299 rtx after;
4300 {
4301 rtx insn = rtx_alloc (BARRIER);
4302
4303 INSN_UID (insn) = cur_insn_uid++;
4304
4305 add_insn_after (insn, after);
4306 return insn;
4307 }
4308
4309 /* Emit the label LABEL after the insn AFTER. */
4310
4311 rtx
4312 emit_label_after (label, after)
4313 rtx label, after;
4314 {
4315 /* This can be called twice for the same label
4316 as a result of the confusion that follows a syntax error!
4317 So make it harmless. */
4318 if (INSN_UID (label) == 0)
4319 {
4320 INSN_UID (label) = cur_insn_uid++;
4321 add_insn_after (label, after);
4322 }
4323
4324 return label;
4325 }
4326
4327 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4328
4329 rtx
4330 emit_note_after (subtype, after)
4331 int subtype;
4332 rtx after;
4333 {
4334 rtx note = rtx_alloc (NOTE);
4335 INSN_UID (note) = cur_insn_uid++;
4336 NOTE_SOURCE_FILE (note) = 0;
4337 NOTE_LINE_NUMBER (note) = subtype;
4338 BLOCK_FOR_INSN (note) = NULL;
4339 add_insn_after (note, after);
4340 return note;
4341 }
4342
4343 /* Emit a line note for FILE and LINE after the insn AFTER. */
4344
4345 rtx
4346 emit_line_note_after (file, line, after)
4347 const char *file;
4348 int line;
4349 rtx after;
4350 {
4351 rtx note;
4352
4353 if (no_line_numbers && line > 0)
4354 {
4355 cur_insn_uid++;
4356 return 0;
4357 }
4358
4359 note = rtx_alloc (NOTE);
4360 INSN_UID (note) = cur_insn_uid++;
4361 NOTE_SOURCE_FILE (note) = file;
4362 NOTE_LINE_NUMBER (note) = line;
4363 BLOCK_FOR_INSN (note) = NULL;
4364 add_insn_after (note, after);
4365 return note;
4366 }
4367 \f
4368 /* Like emit_insn_after, but set INSN_SCOPE according to SCOPE. */
4369 rtx
4370 emit_insn_after_scope (pattern, after, scope)
4371 rtx pattern, after;
4372 tree scope;
4373 {
4374 rtx last = emit_insn_after (pattern, after);
4375
4376 after = NEXT_INSN (after);
4377 while (1)
4378 {
4379 if (active_insn_p (after))
4380 INSN_SCOPE (after) = scope;
4381 if (after == last)
4382 break;
4383 after = NEXT_INSN (after);
4384 }
4385 return last;
4386 }
4387
4388 /* Like emit_jump_insn_after, but set INSN_SCOPE according to SCOPE. */
4389 rtx
4390 emit_jump_insn_after_scope (pattern, after, scope)
4391 rtx pattern, after;
4392 tree scope;
4393 {
4394 rtx last = emit_jump_insn_after (pattern, after);
4395
4396 after = NEXT_INSN (after);
4397 while (1)
4398 {
4399 if (active_insn_p (after))
4400 INSN_SCOPE (after) = scope;
4401 if (after == last)
4402 break;
4403 after = NEXT_INSN (after);
4404 }
4405 return last;
4406 }
4407
4408 /* Like emit_call_insn_after, but set INSN_SCOPE according to SCOPE. */
4409 rtx
4410 emit_call_insn_after_scope (pattern, after, scope)
4411 rtx pattern, after;
4412 tree scope;
4413 {
4414 rtx last = emit_call_insn_after (pattern, after);
4415
4416 after = NEXT_INSN (after);
4417 while (1)
4418 {
4419 if (active_insn_p (after))
4420 INSN_SCOPE (after) = scope;
4421 if (after == last)
4422 break;
4423 after = NEXT_INSN (after);
4424 }
4425 return last;
4426 }
4427
4428 /* Like emit_insn_before, but set INSN_SCOPE according to SCOPE. */
4429 rtx
4430 emit_insn_before_scope (pattern, before, scope)
4431 rtx pattern, before;
4432 tree scope;
4433 {
4434 rtx first = PREV_INSN (before);
4435 rtx last = emit_insn_before (pattern, before);
4436
4437 first = NEXT_INSN (first);
4438 while (1)
4439 {
4440 if (active_insn_p (first))
4441 INSN_SCOPE (first) = scope;
4442 if (first == last)
4443 break;
4444 first = NEXT_INSN (first);
4445 }
4446 return last;
4447 }
4448 \f
4449 /* Take X and emit it at the end of the doubly-linked
4450 INSN list.
4451
4452 Returns the last insn emitted. */
4453
4454 rtx
4455 emit_insn (x)
4456 rtx x;
4457 {
4458 rtx last = last_insn;
4459 rtx insn;
4460
4461 if (x == NULL_RTX)
4462 return last;
4463
4464 switch (GET_CODE (x))
4465 {
4466 case INSN:
4467 case JUMP_INSN:
4468 case CALL_INSN:
4469 case CODE_LABEL:
4470 case BARRIER:
4471 case NOTE:
4472 insn = x;
4473 while (insn)
4474 {
4475 rtx next = NEXT_INSN (insn);
4476 add_insn (insn);
4477 last = insn;
4478 insn = next;
4479 }
4480 break;
4481
4482 #ifdef ENABLE_RTL_CHECKING
4483 case SEQUENCE:
4484 abort ();
4485 break;
4486 #endif
4487
4488 default:
4489 last = make_insn_raw (x);
4490 add_insn (last);
4491 break;
4492 }
4493
4494 return last;
4495 }
4496
4497 /* Make an insn of code JUMP_INSN with pattern X
4498 and add it to the end of the doubly-linked list. */
4499
4500 rtx
4501 emit_jump_insn (x)
4502 rtx x;
4503 {
4504 rtx last, insn;
4505
4506 switch (GET_CODE (x))
4507 {
4508 case INSN:
4509 case JUMP_INSN:
4510 case CALL_INSN:
4511 case CODE_LABEL:
4512 case BARRIER:
4513 case NOTE:
4514 insn = x;
4515 while (insn)
4516 {
4517 rtx next = NEXT_INSN (insn);
4518 add_insn (insn);
4519 last = insn;
4520 insn = next;
4521 }
4522 break;
4523
4524 #ifdef ENABLE_RTL_CHECKING
4525 case SEQUENCE:
4526 abort ();
4527 break;
4528 #endif
4529
4530 default:
4531 last = make_jump_insn_raw (x);
4532 add_insn (last);
4533 break;
4534 }
4535
4536 return last;
4537 }
4538
4539 /* Make an insn of code CALL_INSN with pattern X
4540 and add it to the end of the doubly-linked list. */
4541
4542 rtx
4543 emit_call_insn (x)
4544 rtx x;
4545 {
4546 rtx insn;
4547
4548 switch (GET_CODE (x))
4549 {
4550 case INSN:
4551 case JUMP_INSN:
4552 case CALL_INSN:
4553 case CODE_LABEL:
4554 case BARRIER:
4555 case NOTE:
4556 insn = emit_insn (x);
4557 break;
4558
4559 #ifdef ENABLE_RTL_CHECKING
4560 case SEQUENCE:
4561 abort ();
4562 break;
4563 #endif
4564
4565 default:
4566 insn = make_call_insn_raw (x);
4567 add_insn (insn);
4568 break;
4569 }
4570
4571 return insn;
4572 }
4573
4574 /* Add the label LABEL to the end of the doubly-linked list. */
4575
4576 rtx
4577 emit_label (label)
4578 rtx label;
4579 {
4580 /* This can be called twice for the same label
4581 as a result of the confusion that follows a syntax error!
4582 So make it harmless. */
4583 if (INSN_UID (label) == 0)
4584 {
4585 INSN_UID (label) = cur_insn_uid++;
4586 add_insn (label);
4587 }
4588 return label;
4589 }
4590
4591 /* Make an insn of code BARRIER
4592 and add it to the end of the doubly-linked list. */
4593
4594 rtx
4595 emit_barrier ()
4596 {
4597 rtx barrier = rtx_alloc (BARRIER);
4598 INSN_UID (barrier) = cur_insn_uid++;
4599 add_insn (barrier);
4600 return barrier;
4601 }
4602
4603 /* Make an insn of code NOTE
4604 with data-fields specified by FILE and LINE
4605 and add it to the end of the doubly-linked list,
4606 but only if line-numbers are desired for debugging info. */
4607
4608 rtx
4609 emit_line_note (file, line)
4610 const char *file;
4611 int line;
4612 {
4613 set_file_and_line_for_stmt (file, line);
4614
4615 #if 0
4616 if (no_line_numbers)
4617 return 0;
4618 #endif
4619
4620 return emit_note (file, line);
4621 }
4622
4623 /* Make an insn of code NOTE
4624 with data-fields specified by FILE and LINE
4625 and add it to the end of the doubly-linked list.
4626 If it is a line-number NOTE, omit it if it matches the previous one. */
4627
4628 rtx
4629 emit_note (file, line)
4630 const char *file;
4631 int line;
4632 {
4633 rtx note;
4634
4635 if (line > 0)
4636 {
4637 if (file && last_filename && !strcmp (file, last_filename)
4638 && line == last_linenum)
4639 return 0;
4640 last_filename = file;
4641 last_linenum = line;
4642 }
4643
4644 if (no_line_numbers && line > 0)
4645 {
4646 cur_insn_uid++;
4647 return 0;
4648 }
4649
4650 note = rtx_alloc (NOTE);
4651 INSN_UID (note) = cur_insn_uid++;
4652 NOTE_SOURCE_FILE (note) = file;
4653 NOTE_LINE_NUMBER (note) = line;
4654 BLOCK_FOR_INSN (note) = NULL;
4655 add_insn (note);
4656 return note;
4657 }
4658
4659 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
4660
4661 rtx
4662 emit_line_note_force (file, line)
4663 const char *file;
4664 int line;
4665 {
4666 last_linenum = -1;
4667 return emit_line_note (file, line);
4668 }
4669
4670 /* Cause next statement to emit a line note even if the line number
4671 has not changed. This is used at the beginning of a function. */
4672
4673 void
4674 force_next_line_note ()
4675 {
4676 last_linenum = -1;
4677 }
4678
4679 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4680 note of this type already exists, remove it first. */
4681
4682 rtx
4683 set_unique_reg_note (insn, kind, datum)
4684 rtx insn;
4685 enum reg_note kind;
4686 rtx datum;
4687 {
4688 rtx note = find_reg_note (insn, kind, NULL_RTX);
4689
4690 switch (kind)
4691 {
4692 case REG_EQUAL:
4693 case REG_EQUIV:
4694 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4695 has multiple sets (some callers assume single_set
4696 means the insn only has one set, when in fact it
4697 means the insn only has one * useful * set). */
4698 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4699 {
4700 if (note)
4701 abort ();
4702 return NULL_RTX;
4703 }
4704
4705 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4706 It serves no useful purpose and breaks eliminate_regs. */
4707 if (GET_CODE (datum) == ASM_OPERANDS)
4708 return NULL_RTX;
4709 break;
4710
4711 default:
4712 break;
4713 }
4714
4715 if (note)
4716 {
4717 XEXP (note, 0) = datum;
4718 return note;
4719 }
4720
4721 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4722 return REG_NOTES (insn);
4723 }
4724 \f
4725 /* Return an indication of which type of insn should have X as a body.
4726 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4727
4728 enum rtx_code
4729 classify_insn (x)
4730 rtx x;
4731 {
4732 if (GET_CODE (x) == CODE_LABEL)
4733 return CODE_LABEL;
4734 if (GET_CODE (x) == CALL)
4735 return CALL_INSN;
4736 if (GET_CODE (x) == RETURN)
4737 return JUMP_INSN;
4738 if (GET_CODE (x) == SET)
4739 {
4740 if (SET_DEST (x) == pc_rtx)
4741 return JUMP_INSN;
4742 else if (GET_CODE (SET_SRC (x)) == CALL)
4743 return CALL_INSN;
4744 else
4745 return INSN;
4746 }
4747 if (GET_CODE (x) == PARALLEL)
4748 {
4749 int j;
4750 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4751 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4752 return CALL_INSN;
4753 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4754 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4755 return JUMP_INSN;
4756 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4757 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4758 return CALL_INSN;
4759 }
4760 return INSN;
4761 }
4762
4763 /* Emit the rtl pattern X as an appropriate kind of insn.
4764 If X is a label, it is simply added into the insn chain. */
4765
4766 rtx
4767 emit (x)
4768 rtx x;
4769 {
4770 enum rtx_code code = classify_insn (x);
4771
4772 if (code == CODE_LABEL)
4773 return emit_label (x);
4774 else if (code == INSN)
4775 return emit_insn (x);
4776 else if (code == JUMP_INSN)
4777 {
4778 rtx insn = emit_jump_insn (x);
4779 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4780 return emit_barrier ();
4781 return insn;
4782 }
4783 else if (code == CALL_INSN)
4784 return emit_call_insn (x);
4785 else
4786 abort ();
4787 }
4788 \f
4789 /* Space for free sequence stack entries. */
4790 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
4791
4792 /* Begin emitting insns to a sequence which can be packaged in an
4793 RTL_EXPR. If this sequence will contain something that might cause
4794 the compiler to pop arguments to function calls (because those
4795 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4796 details), use do_pending_stack_adjust before calling this function.
4797 That will ensure that the deferred pops are not accidentally
4798 emitted in the middle of this sequence. */
4799
4800 void
4801 start_sequence ()
4802 {
4803 struct sequence_stack *tem;
4804
4805 if (free_sequence_stack != NULL)
4806 {
4807 tem = free_sequence_stack;
4808 free_sequence_stack = tem->next;
4809 }
4810 else
4811 tem = (struct sequence_stack *) ggc_alloc (sizeof (struct sequence_stack));
4812
4813 tem->next = seq_stack;
4814 tem->first = first_insn;
4815 tem->last = last_insn;
4816 tem->sequence_rtl_expr = seq_rtl_expr;
4817
4818 seq_stack = tem;
4819
4820 first_insn = 0;
4821 last_insn = 0;
4822 }
4823
4824 /* Similarly, but indicate that this sequence will be placed in T, an
4825 RTL_EXPR. See the documentation for start_sequence for more
4826 information about how to use this function. */
4827
4828 void
4829 start_sequence_for_rtl_expr (t)
4830 tree t;
4831 {
4832 start_sequence ();
4833
4834 seq_rtl_expr = t;
4835 }
4836
4837 /* Set up the insn chain starting with FIRST as the current sequence,
4838 saving the previously current one. See the documentation for
4839 start_sequence for more information about how to use this function. */
4840
4841 void
4842 push_to_sequence (first)
4843 rtx first;
4844 {
4845 rtx last;
4846
4847 start_sequence ();
4848
4849 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4850
4851 first_insn = first;
4852 last_insn = last;
4853 }
4854
4855 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4856
4857 void
4858 push_to_full_sequence (first, last)
4859 rtx first, last;
4860 {
4861 start_sequence ();
4862 first_insn = first;
4863 last_insn = last;
4864 /* We really should have the end of the insn chain here. */
4865 if (last && NEXT_INSN (last))
4866 abort ();
4867 }
4868
4869 /* Set up the outer-level insn chain
4870 as the current sequence, saving the previously current one. */
4871
4872 void
4873 push_topmost_sequence ()
4874 {
4875 struct sequence_stack *stack, *top = NULL;
4876
4877 start_sequence ();
4878
4879 for (stack = seq_stack; stack; stack = stack->next)
4880 top = stack;
4881
4882 first_insn = top->first;
4883 last_insn = top->last;
4884 seq_rtl_expr = top->sequence_rtl_expr;
4885 }
4886
4887 /* After emitting to the outer-level insn chain, update the outer-level
4888 insn chain, and restore the previous saved state. */
4889
4890 void
4891 pop_topmost_sequence ()
4892 {
4893 struct sequence_stack *stack, *top = NULL;
4894
4895 for (stack = seq_stack; stack; stack = stack->next)
4896 top = stack;
4897
4898 top->first = first_insn;
4899 top->last = last_insn;
4900 /* ??? Why don't we save seq_rtl_expr here? */
4901
4902 end_sequence ();
4903 }
4904
4905 /* After emitting to a sequence, restore previous saved state.
4906
4907 To get the contents of the sequence just made, you must call
4908 `get_insns' *before* calling here.
4909
4910 If the compiler might have deferred popping arguments while
4911 generating this sequence, and this sequence will not be immediately
4912 inserted into the instruction stream, use do_pending_stack_adjust
4913 before calling get_insns. That will ensure that the deferred
4914 pops are inserted into this sequence, and not into some random
4915 location in the instruction stream. See INHIBIT_DEFER_POP for more
4916 information about deferred popping of arguments. */
4917
4918 void
4919 end_sequence ()
4920 {
4921 struct sequence_stack *tem = seq_stack;
4922
4923 first_insn = tem->first;
4924 last_insn = tem->last;
4925 seq_rtl_expr = tem->sequence_rtl_expr;
4926 seq_stack = tem->next;
4927
4928 memset (tem, 0, sizeof (*tem));
4929 tem->next = free_sequence_stack;
4930 free_sequence_stack = tem;
4931 }
4932
4933 /* This works like end_sequence, but records the old sequence in FIRST
4934 and LAST. */
4935
4936 void
4937 end_full_sequence (first, last)
4938 rtx *first, *last;
4939 {
4940 *first = first_insn;
4941 *last = last_insn;
4942 end_sequence ();
4943 }
4944
4945 /* Return 1 if currently emitting into a sequence. */
4946
4947 int
4948 in_sequence_p ()
4949 {
4950 return seq_stack != 0;
4951 }
4952 \f
4953 /* Put the various virtual registers into REGNO_REG_RTX. */
4954
4955 void
4956 init_virtual_regs (es)
4957 struct emit_status *es;
4958 {
4959 rtx *ptr = es->x_regno_reg_rtx;
4960 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4961 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4962 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4963 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4964 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4965 }
4966
4967 \f
4968 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4969 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4970 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4971 static int copy_insn_n_scratches;
4972
4973 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4974 copied an ASM_OPERANDS.
4975 In that case, it is the original input-operand vector. */
4976 static rtvec orig_asm_operands_vector;
4977
4978 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4979 copied an ASM_OPERANDS.
4980 In that case, it is the copied input-operand vector. */
4981 static rtvec copy_asm_operands_vector;
4982
4983 /* Likewise for the constraints vector. */
4984 static rtvec orig_asm_constraints_vector;
4985 static rtvec copy_asm_constraints_vector;
4986
4987 /* Recursively create a new copy of an rtx for copy_insn.
4988 This function differs from copy_rtx in that it handles SCRATCHes and
4989 ASM_OPERANDs properly.
4990 Normally, this function is not used directly; use copy_insn as front end.
4991 However, you could first copy an insn pattern with copy_insn and then use
4992 this function afterwards to properly copy any REG_NOTEs containing
4993 SCRATCHes. */
4994
4995 rtx
4996 copy_insn_1 (orig)
4997 rtx orig;
4998 {
4999 rtx copy;
5000 int i, j;
5001 RTX_CODE code;
5002 const char *format_ptr;
5003
5004 code = GET_CODE (orig);
5005
5006 switch (code)
5007 {
5008 case REG:
5009 case QUEUED:
5010 case CONST_INT:
5011 case CONST_DOUBLE:
5012 case CONST_VECTOR:
5013 case SYMBOL_REF:
5014 case CODE_LABEL:
5015 case PC:
5016 case CC0:
5017 case ADDRESSOF:
5018 return orig;
5019
5020 case SCRATCH:
5021 for (i = 0; i < copy_insn_n_scratches; i++)
5022 if (copy_insn_scratch_in[i] == orig)
5023 return copy_insn_scratch_out[i];
5024 break;
5025
5026 case CONST:
5027 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5028 a LABEL_REF, it isn't sharable. */
5029 if (GET_CODE (XEXP (orig, 0)) == PLUS
5030 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5031 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5032 return orig;
5033 break;
5034
5035 /* A MEM with a constant address is not sharable. The problem is that
5036 the constant address may need to be reloaded. If the mem is shared,
5037 then reloading one copy of this mem will cause all copies to appear
5038 to have been reloaded. */
5039
5040 default:
5041 break;
5042 }
5043
5044 copy = rtx_alloc (code);
5045
5046 /* Copy the various flags, and other information. We assume that
5047 all fields need copying, and then clear the fields that should
5048 not be copied. That is the sensible default behavior, and forces
5049 us to explicitly document why we are *not* copying a flag. */
5050 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
5051
5052 /* We do not copy the USED flag, which is used as a mark bit during
5053 walks over the RTL. */
5054 RTX_FLAG (copy, used) = 0;
5055
5056 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5057 if (GET_RTX_CLASS (code) == 'i')
5058 {
5059 RTX_FLAG (copy, jump) = 0;
5060 RTX_FLAG (copy, call) = 0;
5061 RTX_FLAG (copy, frame_related) = 0;
5062 }
5063
5064 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5065
5066 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5067 {
5068 copy->fld[i] = orig->fld[i];
5069 switch (*format_ptr++)
5070 {
5071 case 'e':
5072 if (XEXP (orig, i) != NULL)
5073 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5074 break;
5075
5076 case 'E':
5077 case 'V':
5078 if (XVEC (orig, i) == orig_asm_constraints_vector)
5079 XVEC (copy, i) = copy_asm_constraints_vector;
5080 else if (XVEC (orig, i) == orig_asm_operands_vector)
5081 XVEC (copy, i) = copy_asm_operands_vector;
5082 else if (XVEC (orig, i) != NULL)
5083 {
5084 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5085 for (j = 0; j < XVECLEN (copy, i); j++)
5086 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5087 }
5088 break;
5089
5090 case 't':
5091 case 'w':
5092 case 'i':
5093 case 's':
5094 case 'S':
5095 case 'u':
5096 case '0':
5097 /* These are left unchanged. */
5098 break;
5099
5100 default:
5101 abort ();
5102 }
5103 }
5104
5105 if (code == SCRATCH)
5106 {
5107 i = copy_insn_n_scratches++;
5108 if (i >= MAX_RECOG_OPERANDS)
5109 abort ();
5110 copy_insn_scratch_in[i] = orig;
5111 copy_insn_scratch_out[i] = copy;
5112 }
5113 else if (code == ASM_OPERANDS)
5114 {
5115 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5116 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5117 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5118 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5119 }
5120
5121 return copy;
5122 }
5123
5124 /* Create a new copy of an rtx.
5125 This function differs from copy_rtx in that it handles SCRATCHes and
5126 ASM_OPERANDs properly.
5127 INSN doesn't really have to be a full INSN; it could be just the
5128 pattern. */
5129 rtx
5130 copy_insn (insn)
5131 rtx insn;
5132 {
5133 copy_insn_n_scratches = 0;
5134 orig_asm_operands_vector = 0;
5135 orig_asm_constraints_vector = 0;
5136 copy_asm_operands_vector = 0;
5137 copy_asm_constraints_vector = 0;
5138 return copy_insn_1 (insn);
5139 }
5140
5141 /* Initialize data structures and variables in this file
5142 before generating rtl for each function. */
5143
5144 void
5145 init_emit ()
5146 {
5147 struct function *f = cfun;
5148
5149 f->emit = (struct emit_status *) ggc_alloc (sizeof (struct emit_status));
5150 first_insn = NULL;
5151 last_insn = NULL;
5152 seq_rtl_expr = NULL;
5153 cur_insn_uid = 1;
5154 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5155 last_linenum = 0;
5156 last_filename = 0;
5157 first_label_num = label_num;
5158 last_label_num = 0;
5159 seq_stack = NULL;
5160
5161 /* Init the tables that describe all the pseudo regs. */
5162
5163 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5164
5165 f->emit->regno_pointer_align
5166 = (unsigned char *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5167 * sizeof (unsigned char));
5168
5169 regno_reg_rtx
5170 = (rtx *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5171 * sizeof (rtx));
5172
5173 f->emit->regno_decl
5174 = (tree *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5175 * sizeof (tree));
5176
5177 /* Put copies of all the hard registers into regno_reg_rtx. */
5178 memcpy (regno_reg_rtx,
5179 static_regno_reg_rtx,
5180 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5181
5182 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5183 init_virtual_regs (f->emit);
5184
5185 /* Indicate that the virtual registers and stack locations are
5186 all pointers. */
5187 REG_POINTER (stack_pointer_rtx) = 1;
5188 REG_POINTER (frame_pointer_rtx) = 1;
5189 REG_POINTER (hard_frame_pointer_rtx) = 1;
5190 REG_POINTER (arg_pointer_rtx) = 1;
5191
5192 REG_POINTER (virtual_incoming_args_rtx) = 1;
5193 REG_POINTER (virtual_stack_vars_rtx) = 1;
5194 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5195 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5196 REG_POINTER (virtual_cfa_rtx) = 1;
5197
5198 #ifdef STACK_BOUNDARY
5199 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5200 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5201 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5202 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5203
5204 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5205 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5206 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5207 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5208 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5209 #endif
5210
5211 #ifdef INIT_EXPANDERS
5212 INIT_EXPANDERS;
5213 #endif
5214 }
5215
5216 /* Generate the constant 0. */
5217
5218 static rtx
5219 gen_const_vector_0 (mode)
5220 enum machine_mode mode;
5221 {
5222 rtx tem;
5223 rtvec v;
5224 int units, i;
5225 enum machine_mode inner;
5226
5227 units = GET_MODE_NUNITS (mode);
5228 inner = GET_MODE_INNER (mode);
5229
5230 v = rtvec_alloc (units);
5231
5232 /* We need to call this function after we to set CONST0_RTX first. */
5233 if (!CONST0_RTX (inner))
5234 abort ();
5235
5236 for (i = 0; i < units; ++i)
5237 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5238
5239 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5240 return tem;
5241 }
5242
5243 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5244 all elements are zero. */
5245 rtx
5246 gen_rtx_CONST_VECTOR (mode, v)
5247 enum machine_mode mode;
5248 rtvec v;
5249 {
5250 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5251 int i;
5252
5253 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5254 if (RTVEC_ELT (v, i) != inner_zero)
5255 return gen_rtx_raw_CONST_VECTOR (mode, v);
5256 return CONST0_RTX (mode);
5257 }
5258
5259 /* Create some permanent unique rtl objects shared between all functions.
5260 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5261
5262 void
5263 init_emit_once (line_numbers)
5264 int line_numbers;
5265 {
5266 int i;
5267 enum machine_mode mode;
5268 enum machine_mode double_mode;
5269
5270 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5271 tables. */
5272 const_int_htab = htab_create (37, const_int_htab_hash,
5273 const_int_htab_eq, NULL);
5274
5275 const_double_htab = htab_create (37, const_double_htab_hash,
5276 const_double_htab_eq, NULL);
5277
5278 mem_attrs_htab = htab_create (37, mem_attrs_htab_hash,
5279 mem_attrs_htab_eq, NULL);
5280
5281 no_line_numbers = ! line_numbers;
5282
5283 /* Compute the word and byte modes. */
5284
5285 byte_mode = VOIDmode;
5286 word_mode = VOIDmode;
5287 double_mode = VOIDmode;
5288
5289 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5290 mode = GET_MODE_WIDER_MODE (mode))
5291 {
5292 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5293 && byte_mode == VOIDmode)
5294 byte_mode = mode;
5295
5296 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5297 && word_mode == VOIDmode)
5298 word_mode = mode;
5299 }
5300
5301 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5302 mode = GET_MODE_WIDER_MODE (mode))
5303 {
5304 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5305 && double_mode == VOIDmode)
5306 double_mode = mode;
5307 }
5308
5309 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5310
5311 /* Assign register numbers to the globally defined register rtx.
5312 This must be done at runtime because the register number field
5313 is in a union and some compilers can't initialize unions. */
5314
5315 pc_rtx = gen_rtx (PC, VOIDmode);
5316 cc0_rtx = gen_rtx (CC0, VOIDmode);
5317 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5318 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5319 if (hard_frame_pointer_rtx == 0)
5320 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5321 HARD_FRAME_POINTER_REGNUM);
5322 if (arg_pointer_rtx == 0)
5323 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5324 virtual_incoming_args_rtx =
5325 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5326 virtual_stack_vars_rtx =
5327 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5328 virtual_stack_dynamic_rtx =
5329 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5330 virtual_outgoing_args_rtx =
5331 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5332 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5333
5334 /* Initialize RTL for commonly used hard registers. These are
5335 copied into regno_reg_rtx as we begin to compile each function. */
5336 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5337 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5338
5339 #ifdef INIT_EXPANDERS
5340 /* This is to initialize {init|mark|free}_machine_status before the first
5341 call to push_function_context_to. This is needed by the Chill front
5342 end which calls push_function_context_to before the first call to
5343 init_function_start. */
5344 INIT_EXPANDERS;
5345 #endif
5346
5347 /* Create the unique rtx's for certain rtx codes and operand values. */
5348
5349 /* Don't use gen_rtx here since gen_rtx in this case
5350 tries to use these variables. */
5351 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5352 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5353 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5354
5355 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5356 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5357 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5358 else
5359 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5360
5361 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5362 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5363 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5364 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5365
5366 for (i = 0; i <= 2; i++)
5367 {
5368 REAL_VALUE_TYPE *r =
5369 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5370
5371 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5372 mode = GET_MODE_WIDER_MODE (mode))
5373 const_tiny_rtx[i][(int) mode] =
5374 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5375
5376 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5377
5378 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5379 mode = GET_MODE_WIDER_MODE (mode))
5380 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5381
5382 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5383 mode != VOIDmode;
5384 mode = GET_MODE_WIDER_MODE (mode))
5385 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5386 }
5387
5388 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5389 mode != VOIDmode;
5390 mode = GET_MODE_WIDER_MODE (mode))
5391 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5392
5393 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5394 mode != VOIDmode;
5395 mode = GET_MODE_WIDER_MODE (mode))
5396 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5397
5398 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5399 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5400 const_tiny_rtx[0][i] = const0_rtx;
5401
5402 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5403 if (STORE_FLAG_VALUE == 1)
5404 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5405
5406 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5407 return_address_pointer_rtx
5408 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5409 #endif
5410
5411 #ifdef STRUCT_VALUE
5412 struct_value_rtx = STRUCT_VALUE;
5413 #else
5414 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
5415 #endif
5416
5417 #ifdef STRUCT_VALUE_INCOMING
5418 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
5419 #else
5420 #ifdef STRUCT_VALUE_INCOMING_REGNUM
5421 struct_value_incoming_rtx
5422 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
5423 #else
5424 struct_value_incoming_rtx = struct_value_rtx;
5425 #endif
5426 #endif
5427
5428 #ifdef STATIC_CHAIN_REGNUM
5429 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5430
5431 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5432 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5433 static_chain_incoming_rtx
5434 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5435 else
5436 #endif
5437 static_chain_incoming_rtx = static_chain_rtx;
5438 #endif
5439
5440 #ifdef STATIC_CHAIN
5441 static_chain_rtx = STATIC_CHAIN;
5442
5443 #ifdef STATIC_CHAIN_INCOMING
5444 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5445 #else
5446 static_chain_incoming_rtx = static_chain_rtx;
5447 #endif
5448 #endif
5449
5450 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5451 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5452 }
5453 \f
5454 /* Query and clear/ restore no_line_numbers. This is used by the
5455 switch / case handling in stmt.c to give proper line numbers in
5456 warnings about unreachable code. */
5457
5458 int
5459 force_line_numbers ()
5460 {
5461 int old = no_line_numbers;
5462
5463 no_line_numbers = 0;
5464 if (old)
5465 force_next_line_note ();
5466 return old;
5467 }
5468
5469 void
5470 restore_line_number_status (old_value)
5471 int old_value;
5472 {
5473 no_line_numbers = old_value;
5474 }
5475
5476 /* Produce exact duplicate of insn INSN after AFTER.
5477 Care updating of libcall regions if present. */
5478
5479 rtx
5480 emit_copy_of_insn_after (insn, after)
5481 rtx insn, after;
5482 {
5483 rtx new;
5484 rtx note1, note2, link;
5485
5486 switch (GET_CODE (insn))
5487 {
5488 case INSN:
5489 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5490 break;
5491
5492 case JUMP_INSN:
5493 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5494 break;
5495
5496 case CALL_INSN:
5497 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5498 if (CALL_INSN_FUNCTION_USAGE (insn))
5499 CALL_INSN_FUNCTION_USAGE (new)
5500 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5501 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5502 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5503 break;
5504
5505 default:
5506 abort ();
5507 }
5508
5509 /* Update LABEL_NUSES. */
5510 mark_jump_label (PATTERN (new), new, 0);
5511
5512 INSN_SCOPE (new) = INSN_SCOPE (insn);
5513
5514 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5515 make them. */
5516 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5517 if (REG_NOTE_KIND (link) != REG_LABEL)
5518 {
5519 if (GET_CODE (link) == EXPR_LIST)
5520 REG_NOTES (new)
5521 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5522 XEXP (link, 0),
5523 REG_NOTES (new)));
5524 else
5525 REG_NOTES (new)
5526 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5527 XEXP (link, 0),
5528 REG_NOTES (new)));
5529 }
5530
5531 /* Fix the libcall sequences. */
5532 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5533 {
5534 rtx p = new;
5535 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5536 p = PREV_INSN (p);
5537 XEXP (note1, 0) = p;
5538 XEXP (note2, 0) = new;
5539 }
5540 return new;
5541 }
5542
5543 #include "gt-emit-rtl.h"
This page took 0.276813 seconds and 4 git commands to generate.