]> gcc.gnu.org Git - gcc.git/blob - gcc/emit-rtl.c
check.c (gfc_check_getcwd_sub): Fix seg fault.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58
59 /* Commonly used modes. */
60
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
65
66
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70 static GTY(()) int label_num = 1;
71
72 /* Nonzero means do not generate NOTEs for source line numbers. */
73
74 static int no_line_numbers;
75
76 /* Commonly used rtx's, so that we only need space for one copy.
77 These are initialized once for the entire compilation.
78 All of these are unique; no other rtx-object will be equal to any
79 of these. */
80
81 rtx global_rtl[GR_MAX];
82
83 /* Commonly used RTL for hard registers. These objects are not necessarily
84 unique, so we allocate them separately from global_rtl. They are
85 initialized once per compilation unit, then copied into regno_reg_rtx
86 at the beginning of each function. */
87 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
88
89 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
90 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
91 record a copy of const[012]_rtx. */
92
93 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
94
95 rtx const_true_rtx;
96
97 REAL_VALUE_TYPE dconst0;
98 REAL_VALUE_TYPE dconst1;
99 REAL_VALUE_TYPE dconst2;
100 REAL_VALUE_TYPE dconst3;
101 REAL_VALUE_TYPE dconst10;
102 REAL_VALUE_TYPE dconstm1;
103 REAL_VALUE_TYPE dconstm2;
104 REAL_VALUE_TYPE dconsthalf;
105 REAL_VALUE_TYPE dconstthird;
106 REAL_VALUE_TYPE dconstpi;
107 REAL_VALUE_TYPE dconste;
108
109 /* All references to the following fixed hard registers go through
110 these unique rtl objects. On machines where the frame-pointer and
111 arg-pointer are the same register, they use the same unique object.
112
113 After register allocation, other rtl objects which used to be pseudo-regs
114 may be clobbered to refer to the frame-pointer register.
115 But references that were originally to the frame-pointer can be
116 distinguished from the others because they contain frame_pointer_rtx.
117
118 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
119 tricky: until register elimination has taken place hard_frame_pointer_rtx
120 should be used if it is being set, and frame_pointer_rtx otherwise. After
121 register elimination hard_frame_pointer_rtx should always be used.
122 On machines where the two registers are same (most) then these are the
123 same.
124
125 In an inline procedure, the stack and frame pointer rtxs may not be
126 used for anything else. */
127 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
128 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
129 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
130
131 /* This is used to implement __builtin_return_address for some machines.
132 See for instance the MIPS port. */
133 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
134
135 /* We make one copy of (const_int C) where C is in
136 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
137 to save space during the compilation and simplify comparisons of
138 integers. */
139
140 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
141
142 /* A hash table storing CONST_INTs whose absolute value is greater
143 than MAX_SAVED_CONST_INT. */
144
145 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
146 htab_t const_int_htab;
147
148 /* A hash table storing memory attribute structures. */
149 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
150 htab_t mem_attrs_htab;
151
152 /* A hash table storing register attribute structures. */
153 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
154 htab_t reg_attrs_htab;
155
156 /* A hash table storing all CONST_DOUBLEs. */
157 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
158 htab_t const_double_htab;
159
160 #define first_insn (cfun->emit->x_first_insn)
161 #define last_insn (cfun->emit->x_last_insn)
162 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
163 #define last_location (cfun->emit->x_last_location)
164 #define first_label_num (cfun->emit->x_first_label_num)
165
166 static rtx make_jump_insn_raw (rtx);
167 static rtx make_call_insn_raw (rtx);
168 static rtx find_line_note (rtx);
169 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
170 static void unshare_all_decls (tree);
171 static void reset_used_decls (tree);
172 static void mark_label_nuses (rtx);
173 static hashval_t const_int_htab_hash (const void *);
174 static int const_int_htab_eq (const void *, const void *);
175 static hashval_t const_double_htab_hash (const void *);
176 static int const_double_htab_eq (const void *, const void *);
177 static rtx lookup_const_double (rtx);
178 static hashval_t mem_attrs_htab_hash (const void *);
179 static int mem_attrs_htab_eq (const void *, const void *);
180 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
181 enum machine_mode);
182 static hashval_t reg_attrs_htab_hash (const void *);
183 static int reg_attrs_htab_eq (const void *, const void *);
184 static reg_attrs *get_reg_attrs (tree, int);
185 static tree component_ref_for_mem_expr (tree);
186 static rtx gen_const_vector (enum machine_mode, int);
187 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
188 static void copy_rtx_if_shared_1 (rtx *orig);
189
190 /* Probability of the conditional branch currently proceeded by try_split.
191 Set to -1 otherwise. */
192 int split_branch_probability = -1;
193 \f
194 /* Returns a hash code for X (which is a really a CONST_INT). */
195
196 static hashval_t
197 const_int_htab_hash (const void *x)
198 {
199 return (hashval_t) INTVAL ((rtx) x);
200 }
201
202 /* Returns nonzero if the value represented by X (which is really a
203 CONST_INT) is the same as that given by Y (which is really a
204 HOST_WIDE_INT *). */
205
206 static int
207 const_int_htab_eq (const void *x, const void *y)
208 {
209 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
210 }
211
212 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
213 static hashval_t
214 const_double_htab_hash (const void *x)
215 {
216 rtx value = (rtx) x;
217 hashval_t h;
218
219 if (GET_MODE (value) == VOIDmode)
220 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
221 else
222 {
223 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
224 /* MODE is used in the comparison, so it should be in the hash. */
225 h ^= GET_MODE (value);
226 }
227 return h;
228 }
229
230 /* Returns nonzero if the value represented by X (really a ...)
231 is the same as that represented by Y (really a ...) */
232 static int
233 const_double_htab_eq (const void *x, const void *y)
234 {
235 rtx a = (rtx)x, b = (rtx)y;
236
237 if (GET_MODE (a) != GET_MODE (b))
238 return 0;
239 if (GET_MODE (a) == VOIDmode)
240 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
241 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
242 else
243 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
244 CONST_DOUBLE_REAL_VALUE (b));
245 }
246
247 /* Returns a hash code for X (which is a really a mem_attrs *). */
248
249 static hashval_t
250 mem_attrs_htab_hash (const void *x)
251 {
252 mem_attrs *p = (mem_attrs *) x;
253
254 return (p->alias ^ (p->align * 1000)
255 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
256 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
257 ^ (size_t) p->expr);
258 }
259
260 /* Returns nonzero if the value represented by X (which is really a
261 mem_attrs *) is the same as that given by Y (which is also really a
262 mem_attrs *). */
263
264 static int
265 mem_attrs_htab_eq (const void *x, const void *y)
266 {
267 mem_attrs *p = (mem_attrs *) x;
268 mem_attrs *q = (mem_attrs *) y;
269
270 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
271 && p->size == q->size && p->align == q->align);
272 }
273
274 /* Allocate a new mem_attrs structure and insert it into the hash table if
275 one identical to it is not already in the table. We are doing this for
276 MEM of mode MODE. */
277
278 static mem_attrs *
279 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
280 unsigned int align, enum machine_mode mode)
281 {
282 mem_attrs attrs;
283 void **slot;
284
285 /* If everything is the default, we can just return zero.
286 This must match what the corresponding MEM_* macros return when the
287 field is not present. */
288 if (alias == 0 && expr == 0 && offset == 0
289 && (size == 0
290 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
291 && (STRICT_ALIGNMENT && mode != BLKmode
292 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
293 return 0;
294
295 attrs.alias = alias;
296 attrs.expr = expr;
297 attrs.offset = offset;
298 attrs.size = size;
299 attrs.align = align;
300
301 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
302 if (*slot == 0)
303 {
304 *slot = ggc_alloc (sizeof (mem_attrs));
305 memcpy (*slot, &attrs, sizeof (mem_attrs));
306 }
307
308 return *slot;
309 }
310
311 /* Returns a hash code for X (which is a really a reg_attrs *). */
312
313 static hashval_t
314 reg_attrs_htab_hash (const void *x)
315 {
316 reg_attrs *p = (reg_attrs *) x;
317
318 return ((p->offset * 1000) ^ (long) p->decl);
319 }
320
321 /* Returns nonzero if the value represented by X (which is really a
322 reg_attrs *) is the same as that given by Y (which is also really a
323 reg_attrs *). */
324
325 static int
326 reg_attrs_htab_eq (const void *x, const void *y)
327 {
328 reg_attrs *p = (reg_attrs *) x;
329 reg_attrs *q = (reg_attrs *) y;
330
331 return (p->decl == q->decl && p->offset == q->offset);
332 }
333 /* Allocate a new reg_attrs structure and insert it into the hash table if
334 one identical to it is not already in the table. We are doing this for
335 MEM of mode MODE. */
336
337 static reg_attrs *
338 get_reg_attrs (tree decl, int offset)
339 {
340 reg_attrs attrs;
341 void **slot;
342
343 /* If everything is the default, we can just return zero. */
344 if (decl == 0 && offset == 0)
345 return 0;
346
347 attrs.decl = decl;
348 attrs.offset = offset;
349
350 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
351 if (*slot == 0)
352 {
353 *slot = ggc_alloc (sizeof (reg_attrs));
354 memcpy (*slot, &attrs, sizeof (reg_attrs));
355 }
356
357 return *slot;
358 }
359
360 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
361 don't attempt to share with the various global pieces of rtl (such as
362 frame_pointer_rtx). */
363
364 rtx
365 gen_raw_REG (enum machine_mode mode, int regno)
366 {
367 rtx x = gen_rtx_raw_REG (mode, regno);
368 ORIGINAL_REGNO (x) = regno;
369 return x;
370 }
371
372 /* There are some RTL codes that require special attention; the generation
373 functions do the raw handling. If you add to this list, modify
374 special_rtx in gengenrtl.c as well. */
375
376 rtx
377 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
378 {
379 void **slot;
380
381 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
382 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
383
384 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
385 if (const_true_rtx && arg == STORE_FLAG_VALUE)
386 return const_true_rtx;
387 #endif
388
389 /* Look up the CONST_INT in the hash table. */
390 slot = htab_find_slot_with_hash (const_int_htab, &arg,
391 (hashval_t) arg, INSERT);
392 if (*slot == 0)
393 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
394
395 return (rtx) *slot;
396 }
397
398 rtx
399 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
400 {
401 return GEN_INT (trunc_int_for_mode (c, mode));
402 }
403
404 /* CONST_DOUBLEs might be created from pairs of integers, or from
405 REAL_VALUE_TYPEs. Also, their length is known only at run time,
406 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
407
408 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
409 hash table. If so, return its counterpart; otherwise add it
410 to the hash table and return it. */
411 static rtx
412 lookup_const_double (rtx real)
413 {
414 void **slot = htab_find_slot (const_double_htab, real, INSERT);
415 if (*slot == 0)
416 *slot = real;
417
418 return (rtx) *slot;
419 }
420
421 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
422 VALUE in mode MODE. */
423 rtx
424 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
425 {
426 rtx real = rtx_alloc (CONST_DOUBLE);
427 PUT_MODE (real, mode);
428
429 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
430
431 return lookup_const_double (real);
432 }
433
434 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
435 of ints: I0 is the low-order word and I1 is the high-order word.
436 Do not use this routine for non-integer modes; convert to
437 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
438
439 rtx
440 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
441 {
442 rtx value;
443 unsigned int i;
444
445 if (mode != VOIDmode)
446 {
447 int width;
448
449 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
450 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
451 /* We can get a 0 for an error mark. */
452 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
453 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
454
455 /* We clear out all bits that don't belong in MODE, unless they and
456 our sign bit are all one. So we get either a reasonable negative
457 value or a reasonable unsigned value for this mode. */
458 width = GET_MODE_BITSIZE (mode);
459 if (width < HOST_BITS_PER_WIDE_INT
460 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
461 != ((HOST_WIDE_INT) (-1) << (width - 1))))
462 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
463 else if (width == HOST_BITS_PER_WIDE_INT
464 && ! (i1 == ~0 && i0 < 0))
465 i1 = 0;
466 else
467 /* We should be able to represent this value as a constant. */
468 gcc_assert (width <= 2 * HOST_BITS_PER_WIDE_INT);
469
470 /* If this would be an entire word for the target, but is not for
471 the host, then sign-extend on the host so that the number will
472 look the same way on the host that it would on the target.
473
474 For example, when building a 64 bit alpha hosted 32 bit sparc
475 targeted compiler, then we want the 32 bit unsigned value -1 to be
476 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
477 The latter confuses the sparc backend. */
478
479 if (width < HOST_BITS_PER_WIDE_INT
480 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
481 i0 |= ((HOST_WIDE_INT) (-1) << width);
482
483 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
484 CONST_INT.
485
486 ??? Strictly speaking, this is wrong if we create a CONST_INT for
487 a large unsigned constant with the size of MODE being
488 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
489 in a wider mode. In that case we will mis-interpret it as a
490 negative number.
491
492 Unfortunately, the only alternative is to make a CONST_DOUBLE for
493 any constant in any mode if it is an unsigned constant larger
494 than the maximum signed integer in an int on the host. However,
495 doing this will break everyone that always expects to see a
496 CONST_INT for SImode and smaller.
497
498 We have always been making CONST_INTs in this case, so nothing
499 new is being broken. */
500
501 if (width <= HOST_BITS_PER_WIDE_INT)
502 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
503 }
504
505 /* If this integer fits in one word, return a CONST_INT. */
506 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
507 return GEN_INT (i0);
508
509 /* We use VOIDmode for integers. */
510 value = rtx_alloc (CONST_DOUBLE);
511 PUT_MODE (value, VOIDmode);
512
513 CONST_DOUBLE_LOW (value) = i0;
514 CONST_DOUBLE_HIGH (value) = i1;
515
516 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
517 XWINT (value, i) = 0;
518
519 return lookup_const_double (value);
520 }
521
522 rtx
523 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
524 {
525 /* In case the MD file explicitly references the frame pointer, have
526 all such references point to the same frame pointer. This is
527 used during frame pointer elimination to distinguish the explicit
528 references to these registers from pseudos that happened to be
529 assigned to them.
530
531 If we have eliminated the frame pointer or arg pointer, we will
532 be using it as a normal register, for example as a spill
533 register. In such cases, we might be accessing it in a mode that
534 is not Pmode and therefore cannot use the pre-allocated rtx.
535
536 Also don't do this when we are making new REGs in reload, since
537 we don't want to get confused with the real pointers. */
538
539 if (mode == Pmode && !reload_in_progress)
540 {
541 if (regno == FRAME_POINTER_REGNUM
542 && (!reload_completed || frame_pointer_needed))
543 return frame_pointer_rtx;
544 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
545 if (regno == HARD_FRAME_POINTER_REGNUM
546 && (!reload_completed || frame_pointer_needed))
547 return hard_frame_pointer_rtx;
548 #endif
549 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
550 if (regno == ARG_POINTER_REGNUM)
551 return arg_pointer_rtx;
552 #endif
553 #ifdef RETURN_ADDRESS_POINTER_REGNUM
554 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
555 return return_address_pointer_rtx;
556 #endif
557 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
558 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
559 return pic_offset_table_rtx;
560 if (regno == STACK_POINTER_REGNUM)
561 return stack_pointer_rtx;
562 }
563
564 #if 0
565 /* If the per-function register table has been set up, try to re-use
566 an existing entry in that table to avoid useless generation of RTL.
567
568 This code is disabled for now until we can fix the various backends
569 which depend on having non-shared hard registers in some cases. Long
570 term we want to re-enable this code as it can significantly cut down
571 on the amount of useless RTL that gets generated.
572
573 We'll also need to fix some code that runs after reload that wants to
574 set ORIGINAL_REGNO. */
575
576 if (cfun
577 && cfun->emit
578 && regno_reg_rtx
579 && regno < FIRST_PSEUDO_REGISTER
580 && reg_raw_mode[regno] == mode)
581 return regno_reg_rtx[regno];
582 #endif
583
584 return gen_raw_REG (mode, regno);
585 }
586
587 rtx
588 gen_rtx_MEM (enum machine_mode mode, rtx addr)
589 {
590 rtx rt = gen_rtx_raw_MEM (mode, addr);
591
592 /* This field is not cleared by the mere allocation of the rtx, so
593 we clear it here. */
594 MEM_ATTRS (rt) = 0;
595
596 return rt;
597 }
598
599 /* Generate a memory referring to non-trapping constant memory. */
600
601 rtx
602 gen_const_mem (enum machine_mode mode, rtx addr)
603 {
604 rtx mem = gen_rtx_MEM (mode, addr);
605 MEM_READONLY_P (mem) = 1;
606 MEM_NOTRAP_P (mem) = 1;
607 return mem;
608 }
609
610 rtx
611 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
612 {
613 /* This is the most common failure type.
614 Catch it early so we can see who does it. */
615 gcc_assert (!(offset % GET_MODE_SIZE (mode)));
616
617 /* This check isn't usable right now because combine will
618 throw arbitrary crap like a CALL into a SUBREG in
619 gen_lowpart_for_combine so we must just eat it. */
620 #if 0
621 /* Check for this too. */
622 gcc_assert (offset < GET_MODE_SIZE (GET_MODE (reg)));
623 #endif
624 return gen_rtx_raw_SUBREG (mode, reg, offset);
625 }
626
627 /* Generate a SUBREG representing the least-significant part of REG if MODE
628 is smaller than mode of REG, otherwise paradoxical SUBREG. */
629
630 rtx
631 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
632 {
633 enum machine_mode inmode;
634
635 inmode = GET_MODE (reg);
636 if (inmode == VOIDmode)
637 inmode = mode;
638 return gen_rtx_SUBREG (mode, reg,
639 subreg_lowpart_offset (mode, inmode));
640 }
641 \f
642 /* gen_rtvec (n, [rt1, ..., rtn])
643 **
644 ** This routine creates an rtvec and stores within it the
645 ** pointers to rtx's which are its arguments.
646 */
647
648 /*VARARGS1*/
649 rtvec
650 gen_rtvec (int n, ...)
651 {
652 int i, save_n;
653 rtx *vector;
654 va_list p;
655
656 va_start (p, n);
657
658 if (n == 0)
659 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
660
661 vector = alloca (n * sizeof (rtx));
662
663 for (i = 0; i < n; i++)
664 vector[i] = va_arg (p, rtx);
665
666 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
667 save_n = n;
668 va_end (p);
669
670 return gen_rtvec_v (save_n, vector);
671 }
672
673 rtvec
674 gen_rtvec_v (int n, rtx *argp)
675 {
676 int i;
677 rtvec rt_val;
678
679 if (n == 0)
680 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
681
682 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
683
684 for (i = 0; i < n; i++)
685 rt_val->elem[i] = *argp++;
686
687 return rt_val;
688 }
689 \f
690 /* Generate a REG rtx for a new pseudo register of mode MODE.
691 This pseudo is assigned the next sequential register number. */
692
693 rtx
694 gen_reg_rtx (enum machine_mode mode)
695 {
696 struct function *f = cfun;
697 rtx val;
698
699 /* Don't let anything called after initial flow analysis create new
700 registers. */
701 gcc_assert (!no_new_pseudos);
702
703 if (generating_concat_p
704 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
705 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
706 {
707 /* For complex modes, don't make a single pseudo.
708 Instead, make a CONCAT of two pseudos.
709 This allows noncontiguous allocation of the real and imaginary parts,
710 which makes much better code. Besides, allocating DCmode
711 pseudos overstrains reload on some machines like the 386. */
712 rtx realpart, imagpart;
713 enum machine_mode partmode = GET_MODE_INNER (mode);
714
715 realpart = gen_reg_rtx (partmode);
716 imagpart = gen_reg_rtx (partmode);
717 return gen_rtx_CONCAT (mode, realpart, imagpart);
718 }
719
720 /* Make sure regno_pointer_align, and regno_reg_rtx are large
721 enough to have an element for this pseudo reg number. */
722
723 if (reg_rtx_no == f->emit->regno_pointer_align_length)
724 {
725 int old_size = f->emit->regno_pointer_align_length;
726 char *new;
727 rtx *new1;
728
729 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
730 memset (new + old_size, 0, old_size);
731 f->emit->regno_pointer_align = (unsigned char *) new;
732
733 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
734 old_size * 2 * sizeof (rtx));
735 memset (new1 + old_size, 0, old_size * sizeof (rtx));
736 regno_reg_rtx = new1;
737
738 f->emit->regno_pointer_align_length = old_size * 2;
739 }
740
741 val = gen_raw_REG (mode, reg_rtx_no);
742 regno_reg_rtx[reg_rtx_no++] = val;
743 return val;
744 }
745
746 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
747 Do the big endian correction if needed. */
748
749 rtx
750 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
751 {
752 rtx new = gen_rtx_REG (mode, regno);
753 tree decl;
754 HOST_WIDE_INT var_size;
755
756 /* PR middle-end/14084
757 The problem appears when a variable is stored in a larger register
758 and later it is used in the original mode or some mode in between
759 or some part of variable is accessed.
760
761 On little endian machines there is no problem because
762 the REG_OFFSET of the start of the variable is the same when
763 accessed in any mode (it is 0).
764
765 However, this is not true on big endian machines.
766 The offset of the start of the variable is different when accessed
767 in different modes.
768 When we are taking a part of the REG we have to change the OFFSET
769 from offset WRT size of mode of REG to offset WRT size of variable.
770
771 If we would not do the big endian correction the resulting REG_OFFSET
772 would be larger than the size of the DECL.
773
774 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
775
776 REG.mode MODE DECL size old offset new offset description
777 DI SI 4 4 0 int32 in SImode
778 DI SI 1 4 0 char in SImode
779 DI QI 1 7 0 char in QImode
780 DI QI 4 5 1 1st element in QImode
781 of char[4]
782 DI HI 4 6 2 1st element in HImode
783 of int16[2]
784
785 If the size of DECL is equal or greater than the size of REG
786 we can't do this correction because the register holds the
787 whole variable or a part of the variable and thus the REG_OFFSET
788 is already correct. */
789
790 decl = REG_EXPR (reg);
791 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
792 && decl != NULL
793 && offset > 0
794 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
795 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
796 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
797 {
798 int offset_le;
799
800 /* Convert machine endian to little endian WRT size of mode of REG. */
801 if (WORDS_BIG_ENDIAN)
802 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
803 / UNITS_PER_WORD) * UNITS_PER_WORD;
804 else
805 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
806
807 if (BYTES_BIG_ENDIAN)
808 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
809 % UNITS_PER_WORD);
810 else
811 offset_le += offset % UNITS_PER_WORD;
812
813 if (offset_le >= var_size)
814 {
815 /* MODE is wider than the variable so the new reg will cover
816 the whole variable so the resulting OFFSET should be 0. */
817 offset = 0;
818 }
819 else
820 {
821 /* Convert little endian to machine endian WRT size of variable. */
822 if (WORDS_BIG_ENDIAN)
823 offset = ((var_size - 1 - offset_le)
824 / UNITS_PER_WORD) * UNITS_PER_WORD;
825 else
826 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
827
828 if (BYTES_BIG_ENDIAN)
829 offset += ((var_size - 1 - offset_le)
830 % UNITS_PER_WORD);
831 else
832 offset += offset_le % UNITS_PER_WORD;
833 }
834 }
835
836 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
837 REG_OFFSET (reg) + offset);
838 return new;
839 }
840
841 /* Set the decl for MEM to DECL. */
842
843 void
844 set_reg_attrs_from_mem (rtx reg, rtx mem)
845 {
846 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
847 REG_ATTRS (reg)
848 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
849 }
850
851 /* Set the register attributes for registers contained in PARM_RTX.
852 Use needed values from memory attributes of MEM. */
853
854 void
855 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
856 {
857 if (REG_P (parm_rtx))
858 set_reg_attrs_from_mem (parm_rtx, mem);
859 else if (GET_CODE (parm_rtx) == PARALLEL)
860 {
861 /* Check for a NULL entry in the first slot, used to indicate that the
862 parameter goes both on the stack and in registers. */
863 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
864 for (; i < XVECLEN (parm_rtx, 0); i++)
865 {
866 rtx x = XVECEXP (parm_rtx, 0, i);
867 if (REG_P (XEXP (x, 0)))
868 REG_ATTRS (XEXP (x, 0))
869 = get_reg_attrs (MEM_EXPR (mem),
870 INTVAL (XEXP (x, 1)));
871 }
872 }
873 }
874
875 /* Assign the RTX X to declaration T. */
876 void
877 set_decl_rtl (tree t, rtx x)
878 {
879 DECL_CHECK (t)->decl.rtl = x;
880
881 if (!x)
882 return;
883 /* For register, we maintain the reverse information too. */
884 if (REG_P (x))
885 REG_ATTRS (x) = get_reg_attrs (t, 0);
886 else if (GET_CODE (x) == SUBREG)
887 REG_ATTRS (SUBREG_REG (x))
888 = get_reg_attrs (t, -SUBREG_BYTE (x));
889 if (GET_CODE (x) == CONCAT)
890 {
891 if (REG_P (XEXP (x, 0)))
892 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
893 if (REG_P (XEXP (x, 1)))
894 REG_ATTRS (XEXP (x, 1))
895 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
896 }
897 if (GET_CODE (x) == PARALLEL)
898 {
899 int i;
900 for (i = 0; i < XVECLEN (x, 0); i++)
901 {
902 rtx y = XVECEXP (x, 0, i);
903 if (REG_P (XEXP (y, 0)))
904 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
905 }
906 }
907 }
908
909 /* Assign the RTX X to parameter declaration T. */
910 void
911 set_decl_incoming_rtl (tree t, rtx x)
912 {
913 DECL_INCOMING_RTL (t) = x;
914
915 if (!x)
916 return;
917 /* For register, we maintain the reverse information too. */
918 if (REG_P (x))
919 REG_ATTRS (x) = get_reg_attrs (t, 0);
920 else if (GET_CODE (x) == SUBREG)
921 REG_ATTRS (SUBREG_REG (x))
922 = get_reg_attrs (t, -SUBREG_BYTE (x));
923 if (GET_CODE (x) == CONCAT)
924 {
925 if (REG_P (XEXP (x, 0)))
926 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
927 if (REG_P (XEXP (x, 1)))
928 REG_ATTRS (XEXP (x, 1))
929 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
930 }
931 if (GET_CODE (x) == PARALLEL)
932 {
933 int i, start;
934
935 /* Check for a NULL entry, used to indicate that the parameter goes
936 both on the stack and in registers. */
937 if (XEXP (XVECEXP (x, 0, 0), 0))
938 start = 0;
939 else
940 start = 1;
941
942 for (i = start; i < XVECLEN (x, 0); i++)
943 {
944 rtx y = XVECEXP (x, 0, i);
945 if (REG_P (XEXP (y, 0)))
946 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
947 }
948 }
949 }
950
951 /* Identify REG (which may be a CONCAT) as a user register. */
952
953 void
954 mark_user_reg (rtx reg)
955 {
956 if (GET_CODE (reg) == CONCAT)
957 {
958 REG_USERVAR_P (XEXP (reg, 0)) = 1;
959 REG_USERVAR_P (XEXP (reg, 1)) = 1;
960 }
961 else
962 {
963 gcc_assert (REG_P (reg));
964 REG_USERVAR_P (reg) = 1;
965 }
966 }
967
968 /* Identify REG as a probable pointer register and show its alignment
969 as ALIGN, if nonzero. */
970
971 void
972 mark_reg_pointer (rtx reg, int align)
973 {
974 if (! REG_POINTER (reg))
975 {
976 REG_POINTER (reg) = 1;
977
978 if (align)
979 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
980 }
981 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
982 /* We can no-longer be sure just how aligned this pointer is. */
983 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
984 }
985
986 /* Return 1 plus largest pseudo reg number used in the current function. */
987
988 int
989 max_reg_num (void)
990 {
991 return reg_rtx_no;
992 }
993
994 /* Return 1 + the largest label number used so far in the current function. */
995
996 int
997 max_label_num (void)
998 {
999 return label_num;
1000 }
1001
1002 /* Return first label number used in this function (if any were used). */
1003
1004 int
1005 get_first_label_num (void)
1006 {
1007 return first_label_num;
1008 }
1009
1010 /* If the rtx for label was created during the expansion of a nested
1011 function, then first_label_num won't include this label number.
1012 Fix this now so that array indicies work later. */
1013
1014 void
1015 maybe_set_first_label_num (rtx x)
1016 {
1017 if (CODE_LABEL_NUMBER (x) < first_label_num)
1018 first_label_num = CODE_LABEL_NUMBER (x);
1019 }
1020 \f
1021 /* Return the final regno of X, which is a SUBREG of a hard
1022 register. */
1023 int
1024 subreg_hard_regno (rtx x, int check_mode)
1025 {
1026 enum machine_mode mode = GET_MODE (x);
1027 unsigned int byte_offset, base_regno, final_regno;
1028 rtx reg = SUBREG_REG (x);
1029
1030 /* This is where we attempt to catch illegal subregs
1031 created by the compiler. */
1032 gcc_assert (GET_CODE (x) == SUBREG && REG_P (reg));
1033 base_regno = REGNO (reg);
1034 gcc_assert (base_regno < FIRST_PSEUDO_REGISTER);
1035 gcc_assert (!check_mode || HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)));
1036 #ifdef ENABLE_CHECKING
1037 gcc_assert (subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1038 SUBREG_BYTE (x), mode));
1039 #endif
1040 /* Catch non-congruent offsets too. */
1041 byte_offset = SUBREG_BYTE (x);
1042 gcc_assert (!(byte_offset % GET_MODE_SIZE (mode)));
1043
1044 final_regno = subreg_regno (x);
1045
1046 return final_regno;
1047 }
1048
1049 /* Return a value representing some low-order bits of X, where the number
1050 of low-order bits is given by MODE. Note that no conversion is done
1051 between floating-point and fixed-point values, rather, the bit
1052 representation is returned.
1053
1054 This function handles the cases in common between gen_lowpart, below,
1055 and two variants in cse.c and combine.c. These are the cases that can
1056 be safely handled at all points in the compilation.
1057
1058 If this is not a case we can handle, return 0. */
1059
1060 rtx
1061 gen_lowpart_common (enum machine_mode mode, rtx x)
1062 {
1063 int msize = GET_MODE_SIZE (mode);
1064 int xsize;
1065 int offset = 0;
1066 enum machine_mode innermode;
1067
1068 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1069 so we have to make one up. Yuk. */
1070 innermode = GET_MODE (x);
1071 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
1072 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1073 else if (innermode == VOIDmode)
1074 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1075
1076 xsize = GET_MODE_SIZE (innermode);
1077
1078 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1079
1080 if (innermode == mode)
1081 return x;
1082
1083 /* MODE must occupy no more words than the mode of X. */
1084 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1085 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1086 return 0;
1087
1088 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1089 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1090 return 0;
1091
1092 offset = subreg_lowpart_offset (mode, innermode);
1093
1094 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1095 && (GET_MODE_CLASS (mode) == MODE_INT
1096 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1097 {
1098 /* If we are getting the low-order part of something that has been
1099 sign- or zero-extended, we can either just use the object being
1100 extended or make a narrower extension. If we want an even smaller
1101 piece than the size of the object being extended, call ourselves
1102 recursively.
1103
1104 This case is used mostly by combine and cse. */
1105
1106 if (GET_MODE (XEXP (x, 0)) == mode)
1107 return XEXP (x, 0);
1108 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1109 return gen_lowpart_common (mode, XEXP (x, 0));
1110 else if (msize < xsize)
1111 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1112 }
1113 else if (GET_CODE (x) == SUBREG || REG_P (x)
1114 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1115 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1116 return simplify_gen_subreg (mode, x, innermode, offset);
1117
1118 /* Otherwise, we can't do this. */
1119 return 0;
1120 }
1121 \f
1122 /* Return the constant real or imaginary part (which has mode MODE)
1123 of a complex value X. The IMAGPART_P argument determines whether
1124 the real or complex component should be returned. This function
1125 returns NULL_RTX if the component isn't a constant. */
1126
1127 static rtx
1128 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1129 {
1130 tree decl, part;
1131
1132 if (MEM_P (x)
1133 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1134 {
1135 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1136 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1137 {
1138 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1139 if (TREE_CODE (part) == REAL_CST
1140 || TREE_CODE (part) == INTEGER_CST)
1141 return expand_expr (part, NULL_RTX, mode, 0);
1142 }
1143 }
1144 return NULL_RTX;
1145 }
1146
1147 /* Return the real part (which has mode MODE) of a complex value X.
1148 This always comes at the low address in memory. */
1149
1150 rtx
1151 gen_realpart (enum machine_mode mode, rtx x)
1152 {
1153 rtx part;
1154
1155 /* Handle complex constants. */
1156 part = gen_complex_constant_part (mode, x, 0);
1157 if (part != NULL_RTX)
1158 return part;
1159
1160 if (WORDS_BIG_ENDIAN
1161 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1162 && REG_P (x)
1163 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1164 internal_error
1165 ("can't access real part of complex value in hard register");
1166 else if (WORDS_BIG_ENDIAN)
1167 return gen_highpart (mode, x);
1168 else
1169 return gen_lowpart (mode, x);
1170 }
1171
1172 /* Return the imaginary part (which has mode MODE) of a complex value X.
1173 This always comes at the high address in memory. */
1174
1175 rtx
1176 gen_imagpart (enum machine_mode mode, rtx x)
1177 {
1178 rtx part;
1179
1180 /* Handle complex constants. */
1181 part = gen_complex_constant_part (mode, x, 1);
1182 if (part != NULL_RTX)
1183 return part;
1184
1185 if (WORDS_BIG_ENDIAN)
1186 return gen_lowpart (mode, x);
1187 else if (! WORDS_BIG_ENDIAN
1188 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1189 && REG_P (x)
1190 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1191 internal_error
1192 ("can't access imaginary part of complex value in hard register");
1193 else
1194 return gen_highpart (mode, x);
1195 }
1196 \f
1197 rtx
1198 gen_highpart (enum machine_mode mode, rtx x)
1199 {
1200 unsigned int msize = GET_MODE_SIZE (mode);
1201 rtx result;
1202
1203 /* This case loses if X is a subreg. To catch bugs early,
1204 complain if an invalid MODE is used even in other cases. */
1205 gcc_assert (msize <= UNITS_PER_WORD
1206 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1207
1208 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1209 subreg_highpart_offset (mode, GET_MODE (x)));
1210 gcc_assert (result);
1211
1212 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1213 the target if we have a MEM. gen_highpart must return a valid operand,
1214 emitting code if necessary to do so. */
1215 if (MEM_P (result))
1216 {
1217 result = validize_mem (result);
1218 gcc_assert (result);
1219 }
1220
1221 return result;
1222 }
1223
1224 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1225 be VOIDmode constant. */
1226 rtx
1227 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1228 {
1229 if (GET_MODE (exp) != VOIDmode)
1230 {
1231 gcc_assert (GET_MODE (exp) == innermode);
1232 return gen_highpart (outermode, exp);
1233 }
1234 return simplify_gen_subreg (outermode, exp, innermode,
1235 subreg_highpart_offset (outermode, innermode));
1236 }
1237
1238 /* Return offset in bytes to get OUTERMODE low part
1239 of the value in mode INNERMODE stored in memory in target format. */
1240
1241 unsigned int
1242 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1243 {
1244 unsigned int offset = 0;
1245 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1246
1247 if (difference > 0)
1248 {
1249 if (WORDS_BIG_ENDIAN)
1250 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1251 if (BYTES_BIG_ENDIAN)
1252 offset += difference % UNITS_PER_WORD;
1253 }
1254
1255 return offset;
1256 }
1257
1258 /* Return offset in bytes to get OUTERMODE high part
1259 of the value in mode INNERMODE stored in memory in target format. */
1260 unsigned int
1261 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1262 {
1263 unsigned int offset = 0;
1264 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1265
1266 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1267
1268 if (difference > 0)
1269 {
1270 if (! WORDS_BIG_ENDIAN)
1271 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1272 if (! BYTES_BIG_ENDIAN)
1273 offset += difference % UNITS_PER_WORD;
1274 }
1275
1276 return offset;
1277 }
1278
1279 /* Return 1 iff X, assumed to be a SUBREG,
1280 refers to the least significant part of its containing reg.
1281 If X is not a SUBREG, always return 1 (it is its own low part!). */
1282
1283 int
1284 subreg_lowpart_p (rtx x)
1285 {
1286 if (GET_CODE (x) != SUBREG)
1287 return 1;
1288 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1289 return 0;
1290
1291 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1292 == SUBREG_BYTE (x));
1293 }
1294 \f
1295 /* Return subword OFFSET of operand OP.
1296 The word number, OFFSET, is interpreted as the word number starting
1297 at the low-order address. OFFSET 0 is the low-order word if not
1298 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1299
1300 If we cannot extract the required word, we return zero. Otherwise,
1301 an rtx corresponding to the requested word will be returned.
1302
1303 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1304 reload has completed, a valid address will always be returned. After
1305 reload, if a valid address cannot be returned, we return zero.
1306
1307 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1308 it is the responsibility of the caller.
1309
1310 MODE is the mode of OP in case it is a CONST_INT.
1311
1312 ??? This is still rather broken for some cases. The problem for the
1313 moment is that all callers of this thing provide no 'goal mode' to
1314 tell us to work with. This exists because all callers were written
1315 in a word based SUBREG world.
1316 Now use of this function can be deprecated by simplify_subreg in most
1317 cases.
1318 */
1319
1320 rtx
1321 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1322 {
1323 if (mode == VOIDmode)
1324 mode = GET_MODE (op);
1325
1326 gcc_assert (mode != VOIDmode);
1327
1328 /* If OP is narrower than a word, fail. */
1329 if (mode != BLKmode
1330 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1331 return 0;
1332
1333 /* If we want a word outside OP, return zero. */
1334 if (mode != BLKmode
1335 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1336 return const0_rtx;
1337
1338 /* Form a new MEM at the requested address. */
1339 if (MEM_P (op))
1340 {
1341 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1342
1343 if (! validate_address)
1344 return new;
1345
1346 else if (reload_completed)
1347 {
1348 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1349 return 0;
1350 }
1351 else
1352 return replace_equiv_address (new, XEXP (new, 0));
1353 }
1354
1355 /* Rest can be handled by simplify_subreg. */
1356 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1357 }
1358
1359 /* Similar to `operand_subword', but never return 0. If we can't extract
1360 the required subword, put OP into a register and try again. If that fails,
1361 abort. We always validate the address in this case.
1362
1363 MODE is the mode of OP, in case it is CONST_INT. */
1364
1365 rtx
1366 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1367 {
1368 rtx result = operand_subword (op, offset, 1, mode);
1369
1370 if (result)
1371 return result;
1372
1373 if (mode != BLKmode && mode != VOIDmode)
1374 {
1375 /* If this is a register which can not be accessed by words, copy it
1376 to a pseudo register. */
1377 if (REG_P (op))
1378 op = copy_to_reg (op);
1379 else
1380 op = force_reg (mode, op);
1381 }
1382
1383 result = operand_subword (op, offset, 1, mode);
1384 gcc_assert (result);
1385
1386 return result;
1387 }
1388 \f
1389 /* Given a compare instruction, swap the operands.
1390 A test instruction is changed into a compare of 0 against the operand. */
1391
1392 void
1393 reverse_comparison (rtx insn)
1394 {
1395 rtx body = PATTERN (insn);
1396 rtx comp;
1397
1398 if (GET_CODE (body) == SET)
1399 comp = SET_SRC (body);
1400 else
1401 comp = SET_SRC (XVECEXP (body, 0, 0));
1402
1403 if (GET_CODE (comp) == COMPARE)
1404 {
1405 rtx op0 = XEXP (comp, 0);
1406 rtx op1 = XEXP (comp, 1);
1407 XEXP (comp, 0) = op1;
1408 XEXP (comp, 1) = op0;
1409 }
1410 else
1411 {
1412 rtx new = gen_rtx_COMPARE (VOIDmode,
1413 CONST0_RTX (GET_MODE (comp)), comp);
1414 if (GET_CODE (body) == SET)
1415 SET_SRC (body) = new;
1416 else
1417 SET_SRC (XVECEXP (body, 0, 0)) = new;
1418 }
1419 }
1420 \f
1421 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1422 or (2) a component ref of something variable. Represent the later with
1423 a NULL expression. */
1424
1425 static tree
1426 component_ref_for_mem_expr (tree ref)
1427 {
1428 tree inner = TREE_OPERAND (ref, 0);
1429
1430 if (TREE_CODE (inner) == COMPONENT_REF)
1431 inner = component_ref_for_mem_expr (inner);
1432 else
1433 {
1434 /* Now remove any conversions: they don't change what the underlying
1435 object is. Likewise for SAVE_EXPR. */
1436 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1437 || TREE_CODE (inner) == NON_LVALUE_EXPR
1438 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1439 || TREE_CODE (inner) == SAVE_EXPR)
1440 inner = TREE_OPERAND (inner, 0);
1441
1442 if (! DECL_P (inner))
1443 inner = NULL_TREE;
1444 }
1445
1446 if (inner == TREE_OPERAND (ref, 0))
1447 return ref;
1448 else
1449 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1450 TREE_OPERAND (ref, 1), NULL_TREE);
1451 }
1452
1453 /* Returns 1 if both MEM_EXPR can be considered equal
1454 and 0 otherwise. */
1455
1456 int
1457 mem_expr_equal_p (tree expr1, tree expr2)
1458 {
1459 if (expr1 == expr2)
1460 return 1;
1461
1462 if (! expr1 || ! expr2)
1463 return 0;
1464
1465 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1466 return 0;
1467
1468 if (TREE_CODE (expr1) == COMPONENT_REF)
1469 return
1470 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1471 TREE_OPERAND (expr2, 0))
1472 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1473 TREE_OPERAND (expr2, 1));
1474
1475 if (INDIRECT_REF_P (expr1))
1476 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1477 TREE_OPERAND (expr2, 0));
1478
1479 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1480 have been resolved here. */
1481 gcc_assert (DECL_P (expr1));
1482
1483 /* Decls with different pointers can't be equal. */
1484 return 0;
1485 }
1486
1487 /* Given REF, a MEM, and T, either the type of X or the expression
1488 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1489 if we are making a new object of this type. BITPOS is nonzero if
1490 there is an offset outstanding on T that will be applied later. */
1491
1492 void
1493 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1494 HOST_WIDE_INT bitpos)
1495 {
1496 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1497 tree expr = MEM_EXPR (ref);
1498 rtx offset = MEM_OFFSET (ref);
1499 rtx size = MEM_SIZE (ref);
1500 unsigned int align = MEM_ALIGN (ref);
1501 HOST_WIDE_INT apply_bitpos = 0;
1502 tree type;
1503
1504 /* It can happen that type_for_mode was given a mode for which there
1505 is no language-level type. In which case it returns NULL, which
1506 we can see here. */
1507 if (t == NULL_TREE)
1508 return;
1509
1510 type = TYPE_P (t) ? t : TREE_TYPE (t);
1511 if (type == error_mark_node)
1512 return;
1513
1514 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1515 wrong answer, as it assumes that DECL_RTL already has the right alias
1516 info. Callers should not set DECL_RTL until after the call to
1517 set_mem_attributes. */
1518 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1519
1520 /* Get the alias set from the expression or type (perhaps using a
1521 front-end routine) and use it. */
1522 alias = get_alias_set (t);
1523
1524 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1525 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1526 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1527 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (t);
1528
1529 /* If we are making an object of this type, or if this is a DECL, we know
1530 that it is a scalar if the type is not an aggregate. */
1531 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1532 MEM_SCALAR_P (ref) = 1;
1533
1534 /* We can set the alignment from the type if we are making an object,
1535 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1536 if (objectp || TREE_CODE (t) == INDIRECT_REF
1537 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1538 || TYPE_ALIGN_OK (type))
1539 align = MAX (align, TYPE_ALIGN (type));
1540 else
1541 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1542 {
1543 if (integer_zerop (TREE_OPERAND (t, 1)))
1544 /* We don't know anything about the alignment. */
1545 align = BITS_PER_UNIT;
1546 else
1547 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1548 }
1549
1550 /* If the size is known, we can set that. */
1551 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1552 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1553
1554 /* If T is not a type, we may be able to deduce some more information about
1555 the expression. */
1556 if (! TYPE_P (t))
1557 {
1558 tree base = get_base_address (t);
1559 if (base && DECL_P (base)
1560 && TREE_READONLY (base)
1561 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1562 MEM_READONLY_P (ref) = 1;
1563
1564 if (TREE_THIS_VOLATILE (t))
1565 MEM_VOLATILE_P (ref) = 1;
1566
1567 /* Now remove any conversions: they don't change what the underlying
1568 object is. Likewise for SAVE_EXPR. */
1569 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1570 || TREE_CODE (t) == NON_LVALUE_EXPR
1571 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1572 || TREE_CODE (t) == SAVE_EXPR)
1573 t = TREE_OPERAND (t, 0);
1574
1575 /* If this expression can't be addressed (e.g., it contains a reference
1576 to a non-addressable field), show we don't change its alias set. */
1577 if (! can_address_p (t))
1578 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1579
1580 /* If this is a decl, set the attributes of the MEM from it. */
1581 if (DECL_P (t))
1582 {
1583 expr = t;
1584 offset = const0_rtx;
1585 apply_bitpos = bitpos;
1586 size = (DECL_SIZE_UNIT (t)
1587 && host_integerp (DECL_SIZE_UNIT (t), 1)
1588 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1589 align = DECL_ALIGN (t);
1590 }
1591
1592 /* If this is a constant, we know the alignment. */
1593 else if (CONSTANT_CLASS_P (t))
1594 {
1595 align = TYPE_ALIGN (type);
1596 #ifdef CONSTANT_ALIGNMENT
1597 align = CONSTANT_ALIGNMENT (t, align);
1598 #endif
1599 }
1600
1601 /* If this is a field reference and not a bit-field, record it. */
1602 /* ??? There is some information that can be gleened from bit-fields,
1603 such as the word offset in the structure that might be modified.
1604 But skip it for now. */
1605 else if (TREE_CODE (t) == COMPONENT_REF
1606 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1607 {
1608 expr = component_ref_for_mem_expr (t);
1609 offset = const0_rtx;
1610 apply_bitpos = bitpos;
1611 /* ??? Any reason the field size would be different than
1612 the size we got from the type? */
1613 }
1614
1615 /* If this is an array reference, look for an outer field reference. */
1616 else if (TREE_CODE (t) == ARRAY_REF)
1617 {
1618 tree off_tree = size_zero_node;
1619 /* We can't modify t, because we use it at the end of the
1620 function. */
1621 tree t2 = t;
1622
1623 do
1624 {
1625 tree index = TREE_OPERAND (t2, 1);
1626 tree low_bound = array_ref_low_bound (t2);
1627 tree unit_size = array_ref_element_size (t2);
1628
1629 /* We assume all arrays have sizes that are a multiple of a byte.
1630 First subtract the lower bound, if any, in the type of the
1631 index, then convert to sizetype and multiply by the size of
1632 the array element. */
1633 if (! integer_zerop (low_bound))
1634 index = fold (build2 (MINUS_EXPR, TREE_TYPE (index),
1635 index, low_bound));
1636
1637 off_tree = size_binop (PLUS_EXPR,
1638 size_binop (MULT_EXPR, convert (sizetype,
1639 index),
1640 unit_size),
1641 off_tree);
1642 t2 = TREE_OPERAND (t2, 0);
1643 }
1644 while (TREE_CODE (t2) == ARRAY_REF);
1645
1646 if (DECL_P (t2))
1647 {
1648 expr = t2;
1649 offset = NULL;
1650 if (host_integerp (off_tree, 1))
1651 {
1652 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1653 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1654 align = DECL_ALIGN (t2);
1655 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1656 align = aoff;
1657 offset = GEN_INT (ioff);
1658 apply_bitpos = bitpos;
1659 }
1660 }
1661 else if (TREE_CODE (t2) == COMPONENT_REF)
1662 {
1663 expr = component_ref_for_mem_expr (t2);
1664 if (host_integerp (off_tree, 1))
1665 {
1666 offset = GEN_INT (tree_low_cst (off_tree, 1));
1667 apply_bitpos = bitpos;
1668 }
1669 /* ??? Any reason the field size would be different than
1670 the size we got from the type? */
1671 }
1672 else if (flag_argument_noalias > 1
1673 && (INDIRECT_REF_P (t2))
1674 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1675 {
1676 expr = t2;
1677 offset = NULL;
1678 }
1679 }
1680
1681 /* If this is a Fortran indirect argument reference, record the
1682 parameter decl. */
1683 else if (flag_argument_noalias > 1
1684 && (INDIRECT_REF_P (t))
1685 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1686 {
1687 expr = t;
1688 offset = NULL;
1689 }
1690 }
1691
1692 /* If we modified OFFSET based on T, then subtract the outstanding
1693 bit position offset. Similarly, increase the size of the accessed
1694 object to contain the negative offset. */
1695 if (apply_bitpos)
1696 {
1697 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1698 if (size)
1699 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1700 }
1701
1702 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1703 {
1704 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1705 we're overlapping. */
1706 offset = NULL;
1707 expr = NULL;
1708 }
1709
1710 /* Now set the attributes we computed above. */
1711 MEM_ATTRS (ref)
1712 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1713
1714 /* If this is already known to be a scalar or aggregate, we are done. */
1715 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1716 return;
1717
1718 /* If it is a reference into an aggregate, this is part of an aggregate.
1719 Otherwise we don't know. */
1720 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1721 || TREE_CODE (t) == ARRAY_RANGE_REF
1722 || TREE_CODE (t) == BIT_FIELD_REF)
1723 MEM_IN_STRUCT_P (ref) = 1;
1724 }
1725
1726 void
1727 set_mem_attributes (rtx ref, tree t, int objectp)
1728 {
1729 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1730 }
1731
1732 /* Set the decl for MEM to DECL. */
1733
1734 void
1735 set_mem_attrs_from_reg (rtx mem, rtx reg)
1736 {
1737 MEM_ATTRS (mem)
1738 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1739 GEN_INT (REG_OFFSET (reg)),
1740 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1741 }
1742
1743 /* Set the alias set of MEM to SET. */
1744
1745 void
1746 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1747 {
1748 #ifdef ENABLE_CHECKING
1749 /* If the new and old alias sets don't conflict, something is wrong. */
1750 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1751 #endif
1752
1753 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1754 MEM_SIZE (mem), MEM_ALIGN (mem),
1755 GET_MODE (mem));
1756 }
1757
1758 /* Set the alignment of MEM to ALIGN bits. */
1759
1760 void
1761 set_mem_align (rtx mem, unsigned int align)
1762 {
1763 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1764 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1765 GET_MODE (mem));
1766 }
1767
1768 /* Set the expr for MEM to EXPR. */
1769
1770 void
1771 set_mem_expr (rtx mem, tree expr)
1772 {
1773 MEM_ATTRS (mem)
1774 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1775 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1776 }
1777
1778 /* Set the offset of MEM to OFFSET. */
1779
1780 void
1781 set_mem_offset (rtx mem, rtx offset)
1782 {
1783 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1784 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1785 GET_MODE (mem));
1786 }
1787
1788 /* Set the size of MEM to SIZE. */
1789
1790 void
1791 set_mem_size (rtx mem, rtx size)
1792 {
1793 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1794 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1795 GET_MODE (mem));
1796 }
1797 \f
1798 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1799 and its address changed to ADDR. (VOIDmode means don't change the mode.
1800 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1801 returned memory location is required to be valid. The memory
1802 attributes are not changed. */
1803
1804 static rtx
1805 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1806 {
1807 rtx new;
1808
1809 gcc_assert (MEM_P (memref));
1810 if (mode == VOIDmode)
1811 mode = GET_MODE (memref);
1812 if (addr == 0)
1813 addr = XEXP (memref, 0);
1814 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1815 && (!validate || memory_address_p (mode, addr)))
1816 return memref;
1817
1818 if (validate)
1819 {
1820 if (reload_in_progress || reload_completed)
1821 gcc_assert (memory_address_p (mode, addr));
1822 else
1823 addr = memory_address (mode, addr);
1824 }
1825
1826 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1827 return memref;
1828
1829 new = gen_rtx_MEM (mode, addr);
1830 MEM_COPY_ATTRIBUTES (new, memref);
1831 return new;
1832 }
1833
1834 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1835 way we are changing MEMREF, so we only preserve the alias set. */
1836
1837 rtx
1838 change_address (rtx memref, enum machine_mode mode, rtx addr)
1839 {
1840 rtx new = change_address_1 (memref, mode, addr, 1), size;
1841 enum machine_mode mmode = GET_MODE (new);
1842 unsigned int align;
1843
1844 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1845 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1846
1847 /* If there are no changes, just return the original memory reference. */
1848 if (new == memref)
1849 {
1850 if (MEM_ATTRS (memref) == 0
1851 || (MEM_EXPR (memref) == NULL
1852 && MEM_OFFSET (memref) == NULL
1853 && MEM_SIZE (memref) == size
1854 && MEM_ALIGN (memref) == align))
1855 return new;
1856
1857 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1858 MEM_COPY_ATTRIBUTES (new, memref);
1859 }
1860
1861 MEM_ATTRS (new)
1862 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1863
1864 return new;
1865 }
1866
1867 /* Return a memory reference like MEMREF, but with its mode changed
1868 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1869 nonzero, the memory address is forced to be valid.
1870 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1871 and caller is responsible for adjusting MEMREF base register. */
1872
1873 rtx
1874 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1875 int validate, int adjust)
1876 {
1877 rtx addr = XEXP (memref, 0);
1878 rtx new;
1879 rtx memoffset = MEM_OFFSET (memref);
1880 rtx size = 0;
1881 unsigned int memalign = MEM_ALIGN (memref);
1882
1883 /* If there are no changes, just return the original memory reference. */
1884 if (mode == GET_MODE (memref) && !offset
1885 && (!validate || memory_address_p (mode, addr)))
1886 return memref;
1887
1888 /* ??? Prefer to create garbage instead of creating shared rtl.
1889 This may happen even if offset is nonzero -- consider
1890 (plus (plus reg reg) const_int) -- so do this always. */
1891 addr = copy_rtx (addr);
1892
1893 if (adjust)
1894 {
1895 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1896 object, we can merge it into the LO_SUM. */
1897 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1898 && offset >= 0
1899 && (unsigned HOST_WIDE_INT) offset
1900 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1901 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1902 plus_constant (XEXP (addr, 1), offset));
1903 else
1904 addr = plus_constant (addr, offset);
1905 }
1906
1907 new = change_address_1 (memref, mode, addr, validate);
1908
1909 /* Compute the new values of the memory attributes due to this adjustment.
1910 We add the offsets and update the alignment. */
1911 if (memoffset)
1912 memoffset = GEN_INT (offset + INTVAL (memoffset));
1913
1914 /* Compute the new alignment by taking the MIN of the alignment and the
1915 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1916 if zero. */
1917 if (offset != 0)
1918 memalign
1919 = MIN (memalign,
1920 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1921
1922 /* We can compute the size in a number of ways. */
1923 if (GET_MODE (new) != BLKmode)
1924 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1925 else if (MEM_SIZE (memref))
1926 size = plus_constant (MEM_SIZE (memref), -offset);
1927
1928 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1929 memoffset, size, memalign, GET_MODE (new));
1930
1931 /* At some point, we should validate that this offset is within the object,
1932 if all the appropriate values are known. */
1933 return new;
1934 }
1935
1936 /* Return a memory reference like MEMREF, but with its mode changed
1937 to MODE and its address changed to ADDR, which is assumed to be
1938 MEMREF offseted by OFFSET bytes. If VALIDATE is
1939 nonzero, the memory address is forced to be valid. */
1940
1941 rtx
1942 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1943 HOST_WIDE_INT offset, int validate)
1944 {
1945 memref = change_address_1 (memref, VOIDmode, addr, validate);
1946 return adjust_address_1 (memref, mode, offset, validate, 0);
1947 }
1948
1949 /* Return a memory reference like MEMREF, but whose address is changed by
1950 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1951 known to be in OFFSET (possibly 1). */
1952
1953 rtx
1954 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1955 {
1956 rtx new, addr = XEXP (memref, 0);
1957
1958 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1959
1960 /* At this point we don't know _why_ the address is invalid. It
1961 could have secondary memory references, multiplies or anything.
1962
1963 However, if we did go and rearrange things, we can wind up not
1964 being able to recognize the magic around pic_offset_table_rtx.
1965 This stuff is fragile, and is yet another example of why it is
1966 bad to expose PIC machinery too early. */
1967 if (! memory_address_p (GET_MODE (memref), new)
1968 && GET_CODE (addr) == PLUS
1969 && XEXP (addr, 0) == pic_offset_table_rtx)
1970 {
1971 addr = force_reg (GET_MODE (addr), addr);
1972 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1973 }
1974
1975 update_temp_slot_address (XEXP (memref, 0), new);
1976 new = change_address_1 (memref, VOIDmode, new, 1);
1977
1978 /* If there are no changes, just return the original memory reference. */
1979 if (new == memref)
1980 return new;
1981
1982 /* Update the alignment to reflect the offset. Reset the offset, which
1983 we don't know. */
1984 MEM_ATTRS (new)
1985 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1986 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1987 GET_MODE (new));
1988 return new;
1989 }
1990
1991 /* Return a memory reference like MEMREF, but with its address changed to
1992 ADDR. The caller is asserting that the actual piece of memory pointed
1993 to is the same, just the form of the address is being changed, such as
1994 by putting something into a register. */
1995
1996 rtx
1997 replace_equiv_address (rtx memref, rtx addr)
1998 {
1999 /* change_address_1 copies the memory attribute structure without change
2000 and that's exactly what we want here. */
2001 update_temp_slot_address (XEXP (memref, 0), addr);
2002 return change_address_1 (memref, VOIDmode, addr, 1);
2003 }
2004
2005 /* Likewise, but the reference is not required to be valid. */
2006
2007 rtx
2008 replace_equiv_address_nv (rtx memref, rtx addr)
2009 {
2010 return change_address_1 (memref, VOIDmode, addr, 0);
2011 }
2012
2013 /* Return a memory reference like MEMREF, but with its mode widened to
2014 MODE and offset by OFFSET. This would be used by targets that e.g.
2015 cannot issue QImode memory operations and have to use SImode memory
2016 operations plus masking logic. */
2017
2018 rtx
2019 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2020 {
2021 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2022 tree expr = MEM_EXPR (new);
2023 rtx memoffset = MEM_OFFSET (new);
2024 unsigned int size = GET_MODE_SIZE (mode);
2025
2026 /* If there are no changes, just return the original memory reference. */
2027 if (new == memref)
2028 return new;
2029
2030 /* If we don't know what offset we were at within the expression, then
2031 we can't know if we've overstepped the bounds. */
2032 if (! memoffset)
2033 expr = NULL_TREE;
2034
2035 while (expr)
2036 {
2037 if (TREE_CODE (expr) == COMPONENT_REF)
2038 {
2039 tree field = TREE_OPERAND (expr, 1);
2040 tree offset = component_ref_field_offset (expr);
2041
2042 if (! DECL_SIZE_UNIT (field))
2043 {
2044 expr = NULL_TREE;
2045 break;
2046 }
2047
2048 /* Is the field at least as large as the access? If so, ok,
2049 otherwise strip back to the containing structure. */
2050 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2051 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2052 && INTVAL (memoffset) >= 0)
2053 break;
2054
2055 if (! host_integerp (offset, 1))
2056 {
2057 expr = NULL_TREE;
2058 break;
2059 }
2060
2061 expr = TREE_OPERAND (expr, 0);
2062 memoffset
2063 = (GEN_INT (INTVAL (memoffset)
2064 + tree_low_cst (offset, 1)
2065 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2066 / BITS_PER_UNIT)));
2067 }
2068 /* Similarly for the decl. */
2069 else if (DECL_P (expr)
2070 && DECL_SIZE_UNIT (expr)
2071 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2072 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2073 && (! memoffset || INTVAL (memoffset) >= 0))
2074 break;
2075 else
2076 {
2077 /* The widened memory access overflows the expression, which means
2078 that it could alias another expression. Zap it. */
2079 expr = NULL_TREE;
2080 break;
2081 }
2082 }
2083
2084 if (! expr)
2085 memoffset = NULL_RTX;
2086
2087 /* The widened memory may alias other stuff, so zap the alias set. */
2088 /* ??? Maybe use get_alias_set on any remaining expression. */
2089
2090 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2091 MEM_ALIGN (new), mode);
2092
2093 return new;
2094 }
2095 \f
2096 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2097
2098 rtx
2099 gen_label_rtx (void)
2100 {
2101 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2102 NULL, label_num++, NULL);
2103 }
2104 \f
2105 /* For procedure integration. */
2106
2107 /* Install new pointers to the first and last insns in the chain.
2108 Also, set cur_insn_uid to one higher than the last in use.
2109 Used for an inline-procedure after copying the insn chain. */
2110
2111 void
2112 set_new_first_and_last_insn (rtx first, rtx last)
2113 {
2114 rtx insn;
2115
2116 first_insn = first;
2117 last_insn = last;
2118 cur_insn_uid = 0;
2119
2120 for (insn = first; insn; insn = NEXT_INSN (insn))
2121 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2122
2123 cur_insn_uid++;
2124 }
2125 \f
2126 /* Go through all the RTL insn bodies and copy any invalid shared
2127 structure. This routine should only be called once. */
2128
2129 static void
2130 unshare_all_rtl_1 (tree fndecl, rtx insn)
2131 {
2132 tree decl;
2133
2134 /* Make sure that virtual parameters are not shared. */
2135 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2136 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2137
2138 /* Make sure that virtual stack slots are not shared. */
2139 unshare_all_decls (DECL_INITIAL (fndecl));
2140
2141 /* Unshare just about everything else. */
2142 unshare_all_rtl_in_chain (insn);
2143
2144 /* Make sure the addresses of stack slots found outside the insn chain
2145 (such as, in DECL_RTL of a variable) are not shared
2146 with the insn chain.
2147
2148 This special care is necessary when the stack slot MEM does not
2149 actually appear in the insn chain. If it does appear, its address
2150 is unshared from all else at that point. */
2151 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2152 }
2153
2154 /* Go through all the RTL insn bodies and copy any invalid shared
2155 structure, again. This is a fairly expensive thing to do so it
2156 should be done sparingly. */
2157
2158 void
2159 unshare_all_rtl_again (rtx insn)
2160 {
2161 rtx p;
2162 tree decl;
2163
2164 for (p = insn; p; p = NEXT_INSN (p))
2165 if (INSN_P (p))
2166 {
2167 reset_used_flags (PATTERN (p));
2168 reset_used_flags (REG_NOTES (p));
2169 reset_used_flags (LOG_LINKS (p));
2170 }
2171
2172 /* Make sure that virtual stack slots are not shared. */
2173 reset_used_decls (DECL_INITIAL (cfun->decl));
2174
2175 /* Make sure that virtual parameters are not shared. */
2176 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2177 reset_used_flags (DECL_RTL (decl));
2178
2179 reset_used_flags (stack_slot_list);
2180
2181 unshare_all_rtl_1 (cfun->decl, insn);
2182 }
2183
2184 void
2185 unshare_all_rtl (void)
2186 {
2187 unshare_all_rtl_1 (current_function_decl, get_insns ());
2188 }
2189
2190 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2191 Recursively does the same for subexpressions. */
2192
2193 static void
2194 verify_rtx_sharing (rtx orig, rtx insn)
2195 {
2196 rtx x = orig;
2197 int i;
2198 enum rtx_code code;
2199 const char *format_ptr;
2200
2201 if (x == 0)
2202 return;
2203
2204 code = GET_CODE (x);
2205
2206 /* These types may be freely shared. */
2207
2208 switch (code)
2209 {
2210 case REG:
2211 case CONST_INT:
2212 case CONST_DOUBLE:
2213 case CONST_VECTOR:
2214 case SYMBOL_REF:
2215 case LABEL_REF:
2216 case CODE_LABEL:
2217 case PC:
2218 case CC0:
2219 case SCRATCH:
2220 return;
2221 /* SCRATCH must be shared because they represent distinct values. */
2222 case CLOBBER:
2223 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2224 return;
2225 break;
2226
2227 case CONST:
2228 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2229 a LABEL_REF, it isn't sharable. */
2230 if (GET_CODE (XEXP (x, 0)) == PLUS
2231 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2232 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2233 return;
2234 break;
2235
2236 case MEM:
2237 /* A MEM is allowed to be shared if its address is constant. */
2238 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2239 || reload_completed || reload_in_progress)
2240 return;
2241
2242 break;
2243
2244 default:
2245 break;
2246 }
2247
2248 /* This rtx may not be shared. If it has already been seen,
2249 replace it with a copy of itself. */
2250 #ifdef ENABLE_CHECKING
2251 if (RTX_FLAG (x, used))
2252 {
2253 error ("Invalid rtl sharing found in the insn");
2254 debug_rtx (insn);
2255 error ("Shared rtx");
2256 debug_rtx (x);
2257 internal_error ("Internal consistency failure");
2258 }
2259 #endif
2260 gcc_assert (!RTX_FLAG (x, used));
2261
2262 RTX_FLAG (x, used) = 1;
2263
2264 /* Now scan the subexpressions recursively. */
2265
2266 format_ptr = GET_RTX_FORMAT (code);
2267
2268 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2269 {
2270 switch (*format_ptr++)
2271 {
2272 case 'e':
2273 verify_rtx_sharing (XEXP (x, i), insn);
2274 break;
2275
2276 case 'E':
2277 if (XVEC (x, i) != NULL)
2278 {
2279 int j;
2280 int len = XVECLEN (x, i);
2281
2282 for (j = 0; j < len; j++)
2283 {
2284 /* We allow sharing of ASM_OPERANDS inside single
2285 instruction. */
2286 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2287 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2288 == ASM_OPERANDS))
2289 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2290 else
2291 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2292 }
2293 }
2294 break;
2295 }
2296 }
2297 return;
2298 }
2299
2300 /* Go through all the RTL insn bodies and check that there is no unexpected
2301 sharing in between the subexpressions. */
2302
2303 void
2304 verify_rtl_sharing (void)
2305 {
2306 rtx p;
2307
2308 for (p = get_insns (); p; p = NEXT_INSN (p))
2309 if (INSN_P (p))
2310 {
2311 reset_used_flags (PATTERN (p));
2312 reset_used_flags (REG_NOTES (p));
2313 reset_used_flags (LOG_LINKS (p));
2314 }
2315
2316 for (p = get_insns (); p; p = NEXT_INSN (p))
2317 if (INSN_P (p))
2318 {
2319 verify_rtx_sharing (PATTERN (p), p);
2320 verify_rtx_sharing (REG_NOTES (p), p);
2321 verify_rtx_sharing (LOG_LINKS (p), p);
2322 }
2323 }
2324
2325 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2326 Assumes the mark bits are cleared at entry. */
2327
2328 void
2329 unshare_all_rtl_in_chain (rtx insn)
2330 {
2331 for (; insn; insn = NEXT_INSN (insn))
2332 if (INSN_P (insn))
2333 {
2334 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2335 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2336 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2337 }
2338 }
2339
2340 /* Go through all virtual stack slots of a function and copy any
2341 shared structure. */
2342 static void
2343 unshare_all_decls (tree blk)
2344 {
2345 tree t;
2346
2347 /* Copy shared decls. */
2348 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2349 if (DECL_RTL_SET_P (t))
2350 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2351
2352 /* Now process sub-blocks. */
2353 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2354 unshare_all_decls (t);
2355 }
2356
2357 /* Go through all virtual stack slots of a function and mark them as
2358 not shared. */
2359 static void
2360 reset_used_decls (tree blk)
2361 {
2362 tree t;
2363
2364 /* Mark decls. */
2365 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2366 if (DECL_RTL_SET_P (t))
2367 reset_used_flags (DECL_RTL (t));
2368
2369 /* Now process sub-blocks. */
2370 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2371 reset_used_decls (t);
2372 }
2373
2374 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2375 Recursively does the same for subexpressions. Uses
2376 copy_rtx_if_shared_1 to reduce stack space. */
2377
2378 rtx
2379 copy_rtx_if_shared (rtx orig)
2380 {
2381 copy_rtx_if_shared_1 (&orig);
2382 return orig;
2383 }
2384
2385 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2386 use. Recursively does the same for subexpressions. */
2387
2388 static void
2389 copy_rtx_if_shared_1 (rtx *orig1)
2390 {
2391 rtx x;
2392 int i;
2393 enum rtx_code code;
2394 rtx *last_ptr;
2395 const char *format_ptr;
2396 int copied = 0;
2397 int length;
2398
2399 /* Repeat is used to turn tail-recursion into iteration. */
2400 repeat:
2401 x = *orig1;
2402
2403 if (x == 0)
2404 return;
2405
2406 code = GET_CODE (x);
2407
2408 /* These types may be freely shared. */
2409
2410 switch (code)
2411 {
2412 case REG:
2413 case CONST_INT:
2414 case CONST_DOUBLE:
2415 case CONST_VECTOR:
2416 case SYMBOL_REF:
2417 case LABEL_REF:
2418 case CODE_LABEL:
2419 case PC:
2420 case CC0:
2421 case SCRATCH:
2422 /* SCRATCH must be shared because they represent distinct values. */
2423 return;
2424 case CLOBBER:
2425 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2426 return;
2427 break;
2428
2429 case CONST:
2430 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2431 a LABEL_REF, it isn't sharable. */
2432 if (GET_CODE (XEXP (x, 0)) == PLUS
2433 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2434 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2435 return;
2436 break;
2437
2438 case INSN:
2439 case JUMP_INSN:
2440 case CALL_INSN:
2441 case NOTE:
2442 case BARRIER:
2443 /* The chain of insns is not being copied. */
2444 return;
2445
2446 default:
2447 break;
2448 }
2449
2450 /* This rtx may not be shared. If it has already been seen,
2451 replace it with a copy of itself. */
2452
2453 if (RTX_FLAG (x, used))
2454 {
2455 rtx copy;
2456
2457 copy = rtx_alloc (code);
2458 memcpy (copy, x, RTX_SIZE (code));
2459 x = copy;
2460 copied = 1;
2461 }
2462 RTX_FLAG (x, used) = 1;
2463
2464 /* Now scan the subexpressions recursively.
2465 We can store any replaced subexpressions directly into X
2466 since we know X is not shared! Any vectors in X
2467 must be copied if X was copied. */
2468
2469 format_ptr = GET_RTX_FORMAT (code);
2470 length = GET_RTX_LENGTH (code);
2471 last_ptr = NULL;
2472
2473 for (i = 0; i < length; i++)
2474 {
2475 switch (*format_ptr++)
2476 {
2477 case 'e':
2478 if (last_ptr)
2479 copy_rtx_if_shared_1 (last_ptr);
2480 last_ptr = &XEXP (x, i);
2481 break;
2482
2483 case 'E':
2484 if (XVEC (x, i) != NULL)
2485 {
2486 int j;
2487 int len = XVECLEN (x, i);
2488
2489 /* Copy the vector iff I copied the rtx and the length
2490 is nonzero. */
2491 if (copied && len > 0)
2492 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2493
2494 /* Call recursively on all inside the vector. */
2495 for (j = 0; j < len; j++)
2496 {
2497 if (last_ptr)
2498 copy_rtx_if_shared_1 (last_ptr);
2499 last_ptr = &XVECEXP (x, i, j);
2500 }
2501 }
2502 break;
2503 }
2504 }
2505 *orig1 = x;
2506 if (last_ptr)
2507 {
2508 orig1 = last_ptr;
2509 goto repeat;
2510 }
2511 return;
2512 }
2513
2514 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2515 to look for shared sub-parts. */
2516
2517 void
2518 reset_used_flags (rtx x)
2519 {
2520 int i, j;
2521 enum rtx_code code;
2522 const char *format_ptr;
2523 int length;
2524
2525 /* Repeat is used to turn tail-recursion into iteration. */
2526 repeat:
2527 if (x == 0)
2528 return;
2529
2530 code = GET_CODE (x);
2531
2532 /* These types may be freely shared so we needn't do any resetting
2533 for them. */
2534
2535 switch (code)
2536 {
2537 case REG:
2538 case CONST_INT:
2539 case CONST_DOUBLE:
2540 case CONST_VECTOR:
2541 case SYMBOL_REF:
2542 case CODE_LABEL:
2543 case PC:
2544 case CC0:
2545 return;
2546
2547 case INSN:
2548 case JUMP_INSN:
2549 case CALL_INSN:
2550 case NOTE:
2551 case LABEL_REF:
2552 case BARRIER:
2553 /* The chain of insns is not being copied. */
2554 return;
2555
2556 default:
2557 break;
2558 }
2559
2560 RTX_FLAG (x, used) = 0;
2561
2562 format_ptr = GET_RTX_FORMAT (code);
2563 length = GET_RTX_LENGTH (code);
2564
2565 for (i = 0; i < length; i++)
2566 {
2567 switch (*format_ptr++)
2568 {
2569 case 'e':
2570 if (i == length-1)
2571 {
2572 x = XEXP (x, i);
2573 goto repeat;
2574 }
2575 reset_used_flags (XEXP (x, i));
2576 break;
2577
2578 case 'E':
2579 for (j = 0; j < XVECLEN (x, i); j++)
2580 reset_used_flags (XVECEXP (x, i, j));
2581 break;
2582 }
2583 }
2584 }
2585
2586 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2587 to look for shared sub-parts. */
2588
2589 void
2590 set_used_flags (rtx x)
2591 {
2592 int i, j;
2593 enum rtx_code code;
2594 const char *format_ptr;
2595
2596 if (x == 0)
2597 return;
2598
2599 code = GET_CODE (x);
2600
2601 /* These types may be freely shared so we needn't do any resetting
2602 for them. */
2603
2604 switch (code)
2605 {
2606 case REG:
2607 case CONST_INT:
2608 case CONST_DOUBLE:
2609 case CONST_VECTOR:
2610 case SYMBOL_REF:
2611 case CODE_LABEL:
2612 case PC:
2613 case CC0:
2614 return;
2615
2616 case INSN:
2617 case JUMP_INSN:
2618 case CALL_INSN:
2619 case NOTE:
2620 case LABEL_REF:
2621 case BARRIER:
2622 /* The chain of insns is not being copied. */
2623 return;
2624
2625 default:
2626 break;
2627 }
2628
2629 RTX_FLAG (x, used) = 1;
2630
2631 format_ptr = GET_RTX_FORMAT (code);
2632 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2633 {
2634 switch (*format_ptr++)
2635 {
2636 case 'e':
2637 set_used_flags (XEXP (x, i));
2638 break;
2639
2640 case 'E':
2641 for (j = 0; j < XVECLEN (x, i); j++)
2642 set_used_flags (XVECEXP (x, i, j));
2643 break;
2644 }
2645 }
2646 }
2647 \f
2648 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2649 Return X or the rtx for the pseudo reg the value of X was copied into.
2650 OTHER must be valid as a SET_DEST. */
2651
2652 rtx
2653 make_safe_from (rtx x, rtx other)
2654 {
2655 while (1)
2656 switch (GET_CODE (other))
2657 {
2658 case SUBREG:
2659 other = SUBREG_REG (other);
2660 break;
2661 case STRICT_LOW_PART:
2662 case SIGN_EXTEND:
2663 case ZERO_EXTEND:
2664 other = XEXP (other, 0);
2665 break;
2666 default:
2667 goto done;
2668 }
2669 done:
2670 if ((MEM_P (other)
2671 && ! CONSTANT_P (x)
2672 && !REG_P (x)
2673 && GET_CODE (x) != SUBREG)
2674 || (REG_P (other)
2675 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2676 || reg_mentioned_p (other, x))))
2677 {
2678 rtx temp = gen_reg_rtx (GET_MODE (x));
2679 emit_move_insn (temp, x);
2680 return temp;
2681 }
2682 return x;
2683 }
2684 \f
2685 /* Emission of insns (adding them to the doubly-linked list). */
2686
2687 /* Return the first insn of the current sequence or current function. */
2688
2689 rtx
2690 get_insns (void)
2691 {
2692 return first_insn;
2693 }
2694
2695 /* Specify a new insn as the first in the chain. */
2696
2697 void
2698 set_first_insn (rtx insn)
2699 {
2700 gcc_assert (!PREV_INSN (insn));
2701 first_insn = insn;
2702 }
2703
2704 /* Return the last insn emitted in current sequence or current function. */
2705
2706 rtx
2707 get_last_insn (void)
2708 {
2709 return last_insn;
2710 }
2711
2712 /* Specify a new insn as the last in the chain. */
2713
2714 void
2715 set_last_insn (rtx insn)
2716 {
2717 gcc_assert (!NEXT_INSN (insn));
2718 last_insn = insn;
2719 }
2720
2721 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2722
2723 rtx
2724 get_last_insn_anywhere (void)
2725 {
2726 struct sequence_stack *stack;
2727 if (last_insn)
2728 return last_insn;
2729 for (stack = seq_stack; stack; stack = stack->next)
2730 if (stack->last != 0)
2731 return stack->last;
2732 return 0;
2733 }
2734
2735 /* Return the first nonnote insn emitted in current sequence or current
2736 function. This routine looks inside SEQUENCEs. */
2737
2738 rtx
2739 get_first_nonnote_insn (void)
2740 {
2741 rtx insn = first_insn;
2742
2743 while (insn)
2744 {
2745 insn = next_insn (insn);
2746 if (insn == 0 || !NOTE_P (insn))
2747 break;
2748 }
2749
2750 return insn;
2751 }
2752
2753 /* Return the last nonnote insn emitted in current sequence or current
2754 function. This routine looks inside SEQUENCEs. */
2755
2756 rtx
2757 get_last_nonnote_insn (void)
2758 {
2759 rtx insn = last_insn;
2760
2761 while (insn)
2762 {
2763 insn = previous_insn (insn);
2764 if (insn == 0 || !NOTE_P (insn))
2765 break;
2766 }
2767
2768 return insn;
2769 }
2770
2771 /* Return a number larger than any instruction's uid in this function. */
2772
2773 int
2774 get_max_uid (void)
2775 {
2776 return cur_insn_uid;
2777 }
2778
2779 /* Renumber instructions so that no instruction UIDs are wasted. */
2780
2781 void
2782 renumber_insns (FILE *stream)
2783 {
2784 rtx insn;
2785
2786 /* If we're not supposed to renumber instructions, don't. */
2787 if (!flag_renumber_insns)
2788 return;
2789
2790 /* If there aren't that many instructions, then it's not really
2791 worth renumbering them. */
2792 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2793 return;
2794
2795 cur_insn_uid = 1;
2796
2797 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2798 {
2799 if (stream)
2800 fprintf (stream, "Renumbering insn %d to %d\n",
2801 INSN_UID (insn), cur_insn_uid);
2802 INSN_UID (insn) = cur_insn_uid++;
2803 }
2804 }
2805 \f
2806 /* Return the next insn. If it is a SEQUENCE, return the first insn
2807 of the sequence. */
2808
2809 rtx
2810 next_insn (rtx insn)
2811 {
2812 if (insn)
2813 {
2814 insn = NEXT_INSN (insn);
2815 if (insn && NONJUMP_INSN_P (insn)
2816 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2817 insn = XVECEXP (PATTERN (insn), 0, 0);
2818 }
2819
2820 return insn;
2821 }
2822
2823 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2824 of the sequence. */
2825
2826 rtx
2827 previous_insn (rtx insn)
2828 {
2829 if (insn)
2830 {
2831 insn = PREV_INSN (insn);
2832 if (insn && NONJUMP_INSN_P (insn)
2833 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2834 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2835 }
2836
2837 return insn;
2838 }
2839
2840 /* Return the next insn after INSN that is not a NOTE. This routine does not
2841 look inside SEQUENCEs. */
2842
2843 rtx
2844 next_nonnote_insn (rtx insn)
2845 {
2846 while (insn)
2847 {
2848 insn = NEXT_INSN (insn);
2849 if (insn == 0 || !NOTE_P (insn))
2850 break;
2851 }
2852
2853 return insn;
2854 }
2855
2856 /* Return the previous insn before INSN that is not a NOTE. This routine does
2857 not look inside SEQUENCEs. */
2858
2859 rtx
2860 prev_nonnote_insn (rtx insn)
2861 {
2862 while (insn)
2863 {
2864 insn = PREV_INSN (insn);
2865 if (insn == 0 || !NOTE_P (insn))
2866 break;
2867 }
2868
2869 return insn;
2870 }
2871
2872 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2873 or 0, if there is none. This routine does not look inside
2874 SEQUENCEs. */
2875
2876 rtx
2877 next_real_insn (rtx insn)
2878 {
2879 while (insn)
2880 {
2881 insn = NEXT_INSN (insn);
2882 if (insn == 0 || INSN_P (insn))
2883 break;
2884 }
2885
2886 return insn;
2887 }
2888
2889 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2890 or 0, if there is none. This routine does not look inside
2891 SEQUENCEs. */
2892
2893 rtx
2894 prev_real_insn (rtx insn)
2895 {
2896 while (insn)
2897 {
2898 insn = PREV_INSN (insn);
2899 if (insn == 0 || INSN_P (insn))
2900 break;
2901 }
2902
2903 return insn;
2904 }
2905
2906 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2907 This routine does not look inside SEQUENCEs. */
2908
2909 rtx
2910 last_call_insn (void)
2911 {
2912 rtx insn;
2913
2914 for (insn = get_last_insn ();
2915 insn && !CALL_P (insn);
2916 insn = PREV_INSN (insn))
2917 ;
2918
2919 return insn;
2920 }
2921
2922 /* Find the next insn after INSN that really does something. This routine
2923 does not look inside SEQUENCEs. Until reload has completed, this is the
2924 same as next_real_insn. */
2925
2926 int
2927 active_insn_p (rtx insn)
2928 {
2929 return (CALL_P (insn) || JUMP_P (insn)
2930 || (NONJUMP_INSN_P (insn)
2931 && (! reload_completed
2932 || (GET_CODE (PATTERN (insn)) != USE
2933 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2934 }
2935
2936 rtx
2937 next_active_insn (rtx insn)
2938 {
2939 while (insn)
2940 {
2941 insn = NEXT_INSN (insn);
2942 if (insn == 0 || active_insn_p (insn))
2943 break;
2944 }
2945
2946 return insn;
2947 }
2948
2949 /* Find the last insn before INSN that really does something. This routine
2950 does not look inside SEQUENCEs. Until reload has completed, this is the
2951 same as prev_real_insn. */
2952
2953 rtx
2954 prev_active_insn (rtx insn)
2955 {
2956 while (insn)
2957 {
2958 insn = PREV_INSN (insn);
2959 if (insn == 0 || active_insn_p (insn))
2960 break;
2961 }
2962
2963 return insn;
2964 }
2965
2966 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2967
2968 rtx
2969 next_label (rtx insn)
2970 {
2971 while (insn)
2972 {
2973 insn = NEXT_INSN (insn);
2974 if (insn == 0 || LABEL_P (insn))
2975 break;
2976 }
2977
2978 return insn;
2979 }
2980
2981 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2982
2983 rtx
2984 prev_label (rtx insn)
2985 {
2986 while (insn)
2987 {
2988 insn = PREV_INSN (insn);
2989 if (insn == 0 || LABEL_P (insn))
2990 break;
2991 }
2992
2993 return insn;
2994 }
2995
2996 /* Return the last label to mark the same position as LABEL. Return null
2997 if LABEL itself is null. */
2998
2999 rtx
3000 skip_consecutive_labels (rtx label)
3001 {
3002 rtx insn;
3003
3004 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3005 if (LABEL_P (insn))
3006 label = insn;
3007
3008 return label;
3009 }
3010 \f
3011 #ifdef HAVE_cc0
3012 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3013 and REG_CC_USER notes so we can find it. */
3014
3015 void
3016 link_cc0_insns (rtx insn)
3017 {
3018 rtx user = next_nonnote_insn (insn);
3019
3020 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3021 user = XVECEXP (PATTERN (user), 0, 0);
3022
3023 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3024 REG_NOTES (user));
3025 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3026 }
3027
3028 /* Return the next insn that uses CC0 after INSN, which is assumed to
3029 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3030 applied to the result of this function should yield INSN).
3031
3032 Normally, this is simply the next insn. However, if a REG_CC_USER note
3033 is present, it contains the insn that uses CC0.
3034
3035 Return 0 if we can't find the insn. */
3036
3037 rtx
3038 next_cc0_user (rtx insn)
3039 {
3040 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3041
3042 if (note)
3043 return XEXP (note, 0);
3044
3045 insn = next_nonnote_insn (insn);
3046 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3047 insn = XVECEXP (PATTERN (insn), 0, 0);
3048
3049 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3050 return insn;
3051
3052 return 0;
3053 }
3054
3055 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3056 note, it is the previous insn. */
3057
3058 rtx
3059 prev_cc0_setter (rtx insn)
3060 {
3061 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3062
3063 if (note)
3064 return XEXP (note, 0);
3065
3066 insn = prev_nonnote_insn (insn);
3067 gcc_assert (sets_cc0_p (PATTERN (insn)));
3068
3069 return insn;
3070 }
3071 #endif
3072
3073 /* Increment the label uses for all labels present in rtx. */
3074
3075 static void
3076 mark_label_nuses (rtx x)
3077 {
3078 enum rtx_code code;
3079 int i, j;
3080 const char *fmt;
3081
3082 code = GET_CODE (x);
3083 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3084 LABEL_NUSES (XEXP (x, 0))++;
3085
3086 fmt = GET_RTX_FORMAT (code);
3087 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3088 {
3089 if (fmt[i] == 'e')
3090 mark_label_nuses (XEXP (x, i));
3091 else if (fmt[i] == 'E')
3092 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3093 mark_label_nuses (XVECEXP (x, i, j));
3094 }
3095 }
3096
3097 \f
3098 /* Try splitting insns that can be split for better scheduling.
3099 PAT is the pattern which might split.
3100 TRIAL is the insn providing PAT.
3101 LAST is nonzero if we should return the last insn of the sequence produced.
3102
3103 If this routine succeeds in splitting, it returns the first or last
3104 replacement insn depending on the value of LAST. Otherwise, it
3105 returns TRIAL. If the insn to be returned can be split, it will be. */
3106
3107 rtx
3108 try_split (rtx pat, rtx trial, int last)
3109 {
3110 rtx before = PREV_INSN (trial);
3111 rtx after = NEXT_INSN (trial);
3112 int has_barrier = 0;
3113 rtx tem;
3114 rtx note, seq;
3115 int probability;
3116 rtx insn_last, insn;
3117 int njumps = 0;
3118
3119 if (any_condjump_p (trial)
3120 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3121 split_branch_probability = INTVAL (XEXP (note, 0));
3122 probability = split_branch_probability;
3123
3124 seq = split_insns (pat, trial);
3125
3126 split_branch_probability = -1;
3127
3128 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3129 We may need to handle this specially. */
3130 if (after && BARRIER_P (after))
3131 {
3132 has_barrier = 1;
3133 after = NEXT_INSN (after);
3134 }
3135
3136 if (!seq)
3137 return trial;
3138
3139 /* Avoid infinite loop if any insn of the result matches
3140 the original pattern. */
3141 insn_last = seq;
3142 while (1)
3143 {
3144 if (INSN_P (insn_last)
3145 && rtx_equal_p (PATTERN (insn_last), pat))
3146 return trial;
3147 if (!NEXT_INSN (insn_last))
3148 break;
3149 insn_last = NEXT_INSN (insn_last);
3150 }
3151
3152 /* Mark labels. */
3153 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3154 {
3155 if (JUMP_P (insn))
3156 {
3157 mark_jump_label (PATTERN (insn), insn, 0);
3158 njumps++;
3159 if (probability != -1
3160 && any_condjump_p (insn)
3161 && !find_reg_note (insn, REG_BR_PROB, 0))
3162 {
3163 /* We can preserve the REG_BR_PROB notes only if exactly
3164 one jump is created, otherwise the machine description
3165 is responsible for this step using
3166 split_branch_probability variable. */
3167 gcc_assert (njumps == 1);
3168 REG_NOTES (insn)
3169 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3170 GEN_INT (probability),
3171 REG_NOTES (insn));
3172 }
3173 }
3174 }
3175
3176 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3177 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3178 if (CALL_P (trial))
3179 {
3180 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3181 if (CALL_P (insn))
3182 {
3183 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3184 while (*p)
3185 p = &XEXP (*p, 1);
3186 *p = CALL_INSN_FUNCTION_USAGE (trial);
3187 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3188 }
3189 }
3190
3191 /* Copy notes, particularly those related to the CFG. */
3192 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3193 {
3194 switch (REG_NOTE_KIND (note))
3195 {
3196 case REG_EH_REGION:
3197 insn = insn_last;
3198 while (insn != NULL_RTX)
3199 {
3200 if (CALL_P (insn)
3201 || (flag_non_call_exceptions && INSN_P (insn)
3202 && may_trap_p (PATTERN (insn))))
3203 REG_NOTES (insn)
3204 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3205 XEXP (note, 0),
3206 REG_NOTES (insn));
3207 insn = PREV_INSN (insn);
3208 }
3209 break;
3210
3211 case REG_NORETURN:
3212 case REG_SETJMP:
3213 case REG_ALWAYS_RETURN:
3214 insn = insn_last;
3215 while (insn != NULL_RTX)
3216 {
3217 if (CALL_P (insn))
3218 REG_NOTES (insn)
3219 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3220 XEXP (note, 0),
3221 REG_NOTES (insn));
3222 insn = PREV_INSN (insn);
3223 }
3224 break;
3225
3226 case REG_NON_LOCAL_GOTO:
3227 insn = insn_last;
3228 while (insn != NULL_RTX)
3229 {
3230 if (JUMP_P (insn))
3231 REG_NOTES (insn)
3232 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3233 XEXP (note, 0),
3234 REG_NOTES (insn));
3235 insn = PREV_INSN (insn);
3236 }
3237 break;
3238
3239 default:
3240 break;
3241 }
3242 }
3243
3244 /* If there are LABELS inside the split insns increment the
3245 usage count so we don't delete the label. */
3246 if (NONJUMP_INSN_P (trial))
3247 {
3248 insn = insn_last;
3249 while (insn != NULL_RTX)
3250 {
3251 if (NONJUMP_INSN_P (insn))
3252 mark_label_nuses (PATTERN (insn));
3253
3254 insn = PREV_INSN (insn);
3255 }
3256 }
3257
3258 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3259
3260 delete_insn (trial);
3261 if (has_barrier)
3262 emit_barrier_after (tem);
3263
3264 /* Recursively call try_split for each new insn created; by the
3265 time control returns here that insn will be fully split, so
3266 set LAST and continue from the insn after the one returned.
3267 We can't use next_active_insn here since AFTER may be a note.
3268 Ignore deleted insns, which can be occur if not optimizing. */
3269 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3270 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3271 tem = try_split (PATTERN (tem), tem, 1);
3272
3273 /* Return either the first or the last insn, depending on which was
3274 requested. */
3275 return last
3276 ? (after ? PREV_INSN (after) : last_insn)
3277 : NEXT_INSN (before);
3278 }
3279 \f
3280 /* Make and return an INSN rtx, initializing all its slots.
3281 Store PATTERN in the pattern slots. */
3282
3283 rtx
3284 make_insn_raw (rtx pattern)
3285 {
3286 rtx insn;
3287
3288 insn = rtx_alloc (INSN);
3289
3290 INSN_UID (insn) = cur_insn_uid++;
3291 PATTERN (insn) = pattern;
3292 INSN_CODE (insn) = -1;
3293 LOG_LINKS (insn) = NULL;
3294 REG_NOTES (insn) = NULL;
3295 INSN_LOCATOR (insn) = 0;
3296 BLOCK_FOR_INSN (insn) = NULL;
3297
3298 #ifdef ENABLE_RTL_CHECKING
3299 if (insn
3300 && INSN_P (insn)
3301 && (returnjump_p (insn)
3302 || (GET_CODE (insn) == SET
3303 && SET_DEST (insn) == pc_rtx)))
3304 {
3305 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3306 debug_rtx (insn);
3307 }
3308 #endif
3309
3310 return insn;
3311 }
3312
3313 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3314
3315 static rtx
3316 make_jump_insn_raw (rtx pattern)
3317 {
3318 rtx insn;
3319
3320 insn = rtx_alloc (JUMP_INSN);
3321 INSN_UID (insn) = cur_insn_uid++;
3322
3323 PATTERN (insn) = pattern;
3324 INSN_CODE (insn) = -1;
3325 LOG_LINKS (insn) = NULL;
3326 REG_NOTES (insn) = NULL;
3327 JUMP_LABEL (insn) = NULL;
3328 INSN_LOCATOR (insn) = 0;
3329 BLOCK_FOR_INSN (insn) = NULL;
3330
3331 return insn;
3332 }
3333
3334 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3335
3336 static rtx
3337 make_call_insn_raw (rtx pattern)
3338 {
3339 rtx insn;
3340
3341 insn = rtx_alloc (CALL_INSN);
3342 INSN_UID (insn) = cur_insn_uid++;
3343
3344 PATTERN (insn) = pattern;
3345 INSN_CODE (insn) = -1;
3346 LOG_LINKS (insn) = NULL;
3347 REG_NOTES (insn) = NULL;
3348 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3349 INSN_LOCATOR (insn) = 0;
3350 BLOCK_FOR_INSN (insn) = NULL;
3351
3352 return insn;
3353 }
3354 \f
3355 /* Add INSN to the end of the doubly-linked list.
3356 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3357
3358 void
3359 add_insn (rtx insn)
3360 {
3361 PREV_INSN (insn) = last_insn;
3362 NEXT_INSN (insn) = 0;
3363
3364 if (NULL != last_insn)
3365 NEXT_INSN (last_insn) = insn;
3366
3367 if (NULL == first_insn)
3368 first_insn = insn;
3369
3370 last_insn = insn;
3371 }
3372
3373 /* Add INSN into the doubly-linked list after insn AFTER. This and
3374 the next should be the only functions called to insert an insn once
3375 delay slots have been filled since only they know how to update a
3376 SEQUENCE. */
3377
3378 void
3379 add_insn_after (rtx insn, rtx after)
3380 {
3381 rtx next = NEXT_INSN (after);
3382 basic_block bb;
3383
3384 gcc_assert (!optimize || !INSN_DELETED_P (after));
3385
3386 NEXT_INSN (insn) = next;
3387 PREV_INSN (insn) = after;
3388
3389 if (next)
3390 {
3391 PREV_INSN (next) = insn;
3392 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3393 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3394 }
3395 else if (last_insn == after)
3396 last_insn = insn;
3397 else
3398 {
3399 struct sequence_stack *stack = seq_stack;
3400 /* Scan all pending sequences too. */
3401 for (; stack; stack = stack->next)
3402 if (after == stack->last)
3403 {
3404 stack->last = insn;
3405 break;
3406 }
3407
3408 gcc_assert (stack);
3409 }
3410
3411 if (!BARRIER_P (after)
3412 && !BARRIER_P (insn)
3413 && (bb = BLOCK_FOR_INSN (after)))
3414 {
3415 set_block_for_insn (insn, bb);
3416 if (INSN_P (insn))
3417 bb->flags |= BB_DIRTY;
3418 /* Should not happen as first in the BB is always
3419 either NOTE or LABEL. */
3420 if (BB_END (bb) == after
3421 /* Avoid clobbering of structure when creating new BB. */
3422 && !BARRIER_P (insn)
3423 && (!NOTE_P (insn)
3424 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3425 BB_END (bb) = insn;
3426 }
3427
3428 NEXT_INSN (after) = insn;
3429 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3430 {
3431 rtx sequence = PATTERN (after);
3432 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3433 }
3434 }
3435
3436 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3437 the previous should be the only functions called to insert an insn once
3438 delay slots have been filled since only they know how to update a
3439 SEQUENCE. */
3440
3441 void
3442 add_insn_before (rtx insn, rtx before)
3443 {
3444 rtx prev = PREV_INSN (before);
3445 basic_block bb;
3446
3447 gcc_assert (!optimize || !INSN_DELETED_P (before));
3448
3449 PREV_INSN (insn) = prev;
3450 NEXT_INSN (insn) = before;
3451
3452 if (prev)
3453 {
3454 NEXT_INSN (prev) = insn;
3455 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3456 {
3457 rtx sequence = PATTERN (prev);
3458 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3459 }
3460 }
3461 else if (first_insn == before)
3462 first_insn = insn;
3463 else
3464 {
3465 struct sequence_stack *stack = seq_stack;
3466 /* Scan all pending sequences too. */
3467 for (; stack; stack = stack->next)
3468 if (before == stack->first)
3469 {
3470 stack->first = insn;
3471 break;
3472 }
3473
3474 gcc_assert (stack);
3475 }
3476
3477 if (!BARRIER_P (before)
3478 && !BARRIER_P (insn)
3479 && (bb = BLOCK_FOR_INSN (before)))
3480 {
3481 set_block_for_insn (insn, bb);
3482 if (INSN_P (insn))
3483 bb->flags |= BB_DIRTY;
3484 /* Should not happen as first in the BB is always either NOTE or
3485 LABEl. */
3486 gcc_assert (BB_HEAD (bb) != insn
3487 /* Avoid clobbering of structure when creating new BB. */
3488 || BARRIER_P (insn)
3489 || (NOTE_P (insn)
3490 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK));
3491 }
3492
3493 PREV_INSN (before) = insn;
3494 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3495 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3496 }
3497
3498 /* Remove an insn from its doubly-linked list. This function knows how
3499 to handle sequences. */
3500 void
3501 remove_insn (rtx insn)
3502 {
3503 rtx next = NEXT_INSN (insn);
3504 rtx prev = PREV_INSN (insn);
3505 basic_block bb;
3506
3507 if (prev)
3508 {
3509 NEXT_INSN (prev) = next;
3510 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3511 {
3512 rtx sequence = PATTERN (prev);
3513 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3514 }
3515 }
3516 else if (first_insn == insn)
3517 first_insn = next;
3518 else
3519 {
3520 struct sequence_stack *stack = seq_stack;
3521 /* Scan all pending sequences too. */
3522 for (; stack; stack = stack->next)
3523 if (insn == stack->first)
3524 {
3525 stack->first = next;
3526 break;
3527 }
3528
3529 gcc_assert (stack);
3530 }
3531
3532 if (next)
3533 {
3534 PREV_INSN (next) = prev;
3535 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3536 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3537 }
3538 else if (last_insn == insn)
3539 last_insn = prev;
3540 else
3541 {
3542 struct sequence_stack *stack = seq_stack;
3543 /* Scan all pending sequences too. */
3544 for (; stack; stack = stack->next)
3545 if (insn == stack->last)
3546 {
3547 stack->last = prev;
3548 break;
3549 }
3550
3551 gcc_assert (stack);
3552 }
3553 if (!BARRIER_P (insn)
3554 && (bb = BLOCK_FOR_INSN (insn)))
3555 {
3556 if (INSN_P (insn))
3557 bb->flags |= BB_DIRTY;
3558 if (BB_HEAD (bb) == insn)
3559 {
3560 /* Never ever delete the basic block note without deleting whole
3561 basic block. */
3562 gcc_assert (!NOTE_P (insn));
3563 BB_HEAD (bb) = next;
3564 }
3565 if (BB_END (bb) == insn)
3566 BB_END (bb) = prev;
3567 }
3568 }
3569
3570 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3571
3572 void
3573 add_function_usage_to (rtx call_insn, rtx call_fusage)
3574 {
3575 gcc_assert (call_insn && CALL_P (call_insn));
3576
3577 /* Put the register usage information on the CALL. If there is already
3578 some usage information, put ours at the end. */
3579 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3580 {
3581 rtx link;
3582
3583 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3584 link = XEXP (link, 1))
3585 ;
3586
3587 XEXP (link, 1) = call_fusage;
3588 }
3589 else
3590 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3591 }
3592
3593 /* Delete all insns made since FROM.
3594 FROM becomes the new last instruction. */
3595
3596 void
3597 delete_insns_since (rtx from)
3598 {
3599 if (from == 0)
3600 first_insn = 0;
3601 else
3602 NEXT_INSN (from) = 0;
3603 last_insn = from;
3604 }
3605
3606 /* This function is deprecated, please use sequences instead.
3607
3608 Move a consecutive bunch of insns to a different place in the chain.
3609 The insns to be moved are those between FROM and TO.
3610 They are moved to a new position after the insn AFTER.
3611 AFTER must not be FROM or TO or any insn in between.
3612
3613 This function does not know about SEQUENCEs and hence should not be
3614 called after delay-slot filling has been done. */
3615
3616 void
3617 reorder_insns_nobb (rtx from, rtx to, rtx after)
3618 {
3619 /* Splice this bunch out of where it is now. */
3620 if (PREV_INSN (from))
3621 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3622 if (NEXT_INSN (to))
3623 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3624 if (last_insn == to)
3625 last_insn = PREV_INSN (from);
3626 if (first_insn == from)
3627 first_insn = NEXT_INSN (to);
3628
3629 /* Make the new neighbors point to it and it to them. */
3630 if (NEXT_INSN (after))
3631 PREV_INSN (NEXT_INSN (after)) = to;
3632
3633 NEXT_INSN (to) = NEXT_INSN (after);
3634 PREV_INSN (from) = after;
3635 NEXT_INSN (after) = from;
3636 if (after == last_insn)
3637 last_insn = to;
3638 }
3639
3640 /* Same as function above, but take care to update BB boundaries. */
3641 void
3642 reorder_insns (rtx from, rtx to, rtx after)
3643 {
3644 rtx prev = PREV_INSN (from);
3645 basic_block bb, bb2;
3646
3647 reorder_insns_nobb (from, to, after);
3648
3649 if (!BARRIER_P (after)
3650 && (bb = BLOCK_FOR_INSN (after)))
3651 {
3652 rtx x;
3653 bb->flags |= BB_DIRTY;
3654
3655 if (!BARRIER_P (from)
3656 && (bb2 = BLOCK_FOR_INSN (from)))
3657 {
3658 if (BB_END (bb2) == to)
3659 BB_END (bb2) = prev;
3660 bb2->flags |= BB_DIRTY;
3661 }
3662
3663 if (BB_END (bb) == after)
3664 BB_END (bb) = to;
3665
3666 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3667 if (!BARRIER_P (x))
3668 set_block_for_insn (x, bb);
3669 }
3670 }
3671
3672 /* Return the line note insn preceding INSN. */
3673
3674 static rtx
3675 find_line_note (rtx insn)
3676 {
3677 if (no_line_numbers)
3678 return 0;
3679
3680 for (; insn; insn = PREV_INSN (insn))
3681 if (NOTE_P (insn)
3682 && NOTE_LINE_NUMBER (insn) >= 0)
3683 break;
3684
3685 return insn;
3686 }
3687
3688 /* Remove unnecessary notes from the instruction stream. */
3689
3690 void
3691 remove_unnecessary_notes (void)
3692 {
3693 rtx block_stack = NULL_RTX;
3694 rtx eh_stack = NULL_RTX;
3695 rtx insn;
3696 rtx next;
3697 rtx tmp;
3698
3699 /* We must not remove the first instruction in the function because
3700 the compiler depends on the first instruction being a note. */
3701 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3702 {
3703 /* Remember what's next. */
3704 next = NEXT_INSN (insn);
3705
3706 /* We're only interested in notes. */
3707 if (!NOTE_P (insn))
3708 continue;
3709
3710 switch (NOTE_LINE_NUMBER (insn))
3711 {
3712 case NOTE_INSN_DELETED:
3713 remove_insn (insn);
3714 break;
3715
3716 case NOTE_INSN_EH_REGION_BEG:
3717 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3718 break;
3719
3720 case NOTE_INSN_EH_REGION_END:
3721 /* Too many end notes. */
3722 gcc_assert (eh_stack);
3723 /* Mismatched nesting. */
3724 gcc_assert (NOTE_EH_HANDLER (XEXP (eh_stack, 0))
3725 == NOTE_EH_HANDLER (insn));
3726 tmp = eh_stack;
3727 eh_stack = XEXP (eh_stack, 1);
3728 free_INSN_LIST_node (tmp);
3729 break;
3730
3731 case NOTE_INSN_BLOCK_BEG:
3732 /* By now, all notes indicating lexical blocks should have
3733 NOTE_BLOCK filled in. */
3734 gcc_assert (NOTE_BLOCK (insn));
3735 block_stack = alloc_INSN_LIST (insn, block_stack);
3736 break;
3737
3738 case NOTE_INSN_BLOCK_END:
3739 /* Too many end notes. */
3740 gcc_assert (block_stack);
3741 /* Mismatched nesting. */
3742 gcc_assert (NOTE_BLOCK (XEXP (block_stack, 0)) == NOTE_BLOCK (insn));
3743 tmp = block_stack;
3744 block_stack = XEXP (block_stack, 1);
3745 free_INSN_LIST_node (tmp);
3746
3747 /* Scan back to see if there are any non-note instructions
3748 between INSN and the beginning of this block. If not,
3749 then there is no PC range in the generated code that will
3750 actually be in this block, so there's no point in
3751 remembering the existence of the block. */
3752 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3753 {
3754 /* This block contains a real instruction. Note that we
3755 don't include labels; if the only thing in the block
3756 is a label, then there are still no PC values that
3757 lie within the block. */
3758 if (INSN_P (tmp))
3759 break;
3760
3761 /* We're only interested in NOTEs. */
3762 if (!NOTE_P (tmp))
3763 continue;
3764
3765 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3766 {
3767 /* We just verified that this BLOCK matches us with
3768 the block_stack check above. Never delete the
3769 BLOCK for the outermost scope of the function; we
3770 can refer to names from that scope even if the
3771 block notes are messed up. */
3772 if (! is_body_block (NOTE_BLOCK (insn))
3773 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3774 {
3775 remove_insn (tmp);
3776 remove_insn (insn);
3777 }
3778 break;
3779 }
3780 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3781 /* There's a nested block. We need to leave the
3782 current block in place since otherwise the debugger
3783 wouldn't be able to show symbols from our block in
3784 the nested block. */
3785 break;
3786 }
3787 }
3788 }
3789
3790 /* Too many begin notes. */
3791 gcc_assert (!block_stack && !eh_stack);
3792 }
3793
3794 \f
3795 /* Emit insn(s) of given code and pattern
3796 at a specified place within the doubly-linked list.
3797
3798 All of the emit_foo global entry points accept an object
3799 X which is either an insn list or a PATTERN of a single
3800 instruction.
3801
3802 There are thus a few canonical ways to generate code and
3803 emit it at a specific place in the instruction stream. For
3804 example, consider the instruction named SPOT and the fact that
3805 we would like to emit some instructions before SPOT. We might
3806 do it like this:
3807
3808 start_sequence ();
3809 ... emit the new instructions ...
3810 insns_head = get_insns ();
3811 end_sequence ();
3812
3813 emit_insn_before (insns_head, SPOT);
3814
3815 It used to be common to generate SEQUENCE rtl instead, but that
3816 is a relic of the past which no longer occurs. The reason is that
3817 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3818 generated would almost certainly die right after it was created. */
3819
3820 /* Make X be output before the instruction BEFORE. */
3821
3822 rtx
3823 emit_insn_before_noloc (rtx x, rtx before)
3824 {
3825 rtx last = before;
3826 rtx insn;
3827
3828 gcc_assert (before);
3829
3830 if (x == NULL_RTX)
3831 return last;
3832
3833 switch (GET_CODE (x))
3834 {
3835 case INSN:
3836 case JUMP_INSN:
3837 case CALL_INSN:
3838 case CODE_LABEL:
3839 case BARRIER:
3840 case NOTE:
3841 insn = x;
3842 while (insn)
3843 {
3844 rtx next = NEXT_INSN (insn);
3845 add_insn_before (insn, before);
3846 last = insn;
3847 insn = next;
3848 }
3849 break;
3850
3851 #ifdef ENABLE_RTL_CHECKING
3852 case SEQUENCE:
3853 gcc_unreachable ();
3854 break;
3855 #endif
3856
3857 default:
3858 last = make_insn_raw (x);
3859 add_insn_before (last, before);
3860 break;
3861 }
3862
3863 return last;
3864 }
3865
3866 /* Make an instruction with body X and code JUMP_INSN
3867 and output it before the instruction BEFORE. */
3868
3869 rtx
3870 emit_jump_insn_before_noloc (rtx x, rtx before)
3871 {
3872 rtx insn, last = NULL_RTX;
3873
3874 gcc_assert (before);
3875
3876 switch (GET_CODE (x))
3877 {
3878 case INSN:
3879 case JUMP_INSN:
3880 case CALL_INSN:
3881 case CODE_LABEL:
3882 case BARRIER:
3883 case NOTE:
3884 insn = x;
3885 while (insn)
3886 {
3887 rtx next = NEXT_INSN (insn);
3888 add_insn_before (insn, before);
3889 last = insn;
3890 insn = next;
3891 }
3892 break;
3893
3894 #ifdef ENABLE_RTL_CHECKING
3895 case SEQUENCE:
3896 gcc_unreachable ();
3897 break;
3898 #endif
3899
3900 default:
3901 last = make_jump_insn_raw (x);
3902 add_insn_before (last, before);
3903 break;
3904 }
3905
3906 return last;
3907 }
3908
3909 /* Make an instruction with body X and code CALL_INSN
3910 and output it before the instruction BEFORE. */
3911
3912 rtx
3913 emit_call_insn_before_noloc (rtx x, rtx before)
3914 {
3915 rtx last = NULL_RTX, insn;
3916
3917 gcc_assert (before);
3918
3919 switch (GET_CODE (x))
3920 {
3921 case INSN:
3922 case JUMP_INSN:
3923 case CALL_INSN:
3924 case CODE_LABEL:
3925 case BARRIER:
3926 case NOTE:
3927 insn = x;
3928 while (insn)
3929 {
3930 rtx next = NEXT_INSN (insn);
3931 add_insn_before (insn, before);
3932 last = insn;
3933 insn = next;
3934 }
3935 break;
3936
3937 #ifdef ENABLE_RTL_CHECKING
3938 case SEQUENCE:
3939 gcc_unreachable ();
3940 break;
3941 #endif
3942
3943 default:
3944 last = make_call_insn_raw (x);
3945 add_insn_before (last, before);
3946 break;
3947 }
3948
3949 return last;
3950 }
3951
3952 /* Make an insn of code BARRIER
3953 and output it before the insn BEFORE. */
3954
3955 rtx
3956 emit_barrier_before (rtx before)
3957 {
3958 rtx insn = rtx_alloc (BARRIER);
3959
3960 INSN_UID (insn) = cur_insn_uid++;
3961
3962 add_insn_before (insn, before);
3963 return insn;
3964 }
3965
3966 /* Emit the label LABEL before the insn BEFORE. */
3967
3968 rtx
3969 emit_label_before (rtx label, rtx before)
3970 {
3971 /* This can be called twice for the same label as a result of the
3972 confusion that follows a syntax error! So make it harmless. */
3973 if (INSN_UID (label) == 0)
3974 {
3975 INSN_UID (label) = cur_insn_uid++;
3976 add_insn_before (label, before);
3977 }
3978
3979 return label;
3980 }
3981
3982 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3983
3984 rtx
3985 emit_note_before (int subtype, rtx before)
3986 {
3987 rtx note = rtx_alloc (NOTE);
3988 INSN_UID (note) = cur_insn_uid++;
3989 #ifndef USE_MAPPED_LOCATION
3990 NOTE_SOURCE_FILE (note) = 0;
3991 #endif
3992 NOTE_LINE_NUMBER (note) = subtype;
3993 BLOCK_FOR_INSN (note) = NULL;
3994
3995 add_insn_before (note, before);
3996 return note;
3997 }
3998 \f
3999 /* Helper for emit_insn_after, handles lists of instructions
4000 efficiently. */
4001
4002 static rtx emit_insn_after_1 (rtx, rtx);
4003
4004 static rtx
4005 emit_insn_after_1 (rtx first, rtx after)
4006 {
4007 rtx last;
4008 rtx after_after;
4009 basic_block bb;
4010
4011 if (!BARRIER_P (after)
4012 && (bb = BLOCK_FOR_INSN (after)))
4013 {
4014 bb->flags |= BB_DIRTY;
4015 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4016 if (!BARRIER_P (last))
4017 set_block_for_insn (last, bb);
4018 if (!BARRIER_P (last))
4019 set_block_for_insn (last, bb);
4020 if (BB_END (bb) == after)
4021 BB_END (bb) = last;
4022 }
4023 else
4024 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4025 continue;
4026
4027 after_after = NEXT_INSN (after);
4028
4029 NEXT_INSN (after) = first;
4030 PREV_INSN (first) = after;
4031 NEXT_INSN (last) = after_after;
4032 if (after_after)
4033 PREV_INSN (after_after) = last;
4034
4035 if (after == last_insn)
4036 last_insn = last;
4037 return last;
4038 }
4039
4040 /* Make X be output after the insn AFTER. */
4041
4042 rtx
4043 emit_insn_after_noloc (rtx x, rtx after)
4044 {
4045 rtx last = after;
4046
4047 gcc_assert (after);
4048
4049 if (x == NULL_RTX)
4050 return last;
4051
4052 switch (GET_CODE (x))
4053 {
4054 case INSN:
4055 case JUMP_INSN:
4056 case CALL_INSN:
4057 case CODE_LABEL:
4058 case BARRIER:
4059 case NOTE:
4060 last = emit_insn_after_1 (x, after);
4061 break;
4062
4063 #ifdef ENABLE_RTL_CHECKING
4064 case SEQUENCE:
4065 gcc_unreachable ();
4066 break;
4067 #endif
4068
4069 default:
4070 last = make_insn_raw (x);
4071 add_insn_after (last, after);
4072 break;
4073 }
4074
4075 return last;
4076 }
4077
4078 /* Similar to emit_insn_after, except that line notes are to be inserted so
4079 as to act as if this insn were at FROM. */
4080
4081 void
4082 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4083 {
4084 rtx from_line = find_line_note (from);
4085 rtx after_line = find_line_note (after);
4086 rtx insn = emit_insn_after (x, after);
4087
4088 if (from_line)
4089 emit_note_copy_after (from_line, after);
4090
4091 if (after_line)
4092 emit_note_copy_after (after_line, insn);
4093 }
4094
4095 /* Make an insn of code JUMP_INSN with body X
4096 and output it after the insn AFTER. */
4097
4098 rtx
4099 emit_jump_insn_after_noloc (rtx x, rtx after)
4100 {
4101 rtx last;
4102
4103 gcc_assert (after);
4104
4105 switch (GET_CODE (x))
4106 {
4107 case INSN:
4108 case JUMP_INSN:
4109 case CALL_INSN:
4110 case CODE_LABEL:
4111 case BARRIER:
4112 case NOTE:
4113 last = emit_insn_after_1 (x, after);
4114 break;
4115
4116 #ifdef ENABLE_RTL_CHECKING
4117 case SEQUENCE:
4118 gcc_unreachable ();
4119 break;
4120 #endif
4121
4122 default:
4123 last = make_jump_insn_raw (x);
4124 add_insn_after (last, after);
4125 break;
4126 }
4127
4128 return last;
4129 }
4130
4131 /* Make an instruction with body X and code CALL_INSN
4132 and output it after the instruction AFTER. */
4133
4134 rtx
4135 emit_call_insn_after_noloc (rtx x, rtx after)
4136 {
4137 rtx last;
4138
4139 gcc_assert (after);
4140
4141 switch (GET_CODE (x))
4142 {
4143 case INSN:
4144 case JUMP_INSN:
4145 case CALL_INSN:
4146 case CODE_LABEL:
4147 case BARRIER:
4148 case NOTE:
4149 last = emit_insn_after_1 (x, after);
4150 break;
4151
4152 #ifdef ENABLE_RTL_CHECKING
4153 case SEQUENCE:
4154 gcc_unreachable ();
4155 break;
4156 #endif
4157
4158 default:
4159 last = make_call_insn_raw (x);
4160 add_insn_after (last, after);
4161 break;
4162 }
4163
4164 return last;
4165 }
4166
4167 /* Make an insn of code BARRIER
4168 and output it after the insn AFTER. */
4169
4170 rtx
4171 emit_barrier_after (rtx after)
4172 {
4173 rtx insn = rtx_alloc (BARRIER);
4174
4175 INSN_UID (insn) = cur_insn_uid++;
4176
4177 add_insn_after (insn, after);
4178 return insn;
4179 }
4180
4181 /* Emit the label LABEL after the insn AFTER. */
4182
4183 rtx
4184 emit_label_after (rtx label, rtx after)
4185 {
4186 /* This can be called twice for the same label
4187 as a result of the confusion that follows a syntax error!
4188 So make it harmless. */
4189 if (INSN_UID (label) == 0)
4190 {
4191 INSN_UID (label) = cur_insn_uid++;
4192 add_insn_after (label, after);
4193 }
4194
4195 return label;
4196 }
4197
4198 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4199
4200 rtx
4201 emit_note_after (int subtype, rtx after)
4202 {
4203 rtx note = rtx_alloc (NOTE);
4204 INSN_UID (note) = cur_insn_uid++;
4205 #ifndef USE_MAPPED_LOCATION
4206 NOTE_SOURCE_FILE (note) = 0;
4207 #endif
4208 NOTE_LINE_NUMBER (note) = subtype;
4209 BLOCK_FOR_INSN (note) = NULL;
4210 add_insn_after (note, after);
4211 return note;
4212 }
4213
4214 /* Emit a copy of note ORIG after the insn AFTER. */
4215
4216 rtx
4217 emit_note_copy_after (rtx orig, rtx after)
4218 {
4219 rtx note;
4220
4221 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4222 {
4223 cur_insn_uid++;
4224 return 0;
4225 }
4226
4227 note = rtx_alloc (NOTE);
4228 INSN_UID (note) = cur_insn_uid++;
4229 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4230 NOTE_DATA (note) = NOTE_DATA (orig);
4231 BLOCK_FOR_INSN (note) = NULL;
4232 add_insn_after (note, after);
4233 return note;
4234 }
4235 \f
4236 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4237 rtx
4238 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4239 {
4240 rtx last = emit_insn_after_noloc (pattern, after);
4241
4242 if (pattern == NULL_RTX || !loc)
4243 return last;
4244
4245 after = NEXT_INSN (after);
4246 while (1)
4247 {
4248 if (active_insn_p (after) && !INSN_LOCATOR (after))
4249 INSN_LOCATOR (after) = loc;
4250 if (after == last)
4251 break;
4252 after = NEXT_INSN (after);
4253 }
4254 return last;
4255 }
4256
4257 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4258 rtx
4259 emit_insn_after (rtx pattern, rtx after)
4260 {
4261 if (INSN_P (after))
4262 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4263 else
4264 return emit_insn_after_noloc (pattern, after);
4265 }
4266
4267 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4268 rtx
4269 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4270 {
4271 rtx last = emit_jump_insn_after_noloc (pattern, after);
4272
4273 if (pattern == NULL_RTX || !loc)
4274 return last;
4275
4276 after = NEXT_INSN (after);
4277 while (1)
4278 {
4279 if (active_insn_p (after) && !INSN_LOCATOR (after))
4280 INSN_LOCATOR (after) = loc;
4281 if (after == last)
4282 break;
4283 after = NEXT_INSN (after);
4284 }
4285 return last;
4286 }
4287
4288 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4289 rtx
4290 emit_jump_insn_after (rtx pattern, rtx after)
4291 {
4292 if (INSN_P (after))
4293 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4294 else
4295 return emit_jump_insn_after_noloc (pattern, after);
4296 }
4297
4298 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4299 rtx
4300 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4301 {
4302 rtx last = emit_call_insn_after_noloc (pattern, after);
4303
4304 if (pattern == NULL_RTX || !loc)
4305 return last;
4306
4307 after = NEXT_INSN (after);
4308 while (1)
4309 {
4310 if (active_insn_p (after) && !INSN_LOCATOR (after))
4311 INSN_LOCATOR (after) = loc;
4312 if (after == last)
4313 break;
4314 after = NEXT_INSN (after);
4315 }
4316 return last;
4317 }
4318
4319 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4320 rtx
4321 emit_call_insn_after (rtx pattern, rtx after)
4322 {
4323 if (INSN_P (after))
4324 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4325 else
4326 return emit_call_insn_after_noloc (pattern, after);
4327 }
4328
4329 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4330 rtx
4331 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4332 {
4333 rtx first = PREV_INSN (before);
4334 rtx last = emit_insn_before_noloc (pattern, before);
4335
4336 if (pattern == NULL_RTX || !loc)
4337 return last;
4338
4339 first = NEXT_INSN (first);
4340 while (1)
4341 {
4342 if (active_insn_p (first) && !INSN_LOCATOR (first))
4343 INSN_LOCATOR (first) = loc;
4344 if (first == last)
4345 break;
4346 first = NEXT_INSN (first);
4347 }
4348 return last;
4349 }
4350
4351 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4352 rtx
4353 emit_insn_before (rtx pattern, rtx before)
4354 {
4355 if (INSN_P (before))
4356 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4357 else
4358 return emit_insn_before_noloc (pattern, before);
4359 }
4360
4361 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4362 rtx
4363 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4364 {
4365 rtx first = PREV_INSN (before);
4366 rtx last = emit_jump_insn_before_noloc (pattern, before);
4367
4368 if (pattern == NULL_RTX)
4369 return last;
4370
4371 first = NEXT_INSN (first);
4372 while (1)
4373 {
4374 if (active_insn_p (first) && !INSN_LOCATOR (first))
4375 INSN_LOCATOR (first) = loc;
4376 if (first == last)
4377 break;
4378 first = NEXT_INSN (first);
4379 }
4380 return last;
4381 }
4382
4383 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4384 rtx
4385 emit_jump_insn_before (rtx pattern, rtx before)
4386 {
4387 if (INSN_P (before))
4388 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4389 else
4390 return emit_jump_insn_before_noloc (pattern, before);
4391 }
4392
4393 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4394 rtx
4395 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4396 {
4397 rtx first = PREV_INSN (before);
4398 rtx last = emit_call_insn_before_noloc (pattern, before);
4399
4400 if (pattern == NULL_RTX)
4401 return last;
4402
4403 first = NEXT_INSN (first);
4404 while (1)
4405 {
4406 if (active_insn_p (first) && !INSN_LOCATOR (first))
4407 INSN_LOCATOR (first) = loc;
4408 if (first == last)
4409 break;
4410 first = NEXT_INSN (first);
4411 }
4412 return last;
4413 }
4414
4415 /* like emit_call_insn_before_noloc,
4416 but set insn_locator according to before. */
4417 rtx
4418 emit_call_insn_before (rtx pattern, rtx before)
4419 {
4420 if (INSN_P (before))
4421 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4422 else
4423 return emit_call_insn_before_noloc (pattern, before);
4424 }
4425 \f
4426 /* Take X and emit it at the end of the doubly-linked
4427 INSN list.
4428
4429 Returns the last insn emitted. */
4430
4431 rtx
4432 emit_insn (rtx x)
4433 {
4434 rtx last = last_insn;
4435 rtx insn;
4436
4437 if (x == NULL_RTX)
4438 return last;
4439
4440 switch (GET_CODE (x))
4441 {
4442 case INSN:
4443 case JUMP_INSN:
4444 case CALL_INSN:
4445 case CODE_LABEL:
4446 case BARRIER:
4447 case NOTE:
4448 insn = x;
4449 while (insn)
4450 {
4451 rtx next = NEXT_INSN (insn);
4452 add_insn (insn);
4453 last = insn;
4454 insn = next;
4455 }
4456 break;
4457
4458 #ifdef ENABLE_RTL_CHECKING
4459 case SEQUENCE:
4460 gcc_unreachable ();
4461 break;
4462 #endif
4463
4464 default:
4465 last = make_insn_raw (x);
4466 add_insn (last);
4467 break;
4468 }
4469
4470 return last;
4471 }
4472
4473 /* Make an insn of code JUMP_INSN with pattern X
4474 and add it to the end of the doubly-linked list. */
4475
4476 rtx
4477 emit_jump_insn (rtx x)
4478 {
4479 rtx last = NULL_RTX, insn;
4480
4481 switch (GET_CODE (x))
4482 {
4483 case INSN:
4484 case JUMP_INSN:
4485 case CALL_INSN:
4486 case CODE_LABEL:
4487 case BARRIER:
4488 case NOTE:
4489 insn = x;
4490 while (insn)
4491 {
4492 rtx next = NEXT_INSN (insn);
4493 add_insn (insn);
4494 last = insn;
4495 insn = next;
4496 }
4497 break;
4498
4499 #ifdef ENABLE_RTL_CHECKING
4500 case SEQUENCE:
4501 gcc_unreachable ();
4502 break;
4503 #endif
4504
4505 default:
4506 last = make_jump_insn_raw (x);
4507 add_insn (last);
4508 break;
4509 }
4510
4511 return last;
4512 }
4513
4514 /* Make an insn of code CALL_INSN with pattern X
4515 and add it to the end of the doubly-linked list. */
4516
4517 rtx
4518 emit_call_insn (rtx x)
4519 {
4520 rtx insn;
4521
4522 switch (GET_CODE (x))
4523 {
4524 case INSN:
4525 case JUMP_INSN:
4526 case CALL_INSN:
4527 case CODE_LABEL:
4528 case BARRIER:
4529 case NOTE:
4530 insn = emit_insn (x);
4531 break;
4532
4533 #ifdef ENABLE_RTL_CHECKING
4534 case SEQUENCE:
4535 gcc_unreachable ();
4536 break;
4537 #endif
4538
4539 default:
4540 insn = make_call_insn_raw (x);
4541 add_insn (insn);
4542 break;
4543 }
4544
4545 return insn;
4546 }
4547
4548 /* Add the label LABEL to the end of the doubly-linked list. */
4549
4550 rtx
4551 emit_label (rtx label)
4552 {
4553 /* This can be called twice for the same label
4554 as a result of the confusion that follows a syntax error!
4555 So make it harmless. */
4556 if (INSN_UID (label) == 0)
4557 {
4558 INSN_UID (label) = cur_insn_uid++;
4559 add_insn (label);
4560 }
4561 return label;
4562 }
4563
4564 /* Make an insn of code BARRIER
4565 and add it to the end of the doubly-linked list. */
4566
4567 rtx
4568 emit_barrier (void)
4569 {
4570 rtx barrier = rtx_alloc (BARRIER);
4571 INSN_UID (barrier) = cur_insn_uid++;
4572 add_insn (barrier);
4573 return barrier;
4574 }
4575
4576 /* Make line numbering NOTE insn for LOCATION add it to the end
4577 of the doubly-linked list, but only if line-numbers are desired for
4578 debugging info and it doesn't match the previous one. */
4579
4580 rtx
4581 emit_line_note (location_t location)
4582 {
4583 rtx note;
4584
4585 #ifdef USE_MAPPED_LOCATION
4586 if (location == last_location)
4587 return NULL_RTX;
4588 #else
4589 if (location.file && last_location.file
4590 && !strcmp (location.file, last_location.file)
4591 && location.line == last_location.line)
4592 return NULL_RTX;
4593 #endif
4594 last_location = location;
4595
4596 if (no_line_numbers)
4597 {
4598 cur_insn_uid++;
4599 return NULL_RTX;
4600 }
4601
4602 #ifdef USE_MAPPED_LOCATION
4603 note = emit_note ((int) location);
4604 #else
4605 note = emit_note (location.line);
4606 NOTE_SOURCE_FILE (note) = location.file;
4607 #endif
4608
4609 return note;
4610 }
4611
4612 /* Emit a copy of note ORIG. */
4613
4614 rtx
4615 emit_note_copy (rtx orig)
4616 {
4617 rtx note;
4618
4619 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4620 {
4621 cur_insn_uid++;
4622 return NULL_RTX;
4623 }
4624
4625 note = rtx_alloc (NOTE);
4626
4627 INSN_UID (note) = cur_insn_uid++;
4628 NOTE_DATA (note) = NOTE_DATA (orig);
4629 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4630 BLOCK_FOR_INSN (note) = NULL;
4631 add_insn (note);
4632
4633 return note;
4634 }
4635
4636 /* Make an insn of code NOTE or type NOTE_NO
4637 and add it to the end of the doubly-linked list. */
4638
4639 rtx
4640 emit_note (int note_no)
4641 {
4642 rtx note;
4643
4644 note = rtx_alloc (NOTE);
4645 INSN_UID (note) = cur_insn_uid++;
4646 NOTE_LINE_NUMBER (note) = note_no;
4647 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4648 BLOCK_FOR_INSN (note) = NULL;
4649 add_insn (note);
4650 return note;
4651 }
4652
4653 /* Cause next statement to emit a line note even if the line number
4654 has not changed. */
4655
4656 void
4657 force_next_line_note (void)
4658 {
4659 #ifdef USE_MAPPED_LOCATION
4660 last_location = -1;
4661 #else
4662 last_location.line = -1;
4663 #endif
4664 }
4665
4666 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4667 note of this type already exists, remove it first. */
4668
4669 rtx
4670 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4671 {
4672 rtx note = find_reg_note (insn, kind, NULL_RTX);
4673
4674 switch (kind)
4675 {
4676 case REG_EQUAL:
4677 case REG_EQUIV:
4678 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4679 has multiple sets (some callers assume single_set
4680 means the insn only has one set, when in fact it
4681 means the insn only has one * useful * set). */
4682 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4683 {
4684 gcc_assert (!note);
4685 return NULL_RTX;
4686 }
4687
4688 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4689 It serves no useful purpose and breaks eliminate_regs. */
4690 if (GET_CODE (datum) == ASM_OPERANDS)
4691 return NULL_RTX;
4692 break;
4693
4694 default:
4695 break;
4696 }
4697
4698 if (note)
4699 {
4700 XEXP (note, 0) = datum;
4701 return note;
4702 }
4703
4704 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4705 return REG_NOTES (insn);
4706 }
4707 \f
4708 /* Return an indication of which type of insn should have X as a body.
4709 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4710
4711 static enum rtx_code
4712 classify_insn (rtx x)
4713 {
4714 if (LABEL_P (x))
4715 return CODE_LABEL;
4716 if (GET_CODE (x) == CALL)
4717 return CALL_INSN;
4718 if (GET_CODE (x) == RETURN)
4719 return JUMP_INSN;
4720 if (GET_CODE (x) == SET)
4721 {
4722 if (SET_DEST (x) == pc_rtx)
4723 return JUMP_INSN;
4724 else if (GET_CODE (SET_SRC (x)) == CALL)
4725 return CALL_INSN;
4726 else
4727 return INSN;
4728 }
4729 if (GET_CODE (x) == PARALLEL)
4730 {
4731 int j;
4732 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4733 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4734 return CALL_INSN;
4735 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4736 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4737 return JUMP_INSN;
4738 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4739 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4740 return CALL_INSN;
4741 }
4742 return INSN;
4743 }
4744
4745 /* Emit the rtl pattern X as an appropriate kind of insn.
4746 If X is a label, it is simply added into the insn chain. */
4747
4748 rtx
4749 emit (rtx x)
4750 {
4751 enum rtx_code code = classify_insn (x);
4752
4753 switch (code)
4754 {
4755 case CODE_LABEL:
4756 return emit_label (x);
4757 case INSN:
4758 return emit_insn (x);
4759 case JUMP_INSN:
4760 {
4761 rtx insn = emit_jump_insn (x);
4762 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4763 return emit_barrier ();
4764 return insn;
4765 }
4766 case CALL_INSN:
4767 return emit_call_insn (x);
4768 default:
4769 gcc_unreachable ();
4770 }
4771 }
4772 \f
4773 /* Space for free sequence stack entries. */
4774 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4775
4776 /* Begin emitting insns to a sequence. If this sequence will contain
4777 something that might cause the compiler to pop arguments to function
4778 calls (because those pops have previously been deferred; see
4779 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4780 before calling this function. That will ensure that the deferred
4781 pops are not accidentally emitted in the middle of this sequence. */
4782
4783 void
4784 start_sequence (void)
4785 {
4786 struct sequence_stack *tem;
4787
4788 if (free_sequence_stack != NULL)
4789 {
4790 tem = free_sequence_stack;
4791 free_sequence_stack = tem->next;
4792 }
4793 else
4794 tem = ggc_alloc (sizeof (struct sequence_stack));
4795
4796 tem->next = seq_stack;
4797 tem->first = first_insn;
4798 tem->last = last_insn;
4799
4800 seq_stack = tem;
4801
4802 first_insn = 0;
4803 last_insn = 0;
4804 }
4805
4806 /* Set up the insn chain starting with FIRST as the current sequence,
4807 saving the previously current one. See the documentation for
4808 start_sequence for more information about how to use this function. */
4809
4810 void
4811 push_to_sequence (rtx first)
4812 {
4813 rtx last;
4814
4815 start_sequence ();
4816
4817 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4818
4819 first_insn = first;
4820 last_insn = last;
4821 }
4822
4823 /* Set up the outer-level insn chain
4824 as the current sequence, saving the previously current one. */
4825
4826 void
4827 push_topmost_sequence (void)
4828 {
4829 struct sequence_stack *stack, *top = NULL;
4830
4831 start_sequence ();
4832
4833 for (stack = seq_stack; stack; stack = stack->next)
4834 top = stack;
4835
4836 first_insn = top->first;
4837 last_insn = top->last;
4838 }
4839
4840 /* After emitting to the outer-level insn chain, update the outer-level
4841 insn chain, and restore the previous saved state. */
4842
4843 void
4844 pop_topmost_sequence (void)
4845 {
4846 struct sequence_stack *stack, *top = NULL;
4847
4848 for (stack = seq_stack; stack; stack = stack->next)
4849 top = stack;
4850
4851 top->first = first_insn;
4852 top->last = last_insn;
4853
4854 end_sequence ();
4855 }
4856
4857 /* After emitting to a sequence, restore previous saved state.
4858
4859 To get the contents of the sequence just made, you must call
4860 `get_insns' *before* calling here.
4861
4862 If the compiler might have deferred popping arguments while
4863 generating this sequence, and this sequence will not be immediately
4864 inserted into the instruction stream, use do_pending_stack_adjust
4865 before calling get_insns. That will ensure that the deferred
4866 pops are inserted into this sequence, and not into some random
4867 location in the instruction stream. See INHIBIT_DEFER_POP for more
4868 information about deferred popping of arguments. */
4869
4870 void
4871 end_sequence (void)
4872 {
4873 struct sequence_stack *tem = seq_stack;
4874
4875 first_insn = tem->first;
4876 last_insn = tem->last;
4877 seq_stack = tem->next;
4878
4879 memset (tem, 0, sizeof (*tem));
4880 tem->next = free_sequence_stack;
4881 free_sequence_stack = tem;
4882 }
4883
4884 /* Return 1 if currently emitting into a sequence. */
4885
4886 int
4887 in_sequence_p (void)
4888 {
4889 return seq_stack != 0;
4890 }
4891 \f
4892 /* Put the various virtual registers into REGNO_REG_RTX. */
4893
4894 void
4895 init_virtual_regs (struct emit_status *es)
4896 {
4897 rtx *ptr = es->x_regno_reg_rtx;
4898 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4899 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4900 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4901 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4902 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4903 }
4904
4905 \f
4906 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4907 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4908 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4909 static int copy_insn_n_scratches;
4910
4911 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4912 copied an ASM_OPERANDS.
4913 In that case, it is the original input-operand vector. */
4914 static rtvec orig_asm_operands_vector;
4915
4916 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4917 copied an ASM_OPERANDS.
4918 In that case, it is the copied input-operand vector. */
4919 static rtvec copy_asm_operands_vector;
4920
4921 /* Likewise for the constraints vector. */
4922 static rtvec orig_asm_constraints_vector;
4923 static rtvec copy_asm_constraints_vector;
4924
4925 /* Recursively create a new copy of an rtx for copy_insn.
4926 This function differs from copy_rtx in that it handles SCRATCHes and
4927 ASM_OPERANDs properly.
4928 Normally, this function is not used directly; use copy_insn as front end.
4929 However, you could first copy an insn pattern with copy_insn and then use
4930 this function afterwards to properly copy any REG_NOTEs containing
4931 SCRATCHes. */
4932
4933 rtx
4934 copy_insn_1 (rtx orig)
4935 {
4936 rtx copy;
4937 int i, j;
4938 RTX_CODE code;
4939 const char *format_ptr;
4940
4941 code = GET_CODE (orig);
4942
4943 switch (code)
4944 {
4945 case REG:
4946 case CONST_INT:
4947 case CONST_DOUBLE:
4948 case CONST_VECTOR:
4949 case SYMBOL_REF:
4950 case CODE_LABEL:
4951 case PC:
4952 case CC0:
4953 return orig;
4954 case CLOBBER:
4955 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4956 return orig;
4957 break;
4958
4959 case SCRATCH:
4960 for (i = 0; i < copy_insn_n_scratches; i++)
4961 if (copy_insn_scratch_in[i] == orig)
4962 return copy_insn_scratch_out[i];
4963 break;
4964
4965 case CONST:
4966 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4967 a LABEL_REF, it isn't sharable. */
4968 if (GET_CODE (XEXP (orig, 0)) == PLUS
4969 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4970 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4971 return orig;
4972 break;
4973
4974 /* A MEM with a constant address is not sharable. The problem is that
4975 the constant address may need to be reloaded. If the mem is shared,
4976 then reloading one copy of this mem will cause all copies to appear
4977 to have been reloaded. */
4978
4979 default:
4980 break;
4981 }
4982
4983 copy = rtx_alloc (code);
4984
4985 /* Copy the various flags, and other information. We assume that
4986 all fields need copying, and then clear the fields that should
4987 not be copied. That is the sensible default behavior, and forces
4988 us to explicitly document why we are *not* copying a flag. */
4989 memcpy (copy, orig, RTX_HDR_SIZE);
4990
4991 /* We do not copy the USED flag, which is used as a mark bit during
4992 walks over the RTL. */
4993 RTX_FLAG (copy, used) = 0;
4994
4995 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4996 if (INSN_P (orig))
4997 {
4998 RTX_FLAG (copy, jump) = 0;
4999 RTX_FLAG (copy, call) = 0;
5000 RTX_FLAG (copy, frame_related) = 0;
5001 }
5002
5003 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5004
5005 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5006 {
5007 copy->u.fld[i] = orig->u.fld[i];
5008 switch (*format_ptr++)
5009 {
5010 case 'e':
5011 if (XEXP (orig, i) != NULL)
5012 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5013 break;
5014
5015 case 'E':
5016 case 'V':
5017 if (XVEC (orig, i) == orig_asm_constraints_vector)
5018 XVEC (copy, i) = copy_asm_constraints_vector;
5019 else if (XVEC (orig, i) == orig_asm_operands_vector)
5020 XVEC (copy, i) = copy_asm_operands_vector;
5021 else if (XVEC (orig, i) != NULL)
5022 {
5023 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5024 for (j = 0; j < XVECLEN (copy, i); j++)
5025 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5026 }
5027 break;
5028
5029 case 't':
5030 case 'w':
5031 case 'i':
5032 case 's':
5033 case 'S':
5034 case 'u':
5035 case '0':
5036 /* These are left unchanged. */
5037 break;
5038
5039 default:
5040 gcc_unreachable ();
5041 }
5042 }
5043
5044 if (code == SCRATCH)
5045 {
5046 i = copy_insn_n_scratches++;
5047 gcc_assert (i < MAX_RECOG_OPERANDS);
5048 copy_insn_scratch_in[i] = orig;
5049 copy_insn_scratch_out[i] = copy;
5050 }
5051 else if (code == ASM_OPERANDS)
5052 {
5053 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5054 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5055 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5056 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5057 }
5058
5059 return copy;
5060 }
5061
5062 /* Create a new copy of an rtx.
5063 This function differs from copy_rtx in that it handles SCRATCHes and
5064 ASM_OPERANDs properly.
5065 INSN doesn't really have to be a full INSN; it could be just the
5066 pattern. */
5067 rtx
5068 copy_insn (rtx insn)
5069 {
5070 copy_insn_n_scratches = 0;
5071 orig_asm_operands_vector = 0;
5072 orig_asm_constraints_vector = 0;
5073 copy_asm_operands_vector = 0;
5074 copy_asm_constraints_vector = 0;
5075 return copy_insn_1 (insn);
5076 }
5077
5078 /* Initialize data structures and variables in this file
5079 before generating rtl for each function. */
5080
5081 void
5082 init_emit (void)
5083 {
5084 struct function *f = cfun;
5085
5086 f->emit = ggc_alloc (sizeof (struct emit_status));
5087 first_insn = NULL;
5088 last_insn = NULL;
5089 cur_insn_uid = 1;
5090 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5091 last_location = UNKNOWN_LOCATION;
5092 first_label_num = label_num;
5093 seq_stack = NULL;
5094
5095 /* Init the tables that describe all the pseudo regs. */
5096
5097 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5098
5099 f->emit->regno_pointer_align
5100 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5101 * sizeof (unsigned char));
5102
5103 regno_reg_rtx
5104 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5105
5106 /* Put copies of all the hard registers into regno_reg_rtx. */
5107 memcpy (regno_reg_rtx,
5108 static_regno_reg_rtx,
5109 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5110
5111 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5112 init_virtual_regs (f->emit);
5113
5114 /* Indicate that the virtual registers and stack locations are
5115 all pointers. */
5116 REG_POINTER (stack_pointer_rtx) = 1;
5117 REG_POINTER (frame_pointer_rtx) = 1;
5118 REG_POINTER (hard_frame_pointer_rtx) = 1;
5119 REG_POINTER (arg_pointer_rtx) = 1;
5120
5121 REG_POINTER (virtual_incoming_args_rtx) = 1;
5122 REG_POINTER (virtual_stack_vars_rtx) = 1;
5123 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5124 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5125 REG_POINTER (virtual_cfa_rtx) = 1;
5126
5127 #ifdef STACK_BOUNDARY
5128 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5129 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5130 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5131 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5132
5133 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5134 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5135 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5136 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5137 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5138 #endif
5139
5140 #ifdef INIT_EXPANDERS
5141 INIT_EXPANDERS;
5142 #endif
5143 }
5144
5145 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5146
5147 static rtx
5148 gen_const_vector (enum machine_mode mode, int constant)
5149 {
5150 rtx tem;
5151 rtvec v;
5152 int units, i;
5153 enum machine_mode inner;
5154
5155 units = GET_MODE_NUNITS (mode);
5156 inner = GET_MODE_INNER (mode);
5157
5158 v = rtvec_alloc (units);
5159
5160 /* We need to call this function after we set the scalar const_tiny_rtx
5161 entries. */
5162 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5163
5164 for (i = 0; i < units; ++i)
5165 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5166
5167 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5168 return tem;
5169 }
5170
5171 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5172 all elements are zero, and the one vector when all elements are one. */
5173 rtx
5174 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5175 {
5176 enum machine_mode inner = GET_MODE_INNER (mode);
5177 int nunits = GET_MODE_NUNITS (mode);
5178 rtx x;
5179 int i;
5180
5181 /* Check to see if all of the elements have the same value. */
5182 x = RTVEC_ELT (v, nunits - 1);
5183 for (i = nunits - 2; i >= 0; i--)
5184 if (RTVEC_ELT (v, i) != x)
5185 break;
5186
5187 /* If the values are all the same, check to see if we can use one of the
5188 standard constant vectors. */
5189 if (i == -1)
5190 {
5191 if (x == CONST0_RTX (inner))
5192 return CONST0_RTX (mode);
5193 else if (x == CONST1_RTX (inner))
5194 return CONST1_RTX (mode);
5195 }
5196
5197 return gen_rtx_raw_CONST_VECTOR (mode, v);
5198 }
5199
5200 /* Create some permanent unique rtl objects shared between all functions.
5201 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5202
5203 void
5204 init_emit_once (int line_numbers)
5205 {
5206 int i;
5207 enum machine_mode mode;
5208 enum machine_mode double_mode;
5209
5210 /* We need reg_raw_mode, so initialize the modes now. */
5211 init_reg_modes_once ();
5212
5213 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5214 tables. */
5215 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5216 const_int_htab_eq, NULL);
5217
5218 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5219 const_double_htab_eq, NULL);
5220
5221 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5222 mem_attrs_htab_eq, NULL);
5223 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5224 reg_attrs_htab_eq, NULL);
5225
5226 no_line_numbers = ! line_numbers;
5227
5228 /* Compute the word and byte modes. */
5229
5230 byte_mode = VOIDmode;
5231 word_mode = VOIDmode;
5232 double_mode = VOIDmode;
5233
5234 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5235 mode = GET_MODE_WIDER_MODE (mode))
5236 {
5237 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5238 && byte_mode == VOIDmode)
5239 byte_mode = mode;
5240
5241 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5242 && word_mode == VOIDmode)
5243 word_mode = mode;
5244 }
5245
5246 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5247 mode = GET_MODE_WIDER_MODE (mode))
5248 {
5249 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5250 && double_mode == VOIDmode)
5251 double_mode = mode;
5252 }
5253
5254 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5255
5256 /* Assign register numbers to the globally defined register rtx.
5257 This must be done at runtime because the register number field
5258 is in a union and some compilers can't initialize unions. */
5259
5260 pc_rtx = gen_rtx_PC (VOIDmode);
5261 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5262 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5263 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5264 if (hard_frame_pointer_rtx == 0)
5265 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5266 HARD_FRAME_POINTER_REGNUM);
5267 if (arg_pointer_rtx == 0)
5268 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5269 virtual_incoming_args_rtx =
5270 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5271 virtual_stack_vars_rtx =
5272 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5273 virtual_stack_dynamic_rtx =
5274 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5275 virtual_outgoing_args_rtx =
5276 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5277 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5278
5279 /* Initialize RTL for commonly used hard registers. These are
5280 copied into regno_reg_rtx as we begin to compile each function. */
5281 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5282 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5283
5284 #ifdef INIT_EXPANDERS
5285 /* This is to initialize {init|mark|free}_machine_status before the first
5286 call to push_function_context_to. This is needed by the Chill front
5287 end which calls push_function_context_to before the first call to
5288 init_function_start. */
5289 INIT_EXPANDERS;
5290 #endif
5291
5292 /* Create the unique rtx's for certain rtx codes and operand values. */
5293
5294 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5295 tries to use these variables. */
5296 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5297 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5298 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5299
5300 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5301 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5302 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5303 else
5304 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5305
5306 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5307 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5308 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5309 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5310 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5311 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5312 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5313
5314 dconsthalf = dconst1;
5315 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5316
5317 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5318
5319 /* Initialize mathematical constants for constant folding builtins.
5320 These constants need to be given to at least 160 bits precision. */
5321 real_from_string (&dconstpi,
5322 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5323 real_from_string (&dconste,
5324 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5325
5326 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5327 {
5328 REAL_VALUE_TYPE *r =
5329 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5330
5331 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5332 mode = GET_MODE_WIDER_MODE (mode))
5333 const_tiny_rtx[i][(int) mode] =
5334 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5335
5336 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5337
5338 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5339 mode = GET_MODE_WIDER_MODE (mode))
5340 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5341
5342 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5343 mode != VOIDmode;
5344 mode = GET_MODE_WIDER_MODE (mode))
5345 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5346 }
5347
5348 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5349 mode != VOIDmode;
5350 mode = GET_MODE_WIDER_MODE (mode))
5351 {
5352 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5353 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5354 }
5355
5356 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5357 mode != VOIDmode;
5358 mode = GET_MODE_WIDER_MODE (mode))
5359 {
5360 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5361 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5362 }
5363
5364 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5365 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5366 const_tiny_rtx[0][i] = const0_rtx;
5367
5368 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5369 if (STORE_FLAG_VALUE == 1)
5370 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5371
5372 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5373 return_address_pointer_rtx
5374 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5375 #endif
5376
5377 #ifdef STATIC_CHAIN_REGNUM
5378 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5379
5380 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5381 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5382 static_chain_incoming_rtx
5383 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5384 else
5385 #endif
5386 static_chain_incoming_rtx = static_chain_rtx;
5387 #endif
5388
5389 #ifdef STATIC_CHAIN
5390 static_chain_rtx = STATIC_CHAIN;
5391
5392 #ifdef STATIC_CHAIN_INCOMING
5393 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5394 #else
5395 static_chain_incoming_rtx = static_chain_rtx;
5396 #endif
5397 #endif
5398
5399 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5400 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5401 }
5402 \f
5403 /* Produce exact duplicate of insn INSN after AFTER.
5404 Care updating of libcall regions if present. */
5405
5406 rtx
5407 emit_copy_of_insn_after (rtx insn, rtx after)
5408 {
5409 rtx new;
5410 rtx note1, note2, link;
5411
5412 switch (GET_CODE (insn))
5413 {
5414 case INSN:
5415 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5416 break;
5417
5418 case JUMP_INSN:
5419 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5420 break;
5421
5422 case CALL_INSN:
5423 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5424 if (CALL_INSN_FUNCTION_USAGE (insn))
5425 CALL_INSN_FUNCTION_USAGE (new)
5426 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5427 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5428 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5429 break;
5430
5431 default:
5432 gcc_unreachable ();
5433 }
5434
5435 /* Update LABEL_NUSES. */
5436 mark_jump_label (PATTERN (new), new, 0);
5437
5438 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5439
5440 /* If the old insn is frame related, then so is the new one. This is
5441 primarily needed for IA-64 unwind info which marks epilogue insns,
5442 which may be duplicated by the basic block reordering code. */
5443 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5444
5445 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5446 make them. */
5447 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5448 if (REG_NOTE_KIND (link) != REG_LABEL)
5449 {
5450 if (GET_CODE (link) == EXPR_LIST)
5451 REG_NOTES (new)
5452 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5453 XEXP (link, 0),
5454 REG_NOTES (new)));
5455 else
5456 REG_NOTES (new)
5457 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5458 XEXP (link, 0),
5459 REG_NOTES (new)));
5460 }
5461
5462 /* Fix the libcall sequences. */
5463 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5464 {
5465 rtx p = new;
5466 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5467 p = PREV_INSN (p);
5468 XEXP (note1, 0) = p;
5469 XEXP (note2, 0) = new;
5470 }
5471 INSN_CODE (new) = INSN_CODE (insn);
5472 return new;
5473 }
5474
5475 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5476 rtx
5477 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5478 {
5479 if (hard_reg_clobbers[mode][regno])
5480 return hard_reg_clobbers[mode][regno];
5481 else
5482 return (hard_reg_clobbers[mode][regno] =
5483 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5484 }
5485
5486 #include "gt-emit-rtl.h"
This page took 0.288475 seconds and 5 git commands to generate.